
SUEHRING

If MySQL can do it, you can do it too . . .
MySQL is the leading open source relational database management system. It’s powerful, it’s stable, and best
of all, it’s free. Covering everything from RDBMS basics to advanced topics such as replication, database veteran
Steve Suehring shows you how to put together and maintain your own MySQL database system. Whether
you’re a database newcomer who needs help with the command line interface, an administrator who wants tips
on security and performance tuning, or a developer looking for the lowdown on building MySQL-enabled Perl,
PHP, Java, and ODBC applications, this is the only guide you need to harness the power of MySQL.

Inside, you’ll find complete coverage of MySQL
• Install MySQL on a Linux, Windows, or Mac system

• Get the scoop on database design

• Take control of MySQL using the command line interface

• Configure MySQL for any sized system and implement security

• Debug databases and servers and tune performance

• Build applications using Perl, PHP, and ODBC

• Find out how to handle MySQL replication

• Integrate Linux services with PAM-MySQL/NSS-MySQL

• Harness NuSphere enhancements to MySQL

• Use phpMyAdmin for MySQL administration through the Web

Shelving Category:
Database

Reader Level:
Beginning to Advanced

System Requirements:
PC with a Pentium processor running
120 MHz or faster. Linux/Unix or Windows
9X, NT, XP, 2000, Macintosh running Mac OSX.
See About the CD appendix for details. ISBN 0-7645-4932-4

$49.99 USA
$74.99 Canada
£38.99 UK incl. VAT

M
ySQ

L
M

ySQ
L

Master the
leading open source
relational database
management system

Tune performance
and security on
database servers

Build MySQL
database applications
using Perl, PHP, Java,
and ODBC

MySQL

Steve Suehring

“The MySQL Bible introduces the essential concepts and
skills you’ll need to get started with MySQL.”

— Jeremy Zawodny, Senior Editor of Linux Magazine
and the MySQL database expert at Yahoo! Finance

,!7IA7G4-fejdci!:p;o;t;T;T
Sample code
on CD-ROM

BONUS
CD-ROM!
Perl, sample code
from the book, and more

w w w . w i l e y . c o m / c o m p b o o k s

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Fine-tune
control of
data entry
and tailor
special
reports for
your needs

Bonus CD-ROM MySQL
Bible

Perfect Bind • Trim: 7 3/8 x 9 1/4 •
• 4 color process • Yellow prints 110y 15m • + spot varnish (see spot varnish pdf) • Matte laminate

*85555-BAHGIh

100%
C O M P R E H E N S I V E

™™

™™

• Sample code from the book
• Perl DBI
• PHP and phpMyAdmin
• Apache

Configure powerful custom
options for administrators and users

4932-4 Cover 5/20/02 10:56 AM Page 1

MySQL™ Bible

014932-4 FM.F 5/29/02 3:37 PM Page i

014932-4 FM.F 5/29/02 3:37 PM Page ii

MySQL™ Bible

Steve Suehring

014932-4 FM.F 5/29/02 3:37 PM Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS
IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY
AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

MySQL™ Bible

Published by:
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
www.wiley.com

Copyright © 2002 Wiley Publishing, Inc. All rights reserved. No part of this book, including interior design, cover design,
and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of the publisher.

Library of Congress Control Number: 2002103290

ISBN: 0-7645-4932-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RY/QW/QS/IN

Distributed in the United States by Wiley Publishing, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG Norge
Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia
and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by
International Thomson Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing
Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V.
for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Wiley’s products and services please contact our Customer Care department; within the U.S. at
800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information, including discounts, premium and bulk quantity sales and foreign language
translations please contact our Customer Care department at 800-434-3422, fax 317-572-4002 or write to Wiley Publishing,
Inc., Attn: Customer Care department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care department at
650-653-7098.

For information on using Wiley’s products and services in the classroom or for ordering examination copies, please contact
our Educational Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations department
at 650-653-7000 or fax 650-653-7500.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

Trademarks: MySQL is a trademark of MySQL AB. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

014932-4 FM.F 5/29/02 3:37 PM Page iv

About the Author
Steve Suehring is a Senior Systems Engineer for a large Internet provider as well as

a consultant for database, security, and Internet projects. Steve has worked with

numerous clients to develop and implement database and Internet projects.

Through these projects, Steve has worked with MySQL, Oracle, and SQL server for

both administration and development. Steve currently holds certifications from

Microsoft and Cisco. Steve has also written articles for Linux Magazine.

When not in front of a computer screen, Steve enjoys spending time with his wife.

Steve also plays guitar, drums, and piano (though seldom simultaneously) and gets

into pickup games of basketball and football whenever possible.

014932-4 FM.F 5/29/02 3:37 PM Page v

Credits
Acquisitions Editor

Terri Varveris

Project Editor

Pat O’Brien

Technical Editor

Scott Hofmann

Copy Editor

Barry Childs-Helton

Proof Editor

TECHBOOKS Production Services

Editorial Manager

Mary Beth Wakefield

Permissions Editor

Laura Moss

Media Development Specialist

Gregory Stephens

Media Development Coordinator

Marisa Pearman

Project Coordinator

Nancee Reeves

Graphics and Production Specialists

Beth Brooks, Sean Decker,

Joyce Haughey, Jackie Nicholas,

Heather Pope, Betty Schulte

Quality Control Technicians

Laura Albert, John Greenough,

Andy Hollandbeck, Carl Pierce

Proofreading and Indexing

TECHBOOKS Production Services

014932-4 FM.F 5/29/02 3:37 PM Page vi

To Rebecca

014932-4 FM.F 5/29/02 3:37 PM Page vii

014932-4 FM.F 5/29/02 3:37 PM Page viii

Preface

Welcome to MySQL Bible. A complete reference for the MySQL database

server and environment. Whether you’re a database administrator looking

to install MySQL, an existing MySQL administrator, a developer looking to use

MySQL as a backend, or a combination of all three, this book can help.

Why I Wrote This Book
I wrote this book to give you one place to go for hands-on examples, reference, and

best-practices. I’ve been working with MySQL in real-world situations for years. I

believe MySQL to be a robust database solution for just about every type of appli-

cation. Combine the stability of MySQL with its low of ownership and you quickly

come to find it indispensable.

This book looks to provide everything you’ll need to know to get MySQL running

and expand upon that by examining development and best-practices for MySQL

implementations.

What You Need to Know
You don’t need to know anything about MySQL. However, you should have at least a

little familiarity with the concepts of databases. I’ve covered those concepts within

the pages of the book, but knowing a little about databases can’t hurt.

Of course, you need to know how to use a computer.

What You Need to Have
Since MySQL runs on many platforms, you need access to a computer capable of

running Windows 95, 98, NT, 2000, XP, or somewhere in between, Linux, or a Mac

with OS X. Depending on what you want to do with MySQL, you may need more

RAM or a better processor. I have successfully run MySQL in Linux with less than 20

megabytes of RAM and no swap file.

014932-4 FM.F 5/29/02 3:37 PM Page ix

x MYSQL Bible

The book is written with version 4 of MySQL in mind. Many of the screenshots were

taken using MySQL 3.23.X as version 4 was being stabilized. However, as I wrote it

version 4 was being developed. Like many people, I assisted in testing MySQL 4 and

so I was able to write this book to include those features.

What the Icons Mean
There are a certain number of icons used throughout the book to highlight various

points. This section illustrates what some of those mean.

The Note icon is used to illustrate a point that I thought should be highlighted
separately from the main text.

You’ll see this icon throughout the book to denote software, scripts, or the like
from a particular section.

When you see a Warning icon, pay particular attention. These are typically things
that I’ve done wrong in the past. I highlight them so you don’t do the same!

The Cross-Reference icon points you to another section of the book for more infor-
mation.

How This Book Is Organized
The book is divided into five main parts and a part of appendixes.

Part I: Getting Started
The first section of the book looks at the prerequisites for installing MySQL, the

actual installation of MySQL, and the concepts of database design. Installation is

examined on Linux, Windows, and Mac. Within the Linux chapter, both binary and

source installation of MySQL is examined.

Part II: SQL Essentials
Examination of SQL and some of the tools used with MySQL is the highlight of the

second section. The first chapter within the section gives a full look at the MySQL

command-line interface program. Alternatives to the CLI are examined including

Cross-
Reference

Caution

On the
CD-ROM

Note

014932-4 FM.F 5/29/02 3:37 PM Page x

xiPreface

WInMySQLAdmin, and MySQLGUI. The second chapter examines various SQL state-

ments in MySQL. The final chapter of the section is covers some topics that fit into

this section and prepare for other sections.

Part III: Administration
In this part, some server configurations are examined along with variables and

options for the MySQL server. MySQL server security is within this section, as well

as debugging and repairing MySQL databases and servers.

Part IV: Development
Four popular methods for developing applications with MySQL are examined in sec-

tion four. This includes Perl, PHP, connecting MySQL to ODBC, and JDBC with Java.

Notably, I did not include C or C++ into this section as I strongly feel that many

applications for MySQL aren’t developed in C or C++. I will grant that there are

some, but the widespread languages used that I’ve seen are Perl, Java, and PHP.

Part V: Advanced Performance
The final group of chapters looks at some topics that don’t really fit into another

section. These include replication, integration of MySQL with PAM in Linux, and

NuSphere MySQL.

Part VI: Appendixes
The Appendixes include standard MySQL reference material, a nifty Glossary, and

instructions for the CD-ROM.

About the Companion CD-ROM
Much of the software discussed in the book is included on the CD-ROM with this

book. Since software frequently changes versions, you may find a newer version of

the software on the respective websites. The MySQL software can be downloaded

from the MySQL AB web site.

I’ve also included software and scripts that I used within the book as examples.

Also on the CD-ROM are links that I use frequently and most likely highlight within

the pages of the book as well.

014932-4 FM.F 5/29/02 3:37 PM Page xi

xii MYSQL Bible

How to Use This Book
If you don’t already know about databases in general, or you’re getting started with

a MySQL system, I recommend reading this book from cover to cover. If you have a

challenging task with an existing MySQL system, try the Index and the Table of

Contents for your specific problem.

Talk To Me
I’d like to hear feedback on this book. Since the book is my first of this length, I’ll be

quite happy to know that someone out there actually read it. While I’ve done my

best to make this book accurate, I won’t be surprised if you find an error, typo-

graphical or otherwise. I’ll do what I can to get it fixed, short of going and crossing

out each typo with a marker.

I’ll be happy to try to answer specific questions about MySQL. However, I can’t

guarantee that I’ll be able to answer questions fully.

You can send email to me at:

suehring@braingia.com

I also have a website that contains some fun stuff, as well as other projects that I’m

working on:

http://www.braingia.com

014932-4 FM.F 5/29/02 3:37 PM Page xii

Acknowledgments

This book wouldn’t have been possible without help from many people. First, I

need to thank Terri Varveris for her unending patience with a writer on his

first book as well as Pat O’Brien. Everyone at Wiley has been a pleasure to work

with. Adam Goodman and Jeremy Zawodny from Linux Magazine offered some great

help to a fledgling writer.

There are many others who should get some credit and are too numerous to men-

tion by name. Inevitably I’m going to leave someone out and I apologize in advance.

My wife Rebecca exhibited great understanding, not only with this book, but with

me in general. My family, which has always been there to help and offer guidance

deserves thanks, as does my friend Chris Tuescher. He wouldn’t hesitate to do any-

thing to help a friend in need.

The Nightmare Productions and Capitol Entertainment group of people helped

shape who I am. Bob, Mike Feltz, Ernie Taylor, and Chris Tuescher stand out first

and foremost. However, Chris Steffen, Ron Mackay, Chad Chasteen, Pat Quimby,

and the rest of the gang had their parts too. Just one more time at for Mike at

Manawa Middle or Ellen at Mosinee would be nice, wouldn’t it?

Of course, Jim Leu, John Hein, Jeremy Guthrie, Andy Berkvam, Brandon, Dan, Erich,

Mark, Sarah, Justin, Tara, the CORE Digital gang from Stevens Point. Brian and Jill

and Deb Page and Jay Schrank gave me the opportunity and deserve thanks with

everyone else. Will you really ever forget the time we had at CORE?

The crew from ExecPC/Voyager/CoreComm needs thanks, too. Michael Mittelstadt

for having faith in me. AJ, Aaron, Al, Denise, James, Jerry, Joey Z, Matt, Nic, both

Ryans, and the whole gang from #mcp and #jbs. The ExecPC staff and former CORE

Digital staff are some of the smartest people to ever walk the face of the earth .

Professors Riley, Miller, and Cates have been a great influence on my life, as have

Duff Damos and Gary Wescott. Special thanks to 90fm, Nightmare Squad, Jim Oliva,

and John Eckendorf are in order as well for taking the time and effort every year to

bring the World’s Largest Trivia Contest to life. Yes, it really is the World’s Largest.

The book wouldn’t have been written without the never ending lunches from Mike

Mitchell and JJ at Hilltop. Thanks to Tim at Partner’s.

014932-4 FM.F 5/29/02 3:37 PM Page xiii

xiv MYSQL Bible

While I was writing the book, Kent Laabs let me borrow one of his drum kits. Quite

a few evenings were spent hammering away. Though Kent may find out by the time

he reads this, I believe I owe him a new cymbal. Who knows, someday maybe Pat

Dunn will let me play with Spicy Tie Band again.

Finally, Eddie Van Halen deserves thanks as well. His music has offered inspiration

throughout the writing of the book and beyond. It’s almost as if I feel the need to

cut him in on the book deal. Almost. If I get that invite to 5150 sometime...

014932-4 FM.F 5/29/02 3:37 PM Page xiv

Contents at a Glance
Preface . ix

Acknowledgments . xiii

PART 1: Getting Started . 1
Chapter 1: Relational Database Management . 3

Chapter 2: Preparing for Installation . 21

Chapter 3: Linux Installation . 35

Chapter 4: Windows Installation . 53

Chapter 5: Macintosh Installation . 69

Chapter 6: Starting MySQL . 81

Chapter 7: Database Concepts and Design . 105

PART II: SQL Essentials . 131
Chapter 8: Command Line Interface (CLI) . 133

Chapter 9: SQL According to MySQL . 171

Chapter 10: Database and Data . 231

PART III: Administration . 279
Chapter 11: Server Configurations . 281

Chapter 12: Security . 305

Chapter 13: Debugging and Repairing Databases 337

Chapter 14: Performance Tuning . 373

PART IV: Development . 391
Chapter 15: Perl Development . 393

Chapter 16: PHP Development . 449

Chapter 17: ODBC/JDBC . 493

PART V: Advanced Performance . 523
Chapter 18: Replication . 525

Chapter 19: Integration of Internet Services . 549

Chapter 20: NuSphere Enhanced MySQL . 571

014932-4 FM.F 5/29/02 3:37 PM Page xv

PART VI: Appendixes . 593
Appendix A: Application Reference . 595

Appendix B: Language Reference . 611

Appendix C: Function and Operator Reference 625

Appendix D: Datatype Reference . 645

Appendix E: Glossary . 653

Appendix F: About the CD-ROM . 659

Index . 661

014932-4 FM.F 5/29/02 3:37 PM Page xvi

014932-4 FM.F 5/29/02 3:37 PM Page xvii

014932-4 FM.F 5/29/02 3:37 PM Page xviii

Contents
Preface . ix

Why I Wrote This Book . ix

What You Need to Know . ix

What You Need to Have . ix

What the Icons Mean . x

How This Book Is Organized . x

Part I: Getting Started . x

Part II: SQL Essentials . x

Part III: Administration . xi

Part IV: Development . xi

Part V: Advanced Performance . xi

Part VI: Appendixes . xi

About the Companion CD-ROM . xi

How to Use This Book . xii

Talk To Me . xii

Acknowledgments . xiii

PART I: Getting Started 1

Chapter 1: Relational Database Management 3
Applications for Databases . 3

Customer databases . 3

Internet service providers’ databases 5

Criminology and databases . 6

Advantages of using databases . 7

Comparing SQL Implementations . 7

Oracle . 8

Microsoft SQL Server . 9

PostgreSQL . 10

Informix . 11

Introducing MySQL . 11

MySQL versions and features . 11

Standards and compatibility . 13

MySQL-specific properties . 16

What MySQL Does Best . 18

What MySQL Can’t Do — Quite Yet . 19

Summary . 20

014932-4 FM.F 5/29/02 3:37 PM Page xix

xx MYSQL Bible

Chapter 2: Preparing for Installation 21
Prerequisites for MySQL . 21

Licensing . 21

Support . 22

Operating system and architecture . 23

Development . 24

Existing data . 26

Default language and character set . 28

Management . 28

Where to Obtain MySQL . 30

Overview of MySQL Versions . 30

MySQL numbering scheme . 30

Binary versions of MySQL . 30

Source-code versions of MySQL . 32

MySQL for Windows . 32

MySQL for Mac OS X . 34

Summary . 34

Chapter 3: Linux Installation . 35
Common Binary, RPM, and Source MySQL Installation Tasks 35

MySQL server startup and shutdown 35

Common command-line options for mysqld 38

Creating default databases and completing installation 42

Setting an administrator password for MySQL 44

MySQL Linux Binary Installation . 45

MySQL Linux RPM Installation . 47

MySQL Linux Source Installation . 48

Choosing Options for MySQL . 48

Compiling MySQL . 51

Summary . 52

Chapter 4: Windows Installation . 53
Tasks Common to Binary and Source MySQL Installation 53

MySQL server administration

the Windows way . 53

MySQL server startup and shutdown 56

Common command-line options for mysqld 58

Setting an Administrator password for MySQL 62

Installing MySQL on Windows 2000 . 63

Summary . 68

Chapter 5: Macintosh Installation . 69
Binary and Source-Code MySQL Installation in Mac OS X:

Tasks in Common . 69

Setting up MySQL to start automatically 69

Shutting down MySQL Server . 73

Setting an administrator password for MySQL 73

014932-4 FM.F 5/29/02 3:37 PM Page xx

xxiContents

Installing MySQL With Mac OS X Server . 74

Installing MySQL Binary on Mac OS X . 74

Installing MySQL Source Code on Mac OS X 75

Creating the MySQL User . 75

Compiling MySQL . 77

Configuring MySQL . 78

Testing MySQL . 79

Summary . 80

Chapter 6: Starting MySQL . 81
MySQL Server Administration and Security 81

Using mysqladmin . 82

Setting the root password . 82

Checking MySQL server status . 83

Dealing with inactive connections . 84

Shut down the server . 86

Basic MySQL security . 86

Frequently Used MySQL Database Functions 88

Creating a database . 88

Creating tables . 89

Inserting and updating data . 92

Preparing a new user for access to the database 97

Summary . 102

Chapter 7: Database Concepts and Design 105
Concepts of Databases . 105

What is data? . 105

What is a database? . 105

Why use a Database? . 106

How are databases used? . 107

Database Design . 107

The Database Life Cycle . 108

Logical Design . 109

Entities and attributes . 109

Relationships . 112

Entity-relationship diagrams . 113

Analysis of diagrams . 113

Constraints . 119

Normalization . 120

Data Definition Language and Data Markup Language 122

Producing the SQL . 122

Physical Design and Implementation . 124

Indexing . 125

Implementation . 129

Summary . 130

014932-4 FM.F 5/29/02 3:37 PM Page xxi

xxii MYSQL Bible

Part II: SQL Essentials 131

Chapter 8: Command Line Interface (CLI) 133
Introducing the CLI . 133

Starting the CLI — the Basics . 136

Specifying the username . 137

Specifying the password . 138

Specifying the host . 139

Specifying the database . 140

MySQL CLI Environment Variables . 141

Determining and changing default variables 141

Using the CLI in Interactive Mode . 146

Speeding startup of the CLI . 147

Making the CLI quieter . 147

Using a pager to work with larger amounts of data 147

Displaying query results vertically . 148

Using tee to save output . 149

Printing output in HTML format . 150

Suppressing column names . 150

Using batch mode to produce tab delimited output 150

Using the CLI in Non-Interactive Mode . 152

Executing a statement . 152

Printing HTML output . 152

Suppressing column names . 154

Printing results vertically . 155

Using batch mode to produce tab-delimited output 155

Creating a Useful MySQL CLI Environment 156

A basic MySQL CLI configuration . 156

A MySQL administration configuration 157

A client-only MySQL CLI configuration 157

Your MySQL CLI configuration . 157

Common CLI Errors . 158

Access Denied errors . 158

Alternatives to the CLI . 160

The basics of MySQLGUI . 160

Running SQL statements with MySQLGUI 163

Administration with MySQLGUI . 166

The basics of phpMyAdmin . 168

Running SQL statements with phpMyAdmin 168

Administration with phpMyAdmin . 169

Summary . 169

Chapter 9: SQL According to MySQL 171
Utility and Administrative Statements and Commands 171

SHOW statements . 171

USE/CONNECT . 179

014932-4 FM.F 5/29/02 3:37 PM Page xxii

xxiiiContents

DESCRIBE . 180

KILL . 180

OPTIMIZE TABLE <tablename> . 180

Data Definition Language . 181

Deleting tables . 181

Deleting and creating databases . 182

Creating tables . 183

Altering tables . 185

Data Markup Language . 191

Inserting data into the database with INSERT 191

Gathering data with SELECT . 197

Updating data with the UPDATE statement 228

Delete . 229

Summary . 230

Chapter 10: Databases and Data . 231
Choosing the Right MySQL Table Type . 231

MySQL table types . 232

MyISAM . 234

MERGE . 240

ISAM . 240

HEAP . 241

InnoDB . 242

BerkeleyDB . 245

Administering Your Database with mysqladmin 246

Common switches . 246

Special switches . 247

Functions with mysqladmin . 249

Exporting Data . 260

mysqldump . 260

SELECT INTO OUTFILE . 271

Importing Data . 273

CLI . 273

LOAD DATA INFILE . 274

mysqlimport . 276

Summary . 277

Part III: Administration 279

Chapter 11: Server Configurations . 281
MySQL Server Variables . 281

Viewing current server variables . 281

MySQL Benchmarking and Testing . 292

Requirements for the applications . 292

Running the tests . 293

014932-4 FM.F 5/29/02 3:37 PM Page xxiii

xxiv MYSQL Bible

Sample Configuration Files . 296

Examination of the sample configuration files 296

Developing your own configuration file . 298

Bringing it all together . 302

Running More Than One MySQL Server on the Same Machine 303

Configuration of multiple MySQL servers 303

Connecting to multiple MySQL servers 303

Summary . 304

Chapter 12: Security . 305
Security of the MySQL Host Server . 305

Locating security information . 306

Apply patches and fixes . 308

Disable unused programs and services 308

MySQL Software Security . 310

MySQL updates . 310

Run the server as a non-privileged user 311

Firewalling the MySQL server . 312

Communicating securely with the MySQL server 312

Using socket-based connections . 313

Changing the MySQL default port . 313

Monitoring data sent to MySQL . 315

Disabling DNS . 316

Dynamic MySQL monitoring of Web pages 316

MySQL Authentication and Privileges . 323

Overview of MySQL authentication 323

MySQL privileges . 324

Security of passwords . 325

MySQL passwords . 326

MySQL User Management . 326

Adding users and granting privileges 327

Deleting users and revoking privileges 330

Changing passwords and other parameters 331

Common Problems . 333

Access denied . 333

Oops, I forgot the root password . 334

Summary . 335

Chapter 13: Debugging and Repairing Databases 337
Performing Database Backups . 338

mysqlhotcopy . 338

mysqldump . 348

BACKUP TABLE . 350

Troubleshooting and Repairing Table Problems 351

mysqlcheck . 352

myisamchk . 356

014932-4 FM.F 5/29/02 3:37 PM Page xxiv

xxvContents

ANALYZE TABLE . 364

OPTIMIZE TABLE . 364

CHECK TABLE . 365

REPAIR TABLE . 365

Restoring a MySQL Database . 365

mysqlhotcopy . 366

RESTORE TABLE . 366

The MySQL CLI . 368

Devising a Plan for Database Backups . 369

Summary . 371

Chapter 14: Performance Tuning . 373
Troubleshooting Servers . 373

MySQL logfiles . 374

Troubleshooting and performance functions

with mysqladmin . 377

MySQL CLI troubleshooting and

performance functions . 382

mysqlshow . 384

Optimizing Databases and Tables . 386

Optimizing Queries . 388

Summary . 389

PART IV: Development 391

Chapter 15: Perl Development . 393
Installing the Perl DBI And MySQL DBD . 394

Where to get the DBI and DBD . 394

Installing the DBI . 394

Installing the MySQL DBD . 398

Introducing the DBI . 402

Basic DBI Usage . 402

Connecting to and disconnecting

from the database with the DBI . 404

Handling errors with the DBI . 410

Functions with the DBI . 415

Building Basic Applications . 424

MySQL User Manager . 424

Building Web Pages with the DBI . 428

A simple Web application to query MySQL 429

Accepting input from a form . 431

Producing an E-Commerce Web site . 434

Database layout . 435

Building an inventory-input program 436

Building a simple product search engine 441

Present and future expansion . 448

Summary . 448

014932-4 FM.F 5/29/02 3:37 PM Page xxv

xxvi MYSQL Bible

Chapter 16: PHP Development . 449
PHP Installation . 449

What you need for installation . 450

Where to get the software . 451

Installing PHP on a Linux system . 452

Brass Tacks: PHP Essentials . 459

A PHP Web page . 459

PHP and forms . 462

PHP MySQL Configuration . 463

Configuration settings . 463

PHP MySQL Functions . 465

The functions . 465

Connecting to MySQL with PHP . 467

Selecting data from a MySQL database 468

Inserting and updating data in MySQL 472

Building MySQL-Enabled Applications With PHP 474

A PHP version of the user manager 474

Cookies with no milk . 482

Summary . 491

Chapter 17: ODBC/JDBC. 493
An Introduction to MyODBC . 494

Where to get MyODBC . 494

Installing MyODBC . 494

Changing MyODBC Options . 497

Using MyODBC . 499

Importing MySQL data into Microsoft Access 499

Importing data into Microsoft Word 504

An Introduction to JDBC . 510

The JDBC interface . 511

Where to get the JDBC and MySQL JDBC Driver 511

Installing the MySQL JDBC Driver . 511

Using the JDBC and the MySQL Driver . 514

The concepts and terms of JDBC . 514

The basics of handling statements and results 515

Database metadata . 516

Working with JDBC errors . 517

Testing for NULL values . 517

Cached connections . 518

Connecting to MySQL with the JDBC API and

MySQL Driver . 518

Creating a basic MySQL JDBC Program 520

Summary . 521

014932-4 FM.F 5/29/02 3:37 PM Page xxvi

xxviiContents

Part V: Advanced Performance 523

Chapter 18: Replication . 525
Planning and Preparing for Replication . 525

Considerations for replication . 526

MySQL server versions . 527

Security . 527

Configuring Replication . 527

Replication variables and settings . 527

A basic replication configuration . 530

Multiple slave replication . 533

Multiple master replication . 534

Pass-through slave replication . 537

Monitoring Replication . 537

Monitoring replication with Perl . 537

Monitoring replication through the Web 540

Kick-starting Replication . 543

When good replication goes bad . 544

Kick-starting replication revealed . 544

Summary . 546

Chapter 19: Integration of Internet Services. 549
PAM and NSS User Authentication in MySQL 550

Installing PAM-MySQL . 551

PAM-MySQL syntax . 552

Testing PAM-MySQL . 553

Installing NSS-MySQL . 555

Configuration of NSS-MySQL . 555

DNS Management with MySQL . 556

Creating a DNS management interface 556

MySQL and RADIUS Integration . 561

A closer look at Radiator . 561

E-Mail Integration and Management with MySQL 562

Building a virtual users table for Sendmail 562

A virtual e-mail database . 563

Importing existing virtual e-mail entries 564

A Web interface for virtual e-mail management 566

Building a Full-Scale Virtual-Services Interface 569

Summary . 569

Chapter 20: NuSphere Enhanced MySQL 571
NuSphere MySQL Advantage: A Closer Look 572

Gemini: A new table type . 572

NuSphere integration with popular software 572

NuSphere management tools . 572

014932-4 FM.F 5/29/02 3:37 PM Page xxvii

xxviii MYSQL Bible

Installing NuSphere Pro Advantage on Linux 573

The NuSphere installation process 573

NuSphere administration . 578

Creating Gemini tables . 579

Gemini configuration options . 581

Installing NuSphere Pro Advantage on Windows 2000 582

The NuSphere installation process 583

NuSphere administration . 587

Creating Gemini tables . 588

Gemini configuration options . 590

Summary . 591

Part VI: Appendixes 593

Appendix A: Application Reference 595
A.1 Data-Access Applications . 595

mysql . 595

mysqldump . 598

mysqlshow . 600

A.2 Server-Administration Applications . 601

mysqladmin . 601

mysqlcheck . 603

mysqlimport . 604

mysqltest . 606

A.3 The mysqld Server Daemon . 606

Appendix B: Language Reference . 611
B.1 Data Definition Language and Data Markup Language 611

ALTER TABLE . 611

CREATE DATABASE . 613

CREATE TABLE . 613

DESCRIBE . 613

DELETE FROM . 614

EXPLAIN SELECT . 614

HANDLER . 614

INSERT INTO . 615

SELECT . 615

SHOW TABLES . 617

UNION . 617

UPDATE . 617

B.2. Administrative Commands . 618

ANALYZE TABLE . 618

FLUSH . 618

KILL . 619

OPTIMIZE TABLE . 620

RESET . 620

SHOW . 620

014932-4 FM.F 5/29/02 3:37 PM Page xxviii

xxixContents

B.3 Backup / Recovery Commands . 621

BACKUP TABLE . 621

CHECK TABLE . 622

REPAIR TABLE . 622

RESTORE TABLE . 623

B.4. User-Account Commands . 623

GRANT . 623

REVOKE . 624

Appendix C: Function and Operator Reference 625
C.1. MySQL Operators . 625

Comparison operators . 625

Flow-control operators . 626

Logical operators . 627

Statement operators . 627

String operators . 628

C.2. MySQL Functions . 628

Binary math functions . 628

Date functions . 629

Decimal math functions . 634

Select operators . 636

String functions . 637

System functions . 641

Trigonometric math functions . 643

Appendix D: Datatype Reference . 645
D.1. Integer Datatypes . 645

BIGINT . 645

INT . 645

MEDIUMINT . 646

SMALLINT . 646

TINYINT . 646

D.2. Decimal Datatypes . 646

FLOAT . 647

DECIMAL . 647

DOUBLE . 647

D.3 Date Datatypes . 647

DATE . 648

DATETIME . 648

TIMESTAMP . 648

TIME . 648

YEAR . 649

D.4. STRING Datatypes . 649

BLOB . 649

CHAR . 650

TEXT . 650

VARCHAR . 650

014932-4 FM.F 5/29/02 3:37 PM Page xxix

xxx MYSQL Bible

D.5. Grouping Datatypes . 651

ENUM . 651

SET . 651

Appendix E: Glossary . 653

Appendix F: About the CD-ROM . 659
System Requirements . 659

What’s on the CD . 659

If You Have Problems . 660

Index . 661

014932-4 FM.F 5/29/02 3:37 PM Page xxx

Getting Started
✦ ✦ ✦ ✦

In This Part

Chapter 1
Relational Database
Management

Chapter 2
Preparing for
Installation

Chapter 3
Linux Installation

Chapter 4
Windows Installation

Chapter 5
Macintosh Installation

Chapter 6
Starting MySQL

Chapter 7
Database Concepts
and Design

✦ ✦ ✦ ✦

P A R T

II

024932-4 Pt01.F 5/29/02 3:38 PM Page 1

024932-4 Pt01.F 5/29/02 3:38 PM Page 2

Relational
Database
Management

Before you sound the depths of MySQL, it would be help-

ful to look at some applications for databases and at

other implementations of SQL servers.

This chapter lays out some groundwork for the rest of the

book — in particular, with tables that illustrate MySQL’s

extensions to the SQL-92 standard and compare some popular

functions of database servers.

Applications for Databases
Databases are a part of everyday life, usually without your

knowledge. From obvious applications (like customer

databases for insurance companies) to not-so-obvious uses

(such as storing actual images within a database for

recognition), database use is pervasive and increasing.

Customer databases
Not a day goes without telephone calls from people trying to

sell products or new long-distance plans. You and I are in

more than a few customer databases — and some of the

places I’ve done business with have shared my telephone

number with some of their friends, who’ve then shared it with

some of their friends — another fact of life that’s traceable to

the proliferation of databases.

Taking a look at some information stored in a few “everyday”

databases can serve as an example of the different types of

information each one collects, tracks, and sometimes stores —

about you, me, and probably everyone you know. Whatever

your views on issues of politics and privacy, these common

examples form a picture of databases in action.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Considering
applications for
databases

Comparing SQL
implementations

Introducing MySQL

✦ ✦ ✦ ✦

034932-4 ch01.F 5/29/02 3:38 PM Page 3

4 Part I ✦ Getting Started

Telephone companies
The telephone company that owns my area stores basic information about me — first

and last name, address, city, state, ZIP code, and telephone number — information

that’s not only basic but also common across almost all customer databases. Beyond

the basic information, the local telephone company also requires my social security

number (which helps them find me should I attempt to forego payment and leave

the area).

Within the telephone company database is a system to keep notes and correspon-

dence. For example, each time I call to talk with a customer service representative,

a note goes into my file — indicating what I was calling about, the outcome (if any),

as well as the date, time, and representative’s name — all of which is recorded

automatically when the note is entered.

Beyond the personal information and correspondence notes, the telephone company

database also serves as a billing system that generates my phone bill automatically

on the fourth day of every month. The database tracks what services I have (such as

Call Waiting, Caller ID, and so forth), associates each service with a price, and tallies

my bill for the month.

Having customer, billing, and rate information in a database allows the telephone

company to produce reports that can pinpoint how many customers have a certain

rate group, how many live in a certain area, how many have delinquent payments,

and so on.

Beyond customer reports, the telephone company has become much more sophis-

ticated in its use of the data. Previously when I would call for customer service, I

would get to talk to a live person after a bit of a wait. They then improved their

customer service by allowing me to punch in my 10-digit telephone number and

look up my records. From there, I might eventually get to talk to a live person (if

I didn’t select any of the common tasks on the voice-mail menu). The latest

improvement is the use of caller identification to ask me whether I’m calling in

regard to the number that I’m calling from. After more menus and prompts, I may

be able to reach a live operator.

Behind the scenes during this process is a database that can look up my informa-

tion when it is fed my 10-digit number. The telephone company database can then

give me choices based on the current status of my account. I once had the misfor-

tune of fraudulent charges on my telephone bill — about $650 worth. I immediately

put that amount into dispute and was told to pay my normal $45 bill — but I still

ended up receiving a disconnection notice. When I called back to inquire into the

notice, I was forwarded automatically to the collections department (who, after

some discussion, handed me off to the regular customer service department).

Moral: Databases can speed up only those aspects of a transaction that don’t

require the use of common sense.

034932-4 ch01.F 5/29/02 3:38 PM Page 4

5Chapter 1 ✦ Relational Database Management

Online or mail-order stores
Another type of customer database is kept by an online store such as Amazon.com

or a mail-order catalog store. The basic information is kept (name, address, and so

on); most online and many catalog stores also keep your e-mail address as well. In

addition, many stores track payment information so you don’t have to give your

credit card number every time you want to make a purchase.

As monopolies, most telephone companies can afford to do minimal marketing of

their products and services. To survive in a competitive market, however, catalog

and online stores keep track of how their customers heard about them. From that

information, they can produce a report that helps identify the most effective means

of advertising (or look for wiser ways to spend marketing money).

Major catalog and online stores also track your purchases through a database and

offer recommendations based upon previous purchase patterns. For example, if you

frequently buy books on Linux, Amazon.com might custom-build a page for you of

newly released Linux books. All such information is stored in one or more

databases.

Catalog and online stores can use the reporting capabilities of an electronic database

to watch which items are selling best, discern and track patterns of visitors, and

gather data on sales totals for items and departments.

Custom-service Web sites
Another interesting use of customer type databases is to track user preferences. An

example of this would be the Web site Slashdot, http://www.slashdot.org/. At

Slashdot, they don’t keep information like credit card number or address, but they

do keep track of your e-mail address and what news modules you want to see,

among other things. In this manner, you can customize the news you see, as well as

other Slashdot features. Some user-preference sites do keep personal information

such as name and address.

Though all three examples of customer databases — telephone company, online

store, and user-preferences site — track some of the same information, they also

track their own, task-specific information. This makes it difficult for an identity thief

to gain access to all your personal information in one place. However, personal

information security seems to be taking a backseat to the rise of all-in-one tracking

services that keep information centrally. Imagine what the telemarketers could do if

they had access to all my purchase histories and even my e-mail address!

Internet service providers’ databases
Internet service providers (ISPs) use electronic databases more heavily than many

other industries. Almost everything an ISP does is in electronic format; being rela-

tively young as an industry, they’ve grown up with good database tools readily

available. In many ways, ISP databases combine the functions of all three types of

customer databases I referred to earlier.

034932-4 ch01.F 5/29/02 3:38 PM Page 5

6 Part I ✦ Getting Started

The most obvious database use for an ISP is as a customer database — containing the

usual (basic) name-and-address information. Like the online or catalog stores,

the ISP database also stores information such as credit card or other billing data.

Correspondence notes are kept inside a database as well as marketing and referral

records to track marketing effectiveness. An ISP database usually has your e-mail

address as well.

ISPs also use user-preference databases to remember your settings and make your

online experience more productive — they use the same types of database informa-

tion as a news site.

One area that many people overlook with ISPs what the industry calls accounting
data — not the dollars-and-cents kind, but rather an accounting of who was using

what modem or IP address at a given point in time. This accounting data can then

be tracked to find usage patterns of a particular user or group of users. In addition,

when an abuse report or subpoena is received, the ISP can quickly locate the user

in question and take action or fulfill the subpoena request.

Many people wrongly believe they are anonymous when online. The reality is
quite the contrary. With the use of databases to track accounting information, find-
ing any given user who was online at any given time is almost trivially easy.

Some ISPs use databases as a means to track possible attacks against their equip-

ment. Databases are an efficient way to watch for patterns of attack and keep data

from an attack for possible future litigation or action against the attacker.

As you would expect, ISPs also use the reporting features of their databases.

Reports can quickly be generated on revenue, high usage customers, or anything

else tracked in the database.

Criminology and databases
Law enforcement has been quick to adopt electronic databases as an effective tool

for helping to catch criminals. Through identification databases, offender tracking,

and face recognition, law enforcement can efficiently assemble varied pieces of

information to assist in investigations.

Although fingerprinting technology is not new, the use of electronic databases to

store and retrieve fingerprints is a new (and powerful) extension of the technique.

Other identification data can also be gathered and tracked for law enforcement —

tax records, permits, and driver’s-license information can help law enforcement find

people. That information can easily be shared with other law enforcement agencies

at speeds that weren’t imaginable just a generation ago.

The electronic database is an ideal tool for certain other forms of information. For

example, when tracking offenders by modus operandi (a pattern that emerges in

Tip

034932-4 ch01.F 5/29/02 3:38 PM Page 6

7Chapter 1 ✦ Relational Database Management

crimes), the investigator can query a database to find suspects who might fit the

pattern. Storing actual images of faces (for example, mug shots) in a database can

help investigators find matches to faces. However, use of this technology in places

other than investigations has led privacy groups to express some concerns.

Advantages of using databases
The speed, accuracy, and thoroughness of electronic databases make them critical

to today’s 24/7 high-speed exchange of information. Even the handful of examples

in this chapter should strongly suggest the advantages — some of which appear in

Table 1-1 — of using and developing applications for databases.

Table 1-1
Advantages of Using Databases

Advantage Description

Speed Format means quick storage and retrieval of information. Users and
applications have a quick means for asynchronous reads and writes
of data.

Reporting Information can be gathered, quantified, and custom-analyzed with
greater flexibility.

Accuracy Given careful data input, databases provide accurate and consistent
results based on their data.

Thoroughness Databases can store and report results as complete and detailed as
their holdings — at electronic speed.

Comparing SQL Implementations
SQL, or Structured Query Language, is a specialized type of programming language

developed to work with relational databases such as MySQL, Oracle, Microsoft SQL

Server, PostgreSQL, Informix, and others.

The SQL standard is defined by ANSI, the American National Standards Institute in

their ISO/IEC 9075:1992 document. (The standard is commonly referred to as ANSI

SQL-92.) Every relational database applies its own version of the SQL standard; many

enhance that standard. Standardizing the programming language allows the devel-

oper to address the database in much the same way from platform to platform — and

every major platform has such products written for it. Table 1-2 compares some

popular relational-database products as illustrative examples.

034932-4 ch01.F 5/29/02 3:38 PM Page 7

8 Part I ✦ Getting Started

Table 1-2
Comparison of SQL Implementations

RDBMS Advantages Drawbacks

Oracle Versatile, stable, and secure. Potentially high TCO.

MS SQL Server Stable and secure; Microsoft Relatively high TCO;
offers excellent support. proprietary.

PostgreSQL Up-and-coming database Has yet to be widely
with low TCO. implemented in large-scale

business use.

Informix Stable; has good support Generally higher TCO.
available.

MySQL Offers a best-case-scenario Not all available versions can
database in many ways; low offer the full range of MySQL
TCO, high stability, high security, capabilities.
and excellent support.

Oracle
Oracle Corporation, http://www.oracle.com/, is arguably the leader in enterprise-

level database server software for e-commerce. The Oracle database product is

widely used in various types of large applications — including those mentioned in

the previous section — and is popular largely because its characteristics apparently

have a minimal downside:

✦ Versatility: Oracle Corporation offers many e-commerce products that integrate

with their databases, which can help streamline the process of designing, build-

ing, and using database applications.

✦ Stability: Administrators report that Oracle database servers rarely fail —

reassuring if your applications require 24/7 uptime.

✦ Available graphical user interface: Oracle offers many GUI tools for manag-

ing the database server (though whether this feature is a plus or minus

depends on which administrator you ask).

✦ Security: Versions of Oracle now include a security toolkit that allows encryp-

tion of sensitive data within the database. Like other RDBMS products, Oracle

also provides user-level security within a database to protect the data from

malicious users or operator errors.

✦ Support: Oracle Corporation has historically been responsive to customer

requests for new features in the database product. Oracle moves quickly to

seize new opportunities as well — listening to customers, watching market

trends, and maintaining thorough online documentation through the Oracle

Technology Network (see Figure 1-1).

034932-4 ch01.F 5/29/02 3:38 PM Page 8

9Chapter 1 ✦ Relational Database Management

Figure 1-1: The Oracle Technology Network is just one of many support offerings
for Oracle.

✦ Cross-platform capability: Popular versions include Oracle on Microsoft

Windows as well as Linux. Oracle also supports ANSI-92 SQL standards with

modifications and enhancements.

✦ Potentially high Total Cost of Ownership (TCO): Oracle’s database server

requires considerable high-end hardware resources (such as processor speed

and RAM capacity) to run at an acceptable level.

Microsoft SQL Server
Like Oracle, Microsoft has been a key player in the database market — though

Microsoft has had to play constant catch-up in the realm of the Internet and

e-commerce. Although Microsoft is the acknowledged leader in desktop operating

systems (thanks to its good sense of the marketplace and emphasis on fulfilling

the needs of consumers), that advantage has not translated smoothly to the

e-commerce market.

The characteristics of Microsoft SQL Server itself are consistent with its maker’s

traditional strengths, strategies, and limitations:

034932-4 ch01.F 5/29/02 3:38 PM Page 9

10 Part I ✦ Getting Started

✦ Fairly high stability: MS SQL Server offers a degree of stability that is

designed to be compatible with Windows OS. However, due to numerous

security problems in that underlying operating system, some corporate

customers are reluctant to invest in MS SQL Server as a solution for their

database needs. In addition, having to reboot the host computer (Windows-

style) to update the server or database software is completely unacceptable

to potential customers who require maximum server uptime.

✦ Ease of use: MS SQL Server operates via Windows-style GUI, which can help

ease the learning curve and add the appeal of familiarity for customers seek-

ing hassle-free transactions.

✦ Compliance with ANSI SQL-92: MS SQL Server not only adheres to the entry-

level standard, but also extends it (arguably no less than other relational

databases).

✦ Accessible support: SQL Server is available directly from Microsoft, as well

as from outside vendors. Microsoft provides a great deal of support informa-

tion on their SQL Server Web site (and in the Microsoft Knowledge Base) —

sometimes too much to find exactly what you are looking for.

✦ High Total Cost of Ownership: Like the operating systems it runs on, SQL

Server is extremely resource-intensive of both CPU speed and RAM capacity.

This aspect of the product reduces its appeal to many small businesses.

Adding to the cost is the licensing — running into thousands of dollars in fees

for SQL Server itself — not counting the operating system or other software

and hardware to make the database work. However, thorough support and

backing for Microsoft products make them worth the cost for some IT profes-

sionals (provided their companies can afford the outlay).

✦ Proprietary vendor: Since MS SQL Server is not cross-platform, some poten-

tial buyers are afraid to implement it lest they rely too much on one vendor. If

the vendor suddenly decides to charge too much for a new feature or patch to

the server, the company might have to pay more than it planned.

PostgreSQL
A relative newcomer to the RDBMS field, PostgreSQL, (http://www.postgresql.
org) has quickly gathered quite a following. PostgreSQL is a work in progress —

what software isn’t? — but is remarkably stable for such a young a product, as a list

of its characteristics shows:

✦ Compliance with SQL-92: PostgreSQL follows most of the SQL-92 standard,

and is available for many operating systems — including Windows 2000/NT

(through the use of special tools) and MacOS X. An open-source product,

PostgreSQL is bundled with many versions of the Linux operating system.

✦ Low Total Cost of Ownership: The PostgreSQL database-server software is

available for minimal outlay — the software is free of charge — a potential

advantage when compared to Oracle or Microsoft SQL Server.

034932-4 ch01.F 5/29/02 3:38 PM Page 10

11Chapter 1 ✦ Relational Database Management

✦ Support: Like MySQL, PostgreSQL offers commercial support through different

independent consulting firms (though its actual documentation is relatively

light).

✦ Relatively limited adoption: Although PostgreSQL supports some important

functions of larger RDBMS products — in particular, transactions — it can be

slower than some of its competitors (including Oracle) when keeping transac-

tional data. Speed may be one reason that not many large-scale businesses

have chosen PostgreSQL, despite some advantages over its more expensive

database brethren.

Informix
IBM’s Informix series of database servers are poised to compete for large-scale

database applications. Informix is a popular RDBMS that has the backing of IBM, as

is reflected in its characteristics:

✦ Diverse product line: Informix offers a wide array of database servers depend-

ing on the needs of the application. From online transactions to parallel pro-

cessing to high availability and more, Informix produces an optimized server

for nearly all uses.

✦ Cross-platform capabilities: Informix runs on a variety of platforms and also

offers a range of tools to assist with the development of both back-end and

front-end database applications.

✦ Potentially high Total Cost of Ownership: Like its other commercial counter-

parts, the TCO for Informix can become prohibitive for small business.

✦ Documentation and support: Documentation for Informix is excellent — and

much of it is available free from the IBM Web site. As you would expect, IBM

provides solid backing of the product and support for Informix customers.

Introducing MySQL
Where does MySQL fit in with all the other RDBMS products available? In many

ways, MySQL offers a best-of-all worlds scenario: It runs on many platforms, enjoys

a low TCO, and is stable. The documentation for MySQL is excellent. MySQL AB has

a thorough Web site containing reference material, as well as a link to mailing-list

archives. MySQL AB also offers high-quality support for their products, including a

service that allows MySQL developers to log in to your server to correct problems

and proactively help with optimization. MySQL is gaining RDBMS market share

because it offers stability, support, and low cost.

MySQL versions and features
MySQL is available for many different operating systems on a variety of computer

architectures. MySQL currently has versions for Linux, Windows 95/98/NT/2000,

034932-4 ch01.F 5/29/02 3:38 PM Page 11

12 Part I ✦ Getting Started

Solaris, FreeBSD, MacOS X, HP-UX, AIX, SCO, SCI Irix, Dec OSF, and BSDi. The Linux

version runs on a range of architectures that includes Intel libc6, Alpha, IA64,

SPARC, and S/390. The availability of cross-platform versions has enhanced the pop-

ularity of MySQL.

In addition to the standard MySQL database server, an enhanced version of MySQL

is available — MySQL-Max. MySQL-Max includes the standard MySQL server, plus

support for transaction-safe tables such as InnoDB or Berkeley DB (BDB). Table 1-3

shows the platforms and the transactional tables included with MySQL-Max.

Table 1-3
Transaction-Safe Tables in MySQL-Max Versions

Platform of Version Berkeley DB Available? InnoDB Available?

AIX 4.3 No Yes

HP-UX 11.0 No Yes

Linux (Alpha) No Yes

Linux (Intel) Yes Yes

Linux (IA64) No Yes

Solaris (Intel) Yes Yes

Solaris (SPARC) Yes Yes

Windows 2000/NT Yes Yes

MySQL is available as either a binary or a source-code download; if you want to add

a feature to MySQL for your application, you can download the source code and

modify it to your liking.

Downloading the source code also allows you to include support for transaction-
safe tables when you compile the code.

MySQL is covered under the GNU General Public License (GPL) and the GNU Lesser

General Public License (LGPL). To that end, most versions of MySQL require no

license or purchase.

The GNU GPL and LGPL are included for reference in Appendixes B and C, respec-
tively. Additional information on licensing is in Chapter 2.

MySQL also has many Application Programming Interfaces (APIs) to give the

developer to access and shape the database via programs in various languages.

APIs are available for C, C++, Tcl, Python, PHP, and Perl. Some of the most popular

for programming Web interfaces are PHP and Perl. MyODBC makes MySQL ODBC-

compliant as well.

Cross-
Reference

Tip

034932-4 ch01.F 5/29/02 3:38 PM Page 12

13Chapter 1 ✦ Relational Database Management

Standards and compatibility
MySQL follows nearly the entire SQL-92 standard. As is the case with other RDBMS

products, MySQL extends the SQL standard in distinctive ways (though it can be run

in an ANSI-only mode). Also, as you would expect, if you use some of the MySQL

specific extensions to the standard, your database may no longer be portable to

another RDBMS should you choose to change it at a later date.

You can help your MySQL system maintain compatibility with other databases by

enclosing any non-standard (MySQL-specific) extensions like this:

/*! (statement) */

Other RDBMS systems should ignore the enclosed statement, which saves you from

having to recode. MySQL simply ignores the brackets and processes the MySQL-

specific statement as normal.

Also, if you add a version number after the exclamation mark, MySQL ignores the

statement within the brackets unless it follows that version number. For example,

consider the following line of code:

/*!32343 (statement) */

On versions older than 3.23.43, the statement within the brackets would be ignored.

Table 1-4 lists a substantial sample of the numerous MySQL extensions to the

SQL-92 standard.

Not all extensions listed in Table 1-4 are unique to MySQL, but their use in the
specific context mentioned in the table may be unique to MySQL (or an extension
to the standard).

Table 1-4
MySQL Extensions to SQL-92

Extension Type/application Description or context

% Operator Used as a substitute for the mod
command.

\ Operator Escape character. Used where an
operation would include a normally
reserved character.

“ Operator Used to enclose strings.

andand Operator Logical AND.

Continued

Note

034932-4 ch01.F 5/29/02 3:38 PM Page 13

14 Part I ✦ Getting Started

Table 1-4 (continued)

Extension Type/application Description or context

|| Operator Used as OR (not to concatenate).

:= Operator Used to set variables.

asc Statement extension Used with group by to indicate the
order for results.

analyze table Statement Used to examine a table.

auto_increment Field attribute Increments a value.

binary Field attribute Controls case sensitivity.

bit_and() Statement extension Used with group by for ANDing of bits.

bit_count() Function Returns the number of bits.

bit_or() Statement extension Used with group by for ORing of bits.

blob Type Extensions to blob type.

case Function Flow-control option.

change Statement extension Used with alter table to modify a
<column name> column.

check table Statement Used to examine a table.

count(distinct) Statement extension Counts multiple items.

create database Statement Creates a database.

decode() Function String function.

delayed Statement extension Used with INSERT or REPLACE. Causes
statements to wait for a free table.

desc Statement extension Used with group by to indicate the
order for results.

drop Statement extension Used with alter table to delete a
<column name> column from a table.

drop database Statement Removes a database.

drop index Statement extension Used with alter table to remove an
index from a table.

drop table Statement extension Drops multiple tables.

elt() Function String function.

encode() Function String function.

encrypt() Function Creates acceptable values.

explain select Statement Describes joined tables.

flush (option) Statement Clears MySQL caches.

034932-4 ch01.F 5/29/02 3:38 PM Page 14

15Chapter 1 ✦ Relational Database Management

Extension Type/application Description or context

format() Function Changes the way a value is displayed.

from_days() Function Returns the number of days.

if() Function Control function.

if exists Statement extension Used with drop table command to
perform the action only if the table exists.

if not exists Statement extension Used with create table that only
performs action if table does not exist.

ignore Statement extension Used with alter table to ignore
repeat values.

index Statement extension Used with create table to create an
index.

into outfile Statement extension Used with select to redirect output to
a file.

key Statement extension Used with create table to create a
key column.

last_insert_id() Function Obtains number of last insert.

like Operator Allowed on numeric values.

limit Statement extension Used with delete to limit the number
of rows deleted.

load data infile Statement Imports data.

low_priority Statement extension Used with delete, insert, replace,
and update to indicate that the
operation should wait until there are no
other threads working with the table.

md5() Function Used to create an md5 of a value.

mediumint Field type Indicates a type of column.

not regexp Operator Extends regular expressions.

null Field attribute Indicates nothing.

optimize table Statement Performs optimizations on a table to
improve performance.

password() Function Encrypts a string.

period_add() Function Performs a date-related function.

period_diff() Function Performs a date-related function.

regexp Operator Extends regular expressions.

Continued

034932-4 ch01.F 5/29/02 3:38 PM Page 15

16 Part I ✦ Getting Started

Table 1-4 (continued)

Extension Type/application Description or context

rename Statement extension Used with alter table to change the
name.

rename table Statement Changes table name.

repair table Statement Performs repairs on a table.

replace Statement Instead of deleting, inserts.

set Field type Sets a value.

set option Statement Sets an option.

show Statement Lists objects.

sql_small_result Statement extension Used with select.

std() Statement extension Used with group by to indicate the
deviation.

straight join Statement extension Used with select to perform a join of
tables.

temporary Statement extension Used with create table to create a
temporary table.

text Field type Extensions to text type.

to_days() Function Performs a date-related function.

trim() Statement extension Allows substring trimming.

unsigned Field attribute Indicates an attribute for a column.

weekday() Function Performs a date-related function.

zerofill Field attribute Pads a string.

MySQL-specific properties
In addition to the extensions, field types, and functions listed in Table 1-4, MySQL

has the following properties that are not part of the SQL-92 standard:

✦ When a database is created, MySQL creates a directory within the MySQL

directory structure to hold database files.

✦ When the operating system has a case-sensitive file system (as does Linux),

MySQL database and table names are case-sensitive.

✦ Objects such as the names of databases, tables, indexes, columns, or aliases

may begin with — but not completely consist of — digits.

034932-4 ch01.F 5/29/02 3:38 PM Page 16

17Chapter 1 ✦ Relational Database Management

✦ To move, copy, or delete databases, you can use operating-system functions

such as copy (cp) or move (mv).

✦ To access objects in other databases, MySQL uses the following syntax:

databasename.tablename.

✦ String comparisons are not case-sensitive. This behavior can be changed with

the binary statement extension.

✦ MySQL enables you to use more than one add, alter, drop, or change
statement with an alter table statement.

✦ Comparison operators may be used to the left of the from clause within a

SELECT statement.

✦ MySQL supports the aliasing of many commands to assist users who are

familiar with other SQL implementations.

✦ The functions concat and char can be used with more than one argument.

✦ When using a group by function, you don’t need to name all selected columns.

MySQL does offer transactional tables; most other enterprise-level database

functionality (such as views, cursors, foreign keys, and the like) is either in testing

or planned for a near-future release of MySQL. Table 1-5 illustrates some of these

features and their current developmental status with MySQL.

Table 1-5
MySQL Enterprise-Level Database Features

Database feature Supported in (extant or expected version)

Subselects 4.1

Foreign keys Support (4.0)

Views 4.2

Stored procedures 4.1

Unions Supported (4.0)

Full join Supported

Triggers 4.1

Constraints 4.1

Cursors 4.1 or later

034932-4 ch01.F 5/29/02 3:38 PM Page 17

18 Part I ✦ Getting Started

What MySQL Does Best
To assist the reader, I’ve listed some tasks that MySQL does especially well:

✦ Web applications: Web applications typically feature many reads and few

writes. MySQL is fast and can meet the demands of Internet speed. In my

experience, MySQL has proven time and again that it outperforms other

RDBMS products in Web applications.

✦ Enterprise-level applications: MySQL offers support directly through the

parent company, MySQL AB. MySQL’s feature set includes just about every-

thing that an enterprise-level application would need. Refer back to Table 1-4

for more details.

✦ Open-source support: MySQL AB is responsive to requests for features as

well. MySQL is open-source; everyone is welcome to download and extend the

code to meet his or her needs.

✦ Low overhead: MySQL runs comfortably for many applications on an Intel

Pentium-class computer with 32 MB of RAM or less. I wouldn’t recommend
running an enterprise-level MySQL implementation on such a system, but

consider the utter futility of trying to run a Web application on Internet

Information Server with Microsoft SQL Server that runs under Windows 2000

on a Pentium-class computer with 32 MB of RAM.

✦ Available large table size: MySQL tables can grow large, though they do

sometimes encounter file-size limitations of the host operating system. Some

architectures, however, can accommodate up to 8 terabytes (TB) per table

using MySQL.

✦ Stability: All software is in development. Some features in MySQL are newer

than others, making them possibly less stable than others. Table 1-6 shows

some of the features within MySQL and their stability level.

Table 1-6
MySQL Stability

Feature Stability level

Standard table types Stable

Transactional Tables Becoming more stable

Basic SQL Functionality Stable

Client Software Stable

C API Stable

Perl and PHP APIs Stable

Replication Stable, though always adding features

034932-4 ch01.F 5/29/02 3:38 PM Page 18

19Chapter 1 ✦ Relational Database Management

MySQL compares with — and beats — some of its commercial counterparts in many

areas. Particularly in performance, scalability, and stability, MySQL can perform as

good or better than its competitors. Table 1-7 compares some popular features in

MySQL with other RDBMS. As you can see, MySQL meets or beats the others with

two transactional table types to choose from, many development languages, a low

Total Cost of Ownership, and other features.

Table 1-7
MySQL Comparison to other RDBMS Products

Feature MySQL Oracle MS SQL Server PostgreSQL

Transactional Yes Yes Yes Yes

Open-source Yes No No Yes

TCO Low High High Low

Development languages Many Many Fewer Many

Enterprise user base Yes Yes Yes No

Company support Yes Yes Yes No?

Cross-platform Yes Yes No Yes

MySQL has recently added Graphical User Interface (GUI) tools for database

management.

What MySQL Can’t Do — Quite Yet
MySQL is a stable and extensive RDBMS, but there are simply some things that

MySQL cannot do or are unsupported at this time.

✦ Foreign keys: A foreign key is a value that relates to (and relies on) the Primary

key in another table. This is a popular feature, used frequently in Oracle and

other RDBMS products. MySQL started support for foreign keys in version 4.0

and will enhance that support in later versions. In addition, Unions are now

supported in MySQL.

✦ Views: This popular method for obtaining data from the database, a planned

feature for MySQL, may have been implemented by the time you read this.

✦ R-Tree and other extensible index types: Support for these powerful features

will be included in a later version of MySQL.

Inherited tables are not planned for any version of MySQL.Note

034932-4 ch01.F 5/29/02 3:38 PM Page 19

20 Part I ✦ Getting Started

✦ Subselects: This type of statement (such as those using the IN clause) is not

supported in MySQL (though it may be in the near future). For example, the

following subselect is not valid MySQL syntax:

select * from table where id in (select id from table2);

Though subselects are not yet supported, you can many times get around the
missing function by using joins or other commands. If I rewrite the earlier invalid
statement as a valid statement in MySQL, it looks like this:

select table.* from table,table2 where
table.id=table2.id;

In the event that rewriting a subselect doesn’t work, I recommend using a front-
end application written in Perl (or in your favorite language) to issue multiple
statements to the database.

✦ Stored procedures or triggers: MySQL doesn’t support either one yet,

although the MySQL development team is working hard to bring triggers to

MySQL for version 4.1.

MySQL current and planned features change rapidly. I recommend checking with
MySQL’s Web site for the status of any feature necessary for your application.

Should you absolutely need a function not available in MySQL, look into support

contracts with MySQL AB. Often the developers are willing to prioritize a major

feature — or even customize a version of MySQL just for you!

Summary
Databases are widely used in many applications to track customer information,

preferences, and history. Databases offer speed, accuracy, reporting, and thorough-

ness as advantages.

✦ There are many implementations of Relational Database Management Systems

including Oracle, Microsoft SQL Server, PostgreSQL, and Informix.

✦ Each RDBMS offers advantages and disadvantages and shares many common

traits.

✦ MySQL is an open source RDBMS that offers many advantages over other

RDBMS with few disadvantages.

✦ MySQL supports the SQL-92 standard nearly completely and extends the

standard with other features.

✦ ✦ ✦

Note

Tip

034932-4 ch01.F 5/29/02 3:38 PM Page 20

Preparing for
Installation

Chapter 1 illustrated some basics of a Relational Database

Management System (RDBMS), as well as the standards

that MySQL follows and extensions to those standards. Before

you get your hands dirty installing MySQL, it would be wise to

know which version you’re going to install. Sounds easy, right?

Just download MySQL (or use the CD included with this book)

and go. Unfortunately — and fortunately — it’s not really that

easy.

MySQL includes many variants of the server, each optimized

for a different scenario. You can also download the source

code and customize MySQL further for your application.

This chapter presents some issues to think about before you

install any version of MySQL. In addition, it lists and describes

those versions so you can decide which one is right for you.

Prerequisites for MySQL
You should answer some essential questions before installing

MySQL. This section reviews some of those questions, along

with common requirements for a MySQL installation.

Licensing
Question: Will you be required to purchase a license for

MySQL?

MySQL server is covered under the GNU General Public License

(GPL). In general, you shouldn’t have to purchase a license

from MySQL AB for most uses. This includes internal uses as

well as commercial Web or other applications. MySQL AB asks

that you purchase a support contract or some other level of

support to assist them in continuing to develop MySQL.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking system
prerequisites for
MySQL

Obtaining MySQL

Selecting a MySQL
version

✦ ✦ ✦ ✦

044932-4 ch02.F 5/29/02 3:38 PM Page 21

22 Part I ✦ Getting Started

However, if you should download the source code and make a new application

using all or part of the MySQL code base — and you want to market that application

or make it proprietary — you would need a commercial license to prevent your

code from becoming GPL’d (that is, automatically subject to the terms of the GNU

General Public License). MySQL AB offers a commercial license that allows you to

use all or part of the MySQL code base within your application.

Additionally, if you distribute your own version of MySQL, you must include the

source code; if you have an application that works only with MySQL and you

choose to distribute MySQL with that application, you would need to purchase a

commercial license. Other situations also call for a license, and licensing require-

ments frequently change. I recommend checking with MySQL’s Web site,

http://www.mysql.com/, for more information.

License fees are very reasonable for MySQL. At the time of writing, a MySQL server

license is roughly $200.00, depending on the currency-conversion rate (from Euros

to American dollars).

Some older versions of MySQL were covered under a stricter license. This is true
for distribution of MySQL with programs or derivations based on the MySQL code
for those older versions. In the event that you have an older version of MySQL,
make sure you obtain the MySQL Free Public License.

Support
Question: Will you require support directly from MySQL AB for your installation?

MySQL AB offers tiered support, with tiered pricing to match. Because prices

change, I won’t include costs here. However, I think it would be useful to look at the

different levels of support available, though there may be more or fewer options

available when you read this.

✦ E-mail support: For a flat fee per year, you can obtain support via e-mail for

MySQL. Much of the support can be obtained on MySQL mailing lists, but this

option does give you the ability to report problems and ask questions via a

special support e-mail address.

✦ Priority e-mail support: A level above the basic e-mail support, this option

gives your e-mail priority over others. Additionally, requests for features and

additions to MySQL are given more consideration.

✦ Login support: This option gives you the benefits of the extended e-mail

support along with the ability to have a MySQL developer attempt to actually

connect to your database server to troubleshoot and fix problems. With Login

support, your suggestions are given a high level of consideration and many

can even be implemented quickly. You can also contact MySQL developers via

telephone. MySQL developers will also give you, when possible, suggestions

on improving your database implementation and optimization suggestions

as well.

Note

044932-4 ch02.F 5/29/02 3:38 PM Page 22

23Chapter 2 ✦ Preparing for Installation

✦ Priority login support: This option gives you all the benefits of the lower-tiered

levels as well as the ability to have your own extensions added to MySQL and

custom binary editions of MySQL created for you. In addition, with some other

costs, a MySQL developer will visit your site to consult and offer suggestions

for improvements.

✦ Telephone support: Like the others, this option includes the lower-tiered

levels and also gives you access to a Web site that lists current on-call phone

numbers for MySQL developers (in the event of an emergency).

If you are using transactional table types such as BDB or InnoDB, an additional fee
is charged, based on the level of support you purchase.

Operating system and architecture
Question: Which one of the many platforms do you run MySQL on?

MySQL runs on different platforms. From AIX to Windows, and many points in

between, MySQL is truly cross platform. Table 2-1 shows the operating systems and

platforms that MySQL is available for. The architecture and platform you choose

could determine how large database objects such as tables can be.

Table 2-1
MySQL Operating Systems and Architecture

OS/Architecture Support Available?

AIX 4.x Yes

Amiga Yes

BeOS Soon

BSDi 2.x-4.x Yes

DEC UNIX 4.x Yes

FreeBSD 2.x-4.x Yes

HP-UX 10.20-11.x Yes

Linux (Kernel 2.0 or later) Yes

MacOS X Yes

NetBSD 1.3-1.4 (Intel) Yes

NetBSD 1.3 (Alpha) Yes

OpenBSD Yes

OS/2 Warp Yes

Continued

Note

044932-4 ch02.F 5/29/02 3:38 PM Page 23

24 Part I ✦ Getting Started

Table 2-1 (continued)

OS/Architecture Support Available?

SCO OpenServer Yes

SCO Unixware 7.0.1 Yes

SGI Irix 6.x Yes

Solaris 2.5 or higher Yes

SunOS 4.x Yes

Tru64 UNIX Yes

Windows 95, 98, NT, 2000 Yes

Some versions of MySQL for some operating systems require additional tools or
components. Please consult MySQL’s Web site for more information.

MySQL is also more widely supported on certain platforms. MySQL in Linux is a

popular application and you have many avenues to pursue for assistance should

you need it. MySQL on other operating systems may not be so common and thus it

might be more difficult to obtain support.

MySQL runs best on x86 Linux platforms simply because that has historically been

where the most development and testing has been done. Other UNIX-variant operat-

ing systems like Solaris or FreeBSD also have gone through extensive testing. This

is not to say that MySQL is unstable on any other platform.

Aside from the operating system itself, another essential choice to make (assuming

that cost is no obstacle) is whether to use more than one processor. MySQL can

take advantage of Symmetric Multi-Processing (SMP) — a capability that dramati-

cally increases processing speed by using multiple processors — but the version

you download may or may not have support for SMP. Check before you install.

Development
Question: What application or applications do you use to develop a MySQL

database?

MySQL includes or has available for download many Application Programming

Interfaces (APIs). For our purposes, an API defines how a program connects to the

Note

044932-4 ch02.F 5/29/02 3:38 PM Page 24

25Chapter 2 ✦ Preparing for Installation

database. Once connected, the API defines the operations that can be performed.

When you click a search tool at an online store, many times you are using an API on

the backend and do not even know it. The API is used in a program, such as a PHP

script, to connect to the database and run your search.

Knowing which APIs you’ll need could help you determine which platform to use

with MySQL. The following APIs are available for MySQL:

✦ C

✦ C++

✦ Eiffel

✦ JDBC/Java

✦ ODBC

✦ Perl

✦ PHP

✦ Python

✦ Tcl

The C API has been developed the most. This is because MySQL is written in C and

the developers themselves frequently use the C API. For Web applications and

most database-connectivity applications, you use another API (such as Perl, PHP,

or ODBC).

The Perl, PHP, and ODBC APIs are discussed in Part IV of this book.

Perl is usually included with Linux, so if you expect to be using MySQL and

Perl, you should give serious consideration to Linux as your platform. Perl also

runs on other platforms as well, including Windows, through the use of additional

tools.

For ODBC support to connect MySQL to another application, you will probably

want to use MySQL in Windows. MySQL offers the MyODBC API to connect a

Windows client to MySQL. MyODBC will also work under UNIX variants with the use

of an additional tool. Figure 2-1 shows how an ODBC connection looks when you set

it up by using MyODBC in Windows.

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 25

26 Part I ✦ Getting Started

Figure 2-1: The MyODBC connector includes
many options (most covered in a later chapter).

Existing data
Question: Will you be importing data from another database?

Though not really a prerequisite to installing MySQL, determining what, if any, data

will be imported from other applications or databases is useful to take into

account. You can then export that data into a format MySQL can import — or you

can download a tool to assist with the export-and-import process.

MySQL supports loading data from delimited text files — for example, those con-

taining comma-separated values (CSV) — and many programs can export data into

delimited values, making it easy to load data into MySQL. If you are migrating

between versions of MySQL, you have a utility called mysqldump that can quickly

dump all the contents of an entire database (or even multiple databases) and then

load that information back into MySQL — where it automatically creates the table

structure as well! Figure 2-2 shows sample output from a mysqldump operation.

On the MySQL Web site you have tools for converting from other applications and

databases, though MySQL AB does not directly support most of those tools. In fact,

most were not written by the main MySQL development team, but by other develop-

ers around the world. Such is the beauty of Open Source! Of course, any software —

even (and sometimes especially) that produced by the biggest companies — can

have bugs, and the MySQL tools are no exception. You should always have extra

copies of your data on hand in case something goes wrong (yet another reason to

perform regular backups).

044932-4 ch02.F 5/29/02 3:38 PM Page 26

27Chapter 2 ✦ Preparing for Installation

Figure 2-2: The mysqldump utility makes migrating or upgrading
MySQL easy.

Table 2-2 shows some popular conversion tools.

Some conversion and import tools are examined in Chapter 10.

Table 2-2
Conversion Tools for MySQL

Original program Tool name Description of conversion

Microsoft Access Access to MySQL From Access to MySQL

ExportSQL Improved tool that replaces “Access to
MySQL”

MyAccess Work with MySQL within Access

Microsoft Excel excel2mysql From Excel to MySQL

FoxPro dbf2mysql From .dbf files to MySQL

mSQL msql2mysql From mSQL to MySQL

Oracle oracledump From Oracle to MySQL

Microsoft SQL Server mssql2mysql From SQL Server to MySQL

Some tools have similar names, may change names, be unavailable, broken, or
otherwise problematic. Check the MySQL Web site for the latest availability.

If you are porting from Oracle to MySQL and have applications currently in Oracle,

chances are you’ll have to rewrite some of those applications. Although MySQL

strives to provide the same functionality as Oracle and at least provide the same

syntax, not all queries will work the same between the two RDBMS. A line-by-line

Note

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 27

28 Part I ✦ Getting Started

examination of application code is the only way to ensure that the rollout of MySQL

will go smoothly.

If you want to get data out of MySQL, the process is much easier. MySQL exports

into common file types that many other RDBMS and applications can recognize. If

Microsoft Access is the destination, you have a companion program to the

ExportSQL program that allows data to be imported into Access through ODBC.

Exporting from MySQL is covered in Chapter 10.

Default language and character set
Question: What default language and character set should I choose for my installa-

tion of MySQL?

The default language and character set you choose for the MySQL server will deter-

mine things like sorting and grouping order for select statements, error message

language, and allowable characters. The MySQL binary versions come precompiled

with the Latin1 character set by default. This character set is acceptable for sorting

and grouping in the United States and Western Europe.

If you require additional character sets, compile MySQL from source code with the

--with-charset or --with-extra-charsets option. In addition, you’ll have to

start the server with a command-line option of --default-character-set.

MySQL can print error messages in many different languages. To make MySQL do

so, use the --language=<languagename> syntax when you start the server.

By default, language names are displayed in lowercase and located in the
<mysqldir>/SHARE/ directory.

Twenty languages are available to MySQL. In alphabetical order, they are Czech,

Danish, Dutch, English (default), Estonian, French, German, Greek, Hungarian,

Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian,

Slovak, Spanish, and Swedish.

With some languages (especially those using non-Western alphabets), you have to
load a different default character set.

Management
Question: How do you manage the server and how do clients connect to the

database?

Connection and management are two aspects of the same question. MySQL offers a

few different methods for management of the server. The most common is via the

MySQL Command-Line Interface (CLI). Another common method for management is

Note

Note

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 28

29Chapter 2 ✦ Preparing for Installation

through a tool called PHPMyAdmin that runs via a Web interface with PHP. MySQL

AB also has a Graphical User Interface (GUI) management and client interface called

MySQLGUI, see Figure 2-3.

Figure 2-3: MySQLGUI is a new application for working with MySQL.

One of the simplest ways to manage and work with MySQL is via the MySQL CLI.

Using the MySQL CLI or the mysql command from the command line, you can inter-

act with the server to create and alter tables, run queries, diagnose the server, and

much more. See Figure 2-4 for an example of the MySQL CLI in action.

Figure 2-4: The MySQL CLI is the traditional method for working
with MySQL.

The MySQL CLI is discussed in greater detail throughout the book and in Chapter 8.Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 29

30 Part I ✦ Getting Started

If you are having users connect to the MySQL server via the CLI or other tools, you

will have to install those tools on the client computers. In addition, you must grant

access for those users so they can connect and work with the MySQL server.

Where to Obtain MySQL
Question: Where can I get MySQL, and do particular sources offer advantages?

By far the most popular method for obtaining a copy of MySQL is via the MySQL AB

Web site at http://www.mysql.com/. From that site, you can get the version of

MySQL that you need for your particular installation, as well as obtain other tools

related to MySQL. You have geographically dispersed Mirror sites listed so that you

can download from the nearest site.

Another way to obtain MySQL is on CD-ROM with various Linux releases. Also,

some Linux versions, notably Debian Linux, allow you to download MySQL via their

great apt-get or dselect package tools.

In addition, a company called NuSphere has its own version of MySQL available.

That release, obtainable directly from NuSphere, and is covered in more depth in

Chapter 20.

Overview of MySQL Versions
Question: Which version of MySQL is appropriate for my database?

Aside from the operating system and platform for MySQL, different versions avail-

able for download. Choosing the right version can make the difference between a

successful and an unsuccessful installation.

MySQL numbering scheme
MySQL uses a three-digit numbering scheme for versions, for example, 4.00.00. The

first number indicates the file format used. Therefore, beware if you are attempting

to upgrade from a 3.xx.xx version to a 4.xx.xx version; the file format is different.

The second number is known as the release level. MySQL usually has two different

release-level numbers available at any one time, a stable version and a development
version. If you use a development branch, it may be unstable. The final number is

the actual release number and contains bug fixes and usually some improvements

over the previous release.

Binary versions of MySQL
In general, it’s good practice to download and install the binary version of MySQL.

This creates a standard installation that’s easier to support in the long run.

044932-4 ch02.F 5/29/02 3:38 PM Page 30

31Chapter 2 ✦ Preparing for Installation

For Linux, a binary version of MySQL is available and it works on most versions of

the operating system. I hesitate to say that MySQL works on all versions of Linux;

too many idiosyncratic versions of Linux exist for that to be likely. I feel comfort-

able saying that the binary versions work on most versions of Linux, especially the

popular ones.

Linux binary versions come compressed, and are meant to be uncompressed right

into the folder where they are to be installed.

If you are working with a version of Linux that supports the Red Hat Package

Manager (RPM) format, then you can use a copy of MySQL with the .rpm extension.

The RPM versions should work on Linux OSs that support RPM and glibc. Table

2-3 covers the different RPM-based versions of MySQL.

Table 2-3
MySQL RPM Binary Versions

Version name Description

mysql-version.i386.rpm The main MySQL server installation.

mysql-client-version.i386.rpm The MySQL client only. Used to connect to
a MySQL server located on another
machine.

mysql-bench-version.i386.rpm A suite of testing and benchmarking tools
for MySQL.

mysql-devel-version.i386.rpm The libraries and include files. This is
needed if you want to use APIs such as
Perl or PHP with MySQL.

mysql-shared.i386.rpm Client libraries.

mysql-src-version.i386.rpm Source code rpm that contains everything
listed above.

You can install individual packages that have only the portions of MySQL needed

for your work. If you need only the MySQL CLI client, for example, you don’t have to

install a full server on your computer.

Installation of MySQL in Linux is covered in Chapter 3.

Aside from the RPM binary versions of MySQL, different binary packages available

for the different platforms and operating systems. (Refer to Table 2-1 for a list of

supported platforms and operating systems.) For the most part, you have binary

packages already available.

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 31

32 Part I ✦ Getting Started

Source-code versions of MySQL
If you want to compile MySQL for other platforms (such as Alpha or SPARC), or if

no binary package is available for your operating system, you can download the

source code for MySQL. The source code is available in an RPM or in tar/gzip
format (for UNIX variants) or zipped source code for Windows. Table 2-4 shows the

different source-code versions of MySQL.

Table 2-4
MySQL Source Versions

Version name Description

mysql-version.tar.gz General UNIX-variant source code to compile MySQL.

mysql-src-version.i386.rpm Source-code RPM that contains everything listed in
this section of the book.

mysql-version-win-src.zip Source code to compile under Windows.

Downloading a source-code version will allow you to customize the MySQL server

installation much more than you can with a binary version. You can tailor the

server software to fit your needs and even edit and change the source code itself.

Options like debugging, RAID (Redundant Array of Inexpensive Disks), or including

just one of the two transactional table types can be accomplished by compiling the

source code. In addition, if you ever have to rewrite a portion of the code or patch a

portion of the code, having the source code is the only option.

Chapter 3 covers installation from source code and from binary packages.

MySQL for Windows
MySQL with Windows in binary version runs on Windows 95, 98, Me, NT, and 2000.

The binary version includes the regular MySQL server as well as the MySQL-MAX

server that includes transactional tables. If your work requires the server to

support transactional tables, the command line that starts MySQL is different.

Therefore, if you don’t need transactional-table support, I recommend staying with

the normal MySQL server; it uses fewer resources. Table 2-5 shows the MySQL exe-

cutables for Windows.

Not all executables will run on Windows 9x, Me, or XP.Note

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 32

33Chapter 2 ✦ Preparing for Installation

Table 2-5
MySQL Windows Executables

Name Description

mysqld-nt A binary installation specifically for NT/2000. Includes support for
named pipes.

mysqld-opt An optimized binary version with no transactional table support.

mysqld Binary version that includes debugging, memory allocation,
transactional table types, and symbolic links.

mysqld-max Binary version that includes transactional tables and symbolic
links. Note that no named pipe support is included in this version.

mysqld-max-nt This binary version also includes support for named pipes as well
as everything included in the mysqld-max version.

By default, when you install MySQL on Windows 2000, the mysql-nt version will

start. If you want to choose a different version, you can set the appropriate value in

the my.ini file (which resides in the WINNT directory). Alternatively, you have a

GUI admin tool called WinMySQLAdmin that you can use to change the server

executable easily. Figure 2-5 shows WinMySQLAdmin in action.

Figure 2-5: WinMySQLAdmin allows changing of the MySQL server executable as
well as many other options.

044932-4 ch02.F 5/29/02 3:38 PM Page 33

34 Part I ✦ Getting Started

WinMySQLAdmin is covered in greater detail in Chapter 3.

You have many options, even within a particular operating system, for choosing the

version of MySQL you’d like to run. Know what you need before you actually install

MySQL — it saves a lot of time and headaches in the future.

MySQL for Mac OS X
MySQL AB also produces a version of the server for Mac OS X. MySQL is included

with Mac OS X Server or can be downloaded through the Web site.

MySQL for Mac is available as source code only. At this time no binary versions of

MySQL are available for Mac OS X.

Chapter 5 describes installation of MySQL on a Mac OS X system.

Summary
You have several questions to consider when installing MySQL including licensing,

support, and operating system.

✦ MySQL enables you to use many character sets and default languages.

✦ MySQL can import many different varieties of existing data; third-party tools

are also available to assist with data import.

✦ MySQL has tools such as the command-line interface and MySQLGUI to

manage and work with your data and the database server.

✦ MySQL has versions available for many operating systems and architectures,

the most popular of which are Linux and Windows.

✦ ✦ ✦

Cross-
Reference

Cross-
Reference

044932-4 ch02.F 5/29/02 3:38 PM Page 34

Linux
Installation

Many people (including myself) skip the first couple of

chapters in a book to get to the heart of the subject

matter. If you’re one of those people, welcome! I encourage

you to review the exquisite prose contained in the first two

chapters. Not only did I work hard to bring these chapters to

you, they actually contain information you might find useful.

At the very least, skim the contents of Chapter 2; it contains

information that will help you decide which version of MySQL

you should install for your particular needs.

For those of you who have been with me throughout, thank

you. I’ll now get into some hands-on installation tasks. This

chapter concentrates solely on the Linux operating system. If

you will be installing MySQL on another operating system,

this chapter probably isn’t for you.

Common Binary, RPM, and Source
MySQL Installation Tasks

Regardless of the method you choose for installation (or the

version of Linux you have), some tasks or options are common

to all of them. Rather than cover those same options each

time, I’ll cover them here.

MySQL server startup and shutdown
If you are running a System V–based Linux version such as

Red Hat and you want the MySQL server to start whenever

the server is rebooted, you should copy the file /usr/local/
mysql/support-files/mysql.server to the /etc/rc.d/
init.d directory on your server. Then make the symbolic

links to the rc.d directories. Alternatively, you can use the

chkconfig command to add the mysql.server script auto-

matically, as shown in Figure 3-1.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Listing tasks that
binary, RPM, and
source-code
installation have in
common

Installing MySQL
(binary)

Installing MySQL
(RPM)

Installing MySQL
(source)

✦ ✦ ✦ ✦

054932-4 ch03.F 5/29/02 3:38 PM Page 35

36 Part I ✦ Getting Started

Figure 3-1: The chkconfig command can be used to configure the
mysql.server script for automatic startup and shutdown of the
MySQL server.

If you are running a BSD-style Linux version such as Slackware, you can still use the

mysql.server script. However, you’ll need to change the permissions on the file to

make it executable — and then add it to the rc.local script to start the server.

Figures 3-2 and 3-3 show the commands and editing of the /etc/rc.d/rc.local
script on a Slackware Linux system.

Figure 3-2: Copy the file to the /etc/rc.d directory and be sure to
make the file executable.

Configuring the MySQL database to stop automatically when the server is rebooted

or halted is probably more important than making the database start automatically.

If the MySQL database is not shut down properly, you may find broken tables or

even loss of data. On SysV systems such as Red Hat and Mandrake, you needn’t

worry about this step if you’ve used chkconfig to configure the mysql.server

054932-4 ch03.F 5/29/02 3:38 PM Page 36

37Chapter 3 ✦ Linux Installation

script. The following configuration steps are necessary for BSD-style systems.

Sometimes these configuration steps are not necessary, as the MySQL server will

shut down when given a kill command by the system. However, I believe data

integrity is too important to leave to chance.

Figure 3-3: Edit the /etc/rc.d/rc.local file to add the command
/etc/rc.d/mysql.server start.

If you haven’t already copied the mysql.server script to /etc/rc.d and made the

file executable, now is the time to do so. On Slackware, simply edit the /etc/rc.d/
rc.6 file and add /etc/rc.d/mysql.server stop to the file near — but not at —

the top of the file, as shown in Figure 3-4.

Figure 3-4: Add the mysql.server stop command to your shutdown
script.

054932-4 ch03.F 5/29/02 3:38 PM Page 37

38 Part I ✦ Getting Started

Should you need to stop the MySQL server manually, you can do so with the
mysqladmin shutdown command. For example, the following command would
stop the MySQL server on the local machine:

mysqladmin -p shutdown

Notice the use of the -p switch that causes the command to prompt for a password.

Command-line switches are frequent topics throughout the book, most notably
Chapters 6 and 10 and Appendix A.

Common command-line options for mysqld
The main server executable file for MySQL is called mysqld. Here are some impor-

tant points to keep in mind when you select its command-line options:.

✦ Older versions often run mysqld from a wrapper script such as mysqld_safe
or safe_mysqld.

Options that you can set or call when running the wrapper script can change the
behavior of the server.

✦ You can set many options from inside the my.cnf file (located in the /etc
directory or sometimes in the /etc/mysql/ directory).

As a rule of thumb, use the my.cnf file for changing the command-line behavior
of MySQL. If you edit the mysql.server file, your changes will be lost if the
mysql.server script is overwritten by future upgrades of the MySQL software.

The my.cnf file is a powerful way to control many aspects of the MySQL

software. For Linux installations, the my.cnf file is usually located inside the

support-files directory with the filename my-<size>.cnf, where <size>
indicates the estimated resource amounts of your MySQL server host

machine.

Chapter 11 examines various configurations that use the my.cnf configuration file.

Setting options in the my.cnf file
Within the my.cnf file are sections that affect the behavior of the components that

make up a MySQL installation. These sections include both the client and server,

and they use the following additional commands:

mysql

mysqladmin

Cross-
Reference

Tip

Caution

Cross-
Reference

Tip

054932-4 ch03.F 5/29/02 3:38 PM Page 38

39Chapter 3 ✦ Linux Installation

mysqld

mysql_safe

mysql.server

mysqldump

myisamchk

mysqlimport

mysqlshow

mysqlcheck

myisampack

Using the [mysqld] section
Each section in the my.cnf file starts with the bracketed name of the command or

area that identifies the section. In Figure 3-5, for example, you can see some options

listed under the word [mysqld].

Figure 3-5: The my.cnf file contains many options that can affect the
behavior of the MySQL server and client.

If your server is set to run as root upon startup, you should add user = mysql to

the [mysqld] section of my.cnf and restart the server. To find out what options

MySQL will use for startup of the server, use the program my_print_defaults
contained in the ‘bin’ directory of your MySQL installation. Figure 3-6 shows the

output for my_print_defaults on a sample server; your options may differ

slightly.

054932-4 ch03.F 5/29/02 3:38 PM Page 39

40 Part I ✦ Getting Started

Figure 3-6: The my_print_defaults script shows the default options
that MySQL uses for many components.

Some non-default options for the [mysqld] section that you may want to consider

are user = mysql and bind-address, which work as follows:

✦ The user = mysql option causes the server to run as a non-privileged user,

which helps enhance security.

✦ The bind-address may be useful if you have a multi-homed host (more than

one IP address) and only want to listen for connections on a certain IP

address. In Figure 3-7, the address that is bound is the Ethernet IP address for

that machine, 192.168.1.75.

Figure 3-7: Using ifconfig to determine the Ethernet address of
the server

Thus, given the correct privileges, I can establish a connection between another

machine on the network and the host called -h <ip or hostname>, as shown in

Figure 3-8.

054932-4 ch03.F 5/29/02 3:38 PM Page 40

41Chapter 3 ✦ Linux Installation

Figure 3-8: Connecting from another machine is possible with the
MySQL client.

Using the mysqladmin processlist command, I can see the current connection to

the database from the remote client, as shown in Figure 3-9.

Figure 3-9: Using mysqladmin processlist, the connection from the other machine,
“testbox.braingia.com,” is shown.

However, if I only needed to connect to the MySQL server from the server itself, I

could remove the bind-address completely and use the skip-networking option.

With the skip-networking option MySQL uses Unix sockets and no longer listens

for connections via TCP/IP. I’ve edited my.cnf and restarted the server. The output

of my_print_defaults is now shown in Figure 3-10. Notice that the bind-address
option has been replaced with the skip-networking option.

054932-4 ch03.F 5/29/02 3:38 PM Page 41

42 Part I ✦ Getting Started

Figure 3-10: Using bind-address in my.cnf to bind only the loopback
address for security purposes

Now when I attempt to connect from the remote computer, I receive an error, as

shown in Figure 3-11.

Figure 3-11: A failed attempt to connect to a MySQL server that is
no longer listening on its Ethernet address results in an error.

Other options for my.cnf and the MySQL server are discussed in Chapter 11.

Creating default databases
and completing installation
The final steps involved in a MySQL installation are common to all Linux versions

covered in this book. Please feel free to refer back to this section when you’re

through the initial install rather than reading this now.

Cross-
Reference

054932-4 ch03.F 5/29/02 3:38 PM Page 42

43Chapter 3 ✦ Linux Installation

From where you are now, change into the MySQL directory, cd mysql. One of the

final steps is to run the script to install the default databases. Within the mysql

directory, this is accomplished using the ./scripts/mysql_install_db com-

mand. The output will probably scroll past your screen rather quickly, so I’ve

included some of it in Figure 3-12.

Make sure you type these commands exactly as they appear. Failure to do so could
cause problems for your server.

Figure 3-12: The beginning of the output from the
mysql_install_db script

The final step before starting the server is to change the permissions for the MySQL

files and directories. You can do so with a series of commands, shown in Figure 3-13.

Figure 3-13: Changing ownership on the MySQL files and directories
is an important step.

Caution

054932-4 ch03.F 5/29/02 3:38 PM Page 43

44 Part I ✦ Getting Started

It is now time to start the server. Use the following command:

/usr/local/mysql/bin/safe_mysqld --user=mysql &

The & character at the end of this command is important because it places the
MySQL server in the background.

Alternatively, you can set the user in the my.cnf file. Under the [mysqld] section,

place the following line and restart the server:

user = mysql

Setting an administrator password for MySQL
The first step immediately after starting a MySQL server is to set a password for the

server administrator account known as root. This user is different from the root
user on your system; setting the password for this user does not affect the pass-

word for the root user on your system. (Even so, use care when creating any

password, including this one.)

The mysqladmin utility is what you use to set the initial password for the root
user. To set the password, the command is run twice — once for the localhost
connection and once for connections via the hostname. When the mysqladmin
command is run, it will prompt you for the password. If you have not set the

password, just press Enter without typing anything and the command will run

successfully.

Some versions of MySQL now come with the option skip-networking enabled by

default. This causes MySQL to listen only for connections from the localhost and

not via the network. The skip-networking option is contained in the [mysqld]
section of the MySQL configuration file my.cnf. If this option is enabled, you can’t

set the password by using the -h hostname. If you remove this option from the

configuration file, MySQL listens for connections via the network — in which case,

the -h hostname option will work.

The syntax for setting the password with mysqladmin is as follows:

mysqladmin -u root -p password ‘password’
mysqladmin -u root -h hostname -p password ‘password’

An example of setting the root password is shown in Figure 3-14.

Note

054932-4 ch03.F 5/29/02 3:38 PM Page 44

45Chapter 3 ✦ Linux Installation

Figure 3-14: Setting the root password with mysqladmin is your first task as
a server administrator.

MySQL Linux Binary Installation
MySQL has binary versions available in .rpm and gzipped formats. To use the RPM

versions, your version of Linux must support RPMs and also have glibc. To find

out whether your Linux installation procedure supports RPMs, log in as root and

type rpm or whereis rpm. If you receive a Bad Command or File Not Found
message (or a similar error message), you probably don’t have support for RPMs

and will have to install MySQL as a binary or from source code. (RPM installation is

covered later in this chapter.)

When you’ve obtained the MySQL binary distribution appropriate for your hardware,

installation is simply a matter of unpacking the distribution and running some scripts

to configure the database. /usr/local is the standard place to install MySQL for a

binary version. Therefore, prior to going further, you should cd to that directory.

Once in /usr/local, as shown in Figure 3-15, you can unpack the distribution.

Simply type the following command:

tar -zxvf [mysql-version-filename]

The next step is to add a mysql user account and group to your server. I strongly

recommend taking this step for security reasons. Should there be a compromise

or breach of security through the MySQL server, the attacker would not gain root
or superuser privileges on your system. Adding the group and user is easy (see

Figure 3-16).

054932-4 ch03.F 5/29/02 3:38 PM Page 45

46 Part I ✦ Getting Started

Figure 3-15: Unpacking the binary distribution creates a directory
containing the MySQL server files.

Figure 3-16: Addition of the mysql user and group is strongly
recommended for security.

To further standardize the installation, make a symbolic link between /usr/local/
mysql and /usr/local/mysql-version, which will enable you to move around

the file system with ease. Within the /usr/local directory, type the following:

ln -s [mysql-version] mysql

You will now have a directory called /usr/local/mysql that is actually a symbolic

link to the MySQL server directory, as shown in Figure 3-17.

At this point, refer to the section in this chapter called “Creating default databases

and completing installation” for instructions to take you through the rest of this

MySQL installation procedure.

054932-4 ch03.F 5/29/02 3:38 PM Page 46

47Chapter 3 ✦ Linux Installation

Figure 3-17: Standardization of the MySQL install by making a
symbolic link for the MySQL server directory

MySQL Linux RPM Installation
The installation using rpm files has five portions, from which you select according to

your needs: server, testing suite, client, development libraries, and client libraries.

This section illustrates a complete installation that includes all of them. At the most

basic level, rpm versions are simply binary versions of MySQL rolled into rpm files.

The locations of files within a binary installation may differ from the rpm install.

Each of the files within an rpm install simply requires an rpm -i command followed

by the package name, as in the following example:

rpm -i MySQL-client-x.xx.xx-i386.rpm

Installing the main MySQL-x.xx.xx-i386.rpm file actually installs — and automati-

cally starts — the MySQL server. The RPM even runs the mysql_install_db script

so you don’t have to do it later.

You don’t need to run mysql_install_db (as you’re told to do later when you
install the main server from RPM).

To install the shared and development libraries and client for MySQL, simply install

them via the rpm -i command. If you wish to install the benchmarking utilities you

will need the Perl MySQL Module available for download from MySQL AB.

The Development and Benchmarking RPMs also depend on the MySQL client.
Therefore you will need to install the MySQL client RPM prior to installing the
Development or Benchmarking RPMs.

RPM installation is quite easy though the file locations may be somewhat different

than the other installation methods.

Note

Note

054932-4 ch03.F 5/29/02 3:38 PM Page 47

48 Part I ✦ Getting Started

At this point, refer to the section in this chapter called “Creating default databases

and completing Installation” for instructions to take you through the rest of this

MySQL installation procedure.

MySQL Linux Source Installation
The most configurable and complicated of the install types for MySQL is an installa-

tion from source code. This method requires you to compile the server directly and

therefore is not for everyone. However, with a source-code install:

✦ You have the most control over the components installed.

✦ You can edit or modify the source code to fit your installation.

The source code for MySQL for Linux on Intel/x86 systems is contained on the
CD included with this book.

The source code will be compressed and tarred, therefore you’ll need to untar and

uncompress it, then cd into the appropriate directory as follows:

tar -zxvf mysql-version.tar.gz
cd mysql-version

For security reasons, I recommend adding a group and user for MySQL:

groupadd myql
useradd -g mysql mysql

To enable your installation to closely replicate a binary install, you may want to

consider creating a mysql directory in /usr/local.

mkdir /usr/local/mysql

Doing so eases administration and future upgrades.

Choosing Options for MySQL
There are a large number of options you can set with a source code install. The

options range from simple options about how the configure script will run, to table

types to compile, and directories to install components into. The following tables

list those options and the defaults are contained in brackets.

On the
CD-ROM

054932-4 ch03.F 5/29/02 3:38 PM Page 48

49Chapter 3 ✦ Linux Installation

Table 3-1
Configure Options for a MySQL Source Installation

Configuration Option Description

--cache-file=FILENAME The results from testing will be sent to FILENAME.

--no-create Stops creation of output files.

--quiet Suppresses printing of ‘creating’ messages.

--silent Same as the --quiet option.

--srcdir=DIR Source code is in DIR.

Table 3-2
Directory and File Options for MySQL Source Installation

Configuration option Description

--prefix=DIR Place architecture-independent files in DIR
[/usr/local].

--exec-prefix=DIR Place architecture-dependent files in DIR
[Same as prefix].

--bindir=DIR User executables in DIR [exec-prefix/bin].

--datadir=DIR Data files that are read-only and architecture-
independent [prefix/share].

--includedir=DIR C header files in DIR [prefix/include].

--infodir=DIR Info style documentation in DIR [prefix/info].

--libexecdir=DIR Program executables in DIR [exec-prefix/libexec].

--libdir=DIR Object code libraries in DIR [exec-prefix/lib].

--localstatedir=DIR Data that is modifiable and single-machine in DIR
[prefix/var].

--mandir=DIR Man documentation in DIR [prefix/man].

--oldincludedir=DIR C header files for non-gcc in DIR [/usr/include].

--program-prefix=PREFIX Prepend prefix to installed program names.

--program-suffix=SUFFIX Append suffix to installed program names.

--sbindir=DIR System executables in DIR [exec-prefix/sbin].

--sharedstatedir=DIR Data files that are modifiable and architecture-
independent in DIR [prefix/com].

--sysconfdir=DIR Data files that are read-only and single-machine data in
DIR [prefix/etc].

054932-4 ch03.F 5/29/02 3:38 PM Page 49

50 Part I ✦ Getting Started

Table 3-3
Features and Add-ons for MySQL Source Installation

Configuration Option Description

--disable-largefile Omits support for large files.

--with-berkeley-db[=DIR] Includes BerkeleyDB table types and
places them in DIR.

--with-berkeley-db-includes=DIR MySQL can locate header files for
Berkeley DB tables in DIR.

--with-berkeley-db-libs=DIR MySQL can locate library files for Berkeley
DB tables in DIR.

--with-charset=charset_name Includes support for charset_name.
[latin1] (Options are: big5, cp1251,
cp1257, croat, czech, danish, dec8,
dos, estonia, euc_kr, german1,
greek, hebrew, hp8, hungarian,
koi8_ru, koi8_ukr, latin1, latin2,
latin5, swe7, usa7, win1250,
win1251ukr, ujis, sjis, tis620).

--with-extra-charsets=charset, ... Uses additional charsets. Can be specified
by group (for example, none, complex,
or all), or individually comma-separated
from the preceding list.

--with-gemini[=DIR] Includes Gemini DB table types and
place them in DIR.

--with-innodb Includes support for Innodb table types.

--with-low-memory Minimizes use of available memory. Use
this option if compiling has a problem
because of a shortage of memory.

--with-mysqld-user=username Specifies a user account as which to run
the mysqld server (can be set in my.cnf).

--with-raid Enables RAID (Redundant Array of
Inexpensive Disk) support.

--with-tcp-port=port-number Specifies port to use for MySQL services
(for example, 3306); can be set in my.cnf.

--with-unix-socket-path=socket Absolute location for the UNIX-domain
socket.

--without-debug Does not include debugging code.

--without-server Does not build the MySQL server, only the
client programs.

054932-4 ch03.F 5/29/02 3:38 PM Page 50

51Chapter 3 ✦ Linux Installation

Configuration Option Description

--without-docs Does not build the documentation.

--without-bench Does not build the testing and
benchmarking programs.

--x-includes=DIR X include files are in DIR.

--x-libraries=DIR X library files are in DIR.

The options you choose while compiling are largely up to you — depending on the

requirements of your application. For example, if you want to “compile in” the

needed support for different character sets, use the --with-charset or the

with-extra-charsets option. To include support for the BerkeleyDB transac-

tional table type, use the --with-berkeleydb option. The example in the next

section gives a common command line for compiling MySQL. Once your options

are chosen, installation is straightforward.

Compiling MySQL
To compile with additional options, simply separate them by a space on the config-

ure command line. For the example server, I install into /usr/local/mysql and

include support for BDB table types, like this:

./configure --prefix=/usr/local/mysql --with-berkeley-db

The configure script runs through each component and prepare it for compilation.

Eventually you should see output similar to that in Figure 3-18.

Figure 3-18: The configure script prepares the various components
of MySQL to be compiled.

054932-4 ch03.F 5/29/02 3:38 PM Page 51

52 Part I ✦ Getting Started

After the configure script is complete, compile the software by using the command:

make

The make process will take at least a few minutes depending on the speed of your

machine and what else is running on it at the time. Once the software is done

compiling, install it with the command:

make install

In addition, copy the my.cnf file appropriate for your implementation to the /etc/
directory.

MySQL AB recommends the my.cnf file for medium installations be used in most
implementations, as follows:

cp support-files/my-medium.cnf /etc/my.cnf

At this point, refer to the section in this chapter called “Creating default databases

and completing installation” for instructions to take you through the rest of this

MySQL installation procedure.

Summary
Always choose secure passwords, for MySQL and all of your computer systems. A

good password includes a mix of alphanumeric and non-alphanumeric characters

as well as a minimum length and other factors.

✦ There are a number of common tasks that you need to perform regardless of

installation method. These include creating the default databases, setting

options in the my.cnf file, configuring MySQL for automatic startup and

shutdown, and setting the root administrator password for MySQL.

✦ The MySQL binary installation for Linux is the easiest and most recommended

method for installation.

✦ The MySQL RPM installation is really a binary installation in RPM format.

However, file locations are usually different with an RPM installation.

✦ The MySQL source code installation is the most configurable; you can set

options during compilation and edit the source code directly.

✦ ✦ ✦

Tip

054932-4 ch03.F 5/29/02 3:38 PM Page 52

Windows
Installation

This chapter gets down to the nitty-gritty of installing

MySQL on a Windows system. (The Linux installation

chapter might be of help if you’re migrating to Windows from

Linux, and want to double-check the differences in proce-

dure.) As groundwork for this chapter, read Chapter 2 (if you

haven’t already); it gives you some important points to

consider before you begin MySQL installation.

MySQL offers two methods for installation under Windows: a

binary and a source-code version. The binary version is what

most Windows users are familiar with — a setup program that

you move through by clicking the Next button. The source-

code version is for applications that require additions or

changes to MySQL before they can run correctly.

Compiling from source code requires a Visual C++
compiler.

Since there are five versions of MySQL included with a binary

version, installing from source code is beyond the scope of

this book. This chapter begins, however, with some tasks that

binary and source-code installation have in common.

Tasks Common to Binary and
Source MySQL Installation

Regardless of the method you choose for your MySQL installa-

tion, some tasks or options are common to both versions.

MySQL server administration
the Windows way
Included with the binary version of MySQL for Windows is

an administration tool called WinMySQLAdmin. Using this

Note

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Choosing effective
passwords

Listing the common
tasks for binary and
source installation of
MySQL

Installing MySQL
from the binary

✦ ✦ ✦ ✦

064932-4 ch04.F 5/29/02 3:38 PM Page 53

54 Part I ✦ Getting Started

program, you can configure and change many parameters of the MySQL installa-

tion. For Windows administrators who are averse to the command line, this pro-

gram provides a tool that can perform most administrative tasks from within

Windows. To start WinMySQLAdmin, use Windows Explorer and point to the bin
directory of your MySQL installation (usually c:\mysql\bin\). Within the bin
directory, double-click winmysqladmin to start the program. The first time you

start WinMySQLAdmin, you’re prompted to create a default username and

password (see Figure 4-1).

Figure 4-1: Set a default username and password
for use with WinMySQLAdmin.

Just a reminder: As an administrator of a MySQL server, you must keep the root
account secure from unauthorized access. That means (as with all computer sys-
tems) choosing secure passwords for MySQL — such passwords have a mix of
alphanumeric and non-alphanumeric characters, as well as a minimum length and
other attributes that make them hard to guess.

As of this writing, winmysqladmin immediately minimizes itself into the taskbar

once you’ve created its default username and password. Therefore, to actually bring

up the interface, right-click the stoplight icon in the taskbar and select “Show Me.”

Since WinMySQLAdmin automatically minimizes, you may not think the program
has started. Be careful not to start the program more than once.

Once WinMySQLAdmin has started, you see a number of tabs near the top of the

program screen (see Figure 4-2).

The tabs near the top of the WinMySQLAdmin screen correspond to actions you

can perform or information you can find out about the MySQL server. Some tabs

provide their own context menus when you right-click them (as in Figure 4-3).

Caution

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 54

55Chapter 4 ✦ Windows Installation

Figure 4-2: WinMySQLAdmin is a powerful, GUI-based program for administering a
MySQL server in Windows 2000.

Figure 4-3: Some areas within WinMySQLAdmin have right-click menus that enable
you to perform additional functions.

064932-4 ch04.F 5/29/02 3:38 PM Page 55

56 Part I ✦ Getting Started

To minimize WinMySQLAdmin, right-click near the top and select “Hide Me.”

The other, and more traditional, method for managing a MySQL server is via the

command-line utility mysqladmin. You can use it to control the behavior of the

MySQL server, as well as to create (and drop) databases and gain information about

the server.

Using the mysqladmin utility is covered in Chapter 6.

MySQL server startup and shutdown
The MySQL server runs as a service in Windows 2000. You can find more informa-

tion about the service through the Services applet in Windows 2000 by selecting

Start ➪ Programs ➪ Administrative Tools ➪ Services (see Figure 4-4).

Figure 4-4: The Services applet in Windows 2000 is where you
can find more information about the behavior of the MySQL server.

As part of the Services framework in Windows 2000, you can control the behavior of

MySQL when starting Windows. MySQL can start automatically with Windows or

you can have it start when manually started by an administrator (see Figure 4-5).

There are five different versions of the MySQL server included with the binary dis-

tribution, as shown in Table 4-1. Using WinMySQLAdmin (or by editing the my.ini
file located in c:\winnt\), you can choose which server starts by default.

Cross-
Reference

064932-4 ch04.F 5/29/02 3:38 PM Page 56

57Chapter 4 ✦ Windows Installation

Figure 4-5: The Services applet in
Windows 2000 enables you to control
the MySQL server startup parameters.

Table 4-1
MySQL Server Versions for Windows 2000

Executable Name Description

mysqld Compiled with full debugging enabled, along with memory-
allocation checks. Requires TCP/IP.

mysqld-max Includes support for BDB and InnoDB transactional tables.

mysqld-max-nt Includes support for BDB and InnoDB tables, as well as for
named pipes.

mysqld-nt Contains support for named pipes as a connection method.

mysqld-opt Optimized for Pentium processor, no debugging. Requires
TCP/IP.

By normal default, mysqld-nt starts when Windows 2000 starts — and this is fine

for most installations. Using WinMySQLAdmin (and clicking the my.ini tab as

shown in Figure 4-6), you can change parameters as needed — including which

executable runs for your MySQL server.

064932-4 ch04.F 5/29/02 3:38 PM Page 57

58 Part I ✦ Getting Started

Figure 4-6: Use WinMySQLAdmin to change the server executable to start the
MySQL server.

Common command-line options for mysqld
The default server executable file for MySQL in Windows 2000 is called mysqld-nt.

Some of the options you can set or call when you run mysqld-nt actually change

the behavior of the server. In addition, many options can be set inside the my.ini
file (located in the \WINNT directory or sometimes in just the root \ directory).

I strongly recommend that you don’t make a batch file or script to start MySQL;
instead, use the my.ini file for changing the command-line behavior of MySQL.

The my.ini file is a powerful method for controlling many aspects of the MySQL

software. Within the my.ini file there are a number of sections that affect the

behavior of the various components making up a MySQL installation. These sec-

tions include both the client and server, and offer some additional commands:

mysql

mysqladmin

mysqld

mysql_safe

mysql.server

mysqldump

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 58

59Chapter 4 ✦ Windows Installation

myisamchk

mysqlimport

mysqlshow

mysqlcheck

myisampack

winmysqladmin

Each section in the my.ini file starts with a name in brackets, which identifies the

command or area for that section. To find out which options MySQL uses for start-

ing up the server, use the WinMySQLAdmin tool. Click the my.ini tab to see which

executable will run, and to check the other parameters for MySQL installation.

(Refer to Figure 4-6 for an example: options contained under the server section, or

the section underneath the word [mysqld].)

If you make changes to the [mysqld] section of the my.ini file, you must restart
the server. One way to do so is through the Services applet in Windows 2000.

A non-default option for the [mysqld] section that you may want to consider is

bind-address; it’s especially useful if you have a multi-homed host (one that has

more than one IP address) and want only to listen for connections on a particular

IP address. In Figure 4-7, the address bound is the Ethernet IP address for that

machine, 192.168.1.136.

Figure 4-7: Using the ipconfig command to determine the ip address
for this host

Having MySQL listen for connections on an Ethernet IP means that, given the

correct privileges, I can connect from another machine within the network by using

-h <ip or hostname>, as shown in Figure 4-8.

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 59

60 Part I ✦ Getting Started

Figure 4-8: Connecting from another machine is possible with the
MySQL client

Using WinMySQLAdmin (or the mysqladmin processlist command), I can see

the current connection to the database from the remote client. An example with

WinMySQLAdmin is shown in Figure 4-9.

Figure 4-9: Using WinMySQLAdmin displays the connection from the other machine,
192.168.1.75.

064932-4 ch04.F 5/29/02 3:38 PM Page 60

61Chapter 4 ✦ Windows Installation

However, if I only wanted to connect to the MySQL server from the same server, I

could remove the bind-address completely and use a different option: The skip-
networking option uses sockets and no longer listens for connections via TCP/IP. If

I choose to follow that route, I edit my.ini and restart the server. Then the my.ini
section of WinMySQLAdmin looks like the one shown in Figure 4-10. Notice that the

bind-address option has been replaced with the skip-networking option.

Figure 4-10: Using the skip-networking option in my.ini to stop MySQL from
listening for TCP/IP connections

Now, if I attempt to connect from the remote computer, I receive an error message

(as shown in Figure 4-11).

For more about options for my.ini and the MySQL server, see Chapter 11.Cross-
Reference

064932-4 ch04.F 5/29/02 3:38 PM Page 61

62 Part I ✦ Getting Started

Figure 4-11: Error message following a failed attempt to connect to
a MySQL server that’s no longer listening on its Ethernet address

Setting an Administrator password for MySQL
The first step immediately after starting a MySQL server is to set a password for the

server administrator account known as root. This user account is different from

the root or administrator user on your system; setting the password for this

user does not affect the password for the root user on your system.

The mysqladmin utility sets the initial password for the root user. (The

WinMySQLAdmin utility can be used as well.) To set the password, you run the

command twice — once for the localhost connection and once for connection via

the hostname. Then, when you run the mysqladmin command, it prompts you for

the password. (If you have not set the password, just press Enter without typing

anything and the command will run successfully.) The syntax for setting the

mysqladmin password is as follows:

mysqladmin -u root -p password ‘password’
mysqladmin -u root -h hostname -p password ‘password’

If you receive an error message that says you can’t connect to the server when you
try to run the second command, it may be because the MySQL server is not listen-
ing for connections via TCP/IP. Make sure the skip-networking option is not in
the MySQL configuration file. If it is, you will need to remove that line and then
restart the MySQL server.

An example of setting the root password is shown in Figure 4-12.

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 62

63Chapter 4 ✦ Windows Installation

Figure 4-12: Setting the root password with mysqladmin is your first
task as a Server Administrator.

Installing MySQL on Windows 2000
Installation of MySQL on Windows 2000 is incredibly simple. MySQL AB has gone to

great lengths to ensure a hassle-free installation process.

The first step is to download the installation files or use the ones you can find on

the CD-ROM with this book.

The MySQL binary version for Windows is on the CD-ROM that accompanies this
book.

Once the files are downloaded or copied, you’ll need a program such as WinZip to

uncompress the installation files (see Figure 4-13).

Double-click setup.exe to start MySQL installation. The installer for MySQL guides

you through the procedure, wizard-style. Anyone who has installed a program in

Windows should find this installation pretty straightforward.

After an initial Welcome screen, the installer presents you with an Information

screen (see Figure 4-14). The information screen is there to remind you that if you

change the locations of the directories for your MySQL components, you must cre-

ate a my.cnf file in the root C:\ directory that contains the location of the MySQL

installation and data files.

On the
CD-ROM

064932-4 ch04.F 5/29/02 3:38 PM Page 63

64 Part I ✦ Getting Started

Figure 4-13: Use a program such as WinZip to uncompress the setup and
installation files.

Figure 4-14: Create a my.cnf file if you change
the location of the MySQL installation.

064932-4 ch04.F 5/29/02 3:38 PM Page 64

65Chapter 4 ✦ Windows Installation

The next screen determines where you install the MySQL servers and clients, as

shown in Figure 4-15. I recommend leaving it as c:\mysql unless you have a

specific reason for not wanting to accept the default.

This chapter assumes that you use c:\mysql as your base directory. Should you
choose to install into a different directory, please take that change into account
and make the necessary adjustments when you follow the instructions herein.

Figure 4-15: Determining where you want to install MySQL

Next is the prompt for installation type, Typical, Compact, or Custom. I recommend

leaving the option at Typical (see Figure 4-16). The Typical option installs all com-

ponents of MySQL. If you don’t want to install all components, click the Custom

radio button and you get a list of options to unselect (see Figure 4-17).

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 65

66 Part I ✦ Getting Started

Figure 4-16: The Typical option installs all components and is the default.

Figure 4-17: By selecting the Custom option, you can unselect components
that you don’t want to install.

064932-4 ch04.F 5/29/02 3:38 PM Page 66

67Chapter 4 ✦ Windows Installation

Once you have chosen an installation option (Typical, Compact, or Custom),

MySQL begins the installation by copying the appropriate files (see Figure 4-18).

Figure 4-18: MySQL takes over and starts copying files as part of the installation
process.

Congratulations! You should see a Finish screen — the step that concludes this

stage of the installation (see Figure 4-19).

As I usually recommend with Windows, restart the server before going farther.

From here, you should make sure you’ve done the post-installation tasks (men-

tioned earlier in the chapter), including setting the administrator/root password

and determining which binary version of MySQL to run.

Note

064932-4 ch04.F 5/29/02 3:38 PM Page 67

68 Part I ✦ Getting Started

Figure 4-19: Finish up by clicking Finish and
restarting the server.

Summary
Before you install MySQL, refer to Chapter 2 for a review of some important ground-

work procedures. Then you can use an administrative utility (WinMySQLAdmin for

Windows or mysqladmin) to install MySQL.

✦ With MySQL for Windows, you can use the WinMySQLAdmin program to

administer most functions of a MySQL server via a GUI.

✦ Five different versions of MySQL are included with a standard binary

distribution for Windows. You can choose which server to run by using the

WinMySQLAdmin program or by editing the my.ini file.

✦ A number of options exist for the various components of a MySQL installation;

you can set them in the my.ini file.

✦ Immediately after you start the MySQL server for the first time, you must set a

password for the root user with the mysqladmin command.

✦ Should you change the default location of the MySQL installation, you must

create a file called my.cnf in the root directory of the C: drive to tell MySQL

the where to find the installation.

✦ Choosing a Typical installation type installs all components. If you don’t actu-

ally need all the components, you can choose a Custom installation type and

de-select any components you don’t need.

✦ ✦ ✦

064932-4 ch04.F 5/29/02 3:38 PM Page 68

Macintosh
Installation

A lthough traditionally the Macintosh has not been

well suited for work as a server, this changed with the

release of Mac OS X. Apple’s next-generation operating system

has a Unix-based foundation, which makes it a good choice for

running servers and server applications.

Mac OS X comes in two versions:

✦ Mac OS X Server: This version comes with MySQL

already installed.

✦ Mac OS X: No MySQL installed, but it can easily be

installed.

This chapter looks at some tasks common to all versions of

MySQL, as well as installing MySQL from source code.

Binary and Source-Code MySQL
Installation in Mac OS X: Tasks
in Common

There are several tasks that you may want to do no matter how

you decide to install MySQL. MySQL can be configured to start

automatically when Mac OS X is started, it can be manually

shut down, and you can change the administrator password.

Setting up MySQL to start automatically
Mac OS X can start applications automatically when the sys-

tem is booted — but its startup process differs significantly

from that of a standard Unix system.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Reviewing common
tasks for binary and
source-code MySQL
Installations

Installing MySQL with
Mac OS X Server

Installing MySQL
binary on Mac OS X

Installing MySQL
from source code on
Mac OS X

✦ ✦ ✦ ✦

074932-4 ch05.F 5/29/02 3:39 PM Page 69

70 Part I ✦ Getting Started

Mac OS X uses a StartupItems folder to automatically start applications; although

a /System/Library/StartupItems/ folder exists by default, that is reserved for

Apple’s use. Personal startup items should be located in the

/Library/StartupItems/ folder.

Creating the /Library/StartupItems folder
Because the /Library/StartupItems/ folder doesn’t exist by default, you must

create it if someone else hasn’t already.

1. Using the cd command, check to see whether this folder exists; if it does not,

create it with the mkdir command. The code that accomplishes these prepa-

rations is as follows (bold indicates the commands to type):

[localhost:~] user% cd /Library/StartupItems
/Library/StartupItems: No such file or directory.
[localhost:~] user% mkdir /Library/StartupItems/

2. Prepare to add a startup item to the folder by creating three things:

• A folder with a descriptive name

• A command-line script with the same name as the folder (see the steps

in the upcoming subsection, “Creating the file for the startup script”).

• A startup parameters file (see the steps in the upcoming subsection,

“Creating the StartupParameters file”).

To create the folder, navigate to the /Library/StartupItems folder and create the

new folder with the mkdir command.

[localhost:~] user% cd /Library/StartupItems/
[localhost:/Library/StartupItems] user% mkdir MySQL

You will have to use a text editor to create the files you need: one to contain the

startup script and one to contain startup parameters.

This example uses the pico text editor, which operates much like any other typi-
cal text editor: When you run pico, you can type and move around with the arrow
keys. When you’re done editing the file, simply press Control-X (the Mac equiva-
lent of Ctrl+X) and a prompt asks whether you want to save the file and exit. Press
Y to save the file and return to the command line.

Creating the file for the startup script
The first file needed for automatic startup is the startup script file. This is the shell

script that will actually start MySQL.

1. Create the file and open it for editing in pico with the following command.

[localhost:/Library/StartupItems] user% pico MySQL/MySQL

Note

074932-4 ch05.F 5/29/02 3:39 PM Page 70

71Chapter 5 ✦ Macintosh Installation

2. Enter the following script into pico.

#!/bin/sh

. /etc/rc.common

if [“${MYSQL:=-NO-}” = “-YES-”]; then

ConsoleMessage “Starting MySQL”
/usr/local/mysql/share/mysql/mysql.server start

fi

3. Use Command-X to exit and save the file.

Creating the StartupParameters file
The second file needed for automatic startup is the startup parameters file. This file

gives Mac OS X additional information needed for automatically running MySQL.

1. Open the file by typing the following line.

[localhost:/Library/StartupItems] user% pico
MySQL/StartupParameters.plist

2. Enter the following script into pico.

{
Description = “MySQL”;
Provides = (“MySQL”);
Requires = (“Resolver”);
OrderPreference = “None”;
Messages =
{
start = “Starting MySQL”;
stop = “Stopping MySQL”;

};
}

3. Use Command-X to exit and save the file.

4. The ownership and permissions of some files must be changed to securely

run the startup item. You must use the sudo command to change ownership.

Enter your administrator password when you are prompted for it.

[localhost:/Library/StartupItems] user% chmod +x MySQL/MySQL
[localhost:/Library/StartupItems] user% sudo chown -R root
MySQL/
Password:

074932-4 ch05.F 5/29/02 3:39 PM Page 71

72 Part I ✦ Getting Started

Modifying the hostconfig file
The last thing you have to do is to modify the hostconfig file so it tells Mac OS X

that you want to run this service. Follow these steps:

1. Enter the following command it will open up an existing file in pico.

[localhost:/Library/StartupItems] user% sudo pico
/etc/hostconfig

2. Scroll to the bottom of this file and enter MYSQL=-YES- on its own line. This is

how it should look.

UW PICO(tm) 2.3 File: /etc/hostconfig
Modified

Services
AFPSERVER=-NO-
APPLETALK=-NO-
AUTHSERVER=-NO-
AUTOCONFIG=-YES-
AUTODISKMOUNT=-REMOVABLE-
AUTOMOUNT=-YES-
CONFIGSERVER=-NO-
IPFORWARDING=-NO-
MAILSERVER=-NO-
MANAGEMENTSERVER=-NO-
NETBOOTSERVER=-NO-
NISDOMAIN=-NO-
TIMESYNC=-NO-
QTSSERVER=-NO-
SSHSERVER=-NO-
WEBSERVER=-NO-
APPLETALK_HOSTNAME=”User’s Computer”
MYSQL=-YES-

^G Get Help ^O WriteOut ^R Read File ^Y Prev Pg ^K Cut
Text ^C Cur Pos
^X Exit ^J Justify ^W Where is ^V Next Pg ^U UnCut
Text^D Del Char

3. Use Command-X to exit and save the file.

When you have all these files in place and properly set up, MySQL is ready to start

automatically every time you start up Mac OS X. If you ever want to stop MySQL

from starting up automatically, simply edit the hostconfig file and change the line

that reads MYSQL=-YES- to MYSQL=-NO-.

074932-4 ch05.F 5/29/02 3:39 PM Page 72

73Chapter 5 ✦ Macintosh Installation

Shutting down MySQL Server
If you want to manually shut down the server, you should use the mysqladmin
command.

A bug in versions of MySQL prior to 3.23.45 and 4.0.1 prevents the MySQL server
from shutting down properly. Make sure you are using these versions or later.

To shut down the server, follow these steps:

1. Log in to the terminal as the mysql user.

2. Run the mysqladmin command with the shutdown parameter, as follows:

[localhost:~] mysql% /usr/local/mysql/bin/mysqladmin -u root
shutdown
020304 12:34:56 mysqld ended

[1] + Done /usr/local/mysql/bin/safe_mysqld --
user=mysql
[localhost:~] mysql%

Setting an administrator password for MySQL
The first step immediately after starting a MySQL server is to set a password for the

server administrator account known as root.

This user account is different from the root user on your system; setting the pass-
word for this user doesn’t affect the password for the root user on your system.

The mysqladmin utility is used to set the initial password for the root user. To set

the password, the command is run twice — once for the localhost connection and

once for connections via the hostname. When the mysqladmin command is run, it

will prompt you for the password. If you have not set the password, just press Enter

without typing anything and the command will run successfully. The syntax to set

the password with mysqladmin is as follows:

[localhost:local/mysql/sql-bench] mysql%
/usr/local/mysql/bin/mysqladmin \
-u root password new_password
[localhost:local/mysql/sql-bench] mysql%

An example of setting the root password is shown in Figure 5-1.

Note

Caution

074932-4 ch05.F 5/29/02 3:39 PM Page 73

74 Part I ✦ Getting Started

Figure 5-1: Setting the root password with mysqladmin is your first task as a
server administrator.

Installing MySQL With Mac OS X Server
Apple includes MySQL with Mac OS X Server 10.0.4 and later. It is installed in the

/usr/local/mysql/ directory but it is neither configured nor set to run by

default. Apple has several knowledge-base articles that cover how to install and

configure MySQL on a Mac OS X server. To find them, go to Apple’s support site at

http://www.apple.com/support/ and search the knowledge base for “MySQL”.

Refer to the section called “Binary and Source-Code MySQL Installation in Mac OS

X: Tasks in Common” (earlier in this chapter) for more information on starting and

stopping MySQL and setting a password for the root administrative user.

Installing MySQL Binary on Mac OS X
Compiling and installing your own version of MySQL can be a daunting process.

There is an official binary distribution of MySQL for Mac OS X available for down-

load and installation. Many people have created unofficial binary distributions of

their own that can be used instead of the official version. Any of these binary ver-

sions may be used. They take less time to install and may not require the Apple

developer tools to be installed. The drawbacks are that you have less control over

the options used and the latest version of the MySQL code may not be available.

The latest official binary version of MySQL for Mac OS X can always be found at

http://www.mysql.com/. Download the Mac OS X binary appropriate for your

Mac OS (Mac OS X or Mac OS X Server).

074932-4 ch05.F 5/29/02 3:39 PM Page 74

75Chapter 5 ✦ Macintosh Installation

One of the best independent OS X binary distributions has been created by Marc

Liyanage and is available at his Web site

(http://www.entropy.ch/software/macosx/mysql/).

Installation of each binary distribution is different. Download the installer package

and follow the instructions for that distribution.

Installing MySQL Source Code on Mac OS X
The most flexible approach to installing MySQL for Mac OS X is to use the MySQL

source code and compile it yourself.

You will need two basics to compile MySQL yourself:

✦ The latest version of the MySQL source code. This can always be found at

http://www.mysql.com/. Download the “tarball” source package for MySQL.

✦ Apple’s developer tools. If you don’t already have these installed, they can be

found on the Developer Tools CD that is included with every copy of Mac OS

X or downloaded from http://developer.apple.com/tools/.

Once you have these prerequisites, you can proceed with the installation.

Creating the MySQL User
To run the MySQL server securely, you have to create a user account for the MySQL

server itself. Follow these steps:

1. Open System Preferences and select the Users preference panel.

2. If you are not already logged in as an administrator, click the lock icon and

enter an administrator name and password in the window shown in Figure 5-2.

Figure 5-2: Entering the Administrator name
and password

074932-4 ch05.F 5/29/02 3:39 PM Page 75

76 Part I ✦ Getting Started

3. Click the New User button. Enter mysql for the Name and Short Name, as

shown in Figure 5-3.

Figure 5-3: Entering the mysql user

4. Select the Password tab and enter a password for the mysql user, as shown

in Figure 5-4.

Figure 5-4: Entering the mysql password

5. Click Save and close System Preferences.

074932-4 ch05.F 5/29/02 3:39 PM Page 76

77Chapter 5 ✦ Macintosh Installation

Compiling MySQL
The actual MySQL application is installed by unpacking, configuring, and compiling

the code you have downloaded. The procedure looks like this:

1. Open the Terminal application and navigate to the location to which you

downloaded the MySQL “tarball” source package, much like this:

[localhost:~] user% cd Desktop/
[localhost:~/Desktop] user% ls
mysql-VERSION.tar.gz

2. Use the tar command to expand the source package into its own folder:

[localhost:~/Desktop] user% tar zxvf mysql-VERSION.tar.gz
...
mysql-VERSION/support-files/mysql.server.sh
mysql-VERSION/support-files/binary-configure.sh
mysql-VERSION/support-files/magic
[localhost:~/Desktop] user%

3. Navigate into the new folder and run the configure script, which prepares

the package to be compiled on your particular system:

[localhost:~/Desktop] user% cd mysql-VERSION/
[localhost:~/Desktop/mysql-VERSION] user% ./configure --
prefix=/usr/local/mysql
...
creating mysql-test/Makefile
creating include/mysql_version.h
creating config.h

[localhost:~/Desktop/mysql-VERSION] user%

4. Run the make command, which actually compiles the MySQL package.

Compilation normally takes quite some time, even on a fast Macintosh.

The procedure looks like this:

[localhost:~/Desktop/mysql-VERSION] user% make
...
-e ‘s!’’PERL_DATA_DUMPER’’@!@PERL_DATA_DUMPER@!’ \
binary-configure.sh > binary-configure-t
/bin/mv binary-configure-t binary-configure
make[2]: Nothing to be done for `all-am’.
[localhost:~/Desktop/mysql-VERSION] user%

5. Install MySQL by running the make install command. Since installing

MySQL requires administrative privileges you must use the sudo command

before you use the installation command. When the sudo command prompts

you for a password, enter your Mac OS X administration password (see the

second line of code in this snippet):

Note

074932-4 ch05.F 5/29/02 3:39 PM Page 77

78 Part I ✦ Getting Started

[localhost:~/Desktop/mysql-VERSION] user% sudo make install
Password:
...
/usr/bin/install -c -m 644 ./binary-configure
/usr/local/mysql/share/mysql/binary-configure
make[2]: Nothing to be done for `install-exec-am’.
make[2]: Nothing to be done for `install-data-am’.
[localhost:~/Desktop/mysql-VERSION] user%

Configuring MySQL
MySQL must be configured before it can be run. Run the mysql_install_db script

with the sudo command to configure MySQL. The procedure looks like this:

1. Configure MySQL by running the mysql_install_db script with the sudo
command. The procedure looks like this:

[localhost:~/Desktop/mysql-VERSION] user% sudo
scripts/mysql_install_db
Password:

...

To start mysqld at boot time you have to copy
support-files/mysql.server to the right place for your system

PLEASE REMEMBER TO SET A PASSWORD FOR THE MySQL root USER !
This is done with:
/usr/local/mysql/bin/mysqladmin -u root -p password ‘new-
password’
/usr/local/mysql/bin/mysqladmin -u root -h localhost -p
password ‘new-password’
See the manual for more instructions.

You can start the MySQL daemon with:
cd /usr/local/mysql ; /usr/local/mysql/bin/safe_mysqld &

You can test the MySQL daemon with the benchmarks in the
‘sql-bench’ directory:
cd sql-bench ; run-all-tests

Please report any problems with the
/usr/local/mysql/bin/mysqlbug script!

The latest information about MySQL is available on the Web at
http://www.mysql.com
Support MySQL by buying support/licenses at
https://order.mysql.com
[localhost:~/Desktop/mysql-VERSION] user%

2. You must change the ownership of a file and a folder in order to run MySQL.

Use the chown command with sudo to do so, as follows:

074932-4 ch05.F 5/29/02 3:39 PM Page 78

79Chapter 5 ✦ Macintosh Installation

[localhost:~/Desktop/mysql-VERSION] user% sudo chown -R root
/usr/local/mysql
[localhost:~/Desktop/mysql-VERSION] user% sudo chown -R mysql
/usr/local/mysql/var

Testing MySQL
You should test your installation to make sure everything installed correctly. Do so

by starting the MySQL server and having it display its version, as follows:

1. To start the MySQL server, you have to log in as the mysql user you created

earlier. You can do so with the su command. Enter the mysql user’s password

when you are prompted for it, as shown in the second line of the code snippet

that follows:

[localhost:~] user% su - mysql
Password:
[localhost:~] mysql%
[localhost:~] mysql% /usr/local/mysql/bin/safe_mysqld --
user=mysql &
[1] 14542

[localhost:~] mysql%
[localhost:~] mysql% Starting mysqld daemon with databases
from /usr/local/mysql/var

2. Once MySQL is running, check it by using the mysqladmin command to check

the version of the MySQL server. The procedure looks like this:

[localhost:~] mysql% /usr/local/mysql/bin/mysqladmin version
/usr/local/mysql/bin/mysqladmin Ver 8.23 Distrib 3.23.49,
for apple-darwin5.3
on powerpc
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX
DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free
software,
and you are welcome to modify and redistribute it under the
GPL license

Server version 3.23.49
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /tmp/mysql.sock
Uptime: 1 min 30 sec

Threads: 1 Questions: 1 Slow queries: 0 Opens: 5 Flush
tables: 1 Open tables: 0
Queries per second avg: 0.011

074932-4 ch05.F 5/29/02 3:39 PM Page 79

80 Part I ✦ Getting Started

Summary
A number of installation tasks must be performed regardless of installation method.

These include configuring MySQL for automatic startup and shutdown, and setting

the root administrator password for MySQL.

✦ Mac OS X Server includes MySQL preinstalled; not much configuration is nec-

essary.

✦ There is an official MySQL binary installation for Mac OS X as well as several

unofficial independent binary distributions (the most notable of which is

Marc Liyanage’s).

✦ The advantages of binary distributions (less time, simpler) have to be

weighed against the disadvantages (less control, latest versions may not be

available).

✦ Installing MySQL from source code is the most configurable method; options

are available even during compilation, and editing the source code directly is

the most efficient way to customize your implementation of MySQL.

✦ ✦ ✦

074932-4 ch05.F 5/29/02 3:39 PM Page 80

Starting MySQL

MySQL is a large and often complex collection of client

and server software to store and retrieve data.

Sometimes a person who is new to MySQL or SQL entirely is

overwhelmed by the depth and number of options involved

with what seems to be a simple database task. In this chapter

I’ll cover some of the basic concepts that developers and

administrators alike will probably encounter. My goal is to

help the reader become comfortable with MySQL and show

some of the common day-to-day tasks performed with MySQL.

MySQL Server Administration
and Security

This section shows you some common and useful commands

that can get a MySQL server running and to keep it running.

The first of these —mysqladmin— is critically important, fre-

quently used by administrators, and one you should always

run on a newly installed MySQL server to ensure the security

of the root “superuser” account.

Also, though MySQL is a very stable application (even in large

implementations), sooner or later you may face common

administrative challenges such as these:

✦ Preventing, limiting, or undoing the effects of a security

breach

✦ Integrating new components into the system

✦ Removing (or changing the privileges granted to) specific

user accounts

✦ Dealing with trouble reports from users who encounter

problems with the database

The versatile mysqladmin command is a good starting point

for understanding and implementing good security and

sound administrative policy. This section explores some of

its major uses.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing MySQL
server administration
and security

Trying out frequently
used MySQL
database functions

✦ ✦ ✦ ✦

084932-4 ch06.F 5/29/02 3:39 PM Page 81

82 Part I ✦ Getting Started

Using mysqladmin
You can use mysqladmin to accomplish various goals, such as

✦ Restoring or enhancing the security of the root account

✦ Determining the status of the MySQL server while it’s running

✦ Shutting down the server for upgrades or emergency hardware replacements

This section gives you a glimpse of what you can do with this useful command.

A very useful administration program for MySQL is mysqladmin. With mysqladmin,

the operator can perform many administrative functions without having to enter

into the MySQL Command Line Interface (CLI). For example, databases can be cre-

ated and dropped via mysqladmin, and the server can be diagnosed or even shut

down. Chapter 10 will cover mysqladmin in greater detail. For now I’ll concentrate

on a few useful options to get you started.

Setting the root password
As shown in Chapters 3 through 5, the mysqladmin command is what you use to

set up the initial password for the root user in MySQL, and that is the first thing

you should do once you get a MySQL server running. To set the root password,

issue the following command:

mysqladmin -u root password ‘newpassword’

If the password has already been set for the root user, you must add the -p switch

to the command and provide the existing password when prompted. Doing so looks

like this:

mysqladmin -u root -p password ‘mY$qL53’
Enter password:

Choose a password carefully. Passwords based on dictionary words (or which are
otherwise easily guessable) are not acceptable for most environments. For better
data protection, choose a password that is at least 6 characters and includes non-
alphanumeric characters.

Most operations with mysqladmin require the -p switch to be set. If the -p switch

is not set, you will probably see an error message (as shown in Figure 6-1):

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 82

83Chapter 6 ✦ Starting MySQL

Figure 6-1: Common error message when password (-p) is not
specified

Checking MySQL server status
You can use mysqladmin to check the status of the MySQL server via the ping
switch. The command looks like this:

mysqladmin -p ping

A brief status summary of the MySQL server is available via the status switch. An

extended version of the status switch is extended-status (covered in Chapter

10). The output of the status statement will look something like Figure 6-2, in

which the uptime for this particular server is 1350 seconds (of course, this server

isn’t very busy — only one thread running and no open tables).

Figure 6-2: Output of the mysqladmin status statement

084932-4 ch06.F 5/29/02 3:39 PM Page 83

84 Part I ✦ Getting Started

Your status output can (and probably will) be substantially different from what’s
shown here.

Dealing with inactive connections
Sometimes clients connect to the MySQL server but don’t disconnect. As a result,

the server can quickly exceed its maximum number of connections (especially if it’s

normally busy) in which case MySQL refuses further client connections till the

traffic lets up.

The number of connections allowed in MySQL varies according to the system

hardware, but the administrator can also set some variables to limit. I cover differ-

ent size implementations in another chapter. To find out what connections are

active to the MySQL server, use the processlist switch as shown in Figure 6-3:

Figure 6-3: Output of the mysqladmin processlist statement

From the output in Figure 6-3, you can see a user named suehring is connected

from localhost to the mysql database. The user is currently idle, as shown by the

word sleep under the Command column. Also shown is the root user running a

query to show the processlist.

With the mysqladmin kill command, you can end a connection to the MySQL

database as well. The syntax for killing a connection is a follows:

mysqladmin kill <id>

For example, to kill suehring’s connection to the database, you would issue the

following command:

mysqladmin -p kill 14

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 84

85Chapter 6 ✦ Starting MySQL

Looking at the processlist output in Figure 6-4 you can see that the connection

by suehring no longer exists:

Figure 6-4: A processlist statement after a thread has been killed

If suehring was connected via the MySQL CLI, the user will receive the following

message when they attempt to perform an operation:

ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...

If the connection attempt is successful, the connection is issued a new ID and the

operation is executed, as shown by the new processlist in Figure 6-5:

Figure 6-5: A new connection was created for the user.

084932-4 ch06.F 5/29/02 3:39 PM Page 85

86 Part I ✦ Getting Started

Shut down the server
mysqladmin can also be used to shut down the MySQL server. The syntax is

intuitive for this operation:

mysqladmin -p shutdown

mysqladmin has a wide range of such useful switches, which provide the versatility

that an administrative tool must have.

Basic MySQL security
One of the first things you should do as a MySQL database administrator is change

the root password. Accomplishing this task with mysqladmin is explained in

Chapters 3, 4, and 5 depending on your installation and is covered in this chapter

as well. If you have not already done so, now is the time to configure a secure root
password for your MySQL server. No amount of database security will help if the

root account can connect with a blank password or no password at all!

Another important, but sometimes overlooked, area of security for MySQL is the

security of the machine that houses the MySQL server. If that computer, regardless

of operating system, is not kept secure by applying the latest patches and rigor-

ously maintaining security, no amount of database security will keep your data

safe. If possible, utilize a firewall to prevent outside connections to the MySQL

server or restrict connections to the MySQL server machine in another way such

as netfilter or ipchains in Linux or via an access list on a router.

Numerous options exist for the way that the MySQL server itself is run. Those options

are beyond the scope of this chapter but are covered in another chapter . Some

options to consider when starting the server are the --skip-networking option

which prevents the server from listen for network connections and the --skip-show-
database option which prevents users from showing the names of the databases

available on the server.

Adding a user to MySQL
It is neither customary nor wise to give a mechanic the keys to your house so he or

she can fix your car; doing so only creates unnecessary risks. The same can be said

for granting access to your data: Using MySQL’s root user account to perform

everyday database operations is a bad idea. It is much more preferable to grant

only the necessary access to specific users. Only allow as many privileges as are

necessary for each user to complete his or her job.

MySQL access is based on a privilege system. MySQL holds an internal database

aptly titled mysql with tables for housing privilege data called user, host, db,

tables_priv, and columns_priv. A given user’s access to data can be defined

down to which columns the user can perform operations on in a particular

database table.

084932-4 ch06.F 5/29/02 3:39 PM Page 86

87Chapter 6 ✦ Starting MySQL

For example, a user created for accessing product information for a Web site can be

given read access to the product name and price columns in the inventory database’s

product table. In this manner, if a malicious or even well intentioned user were to gain

access to your data through that username and password, they could only read the

data and not modify it.

As stated above, access is based upon a privilege system. Privileges are granted

and revoked based upon the username, host connecting from, operation requested,

database, table, and column. Since MySQL holds the privilege data within tables,

normal insert, delete, select, and update operations work as expected.

The basic statement to add a user and allow access to MySQL is the grant state-

ment. Recall from my discussion on conventions used in this book that brackets

such as <> denote required portions of syntax for the command, square brackets

such as [] denote additional modifiers and parentheses such as () denote

optional portions of commands. The syntax for the grant statement is as follows:

GRANT <privilege [column(s)] (, privilege [column(s)])> to
<user>(@host) (IDENTIFIED BY ‘password’) [WITH GRANT OPTION];

MySQL provides a couple of macros for assigning common privileges. These include

all and usage. By using the all macro, you grant all possible privileges to a user

(as you may imagine, it’s best to use this one sparingly). The usage macro is for

adding a user account to MySQL without granting any privileges (and it’s probably

best not to leave it that way, since a user without privileges can’t do anything on the

system, including work).

As an example, I’ll show you how to add a more-or-less typical user account to

MySQL — after which you can use it throughout the book to try out many database

operations. Although you don’t grant this sample user account any privileges, you

would add privileges in a real network situation (or there would be no reason to

create the user). Adding users and granting privileges is covered in more detail in

later chapters, including Chapter 12.

Connect to the mysql database as the root user from the MySQL CLI, as follows:

mysql -u root -p mysql

mysql> grant usage on *.* to dbuser@localhost identified by
‘evh$5150’;
Query OK, 0 rows affected (0.01 sec)

It is not necessary to connect to the mysql database in order to grant and revoke
access to the database via the grant and revoke statements.

Later on in the chapter, a different exercise adds specific privileges for this user

account so it can connect to the database that you’re about to create.

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 87

88 Part I ✦ Getting Started

Frequently Used MySQL Database Functions
Many of the functions that you use often with MySQL are covered in this section.

Having worked with databases and MySQL for years, I encounter the same tasks on

a frequent basis: Inserting and updating data, as well as simple selecting, are the

bread and butter of many database operators and administrators’ livelihoods. Even

if you don’t create databases often, you’ll probably create one with MySQL at some

point. Therefore this section shows you how to create your first database, offers a

few sample tables, and lays out the building blocks for understanding Structured

Query Language (SQL).

Creating a database
Although the full syntax of the MySQL client interface can be about as complex as

you need it to be (it’s covered in Chapter 8), creating a database in MySQL is

actually pretty simple.

As a prerequisite for creating a MySQL database, make sure your MySQL software
is installed and running already. (If it’s not, refer to Chapter 3, 4, or 5 to install the
version of MySQL that’s appropriate for your platform.)

There are two ways to create a database with MySQL:

✦ via the ‘mysqladmin’ command, like this:

mysqladmin (-p) create inventory

✦ from within the MySQL CLI, using the following syntax:

CREATE DATABASE [if not exists] <databasename>

The if not exists keyword produces an error message if a database already
exists with the name given.

Recall that statements can span multiple lines in the MySQL CLI, and that you

terminate a statement with a semicolon (;). Therefore, to create an example

database from within the MySQL CLI, type the following:

mysql> create database inventory;
Query OK, 1 row affected (0.00 sec)

The next step is to create tables within the database you just created. To create

tables, you’ll need to connect to the actual database you want to use. MySQL

actually does not require you to be connected to the database in order to create

tables. Although you can create tables by using a <databasename.tablename>
syntax from within the MySQL CLI, it’s often less confusing (which saves debugging

time) if you connect to the database itself. If you are already within the MySQL CLI,

you can type the following:

Note

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 88

89Chapter 6 ✦ Starting MySQL

mysql> connect inventory;
Connection id: 10
Current database: inventory

If you are at the command prompt, you can get into the MySQL CLI and connect to

the database by issuing the following command:

mysql -u <username> -p <databasename>

For example, here’s one that connects the root account to the inventory
database:

mysql -u root -p inventory

Creating tables
Regardless of the method you choose, working with the database via the MySQL CLI

means you can create tables to store information for a Web site. Before you can cre-

ate the tables, however, you need a design for the database.

For help with developing a database design, review Chapter 7.

Assessing the needs of your site can suggest a practical direction for database

design. For example, the Web site e-commerce database must track a range of dif-

ferent variables — including name of product, type of product, manufacturer, price,

and quantity on hand. The initial design calls for three individual tables within the

database; Tables 6-1, 6-2, and 6-3 provide examples of how such tables contribute to

the design of the example database.

Table 6-1
Product Table

Column Title Column Type Constraints

product_id int not-null primary key

auto_increment

name varchar(75)

quantity int

price decimal(9,2)

Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 89

90 Part I ✦ Getting Started

Table 6-2
Manufacturer Table

Column Title Column Type Constraints

manufacturer_id int not-null primary key

auto_increment

name varchar(50)

Table 6-3
Category Table

Column Title Column Type Constraints

category_id int not-null primary key

auto_increment

product_category varchar(50)

The basic syntax for table creation in MySQL is as follows:

CREATE [temporary] TABLE [if not exists] <tablename>
[(<column definition,> ...)] [<table options>] [<select
statement>]

The temporary keyword creates a table that exists only for the duration of the

connection.

✦ If there is a table of the same name, the existing table is hidden.

✦ Two separate connections can utilize the same temporary table name.

The if not exists keyword prevents the table from being created if a table of the

same name exists. MySQL only verifies the name of the table and does not attempt to

verify if the table structures are the same. When the if not exists keyword is used,

the operation returns an OK regardless of the success or failure of the statement.

As indicated by the brackets ([]) around the column definition, it is not necessary

to add all of the definitions for the columns when creating a table. At least one col-

umn definition is required. The column definition can be modified later through the

use of the ALTER TABLE statement.

table options are used to create different types of tables. The basic table types with

MySQL are ISAM, MyISAM and heap. Some table types, including bdb (Berkeley_db),

Gemini, and innodb may or may not be included with your MySQL distribution,

084932-4 ch06.F 5/29/02 3:39 PM Page 90

91Chapter 6 ✦ Starting MySQL

depending on the version of MySQL you have and the options chosen while compiling

(if applicable). Table 6-4 illustrates the types of tables in MySQL.

MyISAM is the default table type in MySQL. If you try to create a table using a table
type that is not supported by your version, MySQL creates it as MyISAM instead —
with no warning or error message (though future versions of MySQL will produce
a warning when the table type is not supported).

Table 6-4
MySQL Table Types

Table Type Attribute

bdb or Berkeley_db Transactional, page-locking.

gemini Transactional, row-level locking, not open-source. Available
with NuSphere MySQL.

heap Data is only stored in volatile memory.

isam Normal or standard table.

innodb Another type of transactional, row-level locking table.

merge Collection of MyISAM tables to be used as a single table.

myisam As the newer version of isam, this is the default table type.

You can help ensure the safety of your data by using a transactional table type such

as bdb, Gemini, or innodb, and here’s why:

✦ If a problem occurs within the database or system housing the database, the

data within a transactional table can be recovered through the use of a roll-

back or the backup and update logs.

✦ Changes made to data can be rolled back or automatically undone if a portion

of the update fails.

Transactional tables require more disk space, memory usage, and processor usage
than MyISAM tables.

The example database will not need enhancements of transactional tables, there-

fore the default MyISAM table type will be acceptable.

More information on table types is available in Chapter 10.Cross-
Reference

Note

Caution

084932-4 ch06.F 5/29/02 3:39 PM Page 91

92 Part I ✦ Getting Started

For example, to create all three of the example tables, you would type in the follow-

ing code:

CREATE TABLE product (
product_id int not null primary key auto_increment,
name varchar(75),
quantity int,
price decimal(9,2)
);

CREATE TABLE manufacturer (
manufacturer_id int not null primary key auto_increment,
name varchar(50)
);

CREATE TABLE category (
category_id int not null primary key auto_increment,
product_category varchar(50)
);

The constraints placed on the id columns in the tables create a primary key, which

is not tied specifically to any real-world use. Accordingly, it’s both safe and desirable

to auto_increment the value as new records are added to the table.

You now have a working database system that can track inventory for an e-commerce

Web site.

Inserting and updating data
A database is only as useful as the data it contains. Therefore, you need to add

products to the inventory database. In this section I’ll look at how to insert data as

well as how to update the data, which is often just as important as the initial insert

of the data itself.

Inserting data
You’re ready to insert a few records into the database. You’ll accomplish this task

via the MySQL CLI. You can insert data into a database via a number of methods

including importing from a file or inserting through a program or script. Those top-

ics are covered elsewhere in this book. For now, the MySQL CLI will work because

you are only going to add a few records. The basic syntax for an insert is as follows:

INSERT [low_priority | delayed] [ignore] [into]
<tablename>
[(<columnname>, ...)] VALUES (<insert expression>,)

Other syntax for the insert statement is discussed in Chapter 9 and in Appendix A.Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 92

93Chapter 6 ✦ Starting MySQL

The low_priority keyword delays the insert until no other clients are reading

from the table. Use of the low_priority keyword is not recommended for MyISAM
table types because simultaneous inserts are not possible in such usage.

Use the delayed keyword if some clients cannot wait for an insert to complete.

This keyword only works with ISAM and MyISAM table types. The client receives an

OK for the statement immediately, and the insert is run when the table is not in use

by another thread.

Specifying the ignore keyword causes duplicate rows to be ignored and not

entered when a value collides with a primary key or unique value. If this keyword is

not specified, an error occurs and the insert is aborted. It is important to note that

records will be inserted up to the record where the collision occurred. For example,

if you import a number of records and a collision occurs at record number 432, all

records up to number 432 will be inserted into the database.

The into keyword is not required, though it can be useful for improving readability.

If you don’t want to insert values into all columns in a table, specify the column
names in parentheses, separated by commas, before you type the required VALUE
keyword.

You can now insert a few rows of data into the example database; the SQL for the

insert is as follows:

INSERT into product VALUES (NULL, “8 inch Mirror Ball”, 48,
14.95);
INSERT into product VALUES (NULL, “AM100 4 port Mixer”, 12,
48.95);
INSERT into product VALUES (NULL, “FA1201 1200 watt Amplifier”,
4, 149.95);

The sample data just given shows the most common type of insert. Notice that you

placed the keyword NULL in the first value. Recall that the first column in the table

definition is product_id, which is an auto-incrementing field; therefore, it is not

acceptable to enter a value for this field. The NULL keyword is used as a placeholder

in this example and will be substituted automatically with the correct value by

MySQL.

Selecting data
Because selecting is at least as common as inserting, I’ll jump ahead slightly and

use a simple SELECT statement. Figure 6-6 shows the three records you just

entered.

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 93

94 Part I ✦ Getting Started

Figure 6-6: Sample output of a basic SELECT statement

For the full syntax of the SELECT statement, see Chapter 9.

Since I’m looking to jumpstart your usage of MySQL, the basic syntax for the

SELECT statement is as follows:

SELECT <select phrase> [FROM <table(s)> [WHERE <where phrase>]
[GROUP BY <group-by clause>] [ORDER BY <order-by clause>]
[LIMIT # of rows]]

The example above selects all columns and rows from the product table.

Use of the where clause modifies the select statement to look only for rows that

match the <where phrase>. For example, if you wanted to look for products that

had a price less than $30.00 you could issue the statement in Figure 6-7.

Figure 6-7: Selecting records that show a price less than $30.00.

Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 94

95Chapter 6 ✦ Starting MySQL

The where clause is extremely useful (and almost constantly in use) whenever you

work with data in a MySQL database.

The group by clause modifies the results of the select by ordering the columns by

similar data. The order by clause arranges the resulting data from a select state-

ment into the order specified by the order-by clause. For example, to select all the

products in order by price (from lowest to highest), you issue the statement like

the following (its results are shown in Figure 6-8):

select * from product order by price;

Figure 6-8: Selecting records in a certain order

It just happens that the price is in order of product ID for the example database.
Such a neat result rarely happens with live data.

If you had a large amount of data in a table and you needed to look at the first n
rows of data, you could do so by adding the limit clause onto the end of the

SELECT statement. An example is shown in Figure 6-9.

Figure 6-9: Limiting rows of a SELECT statement

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 95

96 Part I ✦ Getting Started

There are many more options for the SELECT statement. Those options, along
with additional coverage of the where, group_by, order_by, and limit
clauses, appear in greater detail in Chapter 9 and in Appendix A.

Updating data
Updating your data is just as important as inserting the original data — if not more

so. Commonly used syntax for the UPDATE statement looks like this:

UPDATE <tablename> SET <columnname> = <value> (, <columnname>
= <value>) [WHERE <where phrase>] [LIMIT <# of rows>];

For example, to update the price of one of the products you could do the following:

update product set price = ‘15.95’ where product_id = ‘1’;

Figure 6-10 shows the output of a SELECT statement that enables the administrator

to look at that product after updating.

Figure 6-10: The updated product is now shown in the database

If you wanted to update both the price and quantity of a product, you could do so

with the following example:

update product set price = ‘14.95’,quantity = ‘60’ where
product_id = ‘1’;

Figure 6-11 shows the final table. Notice the price for the “8 inch Mirror Ball”
is once again $14.95 and the quantity is now 60.

Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 96

97Chapter 6 ✦ Starting MySQL

Figure 6-11: The final table layout after updates

Preparing a new user for access to the database
Up until now you’ve been doing the inserts, selects, and updates in the inventory

database as the root user. Recall (from a bit earlier in this chapter) that you added a

user to the database but you couldn’t grant any access rights since you didn’t have

the database built. It’s now time to allow the new user access to the inventory
database.

Since you’ve already added the user account, you can utilize the update statement

to revise the permissions and privileges for that user. If you are still in the MySQL

CLI, connect to the database called mysql by typing the following:

connect mysql;

The statement should have similar output to this:

Connection id: X
Current database: mysql

You are now connected to the ‘mysql’ database, which holds the grant tables for

privileges within the server across all databases.

You could have remained connected to the inventory database and still granted
privileges. For simplicity’s sake (and to save time in the jumpstart), I had you con-
nect to the mysql database instead.

Since you granted the usage privilege for the new user in a previous section, the

basic framework has already been created for us within the user table. To verify

that the user exists, issue the following query:

select user,host from user where user = ‘dbuser’;

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 97

98 Part I ✦ Getting Started

You should see output similar to the Figure 6-12.

Figure 6-12: The new user in the database server

If you don’t see the output shown in Figure 6-12 when the query has finished, you

may want to review the “Adding Users to MySQL” section in this chapter and do

some troubleshooting.

Assuming that you have the same output as given in Figure 6-12, it’s now time to

modify the privileges for this user account so you can connect to the inventory
database and perform the necessary operations safely. The user account must be

able to select rows from the database, as well as insert, update, and delete records.

The statement that grants these privileges looks like this:

grant select,insert,update,delete on inventory.* to
dbuser@localhost;

Exit the MySQL CLI by typing exit or quit. Reconnect as the new user, like this:

mysql -u dbuser -p inventory

You should now be prompted for the password that you used to create the user.

Upon entering the password you will be granted access to the inventory database.

Test out your new privileges by issuing a simple select * from product; query.

Your results should be similar to the example in the previous section.

You now have a simplified version of an electronic-commerce database.

Altering tables
Regardless of how much time, money, and effort is put into database design,

inevitably databases need some redesigning or modification now and then. The

reason is simple: Business rules change. The way you use data — and the way data

is gathered and stored — changes as time goes by. MySQL allows the database

084932-4 ch06.F 5/29/02 3:39 PM Page 98

99Chapter 6 ✦ Starting MySQL

administrator to change the layout of tables within a database — adding, removing,

or modifying columns — via the alter table statement. The basic syntax of this

command is as follows:

ALTER (IGNORE) TABLE <tablename> <alter phrase> [, <alter
phrase>]

Common <alter phrase> variables to use with the ALTER TABLE statement

include the following:

ADD <columnname> <create specification>

CHANGE (COLUMN) <oldcolumnname> <create specification>

MODIFY (COLUMN) <create specification>

DROP (COLUMN) <columnname>

RENAME (TO) <newtablename>

For more about <alter phrase> variables, see Chapter 9.

The IGNORE modifier handles instances where there are duplicate values for a

column that is being modified to a type where uniqueness is enforced. With IGNORE
specified the first row is kept where values collide and all others are discarded. If

IGNORE is not specified and a collision occurs between two values, the change is

aborted and any specified changes are rolled back.

The inventory database shows that the product table is not tied to the manufac-
turer table in any way; there’s no convenient way to link a product with a manufac-

turer. This was a purposeful flaw in the database design so you could use the ALTER
TABLE statement to modify the product table and remedy this situation. From the

MySQL CLI, enter the following command:

alter table product add manufacturer_id int;

If you’ve followed along thus far, you should receive an error message when you

perform this operation. That’s because you connected to the MySQL inventory
database as the dbuser you created — but you didn’t grant that user the privilege

to alter tables. The error message you receive should look like this:

ERROR 1044: Access denied for user: ‘dbuser@localhost’ to
database ‘inventory’

Disconnect from the CLI and reconnect to the inventory database as the root user:

mysql -u root -p inventory

When you run the alter table statement from above again you should have much

better luck and the inventory database will now be updated so that you can

Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 99

100 Part I ✦ Getting Started

include a manufacturer ID in the table. However, since you named the manufac-
turer_id column the same in both the product and the manufacturer tables, you

should probably rename the manufacturer_id column in the product table so

you don’t get them mixed up later. Here’s the necessary command:

alter table product change manufacturer_id prod_manu_id int;

After you’ve run this command, disconnect from the CLI and reconnect as the

dbuser that you created earlier.

Describing tables
You should now be connected via the MySQL CLI as the dbuser username that you

created earlier. A description of a column or columns in any table is available when

you issue the DESCRIBE statement. Its basic syntax is as follows:

DESCRIBE <tablename> (columnname [wildcard])

The DESCRIBE statement may be abbreviated to desc and like other statements
and commands in MySQL, it is not case-sensitive.

You can use the optional columnname and wildcard arguments to obtain descrip-

tions of the column or columns specified.

The SHOW statement (which works much like the DESCRIBE statement) shows the

columns in a table, though it’s quicker to use the DESCRIBE statement (or even its

desc abbreviation) to do so. The command syntax looks like this:

SHOW columns FROM <tablename> [FROM <databasename>] [LIKE
<wildcard>]

For example, Figure 6-13 shows the changes you made in the last section, using the

desc statement.

Figure 6-13: Using desc to describe a table layout

Note

084932-4 ch06.F 5/29/02 3:39 PM Page 100

101Chapter 6 ✦ Starting MySQL

The same command using the SHOW statement is as follows:

show columns from product;

An example of a wildcard column search uses the following query to see all columns

in the product table that start with the letter “p” (the output is shown in Figure 6-14):

desc product ‘p%’;

Figure 6-14: Using a wildcard in a DESCRIBE statement

The same statement using the show statement looks like this:

show columns from product like ‘p%’;

Looking at other database objects
The previous section covered the DESCRIBE statement as well as the SHOW state-

ment for looking at column information within a table. Using the SHOW statement,

you can get a list of database objects. This section looks at some typical and useful

examples of this statement.

Full coverage of the SHOW statement is in Chapter 9.

Consider the following command as an initial example:

SHOW DATABASES (LIKE <wildcard>);

This statement shows all the databases in MySQL. If a wildcard is specified, the

statement returns databases matching the wildcard, if any.

The capability of merely looking at the names of the databases does not imply that
the current user has permissions to connect or use those databases.

Note

Cross-
Reference

084932-4 ch06.F 5/29/02 3:39 PM Page 101

102 Part I ✦ Getting Started

To see the tables in detail, you would issue the following command:

SHOW (OPEN) TABLES (FROM <databasename>) (LIKE <wildcard>);

The SHOW TABLES statement is very useful to find out names of tables in the

current database or any database through the use of the from modifier.

SHOW CREATE TABLE <tablename>;

Sometimes you may have to dump table structure if you want to recreate the tables

later (or on another system) for some different use. For example, as shown in

Figure 6-15, some output from the SHOW CREATE TABLE statement from the

inventory database looks like this:

SHOW CREATE TABLE product;

Figure 6-15: Output of the SHOW CREATE TABLE statement for the
product table

With the information from the SHOW CREATE TABLE statement, the database admin-

istrator could copy the output to create a copy of the table or save the output for

later use.

Summary
This chapter gave a brief overview of some of the most common tasks involved in

creating and managing a database.

✦ mysqladmin is a useful command for obtaining status information of the

server, changing passwords, killing server processes, and shutting down the

server itself.

084932-4 ch06.F 5/29/02 3:39 PM Page 102

103Chapter 6 ✦ Starting MySQL

✦ Basic security includes not only creating strong passwords, but also granting

users only those privileges that are necessary to complete their tasks.

✦ You can create a database creation by using mysqladmin or by issuing the

appropriate commands from the MySQL Command-Line Interface (CLI).

✦ Creating and altering tables as well as inserting and updating data is a com-

mon task in MySQL.

✦ The SELECT statement is another versatile command, used frequently in the

course of administering a MySQL system.

✦ ✦ ✦

084932-4 ch06.F 5/29/02 3:39 PM Page 103

084932-4 ch06.F 5/29/02 3:39 PM Page 104

Database
Concepts
and Design

Though many database books begin with a chapter on

database concepts and design, we get our hands dirty

with what you should know both with databases and with

MySQL in particular. However, the underlying concepts of

databases and their design are important.

Concepts of Databases
Databases are many things to many people. It is a mistake to

say that all databases are electronic. Some other databases

include a library and a recipe card file.

What is data?
Data is just about anything you can imagine and quantify. For

example, the records and numbers you keep in a checkbook

register are data. The stats you write down if you keep score

at a baseball game are data.

For our purposes, I ignore checkbook registers and concen-

trate on the electronic form of data. However, you could enter

personal checks or baseball stats into a computer database

program. At the basic level, data is data.

What is a database?
Databases are not simply electronic places to store data. As

already alluded to, thinking of databases in terms not limited

to computers is one of the first steps to understanding the

concepts.

✦ ✦ ✦ ✦

In This Chapter

Comparing concepts
of databases

Creating a database
design

Analyzing
requirements and
defining logical
design

Approaching
physical design and
implementation

✦ ✦ ✦ ✦

77C H A P T E R

094932-4 ch07.F 5/29/02 3:39 PM Page 105

106 Part I ✦ Getting Started

MySQL is not a database. It is software for creating and managing a database.

Databases keep information in tables. A table is a structure consisting of at

least one column, but usually many more. A database is then a collection of

one or more tables of related information. Sorting, indexing, and queries

organize data to help the database user.

The letters SQL stand for Structured Query Language.

Why use a Database?
Someone much wiser than I am said, “Always use the right tool for the job” — and it’s

no less true in the world of computing. I’ve seen countless uses of applications such

as spreadsheets and word processors (instead of databases) to store data. For an

annual holiday card list, this is fine; the time required to set up a database is proba-

bly out of proportion to the modest amount of data involved. In the business world,

however, a spreadsheet is not an acceptable tool for storing large amounts of data.

For such applications as product catalogs and customer information, a database is

by far the best method of storing and retrieving data. Databases offer a way to uti-

lize data efficiently.

Most enterprise-level databases must be created via software designed for the pur-

pose: a Relational Database Management System (RDBMS). Such programs, includ-

ing MySQL, support transactional table types — tables designed to handle the

frequent updates and modifications that electronic commerce entails. Each opera-

tion performed on data within a database is known as a transaction.

A transactional system can recreate its steps in case of data corruption. In the
event of a system crash, data could be restored from the last tape backup and
then the transaction log could be played against the database to restore the data
to its condition just before the system crash.

Transactional tables are not completely free from the risk of data loss. Even the
best RDBMS cannot offer a 100-percent guarantee that no data loss will occur in a
catastrophic system failure.

A successful RDBMS meets the ACID test for these issues:

✦ Atomicity: When a transaction is sent from the user to the database server, the

operation is either committed fully or rolled back. In other words, if the hard

disk can’t hold the whole transaction, the transaction would be rolled back as

if it had never happened. In this manner, data can always be kept consistent.

✦ Consistency: Operations that violate a rule or a similar mechanism are not

committed to the database. If a user doesn’t have access permission,

attempts to write to the table are rejected.

Caution

Note

Note

094932-4 ch07.F 5/29/02 3:39 PM Page 106

107Chapter 7 ✦ Database Concepts and Design

✦ Isolation: An operation on the database is complete before another operation

becomes aware of it. If a user is adding records to tables while another user is

reading from the same tables, the reader isn’t shown results from partial oper-

ations. Such partial information could lead to inconsistent and confusing

results for the reader.

✦ Durability: Once a transaction is committed to the database, it is guaranteed to

be there. If a catastrophic event happens to the disk, the database will still hold

that transaction (assuming no other hardware failure causes a disk corruption).

How are databases used?
Databases are used in all areas of business. Companies track information about

their customers inside of databases. Ever wonder why insurance costs more in

some geographical areas than others? Behind the answer is a database. Insurance

companies keep general claim information so they may sort and query the data to

find patterns that exhibit higher risks — and pass the cost of those risks on to the

customer as higher premiums.

Databases have also been there for the explosive growth of the Internet. Online

shopping is driven by databases — some of them running on MySQL. When you

search for the latest Van Halen CD at your favorite online music store, your search

is handed back to a database that then looks up and retrieves the right information,

hopefully within a few seconds. Databases can retrieve information lightning-quick

and most database server implementations, including MySQL, support replication
so that the database administrator can add more servers to handle requests.

Databases are becoming more visible in law enforcement. Databases to aid law

enforcement are nothing new. (Watching an episode of Dragnet from the Sixties, you

can see the use of punch cards to search for Social Security records). But databases

are more widely used and in ways barely imagined when Jack Webb caught televi-

sion bandits.

Database Design
Database design is the process of determining and organizing the information to

track. Many iterations of a database design occur as you try to achieve an efficient

design and maximize your use of resources.

Many simple database applications don’t need a strict database design. The effort
isn’t warranted for the application. I may be invoking the ire of traditional database
administrators and designers by stating this. However, spending three months in
design meetings for a database that is used once a month for non-critical func-
tions is a waste of resources. For complicated business processes, I strongly rec-
ommend spending time designing the database.

Tip

094932-4 ch07.F 5/29/02 3:39 PM Page 107

108 Part I ✦ Getting Started

The process of designing a complicated database correctly is not easy. It takes time

and effort, but the result is worth it. Data modeling is usually the first step in the

process. This includes defining the business processes and building an Entity

Relationship Diagram.

One of the first processes to design a database is to meet with the end user of the

database or data. If you are that person, hold a meeting with yourself. Offer yourself

refreshments, too. If you are meeting with clients (internal or external), prepare to

get as much information as possible about the business process or database to be

designed. The extra work at this stage goes a long way towards making the

database successful. A quality data model easily translates into a database.

The Database Life Cycle
Especially in the business world, a database system behaves much like a living

thing. Each stage of its life cycle has distinctive concerns and tasks that fall into a

rough sequence much like the following:

1. Requirements analysis: This first step is made up of what seemingly endless

meetings that analyze what is required for the new database. The owners and

users of the database define their business processes and document the enti-

ties, attributes, and relationships that will make up the database.

This analysis is most important to the success of the database project. Without

a complete picture of the business process — or full documentation of what

the application must have and be — the project will fail. Regardless of how

much time goes into the next phases of the project, it’s headed for disruption

(at best) or disaster (at worst) if you overlook a major item in this step.

Sometimes the systems analyst (you, as administrator) can get so wrapped up

in the project itself that he or she neglects to put much thought into the end

user. I’ve found it most helpful to involve the actual end user of the applica-

tion during the first phase of the design — through interviews and observa-

tion. In most instances, you are designing a replacement or improvement for

an existing system. The end users are your best source of ideas for improve-

ments in the next version.

Involvement of the end user can come in many forms. End users can be in

planning meetings where the application functions and needs can be deter-

mined. However, a more successful method for learning how an application is

used and can be improved is observation of the end users doing their jobs.

Many times those being observed will alter their behavior, either consciously

or subconsciously, thus lessening the effectiveness of the information gath-

ered. I recommend a combination of interviews or meetings, and direct obser-

vation for a successful analysis.

2. Logical design of the database: This step lays out the logical structure of the

program in terms of its tables and their relationships. Three tasks predominate:

• Designing the layout of the database tables (often starting with an Entity-

Relationship Diagram)

094932-4 ch07.F 5/29/02 3:39 PM Page 108

109Chapter 7 ✦ Database Concepts and Design

• Normalizing the candidate tables

• Writing the SQL to produce the database and tables

This second stage can quickly slow a project to a snail’s pace. If you get too

many cooks in the kitchen during the first phase, the proverbial database

soup can spoil. Keeping the second phase organized and on track takes effort.

Many times people will want to iterate over a database design not realizing

that business rules change and the database will have to change with it.

3. Physical design of the database: This step involves actually developing and

planning the physical layout of the data within your network and system

topology. In a distributed environment, this step includes

• Planning for data distribution

• Organizing such physical elements as memory use, table-cache size, and

buffer size

MySQL server variables are discussed in a later chapter.

4. Implementation and subsequent modification of the database: During these

last steps in the database life cycle, you enter the SQL or other language into

your database, along with other scripts and management tools that you’ve

developed while planning and designing the database.

If all goes well, then by the time you reach this last step, you’ve found all the

objects that should be included in the database. Don’t worry if you suddenly imple-

ment the database and find that you should add a column to all its tables. MySQL

syntax can alter table structure rather painlessly.

Regardless of how much research and planning you do, a long-term application
will must change to be useful. Business rules and processes change over time, so
the database and applications must change, too. Good planning in the beginning
will make those changes easier and less costly.

Logical Design
After you gather information on the business process and items to be documented,

you are ready to create the logical design. This master plan for the logical entities

(and their relationships) that make up the database should be as complete and

thorough as possible. A good logical design has many facets and phases, including

the analysis of relationships and the setting of constraints.

Entities and attributes
At a basic level of a data model are entities — objects that you are interested in as

part of the data model you are creating. For example, if you were making an online

Note

Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 109

110 Part I ✦ Getting Started

store, you would want to know the customer’s name. Steve Suehring is an example

of an entity. The specific name, Steve Suehring, is the entity. For a successful online

store, you probably want more than one customer. Therefore you should abstract the

entity into a general entity type. For this example, the entity type would be Customer.

Entities have identifying qualities — attributes. For example, the Customer entity of

Steve Suehring has such attributes as height, weight, home address, and telephone

number. To manage all the attributes of all the entities, you abstract the attributes

into attribute types that become part of all the entity types.

At the initial meeting(s) for producing a data model, you define the entities — and

subsequent entity types — that you are interested in. In addition, you will most

likely start determining attributes and attribute types as well. For now, the entity

types can be written down as a simple list. For example, suppose you know that

both customer information and product information are to be kept in the database.

You could create a list somewhat like the one given here — which, though incom-

plete, works fine for a basic site:

✦ Customer

✦ Product

✦ Manufacturer

That gives you three entity types. At this point in the research process, I usually

jump right into listing some attribute types for each entity type, like this:

✦ Name

✦ Address

✦ Supplemental Address

✦ City

✦ State

✦ Zip

✦ Telephone Number

✦ E-mail Address

✦ Credit Card Number

✦ Credit Card Expiration

✦ Name on Card

✦ Product Name

✦ Product Price

✦ Quantity on Hand

✦ Manufacturer

✦ Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 110

111Chapter 7 ✦ Database Concepts and Design

You can add fun things like Ratings and Reviews for products later. (And if the
attribute types in the list are starting to resemble column headings, that’s not acci-
dental. More about that later.)

Upon further review, I believe Name should be broken into two separate attributes,

First Name and Last Name. I also believe Telephone Number should be broken

apart to account for area code and number. (I assume that the online store only

ships within the United States, otherwise I would add Country Code as well.) It

would also be useful to know the credit card type, even though this information can

usually be gleaned from the digits of the card. Having the credit-card type allows

some sanity checking (the use of a special program to ferret out and report system

problems) later in the process. In addition, it would be useful to keep information

about the manufacturers such as their address and contact information as well.

Here’s what the new attribute type list looks like:

✦ First Name

✦ Last Name

✦ Address

✦ Supplemental Address

✦ City

✦ State

✦ Zip

✦ Area Code

✦ Telephone Number

✦ E-mail Address

✦ Credit Card Type

✦ Credit Card Number

✦ Credit Card Expiration

✦ Name on Card

✦ Product Name

✦ Product Price

✦ Quantity On Hand

✦ Manufacturer Name

✦ Manufacturer Address

✦ Manufacturer City

✦ Manufacturer State

✦ Manufacturer Zip

Tip

094932-4 ch07.F 5/29/02 3:39 PM Page 111

112 Part I ✦ Getting Started

✦ Manufacturer Contact

✦ Manufacturer Area Code

✦ Manufacturer Telephone Number

✦ Product Category

Now that I have a list of entity types and attribute types for the data model, I can

start to analyze how they relate.

Relationships
In my example, it’s obvious that some attribute types relate to each other. For

example, each First and Last Name pair can have one or more Addresses,

Supplemental Addresses, Cities, States, and Zips.

As should be evident, First Name/Last Name (which I will refer to as Customer

Name for brevity’s sake), Address, Supplemental Address, City, State, Zip (which I

will refer to simply as Address), and so on are all items relating to the Customer

entity type. It quickly becomes clear that I could go down a slippery slope because

one Customer Name could have more than one Address and one Address could

have more than one Customer Name.

However, what may appear clear is not necessarily as clear as you may think. While

it is true that a Customer Name could have more than one Address, a Customer

Record is made up of one and only one Address. What appeared to be a problem in

the design is actually a false relationship.

By adding other entity types, you can add support for more than one address to
allow the customer to ship to different addresses.

Each relationship has a degree of cardinality. In other words, there can be one and

only one Manufacturer of a certain product, but that Manufacturer can have many

products. Determining the relationships is an art that takes practice. Thinking

through the business process thoroughly will help to work out the true relation-

ships for your data model.

Figure 7-1 shows an example of relationships in an Entity-Relationship Diagram. The

example illustrates the relationship between manufacturer and products.

✦ Each manufacturer can have one or more products, represented by the

crow’s-foot line near the Product box.

✦ Each product can and must have one and only one manufacturer, as repre-

sented by the single line near the manufacturer box.

Tip

094932-4 ch07.F 5/29/02 3:39 PM Page 112

113Chapter 7 ✦ Database Concepts and Design

The O shape near the Product entity type indicates that the existence of a product
is not required for a Manufacturer to exist in the database. This O is missing from
the Manufacturer side of the relationship because a manufacturer is required if
there is a product in the database.

Figure 7-1: Relationships among some example entity types

Entity-relationship diagrams
With a list of entity and attribute types for a data model in place — and a basic

understanding of how to relate them to each other — you create a diagram that for-

mally shows the relationships of each entity type. The diagram simply groups

together like information. This will help to normalize the data and understand the

business processes, and possibly find additional entities, attributes, and relation-

ships that must be included in the data model.

Square or rectangular boxes on the diagram represent entities. Relationships can be

represented by number of line formats.

In looking again at the list of attribute types in the example, it is evident that certain

customer-related information is stored in the database. My initial draft of an Entity-

Relationship Diagram (ERD) for the example database is shown in Figure 7-2.

Analysis of diagrams
As I touched on earlier, the manufacturer and product relationships are (mostly)

fine. One manufacturer can have many products, but a given product can have only

one manufacturer. Examining customer and credit-card relationships in the draft of

the ERD in Figure 7-2, you can see that each customer can have more than one

credit card stored in the database. However, each credit card can only be associ-

ated with one customer. This is not what I would like — I want the entire family to

create accounts and use Dad’s credit card to buy. To alleviate this problem, I must

make both sides of the relationship many-to-many. The second draft of the ERD, in

Figure 7-3, shows the new many-to-many relationship.

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer City
Manufacturer State
Manufacturer Zip

Product

Product Name
Product Price
Quantity On Hand

Tip

094932-4 ch07.F 5/29/02 3:39 PM Page 113

114 Part I ✦ Getting Started

Figure 7-2: First Draft of an ERD for the online store

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer City
Customer State
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Credit Card

Credit Card Type
Credit Card Number
Credit Card Expiration
Credit Card Name on Card

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer City
Manufacturer State
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 114

115Chapter 7 ✦ Database Concepts and Design

Figure 7-3: Customers can use more than one card, and more than one customer can
use the card.

However, a many-to-many relationship should be broken down into two separate

one-to-many relationships. Along with breaking the many-to-many relationship

apart, I must search for extra attributes that may be disguising themselves as

relationships. The result of this analysis is shown in Figure 7-4.

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer City
Customer State
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Credit Card

Credit Card Type
Credit Card Number
Credit Card Expiration
Credit Card Name on Card

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer City
Manufacturer State
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 115

116 Part I ✦ Getting Started

Figure 7-4: Results from breakdown of many-to-many relationship.

One major area for improvement in this data model is in the area of the City, State

and Zip storage. Since Zip codes define and are always tied to one city and state,

there is no reason to store the City and State in both the Customer entity type and

the Manufacturer entity type. It would be much more efficient to make another entity

type to house the City and State and relate that entity type to both the Customer and

Manufacturer entity types. This draft of the ERD is shown in Figure 7-5.

As you can see from the new draft of the data model shown in Figure 7-5, the Zip

attribute type is duplicated in both the Customer/Manufacturer entity types and in

the Locale entity type as well. This is so I can join or match the information

together. For example, I have a customer with a Zip code of 54481. I can then look

up the city and state for the zip code of 54481 in the Locale table. Without the zip

code being stored in the Customer table, I would have no way to know where the

customer lives or where to ship their goodies!

The Zip Code attribute within the Customer entity is known as a foreign key. A for-

eign key enables you to relate an attribute in one entity to the attribute of another

entity. In this case, the Zip Code attribute in the Customer entity type is related to

the Zip Code attribute of the Locale entity type.

Based on information about foreign keys, the astute observer may have already

noticed the flaw in the Customer to Credit Card relationship. There is no way to tie

customers to their credit card information. Either I charge random cards or don’t

charge at all. A recipe for disaster no matter how you look at it. I must choose a way

to relate a customer with their credit card info. Customer name is out because I

hope to have more than one John Smith shop at my store. I must find an attribute

type that will always be unique within the Customer entity type.

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer City
Customer State
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Customer Card Info

Customer CC Number
Customer CC Expiration
Customer Name on Card

Credit Card Type

Credit Card Type

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer City
Manufacturer State
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 116

117Chapter 7 ✦ Database Concepts and Design

Figure 7-5: Placing City, State, and Zip in another entity type makes the model
more efficient.

Many online stores choose E-mail Address as the unique attribute in a customer’s

information. I believe this is a good idea, so I implement my customers’ e-mail

addresses to relate their credit card information to them, as shown in Figure 7-6.

Figure 7-6: Relating customers to their credit cards is rather important.

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Customer Card Info

Customer CC Number
Customer CC Expiration
Customer Name on Card
Customer Email Address

Locale

Locale City
Locale State
Locale Zip

Credit Card Type

Credit Card Type

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Customer Card Info

Customer CC Number
Customer CC Expiration
Customer Name on Card

Locale

Locale City
Locale State
Locale Zip

Credit Card Type

Credit Card Type

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 117

118 Part I ✦ Getting Started

Yet another iteration of the data model is needed because I must create a relationship

between the credit-card type and the credit card. Recall that the type of card could

be determined by looking at the digits of the card itself. However, I’d like to do some

error checking, so having the customer choose the card type is useful. To relate card

type to card number, I could simply add a field to the Customer Card Info table.

However, doing so would nullify any efficiency gained from separating those entity

types. Therefore I will create a Card ID attribute type that is simply an integer. For

example, I will give Visa credit cards an ID of 1, MasterCard an ID of 2, and so on.

Figure 7-7 shows the next draft of the data model.

Figure 7-7: Addition of the Card ID entity type enables joining of the Customer
Card Info and Card Type tables.

An examination of the Product entity type reveals that the Product Category

attribute really doesn’t belong with that entity type. Therefore I create a new entity

type for Product Types. I can now add a Product ID attribute to relate that entity

type back to the Product entity type. The result is shown in Figure 7-8.

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Customer Card Info

Customer CC Number
Customer CC Expiration
Customer Name on Card
Customer Email Address
Card ID

Locale

Locale City
Locale State
Locale Zip

Credit Card Type

Card ID

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

Credit Card Type

094932-4 ch07.F 5/29/02 3:39 PM Page 118

119Chapter 7 ✦ Database Concepts and Design

Figure 7-8: Separation of the Product Category from the Product Table

Constraints
Constraints are limitations or controls placed on attributes within an entity. They

are used to maintain order and keep the model true to the business process it is

describing.

The Uniqueness constraint is one that you encounter frequently. For the online

store model to work, the e-mail address of each customer will need to be unique.

Additional attributes within other entities also must be guaranteed to be unique,

such as the Zip Code attributes in the Locale entity.

The Uniqueness constraint is sometimes called a primary key within a database
table though Uniqueness is only one of the attributes of a primary key.

An Exclusion constraint is a logically exclusive OR relationship. With such a constraint,

one and only one entity may participate in a relationship with a root entity. For exam-

ple, if you manufactured widgets and could get parts from an internal or external sup-

plier, one and only one supplier would supply the part for a specific order.

Any entity that exists and has a primary key must also ensure that the primary key

exists to meet the constraint of Entity Integrity. Since e-mail address is the primary

key for the customer entity, if you start a customer record for your online store,

they must have an e-mail address to exist at all according to this constraint.

Note

Customer

Customer First Name
Customer Last Name
Customer Address
Customer Supplemental Address
Customer Zip
Customer Area Code
Customer Telephone Number
Customer Email Address

Customer Card Info

Customer CC Number
Customer CC Expiration
Customer Name on Card
Customer Email Address
Card ID

Locale

Locale City
Locale State
Locale Zip

Credit Card Type

Card ID

Manufacturer

Manufacturer Name
Manufacturer Address
Manufacturer Zip
Manufacturer Area Code
Manufacturer Telephone Number
Manufacturer Contact

Product

Product Name
Product Price
Product Quantity On Hand
Product Category

Credit Card Type

Product Type

Product ID
Product Category

094932-4 ch07.F 5/29/02 3:39 PM Page 119

120 Part I ✦ Getting Started

Referential integrity means that any foreign key that exists within one table must

also have a corresponding row and primary key within the related table. For exam-

ple, if a Zip Code exists within a customer’s record in the example, there must be a

corresponding Zip Code record in the Locale table for referential integrity.

Normalization
Long the woe of many a college student learning database concepts, normalization

is the practice of getting a database design into a format with no duplications or

redundancy of data within the database so the database operates as efficiently as

possible. This has obvious benefits of efficiency. However, it can also prevent

catastrophic inconsistencies.

There are five forms that a data model passes through on its way to being normal-

ized. For our purposes, I’ll deal with only the first three forms. As a data model is

normalized, it is said to be in (and pass through) First Normal Form, Second Normal

Form, Third Normal Form, and so on, like this:

✦ First Normal Form (1NF). This form is achieved when there are no repeating
attributes. Table 7-1 shows such a table. For many small projects this type of

table is fine. While there is repeated data such as the Team and Location, hav-

ing the repeats doesn’t adversely affect performance on small tables and pro-

jects. However, if you had to make a change to the Team for one of the people

in the table, the update could take longer. Additionally, if you delete the Steve

Suehring record from the table, you would lose all of the Team and Location

info, resulting in unforeseen data loss.

Table 7-1
Table in First Normal Form

ID Name Location Loc_ID Team Team_ID

3 Don Sutton Baseball Hall of Fame 355 Braves 95

4 Steve Suehring Bat Boy 515 Dodgers 78

5 Greg Maddux Baseball Hall of Fame 355 Braves 95

6 Jerry Rice NFL Hall of Fame 400 49ers 94

7 Mika Hakkinen Formula One 411 McLaren 99

8 Steve Young NFL Hall of Fame 400 49ers 94

094932-4 ch07.F 5/29/02 3:39 PM Page 120

121Chapter 7 ✦ Database Concepts and Design

✦ Second Normal Form (2NF): This form includes the 1NF definition and

requires that all attributes of a specific entity depend on the entire key value.
If the key value is only one value, then attributes that depend on it already

depend on the entire value, as shown in Figure 7-9.

Figure 7-9: Making sure all attributes depend on the key

✦ Third Normal Form (3NF): This form includes the 2NF definition and requires

that all attributes of a specific entity depend only on the key, not on other

attributes. In other words, the Team is dependent only on the Team_ID, not on

the Name of the person. Figure 7-10 illustrates the final tables for this example.

Note that foreign-key constraints could be used to remove Table4 from the

example.

Person ID

Person

3
4
5
6
7
8

Person Name
Don Sutton
Steve Suehring
Greg Maddux
Jerry Rice
Mika Hakkinen
Steve Young

Loc_ID

Location

355
515
355
400
411
400

Location
Baseball Hall of Fame
Bat Boy
Baseball Hall of Fame
NFL Hall of Fame
Formula One
NFL Hall of Fame

Team ID

Team

95
78
95
94
99
94

Team Name
Braves
Dodgers
Braves
49ers
Mclaren
49ers

Person ID

Table4

3
4
5
6
7
8

Loc_ID Team ID
355
515
355
400
411
400

95
78
95
94
99
94

094932-4 ch07.F 5/29/02 3:39 PM Page 121

122 Part I ✦ Getting Started

Figure 7-10: Final example tables, normalized

Data Definition Language and Data Markup Language
Data Definition Language (DDL) and Data Markup Language (DML) are common

names for the tools and syntax used to create and work with a database.

✦ DDL defines how the data is addressed. DDL examples include CREATE TABLE,

CREATE INDEX, and such privilege options as GRANT and REVOKE.

DDL statements do not work with data directly.

✦ DML statements actually work with real data. Examples of such statements

are INSERT and DELETE.

Producing the SQL
The last step of Logical Design is creation of the SQL for the database. As this point,

you must make some important decisions involving column types and constraints

for the candidate tables. There are a number of column types supported by MySQL.

Note

Person ID

Person

3
4
5
6
7
8

Person Name
Don Sutton
Steve Suehring
Greg Maddux
Jerry Rice
Mika Hakkinen
Steve Young

Loc_ID

Location

355
515
400
411

Location
Baseball Hall of Fame
Bat Boy
NFL Hall of Fame
FormulaOne

Team ID

Team

95
78
94
99

Team Name
Braves
Dodgers
49ers
Mclaren

Person ID

Table4

3
4
5
6
7
8

Loc_ID Team ID
355
515
355
400
411
400

95
78
95
94
99
94

094932-4 ch07.F 5/29/02 3:39 PM Page 122

123Chapter 7 ✦ Database Concepts and Design

Refer to Appendix A for a complete listing of column types supported by MySQL.

Recalling Figure 7-10’s candidate tables, I recommend using integer type for the ID
columns in all tables. Further, I would recommend column types of varchar for the

name columns.

For constraints, the ID column in all tables should be required and unique. This

makes them primary keys.

To create a primary key in MySQL, you must specify the column as NOT NULL and
PRIMARY KEY.

The SQL to create the example tables in MySQL is as follows:

CREATE TABLE person (
person_id int NOT NULL PRIMARY KEY,
person varchar(50)

);
CREATE TABLE location (

loc_id int NOT NULL PRIMARY KEY,
location varchar(50)

);
CREATE TABLE team (

team_id int NOT NULL PRIMARY KEY,
team varchar(50)

);
CREATE TABLE table4 (

tperson_id int NOT NULL PRIMARY KEY,
tloc_id int,
tteam_id int

);

Going back to my ongoing example of an e-commerce Web site, the candidate tables

for the structure are created by the following code:

CREATE TABLE customer (
e-mail_address varchar(75) NOT NULL PRIMARY KEY,
first_name varchar(50),
last_name varchar(50),
address1 varchar(50),
address2 varchar(50),
customer_zip varchar(10),
area_code char(3),
telephone_number char(7)

);
CREATE TABLE cardinfo (

card_id int NOT NULL PRIMARY KEY,
ccnum varchar(16),
ccexp date,
name_on_card varchar(100),
e-mail_address varchar(75)

Note

Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 123

124 Part I ✦ Getting Started

);
CREATE TABLE cardtype (

card_id int NOT NULL PRIMARY KEY,
card_type varchar(20)

);
CREATE TABLE locale (

zip varchar(10) NOT NULL PRIMARY KEY,
city varchar(50),
state char(2)

);
CREATE TABLE manufacturer (

id int NOT NULL PRIMARY KEY,
name varchar(50),
address varchar(50),
zip varchar(10),
area_code char(3),
telephone_number char(7),
contact_name varchar(50)

);
CREATE TABLE product (

id int NOT NULL PRIMARY KEY,
name varchar(50),
price decimal(9,2),
quantity integer,
manu_id int

);
CREATE TABLE producttype (

id int NOT NULL PRIMARY KEY,
category varchar(50)

);

The varchar column type is chosen because it uses space more efficiently than the

char type. The char column type pads the column with extra spaces to fill the

length of the column; the varchar type adds only one extra byte to store the length

of the column. For example, if char the column type for the city column, the

database would always use 50 bytes, regardless of whether the city was named

Ames or Stevens Point. The char type is fine for area-code and telephone-number

columns (which are always the same length for U.S. phone numbers). The decimal
column type is chosen for the product table’s price column because the precision

can be specified before and after the decimal point. In the example, I use the (9,2)

definition that calls for up to 9 digits before the decimal and 2 digits after the deci-

mal. Therefore I can list prices of up to 999,999,999.99 for products in the database.

For a summary of MySQL’s column types, see Appendix A.

Physical Design and Implementation
Once you have a normalized design, turning that design into the actual database

and tables on the server is easy.

Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 124

125Chapter 7 ✦ Database Concepts and Design

The Physical Design phase is the third step in the database life cycle. Now is the

time to decide how many servers you are going to use for your database applica-

tion, where they will be physically located, and so on.

The final step after Physical Design planning is to take the SQL statements and cre-

ate the database. Since you’ve already designed the SQL for the normalized tables,

it is now a matter of simply executing the code to make the database and tables.

There are a number of ways to import data into MySQL, many of which are cov-
ered in another chapter.

Indexing
Much like an index entry in a book, an index entry in a database allows the server

to quickly locate information. As you create the physical design of your database,

you should choose indices that accelerate queries and thus accelerate the opera-

tion of your database server and applications.

With MySQL, an index can be created either during the initial DDL to create the

table or during later operation. An example of creating the index with the initial

DDL is as follows:

CREATE TABLE example (
id int NOT NULL,
name varchar(50),
address varchar(50),
zip varchar(10),
INDEX (id, name)

);

To specify an index after the initial table has been created, the syntax is generally

intuitive:

CREATE INDEX index_name on table_name (
column1,
column2,
...

);

MySQL has commands that can help you determine what indices to create. The

DESCRIBE command allows you to describe a SELECT statement as well, to see pos-

sible keys or indices to create. Another name for the DESCRIBE command in this

context is the EXPLAIN command. Some database operators may be familiar with

one or the other of these commands; their functions overlap somewhat.

For the example, I’ve created a test database called ecommerce that uses the same

example tables as the rest of the chapter.

Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 125

126 Part I ✦ Getting Started

I write table definitions in a text editor such as vi in Linux or Notepad in Windows,
as shown in Figures 7-11 and 7-12. By using a text editor to create long DDL and
DML commands, you can easily copy and paste them into the MySQL CLI or typing
them in through the command line. This can be a lifesaver if you run into prob-
lems with the database server (or if your syntax or spelling is wrong for a particu-
lar command).

The example database tables are on the CD-ROM so you don’t have to type them
(though it is good practice).

Figure 7-11: Using vi to write DDL and DML can be a great timesaver.

For the indexing example, I can add a record into the locale and customer tables.

insert into locale values (‘54481’,’Stevens Point’,’WI’);
insert into customer values
(‘suehring↓ngermen.com’,’Steve’,’Suehring’,’834 Main
St.’,NULL,’54481’,’715’,’5551212’);

Indexing will usually not help a simple SELECT statement such as select *
from locale. To confirm this, you can try the EXPLAIN command, as shown in

Figure 7-13.

In Figure 7-13, you can see information on the select statement and extra informa-

tion about how MySQL ran the query. For determining possible indices, the impor-

tant place to look is the possible_keys column; it tells you what columns could be

created as an index to improve the performance of the query. For the example,

MySQL did not need any indices to efficiently handle the query (as evidenced by

the NULL in the primary_keys column).

On the
CD-ROM

Tip

094932-4 ch07.F 5/29/02 3:39 PM Page 126

127Chapter 7 ✦ Database Concepts and Design

For a more complicated query (shown in Figure 7-14), MySQL believes that it could

use a primary key index in the locale table to boost efficiency. Since the Zip col-

umn is already a primary key, the query can run efficiently.

Figure 7-12: Notepad can be used as a source for creating long DDL and DML
commands.

Figure 7-13: Indexing usually doesn’t assist with simple queries.

094932-4 ch07.F 5/29/02 3:39 PM Page 127

128 Part I ✦ Getting Started

Figure 7-14: The primary key index on the locale table assists MySQL
in performing this query.

To confirm the existence of the primary key index on the locale table, the show
index command can be used (see Figure 7-15).

Figure 7-15: The show index command gives useful information
about indexes.

MySQL allows you to create indexes in a number of ways (even while creating the

table itself), via the alter table command or the create index command.

Indexing and other optimizations for MySQL are discussed in Chapter 12.Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 128

129Chapter 7 ✦ Database Concepts and Design

Implementation
The final step in the database life cycle is implementation, which includes:

✦ Creation of the physical database and tables on the server

✦ Ongoing administration and maintenance of the database

Physically creating the tables for a normalized database design on the database

server is simple. The actual writing of the SQL for table creation was done during

the Logical Design. Now it is a matter of executing that code on the server.

To create the ecommerce example database, I use the mysqladmin tool, as shown in

Figure 7-16. I’m highlighting this command inside a whole figure to show that it is

normal for the command to return no message when it succeeds. If you have an

error, mysqladmin will let you know.

Syntax for mysqladmin is contained in Chapter 8.

Figure 7-16: The mysqladmin command returns no message upon
successful completion of a database creation.

Once the database is created, you can create the tables within the database based

upon the SQL you wrote during the logical design phase. You’re ready to enter the

DDL to create the tables into the MySQL CLI to create the tables.

Congratulations, the database is complete! However, the database life cycle isn’t

over. You now have to maintain the database server by

✦ Making sure queries are operating as efficiently as possible

✦ Checking table health and repairing tables when needed

✦ Actively applying bug fixes and security audits.

Cross-
Reference

094932-4 ch07.F 5/29/02 3:39 PM Page 129

130 Part I ✦ Getting Started

Since databases are practically living things, changes often are required in the life
cycle. Using DDL statements like alter table, you can keep the database useful as
business rules and processes change.

Summary
Data is really anything you can imagine and quantify. Though it’s not just informa-

tion in a computer or within a database, Relational Database Management Systems

(of which MySQL is an example) make large amounts of data efficiently retrievable

and usable.

✦ A database is a group of organized information, not necessarily on a computer.

✦ The database life cycle includes analysis, logical design, physical design, and

implementation of the database.

✦ Entities, Attributes, and Relationships are the objects that make up a database

design.

✦ An Entity-Relationship Diagram (ERD) models the layout of the entities,

attributes, and relationships. The ERD can be transformed easily into normal-

ized form and then into the physical layout of the database.

✦ Normalization is the process of reducing redundancy and waste in a database

while improving performance and possibly removing errors.

✦ Indexing helps a database to quickly retrieve information.

✦ The actual implementation of the database onto the server is the first step in

the final phase of the database life cycle. Maintaining and administering the

database server is an ongoing process throughout the lifetime of the

database.

✦ ✦ ✦

Note

094932-4 ch07.F 5/29/02 3:39 PM Page 130

SQL Essentials
✦ ✦ ✦ ✦

In This Part

Chapter 8
Command Line
Interface (CLI)

Chapter 9
SQL According to
MySQL

Chapter 10
Databases and Data

✦ ✦ ✦ ✦

P A R T

IIII

104932-4 Pt02.F 5/29/02 3:39 PM Page 131

104932-4 Pt02.F 5/29/02 3:39 PM Page 132

Command Line
Interface (CLI)

The MySQL Command-Line Interface — abbreviated CLI

and also known as the command-line tool — is the pro-

gram through which the users handle most of their daily inter-

actions with the database. You access the CLI by issuing the

mysql command.

This chapter looks at some normal CLI tasks, as well as some

that may not be obvious but are still useful. An introduction to

the CLI lays the groundwork; before long, you can get your

hands dirty with some real functions and try out some uses of

the CLI.

Introducing the CLI
Before the advent of GUIs and third-party tools, the MySQL

CLI provided the only way to interact with the database.

However the CLI offers advantages over some of its newer

counterparts insofar as it is tested and stable, it is lightweight,

and it comes standard with most installations of MySQL.

The basic syntax for to use the MySQL CLI is as follows:

mysql (options) [database]

The options for this command help make the MySQL CLI con-

figurable as well as powerful. Should you forget the options

and not have this book available, you can get help from the

mysql command itself by adding the --help or -? switches

after you type it, as shown in Figure 8-1.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the CLI

Starting the
CLI — basics

Using environment
variables in
MySQL CLI

Choosing when to
use the CLI Interactive
mode

Configuring a useful
MySQL CLI
environment

Avoiding common
CLI user errors

Listing alternatives to
the CLI

✦ ✦ ✦ ✦

114932-4 ch08.F 5/29/02 3:39 PM Page 133

134 Part II ✦ SQL Essentials

Figure 8-1: Here I use the help switch to remind myself of the
correct syntax for the mysql command.

The CLI can be used in interactive mode where you are talking directly with the

server and it is talking back to you, in a sense. In interactive mode the commands

you type are sent directly to the server and the results are given back to you within

the CLI. An example of the CLI in interactive mode is in Figure 8-2. You can obtain

help from within in CLI by typing help; or \h.

Figure 8-2: The CLI in interactive mode

Interactive-mode CLI is a great tool for troubleshooting database problems. For

example, you can use the CLI in interactive mode to make sure queries return the

expected results or see why they aren’t running correctly. You can use commands

to analyze tables and queries with the CLI — and you can alter tables to add

indexes, change structure, and more. In addition, when using the CLI in interactive

mode a history file is recorded. Not only is this a great way to save keystrokes for

frequently (or infrequently) used commands, but it can also provide a means

(though insecure) of tracking what a user did to break something. Using the CLI

interactively makes a number of database tasks easier, including these:

114932-4 ch08.F 5/29/02 3:39 PM Page 134

135Chapter 8 ✦ Command Line Interface (CLI)

✦ Troubleshooting queries

✦ Adding users to MySQL

✦ Analyzing tables

✦ Analyzing queries

✦ Altering tables

✦ Checking replication status

✦ Looking at server health

The mysql command can also be used in non-interactive mode, directly from the

command line or command prompt. The CLI is also useful in non-interactive mode,

as shown in Figure 8-3.

Figure 8-3: The CLI in non-interactive mode in Linux

In non-interactive mode, the CLI provides many of the same functions as in interac-

tive mode. However, in non-interactive mode you don’t receive the same feedback

from the server (along with the results).

For example, if you perform an INSERT operation using the -e switch in non-

interactive mode, you won’t receive a message that tells you the number of rows

inserted. When you insert rows in interactive mode, the server gives you feedback

that includes the number of rows from the statement.

Some CLI switches are useful only in non-interactive mode, most notably is the -e
or --execute switch. An example of the -e switch is shown in Figure 8-4. In the

example in Figure 8-4, the -p switch specifies that MySQL should prompt for a pass-

word and the word mysql at the end of the command indicates the database I’d like

to connect to — and within which I plan to execute the query that appears in quotes

after the -e switch. (I provide more information on these switches, and on the syn-

tax of the CLI, later in this chapter.)

114932-4 ch08.F 5/29/02 3:39 PM Page 135

136 Part II ✦ SQL Essentials

Figure 8-4: Using the -e switch to execute a query in
non-interactive mode

Although it is possible to execute other commands with the -e switch, I don’t

normally recommend executing DDL (Data Definition Language) commands such as

ALTER TABLE with the -e switch. MySQL still prints error messages back to the

command line, but I’ve found that DDL commands usually require more than one

command to be run (for example, a command to describe a table) before alteration

can begin.

Command recall — reusing the command or statement you last typed by pressing

the up-arrow on the keyboard — is one of the best features of the MySQL CLI. This

feature saves countless keystrokes when you make a typographical or spelling error

in the middle of a long query and have to run it again. Additionally, command recall

makes large and complex queries easier to work with; if you find that the output is

not exactly as you want it, simply use the up-arrow and tweak the query when it

appears on-screen.

Starting the CLI — the Basics
By now you’ve probably already been introduced to the CLI through some earlier

chapters or the introduction in this chapter. Don’t worry if you haven’t read those

chapters; the CLI itself makes only a brief appearance there.

The command to start the MySQL CLI is contained normally in the bin directory of

the MySQL installation. However, it may be located in another directory depending

on how you installed MySQL or the operating system you are using. In Linux, I’ve

seen the command located in /usr/bin, /usr/local/bin,

/usr/local/mysql/bin and somewhere in the /var mount.

114932-4 ch08.F 5/29/02 3:39 PM Page 136

137Chapter 8 ✦ Command Line Interface (CLI)

How you start the MySQL CLI depends largely on what you want to do. To work

with a database interactively, you have to supply credentials to establish a connec-

tion. Normally those credentials come in the form of a username and a password —

though they can include an optional name of the database you’re working with, as

well as the hostname (or IP address) of the server. In Figure 8-5, for example, I’m

connecting to the local server (localhost) as username suehring and telling the

program to perform two tasks: Ask me for a password and connect me to the

ecommerce server.

Figure 8-5: Connecting as username suehring to the ecommerce
database and specifying a password

The examples throughout this chapter assume that the user account you’re using
has sufficient access privileges to perform the operations. If this is not the case,
consult Chapter 12 for a description of how to add a user account with specified
privileges.

Specifying the username
When using mysql in Linux, normally you need not add the -u (username) switch.

If the -u username switch is not specified, the mysql command uses the username

from your environment variables. For that authentication to work, the MySQL

server must have a user entry with correct privileges in its user table. In Figure 8-6,

the -u switch is not used, so MySQL grabs the username suehring from the envi-

ronment variables. Because a user suehring exists in the MySQL database and has

the proper privileges, I can connect to the database server after supplying the

correct password.

Cross-
Reference

114932-4 ch08.F 5/29/02 3:39 PM Page 137

138 Part II ✦ SQL Essentials

Figure 8-6: MySQL uses the username of the current user if the
-u switch is not used.

Accordingly, if you are using the CLI as the root user, MySQL attempts to connect

as the root user if the -u switch is not used.

If you want to override the default user and have the MySQL CLI authenticate as a

different user every time, you can add the username=<username> clause to the

MySQL configuration file.

For details on how to set and change default variables for the MySQL CLI, see the
“MySQL CLI Environment Variables” section later in this chapter.

Specifying the password
One source of confusion for some is the use of the -p switch to specify the pass-

word. Often people believe that what follows the -p is actually the password — but

this isn’t always the case. The -p switch simply tells the mysql program to prompt
for the password if none is given. In the example in Figure 8-5, a space appears after

the -p switch — it’s prompting you for the password. If you want to specify the

password on the command line, you can do so by placing the password immedi-

ately after the -p switch, as shown in Figure 8-7.

Specifying the password on the command line should be considered a security
risk because the password is right in plain sight for a would-be attacker to see.

Additionally, the --password switch can be substituted for the -p switch and is

used much the same way. If you provide just the --password switch you are

prompted for the password. However, unlike the -p switch, the --password syntax

requires you to specify the password on the command line by using an equals sign

(=), as shown in Figure 8-8.

Caution

Cross-
Reference

114932-4 ch08.F 5/29/02 3:39 PM Page 138

139Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-7: Specifying the password immediately following the
-p switch prevents the CLI from prompting for a password.

Figure 8-8: The syntax for the --password switch is slightly different
from the -p switch.

The password=<password> switch can be added into the MySQL configuration file

and thus saved between sessions. This is also a security risk. Alternatively, you

could simply place the word password under the [mysql] section of the configura-

tion file and you are prompted for the password just as if you used the -p switch.

(See this chapter’s “MySQL CLI Environment Variables” section for more about

working with CLI variables.)

Specifying the host
In much the same way that MySQL uses the current user if the -u switch is not

used, not using the -h switch makes MySQL assume you mean to connect to the

server on the localhost (the current machine). If you want to connect to a MySQL

server on another machine, you can specify the IP address or hostname of the

other MySQL server via the -h switch, as shown in Figure 8-9.

114932-4 ch08.F 5/29/02 3:39 PM Page 139

140 Part II ✦ SQL Essentials

Figure 8-9: Use the -h switch to connect to another MySQL server
or leave it blank to connect to the local machine.

If you want to set a default host other than localhost without having to specify

the -h <server> switch every time you can set the host inside the configuration

file, see the discussion of environment variables (later in this chapter) for details

on how to set and change default variables for the MySQL CLI. Any host specified in

a configuration file is overridden if you specify another -h <server> on the com-

mand line.

Specifying the database
The MySQL CLI enables you to specify the database to use without the addition of

any switches to the command line. The command expects the database to be speci-

fied as the last part of the command line. For example, to use a database called

inventory, simply add it to the command at the end, like this:

mysql -p -u suehring inventory

If no database is specified on the command line (assuming you have access privi-

leges), you return automatically to the MySQL CLI — in interactive mode but not

connected to any database. To connect and use a database, issue the connect
statement. In Figure 8-10, I connect to the MySQL server without specifying a

database. I can then connect to a database by using the connect statement.

If you want to specify the database at a location other than the end of the command

line, you can use the -D or --database=<databasename> switches. To set a default

database for MySQL to use upon startup, add a database=<databasename> to the

MySQL configuration file, see the section on Environment Variables in this chapter

for details on how to set and change default variables for the MySQL CLI.

114932-4 ch08.F 5/29/02 3:39 PM Page 140

141Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-10: Using the CLI and specifying a database from within
the CLI

MySQL CLI Environment Variables
Regardless of whether you use the CLI in interactive mode, variables are available to

control how the CLI operates. When read from configuration files, those variables

can be set globally with the use of configuration files — in particular, my.cnf or

my.ini (usually located in the /etc or /usr/local Linux directory or the WINNT
directory in Windows 2000).

If you want to set the variables on a per-user basis, a .my.cnf file in each user’s
home directory can provide customized individual use of the MySQL CLI. Make
sure that a dot (.) immediately precedes each user’s .my.cnf filename — for
example, .my.cnf. Since the configuration file can reside in each user’s home
directory, it is only applied when logged in as that user.

Determining and changing default variables
To determine the variables the MySQL CLI uses for a particular session, use the

--print-defaults switch, as shown in Figure 8-11.

Changing a default variable is as simple as editing the configuration file. For

example, if I want to change the socket that MySQL connects through from the

default /tmp/mysql.sock, I could make a .my.cnf file (as shown in Figure 8-12)

and include a section for the MySQL CLI in brackets with the socket option

underneath.

Note

114932-4 ch08.F 5/29/02 3:39 PM Page 141

142 Part II ✦ SQL Essentials

Figure 8-11: The --print-defaults switch shows you which
environment variables MySQL uses for your session.

Figure 8-12: Creating a .my.cnf file in my home directory so I can
set defaults for the MySQL CLI

In Figure 8-13, the output of the --print-defaults switch, note the new socket

name — actually two socket defaults. Because local options are read last, the last

socket option to be read is applied.

114932-4 ch08.F 5/29/02 3:39 PM Page 142

143Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-13: The --print-defaults switch now shows the new defaults that go into effect
the next time you start the MySQL CLI.

In the example in Figure 8-13, I changed the socket to a bogus filename that won’t

actually connect to the MySQL server. The result is the error message you see in

Figure 8-14.

Figure 8-14: The socket name I used doesn’t exist; therefore I receive an error message
when I try to connect.

Some of the more useful client or CLI variables are shown in Table 8-1.

114932-4 ch08.F 5/29/02 3:39 PM Page 143

144 Part II ✦ SQL Essentials

Table 8-1
Frequently Used MySQL CLI Variables

Variable Use

socket Changes the socket for local connections.

port Changes the port for connections via TCP/IP.

password Sets the password to be used by the CLI. Potential
security risk.

pager Sets the pager such as the more or less commands to
control scroll.

host Sets a default host to connect to with all connections.

database Sets a default database.

skip-column-names Suppresses the printing of column names with the select
statements.

vertical Prints output from queries vertically.

html Produces output in HTML format, useful when operating in
non-interactive mode.

tee=<filename> Appends output from interactive mode into the file named
<filename>.

When calling the MySQL program, you can set its variables either in the .my.cnf
file or on the command line.

Variables set on the command line supersede those set in configuration files.

In addition to setting variables, a --no-defaults command-line option enables

you to override any defaults in configuration files. This is useful if your .my.cnf file

has a number of default values set, and you want to override them all to use some

non-default options. In Figure 8-15, for example, I have set some options that enable

me to work more efficiently (since most of the work is done on the local machine).

Tip

114932-4 ch08.F 5/29/02 3:39 PM Page 144

145Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-15: Using mysql --print-defaults to see the default options
I have for this client

Performing a query with these options yields the results shown in Figure 8-16.

Figure 8-16: Running a query with the default options

However, now I have to connect to another MySQL server — and I don’t want the

vertical or pager options but I do need column names printed. To turn off all

the defaults at once — and set my own, basing them on the new host — I use the

--no-defaults option (as shown in Figure 8-17).

114932-4 ch08.F 5/29/02 3:39 PM Page 145

146 Part II ✦ SQL Essentials

Figure 8-17: Using the --no-defaults option on the command line
to override all defaults at once

Performing a query shows that the other options (such as vertical and pager)

have been turned off, as shown in Figure 8-18.

Figure 8-18: A query with the defaults turned off yields the
expected results.

Using the CLI in Interactive Mode
When you use the CLI in interactive mode, a prompt akin to a shell prompt appears —

you get functions, switches, and settings that affect how the CLI operates. Some of

these features are better used with the CLI in non-interactive mode; others work

more efficiently in interactive mode.

When using the MySQL CLI in interactive mode, all commands must be terminated
with a semicolon (;). The only three exceptions to this rule are the exit com-
mand, the quit command, and the connect command.

Note

114932-4 ch08.F 5/29/02 3:39 PM Page 146

147Chapter 8 ✦ Command Line Interface (CLI)

Speeding startup of the CLI
When the CLI starts, it reads in table information to allow for completion, which can

sometimes slow the startup. To turn off this default and get a quicker CLI startup,

use the -A or --no-auto-rehash switch. Adding --no-auto-rehash to the MySQL

configuration file under the [mysql] section makes this quicker startup permanent.

Making the CLI quieter
When you start the CLI, a welcoming message prints (along with version and ses-

sion information). In addition, status messages appear on-screen so you can see the

progress of the statements you execute. If you’d like to stop that information from

showing up, use the -s or --silent option. To make this arrangement permanent

(except for error messages, which still appear as needed), add the --silent option

under the [mysql] section of your MySQL configuration file.

Using a pager to work with larger amounts of data
Often the results of a select statement scroll past the screen when the program

has to handle a large (or not even very large) set of data. Through the use of the

pager option you can set MySQL to return query results split over a number of

screens. Using a pager command such as the more or less, you can control the

scrolling on a page-by-page basis.

You can set the pager option, whether from inside a configuration file or on the

command line, by adding the --pager=<pager> option to the mysql command,

as shown in Figure 8-19.

Figure 8-19: Using the --pager option on the command line specifies
the program to control scrolling

114932-4 ch08.F 5/29/02 3:39 PM Page 147

148 Part II ✦ SQL Essentials

If the pager option is set in a MySQL configuration file, you can turn it off by using
the --no-pager switch on the command line.

Displaying query results vertically
Often the columns in a query result wrap awkwardly around the edges of the

screen. Not only is this situation ugly, it’s also confusing; the wrapping makes the

columns hard to match with their values, as shown in Figure 8-20.

Figure 8-20: Without the vertical option, the output from this query
wraps around the screen.

In Figure 8-20, it can be difficult to determine whether a given user actually has the File

privilege. However, with the use of the -E or --vertical switch, the data is displayed

with columns following each other vertically. Adding the vertical option to the

.my.cnf file in my home directory — along with the use of a pager command — greatly

improved the look and usability of my query’s output (as shown in Figure 8-21).

Figure 8-21: Using the vertical option and the pager option to make
the output more comprehensible

Note

114932-4 ch08.F 5/29/02 3:40 PM Page 148

149Chapter 8 ✦ Command Line Interface (CLI)

I added the following lines to the [mysql] section of the .my.cnf configuration file

to produce the output in Figure 8-21.

[mysql]
host=localhost
vertical
pager=/usr/bin/less

The use of --pager won’t work when using the CLI in non-interactive mode.

Using tee to save output
The tee command takes the entire session — including input and output from a

command — and appends it to a file that you specify. This function can be helpful

when debugging (for security purposes), or simply as an easy way to get data into

a file. The switch to use this function with MySQL is --tee=<filename>.

Alternately the switch can be set in the MySQL configuration file with the use of

tee=<filename> For example, Figure 8-22 uses the tee function to append the

session onto a file called outputfile.txt.

Figure 8-22: Using the tee function to append session data to the
content of a file

Figure 8-23 shows session data that has been saved to the outputfile.txt file.

If the tee option is set in a MySQL configuration file, it can be turned off by using
the --no-tee switch on the command line.

Note

Note

114932-4 ch08.F 5/29/02 3:40 PM Page 149

150 Part II ✦ SQL Essentials

Figure 8-23: Here the Tee function has saved session data in the file.

Printing output in HTML format
Though using the CLI in non-interactive mode is generally the more useful approach,

sometimes you may want to run a simple query and then copy and paste its output

into a Web page as HTML output. To do so, use the -H or --html switch (or put the

word html in your MySQL configuration file under the [mysql] section).

Suppressing column names
At times I’ve found it useful to run a query without having the column names print

in the output. From within the CLI, this technique can sometimes prevent some con-

fusion by keeping the output from wrapping around on-screen. As with the switch

that produces HTML output, this function may be best used in non-interactive

mode — though it’s sometimes useful in interactive mode as well.

To suppress column names, start the MySQL CLI with the -N or --skip-column-
names switch. To make this suppression permanent, add skip-column-names to

your MySQL configuration file in the [mysql] section.

Using batch mode to produce tab delimited output
The MySQL CLI also operates in a batch mode that suppresses traditional feedback

from the CLI and presents query output in tab-delimited format (see Figure 8-24).

If you enter batch mode and get an error message, the session is immediately termi-

nated. You are sent back to the shell with an echo of the error message (as shown

in Figure 8-25).

114932-4 ch08.F 5/29/02 3:40 PM Page 150

151Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-24: Using the CLI in batch mode to get tab-delimited output while
suppressing other information and feedback from the CLI.

Figure 8-25: Errors that occur while you’re using batch mode kick
you back out to the command shell.

You still have to terminate commands with a semicolon (;) while using batch
mode interactively.

If you want to prevent MySQL from terminating your session upon error when in

batch mode, use the -f or --force switch. With the Force option set, the error

message is displayed but the session continues, ignoring the error.

Use the force option with care; one error in the beginning of a series of SQL
statements can wreak havoc on the rest of the statements — and possibly the data.

Caution

Note

114932-4 ch08.F 5/29/02 3:40 PM Page 151

152 Part II ✦ SQL Essentials

Using the CLI in Non-Interactive Mode
The CLI need not be used interactively; sometimes running a simple query or com-

mand on the server does the job. For example, you may want to redirect the output

of a statement to a file, or use a scheduler (such as cron) to schedule the running

of a particular command. In such instances, the MySQL CLI can be used in a non-
interactive mode that makes it operate like any basic, straightforward command.

Executing a statement
When you’re operating in non-interactive mode, one of the most frequent and useful

operations is to execute a statement. To do so, you use the -e or --execute=
command-line switch. For example, to run a simple query that finds the users and

hosts allowed to connect to a particular database, you can use the -e switch as

illustrated in Figure 8-26.

Figure 8-26: Using the -e switch to run a simple query

In Figure 8-26, I specified the -p switch to have MySQL prompt for the password.

Next comes the -e switch, followed by the statement to execute in quotes. Finally

comes the name of the database to connect to (in this case, mysql, because that’s

where user data is stored).

Printing HTML output
One especially handy feature of the MySQL CLI is that it can output a query in

HTML format — a capability you can use to create a simple Web page from a query

without much effort. The switch that produces HTML output is -H or --html. For

example, suppose I want to make a Web page consisting of a simple report of the

products in the ecommerce database example (yes, all three of them.) In Figure 8-27,

I ran the command to produce the output.

114932-4 ch08.F 5/29/02 3:40 PM Page 152

153Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-27: The output from a HTML-formatted query that uses
the CLI

In Figure 8-27, the switches and the order of the command are what you would

expect.

Whenever you add an option or a switch to the mysql command, be sure to use
the correct case. For example, adding the -H option gives MySQL different instruc-
tions from those specified by the -h switch (lowercase h). Adding -h instead of
-H would have made MySQL think you were specifying a host instead of calling for
HTML output. As you can see from Figure 8-27, the output isn’t pretty.

The greatest usefulness of the HTML switch is redirecting output to a file, as shown

in Figure 8-28.

Figure 8-28: Redirecting the output from an HTML-formatted query

Caution

114932-4 ch08.F 5/29/02 3:40 PM Page 153

154 Part II ✦ SQL Essentials

In Figure 8-28, the output is redirected by using the greater-than sign (>) and the

name of the file that receives the output is inventory.html.

In Linux, the single greater-than sign (>) causes the redirected output to overwrite
whatever is in the receiving file. If you want merely to append the output instead
of using it to replace what’s in the file, use two greater-than signs (>>).

After moving or copying the file (with the newly appended output) to a place where

the Web server can get hold of it, I have a Web page consisting of a simple table that

shows the products in the inventory. Figure 8-29 shows what it looks like.

Figure 8-29: A simple Web page produced with the output from the -H switch

Suppressing column names
Every time MySQL runs a query, the output of the query includes column names at

the top. If you want to exclude column names (as when you append the output to a

different file), you can use an option to suppress them.

To suppress column names, start the MySQL CLI with the -N or --skip-column-
names switch. To make this function permanent, add skip-column-names to your

MySQL configuration file in the [mysql] section.

Caution

114932-4 ch08.F 5/29/02 3:40 PM Page 154

155Chapter 8 ✦ Command Line Interface (CLI)

Printing results vertically
Just as the MySQL CLI can print results vertically when being used interactively to

help improve layout, vertical output is sometimes useful in non-interactive mode as

well. This is especially true for appending data to a file to be examined later.

The switch to turn on the appropriate option is -E or --vertical. This format can

be made permanent by adding the word vertical to your MySQL configuration file

under the [mysql] section.

Using batch mode to produce tab-delimited output
To produce output that uses tabs as delimiters, you can use MySQL in batch mode.

Turn batch mode on with the -B or --batch switch (or add the word batch to your

MySQL configuration file under the [mysql] section). In batch mode, the output

from a SELECT statement would show values separated by tabs instead of by

columns (useful if you’re importing data into another application, because most

applications recognize the tab character as a valid field separator).

In Figure 8-30, I issue a simple SELECT statement in normal mode, which formats the

fields as a table.

Figure 8-30: A query in normal mode produces tabular-formatted output

In Figure 8-31, I issue that same SELECT statement, this time in batch mode. Notice

that the output no longer has the tabular format. Instead, it shows tabs as delim-

iters. Using batch mode, I could redirect the output file and import it into another

database application.

114932-4 ch08.F 5/29/02 3:40 PM Page 155

156 Part II ✦ SQL Essentials

Figure 8-31: Using batch mode to produce output with tab delimiters

Some other commands and statements — such as mysqldump or SELECT INTO
OUTFILE— may be better suited to exporting data. Those commands are
discussed in Chapter 10.

Creating a Useful MySQL CLI Environment
With all the options covered in this chapter, you may be wondering which ones you

should use — and whether to set the options globally (for all users of the CLI), or

only for your user account, or only in your home directory. The answers are flexi-

ble, determined by what you need your database application to do.

For example, if all users on the computer use the same username to connect to a

particular database, you could make that usage a global setting in the MySQL con-

figuration file. Alternatively, if you use a particular username but everyone else

uses a different one, you could specify that setting in your local or personal MySQL

configuration file.

Programmers still debate the matter of which pager command is best for display-
ing results. For practicality’s sake, you may want to avoid the debate by specifying
that setting only in a local or personal configuration file.

A useful environment for the CLI can be as complicated or as simple as you’d like it

to be. Ideally, you could produce a configuration file personalized for your use of

the MySQL CLI. With a good configuration, you could save time and increase pro-

ductivity by not having to specify the same options every time you start the CLI.

A basic MySQL CLI configuration
The following configuration example might be a fine starting point for anyone’s use

of MySQL. The configuration provides a default pager of less for results that would

Tip

Cross-
Reference

114932-4 ch08.F 5/29/02 3:40 PM Page 156

157Chapter 8 ✦ Command Line Interface (CLI)

scroll more than one screen and it will also tell the CLI to automatically prompt for

the password on startup. This should be set in your local configuration file such as

the .my.cnf file in your home directory in Linux.

[mysql]
pager=less
password

A MySQL administration configuration
The following is an example of what an administrator’s configuration might look like

for MySQL. You would have to add a username of admin with proper privileges to

the database. The configuration will connect as the user ‘admin’ and prompt for a

password. The default database to connect to is the mysql grants database that

houses user rights and privileges. I’ve chosen a default pager of less to specify

fewer results on-screen (less to scroll through). I added the vertical option

because I’ve found that displaying the grant tables vertically really helps compre-

hension since most of the grant tables will wrap around the screen. Finally, all

operations within the CLI will be appended to a logfile for tracking

[mysql]
user=admin
password
database=mysql
pager=less
vertical
tee=mysqlaudit.log

The tee option does not provide complete security or tracking for operations per-
formed within a database.

A client-only MySQL CLI configuration
If you connect to a remote MySQL server frequently, adding a host=<hostname>
line to the basic configuration might help. With the host=<hostname> configura-

tion, the CLI automatically connects to the remote host without requiring you to

specify the -h switch on the command line.

[mysql]
host=192.168.1.75
pager=less
password

Your MySQL CLI configuration
Your MySQL CLI configuration may look somewhat different from the ones I’ve

given as examples. Building and tailoring the configuration to your application and

installation is one of many ways you can improve your experience with MySQL.

Note

114932-4 ch08.F 5/29/02 3:40 PM Page 157

158 Part II ✦ SQL Essentials

Common CLI Errors
Using the CLI myself (and working with many people who are new to databases and

the CLI), I’ve seen quite a few error messages. Often the errors crop up simply

because I can’t seem to type well that day, but just as often they show up for other

reasons that call for some simple troubleshooting.

Access Denied errors
The Access Denied error has a number of variations, three of which are shown in

Figure 8-32.

Figure 8-32: Three variations of the Access Denied error with the CLI

Here’s what produced the errors shown in Figure 8-32:

✦ In the first example I am trying to obtain access to the CLI as the user

suehring but I am not specifying a password via the -p switch. This try fails;

the error message hints (not too subtly) why: Using Password: No.

✦ In the second attempt, I add the -p switch but then press Enter instead of typ-

ing the password. Notice the similarity of result between the second and first

attempts (though I didn’t use the -p switch in the first one).

✦ In the third attempt, I use the -p switch but mistype the password. Notice this

time that the end of the error message is different: Using Password: Yes.

Another variation of the Access Denied error is shown in Figure 8-33: I try to con-

nect to a database on which I have no privileges or rights. As you can see, the error

number is different, as is the message.

114932-4 ch08.F 5/29/02 3:40 PM Page 158

159Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-33: Another variation of an Access Denied error occurs when
the user doesn’t have sufficient privileges to connect to the database.

Figure 8-34 illustrates a common error that can crop up when you try to connect to

a MySQL database. There are differing reasons for this error message; the first and

foremost is that the MySQL server isn’t running. Normally you can solve this prob-

lem by starting the MySQL server and attempting to connect again.

Figure 8-34: A common error can mean one of several different
problems may exist.

Another cause of the problem shown in Figure 8-34 is that the CLI is attempting to

connect through a socket file that doesn’t exist. The remedy for this issue is

usually to determine why the file doesn’t exist — for example, because of permis-

sions problems, a file created in the wrong place, or (again) a MySQL server that

isn’t running.

114932-4 ch08.F 5/29/02 3:40 PM Page 159

160 Part II ✦ SQL Essentials

Alternatives to the CLI
The CLI is by no means the only method for working with database and data. With

the numerous MySQL APIs available, you can write your own method for interacting

with the database and data, using many programming languages — or use any of the

pre-written programs that were written for working with databases and data. In this

section I’m going to discuss two such programs, the MySQLGUI program dis-

tributed by MySQL AB as well as the Web-based tool phpMyAdmin.

Of course, since the advent of the Macintosh and Windows graphical user inter-

faces, the GUI has long been an alternative to the CLI (though some argue that a

server operating system shouldn’t be required to have a GUI). Although MySQLGUI

performs the same functions as the MySQL CLI, it abandons the text-based interface

of a traditional CLI and adopts a look that may be more comfortable for longtime

Windows and Mac users. You can obtain a copy of the MySQLGUI program directly

from MySQL AB.

The MySQLGUI doesn’t come with all the bells and whistles that some GUI users

expect — in particular, it has no installation or setup program. After you unpack the

archive, you have to create your own directories and shortcuts to the program.

The phpMyAdmin suite is a collection of PHP scripts that perform many of the

same tasks as the MySQL CLI and its mysqladmin command. With phpMyAdmin,

you can perform selects, insert, deletes, creation of databases and tables as well as

administration tasks such as adding users, showing processes and so forth, all

through a Web-based interface.

Installation of phpMyAdmin requires PHP and a Web server such as Apache. You

can obtain phpMyAdmin at http://phpwizard.net. Because phpMyAdmin runs

on a Web server, you can use it to work with your database server and databases

from any computer with a Web browser, regardless of platform.

The Apache Web server is included on the CD-ROM with this book, as is PHP.

The basics of MySQLGUI
At first startup, MySQLGUI prompts you for the password (see Figure 8-35). If you

enter a password and continue, MySQLGUI attempts to connect as ‘root’ to the

localhost server. If you press the Esc key, however, you get to the MySQLGUI main

screen without connecting to the database server.

On the
CD-ROM

114932-4 ch08.F 5/29/02 3:40 PM Page 160

161Chapter 8 ✦ Command Line Interface (CLI)

Figure 8-35: MySQLGUI prompts for the
password at startup. Pressing Esc bypasses
the Password screen.

Before you can perform any actions on the database server, you must supply cre-

dentials such as username and password. MySQLGUI also looks for information in

configuration files such as .my.cnf and my.ini. To set or change these options,

click Manage ➪ Options; alternatively, click the Options button on the toolbar. You

should see a screen similar to Figure 8-36.

Figure 8-36: The Options screen in MySQLGUI is where you set
the credentials for connecting to the database server, as well as
other program options.

Note that Figure 8-36 also shows a row of tabs across the top of the dialog box. By

default, MySQLGUI attempts a connection to the localhost database server (or the

machine on which MySQLGUI is running). You can also supply an IP address or DNS

name for another MySQL server. If you want to connect to a specific database such

as the default mysql database, you can set that on this screen as well.

The Client tab, shown in Figure 8-37, is for establishing some basic settings for the

client — for example, username (which is root by default) and the timeout interval

for the connection. For my example, I connect as the user suehring— changing the

username.

The root username should be reserved for one user only — the administrative
“superuser.” I strongly recommend that you don’t use MySQL’s root user to
perform day-to-day tasks with MySQL.

Caution

114932-4 ch08.F 5/29/02 3:40 PM Page 161

162 Part II ✦ SQL Essentials

Figure 8-37: The Client tab is where you set options such as
username and connection timeout.

When you click the Apply button, the Options dialog box closes. If you want to save

your settings for the next time you run the program, you must click the Save button

after clicking Apply

Be sure to click the Save button if you want the options to be saved for the next
time you run MySQLGUI.

When your options are set, click the Connect button (in the upper-left area of the

MyQSLGUI window). A password prompt similar to that in Figure 8-35 appears;

mistyping the password produces results that look like Figure 8-38: An informa-

tional or error message appears at the bottom of the screen — strikingly similar to

the one you’d receive with the MySQL CLI.

Figure 8-38: I deliberately mistyped my password to show you the
error message you get when you do that.

Note

114932-4 ch08.F 5/29/02 3:40 PM Page 162

163Chapter 8 ✦ Command Line Interface (CLI)

Clicking the Connect button and then typing your password correctly results (logi-

cally enough) in a connection to the database server. Notice that if more than one

database is available on the server, you can click the drop-down box next to the

Connect button and see a complete list (as shown in Figure 8-39). You still see a com-

plete list of databases, even if you don’t have any privileges on them. Attempting to

connect to a database for which you don’t have privileges will result in an error. In

addition, when MySQLGUI connects, it places the list of databases in alphabetical

order. If you don’t have privileges on the first database in that list, you won’t be

allowed to connect. To correct this problem, set a default database by clicking File ➪
Options.

Figure 8-39: Connecting to the database server and looking at the
databases available on the server

Running SQL statements with MySQLGUI
Running a query or other SQL statement is really quite simple with MySQLGUI.

Simply type the query into the box as shown in Figure 8-40, using a simple query on

the mysql database such as SELECT * FROM user.

114932-4 ch08.F 5/29/02 3:40 PM Page 163

164 Part II ✦ SQL Essentials

Figure 8-40: Executing SQL statements with MySQLGUI is easy,
as shown by this simple query.

You can choose of what you’d like to do with the results from the statement.

Figures 8-36 through 8-39 show three buttons across the top of the main MySQLGUI

screen — Screen, File, and Count — that also represent those choices:

✦ Screen: By default, the Screen option is selected, which prints the results of

any statement on-screen only. The results of the SELECT * FROM user query

open a new dialog box, as shown in Figure 8-41.

Figure 8-41: When you print the results of a statement to the screen,
a new dialog box opens automatically.

114932-4 ch08.F 5/29/02 3:40 PM Page 164

165Chapter 8 ✦ Command Line Interface (CLI)

The Results box gives you the option to save your results to a file.

✦ File: If you want to save the results to a file directly, click the File button. A

dialog box similar to the one shown in Figure 8-42 appears, prompting you for

the location to which you want to send the results. In response to the prompt

for a filename, you can choose to create a new file or append the results to an

existing file.

Figure 8-42: To save the results to a file, you
must select the location and filename for
MySQLGUI to send the results to.

✦ Count: Select this button if you want to see a count of the results instead of

printing the output to the screen or to a file. The count appears in the

Information section at the bottom of the MySQLGUI screen. For example, the

SELECT * FROM user query returns 9 rows, as shown in Figure 8-43. The

count results appear in the Information section at the bottom of the figure.

You can also use MySQLGUI to limit the number of rows returned by a query. Click

Commands ➪ Query ➪ With Limit. A slider-bar appears at the bottom of the main

MySQLGUI program screen, as shown in Figure 8-44. Simply slide the bar to the left

or right, by left-clicking with the mouse and dragging the bar.

114932-4 ch08.F 5/29/02 3:40 PM Page 165

166 Part II ✦ SQL Essentials

Figure 8-43: Select the Count option displays the number of rows
returned by the statement in the Information section of the
MySQLGUI screen.

Figure 8-44: You can limit the rows returned by a query by
selecting the With Limit option.

Administration with MySQLGUI
In addition to performing standard MySQL CLI duties (such as running SQL state-

ments), you can use MySQLGUI to perform many administrative tasks such as creat-

ing and dropping databases, checking the status of the server, and even shutting

the server down.

114932-4 ch08.F 5/29/02 3:40 PM Page 166

167Chapter 8 ✦ Command Line Interface (CLI)

The Administration menu (below the Commands menu bar) is where you can find

numerous commands for monitoring and governing the operation of MySQL

database server, as shown in Figure 8-45.

Figure 8-45: The Administration commands available with MySQLGUI

To perform some of these same administrative tasks on the MySQL database server,

you can bring up an Administration Panel there as well (as shown in Figure 8-46).

Figure 8-46: The Administration Panel of MySQLGUI

114932-4 ch08.F 5/29/02 3:40 PM Page 167

168 Part II ✦ SQL Essentials

Administrative commands and tasks are discussed in individual detail throughout
this book, most notably in Chapter 9 and Appendix A.

The basics of phpMyAdmin
phpMyAdmin is a Web-based interface for working with databases and database

servers. phpMyAdmin can be used to perform database administration as well as

Data Definition Language (DDL) and Data Markup Language (DML) statements. For

example, with phpMyAdmin you can create databases and tables and perform state-

ments such as SELECT, INSERT, and DELETE.

As an added bonus, phpMyAdmin runs on various platforms — provided the

machines using them can meet the system requirements. To run phpMyAdmin, your

system must have not only a MySQL database server, but also the following:

✦ A Web server capable of running PHP (for example, Apache Server).

✦ PHP version 3 or above.

✦ A Web browser such as Netscape Navigator, Microsoft Internet Explorer, or

Mozilla.

Though installation of the prerequisites to phpMyAdmin is beyond the scope of this

book, the actual installation of phpMyAdmin is really quite easy. Simply create a

directory on your Web server and unpack the phpMyAdmin archive to that directory.

After unpacking the archive edit the phpMyAdmin configuration file to set parameters

for your MySQL server, currently this file is called configuration.inc.php but

that name may change in future versions of phpMyAdmin. There is documentation

included with phpMyAdmin to assist with steps necessary for installation on your

platform.

You must restrict access to the Web server directory into which you install
phpMyAdmin. Failure to do so can leave your database server and data open to
unauthorized access.

Running SQL statements with phpMyAdmin
As stated previously, phpMyAdmin can perform DDL and DML with ease. Many SQL

statements can be built through the use of PHP forms or you can type in your own

SQL statements to be executed on the server.

In the basic (or Home) screen for phpMyAdmin, the frame on the left side lists all the

databases that the given user has access to. A plus sign (+) next to the database

name indicates the existence of tables within the database; clicking the plus sign

expands the list and shows which tables are in the database.

Clicking the actual database name in the left frame changes the right frame to a list

of tables. The list also mentions actions you can take to change the table(s).

Caution

Cross-
Reference

114932-4 ch08.F 5/29/02 3:40 PM Page 168

169Chapter 8 ✦ Command Line Interface (CLI)

Scrolling down on the right-hand frame, you can see a number of other actions to

perform on the database and tables. These include writing your own SQL state-

ments, viewing the schema, and creating a new table. The default actions for a table

include Browse, Select, Insert, Properties, Drop, and Empty. Using these default

actions, you can build an SQL statement via PHP forms without having to know the

underlying SQL. For example, to issue a SELECT statement to show the user and

host within the user table of the MySQL database you can click the mysql database

on the left side, click Select and then build a query.

The results of the query are then printed to the screen in a resulting page. You can

also redirect the results to a file by selecting that option from the screen. Using a

different set of options, you can Edit or Delete a given row of the result set. Clicking

Edit for the user phpuser results in another page, with options for editing based on

the columns in the table.

Administration with phpMyAdmin
Among the administration tasks that you can perform with phpMyAdmin are cre-

ation of databases, editing privileges for users, reloading the server, and diagnosing

server variables. The main interface page for phpMyAdmin in Figure 8-47 shows the

actions you can perform. The options are self-explanatory and where you need fur-

ther assistance, there is a Documentation link that connects you directly to MySQL

AB’s online documentation.

The administrative tasks you can perform — including the assignment of privileges,

creation of databases, and choosing the variables you can see with phpMyAdmin—

are discussed in greater detail throughout the book.

Summary
The MySQL CLI is a command-line program for working with databases and the

database server.

✦ The CLI can be used interactively or non-interactively.

The basic syntax for using the MySQL CLI is

mysql [options] [<databasename>]

✦ You can set a number of command-line options and variables that affect the

behavior of the CLI.

✦ Three important and frequently used command-line options are

-u <username> for specifying the username

-p for telling the CLI to prompt for the password

<databasename> as the last argument to specify the database to connect to

with the CLI

114932-4 ch08.F 5/29/02 3:40 PM Page 169

170 Part II ✦ SQL Essentials

✦ You can create a personalized CLI environment through the use of the MySQL

configuration files (for example, ~/.my.cnf in Linux).

✦ Common errors when connecting to the CLI include Access Denied errors

when you type your password incorrectly or the user doesn’t have sufficient

privileges on the database, and a Cannot Connect through Socket error

when the database server isn’t running or the socket file doesn’t exist.

✦ Two popular alternatives to the text-based CLI are MySQLGUI and

phpMyAdmin, a cross-platform alternative.

✦ MySQLGUI distributed by MySQL AB as an alternative and addition to the text-

based CLI. With MySQLGUI you can perform SQL statements as well as

database administration.

✦ phpMyAdmin is a cross-platform alternative (and addition) to the text-based

CLI. phpMyAdmin can help build and perform SQL statements, as well as some

administrative tasks.

✦ ✦ ✦

114932-4 ch08.F 5/29/02 3:40 PM Page 170

SQL According
to MySQL

MySQL adheres to nearly all ANSI SQL standards. In

fact, MySQL frequently extends those standards,

offering more functionality and power for database operations

and working with data.

This chapter expands upon the ecommerce database example

that I’ve been developing throughout the book. As part of the

expansion, I examine many SQL statements, their syntax, and

their use.

First, I examine some utility and administrative commands in

MySQL, which lay the groundwork for later statements. Data

Definition Language (DDL) is covered next, along with the

steps to take when you create or delete databases and tables.

An examination of Data Markup Language (DML) wraps up the

chapter.

Utility and Administrative
Statements and Commands

Besides Data Definition Language (DDL) or Data Markup

Language (DML) statements, other statements and commands

in MySQL serve vital purposes. Some of these purposes are

administrative; others are basic to the operation of the

database and the use of its data.

SHOW statements
As one who works with numerous companies’ database sys-

tems, I frequently encounter a new database (or revisit one I

haven’t seen for a year or more) and need a quick update. The

SHOW statement quickly gets me acquainted with the structure

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Issuing utility and
administration
commands and
statements

Making use of Data
Definition Language

Understanding data
markup language

Adding examples of
SELECT and related
functions

✦ ✦ ✦ ✦

124932-4 ch09.F 5/29/02 3:40 PM Page 171

172 Part II ✦ SQL Essentials

of a database (or that of its individual tables); from there I can troubleshoot prob-

lems and look at the state of the server itself.

The syntax for the SHOW statement is as follows:

SHOW DATABASES [LIKE <wildcard>]
or SHOW [OPEN] TABLES [FROM <databasename>] [LIKE <wildcard>]
or SHOW [FULL] COLUMNS FROM <tablename> [FROM <databasename>]
[LIKE <wildcard>]
or SHOW INDEX FROM tablename [FROM <databasename>]
or SHOW TABLE STATUS [FROM <databasename>] [LIKE <wildcard>]
or SHOW STATUS [LIKE <wildcard>]
or SHOW VARIABLES [LIKE <wildcard>]
or SHOW LOGS
or SHOW [FULL] PROCESSLIST
or SHOW GRANTS FOR user
or SHOW CREATE TABLE tablename
or SHOW MASTER STATUS
or SHOW MASTER LOGS
or SHOW SLAVE STATUS

SHOW DATABASES
In Figure 9-1, I show two examples of the SHOW DATABASES statement: a simple

SHOW DATABASES statement, and then using the optional LIKE modifier. The LIKE
modifier is useful if you don’t know the name of the database you’re looking for or if

you’d simply like to limit the results to certain databases.

Figure 9-1: Using a SHOW DATABASES statement to learn about
the databases on the MySQL server.

124932-4 ch09.F 5/29/02 3:40 PM Page 172

173Chapter 9 ✦ SQL According to MySQL

SHOW TABLES
The SHOW TABLES statement and related modifiers enable you to find out what

tables are in a given database. As with the SHOW DATABASES statement, the SHOW
TABLES statement enables listing of tables that match a certain pattern via the LIKE
modifier. It is also possible to list tables from another database on the same server,

even if you’re connected to a different database at the time. In Figure 9-2, I am con-

nected to the default mysql database but I use the SHOW TABLES statement to list

tables from the ecommerce database.

Figure 9-2: The SHOW TABLES statement is flexible enough that
you can list tables from another database, even if you’re not
connected to it at the time.

SHOW OPEN TABLES
The SHOW OPEN TABLES statement can assist in troubleshooting and evaluating

database performance. The statement gives additional information such as number

of cached and in-use copies of the table. In Figure 9-3 I connect to the MySQL

server, show tables from the ecommerce database, and then connect with another

thread to perform a simple selection from the customer table. Looking at the open

tables from the ecommerce database, you can see that the Customer table is open.

SHOW COLUMNS
Using the SHOW COLUMNS statement, you can gather information about the columns

in a table. For some uses of the SHOW COLUMNS statement, the DESCRIBE statement

can be substituted. As with other SHOW statements, the SHOW COLUMNS statement

supports the use of wildcards. As with the SHOW TABLES statement, the optional

FROM <databasename> modifier can be used to look at columns from another

database’s tables.

124932-4 ch09.F 5/29/02 3:40 PM Page 173

174 Part II ✦ SQL Essentials

Figure 9-3: Looking at open tables in a database

SHOW FULL COLUMNS
Using the SHOW FULL COLUMNS statement, you can determine what privileges you

have for the columns in that table. In Figure 9-4, I look at the privileges for my user-

name, suehring, in the columns of the Customer table.

Figure 9-4: Using the SHOW FULL COLUMNS command to look
at the privileges the current user has for the table

124932-4 ch09.F 5/29/02 3:40 PM Page 174

175Chapter 9 ✦ SQL According to MySQL

SHOW INDEX
The SHOW INDEX statement also supports the FROM <databasename> optional

argument. The output from the SHOW INDEX command is worth some explanation.

Figure 9-5 illustrates the output from the SHOW INDEX statement run against the

Customer table from the ecommerce database.

Figure 9-5: Output from the SHOW INDEX statement on the
customer table of the ecommerce database

I am using the –E or vertical output type for the SHOW INDEX statement to
produce output that is easier to understand.

From the output in Figure 9-5, you can see the table name is Customer and the

value of Non_unique is 0. A value of 0 in the Non_unique field means that the index

cannot contain duplicates, which is the case for the Customer table. The Key_name
is PRIMARY, which shows that this index is actually the Primary Key index for the

table. As no records are in the table yet, the Seq_in_index value is 1. The

Seq_in_index is an abbreviation for Sequence In Index.

The value in the Column_name field shows the name of the indexed column (in this

case, the email_addess column). The collation column indicates the sorting for

the index (in this case, A for ascending); this value could also be NULL, which would

indicate no sorting. Cardinality indicates the number of unique values in the

index. Because no records exist in this table, the value is 0 in the example.

The Sub_part field indicates how much of a column is indexed when only a certain

number of characters are indexed. This value is NULL when the entire key is

indexed, as is the case in the example. Finally, the Comment field serves to deter-

mine whether the index is a FULLTEXT index, which it is not for the example shown.

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 175

176 Part II ✦ SQL Essentials

SHOW TABLE STATUS
The SHOW TABLE STATUS statement is much like other SHOW statements; it will

accept wildcards. If no LIKE wildcard argument is given, the statement returns the

table status for each table in the database. This can be quite a bit of information, so

I recommend using a pager to split the output — or using a LIKE wildcard to limit

the output to the table(s) you want information about.

If you’re unsure of how to use a pager to divide data, refer to Chapter 8.

Using the SHOW TABLE STATUS statement, along with the LIKE modifier to limit the

output, I can examine the output in greater detail, as in Figure 9-6.

Figure 9-6: Limiting the output of the SHOW TABLE STATUS
statement with the LIKE modifier

The name of the table, Customer, should be obvious. The Type of the table is the

default for this database server, MyISAM.

Other table types are covered in Chapter 10.

The Row_format for the table is Dynamic but could also be Fixed or Compressed.

Because this table contains no data, the Rows, Avg_row_length, and Data_length
all have 0 values. A couple of infrequently used values are the Max_data_length
value (which indicates the maximum acceptable value for the data file) and the

Index_length value (which indicates the length of the index). The Data_free
value would indicate any allocated-but-unused bytes of data in the database.

A sometimes-useful value is the Auto_increment field, which in this instance is NULL
because this table contains no auto-incremented columns. I’ve been involved in cases

Cross-
Reference

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 176

177Chapter 9 ✦ SQL According to MySQL

where a database operator updates an auto-increment field and thus throw it out of

sync. Using the SHOW TABLE STATUS statement I can find out what the next value is

and work from there to determine what it needs to be with a SELECT statement.

The Create_time and Update_time show when the table was created and when it

was updated, if different. As you can see from the example in Figure 9-6, the table

hasn’t been updated. The value of the Check_time is NULL for this table, which

indicates that it hasn’t been checked using a tool such as myisamchk or an OPTI-
MIZE TABLE statement. The Create_options field is also blank as there were no

extra options given to the CREATE statement that produced this table. Finally, the

value of the Comment field is blank as well because no comment was given with the

CREATE statement for this table.

The SHOW STATUS statement lists the status of many server variables. The output is

the same as the mysqladmin extended-status command. Similarly, the SHOW
VARIABLES [LIKE <wild>] statement also has information that can be obtained

through a mysqladmin command. The SHOW VARIABLES statement shows various

settings for variables of the MySQL Server. Both statements return quite a bit of

information so I recommend using a pager in the CLI to make the output more man-

ageable.

For more information on the SHOW STATUS and SHOW VARIABLES statements,
see Appendix A or in Chapter 10.

The SHOW PROCESSLIST statement shows the current threads open on the

database including the first 100 characters of the query that the thread is running.

Given the FULL modifier, the statement shows the entire query.

SHOW GRANTS FOR <user>
The SHOW GRANTS FOR <user> statement, which I refer to simply as SHOW GRANTS,

enables you to find out quickly the privileges that a given user has on a server —

and the statements you would have to issue if you were to give that user those

same privileges.

For example, one task I am confronted with frequently is giving a user access to a

new database system as new servers are implemented. The user almost always

needs the same access as they have on the existing system. Using the SHOW GRANTS
statement, I can quickly find out their current privilege level and recreate it on the

new server. The SHOW GRANTS statement can be a great timesaver (even if some IT

pros still tell the user that the change takes at least 48 hours and use the extra time

to play video games).

Figure 9-7 shows the grants for a few different users in my test database. As you can

see, the dbuser account has privileges only from the localhost— and only on the

inventory database. In addition, an error is shown in Figure 9-7 as well. This error

occurs because the given user doesn’t have privileges to connect from other hosts.

To correct the error, I simply specify the host from which the user has privileges.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 177

178 Part II ✦ SQL Essentials

Figure 9-7: The SHOW GRANTS statement is quite useful in
determining what privileges a given user has on a database.

SHOW CREATE TABLE
The output from the SHOW CREATE TABLE <tablename> statement gives you the

SQL required to recreate the table specified by <tablename>. In Figure 9-8, I exe-

cute the SHOW CREATE TABLE statement for the Manufacturer table of the ecom-
merce example database. Notice that I use the -E switch to produce output in

vertical mode to make the on-screen display easier to comprehend.

Figure 9-8: The SHOW CREATE TABLE statement executed against
the manufacturer table in the ecommerce example database

124932-4 ch09.F 5/29/02 3:40 PM Page 178

179Chapter 9 ✦ SQL According to MySQL

Using the output from the statement in Figure 9-8, you could copy and paste the

SQL into a text editor for archival purposes — or you could paste it into another

MySQL CLI and quickly recreate the table.

For other methods of creating and recreating tables in MySQL, see Chapter 10.

The SHOW MASTER STATUS, SHOW MASTER LOGS, and SHOW SLAVE STATUS state-

ments are used with replication and are thus beyond the scope of this chapter.

For more information on the SHOW MASTER STATUS, SHOW MASTER LOGS, and
SHOW SLAVE STATUS commands, see Chapter 18 or Appendix A.

USE/CONNECT
Though not incredibly difficult to use, I believe it useful to cover the CONNECT or

matching USE statement. I’ve been using the CONNECT statement throughout the

examples in the book. Both the USE and CONNECT statements perform the same

action; the USE statement was added to MySQL for Sybase compatibility. Use the

CONNECT/USE statement to connect to another database from in the CLI.

The syntax for the CONNECT or USE statements is

CONNECT | USE <databasename>

For example, in Figure 9-9, I utilize the CONNECT and USE statements to perform

statements and queries on a few different databases. Notice the difference in feed-

back from the server between the two statements.

Figure 9-9: Using the CONNECT and USE statements to perform
queries on different databases

Cross-
Reference

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 179

180 Part II ✦ SQL Essentials

DESCRIBE
The DESCRIBE statement provides much of the same functionality as the SHOW
COLUMNS statement. The DESCRIBE statement, which is provided to for Oracle com-

patibility, can be abbreviated as DESC and can also be utilized with wildcard charac-

ters such as underscore (_) and percent (%). The syntax for the DESCRIBE
statement is

DESCRIBE | DESC <tablename> (<columnname> | <wildcard>)

KILL
The KILL statement destroys a specified thread that is using the MySQL database

server. The syntax for the KILL statement is

KILL <threadnumber>

The value for <threadnumber> can be obtained via a SHOW PROCESSLIST state-

ment or with the mysqladmin processlist command. The mysqladmin kill
command can also kill threads — a process similar to killing another user’s process

in Linux (the operation requires superuser status). In MySQL, you must have the

PROCESS privilege before you can kill threads owned by other users.

OPTIMIZE TABLE <tablename>
The OPTIMIZE TABLE <tablename> statement examines a table and makes it more

efficient where possible. The statement performs the optimizations by repairing the

table and defragmenting the database file. The syntax for the OPTIMIZE TABLE
statement is

OPTIMIZE TABLE <tablename> (, <tablename>...)

For tables that have suffered many deletes or changes to fields such as VARCHAR,

BLOB, or TEXT variable length, the OPTIMIZE TABLE statement can make

repairs and update indexes to make the table operate more efficiently. Using the

OPTIMIZE TABLE statement changes the value of the Check_time field when per-

forming a SHOW TABLE STATUS statement. (The OPTIMIZE TABLE statement is

much the same as running a myisamchk on the table, though with only certain

options set.)

Although the OPTIMIZE TABLE statement is running, the table is locked.Caution

124932-4 ch09.F 5/29/02 3:40 PM Page 180

181Chapter 9 ✦ SQL According to MySQL

Data Definition Language
Data Definition Language (DDL) refers to the statements and functions used to cre-

ate the framework and rules for working with data. Using a DDL statement, you

don’t work with data directly; rather, you create or alter the database itself (or the

tables in the database).

DDL statements can create and delete databases or create, alter, and delete tables.

I’ll examine many DDL statements in the upcoming pages in the context of the

ecommerce database example that I’ve been developing throughout the book.

In addition to the DDL statements covered here, Appendix A also contains an in-
depth walk-through of SQL syntax.

Deleting tables
Eventually I’m going to just delete and re-create the ecommerce database example

that I’ve been working with throughout the book. Though it isn’t really necessary to

delete or drop a database, I thought it would be helpful to show an example of

deleting/dropping a table from the ecommerce example database that I’ve been

working on.

The syntax for dropping a table is

DROP TABLE [IF EXISTS] <tablename> (, <tablename>)

The IF EXISTS keywords can be given to prevent an error if the table doesn’t exist.

You can also delete more than one table with the command, as indicated by the

(, <tablename>) syntax.

In Figure 9-10 I connect to the MySQL server and connect to the ecommerce
database so I can drop the product table, as shown.

Figure 9-10: Deleting a table from the ecommerce database

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 181

182 Part II ✦ SQL Essentials

Deleting tables is a permanent action with no confirmation. Deleting a table
deletes not only the table structure, but also the data contained in the table. In
addition, deleting a table is not a transactional process; when a DROP TABLE
statement is issued, it is immediately committed.

Deleting and creating databases
As the next step in continuing my ecommerce database example, I’d like to start

fresh so everyone is using the same database design and data. To do so, I use the

DROP DATABASE statement to delete the existing databases created in previous

chapters.

The syntax for the DROP DATABASE statement is

DROP DATABASE [if exists] <databasename>

The syntax for dropping a database with mysqladmin is

mysqladmin [options] drop <databasename>

In previous chapters, I created a couple of different databases, one called ecom-
merce and the other called inventory. Databases can be deleted using the MySQL

CLI or with the mysqladmin command. An example of each is shown in Figure 9-11.

Figure 9-11: Dropping databases via the MySQL CLI and the
mysqladmin command

As you can see in Figure 9-11, dropping a database in the MySQL CLI offers no con-

firmation; thus I recommend using the mysqladmin command to drop databases as

it offers a confirmation prompt before dropping the database.

Caution

124932-4 ch09.F 5/29/02 3:40 PM Page 182

183Chapter 9 ✦ SQL According to MySQL

Now that the databases have been dropped, I can start a new database — also

called ecommerce (because I plan to use it with the ecommerce site I develop in

later chapters). The syntax for creating a database is

CREATE DATABASE [IF NOT EXISTS] <databasename>

A database can also be created with the mysqladmin command:

mysqladmin [options] CREATE <databasename>

In Figure 9-12 I recreate the ecommerce database using the CREATE DATABASE
statement.

Figure 9-12: Creating the ecommerce database via the CLI

Creating tables
Now that I have a database, it’s time to create the tables to actually hold the data.

The syntax for the CREATE TABLE statement is

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <tablename>
[(<create_statement>,...)]
[table_options] [select_statement]

As you can see the statement is quite simple on its face. However numerous

options, many of which are beyond the scope of this chapter, make the CREATE
TABLE statement powerful.

The CREATE TABLE statement and its options are detailed completely in
Appendix A.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 183

184 Part II ✦ SQL Essentials

The create_statement portion of the statement is where you include specific

information such as column names and types, primary keys, indexes, and con-

straints. The sample CREATE TABLE statements for the ecommerce database

(shown later in the chapter) give you a look at column types and some of their

options.

One frequently asked question — and source of confusion — is the AUTO_INCREMENT
option. You can add the AUTO_INCREMENT keyword as a column option when creat-

ing a table. A table can have only one AUTO_INCREMENT column; that column must

be a key as well.

When you insert data into a table with an AUTO_INCREMENT column, the database

automatically adds 1 to the last value of the auto-incremented column. By default,

the AUTO INCREMENT value starts with 1. If you want the database to start with a

different initial value, you can add this preference as a table option when you create

the table.

CREATE TABLE example (ID INT AUTO_INCREMENT PRIMARY KEY)
AUTO_INCREMENT = 10;

In the previous example, the table would be created and the first value inserted into

the table would receive a value of 10 in the ID column.

With the ecommerce database created, I can now create the tables from the data

design produced in Chapter 7. The database design is as follows:

CREATE TABLE customer (
e-mail_address varchar(75) NOT NULL PRIMARY KEY,
first_name varchar(50),
last_name varchar(50),
address1 varchar(50),
address2 varchar(50),
customer_zip varchar(10),
area_code char(3),
telephone_number char(7)

);
CREATE TABLE cardinfo (

card_ID int,
ccnum varchar(16),
ccexp date,
name_on_card varchar(100),
e-mail_address varchar(75)

);
CREATE TABLE cardtype (

card_ID int NOT NULL PRIMARY KEY,
card_type varchar(20)

);
CREATE TABLE locale (

zip varchar(10) NOT NULL PRIMARY KEY,
city varchar(50),
state char(2)

);

124932-4 ch09.F 5/29/02 3:40 PM Page 184

185Chapter 9 ✦ SQL According to MySQL

CREATE TABLE manufacturer (
ID int NOT NULL PRIMARY KEY,
name varchar(50),
address varchar(50),
zip varchar(10),
area_code char(3),
telephone_number char(7),
contact_name varchar(50)

);
CREATE TABLE product (

ID int NOT NULL PRIMARY KEY,
name varchar(50),
price decimal(9,2),
quantity integer,
manu_ID int,
cate_ID int

);
CREATE TABLE producttype (

ID int NOT NULL PRIMARY KEY,
category varchar(50)

);

The table layout is available in electronic format on the CD-ROM so you can
easily import the design into MySQL.

Using the table layout from the CD-ROM, you can copy and paste tables into the

MySQL CLI. Alternatively, you could read the file through the CLI directly (though

doing so is beyond the scope of this chapter).

In Chapter 10 I’ll show examples of importing data and definitions into MySQL.

In Figure 9-13, I take a copy of the table definitions and paste them into the CLI. As

you can see the commands complete successfully. By producing statements in

another application and saving them, you always have a quick and easy alternative

to re-creating or redoing those statements from scratch.

Altering tables
Inevitably there comes in time in all databases’ lives when their tables will need to

be altered. This can happen for any number of reasons — including a change in

business rules, an upgrade to an application, or an oversight during the design of

the database. The syntax for the ALTER TABLE statement is as follows:

ALTER [IGNORE] TABLE tbl_name alter_spec [, alter_spec ...]
alter_specification:

ADD [COLUMN] create_definition [FIRST | AFTER
column_name]
or ADD [COLUMN] (create_definition, create_definition,...)
or ADD INDEX [index_name] (index_col_name,...)

Cross-
Reference

On the
CD-ROM

124932-4 ch09.F 5/29/02 3:40 PM Page 185

186 Part II ✦ SQL Essentials

or ADD PRIMARY KEY (index_col_name,...)
or ADD UNIQUE [index_name] (index_col_name,...)
or ADD FULLTEXT [index_name] (index_col_name,...)
or ADD [CONSTRAINT symbol] FOREIGN KEY index_name

(index_col_name,...)
[reference_definition]

or ALTER [COLUMN] col_name {SET DEFAULT literal | DROP
DEFAULT}
or CHANGE [COLUMN] old_col_name create_definition
or MODIFY [COLUMN] create_definition
or DROP [COLUMN] col_name
or DROP PRIMARY KEY
or DROP INDEX index_name
or DISABLE KEYS
or ENABLE KEYS
or RENAME [TO] new_tbl_name
or ORDER BY col
or table_options

As you can see, this is quite a complex statement with many options (some of

which are beyond the scope of this chapter).

In Appendix A you’ll find more information on the ALTER TABLE statement.

Behind the scenes, the ALTER TABLE statement makes a temporary copy of the

table and then performs the change on the new table before deleting the old table.

The only exception to this behavior is the RENAME function, which does not create a

temporary copy of the table. Any updates made while an ALTER TABLE statement is

being performed will be made on the temporary copy and thus not lost.

Figure 9-13: Pasting statements into the CLI is a good way to
increase productivity.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 186

187Chapter 9 ✦ SQL According to MySQL

MySQL offers some extensions to the ANSI92 SQL standard with the ALTER TABLE
statement. Specifically, this includes the IGNORE keyword, which causes MySQL to

ignore any duplicate values in a primary key or in a unique column type. When a

duplicate value is found, MySQL only uses the first instance of that value. MySQL

also enables multiple alterations to be performed in the same ALTER TABLE
statement.

Many table alterations involve changing a column type or adding a column. Just as

common for the database administrator, however, are tasks such as renaming a

table and adding indexes.

For example, Figure 9-14 alters the Customer table to add a column. The figure

shows the table structure before and after this process, via a DESCRIBE statement

(explained earlier in this chapter).

Figure 9-14: The Customer table layout before an ALTER TABLE
statement, the ALTER TABLE statement, and the table structure after
the ALTER TABLE statement

Because I don’t want the Country column to be added to the Customer table, I

have a good opportunity to demonstrate how to delete or drop a column from a

table. Figure 9-15 describes the table structure both before and after the ALTER
TABLE statement drops a column.

124932-4 ch09.F 5/29/02 3:40 PM Page 187

188 Part II ✦ SQL Essentials

Figure 9-15: The Customer table layout with the extra column both
before and after the column is dropped

As you can see by Figure 9-15, the new column, Country, was added to the end of

the table definition. If I wanted to add the new column to the beginning of the table,

or put it in a location where it might be more intuitive — say, near the address or

ZIP code — I could use the FIRST or AFTER keywords on the statement to do so.

Figures 9-16 and 9-17 describe the current table layout, run the ALTER TABLE state-

ment with the FIRST and AFTER keywords, and then describe the table layout after

the process is complete.

Behind the scenes, I dropped the column between examples to assist with this
demonstration.

Don’t forget to drop the extra Country column from the Customer table before
continuing.

You can change column names and definitions at the same time with the CHANGE
keyword. For example, I’d like to change the customer_zip column to cust_zip
simply because I’m an inherently lazy typist and that’s four letters shorter. In Figure

9-18, I used the CHANGE keyword to rename the column; note that both columns

share the same column definition.

Note

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 188

189Chapter 9 ✦ SQL According to MySQL

Figure 9-16: Altering the Customer table to add the new column at
the top of the table, using the FIRST keyword

Figure 9-17: Altering the Customer table to add a new column at a
specific location in the table definition

124932-4 ch09.F 5/29/02 3:40 PM Page 189

190 Part II ✦ SQL Essentials

Figure 9-18: Using the CHANGE keyword to rename a column

I could use a different CREATE definition when changing the column as well. Since

Figure 9-18 was a relatively simple example of renaming a column, I didn’t need to

change the column definition. To maintain consistency with the table definitions

used throughout the book, I changed the column name cust_zip back to

customer_zip; please do so in your database as well.

You can also modify the column definition through the use of the MODIFY keyword.

In Figure 9-19, I modify the contact_name column in the Manufacturer table to

allow name lengths of up to 75 characters.

Be sure to change the length of the contact_name column back to 50 to main-
tain consistency with later examples.

Although I don’t need to add any primary keys to the example tables, it is useful for

you to know that this can be done with the ALTER TABLE statement. You may have

to add a primary key when you’re improving a table design.

Another method for improvement — after the table has been created — is to add a

non-primary key index. You can use the ALTER TABLE statement to add an index to

the table at any time after the table is created. In effect, the CREATE INDEX state-

ment is an alias for an ALTER TABLE statement.

You may have to rename a table at some point; the ALTER TABLE statement can

perform this task as well. The syntax for renaming a table is

ALTER TABLE <tablename> RENAME [TO] <newtablename>

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 190

191Chapter 9 ✦ SQL According to MySQL

Figure 9-19: Using the MODIFY keyword to lengthen the
contact_name column

The word TO in brackets, though it’s optional, can help make the statement more
easily understandable.

Data Markup Language
Data Markup Language (DML for short) refers to SQL statements that work with and

manipulate data in a database. Recall that Data Definition Language or DDL state-

ments work with the actual structure of objects in a database such as the database

itself, or tables and columns in a database.

DML includes such statements as SELECT, INSERT, DELETE, and UPDATE. I will exam-

ine each in the context of the ecommerce database example where possible.

In addition to the DML statements covered here, Appendix A also contains an in-
depth walk-through of SQL syntax.

Inserting data into the database with INSERT
Any consideration of DML brings up the question of which DML statement to cover

first —SELECT or INSERT. It is another version of the chicken-and-egg question.

Although you can’t select data without first inserting it, the INSERT statement is not

the only way to insert data (see Chapter 10 for more information). Because the

INSERT statement is (perhaps) the most obvious method, I examine it first.

Cross-
Reference

Tip

124932-4 ch09.F 5/29/02 3:40 PM Page 191

192 Part II ✦ SQL Essentials

The syntax for the INSERT statement is

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] <tablename> [(<columnname>,...)]
VALUES (expression,...),(...),...

or INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] <tablename>
SET <columnname>=expression, <columnname>=expression,

...
or INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] <tablename> [(<columnname>,...)]
SELECT ...

Three variations of the INSERT statement exist. The syntax is really straightforward

for all three variations, with the possible exception of the keywords LOW_PRIORITY,

DELAYED, and IGNORE. The optional keyword INTO is provided to improve readabil-

ity of the INSERT statement. Though it may come as a surprise (since I’m histori-

cally a lazy typist), I use the INTO statement in most, if not all, of my INSERT
statements.

Commas separate values for columns in an INSERT statement. If you don’t specify

column names, MySQL expects that you will provide values for each column in the

table. If no value is provided for a given column, the insert fails and returns an

error. You can use NULL as a placeholder for columns that you don’t want to pro-

vide values for with the insert. Additionally, you can use two single or double

quotes to leave those fields blank. However, using single or double quotes instead

of NULL in a column puts different values in those columns than would be there if

they were specified as NULL.

If you want to only set values for certain columns you must enumerate those

columns in the INSERT statement. For example, in the ecommerce database exam-

ple I have a small manufacturer for one of the products. The manufacturer does not

require a separate contact name. By enumerating the columns that I want to insert

into, I can forego placing any value in the contact_name column for this entry, as in

Figure 9-20.

You should execute the INSERT statement in Figure 9-20 to prepare for other exam-

ples (later in this chapter) that use it. The command looks like this:

insert into manufacturer
(ID,name,address,zip,area_code,telephone_number) values
(1,’Small Widget Manufacturer’,’4 Warner
Blvd’,’91120’,’818’,’5551212’);

If you attempt to insert a value longer than the column for column types such as

VARCHAR, CHAR, and BLOB, the portion of the value that exceeds the column length

will be lost. In Figure 9-21, I look at the example table called nametable, which

has one column called name. The name column allows a maximum length of

124932-4 ch09.F 5/29/02 3:40 PM Page 192

193Chapter 9 ✦ SQL According to MySQL

10 characters for data. I attempt to insert the 14-character name Steve Suehring
into the name column. As you can see by the SELECT statement following the

INSERT, the value was truncated to ten characters.

Figure 9-20: Inserting values into some columns of a table is
possible by specifying the column names.

Figure 9-21: Inserting a value longer than the designated length
truncates the data.

When inserting a value, an expression can be used on a previously inserted value.

An example is Figure 9-22, in which I connect to a test database and show a descrip-

tion of the example table called exptable. Two columns refer to quantity in this

table —quantity and quantity_needed. I insert a value of 10 for quantity, and

would like to have a total of quantity + 20 of these widgets on hand. Therefore I

use an expression to add 20 to whatever the value of quantity is for the INSERT
statement.

124932-4 ch09.F 5/29/02 3:40 PM Page 193

194 Part II ✦ SQL Essentials

Figure 9-22: Using an expression with an INSERT statement to
insert a value that’s based on a previously inserted value.

The LOW_PRIORITY and DELAYED keywords modify how, or more appropriately,

when the insert is done. With the LOW_PRIORITY keyword the insert is held until no

other clients are reading from the table. For many tables, this can take quite a long

time — and the client thread can’t continue until the INSERT operation is com-

pleted. If you use the LOW_PRIORITY keyword with a MyISAM table type, you can’t

run more than one INSERT statement at a time; I don’t recommend using the

LOW_PRIORITY keyword with a MyISAM table type unless you have specific needs.

The DELAYED keyword, a MySQL extension to the ANSI SQL standard, returns an OK

to the inserting client immediately. This can greatly improve performance of appli-

cations where a table may be under heavy use and where the application or client

cannot wait for the INSERT to complete. For example, if you run a SELECT state-

ment on a table and that statement takes a long time to complete, the application

attempting to perform an insert on the table may appear to be locked up or frozen.

Using the INSERT DELAYED statement for such an application may prove beneficial.

However, since MyISAM tables support simultaneous selects and inserts, using the

INSERT DELAYED statement might not provide any performance improvement.

The actual INSERT statement is placed in a volatile-memory-based queue to be exe-

cuted when no other threads are using the table. Should the MySQL server crash,

be killed, or otherwise stop for any reason, the contents of the INSERT DELAYED
queue that haven’t been executed are lost. For example, if you have four inserts

that all use the INSERT DELAYED statement, two of them get executed and then the

MySQL server dies, the remaining two INSERT statements are lost.

The INSERT DELAYED statement only works with the ISAM and MyISAM table
types.

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 194

195Chapter 9 ✦ SQL According to MySQL

The IGNORE keyword tells MySQL to ignore any duplicate values for a primary key

or unique column. If the IGNORE keyword is not specified and a duplicate value is

encountered, MySQL stops the insert process and returns an error. If a duplicate

value is encountered and the IGNORE keyword is used, that row of data is not

inserted into the table.

The upcoming sections examine each of the three INSERT variations in turn.

The INSERT ... VALUES ... variation
The syntax for such an INSERT statement is

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] tbl_name [(col_name,...)]
VALUES (expression,...),(...),...

I’ve already given a couple examples using this syntax. At the most basic level, the

syntax for this variation of the INSERT statement is

INSERT INTO <tablename> VALUES (<expression> (, ...)

To facilitate examples that appear later in this chapter, I insert some sample data

for two of the tables in the ecommerce database — and into additional tables by

using the other variations of the INSERT statement. The operation looks like this:

insert into cardtype values (1,’Visa’);
insert into cardtype values (2,’Mastercard’);

insert into cardinfo values (1, ‘0123012345678910’, ‘01/02’,
‘Steve Suehring’, ‘suehring↓ngermen.com’);
insert into cardinfo values (1, ‘1234567891011121’, ‘07/01’,
‘Steve Suehring’, ‘vanhalen@coredcs.com’);
insert into cardinfo values (2, ‘0123456789012345’, ‘04/04’,
‘Fake Name’, ‘none@braingia.net’);

Figure 9-23 shows the results of the statements just given, as they appear when you

use the CLI in interactive mode.

Another method for inserting values into a table is to separate them with a comma

in the same INSERT statement.

INSERT INTO product VALUES (1,’Balance’,12.99,5,1,2), (2,’Van
Halen - Best of Volume 1’,14.99,5,1,2);

124932-4 ch09.F 5/29/02 3:40 PM Page 195

196 Part II ✦ SQL Essentials

Figure 9-23: Running an INSERT statement to insert sample data
into the ecommerce database

The INSERT ... SET ... variation
Another method for inserting data into a table with the INSERT statement is via the

SET syntax. Using the INSERT ... SET ... variation you can set values for

columns individually. This is particularly useful when you only need to set a small

number of columns in a large table. The basic syntax of this variation is as follows:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] tbl_name SET
col_name=expression, col_name=expression, ...

In addition, the SET syntax can also help readability. I’ll go back to the ecommerce
example and insert some cities into the locale table by using the SET syntax:

insert into locale set zip = ‘54481’, city = ‘Stevens Point’,
state = ‘WI’;
insert into locale set zip = ‘54443’, city = ‘Junction City’,
state = ‘WI’;
insert into locale set zip = ‘53211’, city = ‘Shorewood’, state
= ‘WI’;
insert into locale set zip = ‘54409’, city = ‘Antigo’, state =
‘WI’;
insert into locale set zip = ‘54948’, city = ‘Leopolis’, state
= ‘WI’;
insert into locale set zip = ‘54949’, city = ‘Manawa’, state =
‘WI’;

The INSERT ... SELECT ... variation
The third variation of the INSERT statement is the INSERT ... SELECT variation.

Using this method you can base the values for the INSERT on the results from a

SELECT statement. The syntax for such an insert is

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] tbl_name
[(col_name,...)] SELECT ...

124932-4 ch09.F 5/29/02 3:40 PM Page 196

197Chapter 9 ✦ SQL According to MySQL

To quickly populate the customer table with the e-mail addresses that I put in the

cardinfo table earlier, I can use an INSERT ... SELECT ... statement. I can then

update the rows of data later to fill in the rest of the data:

insert into customer (e-mail_address) select e-mail_address
from cardinfo;

The previous statement and the results are shown in Figure 9-24.

Figure 9-24: Using the INSERT ... SELECT ... statement to populate
the customer table of the ecommerce example, using data contained
in the locale table

Gathering data with SELECT
By and large, the SELECT statement is used more frequently than the INSERT state-

ment. Normally you would use the INSERT statement to put data into the database

only once; a query for looking for data uses the SELECT statement more than once.

The actual ratio of queries to inserts is largely determined by the application.

The syntax for the SELECT statement is as follows:

SELECT [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT]
[SQL_BUFFER_RESULT]

[HIGH_PRIORITY]
[DISTINCT | DISTINCTROW | ALL]

select_expression,...
[INTO {OUTFILE | DUMPFILE} ‘file_name’ export_options]
[FROM table_references

[WHERE where_definition]
[GROUP BY {unsigned_integer | col_name | formula} [ASC

| DESC], ...]
[HAVING where_definition]

124932-4 ch09.F 5/29/02 3:40 PM Page 197

198 Part II ✦ SQL Essentials

[ORDER BY {unsigned_integer | col_name | formula} [ASC
| DESC] ,...]

[LIMIT [offset,] rows]
[PROCEDURE procedure_name]
[FOR UPDATE | LOCK IN SHARE MODE]]

As you can see the SELECT statement has many options, some of which are beyond

the scope of this chapter. Numerous operators and functions can be used in a

SELECT statement; I’ll look at some of them through examples.

In Appendix A the SELECT statement’s syntax is examined along with a complete
list of operators and functions to be used with the SELECT statement.

Probably the most basic of SELECT statements is a simple:

SELECT * FROM <tablename>;

The SELECT expression in this example uses the asterisk wildcard to ask MySQL for

all data in all columns in the table called <tablename>. For example, in Figure 9-25 I

perform a query for all data in the user table of the MySQL database.

Figure 9-25: One of the most basic queries is a SELECT * from
<tablename>. In this case, the query calls for all data in the user
table of the database that contains MySQL privileges and grants.

In a select expression you can use aliasing through the use of the AS keyword. This

can be useful when using a complicated SELECT expression and you want to make

the results return as a more user-friendly or readable column name. An alias can

also assist if you want to recall a portion of the SELECT expression in another por-

tion of the statement.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 198

199Chapter 9 ✦ SQL According to MySQL

Clearly, the power of the SELECT statement lies in the WHERE modifier; you use that

modifier to specify the results that you would like to see from the query. For exam-

ple, using the WHERE modifier with the previous SELECT * FROM user statement I

can determine information about only a certain user. Adding a WHERE modifier to

the look for information on the user ‘suehring’ makes the results more useful:

SELECT * FROM user WHERE user = ‘suehring’;

The results of the query are in Figure 9-26.

Figure 9-26: Adding a WHERE modifier to the SELECT statement
to make the results more useful

As you can see from the simple examples I’ve provided, the SELECT statement

accepts wildcard characters. You can also place wildcard characters in the WHERE
portion of the statement as well. To enable the wildcard characters to work, you

slightly modify the WHERE portion by substituting the word LIKE for the equals sign

(=). The asterisk (*) is frequently the wildcard to match none- or -any characters

— but the asterisk does not work in the WHERE portion of a SELECT statement. The

percent sign (%) is a substitute for none-or -any characters wildcard. For exam-

ple, people frequently forget how to spell my last name, Suehring. Using the LIKE
function in the SELECT statement, I could put a portion of my name in and still

come up with valid results, as shown in Figure 9-27.

Now the statement looks like this:

SELECT * FROM user WHERE user LIKE ‘sue%’;

124932-4 ch09.F 5/29/02 3:40 PM Page 199

200 Part II ✦ SQL Essentials

Figure 9-27: Using the LIKE function instead of the equals sign for
finding information with a wildcard

Another wildcard, the underscore (_), can be used to substitute one character.

Going back to the spelling of my name as an example, people frequently transpose

the h and the r, misspelling the name as Suerhing. To find such instances, I could

use two underscores together, like this:

SELECT * FROM user WHERE user LIKE ‘sue__ing’;

As you can see from Figure 9-28, the results end up the same.

Figure 9-28: Using the underscore as a wildcard to match one
character inside a SELECT statement

124932-4 ch09.F 5/29/02 3:40 PM Page 200

201Chapter 9 ✦ SQL According to MySQL

I’ll come back to the WHERE modifier. For now, I need to jump back to the actual

select portion of the SELECT statement. Up until this point I’ve been using the aster-

isk to select all columns. You can also select many other items with the SELECT
statement including specific columns and the results of functions on columns. For

example, if I wanted to only determine which hosts the user ‘suehring’ is allowed

to connect from, I could perform the following query (the results of which are

shown in Figure 9-29):

SELECT user,host FROM user where user = ‘suehring’;

Figure 9-29: Selecting certain columns with the SELECT statement

SELECT functions
Numerous functions can be used in SELECT statements — some are useful to know

(and have around for reference), regardless of whether you use them with a

database. This section, however, highlights some functions that illustrate how pow-

erful MySQL can be.

In Appendix A all functions and operators for the SELECT statement are covered in
detail.

As with many other portions of SELECT statements, functions can be nested inside

each other. For example, the following statement uses two functions, the DATE_ADD
and the NOW functions. The statement results in two days being added to the cur-

rent date, as determined by the MySQL server:

SELECT DATE_ADD(NOW(), INTERVAL 2 day);

MySQL also uses functions such as greater than (>), less than (<), equals (=), and

the like. Further, the use of logical AND, OR, and NOT is also supported by MySQL

SELECT and WHERE clauses. Usage of these functions is pretty intuitive; I provide

examples throughout this section and the rest of the book.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 201

202 Part II ✦ SQL Essentials

MySQL can join tables together in a number of ways so you can select records from

multiple tables — or search them for matching records. Selecting from multiple

tables is quite simple, just include the table names in the SELECT statement and

include a method for finding matching rows. More complicated joins and unions

can also be accomplished with MySQL so you can perform cross-joins on different

columns in a table.

In Appendix A you can see examples of JOIN and UNION.

Dates and times with SELECT
MySQL includes many functions to work with dates and times. These include func-

tions for conversion of dates and times and functions to determine where a given

date falls in a year. In Table 9-1, I list some date and time functions for use with the

SELECT statement. I’ll give examples of usage for them following the table.

Table 9-1
Date and time functions with the SELECT statement

Function Name Purpose

CURDATE() Returns the current date.

CURTIME() As with CURDATE, this returns the current time.

DATE_ADD(D, interval) Adds <interval> onto date, D.

DATE_FORMAT(D, format) Returns the date in the format specified, see example later
in the chapter.

DATE_SUB(D, interval) Subtracts <interval> from date, D.

DAYNAME(D) Returns the day of the week for a given date in time.

DAYOFMONTH(D) Returns the day of month for a given date, D.

DAYOFWEEK(D) Returns the day of the week that a given date falls upon.

DAYOFYEAR(D) Returns the day of the year for a given date.

FROM_DAYS(D) Returns the actual date that is a number of days, D, away.

FROM_UNIXTIME(S) Converts a Unix/Linux timestamp from native seconds to a
date.

HOUR(T) Return the hour from a given time value, T.

MINUTE(T) Returns the minute value from a given time, T.

MONTH(D) Returns the month value from a given date, D.

MONTHNAME(D) Returns the name of the month from a given date, D.

NOW() Returns the current date and timestamp.

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 202

203Chapter 9 ✦ SQL According to MySQL

Function Name Purpose

PERIOD_ADD(D,M) Adds the number of months, M, to the given date, D.

PERIOD_DIFF(D1, D2) Subtracts the two dates, D1 and D2.

QUARTER(D) Returns the quarter of the year for the given date, D.

SECOND(T) Returns the second value from a given time, T.

SEC_TO_TIME(S) Converts seconds, S, to a time value.

TIME_TO_SEC(T) Converts a given time, T, to seconds.

TO_DAYS(D) Returns a value for the number of days from now until
date, D.

UNIX_TIMESTAMP((D)) Converts date, D, to Unix time or returns current Unix
timestamp.

WEEK(D) Returns the week of the year for a given date, D.

WEEKDAY(D) Returns the day of the week beginning with Monday for a
given date, D.

YEAR(D) Returns the year value for a given date, D.

As you can see, MySQL includes quite a few functions for working with dates and

times. Some functions convert dates and times, some add or subtract dates and

time, and some functions simply provide information.

Among those statements that provide information are CURDATE(), NOW(), and

CURTIME(). To use these statements simply call them with a SELECT, as shown in

Figure 9-30.

Figure 9-30: Using the CURTIME() function with select to
determine the current time

124932-4 ch09.F 5/29/02 3:40 PM Page 203

204 Part II ✦ SQL Essentials

Other informational functions include those that determine a portion of a date or

what day of the week a given date falls on and the like. These include DAYNAME,

DAYOFWEEK, DAYOFMONTH, DAYOFYEAR, MONTH, MONTHNAME, QUARTER, WEEK, WEEKDAY,

and YEAR. Usage of all these is quite similar; however you may be curious what the

difference is between DAYOFWEEK and WEEKDAY. Each of the two functions returns a

number value representing a day of the week. However, DAYOFWEEK returns 1 as

Sunday, 2 as Monday and so forth while WEEKDAY returns 0 as Monday, 1 as

Tuesday, and so forth. Syntax examples follow; results are shown in Figures 9-31

and 9-32.

SELECT DAYNAME(‘1961-06-20’);
SELECT DAYOFMONTH(‘1986-10-25’);
SELECT DAYOFYEAR(‘2001-06-16’);
SELECT DAYOFWEEK(NOW());
SELECT MONTH(‘1973-11-25’);
SELECT MONTHNAME(‘1965-01-29’);
SELECT QUARTER(‘1936-04-01’);
SELECT WEEK(‘1979-04-16’);
SELECT WEEKDAY(NOW());
SELECT YEAR(‘1988-08-08’);

Figure 9-31: Various date determination functions. Note the
difference in determining the DAYOFWEEK versus WEEKDAY
for today (Friday)

124932-4 ch09.F 5/29/02 3:40 PM Page 204

205Chapter 9 ✦ SQL According to MySQL

Figure 9-32: Other MySQL date determination functions for week,
month, quarter, and year

As with the functions that parse a date and return information, other functions

parse a given time and return information. These include HOUR, MINUTE, and

SECOND. As with the functions for working with days and weeks, the time-based

functions also accept a given date/time argument and return information based

on that argument.

Some MySQL date and time functions add or subtract dates and time. For example,

DATE_ADD and DATE_SUB perform addition and subtraction of dates, respectively.

Both functions require two arguments, a date and an interval to add or subtract. As

stated previously, you can nest functions in statements; this might be a place where

you would nest the NOW() function in the DATE_ADD function to quickly determine

the current date.

Both the DATE_ADD and DATE_SUB functions have synonyms: ADDDATE and

SUBDATE, respectively. In addition, you can also use a plus sign (+) and minus sign

(–) as substitutes for the DATE_ADD and DATE_SUB functions. The functions accept

any valid time interval such as year, month, day, hour, and even second. Results

from the following examples are shown in Figure 9-33.

SELECT DATE_ADD(NOW(), INTERVAL 745 day);
SELECT DATE_ADD(‘1971-03-12’, INTERVAL 3 second);
SELECT ‘1991-03-16’ + 10 year;
SELECT DATE_SUB(‘1997-01-01’, INTERVAL 431 month);

124932-4 ch09.F 5/29/02 3:40 PM Page 205

206 Part II ✦ SQL Essentials

Figure 9-33: Examples of various date addition and subtraction
functions with MySQL

The functions PERIOD_ADD and PERIOD_DIFF also add and subtract dates, though

each works with months only. With PERIOD_ADD, you add a number of months to a

give date. With PERIOD_DIFF you can determine the number of months between

two pseudo-date values. The syntax looks like these examples (results appear in

Figure 9-34):

SELECT PERIOD_ADD(200205, 3);
SELECT PERIOD_DIFF(200208,200206);

Figure 9-34: Using MySQL’s PERIOD_ADD and PERIOD_DIFF
functions to work with months

124932-4 ch09.F 5/29/02 3:40 PM Page 206

207Chapter 9 ✦ SQL According to MySQL

The FROM_DAYS and TO_DAYS functions are similar insofar as they tell you the num-

ber of days to or from a certain date (see Figure 9-35). For example, to determine

the date in a certain number of days, use the FROM_DAYS with the number as the

argument. To determine the number of days from year 0 to a certain date, use the

TO_DAYS function like this:

SELECT FROM_DAYS(‘732000’);
SELECT TO_DAYS(‘2003-01-26’);

The functions work with numbers of days since year zero; therefore the values you
use will be quite large.

Figure 9-35: The FROM_DAYS and TO_DAYS functions in action.
Note the large values used as both of the functions work with
the number of days since year 0.

Some date and time functions convert dates and times from one format to another.

These functions include FROM_UNIXTIME, SEC_TO_TIME, TIME_TO_SEC, and

UNIX_TIMESTAMP. Using these functions in conjunction with other time and date

functions, you can transform the dates and times so they are easier to understand.

In Unix/Linux, many are based upon the number of seconds. If you have a Unix

timestamp and need to convert that to a more easily readable date, use the

FROM_UNIXTIME function. The UNIX_TIMESTAMP function gives you the value of the

Unix time in seconds. You could nest the two functions to retrieve the current date,

but why not just use the CURDATE function? The SEC_TO_TIME and TIME_TO_SEC
functions work with times though not necessarily related to times you’d see on a

clock. Thus you can use the SEC_TO_TIME function to determine how many hours a

session was active. Syntax examples follow (with results in Figure 9-36):

SELECT UNIX_TIMESTAMP();
SELECT FROM_UNIXTIME(‘1000010234’);
SELECT SEC_TO_TIME(‘124024’);
SELECT TIME_TO_SEC(‘51:50:00’);

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 207

208 Part II ✦ SQL Essentials

Figure 9-36: Time and second based conversion functions in MySQL

Out of the functions, the DATE_FORMAT statement stands out as unique. This func-

tion takes a date and then determines how you would like the date result formatted.

Quite a few options exist. Table 9-2 lists the various formatting arguments that you

can provide to the DATE_FORMAT function.

Table 9-2
Arguments for use with the DATE_FORMAT function

Argument Definition

%% A literal percent sign.

%a Abbreviated weekday names such as Sun, Mon, and so on.

%b Abbreviated month names, Jan, Feb, and so on.

%c The month number, where 1 is January.

%D Numeric day of month with suffix such as 1st, 2nd, and so on.

%d Two-digit numeric day of month starting with 00, 01, and so on.

%e One-digit numeric day of month starting with 0.

%H Two-digit numeric hour starting with 00 in 24-hour format.

124932-4 ch09.F 5/29/02 3:40 PM Page 208

209Chapter 9 ✦ SQL According to MySQL

Argument Definition

%h One-digit numeric hour starting with 0 in 12-hour format.

%I Two-digit numeric hour starting with 01 in 12-hour format.

%I Two-digit numeric minute starting with 00.

%j Three-digit day of year starting with 001.

%k One-digit numeric hour starting with 0 in 24-hour format.

%l One-digit numeric hour starting with 1 in 12-hour format.

%M Long format month name, January, February, and so on.

%m Two-digit numeric month starting with 01.

%p AM or PM designation based on the time.

%r Time in 12-hour format including AM or PM.

%S Two-digit numeric seconds.

%s Two-digit numeric seconds, same as %S.

%T Time in 24-hour format.

%U One-digit numeric week where Sunday is first day of week.

%u One-digit numeric week where Monday is first day of week.

%W Long format weekday name such as Monday, Tuesday.

%w Numeric day of week where 0 is Sunday.

%Y Four-digit numeric year.

%y Two-digit numeric year.

Don’t let the options for the DATE_FORMAT function overwhelm you. Some syntax

examples for the DATE_FORMAT function are as follows:

SELECT DATE_FORMAT(NOW(), ‘%T’);
SELECT DATE_FORMAT(‘1998-03-16’, ‘%W, %M %D, %Y’);

The results from the syntax examples for the DATE_FORMAT function are shown in

Figure 9-37.

124932-4 ch09.F 5/29/02 3:40 PM Page 209

210 Part II ✦ SQL Essentials

Figure 9-37: The DATE_FORMAT function allows customizing of
date and time output to fit your application.

Numerical functions with SELECT
As is the case with dates and times, MySQL also includes a rich feature set of

numerical functions. Table 9-3 lists some of those functions.

Table 9-3
Numerical functions with the SELECT statement

ABS(N) Returns the absolute value of a number, N.

xBIN(N) Returns the binary value for the given number, N.

xFORMAT(N,D) Formats the number, N, to the given decimal place, D.

xGREATEST(N1,N2, ...) Provides the highest or greatest number in the given set,
N1, N2, and so on.

xHEX(D) Gives the hexadecimal value for a given decimal number, D.

xLEAST(N1, N2, ...) Returns the smallest or least number in the list N1, N2, and
so on.

xMOD(N1, N2) Returns the modulo value of the two numbers, N1 and N2.

xPI() Returns the value of Pi.

POW(N1, N2) Raises a number, N1 to the power of another number, N2.

xROUND(N,(D)) Rounds a number, N, to the optional decimal places, D.

SIGN(N) Determines whether a value is negative, positive, or zero.

124932-4 ch09.F 5/29/02 3:40 PM Page 210

211Chapter 9 ✦ SQL According to MySQL

MySQL’s numerical functions also include addition, subtraction, multiplication, and

division. Addition and subtraction functions can be called through the use of the

plus and minus signs, multiplication uses the asterisk, and division uses the front-

slash (/). For example, the statement SELECT 4 + 4 would render a result of 8. The

MOD function returns the modulo or remainder from a division of numbers. This

function can also be called with the percent sign (%).

Beyond the functions listed above, MySQL also includes functions for cosine, tan-

gent, arc cosine, cotangent, random, and more. Many of these functions are used

only in specialized applications.

The additional numerical functions for use with MySQL are detailed in Appendix A.

The numerical functions are really straightforward in their use. Most accept a num-

ber as an argument. Some interesting functions include the BIN, HEX, and FORMAT
functions. The BIN and HEX functions convert a number between formats binary

and hexadecimal respectively. The format function is useful when you have extra

decimal places and want only to use a certain number of decimal places in your

application. Syntax examples and results follow (see Figure 9-38). Notice that I

sneaked in a nested function, PI, in the FORMAT function call.

SELECT BIN(5);
SELECT BIN(256);
SELECT HEX(134);
SELECT FORMAT(PI(), 2);

Figure 9-38: Some of MySQL’s numerical functions in action

Cross-
Reference

124932-4 ch09.F 5/29/02 3:40 PM Page 211

212 Part II ✦ SQL Essentials

The GREATEST and LEAST functions are similar insofar as they find the maximum or

minimum value given a list of numbers, as shown in Figure 9-39.

SELECT GREATEST(2,1984,5150,3);
SELECT LEAST(4,87,44,62,41,.21);

Figure 9-39: The GREATEST and LEAST functions in action

The ROUND function can be called with or without an extra argument specifying the

number of digits to include after the decimal (see Figure 9-40). If no extra argument

is given, the ROUND function will round to the nearest whole number.

SELECT ROUND(6.79);
SELECT ROUND(6.79, 1);

Figure 9-40: The ROUND function can be called with or without
an argument depending on the precision of rounding that you need.

String functions with the SELECT statement
Functions for working with strings and characters are an important part of MySQL’s

SELECT and WHERE statements. As with the date and time functions and numerical

functions, many string functions are used in specialized cases and applications.

Table 9-4 lists many string functions used in MySQL.

124932-4 ch09.F 5/29/02 3:40 PM Page 212

213Chapter 9 ✦ SQL According to MySQL

Table 9-4
String functions with the SELECT statement

ASCII(C) Returns the ASCII value of the given character, C.

CHAR(N,N) Returns the actual character when given an ASCII
number(s), N.

CONCAT(S1,S2...) Concatenates (joins) the strings, S1, S2 and so on.

CONCAT_WS(S,S1,S2 ..) Concatenates the strings S1, S2 and so on using separator, S.

FIELD(S,S1,S2,...) Returns the number indicating the position of a string, S, as
located in the field list, S1, S2, and so on.

LCASE(S) Converts string, S, into lowercase.

LENGTH(S) Returns the character length of string, S.

LIKE Compares strings via pattern matching.

LOAD_FILE(F) Loads the contents of file, F, as a string.

LPAD(S,N,C) Left-pads the string, S, with the number, N, of characters, C.

LTRIM(S) Trims whitespace from the left of string, S.

POSITION(S in S1) Determines the first position of substring, S, in string, S1.

REGEXP Compares strings with regular expression pattern matching.

REPLACE(S,O,N) Replaces old string, O, with new string, N, in a given string, S.

REVERSE(S) Reverses string, S.

RPAD(S,N,C) Right-pads the string, S, with the number, N, of characters, C.

RTRIM(S) Trims whitespace from the right of string, S.

SPACE(N) Returns a string consisting of N spaces.

STRCMP(S1,S2) Compares the two strings, S1 and S2.

TRIM((RS) from S) Remove string, RS, from string, S (see example following
this list)

UCASE(S) Converts string, S, into uppercase.

Out of the string functions, the ASCII and CHAR functions stand out as unique.

These two functions work with strings to determine or return their ASCII value.

(See Figure 9-41.) The CHAR function can accept more than one ASCII number in the

argument list.

SELECT ASCII(‘W’);
SELECT CHAR(51,65);

124932-4 ch09.F 5/29/02 3:40 PM Page 213

214 Part II ✦ SQL Essentials

Figure 9-41: The ASCII and CHAR functions. Notice that when given
more than one argument, the CHAR value returns the corresponding
values without any separation.

The LTRIM and RTRIM functions along with the LPAD and RPAD functions both per-

form similar duties. The LTRIM and LPAD functions operate on the left side of a

string while the RTRIM and RPAD functions operate on, you guessed it, the right side

of a string. The LTRIM and RTRIM functions remove whitespace from a string while

the LPAD and RPAD functions add a specified number of characters to a string to

make it a certain length. The characters to be added with LPAD and RPAD can be

whitespace or other characters. The total length of the string will be the length

specified; any initial string longer than that length gets trimmed. (See Figure 9-42.)

SELECT LTRIM(‘ Hello World’);
SELECT RTRIM(‘Goodbye World ‘);
SELECT LPAD(‘Internet’,5,’ ‘);
SELECT LPAD(‘Internet’,10,’-’);
SELECT RPAD(‘Another string’,16,’:’);

A somewhat different function for removing characters from a string is TRIM. Both

the LTRIM and RTRIM functions only remove whitespace characters. However, with

TRIM you can specify the character or string to remove. With TRIM you can also

specify whether to remove the characters from the left side, right side, or both

sides of the string. The syntax is somewhat specific for the TRIM function. If you

include options such as BOTH, LEADING, or TRAILING, you must include the word

FROM in the statement. The TRIM function will remove whitespace if you don’t

include any options such as BOTH, LEADING, TRAILING, or the string to remove. The

command looks like this:

TRIM ((BOTH | LEADING | TRAILING) (<stringtoremove>) FROM)
<string>;

Syntax examples follow (as well as results in Figure 9-43):

SELECT TRIM(‘ Hello Rebecca’);
SELECT TRIM(BOTH ‘$’ FROM ‘$$$$Survey Says$$$$’);
SELECT TRIM(LEADING ‘S’ FROM ‘Steve Suehring’);

124932-4 ch09.F 5/29/02 3:40 PM Page 214

215Chapter 9 ✦ SQL According to MySQL

Figure 9-42: Some MySQL string functions in action

Figure 9-43: Examples of the MySQL TRIM function

The LCASE and UCASE functions are also related. LCASE converts a string to all lower-

case characters while UCASE converts the string to all uppercase characters. The syn-

tax for their use is the same and is quite simple. The results are shown in Figure 9-44.

SELECT LCASE(‘A Cow Says Moo’);
SELECT LCASE(‘I DON\’T LIKE PEOPLE WHO SHOUT IN E-MAIL’);
SELECT UCASE(‘Change all 7 of these words to uppercase’);

124932-4 ch09.F 5/29/02 3:40 PM Page 215

216 Part II ✦ SQL Essentials

Figure 9-44: The UCASE and LCASE functions for converting strings
to upper and lowercase.

Sometimes you just need some space. The good news is that MySQL includes a

function to provide you with as many spaces as you’d like. The function is aptly

titled SPACE and expects the number of spaces as an argument. I’ll use the SPACE

function in an example with the CONCAT function.

Both CONCAT and CONCAT_WS perform similar functions. Both functions take strings

and concatenate or join them together. The CONCAT_WS function enables you to

specify a separator between the strings, such as a space. One way to use the CON-
CAT_WS function is to join a first name and last name separated by a space:

SELECT CONCAT(‘Firststring’,’Secondstring’);
SELECT CONCAT(‘Firststring’,’Secondstring’,’Thirdstring’);
SELECT CONCAT_WS(‘ ‘,’Firstname’,’Lastname’);
SELECT CONCAT_WS(‘ ‘,’Ms.’,’Firstname’,’Lastname’);

As an alternative to the CONCAT_WS function, you could use the SPACE function in

the argument list with CONCAT, like this:

SELECT CONCAT(‘Firstname’,SPACE(1),’Lastname’);

The results from the syntax examples given here appear in Figure 9-45.

124932-4 ch09.F 5/29/02 3:40 PM Page 216

217Chapter 9 ✦ SQL According to MySQL

Figure 9-45: The CONCAT and CONCAT_WS functions as well as an
example of the SPACE function

The STRCMP function takes two strings as arguments and determines whether they

are the same. For example, consider the following instances:

SELECT STRCMP(‘big’,’bigger’);
SELECT STRCMP(‘larger’,’bigger’);
SELECT STRCMP(‘same’,’same’);
SELECT STRCMP(‘this is the same string’,’this is the same
string’);

If the strings are the same, the STRCMP function will return 0. If the first string is

smaller than the second according to the current ordering, the function returns –1.

The STRCMP function returns 1 in all other cases. (See Figure 9-46.)

124932-4 ch09.F 5/29/02 3:40 PM Page 217

218 Part II ✦ SQL Essentials

Figure 9-46: The STRCMP function compares strings and returns an
integer value based upon the results.

Other methods exist for comparing strings in MySQL. Most notable is the LIKE
function. The syntax for the LIKE function is different from the others that I’ve been

covering in the sections on SELECT and WHERE functions. As with the other func-

tions that utilize parentheses for their arguments, the LIKE function compares the

strings much like an equals sign (=) would. However, the LIKE function matches a

pattern instead of a just a literal string.

SELECT ‘string1’ LIKE ‘string1’;
SELECT ‘string1’ LIKE ‘string_’;

The LIKE function returns 1 if the comparison matches or 0 otherwise. The power

of LIKE really emerges with the use of wildcards such as the underscore and the

percent sign, as shown in Figure 9-47. Further, the LIKE function is most used in the

WHERE portion of a SELECT statement for non-exact matches.

SELECT user,host FROM user WHERE user LIKE ‘sueh%’;

If you want to match a literal percent sign or underscore in a pattern, be sure to

escape the percent with a backslash. For example, if I wanted to find a value that

contained a percent sign, I can query for that by adding a backslash before the per-

cent sign, like this:

SELECT user,host FROM user WHERE host LIKE ‘192.168.1.\%’;

124932-4 ch09.F 5/29/02 3:40 PM Page 218

219Chapter 9 ✦ SQL According to MySQL

Figure 9-47: Some basic examples with the LIKE function to match
patterns, some with wildcards

The LIKE function has two useful modifiers: the ESCAPE and BINARY keywords.

(See Figure 9-48.) The ESCAPE modifier changes the character used to escape a lit-

eral percent sign or underscore in a pattern. The BINARY keyword changes the

case-sensitivity of the pattern match. However, if a column is a binary column

already (such as the user column of the MySQL GRANTS database), the BINARY
keyword does not change the behavior.

SELECT user,host FROM user WHERE user LIKE ‘steve|_%’ ESCAPE
‘|’;
SELECT ‘suehring’ LIKE ‘SUEHRING’;
SELECT ‘suehring’ LIKE BINARY ‘SUEHRING’;

MySQL also includes regular expression type matching via the REGEXP or RLIKE
function. Using the REGEXP function, of which the RLIKE function is synonym for

REGEXP, you can utilize more complicated pattern matching inside the SELECT and

WHERE statement.

The LIKE and REGEXP functions can be negated with the use of the NOT keyword, in

effect, using NOT LIKE will match those records unlike the pattern.

The FIELD and POSITION functions are somewhat similar and at the same time dif-

ferent. The similarity between the two functions is that they both look for a string

position. Consider the following examples:

SELECT FIELD(‘Suehring’,’Spencer’,’Tuescher’,’Guthrie’,
‘Suehring’,’Leu’,’Hein’);
SELECT POSITION(‘Sue’ IN ‘Steve Suehring’);

124932-4 ch09.F 5/29/02 3:40 PM Page 219

220 Part II ✦ SQL Essentials

Figure 9-48: Pattern matching with LIKE and the ESCAPE and
BINARY modifiers

The difference is that the FIELD function returns the number of the argument in the

argument list that matches a given string. The POSITION function returns the posi-

tion of a substring in one string. The FIELD function looks for the first instance of

the string the first argument in the list. In the following example, the FIELD function

serves to determine the location of the string ‘Suehring’ in the list of names.

The POSITION function looks for a substring in the instance of the given string.

(See Figure 9-49.) Note the difference in syntax between the two statements. If the

string or substring is not found, both functions return a value of 0.

Figure 9-49: The FIELD and POSITION functions in action. Note the
difference in syntax between the two statements.

The REPLACE function can be useful when preparing for large-scale changes to

records. The syntax for the replace function calls for three arguments. The first

argument is the string you’re looking to search in. The second argument is the old

string or the one you want to search for and replace. The third and final argument

124932-4 ch09.F 5/29/02 3:40 PM Page 220

221Chapter 9 ✦ SQL According to MySQL

for the REPLACE function is the new string, or the one that you would like to use as

a replacement. See Figure 9-50 for the results from the following syntax example:

SELECT REPLACE(‘I want to work with Old string’,’Old
string’,’New string’);

The LENGTH function can also be quite helpful. The LENGTH function determines the

length of a given string. A couple examples follow including a nesting of the REPLACE
function. The results from the following examples are shown in Figure 9-50:

SELECT LENGTH(‘What is the length of this string?’);
SELECT LENGTH(REPLACE(‘I want to work with Old string’,’Old
string’,’a New string’));

One final example to include in Figure 9-50 is the REVERSE function. As you may

have guessed, the REVERSE function reverses a string:

SELECT REVERSE(‘Reverse this string’);
SELECT REVERSE(‘abba’);

I’m not sure how useful this capability would be in the context I’m using it, but

when combined or nested with other functions, the REVERSE function can provide a

meaningful purpose.

Figure 9-50: The REPLACE, LENGTH, and REVERSE functions. Note the
use of nesting with the LENGTH function.

124932-4 ch09.F 5/29/02 3:40 PM Page 221

222 Part II ✦ SQL Essentials

The final string-related SELECT/WHERE function that I cover in this chapter is the

LOAD_FILE function. You can use this function to tell MySQL to “read in” the con-

tents of a given file as a string. Note that the contents of the file must be smaller

than the MySQL variable max_allowed_packet. The syntax for the LOAD_FILE
function calls for you to provide the full path and filename. The function will return

NULL if you don’t have permission to read the file from the operating system.

Examples of successful and failed usage of the LOAD_FILE function look like this:

SELECT LOAD_FILE(‘/home/suehring/testfile.txt’);
SELECT LOAD_FILE(‘/etc/shadow’);

The results of these examples appear in Figure 9-51.

You must have the FILE privilege before you can use the LOAD_FILE function. In
addition, you must have appropriate permissions to work with the file itself.

Figure 9-51: A successful and failed use of the LOAD_FILE function

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 222

223Chapter 9 ✦ SQL According to MySQL

Other functions with the SELECT statement
Some functions in MySQL don’t fall into any specific category (such as a string or

numerical). Table 9-5 lists some of those functions.

Table 9-5
Other functions with the SELECT statement

Function Description

DATABASE() Returns the name of the current database.

ENCRYPT(S, salt) Encrypt string, S, using optional salt.

IF(T, R1, R2) Just like a normal IF statement, runs a test, T and returns
value R1 if true or value R2 if false.

IFNULL(R1, R2) If R1 is not NULL, return R1, else return R2.

ISNULL(E) Returns 1 if expression, E, is NULL.

LAST_INSERT_ID() Returns the value of the last ID inserted, useful with
auto_increment columns.

MD5(S) Returns an MD5 sum for string, S.

PASSWORD(S) Returns an encrypted string, S. Similar to the passwd
command.

VERSION() Returns the current version of the MySQL server.

As you can see from Table 9-5, these functions are really simple in their use. Most

are specialized for use with a particular application or task. Here are examples for

some of these functions (with results shown in Figure 9-52):

SELECT DATABASE();
SELECT ENCRYPT(‘newp@$$!’);
SELECT PASSWORD(‘newp@$$!’);
SELECT MD5(‘giveanmd5sum’);
SELECT VERSION();

Notice the difference between the ENCRYPT and PASSWORD functions. Use the

PASSWORD function to encrypt a password for use in the MySQL grant tables.

124932-4 ch09.F 5/29/02 3:40 PM Page 223

224 Part II ✦ SQL Essentials

Use the PASSWORD function to create a password entry for the user table of the
MySQL grant tables.

A frequently asked question among MySQL users is how to determine the number

of the last ID used on an auto_increment column. The LAST_INSERT_ID function

is for this purpose. Simply call SELECT LAST_INSERT_ID() as a statement and you

will receive the ID of the last insert. The ID is valid only on a per-connection basis,

so you will need to call this after the inserts in the same session.

Figure 9-52: Examples of various other functions in MySQL.

The IF, ISNULL, and IFNULL functions all perform tests and return a value based on

the results of the test. The IF function runs a test on the first argument and returns

the second value if the first expression is true; the function returns the final argu-

ment if the expression is false. The IFNULL function returns the second argument if

the first argument is NULL, otherwise it returns the first argument. Finally, the

ISNULL function returns 1 if the argument is NULL (otherwise the function returns

0). Here are some examples, with results shown in Figure 9-53:

SELECT IF(1+1=2,’Yes’,’No’);
SELECT IFNULL(NULL,’it is null’);
SELECT IFNULL(‘notnull’,’it is null’);
SELECT ISNULL(‘it is not null’);
SELECT ISNULL(NULL);

Note

124932-4 ch09.F 5/29/02 3:40 PM Page 224

225Chapter 9 ✦ SQL According to MySQL

Figure 9-53: Functions to test an expression or whether a value is NULL

Grouping, ordering, and limiting with SELECT
The SELECT statement enables powerful grouping and ordering functions that help

to sort the results of the statements and thus make them more useful. Table 9-6 lists

some grouping functions.

Table 9-6
Grouping functions with SELECT

Function Definition

COUNT(X) Returns a count of the results from expression, X.

COUNT(DISTINCT X) Returns the unique non-null results from expression, X.

AVG(X) Returns the average of expression, X.

MIN(X) Returns the minimum value of expression, X.

MAX(X) Returns the maximum value of expression, X.

SUM(X) Returns the sum of expression, X.

124932-4 ch09.F 5/29/02 3:40 PM Page 225

226 Part II ✦ SQL Essentials

I can show these functions best in the following examples; results are in Figure 9-54:

SELECT COUNT(*) FROM user;
SELECT COUNT(user) FROM user where host = ‘localhost’;
SELECT user,COUNT(DISTINCT user) FROM user GROUP BY user;
SELECT user,COUNT(user) FROM user GROUP BY user;

Figure 9-54: Examples of the COUNT function for grouping the results
from a query

The next set of examples comes from the ecommerce sample database that I’ve

been working with in this chapter and throughout the book (results in Figure 9-55):

SELECT AVG(price) FROM product;
SELECT MIN(price) FROM product;
SELECT MAX(ID) FROM manufacturer;
SELECT SUM(price) FROM product;

124932-4 ch09.F 5/29/02 3:40 PM Page 226

227Chapter 9 ✦ SQL According to MySQL

Frequently I have to test a SELECT statement. For example, I might have the WHERE
portion of the statement wrong, or a typo may crop up elsewhere in the statement. I

also frequently work with fairly large tables that hold millions of records. Thus the

LIMIT keyword has helped me countless times. Using LIMIT, I can set the SELECT
statement to only return a subset of the results, thus potentially saving me from

running a large and long query on a huge table.

Figure 9-55: The results from some mathematical grouping functions

Looking at one of the previous COUNT examples, if you wanted to order the results

you could use the ORDER BY function. The ORDER BY function can sort the results

in either ascending or descending order through the use of the ASC or DESC key-

words. In addition, you can use the HAVING keyword for even further parsing of

results from a GROUP BY clause. I’ll expand on some earlier examples here (and

show the results in Figure 9-56):

SELECT user,COUNT(user) FROM user GROUP BY user ORDER BY
‘COUNT(user)’ DESC;
SELECT user,COUNT(user) FROM user GROUP BY user ORDER BY user
ASC LIMIT 3;
SELECT user,COUNT(user) FROM user GROUP BY user HAVING user =
‘suehring’;

124932-4 ch09.F 5/29/02 3:40 PM Page 227

228 Part II ✦ SQL Essentials

Figure 9-56: Using ORDER BY and HAVING to sort the results from
queries

Updating data with the UPDATE statement
I’ve been attempting to come up with a witty anecdote to begin this section and I

cannot. It’s certainly not that I don’t like the UPDATE statement or that I don’t

believe it is useful. The UPDATE statement is really simple and intuitive, with only a

few options. The equally simple truth is that the UPDATE statement is for making

changes to existing records in the database. Its syntax looks like this:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
SET col_name1=expr1, [col_name2=expr2, ...]
[WHERE where_definition]
[LIMIT #]

As does INSERT, the UPDATE statement includes the LOW_PRIORITY and IGNORE
keywords — and using these keywords has the exact same effects. The LOW_PRIOR-
ITY keyword tells the UPDATE statement to wait until no other clients are reading

from the table. The IGNORE statement causes any collisions in non-unique columns

to be ignored (another similarity to the INSERT statement).

As with the SELECT statement, you can use a WHERE clause in the UPDATE statement

to modify or drill down to the records you want to update. If you don’t include a

WHERE clause, you update all the records in the table. Another important similarity

to SELECT is that you can use the LIMIT modifier to limit the number of records

affected by the statement. Syntax examples follow (with results in Figure 9-57):

UPDATE product SET name = ‘Van Halen - Balance’ WHERE ID = 1;
UPDATE product SET cate_ID = 1 WHERE cate_ID = 2 LIMIT 1;
UPDATE product SET price = ‘19.99’, cate_ID = 2 WHERE ID = 2;

124932-4 ch09.F 5/29/02 3:40 PM Page 228

229Chapter 9 ✦ SQL According to MySQL

Figure 9-57: A look at the product table prior to the UPDATE statements, the three
UPDATE statements, and a look at the product table after the updates

Delete
The DELETE statement can be used to delete specific records or the entire contents

of tables; its syntax is as follows:

DELETE [LOW_PRIORITY | QUICK] FROM <tablename>
[WHERE where_clause]
[ORDER BY ...]
[LIMIT #]

or

DELETE [LOW_PRIORITY | QUICK] <tablename>[.*] [<tablename>[.*]
...] FROM
tablereferences [WHERE where_clause]

I’ll dispense with some syntactical commonalities among many of the DML state-

ments. The LOW_PRIORITY keyword causes the DELETE to wait until no other

clients are using the table. The WHERE clause tells the DELETE statement which

records to delete. The ORDER BY clause determines the order by which the DELETE
will occur. The LIMIT modifier causes the DELETE to only delete the specified num-

ber of rows. Though not common to other DML statements, the QUICK modifier can

assist to speed up certain DELETE statements.

124932-4 ch09.F 5/29/02 3:40 PM Page 229

230 Part II ✦ SQL Essentials

The DELETE statement has two versions. The first version of the DELETE statement

simply deletes from one table. The second version of the DELETE statement enables

deletion from multiple tables. I’ll show a syntax example or two for each type of

DELETE.

DELETE FROM example1 WHERE ID = 1;

DELETE FROM example1 ORDER by ID LIMIT 1;

DELETE example1,example2 FROM example1,example2,example3 WHERE
example1.ID = example2.ID AND example2.ID = example3.ID;

In the last of these examples, any matching rows are deleted from the example1
and example2 tables only.

Showing my true System Administrator colors, I admit that my favorite action is

performing deletes. Few ways of starting a day are more rewarding than removing a

few hundred thousand records.

Summary
MySQL includes a large number of commands and statements used for administra-

tion as well as performance tuning and informational purposes. These statements

include the SHOW, DESCRIBE, and KILL.

✦ MySQL also includes most ANSI92 compatibility in the Data Definition

Language (DDL) statements.

✦ MySQL extends the ANSI92 standard in some DDL statements.

✦ As with DDL, MySQL features compatibility with most ANSI92 Data Markup

Language (DML) statements.

✦ Like DDL, MySQL extends the ANSI92 standard in the area of DML.

✦ ✦ ✦

124932-4 ch09.F 5/29/02 3:40 PM Page 230

Databases
and Data

A database is primarily a tool for organizing data into an

accessible and usable form. That may seem obvious,

but some of questions I’m asked most frequently about are

the brass-tacks of organizing data in MySQL database —

choosing the right table type, importing and exporting data,

and using the mysqladmin command to diagnose database

problems correctly.

Choosing the right table type is important; different applica-

tions may benefit from particular table types. Importing data

into MySQL from other applications (such as Microsoft Access

or Oracle) is a frequent task facing administrators migrating

to MySQL. Finally, using the mysqladmin command success-

fully is an important part of working with a MySQL server.

This chapter examines all these subjects in detail.

Choosing the Right MySQL
Table Type

A table type is one of various sets of characteristics that you

can apply to a database table in MySQL — usually for a spe-

cialized purpose, even though the appearance of MySQL

tables may be similar from type to type. Just as you could use

a kitchen table to perform surgery, or a picnic table as a desk,

you could use a MySQL table for a purpose other than that for

which it’s designed — but why?

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the
MySQL table types

Fine-tuning the syntax
when using the
mysqladmin
command

Exporting data from
MySQL databases

Importing data into
MySQL databases

✦ ✦ ✦ ✦

134932-4 ch10.F 5/29/02 3:41 PM Page 231

232 Part II ✦ SQL Essentials

All MySQL table types store data — but there’s usually a best type for any
application.

This section examines the table types supported in MySQL. With a solid under-

standing of the available table types, you’re better equipped to choose the correct

table type for your application.

MySQL table types
The six types of MySQL tables are best considered as three groups for the sake of

compatibility:

✦ Non-transactional tables. For many applications, non-transactional table

types will be sufficient and will use fewer resources than transactional tables.

For example, an online catalog, customer database, application database, and

many other applications can utilize non-transactional tables successfully. The

default table type in MySQL is the non-transactional MyISAM type. MyISAM is

the table type of choice for nearly all applications. The three non-transactional

table types are

• ISAM

• HEAP

The HEAP type is stored in volatile memory. If you are using a HEAP table

type and MySQL crashes or is shut down, all data in the table is lost!

However, the HEAP table type is fast, making it a good choice for tempo-

rary tables.

• MyISAM

Based on the ISAM table type, MyISAM is the default for MySQL.

✦ MERGE tables.

The MERGE table type is a special extension of the MyISAM table.

✦ Transaction-safe (transactional) tables. Transactional tables can combine

statements and then commit or roll them back if some fail. Transactional

tables are much safer in the event of MySQL or system crashes. These two

table types are

• InnoDB

• BerkeleyDB

The table types you can use depend on the version of MySQL installed on your

server. Some table types weren’t available in earlier versions of MySQL. Further, the

tables available follow these general rules:

✦ If you compiled MySQL from source code, you had the option to choose table

types during the compilation process.

Tip

134932-4 ch10.F 5/29/02 3:41 PM Page 232

233Chapter 10 ✦ Databases And Data

✦ If you installed MySQL from a binary version, you may or may not have trans-

actional tables included. The MySQL-MAX version includes both InnoDB and

BerkeleyDB. Some MySQL versions specific to flavors of Linux such as Debian

include BerkeleyDB.

Chapter 2 reviews the advantages of transactional and non-transactional tables.

To determine which table types your server supports, you can use the mysqladmin
variables command.

Running the mysqladmin variables command outputs quite a bit of informa-
tion so you may need to pipe the output to a pager such as more or less.

Figure 10-1 shows the output for the command mysqladmin -p variables. I check for

the lines that indicate whether BerkeleyDB and InnoDB tables are enabled. Figure 10-1

shows that only BerkeleyDB is available on this server. Therefore, I must use one of

two approaches to choosing a table type:

✦ I can choose BerkeleyDB.

✦ Since non-transactional tables are available by default I can choose non-

transactional tables, such as

• ISAM

• MyISAM

• HEAP

Figure 10-1: Using the mysqladmin -p variables command to
determine whether InnoDB or BerkeleyDB tables are supported

Tip

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 233

234 Part II ✦ SQL Essentials

Figure 10-2 shows the output of the mysqladmin variables command on a server

where both the BerkeleyDB and InnoDB tables enabled.

Figure 10-2: The mysqladmin variables command on a server with
both BerkeleyDB and InnoDB tables enabled

MyISAM
The default table type for tables created in MySQL is MyISAM. The MyISAM table

type is an extension of the ISAM table type.

The MyISAM table type will eventually replace the ISAM table type. In a future ver-
sion of MySQL, the ISAM table type will no longer be offered.

MyISAM uses a B-tree index type and compresses indexes whenever possible. For

string-based indexes such as those on CHAR and VARCHAR columns, MyISAM tables

space-compress the index. To use compressed numeric-based indexes add

PACK_KEYS=1 in the process of creating the table.

Tables can be damaged by a system crash, a crash of the MySQL server, or any

number of unforeseen events. If queries fail to return complete results or other

unexplained errors occur, the table may need repair. Corrupt or broken MyISAM
tables can be repaired with the myisamchk command.

Chapter 13 shows how to repair broken tables and solve other MySQL problems.

There are three table formats for MyISAM tables:

✦ Static

✦ Dynamic

✦ Compressed

Cross-
Reference

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 234

235Chapter 10 ✦ Databases And Data

MySQL chooses Static or Dynamic table formats automatically when you create

the table. The Compressed table format must be created manually through the use

of the myisampack utility.

Static format
The Static table format is the default and is used when there are no variable-

length column types in the table such as VARCHAR or BLOB. If variable-length

columns are used, MySQL will choose the Dynamic format for the table.

An example of a table definition looks like this as follows:

CREATE TABLE example (id int(5) NOT NULL PRIMARY KEY,
name char(25),
title char(20)

);

In the preceding example table, all columns are fixed length as shown by the SHOW
TABLE STATUS statement in Figure 10-3.

Figure 10-3: The SHOW TABLE STATUS command reveals that the
table is in Fixed row format.

Static tables have two advantages:

✦ With the exception of volatile-memory table types such as HEAP, the Static
table format is the fastest of the three MyISAM options because its columns are

a uniform size. For example, a CHAR column is padded with extra whitespace

characters to bring the column up to the defined size; a VARCHAR column is

not padded with extra characters. Since the column is always the same size,

MySQL can sort through the data quicker as it knows that the column is a

constant length regardless of the size of the data held within the column.

✦ Padding of fields to the same size makes Static tables safer. The repair utility

myisamchk can easily predict the boundaries of columns in a row.

134932-4 ch10.F 5/29/02 3:41 PM Page 235

236 Part II ✦ SQL Essentials

The trade-off for Static table speed is disk space. Because each record must be
padded with characters to bring it to the defined length, each row consumes the
maximum defined disk space, even if the actual data is short. Of course, if each
record is exactly same fixed length as the definition there is no additional disk
space consumption with a Static table.

Dynamic format
Dynamic tables minimize disk-space usage because the size of the table depends on

the actual size of the data.

Bytes are stored for each column in a Dynamic table to keep track of the length of
the data.

If you perform an UPDATE on a data record, the updated data may actually be stored

in a different location in the datafile. For example, if you insert a value into a col-

umn such as an address and then update that address to a much longer address,

the updated column may actually be stored in a different location or fragmented

away from the rest of the record. This fragmentation can be repaired with the

myisamchk utility.

Moving fixed-length or static data columns into another table may accelerate those

tables, if it is possible and reasonable to organize your data this way. You should

determine whether fragmentation or variable-length columns adversely affects

performance enough to warrant dividing the tables. To accomplish this, compare

the number of variable-length columns in the table to the number of static length

columns. If an index relies on static columns, it may be beneficial to move the

variable-length column to another table. However, moving the variable-length column

to another table can add overhead as that table is joined with the original table.

Dynamic tables can be more difficult for MySQL to repair after a crash. Because
updates to the data can cause fragmentation, some pieces of a record may be lost
when repairing the table. Static table repairs are easier because all columns are
of the same defined length.

Using the following ALTER TABLE statement, I have altered the example table defini-

tion shown previously in this section.

ALTER TABLE example MODIFY name varchar(10);

Changing one column from CHAR to VARCHAR changes all CHAR columns to the
variable-length VARCHAR format.

Running the SHOW TABLE STATUS statement again as shown in Figure 10-4 shows

the row format is now Dynamic (one or more columns in the table is now a variable-

length type).

Note

Caution

Note

Caution

134932-4 ch10.F 5/29/02 3:41 PM Page 236

237Chapter 10 ✦ Databases And Data

Figure 10-4: The SHOW TABLE STATUS statement now shows the
row format has changed due to the alteration of the table definition.

Compressed format
Compressed tables are read-only. Because they are read-only, Compressed tables

are good for rarely changed data — and they take up little disk space. For example,

a library may have reference material sorted in a database. The book titles,

authors, and other information are static. Taking such information and storing it in

a compressed table in a database saves disk space thus enabling the library to

store a huge amount of data at a lower cost.

Compressed tables are compressed with the myisampack utility. Compressed
tables can be either Static or Dynamic and can be unpacked with the myisamchk
command.

Compressed tables cannot have BLOB or TEXT column types.

MyISAM variables
There are a number of variables and parameters that can change the behavior of

MyISAM tables. The variables and parameters control things like

✦ Automatic recovery of crashed tables

✦ Size of buffers and caches

✦ How indexes are created

To determine the current values for the variables and parameters, use the
mysqladmin variables command, as shown in Figure 10-5.

Tip

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 237

238 Part II ✦ SQL Essentials

Figure 10-5: The default values for four of the MyISAM table
variables and parameters

You may see a slightly different value for the options shown in Figure 10-5
depending on the version of MySQL you’re using and the architecture the server is
running on.

The variables and parameters can be set two ways:

✦ On the command line when starting the MySQL server process

✦ Inside a configuration file (such as /etc/my.cnf in Linux)

MySQL can be configured to repair MyISAM tables automatically at startup. When

a table is closed, MySQL sets a value in the header of the .MYI database file. If this

value indicates that the table was not closed properly, a table repair is necessary.

Using the myisam-recover variable, you can control if and how an automatic

repair is performed. The myisam-recover variable accepts any combination of

four parameters:

DEFAULT Setting the option value to DEFAULT is the same as simply using

myisam-recover with no option.

BACKUP Using BACKUP creates a backup of the datafile (identified with the

.BAK extension) to prevent loss of data during recovery.

FORCE The FORCE option repairs the table, regardless of how many rows are

lost.

QUICK This option attempts only to repair the index. The QUICK option can

only be used in conjunction with the skip-locking server parameter.

If you are going to use the FORCE option it is a good idea to use the BACKUP
option to prevent unforeseen data loss.

Caution

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 238

239Chapter 10 ✦ Databases And Data

In Figure 10-5, the value of myisam-recover-options indicates that there are

no options set for recovery in the example. When a table is opened with the

myisam-recover variable set, MySQL checks the table to make sure it was

closed properly.

You can set options either with myisam-recover on the command line (as the

server is started), or in a configuration file. For example, to use the BACKUP and

FORCE options with myisam-recover I add the following line to the [mysqld]
section of the /etc/my.cnf file in Linux.

myisam-recover = BACKUP,FORCE

After adding the preceding line to the my.cnf configuration file and restarting the

server the mysqladmin variables command reflects the change, as shown in

Figure 10-6.

Figure 10-6: Using the BACKUP and FORCE automatic recovery
options as shown by the mysqladmin variables command

Some versions of MySQL may show different values for the variables shown in
Figure 10-6.

MySQL makes a backup file when using the BACKUP option. This BACKUP file can
be the same size as the table file.

Another option used when recovering tables is myisam_sort_buffer_size. This

option controls how large the buffers should be for recovery. Set this variable

either on the command line using -O myisam_sort_buffer_size= or inside a con-

figuration file, using a set-variable line in the [mysqld] section.

Note

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 239

240 Part II ✦ SQL Essentials

A couple of options deal with indexes and MyISAM tables. These options include

myisam_max_extra_sort_file_size and myisam_max_sort_file_size. The

options control how to create indexes and when to use other methods to create

them. Both options are set on the command line or in the configuration file with

a set-variable option.

MERGE
The MERGE table type is a relative newcomer to MySQL. A MERGE table is a collection

of identical MyISAM tables grouped together as if they were one table. Only certain

operations are allowed with MERGE tables, such as

✦ SELECT

✦ INSERT

✦ DELETE

✦ UPDATE

The MyISAM tables must contain the same column definitions and layout. If the
tables are not defined exactly the same, you cannot create a MERGE table.

MERGE tables speed up operations when identical tables need to be joined.

However, creating a MERGE table also increases the number of File Descriptors

needed. If you have multiple tables with the same layout where you would normally

be performing a JOIN on the tables, a MERGE table can be beneficial.

As of this writing, performing a DROP TABLE or a DELETE FROM with no WHERE
specification on a MERGE table only drops or deletes the MERGE table specification,
not the data contained in the merged tables.

To create a MERGE table, use the following syntax:

CREATE TABLE <tablename> (<column definitions>) TYPE=MERGE
UNION=(<tablename>,<tablename>...) INSERT_METHOD=<LAST|NO>

If you do not specify an INSERT_METHOD or set the INSERT_METHOD to NO, you can’t

perform an INSERT on the newly created table.

ISAM
Though ISAM tables will be disappearing from MySQL, some older or legacy

databases still use them.

Use MyISAM for new databases.Tip

Caution

Caution

134932-4 ch10.F 5/29/02 3:41 PM Page 240

241Chapter 10 ✦ Databases And Data

As with MyISAM tables, ISAM tables use a B-tree index and can compress keys to

save on space. ISAM tables can be repaired with the isamchk utility.

ISAM tables are dependent upon the architecture or OS in which they are created.
For example, datafiles of an ISAM table running on an Alpha processor can’t be
moved or copied to a computer running an x86-type processor.

HEAP
HEAP-type tables exist only in volatile memory. When the MySQL server dies for any

reason, all existing HEAP tables die — along with any data they contained. Because

they reside in memory only, HEAP tables are useful for temporary tables and are fast.

Think of a HEAP table much like a RAM drive. The RAM drive exists only in memory
and is therefore fast — but the contents of the drive go away as soon as the
machine is turned off.

Don’t store any permanent data in a HEAP table!

HEAP tables are different enough from other tables that knowing their characteris-

tics may help you avoid misusing them. For instance, HEAP tables do not support

auto_increment columns, nor do HEAP tables support BLOB or TEXT column types.

Because a HEAP table stores data in RAM, one HEAP table can potentially use all
the available memory in your system! To prevent such excess, you can create the
table with the MAX_ROWS modifier or you can control the maximum size for the
table through the max_heap_table_size server variable.

Using the mysqladmin variables command, I note the default max_heap_
table_size value of 16777216 for the MySQL server, as shown in Figure 10-7.

Figure 10-7: The default value for the max_heap_table_size
determines how much memory a HEAP table can use.

Caution

Caution

Tip

Caution

134932-4 ch10.F 5/29/02 3:41 PM Page 241

242 Part II ✦ SQL Essentials

To change the value, edit the [mysqld] section of your MySQL server configuration

file, /etc/my.cnf on some Linux flavors, and add the following (where X is the new

value):

set-variable = max_heap_table_size=X

For example, I want to set the maximum memory usage for a HEAP table on my

server to 8MB of RAM. I add the following to the /etc/my.cnf file:

set-variable = max_heap_table_size=8M

After restarting the MySQL server, I re-run the mysqladmin variables command,

as shown in Figure 10-8.

Figure 10-8: Changing the default value for max_heap_table_size in
the MySQL server configuration file

InnoDB
InnoDB is one of two native transactional tables included with MySQL (the other is

Gemini, distributed with NuSphere Enhanced MySQL). InnoDB is not included with

a normal MySQL binary distribution. To enable InnoDB, you must compile it in or

use a MySQL-Max version of MySQL. Further, you must set at least one variable in

the my.cnf file, the innodb_data_file_path variable. The variable should be

set under the [mysqld] section. Additional variables and parameters can be set to

assist with performance of InnoDB tables.

NuSphere Enhanced MySQL is discussed in greater depth in Chapter 20.

InnoDB tables offer row-level locking and transactional features such as COMMIT
and ROLLBACK. The advantage of such a table type is that you can prevent incom-

plete updates from writing or changing data in the event of a system crash or other

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 242

243Chapter 10 ✦ Databases And Data

event. Additionally, InnoDB supports the use of Foreign Keys to protect referential

integrity.

To create an InnoDB table you must specify Type = InnoDB with your CREATE

TABLE statement. A syntax example follows:

CREATE TABLE example (
id int,
name varchar(30)

)
Type = InnoDB;

If you currently have MyISAM tables and want to convert them to InnoDB, the eas-
iest method for doing so is simply to create an identical InnoDB table and then
import or re-insert the data from the existing MyISAM table.

InnoDB tables have a number of limitations.

✦ You cannot have a BLOB or TEXT column type in an InnoDB table.

✦ Tables cannot have more than 1,000 columns.

✦ Unique indexes cannot be created on a prefix.

InnoDB variables and parameters
A number of options can be set to boost the performance of InnoDB tables. All of

these options should be set under the [mysqld] section of the configuration file.

The innodb_data_file_path must be set to InnoDB to be enabled. The syntax for

this parameter is as follows:

innodb_data_file_path=<filename>:<size>

The <filename> parameter specifies the name of the InnoDB database. The <size>

parameter is usually given with an M for Megabytes and must be at least ten

megabytes (10M). Upon startup, MySQL creates a <filename> in the DATADIR of

the MySQL installation in the size of <size> as specified in the configuration file.

Additionally, logfiles are created in the DATADIR. The parameters can also be sepa-

rated by semicolons to add more databases and can also be given relative paths.

For example, to use two InnoDB databases located in a directory —innodb1 and

innodb2, each 250 megabytes in size — use the following syntax:

innodb_data_file_path =
innodb1/database1:250M;innodb2/database2:250M

You can change the location of the data file and the logfiles with the parameters

innodb_data_home_dir and innodb_log_group_home_dir respectively. These

options are also set in the [mysqld] section of the MySQL configuration file. The

options expect paths as values. Any directories specified with the innodb_data_
file_path are relative from the standpoint of innodb_data_home_dir. For

Tip

134932-4 ch10.F 5/29/02 3:41 PM Page 243

244 Part II ✦ SQL Essentials

example, to set /usr/local/data/innodb as the path for the data, the syntax

would be as follows:

innodb_data_home_dir = /usr/local/data/innodb

In the innodb_data_file_path example earlier, the data files for the two

databases would be /usr/local/data/innodb/innodb1 and

/usr/local/data/innodb/innodb2 respectively.

Check to make sure that the directories you specify actually exist — and that MySQL
has permission to access them.

InnoDB logfiles are rotated in a circular pattern. You can set the number of logfiles

kept using the innodb_log_files_in_group variable. The default value is 2. Set

this variable via the set-variable parameter in the MySQL configuration file or

using the -O switch on the mysqld command line.

Another option affecting the logfiles of InnoDB tables is innodb_log_file_size.

The innodb_log_file_size variable determines how large to make the logfiles.

The bigger the value, the less disk activity is needed due to flushing. However, set-

ting the value of innodb_log_file_size too large can cause recovery time to

lengthen. The innodb_log_file_size value can be a maximum of 4 gigabytes for

all logfiles combined.

The innodb_log_buffer_size variable controls how large the buffer should be

prior to writing to the log. As with the innodb_log_file_size, a larger

innodb_log_buffer_size value results in fewer disk operations. The maximum

value for this variable is half the innodb_log_file_size.

Another variable that affects disk writes — and thus speed and performance —

is innodb_flush_log_at_trx_commit. The default value for

innodb_flush_log_at_trx_commit is 1. The value of 1 for this variable

indicates that after every COMMIT, the transaction will be written to the logfile

and thus made permanent. If you want to compromise this safety for speed,

you can set the value for innodb_flush_log_at_trx_commit to 0.

Yet another variable to affect disk performance is the innodb_buffer_pool_size
variable. Though it does not affect logging like the preceding variables, the inn-
odb_buffer_pool_size affects how memory is used. With the innodb_buffer_
pool_size variable, you tell the MySQL server how much memory to use when it

caches table and index data. The larger you set this value, the more data and

indexes can be cached in memory, which cuts down on disk operations. Be careful,

however, not to set this value too large — if you do, the server may do so many pag-

ing or swap-to-disk operations that not enough physical memory is left for normal

server processes. Windows-based servers, or other servers that “waste” resources

to support a GUI, are especially prone to such memory shortages.

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 244

245Chapter 10 ✦ Databases And Data

The innodb_additional_mem_pool_size defines the amount of memory that

MySQL should use to store data dictionary information. MySQL AB recommends

this value be two megabytes (2M). However, if you have a large number of tables,

you may want to consider increasing this value.

An important variable to know about even though you may never need to change

the default is innodb_lock_wait_timeout. In the event of a lock that the InnoDB
handler cannot detect or clear, this variable automatically starts the process to roll

the transaction back and release the lock.

BerkeleyDB
BerkeleyDB (which you may see abbreviated as BDB) is another type of transac-

tional table available in the AB version of MySQL. As with InnoDB, BerkeleyDB
tables require additional support, which you can get in one of two ways:

✦ The MySQL MAX version of MySQL offers built-in support.

✦ You can compile support for BerkeleyDB tables into your version of MySQL

if you are installing from source code.

Also as with InnoDB, BerkeleyDB also offers COMMIT and ROLLBACK for transac-

tions. BerkeleyDB is, however, available on only a limited range of architectures:

✦ Linux on Intel

✦ Solaris on Sparc

✦ SCO OpenServer

✦ SCO UnixWare

Unlike InnoDB, BerkeleyDB requires no particular options be set to enable it.

BerkeleyDB variables and parameters
As with InnoDB, some variables and parameters can be set for BerkeleyDB to

affect the behavior of the tables.

✦ If you want to start the server without BerkeleyDB support, use the --skip-
bdb parameter.

✦ To set the home directory for BerkeleyDB files use the --bdb-home=
<directory> variable.

✦ The logfile directory for BerkeleyDB tables is set with the --bdb-
logdir=<directory> variable.

✦ The temporary directory is set with the --bdb-tempdir=<directory>.

134932-4 ch10.F 5/29/02 3:41 PM Page 245

246 Part II ✦ SQL Essentials

✦ Other options to change the behavior are the --bdb-nosync and --bdb-no-
recover parameters. These options affect the recovery of BerkeleyDB tables.

✦ To change the locking behavior, the set-variable (or -O if on the command

line) bdb_max_lock=N should be set. This variable controls the maximum

number of locks available for BerkeleyDB tables. For example, within the

[mysqld] section of the MySQL configuration file you would place:

set-variable = bdb_max_lock=N

✦ The --bdb-lock-detect=X parameter sets how MySQL works with locks on

tables. Valid values for X are

• DEFAULT

• OLDEST

• YOUNGEST

• RANDOM

The variables and parameters can be set on the mysqld command line or in the
MySQL configuration file.

Administering Your Database
with mysqladmin

The mysqladmin command serves to perform administration tasks on MySQL

databases and database servers. With the mysqladmin command you can create

and delete databases, stop the server, kill threads, perform server maintenance,

and examine server variables. Should you forget the syntax or usage of the

mysqladmin command, you can always type mysqladmin with no arguments or

with the --help or the -? switches and get a summary of the commands and syn-

tax of the mysqladmin command. Part of the output from this help is shown in

Figure 10-9.

Common switches
Running the mysqladmin command with no arguments, you see a number of

switches exactly like those used for the MySQL CLI command mysql. These options

include the -u or --user switch, the --password or -p switch, the --host or -h
switch, the --port switch, and the -E or --vertical switch.

Chapter 8 covers switches the same as the MySQL CLI.Cross-
Reference

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 246

247Chapter 10 ✦ Databases And Data

Figure 10-9: Should you forget the commands or syntax of the
mysqladmin command, you can simply type mysqladmin with no
arguments and get a summary.

Special switches
There are also switches specific to the mysqladmin command.

A switch that can be useful for monitoring MySQL performance is the -i or --sleep=N
switch. Using this switch, you can set mysqladmin to rerun the specified command

every N seconds. In Figure 10-10, I use the -i switch to run the mysqladmin status
command every 2 seconds. As you can see, the server isn’t busy but the example is

still useful.

Figure 10-10: Using the -i switch, you can configure mysqladmin to
run the specified command at regular intervals.

134932-4 ch10.F 5/29/02 3:41 PM Page 247

248 Part II ✦ SQL Essentials

Another switch to use with the mysqladmin command is the -r or --relative
switch. Using the -r switch together with the extended-status command, you

can see the changes in the values provided by the extended-status command

over the specified time interval. In Figure 10-11 you can see the initial run of the

extended-status command. In Figure 10-12 you can see the next run after a

10-second interval has elapsed; note the Uptime is only 10 because 10 seconds

have elapsed.

Figure 10-11: First output of the mysqladmin extended-status
command with the -r switch for keeping track of relative values

Figure 10-12: The second output of the mysqladmin extended-status
command using the -r switch to track relative or changed values

134932-4 ch10.F 5/29/02 3:41 PM Page 248

249Chapter 10 ✦ Databases And Data

The -r or --relative switch currently only works with the mysqladmin
extended-status switch.

Functions with mysqladmin
I’ve shown quite a few examples of the mysqladmin command throughout the book.

It’s now time to examine the commands and functions that make the mysqladmin

command so useful.

Chapter 8 on MySQL CLI explains adding the switches for specifying command line
parameters such as user (-u) and password (-p).

Creating and dropping databases
The mysqladmin command serves to create and drop or delete databases. The

syntax for creating a database with the mysqladmin command is as follows:

mysqladmin create <databasename>

Similarly, the syntax for dropping a database is much the same:

mysqladmin drop <databasename>

In Figure 10-13, I create and drop a database. Notice the verification that precedes

the actual deletion of the database.

Figure 10-13: Creating and then dropping a database, using the
mysqladmin command

Cross-
Reference

Note

134932-4 ch10.F 5/29/02 3:41 PM Page 249

250 Part II ✦ SQL Essentials

Obtaining server status information
An important part of monitoring server performance and diagnosing problems is

done by looking at the values of server parameters. A concise overview of many

important server values is obtained using the functions in this section.

✦ Status. The status function returns a quick overview of some important

server parameters:

• The Uptime parameter is the number of seconds the server has been

running.

• The Threads column contains the quantity of the number of active

clients or threads running or connected at the time.

• The value of Questions is the number of questions or statements that

the MySQL server has received since startup.

• The Slow queries value indicates the number of times that a query has

taken longer than the value set for a slow query. This value,

long_query_time, can be set by the administrator and may be helpful

in tuning the server.

• The Opens value indicates the total number of tables that MySQL has

opened since startup.

• The Flush tables parameter indicates the number of times a FLUSH,

RELOAD, or REFRESH statement has been executed.

• The Open tables value indicates the number of tables currently open.

• Memory in use indicates how much memory is currently allocated to

mysqld.

• Max memory used indicates the maximum memory amount allocated to

mysqld.

An example of the output from the status function is shown in Figure 10-14.

Figure 10-14: Output from the mysqladmin status command

134932-4 ch10.F 5/29/02 3:41 PM Page 250

251Chapter 10 ✦ Databases And Data

✦ Extended-status. As you might expect, the extended-status function returns

much more information about server parameters and performance than does

the status function. When you tune server variables to get better perfor-

mance from the MySQL server, the extended-status function is frequently

useful.

Chapter 11 and Chapter 13 cover tuning your server parameters.

Figure 10-15 shows an example of part of the output from the extended
-status function.

Figure 10-15: Partial output from the mysqladmin extended-status
command

✦ Processlist. The processlist function lists the currently active or open con-

nections to a MySQL server. These can be from applications, the CLI, other

MySQL servers, or through any other communication with the MySQL server.

The eight columns in the processlist function output provide a snapshot of

activity on the database server at the instant the command was run.

• The Id column is a counter of the connections to the database server

and is incremented with each new connection.

• The User is the user performing the action.

• The Host is where the user’s connection originated.

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 251

252 Part II ✦ SQL Essentials

• A db column indicates whether the command or statement involved a

database.

• The Command column indicates the type of command that was run.

• The Time column indicates the time of the connection.

• The State column indicates what the process is doing, from waiting, to

opening connection, establishing communication, and so forth.

• The Info column shows what statement or command the process is

running.

An example of the processlist function is shown in Figure 10-16.

Figure 10-16: The MySQL processlist function for use with the
mysqladmin command

Using the processlist function I was able to troubleshoot a problem where a
developer was opening multiple connections to the database and closing none of
them. The clients would issue a command and then sit idle until they timed out.
The server would reach its client connection limit quickly and start refusing legiti-
mate connections. The processlist function showed that there were a number
of connections from the application user and the connections remained open. By
changing the connection_timeout value and restarting the server, I was able to
solve the problem. Without the processlist command troubleshooting this issue
would have been difficult.

✦ Variables. The variables function outputs the various options and server

parameters that the MySQL server operates with. These include parameters

like

• Connection timeouts

• Types of tables included with the server

Tip

134932-4 ch10.F 5/29/02 3:41 PM Page 252

253Chapter 10 ✦ Databases And Data

• Server version

• Sizes of caches and buffers

An example of the output from the mysqladmin variables command is

shown in Figure 10-17. The command to reproduce this output is mysqladmin
variables.

Figure 10-17: The output from the mysqladmin variables command
shows the options that the MySQL server uses.

Functions for clearing server parameters
The mysqladmin command provides numerous functions for flushing or clearing

server parameters. The functions are as follows:

✦ flush-hosts This function clears the MySQL DNS host cache. By default

MySQL stores the connecting hosts to IP resolution. If you change the host’s

DNS entry or a number of errors occur during a connection, the host may be

blocked by MySQL. Performing a mysqladmin flush-hosts operation clears

the DNS host cache and solves the problem.

134932-4 ch10.F 5/29/02 3:41 PM Page 253

254 Part II ✦ SQL Essentials

✦ flush-logs MySQL also keeps a number of logfiles. These can include

update logs and binary update logs. The flush-logs function purges logfiles

and restarts the logging process. For update logs done with the standard num-

bering extension, the new logfile has the last logfile’s extension incremented

by one. The flush-logs function does not touch the error log, <host-
name>.err, typically located in your data directory.

✦ flush-status This function takes status type variables and resets them to

zero — useful for debugging server performance and parameters. Figure 10-18,

for example, shows partial output from the extended-status function after

I run the flush-status function. Figure 10-19 shows the results of another

run of the extended-status function immediately after I run the flush-
status function. The command to flush the status variables is mysqladmin
flush-status.

Figure 10-18: A snapshot of server parameters prior to running the
mysqladmin flush-status command

✦ flush-tables The flush-tables function should be used with care. This func-

tion closes any and all open tables. Even if a table is in use, the flush-tables

functions closes those as well. This can result in errors to the client. I’ve

found that this function sometimes must be used on extremely busy servers

that seem unresponsive to a shutdown command.

134932-4 ch10.F 5/29/02 3:41 PM Page 254

255Chapter 10 ✦ Databases And Data

Figure 10-19: Another snapshot of server parameters immediately
after the flush-status function

✦ refresh The refresh function is a combination of the flush-tables and flush-

logs functions.

✦ flush-privileges A frequently used function, though maybe not via the

mysqladmin command, is the flush-privileges function. The flush-privileges

function causes the GRANTS tables to be reloaded, making MySQL aware of

any changes to those tables. If statements working with those tables are done

with a GRANT or REVOKE statement, using the flush-privileges function in

unnecessary. However, if using any other SQL statement on any of the grants

tables, you must flush-privileges or optionally reload the server.

✦ reload The reload function is a synonym for the flush-privileges function.

Killing MySQL processes
The word kill sounds somewhat harsh, but this is the name of the function to termi-

nate a client process or thread in the server. Using the mysqladmin processlist
command, you can determine the id of a client or process that needs to be termi-

nated. Issuing the mysqladmin kill function terminates that process. This does

not stop the client from reconnecting; in fact, the CLI reconnects automatically.

134932-4 ch10.F 5/29/02 3:41 PM Page 255

256 Part II ✦ SQL Essentials

Here’s a simple example of the kill function:

1. Using the MySQL CLI, I connect to the MySQL CLI and issue a simple SELECT
statement, as shown in Figure 10-20.

Figure 10-20: Connecting to the MySQL CLI and performing a basic
SELECT statement

2. In Figure 10-21 I run the mysqladmin processlist command to determine

the ID of the other client connection. As you can see it is 139 as shown by the

id column of the output. Also in Figure 10-21 I issue the mysqladmin kill
command to terminate the process.

Figure 10-21: Using the mysqladmin processlist and mysqladmin kill
commands to terminate a client process

134932-4 ch10.F 5/29/02 3:41 PM Page 256

257Chapter 10 ✦ Databases And Data

3. Finally, in Figure 10-22 I attempt to run the same SELECT statement as in

Figure 10-20. Notice the Error message produced by the CLI.

Figure 10-22: Issuing the same SELECT statement as in Figure 10-20
results in an error but the statement runs.

Information functions
✦ The version function informs the user what version of the server is running

along with some other pertinent information about the server, including sta-

tus and uptime information. An example is shown in Figure 10-23.

Figure 10-23: Output from the mysqladmin version command shows
the server version along with other useful information on server
performance.

134932-4 ch10.F 5/29/02 3:41 PM Page 257

258 Part II ✦ SQL Essentials

✦ The ping function simply tells the administrator whether the server, mysqld,

is alive. If the server is not alive, the command returns an error. In Figure 10-24

I run the command on the server while it is running, then secretly stop the

server in another window (see Figure 10-26) and re-run the ping function

again.

Figure 10-24: The mysqladmin ping command in action. The first
attempt is successful; the second fails because I shut the MySQL
server down in another window.

Changing passwords through mysqladmin
The mysqladmin command can also be used to set or change passwords for users

in the MySQL database. In fact, this is how you changed the initial root password

for the server back when it was installed.

The syntax for the password function can sometimes cause confusion. The syntax

is as follows:

mysqladmin (-u username) (-p) password ‘newpassword’

The -u username switch is necessary if you do not want to change the password

for the current user. If you need to supply an existing password for the user

account specified with the -u username switch (or for yourself if you don’t use the

-u username switch), then you must use the -p switch to have mysqladmin prompt

for a password. Next the function name, password, is required. Finally, the new

password is given as the last argument. The new password must be quoted.

I’ve prepared a couple of examples, shown in Figure 10-25. The first example

changes the password for the current user, which happens to be suehring. The

second example changes the password for the root user. Both are localhost

changes.

134932-4 ch10.F 5/29/02 3:41 PM Page 258

259Chapter 10 ✦ Databases And Data

Figure 10-25: Examples of changing passwords with the mysqladmin
password command

Stopping the MySQL server with mysqladmin
The shutdown function stops the MySQL server through the mysqladmin com-

mand. As with any shutdown, the command has to wait until threads are through

with tables; this requirement protects the integrity of the data. The shutdown func-

tion provides no feedback to the user, see Figure 10-26.

Figure 10-26: The mysqladmin shutdown command provides no
feedback to the user upon success.

Replication functions with mysqladmin
There are two main functions of mysqladmin for use with replication. These are the

start-slave and stop-slave functions. These functions start and stop a slave

replication process.

134932-4 ch10.F 5/29/02 3:41 PM Page 259

260 Part II ✦ SQL Essentials

Replication takes updates to data from one server and automatically copies them
in real-time to another MySQL server. Chapter 18 covers replication. If you are not
using replication, these functions are of no use.

Exporting Data
Two main methods are available for exporting data from a MySQL database:

✦ mysqldump

✦ the SELECT INTO OUTFILE statement.

Whether you’re looking to make a simple backup of the server or export certain

columns from a table into another program such as Microsoft Access, the exporting

utilities and statements included with MySQL will help.

You can also use a program called mysqlhotcopy to make a copy of a database. In
addition, through the use of the MySQL CLI in non-interactive mode or with the
Tee option, results can be saved or redirected into a file.

mysqldump
The mysqldump utility is a powerful program for extracting database and table

structure along with the actual data. The mysqldump utility is sufficiently granular

so that you could get the table structure and data from just one table or from all

tables of all databases. If you would just like the table structure with no data you

can do that as well. If you want just the data with no table structure, mysqldump
also provides that functionality. The basic syntax for mysqldump is as follows:

mysqldump [OPTIONS] database [tables]

When given no arguments, mysqldump simply prints a syntax reference.

There are quite a few options with mysqldump. Some of the options and switches
such as those for specifying the username and password have been discussed in
other chapters. If you are unsure how to specify a username or password with
MySQL utilities, please refer to Chapter 8 for more details.

There are two variables that can affect your ability to dump tables with large

columns: max_allowed_packet and net_buffer_length. Both can be set using

the -O or --set-variable switch on the mysqldump command line or in the

MySQL configuration file.

The mysqldump utility uses comments (escaped with /* */) to select options that

may only be found in newer versions of MySQL. For example, when creating a

Cross-
Reference

Note

Note

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 260

261Chapter 10 ✦ Databases And Data

database the IF NOT EXISTS keywords were introduced in version 3.23.12 of

MySQL. The keywords IF NOT EXISTS will be enclosed in an escape sequence

along with the version number. This allows the functionality of IF NOT EXISTS to

be used by those versions that can handle it and safely ignored without error on

those versions that do not include the function.

Normal usage of mysqldump calls for the command along with options such as user-

name and password followed by the name of the database to dump and (optionally)

specific tables and columns to dump. In Figure 10-27 the mysqldump command is

issued to dump just the db table of the MySQL grants database. The command is

as follows:

mysqldump -p mysql db

Figure 10-27: Using mysqldump to obtain the DDL and DML for one
table of one database

For most of its uses, mysqldump redirects the output to a file instead of sending the

output to stdout or to the screen (which is the default). The characters used to

redirect output can vary by OS:

✦ In Linux, you perform redirect operations with the greater-than (>) sign.

✦ In Windows, use the -r or --result-file= switch with mysqldump, which

assists the newline and carriage return.

134932-4 ch10.F 5/29/02 3:41 PM Page 261

262 Part II ✦ SQL Essentials

Figure 10-28 shows examples of both redirect methods.

Figure 10-28: Examples of redirecting output via the greater-than
sign and the -r switch

Specifying records to be dumped
You can even get more specific than a particular table with mysqldump. The use of

the --where= or -w switch enables you to add a SELECT statement. For example, to

dump only the contents of the user table of the MySQL grants database where the

user is ‘suehring’, the command in Figure 10-29 could be issued:

mysqldump -p “--where=user=’suehring’” mysql user

The where clause can be longer than one argument. For example, the following

command is valid:

mysqldump -p “--where=user=’suehring’ and host = ‘localhost’”
mysql user

Controlling the INSERT statement
Two options control how any INSERT statements are done with mysqldump. These

options are -c (--complete-insert), or -e (--extended-insert). The default is

extended-insert.

Examples with both types of insert options are shown in Figure 10-30. The com-

mands to reproduce these examples are as follows:

mysqldump -t -p -e “--where=user=’suehring’ and host =
‘localhost’” mysql user
mysqldump -t -p -c “--where=user=’suehring’ and host =
‘localhost’” mysql user

134932-4 ch10.F 5/29/02 3:41 PM Page 262

263Chapter 10 ✦ Databases And Data

Figure 10-29: Using the --where= switch to specify only certain
records to be dumped

Suppressing DDL
In the examples in Figure 10-30, you may have noticed an extra option: -t (also

known as --no-create-info), which suppresses the DDL or the statements that

would otherwise create the table.

The -t option can be useful for making a quick backup of the data in a table. For

example, if you have another server that contains the same table structure and

only want to migrate your data to the new server, you could suppress the DDL with

the -t option. The result is the DML or statements to insert the data into the table

or tables.

Suppressing DML and data
Just as you might want to suppress the printing of table creation statements in the

output of a mysqldump, you might also want to suppress the actual DML or insert

statements from the output as well. The switch for this option is -d or --no-data.

134932-4 ch10.F 5/29/02 3:41 PM Page 263

264 Part II ✦ SQL Essentials

Figure 10-30: Examples of the types of INSERT statements that can
be produced by mysqldump

Using the -d switch, a mysqldump will simply output the table (and possibly

database) creation statements. This feature can be useful for making a skeleton

copy of the database and table structure on another server. Figure 10-31 is an exam-

ple of the -d switch in action, producing the DDL for the ecommerce database. The

command for this example is as follows:

mysqldump -p -d ecommerce

Adding drops and locks
mysqldump can be configured to add statements to lock and unlock tables around

INSERT statements. Doing so ensures that the INSERT will complete without an

unexpected change in the data or contention for the table. The switch to enable the

locking function is --add-locks.

You can also lock the tables around the reads that produce the output of mysqldump.

The switch -l or --lock-tables turns this function on.

The --add-drop-table switch tells mysqldump to add a DROP TABLE statement

just before creating the table. Adding this switch can be helpful if you already have

tables of the same name that do not contain useful data.

134932-4 ch10.F 5/29/02 3:41 PM Page 264

265Chapter 10 ✦ Databases And Data

Figure 10-31: The -d or --no-data switch causes mysqldump to
exclude the DML or INSERT statements from the output.

Using the --add-drop-table switch will cause all data to be lost in any tables
that are removed.

mysqldump also includes a switch that can specify a number of the previously dis-

cussed options as well as others. The switch is the --opt switch and includes the

switches --add, --add-drop-tables, --add-locks, --extended-insert, --
lock-tables, and --quick.

If you are going to use the --add, --add-drop-tables, --add-locks, --
extended-insert, --lock-tables, or --quick switch, specifying the --opt
switch is a timesaver.

Special formatting functions with mysqldump
With mysqldump you can specify a number of options that determine how the out-

put will look. These include special quotation of fields in the output, escaping or

enclosing the fields in a special manner, and terminating lines and fields with the

desired character. The switches or options to specify on the mysqldump command

line are as follows:

--quote-names
--tab=

Tip

Caution

134932-4 ch10.F 5/29/02 3:41 PM Page 265

266 Part II ✦ SQL Essentials

--fields-terminated-by=
--fields-enclosed-by=
--fields-optionally-enclosed-by=
--fields-escaped-by=
--lines-terminated-by=

The first switch, --quote-names, places backquotes (`) around the names of

tables and databases.

The second switch, --tab=, can also be abbreviated as -T. The --tab= switch

causes mysqldump to create two files, placing output from each table in the argument

list. One file <tablename>.sql is the normal output of the DDL that you would

expect from mysqldump. The second file, <tablename>.txt, is a tab-delimited file

containing only the data from the table.

The --tab= switch can be useful for importing data into other applications such
as Microsoft Access.

The --tab= or -T switch expects a directory or path as an argument, in effect,

using --tab=outputdir will cause the results to be placed in a directory called

outputdir. It is important that MySQL have permission to write into that directory.

For this reason, the --tab= switch only works when run from the server that

mysqld runs on. A few examples of the --tab= switch are shown in Figure 10-32.

The first attempt is unsuccessful because the specified directory does not exist. In

the second attempt, the MySQL server does not have permission to write into the

directory specified. The final attempt is successful.

Figure 10-32: Three examples of use of the --tab= switch, two
unsuccessful and one successful

Tip

134932-4 ch10.F 5/29/02 3:41 PM Page 266

267Chapter 10 ✦ Databases And Data

The --line- and --fields- options require the use of the --tab= switch. Each

option is sufficiently self-explanatory. If you want to terminate or enclose a field of

the output with a string you can do so with these functions. Also, things like \n for

newline and \t for tab are supported, so you can separate fields or lines by those

characters as well. The keyword OPTIONALLY used with ENCLOSED causes only

CHAR and VARCHAR column types to be enclosed in the specified manner. Examples

of various mysqldump commands that use these switches are shown in Figures 10-33

through 10-36.

Figure 10-33: Performing the command: mysqldump
-p ecommerce --fields-terminated-by=+ --tab=outputdir to produce
output with fields terminated by a plus sign (+)

Figure 10-34: Running the command mysqldump -p ecommerce --
fields-terminated-by=”\n” --tab=outputdir to separate all fields by a
newline (\n)

134932-4 ch10.F 5/29/02 3:41 PM Page 267

268 Part II ✦ SQL Essentials

Figure 10-35: The mysqldump -p ecommerce --lines-terminated-
by=”HELLO” --tab=outputdir command is run to terminate lines by
the word HELLO.

Figure 10-36: The mysqldump -p ecommerce --fields-enclosed-by=”\\”
--tab=outputdir command to produce output with a backslash around
the fields. Note the use of two slashes in the actual command.

The all-databases function
There are two macro-level functions to dump all databases with mysqldump. With

such functions it is possible to make a backup copy of an entire database server —

though MySQL AB recommends that you use the mysqlhotcopy utility for this

purpose.

The mysqlhotcopy utility for making backups is covered in Chapter 14.

The first option, --all-databases or -A, dumps all databases, including database

structure and data. The --all-databases option also creates the actual databases

as well.

In Figure 10-37 the --all-databases macro serves to dump all databases con-

tained on my example server. The command to run is as follows:

mysqldump -A -p

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 268

269Chapter 10 ✦ Databases And Data

Figure 10-37: Using the -A or --all-databases macro to dump the
contents of all databases and data on the server.

As you can see by Figure 10-37, all output was sent to the screen. Oops! If there

were any large tables on the server, the output could have taken quite some time.

Using mysqldump avoids tying up the screen by redirecting the output to a file. As

stated previously, in Linux you use the greater-than sign (>) to accomplish this redi-

rection. For example, to rerun the --all-databases macro from the example in

Figure 10-37, the command would be

mysqldump -A -p > outfile.txt

Performing that command produces a file that could be imported onto another

server or servers to create a snapshot of the database server at that point in time.

The file could also be used as a backup as well. Figure 10-38 shows another run of

the command, followed by a look at the resulting data.

The databases function
The second macro-level function with mysqldump is the --databases or -B func-

tion. This option takes databases as arguments, producing the same type of output

as the --all-databases macro. Specifically, the --databases function includes

all DDL to create the database(s) and table(s) as well as the USE statements to

connect to those new databases. The difference between the --databases and

134932-4 ch10.F 5/29/02 3:41 PM Page 269

270 Part II ✦ SQL Essentials

the --all-databases macros is that you can use the --databases option to

specify only the databases you’d like to use; the --all-databases option includes

all databases.

Figure 10-38: Taking the mysqldump command and redirecting the
output to a file

The --databases function expects at least one database name to follow as an argu-

ment. If you want to specify more than one database, separate the database names

single spaces. In Figure 10-39 the --databases function serves to produce a dump

of the MySQL grants database and the ecommerce database example. Normally I

would redirect the output to a file (as shown in Figure 10-38); the command that

produces these results is as follows:

mysqldump -p --databases mysql ecommerce

Figure 10-39: Using the --databases function to produce a dump of
two databases

134932-4 ch10.F 5/29/02 3:41 PM Page 270

271Chapter 10 ✦ Databases And Data

Another switch, the --tables switch, is used with the --databases function to

specify the tables in the database to include in the output.

Suppressing creation of databases
With the two macro level functions defined previously, the --all-databases switch

and the --databases switch, you can prevent mysqldump from issuing the state-

ment to create the database or databases. The switch for this action is -n or --no-
create-db.

For example, if you are migrating from one server to another and already have the

databases created there is no reason to include CREATE DATABASE statements in the

results from mysqldump. Using the -n switch, no CREATE DATABASE statements will

be included.

SELECT INTO OUTFILE
Another method for extracting or exporting data from MySQL is with the SELECT
... INTO OUTFILE statement. This statement is usually run from inside the

MySQL CLI and can produce output much the same as mysqldump.

The SELECT INTO OUTFILE statement is really a SELECT statement at heart, with

the INTO OUTFILE modifier thrown onto the end to send the output of the query

into a file. Therefore, modifiers such as grouping and ordering as well as the WHERE
clause are available for use with the INTO OUTFILE statement.

Chapter 9 and Appendix B provide more information on the SELECT statement.
Chapter 9 shows examples of the SELECT statement in action while Appendix B
provides the syntax of the SELECT statement in MySQL.

The output file when using the INTO OUTFILE modifier is located in the database’s

directory on the server. For example, if your “datadir” for MySQL is

/usr/local/var underneath which appear the directories for the various

databases, the OUTFILE will appear inside the actual database’s directory unless

specified otherwise.

As with the mysqldump --tab utility, the SELECT INTO OUTFILE statement pro-

duces the data in a tab-delimited format. This makes it easy to import into a pro-

gram such as Microsoft Access.

Unlike the mysqldump utility, the SELECT INTO OUTFILE statement does not
support the selection of all tables from multiple databases. If you want to export
the data to another MySQL server, mysqldump is the better choice.

Much the same as mysqldump, SELECT INTO OUTFILE supports a number of

options that control how the data is exported. These options include FIELDS TER-
MINATED BY, LINES TERMINATED BY, FIELDS ENCLOSED BY, and FIELDS ESCAPED
BY. These options work the same as with mysqldump.

Tip

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 271

272 Part II ✦ SQL Essentials

The file specified in the SELECT ... INTO OUTFILE statement cannot already

exist. If the file exists, the statement will fail.

Most of the battle with the SELECT ... INTO OUTFILE statement is getting the

SELECT statement correct. Syntax examples for the SELECT ... INTO OUTFILE
statement follow, as shown in Figures 10-40 and 10-41.

Figure 10-40: An example of a basic SELECT statement coupled with
the INTO OUTFILE modifier and then a look at the results in the file

Figure 10-41: Another SELECT statement using an ORDER BY
coupled with the INTO OUTFILE modifier and then a look at the
results in the file

The output from the statement in Figure 10-40 (and many others exported through

MySQL) can be imported into other programs such as Microsoft Access. Most pro-

grams can recognize the Tab character as a delimiter. An example of importing the

output from Figure 10-41 is shown in Figure 10-42.

134932-4 ch10.F 5/29/02 3:41 PM Page 272

273Chapter 10 ✦ Databases And Data

Figure 10-42: Importing the data into Microsoft
Access, produced from a SELECT INTO OUTFILE
statement

Importing Data
Showing an example of the import process at the end of the preceding section leads

directly into this section, Importing Data Into MySQL Databases. This section exam-

ines three methods for importing data into MySQL: From the CLI, with the LOAD
DATA INFILE statement, and with the mysqlimport utility.

CLI
The MySQL CLI includes the ability to import data. In reality, the CLI allows any SQL

statements in a file to be read in via the command line. The syntax for this feature is

as follows:

mysql [OPTIONS] database < filename

The options would include things like the user, host, and password for the MySQL

CLI to authenticate just as with any other use of the CLI. The file is expected to con-

tain valid SQL statements, many times INSERT or UPDATE statements produced with

mysqldump.

For example, Figure 10-43 shows the contents of a file to import into the ecommerce
database. The contents of the file were produced with mysqldump. Figure 10-43 also

shows the command that will insert these into the database. It really is that simple.

134932-4 ch10.F 5/29/02 3:41 PM Page 273

274 Part II ✦ SQL Essentials

Figure 10-43: Importing the contents of a file into a database through
the MySQL CLI

LOAD DATA INFILE
The complement to the SELECT ... INTO OUTFILE statement is the LOAD DATA
INFILE statement. This statement is normally run from the MySQL CLI to import

data into a table. The syntax for this statement is as follows:

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE
‘filename.txt’

[REPLACE | IGNORE]
INTO TABLE <tablename>
[FIELDS

[TERMINATED BY ‘\t’]
[[OPTIONALLY] ENCLOSED BY ‘’]
[ESCAPED BY ‘\\’]

]
[LINES TERMINATED BY ‘\n’]
[IGNORE <N> LINES]
[(<columnname>,...)]

The LOW_PRIORITY keyword causes the LOAD DATA statement to wait until no other

clients are reading from the table. The CONCURRENT keyword allows other clients to

read from the table while the LOAD DATA statement is executing.

Files are normally assumed to be on the server machine. With the LOCAL keyword,

however, the file is read from the client host that executes the command. The file-

name specified must be an absolute path, whether in the data directory of MySQL

or in the actual database’s directory on the server.

Using the LOCAL keyword blocks you from stopping the import process once
begins.

Caution

134932-4 ch10.F 5/29/02 3:41 PM Page 274

275Chapter 10 ✦ Databases And Data

The LOAD DATA INFILE statement enables you to determine the action when

a collision occurs for records being imported to a unique column. The statement

can either replace the existing record with the new one or ignore the new

record entirely. The keywords to specify this behavior are REPLACE and IGNORE,

respectively.

Other LOAD DATA INFILE options (such as the FIELDS TERMINATED BY, and
LINES TERMINATED BY) work the same as in the SELECT ... INTO OUTFILE
statement and mysqldump. This chapter includes descriptions and syntax exam-
ples for these options.

One additional behavior not found in the SELECT ... INTO OUTFILE statement

or mysqldump utility is IGNORE <N> LINES. This modifier appears in the LINES
TERMINATED BY clause. Using the IGNORE <N> LINES modifier you can tell the

LOAD DATA INFILE statement to ignore or skip over a certain number of lines at

the beginning of the file to be imported. For example, if you have the column names

as the first line of the file you can have the LOAD DATA INFILE statement ignore

that first line with the addition of IGNORE 1 LINES to the LOAD DATA INFILE
STATEMENT.

You can also specify only certain columns to import into. The column or column

list comes at the end of the statement; if specifying more than one column, separate

them with a comma. For example, to import one of the files from a previous exam-

ple and only import the email_address column, the following statement is issued:

LOAD DATA INFILE ‘ecommercecustomer.txt’ INTO TABLE customer (email_address);

The results from the preceding statement are shown in Figure 10-44.

Figure 10-44: An example of using the LOAD DATA INFILE statement
to import only one column

Cross-
Reference

134932-4 ch10.F 5/29/02 3:41 PM Page 275

276 Part II ✦ SQL Essentials

mysqlimport
The mysqlimport utility is a command-line program for importing data into a

MySQL database. The mysqlimport utility is similar in usage to the LOAD DATA
INFILE statement. The basic syntax for the mysqlimport utility is as follows:

mysqlimport [OPTIONS] database textfile

As with most MySQL programs, you can obtain a syntax listing for mysqlimport
by typing the command with no switches or arguments, or by using the -? or --
help switch.

Much like the MySQL CLI, mysqlimport uses the same switches for specifying the

user, host, port, password, and so on.

Chapter 8 covers the basic switches.

As mysqlimport is really a command-line version of LOAD DATA INFILE, the func-

tionality is nearly the same. One exception not located in another statement or

command is the -d or --delete switch. Using --delete, mysqlimport will delete

the contents of the table prior to importing.

With LOAD DATA INFILE, if you specify a column or columns to import into you do

so by adding them onto the end of the statement. With mysqlimport, this is added

with the -c or --columns= switch. The REPLACE and IGNORE functionality is called

with the -r or --replace and -I -r --ignore, respectively.

Much like the LOAD DATA INFILE, SELECT ... INTO OUTFILE, and mysqldump
utilities the use of switches for formatting is supported by mysqlimport. These are

as follows:

--fields-terminated-by=
--fields-enclosed-by=
--fields-optionally-enclosed-by=
--fields-escaped-by=
--lines-terminated-by=

The --local or -L switch tells mysqlimport to look on the local client for the file

to import. This is as opposed to the normal behavior where MySQL will search for

the file on the server running mysqld. Notice that the switch is an uppercase L. The

lowercase L (-l) switch is a synonym for the --lock-tables function that locks

all tables before proceeding with the import.

Cross-
Reference

Tip

134932-4 ch10.F 5/29/02 3:41 PM Page 276

277Chapter 10 ✦ Databases And Data

Summary
✦ MySQL includes six table types. Three are non-transactional, two are transac-

tional, and one resides only in volatile memory.

✦ The main table type in MySQL is MyISAM. MyISAM descends from the ISAM
table type that includes fewer features. The MERGE table type is a collection of

MySQL tables for quicker operation.

✦ The two transactional table types in MySQL are BerkeleyDB and InnoDB.

These table types use more resources than regular non-transactional tables

but are safer in the event of error.

✦ The HEAP table type is a temporary table that resides only in volatile memory.

✦ The mysqladmin command is a powerful command for management and

administration of a MySQL server.

✦ With mysqladmin you can stop the server, troubleshoot performance problems,

and create or delete databases.

✦ There are two main methods for exporting data from MySQL, mysqldump and

the SELECT ... INTO OUTFILE statement.

✦ The mysqldump utility includes the ability to export both DDL and DML.

Therefore, with mysqldump you can create a complete snapshot of a server

including databases, tables, and the actual data.

✦ The SELECT ... INTO OUTFILE statement is normally run from the MySQL

CLI. With SELECT ... INTO OUTFILE you have the power of a regular

SELECT statement while exporting data with many powerful options.

✦ There are three main methods for importing data into MySQL. Data can be

imported through the MySQL CLI, with the LOAD DATA INFILE statement,

or with mysqlimport.

✦ The MySQL CLI enables you to execute SQL statements by reading the

contents of a file from the command line.

✦ With the LOAD DATA INFILE statement you can import through the CLI with a

number of options such as how to handle duplicate values.

✦ The mysqlimport utility is a command-line version of LOAD DATA INFILE
and includes the same options. The mysqlimport utility also includes an

option to delete the data from the table prior to import.

✦ ✦ ✦

134932-4 ch10.F 5/29/02 3:41 PM Page 277

134932-4 ch10.F 5/29/02 3:41 PM Page 278

Administration
✦ ✦ ✦ ✦

In This Part

Chapter 11
Server Configurations

Chapter 12
Security

Chapter 13
Debugging and
Repairing Databases

Chapter 14
Performance Tuning

✦ ✦ ✦ ✦

P A R T

IIIIII

144932-4 Pt03.F 5/29/02 3:41 PM Page 279

144932-4 Pt03.F 5/29/02 3:41 PM Page 280

Server
Configurations

A s evidenced nearly everywhere in this book, MySQL is

highly customizable. From customizations during the

installation process detailed in Chapters 3, 4, and 5 to configu-

rations for the CLI that I wrote about in Chapter 8, MySQL is the

most customizable major database server available. Of course

you would expect so since you can download the source code

for MySQL and write it to your exact specifications.

In this chapter I’m going to examine server configurations and

customizations through the use of the my.cnf or my.ini config-

uration files. These configurations will mainly work with

server variables and switches for the mysqld server process.

I’ll begin with a look at the variables and switches themselves

and then use some samples that come with the MySQL soft-

ware for small, medium, and large installations.

MySQL Server Variables
MySQL can and should be tuned to the physical server hard-

ware that it is running on and for the main application or

applications that it will be serving. A great many variables can

be changed that alter the way a server operates. When set

correctly these variables can improve the performance of the

server and thus the applications using the database. As you

would expect, when set incorrectly these variables can

degrade the performance of the server as well. In this section

I’ll examine the variables themselves.

Viewing current server variables
You can look at all the variables and settings for the server

through the SHOW VARIABLES statement from in the MySQL CLI

or with the mysqladmin variables command. The statement

and command yield the same results, as shown in Figure 11-1.

The command to reproduce the output shown in Figure 11-1 is

mysqladmin variables; the full output follows.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Classifying MySQL
server variables

Benchmarking and
testing MySQL

Examining sample
configuration files

Developing your own
configuration file

Running more than
one MySQL Server
on the same machine

✦ ✦ ✦ ✦

154932-4 ch11.F 5/29/02 3:41 PM Page 281

282 Part III ✦ Administration

Figure 11-1: Partial output from the mysqladmin variables statement

Table 11-1 shows some MySQL server variables command, along with brief descrip-

tions of their purposes. The additional variables presented in the output of the

mysqladmin variables do not affect server performance. Most of those variables

and settings are discussed in other chapters throughout the book.

Table 11-1
MySQL server variables

Variable What it does

bdb_cache_size Sets size of buffer for caching rows and indexes of BDB
tables.

bdb_log_buffer_size Sets size of buffer for the BDB logs.

bdb_max_lock Sets maximum number of locks you can have on a BDB
table.

binlog_cache_size Sets size of cache for statements to be put into the
binary log.

154932-4 ch11.F 5/29/02 3:41 PM Page 282

283Chapter 11 ✦ Server Configurations

Variable What it does

connect_timeout Determines the length of time mysqld will wait for a
connection.

delay_key_write Determines when the key can be flushed (tables with
this option active cannot have the key flushed until the
table is closed).

delayed_insert_limit Sets number of rows to be inserted before the delay is
released.

delayed_insert_timeout Sets amount of time to wait for INSERT DELAYED
statements.

delayed_queue_size Sets size of the queue for INSERT DELAYED
statements in rows.

flush_time Sets time (in seconds) to free up resources by closing
all tables.

have_bdb Enabled if BerkeleyDB (BDB) tables are available.

have_gemini Enabled if Gemini tables are available.

have_innodb Enabled if InnoDB tables are available.

have_isam Indicates whether ISAM tables are available.

have_raid Indicates whether RAID will be used.

have_ssl Indicates whether SSL is available.

interactive_timeout Sets amount of time mysqld waits for activity on
interactive clients.

join_buffer_size Sets size of buffer used for full JOIN operations.

key_buffer_size Sets size of buffer used for indexes shared among
threads.

large_files_support Indicates whether this version of mysqld supports large
files.

log Indicates whether the logging of all queries is enabled.

log_update Indicates whether the logging of updates is enabled.

log_bin Indicates whether a binary log file format is in use.

log_slave_updates Indicates whether updates from the slave should be
logged.

long_query_time Sets number of seconds before the Slow Queries
counter is enabled.

max_allowed_packet Sets maximum size of any one packet.

Continued

154932-4 ch11.F 5/29/02 3:41 PM Page 283

284 Part III ✦ Administration

Table 11-1 (continued)

Variable What it does

max_binlog_cache_size Sets maximum size of the cache for the binary log.

max_binlog_size Sets maximum size of the binary log.

max_connections Sets maximum number of simultaneous connections.

max_connect_errors Sets maximum number of errors from a given host.

max_delayed_threads Sets maximum number of threads to start for INSERT
DELAYED statements.

max_heap_table_size Sets maximum size for a HEAP table.

max_join_size Sets maximum size for joins.

max_sort_length Sets number of bytes to use for sorting BLOB and TEXT
columns.

max_user_connections Sets maximum number of simultaneous user
connections.

max_tmp_tables Sets maximum number of temporary tables to create.

max_write_lock_count Sets number of write locks that occur before a read lock
is enabled.

myisam_max_extra_sort_ Sets maximum size before the key cache is used.
file_size

myisam_max_sort_file_size Sets maximum size of the temporary file used to create
an index with myisam table.

myisam_sort_buffer_size Sets size of buffer for myisam index functions.

net_buffer_length Sets size of communications buffer.

net_read_timeout Specifies time to wait between reads before closing a
thread.

net_retry_count Specifies number of times to retry a connection before
closing.

net_write_timeout Specifies time to wait between writes before closing a
thread.

open_files_limit Specifies number of file descriptors to open.

query_buffer_size Sets initial size of the query buffer.

record_buffer Specifies buffer to use for threads that do sequential
scans.

skip_locking Indicates whether internal or external locking is in use.

154932-4 ch11.F 5/29/02 3:41 PM Page 284

285Chapter 11 ✦ Server Configurations

Variable What it does

slow_launch_time Increments a counter if a thread takes longer than this
interval to launch.

sort_buffer Allocates buffer for functions that sort.

table_cache Sets maximum number of open tables across all
threads.

thread_cache_size Sets number of threads to keep in cache for reuse.

thread_stack Sets size of stack for an individual thread.

tmp_table_size Sets maximum size for a temp table before being
converted to myisam.

wait_timeout Sets maximum time to wait for a connection until it is
timed out.

The server I’ve been using in many of the examples in this book is a convenient

example of setting variables. It’s a Pentium 200MMX with 96MB RAM, running

Slackware Linux. On this server, I had to change a couple of settings to avoid using

up all the memory. The defaults for my server are as follows:

*************************** 1. row
Variable_name: ansi_mode

Value: OFF
*************************** 2. row
Variable_name: back_log

Value: 50
*************************** 3. row
Variable_name: basedir

Value: /usr/local/
*************************** 4. row
Variable_name: bdb_cache_size

Value: 8388600
*************************** 5. row
Variable_name: bdb_log_buffer_size

Value: 0
*************************** 6. row
Variable_name: bdb_home

Value:
*************************** 7. row
Variable_name: bdb_max_lock

Value: 10000
*************************** 8. row
Variable_name: bdb_logdir

Value:
*************************** 9. row
Variable_name: bdb_shared_data

Value: OFF

154932-4 ch11.F 5/29/02 3:41 PM Page 285

286 Part III ✦ Administration

*************************** 10. row
Variable_name: bdb_tmpdir

Value:
*************************** 11. row
Variable_name: bdb_version

Value: Sleepycat Software: Berkeley DB 3.2.9a: (June
12, 2001)
*************************** 12. row
Variable_name: binlog_cache_size

Value: 32768
*************************** 13. row
Variable_name: character_set

Value: latin1
*************************** 14. row
Variable_name: character_sets

Value: latin1 dec8 dos german1 hp8 koi8_ru latin2 swe7
usa7 cp1251 danish hebrew win1251 estonia hungarian koi8_ukr
win1251ukr greek win1250 croat cp1257 latin5
*************************** 15. row
Variable_name: concurrent_insert

Value: ON
*************************** 16. row
Variable_name: connect_timeout

Value: 5
*************************** 17. row
Variable_name: datadir

Value: /usr/local/var/
*************************** 18. row
Variable_name: delay_key_write

Value: ON
*************************** 19. row
Variable_name: delayed_insert_limit

Value: 100
*************************** 20. row
Variable_name: delayed_insert_timeout

Value: 300
*************************** 21. row
Variable_name: delayed_queue_size

Value: 1000
*************************** 22. row
Variable_name: flush

Value: OFF
*************************** 23. row
Variable_name: flush_time

Value: 0
*************************** 24. row
Variable_name: have_bdb

Value: DISABLED
*************************** 25. row
Variable_name: have_gemini

Value: NO

154932-4 ch11.F 5/29/02 3:41 PM Page 286

287Chapter 11 ✦ Server Configurations

*************************** 26. row
Variable_name: have_innodb

Value: DISABLED
*************************** 27. row
Variable_name: have_isam

Value: YES
*************************** 28. row
Variable_name: have_raid

Value: NO
*************************** 29. row
Variable_name: have_ssl

Value: NO
*************************** 30. row
Variable_name: init_file

Value:
*************************** 31. row
Variable_name: innodb_data_file_path

Value:
*************************** 32. row
Variable_name: innodb_data_home_dir

Value:
*************************** 33. row
Variable_name: innodb_flush_log_at_trx_commit

Value: OFF
*************************** 34. row
Variable_name: innodb_log_arch_dir

Value:
*************************** 35. row
Variable_name: innodb_log_archive

Value: OFF
*************************** 36. row
Variable_name: innodb_log_group_home_dir

Value:
*************************** 37. row
Variable_name: innodb_flush_method

Value:
*************************** 38. row
Variable_name: interactive_timeout

Value: 28800
*************************** 39. row
Variable_name: join_buffer_size

Value: 131072
*************************** 40. row
Variable_name: key_buffer_size

Value: 12288
*************************** 41. row
Variable_name: language

Value: /usr/local/share/mysql/english/
*************************** 42. row
Variable_name: large_files_support

Value: ON

154932-4 ch11.F 5/29/02 3:41 PM Page 287

288 Part III ✦ Administration

*************************** 43. row
Variable_name: locked_in_memory

Value: OFF
*************************** 44. row
Variable_name: log

Value: OFF
*************************** 45. row
Variable_name: log_update

Value: OFF
*************************** 46. row
Variable_name: log_bin

Value: OFF
*************************** 47. row
Variable_name: log_slave_updates

Value: OFF
*************************** 48. row
Variable_name: long_query_time

Value: 10
*************************** 49. row
Variable_name: low_priority_updates

Value: OFF
*************************** 50. row
Variable_name: lower_case_table_names

Value: 0
*************************** 51. row
Variable_name: max_allowed_packet

Value: 1047552
*************************** 52. row
Variable_name: max_binlog_cache_size

Value: 4294967295
*************************** 53. row
Variable_name: max_binlog_size

Value: 1073741824
*************************** 54. row
Variable_name: max_connections

Value: 100
*************************** 55. row
Variable_name: max_connect_errors

Value: 10
*************************** 56. row
Variable_name: max_delayed_threads

Value: 20
*************************** 57. row
Variable_name: max_heap_table_size

Value: 8387584
*************************** 58. row
Variable_name: max_join_size

Value: 4294967295
*************************** 59. row
Variable_name: max_sort_length

Value: 1024

154932-4 ch11.F 5/29/02 3:41 PM Page 288

289Chapter 11 ✦ Server Configurations

*************************** 60. row
Variable_name: max_user_connections

Value: 0
*************************** 61. row
Variable_name: max_tmp_tables

Value: 32
*************************** 62. row
Variable_name: max_write_lock_count

Value: 4294967295
*************************** 63. row
Variable_name: myisam_recover_options

Value: BACKUP,FORCE
*************************** 64. row
Variable_name: myisam_max_extra_sort_file_size

Value: 256
*************************** 65. row
Variable_name: myisam_max_sort_file_size

Value: 2047
*************************** 66. row
Variable_name: myisam_sort_buffer_size

Value: 8388608
*************************** 67. row
Variable_name: net_buffer_length

Value: 1024
*************************** 68. row
Variable_name: net_read_timeout

Value: 30
*************************** 69. row
Variable_name: net_retry_count

Value: 10
*************************** 70. row
Variable_name: net_write_timeout

Value: 60
*************************** 71. row
Variable_name: open_files_limit

Value: 0
*************************** 72. row
Variable_name: pid_file

Value: /usr/local/var/slackware.pid
*************************** 73. row
Variable_name: port

Value: 3306
*************************** 74. row
Variable_name: protocol_version

Value: 10
*************************** 75. row
Variable_name: record_buffer

Value: 131072
*************************** 76. row
Variable_name: query_buffer_size

Value: 0

154932-4 ch11.F 5/29/02 3:41 PM Page 289

290 Part III ✦ Administration

*************************** 77. row
Variable_name: safe_show_database

Value: OFF
*************************** 78. row
Variable_name: server_id

Value: 1
*************************** 79. row
Variable_name: skip_locking

Value: ON
*************************** 80. row
Variable_name: skip_networking

Value: OFF
*************************** 81. row
Variable_name: skip_show_database

Value: OFF
*************************** 82. row
Variable_name: slow_launch_time

Value: 2
*************************** 83. row
Variable_name: socket

Value: /tmp/mysql.sock
*************************** 84. row
Variable_name: sort_buffer

Value: 65528
*************************** 85. row
Variable_name: table_cache

Value: 4
*************************** 86. row
Variable_name: table_type

Value: MYISAM
*************************** 87. row
Variable_name: thread_cache_size

Value: 0
*************************** 88. row
Variable_name: thread_stack

Value: 65536
*************************** 89. row
Variable_name: transaction_isolation

Value: READ-COMMITTED
*************************** 90. row
Variable_name: timezone

Value: CST
*************************** 91. row
Variable_name: tmp_table_size

Value: 33554432
*************************** 92. row
Variable_name: tmpdir

Value: /tmp/
*************************** 93. row
Variable_name: version

Value: 3.23.39
*************************** 94. row
Variable_name: wait_timeout

Value: 28800

154932-4 ch11.F 5/29/02 3:41 PM Page 290

291Chapter 11 ✦ Server Configurations

Although the SHOW VARIABLES output given here does contain even more vari-

ables, these are beyond the scope of this chapter.

So many variables, so little time
As you can see from Table 11-1 and the variable printout, I speak the truth about

the large number of server variables and settings available for an administrator to

work with. When you add capabilities such as replication, even more variables and

settings must be considered.

At this point you may be asking, “Which variables and settings do I really have to

change and which ones can be left at the defaults?” I certainly can’t preach that all

variables must be set for each server; in my view, that’s neither true nor practical.

Responding to testing and feedback from users of MySQL, MySQL AB has set

defaults for most variables that will work well.

Another reason not to set all the variables is that the MySQL server itself is quite

efficient for most uses of the database — anywhere from just a few records to a few

hundred thousand or more. I’ve worked with large databases (millions of rows) on

what I would consider normal hardware — Pentium-class computers with 128MB

RAM — and noticed no performance problems that would make me want to change

too many server variables.

However, working with specific applications or databases may require that you set

or change variables to improve performance of the MySQL server. Some reasons

you may have to set variables include the following:

✦ A specific application performs operations on the database slow or cause the

server to lag.

✦ The use of lower-end hardware or small amounts of resources.

✦ Using MySQL on a server that runs many other applications and services.

✦ Inefficient or poorly written applications that cause problems for the server

or database.

✦ A desire to improve your server’s performance.

Coming back to the original question in this section, how do you know which vari-

ables to set if you want optimal performance from MySQL? Luckily, MySQL AB has

done some of the homework for many implementations; two features of its installa-

tion program can help you optimize MySQL:

✦ A suite of applications helps you benchmark your server’s performance.

MySQL also includes another set of tests known as the Crash-me tests.

Together with the MySQL Benchmark applications, the Crash-me tests help

you give your server a vigorous test. These applications and scripts help

determine and test the limits of your server by simulating real-world scenar-

ios. The benchmarking applications are a series of tests contained in the sql-
bench directory within your MySQL installation. The Crash-me tests are

154932-4 ch11.F 5/29/02 3:41 PM Page 291

292 Part III ✦ Administration

contained within one program aptly titled crash-me, and also in the sql-bench

directory. In the next section I’ll look at some of the benchmarking applica-

tions included with MySQL.

Even with the tests and benchmarking, you still need a way to simulate a real-
world load on a database server. A program called Super-smack does that job; you
can use it to try out various values as you set parameters until you get the ones
that work best for your configuration. Super-smack is available for free from
MySQL AB. To get Super-smack, go to the Contributed Software section of the
MySQL Web site http://www.mysql.com/downloads/contrib.html.

✦ Sample configuration files let you try out different-size implementations.

Look for these sample configs in the support-files directory of your MySQL

installation. Four sample configuration files are included:

• my-small.cnf

• my-medium.cnf

• my-large.cnf

• my-hugr.cnf

The sample configuration files are covered in detail later in this chapter.

MySQL Benchmarking and Testing
Included with the MySQL software are applications and scripts for testing the limits

and variables of the MySQL server. These tests can help to improve performance by

showing obvious bottlenecks on the actual hardware with close to real-world sce-

narios. Using specific tests you can simulate how your server will be used and see

what improvements must be made. I’ve had times where running the tests saved

me from implementing a server on hardware that couldn’t stand up to the load for

the application to be run.

Requirements for the applications
The Benchmark and Crash-me applications use a number of different types of state-

ments and functions. The applications are included with Binary installations of

MySQL and MySQL-Max as well as with the MySQL source code. To use the applica-

tions from an RPM-based installation, make sure you install the mysql-bench RPM

(in addition to the other MySQL RPMs). Additional requirements for the bench-

marking and Crash-me applications are as follows:

✦ Perl

✦ Perl-DBI

✦ Msql-Mysql-modules

Tip

154932-4 ch11.F 5/29/02 3:41 PM Page 292

293Chapter 11 ✦ Server Configurations

All the latest copies of the Perl-DBI and the Msql-Mysql-modules can be found on

CPAN, http://www.cpan.org.

Perl is normally included with Linux, though you may not have installed it when

you installed the operating system. Follow the instructions included with the Perl-

DBI for installation of the software. The Msql-Mysql-modules ask some relevant

questions during the installation, see Figure 11-2.

Figure 11-2: Running Makefile.PL for the Msql-Mysql-modules poses
some questions about how you would like to configure the modules.

How you answer the questions for installation largely depends on how you intend

to use the modules, and whether you have a previous version installed. If you

intend to use mSQL through a Perl application, you may want to consider installing

the module for that in addition to the MySQL module. In Figure 11-2, I simply select

MySQL because I don’t plan to use mSQL, via Perl or otherwise, for the examples.

Running the tests
Once you have the prerequisites installed you can run the Benchmark applications

and Crash-me tests. The applications are located in the sql-bench directory in

your MySQL server directory. The Benchmarking suite includes various tests for

different types of applications to look at different aspects of server performance —

in particular, how it handles some crucial aspects of database operation:

✦ Big tables

✦ Alteration of tables

✦ Connections

✦ Creation of tables

154932-4 ch11.F 5/29/02 3:41 PM Page 293

294 Part III ✦ Administration

✦ Inserts

✦ Selects

✦ Query optimization and other aspects of the server

The final test in the suite is called the Wisconsin test. (And no, this isn’t something

I’m just making up because I’m from the state of Wisconsin.) The Wisconsin test is a

comprehensive set of tests to look at query optimization and performance of other

aspects of the server.

The sql-bench directory contains a number of scripts, as shown in Figure 11-3.

Figure 11-3: A directory listing for the sql-bench directory in MySQL

You can run the tests individually or all at once. Regardless of the whether you run

them one at a time or all at once, you must specify at least a password to enable the

programs to run. Other command-line switches are available to specify user and

host. For example, to run the test-select application, the following command line

would be used:

./test-select --password=password

As you can see, you have to specify the actual password on the command line for

the application to run. If you specify the user, do so with the --user=username
syntax. To specify the host, use --host=host syntax.

The script that calls all the other testing applications (and runs them all in

sequence) is called run-all-tests. This script also requires that the password be

given as an argument. Running this script on a slower server — say, a Pentium

200MMX with 96MB RAM — can increase the server load (not to mention that the

tests themselves take hours). Therefore I would not recommend running these tests

in a production environment.

154932-4 ch11.F 5/29/02 3:41 PM Page 294

295Chapter 11 ✦ Server Configurations

Running the testing suite can cause performance problems on the MySQL server. I
recommend against running the testing suite during peak usage or in a production
environment.

Currently the tests are not multithreaded; they open one connection at a time to

the MySQL server. This does limit the ability of the tests to truly simulate a real-

world environment where multiple users or threads frequently use the database

simultaneously. In future versions, MySQL AB will add to the testing suite to run

multiple threads.

If the tests are taking an incredibly long time and you think something may have

gone wrong, you can check the progress of the tests with a couple commands on

the MySQL server. Running the SHOW PROCESSLIST statement or mysqladmin pro-
cesslist command will a single thread running for the tests, as shown in Figure

11-4. Note the different values in the ‘Info’ field as the testing suite runs INSERT
statements.

Figure 11-4: The mysqladmin processlist shows the progress of the
testing suite, in this instance the INSERT tests.

Because the tests simulate so many different applications and implementations, if

you know you’re going to have an INSERT-heavy application, you can limit the test-

ing to just the INSERT test. Then, by tweaking variables to improve INSERT perfor-

mance and rerunning the test, you can see whether you get a noticeable

performance improvement from the new settings.

Caution

154932-4 ch11.F 5/29/02 3:41 PM Page 295

296 Part III ✦ Administration

Sample Configuration Files
Four sample configuration files come with MySQL. These files provide defaults

based on the hardware that MySQL server will be run on. The sample configuration

files can provide a good starting point for defaults. For most applications, the

default settings will work just fine.

Examination of the sample configuration files
The sample configuration files can be found in the ‘support-files’ directory of

your MySQL installation. The four files range in recommended use from machines

with less than 64MB RAM to machines with 1G to 2G RAM. For each of the files, I’m

going to examine the main server portion underneath the [mysqld] section, and

also other changes that take place in the file to affect other applications such as

Mysqldump and so on.

The first file, for machines with less than 64MB RAM, is called my-small.cnf.

MySQL AB recommends this configuration file for use where MySQL is not the pri-

mary application, and is only used now and then for minor database functions.

The relevant section from my-small.cnf is shown in Figure 11-5.

Figure 11-5: The [mysqld] section from the my-small.cnf example
defaults file for MySQL

154932-4 ch11.F 5/29/02 3:41 PM Page 296

297Chapter 11 ✦ Server Configurations

The second file, my-medium.cnf, is for machines with smaller amounts of memory

(under 128MB). If MySQL is the sole application (or one of a few primary applica-

tions) running on a machine like this, then the medium configuration file may be for

you. In addition, if you have 128MB to 256MB and MySQL will be working with other

applications (such as Apache or other services), the medium configuration would

be a good starting point for a configuration file.

The example section of the configuration file for [mysqld] is shown in Figure 11-6.

The third configuration file, my-large.cnf, is meant for systems that have more than

512MB RAM, though less than 1GB RAM. The server is mainly responsible for database

tasks with MySQL — therefore it isn’t running many other services. Of course, running

a Web server for an interface would probably be acceptable. However, a production

Web server for public use would be better run on a separate server.

Figure 11-6: The [mysqld] section from the my-medium.cnf example
defaults file for MySQL

The [mysqld] section for my-large.cnf is shown in Figure 11-7.

Finally, the example configuration file for the largest configurations is my-
huge.cnf. This file is meant as an example file for systems with 1GB RAM or more,

where MySQL is the sole application or service running on the server. If you intend

to run any other applications or services, you should run them servers other than

the MySQL server — and you can use this example file as a good starting point. If

you are running a MySQL server in such an environment, you will probably have to

set other variables specifically to match your application.

154932-4 ch11.F 5/29/02 3:41 PM Page 297

298 Part III ✦ Administration

Figure 11-7: The [mysqld] section from the my-large.cnf example
configuration file for MySQL.

The [mysqld] section from the example configuration file is shown in Figure 11-8.

Notice how the configuration file examples differ from each other. In the example

configuration file for Huge database servers, the buffer sizes take advantage of the

large amounts of RAM memory available for use. The configuration-file example for

Small servers uses much less RAM for buffers and other parameters.

Developing your own configuration file
The first recommendation I have is to use an example file that closely matches your
configuration — not only of your machine, but also of your planned application(s).

For example, I use the my-small.cnf file for the example server that I’m using — a

Pentium 200MMX with 96MB RAM.

After starting the database server, monitor the variables and performance through

the use of the mysqladmin extended-status command. Of course, your users will

tell you if the database is performing slowly.

154932-4 ch11.F 5/29/02 3:41 PM Page 298

299Chapter 11 ✦ Server Configurations

Figure 11-8: The [mysqld] section from the my-huge.cnf example
configuration file for MySQL.

When the performance of the MySQL server is degraded, it is time to analyze why it

is happening. One item that can assist, though it does create performance degrada-

tion itself, is the log option in the configuration file. Using the log function, you

can ensure that all queries to the server are logged (see Figure 11-9). Using this log-

file, you can then determine whether queries can be optimized — or whether you

have to fine-tune a server variable. To enable the log function, add the keyword

log within the [mysqld] section of the MySQL configuration file.

Other logging options, as defined in Table 11-1, can assist in diagnosing what

parameters and variables are working and which ones might not be. With some

patience while tuning the server, you can use these logging options to help make

MySQL’s performance exceptional.

Be sure to turn off logging when it’s needed; it can degrade performance.

Be careful not to increase too many values at once or make memory-based values
too large. This can cause disk-swapping behavior as the server runs out of avail-
able RAM and has to use (slower) virtual memory.

Caution

Tip

154932-4 ch11.F 5/29/02 3:41 PM Page 299

300 Part III ✦ Administration

Figure 11-9: An example of the logfile for queries with the log option
enabled in the configuration file

Figure 11-10, for example, shows sample output from a run of the test-select
benchmark.

Figure 11-10: Sample output of the test-select benchmarking
application running with the generic my-small.cnf configuration file

154932-4 ch11.F 5/29/02 3:41 PM Page 300

301Chapter 11 ✦ Server Configurations

After getting the results, I take a look at the values from mysqladmin extended-
status, as shown in Figure 11-11.

Figure 11-11: Examination of the values from the mysqladmin
extended-status command after running the test-select benchmark

Notice the values for key_read_requests and key_reads. This indicates that

there were a large number of requests for index use and that many of them couldn’t

be handled by the key_buffer. Therefore, I increase the key_buffer_size in the

configuration file and re-run the tests to see whether I can get any improved results.

The results of the new test are shown in Figure 11-12.

The increase in performance for the test_select application did not come with-

out cost. To get the performance improvement, I increased the key_buffer_size
value to 16M from 16K! On a server with only 96MB RAM to begin with, this might

not be such a good idea — disk swapping can increase if other applications that are

currently running require much memory.

Also, notice that the increase in key_buffer_size does not show up on the same

order as the increase in performance. In effect, I increased the value from 16K to

16M. That’s an increase of 1,000 times. If you compare the results from Figure 11-10

and Figure 11-12 you’ll see that the times were cut by roughly 50%. Therefore

increasing the key_buffer_size value to 16M is (to put it mildly) somewhat

aggressive for this implementation.

154932-4 ch11.F 5/29/02 3:41 PM Page 301

302 Part III ✦ Administration

The key_buffer_size example just given shows you how to diagnose the perfor-

mance of your MySQL server. You should be able to use your knowledge of the com-

mands to work with the server and improve performance where necessary.

Figure 11-12: An increase in the key_buffer_size value greatly
improved performance for the test-select benchmark.

Other variables that can assist in improving performance depend on the hardware

and applications. For example, if you have an application that opens many threads

and neglects to close them, you could lower the connect_timeout variable. Of

course, the better solution would be to fix the faulty application and have a talk

with the developer who designed it.

Another example: The error message “Too many open tables” indicates that you

might consider increasing the table_cache size or changing the design of the

databases on the server. Other variables (some of them relatively self-evident) can

be set with little trouble — for example, the max_user_connections variable. If

you need to make more connections available, you can increase this value and

restart the server.

Bringing it all together
Applications change, data changes, and other parameters on the server have to

change as well. Therefore tuning and monitoring of server variables is not a one-

time task. You should check and monitor performance regularly through the

extended-status and status commands, as well as by monitoring the logs.

154932-4 ch11.F 5/29/02 3:41 PM Page 302

303Chapter 11 ✦ Server Configurations

If you notice a slowdown of MySQL during certain operations you may have to

tweak a variable or two. Through proper diagnostics and testing, you can deter-

mine which variables to alter to improve performance. MySQL provides enough

feedback and tools to help you get this job done.

Running More Than One MySQL Server
on the Same Machine

A server configuration that some administrators find the need to implement is one

where multiple instances of MySQL are running on the same physical machine. The

MySQL server software uses completely separate databases that know nothing of

the other MySQL server or servers running on that machine. This section looks at

how to install multiple MySQL servers on the same computer.

Configuration of multiple MySQL servers
For more than one MySQL server to run successfully on the same machine, the

servers must use different directories for the MySQL server files and databases. In

addition, each server must use a unique socket file and port number. If you are

installing from source, you can specify these parameters at compile time. This is

the method recommended by MySQL AB; it looks like this:

./configure --with-tcp-port=<port_num>, with-unix-socket-
path=<socket_file>, --prefix=<directory>

If you want to use binary versions of MySQL you can specify the path and file

options on the command-line or in a MySQL configuration file. Here’s the syntax to

use when you specify them on the command line:

./mysqld_safe --socket=<socket_file> --port=<port_num> --
datadir=<dir>

In older versions of MySQL, the command to start the server is safe_mysqld.

Connecting to multiple MySQL servers
When connecting to a MySQL server that is not listening on the default port of

3306 or is available through a non-default socket file you must specify this on the

command-line. For example, to connect to a MySQL server running on port 6603

using the CLI, the additional switch --port=<port> or -P <port> is necessary:

mysql --port=6603

Note

154932-4 ch11.F 5/29/02 3:41 PM Page 303

304 Part III ✦ Administration

Other defaults may be read from the default MySQL configuration file. However, this

file may refer to the wrong MySQL server. Using the --defaults-file=<file-
name>, you can specify the file that is read for defaults.

If you don’t specify a hostname, MySQL will assume that you are connecting to the

server on localhost and will use the socket to connect to the server. In such an

event you need to specify the location of the socket file. Do so with the -S
<socket_file> or --socket=<socket_file> switch; the command looks like

this:

mysql --socket=/directory/socketfile.sock

Summary
MySQL can be — and should be — tuned to the physical server hardware that it is

running on, and configured for the main application or applications that it will be

serving. When set correctly, the MySQL server variables can improve the perfor-

mance of the server and thus the applications using the database.

✦ You can look at all the variables and settings for the server through the SHOW
VARIABLES statement from within the MySQL CLI (or with the mysqladmin
variables command).

✦ Though many settings are available for a MySQL server, most of them do need

not be individually configured.

✦ MySQL comes with benchmarking and testing utilities for diagnosing server

performance.

✦ MySQL AB has included sample configuration files for different sizes and

applications.

✦ Among these configuration files, you can choose from small, medium, large,

and huge implementations.

✦ Once an example configuration file has been chosen, it should be customized

for the application and installation that the MySQL server will be used for.

✦ Customizing the server variables is a process that takes time. The administra-

tor can change settings and then use one or all of the benchmarking utilities

to test the performance of the MySQL server.

✦ Because data and applications change, the server should be monitored for

performance issues. If you notice performance degradation, further testing

should reveal where bottlenecks are.

✦ ✦ ✦

154932-4 ch11.F 5/29/02 3:41 PM Page 304

Security

An oft-overlooked area of MySQL and computers in

general is security. How many patches and security fixes

have to come out for a Web server before an administrator

updates it? How often does a server have to be broken into

before an administrator turns off unnecessary services and

changes unsecured default settings? These questions are not

rhetorical; sooner or later, every administrator must face them.

This chapter introduces some simple security rules and

suggestions to improve the security of your MySQL server

and the integrity of the data you keep there.

Security of the MySQL Host Server
The least-privilege system is a high-security approach to the

assigning of access privileges to users. It requires that no

unnecessary services be enabled on the server, that the server

software gets regular updates as soon as they are available,

and that users are not given more privileges than their work

requires.

If everyone subscribed to the least-privilege system, I believe

there would be much less business for security consultants.

Although I admit that it takes time to apply patches and keep

up with security updates, the same arguments still apply: How

much time does it take to repair a server damaged by unau-

thorized use? How valuable is your data if you “can’t afford”

to spend the time securing your systems?

A good starting point in any discussion of system security is

to define unauthorized use and attack in consistent, practical

terms. Although the words themselves may seem obvious,

attacks and unauthorized uses actually incorporate several

distinct concepts:

✦ Exploits, whether initiated from outside or inside, take

advantage of a security hole for the attacker’s own gain.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Implementing security
for the MySQL host
server

Setting up MySQL
software security

Configuring MySQL
authentication and
privileges

Managing user
accounts in MySQL

Coping with common
security problems

✦ ✦ ✦ ✦

164932-4 ch12.F 5/29/02 3:51 PM Page 305

306 Part III ✦ Administration

✦ Attacks (again, whether initiated from outside or inside) are often more

aggressive and seek to disrupt, damage, or even bring down the target system.

✦ Unauthorized use is not limited to purposeful attacks or exploits on a server

or network; it can also be unintended, as in these examples:

• A user with too many privileges may not realize they are inappropriate,

use them inefficiently or incorrectly, and waste system resources such

as storage space and bandwidth.

• A harried developer who means no harm can unleash faulty code that

disrupts a server no less than does a hacker attack.

• Sometimes an administrator’s test of system security goes awry and

interferes too much with its operation.

Knowing that your system is vulnerable to disruption, whether malicious or unin-

tentional, should shape your security policy. The least-privilege concept provides

a good starting point, as in these examples:

✦ Providing a well-thought-out set of limited privileges to a developer helps

ensure that new applications for the server are realistically tested, but also

limits the possible consequences of running faulty code.

✦ Limiting users to minimal necessary privileges can thwart some attacks

before they even begin.

Although the usual assumption is that attacks always start outside and/or are
always intentional, it’s far from true. When I refer to attacks, attackers, or unautho-
rized uses, I have in mind a wider definition that includes both intentional and
unintentional disruptions.

Locating security information
Many administrators and would-be administrators complain that they have trouble

keeping up with updates. No central repository of information for updates and

reports of exploits now exists (although that may be all to the good — why give

hackers any more ideas than they already have?); in the world of network security,

you’re largely on your own. To give you a useful starting point as you grapple with

issues of network security, I’ve included some online sites that can help, and inter-

spersed this chapter with some essential security concepts to keep in mind, the

first of which is as follows:

Maintain a proactive approach to keeping up with exploits and problems with soft-
ware you are running.

Security does require a proactive approach; keeping servers and software secure

is difficult enough. Companies that want to maintain a viable reputation for their

Note

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 306

307Chapter 12 ✦ Security

products may want to suppress all knowledge of exploits or try to keep them

secret, but by far the more ethical response to security vulnerability is to produce,

document, and distribute an effective patch. The availability of such patches (and a

good track record for producing them in a timely manner) is one telling criterion

that helps define an above-average vendor.

Security focus
Even though information on security is scattered across the Internet at diffuse loca-

tions, one Web site stands out as a consistent repository for reliable information:

Security Focus, http://www.securityfocus.com/. Using this site an administra-

tor can keep up with exploits and security patches as soon as they are available.

The Security Focus Web site is also home to numerous mailing lists, security-related

and otherwise. Figure 12-1 shows some of the mailing lists available for subscrip-

tion on the Security Focus Web site. One of the most notable and famous is the

Bugtraq mailing list, widely regarded as the most adept at keeping up with security

issues across a wide variety of platforms. For people worried about being inun-

dated with yet more e-mail, many high-volume lists at Security Focus offer digest-

mode subscriptions as well.

Figure 12-1: Some mailing lists, security-related and otherwise, available from the
Security Focus Web site

164932-4 ch12.F 5/29/02 3:51 PM Page 307

308 Part III ✦ Administration

Apply patches and fixes
Just keeping up with the exploits and holes that come to light in servers and software

isn’t enough. You must apply the patches and fixes as soon as they are released. This

brings me to the simple second rule:

Apply patches and fixes as soon as they are released.

If no patch is available, try to find a workaround that effectively thwarts attacks.

For example, I’ve maintained a system that ran a public FTP server serving thou-

sands of real users. Along with the real users, the FTP server also allowed anony-

mous access for non-paying people from all over the Internet to download files.

A certain exploit against that particular FTP server could only be done by anony-

mous access. No patch was immediately available from the vendor, so I chose to

disable anonymous access until a patch could be released. Although this is not an

optimal solution, sometimes you have to disable access for a relatively short time

in order to avoid a much worse alternative — a non-trusted user getting administra-

tive rights. As soon as a patch was available for the FTP server, I applied it and re-

enabled anonymous access.

Disable unused programs and services
Every now and again, just for fun, I assist a friend with the security of his computer

systems by performing a port scan of his servers. I never cease to be amazed at how

many ports he leaves open for the world to take advantage of. He runs a basic Web

server that also serves as an e-mail server. Such a server should have no more than

three ports open: TCP port 80 for the Web server, TCP port 25 for the SMTP server

and TCP port 110 for the POP3 server. Unfortunately, it doesn’t stop there. He was

surprised to learn that he also had an NNTP server and even an IRC server running!

The lesson is summed up in another basic security principle:

Disable unused services and verify that only the services you specify are running.

Much of the problem with extraneous services being enabled stems from the default

installations of many operating systems and software. My friend’s problem arose

because he chose default options while installing Microsoft’s Internet Information

Server. However, the problem isn’t limited to Microsoft operating systems and soft-

ware. Choosing what appear to be the default options with Red Hat Linux can also

yield many invisibly enabled services that are also security problems.

With a program such as nmap you can effectively scan both TCP and UDP ports of

an Internet server to find unexpected ports that may be running. The nmap program

is available for Linux and Windows but can scan against any IP-based host. In Figure

12-2 I run a basic nmap scan against one of my local machines.

Note

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 308

309Chapter 12 ✦ Security

Figure 12-2: The nmap program can assist in determining open
ports on one of your servers.

Never perform port scans against any IP or server that you are not responsible for.
Doing so can get you terminated by your ISP or worse!

Most versions of Linux and many other operating systems include a program called

netstat that can help you determine which ports your sever is using to listen to

online traffic. Although netstat is a powerful program that does much more than

just showing which ports are listening, that listening function is a source of potential

security headaches. In Figure 12-3, for example, I run the command netstat -an
to produce basic output of the ports that this server is listening on. This server is

listening for connections to TCP port 22 for ssh connections, UDP ports 67 and 68

to talk to a DHCP server, and TCP port 3306 for MySQL.

Figure 12-3: The netstat -an command shows the ports of this server
that are available for connection.

Caution

164932-4 ch12.F 5/29/02 3:51 PM Page 309

310 Part III ✦ Administration

After using a program such as netstat or nmap, you should have a clearer picture

of what services are running on your server. The more services you have running,

the more vulnerable the server is to attack. Thus turning off all unnecessary ser-

vices can save you time and headaches.

MySQL Software Security
Up to this point, I’ve been looking at what you can do with the security of the host

that runs the MySQL server. The security of the MySQL host server is an essential

first step in enhancing the overall security of the database server (and thus the

data). Without first securing the host server, no amount of MySQL security will

keep your data safe.

In this section I’m going to examine what can be done with the MySQL server itself.

This includes keeping the server up to date, securing communication channels, and

monitoring the server status.

MySQL updates
Though only one piece of the security puzzle the MySQL software itself is (like any

other software) susceptible to problems and security exploits. Though these have

been very few and far between for MySQL, the problems can happen nonetheless.

Developing a systematic approach for keeping up to date with MySQL software will

assist in keeping the database safe from attack.

The best method for monitoring when a new version of MySQL is released is by

subscribing to the MySQL Announce mailing list. Offered for free by MySQL AB, this

mailing list will give you updates when new versions of MySQL are released. Don’t

worry about it overcrowding your inbox; the MySQL Announce list is low-volume.

Another mailing list available for MySQL is the main MySQL mailing list. This list

is much higher volume as it contains questions from general users of MySQL and

discussion of many MySQL-related topics. If you would like to learn more about

the inner workings of MySQL, this mailing list can help.

I’ve included a link to the mailing list section of the MySQL Web site on the Links
document on the CD-ROM with this book.

When an update is released, you must make backups of your data prior to proceed-

ing with the upgrade. This is necessary because of the inherent unknown in

upgrades of any nature. I’ve usually found that if I take the time to make backups

nothing will go wrong — but if I forego that step, inevitably something will fail.

On the
CD-ROM

164932-4 ch12.F 5/29/02 3:51 PM Page 310

311Chapter 12 ✦ Security

In Chapter 13 backup and recovery of MySQL databases is covered in detail.

Since the upgrade process is quite customized (depending on your installation),

exhaustive coverage is neither possible nor desirable here. Often the solution is as

simple as recompiling or overwriting an existing MySQL installation.

Run the server as a non-privileged user
In Linux/Unix, you can set the user account that runs the MySQL server process,

mysqld. (This is as opposed to running the server process as the root superuser

on the system.) Figure 12-4 shows a process listing from Linux, with the server

running as a non-privileged regular user called mysql.

Figure 12-4: Running the MySQL server as a non-privileged user can
prevent unauthorized access in the event of an exploit performed on
the server.

By running the server as a normal user in Linux/Unix, the server only has the same

privileges as that user. In other words, if the server is exploited the attacker cannot

gain further access or perform other privileged processes on the server.

To enable MySQL to run as another user on the system, follow these steps:

1. Add the user, and if desired a group, to the server. This is normally accom-

plished via the useradd and groupadd commands.

2. Make sure the user has access to the data and server files for MySQL. This

step is accomplished with a combination of chown and chmod in Linux.

3. Add the --user=username option to the mysqld command line, or add the

line user = username to the my.cnf file under the [mysqld] section.

Cross-
Reference

164932-4 ch12.F 5/29/02 3:51 PM Page 311

312 Part III ✦ Administration

Full details of installation of the MySQL server, including details on configuring the
server to run as a non-privileged user, are located in Chapter 3.

Firewalling the MySQL server
The most effective security to protect the MySQL server from outside attack is to

prevent people from the outside from gaining access to the server. Installing a fire-

wall to protect the server will help to prevent access from non-trusted hosts.

Using a passive firewalling solution to simply prevent attacks is a good solution.

The use of a firewall stops outside or non-trusted locations from even knowing that

a MySQL server is available at your location. An attacker can’t gain access to your

data if they can’t find it.

Another option is to use an active firewall that listens on common (and even uncom-

mon) ports for a non-trusted user sending a port-scan or probe to your machines.

The active firewall then completely blocks access from that IP address to all ports.

If you must allow access to the MySQL server from outside the firewall, you need

only allow access to the port on which MySQL listens for TCP connections. By

default, this is port 3306. Further, you should only allow access to the MySQL port

from specific trusted IP addresses. You could also create an SSH tunnel through a

trusted host without having to open up any ports for MySQL on the firewall.

Even with a firewall in place, you must make sure that trusted hosts don’t serve as

a launching point for attackers. Monitor these machines to make sure they are up to

date and have the latest security patches. Using the active firewalling solution, you

can monitor these servers to make sure they aren’t originating port scans or other

common probes against the servers in your network or within your trusted domain.

Communicating securely with the MySQL server
As of version 4 of MySQL, communication over TCP via the Secure Sockets Layer

(SSL) is possible. Prior to this all communication between server and client passed

unencrypted. The ambitious attacker could therefore watch traffic as it passed and

gather information on data as well as user and password information.

With SSL support enabled, the traffic between the MySQL server and the client is

encrypted. Even if an attacker gains enough access to eavesdrop on an electronic

conversation, he or she can’t make sense of the resulting data.

The SSL option is not enabled on a connection by default. However, you can
enable it and even require it through the use of the additional user privilege sys-
tem when SSL is compiled into MySQL.

Note

Cross-
Reference

164932-4 ch12.F 5/29/02 3:51 PM Page 312

313Chapter 12 ✦ Security

Using socket-based connections
By default, MySQL listens for connections both through sockets for local connec-

tions and via TCP/IP for remote connections. If you will not be connecting to MySQL

from any hosts other than the MySQL server itself, you should disable the TCP/IP

option in MySQL.

Disabling networking prevents you from using the -h or host option, whether from

the local machine or from other hosts on the network. Attempting to connect to a

MySQL server that is not available (or not listening for connections) via TCP/IP will

result in an error, as shown in Figure 12-5.

Figure 12-5: Attempting to connect to a MySQL server that is not
listening for connections, using TCP/IP

You can disable TCP/IP-based connections by adding the --skip-networking
option to the command line when starting the server. Another way to disable

TCP/IP access is to add the skip-networking option to the [mysqld] section

of the MySQL configuration file.

In the future, MySQL AB may alter the connection sequence, thus altering the fin-
gerprint for MySQL. For older servers the fingerprint will remain the same.

Changing the MySQL default port
While certainly not a substitute for a firewall or for disabling TCP/IP networking,

another method for slowing an attack is to change the port that MySQL listens on

for connections. By default, MySQL listens on TCP port 3306 for connections. If you

change the default port, a curious person who scans for port 3306 won’t discover

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 313

314 Part III ✦ Administration

that you have a MySQL server unless he or she uses other methods for fingerprint-

ing the server on another port.

Fingerprinting a MySQL server is possible. A curious person could open connec-

tions on random or sequential ports and see a familiar signature or fingerprint thus

discovering your MySQL server. In Figure 12-6, I have the MySQL server set to listen

on port 5150. Then, by simply telnetting to that port, I can see a repeatable pattern.

Figure 12-6: Telnetting to a port that MySQL listens on shows a
definite fingerprint indicating that it is indeed a MySQL server.

Notice, in Figure 12-6, that the pattern is always the same. The beginning of the

session opens with a left parentheses followed by a line-feed. Then a pattern of

digits is shown followed by eight characters. Each time I telnet to the server, the

pattern repeats. Now I know not only that there is a MySQL server on this host but

also what version of the server is running, as indicated by the digits.

As you can see, simply changing the port will not stop an ambitious attacker. The

speed and triviality with which an attacker could scan 65,000 ports for a MySQL

server makes changing the default port somewhat of a moot point. However, I still

believe that changing the default port can serve a purpose to discourage the casual

onlooker or curious person.

To change the default port that MySQL listens for TCP/IP connections on, add the

line port = N to the , section of the MySQL configuration file. For example, in

Figure 12-7 the , section is shown from an example server configuration file. (Note

that the port number has been changed for the server.)

For the sake of security, you must change any applications — including the MySQL
CLI — so they connect via the alternative port number.

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 314

315Chapter 12 ✦ Security

Figure 12-7: Changing the port that the MySQL server listens on can
help to hide the server from a curious person.

Monitoring data sent to MySQL
When data is entered into a database from applications, especially those that allow

users to type in their own values, you must check the data for errors and other

anomalies. It is the responsibility of the developer to ensure that data sent to the

MySQL server is clean and free from error. The errors occur from two sources:

✦ A malicious attack: With intentional attacks on the application and database,

the attacker may attempt to escape DDL statements into the application.

There are simple methods for preventing this type of attack including a least-

privileged user and data cleansing.

✦ Normal users: Sometimes normal users of an application are more dangerous

than a would-be attacker. Regardless of how many notes and documents you

create for use of the application, inevitably someone will innocently enter an

illegal value. The developer must account for these errors and provide some

feedback to the user via error messages or regular beatings.

As an administrator, you should attempt to make sure that the developer under-

stands what is needed from a database side to make sure the data is safe. This

includes working with the developer on the design of the database and tables

within the database so that the incoming data is of the proper length and type

for the column.

Just as important is making sure the developer performs necessary cleansing of

inputted data. These steps can be enumerated for items that the administrator and

developer must work on together:

✦ Use a least-privileged user for connections from the application to the database

or use more than one user; one user for inserts and updates, one for selects.

✦ Check all values to ensure that they are the expected format, string or number.

164932-4 ch12.F 5/29/02 3:51 PM Page 315

316 Part III ✦ Administration

✦ Check all values for length.

✦ Check all values to make sure they contain no unexpected characters.

These tips may seem like common sense, but you might be surprised at how many

applications don’t check for errors in the data, or give incoming data only a glance.

Later in this chapter, I show how to add users to the database. Armed with this
information, you can then add a least-privileged user account that you can use to
connect to the database from applications. Thus, even if you miss a step in error
checking (or someone finds a way around error checking), the damage is minimal.

Disabling DNS
One method of attacking a server or manipulating data is to masquerade as a

trusted server or client in a MySQL client-server exchange. This type of attack is

possible against all applications that utilize Domain Name System (DNS) data, not

just MySQL. By posing as a trusted or known host, the attacker can potentially gain

an inappropriate level of privileges.

For a DNS attack to occur, the attacker must be able to alter the DNS data on one

of the resolvers for your MySQL server. For example, if you have 192.168.1.1 set

as a DNS server for your MySQL server, the attacker must alter the DNS data on

192.168.1.1 and send back false information about hosts in your MySQL communica-

tion. An attacker could also spoof packets within the communication and pretend

to be 192.168.1.1. If DNS data is altered or untrusted an attacker could also pretend

to be a trusted host because the host is part of the MySQL authentication scheme.

DNS attacks are not limited solely to the server. A DNS attack could be performed

against a client as well. In a client attack, false information is passed to the client

and a fake MySQL server poses as the real server (thus getting authentication

information as well as the data being passed from client to server).

To prevent a DNS attack from being successful, you can turn off hostname lookups
in MySQL. All connections will be based on IP address, with the exception of local-
host connections. To disable DNS use from MySQL, start mysqld with the
command-line switch --skip-name-resolve. You can also add skip-name-
resolve to the MySQL configuration file.

Dynamic MySQL monitoring of Web pages
Using the HTML function of the MySQL CLI you can create a Web page with server

information. With a scheduler such as cron you could then create the Web page in

regular intervals to monitor the performance of the MySQL server. The resulting

Web pages won’t win awards for design, but they will produce useful information

for administration of the MySQL server.

Tip

Cross-
Reference

164932-4 ch12.F 5/29/02 3:51 PM Page 316

317Chapter 12 ✦ Security

Using these pages, the administrator can monitor the MySQL server’s performance.

This can save time and make it so other administrators can monitor the MySQL

server without having to know the backend commands for MySQL administration.

You should protect these Web pages via effective passwords; unauthorized access
to them is especially dangerous.

A requirement for viewing dynamic monitoring Web page on a network is to get a

Web server running. This does not have to be the same physical machine as the

one that houses the MySQL server. If the machines are separate you will need to

automatically transfer the resulting output from the MySQL commands to the Web

server.

The following example processes are performed in Linux, running an Apache Web

server. (Your version of Linux may vary slightly from the one shown here.)

Creating the fake database
The steps involved to produce a MySQL monitoring Web page are as follows:

1. Make a publicly available directory to hold HTML output, using this command:

mkdir mysqlmonitor

2. Create a password method to prevent unauthorized access to the directory; the

.htaccess file is a useful example, and Figure 12-8 shows how to create one.

Figure 12-8: Creating a .htaccess file within the mysqlmonitor directory
to prevent unauthorized access to the MySQL monitoring Web pages.

3. With the .htaccess file in place, you must create a password file to accom-

pany the .htaccess file. The name of the file is specified in the .htaccess file.

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 317

318 Part III ✦ Administration

The user that you add for htaccess does not need to be a system user or exist

on the system in any way except in the password file for htaccess. The follow-

ing command creates the password file (as specified in the .htaccess file) and

adds a user called suehring to the access file (as shown in Figure 12-9):

htpasswd -c /var/lib/apache/.htpass suehring

Figure 12-9: Using the htpasswd command to create the password
file specified in the .htaccess file and adding a user called suehring
to the password file

The password file for .htaccess should not be in a publicly available directory. In
addition, adding a user to the password file for htaccess does not affect the
user’s rights on the system, if any.

4. Now add a user to the MySQL database to retrieve the information for the

Web pages. To accomplish this, create a fake database and give the user

access to the database.

Creating a fake database enables you to have a user on the database server

with only a bare minimum of privileges — and then only on a database that

holds no tables or data. You can use the mysqladmin command to create the

fake database; do so from inside the CLI, or however you’d like. The command

looks like this:

mysqladmin -p create dummydb

5. With the fake database in place, you can add the user to the database server

(normally done via the MySQL CLI, as shown in Figure 12-10).

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 318

319Chapter 12 ✦ Security

Figure 12-10: Adding a user to the MySQL database server

6. Since you’re creating Web pages with status information, the user doesn’t

need any extra privileges. The following command simply creates the user on

the database server (but does not give the user privileges such as SELECT,

INSERT, DELETE, or the like):

GRANT USAGE ON dummydb.* to Webuser@localhost IDENTIFIED BY
‘34vh21z’;

The FLUSH PRIVILEGES statement is not necessary when you’re using the
GRANT statement.

Creating the script that makes the Web pages
With the Web server and access method ready, you can create a script for produc-

ing the actual Web pages. The script itself can be a simple shell script (which

Windows users know as a Windows script), or it can be done in another language

such as Perl. The concept for the script is simple: Run the MySQL CLI command

mysql in batch mode, use the -H switch to produce HTML output, and redirect that

output to a file.

Figures 12-11 and 12-12 show examples of simple scripts to check the status of the

server via the SHOW STATUS statement — and also to look at the processes running

on the server via the SHOW PROCESSLIST statement. Figure 12-11 is a simple shell

script; Figure 12-12 is a script written in Perl.

You will probably need to change the paths to both the MySQL CLI and the direc-
tory in which you want to produce the HTML output from the script.

Note

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 319

320 Part III ✦ Administration

Figure 12-11: A shell script for creating two Web pages to monitor
MySQL server information

Figure 12-12: A Perl script for creating two Web pages to monitor
MySQL server information. This script can be run on any system that
has Perl, including Windows and Mac OS X systems, by changing the
location of Perl at the top of the script.

Both these scripts are included on the CD-ROM.On the
CD-ROM

164932-4 ch12.F 5/29/02 3:51 PM Page 320

321Chapter 12 ✦ Security

Be sure to control access to the script. It contains the password for one of the
users on your MySQL server.

You could get fancy and use a concatenate redirect of the output to place both

commands in one file. Adding the output into one file gives you one place to moni-

tor. You could also create another script to produce output at opposite intervals;

thus you could monitor changes in the variables over time.

The output from either script is shown (as viewed through a Web browser) in

Figures 12-13 and 12-14.

Figure 12-13: The output from the SHOW STATUS statement, as produced by the
MySQL CLI HTML switch

Caution

164932-4 ch12.F 5/29/02 3:51 PM Page 321

322 Part III ✦ Administration

Figure 12-14: The remaining output from the SHOW PROCESSLIST statement as
produced by the MySQL CLI HTML switch

The final step, though optional, is to schedule the script to run automatically. How

often you would like to schedule the script depends on how busy your server is,

and how often you want to schedule it. Using cron in Linux, I schedule the script to

run every 15 minutes, as shown in Figure 12-15.

Figure 12-15: Scheduling the monitoring script to run every
15 minutes by using the cron command in Linux

164932-4 ch12.F 5/29/02 3:51 PM Page 322

323Chapter 12 ✦ Security

MySQL Authentication and Privileges
Prior to getting down to the dirty business of working with users, I believe it is nec-

essary to give an overview of the MySQL authentication system. This includes the

stages of authentication as well as the privileges that can be granted and revoked.

(This also gives me another chance to get on a soapbox about passwords.)

Overview of MySQL authentication
The MySQL privilege system works on a number of levels prior to allowing access

to the server. Unlike systems where simply a username and password are examined

to determine access, MySQL uses the username, password, and host to determine

access level for the database.

MySQL uses a two-stage process for determination of your access level, the connec-

tion level and process level. Using these two levels, in two sequential steps, the

MySQL server determines

✦ Whether you are allowed to connect at all.

✦ Whether you have privileges to perform the requested operation or statement.

During the first stage, which I will refer to as the Connection Stage, the MySQL

server combines the user and host provided as credentials and determines if the

given combination is allowed to connect with the given password.

1. The first phase of the Connection Stage combines the host, user, and pass-
word columns from the users table of the MySQL grants database.

• If no database is included in the connection request, access is granted or

denied at this point. The host column within the grants database can

contain any valid hostname, IP address, or localhost. In addition, the

wildcards % and _ are valid as are netmask values. For all hosts, the %
wildcard can be used. For example, username’192.168.1.%’ would

grant access to username from any address within the 192.168.1.0/24

range. This is the same as username‘192.168.1.0/255.255.255.0’. If given

username‘%’ then username at any host would be allowed.

• If a database is included within the connection request, the second

phase begins.

2. The second phase of the Connection Stage of authentication is to verify

credentials for the database.

This phase is performed against the db table of the MySQL grants database.

The db table is examined for host, database, and user. If access to all databases

is granted to the user, this stage automatically passes; otherwise access is

granted or denied, depending on the information in the db table.

164932-4 ch12.F 5/29/02 3:51 PM Page 323

324 Part III ✦ Administration

3. The third phase of the Connection Stage is performed against the host table

of the MySQL grants database. The host and db columns from the host table

are included in this phase.

If connections from a host are restricted in some way, this table determines

appropriate access.

During the next (second) stage of MySQL authentication, the requested process is

examined for specific privileges to determine access. For example, if the user attempts

to issue a SELECT statement, the authentication process looks again at the user table

of the MySQL grants database. If authentication passes the user table, it is again

passed on to the db table and then to the host table. If the statement is run against a

table, the tables_priv table is also consulted for authentication; if the statement

runs against a column or columns, then the columns_priv table is consulted.

MySQL privileges
Each table of the MySQL grants database provides the privileges shown in Table

12-1 (with the exception of the RELOAD, SHUTDOWN, PROCESS, and FILE privileges,

which are limited to the user table because they have no meaning in other contexts).

Table 12-1
MySQL Privileges and their functions

Privilege Function

SELECT Table–level privilege for selecting data or performing queries.

INSERT Table-level privilege for adding data.

UPDATE Table-level privilege for updating or changing data.

DELETE Table-level privilege for deleting data from tables.

INDEX Table-level privilege for creating and deleting indexes.

ALTER Table-level privilege for changing table layout.

CREATE Database-, table-, and index-level privilege for creation of databases,
tables and indexes.

DROP Database- and table-level privilege for deleting databases and tables.

GRANT Database- and table-level privilege for enabling a user to alter privileges
for other users including adding and deleting users.

REFERENCES Database- and table-level privilege for using references.

RELOAD Server-level privilege for reloading and flushing server parameters.

SHUTDOWN Server-level privilege for stopping the MySQL database server.

PROCESS Server- level privilege to enable process listing and killing.

FILE Server- level privilege to work with files such as selecting into outfiles.

164932-4 ch12.F 5/29/02 3:51 PM Page 324

325Chapter 12 ✦ Security

If the FILE privilege is given to a user, that user will be able to read the contents
of all other databases on the server.

The privileges are simple insofar as they mean what they are named. To issue a

SELECT statement, you need the SELECT privilege, to insert data you need the

INSERT privilege, and so on.

Security of passwords
Working with an Internet service provider, I can’t count the number of times I’ve

seen people choose bad passwords. I’ve seen all the mistakes in the book, from

choosing the username as the password to using the worst old favorite possible

(the word password). I believe these types of mistakes are, in the words of James R.

Leu, “completely unacceptable.” Regular users may have an excuse for choosing

poor passwords, but System and Database Administrators don’t. As the person who

is in charge of a server or servers, it is your job to use passwords that cannot be

easily guessed or cracked.

Password guidelines
I’ve put together some guidelines that should help you choose effective passwords,

come up with stronger ones, and keeping the ones you have secure.

✦ Passwords should be six characters at an absolute minimum.

✦ Passwords should include a mix of alphanumeric characters such as letters

and numbers and non-alphanumeric characters, such as “@#$^&*”.

✦ When you create a password, never use words that you can find in a dictio-

nary (or those same words spelled backwards).

✦ Passwords should include the use of both sides of the keyboard or both

hands while typing. In other words, don’t use passwords that require you to

use only your left hand or the left side of the keyboard only.

✦ Passwords should be different across servers. Don’t use the same password

for all of your servers, routers, and other gear. Thus, if one machine is com-

promised, the attacker cannot automatically gain access to your other

servers.

✦ Don’t write your passwords down. If you feel you can’t remember a password

and must write something down, write down a word or phrase that will

remind you of the password.

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 325

326 Part III ✦ Administration

MySQL passwords
There is general confusion over whether the Unix encryption structure is compati-

ble with MySQL because a UNIX encryption does look somewhat similar to a MySQL

encryption. Even so, MySQL passwords are stored with an encryption algorithm

different from that of the standard Unix encryption method. For this reason, you

cannot simply transfer your password and its encryption key from a password file

to the MySQL grants database.

MySQL includes a function to create a valid MySQL encryption: PASSWORD(). Using

the PASSWORD function, a user with access to a MySQL CLI could create a valid

encryption for use in MySQL. The user could then take the encryption and transfer

it to the server administrator for addition to the MySQL grants database.

As stated previously there is some confusion over the use of crypts within the user

table of the MySQL grants database. Part of this confusion comes because of the

ENCRYPT() function. The ENCRYPT() function creates a Unix style encryption but

it is not valid in the MySQL grants database. In Figure 12-16, for example, I use the

PASSWORD() function to create a valid MySQL password. The resulting password

could be transferred to the administrator for the server and he or she would never

be able to see my unencrypted password. I also use the ENCRYPT() function as a

reference to show the difference, given the same plaintext password.

Figure 12-16: The PASSWORD() function creates a valid MySQL
encryption while the ENCRYPT() function does not.

MySQL User Management
For maximum security, I recommend implementing the least-privilege concept of

permissions. When issuing grants and privileges to users of a database, you should

give them only the privileges they need to perform their jobs.

164932-4 ch12.F 5/29/02 3:51 PM Page 326

327Chapter 12 ✦ Security

You can create user accounts in MySQL by one of two methods: Using the GRANT
statement or using the INSERT statement. For the purposes of this chapter I will be

concentrating solely on the GRANT statement and its opposite statement, REVOKE.

If you choose to use an INSERT or UPDATE statement for working with the grants

database, you must use the FLUSH PRIVILEGES statement as well. If you use a

GRANT or REVOKE statement, the database server sees the changes immediately.

If you change a user’s access to a database while they are connected to that

database, the change will not take effect immediately for that user. In addition, if

you change a user’s global privileges or change their password it will not take effect

until the next time they connect. Therefore, you should kill the user’s process in

order for the changes to take effect for these instances.

Two macro-level grants are not listed in Table 12-1: the ALL PRIVILEGES and USAGE
macros. The ALL PRIVILEGES macro can be substituted in a GRANT or REVOKE
statement instead of having to enumerate each of the privileges. The USAGE macro

simply creates the user account with no privileges. In other words, think of the

USAGE macro as a placeholder. It allows the administrator to create the user

account and come back to it later to set privileges.

The ALL PRIVILEGES macro does not include (and so does not grant) the
administrative privilege of granting and revoking privileges.

Adding users and granting privileges
In MySQL, adding a user and granting privileges can occur simultaneously. You can

also add multiple users — with the same privileges — simultaneously. The basic

statement for adding a user and setting privileges is the GRANT statement.

The syntax for the GRANT statement is as follows:

GRANT privilege [(<columnlist>)] [, privilege [(<columnlist>)]
...]

ON {<tablename> | * | *.* | <databasename>.*}
TO username(@<host>) [IDENTIFIED BY ‘password’]

[, username(@<host>) [IDENTIFIED BY ‘password’] ...]
[REQUIRE

[{SSL| X509}]
[CIPHER cipher [AND]]
[ISSUER issuer [AND]]
[SUBJECT subject]]

[WITH GRANT OPTION]

To use the GRANT statement, you must have the GRANT privilege.Note

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 327

328 Part III ✦ Administration

In my time as a database administrator, I’ve most frequently used the USAGE macro

to initially create the user and then gone back and granted individual privileges for

the user at a later time. With the USAGE macro the user will be added to the grants

database as normal except no privileges will be given to the user. The USAGE macro

can be helpful if the actual database hasn’t been created yet (or tables haven’t been

created within the database).

As you can see by the syntax listing, the GRANT statement accepts wildcards for the

database and also wildcards within the database context to indicate all tables. For

example, to grant privileges on a specific table within a database, you can use

databasename.tablename (or simply tablename if you are in the database at the

time). Contrast this with granting privileges on all tables within a database (which

you call with the databasename.* syntax, or simply with * from within the

database). Also, granting privileges to all databases and tables is possible with the

use of the *.* wildcard syntax. Examples of these grants are shown in Figure 12-17.

Figure 12-17: Examples of GRANT statements in differing scenarios

With the GRANT statement you can specify that the privilege will only apply to cer-

tain columns within a given table. You can also specify more than one privilege

within a statement and apply that to the same or different columns within the same

table or database.table structure. In addition, you can give the same privileges to

multiple users at the same time if you separate the users/host/password portions

with commas. Examples of these grants are shown in Figure 12-18.

164932-4 ch12.F 5/29/02 3:51 PM Page 328

329Chapter 12 ✦ Security

Figure 12-18: Some variations of the GRANT statement as useful
syntax examples

The value for <host> can contain any valid hostname, IP address, or localhost. In

addition, the wildcards % and _ are valid as are netmask values. For all hosts, the %
wildcard can be used. When using a wildcard or netmask value, the <host> portion

must be quoted. For example, username’192.168.1.%’ would grant access to

username from any address within the 192.168.1.0/24 range. This is the same as

username’192.168.1.0/255.255.255.0’. If given username’%’ then username

at any host would be allowed.

You can require the user connect only via a secure connection such as Secure

Sockets Layer (SSL) or with X509. This functionality is achieved by adding the

REQUIRE modifier to the GRANT statement.

If you wish for the user to have the ability to add, delete, and alter privileges within

the database you must add the WITH GRANT OPTION modifier to the end of the GRANT
statement. This is true even if you use the ALL PRIVILEGES macro to enable all privi-

leges for the user. The GRANT privilege is not included with the ALL PRIVILEGES
macro.

Use care when issuing GRANT statements so as not to give too many privileges or
give them to unintended users.

As with all database administration, you should be careful when issuing GRANT

statements. Since MySQL uses a user/host combination for authentication, there

can be multiple users in the database with the same username. Ensuring that you

are granting access to the correct user or users is very important.

Caution

164932-4 ch12.F 5/29/02 3:51 PM Page 329

330 Part III ✦ Administration

If you are unsure of the grants that a given user has, you can issue the SHOW
GRANTS FOR statement. For example, to find out the grants and privileges given to

Webuser (from a previous example in this chapter), issue the following statement:

SHOW GRANTS FOR Webuser@localhost;

Deleting users and revoking privileges
The REVOKE statement is used to remove privileges from a user. The syntax for the

REVOKE statement is as follows:

REVOKE privilege [(<columnlist>)] [, privilege [(<columnlist>)]
...]

ON [<tablename> | * | *.* | <databasename>.*]
FROM username [, username ...]

The syntax is quite similar to that of the GRANT statement. The REVOKE statement

can apply to a column or columns, databases and tables can be specified and wild-

carded and multiple users can be revoked simultaneously.

The ALL PRIVILEGES macro works with the REVOKE statement the same as with

the GRANT statement. This is important to know because if you have granted the

GRANT privilege to the user and use a REVOKE ALL PRIVILEGES statement, the

GRANT option will still be there! Therefore, you must perform a separate statement

of REVOKE GRANT OPTION ... for this occasion.

Issuing a REVOKE statement does not delete the user from the MySQL grants

database. To delete a user from the grants database you must specifically issue a

DELETE statement to remove them from the grants database.

Use caution when issuing any REVOKE or DELETE statements as you can easily
revoke all privileges from all users or even delete all users from the database,
including the root user!

The syntax for the DELETE statement is the same to remove user accounts as it is to

delete rows from the tables of other databases. Remember that MySQL uses the

user and host combined to identify a user. Therefore you can have as many users

with the username robert in the database, but only one robert that connects from
a specific host. Therefore you must be extremely careful when issuing the DELETE
statement so as to not delete all those other Bobs from the database server! A mis-

guided or careless DELETE statement can result in removal of all privileges for all

users, not just for robert. After issuing the correct DELETE statement, don’t forget

to run the FLUSH PRIVILEGES statement so the deletion takes effect on the server.

Figure 12-19 shows all privileges being revoked from an example user, after which a

deletion removes the user account entirely from the database.

Caution

164932-4 ch12.F 5/29/02 3:51 PM Page 330

331Chapter 12 ✦ Security

Figure 12-19: An example REVOKE statement, followed by an example
DELETE statement. The FLUSH PRIVILEGES statement causes the delete
to take effect immediately, preventing the (now-former) user from
making a new connection.

Revoking all privileges from a user won’t necessarily truly remove all of their privi-

leges. Specific privileges need to be specifically revoked. The SHOW GRANTS FOR
statement can be quite useful in this situation to determine what specific privileges

a user has — for example, SHOW GRANTS FOR Webuser@localhost.

Changing passwords and other parameters
Sooner or later, you will have to change a user’s password as you administer a

database server. You may also have to change a username or alter the host parame-

ters for a database user. MySQL provides a function specifically for changing pass-

words; for other changes, normal SQL statements are required.

There are two methods for changing a password in MySQL. The first is with the SET
PASSWORD statement; the second is the UPDATE statement. Both statements make

use of the PASSWORD() function to encrypt the password. Examples of both meth-

ods for changing a password are in Figure 12-20.

Use the UPDATE statement to change other parameters such as usernames and

hosts. The syntax for the UPDATE statement is the same in this context as it is in

other DML statements. In Figure 12-21, I issue various UPDATE statements to

change usernames and hosts. Following the UPDATE, I issue the FLUSH PRIVILEGES
statement to make the changes take effect immediately.

164932-4 ch12.F 5/29/02 3:51 PM Page 331

332 Part III ✦ Administration

Figure 12-20: Using SET PASSWORD and UPDATE to change
passwords for users in MySQL

The UPDATE statement is discussed In Chapter 9 and in Appendix A.

Figure 12-21: Examples of UPDATE statements to change usernames
and hosts in the MySQL grants database

Cross-
Reference

164932-4 ch12.F 5/29/02 3:51 PM Page 332

333Chapter 12 ✦ Security

When using the SET PASSWORD statement, MySQL sees the change immediately.

However, when using an UPDATE statement, whether for updating a password or

changing another parameter, you must issue the FLUSH PRIVILEGES statement for

the change to take effect.

Common Problems
Though there are many problems that on their face appear to be authentication

problems, they are really related to server or other operating system issues. Those

types of errors are hopefully covered elsewhere in this book. This section specifi-

cally examines some common error messages related to authentication. In addition,

a recurring issue surfaces: Too often, people forget the root password for MySQL.

I’d like to think that they forget because MySQL is so stable that they don’t need to

connect to it for administration tasks. Regardless, I’ll look at how to change the

root password if you do forget it.

Access denied
There are numerous reasons why you might receive an Access Denied error

message when attempting to perform an operation. For that matter, you might get

one simply by trying to connect to a MySQL server. This section examines the most

common of these messages, which include the following:

✦ Password: Personally speaking, my most common cause of an Access
Denied error is because I can’t type my password straight. Therefore, this is

the first thing that comes to mind when thinking of items to check when you

receive an Access Denied error.

✦ Username: Is it allowed to connect?

✦ Hostname or host: MySQL might not be able to properly identify the

user/host combination, in which case it refuses access.

The MySQL CLI is very good at remembering and telling you what was provided to

it for credentials. I’ve provided some examples of error messages in Figure 12-22:

164932-4 ch12.F 5/29/02 3:51 PM Page 333

334 Part III ✦ Administration

Figure 12-22: Various Access Denied errors

✦ In the first example, I simply forget to specify the -p switch to have MySQL

prompt me for a password.

✦ In the second example, I remember the -p switch but only press Enter at

the prompt.

✦ The third example is familiar to me (and to too many of us): a mistyped

password.

✦ The final example is denied simply because the user does not have any privi-

lege that allows connection to the mysql database.

The third example in Figure 12-22 is interesting because that same error can occur

if the user exists but the password is different for that user/host combination. For

example, if a database has two users called suehring, one user/host combination

could be suehring@localhost and another could be suehring@192.168.1.1. If

the passwords are different for each user/host combination and I typed the wrong

password for either one, the same error would occur.

MySQL uses the user/host combination for authentication against a password.

Oops, I forgot the root password
Though you someday may be in a situation that requires you to perform these

steps on your MySQL server, I sincerely hope you never have to. If you have forgot-

ten the root password for MySQL and don’t have any other users with GRANT privi-

leges on the database server, you will need to reset the password in order to be

able to perform GRANTS and possibly other functions. Here are the steps, and may

you never need them:

1. Stop the database.

Note

164932-4 ch12.F 5/29/02 3:51 PM Page 334

335Chapter 12 ✦ Security

• If you have a user account in the database with the SHUTDOWN privilege,

now would be the time to use that account. The first step in the process

for emergency password recovery is to stop the MySQL server. In a per-

fect world, you could issue a SHUTDOWN command to the MySQL server.

• If you don’t have a user with the SHUTDOWN privilege, you have to kill the

server with an operating-system command (in Linux, this is the kill
command; in Windows, it’s the End Task box that appears after you use

Ctrl+Alt+Del).

MySQL AB specifically recommends that you don’t use the -9 signal when you
issue the operating system’s kill command.

2. Restart the server with the --skip-grant-tables command-line switch.

3. Set the password, using one of the following methods:

• Set the password as you would for a new installation:

mysqladmin -h <hostname> -u root password ‘<password>’

The new password must be in single quotes. Substitute your host for
<hostname> and the new password for <password>.

• Alternatively, you can enter the MySQL CLI and change the password.

4. Issue the FLUSH PRIVILEGES statement so that MySQL reads the other grants

and privileges and the new password takes effect.

Summary
MySQL security is a topic of many facets, but with three main areas of concern: the

host server, the MySQL software, and the user accounts. No one facet is more

important than another; securing all is necessary to protect the database. In pur-

suit of that goal, the least-privilege system is a security approach that gives users

only the absolute minimum of access needed to perform their jobs.

✦ Implementing and preserving the security of the host server involves three

basic rules:

• Maintain a proactive approach to keeping up with exploits and problems

with software you are running.

• Apply patches and fixes as soon as they are released.

• Disable unused services and verify that only the services you specify are

running.

Note

Caution

164932-4 ch12.F 5/29/02 3:51 PM Page 335

336 Part III ✦ Administration

✦ With MySQL software security there are a number of items you can do to

improve security. These include keeping the software updated, firewalling the

server, running the server as a non-privileged user, and additional steps to

assist in security of the MySQL software.

✦ MySQL authentication and privileges determine what access a user will have

for a database. Authentication is done with a user/host combination.

✦ There are many privileges that can be granted to a user. The privileges can be

granted with granularity to the column level with a table.

✦ Privileges are normally given to a user through the use of the GRANT statement

and taken away from a user with a REVOKE statement. The DELETE statement

is necessary to remove a user completely from the database.

✦ It is common to receive Access Denied error messages when attempting to

connect to a database. These errors can occur for a number of reasons, some

as simple as typing the password incorrectly.

✦ ✦ ✦

164932-4 ch12.F 5/29/02 3:51 PM Page 336

Debugging
and Repairing
Databases

In a perfect world, computers and computer software

would work correctly the first time. In a perfect world,

hard disks would never fail. In a perfect world, I would have a

much better introduction for this chapter than a cliché about

computer failures.

Part of administration of any computer system is a good rou-

tine of backups. In this chapter I’ll look at methods for back-

ing up the data in the MySQL server. MySQL AB includes

several methods for producing backups of the data and

datafiles.

Having backups is just one of the facets of managing a

database server. If something goes awry with the data, know

what can be done to correct the problems. I’ll examine some

tools included with MySQL for troubleshooting and repairing

table problems.

If repairing can’t fix a problem, you’ll need to restore from

a backup. The restore process and related commands are

covered in this chapter as well.

After reading this chapter you should be able to successfully

perform backups, restores, and troubleshooting for table

problems. I recommend making a backup or two as soon

as possible.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Performing database
backups

Troubleshooting and
repairing database
problems

Restoring a database

Devising a plan for
regular backups

✦ ✦ ✦ ✦

174932-4 ch13.F 5/29/02 3:51 PM Page 337

338 Part III ✦ Administration

Performing Database Backups
As part of my consulting for business database systems, I once received an emer-

gency call from a new client who had the unfortunate incident that everyone fears:

A hard drive failure. The client and I tried desperately to recover the drive, even

working with the manufacturer. It became evident that no amount of effort to

recover the drive was going to bring it back to life. The obvious next step to get

their business back online was to restore from backup. I’ll never forget the pause

when I said, “It appears we’ll need to restore from backup.” The client had no

backup of the drive — thus no backup of the database.

The previous scenario is all too common. No backups are done to critical data and

no extra copies are stored, even on the same disk. When something catastrophic

happens, the hard drive and all the data on it can be lost. With the client, we even-

tually sent the hard drive back to the manufacturer and they were able to perform

expensive data recovery. The client ended up with a week’s worth of downtime and

a large bill from the hard drive manufacturer for data recovery.

This section examines some tools for making backups of the data within MySQL.

These tools include mysqlhotcopy, mysqldump, and the BACKUP TABLE statement.

mysqlhotcopy
The program mysqlhotcopy is the MySQL AB recommended method for backing up

a database. With mysqlhotcopy you can make a backup of a live database and have

the results copied to another directory. The mysqlhotcopy program is actually

written in Perl — so be sure to have Perl and its related MySQL-Perl libraries

installed.

As with all programs, mysqlhotcopy has its limitations:

✦ It presently supports only cp. Therefore mysqlhotcopy doesn’t copy the

resulting file to another server. However, this function can be added (along

with other methods) for ensuring the storage of the backup in a different

location.

✦ It can run only on the actual database server. An administrator must connect

to the database server to run the command, or schedule it with a scheduling

program such as cron.

Because mysqlhotcopy uses the cp command, it cannot run on Microsoft
Windows platforms such as Windows 2000.

Should you want more information on the mysqlhotcopy command (and you don’t

have this book available), you can run the following command:

perldoc mysqlhotcopy

Caution

174932-4 ch13.F 5/29/02 3:51 PM Page 338

339Chapter 13 ✦ Debugging and Repairing Databases

The result is a summary of the mysqlhotcopy command. As with many other

MySQL commands and scripts, you can obtain a syntax description by simply

typing the command, as shown in Figure 13-1.

Figure 13-1: The syntax of the mysqlhotcopy command can be
obtained by typing the command with no arguments.

As Figure 13-1 shows, the basic syntax for the mysqlhotcopy command is

mysqlhotcopy <databasename>[./<table_regexp>/]
[<newdatabasename> | <directory>]

Figure 13-1 also shows these other options and switches that you can use with the

mysqlhotcopy command (note the case sensitivity):

-u or --user

-S or --socket

-P or --port

--debug

-q or --quiet

Chapter 8 contains detailed discussion of switches (such as those for specifying
username, port, and socket) to use with the mysqlhotcopy command.

Cross-
Reference

174932-4 ch13.F 5/29/02 3:51 PM Page 339

340 Part III ✦ Administration

One notable exception in the behavior of the switches is the -p or --password
switch. Normally, programs such as the MySQL CLI and mysqladmin prompt for a

password when you use the -p switch (as shown in Figure 13-2). You could also

specify the password on the actual command line, also illustrated in Figure 13-2.

Figure 13-2: The variations of the types of password entry methods
for most MySQL commands

Unlike most programs that come with MySQL, mysqlhotcopy doesn’t prompt for a

password. Rather, the password must be specified on the command line. In addition,

if you use the -p switch mysqlhotcopy expects a space after the -p. Figure 13-3

shows an example of this behavior. If the space isn’t given after the -p switch, an

Invalid Option error message results.

Figure 13-3: Attempting to give the password without a space after
the -p switch results in an error.

174932-4 ch13.F 5/29/02 3:51 PM Page 340

341Chapter 13 ✦ Debugging and Repairing Databases

At its most basic level, the mysqlhotcopy script performs the following three steps:

1. Locks the table or tables specified.

2. Flushes the tables to close any open tables.

3. Performs the actual copying of the data files.

✦ Because mysqlhotcopy performs a lock tables as the first step, no other

clients can use the tables while mysqlhotcopy runs.

✦ The locking can take quite some time on large tables.

✦ The flushing of the tables will cause all open tables to close.

✦ The actual copy can be time-consuming if the tables are large as well.

The mysqlhotcopy script makes an actual electronic copy of the datafiles for the

database. Therefore any user account that runs mysqlhotcopy must have sufficient

privileges to read the directory in which the datafiles reside. For example, Figure 13-4

shows an attempt to run mysqlhotcopy as a normal user in Linux. Normal users

don’t have the requisite privileges on the database directory; the command fails.

Figure 13-4: mysqlhotcopy requires that the user running the script
have sufficient privileges to read the database directory.

A simple summary (a common usage of the mysqlhotcopy program) is shown in

Figure 13-5. In the figure, the MySQL grants database (mysql) is copied or backed

up to a new database called mysqlbak.

Figure 13-5: A common usage of the mysqlhotcopy program to make
a copy of the MySQL grants database

174932-4 ch13.F 5/29/02 3:51 PM Page 341

342 Part III ✦ Administration

mysqlhotcopy also copies any other files within the directory housing the

database as well. For example, if you have files such as those produced with

mysqldump, performing a mysqlhotcopy of the database copies those to the new

location. Figure 13-6 shows an example of this behavior. A listing of the ecommerce
database directory is done, then a mysqlhotcopy to make a backup of the database

into ecommercebak, followed by a listing of the new ecommercebak directory.

Figure 13-6: The mysqlhotcopy script copies all files located in the
database’s directory on the server.

Recall the basic syntax for the mysqlhotcopy program:

mysqlhotcopy <databasename>[./<table_regexp>/]
[<newdatabasename> | <directory>]

You have two possible destinations for the backup:

✦ A new database

✦ A directory in a different location

The examples in Figures 13-5 and 13-6 each made new databases. However, attempt-

ing to use either database can result in an error message, as shown in Figure 13-7.

174932-4 ch13.F 5/29/02 3:51 PM Page 342

343Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-7: The MySQL server does not have sufficient privileges to
read the database of a recently backed up database with mysqlhotcopy.

The error in Figure 13-7 occurs because the mysqlhotcopy script was run as the

root or superuser. Therefore the new database directory was created by and is

owned by root. Because the database server files are owned by the username

mysql— and the server runs as that user — it cannot read the contents of the new

database directory. You can fix this with a command such as chown. For example,

Figure 13-8 shows the directory ownership and permissions before and after the

chown command in Linux. Figure 13-8 also shows a successful connection to the

backup copy created by mysqlhotcopy.

Figure 13-8: Changing ownership of the new database created by
mysqlhotcopy

The other method for backing up a database is to another directory. For added pre-

caution, the directory could be on a separate physical disk. Instead of providing a

database name for mysqlhotcopy to back up to, you specify a directory name. You

must make sure that the directory exists. Figure 13-9 shows an example of using

mysqlhotcopy to make a backup of a database to a directory. In the first attempt,

the directory does not exist. The second attempt is successful. A directory listing is

provided for convenience.

174932-4 ch13.F 5/29/02 3:51 PM Page 343

344 Part III ✦ Administration

Figure 13-9: Using mysqlhotcopy to make a backup of a MySQL
database to a directory

mysqlhotcopy isn’t limited to simply making backups of the entire database — or

even to one database. I’ll look at how to back up more than one database within

this section as well. For now, I’m going to examine how to make a backup of only

certain tables within a database.

Again, recalling the syntax of the mysqlhotcopy program, you can specify tables

within the format of a regular expression. In effect, you specify the tables that

match a certain pattern that you want to back up. For example, to back up all tables

in the ecommerce database that contain the word product, the command in Figure

13-10 is issued.

Figure 13-10: Backing up only certain tables with the
mysqlhotcopy command

174932-4 ch13.F 5/29/02 3:51 PM Page 344

345Chapter 13 ✦ Debugging and Repairing Databases

At first, you might not think this method convenient or powerful enough for back-

ing up tables (more than one table cannot be specified). However, by using the reg-

ular expression character for logical “OR”, you can back up more than one table

name with mysqlhotcopy. In Figure 13-11, I re-run the command from Figure 13-10

and add the logical OR (or the pipe character) to the command because I want to

back up the tables that contain the word card. Notice that the pipe character must

be allowed to “escape” by using a backslash.

Figure 13-11: Using the regular expression syntax for a logical OR
you can back up more than one table with mysqlhotcopy.

Up to this point I’ve only been looking at the basic syntax of mysqlhotcopy.

mysqlhotcopy includes a number of switches that directly affect the operation of

the program. These switches can change which databases are copied, how they are

copied, and any extra functions that mysqlhotcopy should perform.

When mysqlhotcopy makes a backup copy of a database the process fails if there

is already a database of the same name. This has the obvious advantage of prevent-

ing an accidental overwrite of a vital database. Figure 13-12 shows an example of

the error message when the destination database already exists.

mysqlhotcopy indicates an error if the destination exists regardless of whether
the destination is a database or a directory.

Figure 13-12: If the destination exists, whether it is a database or
directory, the mysqlhotcopy script fails and generates the error
message shown.

Note

174932-4 ch13.F 5/29/02 3:51 PM Page 345

346 Part III ✦ Administration

To allow mysqlhotcopy to overwrite the destination database or directory, you use

the --allowold switch. The --allowold switch changes the existing destination

and appends _old to the name of the existing destination. When the copy is

successfully completed, the old directory and files therein are deleted. Figure 13-13

shows an example of this behavior.

Figure 13-13: The --allowold switch moves the existing destination
and appends the extension _old to the name. After the copy is
complete, the old directory is deleted.

Although the --allowold switch enables you to perform a backup even if the stated

destination already exists, mysqlhotcopy deletes the old copy as its final step in the

backup process. If you want to keep the old copy after the command is complete,

use the --keepold switch. Figure 13-14 shows mysqlhotcopy with the --keepold
switch added as well as a listing of the MySQL data directory after the mysqlhot-
copy command runs to keep the old copy of the data using the --keepold switch.

Figure 13-14: Adding the --keepold switch tells mysqlhotcopy to keep the
old destination after performing a copy where the destination already exists.

174932-4 ch13.F 5/29/02 3:51 PM Page 346

347Chapter 13 ✦ Debugging and Repairing Databases

To copy more than one database at a time, you can use the --regexp switch to cre-

ate a regular expression of matching databases. This switch uses a syntax similar to

the one that tells mysqlhotcopy which tables to copy. Figure 13-15 shows an exam-

ple of the --regexp switch in action.

The --regexp option does not run well currently; it may be fixed in a future
version of mysqlhotcopy.

Figure 13-15: The --regexp switch serves to copy more than one
database at a time but is currently quite buggy.

You can also specify a suffix for copied databases with the --suffix switch. Doing

so can help to keep a standard suffix for all backed-up databases. In Figure 13-16,

for example, I use the --suffix switch to create a backup with an extension

of _bak.

Figure 13-16: Using the --suffix switch to create a backup with a
special extension

To see an example of what mysqlhotcopy would do given a set of arguments, use the

-n or --dryrun switch. The -n or --dryrun switch provides a listing of what would

happen without actually performing the operation. An example of the --dryrun
switch is shown in Figure 13-17.

Caution

174932-4 ch13.F 5/29/02 3:51 PM Page 347

348 Part III ✦ Administration

Figure 13-17: Using the --dryrun or -n switch you can see what would
happen with mysqlhotcopy without actually performing the backup.

Other options for mysqlhotcopy include the following:

Option Description

--noindices Excludes any index files from the backup.

--flushlog Performs the same functions as the flush-logs function with
mysqladmin to reset any logging. Related to replication,

--resetmaster Restarts the replication process.

--resetslave Restarts the replication process.

--tmpdir Changes the location of the temporary directory used by
mysqlhotcopy (which is /tmp by default).

Later this chapter provides an example of a script that automates the process of

making backups with mysqlhotcopy.

The script for automating backups with mysqlhotcopy is also located on the CD
ROM included with this book.

mysqldump
With mysqldump, you can obtain a copy of the database structure, as well as the

actual data for all databases on the server. The mysqldump command is flexible

enough that you can specify structural units as small as tables and export them.

Taking the output from mysqldump and importing it back into MySQL, you can

quickly reproduce an entire database server, along with all its data.

On the
CD-ROM

174932-4 ch13.F 5/29/02 3:52 PM Page 348

349Chapter 13 ✦ Debugging and Repairing Databases

For further details of the mysqldump program, see Chapter 10.

For example, in Figure 13-18 the mysqldump command runs to create a backup of all

databases on the server and place the contents in a file called serverbackup.sql.

The contents of the file include the DDL to create the databases and internal struc-

ture for the databases. The file also includes the DML and data contained in the

databases.

Figure 13-18: Using mysqldump to export the entire contents of a
database server including DDL and DML

The file created by mysqldump could then be saved or archived to a remote loca-

tion or tape drive. Because mysqldump can be run from a remote machine, the file

would automatically be a redundant backup in case of hardware failure on the

MySQL server. If the hard drive fails on the MySQL server, the file produced by

mysqldump on the remote machine would still be intact.

The file produced by mysqldump can then be imported into a new MySQL server by

simply reading it in through the CLI. Figure 13-19 shows an example of reading the

output of a mysqldump into the CLI. No output or success message prints to the

screen upon completion.

Figure 13-19: Importing the output of a mysqldump file is as easy as
reading it into the CLI.

Cross-
Reference

174932-4 ch13.F 5/29/02 3:52 PM Page 349

350 Part III ✦ Administration

BACKUP TABLE
Another method for backing up an individual table is via the BACKUP TABLE state-

ment. This statement runs from within (or using) the MySQL CLI. The syntax is as

follows:

BACKUP TABLE <tablename>(, <tablename>) TO ‘<directory>’

The BACKUP TABLE statement expects a path and directory as the argument for

backup location. The statement currently only works with MyISAM tables as well. The

BACKUP TABLE statement makes a copy of the .frm and .MYD files for the given table.

If you’re backing up more than one table at a time, you should issue a LOCK TABLES

statement before the BACKUP TABLE statement to ensure consistency amongst the

tables. Don’t forget to issue a FLUSH TABLES statement upon completion.

Upon completion, the BACKUP TABLE statement prints a status message. If an error

occurs, its message is also printed as part of the BACKUP TABLE output. For exam-

ple, if the target directory does not exist, you receive a message similar to that in

Figure 13-20.

Figure 13-20: The BACKUP TABLE statement produces a status
message upon completion, as well as an error message if needed.

In Figure 13-21, a successful example of the BACKUP TABLE statement is shown —

along with the resulting status message.

174932-4 ch13.F 5/29/02 3:52 PM Page 350

351Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-21: A successful run of the BACKUP TABLE statement

Troubleshooting and Repairing
Table Problems

I once had a client who, instead of logging in to a machine and typing reboot, would

simply turn the machine off and then back on. He couldn’t figure out why the files

on the system were corrupt and some tables in the database would often give

errors and need repair. He blamed the corruption and errors on just about every-

thing else, and didn’t even think that turning the machine off without shutting down
the applications could affect the integrity of anything on the computer. MySQL is a

stable and robust database server, but even MySQL would have a hard time main-

taining data integrity in such a situation.

Although I can’t say that table corruption never results from an error in the

database itself, normally the server maintains the integrity of its data at all times.

Instances of table errors and corruption usually point to a dirty shutdown of

MySQL or the server, a hardware failure, or some other catastrophe not directly

related to the MySQL server.

When a failure does occur, make sure you have backups of both the data and the

table structure that keeps your data organized. Having current and quality backups

is the first line of defense in administration of the MySQL server. Aside from catas-

trophe, tables can sometimes suffer from fragmentation. This can occur because of

deletes and updates to a table. Knowing how to optimize tables is another aspect of

administration of a MySQL server.

This section examines the commands and statements you use for troubleshooting

and repairing tables in MySQL. Most of the section concentrates on the MyISAM
table type (the default in MySQL), although some tools can be used with the

BerkeleyDB (BDB) transactional table type.

174932-4 ch13.F 5/29/02 3:52 PM Page 351

352 Part III ✦ Administration

mysqlcheck
mysqlcheck is a relatively new command for working with MyISAM tables.

The myisamchk program requires you to stop the server before running checks or
repairs. However, the mysqlcheck command allows the server to be running
while performing the checks and repairs.

If a client is working with the table at the same time that mysqlcheck attempts
the requested operation, the operation fails.

The mysqlcheck command serves as the basis for most other troubleshooting

functions with MySQL.

Like other commands with MySQL, mysqlcheck has many command-line
switches and options the same. Refer to Chapter 8 on the MySQL CLI for full expla-
nation of the common options, such as -# or --debug, --character-sets-
dir, --default-character-set, --compress, -? or --help, -h or --host,
-p or --password, -P or --port, -S or --socket, -u or --user, and -V or --
version.

As with many other commands with MySQL, you can obtain a syntax reference
simply by typing the command, as shown in Figure 13-22.

Figure 13-22: Typing mysqlcheck with no options yields a syntax and
options reference for the command.

Tip

Cross-
Reference

Caution

Note

174932-4 ch13.F 5/29/02 3:52 PM Page 352

353Chapter 13 ✦ Debugging and Repairing Databases

The basic syntax for the mysqlcheck command is as follows:

mysqlcheck [OPTIONS] database [tables]

When called with no options, mysqlcheck examines the tables within the given

database for errors. If no errors are found, a status message of OK is printed for

each table, as shown in Figure 13-23.

Figure 13-23: Mysqlcheck prints an OK status message for each table
free from errors during the default check operation.

Mysqlcheck also includes a function to analyze the key distribution for a table. This

function is called with the -a or --analyze switch on the command line. The out-

put when using this function is the same as with the default use of mysqlcheck

when called with no options; the command outputs an OK status message. If the

table does not need further analysis the status message is Table is already up
to date. For example, if no changes have taken place, mysqlcheck recognizes this

fact and does not perform additional analysis, as shown in Figure 13-24.

Figure 13-24: Mysqlcheck -a outputs a different status message if the
table does not need analysis.

If you perform a large number of deletes or other changes to a table, you can

improve performance by using the -o or --optimize switch with mysqlcheck.

Optimizing the table will defragment the table. Like the process for analyzing a

table, the optimization process will provide a status message for tables within the

database.

174932-4 ch13.F 5/29/02 3:52 PM Page 353

354 Part III ✦ Administration

The final main function with mysqlcheck is to repair the table. This function is

called with the -r or --repair option. The repair function can fix most any prob-

lem with a table. However, the repair function can sometimes lose data; therefore

I’ll stress again to make sure you have backups. If mysqlcheck reports an error and

you’re going to repair it, it is always a good idea to check the integrity of your back-

ups before proceeding. Figure 13-25 shows an example of mysqlcheck repairing a

table. (Note that I purposely corrupted the table for this example.)

Figure 13-25: Using mysqlcheck to repair a corrupt table

When you use the main (default) option to check databases and tables with which

mysqlcheck, you have several levels or degrees at which to examine the table(s)

for errors:

Command Function

-c or --check The default option; checks all tables.

-C or --check-only-changed Checks only tables that have changed since the last
check.

-F or --fast Looks for and examines tables that weren’t closed
properly.

-q or --quick Does not check row-level objects.

-m or --medium-check

-e or --extended

If you want for mysqlcheck to automatically repair any errors it finds, add the --
auto-repair switch. Figure 13-26 shows an example of using the auto-repair

switch with mysqlcheck to repair a broken table.

174932-4 ch13.F 5/29/02 3:52 PM Page 354

355Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-26: Use the --auto-repair switch to automatically repair a
table when a problem is found.

Two functions defined with mysqlcheck examine all databases or more than one

specified database.

Command Function

--all-databases Runs the specified operation on all databases within the MySQL
server.

-B or --databases Checks more than one, but not all, databases; used with the
names of the databases separated by whitespace. Figure 13-27
shows an example of the --databases switch in use,
examining three databases on the server.

Figure 13-27: The --databases switch examines one or more databases
with mysqlcheck.

174932-4 ch13.F 5/29/02 3:52 PM Page 355

356 Part III ✦ Administration

If you want to only examine certain tables within a database, use the --tables
switch. Because delete operations can cause fragmentation, you can speed up your

examination by adding a --tables <tablename> clause so the mysqlcheck com-

mand examines only the specified table(s). To specify more than one table, sepa-

rate the tablenames with whitespace. Figure 13-28 shows an example of

mysqlcheck examining certain tables with the --tables switch.

The --tables switch cannot be used with the --databases or -B switch.

Figure 13-28: The --tables switch causes mysqlcheck to examine
only the specified table or tables.

To change the performance of mysqlcheck the -1 or --all-in-one switch can be

used. This switch causes mysqlcheck to use a single query for all operations within

a given database. This is as opposed to the normal behavior of one query per table.

The -F or --force option causes mysqlcheck to continue its operation even if an

error is encountered. Using this option can sometimes cause corruption or other

problems.

myisamchk
The myisamchk utility serves to check and repair MyISAM tables while the MySQL

server is offline. Much of the syntax and many of the switches for myisamchk are

the same as those for mysqlcheck.

The switches that mysqlcheck shares in common with other MySQL utilities

include those for obtaining help and setting default character sets. As with the

other utilities, I’ll forego coverage of the following basic switches in this section:

-# or --debug

--character-sets-dir

--default-character-set

--compress

-O or --set-variable

Note

174932-4 ch13.F 5/29/02 3:52 PM Page 356

357Chapter 13 ✦ Debugging and Repairing Databases

-? or --help

-V or --version

The basic syntax for myisamchk is as follows:

myisamchk [OPTIONS] <tablename>[.MYI] (<tablename>[.MYI])

myisamchk has global options aside from those previously described. The --
wait switch informs myisamchk to pause if the table is already locked. Using the

-s switch causes myisamchk to be quieter as it goes about its business. Multiple

-s switches can make the command even more silent. The -v switch causes

myisamchk to print more information as it works. As with the -s switch, you can

use more than one -v switch to increase the verbosity of myisamchk.

myisamchk has two basic modes of operation: Check and Repair. The default action

for myisamchk is to check the tables specified. Figure 13-29 shows a basic usage of

myisamchk.

Figure 13-29: An example of basic usage of myisamchk

Options for checking tables with myisamchk
The options relating to checking tables with myisamchk are as follows:

-c or --check

-e or --extended-check

-F or --fast

-C or --check-only-changed

-f or --force

-i or --information

-m or --medium-check

-U or --update-state

-T or --read-only

174932-4 ch13.F 5/29/02 3:52 PM Page 357

358 Part III ✦ Administration

The -c switch (which instructs the utility to check) is the default with myisamchk.

The --extended-check, --fast, --check-only-changed, --force, and --
medium-check options were discussed in the preceding section on mysqlcheck.

The --information switch prints more information on the table(s) examined.

Figure 13-30 shows an example of the myisamchk command run with the -i switch.

Compare the results to Figure 13-29 to see the extra information printed.

Figure 13-30: Using the -i or --information switch tells myisamchk to
print more information about the table or tables that it examines.

The -T or --read-only switch tells myisamchk not to update the Check_time
table variable. (Information about tables can be obtained with the SHOW TABLE
STATUS statement using the CLI.) Normally, when myisamchk operates on a table,

it updates the Check_time variable. Examples of the -T or --read-only switch

appear in Figures 13-31 through 13-33.

Figure 13-31, the SHOW TABLE STATUS statement displays a table that hasn’t been

checked recently. Figure 13-32 shows a run of the myisamchk command with the

-T switch. (Notice that the command operates the same as it would without the -T
switch.) Figure 13-33 shows the SHOW TABLE STATUS command run again; notice

that Check_time still hasn’t changed.

174932-4 ch13.F 5/29/02 3:52 PM Page 358

359Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-31: The SHOW TABLE STATUS statement shows that the
table hasn’t been checked recently.

Figure 13-32: Performing a myisamchk with the -T switch that causes
the Check_time to not be updated.

Figure 13-33: Looking at the output from SHOW TABLE STATUS again,
the value for Check_time has indeed remained the same even though
I checked the table with myisamchk.

174932-4 ch13.F 5/29/02 3:52 PM Page 359

360 Part III ✦ Administration

If you suspect a table contains errors or corruption and want to prevent further use

of the table, the -U or --update-state switch with myisamchk marks any table

where an error is found as a crashed table — which effectively prevents any further

use of the table, even with a SELECT statement, until the table is repaired. Clients

attempting to work with the table receive an error message. Figure 13-34 shows an

example of a simple SELECT statement performed on a table, using the MySQL CLI.

Figure 13-34: A simple SELECT statement, performed through the
CLI on a table that I suspect to be corrupt

Although there’s no way to tell from the SELECT statement, I suspect that this

table might be corrupt. Therefore I perform a myisamchk on the table and use

the -U switch, as shown in Figure 13-35.

Figure 13-35: Running myisamchk with the -U switch to mark the
table as crashed and prevent further use

Figure 13-36 shows what happens when I attempt to run the previously successful

SELECT statement on the table again. The SELECT statement fails because the table

is marked as crashed — which (even if it seems inconvenient at the moment) actu-

ally helps by preventing further corruption or invalid results.

174932-4 ch13.F 5/29/02 3:52 PM Page 360

361Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-36: The same SELECT statement that was previously
successful now fails because the table is marked as crashed.

Options for repairing tables with myisamchk
Because checking is the default option with myisamchk, you can only use the repair

or recover function by specifying the -r or --recover switch on the myisamchk
command line.

If the normal -r switch fails, the options that repair or recover tables with
myisamchk can also be used with the -o or --safe-recover switch

The repair or recover switches are as follows:

-B or --backup

-D or --data-file-length

-e or --extend-check

-f or --force

-k or --keys-used

-l or --no-symlinks

-n or --sort-recover

-t or --tmpdir

-q or --quick

-u or --unpack

A basic repair or recovery with myisamchk can be run with the following command

syntax:

myisamchk -r -q <tablename>

Tip

174932-4 ch13.F 5/29/02 3:52 PM Page 361

362 Part III ✦ Administration

Figure 13-37 shows the results of this command.

Figure 13-37: A basic quick repair with myisamchk

myisamchk does not necessarily use memory efficiently for repairs. Therefore you

should set variables on the myisamchk command line using the -O or --set-vari-
able switch. Doing so will make the repair process faster. Ideally, the key_buffer

and sort_buffer values would be about a quarter of the total system memory to

maximize efficiency of the myisamchk repair.

The following variables affect the performance of myisamchk:

key_buffer_size

read_buffer_size

write_buffer_size

sort_buffer_size

sort_key_blocks

decode_bits

To determine the current setting for the variables, simply type the myisamchk com-

mand with no arguments (as shown in Figure 13-38).

You can type the command shown in Figure 13-38 safely while the server runs.

As stated previously, the variables can be set on the command line using the -O or

--set-variable switch (as shown in Figure 13-39). The variables can also be set

inside the configuration file such as my.cnf in Linux. To set the variables in the

configuration file, place them underneath the [myisamchk] section.

Tip

174932-4 ch13.F 5/29/02 3:52 PM Page 362

363Chapter 13 ✦ Debugging and Repairing Databases

Figure 13-38: Determining the current values for myisamchk variables
is done by simply typing the myisamchk command without switches
or arguments.

Figure 13-39: Setting variables on the myisamchk command line by
using the -O switch.

174932-4 ch13.F 5/29/02 3:52 PM Page 363

364 Part III ✦ Administration

One of the more important options to use when repairing a table is the -B or --
backup switch. Using the --backup switch will cause myisamchk to make a backup

copy of the data file before you attempt to repair or optimize it. Doing so can be

extremely helpful if you want to safeguard the table contents where a repair or opti-

mize function might cause a problem.

If you have a problem with a table that the normal repair process cannot fix, you

may want to attempt the -e or --extend-check option. This switch tries to

recover every row from a table. If you’d like to get a faster repair, the -q or

--quick option performs the recovery without modifying the data file. The

use of two -q switches on the command line fixes duplicate index values.

Three file-system options that affect the performance of myisamchk are

Command Function

-t or –tmpdir Changes the location that myisamchk uses for the temporary
directory.

-l or --no-symlinks Tells myisamchk not to follow symbolic links in the file system
when examining tables.

-u or –unpack Causes myisamchk to unarchive a file packed with myisampack.

ANALYZE TABLE
The ANALYZE TABLE statement runs through (or using) the MySQL CLI. It is the

equivalent of running mysqlcheck with the --analyze switch.

For more information on optimizing tables, see the section on mysqlcheck in this
chapter.

OPTIMIZE TABLE
The OPTIMIZE TABLE statement runs through (or using) the MySQL CLI. It is the

equivalent of running mysqlcheck with the --optimize switch. Optimizing a table

is useful if you have changed variable length rows or deleted many rows from a

table. It reduces fragmentation within the tables that it checks. The syntax for the

OPTIMIZE TABLE statement is as follows:

OPTIMIZE TABLE <tablename>(, <tablename>)

For more information on optimizing tables, see the section on mysqlcheck in this
chapter.

Cross-
Reference

Cross-
Reference

174932-4 ch13.F 5/29/02 3:52 PM Page 364

365Chapter 13 ✦ Debugging and Repairing Databases

CHECK TABLE
The CHECK TABLE statement runs through (or using) the MySQL CLI. It is the equiv-

alent of running mysqlcheck with the --check switch or with no arguments at all,

as it is the default for mysqlcheck.

For more information on optimizing tables, see the section on mysqlcheck in this
chapter.

REPAIR TABLE
The REPAIR TABLE statement runs through (or using) the MySQL CLI. It is the

equivalent of running mysqlcheck with the --repair switch.

For more information on optimizing tables, see the section on mysqlcheck in this
chapter.

Restoring a MySQL Database
Restoring a database can be a stressful process — the database or server may have

crashed, causing problems that need to be corrected; the repair process may not

have worked on a corrupt table; a user may have inadvertently deleted all the data.

Whatever the reason, a good backup can save the day. A previous section in this

chapter discussed the process of creating the backups. This section looks at how to

restore them.

There is no universally right or wrong way to restore from a backup, but there is a

universally practical principle to use: How you restore from a backup is determined
by how the backup was created. Consider these examples:

✦ If you used mysqlhotcopy to make the backup, you can use mysqlhotcopy to

restore the database — or simply copy the database directory to the proper

location and recreate the privileges for the individual accounts.

✦ If you created the backup by using the BACKUP TABLE statement, the RESTORE
TABLE statement would be the natural complement.

✦ If you created the backup by using the mysqldump utility, then you can restore

using the MySQL CLI.

Cross-
Reference

Cross-
Reference

174932-4 ch13.F 5/29/02 3:52 PM Page 365

366 Part III ✦ Administration

mysqlhotcopy
The mysqlhotcopy program is for making backups of entire database directories.

However, you can also use mysqlhotcopy to restore from a previously backed-up

copy of a database directory. For example, suppose you’ve used mysqlhotcopy to

create a backup of the ecommerce database called ecommercebak. If something

happens to the ecommerce database and you have to restore it, the mysqlhotcopy
program can do so.

The following command would restore the ecommercebak database to the

ecommerce directory and make a backup of the broken ecommerce database at

the same time:

mysqlhotcopy -p <password> --allowold --keepold ecommercebak
ecommerce

Often, when mysqlhotcopy creates a backup, it doesn’t update the permissions
properly for your database server. Therefore using this utility to restore from a
backup may generate a No tables to copy error. If you receive this error mes-
sage, check the ownership of the directory holding the backup.

The results of this command are shown in Figure 13-40.

Figure 13-40: Restoring a previously backed-up database with the
mysqlhotcopy program

RESTORE TABLE
The RESTORE TABLE statement is the complement to the BACKUP TABLE statement.

If you used the BACKUP TABLE statement to back up your tables, you can easily

restore them to your MySQL server by using the RESTORE TABLE statement with

the MySQL CLI. The syntax for the RESTORE TABLE statement is as follows:

RESTORE TABLE <tablename> (, <tablename>) FROM ‘<directory>’

Note

174932-4 ch13.F 5/29/02 3:52 PM Page 366

367Chapter 13 ✦ Debugging and Repairing Databases

Like the BACKUP TABLE statement, the RESTORE TABLE statement produces a sta-

tus message as the output for the command. Even an error message can serve as a

kind of status message in this context. For example, earlier in the chapter (refer to

Figure 13-21), I created a backup of the table testdb.person and put it in the direc-

tory /usr/local/var/personbackup. Suppose I try to restore that table through

the CLI, using the following command:

RESTORE TABLE person FROM ‘/usr/local/var/personbackup’

The table already exists — so MySQL doesn’t restore the table, producing (instead)

the error message shown in Figure 13-41.

Figure 13-41: Attempting to overwrite an existing table causes a failure.

Before restoring from a backup with the RESTORE TABLE statement, you must drop

the table. Figure 13-42 shows the DROP TABLE statement along with the successful

results from the RESTORE TABLE statement.

Figure 13-42: Using the RESTORE TABLE statement to restore a table
backed up earlier with the BACKUP TABLE statement.

174932-4 ch13.F 5/29/02 3:52 PM Page 367

368 Part III ✦ Administration

Be extremely careful running the DROP TABLE statement; it deletes the entire
contents — every last shred of data — in the directory!

The MySQL CLI
For backups or dumps created with the mysqldump utility, you can import or

restore those into MySQL through the MySQL CLI. Because the mysqldump utility

creates output as SQL statements, the files containing the output can then be

imported or replayed simply by executing the statements.

Obviously for anything more than a few statements it becomes burdensome to copy

and paste these into the CLI by hand. The use of the less-than sign (<) for redirect-

ing the contents of a file into the CLI can alleviate the work of copying and pasting

SQL into the CLI. Taking the contents of a file produced with mysqldump and redi-

recting it into MySQL is a simple process.

Recall that mysqldump produces output (as shown in Figure 13-43).

Figure 13-43: Example output from mysqldump

Caution

174932-4 ch13.F 5/29/02 3:52 PM Page 368

369Chapter 13 ✦ Debugging and Repairing Databases

If you’ve made a complete backup of a database with mysqldump and need to recre-

ate the database and data, you can import it through the MySQL CLI with a command

line that looks like this:

mysql [OPTIONS] < <filetoinput>

As you can see from this command, importing into MySQL through the CLI is easy.

The [OPTIONS] section can include things like username, password, host, and so

forth. Another option that you may need to include is the name of the database.

The output from mysqldump can include the DDL to create the database. If you do

not have DDL to create the database included with the mysqldump output, then you

will need to include the name of the database in your MySQL CLI command line. For

example, the following command imports the contents of the file from Figure 13-43:

mysql -p <password> ecommerce < ecommerce.sql

The execution of this command is shown in Figure 13-44.

Figure 13-44: Importing an actual file produced with mysqldump
into the CLI with the use of the redirect character

Devising a Plan for Database Backups
The programs and tools discussed in this chapter are only useful if you actually

take the time to actually use them. Making backups and optimizing tables is an

important part of database administration. In this section I’ll give an example of a

simple script and method for regularly backing up the data in your MySQL server.

Chapter 14 discusses methods for optimizing tables and suggests a regimen of
table maintenance.

Cross-
Reference

174932-4 ch13.F 5/29/02 3:52 PM Page 369

370 Part III ✦ Administration

I’ll be using the mysqldump command to create backups of the database server. The

resulting output can be huge if you’re backing up a large database or databases.

However the advantage of mysqldump is that the output is in plaintext — you can

edit the file so it only imports the data you want restored. The resulting output file

can also be compressed, which saves space.

The command to back up all databases with mysqldump is as follows:

mysqldump -A [OPTIONS] > <outputfile>

For example, to create a backup of all databases on my example server, I run this

command:

mysqldump -A -p > backup.sql

Ideally, I wouldn’t need to be present to watch the command run — so I make a

simple script to produce — and then compress — a backup. The script is shown in

Figure 13-45.

Figure 13-45: A simple shell script to make a backup of all databases
using mysqldump

The script first gets the date so I can keep more than one day’s worth of backup

files. Next the script runs mysqldump and sends the output to a file containing the

date variable set earlier. Finally, the script compresses the resulting file with the

gzip utility.

Using a scheduler such as cron, you can schedule this script to run as often as

you’d like.

Store this file in a secure location and make sure that it is archived to another
medium (such as tape) or otherwise copied to another physical medium regularly.

Another method for creating a backup is with mysqlhotcopy. The same methods

used for creating a script with mysqldump can also be used with mysqlhotcopy.

The limitations and methods of mysqlhotcopy are covered earlier in this chapter.Cross-
Reference

Note

174932-4 ch13.F 5/29/02 3:52 PM Page 370

371Chapter 13 ✦ Debugging and Repairing Databases

Summary
MySQL has three basic methods for making backups: mysqlhotcopy, mysqldump,

and BACKUP TABLE. Each has its own way of performing backups, an operation

indispensable to data integrity and database security.

✦ The mysqlhotcopy utility works by making a copy of the actual directory

containing the database files. It must be run from the actual database server.

✦ The mysqldump utility produces the DDL and DML to recreate the databases

and tables as new. If can be run from a machine other than the database

server and can back up one, more than one, or all databases at once.

✦ The BACKUP TABLE statement runs with the MySQL CLI. It can create backups

of one or more than one table within a database.

✦ The two commands for checking most table types in MySQL are mysqlcheck
and myisamchk.

✦ Four statements are used with the MySQL CLI for working with tables: ANALYZE
TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE. The statements

are similar in function to their mysqlcheck counterparts.

✦ The mysqlcheck utility can work with databases while the server is online

whereas myisamchk should not be used in this manner.

✦ The myisamchk utility can repair most problems with tables and can create

backups of tables before working with them for additional data safety.

✦ To restore databases and tables the mysqlhotcopy command can be used

along with the MySQL CLI and the RESTORE TABLE statement.

✦ The MySQL CLI can be used to import files created with mysqldump such as a

backup file of a database or table.

✦ Create a regular routine for backing up the database on your server. Without

backups, you can lose all the data on your server in the event of a catastrophic

event.

✦ ✦ ✦

174932-4 ch13.F 5/29/02 3:52 PM Page 371

174932-4 ch13.F 5/29/02 3:52 PM Page 372

Performance
Tuning

MySQL AB has gone to great lengths to see that MySQL

performs well. However, the developers can’t foresee

every implementation of MySQL. It’s impossible to set every

variable appropriately by default. For this reason, many vari-

ables can be set by the database administrator to improve

performance for the specific application.

Though tips and hints for enhancing and improving the per-

formance of the MySQL server are dispersed throughout the

book, this chapter provides additional information for setting

variables and improving MySQL performance

Troubleshooting Servers
As with the first portion of Chapter 11 (which treats enhancing

the performance of the MySQL server), this first part of

Chapter 14 examines troubleshooting and improving the server

itself. One of the most important methods for troubleshooting

server problems is to examine logfiles. I’ll look at the different

logfiles that are available with MySQL as the first portion of this

chapter.

Knowing how to determine what needs improvement is indis-

pensable to improving server performance. Therefore I’ll

begin with basic troubleshooting techniques and commands,

and then recap some server variables and performance-

related options.

MySQL AB has included some good suggestions for perfor-

mance-related variables within their sample configuration

files. I recommend using those files for examples to match

your server configuration and resource availability.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Troubleshooting the
Server

Optimizing
Databases and
Tables

Optimizing Queries

✦ ✦ ✦ ✦

184932-4 ch14.F 5/29/02 3:52 PM Page 373

374 Part III ✦ Administration

Chapter 11 examines the MySQL configuration files in detail.

MySQL logfiles
A feature I use frequently for troubleshooting is the MySQL logfiles. The four common

logfile types are listed in Table 14-1.

Table 14-1
Types of Logfiles with MySQL

Log Type Use

Binary log Stores all updates or changes to data, used in replication

Error log Records errors encountered by the server.

Query log Stores all connections and queries.

Slow query log Stores queries that take longer than long_query_time or don’t use
indexes.

Two logfile types, the isam and the update logs, are outside the scope of this book.

One logfile of particular importance is the MySQL error log. If the server won’t

start, many operating systems will record a trace that can indicate why the server

won’t start or why it crashed. Starts and stops of the server are recorded in the

error logfile. An example error log is shown in Figure 14-1.

By default, the error log is stored in the data directory for MySQL with a name of

<hostname>.err (<hostname> is the hostname of the server). To change the loca-

tion of the error log, set it with the err-log option underneath the [safe_mysqld]
section of the MySQL configuration file.

err-log = /var/log/mysql.err

To store all inserts and updates to data, use the binary log. The log-bin option

under the [mysqld] section of the configuration file enables the binary log, which

is stored in the data directory. The binary log is also useful during replication on

the replication master, as the logfile that records updates for the slaves. This file

contains binary data; the contents of a binary update log are shown in Figure 14-2.

Note

Cross-
Reference

184932-4 ch14.F 5/29/02 3:52 PM Page 374

375Chapter 14 ✦ Performance Tuning

Figure 14-1: A sample error log where the server crashed

Figure 14-2: An example of the binary log recorded with MySQL

184932-4 ch14.F 5/29/02 3:52 PM Page 375

376 Part III ✦ Administration

The query log records connections and queries made to the MySQL server. Using

the query log, you can debug connection problems or query issues with the server.

The query log is enabled by adding the log option below the [mysqld] section in

the MySQL configuration file. By default, the query log is recorded in the data direc-

tory of your MySQL server and is named <hostname>.log. This can be changed by

adding a = <path/filename> to the log option in the configuration file, like this:

log = /var/log/mysqlquery.log

An example of the data stored in the query log is shown in Figure 14-3.

Figure 14-3: An example of the query log in MySQL

I’ve used the query log to watch poorly written applications perform poorly written

queries and then leave their connections open. Another log that can be used for

this purpose is the slow query log, which records two types of slow queries:

✦ Queries that take longer than the value of the long_query_time variable

✦ Queries that don’t use an index with the log-long-format option

To enable the slow query log, add the log_slow_queries option underneath the

[mysqld] section of the MySQL configuration file. You can also change the target

for the logfile from the default of <hostname>-slow.log to another name by

adding =<filename> when using the log_slow_queries option, as in the following

example:

log_slow_queries = slowquery.log

184932-4 ch14.F 5/29/02 3:52 PM Page 376

377Chapter 14 ✦ Performance Tuning

To determine the value of the long_query_time variable, use the mysqladmin
variables command. The results are shown in Figure 14-4.

Figure 14-4: The long_query_time variable controls how long a query
has to take before it is recorded in the Slow Query Log.

You can change the value for long_query_time by adding the following to the

MySQL configuration file under the [mysqld] section:

set-variable = long_query_time=<value>

The value is given in seconds. For example, to shorten the long_query_time value

to 3 seconds, you would add the following line to the [mysqld] section to the

MySQL configuration file, like this:

set-variable = long_query_time=3

Troubleshooting and performance
functions with mysqladmin
The mysqladmin command has numerous functions that assist with server

administration.

Chapter 10 covers these functions in detail.Cross-
Reference

184932-4 ch14.F 5/29/02 3:52 PM Page 377

378 Part III ✦ Administration

Functions to clear logfiles
Logfiles can be reset or rotated to the next logfile through the flush-logs func-

tion. For example, Figure 14-5 shows a directory listing of the numerous logfiles run-

ning on this server. Figure 14-6 shows the mysqladmin flush-logs function being

run, followed by another directory listing. In that case, the binary log has been

rotated to number 004 in the sequence and the server has also accessed other logs.

Figure 14-5: A directory listing showing the logfiles and timestamps
before the flush-logs function is run

Figure 14-6: The mysqladmin flush-logs function is run along with
another directory listing.

184932-4 ch14.F 5/29/02 3:52 PM Page 378

379Chapter 14 ✦ Performance Tuning

Other flush functions with mysqladmin
mysqladmin has five other functions for flushing objects. These are shown in

Table 14-2.

Table 14-2
Flush functions with mysqladmin

Function name Purpose

flush-hosts Clears the DNS cache of MySQL. Can assist if a host gets blocked
due to errors.

flush-logs Clears and cycles MySQL logfiles.

flush-privileges Reloads the MySQL grants database so privilege changes take effect.

flush-status Clears server counters found with the status and extended-
status functions.

flush-tables Closes all open tables.

flush-threads Closes all open threads.

The flush functions are discussed in detail in Chapter 10.

Two flush functions have synonyms or aliases.

✦ The reload function is an alias for the flush-privileges function. Both

reload the grant tables.

✦ The refresh function is an alias that performs both the duties of the flush-
tables function and the flush-logs function. Running a mysqladmin
refresh will close all open tables and restart logging (or cycle the logfiles).

Status and variable functions
In addition to the functions that flush or reset values and objects with mysqladmin,

other functions examine server status and variables.

The flush functions are discussed in detail in Chapter 10.

The functions and their purposes are shown in Table 14-3.

Cross-
Reference

Cross-
Reference

184932-4 ch14.F 5/29/02 3:52 PM Page 379

380 Part III ✦ Administration

Table 14-3
Status and Variable functions with mysqladmin

Function Purpose

extended-status Prints the current value for many server counters and status-related
objects.

ping Checks to see if the mysqld process is still alive.

processlist Lists the currently open processes, along with their status and action.

status Prints a short status message on the server with some status-related
objects.

variables Outputs the current values for the variables set for the MySQL server.

The status and extended-status functions are related because they both output

the current status of various counters within the server. The status message

shows relatively few important objects; the output of extended-status shows

many objects.

Unless you have an insanely small resolution on a huge monitor, you’ll probably
need to pipe or redirect the output from the extended-status function so it
doesn’t scroll by too fast on-screen.

Figure 14-7 shows an example of the status function. The full output from the

extended-status function follows as well.

Figure 14-7: Output from the mysqladmin status function shows the
current values for important counters.

Compare the output from the status function in Figure 14-7 to the following output

from the extended-status function.

+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| Aborted_clients | 0 |

Tip

184932-4 ch14.F 5/29/02 3:52 PM Page 380

381Chapter 14 ✦ Performance Tuning

Aborted_connects	0
Bytes_received	280
Bytes_sent	5745
Connections	7
Created_tmp_disk_tables	0
Created_tmp_tables	0
Created_tmp_files	0
Delayed_insert_threads	0
Delayed_writes	0
Delayed_errors	0
Flush_commands	1
Handler_delete	0
Handler_read_first	1
Handler_read_key	2
Handler_read_next	8
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	60
Handler_update	0
Handler_write	0
Key_blocks_used	3
Key_read_requests	8
Key_reads	3
Key_write_requests	0
Key_writes	0
Max_used_connections	0
Not_flushed_key_blocks	0
Not_flushed_delayed_rows	0
Open_tables	1
Open_files	6
Open_streams	0
Opened_tables	7
Questions	10
Select_full_join	0
Select_full_range_join	0
Select_range	0
Select_range_check	0
Select_scan	1
Slave_running	OFF
Slave_open_temp_tables	0
Slow_launch_threads	0
Slow_queries	0
Sort_merge_passes	0
Sort_range	0
Sort_rows	0
Sort_scan	0
Table_locks_immediate	6
Table_locks_waited	0
Threads_cached	0
Threads_created	6
Threads_connected	1
Threads_running	1
Uptime	145212
+--------------------------+--------+

184932-4 ch14.F 5/29/02 3:52 PM Page 381

382 Part III ✦ Administration

Some of the same counters are included in the status and extended-status
forms. (Chapter 10 has more information on the specific values.)

MySQL CLI troubleshooting and
performance functions
The MySQL CLI includes many of the same functions as the mysqladmin command

. For example, the mysqladmin flush-logs function is replaced with the FLUSH
LOGS statement when executed with the CLI. The mysqladmin status command is

replaced with the SHOW STATUS statement when used with the CLI. Table 14-4

shows mysqladmin functions with their CLI equivalents.

Table 14-4
Functions with mysqladmin and the MySQL CLI

Mysqladmin function MySQL CLI equivalent

Variables SHOW VARIABLES

Status SHOW STATUS

Processlist SHOW PROCESSLIST

Flush-hosts FLUSH HOSTS

Flush-privileges FLUSH PRIVILEGES

Flush-logs FLUSH LOGS

Flush-tables FLUSH TABLES

Flush-status FLUSH STATUS

When run from within the CLI, the FLUSH TABLES statement has three variations.

The first is the normal FLUSH TABLES statement that closes all open tables. The

second variation closes only specified tables and can be called in singular or

plural form:

FLUSH [TABLE | TABLES] <tablename> (, <tablename>)

Two examples of the FLUSH TABLES statement with specific tables are shown in

Figure 14-8.

184932-4 ch14.F 5/29/02 3:52 PM Page 382

383Chapter 14 ✦ Performance Tuning

Figure 14-8: The FLUSH TABLES statement using specific tables

The third variation of the FLUSH TABLES statement is as follows:

FLUSH TABLES WITH READ LOCK <tablename>

The FLUSH TABLES WITH READ LOCK statement closes all open or in-use tables,

just like the FLUSH TABLES statement. However, the FLUSH TABLES WITH READ
LOCK statement also places a lock on the tables that must be manually unlocked

with the UNLOCK TABLES statement.

Figure 14-9 shows an example of the FLUSH TABLES WITH READ LOCK statement,

an attempt to read from one of the locked tables, and then the UNLOCK TABLES
statement to allow access again.

Figure 14-9: An example of the FLUSH TABLES WITH READ LOCK
statement.

184932-4 ch14.F 5/29/02 3:52 PM Page 383

384 Part III ✦ Administration

mysqlshow
Though complemented by SHOW statements in the CLI, the mysqlshow command

can find the structure of databases, tables, and columns. The mysqlshow statement

is unlike other commands in MySQL. You can’t simply type the command to get a

syntax printing. To see a syntax reference for the mysqlshow command, you should

add the --help switch, as shown in Figure 14-10.

The -? switch is listed as a synonym for the --help switch, but it doesn’t work.

Figure 14-10: A syntax reference for the mysqlshow command is
obtained by adding the --help switch.

Using the mysqlshow command is quite similar to using other commands with

MySQL: The -u switch defines the user, the -p switch can define the password, the

-h switch defines the host, and so on. The output from the mysqlshow command is

similar to the output from the equivalent CLI command (such as SHOW TABLES or

SHOW COLUMNS). Examples of the output from the mysqlshow command appear in

Figures 14-11 and 14-12.

Caution

184932-4 ch14.F 5/29/02 3:52 PM Page 384

385Chapter 14 ✦ Performance Tuning

Figure 14-11: Using the mysqlshow command to show the tables
within a database

Figure 14-12: Using the mysqlshow command to list the columns
within a table of the ecommerce database

184932-4 ch14.F 5/29/02 3:52 PM Page 385

386 Part III ✦ Administration

Optimizing Databases and Tables
Certain optimizing techniques can change the structure of databases and tables to

make them operate more efficiently. In addition, certain statements can optimize

tables with performance enhancements such as defragmentation.

The use of indexes will help performance immensely on large datasets. MySQL

stores indexes and data in separate files to maximize efficiency. Adding an index (or

creating one with a table) will help when performing operations on the data; that

way MySQL need only look at a subset of the data for the correct result.

If there is a PRIMARY KEY index on the table, it should be a short task to maximize

speed. If you frequently search on multiple columns, index the columns with the

most used column being the first in the list. However, don’t make unnecessary

indexes.

The EXPLAIN statement can assist in determining when an index might be useful.

The EXPLAIN statement is used with a SELECT statement. For example, Figure 14-13

uses the EXPLAIN statement to show indexes used by a SELECT statement.

Figure 14-13: A description of two tables in the ecommerce database
along with an EXPLAIN statement to examine the SELECT statement
being used to find the first and last names of customers

184932-4 ch14.F 5/29/02 3:52 PM Page 386

387Chapter 14 ✦ Performance Tuning

The Possible_keys and Keys columns in the output of the EXPLAIN statement

show possible keys that MySQL could use for the SELECT— and the actual key (if

any) that MySQL used for the query.

All index types in MySQL are stored in B-Tree format. They can improve perfor-

mance with a WHERE clause. Since most SELECT statements will use a WHERE clause,

an index can be the single most important improvement you make for better perfor-

mance. Indexes can also quickly sort, locate the maximum and minimum values for

a column, and assist with a join of two or more tables.

The syntax for creating an index during a CREATE TABLE statement is

CREATE TABLE <tablename> (<columnname>, ...,
index <indexname> (column(s) to include in index)
);

Creating a column as a PRIMARY KEY also enables MySQL to optimize queries.

You can also create an index after the table has been created through the create

index or alter table commands. The create index command is actually an alias for

an alter table statement. The syntax for a create index statement is as follows:

CREATE INDEX <indexname> on <tablename> (column(s) to include);

Save disk space by choosing the correct column types and making the data as small

as possible. Choosing the smallest or most appropriate column type helps MySQL

work efficiently with the data. Choosing fixed-length columns can also increase

speed.

Fixed length columns may end up wasting space since MySQL will always allocate
the defined amount of bytes for the column regardless of the actual data length.

The OPTIMIZE TABLE statement run with the MySQL CLI is used to defragment a

table or tables. The statement only works with MyISAM and BDB tables. OPTIMIZE
TABLE repairs any deleted or split rows and also sorts indexes. Two examples of the

OPTIMIZE TABLE statement are shown in Figure 14-14.

While the OPTMIZE TABLE statement is running, the table is locked. Be aware
that this can take a fair amount of time, depending on the size of the table.

Caution

Note

Note

184932-4 ch14.F 5/29/02 3:52 PM Page 387

388 Part III ✦ Administration

Figure 14-14: The OPTIMIZE TABLE statement in action

Optimizing Queries
MySQL performs many optimizations for queries and statements without the user

having to be involved. These include processes like examination of clauses and

statements to determine how they could be phrased in a more efficient manner, and

rejection of some statements without running them if they are invalid. MySQL also

performs background optimization of DISTINCT statements and JOIN statements.

If this process is automated, what’s your role? In the previous section I examined

the EXPLAIN statement. The EXPLAIN statement can help you determine the

indexes to use with a SELECT statement. Useful indexes are the key to improving

server performance when your database applications perform many reads.

After the database has been populated, sorting the indexes within the database

may be helpful. You can do this with the myisamchk statement. For example, to sort

on the first index, issue the following command:

myisamchk --sort-index --sort-records=1

Figure 14-15 shows the previous command when run against a few tables within the

ecommerce database. The second attempt in the example fails because no indexes

exist in the cardinfo table.

184932-4 ch14.F 5/29/02 3:52 PM Page 388

389Chapter 14 ✦ Performance Tuning

Figure 14-15: Examples of the myisamchk command to sort indexes
on tables within the ecommerce database

Summary
The use of various MySQL logfiles is a major asset when troubleshooting the server

or dealing with other database problems.

✦ The error log is an important tool for helping to determine why the server

crashes or won’t start.

✦ The binary update log and the query log can help you watch for updates that

cause problems; they can also help you look for any SELECT statements that

create performance problems.

✦ The slow query log shows queries that take longer than the specified time or

don’t use an index.

✦ The mysqladmin command contains useful functions for troubleshooting the

server including flush functions and status and variable functions.

✦ The flush functions with mysqladmin reset or clear counters, logfiles, and

even the MySQL privilege system.

✦ The MySQL CLI also includes flush functions along with functions to show

variables and monitor server performance.

184932-4 ch14.F 5/29/02 3:52 PM Page 389

390 Part III ✦ Administration

✦ Indexes can help speed up operations with databases.

✦ The EXPLAIN statement is used to look at the indexes that a SELECT state-

ment can use or might benefit from.

✦ You can create indexes during the table creation statement or through the use

of a separate CREATE INDEX statement.

✦ The OPTIMIZE TABLE statement is used to repair and defragment MyISAM and

BDB tables.

✦ MySQL performs many optimizations in the background without any user

intervention. Statements are analyzed before they are run to determine valid-

ity and how to phrase them better for improved performance.

✦ ✦ ✦

184932-4 ch14.F 5/29/02 3:52 PM Page 390

Development
✦ ✦ ✦ ✦

In This Part

Chapter 15
Perl Development

Chapter 16
PHP Development

Chapter 17
ODBC/JDBC

✦ ✦ ✦ ✦

P A R T

IVIV

194932-4 Pt04.F 5/29/02 3:52 PM Page 391

194932-4 Pt04.F 5/29/02 3:52 PM Page 392

Perl
Development

I’ve been using Perl for many years. I’ve found the language

extremely useful in server and network administration.

Without Perl, my job would’ve been impossible to do.

MySQL has an application-programming interface (API) for

Perl. It’s called the Perl Database Interface (DBI), and pro-

grammers can use it to create powerful applications that per-

form every function imaginable — from administration tasks

to reporting to Web applications — with a MySQL server. The

Perl-DBI combines full access to the power of MySQL with the

ease of Perl.

The DBI allows access to many different database types.
To enable access to MySQL, however, a MySQL-specific
database driver (DBD) must be used. This chapter refers to
the combination of DBI-and-DBD as either “the DBI” or
“Perl-DBI.”

This chapter builds a few applications that take advantage of

the Perl-DBI. Before building the applications, I show you the

Perl API itself — and the many functions included with it.

The example applications stick to the fundamentals of using

the Perl DBI and the MySQL DBD. For the time being, you can

forego building a guestbook application (a common exercise

in books devoted to Perl). If you want to build a guestbook

later, the examples in this chapter provide a good foundation

for doing so.

Note

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Installing the Perl DBI
and the MySQL DBD

Introducing the DBI

Using functions
with the DBI

Building basic
applications

Building Web
applications

Producing a Web site
for e-commerce

✦ ✦ ✦ ✦

204932-4 ch15.F 5/29/02 3:52 PM Page 393

394 Part IV ✦ Development

Installing the Perl DBI And MySQL DBD
A prerequisite for installing the DBI and the MySQL DBD is having Perl itself

installed. Installation of Perl is beyond the scope of this book; this section

assumes that you already have Perl installed. The steps given here simply

install the Perl-DBI and the MySQL DBD on a Linux system.

Where to get the DBI and DBD
The latest copies of the Perl DBI and MySQL DBD can be obtained at your local

CPAN mirror, http://www.cpan.org. The MySQL DBD is actually a combination of

the DBD for the mSQL database as well as the DBD for MySQL.

Installing the DBI
Once you’ve obtained the DBI and DBD for MySQL, you unpack the archive by using

the tar command in Linux. The command syntax is

tar -zxvf <filename>

and here’s an example:

tar -zxvf DBI-1.20.tar.gz

Unpacking the DBI results in a DBI-<version> directory that contains the files

necessary to create the DBI, as shown in Figure 15-1.

Before unpacking and installing the DBD, you need to compile the DBI software.

Change into the newly created DBI directory; the command syntax is

cd DBI-<version>

and here’s an example:

cd DBI-1.20

The first step towards installation is executing the Makefile for the software. This is

accomplished with the command:

perl Makefile.PL

204932-4 ch15.F 5/29/02 3:52 PM Page 394

395Chapter 15 ✦ Perl Development

Figure 15-1: Unpacking the DBI results in a directory containing the
files necessary to create the actual DBI software

Because the Makefile.PL filename is case-sensitive, entering makefile.pl
doesn’t work.

Executing the command just described yields results similar to Figure 15-2.

Figure 15-2: Executing the Makefile for the DBI

Note

204932-4 ch15.F 5/29/02 3:52 PM Page 395

396 Part IV ✦ Development

The next step for installation of the DBI is to compile the software. This is accom-

plished with the make command. Executing the make command results in a fair

amount of output scrolling on the screen; this is normal (see Figure 15-3).

Figure 15-3: Compiling the DBI

There are two steps remaining for installation of the DBI. The next portion of the

installation is to test the software before actually installing it on the system. This is

accomplished with the make test command. The make test command tests the

DBI to make sure that the upcoming installation works as planned. The output from

the make test command for installation of the DBI should look much like Figure 15-4.

The final stage of the DBI installation is to run the make install command to

actually install the software, as shown in Figure 15-5.

Systems and configurations differ; your output may look slightly different.Note

204932-4 ch15.F 5/29/02 3:52 PM Page 396

397Chapter 15 ✦ Perl Development

Figure 15-4: Output from your make test command (to test the DBI
software before installation) is similar to that shown here.

Figure 15-5: The final stage to actually install the DBI is accomplished
with the make install command.

204932-4 ch15.F 5/29/02 3:52 PM Page 397

398 Part IV ✦ Development

Installing the MySQL DBD
The MySQL Database Driver or DBD is a combined with the driver for the mSQL
database system. As stated previously, the DBD can be obtained at your local CPAN

mirror or at http://www.cpan.org. The installation process for the DBD is some-

what similar to the DBI however there are some questions that must be answered

during the installation.

Use the tar command to unpack the MySQL DBD archive, typically called Msql-
Mysql-modules-<version>.tar.gz. For example:

tar -zxvf Msql-Mysql-modules-1.2219.tar.gz

Change into the newly created Msql-Mysql-modules directory with the cd com-

mand and type perl Makefile.PL to begin the installation process for the MySQL

DBD. You’ll be asked a series of questions, the first of which determines whether

you’d like to install the driver for MySQL, mSQL versions 1 and 2, or all drivers, as

shown in Figure 15-6.

Figure 15-6: The first question for the Makefile command used to
build the database drivers

For the purposes of this installation, I choose only the MySQL option, number 1.

The second question during the installation of the DBD is whether to install

Mysqlperl emulation. (Mysqlperl is the old version of the DBD for MySQL and

Perl.) If you have old applications that may have been created using the syntax of

the Mysqlperl driver, then you should say yes to this option. For this installation, I

don’t need Mysqlperl emulation, so I answer N for no.

The third question asks for the location of the MySQL server files. For my test server,

the default of /usr/local is correct. However, your installation of MySQL may be

204932-4 ch15.F 5/29/02 3:52 PM Page 398

399Chapter 15 ✦ Perl Development

(and probably is) in a different location. As stated in the prompt in Figure 15-7, the

location should be where the Makefile can find the ‘include’ directory of the

MySQL installation.

Figure 15-7: The location of the MySQL server files is necessary. The
default (/usr/local) is correct for my example server.

The next series of questions sets the parameters for testing of the driver. The first

question is the name of the database that the installation process should use for test-

ing. The MySQL server usually includes a database called ‘test’; therefore this is an

easy choice to leave at the default of ‘test’ at the prompt. The second question in

this series asks for the name of the server to use for testing. (The test server shown

in Figure 15-8 runs on the local machine; the default of localhost is acceptable.)

Figure 15-8: Using the test database for testing, with the server
running on the local machine. Both defaults are accepted if you
press Return or Enter.

204932-4 ch15.F 5/29/02 3:52 PM Page 399

400 Part IV ✦ Development

The next two questions have no defaults. The first asks for the username to use for

testing the driver; the second asks for the password for that user. I’ll be using the

root user account for testing and giving that password as well, as in Figure 15-9.

Figure 15-9: Using the root user account for testing of the MySQL DBD

The questions you just answered create files that serve as the basis for the next

step in the process: the actual creation of the DBD. Warnings about a missing

library and Data-Showtable can be ignored. Begin this next phase by typing make.

You begin the testing phase by typing the following command:

make test

If you happen to mistype (or specify a user, password, or test database that doesn’t

exist) during the initial stage of the installation, this testing phase fails miserably

and shows errors that resemble Figure 15-10.

However, if you provided correct information for the testing portion of the initial

phase the tests should complete successfully, as shown in Figure 15-11.

204932-4 ch15.F 5/29/02 3:52 PM Page 400

401Chapter 15 ✦ Perl Development

Figure 15-10: The testing phase of the DBD installation fails if you
provided incorrect information during the initial stage of the installation.

Figure 15-11: Successful testing of the DBD

204932-4 ch15.F 5/29/02 3:52 PM Page 401

402 Part IV ✦ Development

Finally, install the MySQL Perl DBD by typing the following command:

make install

The Normal installation dialog box should appear while the DBD is installed in the

proper locations (see Figure 15-12).

Figure 15-12: Normal installation output when you run the make
install command to install the MySQL DBD

Other specific drivers and tools can be installed to work with MySQL and Perl; their

installation process looks much the same as this one.

Introducing the DBI
The Perl DBI is the name for a database-independent set of software programs that

a programmer can use with many different databases — using the same functions in

every case. The DBI saves having to account for the multitude of access methods

used for different databases. For example, the DBI enables the programmer to use

different database drivers (DBDs) for databases such as Oracle, mSQL, Sybase, and

others — without having to learn an entirely new syntax to program each one.

The upcoming portion of the chapter introduces the DBI itself — in particular, the

basics of DBI use (such as connecting to a database and disconnecting), as well as

the DBI’s error-handling capability.

Basic DBI Usage
The DBI is built around an object-oriented programming style. Within that context,

the database driver is initialized, connections to the database are created, commands

204932-4 ch15.F 5/29/02 3:52 PM Page 402

403Chapter 15 ✦ Perl Development

and statements are run, and the connections are destroyed. Whenever you create an

object, the DBI identifies it — as a driver, a database, or a statement — by associating

it with one of three logical markers (known as handles) that correspond to those

three types of objects: (drivers, databases, or statements). The handles are actually

pointers to specific instances of objects.

From a programming standpoint, you declare that you’d like to use the DBI in your

program by adding the following line near the beginning of your program:

use DBI;

Driver handles
DBI driver handles are available for many database types. For the purposes of this

book, you need be concerned only with the MySQL driver handle.

You can use more than one driver handle within the same program to connect to
different database types. You can only use one driver handle per database. (Then
again, why would you need more than one handle to the same driver?)

You initialize the driver handle (or more properly, the DBI does so) behind the

scenes. For example, the driver handle for MySQL is created when you call the

connect method for the DBI.

Database handles
Database handles are the controls you use to manipulate database-related programs.

When a database handle is created, you connect to the MySQL database and provide

credentials such as username, password, and database name. These credentials

are the same as those you would supply to connect with the MySQL CLI (or the

mysqladmin command and so forth).

The standard naming scheme for a database handle is the $dbh variable (which I

use throughout this chapter). A database handle is created automatically whenever

you call the connect method; the syntax looks like this:

$dbh = DBI->connect($datasource, $credentials)

The parent driver handle is also created — automatically — when the database

handle is created. (Connection and disconnection get a closer look in an upcoming

section of this chapter.)

MySQL allows multiple simultaneous connections when using methods such as

the CLI; connections using the DBI have the same capability. Therefore, multiple

database handles can be created that attach to the same database. Further, each

database handle is a completely separate object; you need not worry about

commands or results colliding with each other.

Tip

204932-4 ch15.F 5/29/02 3:52 PM Page 403

404 Part IV ✦ Development

Statement handles
Statement handles are the means by which actual SQL and related statements

are executed against the MySQL server. The statement handle is the child of the

database handle; can issue multiple statements using the same database handle.

Each statement you issue gets its own statement handle, usually referred to by the

$sth variable name. Think of this process as issuing multiple statements from

within the CLI. You don’t have to reconnect to the CLI for each SELECT statement

(for example); you can issue multiple statements.

Connecting to and disconnecting
from the database with the DBI
Interaction with the database can only be done after a connection is made. The

connection is known as a database handle and usually referred to by the $dbh

variable name. The driver handle is created in the background when a connection

is made.

Use the connect method to create a database handle and connect to the database.

When using the connect method, you must supply credentials as you would if you

were connecting through the CLI. For example, if you have to specify a password

(and you should), then connecting through the CLI means you have to specify that

same password when you connect through the DBI. Figure 15-13 shows some failed

connections attempted with a DBI-based Perl program; they fail when proper

credentials aren’t supplied.

Figure 15-13: Errors when a DBI-based application doesn’t have
proper credentials to connect to the database requested

204932-4 ch15.F 5/29/02 3:52 PM Page 404

405Chapter 15 ✦ Perl Development

The authentication scheme is the same for a DBI-based Perl application as it is for

any other connection to the database. The username supplied must be allowed

access from the host where the program is running; the username must be allowed

to access the database; the password supplied with the username must match; and

other credentials must be correctly supplied, as is the case with any other connec-

tion to the database server.

Recall that the basic syntax for a connection is

$dbh = DBI->connect ($datasource, $credentials);

The $datasource for MySQL contains a reference to the MySQL DBD followed by

the optional name of the database you want to connect to, followed by the optional

hostname of the database server that houses the database. Here’s an example:

$dbh = DBI->connect (“DBI:mysql:ecommerce”, $credentials);

would connect to the ecommerce database on the local host and create a database

handle ($dbh), assuming the credentials supplied in $credentials are correct.

For example, Figure 15-14 shows a small example application that, when executed,

issues a simple “Connection successful” output message.

Figure 15-14: A small application for connecting to the ecommerce
database

As stated previously, the database itself is optional within the Datasource portion

of the DBI connect operation that creates the object. The following command

(which creates a database handle) is valid as well:

$dbh = DBI->connect (“DBI:mysql:”, $credentials);

204932-4 ch15.F 5/29/02 3:52 PM Page 405

406 Part IV ✦ Development

Other portions of the Datasource include the optional host and port. If no host or

port is supplied, the host is assumed to be localhost and the port is assumed to

be the default port, 3306. For example, Figure 15-15 shows different methods for

supplying the host and/or port for connecting to the database.

Figure 15-15: Methods for specifying host and port for the Datasource
portion of the database handle

Notice the word undef within the program in Figure 15-14. The undef is a place-

holder where the username would normally go. In this instance, undef is there; the

DBI takes the value of the user environment variable and puts it in the place of the

username credential.

If you want to supply the username, you should enclose the username in single or

double quotation marks. However, if you supply the username as a variable, the DBI

interpolates the variable without requiring you to use quotes. Figure 15-16 shows a

few examples of correct methods for specifying the username credential as part of

the $dbh creation.

If you supply undef as the password or don’t use a password at all, it is assumed

that no password is used. This is as opposed to specifying a blank password.

Figure 15-17 shows examples of two scripts and the errors that result from running

them with the different password methods. Notice the error from the first script

(where MySQL believes no password is specified) and from the second script

(where a blank password is specified).

204932-4 ch15.F 5/29/02 3:52 PM Page 406

407Chapter 15 ✦ Perl Development

Figure 15-16: Various methods for specifying the username portion
of the credentials when creating a connection

Figure 15-17: Different methods for specifying a password, one
using the undef placeholder and one specifying a blank password

204932-4 ch15.F 5/29/02 3:52 PM Page 407

408 Part IV ✦ Development

Of course, you could supply the credentials inside one variable as well (see

Figure 15-18).

Figure 15-18: Creating the proper credentials inside a variable.
$credentials is also a valid way to connect.

Also as the credentials portion of the connection can be supplied in a variable, the

Datasource could also be supplied in whole or in part by variable interpolation.

For example, you could define the host as $host, the database name as $database,

and so forth: You could even supply the entire Datasource as a variable, $data-
source (or the name of your choosing.) Figure 15-19 illustrates some of these

points.

Figure 15-19: Specifying portions of the Datasource through the use
of variables can help to make the program more readable.

Examining what I have defined so far:

$dbh = DBI->connect($datasource, $credentials);

204932-4 ch15.F 5/29/02 3:52 PM Page 408

409Chapter 15 ✦ Perl Development

I’d like to introduce the final portion of database handle creation with the DBI and

MySQL DBD. The final portion is optional and consists of attributes or elements

that affect the behavior of the handle itself. Therefore, adding this onto the $dbh
definition I’ve been using:

$dbh = DBI->connect($datasource, $credentials, \%elements);

A number of elements are available here, most notably those that define how errors

are handled and what to do with extra blank spaces for CHAR column types. I’ll

examine error handling in the next section; therefore I’ll save further discussion of

the optional elements until then.

Up until now, I’ve looked at methods for connecting to the database. By now, you

have more than enough information to connect to a database. However, disconnect-

ing from a database is important as well.

Normally, when your program exits, the disconnection is automatic thus saving the

programmer the work of having to explicitly issue a disconnect command. In prac-

tice, however, always explicitly disconnect your database handles. This is because

there are times when using multiple handles in a program that you may need to dis-

connect old handles to preserve resources.

If you do not issue an explicit disconnect, Perl disconnects the handle as part of the

DESTROY process when a program terminates. You may see an error or warning like:

Database handle destroyed without explicit disconnect

This should remind you to go back and issue a disconnect statement within your

program. The syntax for the disconnect method is:

$dbh->disconnect;

Therefore, you can see that it is possible to disconnect only certain database

handles. For example, if your program has three database handles, $dbh0, $dbh1,

$dbh2, you could simply issue a disconnect() to the specific handle or handles

that you no longer need.

You may want to check the return status of the disconnection to make sure that it

was successful. You can do this by checking the return value from the disconnect
call, using the following command:

$dis = $dbh->disconnect;

If the value of $dis evaluates true, then the disconnection was successful; other-

wise the disconnection failed.

204932-4 ch15.F 5/29/02 3:52 PM Page 409

410 Part IV ✦ Development

Handling errors with the DBI
In most instances, error handling is automatic with the DBI. This was evidenced by

earlier Figures and examples in this chapter. The error messages look quite similar

to those you would see with other MySQL tools such as the CLI or mysqladmin.

Sometimes you may want to disable this automatic error-checking in favor of man-

ual error checking (or a combination of automatic and manual).

Error handling is configured using the attributes or elements discussed in a previ-

ous section. There are two attributes of DBI error-checking: PrintError and

RaiseError. By default, PrintError is enabled. PrintError simply prints the

error message to the screen and continues execution of the program as if nothing

had happened. This is bad if your program is relying on information from the

database and a statement or command fails to execute.

To illustrate this behavior, take a look at the program in Figure 15-20. In this

program, I query a database for a number and then perform a computation based

on that number. I allow PrintError to perform the error checking in the program,

but do no further error handling myself. You can see the results of the program in

action in Figure 15-20 as well. The program happily continues, even though the

query execution failed. If these results were to be automatically e-mailed to me

using a scheduling program such as cron, I wouldn’t see these error messages.

Figure 15-20: A program continues execution in the event of an
error when using the default PrintError for error-checking.

204932-4 ch15.F 5/29/02 3:52 PM Page 410

411Chapter 15 ✦ Perl Development

Though disabled by default, the RaiseError attribute causes the program to termi-

nate immediately upon encountering an error with the DBI. By creating an attribute

hash, %attr, and setting RaiseError to 1, the RaiseError attribute becomes

operational and thus terminates the program if an error is encountered. Figure

15-21 shows an example of the same program from Figure 15-20 with the %attr
hash created and then appended to the database handle initialization.

Note the use of the backslash to escape the % in the database handle creation.

Figure 15-21: Using RaiseError to terminate a program immediately
if an error occurs

Notice in Figure 15-21 that the same error message is printed twice. This is expected

behavior. Remember that PrintError is enabled by default. Therefore, when an

error occurs, PrintError sees it and prints the error. Only when RaiseError
handles the error does the program terminate. If you want to disable PrintError,

set its value to 0, as shown in Figure 15-22.

Tip

204932-4 ch15.F 5/29/02 3:52 PM Page 411

412 Part IV ✦ Development

Figure 15-22: Setting PrintError to 0 in the %attr attribute hash to
prevent duplicate printing of the error message

You can also toggle the behavior of the PrintError and RaiseError attributes

within the program. For example, if you want to disable all error checking for a

certain statement you can set the values of PrintError and RaiseError to 0

and then re-enable one or both after the statement executes. Figure 15-23 shows

an example that disables all error checking by the DBI, performs a statement,

and then re-enables the default PrintError error-checking method.

Figure 15-23: Selective error checking within the same program

204932-4 ch15.F 5/29/02 3:52 PM Page 412

413Chapter 15 ✦ Perl Development

If you choose to disable the error-checking feature, you must perform error check-

ing and handling manually. This can be achieved in numerous ways including the

die or warn functions. Another method for manual error checking is the use of an

IF test. Because most operations with the DBI return a value of undef for a failure,

if the value from the operation does not exist, then you can assume that the execu-

tion failed. If it evaluates true, then you can be assured that the database handle

was created. Figure 15-24 shows some examples of manual error checking.

I’ve been using an IF test in the examples throughout this chapter to test whether
the $dbh database-handle variable evaluated to true or false.

Figure 15-24: Using manual error-checking methods

Built-in error status methods
There are built-in methods for working with error status messages. The example

program in Figure 15-24 showed one of these, errstr. Another method that I’ll

highlight is the err() method. The errstr() method contains the string text

message of the error. The err() method contains the error number corresponding

to the error.

The errstr() and err() methods exist both at the DBI level and at the handle

level. At the DBI level, as used in Figure 15-24, the methods contain the information

for the last-used handle. The handle-level methods are called as shown:

$dbh->errstr();
$dbh->err();

Modifying the program from Figure 15-24 to use the handle methods is quite simple,

as shown in Figure 15-25.

Tip

204932-4 ch15.F 5/29/02 3:52 PM Page 413

414 Part IV ✦ Development

Figure 15-25: Using manual error checking and the handle-level
error methods

Using handle-level error methods you could assign the err results to variables for

later testing. An example of a program using this type of test is shown in Figure 15-26.

Figure 15-26: Using handle-level error methods and assigning one to
a variable for later use

204932-4 ch15.F 5/29/02 3:52 PM Page 414

415Chapter 15 ✦ Perl Development

Functions with the DBI
So far, I’ve discussed four functions as an introduction to the DBI:

connect()

disconnect()

err()

errstr()

I’ve used some other functions in examples. This section examines those functions,

along with others for use with the DBI and MySQL DBD.

Going back to examples shown in previous figures in this chapter you’ll see the cre-

ation of a statement handle, $sth, and the use of the prepare() method along with

the execute() method. The prepare() method takes an SQL statement and stores

or parses it for later execution by the DBI. The execute() method then takes that

prepared statement and runs it against the database engine. The execute()
method returns the number of rows affected for non-SELECT statements. With a

SELECT statement a True value is returned upon successful execution.

The examples of the prepare() and execute() methods shown previously were

done in such a manner as to produce an error. Therefore, I’ll leave those examples

alone and show a new example program with a successful prepare() and

execute() method call, as shown in Figure 15-27.

Figure 15-27: A successful execution of a MySQL statement using the
Perl DBI

The prepare() and execute() methods both take optional arguments or place-

holders that are substituted into the actual statement at execution time, much like

a variable would be. The placeholder is the question mark (?). The bind_param()
method substitutes the actual values for the question-mark placeholder when using

204932-4 ch15.F 5/29/02 3:52 PM Page 415

416 Part IV ✦ Development

prepare(). Alternatively, the substitution can take place at execution time by

supplying an argument to the execute() call. Figure 15-28 shows an example of

this behavior.

Figure 15-28: Using a placeholder to substitute a value at execution
time for a SELECT statement

An example of the bind_param function is shown in Figure 15-29.

Figure 15-29: Using the bind_param function to substitute values in
a prepare() call

Naturally, you could substitute variables for the values in the bind_param argu-

ment list. The bind_param argument list also takes an optional third argument for

the type of data (such as CHAR, NUMERIC, and so on).

204932-4 ch15.F 5/29/02 3:52 PM Page 416

417Chapter 15 ✦ Perl Development

Another function in Figures 15-27 through 15-29 is of particular interest: fetchrow().

This and several related functions retrieve results from executed MySQL statements

by using the DBI. The fetch functions are listed in Table 15-1.

Table 15-1
Fetch functions to retrieve statement results

Function name Description

fetchall_arrayref Retrieves all data as a reference to an array.

fetchrow() Retrieves one value. Useful where one value is selected
as a result.

fetchrow_array() Retrieves results and places them in an array.

fetchrow_arrayref() Retrieves data as a referenced array.

fetchrow_hashref() Retrieves data as a hash. Operates similarly to
fetchrow_arrayref.

I believe that examples of the different fetch functions serve better than a written

explanation. For the examples in Figures 15-27 through 15-29, I retrieved only the

first row of results. If you want to retrieve more than one row using the fetchrow()
method, you have to loop through the results with a function such as while, as

shown in Figure 15-30.

Figure 15-30: Retrieving all the results for the query, using a while
loop and fetchrow

204932-4 ch15.F 5/29/02 3:52 PM Page 417

418 Part IV ✦ Development

Figure 15-30 is a small useful program for determining the hosts that a user is

allowed to connect from. The program takes the username to search for as an

argument and returns the names of the hosts for which the user has an entry

in the user table of the MySQL grants database.

If the host field of the user table is blank, the program from Figure 15-30 may
return incomplete or incorrect results.

Figure 15-31 shows an example of the fetchall_arrayref() method for retrieving

query results. The method gets all the results at once and places them in an array

with each row contained as part of the array. As this is a multi-dimensional array,

the results need to be accessed as such.

Figure 15-31: The fetchall_arrayref() method in action

Figure 15-32 modifies the same program from the previous two figure illustrations

to use the fetchrow_array() method. This method is frequently used for retriev-

ing results where the SELECT statement queries for more than one column.

The final two methods, fetchrow_arrayref() and fetchrow_hashref(),

both retrieve results as references to arrays or hashes, respectively. With

fetchrow_hashref() the first row of results contain the field names for

the values with the actual values being stored thereafter. An example of

the fetchrow_arrayref() method is shown in Figure 15-33.

Note

204932-4 ch15.F 5/29/02 3:52 PM Page 418

419Chapter 15 ✦ Perl Development

Figure 15-32: The fetchrow_array() method is frequently used as a
means to retrieve results from a query.

Figure 15-33: An example of the fetchrow_arrayref method for
retrieving results from a query

204932-4 ch15.F 5/29/02 3:52 PM Page 419

420 Part IV ✦ Development

Figure 15-33 illustrates the fetchrow_arrayref() method. Notice that the first

call retrieves the host from the query, and the second call actually retrieves the

password corresponding to the second entry or second row of results. The third

method call retrieves an entire row of results from the query at once.

Not all interactions with the database require both a prepare() and execute()
method call. The do() method enables you to execute statements without having

to make two separate calls as with prepare() and execute(). Like the prepare()
and execute() methods, do() can accept placeholders. The placeholders are

question marks and should be included as the last argument of the do() method

call. Figure 15-34 shows an example of do().

You cannot retrieve results using a do() method call, so it is not appropriate for
SELECT statements. The do() method does return the number of rows affected
by the statement. Therefore, it can be helpful to store this value for sanity check-
ing. In other words, you can compare the number of returned rows to ensure that
the value makes sense for the given query.

Figure 15-34: Using the do() method call to execute a statement
without having to prepare it in a separate statement

Another method, dump_results(), can assist to print results for testing

purposes while you are programming. dump_results() calls another method,

neat_string(), to format the results and make them look nicer as output. The

dump_results() method can take up to five arguments. The syntax is as follows:

$result = DBI::dump_results($sth, $length, $line_break,
$field_break, $filedes);

Note

204932-4 ch15.F 5/29/02 3:52 PM Page 420

421Chapter 15 ✦ Perl Development

The first argument, $sth or the statement handle, is required. The second argu-

ment, represented by $length in the example, is the maximum length for the

results to print. The third and fourth arguments specify how you want to separate

the lines and fields respectively. The default for a line break is the newline (\n),

and the default for a field separator is a comma. The final argument, represented

by $filedes, is a pointer to a file handle to indicate a file to which the results

should be dumped (instead of to the screen) on STDOUT. You don’t save the

results of the dump_results() method; rather, you use Perl’s print function

to print them.

More than one figure is necessary to fully illustrate the syntax and use of the

dump_results() method. Figure 15-35 shows a basic instance; Figure 15-36

shows a basic usage. Figure 15-36 demonstrates setting a maximum length for

the second argument.

Figure 15-35: A basic use of the dump_results() method

Figure 15-37 shows a usage of field separators and the manual setting of line breaks;

Figure 15-38 demonstrates the use of a file handle to dump results into a file instead

of to the screen.

204932-4 ch15.F 5/29/02 3:53 PM Page 421

422 Part IV ✦ Development

Figure 15-36: Setting the maximum length to 8 with the second
argument of the dump_results() method

Figure 15-37: Using an odd combination of characters as a field
separator and manually setting the line break to a newline

204932-4 ch15.F 5/29/02 3:53 PM Page 422

423Chapter 15 ✦ Perl Development

Figure 15-38: Using a file handle to dump the results to a file instead
of to STDOUT

Though not technically necessary for the MySQL DBD, the finish() method can

be used to recycle statement handles and improve the readability of your code. The

finish() method releases the remaining results from a statement handle and frees

it for another use. The MySQL DBD does not require you to finish before issuing

another prepare statement, but doing so can greatly assist in tracing code if you

need to go back and examine the code at a later date.

Finally, if you have to clean up input received from a user or through a Web form,

you should know about the quote() method that makes strings safe for use inside

an SQL statement. It takes a sole argument — the string to work with — and results

in an SQL-safe string. Figure 15-39 shows an example of the quote() method.

When using the quote() method, you do not need to include quotes around the
strings inside queries. Notice, for example, the change in the way the variable
$safeuser is called in Figure 15-39.

Note

204932-4 ch15.F 5/29/02 3:53 PM Page 423

424 Part IV ✦ Development

Figure 15-39: The quote() method serves to make strings SQL safe.

Building Basic Applications
I’ve been making basic applications throughout this chapter — inside examples of

error messages, queries, and updates. This section expands on some of those exam-

ples to show a basic Perl-based DBI application that uses functions and methods

discussed in the previous section. The goal is to prepare you for building the appli-

cations needed to manage an e-commerce Web site in a later section.

MySQL User Manager
An earlier example created a small application to look at the hosts from which a

given user is allowed to connect. I’ll expand on that example here, making a more

powerful user manager to examine the privileges that a given user/host combina-

tion has. As a starting point, Figure 15-40 illustrates the earlier program.

This program, though fine for the examples, is woefully inadequate when it comes

to error checking. For example, if the host field is blank, the program evaluates the

while loop as false and stops iterating through it. Further, no input validation is

done. I’ve made changes to the program to make it check for errors and continue

through the while loop even if the host is blank. I’m doing some shenanigans

on the actual query to make sure that it always returns something regardless of

whether the host is blank. I added the user to the query results so as to make it

always evaluate true for the while loop. The program is shown in Figure 15-41.

204932-4 ch15.F 5/29/02 3:53 PM Page 424

425Chapter 15 ✦ Perl Development

Figure 15-40: A small program to query the hosts for a given user in
the MySQL grants database

Figure 15-41: Adding error checking and other improvements to a
small user management program with the Perl DBI

204932-4 ch15.F 5/29/02 3:53 PM Page 425

426 Part IV ✦ Development

To make the program even more useful I’ve added the ability to look up the privi-

leges that a given user/host pair has. This shows an example of another type of

statement being performed on the MySQL database other than a SELECT. The pro-

gram is too large to fit into a figure illustration but I’ve included the program here

and also some sample output in Figure 15-42.

#!/usr/bin/perl

use DBI;

This program looks up the hosts from which a
given user is allowed to connect.
Also looks up grants for a user, given the @ symbol
in the argument list.

$user = $ARGV[0];

Test to make sure the user entered a username.
if (! $user) {

print “No user specified. Usage: <program> \
<username>\n”;
}

$dbh = DBI->connect(“DBI:mysql:mysql:”,undef,’evh5150’);

if (! $dbh) {
print “Connection failed!!\n\n”;
die();

}

If there’s an @ symbol then the user wants to look up
grants.
if ($user =~ m/\@/) {

($user,$inhost) = split(/\@/, $user);

Make sure the username and host are safe to
send to MySQL.
$quoteduser = $dbh->quote($user);
$quotedhost = $dbh->quote($inhost);
&priv($user,$inhost);

}
else {

User wants to simply lookup the hosts allowed
for given username.

Make sure the username is safe to
send to MySQL.
$quoteduser = $dbh->quote($user);

204932-4 ch15.F 5/29/02 3:53 PM Page 426

427Chapter 15 ✦ Perl Development

$query = “SELECT host,user FROM user WHERE \
user = $quoteduser”;
$sth = $dbh->prepare($query);
$sth->execute();

while (($host,$username) = (\
$sth->fetchrow_array())) {

if ($host eq ‘’) {
print “User $user has a \
blank host entry.\n”;

}
else {

print “User $user is allowed \
to connect from: $host\n”;

}
}

}

sub priv
{

This subroutine looks up the grants for the given
user/host pair.

($user,$host) = @_;

$query = “SHOW GRANTS FOR $user\@$host”;
$sth = $dbh->prepare($query);
$sth->execute();

while ($grant = ($sth->fetchrow())) {
print “$grant\n”;

}

}

Figure 15-42: Usage examples of the MySQL User Management
program I’ve built with the DBI

204932-4 ch15.F 5/29/02 3:53 PM Page 427

428 Part IV ✦ Development

Other additions and modifications can be made to the simple user manager pro-

gram that I’ve started. I’d still like to see better error checking in it as well as more

features. Another modification that would be useful would be enabling the program

to add users to MySQL. If a user isn’t found, the program could ask whether to add

the user and then ask for the password.

Chapter 19 examines the integration of Linux and MySQL and offers some addi-
tional programs for management and administration.

The user-management program given in this section is included on the CD-ROM
with this book.

Building Web Pages with the DBI
The e-commerce Web site that I’m building is mainly managed with Web-based

tools. This offers the advantage of enabling employees to update the Web site from

anywhere and with minimal training. Further, the use of Web-based tools for man-

agement lessens the risk of a user error accidentally ruining the data. This section

examines how to build Web pages with data from a MySQL database. This is in

preparation for the final section of this chapter, which entails the building of the

e-commerce Web site.

Programs written to interact with a Web server are sometimes referred to as

Common Gateway Interface or CGI programs, sometimes even as CGI scripts. Perl

programs written for the Web are also sometimes called CGIs and are typically exe-

cuted by the Web server. A better term would probably be Web applications. For

this section I’ll be referring to CGI programs or CGI scripts interchangeably with

Web applications.

This section assumes that you have a Web server running and the ability to execute

CGI programs with the Perl module CGI.pm. In the background, programs written

for the Web operate the same as non-Web based programs; the same Perl routines

that work in other programs work with a CGI script. It should be noted that because

CGIs typically are executed by non-privileged Web servers that not all routines may

work the same.

For the purposes of this book, a static page is one contained entirely in a file, typi-

cally with a .html or .htm extension. The page rarely changes; when it does, it is

edited by hand. A dynamic page is a page built automatically (or by a process other

than writing the HTML each time), and it contains data that changes often.

On the
CD-ROM

Cross-
Reference

204932-4 ch15.F 5/29/02 3:53 PM Page 428

429Chapter 15 ✦ Perl Development

A simple Web application to query MySQL
One of the basic building blocks of a CGI program is the Web form called with the

<form> HTML tag. The Web form calls an action or program to execute. This pro-

gram is the CGI. As a simple example, consider the Web page in Figure 15-43 — a

simple button created on a static Web page, using the HTML shown later. When

clicked, that button calls a CGI (contained in Figure 15-44) and outputs the results

to another Web page (as shown in Figure 15-45).

Figure 15-43: A static Web page with a form
button to call a CGI

The HTML to produce the static Web page from Figure 15-43:

<html>
<center>
Get User Information
<form action=”/cgi-bin/fig44.cgi”>
<input type=button name=fig44 value=”Submit”>
</form>
</center>
</html>

204932-4 ch15.F 5/29/02 3:53 PM Page 429

430 Part IV ✦ Development

Figure 15-44: The CGI that is executed when the form button is selected

Figure 15-45: The results from the CGI automatically build a
dynamic Web page.

Looking at the code in Figure 15-44, notice the addition of the use CGI directive.

This addition takes advantage of the CGI.pm module and all its features to ease the

burden on CGI programmers. Also note the addition of the following line:

print “Content-Type: text/html\n\n”;

204932-4 ch15.F 5/29/02 3:53 PM Page 430

431Chapter 15 ✦ Perl Development

The previous line of code prints an HTML header to the Web browser so it knows to

read the output as a Web page. Finally, notice that the newline characters (\n) in

the print statements have been replaced with the HTML tag for a paragraph, <P>.

Accepting input from a form
The program shown in the previous section isn’t powerful. I can enhance the pro-

gram by allowing for user input, much like the User Management program shown in

previous examples in this chapter. I’ll add a text input box to enable the user to

input a username to query against the MySQL database.

Much of the error checking that I added in the previous section is still applicable.

The HTML for the new version of the Web page is shown with the resulting page in

Figure 15-46.

<html>
<center>
Enter a user to retrieve User Information
<form method=post action=”/cgi-bin/fig47.cgi”>
<input type=text length=30 name=user><P>
<input type=submit name=fig44 value=”Submit”>
</form>
</center>
</html>

Figure 15-46: An input form for a Web-based version of the
user manager program

The code for the Web version of the user manager is as follows:

#!/usr/bin/perl

use DBI;

204932-4 ch15.F 5/29/02 3:53 PM Page 431

432 Part IV ✦ Development

use CGI qw(:standard);

This program looks up the hosts from which a
given user is allowed to connect.
Also looks up grants for a user, given the @ symbol in the
argument list.

Get the input from the form.
$user = param(“user”);

Test to make sure the user entered a username.
if (! $user) {

print “No user specified. Usage: <program>
<username><P>”;
}

Print an HTML header
print “Content-Type: text/html\n\n”;

Connect to the database
$dbh = DBI->connect(“DBI:mysql:mysql:”,suehring,’evh5150’);

if (! $dbh) {
print “Connection failed!!<P>”;
die();

}

If there’s an @ symbol then the user wants to look up
grants.
if ($user =~ m/\@/) {

($user,$inhost) = split(/\@/, $user);

Make sure the username and host are safe to
send to MySQL.
$quoteduser = $dbh->quote($user);
$quotedhost = $dbh->quote($inhost);
&priv($user,$inhost);

}
else {

User wants to simply lookup the hosts allowed
for given username.

Make sure the username is safe to
send to MySQL.
$quoteduser = $dbh->quote($user);

204932-4 ch15.F 5/29/02 3:53 PM Page 432

433Chapter 15 ✦ Perl Development

$query = “SELECT host,user FROM user WHERE \
user = $quoteduser”;
$sth = $dbh->prepare($query);
$sth->execute();

while (($host,$username) = ($sth->fetchrow_array()))
{

if ($host eq ‘’) {
print “User $user has a \
blank host entry.<P>”;

}
else {

print “User $user is allowed \
to connect from: $host<P>”;

}
}

}

sub priv
{

This subroutine looks up the grants for the given
user/host pair.

($user,$host) = (@_);

$query = “SHOW GRANTS FOR $user\@$host”;
$sth = $dbh->prepare($query);
$sth->execute();

while ($grant = ($sth->fetchrow())) {
print “$grant<P>”;

}
}

The code is basically the same as the code used to produce Figure 15-42. The

notable addition or change is the following line:

$user = param(“user”);

Instead of getting the user for input from the command line in $ARGV[0], the input

comes from the Web form. The param() function is contained the CGI.pm module.

Some output examples from this program are shown in Figures 15-47 and 15-48.

204932-4 ch15.F 5/29/02 3:53 PM Page 433

434 Part IV ✦ Development

Figure 15-47: The Web version of the MySQL user-manager
program

Figure 15-48: Another example of the Web version of the user-
manager program, calling the program with the @ syntax

The examples in this section show how easy it is to write MySQL enabled applica-

tions for the Web in Perl. Knowledge of Perl is the key and beyond that implement-

ing and modifying the programs for MySQL is a simple task.

Producing an E-Commerce Web site
The goal of this section is to produce a successful e-commerce Web site (built using

the Perl DBI) that includes behind-the-scenes tools that aren’t on the Web, as well

as the engine that runs the Web site itself. The previous two sections have shown

204932-4 ch15.F 5/29/02 3:53 PM Page 434

435Chapter 15 ✦ Perl Development

examples of building basic applications using the Perl DBI, as well as how to use

the Perl DBI to build dynamic Web pages based on data in the MySQL database.

This section combines those two components to produce a fully functional, albeit

simple, e-commerce Web site.

Database layout
The initial database design and layout has already been done in previous chapters.

I’ve modified it somewhat, altering it as I develop the Web site. The database layout

now is as follows:

CREATE TABLE customer (
email_address varchar(75) NOT NULL PRIMARY KEY,
first_name varchar(50),
last_name varchar(50),
address1 varchar(50),
address2 varchar(50),
customer_zip varchar(10),
area_code char(3),
telephone_number char(7)

);
CREATE TABLE cardinfo (

card_id int NOT NULL PRIMARY KEY,
ccnum varchar(16),
ccexp date,
name_on_card varchar(100),
email_address varchar(75)

);
CREATE TABLE cardtype (

card_id int NOT NULL PRIMARY KEY,
card_type varchar(20)

);
CREATE TABLE locale (

zip varchar(10) NOT NULL PRIMARY KEY,
city varchar(50),
state char(2)

);
CREATE TABLE manufacturer (

id int NOT NULL PRIMARY KEY,
name varchar(50),
address varchar(50),
zip varchar(10),
area_code char(3),
telephone_number char(7),
contact_name varchar(50)

);
CREATE TABLE product (

id int NOT NULL PRIMARY KEY auto_increment,
name varchar(50),
artist varchar(50),

204932-4 ch15.F 5/29/02 3:53 PM Page 435

436 Part IV ✦ Development

price decimal(9,2),
quantity integer,
manu_id int,
description varchar(255),
category_id int

);
CREATE TABLE producttype (

id int NOT NULL PRIMARY KEY,
category varchar(50)

);

If you have the ecommerce database on your server now, it would be a good time
to drop the database and start over with a fresh version, using the layout listed in
this section.

One table, cardtype, needs to have a couple of credit card types entered into it. I

could build a Web page and CGI for this purpose, but this data doesn’t change fre-

quently. Manual entry is quicker if all you need put in the database is the two card

types that the site accepts.

INSERT INTO cardtype VALUES (1,’Visa’);
INSERT INTO cardtype VALUES (2,’Mastercard’);

Related to the cardtype input, the producttype table also needs to be populated

with some initial data. I’ll be selling music, movies, books, and video games at the

site so I’ll use three product types or categories.

INSERT INTO producttype VALUES (1, ‘CD’);
INSERT INTO producttype VALUES (2, ‘DVD’);
INSERT INTO producttype VALUES (3, ‘Book’);
INSERT INTO producttype VALUES (4, ‘PC CD-ROM Video Game’);

Building an inventory-input program
The first step to getting the site online is to get products listed in the database so

people can locate them and buy them. To accomplish this task, I build a CGI that

enables easy input of inventory items.

A static Web page can be used as the initial form for input. To input any of the four

product types I’ll need to enter the name of the product, the artist or author, the

price, quantity on hand, the manufacturer if applicable, and a short description of

the product. The simple static page is shown in Figure 15-49; the HTML to produce

that page is as follows:

<html>
<form action=”/cgi-bin/inventory.cgi”>
Name of product:
<input type=text name=name length=30><P>
Artist/Author/Actor/Producer

Note

204932-4 ch15.F 5/29/02 3:53 PM Page 436

437Chapter 15 ✦ Perl Development

<input type=text name=artist length=30><P>
Price: $
<input type=text name=price length=9><P>
Quantity on hand:
<input type=text name=quantity length=5><P>
Manufacturer:
<input type=text name=manu_id length=9><P>
Category:
<input type=text name=category_id length=4><P>
Short Description:
<input type=text name=description length=250><P>
<input type=submit name=submit value=”Add to Database”><P>
</form>
</html>

Figure 15-49: A static page for entering inventory

The CGI to add the products to the database is as follows:

#!/usr/bin/perl

use DBI;
use CGI qw(:standard);

Get the input from the form.
$name = param(“name”);
$artist = param(“artist”);
$price = param(“price”);

204932-4 ch15.F 5/29/02 3:53 PM Page 437

438 Part IV ✦ Development

$quantity = param(“quantity”);
$manu_id = param(“manu_id”);
$description = param(“description”);
$submit = param(“submit”);
$category_id = param(“category_id”);
$confirmed = param(“confirmed”);

$price =~ s/\s//g;
$quantity =~ s/\s//g;
$manu_id =~ s/\s//g;

Print an HTML header
print “Content-Type: text/html\n\n”;

Test to make sure the user entered enough information.
if ((! $name) || (! $price) || (! $quantity)){

print “Not enough info specified.<P>”;
exit;

}
elsif ($price =~ /\D\.?\D$/) {

print “Please enter only digits and decimal point for
price.<P>\n”;

exit;
}
elsif ($quantity =~ /\D/) {

print “Please enter only digits for quantity.<P>\n”;
exit;

}

Connect to the database
$dbh = DBI->connect(“DBI:mysql:ecommerce:”,suehring,’evh5150’);

if (! $dbh) {
print “Connection failed!!<P>”;
die();

}

if ($submit) {
Look for a similar product to make sure we’re not
adding a duplicate.
$wcname = “%” . $name . “%”;
$wcartist = “%” . $artist . “%”;
$wcdescription = “%” . $description . “%”;
$quotedname = $dbh->quote($wcname);
$quotedartist = $dbh->quote($wcartist);
$quoteddescription = $dbh->quote($wcdescription);
$query1 = “SELECT name,artist,description FROM product WHERE

name like $quotedname and artist like $quotedartist”;
$sth1 = $dbh->prepare($query1);
$sth1->execute;
while (($ename,$eartist,$edesc) = $sth1->fetchrow_array())

{

204932-4 ch15.F 5/29/02 3:53 PM Page 438

439Chapter 15 ✦ Perl Development

print “Found a similar product:<P>\n”;
print “$ename - $eartist - $edesc<P>\n”;
exit;

}

#No existing product found, so print a confirm page.
print “Confirm product addition<P>\n”;
print “<form action=\”/cgi-bin/inventory.cgi\”><P>\n”;
print “<input type=hidden name=name value=\”$name\”><P>\n”;
print “<input type=hidden name=artist

value=\”$artist\”><P>\n”;
print “<input type=hidden name=price value=\”$price\”><P>\n”;
print “<input type=hidden name=quantity

value=\”$quantity\”><P>\n”;
print “<input type=hidden name=manu_id

value=\”$manu_id\”><P>\n”;
print “<input type=hidden name=category_id

value=\”$category_id\”><P>\n”;
print “<input type=hidden name=description

value=\”$description\”><P>\n”;
print “Name: $name<P>Artist: $artist<P>Price: \$$price<P>\n”;
print “Quantity: $quantity<P>Manufacturer ID:

$manu_id<P>Category: $category_id<P>\n”;
print “Description: $description<P>\n”;
print “<input type=submit name=confirmed value=\”Add to

DB\”><P>\n”;
print “</form>”;
print “</html>”;

}
#If user confirmed that it’s ok, then add it.
elsif ($confirmed) {
$quotedname = $dbh->quote($name);
$quotedartist = $dbh->quote($artist);
$quoteddescription = $dbh->quote($description);
$ins_statement = “INSERT INTO product

(name,artist,price,quantity,manu_id,description,category_id)
VALUES
($quotedname,$quotedartist,’$price’,’$quantity’,’$manu_id’,$quo
teddescription,’$category_id’)”;
$sth = $dbh->do($ins_statement);
if (! $sth) {

print “Apparently an error occured with the
statement<P>\n”;

print “$ins_statement<P>\n”;
exit;

}
else {

print “$name added<P>\n”;
}

}
exit;

204932-4 ch15.F 5/29/02 3:53 PM Page 439

440 Part IV ✦ Development

The program doesn’t introduce any new concepts, so I’ll just highlight some of its

inner workings. The program makes use of the percent sign (%) as a wildcard in the

SQL queries. The program accepts input from a form and does some simple error

checking on the incoming data. If the first Submit button was clicked, the program

then queries the product database for a similar product. If a similar product is

found, a page is sent to the user, with information about the existing product

(see Figure 15-50).

Figure 15-50: A similar product was found in the database, therefore
this page is produced with results from the database query.

If no similar product is found, a confirmation page is produced as shown in

Figure 15-51. Notice on that page that the existing values are included as hidden

form tags; you don’t see them in Figure 15-51 but, they exist if you view the page

source. When the confirm button is clicked, those hidden form tags are passed

back to the server the same as with any other form.

Finally, if the Confirmed button were clicked, the program adds the product to the

database.

To develop this further, ideally you would add a method by which more than one

item could be added at once. In addition, a method to search for Manufacturer
or Category ID is needed. Many additional database tables and columns could

be added with items such as warehousing, date of release, other formats, multiple

204932-4 ch15.F 5/29/02 3:53 PM Page 440

441Chapter 15 ✦ Perl Development

categories, and so on. Look back at the example in the previous section for a simple

search function with the DBI. The next section develops a product search engine.

Figure 15-51: The confirm page produced by the inventory program

Please add some inventory to your sample database, using the inventory program
or any other method. You’ll need it for the next section.

Building a simple product search engine
To get the full benefit of this section, make sure you’ve added a few (or more) prod-

ucts to your database. This section builds a search engine to look for products in

the database. The basis for the search engine is (again) a static page, which then

links to a CGI to produce dynamic pages with the results.

I’ll be making a simple search box that would probably go on the main page of the

site — and a more complicated search page with more options (probably a separate

page). Here is the HTML that produces the simple search page or box:

<html>
<center>
<form action=”/cgi-bin/search.cgi” method=”post”>
<input type=text name=search size=20><P>
<input type=submit name=simple value=Search>
</center>
</html>

Note

204932-4 ch15.F 5/29/02 3:53 PM Page 441

442 Part IV ✦ Development

The simple search page is shown in Figure 15-52.

Figure 15-52: The simple search page

The HTML for producing the full search page looks like this:

<html>
<center>
<form action=”/cgi-bin/search.cgi” method=”post”>
Product Name:<input type=text name=name size=20><P>
Artist/Author/Actor: <input type=text name=artist size=20><P>
Search item description?
<input type=radio name=description>Yes</input>
<input type=radio name=description checked>No</input><P>
<input type=submit name=full value=Search>
</center>
</html>

The full search page is shown in Figure 15-53.

204932-4 ch15.F 5/29/02 3:53 PM Page 442

443Chapter 15 ✦ Perl Development

Figure 15-53: The full search page

The code to make the search functions work is as follows:

#!/usr/bin/perl

use DBI;
use CGI qw(:standard);

Get the input from the form.
$name = param(“name”);
$artist = param(“artist”);
$search = param(“search”);
$description = param(“description”);
$simple = param(“simple”);
$full = param(“full”);

Print an HTML header
print “Content-Type: text/html\n\n”;

Connect to the database
$dbh = DBI->connect(“DBI:mysql:ecommerce:”,suehring,’evh5150’);

204932-4 ch15.F 5/29/02 3:53 PM Page 443

444 Part IV ✦ Development

if (! $dbh) {
print “Connection failed!!<P>”;
die();

}

if ($simple) {
Look for a product
if (! $search) {

print “Please go back and enter at least one search
term<P>\n”;

exit;
}
$wcsearch = “%” . $search . “%”;
$quotedsearch = $dbh->quote($wcsearch);
$query1 = “SELECT name,artist,description,price,quantity FROM

product WHERE (name like $quotedsearch or artist like
$quotedsearch)”;
$sth1 = $dbh->prepare($query1);
$sth1->execute;
print “Search results for $search<P>\n”;
while (($ename,$eartist,$edesc,$eprice,$equantity) = $sth1-

>fetchrow_array()) {
$found = 1;
print “$ename: $eartist - $edesc<P>\n”;
if ($equantity > 100) {

print “ - Price: \$$eprice. Usually
ships in 24 hours.<P>\n”;

} elsif ($equantity < 51) {
print “ - Price: \$$eprice. Usually

ships in 2 to 3 days.<P>\n”;
} elsif ($equantity > 50) {

print “ - Price: \$$eprice. Usually
ships in 2 to 3 days.<P>\n”;

}
}
if (! $found) {

print “No products found like $search<P>\n”;
}

exit;
}
#If using full search page
elsif ($full) {
if ($name ne “”) {

$searchterm = 1;
$wcname = “%” . $name . “%”;
$quotedname = $dbh->quote($wcname);
$query = “name like $quotedname”;
$search = “$name”;

}
if ($artist ne “”) {

$searchterm = 1;

204932-4 ch15.F 5/29/02 3:53 PM Page 444

445Chapter 15 ✦ Perl Development

$wcartist = “%” . $artist . “%”;
$quotedartist = $dbh->quote($wcartist);
if ($query) {
$query = $query . “ and artist like $quotedartist”;
$search = $search . “ and $artist”;

} else {
$query = “artist like $quotedartist”;
$search = “$artist”;

}
}
if ($description eq “Yes”) {

$wcdesc = “%” . $description . “%”;
$quoteddescription = $dbh->quote($wcdesc);
$additional_search = “ or description like

$quoteddescription”;
} else {

$additional_search = “”;
}
if (! $searchterm) {

print “Please go back and enter at least one search
term<P>\n”;

exit;
}
$query1 = “SELECT name,artist,description,price,quantity FROM

product WHERE ($query $additional_search)”;
print “$query1<P>\n”;
$sth1 = $dbh->prepare($query1);
$sth1->execute;
print “Search results for $search<P>\n”;
while (($ename,$eartist,$edesc,$eprice,$equantity) = $sth1-

>fetchrow_array()) {
$found = 1;
print “$ename: $eartist - $edesc<P>\n”;
if ($equantity > 50) {

print “ - Price: \$$eprice. Usually
ships in 24 hours.<P>\n”;

} elsif ($equantity < 50) {
print “ - Price: \$$eprice. Usually

ships in 2 to 3 days.<P>\n”;
}

}
if (! $found) {

print “No products found matching $name $artist <P>\n”;
}

exit;
}
print “Error”;
exit;

204932-4 ch15.F 5/29/02 3:53 PM Page 445

446 Part IV ✦ Development

As with other programs shown as examples, this one could always be improved —

say, with better error checking and handling, as well as with more robust searching

capabilities. But you get the idea.

The program works in much the same way as the inventory program; it gets param-

eters from the incoming form and places them into variables. From there, it makes a

decision based on which button was selected (simple search or more complicated

search). Notice that during the while loop to retrieve results a decision is made

based upon the quantity on hand of the given product. Aside from that (and a bit

of Perl here and there to make things work correctly), you have a fully functional

search engine. An example of the simple search result is shown in Figure 15-54.

Figure 15-54: Results from the simple search

The more complicated search uses an AND if both the product name and artist are

filled in. A sample result is shown in Figure 15-55.

204932-4 ch15.F 5/29/02 3:53 PM Page 446

447Chapter 15 ✦ Perl Development

Figure 15-55: The full search page in action

Finally, if no results are found, that notification is sent to the visitor as well, as

shown in Figure 15-56.

Figure 15-56: The page when no results are found

204932-4 ch15.F 5/29/02 3:53 PM Page 447

448 Part IV ✦ Development

The programs contained in this section are available on the CD-ROM.

Present and future expansion
The ecommerce site has a start. It’s nowhere near ready to go online and take orders.

A shopping-cart CGI must be built, as well as more robust inventory capabilities.

Using a combination of cookies, knowledge of Perl, and the ideas in this chapter, it

shouldn’t be too much of a stretch to take the ecommerce site to the next step.

Summary
The Perl DBI is a generic interface used by many types of RDBMS to enable Perl

programs to work with databases. MySQL has a database driver (DBD) to work

with the DBI and enable the programmer to write powerful MySQL-enabled Perl

programs.

✦ Both the DBI and the DBD for MySQL can be obtained at your nearest CPAN

mirror or at http://www.cpan.org.

✦ The DBI takes advantage of handles to enable the developer to communicate

with a database server. There are driver handles such as MySQL, database

handles for connecting to the database server, and statement handles for

working with SQL statements.

✦ The developer using the DBI communicates with the database using an

object-oriented approach. Database handles are created manually by the

user and can be destroyed by the user or automatically by Perl.

✦ The DBI also includes configurable error checking. By default, error checking

is automatic. The programmer can control whether error checking is manual,

automatic, or a combination of both even within the same program.

✦ The DBI includes many functions for working with databases, not just MySQL.

These include functions to retrieve data such as fetchrow, fetchrow_array,

and others.

✦ The DBI enables the Perl programmer to combine the power of Perl with the

features of MySQL to make applications that run from the command line or in

a CGI for the Web.

✦ ✦ ✦

On the
CD-ROM

204932-4 ch15.F 5/29/02 3:53 PM Page 448

PHP
Development

A few years back, I devoted weeks to learning the Perl-

DBI interface to MySQL so I could create MySQL-Perl

applications for use in places other than the Web. When I did

start writing Web-based applications, I was so immersed in

the DBI that I neglected to look at other MySQL development

languages for the Web; I had confidence in Perl as a powerful,

stable development language.

Then one of my good friends told me I should be using yet

another language — PHP. Even though I had spent a long time

learning the DBI, I dove into PHP — an easy and powerful

development language in its own right.

Why learn PHP? This is a valid question. If you don’t need to

write Web-based applications for MySQL, then PHP may be of

limited usefulness for you. If, however, you do write Web-

based applications and need them to interact with MySQL,

PHP could be just what you’re looking for. PHP is extremely

useful for interacting with a MySQL database, is somewhat

similar to Perl, and (dare I say) is somewhat intuitive.

This chapter examines how to install PHP and make it work

with MySQL. I also cover some basic PHP concepts, as well as

PHP-MySQL functions. The chapter concludes with a few

example applications. (They’re a little off the beaten track —

no Guestbook application examples!)

PHP Installation
Unfortunately, installing PHP is not nearly as easy as installing

the Perl DBI and MySQL DBD. However, the developers of PHP

have taken great pains with their documentation; it’s some of

the best I’ve ever seen. This includes documentation of the

installation software, as well as further coverage on their Web

site, http://www.php.net.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Installing PHP

Getting down to
brass tacks with PHP

Configuring PHP
MySQL

Listing PHP MySQL
functions

Building MySQL-
enabled applications
with PHP

✦ ✦ ✦ ✦

214932-4 ch16.F 5/29/02 3:53 PM Page 449

450 Part IV ✦ Development

This section concentrates on installing PHP on a Linux system, using the standard

process based on configure and make commands. Your distribution of Linux may

have a package-management tool, in which case you may already have a compiled

version of PHP and Apache to work with. In addition, you may already have PHP

installed, but it may not be MySQL-enabled. If such is the case, you’ll need to rein-

stall a MySQL-enabled version of PHP. Finally, you’ll probably have to reconfigure

your Web server to work with PHP, so the chapter covers configuring Apache (the

standard Linux Web-server software) with PHP.

What you need for installation
To install a MySQL-enabled version of PHP, you need three essential ingredients

on hand:

✦ the PHP software itself

✦ the source code for Apache (or whatever Web server you’re running)

✦ the MySQL client libraries

First, find out whether you already have PHP installed for use with Apache (and

whether it’s enabled for MySQL). On the Web server, type the following command:

httpd -l

Look for a line similar to this one:

mod_php4.c

If you see that line, congratulations — PHP is probably already installed and

enabled on your Web server. Alternatively, look for lines like these:

Compiled-in modules:
http_core.c
mod_so.c

If you see those lines, then your server is configured to load dynamic modules —

and you may have PHP support available.

Even if you have PHP installed, it may not be MySQL-enabled. To test an existing

installation of PHP — and simultaneously check it for MySQL support — you should

build a test PHP page. Simply create a regular file, save it with the filename

test.php, and place it in the public html or htdocs folder, just as you would any

page. The file itself needs no more than the following contents:

<?php
phpinfo()
?>

If everything is configured correctly, you should see a page similar to the one in

Figure 16-1.

214932-4 ch16.F 5/29/02 3:53 PM Page 450

451Chapter 16 ✦ PHP Development

Figure 16-1: A server with PHP enabled and configured correctly

If, for whatever reason, the page does not come up, there is probably something

wrong with your PHP configuration. Don’t worry! I walk through the installation

of PHP in this chapter; you can reconfigure as part of the installation process.

Scroll down in the PHP information page and look for the section on MySQL,

as shown in Figure 16-2.

In the example in Figure 16-2, MySQL is enabled with PHP. If your page looks similar,

you can skip the sections of this chapter concerned with installing and configuring

PHP for use with MySQL.

If PHP is installed on your system but MySQL is not enabled, you’ll want to reinstall

PHP to enable MySQL.

Where to get the software
The main distribution site for PHP is http://www.php.net. I’ve also included PHP

on the CD-ROM with this book (the PHP Web site probably has a newer version).

The CD-ROM with this book includes the latest version of PHP available as of press
time. This version works with the examples given in the book.

On the
CD-ROM

214932-4 ch16.F 5/29/02 3:53 PM Page 451

452 Part IV ✦ Development

Figure 16-2: The MySQL section of the PHP information page

Installing PHP on a Linux system
Whether this is your first time installing PHP or a reinstallation (to enable MySQL

on a system that already has PHP installed), this section can help. As a prerequisite,

you should already have MySQL installed — including the libraries for MySQL.

In addition, you should have a Web server running.

This section examines the installation of PHP with Apache as the Web server soft-
ware. If your Web server is not Apache, refer to the documentation included with
your Web server — and with PHP itself — for help with installation.

Installing and configuring PHP
The steps for installing and configuring PHP on a Linux system (with Apache as

the Web server) are as follows:

1. Unpack the PHP archive by issuing the following command:

tar -zxvf php-<version>.tgz

For example, Figure 16-3 shows PHP unpacked to its default directory.

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 452

453Chapter 16 ✦ PHP Development

Figure 16-3: Unpacking the PHP archive

2. Change into the newly created PHP directory.

If you have an existing PHP source directory that you’ve previously configured
from, be sure to either remove the directory or at remove the config.cache file
contained therein.

It is at this point where decisions must be made regarding your existing

Apache installation as well as other options, you may want to enable with

PHP. I’ll show an example configuration that enables MySQL on an Apache

server that uses Dynamic Shared Objects.

3. To configure PHP in the environment described in Step 2, type

./configure --with-mysql --with-apxs

You may receive an error message similar to that in Figure 16-4.

4. If you receive the error message shown in Figure 16-4, note what the message

points out and respond accordingly. In this installation, I needed to add the

path to the apxs module for Apache. First I needed to find it:

find / -name apxs

For the example, apxs is located in a couple of places; I chose the one in

/usr/local/apache/bin/ (your location may be different).

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 453

454 Part IV ✦ Development

Figure 16-4: An error that occurs during PHP configuration

5. To tell the PHP configure script where it can find apxs, be sure to remove

the existing config.cache file with the following code:

rm config.cache ; ./configure --with-mysql --with-
apxs=/usr/local/apache/bin/apxs

An error similar to the previous one can occur if the configure script can’t

find the necessary MySQL libraries. If that happens, you have two possible

fixes:

* Add the path as part of the --with-mysql option.

* Add the path to /etc/ld.so.conf and run ldconfig. (I’ve had better

success with this option.)

If the configure script runs successfully, congratulations! Although there’s

more to come, you now have a basic configuration in place to accommodate

PHP. You may, however, receive one or more warnings when the configure
script completes its run; a couple of these are shown in Figure 16-5.

6. Continue the installation process by building the software; type the following

command:

make

214932-4 ch16.F 5/29/02 3:53 PM Page 454

455Chapter 16 ✦ PHP Development

Figure 16-5: Some warnings produced by the PHP configure script

When you press Enter, the make process begins. How long it takes depends on

the speed and resources available on your machine.

If the make process fails this time, don’t worry. PHP installation can sometimes be
difficult; often the build fails because a library is not found. Normally you can get
good clues to what went wrong by closely examining the last few lines of code just
before the point at which the build process died. For additional help, try the PHP
Web site’s section of search functions and FAQs. If you’re getting error messages
like those in Figure 16-5, chances are someone else has too — and there could be
a simple fix.

If the make process is successful, congratulations!

7. Install the software, using the following command:

make install

Normally this is the final basic step in the build process. You’re not done yet

though. In particular, check inside your Apache Web server configuration file

(usually called httpd.conf) for some lines like those shown in Figure 16-6.

Tip

214932-4 ch16.F 5/29/02 3:53 PM Page 455

456 Part IV ✦ Development

Figure 16-6: Lines relating to PHP 4.x, as they appear in the Apache
Web server configuration file (httpd.conf)

8. Uncomment the lines that relate to PHP 4.x by removing the pound sign (#)

from in front of those lines.

9. Save the uncommented configuration file and then restart the Web server

software.

Truthfully, you could get by with just uncommenting the first line that mentions the
.php extension.

The newly uncommented lines (which enable PHP when the Web server

restarts) are shown in Figure 16-7.

Don’t forget to save the file and then restart the Web server for the changes to take
effect. Simply restarting Apache will work, no need to reboot the entire machine;
this is Linux!

10. Prepare to test your new configuration by creating a PHP file within the

htdocs (or within a publicly available HTML directory) on your Web server.

Figure 16-7: Uncommenting the PHP-related lines in httpd.conf
enables PHP in the Apache Web server.

Note

Tip

214932-4 ch16.F 5/29/02 3:53 PM Page 456

457Chapter 16 ✦ PHP Development

For example, you could create a file called test.php with the following

contents:

<?php
phpinfo()
?>

11. Point your Web browser to your test page (which should resemble Figure 16-8)

and scroll down to the MySQL section to verify that MySQL is enabled.

If the MySQL section in your test page indicates a successful PHP installation,

congratulations! You can now skip ahead and start building MySQL-enabled

PHP applications.

Even after a hassle-free installation process, however, two common errors can

crop up:

• The page shows up on-screen as source code (as shown in Figure 16-9).

• The browser prompts you to Save or Open the file (it shouldn’t).

If either of these errors happens to you, follow the troubleshooting steps

given here (which use Figure 16-9 as an example).

Figure 16-8: A successful PHP installation as shown by the MySQL section of the
phpinfo() function

214932-4 ch16.F 5/29/02 3:53 PM Page 457

458 Part IV ✦ Development

Figure 16-9: A common error that can occur after
the installation process itself went smoothly

Troubleshooting a page that shows up as source code
Follow these steps to correct the error depicted in Figure 16-9:

1. Check that you actually enabled PHP in the httpd.conf configuration file for

Apache (by uncommenting the PHP-related lines in the configuration file).

2. Check the line that normally enables PHP to determine whether it’s enclosed

in a <Virtual> directive. If it is, then it’s effectively hidden from the main

configuration. If it is inside of a virtual directive, you should move the line out-

side of the <Virtual> directive so that it is applied at the main server level.

3. Make sure you restarted the Web server software; examine any logfiles cre-

ated when it restarted.

4. Another possibility is that the configuration file isn’t the one being read.

Search the computer for other configuration files (find / -name
“httpd.conf”). One those files may be the actual configuration file for

Apache on your server and you’ll need to edit that file.

5. Check the Web server software itself to determine whether it has PHP

enabled.

I built the example as a dynamic module; if you are working with a dynamic

module, make sure that when you run

httpd -l

you see lines similar to these:

Compiled-in modules:
http_core.c
mod_so.c

214932-4 ch16.F 5/29/02 3:53 PM Page 458

459Chapter 16 ✦ PHP Development

If a number of other modules are compiled in the dynamic module, chances are
you’ll have recompile Apache. Although Apache installation is outside the scope of
this book, Apache does include a document with its installation files that can help:
README.configure. This document contains detailed instructions for PHP
installation. Also, don’t forget to check the PHP and Apache Web sites; if you’ve
encountered a problem, someone may have already tackled it.

6. Copy the file <php-source-dir>/php.ini-dist to the PHP install directory

and name it php.ini.

The phpinfo() function tells you where to put the configuration file within

your server’s file system. Usually /usr/local/lib is the correct place, but

your installation may demand a different location (such as the /etc directory).

7. If you already have a php.ini installed, avoid overwriting it; use the -i
option with the cp command, as follows:

cp -i php.ini-dist /usr/local/lib/php.ini

The configuration of this file is now complete; your PHP capability should be

ready to use.

Brass Tacks: PHP Essentials
On the assumption that it’s wise to learn to walk before running or jumping (at least

where the use of PHP with MySQL is concerned) this section presents some basics

of PHP. Though powerful, PHP is relatively simple to learn, regardless of previous

programming experience. (Naturally such experience is helpful, especially if you’ve

programmed with a language such as Perl).

This section demonstrates essential PHP concepts by creating a simple Web page

or two. Though by no means meant as a complete examination of PHP (or an

exhaustive catalog of its basics), the section lays the groundwork for working with

the language.

For quick access to more detailed information on PHP, refer to http://www.
php.net.

A PHP Web page
PHP can be used to build complicated applications that do complex calculations,

work with the file system, obtain and work with data from forms, and manipulate

data inside many database systems. PHP can also be an especially powerful tool for

creating and operating Web pages; a PHP-enabled Web page can perform functions

and calculations dispersed throughout the HTML code that makes up the page.

Tip

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 459

460 Part IV ✦ Development

PHP code can be enclosed within an HTML page, or PHP can produce the HTML

itself. Regardless of the method, PHP sections within a file are enclosed like this:

<?php
php code

?>

These tags, along with the code between them, indicate to the Web server that it

must parse the indicated statements specifically as PHP. For example, the following

code snippet creates a basic page (Figure 16-10 shows the result):

<?php
print “<html>\n”;
print “This is a basic page<P>\n”;
print “</html>”;
?>

In Figure 16-11, you can see an example of interwoven PHP and HTML. The follow-

ing code snippet produces the results depicted in the figure:

<?php

print “<html>”;
print “This portion is printed within the PHP section.<P>\n”;

?>

<P>
And this line is printed from outside the PHP section, back in
HTML.<P>

<?php

print “</html>”;

?>

Here a PHP section begins the code, concludes its own operation, and makes

way for regular HTML. The entire code snippet ends with another section of PHP.

Figure 16-11 shows the result.

214932-4 ch16.F 5/29/02 3:53 PM Page 460

461Chapter 16 ✦ PHP Development

Figure 16-10: The results of the code shown to
create HTML within PHP code

Figure 16-11: An example of PHP and HTML interwoven

214932-4 ch16.F 5/29/02 3:53 PM Page 461

462 Part IV ✦ Development

PHP and forms
As stated previously, PHP is great for working with data gathered from Web forms.

Because you can combine HTML and PHP easily, the form data can be manipulated

and then a result page served without ever leaving the same PHP program.

Variables in PHP do not have to be explicitly declared and are called for the most

part with the dollar sign ($). This includes arrays and marks a noticeable difference

from Perl where arrays are indicated with the at symbol (@).

Web forms are easily handled with PHP. Simply create the form as you would any

HTML Web form, calling a PHP page as the action. Often the same page that produces

the form is also the action of the form. For example, consider the following code:

<?php
if (isset($name_submit) && ($name))
{

print “Hello $name, how are you<P>\n”;
}
else {
?>

<form action=formtest.php method=post>
<input type=text name=name length=20>
<input type=submit name=name_submit>
</form>

<?php
}
?>

The form and the results are shown in Figures 16-12 and 16-13.

Figure 16-12: The simple form created with the code example in PHP

214932-4 ch16.F 5/29/02 3:53 PM Page 462

463Chapter 16 ✦ PHP Development

Figure 16-13: The results when a name is entered into the form

If no name is entered into the form, the code simply regenerates the form.

The simplicity with which this scenario is handled is just the tip of the iceberg

when it comes to building dynamic pages with PHP. I am a Perl diehard, but produc-

ing the same result in Perl simply would not be as easy or elegant.

The rest of this chapter looks at functions and examples in PHP that are especially

relevant to MySQL — starting with PHP configuration.

PHP MySQL Configuration
PHP doesn’t require much configuration for it to work great with MySQL. The rele-

vant configuration is contained in the php.ini file usually located in

/usr/local/lib or /etc. This section examines those configuration options.

Configuration settings
The configuration file for PHP (php.ini) is usually located in the /usr/local/lib
directory, but it may be in /etc or another location on your file system. The

phpinfo() function will tell you where the file is located. See the previous section

for information on how to use the phpinfo() function in a simple page.

The PHP configuration file has a section devoted to MySQL, as Figure 16-14

illustrates.

214932-4 ch16.F 5/29/02 3:53 PM Page 463

464 Part IV ✦ Development

Figure 16-14: The MySQL section of the php.ini configuration file

The functions and their definitions are listed in Table 16-1.

Table 16-1
MySQL Configuration Options for PHP

Option Definition

mysql.allow_persistent Enables connections to stay active. Default On.

mysql.max_persistent Maximum number of default connections. Default
unlimited (-1).

mysql.max_links Maximum number of total connections. Default
unlimited (-1).

mysql.default_port Port to connect to the server on. Default blank, read from
config.

mysql.default_socket Socket to connect to server on. Default blank, read from
config.

mysql.default_host Sets the host to connect to. Default blank.

mysql.default_user Sets the user to connect as. Default blank.

mysql.default_password Set a global password to authenticate as. Default blank.

214932-4 ch16.F 5/29/02 3:53 PM Page 464

465Chapter 16 ✦ PHP Development

The settings contained in the php.ini do not need to be set for PHP to work with

MySQL.

For security reasons, I strongly recommend against setting the user or password
inside the php.ini. Anyone with read access to the file (or who can write a PHP
script and get at the server variables) can determine the settings.

PHP MySQL Functions
PHP includes a large number of built-in functions — some of which can take the

place of existing MySQL functions or statements to enhance or streamline opera-

tions. This section examines some functions that accomplish these goals with

MySQL and PHP, and provides examples.

The functions
The best way to handle this abundance of MySQL-related functions in PHP is to list

them in a table. Table 16-2 does so.

Table 16-2
PHP MySQL Functions

Function Definition

mysql_affected_rows Returns number of rows affected by a non-SELECT
statement.

mysql_change_user Changes the user currently logged in to the program.

mysql_close Closes the connection to the MySQL server.

mysql_connect Connects to the MySQL server.

mysql_create_db Creates a MySQL database.

mysql_data_seek Moves the internal pointer one row.

mysql_db_name Returns the name of the current database.

mysql_db_query Issues a query to the database.

mysql_drop_db Drops or deletes a database.

mysql_errno Returns the error number of the current error message.

mysql_error Returns the text for the current error message.

.mysql_escape_string Takes a string and returns a MySQL-safe quoted string.

Continued

Caution

214932-4 ch16.F 5/29/02 3:53 PM Page 465

466 Part IV ✦ Development

Table 16-2 (Continued)

Function Definition

mysql_fetch_array Returns an array that can be numerical and/or associative.

mysql_fetch_assoc Returns an associative array (similar to the fetchrow_array
command in Perl).

mysql_fetch_field Returns an object associated with a column.

mysql_fetch_lengths Returns the length of the result set.

mysql_fetch_object Returns an entire row as an object.

mysql_fetch_row Returns a row of the result set.

mysql_field_flags Returns the flags from a result set.

mysql_field_name Returns the field name of a result set.

mysql_field_len Returns length of the field.

mysql_field_seek Moves the pointer of the result set.

mysql_field_table Returns the name of the table associated with the field.

mysql_field_type Returns column type.

mysql_free_result Clears the results, empties the memory associated with them.

mysql_get_client_info Returns information on the client connection.

mysql_get_host_info Returns information on the MySQL host.

mysql_get_proto_info Returns information on the MySQL protocol version.

mysql_get_server_info Returns information on the MySQL server itself.

mysql_insert_id Returns the ID of a column associated with the last INSERT
statement.

mysql_list_dbs Returns a list of available databases.

mysql_list_fields Returns a list of available fields.

mysql_list_tables Returns a list of tables available within a database.

mysql_num_fields Returns the number of fields in a given table.

mysql_num_rows Returns the number of rows in a result set.

mysql_pconnect Creates a persistent connection to the server.

mysql_query Issues a query.

mysql_result Returns the result set.

mysql_select_db Connects to a given database within a server.

mysql_tablename Returns the table name.

mysql_unbuffered_query Sends a query without regard for return values.

214932-4 ch16.F 5/29/02 3:53 PM Page 466

467Chapter 16 ✦ PHP Development

As I stated, quite a few of the numerous functions are substitutes for MySQL

statements — for example, mysql_list_dbs replaces SHOW DATABASES. I’ll use

many of these functions in the code examples in upcoming sections.

Connecting to MySQL with PHP
It’s finally time to build the first PHP MySQL program of the chapter — though I sup-

pose the small example page you built with the phpinfo() function counts a little.

So this will be the second PHP MySQL program but the first one where you will

actively connect to MySQL.

You can connect to MySQL by using the mysql_connect() function; you terminate

the connection with the mysql_close() function. Like the Perl DBI, the

mysql_connect function requires some parameters for connecting.

You can specify some connection parameters within the php.ini configuration
file.

The syntax for the mysql_connect() function is as follows:

mysql_connect (host, username, password)

Consider this example:

$dbconn = mysql_connect(“localhost”,”suehring”,”evh5150”);

As you would expect, you can set the values of host, username, and password to

variables:

$host = “localhost”;
$username = “suehring”;
$password = “evh5150”;
$dbconn = mysql_connect($host, $username, $password);

Once the connection is made, statements are issued or another function is used.

Unlike Perl, PHP does not use the concept of handles for working with MySQL.

Therefore, statements can be sent simply through the mysql_query() function and

retrieved through one of the fetch functions.

Protecting PHP authentication information
A significant security issue with PHP is storage of the authentication information for

MySQL. PHP puts authentication information in the PHP file — where it’s readable

by anyone on the Web server. One way around this potential security hole is to

place authentication information inside a function, in a file separate from the PHP

program being called by the Web server. The file containing the function must be

readable by the user running the Web server, but should not be world-readable.

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 467

468 Part IV ✦ Development

For example, suppose I create a simple PHP file called dbconnect.php, place it in a

directory that the Web server can access, and use it for executing PHP files. The

file’s entire contents look like this:

<?php

$host = “localhost”;
$username = “suehring”;
$password = “evh5150”;

?>

The file is owned by the user account that the Web server runs as (username

nobody), and only that user has read-write (rw) access. The Web server can read the

contents of the file but no other users can (not even if they’re on the same server).

Altering the small connection commands I have given here, I use the PHP

include() function. The contents of the file included will be available for the PHP

script to execute. The code that uses the function looks like this:

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

$dbconn = mysql_connect($host,$username,$password) or die
(“Cannot connect to database server”);

Examination of the code reveals the include() function followed by the

mysql_connect() function. I’ve also used the die() function to add some error

checking. If the connection cannot be made, an error message is returned and exe-

cution of the script terminates. The mysql_connect() function is related to two

other functions with complementary capabilities:

✦ mysql_close() is the opposite of mysql_connect(). You can use

mysql_close() to close or terminate a connection to a MySQL server. When

a script completes its execution, however, its session terminates automati-

cally; normally you don’t have to use mysql_close().

✦ mysql_pconnect() opens a persistent connection to a MySQL server. This

type of connection remains active even after the PHP script terminates.

Selecting data from a MySQL database
The functions in Table 16-2 include a number of functions for issuing statements or

performing various tasks on the MySQL server. Some of the functions replace MySQL

functions such as those for creation of a database and listing databases and tables.

mysql_select_db and mysql_query_db
Once a connection is made to the MySQL server, you can interact with a specific

database by using the mysql_select_db() function, which takes the name of that

214932-4 ch16.F 5/29/02 3:53 PM Page 468

469Chapter 16 ✦ PHP Development

database as an argument. The mysql_query_db() function is a bit more direct;

it sends a query to a specified database without using the mysql_select_db()
function. The syntax for both statements is as follows:

mysql_select_db(<databasename>)
mysql_query_db(<databasename>, query)

mysql_query
The mysql_query() function sends queries and other statements to the MySQL

server. To retrieve the results of such a query or statement, use a fetch function

such as mysql_fetch_array or mysql_fetch_row. The resulting value(s) can then

be parsed and worked with, like any other variables. Examples of mysql_query are

shown throughout the rest of the chapter.

mysql_fetch_assoc
The mysql_fetch_assoc() function is one method for retrieving the results of a

MySQL query. Examine the following code:

<?php

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

$dbconn = mysql_connect($host,$username,$password) or die
(“Cannot connect to database server”);

$db = mysql_select_db(“mysql”) or die (“Could not connect to
database\n”);

$result = mysql_query(“select user,host from user”);

print “<table border=1><P>\n”;

while ($row = mysql_fetch_assoc($result)) {
print “<tr><P>\n”;
while (list ($key,$value) = each($row)) {

print “<td><P>\n”;
print “$value\n”;
print “</td><P>\n”;

}
print “</tr><P>\n”;

}
print “</table><P>\n”;

?>

This code example connects to the MySQL server, selects the MySQL grants

database, and then issues a SELECT statement. The results from the SELECT
statement are printed in table form; Figure 16-15 shows the resulting output.

214932-4 ch16.F 5/29/02 3:53 PM Page 469

470 Part IV ✦ Development

Figure 16-15: Results from the PHP code example

The code sample shown in this section uses mysql_fetch_assoc to get the results

from the query in an associative array. Then, by using the PHP functions list()
and each(), I can walk through the results row by row — and place them in a

simple HTML table.

Using mysql_fetch_assoc is the same as using mysql_fetch_array with
MYSQL_ASSOC as the second argument.

mysql_fetch_row
I could use the mysql_fetch_row function for this query, but the results wouldn’t

go as nicely into a table format. The following code shows the program using

mysql_fetch_row; Figure 16-16 shows the results.

<?php

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

Tip

214932-4 ch16.F 5/29/02 3:53 PM Page 470

471Chapter 16 ✦ PHP Development

$dbconn = mysql_connect($host,$username,$password) or die
(“Cannot connect to database server”);

$db = mysql_select_db(“mysql”) or die (“Could not connect to
database\n”);
$result = mysql_query(“select user,host from user”);

print “<table border=1><P>\n”;

while ($row = mysql_fetch_row($result)) {
print “<tr><P>\n”;
print “<td>$row[0]</td><P>\n”;
print “<td>$row[1]</td><P>\n”;
print “</tr><P>\n”;

}

print “</table><P>\n”;

?>

Figure 16-16: Using mysql_fetch_row to retrieve the results from a query

214932-4 ch16.F 5/29/02 3:53 PM Page 471

472 Part IV ✦ Development

mysql_num_rows
It is sometimes useful to find out the number of rows returned by a MySQL query.

The mysql_num_rows function is simply called with the result set as the argument.

mysql_num_rows() only works with SELECT statements. The function doesn’t work

with other SQL statements such as INSERT, UPDATE, DELETE and so forth, as in the

following example:

$num = mysql_num_rows($dbconn);

The argument for mysql_num_rows() is the database connection identifier. In
the examples I’ve shown, I’ve used the variable name $dbconn for the function
call for mysql_connect().

Inserting and updating data in MySQL
Inserts and other statements are performed just like SELECT statements, using the

mysql_query() function. For example, to add a row, the syntax is simple:

<?php

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

$dbconn = mysql_connect($host,$username,$password) or die
(“Cannot connect to database server”);

$db = mysql_select_db(“ecommerce”) or die (“Could not connect
to database\n”);

$result = mysql_query(“INSERT INTO customer VALUES
(‘suehring↓ngermen.com’,’Steve’,’Suehring’,’4 Main
St.’,’’,’54481’,’715’,’555-1212’)”) or die (“Could not execute
insert\n”);

?>

mysql_affected_rows
The mysql_affected_rows() function serves to determine the number of rows

affected by a non-SELECT operation such as an INSERT or a DELETE. Adding

mysql_affected_rows to the previous application yields the following code

example:

<?php

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 472

473Chapter 16 ✦ PHP Development

$dbconn = mysql_connect($host,$username,$password) or die
(“Cannot connect to database server”);

$db = mysql_select_db(“ecommerce”) or die (“Could not connect
to database\n”);

$result = mysql_query(“INSERT INTO customer VALUES
(‘suehring↓ngermen.com’,’Steve’,’Suehring’,’4 Main
St.’,’’,’54481’,’715’,’555-1212’)”) or die (“Could not execute
insert\n”);

Determine the number of inserted rows.
$rows_inserted = mysql_affected_rows($dbconn);

print “Inserted $rows_inserted rows\n”;

?>

The results from this modified code are shown in Figure 16-17.

You run the mysql_affected_rows() function with the database connection
name from mysql_connect()— instead of the result set — serving as the argu-
ment. This necessary substitution is a common source of confusion among first-
time PHP programmers.

Figure 16-17: Using mysql_affected_rows to see how
many rows were affected by the operation

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 473

474 Part IV ✦ Development

Building MySQL-Enabled Applications
With PHP

The previous sections of this chapter provided examples of connecting to MySQL

through PHP, along with some functions used to work with data and databases. This

section builds on those examples to produce some PHP applications.

A PHP version of the user manager
Chapter 15 builds a simple user-manager program in Perl; it queries the users table

of the MySQL grants database. This section ports that same Perl application over to

PHP. (I include the Perl code for reference here so you can easily see the changes

needed to port it to PHP.) The Perl version of the code looks like this:

#!/usr/bin/perl

use DBI;
use CGI qw(:standard);

This program looks up the hosts from which a
given user is allowed to connect.
Also looks up grants for a user, given the @ symbol in the
argument list.

Get the input from the form.
$user = param(“user”);

Test to make sure the user entered a username.
if (! $user) {

print “No user specified. Usage: <program>
<username><P>”;
}

Print an HTML header
print “Content-Type: text/html\n\n”;

Connect to the database
$dbh = DBI->connect(“DBI:mysql:mysql:”,suehring,’evh5150’);

if (! $dbh) {
print “Connection failed!!<P>”;
die();

}

If there’s an @ symbol then the user wants to look up
grants.
if ($user =~ m/\@/) {

214932-4 ch16.F 5/29/02 3:53 PM Page 474

475Chapter 16 ✦ PHP Development

($user,$inhost) = split(/\@/, $user);

Make sure the username and host are safe to
send to MySQL.
$quoteduser = $dbh->quote($user);
$quotedhost = $dbh->quote($inhost);
&priv($user,$inhost);

}
else {

User wants to simply lookup the hosts allowed
for given username.

Make sure the username is safe to
send to MySQL.
$quoteduser = $dbh->quote($user);

$query = “SELECT host,user FROM user WHERE \
user = $quoteduser”;
$sth = $dbh->prepare($query);
$sth->execute();

while (($host,$username) = ($sth->fetchrow_array()))
{

if ($host eq ‘’) {
print “User $user has a \
blank host entry.<P>”;

}
else {

print “User $user is allowed \
to connect from: $host<P>”;

}
}

}

sub priv
{

This subroutine looks up the grants for the given
user/host pair.

($user,$host) = (@_);

$query = “SHOW GRANTS FOR $user\@$host”;
$sth = $dbh->prepare($query);
$sth->execute();

while ($grant = ($sth->fetchrow())) {
print “$grant<P>”;

}

}

214932-4 ch16.F 5/29/02 3:53 PM Page 475

476 Part IV ✦ Development

Porting the code to PHP is relatively easy because of some key similarities between

Perl and PHP. The PHP version of the user-manager program code looks like this:

<?php

This program looks up the hosts from which a
given user is allowed to connect.
Also looks up grants for a user, given the @ symbol in the
argument list.

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

if (! $submit) {
echo “<form action=\”/chap16/fig18.php\” method=post>”;
echo “Enter Username: <input type=text name=user

length=20><P>\n”;
echo “<input type=submit name=submit><P>\n”;
echo “</form><P>\n”;
exit;

}

Connect to the database
$dbconn = mysql_connect($host,$username,$password) or die
(“Couldn’t connect to database server”);

$db = mysql_select_db(“mysql”);

If there’s an @ symbol then the user wants to look up
grants.
if (ereg(“@”, $user)) {

list ($user,$inhost) = split(“\@”, $user);

Make sure the username and host are safe to
send to MySQL.
$quoteduser = mysql_escape_string($user);
$quotedhost = mysql_escape_string($inhost);
priv($user,$inhost);

}
else {

User wants to simply lookup the hosts allowed
for given username.

Make sure the username is safe to
send to MySQL.
$quoteduser = mysql_escape_string($user);

$query = “SELECT host,user FROM user WHERE user =
‘$quoteduser’”;

$result = mysql_query($query) or die (“Cannot execute
query 1”);

while ($row = mysql_fetch_array($result)) {

214932-4 ch16.F 5/29/02 3:53 PM Page 476

477Chapter 16 ✦ PHP Development

echo “User “. $row[“user”] . “ is allowed to
connect from: “ . $row[“host”] . “<P>”;

}
}

function priv($user,$inhost)
{

This subroutine looks up the grants for the given
user/host pair.

$query = “SHOW GRANTS FOR ‘$user’’$inhost’”;
$result = mysql_query($query);

$i = 0;

if (! $result) {
print “No such grant<P>\n”;

}
else {
while ($grant = mysql_fetch_array($result)) {
print “$grant[$i]<P>”;
$i++;

}
}
}

?>

Figures 16-18 through 16-21 show snippets of the PHP version, along with example

runs of the program.

Figure 16-18: The form built by the PHP version
of the user manager

214932-4 ch16.F 5/29/02 3:53 PM Page 477

478 Part IV ✦ Development

Figure 16-19: The results with the PHP version of the
user manager look the same as those from the Perl
CGI version.

Figure 16-20: The privilege lookup with the PHP
version of the user manager

214932-4 ch16.F 5/29/02 3:53 PM Page 478

479Chapter 16 ✦ PHP Development

Figure 16-21: Querying for privileges works the same
with the PHP version as with the Perl CGI version.

Examination of the PHP version of the user manager
Many of the user manager’s basic functions are the same in both the Perl and PHP

versions — in particular, functions such as while and if. Looking at the first bits of

the PHP code, notice that the program no longer starts with #!/usr/bin/perl
(which makes sense, since this PHP version isn’t a Perl program). An include
statement in the PHP code includes the database credentials; it’s the last line of the

following code snippet:

<?php

This program looks up the hosts from which a
given user is allowed to connect.
Also looks up grants for a user, given the @ symbol in the
argument list.

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

The next portion is a new addition to the PHP version that’s unnecessary in the Perl

CGI version. Because the initial page in the Perl version is a static HTML page, the

CGI doesn’t create any HTML. Although the same could be done with the PHP ver-

sion (and technically with the Perl version as well), it’s easier to handle creating the

214932-4 ch16.F 5/29/02 3:53 PM Page 479

480 Part IV ✦ Development

HTML directly in the PHP program. In this instance, if the Submit button isn’t

clicked (as it would be when you initially visit the page, or if the user field were

blank), the page is simply served again.

if ((! $submit) || (! $user)) {
echo “<form action=\”/chap16/fig18.php\” method=post>”;
echo “Enter Username: <input type=text name=user

length=20><P>\n”;
echo “<input type=submit name=submit><P>\n”;
echo “</form><P>\n”;
exit;

}

The PHP method for connecting to the database server and database is next in the

script:

Connect to the database
$dbconn = mysql_connect($host,$username,$password) or die
(“Couldn’t connect to database server”);

$db = mysql_select_db(“mysql”);

The next bit of code examines the value that was input, looking for an @ symbol

(which would indicate that the query is looking for the grants — privileges —

afforded a given user). Notice the use of the PHP ereg function to examine the

$user string variable. A PHP MySQL function introduced in this section —

mysql_escape_string()— works somewhat like the mysql_quote() function

in Perl.

The mysql_escape_string() function takes a string that was already input

and makes it safe for use in a MySQL statement. The mysql_quote() function

in Perl does the same thing, but it puts quotation marks around the string —

which the mysql_escape_string() function in PHP does not. Therefore, to use

mysql_escape_string(), put quotes around the string in your PHP MySQL

statements. The following snippet is an example:

If there’s an @ symbol then the user wants to look up
grants.
if (ereg(“@”, $user)) {

list ($user,$inhost) = split(“\@”, $user);

Make sure the username and host are safe to
send to MySQL.
$quoteduser = mysql_escape_string($user);
$quotedhost = mysql_escape_string($inhost);
priv($user,$inhost);

}

The next section is executed when no @ symbol is included from the form (hence, in

effect, no grants are sought). The program queries for the already-input username

and returns the result.

214932-4 ch16.F 5/29/02 3:53 PM Page 480

481Chapter 16 ✦ PHP Development

In addition to the functions used in this section, another method is possible for pro-

cessing the returned results. It looks like this:

else {
User wants to simply lookup the hosts allowed
for given username.

Make sure the username is safe to
send to MySQL.
$quoteduser = mysql_escape_string($user);

$query = “SELECT host,user FROM user WHERE user =
‘$quoteduser’”;

$result = mysql_query($query) or die (“Cannot execute
query 1”);

while ($row = mysql_fetch_array($result)) {
echo “User “. $row[“user”] . “ is allowed to

connect from: “ . $row[“host”] . “<P>”;
}

}

The final section of the program is called when an @ symbol is included in the input

that comes from the form:

function priv($user,$inhost)
{

This subroutine looks up the grants for the given
user/host pair.

$query = “SHOW GRANTS FOR ‘$user’’$inhost’”;
$result = mysql_query($query);

$i = 0;

if (! $result) {
print “No such grant<P>\n”;

}
else {
while ($grant = mysql_fetch_array($result)) {
print “$grant[$i]<P>”;
$i++;

}
}
}

?>

In the code snippet just given, notice that PHP calls the function with the name

function (whereas Perl uses sub to designate a user-defined function). The func-

tion also uses a different method for receiving the variables that are called with it.

214932-4 ch16.F 5/29/02 3:53 PM Page 481

482 Part IV ✦ Development

Throughout the program, the persistent challenge is to keep track of both the similari-

ties and the significant differences between Perl and PHP to avoid losing functionality.

Cookies with no milk
Cookies are value-plus-parameter pairs stored in the HTTP header and sent to a

Web agent (such as a browser) when retrieving an object — usually a Web page —

from the Internet. They are commonly used to store user-related data (such as ses-

sion identifiers) and can be set to expire at a point in the future determined by the

site that sets and uses the cookie.

Although PHP includes functions for setting and easily retrieving cookies, it also

includes other functions for setting and retrieving session identifiers; some of these

don’t use cookies. A developer can use either a cookie function or a session func-

tion in PHP to maintain state or authenticate users for Web pages.

There are probably endless methods for creating authentication mechanisms for

Web sites and Web pages. This section examines one method for authenticating

users that also sets a cookie with a session identifier. The approach that is specifi-

cally relevant to this book is to integrate the authentication mechanism with a

MySQL database.

Once that integration is complete, visitors can enter a username and password. The

credentials will be authenticated against data in a MySQL database. If the login is

successful, a session ID and timestamp are recorded in the MySQL database. A

cookie is sent to the user upon success, containing that same session ID and user-

name (in encrypted form). When the user attempts to access another resource

within the site, the user’s cookie is examined and compared to the one in the

database. If it’s valid, the user is allowed to access the resource. In addition, the

database includes a group function so resources can be limited by group (should

the need arise).

No need to undertake full normalization of the database for this site. Since the site
is intended for low usage, normalization would have little or no effect on perfor-
mance.

The first step toward the authentication system is to create the database — in

effect, a big table with some special features. The table for the authentication sys-

tem has the following structure:

CREATE TABLE `user_table` (
`user` varchar(20) NOT NULL default ‘’,
`pass` varchar(20) default NULL,
`session` varchar(50) default NULL,
`auth_group` varchar(20) default NULL,
`timestamp` varchar(32) default NULL,
PRIMARY KEY (`user`)

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 482

483Chapter 16 ✦ PHP Development

Two main PHP scripts make up the authentication system: a sign-in program and a

cookie-validation program. The sign-in program prints a form for username and

password, and then sets the cookie. It looks like this:

<?php

This program creates an authentication system
using MySQL and cookies.

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

if (!isset($submit)) {
echo “<form action=\”/chap16/signin.php\” method=post>”;
echo “Enter Username: <input type=text name=user

length=20><P>\n”;
echo “Enter Password: <input type=password name=pass

length=20><P>\n”;
echo “<input type=submit name=submit><P>\n”;
echo “</form><P>\n”;
exit;

}
elseif (!isset($user)) {
echo “Please enter username<P>\n”;
echo “<form action=\”/chap16/signin.php\” method=post>”;
echo “Enter Username: <input type=text name=user

length=20><P>\n”;
echo “Enter Password: <input type=password name=pass

length=20><P>\n”;
echo “<input type=submit name=submit><P>\n”;
echo “</form><P>\n”;
exit;

}
elseif (!isset($pass)) {
echo “Please enter password<P>\n”;
echo “<form action=\”/chap16/signin.php\” method=post>”;
echo “Enter Username: <input type=text name=user

length=20><P>\n”;
echo “Enter Password: <input type=password name=pass

length=20><P>\n”;
echo “<input type=submit name=submit><P>\n”;
echo “</form><P>\n”;
exit;

}
else {
Connect to the database
$dbconn = mysql_connect($host,$username,$password) or die

(“Couldn’t connect to database server”);

$db = mysql_select_db(“auth”);

$quoteduser = mysql_escape_string($user);
$quotedpass = mysql_escape_string($pass);
authenticate($user,$pass);

214932-4 ch16.F 5/29/02 3:53 PM Page 483

484 Part IV ✦ Development

}

function authenticate($user,$pass)
{

This subroutine looks up the grants for the given
user/host pair.

$query = “SELECT session FROM user_table WHERE user = ‘$user’
AND pass = password(‘$pass’)”;
$result = mysql_query($query) or die (“Query failed”);
$num = mysql_num_rows($result);

if ($num == 0) {
print “Username and/or password incorrect<P>\n”;
exit;

} else {
$row = mysql_fetch_array($result);

Create a pseudo-random session id.
srand((double)microtime()*99999999);
$id = md5(rand(0,9999999));

Encrypt the username
$encuser = md5($user);

Get rid of the result, so I can send another query
mysql_free_result($result) or die (“An error was

encountered”);

$time = time();

$query = “UPDATE user_table SET session = ‘$id’,timestamp =
‘$time’ WHERE user = ‘$user’”;
$result = mysql_query($query) or die (“UPDATE failed!”);

setcookie(“cookie_session”,”$id”,time()+60,”/”,””,0);
setcookie(“cookie_user”,”$encuser”,time()+60,”/”,””,0);

print “You have been successfully logged in<P>”;

}
} # End function authenticate

?>

Examination of the code reveals that many of the functions (and some of the logic)

previously discussed in this chapter are incorporated into the program. A couple of

snippets call for a closer look: One encrypts an otherwise-plaintext username before

returning it to the browser; the other clears the memory associated with a result.

214932-4 ch16.F 5/29/02 3:53 PM Page 484

485Chapter 16 ✦ PHP Development

Encrypting a username before returning it
In this section, after the username and password have been validated, I create a cou-

ple of seemingly random strings for values to store in cookies later. The PHP function

md5() is used twice. Because both the session ID and the username should be vali-

dated (I’ll tell you why later), I’d like to send a username. However, sending a plaintext

username back to the browser is not such a good idea (from the standpoint of security

and privacy). The md5() function to the rescue! The relevant code looks like this:

Create a pseudo-random session id.
srand((double)microtime()*99999999);
$id = md5(rand(0,9999999));

Encrypt the username
$encuser = md5($user);

Clearing the memory associated with a result
The next PHP MySQL function hasn’t been used before in this chapter’s examples:

mysql_free_result(), which clears the memory associated with a result.

Although technically it doesn’t have to be used here, it does ensure that the value

in $result will be clean and fresh — and that’s one less source of potential error.

Because the use of mysql_free_result() wipes the old result set out of mem-
ory, you can’t glean any further information from the old result set! Make sure you
have the information you need before you trash the old result set.

Using mysql_free_result() can be a lifesaver if your system is operating near the

limit of its resources and you have a huge result set that takes up too much mem-

ory. Here’s what the code looks like:

Get rid of the result, so I can send another query
mysql_free_result($result) or die (“An error was

encountered”);

Note the comment that lets the programmer know what’s intended here (and con-

sider it a reminder to cultivate good documentation habits). Next, a call to the PHP

time() function gives me a current Unix/Linux timestamp value (given as the num-

ber of seconds since the Epoch), and running the UPDATE statement sets the ses-

sion ID in the user_table along with the timestamp. Here’s the code:

$time = time();

$query = “UPDATE user_table SET session = ‘$id’,timestamp =
‘$time’ WHERE user = ‘$user’”;
$result = mysql_query($query) or die (“UPDATE failed!”);

Using a timestamp together with the session ID helps ensure that the session is rel-

atively recent (which is important to establish, as I’ll show you in the program to

validate cookies).

Caution

214932-4 ch16.F 5/29/02 3:53 PM Page 485

486 Part IV ✦ Development

Setting and validating the cookie
The following code contains two examples of the setcookie() function:

setcookie(“cookie_session”,”$id”,time()+60,”/”,””,0);
setcookie(“cookie_user”,”$encuser”,time()+60,”/”,””,0);

print “You have been successfully logged in<P>”;

The print statement at the end of this code snippet would be a good place to send

a redirect to the client, sending it to another page or calling another function.

In the first code snippet just given, normally you’d put the valid URL for the cookie
between the final double quotes to the left of the 0— in both instances. As it hap-
pens, some crazy redirection on my network prevents me from placing that value
correctly (within that final set of quotes) for the example.

The program to validate cookies is as follows:

<?php

function check_session($cookie_session,$cookie_user) {

include(“/usr/local/apache/htdocs/chap16/dbconnect.php”);

Connect to the database
$dbconn = mysql_connect($host,$username,$password) or die

(“Couldn’t connect to database server”);

$db = mysql_select_db(“auth”);

$quoteduser = mysql_escape_string($cookie_session);

$query = “SELECT auth_group FROM user_table WHERE session =
‘$cookie_session’ AND timestamp > (unix_timestamp() - 600) AND
md5(user) = ‘$cookie_user’”;

$result = mysql_query($query) or die (“Query failed”);
$num = mysql_num_rows($result);

if ($num == 0) {
print “Session has expired<P>\n”;
exit;

} else {
$row = mysql_fetch_array($result);
return $row[“auth_group”];

}
} # End function check_session

?>

Note

214932-4 ch16.F 5/29/02 3:53 PM Page 486

487Chapter 16 ✦ PHP Development

The check_session function would normally be called from within another page. For

example, I have a page called userpage.php that I do not want anyone to gain access

to unless they are valid. Including a call to this function at the beginning of that page

helps me ensure that the user has a valid cookie and is authorized to view the page.

Validating the user and the cookie
The query in the upcoming code snippet is the same one sent to actually validate

the user and the cookie.

$query = “SELECT auth_group FROM user_table WHERE session =
‘$cookie_session’ AND timestamp > (unix_timestamp() - 600) AND
md5(user) = ‘$cookie_user’”;

Here I’m using the WHERE clause to look for three matches:

✦ The session ID should match the one sent in the user cookie.

✦ The timestamp in the user_table is compared to the current time. If the

timestamp is less than 10 minutes ago (600 seconds), then it’s valid.

✦ The user in the table (sent through md5) should match the md5ed user from

the cookie.

If all three of these values match appropriately, the cookie is valid.

Using three values in the database to validate cookies makes it more difficult for

a malicious user to fake a session ID to try to gain access to protected resources.

Even if a user can fake a session ID, he or she must tie in that session ID with

the encrypted username within the time specified in the query (in this case,

10 minutes).

The function ends with a call to the PHP return() function. The function sends the

value back to the calling program.

return $row[“auth_group”];

As an example, here’s the code that creates a page called userpage.php. That page

calls the check_session function to validate the user before continuing. The code

for the page is as follows:

<?php

$cookie_session = $HTTP_COOKIE_VARS[“cookie_session”];
$cookie_user = $HTTP_COOKIE_VARS[“cookie_user”];

if (!isset($cookie_session)) {
print “Session expired\n”;
exit;

} elseif (! isset($cookie_user)) {

Probably should make a function to

214932-4 ch16.F 5/29/02 3:53 PM Page 487

488 Part IV ✦ Development

inform an admin here since no user
cookie might mean someone is
doing something naughty.

print “Invalid request\n”;
exit;

} else {
require (“/usr/local/apache/htdocs/chap16/cookie_auth.php”);
$group = check_session($cookie_session,$cookie_user);
print “Cookie retrieval validated, you are a member of $group

group\n”;
}

?>

In this instance, the resource I want to protect doesn’t amount to much more than

an example page. But that resource could be any page in which you can use a PHP

function.

In the example page, first I get the values of the cookies. If they’re not set, then

something is wrong and the user can’t continue. Otherwise (if both cookies are set)

call the check_session function. Notice that the check_session function is called

with $group as a target for the result. Doing so grabs the return() value from the

function called. The checking of cookies that I get this page to do could also be

done inside the check_session function as part of the cookie-checking function.

Figure 16-22 shows an example of the sign-in page; Figure 16-23 shows what hap-

pens when I type my password wrong.

Figure 16-22: The sign-in page for the authentication
system

214932-4 ch16.F 5/29/02 3:53 PM Page 488

489Chapter 16 ✦ PHP Development

Figure 16-23: Password incorrect when attempting
to sign in

When I manage to type my password correctly, the cookies are sent, as shown in

Figures 16-24 through 16-26.

Figure 16-24: When authenticated, a
session cookie is sent first.

Figure 16-25: After the session-ID
cookie is sent, an md5 version of my
username is sent in a cookie.

214932-4 ch16.F 5/29/02 3:53 PM Page 489

490 Part IV ✦ Development

Figure 16-26: The resulting
page when validated. This
page could also be another
resource, a redirect, or any
other valid object.

When attempting to go to the protected resource, userpage.php, the cookies are

validated against the database (as shown in Figure 16-27). In fact, the function call

returns the group for my user, admin. Using this information, I could grant or deny

further access by group within userpage.php.

Finally, if the session has expired (I allowed only a 60-second cookie life), the

userpage.php script notices this and returns the appropriate result, as illustrated

in Figure 16-28.

Figure 16-27: The cookies
are validated when calling
userpage.php.

214932-4 ch16.F 5/29/02 3:53 PM Page 490

491Chapter 16 ✦ PHP Development

Figure 16-28: If I try to go to
the page after the cookie has
expired, I get a Session
Expired message.

Summary
PHP, a development language that can be installed on a number of platforms and

with many Web servers, includes many functions for interacting with a MySQL

server. Some of these functions replace MySQL functions. PHP has some notable

similarities to Perl. Using PHP and its MySQL functions, you can develop complex

applications with relative ease.

✦ PHP can be interwoven within HTML to make complex programs while pre-

serving the page design.

✦ PHP variables need not be declared explicitly. Most variables, including

arrays, are called using a dollar-sign character ($).

✦ You connect to a MySQL server by using the mysql_connect() function. You

disconnect using the mysql_close() function. Databases are selected with

mysql_select_db().

✦ Queries are sent to the database server with the mysql_query() function.

The mysql_unbuffered_query() function can be used if you do not need to

look at the results.

✦ There are numerous functions for retrieving the results of a query including

mysql_fetch_row, mysql_fetch_array, and mysql_fetch_assoc.

✦ The mysql_num_rows() function is good for quickly determining the success

or failure of an operation or statement.

✦ Keep http://www.php.net bookmarked for answers to most, if not all, your

PHP-related questions.

✦ ✦ ✦

214932-4 ch16.F 5/29/02 3:53 PM Page 491

214932-4 ch16.F 5/29/02 3:53 PM Page 492

ODBC/JDBC

Open Database Connectivity (ODBC) is the means by

which third-party applications can connect to and work

with data sources. Using ODBC, you can take data stored in a

MySQL (or other) database and link it to ODBC-enabled appli-

cations. Such applications can include widely available prod-

ucts such as Microsoft Word and Access.

Check the documentation of your applications to make
sure they are ODBC-enabled before you use ODBC to con-
nect your documents to data sources.

In addition, an object called Java Database Connectivity

(JDBC) defines the methods by which Java programs and

applets connect to and work with data sources. In fact, MySQL

offers a JDBC-enabled interface (JDBC API) used to connect

Java programs and applets to MySQL. The JDBC API is avail-

able for download from MySQL AB’s Web site.

This chapter examines ODBC with MySQL. The MySQL driver

for ODBC is distributed by MySQL AB and is called MyODBC.

MyODBC is available for a number of platforms including

Linux and Windows. This chapter concentrates on the

Windows installation and use of MyODBC.

I’ll also examine the MySQL JDBC, concentrating on the Linux

installation and use of the JDBC API. The MySQL JDBC driver

is third-party software, not developed directly by MySQL AB.

Note

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing MyODBC

Using MyODBC

Getting to know the
MySQL JDBC API

Using the MySQL
JDBC API

✦ ✦ ✦ ✦

224932-4 ch17.F 5/29/02 3:53 PM Page 493

494 Part IV ✦ Development

Throughout this chapter, I show examples of installing MyODBC and working with
ODBC in Windows; the version of Windows that I use for these examples may be
different from the version you’re using — the ODBC Control Panel applet may not
be located in Control Panel in your version. Though I’ve noted such differences
throughout the chapter, I also believe that the locations for such features as the
ODBC applet may change in future versions of Windows.

An Introduction to MyODBC
MyODBC is the MySQL AB driver for making an ODBC connection to MySQL. This

section examines where to get the software as well as how to install and use

MyODBC.

Where to get MyODBC
MyODBC can be downloaded directly from MySQL AB’s Web site at

http://www.mysql.com/. MyODBC comes packed in a zip archive for Windows, so

you need some form of unzipping program to unpack the software.

Installing MyODBC
The first step in the installation of MyODBC is to unpack the zipped archive.

Because the software comes with its own setup program, unpack it to a temporary

location; the setup program installs it from there. For the example, I unpack the

archive to c:\temp\myodbc, as in Figure 17-1.

Once unpacked, open Windows Explorer and point to the directory you just

unpacked to, in this case c:\temp\myodbc. Double-click setup.exe to begin the

setup of MyODBC, as in Figure 17-2.

Figure 17-1: Unpacking the MyODBC archive

Note

224932-4 ch17.F 5/29/02 3:53 PM Page 494

495Chapter 17 ✦ ODBC/JDBC

Figure 17-2: Locating the setup program
in Windows Explorer

Setup of MyODBC begins with a Welcome screen (see Figure 17-3). What you’re

being welcomed to is actually the installation process, not MyODBC itself.

Click Continue to move to the next screen, which prompts you to choose a driver to

install. MySQL is the only choice; click once to highlight it, and then click OK to

continue, as shown in Figure 17-4.

Figure 17-3: Don’t be fooled; you’re still installing MyODBC.

224932-4 ch17.F 5/29/02 3:53 PM Page 495

496 Part IV ✦ Development

Figure 17-4: Click the MySQL driver to
select it for installation.

Next you configure the MySQL data source. When presented with the list of Data

Sources, click once to highlight sample-MySQL (MySQL), as in Figure 17-5.

With sample-MySQL (MySQL) highlighted, click the Setup button to bring up the

MySQL default configuration box. Set whichever options you need (for example,

MySQL Host, User, Password, and so on), as illustrated in Figure 17-6. When fin-

ished, click OK. You can change the options later via the ODBC applet, located in

Control Panel on Windows 95 and 98 and Administrative Tools on Windows 2000

and XP.

Once you have configured MyODBC, click Close. You should see a success message

like that in Figure 17-7.

Figure 17-5: Click sample-MySQL (MySQL) in the
list of available data sources.

224932-4 ch17.F 5/29/02 3:53 PM Page 496

497Chapter 17 ✦ ODBC/JDBC

Figure 17-6: Setting the default
configuration for MyODBC

Changing MyODBC Options
Should you want to change options for MyODBC at a later date, you do so through

Control Panel on Windows 95 or 98 and through Administrative Tools on Windows

2000 and XP. Follow these steps:

1. Click Start ➪ Settings ➪ Control Panel.

Control Panel opens.

2. Double-click ODBC Data Sources, as shown in Figure 17-8.

Figure 17-7: A successful installation of
MyODBC

224932-4 ch17.F 5/29/02 3:53 PM Page 497

498 Part IV ✦ Development

Figure 17-8: ODBC Data Sources (32 bit) contains the
information about the MySQL ODBC connection.

The ODBC Data Source Administrator dialog box opens, showing the User DSN

tab (as depicted in Figure 17-9).

3. Click sample-MySQL and then click Configure, as shown in Figure 17-10.

Each ODBC connection connects to an individual database. Therefore, if you want
to connect to more than one database, you must add a new data source by click-
ing the Add button.

Figure 17-9: The default page in the ODBC Data
Source Administrator

Tip

224932-4 ch17.F 5/29/02 3:53 PM Page 498

499Chapter 17 ✦ ODBC/JDBC

Figure 17-10: The Configuration
page within the ODBC Data
Sources Administrator

Using MyODBC
Once MyODBC is installed, you can start sharing data between MySQL and your

ODBC-enabled applications (such as Word and Access). Understandably, a frequent

practical question that crops up at this point is how to get data from a MySQL

database into Microsoft Access, so it makes a good first example. The process is a

little different for importing into Word. I look at both in the upcoming section.

Importing MySQL data into Microsoft Access
With MyODBC installed, importing data into Microsoft Access is quite easy. This

section examines the process for importing tables into Access.

Microsoft seems to change the location and processes for import often, so the
steps given here may change by the time you read this (or by the time I finish writ-
ing this section). Problems can arise working with Microsoft Access if you have an
old version of the Microsoft Data Access Components (MDAC). Download a new
version of these drivers from Microsoft. The current location of Microsoft’s data-
related software on the Web is http://www.microsoft.com/data/.

Currently the steps for importing tables into Access are as follows:

1. From within Access with a database open, click File ➪ Get External Data ➪
and ➪ Import, as shown in Figure 17-11.

Caution

224932-4 ch17.F 5/29/02 3:53 PM Page 499

500 Part IV ✦ Development

Figure 17-11: The current location where you can find the Import dialog box in
Microsoft Access

The Import dialog box opens, as shown in Figure 17-12.

2. Within the Import dialog box, drop down the Files of type box and select ODBC

Databases (), as shown in Figure 17-13.

Figure 17-12: The Import dialog box in Microsoft Access

224932-4 ch17.F 5/29/02 3:53 PM Page 500

501Chapter 17 ✦ ODBC/JDBC

Figure 17-13: Selecting ODBC Databases () in the Files of type box

The Select Data Source box opens, as shown in Figure 17-14.

3. Click the Machine Data Source tab at the top of the Select Data Source dialog

box, and then select the MySQL data source that you want to use (as shown in

Figure 17-15).

Figure 17-14: The Select Data Source dialog
box as it appears when it opens

224932-4 ch17.F 5/29/02 3:53 PM Page 501

502 Part IV ✦ Development

Figure 17-15: The Machine Data Source tab is
where you select the MySQL ODBC data source.

Once your ODBC data source is selected and authenticated, a list of tables

appears, as illustrated in Figure 17-16 (which shows and example from the

ecommerce database).

4. Select the appropriate table that contains the data you are importing.

In the example, I’ve selected the product table from the Import Objects dialog

box. Doing so creates the Products table (see Figures 17-17).

Figure 17-16: The Import Objects dialog box, showing a
list of tables

224932-4 ch17.F 5/29/02 3:53 PM Page 502

503Chapter 17 ✦ ODBC/JDBC

Figure 17-17: The Products table is created as a regular table.

With the creation of the new object (in this example, the Products table), the

import process is complete. Figure 17-18 shows the completed Products
table.

If you update the data in the MySQL database directly, the data is not normally
updated in the Access version of the table. Likewise, any operations performed on
the Access version of the data are not performed on the MySQL copy of the data.
You can use the Link Tables function in Microsoft Access to tie the Access version
of the data back into MySQL.

Note

224932-4 ch17.F 5/29/02 3:53 PM Page 503

504 Part IV ✦ Development

Figure 17-18: The Products table contains the data from MySQL, as you would expect.

Importing data into Microsoft Word
Importing data into a Microsoft Word document is not as simple as working with

Microsoft Access. To import data into Microsoft Word, you must use Microsoft

Query. Microsoft Query may or may not be installed with your version of Microsoft

Word or Microsoft Office. If it is not installed, re-run the Microsoft Office Setup Wizard.

Assuming you have Microsoft Query installed, the steps for importing data into

Word look like this:

1. Open the Word document into which you want to import the data (it can

be a new document).

2. On the Database toolbar, click the icon that inserts a database (see Fig-

ure 17-19).

If you don’t have the Database toolbar available, select View ➪ Toolbars ➪

Database. Doing so adds a Database toolbar to the toolbars visible in Word.

3. Click the Insert Database button.

The Database dialog box appears, showing two options: Get Data and Cancel.

Tip

224932-4 ch17.F 5/29/02 3:53 PM Page 504

505Chapter 17 ✦ ODBC/JDBC

Figure 17-19: The Insert Database button on the database toolbar

4. Click Get Data.

The Open Data Source box appears, as shown in Figure 17-20.

5. From within the Open Data Source dialog box, click MS Query.

If Microsoft Query is installed, it opens as a new program with the Choose

Data Source box open, as illustrated in Figure 17-21. Go directly to Step 6.

Figure 17-20: The
Open Data Source
dialog box

224932-4 ch17.F 5/29/02 3:53 PM Page 505

506 Part IV ✦ Development

Figure 17-21: Microsoft Query opens with the Choose Data Source box.

If Microsoft Query is not installed, then (depending on the options you have

enabled) you are prompted to install it. If you agree to install Query, a wizard

guides you through the process. Follow the on-screen steps it presents, and

then resume importing your data into Word, starting with Step 6 here (which

uses the Query Wizard to complete the data transfer).

6. Select the MySQL ODBC connection that you’d like to begin working with and

click OK (in this example, it’s called sample-MySQL).

The Query Wizard - Choose Columns dialog box opens; you should see all

tables listed in the database configured in the ODBC connection, as in Fig-

ure 17-22.

7. From within the Choose Columns portion of the Query Wizard, choose the

columns you want to include in the query.

If there’s a plus sign next the table name you can click it to expand the

columns within the table.

8. Highlight a column name and then click the right arrow to move it into the

Columns in your Query area, as illustrated in Figure 17-23 (where I select three

columns for a query).

224932-4 ch17.F 5/29/02 3:53 PM Page 506

507Chapter 17 ✦ ODBC/JDBC

Figure 17-22: Query Wizard - Choose Columns opens with the tables from the
database (as defined in the ODBC connection you chose).

9. Click Next to continue, which brings up a Filter Data dialog box (as shown in

Figure 17-24).

10. The Filter Data dialog box assists you in determining if you want to select only

certain records or rows. If you do not want to filter your data, click Next.

Figure 17-23: Selecting columns for a query in the
Query Wizard

224932-4 ch17.F 5/29/02 3:53 PM Page 507

508 Part IV ✦ Development

The Sort Order dialog box appears, as shown in Figure 17-25. If you want to

sort your results, you can do so by selecting the appropriate columns and

choosing a sort order.

11. When you’ve completed the Sort Order dialog box (or decided not to use it),

click Next.

A Finish box appears, as in Figure 17-26.

12. If you decide not to save the query (for example, when you follow the steps in

this book purely for practice), you won’t be able to retrieve the results later

without rebuilding the query.

To save your query for later retrieval, click the Save Query button, which

starts the saving procedure by giving you a choice of locations for the saved

query (see Figure 17-27).

13. Once you complete the Query Wizard, if you elect to send the data back to

Microsoft Word, the Database dialog box appears again in Word, as illustrated

in Figure 17-28.

Figure 17-24: The Filter Data dialog box, as seen in
the Query Wizard

Figure 17-25: Sorting results by using the Sort
Order dialog box

224932-4 ch17.F 5/29/02 3:53 PM Page 508

509Chapter 17 ✦ ODBC/JDBC

Figure 17-26: The Finish dialog box for the
Query Wizard

Figure 17-27: Choosing a location to which
to save the query for later retrieval

Figure 17-28: The Database dialog box in
Microsoft Word after successful completion
of the Microsoft Query Wizard

14. Click Insert Data.

The data appears in your Word document, as illustrated in Figure 17-29.

Congratulations! You’ve imported the data into a Word document.

224932-4 ch17.F 5/29/02 3:53 PM Page 509

510 Part IV ✦ Development

Figure 17-29: The data from MySQL imported through Microsoft Query

Should you encounter problems with the import process, check to make sure that
your ODBC connection is working properly. The quickest fix is to get MySQL and
Microsoft Access talking to each other. Try to connect with ODBC in Microsoft
Access. If this works, then you may have a problem other than the import process
itself (for example, an incompatibility in driver versions).

An Introduction to JDBC
Java Database Connectivity (JDBC) is the Java version of the interface used for con-

nection to more than one relational database management system (RDBMS). A

JDBC API exists for MySQL, in several versions. Presently only one version is avail-

able under the Lesser GNU Public License (LGPL).

Using the JDBC for MySQL, you can connect Java programs and applets to a MySQL

database. This section examines the installation of the MySQL JDBC in Linux as well

as how to connect to MySQL in a Java program.

Tip

224932-4 ch17.F 5/29/02 3:53 PM Page 510

511Chapter 17 ✦ ODBC/JDBC

The JDBC interface
JDBC for MySQL is a slight misnomer; Java database connectivity is, in fact, avail-

able for various RDBMS programs. In effect, JDBC functions like the Perl DBI —

it enables a range of database drivers to connect to various RDBMS products. For

the purposes of this book, when I refer to “the” JDBC interface, I refer to a particu-

lar API — the MySQL driver that works with the JDBC.

The JDBC API itself is included with the core Java Software Development Kit (abbrevi-

ated as SDK or JDK — I use JDK throughout this chapter). In particular, the java.sql
package contains the classes needed for using MySQL to work with data.

Where to get the JDBC and MySQL JDBC Driver
The MySQL JDBC API is not an official MySQL AB product. However, the MySQL

JDBC driver is linked from the MySQL AB Web site. I found the versions of the

MySQL JDBC driver linked directly from MySQL AB’s Web site to be relatively old.

A newer version of the MySQL JDBC driver can usually be obtained directly from

the following Web site: http://mmmysql.sourceforge.net/.

The file format for the MySQL JDBC driver is a Java archive; you need the jar
program to unpack it. You can obtain jar at the following Web site:

http://mmmysql.sourceforge.net/

Getting the driver shouldn’t be a problem; the Java Software Development Kit (JDK)

is another a prerequisite to installing the JDBC MySQL driver. If you don’t have the

JDK, download it from the following Web site:

http://java.sun.com/products/

Although I’m hesitant to offer this link as the definitive Sun Java Web site (its loca-

tion may change in the future), that’s where you can download the latest JDK for

Linux.

Installing the MySQL JDBC Driver
Before installing the MySQL JDBC driver, make sure you have the Java JDK installed.

The JDK comes in a binary format, with a file extension of .bin. When you run the

binary program, it creates a directory (below your current directory) and installs

the Java JDK automatically.

After you download the Java JDK, you may have to change the mode of the file

before you can execute it. The command for doing so is as follows:

chmod 700 j2sdk-<version>.bin

224932-4 ch17.F 5/29/02 3:53 PM Page 511

512 Part IV ✦ Development

Execute the file as you would any other program located in a directory not in your

path, as follows:

./j2sdk-<version>.bin

Again, be sure to run the JDK installer binary from the location where you want it

installed. If you want the JDK in /usr/local/j2sdk-<version/ (for example), you

should execute the installer from within /usr/local.

When you execute the installer, a License Agreement appears. Read the agreement;

if you agree to its terms, type yes (see Figure 17-30).

The JDK installation then creates the necessary directories and files, as illustrated

in Figure 17-31. No compilation is necessary with the Java JDK.

The current version of the MySQL JDBC driver comes packed in a jar archive and

need not be compiled. For my installation, I unpacked the jar archive to the jdk
directory.

cp mm.mysql-2.0.9-you-must-unjarme.jar /usr/local/ jdk1.3.1_02
cd /usr/local/jdk1.3.1_02
./bin/jar xvf mm.mysql-2.0.9-you-must-unjarme.jar

Figure 17-30: The license agreement is the first step in JDK installation.

224932-4 ch17.F 5/29/02 3:53 PM Page 512

513Chapter 17 ✦ ODBC/JDBC

Figure 17-31: The Java JDK installer requires no compilation to
install the software.

Running this command yields a directory called mm-2.0.9 in
/usr/local/jdk1.3.1_02.

Inside of the mm-2.0.9 directory there is a file called mm.mysql-2.0.9-bin.jar.

Copying that file to /usr/local/jdk1.3.1_02/jre/lib/ext copies the class files

for the MySQL JDBC API. If your installation is in a different location, copy the file to

<java_sdk_directory>/jre/lib/ext/.

Version numbers of both the Java JDK and the MySQL JDBC driver will probably
change by the time you read this.

For my installation, I also added the JDK’s binary directory to my path. In addition,

you may want to add the MySQL JDBC driver location to your CLASSPATH. Using

csh or tcsh, the command that does so looks like this:

setenv CLASSPATH /path/to/mysql-jdbc-class:.:$CLASSPATH

Should you receive an error such as that shown in Figure 17-32, then no CLASSPATH
is defined at all. In this instance, I recommend setting it to include the JDK directory

as well, using the following command line:

setenv CLASSPATH /path/to/jdk:/path/to/mysql-jdbc-class:

Note

224932-4 ch17.F 5/29/02 3:53 PM Page 513

514 Part IV ✦ Development

Figure 17-32: The error message given when the CLASSPATH
variable hasn’t been set

For more information on installing and using the Java Software Development Kit,

see the Sun Web site, http://java.sun.com.

Using the JDBC and the MySQL Driver
The JDBC itself defines the methods by which you connect to a database. This

section looks at how to create a connection to a MySQL database and issue state-

ments with the JDBC. Before doing so, I’d like to go over some basic terminology

and concepts.

The concepts and terms of JDBC
The first step involved in making the JDBC work with a database is loading a driver.

The JDBC java.sql.DriverManager class performs this task. The DriverManager
class also works with the Driver so you don’t need to. The forName() method

loads the Driver class.

Although you can also load the Driver class by using jdbc.drivers, I recom-
mend using the forName() method for the sake of consistency.

The Class.forname() method takes a string as an argument. In the case of the

MySQL JDBC driver, this string is:

org.gjt.mm.mysql.Driver

For example:

Class.forName(“org.gjt.mm.mysql.Driver”);

The getConnection method is called to make the actual connection to the

database server. The DriverManager creates a Connection object when you call

Note

224932-4 ch17.F 5/29/02 3:53 PM Page 514

515Chapter 17 ✦ ODBC/JDBC

the getConnection method. GetConnection takes a string URL as an argument. In

the case of MySQL, you provide the URL and credentials for the connection:

Connection con;
con = DriverManager.getConnection(url, “username”, “password”);

Alternatively:

Connection con = DriverManager.getConnection(url, “username”,
“password”);

The basics of handling statements and results
The Statement interface with the JDBC is not an object, but rather, an interface for

creating an object that executes statements. You create a Statement object as follows:

Statement stmt = connection.CreateStatement();

With the Statement object created, you use an execute method on the object.

There are four execute methods for use with the JDBC: executeQuery(),

executeUpdate(), executeBatch(), and execute().

The executeQuery() method is for statements such as SELECT that retrieve values

from a database. The executeUpdate() method is used commonly with DDL state-

ments that don’t return values but may return a number of rows affected by the

operation. Finally, the execute() method is for statements that return greater than

one result or count.

The executeUpdate() method returns an integer value that contains the number

of rows affected by the operation.

The results from queries are retrieved using ResultSet. For example:

ResultSet result = statement.executeQuery(“SELECT * FROM
user”);

To access the results, use a get method. The basic methods for accessing data are

as follows:

getBoolean()
getByte()
getDate()
getDouble()
getFloat()
getInt()
getLong()
getShort()
getString()
getTime()
getTimestamp()

224932-4 ch17.F 5/29/02 3:53 PM Page 515

516 Part IV ✦ Development

The getDate(), getTime(), and getTimestamp() methods all return date or time val-

ues. When using a get method, you provide the column name in quotes. For example,

getString(“columnname”);

If you do not know the column name, you can identify the result with by its numeri-

cal column-position reference. If you don’t know the number of columns, you can

find that value in the realm of the upcoming section; it’s a type of metadata.

Database metadata
To manipulate data, you need information about it — metadata. Database metadata,

for example, is information about the database and the data it contains — for exam-

ple, the number of columns returned from a query. There are two sets of metadata

for JDBC objects — connection and result. Both are retrieved with the

getMetaData() method. When called in reference to a ResultSet, the

ResultSetMetaData object type is returned.

In answer to the question posed about the number of columns, the following code

snippet shows how to determine the number of columns from a given result set.

ResultSetMetaData databaseinfo = result.getMetaData();
int columns = databaseinfo.getColumnCount();
System.out.println(columns);

Other useful methods within ResultSetMetaData are getColumnName(), and

getColumnType().

Metadata about the database and server is available through the

DatabaseMetaData object, as follows:

import java.sql.*;

public class DBMeta {

public static void main(String args[]) {

String url = “jdbc:mysql://localhost/ecommerce”;
Connection con;

try {
Class.forName(“org.gjt.mm.mysql.Driver”);

} catch(java.lang.ClassNotFoundException e) {
System.err.print(“ClassNotFoundException: “);
System.err.println(e.getMessage());

}

try {
con = DriverManager.getConnection(url, “suehring”,

“evh5150”);

224932-4 ch17.F 5/29/02 3:53 PM Page 516

517Chapter 17 ✦ ODBC/JDBC

System.out.println(“Connection established!”);

DatabaseMetaData dbmdata = con.getMetaData();
System.out.println(“Database Information”);
System.out.println(“Database name: “ +

dbmdata.getDatabaseProductName())
;

System.out.println(“Version: “ +
dbmdata.getDatabaseProductVersion());

System.out.println(“Driver: “ +
dbmdata.getDriverName());

System.out.println(“Version: “ +
dbmdata.getDriverVersion());

con.close();

} catch(SQLException ex) {
System.err.println(“SQLException: “ + ex.getMessage());

}
}

}

Working with JDBC errors
The main handler for errors with JDBC is SQLException class. SQLException,

when invoked, sends a string with a description of the exception. This error mes-

sage is retrieved with the getMessage() method. SQLException actually sends

three pieces of information; in general terms, these are as follows:

✦ Message string — the message itself.

✦ SQL state — a five-character string retrieved with the getSQLState()
method.

✦ Vendor error code — a code defined by the software vendor and retrieved

with the getErrorCode() method.

Testing for NULL values
The wasNull() method serves to determine if a value returned from the database

was NULL. The wasNull() method is called as part of the result set for a statement,

as in the following example:

Statement stmt = con.createStatement();
result = stmt.executeQuery(sql);
while (result.next()) {

if (result.wasNull()) {
System.out.println(“Null found.”);

}
}

224932-4 ch17.F 5/29/02 3:53 PM Page 517

518 Part IV ✦ Development

Cached connections
Up to this point, I’ve been showing examples using the ResultSet object. The

ResultSet object remains connected to the data source for result retrieval.

Because the connection must remain intact and active, the ResultSet object is not

useful for working with data over a networked connection. The JDBC API defines a

RowSet interface that includes a CachedRowSet class that can be used to retrieve

results and place them into a cache for later use.

Connecting to MySQL with the JDBC API and
MySQL Driver
Connecting to MySQL with JDBC for the first time can be a humbling experience.

After lurking on Java mailing lists for a long time (as well as watching the Usenet

newsgroups), I’ve seen numerous questions by first-time developers who struggle

with this initial JDBC connection.

The following code demonstrates a typical connection to a MySQL server, made

with Java.

import java.sql.*;

public class FirstConnection {

public static void main(String args[]) {

String url = “jdbc:mysql://localhost/ecommerce”;
Connection con;

try {
Class.forName(“org.gjt.mm.mysql.Driver”);

} catch(java.lang.ClassNotFoundException e) {
System.err.print(“ClassNotFoundException: “);
System.err.println(e.getMessage());

}

try {
con = DriverManager.getConnection(url, “suehring”,

“evh5150”);
System.out.println(“Connection established!”);
con.close();

} catch(SQLException ex) {
System.err.println(“SQLException: “ + ex.getMessage());

}
}

}

224932-4 ch17.F 5/29/02 3:53 PM Page 518

519Chapter 17 ✦ ODBC/JDBC

You can save this connection as a program named FirstConnection.java — and

compile it — by typing

javac FirstConnection.java

Once the program is compiled, you can run it by typing

java FirstConnection

When your first connection is successful, a Connection Successful message

appears.

Examining some of the code snippets reveals that a string variable, url, is initialized

and contains the connection information for the server (localhost) that I want to

connect to, along with the database (ecommerce) that I want to use. If I want to spec-

ify a port other than the default 3306, I can use localhost:port. For example, I

could use localhost:5150 like this:

String url = “jdbc:mysql://localhost/ecommerce”;

A connection object, con, is created next:

Connection con;

The MySQL JDBC driver is now loaded, according to the syntax discussed in the

previous section. If the loading of the driver is unsuccessful, an error message is

printed; the following code displays the error message:

try {
Class.forName(“org.gjt.mm.mysql.Driver”);

} catch(java.lang.ClassNotFoundException e) {
System.err.print(“ClassNotFoundException: “);
System.err.println(e.getMessage());

}

The connection is attempted next; if it does not succeed, use SQLException to

retrieve the error message. That operation looks like this:

try {
con = DriverManager.getConnection(url, “suehring”,”evh5150”);
System.out.println(“Connection established!”);
con.close();

} catch(SQLException ex) {
System.err.println(“SQLException: “ + ex.getMessage());

}
}

224932-4 ch17.F 5/29/02 3:53 PM Page 519

520 Part IV ✦ Development

Creating a basic MySQL JDBC Program
Building on the simple connection program from the last section, I’ll retrieve some

results from a query by using the following code:

import java.sql.*;

public class SimpleSelect {

public static void main(String args[]) {

String url = “jdbc:mysql://localhost/ecommerce”;
Connection con;

try {
Class.forName(“org.gjt.mm.mysql.Driver”);

} catch(java.lang.ClassNotFoundException e) {
System.err.print(“ClassNotFoundException: “);
System.err.println(e.getMessage());

}

try {
con = DriverManager.getConnection(url, “suehring”,

“evh5150”);
System.out.println(“Connection established!”);

Statement stmt = con.createStatement();
ResultSet productinfo =
stmt.executeQuery(“SELECT name,artist FROM product”);

while (productinfo.next()) {
System.out.println(productinfo.getString(“name”) + “

“
+ productinfo.getString(“artist”));

}

con.close();

} catch(SQLException ex) {
System.err.println(“SQLException: “ + ex.getMessage());

}
}

}

The code just given has a new section added to execute the statement and retrieve

the results. A Statement object, stmt, is created. Then the query is issued. The

results are then retrieved by using the getString method with the column name in

quotes:

224932-4 ch17.F 5/29/02 3:53 PM Page 520

521Chapter 17 ✦ ODBC/JDBC

Statement stmt = con.createStatement();
ResultSet productinfo =
stmt.executeQuery(“SELECT name,artist FROM product”);

while (productinfo.next()) {
System.out.println(productinfo.getString(“name”) + “

“ + productinfo.getString(“artist”));
}

You can save the program as SimpleSelect.java and compile it by typing the fol-

lowing command:

javac SimpleSelect.java

Summary
MyODBC is MySQL AB’s version of an ODBC driver for MySQL, available for

Windows and for some versions of Unix and Linux.

✦ MyODBC can be obtained directly from MySQL AB’s Web site.

✦ MyODBC installation in Windows is straightforward using a standard

Windows-type setup program.

✦ During setup you enter in basic information about the MySQL ODBC Data

Source including the name or IP of the server, username, password, and

database to connect to.

✦ You can change the information or add Data Sources for MySQL at a later time

through the ODBC Control Panel in Windows.

✦ Connecting MySQL to Microsoft Access is relatively simple and is done

through the Get External Data process.

✦ Connecting MySQL to Microsoft Word is done through the use of Microsoft

Query to build a SELECT query for the data you’d like to integrate.

✦ JDBC is the Java equivalent of ODBC. JDBC is distributed with the Java

Software Development Kit from Sun.

✦ MySQL has a driver to integrate with the JDBC so you can connect MySQL

to Java programs and applets.

✦ ✦ ✦

224932-4 ch17.F 5/29/02 3:53 PM Page 521

224932-4 ch17.F 5/29/02 3:53 PM Page 522

Advanced
Performance

✦ ✦ ✦ ✦

In This Part

Chapter 18
Replication

Chapter 19
Integration of Internet
Services

Chapter 20
NuSphere Enhanced
MySQL

✦ ✦ ✦ ✦

P A R T

VV

234932-4 Pt05.F 5/29/02 3:54 PM Page 523

234932-4 Pt05.F 5/29/02 3:54 PM Page 524

Replication

An area that has received a lot of attention from the

MySQL development team has been replication. Repli-

cation refers to the automated copying of changes made to

databases and data between two or more MySQL servers.

The MySQL development team has made replication in MySQL

a robust and stable feature.

As part of my daily routine, I manage a fairly large-scale data-

base that is replicated across five states in real time using

MySQL replication. The system has been operational for two

years with very little difficulty. Even two years ago, replication

in MySQL was stable. The stability and added features of

today’s MySQL replication make it a good choice for redun-

dancy and mission-critical applications alike.

This chapter looks at MySQL replication, including how to

install and configure replication between two or more MySQL

servers. MySQL AB has gone to great lengths to make replica-

tion configuration easy as you’ll see in the following pages.

Planning and Preparing
for Replication

Before undertaking the tasks involved in actually setting up

replication, take some time to plan and prepare for those

tasks. The planning includes making sure replication is right

for your implementation, deciding what databases or tables

will be replicated, how many servers will participate in the

replication, and how you will monitor replication. Preparing

for replication includes ensuring that all participating servers

are running on the same MySQL version.

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Getting ready
for replication

Setting your
configurations
for replication

Keeping an eye
on replication

Using replication
shortcuts

✦ ✦ ✦ ✦

244932-4 ch18.F 5/29/02 3:54 PM Page 525

526 Part V ✦ Advanced Performance

Considerations for replication
A couple of common terms that will be used throughout this chapter are master

and slave. The master server receives updates to the data from applications and

through other means and is considered the primary MySQL server in the replica-

tion set. The slave server receives updates only from the master server. The master

server knows nothing about any slave servers that read the updates and replication

information. The slave server is responsible for contacting the master server and

reading the replication updates.

Replication does not require a constant or high-speed connection between the mas-

ter and slave. If a slave loses its connection to the master, it will try to reconnect

according to values set by the administrator. Further, if a slave server stops repli-

cating, it will remember where it left off and catch up later. Replication does require

that both the master and slave have the same data to begin with. Therefore, if you

are beginning with a 6GB database, you need that data transferred to the slave.

(There are a couple of methods for performing this task, which I discuss later.)

Replication uses a log, called the binary log, for tracking updates to data. This

file is kept on the master in a replication set or on slave servers that have log-

slave-updates enabled. On some file systems, notably ext2 in Linux, the maximum

default file size is 2GB. Therefore, you must monitor replication and perform a repli-

cation-and-restart operation before the binary log grows to 2GB.

Replication can be configured in a number of forms. The simplest and most widely

used form of replication is with one master and one or more slaves. Replication can

also be configured with more than one master though only one is active at any time.

Finally, replication can be configured in a two-way format where updates are logged

back to the master. Two-way replication can create problems such as when there is

an update for the same record received at the same time.

MySQL enables the administrator to choose the data to replicate. The data can be

selected with granularity down to the table level. Therefore, you can replicate all

databases on the server, only certain databases, or simply a table. Additionally,

you can select tables with wildcard-like matching and even select a table or tables

not to include while including all others.

The values for auto_increment columns are automatically updated as part of the

replication process. No need to worry about the values becoming skewed between

replication participants.

244932-4 ch18.F 5/29/02 3:54 PM Page 526

527Chapter 18 ✦ Replication

MySQL server versions
For replication to work successfully, you must be running the same version of

MySQL on all servers participating in the replication. There are exceptions to this

rule, but for the most part it’s a good idea to get the latest version of MySQL run-

ning on all participating replication servers so that the features and back-end code

operate as expected.

The file format for replication changed in MySQL version 3.23.26 — and again in

version 4. If you are running an older version and cannot update, you’re required

to run old versions of MySQL on all servers that participate in the replication.

Version 4 of MySQL can participate in a 3.23.26 (or greater) version of replication.

The server will check the version running on the master, and if it is a 3.x version,

the appropriate format is used.

Security
By default, replication traffic is sent via unencrypted packets — an unacceptable

arrangement for secure databases and updates. This is especially true of updates

that traverse untrusted networks.

Beginning with version 4 of MySQL you can configure replication to use Secure

Sockets Layer (SSL) for replication traffic. Using SSL, traffic is encrypted and thus

safer as it travels across an untrusted network. Using SSL with MySQL replication

assumes that you have OpenSSL installed and working. If you do not have OpenSSL

installed, you can’t use SSL for MySQL replication.

Configuring Replication
This section gets down to the business of configuring replication. I’ll begin by

examining the variables and settings for replication and then continue by looking

at a simple replication configuration between one master server and two slaves.

Additional replication configurations are also examined in this section.

Replication variables and settings
Some options for replication are only available within a particular context; they

apply only to a master server or only to a slave server. The options are set within

the MySQL configuration file such as my.cnf or my.ini. Table 18-1 lists the settings

applicable for a master server.

244932-4 ch18.F 5/29/02 3:54 PM Page 527

528 Part V ✦ Advanced Performance

Table 18-1
Options For Master Server In MySQL Replication

Option Description

binlog-do-db Replication will be performed only on updates to database
specified.

binlog-ignore-db Replication will be done on all databases except database
specified.

log-bin Sends replication updates to logfile in binary format.

log-bin-index Sets the filename of the file to track which log number is
current.

PURGE MASTER LOGS TO Deletes replication logs.

RESET MASTER Purges replication-related logfiles and restarts replication.

server-id Unique integer value of server within a replication set.

SET SQL_LOG_BIN=0 Stops replication or updating of the binary log.

SET SQL_LOG_BIN=1 Starts replication or updating of the binary log.

SHOW BINLOG EVENTS Used for debugging, this statement shows items in the
binary log.

SHOW MASTER LOGS Gives information on the binary logs residing on the
master.

SHOW MASTER STATUS Gives information on the master replication process.

The options and settings applicable for a slave server are shown in Figure 18-2. As

in Table 18-1, SQL statements are shown in all uppercase.

Table 18-2
Options For Slave Server In MySQL Replication

Option Description

CHANGE MASTER TO Changes the master that a slave replicates with.

LOAD DATA FROM MASTER Transfers a snapshot copy of the data from master to
begin replication.

LOAD TABLE FROM MASTER Transfers a specific table from a master server.

log-slave-updates Enables logging of updates on slave server.

master-host The IP or hostname of the master server.

master-user Username to use for replication.

244932-4 ch18.F 5/29/02 3:54 PM Page 528

529Chapter 18 ✦ Replication

Option Description

master-password Password to use for replication.

master-port Port to use for replication, default 3306 or the
MYSQL_PORT variable.

master-connect-retry Value in seconds to wait before attempting to reconnect
in the event of a non-fatal error.

master-ssl Enables replication over SSL.

master-ssl-key Name of keyfile to use for SSL-enabled replication.

master-ssl-cert Name of certificate to use for SSL-enabled replication.

master-info-file Location and name of file that contains replication
information.

report-host Special IP to report as when performing replication.

report-port Port number to report to master for replication.

replicate-do-table Name of table to replicate.

replicate-ignore-table Name of table to ignore for replication.

replicate-wild-do-table Wildcard matching for tables to replicate.

replicate-wild-ignore= Wildcard matching for tables to exclude from
table replication.

replicate-do-db Name of database to include in replication.

replicate-ignore-db Name of database to exclude from replication.

replicate-rewrite-db Name of database to replicate and then rename on slave.

RESET SLAVE Causes slave to restart replication from beginning of
logfile.

server-id Unique integer to identify the server in a replication set.

slave-skip-errors Ignore errors that would normally be fatal. Use with care.

SHOW NEW MASTER Used to assist in changing the master server for a
replication. This statement is rarely used and requires
additional syntax.

SHOW SLAVE STATUS Gives information on the slave replication process.

SLAVE START Starts the slave process, if it hasn’t been started.

SLAVE STOP Stops the slave process.

skip-slave-start Prevents the replication slave process from starting with
the MySQL server.

slave-read-timeout Seconds before timing out the slave process if no activity
is received.

244932-4 ch18.F 5/29/02 3:54 PM Page 529

530 Part V ✦ Advanced Performance

A basic replication configuration
Only a few options are necessary to configure a basic replication set between a

master and slave in MySQL. This section examines those configuration settings. I

am assuming that you’ve read the section on planning and preparing for replication

and have MySQL running with the same version on the participating hosts.

First, you must add a user to the master server. This user serves to communicate

from the slaves to the master for replication. I strongly recommend that you create

a separate user for replication and grant that user only the minimum privilege nec-

essary, the FILE privilege. Consider this example:

GRANT FILE ON *.* TO replicateuser@replicatehost IDENTIFIED BY
‘<password>’;

Figure 18-1 illustrates this statement being executed on the server to be the master

in the replication system. Remember, no need to issue a FLUSH PRIVILEGES state-

ment when using a GRANT statement.

Figure 18-1: Adding the replication user account

On the master inside the MySQL configuration file, usually my.cnf or my.ini, add

the following two lines to the [mysqld] section:

log-bin
server-id=1

The log-bin option turns on the binary log that tracks updates, the server-id
option is a unique value for the replication partner in this set. The server-id value

that you set must be unique across all partners in the replication set. For example,

you cannot have two server IDs of 1 taking part in the same replication.

If you have existing data in a database, you should take a snapshot of that data

prior to starting replication. Create a .tar or .zip file with the database or

244932-4 ch18.F 5/29/02 3:54 PM Page 530

531Chapter 18 ✦ Replication

databases that you want to replicate. From a shell within the database directory,

issue the following command:

tar -cvpf database.tar <databasename>

Transfer the resulting file to the slave server(s); unarchive (unzip) that file within

the database directory. Your servers will now start with the same data. (This is an

important step, as I show later in this chapter.)

Once you’ve taken the snapshot, stop the MySQL server on the master and restart

it. Congratulations, you now have a master server in a replication set configured for

MySQL.

On the slave, the process involves adding the following lines to the MySQL configu-

ration file, again to the [mysqld] section:

master-host=192.168.1.71
master-user=replicate
master-password=fgbpr2
server-id=2

Substitute the host, user, and password values appropriate for your installation.

Stop the restart the MySQL server on the slave. You should now have a simple repli-

cation set running between two MySQL servers.

To test the configuration, issue the following command from within the MySQL CLI

on the slave:

SHOW SLAVE STATUS;

You should see output similar to that in Figure 18-2.

Figure 18-2: Issuing the SHOW SLAVE STATUS command on a slave
server should result in output similar to this if the slave is running.

244932-4 ch18.F 5/29/02 3:54 PM Page 531

532 Part V ✦ Advanced Performance

The values for many of the columns in Figure 18-2 will be different in your output.
The important column is the Slave_running column. This column should be
Yes.

If the Slave_running column in your output is No or if all values are zero or 0,

then the slave didn’t start. Examine the error log for MySQL on the slave — usually

<hostname>.err— for clues. For instance, when I added a third server to the repli-

cation set (for another example), I neglected to add a privilege for that user from

the new host. I received the error message shown in Figure 18-3. Once I added the

user to the master, all was well. Replication on the slave automatically started itself

when it retried in 60 seconds.

Figure 18-3: An error on the slave server shows I forgot to add the
replication user account on the master.

Once replication is configured, MySQL automatically transfers a copy of the

databases for replication. If these are large databases, you may want to transfer

the databases manually via utility commands such as ftp or scp, which allows

compression of the datafiles for quicker transfer.

When the initial database transfer is complete, any changes made on the master

will be automatically and instantly replicated to a connected slave — including

inserts, updates, and deletions. For example (in Figure 18-4), I issue a simple

SELECT statement on a slave server — which puts seven products into the table.

Figure 18-4: A listing of items in the product table on a slave server

Note

244932-4 ch18.F 5/29/02 3:54 PM Page 532

533Chapter 18 ✦ Replication

In Figure 18-5, I send the following SQL statement to put a new product on the mas-

ter server:

INSERT INTO product values (‘’,’Next Friday’,’Ice
Cube’,’19.99’,’34’,’2’,’Follow up to Friday. Another great Ice
Cube movie.’,’2’);

Figure 18-5: The INSERT statement, performed on the master server

Figure 18-6 shows the same query from Figure 18-4 on the slave server. Note that

the new insert that was performed on the master is propagated to the slave.

Figure 18-6: The INSERT statement on the slave that propagated
automatically from the master as part of the slave’s replication update

If a slave becomes disconnected for a normal reason, such as a SLAVE STOP com-

mand, the slave remembers its position and can catch up with any updates once

it restarts. If the slave stops for an abnormal reason such as a system crash, the

slave may not be able to correctly re-initialize and find its position to catch up with

updates. I’ve seen either outcome from situations in which the MySQL server was

killed abruptly on the slave — upon restart, sometimes the slave process caught up

successfully, and sometimes it could not find its place.

Multiple slave replication
Configuring replication for multiple slaves is as simple as repeating the steps for

configuring a basic replication. On the master, make sure that the replication user is

granted the FILE privilege from the new slave host. Add the lines to the configura-

tion file of the new slave host, just as you did for the first slave.

244932-4 ch18.F 5/29/02 3:54 PM Page 533

534 Part V ✦ Advanced Performance

Be sure to use a different value for each server-id. The value for every host’s
server-id must be unique!

Multiple master replication
To achieve additional peace of mind that comes from redundancy, you can config-

ure multiple masters in a single replication set. In the background, you are really

still using one master — but enabling the logging of updates on one or more slaves.

Should the master server fail, any of the slave(s) can act as master.

To enable multiple masters in a replication set, edit the MySQL configuration file

on one of the slave servers. Add the following lines to the [mysqld] section:

log-bin
log-slave-updates

The previous lines should be in addition to the others for slave replication,

including (but not necessarily limiting yourself to) these settings:

master-host=<host>
master-user=<username>
master-password=<password>
server-id=<id#>

Stop and restart the MySQL server on the slave. It should remember its position

within the slave replication and also add the files you specified so it can act as a

master (including the binary update log and the index log).

Also, add users and privileges for the replication user on the candidate master

server. For example, I’m going to grant access for a user named replicate with a

password of fgbpr2 to access from 192.168.1.1.

GRANT FILE ON *.* TO replicate@192.168.1.1 IDENTIFIED BY
‘fgbpr2’;

The current status of replication on the slave 192.168.1.1 is shown in Figure 18-7.

Note that it is using master 192.168.1.71.

Assume that, for whatever reason, I have to change the master server to the candi-

date master. I simply issue the following statement on the slave:

CHANGE MASTER TO MASTER_HOST=’192.168.1.136’;

Alter the host from 192.168.1.136 for your implementation. It is important to note

that when you change master servers, you may need to issue privileges so that the

slave server has permission to connect to the new master. Also, you may need to

make firewall or other connectivity changes to reflect the new replication master.

Note

244932-4 ch18.F 5/29/02 3:54 PM Page 534

535Chapter 18 ✦ Replication

Figure 18-7: The current status of replication on a slave in my
replication set

Re-examining the status of the slave with the SHOW SLAVE STATUS statement reveals

that the change took effect as expected. The results are shown in Figure 18-8.

Figure 18-8: The results from the SHOW SLAVE STATUS statement
reveal that the CHANGE MASTER TO statement worked as planned.

In Figure 18-8, notice the values of the Log_file and Pos columns. Compare those

to the SHOW MASTER STATUS statement run on the new master server, as illustrated

in Figure 18-9.

Figure 18-9: The SHOW MASTER STATUS statement on the new
master matches the values for the slave server.

244932-4 ch18.F 5/29/02 3:54 PM Page 535

536 Part V ✦ Advanced Performance

Recall the current table contents for the ecommerce example database (shown in

Figure 18-10 for convenience). These values are taken from the slave server.

Figure 18-10: The current contents of the products table

I now insert a value on the new master server as shown:

INSERT INTO product values (‘’,’Clear and Present
Danger’,’Harrison Ford’,’19.99’,’3’,’2’,’Harrison Ford in one
of the Clancy Jack Ryan series.’,’2’);

It is important to note that I updated this value on the new master server. If I

inserted or performed any changes on the old master server, the slave or slaves

would not see them. Keep this in mind for any applications that update or work

with data. If you change replication master servers, those applications must be

informed of the update so they send their information to the correct master server.

Examining the table contents of the product table on the slave server again

reveals the new product in the database, as shown in Figure 8-11. Ignore the

missing ninth value in the id column. This was expected and correct behavior.

I made a slight mistake behind the scenes and had to delete a row. Therefore even

the auto_increment carried over correctly. Maybe it wasn’t a mistake after all, I

wanted to show that auto_increment columns even worked when changing

master servers.

Figure 18-11: The new values in the product table show that
replication is working from the new master.

244932-4 ch18.F 5/29/02 3:54 PM Page 536

537Chapter 18 ✦ Replication

You must update your applications and any other processes so that they use the
new master server. If you don’t do this, updates made to the old master won’t be
propagated to the replication partners!

Unfortunately, there is no elegant solution for switching to original master server.

Changing back so that the original server is again the master in the replication set

involves making the original master a slave server and then following the steps in

this section to change master servers on the slaves. The applications will also need

to be updated to point back to the original master.

Pass-through slave replication
Pass-through or daisy-chain replication is a term to describe replication from

a single master to a slave that then acts as a master for one or more slaves.

Configuration of this type of replication is simple and similar to configuration

of multiple master servers.

On the slave that you want to act as a master add the following lines to the MySQL

configuration file under the [mysqld] section:

log-bin
log-slave-updates

Stop and restart the MySQL server. Add users and grants for the replication user or

users that will be connecting as slaves.

On each slave server configure the master as you would any other master, pointing

it to the appropriate master server. Those steps are all necessary for pass-through

replication.

Monitoring Replication
Even though replication is stable and constantly being improved, it is still another

level of complication to a database. In addition, it creates yet another item that can

fail and cause the administrator to lose time and sleep. Therefore, it is necessary to

monitor the replication cluster to ensure that it is behaving as expected.

This section examines some methods for monitoring replication including manual

and semi-automated monitoring.

Monitoring replication with Perl
The simplest way to monitor replication is simply by typing SHOW SLAVE STATUS—

although this approach can quickly become a burden for a replication set of any

size. Even the smallest replication set must have its status monitored — fortunately,

a relatively efficient method for doing so exists.

Note

244932-4 ch18.F 5/29/02 3:54 PM Page 537

538 Part V ✦ Advanced Performance

Using Perl you can quickly build a custom monitoring solution for your replication

implementation. At the most basic level, an administrator has to know when a slave

server stops replicating. What methods you use to notify the administrator upon

failure are dependent on your needs.

Examine the following code:

#!/usr/bin/perl

use DBI;

$thishost = `ifconfig | grep -1 eth | grep inet | cut -d’:’ -f2
| cut -d’ ‘ -f1`;

$dbh = DBI->connect(“DBI:mysql::localhost”,undef,’boo’);

Error Checking using an IF test.
if (! $dbh) { print “Connection unsuccessful!\n\n”; }

$query = “SHOW SLAVE STATUS”;
$sth = $dbh->prepare($query);
$sth->execute();

while ((@status) = ($sth->fetchrow_array())) {
$host = $status[0];
$file = $status[4];
$position = $status[5];
$run = $status[6];

}
if ($run ne “Yes”) {
open MAIL, “|mail -s ‘Replication Problem: $thishost’

suehring\@braingia.org”;
print MAIL “REPLICATION PROBLEM on $thishost\n”;
print MAIL “Replicating from: $host\n”;
print MAIL “Replication file: $file. Position: $position\n”;
print MAIL “Replication running: $run\n”;
close (MAIL);

}

The code shows a small but useful monitoring script for watching slave replication.

If something goes wrong and the slave reports a running status other than “Yes”,

an e-mail will be sent to an administrator.

Examining code snippets for some interesting (and not-so-interesting) areas:

$thishost = `ifconfig | grep -1 eth | grep inet | cut -d’:’ -f2
| cut -d’ ‘ -f1`;

244932-4 ch18.F 5/29/02 3:54 PM Page 538

539Chapter 18 ✦ Replication

The previous code runs the system command ifconfig and does some minor mas-

saging to get the IP address of this host.

$dbh = DBI->connect(“DBI:mysql::localhost”,undef,’boo’);

Error Checking using an IF test.
if (! $dbh) { print “Connection unsuccessful!\n\n”; }

$query = “SHOW SLAVE STATUS”;
$sth = $dbh->prepare($query);
$sth->execute();

Nothing new for this section of the script. Standard Perl-DBI.

For more information on the Perl-DBI and MySQL DBD, see Chapter 15.

The next snippet, however, shows some essential differences:

while ((@status) = ($sth->fetchrow_array())) {
$host = $status[0];
$file = $status[4];
$position = $status[5];
$run = $status[6];

}

The previous section takes the output from the SHOW SLAVE STATUS statement and

parses it into variables that make sense for the various columns in the statement.

if ($run ne “Yes”) {
open MAIL, “|mail -s ‘Replication Problem: $thishost’

suehring\@braingia.org”;
print MAIL “REPLICATION PROBLEM on $thishost\n”;
print MAIL “Replicating from: $host\n”;
print MAIL “Replication file: $file. Position: $position\n”;
print MAIL “Replication running: $run\n”;
close (MAIL);

}

The final section of the script evaluates the Slave_running column. Under normal

operations the Slave_running column is Yes if replication is running. However, if

the result is anything other than Yes, an e-mail will be sent to an administrator. The

e-mail contents from the script are shown in Figure 18-12:

This script could be run on a schedule with cron so that the system is automati-

cally monitored.

Cross-
Reference

244932-4 ch18.F 5/29/02 3:54 PM Page 539

540 Part V ✦ Advanced Performance

Figure 18-12: The e-mail that results when there is a replication
problem.

Monitoring replication through the Web
The script from the previous section can easily be enhanced to monitor a number

of servers. In addition, that monitoring data can then be used to create a dynamic

Web page with the results. This type of monitoring can be useful for proactively

watching a group of servers.

This section shows an example of replication monitoring through the Web. If, how-

ever, I use PHP to make a dynamic Web page, I have to convert the script to PHP.

For this section, I assume you have PHP with MySQL enabled, as well as a working
Web server.

PHP offers an advantage over Perl for this application. Ideally, the monitoring page

would include an auto-refresh so that the administrator can monitor the replication

in pseudo–real time. It can be done in Perl; however the solution is much more ele-

gant in PHP.

It can be done with a CGI; however, PHP makes it much easier. Using PHP as the

development language, I can add an auto-refresh easily; and when the page updates,

it will automatically re-run the statements to gather the performance data from the

members of the replication set.

The basis for the program will be a central monitoring host that sends the SHOW
SLAVE STATUS statement to the replication slaves at regular intervals and also

sends the SHOW MASTER STATUS statement to the replication master. The program

then outputs a Web page in table format with some pretty colors.

Note

244932-4 ch18.F 5/29/02 3:54 PM Page 540

541Chapter 18 ✦ Replication

To enable the program on the monitor host to query the slaves adding a user on the

slaves’ MySQL server is necessary. The user must have the process privilege to

issue the SHOW statement. Consider this example:

grant process on *.* to rmonitor@192.168.1.75 identified by
‘maddog31’;

This statement is issued on all MySQL servers in the replication set. The monitoring

host will be 192.168.1.75 and will be monitored by user rmonitor.

The code for the monitoring program is as follows:

<?php

$slave = array(0=> “192.168.1.136”, 1=> “192.168.1.1”);
$master = array(0=> “192.168.1.71”);

The previous code snippet builds arrays for master and slave servers. In my

replication setup, there are only two slave servers and one master server. For

an enhancement of this script, you could store the replication servers within a

database and query for those servers.

$username = “rmonitor”;
$password = “maddog31”;

print “<table border=1><P>\n”;
print “<tr><td>Last
Update</td><td>Type</td><td>IP</td><td>Replication
File</td><td>Position</td><td>Run?</td><P>\n”;

The previous snippet sets the values for connecting to the MySQL servers in the

replication set as well as some basic HTML.

foreach ($slave as $server) {
print “<tr><P>\n”;
slavestatus($server,$username,$password);
print “</tr><P>\n”;

}
foreach ($master as $server) {
print “<tr><P>\n”;
masterstatus($server,$username,$password);
print “</tr><P>\n”;

}

244932-4 ch18.F 5/29/02 3:54 PM Page 541

542 Part V ✦ Advanced Performance

The previous snippet calls the functions for querying the various replication

servers. Again, by adding a feature to gather this data from a MySQL database,

you could use one function and call the server based on what type it is as stored

in your database.

function slavestatus ($host,$username,$password) {
$dbconn = mysql_connect($host,$username,$password) or die

(“Cannot connect to database server”);
$result = mysql_query(“SHOW SLAVE STATUS”);
$timeresult = mysql_query(“SELECT NOW()”);
$time = mysql_result($timeresult, 0, 0);

The next step is to make a connection to the database and issue statements,

including one that queries for the current time from the replication server.

while ($status = mysql_fetch_array($result)) {
$mysqlserver = $host;
$file = $status[4];
$position = $status[5];
$run = $status[6];
$errnum = $status[9];
$errmsg = $status[10];

}

Taking the results from SHOW SLAVE SERVER, I parse them into variables that make

some sense for the application context. The code looks like this:

if ($run != “Yes”) {
$color = “<td bgcolor=\”#CC3333\”>”;
$additional = “<td>$errnum - $errmsg</td>”;

} else {
$color = “<td bgcolor=\”#33FF33\”>”;

}
print “<td>$time</td>$color Slave</td>$color
$host</td><td>$file</td><td>$position</td><td>$run</td>$additio
nal<P>\n”;
}

The contents of the $run variable are examined. If it is anything other than Yes is

found, the background color of the table cell changes to red (otherwise it’s green).

Pointing a Web browser to the page results in the listing illustrated in Figure 18-13.

The replication status from Figure 18-13 is taken directly from output of the appro-

priate SHOW statement. Notice that there is no Yes or No applicable for the master

server. This is because the master server doesn’t know anything about replication

or the slaves that replicate from it. It simply goes about its business of recording

updates and changes to the binary replication log.

244932-4 ch18.F 5/29/02 3:54 PM Page 542

543Chapter 18 ✦ Replication

Examination of the output in Figure 18-13 shows that I have a problem with a slave

in the replication set. It just so happens that the error leads directly into the next

section of the chapter. Before you do so, however, you may have to make another

improvement on the monitoring PHP script — adding a refresh to the page so that it

automatically runs every N seconds or minutes.

Figure 18-13: The monitoring application built into PHP

Kick-starting Replication
Replication has become quite a robust addition to MySQL. As part of my work

with MySQL, I administer a large MySQL replication cluster. Unfortunately, the

cluster is built on an older version of MySQL — and it’s too vital to update in place.

Accordingly (though the actual replication is acceptably stable), I’ve had to get by

without the benefit of some of the better — and more recent — replication com-

mands shown in this chapter.

This section examines what can be done if replication goes wrong — including

commands and statements that can kick-start replication.

244932-4 ch18.F 5/29/02 3:54 PM Page 543

544 Part V ✦ Advanced Performance

When good replication goes bad
Monitoring replication regularly, you may encounter errors. For example, an error

occurred within in my replication set (as shown in Figure 18-13). I attempted to

restart the replication by using the RESET SLAVE command — but because the

ecommerce database already exists, the replication failed.

Behind the scenes, the RESET SLAVE statement tells the slave server to forget its

position in the replication logs and start over. For updates and changes, this can

cause replication to fail on that slave server. The slave server attempts to re-create

the database or table or perform some other statement. However; a conflict

exists — thus the statement will fail.

In an instance such as this, you must restart replication across your replication set.

The procedure to use follows some of the same steps you took to start replication:

1. Stop the MySQL server on the master.

2. Take a snapshot of the data.

3. Start the MySQL server on the master.

4. Copy the snapshot of the data to the slaves.

5. Stop the slave server.

6. Move the snapshot data into the data directory on the slave.

7. Start the slave server.

The master and slave(s) now have the same starting point for data and can begin

replicating from that known good set of data.

Kick-starting replication revealed
As a replication best practice, I make one snapshot of data on the master and copy

that to a separate location on the master server. Then, when I have to restart repli-

cation on one or more slave servers, I can simply take that snapshot from the

beginning of the replication and copy it to the slave server.

Restarting replication on the slave server with that known data — and issuing a

RESET SLAVE statement — causes the slave to play back the entire replication log

from the beginning, thus catching up with the master server.

1. Copy the snapshot of the data to the slaves.

2. Stop the slave server.

244932-4 ch18.F 5/29/02 3:54 PM Page 544

545Chapter 18 ✦ Replication

3. Move the snapshot data into the data directory on the slave.

4. Start the slave server.

Since you don’t have to get a snapshot from the master, you don’t have to stop

MySQL on the master. This is a key feature for systems where uptime of the master

server is crucial.

Examining this type of method a little closer might be helpful. I set up an example

that starts from the beginning — creating a snapshot on the master. This step has to

be performed just this one time; afterward, it won’t be necessary unless the master

server must be stopped for some unforeseen reason.

I am replicating only the ecommerce database. To do that, I add the following line to

the [mysqld] section of the MySQL configuration file on the master:

replicate-do-db = ecommerce

I stop the MySQL server on the master and make a backup of the ecommerce
database.

cd /var/lib/mysql
mkdir snapshot
tar -zcvpf ecommerce.tgz ecommerce
mv ecommerce.tgz snapshot

On the master server, I now have a snapshot of the ecommerce database as it exists

at this point in time. That snapshot is safely stored in the snapshot directory on

the master server. I can restart the master server’s MySQL process.

I now copy that snapshot to the slave servers. Personally, I prefer to use scp for

this task; you may want to use ftp or some other method for transferring the file to

the slave server.

On each slave server, I stop the MySQL server and then change to the data direc-

tory. Next I unarchive the snapshot file that I transferred from the master, and use

that file to overwrite the existing ecommerce database folder and files — after which

I can start the MySQL server on the slave servers. The replication set is up and run-

ning, as evidenced by Figure 18-14.

If one of the slave servers goes down for any reason, I can simply copy the snap-

shot that I already created from the master, stop the slave server, overwrite the

database, and start the slave server again.

244932-4 ch18.F 5/29/02 3:54 PM Page 545

546 Part V ✦ Advanced Performance

Figure 18-14: The replication set after kick-starting

Summary
Replication does not require a constant connection between the master and slave

servers in a replication set. The administrator can fine-tune the databases or tables

that he or she wants to replicate. This is done during the original configuration pro-

cess for replication.

✦ All servers in a replication set should be running the same version of MySQL

because the format and options can change from version to version.

✦ The server-id value set in the configuration file must be different for all

servers in the replication set, regardless of their status as master or slave

server.

✦ The most common replication type is one master and multiple slaves. MySQL

currently does not support multiple master replication, but there is some

minor trickery that you can do to add redundancy.

✦ A snapshot should be taken of the data to be replicated prior to starting the

replication set. That snapshot must be distributed to all replication partners

prior to starting replication.

244932-4 ch18.F 5/29/02 3:54 PM Page 546

547Chapter 18 ✦ Replication

✦ Regardless of the type chosen for the replication set, monitoring replication is

important. The size of the binary log can grow to no more than 2 gigabytes on

some file systems; other issues can also arise that cause replication to fail.

✦ Perl with the DBI/DBD can be used to produce a simple replication monitoring

program for replication.

✦ Using PHP, a more sophisticated monitoring program can be built that is

accessible from the Web.

✦ If an error or other unexpected event occurs, one or more servers in the repli-

cation set may break out of the set. If this happens, you will have to kick-start

the replication by issuing commands or manually restarting replication.

✦ One way to kick-start replication is to keep the original snapshot on the master

and distribute that to the slave server. The slave server then replays the repli-

cation log to catch up.

✦ ✦ ✦

244932-4 ch18.F 5/29/02 3:54 PM Page 547

244932-4 ch18.F 5/29/02 3:54 PM Page 548

Integration of
Internet Services

In many ways, MySQL makes a great database and backend

for many Internet and e-commerce services. MySQL offers

a no-cost/low-cost licensing system, MySQL is versatile, and

MySQL is both stable and fast. When combined with a low-

cost/no-cost operating system such as Linux, MySQL can be

the perfect backend for Internet services such as e-mail, cus-

tomer tracking, virtual services, DNS, and authentication.

Some privately funded studies claim that the Total Cost of
Ownership (TCO) is at least as high with Linux as it is with
Microsoft Windows — although (given the fierce competi-
tion among vendors of operating systems), such studies
may be less than objective. On the other hand, if you
implement Linux on an Internet server, the low initial cost
of acquiring the OS (as basic freeware) may not be the
only outlay required. Other potential costs may crop up in
such areas as technical support, overall network security,
and compatibility with legacy systems — though these are
not unique to Linux. In my experience, running Linux often
costs less — but evaluate the needs of your own system
carefully before you commit to a major change of operat-
ing systems.

Linux can be downloaded for free or purchased for a relatively

low cost with no additional licensing costs for 5 or 500,000

users. Powerful server software such as Sendmail and Apache

do not require additional licenses and virtually no mainte-

nance once installed. Linux is secure. When an update is

released for almost any service running on Linux, the server

does not need to be rebooted to apply the update. Finally,

Linux has low overhead and can be installed on machines

with lower hardware requirements.

Note

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Authenticating users
with PAM and NSS
via MySQL

Managing DNS with
MySQL

Integrating RADIUS
with MySQL

Using MySQL to
integrate and
manage e-mail

Building a full-scale
virtual-services
interface

✦ ✦ ✦ ✦

254932-4 ch19.F 5/29/02 3:54 PM Page 549

550 Part V ✦ Advanced Performance

For these and other reasons, this chapter concentrates on integrating MySQL with

Linux services for the Internet. These services include PAM (Pluggable

Authentication Modules,) virtual services, e-mail, and more. I also show an example

of a Web-based management application for virtual services.

PAM and NSS User Authentication in MySQL
Pluggable Authentication Module (PAM) technology is the basis for the integration

of MySQL with many services in Linux. Using PAM, the administrator can configure

PAM-aware applications to use complex (or simple) methods for authenticating

users and allowing access to resources.

As the name suggests, PAM uses modules for authentication. There are different

modules used for different types of authentication. For a given program, the admin-

istrator can configure the use of one or more modules to use for authentication.

Such modules can be the passwd/shadow files or other methods including a mod-

ule that rejects all authentication requests.

Of special relevance to a book on MySQL is a module that enables PAM-aware

applications to use a MySQL database for authentication. This section looks at

the PAM-MySQL module including installation and use as it relates to MySQL.

This section is not meant to be a comprehensive guide to PAM. Later sections of
this chapter examine integration of PAM-MySQL with other applications.

Figure 19-1 shows an example of a PAM configuration file for the ftp service. The

file is located in /etc/pam.d.

Figure 19-1: An example PAM configuration file

Note

254932-4 ch19.F 5/29/02 3:54 PM Page 550

551Chapter 19 ✦ Integration of Internet Services

NSS (Name Service Switch) refers to the organization of services queried for informa-

tion on an account. The NSS configuration is stored in a file called nsswitch.conf
and is usually located in /etc. A sample /etc/nsswitch.conf file is shown in

Figure 19-2. Using nsswitch.conf, the administrator can configure the sequence of

locations that the system checks when it tries to determine identifying data such as a

user’s home directory or group.

Figure 19-2: The /etc/nsswitch.conf file

As with PAM, a version of NSS exists that is specifically for MySQL. I’ll examine

installation and use of NSS within this chapter.

Installing PAM-MySQL
You may already have PAM installed on your computer or server. You can determine

whether PAM is installed by looking at the contents of the /etc/pam.d/ directory or

/etc/pam.conf.

Because PAM comes installed on many distributions, I won’t include specific cover-

age of PAM installation. Before continuing with the demonstrations in this section,

however, make sure you have PAM installed and configured on your system.

Downloading and configuring PAM
If you don’t have either /etc/pam.d/ directory or /etc/pam.conf, on your system,

then PAM is not currently installed. You can download the PAM-MySQL module from

https://sourceforge.net/projects/pam-mysql/. Once the download is com-

plete, unpack the archive and simply type make at the command line within the

pam-mysql directory. Copy the resulting pam_mysql.so file to the /lib/security
directory, using the following command:

cp pam_mysql.so /lib/security

254932-4 ch19.F 5/29/02 3:54 PM Page 551

552 Part V ✦ Advanced Performance

If you encounter problems compiling, it might be because you don’t have the devel-

opment headers for MySQL installed. The computer on which you’re installing PAM-

MySQL need not be the same as the MySQL server — but PAM-MySQL requires that

the development headers (and thus the client) for MySQL be installed on the host.

PAM-MySQL syntax
Recall the syntax of the example PAM configuration file shown in Figure 19-1.

Configuring an application to use PAM-MySQL requires the editing of the file. There

are options that can be set to configure how PAM-MySQL connects to and queries

for valid users when processing a request. The options and their defaults are shown

in Table 19-1.

Table 19-1
PAM-MySQL Configuration Options

Option Default Description

Host localhost The MySQL server to connect to for authentication.

User nobody The user to use for connecting to the MySQL server.

Passwd none The password to use for connecting to the MySQL
server.

Db mysql The name of the database containing the user
information.

Table user The name of the table containing the user information.

Usercolumn user The name of the column containing the username.

Passwdcolumn password The name of the column containing passwords.

Crypt 0 How passwords are encrypted. 0=none, 1=crypt,
2=mysql.

where= none Additional WHERE clause to add to the select.

For example, a configuration file for PAM-MySQL to use with FTP might look like the

one shown in Figure 19-3.

In the example shown in Figure 19-3, the user account that connects to the MySQL

server on host 192-168.1.75 is root and passwords sent to MySQL were

encrypted with MySQL’s internal PASSWORD function. The rest of the settings were

left at their defaults; thus the MySQL grants database will be used for authentica-

tion. I’ll be building a customized user database later in this chapter for use with

PAM-MySQL and NSS-MySQL.

254932-4 ch19.F 5/29/02 3:54 PM Page 552

553Chapter 19 ✦ Integration of Internet Services

Figure 19-3: An example configuration file for ftp on a system with
PAM-MySQL

I recommend that you create a user with only the privileges needed to connect
using PAM. Never use the root user as shown in the example!

Testing PAM-MySQL
Prior to attempting to test PAM-MySQL you should test the service to make sure

that it is currently working. It doesn’t pay to attempt to get PAM-MySQL working

with a service if the service isn’t working to begin with. In this section I’ll be testing

PAM-MySQL with FTP using Wu-ftpd.

I’ve shown examples of the original PAM configuration file for ftp, as well as an

example of a PAM-MySQL configuration file for ftp. Using the configuration file

shown in Figure 19-3, I attempt to connect via ftp to the server. The attempt fails.

Examining the messages logfile on the server, I notice that a number of errors refer

to a faulty module, as shown in Figure 19-4.

Figure 19-4: Errors from a test of PAM-MySQL

Caution

254932-4 ch19.F 5/29/02 3:54 PM Page 553

554 Part V ✦ Advanced Performance

Apparently the module is missing something; it can’t figure out a call to uncompress
(which is part of the zlib library). I already have zlib installed. An examination of

the Makefile for PAM-MySQL reveals that there is no reference to zlib. Therefore I

need to add a reference (-lz) to the Makefile and recompile. Figure 19-5 illustrates

the section of the Makefile where I placed -lz.

Figure 19-5: Adding -lz to the Makefile for PAM-MySQL

I then recompile the software by typing make, and copy the new pam_mysql.so file

to /lib/security. Another attempt to log in still fails. Examination of the logfile

now reveals that the failed connection has a MySQL error message like the one in

Figure 19-6.

Figure 19-6: Another examination of the logfile to look for errors
relating to the failed ftp login

The error shown in Figure 19-6 is due to the fact that the user I defined in the PAM

configuration file for ftp simply does not have access from this host. To correct this

problem, I had to grant access and ensure the password was correct for the user

within the MySQL server’s grants database.

Finally, with all the problems corrected I’m able to test the connection again via ftp.

The test is successful.

254932-4 ch19.F 5/29/02 3:54 PM Page 554

555Chapter 19 ✦ Integration of Internet Services

However, even though the test is successful, it could still fail for no apparent rea-

son. If more than one user with the same password is defined in the database, the

authentication fails.

Checking for duplicate passwords can be a good place to start troubleshooting if
your authentication is failing for what appears to be no reason.

Installing NSS-MySQL
With PAM-MySQL installed, you can perform authentication. However, some needed

information about users (such as user ID or home directory) is not available. Enter

NSS-MySQL. NSS-MySQL provides an interface into NSS for MySQL.

Installation of NSS-MySQL begins with obtaining the software. The current location

for the NSS-MySQL project is http://savannah.gnu.org/projects/nss-mysql/.

Download and unpack the NSS-MySQL archive. The installation process is standard:

./configure
make
make install

Configuration of NSS-MySQL
NSS-MySQL’s configuration file is called nss-mysql.conf and is located in /etc.

The options contained in the NSS-MySQL configuration file are highly specialized

and dependent on your installation and desired functionality. When you’ve config-

ured nss-mysql.conf you need to add the ability for NSS to utilize NSS-MySQL.

This is accomplished by adding the word mysql to the appropriate lines of

/etc/nsswitch.conf. Figure 19-7 shows an example of an nsswitch.conf file

where NSS-MySQL has been installed.

Figure 19-7: Enabling NSS-MySQL in the /etc/nsswitch.conf
configuration file for NSS

Tip

254932-4 ch19.F 5/29/02 3:54 PM Page 555

556 Part V ✦ Advanced Performance

DNS Management with MySQL
DNS, which I’ve seen defined as Domain Name System and Domain Name Service,

is the term for the service or protocol that translates names such as www.
braingia.org into IP addresses and vice versa. Though MySQL isn’t directly tied

into any DNS software (yet), MySQL can be used as a backend for a DNS manage-

ment interface. This section examines how you can use MySQL to assist with DNS

management. I’ll be utilizing BIND as the DNS server software — though the applica-

tion built here should be relatively easy to port to other software.

Creating a DNS management interface
The BIND DNS server software uses configuration files for reading about domain

configuration and name service. There is no direct interface between BIND and

MySQL. Therefore, to enable MySQL and BIND to work together, data must be con-

verted from the MySQL database to the configuration files that BIND reads.

A DNS configuration file for a generic domain can look like this:

$ttl 38400
@ IN SOA ns1.braingia.com. root.braingia.com. (

2001112702
10810
3600
432000
38400)

IN NS ns1.braingia.com.
IN NS ns2.braingia.com.
MX 0 mail.braingia.com.

$ORIGIN braingia.com.
ns1 IN A 192.168.1.75
mail IN CNAME mail.braingia.com.
www IN CNAME mail.braingia.com.
ns2 IN A 192.168.1.71
fw0 IN A 192.168.1.1

Taking this domain as an example, I can quickly create a database schema to match

it. I am going to do without some specialty things and assume that all $ORIGIN val-

ues will be within the domain. In my experience, there are few instances where the

origin will be different. If your implementation calls for the $ORIGIN to be changed

frequently, you should alter the database schema accordingly. I’ll also assume that

TTL values will be the same across all domains. Again, if these are values you need

to change frequently for your domains, you can add to the schema as needed.

254932-4 ch19.F 5/29/02 3:54 PM Page 556

557Chapter 19 ✦ Integration of Internet Services

The database schema is as follows:

CREATE TABLE domain (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
domain_name varchar(255)

);

CREATE TABLE record (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
domain_id int,
name varchar(255),
type varchar(10),
address varchar(255)

);

CREATE TABLE nameservers (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
domain_id int,
address varchar(255)

);

CREATE TABLE mx (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
domain_id int,
cost int,
address varchar(255)

);

CREATE TABLE serial (
domain_id int,
serial varchar(50)

);

With that schema, I can convert the basic domain info to DDL — like this:

insert into domain values (‘’,’braingia.com’);
insert into record values (‘’,’1’,’ns1’,’A’,’192.168.1.75’);
insert into record values
(‘’,’1’,’mail’,’CNAME’,’ns1.braingia.com’);
insert into record values
(‘’,’1’,’www’,’CNAME’,’ns1.braingia.com’);
insert into record values (‘’,’1’,’ns2’,’A’,’192.168.1.71’);
insert into record values (‘’,’1’,’fw0’,’A’,’192.168.1.1’);
insert into nameservers values (‘’,’1’,’ns1.braingia.com’);
insert into nameservers values (‘’,’1’,’ns2.braingia.com’);
insert into serial values (‘1’,’2001112702’);
insert into mx values (‘’,’1’,0,’mail.braingia.com.’);

254932-4 ch19.F 5/29/02 3:54 PM Page 557

558 Part V ✦ Advanced Performance

Selecting the records results in some familiar-looking data, as illustrated in

Figure 19-8.

Figure 19-8: The record data for the domain, as entered into the
database

Based on the work already done, a program could be written in the language of

your choice to convert the data into the flat file record that BIND prefers. However,

I’d rather build a management system for the Web. Therefore, I’ll be using PHP.

The DNS Web interface is meant to be used by an administrator but could be modi-

fied to be used by a customer to modify their domain or domains as well. Providers

such as Fibernet, http://www.fibernetcc.com/ allow their customers to edit

DNS entries for accounts using a similar interface. (The front page of the interface is

shown in Figure 19-9.)

Figure 19-9: The front page for the DNS Web interface

254932-4 ch19.F 5/29/02 3:54 PM Page 558

559Chapter 19 ✦ Integration of Internet Services

The two input boxes shown in Figure 19-9 could easily be combined into one with a

little coding in the backend program. Entering an existing domain yields a page

where the address records can be edited, as illustrated in Figure 19-10. The data for

the page is built from data within the database.

Figure 19-10: Records can be edited easily within an existing domain.

Adding a new server is as simple as entering the values in a blank space and click-

ing Proceed to Verification. Figure 19-11 shows a new server (which I unimagina-

tively call newserver) being added.

The output shows what the zone file will look like in BIND format. Clicking the

“Implement Change” button adds the new record to the database. Looking at the

data through the MySQL CLI reveals that the new record was added, as shown in

Figure 19-12.

254932-4 ch19.F 5/29/02 3:54 PM Page 559

560 Part V ✦ Advanced Performance

Figure 19-11: Adding a new server with the DNS Web interface

Figure 19-12: The new data, as shown through the MySQL CLI

Behind the scenes, the DNS interface program must convert the zone record to the

BIND file format.

The MySQL-related functions used for building the Web interface for DNS are
discussed in the chapter on PHP.

Cross-
Reference

254932-4 ch19.F 5/29/02 3:54 PM Page 560

561Chapter 19 ✦ Integration of Internet Services

MySQL and RADIUS Integration
RADIUS (Remote Authentication Dial-In User Service) is the protocol that enables a

server to allow access to resources. In general, a user request includes a username

and password. If these match the corresponding values on the server, then the user

is granted access. There is also RADIUS accounting data that can be sent for the

session as well. This includes a time for the start of the session along with other

pertinent data and can include the number of bytes sent in the transfer at the end

of the session.

Many vendors have versions of RADIUS. One that I would like to highlight is

Radiator RADIUS. Though not free software, Radiator includes features necessary

for large-scale implementations, good documentations, stability, and simple config-

uration file syntax. Radiator also features good integration with MySQL, which is

why I’m highlighting in this book. More information on Radiator can be obtained at

http://www.open.com/au/radiator/.

A closer look at Radiator
Radiator is written in Perl. Though I was initially skeptical of the scalability of the

software, I now have no such reservations. I’ve used Radiator for large-scale authen-

tication implementations of over a half-million users, and the software has had no

problem handling authentication requests. Since Radiator is robust, I suffered none

of the growing pains that other software might when handling thousands of requests

per second. These growing pains could include memory or CPU utilization problems

or simply refusing connections. Even when a misconfigured access server sends

thousands of invalid requests to the Radiator software, it keeps right on handling

other requests.

Since Radiator is written in Perl, it uses the Perl DBI to access MySQL. Although

Radiator installation is well outside the scope of this book, I’d like to examine a

couple of examples of Radiator configuration file syntax to show the ease with

which MySQL can be integrated into Radiator.

For example, the Client list can be stored in a MySQL table. The database is easily

called with the DBSource function.

<ClientListSQL>
DBSource dbi:mysql:radius
DBUsername username
DBAuth password
GetClientQuery select NASIDENTIFIER,SECRET from

CLIENTLIST
</ClientListSQL>

254932-4 ch19.F 5/29/02 3:54 PM Page 561

562 Part V ✦ Advanced Performance

Other portions of the Radiator configuration file are simple to configure as well. The

DBSource is used throughout the configuration file as a means by which the admin-

istrator can specify the database and driver to use.

Auxiliary SELECT statements can be based on the criteria in the User-Request
packet and added later.

Radiator also handles accounting requests with the same ease as authentication.

The server for accounting can be different from the authentication MySQL server.

Column definitions can be customized within the configuration file so that you can

track only the items that you need.

E-Mail Integration and Management with
MySQL

MySQL can be used as a backend to store e-mail address information. As with DNS,

data stored in a MySQL database must be converted to native format for the mail

application to work with. With the use of PAM-MySQL, MySQL can be integrated

into POP3 for authentication. This section looks at integration of MySQL with

Sendmail, the popular e-mail software.

Building a virtual users table for Sendmail
The virtual-users table in Sendmail is where the mappings are stored for virtual

domains on a server. This is where an administrator tells the mail-server software

(in this case, Sendmail) where to send mail for @<domain>.com and so on. This sec-

tion tackles the building of a virtual users table from data contained in a MySQL

database. A sample virtual users table might look like this:

suehring@onlyplanet.com suehring@braingia.org
no_one@onlyplanet.com error:nouser User Not Found
@onlyplanet.com all@braingia.org
steve@linuxgamehq.com suehring@braingia.org
bob@nightmaresquad.com bob_s↓ngermen.com
ernie@nightmaresquad.com ernie_t↓ngermen.com
mike@nightmaresquad.com mike_f↓ngermen.com
@nightmaresquad.com %1@braingia.com

Any mail received for suehring@onlyplanet.com is sent to suehring@braingia
.org. Any other mail received for the onlyplanet.com domain, regardless of

address, goes to all@braingia.org. The user no_one@onlyplanet.com gets

returned with an error. For the nightmaresquad.com domain, three users are

defined that have different addresses. The final entry sends any mail destined for

Tip

254932-4 ch19.F 5/29/02 3:54 PM Page 562

563Chapter 19 ✦ Integration of Internet Services

the nightmaresquad.com to the same user@braingia.com. For example, if

mail comes in to user001@nightmaresquad.com, it will be automatically sent

to user001@braingia.com and so on.

The virtual users table is stored in a nontext format in the sendmail directory; my

server, for example, stores that file as hashed data. Therefore, whenever I make a

change to the virtual users table, I need to update (actually rebuild) that hash by

using the makemap command. The file on my server is called virtusertable.

Therefore the command that I must run after a change to the file is

makemap hash virtusertable < virtusertable

This command reads the file virtusertable into the makemap command. The

result is a hashed file called virtusertable.db.

A virtual e-mail database
A simple database layout for the virtual users database might look like this:

CREATE TABLE domain (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
name varchar(255) NOT NULL UNIQUE

);

CREATE TABLE mapping (
id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
domain_id int,
username varchar(255),
target varchar(255)

);

The database layout could be enhanced with a column that indicates whether the

mapping is active. Additionally, a column or table tying the domain into a customer

ID might be helpful.

Recall a sample entry from the virtusertable file for Sendmail:

bob@nightmaresquad.com bob_s↓ngermen.com

The virtual e-mail address recipient is bob@nightmaresquad.com and the target for

any e-mail sent to bob@nightmaresquad.com is bob_s↓ngermen.com. With that in

mind, the database layout for virtual e-mail operates in much the same way.

However, it doesn’t make much sense to store the recipient domain over and over;

it’s a safe bet that there will be more than one virtual user recipient. Therefore an ID

is assigned and the domain is stored only once in the domain table. The username

in the mapping is the username for the recipient. The entire target address is then

stored in the target column of the mapping table.

254932-4 ch19.F 5/29/02 3:54 PM Page 563

564 Part V ✦ Advanced Performance

Importing existing virtual e-mail entries
As with the interface built for DNS, I will be using PHP as the backend language of

choice to build the virtual uses interface to MySQL. Because I only have a few vir-

tual e-mail entries currently, I don’t need to perform a mass-import of the data.

However, I would probably use Perl to build an import program should the need

arise. A simple program for importing small virtual user tables might look like this:

#!/usr/bin/perl

use DBI;

Connect to the database
$dbh = DBI-
>connect(“DBI:mysql:mman:”,’USERHERE’,’PASSWORDHERE!’) or die
“No database\n”;

open (FILE, “virtusertable”);
while (<FILE>) {
chomp;
@mapping = split(/\t+/, $_);
@fullrecipient = split(/\@/, $mapping[0]);
$domain = $fullrecipient[1];
$query1 = “INSERT IGNORE INTO domain values (‘’,’$domain’)”;
$sth1 = $dbh->prepare($query1);
$sth1->execute;
}
close (FILE);

open (FILE, “virtusertable”);
while (<FILE>) {
chomp;
@mapping = split(/\t+/, $_);
@fullrecipient = split(/\@/, $mapping[0]);
$username = $fullrecipient[0];
$domain = $fullrecipient[1];
$target = $mapping[1];
if ($username eq “”) {
$username = “CATCHALL”;

}
$query1 = “SELECT id FROM domain WHERE name = ‘$domain’”;
print “$query1\n”;
$sth1 = $dbh->prepare($query1);
$sth1->execute or die “Can’t run $query1”;
$domainid = $sth1->fetchrow_array();

$insmap = “insert into mapping values
(‘’,’$domainid’,’$username’,’$target’)”;
$sth = $dbh->prepare($insmap);
$sth->execute or die “Can’t insert\n”;

254932-4 ch19.F 5/29/02 3:54 PM Page 564

565Chapter 19 ✦ Integration of Internet Services

print “Inserted $username to $target for domain $domainid\n”;
}
close(FILE);

The program passes through the file twice. Therefore if you have a large

virtusertable file, it may be in your best interest to rewrite the program to be

a little less resource-intensive. Executing the program with the virtusertable
shown in this section yields the results shown in Figure 19-13.

Figure 19-13: Importing the existing virtual users table

Wherever a catchall entry exists in the virtual users table, I use the phrase

CATCHALL. When the data from MySQL is converted back to virtusertable
format, all CATCHALL entries must be converted back to blank entries.

The data as it now resides in the database is illustrated in Figure 19-14.

Figure 19-14: The virtusertable data inside the MySQL database

254932-4 ch19.F 5/29/02 3:54 PM Page 565

566 Part V ✦ Advanced Performance

The Perl program for importing virtual user tables is also available on the CD-ROM
with this book. You’ll need to modify it for your implementation but it provides a
good starting point.

A Web interface for virtual e-mail management
Taking the virtual e-mail database onto the Web is a good job for PHP. Using a

PHP-based management system the administration of domains and virtual e-mail

becomes easy. The administrator can manage virtual e-mail for a customer or pro-

vide the ability for the customer to do it themselves without worry of the under-

lying data being compromised.

For example, Figure 19-15 shows an administration front page for the e-mail man-

agement system. You can search for (or add) an entry by typing the search term

into the box and clicking the button.

Figure 19-15: The administrator’s front page for the virtual e-mail
management Web interface

If found, the resulting page is shown; the administrator can delete the entry if

necessary (see Figure 19-16).

On the
CD-ROM

254932-4 ch19.F 5/29/02 3:54 PM Page 566

567Chapter 19 ✦ Integration of Internet Services

Figure 19-16: An entry that is found shows the results to the
administrator.

If an entry is not found, the administrator is informed — and given the opportunity

to add the entry, as illustrated in Figure 19-17.

Figure 19-17: An entry that is not found gives the administrator a
chance to add the entry.

254932-4 ch19.F 5/29/02 3:54 PM Page 567

568 Part V ✦ Advanced Performance

Clicking the Add button shown in Figure 19-17 yields a page where the administra-

tor can input the pertinent details (see Figure 19-18).

Figure 19-18: The page shown to add an entry for virtual e-mail

Figure 19-18 shows a Select box for the target of the virtual e-mail. The administra-

tor has a choice: Send the e-mail to another address (the default,) make it a straight

mapping (%1), or return an error.

Once the relevant information has been entered, an error-checking function is called

in the backend PHP program. The error-checking function checks the validity of the

e-mail addresses entered to make sure they don’t contain invalid characters. In addi-

tion, the error-checking function looks one more time at the database to make sure

the entry doesn’t already exist (just in case the administrator changed it).

Once confirmed, the entry is added to the virtual e-mail database. However, at this

point, Sendmail still knows nothing of the new address. A program must be

written to extract the data from the MySQL database and put it back into the

virtusertable format for Sendmail. This program could be another function

within this PHP program or (more likely) a Perl program scheduled to run every

N minutes on the system.

254932-4 ch19.F 5/29/02 3:54 PM Page 568

569Chapter 19 ✦ Integration of Internet Services

Building a Full-Scale Virtual-Services
Interface

Taking the interfaces used throughout this chapter for things such as DNS and

e-mail, the developer could build an interface for management of these services by

clients. The clients could control their own DNS and e-mail configurations while

stored virtually on a server owned by their provider.

The provider could implement the interface worry-free knowing that the customer

can only affect their own entries for DNS and e-mail. With a little error checking, the

client could be saved from making many common errors as well. Both aspects save

the provider money by cutting down on support calls — whether for DNS, e-mail

changes, or to correct a change that was implemented incorrectly.

Some providers have such an interface in place. One such provider is Fibernet,

http://www.fibernetcc.com/. Using the Fibernet interface, customers can man-

age their own DNS and e-mail entries (as well as other tools for running Web sites

and virtual services). Another provider is Communitech, http//www.communitech
.net/ who provide a virtual-services interface for their customers as well.

Summary
The numerous and powerful APIs available for MySQL make services relatively easy

to integrate in an operating system such as Linux.

✦ PAM-MySQL is a module for performing authentication with MySQL and

PAM-aware applications.

✦ NSS-MySQL provides an interface into Name Service Switch to give account

information through MySQL.

✦ MySQL makes for a great backend management system for applications such

as DNS and e-mail.

✦ Using a MySQL database and Web interface in PHP, an administrator can man-

age domains or enable customers to manage their own DNS information.

✦ E-mail can also be tied into MySQL through Pam-MySQL for POP3 and by using

MySQL as a management system for virtual users.

✦ ✦ ✦

254932-4 ch19.F 5/29/02 3:54 PM Page 569

254932-4 ch19.F 5/29/02 3:54 PM Page 570

NuSphere
Enhanced
MySQL

NuSphere — a company not affiliated with MySQL AB —

has its own version of MySQL, based on the same

MySQL code released by MySQL AB. However, the NuSphere

version of MySQL (called Enhanced MySQL) comes within a

suite of products collectively titled MySQL Advantage.

NuSphere MySQL Advantage includes integrated versions of

Enhanced MySQL, Perl, PHP, and Apache. NuSphere also

makes an enhanced version of PHP called NuSphere PHPed

Advantage, as well as NuSphere Pro Advantage — a product

that combines MySQL and PHPed Advantage.

MySQL Advantage offers many enhancements to the MySQL

versions released by MySQL AB. One such enhancement is

another table type called Gemini, which is a transactional

table.

NuSphere MySQL Advantage is not free software. However, for

the enhancements it provides for larger implementations, the

cost is minimal. The software purchase even includes techni-

cal support directly from NuSphere included in the price.

This chapter examines NuSphere Pro Advantage, including its

enhancements and installation.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Taking a detailed
look at NuSphere
MySQL Advantage

Installing NuSphere
Pro Advantage on a
Linux system

Installing NuSphere
Pro Advantage on a
Windows 2000
system

✦ ✦ ✦ ✦

264932-4 ch20.F 5/29/02 3:54 PM Page 571

572 Part V ✦ Advanced Performance

NuSphere MySQL Advantage: A Closer Look
Since NuSphere’s MySQL is based on the main MySQL code base, many options (as

well as the command syntax) are the same as for non-enhanced MySQL from

MySQL AB. Accordingly, this chapter skips any discussion of how to use MySQL or

MySQL-related tools; instead, it looks at the additions that NuSphere MySQL

Advantage adds to a MySQL installation. For more information on NuSphere

Enhanced MySQL see the NuSphere Web site at http//www.nusphere.com/.

Gemini: A new table type
Gemini is a transactional table type available with NuSphere MySQL. Gemini

includes full ACID support, row-level locking, and excellent crash recovery. Recall

that ACID is an abbreviation referring to Atomicity, Consistency, Isolation, and

Durability. ACID support in NuSphere Enhanced MySQL means that Gemini tables

can update records in an isolated environment. If a part of a transaction fails, the

entire transaction is rolled back so as to prevent possible inconsistencies in the

data. Even when there is a catastrophic system crash, Gemini tables will perform

automatic crash recovery to restore data to a known good state.

NuSphere integration with popular software
NuSphere MySQL Advantage is integrated with Apache, Perl, and PHP to make

development easy. With normal MySQL you have to install MySQL-aware PHP,

install various Perl libraries for MySQL, and install Apache with PHP enabled.

NuSphere Enhanced MySQL takes care of these for you. In addition, the Apache

installed with NuSphere MySQL Advantage also includes SSL support for serving

secure Web sites.

NuSphere management tools
NuSphere MySQL Advantage also includes Web-based tools for management of

MySQL and Apache. The management tools enable easy administration of Web sites

and security. Further, a security console is included to provide utilities for network

security.

264932-4 ch20.F 5/29/02 3:54 PM Page 572

573Chapter 20 ✦ NuSphere Enhanced MySQL

Installing NuSphere Pro Advantage on Linux
In both the Linux and Windows versions of NuSphere, installation uses a Web inter-

face. This makes configuration easy (though unfortunately somewhat less config-

urable than some Linux users may prefer). For example, many Linux users are

familiar with installing software through the configure ; make ; make install
commands. Those offer flexibility to the installer so that they can edit the source

files prior to installation. This section describes the installation process for

NuSphere Pro Advantage in Linux.

The NuSphere installation process
NuSphere Pro Advantage is distributed on CD-ROM; to begin installation, insert the

CD-ROM into the drive. Because this installation is for a server, I assume that you

aren’t running a GUI such as KDE or GNOME. Therefore, from a command-line

prompt, you mount the CD-ROM drive with the following command as shown in

Figure 20-1:

mount -t iso9660 /dev/cdrom /mnt/cdrom

Figure 20-1: Mounting the NuSphere installation CD in Linux

Change (cd) into the newly mounted CD-ROM directory:

cd /mnt/cdrom

Run the setup script from within that directory (as shown in Figure 20-2):

./setup

264932-4 ch20.F 5/29/02 3:54 PM Page 573

574 Part V ✦ Advanced Performance

Figure 20-2: Executing the setup script from within the CD-ROM
directory

The instructions in Figure 20-2 tell the user to point a Web browser to that machine,

port 4001. Figure 20-3 shows what happens when I do so.

Figure 20-3: Pointing a Web browser to port 4001 on the server with the NuSphere
CD-ROM mounted

264932-4 ch20.F 5/29/02 3:54 PM Page 574

575Chapter 20 ✦ NuSphere Enhanced MySQL

You should see a similar welcome screen when you go to port 4001 on your server.

Begin the installation by clicking the Install button.

You are now presented with three types of installation to choose from: Quick,

Custom, and RPM installation (see Figure 20-4).

Figure 20-4: The three types of installation

The RPM installation method enables Red Hat Linux systems to update the RPM

database with the new package information. This can be useful for administrators

who frequently use RPM as a management tool for new software.

Both Custom and RPM installation enable the administrator to choose other

options for installation — for example, default ports for software and installation

paths. Some of these options are shown in Figure 20-5.

In this case, I use the Quick Installation method (which chooses the defaults shown

in Figure 20-5). The installation program takes over; the Web page tracks its

progress (as illustrated in Figure 20-6).

264932-4 ch20.F 5/29/02 3:54 PM Page 575

576 Part V ✦ Advanced Performance

Figure 20-5: The Custom and RPM installation methods enable the
administrator to choose ports and locations for software.

Figure 20-6: The progress of the NuSphere installation is tracked via the Web page.

264932-4 ch20.F 5/29/02 3:54 PM Page 576

577Chapter 20 ✦ NuSphere Enhanced MySQL

When the installation is complete, a new link appears so I can continue, as in

Figure 20-7.

Figure 20-7: The Click Here To Continue link appears when the NuSphere installer
is done installing the software.

When you click to continue you’ll be presented with a link to remind you to register

with NuSphere as well as instructions to start some of the services just installed.

Clicking the Quick Start link starts the services just installed.

Many NuSphere products install software that you might not want to run on a pub-

licly available Web server (such as Webmin) for security reasons. Refer to the docu-

mentation on Webmin and Apache to configure those services so that outside users

cannot gain access to them.

264932-4 ch20.F 5/29/02 3:54 PM Page 577

578 Part V ✦ Advanced Performance

Going back to the console or terminal window from Figure 20-2, you can press

Ctrl+C to stop the setup script, as shown in Figure 20-8.

Figure 20-8: Press Ctrl+C to stop the setup script for NuSphere
installation.

NuSphere administration
NuSphere includes a Web site for administration of your server. This is located at

port 9000 on your Web server. For example, if your Web server IP address is

192.168.1.1, you would point the Web browser to http://192.168.1.1:9000/
(as illustrated in Figure 20-9, where the server is located at 192.168.1.136).

From within the administration Web site, you can run tests of the PHP environment —

as well as utilize Webmin and the Apache Access Manager. PHPmyAdmin is also

included within this administration Web site. However, you will need to use the

MySQL CLI to create Gemini table types unless you set the default table type to

Gemini. (The next section explains creating Gemini tables, as well as setting

Gemini as your default table type.)

The location of many of the MySQL programs such as the CLI will be dependent on

where you chose to install them. If you chose the Quick Installation method, the

programs will be located in /usr/local/nusphere/mysql. I strongly recommend

that you set a password for the MySQL root user.

See Chapter 3 for more information on setting a password with the mysqladmin
program.

Cross-
Reference

264932-4 ch20.F 5/29/02 3:54 PM Page 578

579Chapter 20 ✦ NuSphere Enhanced MySQL

Figure 20-9: The NuSphere administration Web site for this server

Creating Gemini tables
Tables within NuSphere Enhanced MySQL can be the normal MyISAM or the Gemini
table type. By default, tables are created as MyISAM (for example, the table created

in Figure 20-10).

To create a Gemini table and take advantage of its specific enhancements, you sim-

ply tell MySQL to create the table as a Gemini type while you are creating the table.

To do so, add the following line to the CREATE TABLE definition.

TYPE = Gemini

Figure 20-11 shows an example of creating a Gemini table through the MySQL CLI.

To enable MySQL to use Gemini as the default table type, you need to add the fol-

lowing line when starting MySQL:

--default-table-type=gemini

264932-4 ch20.F 5/29/02 3:54 PM Page 579

580 Part V ✦ Advanced Performance

Figure 20-10: NuSphere Enhanced MySQL still uses MyISAM as the
default table type.

Figure 20-11: Creating a Gemini table through the MySQL CLI

After adding the line to enable Gemini as the default table type and restarting the

server I create a table without a TYPE clause. The result is a Gemini table, as illus-

trated in Figure 20-12.

264932-4 ch20.F 5/29/02 3:54 PM Page 580

581Chapter 20 ✦ NuSphere Enhanced MySQL

Figure 20-12: After enabling Gemini as the default table type,
creation of Gemini tables does not require the extra TYPE clause.

If you want to create a MyISAM table after enabling Gemini as the default, add a

TYPE=MyISAM clause to the CREATE TABLE statement.

Once the server is configured to use Gemini as the default table type you can use

PHPmyAdmin or other tools for creating Gemini tables. In effect, you do not have to

solely use the MySQL CLI for creating Gemini tables since you don’t have to specify

the TYPE clause as part of the CREATE TABLE statement.

Gemini configuration options
You can set other options for Gemini tables at the command line or in the MySQL

configuration file my.cnf. The options to use are listed in Table 20-1.

Table 20-1
Gemini Table Options And Variables

Option Description

gemini_buffer_cache= Variable set with set-variable syntax to
control the size of the memory pool available for
buffers.

gemini_connection_limit= Variable set with the set-variable syntax to
control the maximum number of allowed
connections.

Continued

264932-4 ch20.F 5/29/02 3:54 PM Page 581

582 Part V ✦ Advanced Performance

Table 20-1 (continued)

Option Description

gemini_io_threads= Variable to set the number of threads to open at
once.

gemini_lock_table_size= Variable to set the maximum number of locks.

gemini_lock_wait_timeout= Variable set in seconds to control the amount of
time MySQL will wait before releasing an
apparently dead lock.

--gemini-flush-log-at-commit Tells the server to flush the buffers of the flush
log after every commit operation. This enhances
safety but can significantly decrease performance.

--gemini-recovery= Options include FULL, NONE, or FORCE and they
determine how the server performs recovery.

--gemini-unbuffered-io Prevents write operations to the table from using
the Linux cache.

--skip-gemini Option that tells MySQL to skip Gemini support
entirely.

--transaction-isolation= Sets the transaction level as READ-
UNCOMMITTED, READ-COMMITTED,
REPEATABLE-READ, or SERIALIZABLE. Can be
overridden with the SET ISOLATION LEVEL
statement.

Installing NuSphere Pro Advantage on
Windows 2000

As with the installation of NuSphere products in Linux, installing NuSphere Pro

Advantage on Windows uses a Web-based program. The installation process simply

involves clicking a series of buttons (the usual process for installing software in

Windows). NuSphere products run on later versions of Windows, including

Windows 95, 98, and 2000. In all likelihood, the products run on other Windows

platforms, check with http://www.nusphere.com/ for more information. For this

installation, I use Windows 2000 Server.

264932-4 ch20.F 5/29/02 3:54 PM Page 582

583Chapter 20 ✦ NuSphere Enhanced MySQL

The NuSphere installation process
NuSphere Pro Advantage is distributed on CD-ROM. Therefore, to begin the installa-

tion insert the CD-ROM into the drive. The CD should run automatically. If the CD

does not start automatically, simply go into Windows Explorer, point to the CD-ROM

drive containing the NuSphere CD, and click Setup.exe. Either method will open a

Web browser pointing to port 4001 on the nusphere-cd URL, as shown in Fig-

ure 20-13.

Figure 20-13: Pointing a Web browser to port 4001 on the nusphere-cd URL with
the NuSphere CD-ROM inserted

You should see a similar welcome screen though it may vary slightly depending on

which version of the NuSphere product you are installing. Begin the installation by

clicking the Install button.

You are presented with two options for the type of installation to proceed with,

Quick or Custom, as illustrated in Figure 20-14.

The Custom installation option enables the administrator to choose other options

(such as default ports for software and installation paths), some of which are

shown in Figure 20-15.

264932-4 ch20.F 5/29/02 3:54 PM Page 583

584 Part V ✦ Advanced Performance

Figure 20-14: The two types of installation

Figure 20-15: The Custom installation method enables the administrator to
choose ports and locations for software.

264932-4 ch20.F 5/29/02 3:54 PM Page 584

585Chapter 20 ✦ NuSphere Enhanced MySQL

For this installation, I use the Quick Installation method that chooses the defaults

shown in Figure 20-15. The installation program takes over; the Web page tracks its

progress, as illustrated in Figure 20-16.

Figure 20-16: The progress of the NuSphere installation is tracked via the Web page.

When the installation is complete a new link is presented; click it to continue, as

shown in Figure 20-17.

When you click to continue, you get a link that reminds you to register with

NuSphere — as well as instructions to start some of the services just installed (see

Figure 20-18).

The Programs menu shows a new program group for NuSphere. Inside this group

are shortcuts for starting and stopping services such as Apache and MySQL, as well

as for configuring some of the programs as Services in Windows.

264932-4 ch20.F 5/29/02 3:54 PM Page 585

586 Part V ✦ Advanced Performance

Figure 20-17: The Click Here To Continue link is presented when the NuSphere
installer is done installing the software.

Figure 20-18: Instructions for starting services related to NuSphere as provided
by the installation program

264932-4 ch20.F 5/29/02 3:54 PM Page 586

587Chapter 20 ✦ NuSphere Enhanced MySQL

NuSphere administration
NuSphere includes a Web site for administration of your server. This is located at

port 9000 on your Web server. For example, if your Web server IP address is

192.168.1.1, you would point the Web browser to http://192.168.1.1:9000/
(as illustrated in Figure 20-19, where the server is located at 192.168.1.136).

Figure 20-19: The NuSphere administration Web site for this server

From within the administration Web site you can run tests of the PHP environment

as well as Perl script and perform administration for Apache. PHPmyAdmin is also

included within this administration Web site. However, you will need to use the

MySQL CLI to create Gemini table types unless you set the default table type to

Gemini. The next section describes creating Gemini tables, as well as setting

Gemini as your default table type.

The location of many MySQL programs — for example, the CLI — depends on where

you chose to install them. Before you continue, however, I strongly recommend that

you set a password for the MySQL root user.

See Chapter 3 for more information on setting a password with the mysqladmin
program.

Cross-
Reference

264932-4 ch20.F 5/29/02 3:54 PM Page 587

588 Part V ✦ Advanced Performance

Creating Gemini tables
Tables within NuSphere Enhanced MySQL can be the normal MyISAM or the Gemini
table type. By default, tables are created as MyISAM (as illustrated in Figure 20-20).

Figure 20-20: NuSphere Enhanced MySQL still uses MyISAM as the
default table type.

To create a Gemini table and take advantage of its enhancements, you simply tell

MySQL to create a table as the Gemini type when you create the table; do so by

adding the following line to the CREATE TABLE definition.

TYPE = Gemini

Figure 20-21 shows an example of creating a Gemini table through the MySQL CLI.

To enable MySQL to use Gemini as the default table type, add the following line

when you start MySQL:

--default-table-type=gemini

After adding the line to enable Gemini as the default table type and restarting the

server I create a table without a TYPE clause. The result is a Gemini table, as illus-

trated in Figure 20-22.

If you want to create a MyISAM table after enabling Gemini as the default, add a

TYPE=MyISAM clause to the CREATE TABLE statement.

264932-4 ch20.F 5/29/02 3:54 PM Page 588

589Chapter 20 ✦ NuSphere Enhanced MySQL

Figure 20-21: Creating a Gemini table through the MySQL CLI

Figure 20-22: After enabling Gemini as the default table type,
creation of Gemini tables does not require the extra TYPE clause.

Once the server is configured to use Gemini as the default table type, the MySQL

CLI is no longer the only way to create a Gemini table. You can use PHPmyAdmin or

other tools for that purpose because you don’t have to specify the TYPE clause as

part of a CREATE TABLE statement.

264932-4 ch20.F 5/29/02 3:54 PM Page 589

590 Part V ✦ Advanced Performance

Gemini configuration options
Other for Gemini tables can be set on the command line or in the MySQL configura-

tion file my.ini. These options are listed in Table 20-2.

Table 20-2
Gemini Table Options And Variables

Option Description

gemini_buffer_cache= Variable set by using the set-variable syntax
to control the size of the memory pool available
for buffers.

gemini_connection_limit= Variable set by using the set-variable syntax
to control the maximum number of allowed
connections.

gemini_io_threads= Variable that sets the number of threads to open
at once.

gemini_lock_table_size= Variable that sets the maximum number of locks.

gemini_lock_wait_timeout= Variable (specified in number of seconds) that
controls how long MySQL waits before releasing
an apparently dead lock.

--gemini-flush-log-at-commit Tells the server to flush the buffers of the flush
log after every commit operation. This enhances
safety but can significantly decrease performance.

--gemini-recovery= Options include FULL, NONE, or FORCE (which
determine how the server performs a recovery
operation).

--gemini-unbuffered-io Prevents write operations to the table from using
the Linux cache.

--skip-gemini Option that tells MySQL to skip Gemini support
entirely.

--transaction-isolation= Sets the transaction level as READ-
UNCOMMITTED, READ-COMMITTED,
REPEATABLE-READ, or SERIALIZABLE. Can be
overridden with the SET ISOLATION LEVEL
statement.

264932-4 ch20.F 5/29/02 3:54 PM Page 590

591Chapter 20 ✦ NuSphere Enhanced MySQL

Summary
NuSphere produces enhanced and integrated versions of popular software such as

MySQL and PHP. The products from NuSphere come bundled as a suite, which

installs more smoothly than each product would separately.

✦ The version of MySQL included with NuSphere products comes with a new

transactional table type called Gemini.

✦ NuSphere MySQL Advantage integrates enhanced MySQL with PHP, Perl, the

JDBC and Apache.

✦ NuSphere Pro Advantage has integrated an enhanced PHP development envi-

ronment with the products in MySQL Advantage.

✦ NuSphere products also come with Web-based administration tools to make

management of the products easier. These tools include Access Manager for

Apache and PHPmyAdmin. For Linux, Webmin is also included.

✦ ✦ ✦

264932-4 ch20.F 5/29/02 3:54 PM Page 591

264932-4 ch20.F 5/29/02 3:54 PM Page 592

Appendixes
✦ ✦ ✦ ✦

In This Part

Appendix A
Application
Reference

Appendix B
Language Reference

Appendix C
Function and
Operator Reference

Appendix D
Datatype Reference

Appendix E
Glossary

Appendix F
About the CD-ROM

✦ ✦ ✦ ✦

P A R T

VIVI

274932-4 Pt06.F 5/29/02 3:54 PM Page 593

274932-4 Pt06.F 5/29/02 3:54 PM Page 594

MySQL
Application
Reference

A.1 Data-Access Applications
The following applications are used to access the data stored

within the MySQL database.

mysql
The mysql application provides basic access to the

Command-Line Interface (CLI). Additionally, it can be used to

import and export data.

AAA P P E N D I X

✦ ✦ ✦ ✦

4932-4 AppA.F 5/29/02 3:54 PM Page 595

596 Part VI ✦ Appendixes

Argument Description

-?, --help Displays basic help information and descriptions of
command-line arguments.

-A, --no-auto-rehash This flag prevents the automatic hashing of tables
and fields. Removing table hashing results in faster
load times for the mysql client.

-B, --batch Returns a tab-delimited list for returned data from
the result set.

--character-sets-dir= Uses the following directory for specific character sets.

-C, --compress Forces the connection to use compression for data
delivery.

-D, --database= Specifies a database to connect with. If no database
is supplied, the connection will start without a
specific database connection.

--default-character-set= Specifies an alternate character set.

-e, --execute Executes the given command and exit.

-E, --vertical Displays data output vertically from the result sets.

-f, --force Forces the execution of the command even if an
error is returned from the server.

-g, --no-named-commands Disables the use of named commands. This option is
set by default.

-G, --enable-named-commands Enables the use of named commands.

-h, --host= Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-H, -html Displays the query return output in HTML format.

-i, --ignore-space Disregards spaces after function name calls.

-L, --skip-line-numbers If an error is returned, does not return the line
number associated with what caused the error.

--no-pager Disables the use of a system pager file located by
determining the value of its ENV variable.

--no-tee Disables use of outfiles.

-n, --unbuffered Flushes the buffer after each query is performed.

-N, --skip-column-names Omits the column names from the output on query
return sets.

4932-4 AppA.F 5/29/02 3:54 PM Page 596

597Appendix A ✦ Application Reference

Argument Description

-O, --set-variable Assigns the given option value to the ENV variable
var=option given as var.

-o, --one-database Skips the execution of any updates except those that
affect the default database.

--pager= Designates an alternate pager file to the default ENV
value.

-p, --password= Uses a password to connect to a server. If no
password is given, a prompt requests that the user
enter the password.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-q, --quick Returns data rows without caching the return values.
By including this option you will also disregard the
use of the history file.

-r, --raw When used in conjunction with the –B or --batch
flags, returns fields without converting to the normal
display format.

-s, --silent Does not return any standard output messages
(error messages are still returned).

-S, --socket= Uses the given socket file for connection to the
server.

-t, --table Returns the data in standard table formatting.

-T, --debug-info At termination of the application, delivers any
debugging information that is available.

--tee= Outputs all returned data to a file with a specified
filename.

-u, --user= Designates the username passed when connecting to
the MySQL database. If no username is given, the
current system username is assumed for the
connection.

-U, --safe-updates Prevents use of DELETE for queries that do not
designate a key for the row to be deleted.

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and then exits.

-w, --wait Retries a connection if an attempted connection is
not initially successful.

4932-4 AppA.F 5/29/02 3:54 PM Page 597

598 Part VI ✦ Appendixes

mysqldump
The mysqldump application provides export, statements for database creation, and

file-creation support.

Argument Description

-A, --all-databases Returns data from all databases contained on the
MySQL server.

-a, --all Returns table data with complete create syntax.

--add-drop-table Returns table data that includes a “DROP TABLE”
command before each table create syntax.

This option is useful when the formats of existing
tables differ from the formats of data being imported
into the server.

--add-locks Specifies that the data returned from the server
include locking syntax to prevent tables from being
altered during the dump process.

--allow-keywords This flag allows the return of column names that are
also MySQL internal keywords.

-B, --databases Returns data from the following databases.

-c, --complete-insert Returns data with complete insert statements.

-C, --compress Forces connection to use compression for data
delivery.

-d, --no-data Skips row insert syntax for the data contained in the
table data being exported.

--default-character-set= Specifies an alternate character set for the data.

--delayed-insert Includes “INSERT DELAYED” syntax with data
insert syntax.

-e, --extended-insert Returns insert data with a faster syntax.

This option may remove any backward compatibility
with older MySQL versions.

-F, --flush-logs Executes a flush of the MySQL log file prior to the
execution of the dump process.

-f, --force Forces execution even if the server returns an error.

-h, --host= Connects to a specified host. If none is given,
localhost is assumed. The value given can be either
an IP address, domain name or server alias.

-l, --lock-tables Locks the designated tables prior to reading the data
to be returned for the dump.

4932-4 AppA.F 5/29/02 3:54 PM Page 598

599Appendix A ✦ Application Reference

Argument Description

-n, --no-create-db Skips create syntax for all or specified databases.

This can be used in conjunction with –all-
databases to force exclusion of the create syntax
for each individual database.

-O, --set-variable Assign the given option value to the ENV variable
var=option given as var.

-t, --no-create-info Omits table-creation syntax from the returned data.

--opt Activates all of the following options:

--add-drop-table

--add-locks

--all

--extended-insert

--quick

--lock-tables

-p, --password Uses password to connect to database. If no
password is given, a prompt requests that the
password be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-q, --quick Skips buffering of returned output. This forces the
return or the data directly to STDOUT.

-Q, --quote-names Appends single quotes (‘’) to all table and column
names returned.

-r, --result-file= Returns data to specified file.

-S, --socket Uses the given socket file for connection to the
server.

--tables Overrides the –B, --databases flag.

-T, --tab= Returns data to individual files for each table in a
database, using the given path.

This option can only be executed on the same
machine that the MySQL server is operating.

--fields-terminated-by= Designates a delimiter for the data output files
created by -T. Defaults to tab.

--fields-enclosed-by= Designates surrounding character(s) in returned
fields for the data output files created by -T.

Continued

4932-4 AppA.F 5/29/02 3:54 PM Page 599

600 Part VI ✦ Appendixes

Argument Description

--fields-optionally- Designates surrounding character(s) in returned
enclosed-by= fields which consist of a non-numeric data type for the

data output files created by -T.

--fields-escaped-by= Designates escape character(s) in returned fields for
the data output files created by -T.

--lines-terminated-by= Designates character(s) for end of line datatype for
the data output files created by -T. Defaults to
newline (\n).

-w, --where= Uses the following WHERE clause on all data to be
returned.

mysqlshow
The mysqlshow application delivers table or database listings for a designated

server.

Argument Description

-c, --character-sets-dir= Uses the following directory for specific
character sets.

-C, --compress Forces connection to use compression for data delivery.

-h, --host= Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-i, --status Returns specific status information regarding each
table in the designated db. If no db is passed, flag is
ignored.

-k, --keys Returns keys for designated tables.

-p, --password= Uses a password to connect to the server. If no
password is given, a prompt will be displayed
requesting for the password to be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-S, --socket= Uses the given socket file for connection to the server.

-u, --user= Designates the username to connect to the MySQL
database as. If none is given, current username is
assumed.

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and exit.

4932-4 AppA.F 5/29/02 3:54 PM Page 600

601Appendix A ✦ Application Reference

A.2 Server-Administration Applications
The following applications control the function of the MySQL database. Many of

them have been covered in more detail throughout the book.

mysqladmin
The mysqladmin application performs management functions on the server.

Argument Description

-?, --help Displays basic help information and description of
command line arguments.

-C, --compress Force connection to use compression for data delivery.

--character-sets-dir Uses the given directory for all character sets.

-E, --vertical Returns the requested output vertically.

-f, --force Forces execution of the command regardless of
errors returned. DROP DATABASE commands will be
performed without a warning prompt.

-h, --host Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-i, --sleep= Sleeps for the given number of seconds before
repeating the given command. The option will
continue to loop until the process is terminated.

-p, --password= Uses a password to connect to the server. If no
password is given, a prompt will be displayed
requesting for the password to be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-r, --relative In combination with –i, --sleep=, shows the
difference between the current data returned and
the previous set.

-s, --silent Prevents the return of any standard output
messages, though error messages are still returned.

-S, --socket Uses the given socket file for connection to the server.

-u, --user= Designates the username to connect to the MySQL
database as. If none is given, current username is
assumed.

Continued

4932-4 AppA.F 5/29/02 3:54 PM Page 601

602 Part VI ✦ Appendixes

Argument Description

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and exit.

-w, --wait= Retries the command the given number of times if
the server connection is unavailable.

Command Description

create [db] Creates new database named [db].

drop [db] Drops database named [db].

extended-status Delivers an extended status message from the
daemon.

flush-hosts Deletes all hosts that the system has cached.

flush-logs Deletes all logs.

flush-status Deletes all status variables on the server.

flush-tables Flushes all tables in designated database.

flush-threads Deletes the current thread cache.

flush-privileges Reloads internal user privilege tables.

kill [id] Stops a particular MySQL process.

password [new password] Changes the current password to the given password.

ping Checks to be sure the MySQL process is up and
running.

processlist Returns a listing of all current threads active on the
server.

reload Reloads all internal MySQL tables.

refresh Flushes all internal tables and restart logging.

shutdown Shuts down the MySQL server.

status Returns the current system status for the server.

start-slave Starts the slave.

stop-slave Stops the slave.

variables Returns all of the available variables.

version Returns MySQL version for selected server.

4932-4 AppA.F 5/29/02 3:54 PM Page 602

603Appendix A ✦ Application Reference

mysqlcheck
The mysqlcheck application performs verification, repair, analysis, and optimiza-

tion of MySQL databases, tables, and data.

Argument Description

-?, --help Displays basic help information and description of
command line arguments.

-#, --debug= Creates debugging log file to given file name.

-1, --all-in-1 Combines all table queries into one query upon the
database.

-a, --analyze Analyzes the given tables.

-A, --all-databases Returns data from all databases contained on the
MySQL server.

--auto-repair Automatically repair any damaged tables found.

-B, --databases Returns data from the following databases.

--character-sets-dir= Uses the following directory for specific character sets.

-c, --check Checks the given table for errors, this flag does not
designate the process to repair errors it finds.

-C, --check-only-changed Checks only the tables that have changed since the
last check on the table was performed. Additionally
check all tables that return to be improperly closed.

--compress Forces connection to use compression for data
delivery.

-F, --fast Checks only tables that return to be improperly closed.

-f, --force Forces execution of the command regardless of
errors returned.

-e, --extended Performs exhaustive checks upon the table
structures. Use this flag with caution.

-h, --host= Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-m, --medium-check Checks for most common errors. This process is not
as thorough, however will catch nearly all errors.

-o, --optimize Optimizes tables during action.

Continued

4932-4 AppA.F 5/29/02 3:54 PM Page 603

604 Part VI ✦ Appendixes

Argument Description

-p, --password Uses a password to connect to the server. If no
password is given, a prompt will be displayed
requesting for the password to be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-q, --quick Skips less important checks.

-r, --repair Repairs any problems found during process of
databases and tables.

-s, --silent Prevents the return of any standard output
messages, though error messages are still returned.

-S, --socket= Uses the given socket file for connection to the server.

--tables Overrides the –B, --databases flag.

-u, --user= Designates the username to connect to the MySQL
database as. If none is given, current username is
assumed.

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and exit.

mysqlimport
The mysqlimport application provides a command-line mechanism for importing

data to the MySQL database directly from a preformatted text file.

Argument Description

-?, --help Displays basic help information and description of
command line arguments.

-#, --debug= Creates debugging log file to given file name.

-c, --columns= Uses the given list of columns for creation of the
LOAD DATA INFILE declaration. List format should be
comma separated with no spaces.

-C, --compress Forces connection to use compression for data delivery.

-d, --delete Removes all data from affected tables prior to
processing the import.

-f, --force Forces execution of the command regardless of
errors returned.

--fields-terminated-by= Designates a delimiter for the data received from the
import file. Defaults to tab.

4932-4 AppA.F 5/29/02 3:54 PM Page 604

605Appendix A ✦ Application Reference

Argument Description

--fields-enclosed-by= Designates surrounding character(s) in returned
fields for the data received from the import file.

--fields-optionally- Checks the data received from the import file;
enclosed-by= designates those surrounding character(s) in

returned fields which are of a non-numeric datatype.

--fields-escaped-by= Designates escape character(s) in returned fields for
the data received from the import file.

-h, --host= Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-i, --ignore If importing data into a table with preexisting rows,
skips importing data from rows that have matching
keys.

-l, --lock-tables Locks all affected tables prior to data import. This
function prevents other processes from modifying
data during import.

-L, --local Takes datafile to use for import from localhost.

--lines-terminated-by= Designates character(s) for the end-of-line data type
for the data received from the import file. Defaults to
newline (\n).

--low-priority Utilizes LOW_PRIORITY syntax for query string used
for INSERT.

-p, --password Uses password to connect to database. If no
password is given, a prompt will be displayed
requesting for the password to be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-r, --replace If importing data into a table with preexisting rows,
forces replacement of existing data in rows that have
matching keys.

-s, --silent Prevents the return of any standard output
messages, though error messages are still returned.

-S, --socket= Uses the given socket file for connection to the server.

-u, --user= Designates the username to connect to the MySQL
database as. If none is given, current username is
assumed.

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and exit.

4932-4 AppA.F 5/29/02 3:54 PM Page 605

606 Part VI ✦ Appendixes

mysqltest
The mysqltest application provides command-line access to the MySQL database

testing scripts that are provided with non-package distributions.

Argument Description

-?, --help Displays basic help information and description of
command line arguments.

-D, --database= Uses the given database for testing with the test script.

-h, --host= Connects to specified host. If none is given, localhost
is assumed. The value given can be either an IP
address, domain name or server alias.

-p, --password= Uses password to connect to server. If no password
is given, a prompt will be displayed requesting for
the password to be entered.

-P, --port= Designates a specific port that the connection to the
MySQL database should use.

-q, --quiet, --silent Prevents the return of any standard output, though
error messages are still returned.

-r, --record Record output from testing script into the designated
result-file.

-R, --result-file= Uses the given file for recording results from the
testing script. Must be used with -r, --record.

-S, --socket= Uses the given socket file for connection to the server.

-t, --tmpdir= Uses the given directory for storage of the socket file.

-T, --sleep= Sleeps for the number of seconds given when the
testing script calls a sleep request.

-u, --user= Designates the username to connect to the MySQL
database as. If none is given, current username is
assumed.

-v, --verbose Displays more verbose system error messages.

-V, --version Displays the MySQL version number and then exits.

A.3 The mysqld Server Daemon
The mysqld application — usually considered the server for MySQL — controls the

process of the MySQL database.

4932-4 AppA.F 5/29/02 3:54 PM Page 606

607Appendix A ✦ Application Reference

Argument Description

-?, --help Displays basic help information and descriptions of
command-line arguments.

--ansi Forces any ALTER syntax to use the ANSI SQL standard.

-b, --basedir= Identifies the given path as the path to the MySQL
installation directory.

--bdb-home= Identifies the given path as leading to the directory
for the Berkeley DB.

--bdb-lock-detect= Defines the Berkeley DB lock to detect as one of the
following:

DEFAULT

OLDEST

RANDOM

YOUNGEST

Additionally the number of seconds for the lock
detect can be given.

--bdb-logdir= Identifies the given path as the one leading to the
Berkeley DB log files.

--bdb-no-sync Disables synchronous flushing of the system logs.

--bdb-no-recover Disables recovery of Berkeley DB table upon start.

--bdb-shared-data Upon startup, allows the Berkeley DB to maintain
multiple processes.

--bdb-tmpdir= Identifies the given path as that leading to the
system temp file.

--big-tables Saves all temporary result sets to a temp file.

--bind-address= Identifies the given address as the IP that the server
is bound to.

--bootstrap This option is utilized for the MySQL installation.

--character-sets-dir= Identifies the given path as leading to the directory
that houses character sets.

--chroot= Identifies the given path as leading to the directory
in which MySQL will be chroot jailed.

--core-file Produces a core-dump file on SIGSEGV signal.

--default-character-set= Identifies the given id as the default character set.

Continued

4932-4 AppA.F 5/29/02 3:54 PM Page 607

608 Part VI ✦ Appendixes

Argument Description

--default-table-type= Identifies the given table name as the default
table type.

--delay-key-write-for- Disables key buffer flushing between writes for
all-tables MyISAM tables.

--enable-locking Enables the server to perform system locking.

--flush Writes the contents of tables to disk after SQL
commands.

-h, --datadir= Identifies the given path as that of the database root.

--init-file= Upon startup, executes the following SQL commands
from the given file path.

-l, --log= Enables system logging to given file name.

-L, --language= Returns error messages to the client in the given
language. Can be given as a path.

--log-bin= Identifies the given path to the file as the one to
used for binary logging.

--log-bin-index= Identifies the given path as the one to the file
holding the index of binary log files.

--log-update= Identifies the given path as the one to the file
descriptor used for incrementally updated log files
that will be sequentially rotated.

--log-isam= Identifies the given path as the one to the file used
to log all MyISAM changes.

--log-long-format Utilizes more verbose logging.

--low-priority-updates Gives SELECT queries higher priority than INSERT,
UPDATE, and DELETE queries.

--log-slow-queries= Keeps the given path to the log file for slow queries
on the DB.

--memlock Locks mysqld into system memory.

--myisam-recover= Executes the given MyISAM recovery command.
Options are DEFAULT, BACKUP or FORCE.

-n, --new Utilizes any new, potentially unstable functionality
included with the distribution.

-o, --old-protocol Utilizes the older 3.20.x MySQL protocol.

-O, --set-variable Assigns the given option value to the ENV variable
var=option given as var.

-P, --port= Designates a specific port that the client connection
to the MySQL database should use.

4932-4 AppA.F 5/29/02 3:54 PM Page 608

609Appendix A ✦ Application Reference

Argument Description

-Sg, --skip-grant-tables Starts the server without using GRANT tables. This
will give all users access to all tables, including the
mysql system db tables.

--safe-mode During startup, disables certain optimizations for the
system. This option should only be used for system
testing.

--safe-show-database In the MySQL CLI, disallows viewing of databases to
which the user does not have access.

--safe-user-create Disallows any user attempt to create new system
accounts by using the GRANT command.

--skip-concurrent-insert Disables concurrent inserts using MyISAM.

--skip-delay-key-write Ignores the action if the DELAY_KEY_WRITE option is
defined in table create syntax.

--skip-host-cache Prevents the caching of host domain names.

--skip-locking Disable system locking.

--skip-name-resolve Disables IP name resolution to full domain names.

--skip-networking Disables TCP/IP connections to the server.

--skip-new Disables any new, potentially unstable functionality
included with the distribution.

--skip-stack-trace Disables the display of a stack trace upon server
failure.

--skip-show-database Disables usage of the SHOW DATABASE command.

--skip-thread-priority All threads will have the same priority to the system
process.

--socket= Uses the given socket file for connection to the server.

-t, --tmpdir= Given path is the directory used for temporary
system files.

--sql-mode= Activates the following mode options, multiples
must be comma separated with no spaces.

REAL_AS_FLOAT

PIPES_AS_CONCAT

ANSI_QUOTES

IGNORE_SPACE

SERIALIZE

ONLY_FULL_GROUP_BY

Continued

4932-4 AppA.F 5/29/02 3:54 PM Page 609

610 Part VI ✦ Appendixes

Argument Description

--skip-bdb Skips the system usage of the Berkeley DB.

--transaction-isolation Utilizes the transaction isolation level at default.

--temp-pool Utilizes multiple temp files.

-u, --user= Given username will be the user account as which
the process is run.

-v, --version Displays the MySQL version number and exit.

-W, --warnings Returns verbose messages to the system log file.

✦ ✦ ✦

4932-4 AppA.F 5/29/02 3:54 PM Page 610

Language
Reference

This Appendix examines the Data Definition Language

(DDL) and Data Markup Language (DML) SQL statements

for MySQL. (Appendix C examines the numerous functions

used in SELECT statements.)

B.1 Data Definition Language and
Data Markup Language

This section lists and describes various DDL and DML

statements.

ALTER TABLE
ALTER [IGNORE] TABLE table_name
alter_definition

The ALTER TABLE command changes the state of a preexist-

ing table. Including the IGNORE option allows changes that

affect primary keys to be overwritten or deleted. Without the

IGNORE option, the operation indicates an error and rolls back

to the prior status of the table.

BBA P P E N D I X

✦ ✦ ✦ ✦

4932-4 appB.F 5/29/02 3:54 PM Page 611

612 Part VI ✦ Appendixes

alter_definition Description

ADD create_definition The first version of the ADD syntax allows specific
[FIRST or AFTER column_name] placement of an appended column. If no modifier is

specified, the appended column will become last.
The FIRST modifier will append before all columns.
The AFTER modifier will insert after the given
column_name.

ADD (create_definition, The second version of the ADD syntax allows the
create_definition, ...) passing of multiple create_definition to

append multiple columns (in sequence) to the
current table structure.

ADD INDEX [index_name] The ADD INDEX alter type allows creation of a new
index_column_name table index given by the name index_name. The
(, index_column_name, ...) index can be made up of one or multiple column

entities.

ADD PRIMARY KEY The ADD PRIMARY KEY type will create a new
index_column_name primary key for the designated table. If there is
(, index_column_name, ...) currently a primary key on the table, it will be

overridden.

ADD UNIQUE [index_name] The ADD UNIQUE type will add a new unique
index_column_name index to the table.
(, index_column_name, ...)

ADD FULLTEXT [index_name] The ADD FULLTEXT option will add a new
index_column_name FULLTEXT index to the table. This allows use of
(, index_column name, ...) MATCH ... AGAINST syntax in the definition of

where clauses.

ADD [CONSTRAINT const_symbol] The ADD FOREIGN KEY type is included purely
FOREIGN KEY index_name for ANSI SQL92 compatibility. This call performs
index_column_name no action.
(, index_column_name, ...)
[reference_definition]

ALTER column_name The ALTER type allows modification of an existing
{ DROP DEFAULT or column in a table. The command takes on either
SET DEFAULT literal} the DROP or SET options for removing or changing

the given column_name to the new literal type.

CHANGE old_column_name The CHANGE type allows complete modification
create_syntax of a column given by old_column_name. The
[FIRST or AFTER column_name] new column position can be created with the

FIRST or AFTER options.

MODIFY create_syntax The MODIFY type will change the definition of a
[FIRST or AFTER column_name] given column but will keep the name for the column.

The new column position can be designated by
including either the FIRST or AFTER options.

4932-4 appB.F 5/29/02 3:54 PM Page 612

613Appendix B ✦ Language Reference

alter_definition Description

DROP column_name The DROP option will remove the entered
column_name from the designated table.

DROP PRIMARY KEY Removes (drops) the PRIMARY KEY for the
designated table. If no PRIMARY KEY exists, the first
UNIQUE index for the table is dropped.

DROP INDEX index_name Removes (drops) the given index_name from the
table.

DISABLE KEYS The DISABLE KEYS type forces MySQL to omit
updating any indices that are not unique in the
MyISAM table.

ENABLE KEYS The ENABLE KEYS type recreates missing keys
upon a table.

RENAME new_table_name The RENAME option renames the table to a given
new_table_name.

ORDER BY column_name The ORDER BY option re-sorts the given table by
the designated column_name.

CREATE DATABASE
CREATE DATABASE [IF NOT EXISTS] database_name

The CREATE DATABASE command adds a database to the MySQL server. If the If NOT
EXISTS condition is specified, and a database with the same name is present the

command will return an error, and no changes to the server will occur.

CREATE TABLE
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
[table_definition]
[select_statement]

The CREATE TABLE command creates a new table in the database to which you are

presently connected. If you are not connected to a database, the process indicates

an error and no table is created.

DESCRIBE
DESCRIBE table_name [column_name]

The DESCRIBE command returns the create syntax for the table given in

table_name. Additionally a specific column given as column_name can be entered

to limit the CREATE listing.

4932-4 appB.F 5/29/02 3:54 PM Page 613

614 Part VI ✦ Appendixes

DELETE FROM
DELETE [LOW PRIORITY or QUICK] FROM table_name
[WHERE where_definition]
[ORDER BY order_definition]
[LIMIT row_value]

The DELETE FROM command removes data from table_name. If the LOW PRIORITY
argument is specified, the delete process waits until there is no client access to the

table. If the QUICK argument is specified, there will be no merging of table leaves

during the process. DELETE commands with no WHERE arguments delete all data

housed in the given table. The ORDER BY clause can be issued in conjunction with

the LIMIT clause to remove a certain number of records according to their order

within the table.

EXPLAIN SELECT
EXPLAIN SELECT select_definition

The EXPLAIN SELECT command returns information on how MySQL will process

the given select_definition. The EXPLAIN command determines the need for

optimizations in a table’s CREATE syntax.

HANDLER
HANDLER table_name handler_option

The HANDLER command is utilized as a fast mechanism for returning table data. The

HANDLER command returns results much faster than the SELECT command due to

the SQL Optimizer being excluded. During the execution of the command no table

locking occurs, thus allowing other connections to perform updates to table data

during the process.

handler_option Description

OPEN [AS alias] The OPEN option is the first step in preparing the
HANDLER command. Opening the table, the option
prepares all commands for the READ members
listed in this table.

READ index { = or >= or This READ option allows a comparison of the index
<= or < } (value, to a list of values. You can also designate a
value, ...) [WHERE comparison by using the where_definition to
where_definition] limit the rows returned. The READ command returns
[LIMIT row_limit] 1 row by default (unless the LIMIT option

designates otherwise).

4932-4 appB.F 5/29/02 3:54 PM Page 614

615Appendix B ✦ Language Reference

handler_option Description

READ index { FIRST or LAST This READ option reads data in the order of the
or NEXT or PREV } index. The return can be limited by a WHERE clause.
[WHERE where_definition] The READ command returns 1 row by default
[LIMIT row_limit] (unless the LIMIT option designates otherwise).

READ { FIRST or NEXT } This READ option is used to read the raw table data
[WHERE where_definition] in natural order as stored in the table. An optional
[LIMIT row_limit] where_definition can also be applied to this

option to limit the data returned. The READ
command returns 1 row by default (unless the
LIMIT option designates otherwise).

CLOSE The CLOSE command terminates the current thread.
Issue this closing command at the conclusion of the
HANDLER subsets.

INSERT INTO
INSERT [LOW_PRIORITY or DELAYED] [IGNORE] INTO table_name
(column_list) VALUES (value_list)

The INSERT INTO command is the basic mechanism for inserting data into a table.

If the LOW PRIORITY argument is specified, the insert will be delayed until there is

no client access to the designated table. If the DELAYED argument is specified,

clients are allowed to continue as the inserts are bundled for one mass insert. The

DELAYED option may improve speed for large inserts. If the IGNORE argument is

specified, inserts that would duplicate the insertion of a primary key are ignored.

Without the IGNORE option (given a duplicate primary key), the insert terminates.

SELECT
SELECT [SQL_SMALL_RESULT]
[SQL_BIG_RESULT]
[SQL_BUFFER_RESULT]
[SQL_CACHE or SQL_NO_CACHE]
[SQL_CALC_FOUND_ROWS]
[STRAIGHT_JOIN]
[HIGH_PRIORITY]
[DISTINCT or DISTINCTROW or ALL] select_definition

[INTO {OUTFILE or DUMPFILE} file_name export_options]
[FROM table_definition

[WHERE where_definition]
[GROUP BY {unsigned_integer or column_name or formula}]
[HAVING where_definition]
[ORDER BY {unsigned_integer or column_name or formula}]
[LIMIT {offset_value,} row_value]
[PROCEDURE procedure_name]
[FOR UPDATE or LOCK IN SHARE MODE]

4932-4 appB.F 5/29/02 3:54 PM Page 615

616 Part VI ✦ Appendixes

The SELECT command allows access to the data in a given table, and can also select

data in several different tables by using the syntax of the JOIN command.

SELECT arguments
The arguments of the SELECT command perform specialized tasks:

✦ The SQL_SMALL_RESULT argument will optimize the data returned for a small

query set.

✦ SQL_BIG_RESULT optimizes the data for a large query set, tending toward

large data returns. Additionally, MySQL will write out temporary tables to disk

to minimize memory usage.

✦ SQL_BUFFER_RESULT causes MySQL to place the results in a temporary table.

Locked tables may be released faster by using the SQL_BUFFER_RESULT option.

✦SQL_CACHE and SQL_NO_CACHE modifiers regulate the usage of the MySQL

query cache. Using the cache speeds up queries for identical data.

✦ SQL_CALC_FOUND_ROWS instructs MySQL to calculate the number of rows

returned from the given query. This data can by retrieved by using the

FoundRows() definition of SELECT.

✦ STRAIGHT_JOIN is a clause that instructs the MySQL optimizer to join the

tables in the order listed in the WHERE definition.

✦ HIGH_PRIORITY is a clause that forces the SELECT operation to precede any

otherwise-simultaneous updates to the table.

✦ DISTINCT, DISTINCTROW, and ALL are clauses that (respectively) either limit

the data to unique sets or show all data in a given query.

Using SELECT with JOIN syntax
The SELECT command offers the following options to control table joins. The JOIN
syntax can be created by the use of 3 elements. The table_definition,

table_reference, and join_condition make up all options to control table joins.

The standard sequence looks like this:

1. table_definition allows the use of JOIN syntax in the SELECT statement.

Valid JOIN clauses are as follows:

table_reference, table_reference

table_reference [CROSS] JOIN table_reference

table_reference INNER JOIN table_reference join_condition

table_reference STRAIGHT_JOIN table_reference

table_reference LEFT [OUTER] JOIN table_reference
join_condition

Tip

4932-4 appB.F 5/29/02 3:54 PM Page 616

617Appendix B ✦ Language Reference

table_reference LEFT [OUTER] JOIN table_reference

table_reference NATURAL [LEFT [OUTER]] JOIN table_reference

{ oj table_reference LEFT OUTER JOIN table_reference ON
conditional_expr }

table_reference RIGHT [OUTER] JOIN table_reference
join_condition

table_reference RIGHT [OUTER] JOIN table_reference

table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

2. The table_reference syntax is then formed as follows:

table_name [[AS] alias]
[USE INDEX (key_list)]
[IGNORE INDEX (key_list)]

3. The join_condition syntax is then formed as follows:

ON conditional_expr | USING (column_list)

SHOW TABLES
SHOW [OPEN] TABLES [FROM database_name] [LIKE
database_wildcard]

The SHOW TABLES command is a member of the SHOW command group. This com-

mand is used to generate a listing of all tables in the database given as

database_name; this will also default to the currently connected database if none is

specified. Including LIKE— along with a string containing a wildcard — limits the

returned listing to specified tables.

UNION
SELECT select_clause UNION [ALL] SELECT select_clause
[UNION SELECT select_clause ...]

The UNION command allows combinations of multiple SELECT statements into a sin-

gle return. In the select_clause syntax, only the last statement may contain a

declared ORDER BY or INTO OUTFILE modifier. Identical row data can be returned

unless the ALL option is specified.

UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table_name
SET column1=value1 [, column2=value2, ...]
[WHERE where_definition]
[LIMIT row_value]

4932-4 appB.F 5/29/02 3:54 PM Page 617

618 Part VI ✦ Appendixes

The UPDATE command allows modification of data currently housed in a table.

Including the LOW_PRIORITY option will force the UPDATE to be delayed until there

is no further client access to the affected table. The IGNORE option overrides errors

if multiple primary keys are generated by the UPDATE command. UPDATE commands

with no WHERE clause will modify all columns that are given a value. The LIMIT
clause can also be used to restrict the UPDATE to a specified number of rows given

by row_value.

B.2. Administrative Commands
The administrative commands in MySQL allow access to control and configure the

internals of the MySQL database.

ANALYZE TABLE
ANALYZE TABLE table_name [, table_name]

The ANALYZE TABLE command creates a key distribution listing for the designated

table(s), which is utilized when performing a join on the table. During the process

of the command, the affected tables are read locked. The process of analyzing a

table provides information to MySQL used in determining the order in which tables

should be joined based on the key distribution.

FLUSH
FLUSH flush_option [, flush_option, ...]

The FLUSH command is used to force a reload of internal MySQL data. The option

given determines what portions of the internal cache are reloaded within the

server.

flush_option Description

HOSTS Reloads the domain to IP translations created when a user
from a particular host given by a domain name connects to
the database. This function should be used if a connection
is denied due to a particular hostname changing its cached
IP address to domain record.

DES_KEY_FILE Reloads the DES file specified during the startup of the
MySQL server.

4932-4 appB.F 5/29/02 3:54 PM Page 618

619Appendix B ✦ Language Reference

flush_option Description

LOGS Closes all system log files and then reopens them. If log
has been specified for an update, the command
increments the filename(s) for the existing logs, and then
starts a new log file for the current process. This option is
equivalent to giving the SIGHUP signal to the daemon.

PRIVILEGES Reloads the grant tables that define access rights within
the server.

TABLE table_name Flushes only the specified table given by table_name.

TABLES [table_name, Flushes only the specified tables given by table_name.
table_name]

TABLES WITH READ LOCK Closes all open tables and places a read lock on all tables.
The database stays in that state until an UNLOCK TABLES
command is issued to the server.

STATUS Resets all status variables to zero.

KILL
KILL thread_id

The KILL command stops a connection to the database, identifying the prospective

connection by its thread_id. Every client that accesses the database has a socket

identified by a unique thread_id (which can be seen by issuing the SHOW PRO-
CESSLIST command). Additionally, the mysqladmin PROCESSLIST command deliv-

ers a list of all threads, as covered in Appendix A (heading A.2).

The KILL command does not immediately kill a given process; instead, it issues a

kill flag (an instruction to terminate at a specified time). The client’s connection will

only be terminated when the client checks for the issued kill flag.

To prevent processes from being killed in a state that could adversely affect the

database, client checks are performed at different times that depend on the type of

action occurring:

✦ ALTER TABLE commands check for the kill flag before the reading of a new

block of data from the originating table.

✦ UPDATE, DELETE, SELECT, ORDER BY and GROUP BY check for the kill flag

immediately after reading a block of data.

✦ UPDATE and DELETE threads check for the kill flag after a row modification.

4932-4 appB.F 5/29/02 3:54 PM Page 619

620 Part VI ✦ Appendixes

OPTIMIZE TABLE
OPTIMIZE TABLE table_name [, table_name, ...]

The OPTIMIZE TABLE command is used when a table’s data has been significantly

changed. If significant quantities of data are either updated or deleted from the

given table(s), many records may become unusable. Issuing this command defrag-

ments the datafiles used, reclaiming the space still allocated to the removed

records.

When the command is issued upon the designated tables, the process checks for

deleted or split rows, repairs them if they exist, re-sorts all index pages, and

updates all statistics.

RESET
RESET reset_option [, reset_option, ...]

The RESET command clears the logs and queries the caches used in the MySQL

database. The options in the RESET command can additionally be performed by the

various FLUSH commands.

Reset_option Description

MASTER Deletes all binary logs in the index file and then resets the
binlog file to its empty state.

SLAVE Forces the slave to forget the current replication position
being used in the master log file.

QUERY_CACHE Removes all current queries from the query cache.

SHOW
SHOW show_option

The SHOW command returns data specific to a particular system, database, or table.

Show_option Description

CREATE TABLE table_name Returns the full CREATE syntax for the designated table.

COLUMNS FROM table_name Returns a listing of all columns and their CREATE
values. This option is equivalent to the DESCRIBE
command.

4932-4 appB.F 5/29/02 3:54 PM Page 620

621Appendix B ✦ Language Reference

Show_option Description

DATABASES Returns a listing of all databases available to the
connected user.

GRANTS FOR Returns the syntax of the GRANT command to recreate
username@hostname the permissions currently assigned to the given

username by the designated hostname.

INDEX FROM table_name Returns a listing of all index data from the given table.

LOGS Returns the filename, file type, and status of the
logfiles currently active in the system.

MASTER LOGS Returns system status for the binlog files.

MASTER STATUS Returns the filename, position, and status of the active
binlog files.

PROCESSLIST Returns a listing of all current system processes —
including the command issued, the host doing the
accessing, the database connected to, the time, and the
system state.

SLAVE STATUS Returns system information on all connected slave
servers.

STATUS Returns a complete listing of current internal system
status.

TABLE STATUS Returns internal status information on all tables in the
database to which you are currently and actively
connected.

TABLES Returns an exclusive list of all tables contained in the
active database.

VARIABLES Returns a listing of all system variables currently
present.

B.3 Backup / Recovery Commands
The following sections describe the backup and disaster-recovery commands used

in MySQL.

BACKUP TABLE
BACKUP TABLE table_name [, table_name, ...] TO file_path

The BACKUP TABLE command allows current state of the designated tablename(s)

to be written to file. This file can then be used (in conjunction with the RESTORE
TABLE command) to return a table to its initial state at the time the file was created.

4932-4 appB.F 5/29/02 3:54 PM Page 621

622 Part VI ✦ Appendixes

CHECK TABLE
CHECK TABLE table_name [, table_name, ...]
[check_option [, check_option, ...]]

The CHECK TABLE command is used to verify the condition of given tablename(s)

for inconsistencies. The check_option types determine how thorough the checks

to be performed will be. The last piece of data returned on the verified table will be

Msg_type value. The returned value should be ‘OK’ or ‘Not Checked’ (depend-

ing on the state of the table). For any other value, use a REPAIR TABLE command.

Check_option Description

CHANGED Checks only the tables modified since the last check, and
all tables not closed properly in the last session.

EXTENDED Performs a complete check on designated tables, including
a complete key lookup for all keys in every row of the
given table_name.

FAST Limits its checks to the tables not properly closed.

MEDIUM Checks all rows to ensure that deleted links are actually
and correctly deleted. Additionally, generates a key
checksum and checks it against current values.

QUICK Performs a minimal verification of the table, without
verifying row data.

REPAIR TABLE
REPAIR TABLE table_name [, table_name, ...] [QUICK] [EXTENDED]

The REPAIR TABLE command fixes a damaged or corrupted table, generally after a

CHECK TABLE command returns a bad status for the table. If the QUICK option is

specified the repair will only affect the index tree. With the EXTENDED option, the

index will be recreated row by row. The last piece of data returned on the repaired

table will be Msg_type value. The returned value should be ‘OK’. Any other

value indicates that the REPAIR TABLE command has failed.

4932-4 appB.F 5/29/02 3:54 PM Page 622

623Appendix B ✦ Language Reference

RESTORE TABLE
RESTORE TABLE table_name [, table_name, ...] FROM file_path

The RESTORE TABLE command is used to recreate tables from a file generated by

the BACKUP TABLE command — and only from such a file. If executed upon existing

tables, the RESTORE TABLE command returns an error message.

B.4. User-Account Commands
This section lists and describes the MySQL user-account commands. Both the

GRANT and REVOKE commands use the same priv_type to designate specific

access rights within the database. Updated user data doesn’t take effect on the

system until a FLUSH PRIVILEGES command is issued.

GRANT
GRANT priv_type [column_list] [, priv_type [column_list] ...]
ON {table_name or * or database_name.* or *.*}
TO user_name [IDENTIFIED BY [PASSWORD] password]
[REQUIRE

[{SSL or X509}]
[CIPHER cipher_type [AND]]
[ISSUER issuer_type [AND]]
[SUBJECT subject_type]]

[WITH GRANT OPTION]

The GRANT command is used to designate a specific access level for a given user-

name. The GRANT command can designate privileges to a designated column_list,

table_name, or database_name, or grant privileges globally.

Using a GRANT command for a currently nonexistent user account creates that
user on the server. The syntax for the username can be either name or
name@host.

Tip

4932-4 appB.F 5/29/02 3:54 PM Page 623

624 Part VI ✦ Appendixes

REVOKE
REVOKE priv_type [column_list] [, priv_type [column_list] ...]
ON ON {table_name or * or database_name.* or *.*}
FROM username [, user_name, ...]

The REVOKE command performs the opposite action to that of the GRANT command,

removing access rights on the server for the designated user. The REVOKE com-

mand can also designate colunn_list, table_name, or database_name— or be

used globally.

priv_type Description

ALL PRIVILEGES Affects all access types.

ALTER Gives the user access to alter tables within the access of the user.

CREATE Allows the creation of tables.

DELETE Allows removal of row data in tables that can be accessed.

DROP Allows the removal of existing tables.

FILE Allows access to external files for system backup and restoration.

INDEX Allows the creation of table indexes.

INSERT Places data within tables a user may access.

PROCESS Gives access to the internal listing of current server processes.

RELOAD Gives the user access to the FLUSH command.

SELECT Gives the user access to read data from accessible tables.

SHUTDOWN Terminates the MySQL service.

UPDATE Allows the user to modify current table data.

USAGE Gives the user access to system-usage statistics.

✦ ✦ ✦

4932-4 appB.F 5/29/02 3:54 PM Page 624

Function and
Operator
Reference

C.1. MySQL Operators
Comparing the elements in the where_clause for MySQL

commands requires operators to determine what comparison

to make between objects. Operators provide the mechanism

for case-based testing between objects.

Comparison operators
The comparison operators perform the base logic needed to

compare arguments. The following operators function on both

strings and numbers. All comparison operators return a True

(1), False (0) or NULL value. If a string is compared to a num-

ber, the string is converted to a floating-point number.

CCA P P E N D I X

✦ ✦ ✦ ✦

4932-4 AppC.F 5/29/02 3:55 PM Page 625

626 Part VI ✦ Appendixes

Operator Description

= Equal-to operator.

!=, <> Not-equal-to operator.

> Greater-than operator.

>= Greater-than-or-equal-to operator.

< Less-than operator.

<= Less-than-or-equal-to operator.

<=> Equal-to operator for NULL-safe equations. This operator returns
True (1) for operations based on NULL <=> NULL.

Flow-control operators
The flow-control operators allow sequential, comparison-based conditional clauses.

Operator Description

CASE base WHEN [value1] This iteration of the CASE operator performs a series of
THEN return1 [WHEN checks between the base value and the return series,
[value2] THEN return2 ...] the returned value being the first to match values. If no
[ELSE alt_return] END values match the base and the ELSE option is included,

the alt_return value is returned by the function. The
END syntax must be included in all CASE operations.

CASE WHEN conditional The second iteration of the CASE operator allows
THEN result1 [WHEN conditional equations to determine the result to be
[conditional] THEN returned by the function. If none of the given values
return1 ...] match the base and the ELSE option is included, the
[ELSE return2] END alt_return value is returned. The END syntax must be

included in all CASE operations.

IF(conditional, The IF operator returns either value1 if
value1, value2) conditional is True or value2 if conditional is

False.

IFNULL(value1, value2) The IFNULL operator returns value1 if it is not NULL;
if value1 is NULL, then value2 is returned.

NULLIF(value1, value2) The NULLIF operator returns NULL if value1 =
value2, otherwise value1 is returned.

4932-4 AppC.F 5/29/02 3:55 PM Page 626

627Appendix C ✦ Function and Operator Reference

Logical operators
The logical operators perform base binary comparisons. For all comparison opera-

tions, the return value is one of three values: True (1), False (0), or NULL.

Operator Description

NOT, ! The NOT operator is for base-logical negation. The return value
is always 0 unless the base value is 0 (in which case the
return value is 1). The only exception is the case of NOT
NULL: The negation of the NULL value returns NULL.

OR, || The OR operator produces the inclusive -OR logical function.
The return value is 1 if either comparator of the statement is 1.

AND, && The AND operator produces the basic AND logical function. The
return value for the operation is 1 only if both comparators
are 1. In all other cases, the operation returns 0.

Statement operators
The statement operators expand the options for comparative operations. The NOT
operator can be applied to negate the expression formed by the Statement opera-

tors. All String operators that are compared perform case-insensitive pattern-

matching. Using the BINARY keyword allows case-sensitive operation.

Operator Description

expression BETWEEN The BETWEEN operator returns True (1) if the given
min_value AND max_value expression has a value greater than or equal to the

min_value and less than or equal to the max_value.
Otherwise the operator returns False (0).

COALESCE(value, ...) The COALESCE operator returns the first non-NULL
value from the given list of values. If all given values in
the list are NULL, then a NULL value is returned.

expression IN (value, ...) The IN operator returns True (1) if the given expression
is equal to any item that is given in the value list. If no
value matches, the operator returns False (0).

INTERVAL(base, value1, The INTERVAL operator returns the index of the first
value2, ...) value that is greater than the base. The index of the

series starts with a value of 0 being returned for a base
greater than value1.

expression IS NULL The IS NULL operator returns True (1) if the given
expression is NULL. If the expression is not NULL,
False (0) is returned.

4932-4 AppC.F 5/29/02 3:55 PM Page 627

628 Part VI ✦ Appendixes

String operators
The string operators are used on strings or on numbers to perform string-based

comparisons. The NOT operator can be applied to negate the expression formed by

the String operators. All String operators perform case-insensitive pattern match-

ing. Using the BINARY keyword allows case-sensitive operation.

Operator Description

LIKE ‘wildcarded_string’ The LIKE operator is for comparison operations
based on the given wildcarded_string. The
operation can be done upon both string and
numeric datatypes. The wildcarded_string uses
two characters to denote random character space.
The ‘%’ character denotes a variable length string
consisting of any characters. The ‘_’ character
represents any single character.

REGEXP ‘regular_expression’ The REGEXP operator provides matching capacity for
regular expressions. Unlike standard regular
expressions, the REGEXP operator performs case-
insensitive matches unless used in conjunction with
the BINARY keyword.

C.2. MySQL Functions
Functions within MySQL allow the conversion of data from one form to another.

These transformations expand the scope of information that can be obtained from

the database.

Binary math functions
Binary math functions allow binary calculations upon decimal values. The calcula-

tions are done with 64 bits; any numeric value created larger than a BIGINT incurs

rounding errors. Binary math functions cannot be performed on floating-point num-

bers. If a floating-point number is given to the function, an error is returned.

Function Description

value1 & value2 The & function performs a bitwise AND between the binary
equivalents of value1 and value2.

value1 | value2 The | function performs a bitwise OR between the binary
equivalents of value1 and value2.

4932-4 AppC.F 5/29/02 3:55 PM Page 628

629Appendix C ✦ Function and Operator Reference

Function Description

value1 << value2 The << function performs a bitwise shift to the left of all
bits given as the 64-bit binary representation of value1.
The shift moves the number of places designated by
value2. A padding of 0 is applied to all places that are
shifted out from the 64-bit binary value.

value1 >> value2 The >> function performs a bitwise shift to the right of all
bits given as the 64-bit binary representation of value1.
The shift moves the number of places designated by
value2. A padding of 0 is applied to all places that are
shifted out from the 64-bit binary value.

BIT_COUNT(value) The BIT_COUNT function returns the number of digits
required to represent a given integer in binary format.

Date functions
The date functions allow operations on the various types of date or time values.

Function Description

CURDATE() The CURDATE function returns the current date from the
server on which MySQL is running. If used as a string
CURDATE returns values in the ‘YYYY-MM-DD’ format. If
used as a number, the date is returned in the YYYYMMMDD
format.

CURTIME() The CURTIME function returns the current time from the
server on which MySQL is running. If used as a string,
CURTIME returns values in the ‘HH:MM:SS’ format. If
used as a number, the time is returned in the HHMMSS
format.

DATE_ADD(date, INTERVAL The DATE_ADD function returns the given date
value date_type) incremented by the given value. The value may be any

date_type value listed in the table below, and must
follow its format.

DATE_FORMAT(date, The DATE_FORMAT function returns the given date
date_string_format) formatted to fit a particular date style. Valid date_

string_format structures are listed in the table below.

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 629

630 Part VI ✦ Appendixes

Function Description

DATE_SUB(date, INTERVAL The DATE_SUB function returns the given date,
value date_type) decremented by the given value. The given value may be

date_type listed in the table below, and must follow its
format.

DAYNAME(date) The DAYNAME function returns the full day of the week
string name for the given date value.

DAYOFMONTH(date) The DAYOFMONTH function returns the day of the month as
an integer for the given date value. The values returned
range from 1 to 31.

DAYOFWEEK(date) The DAYOFWEEK function returns a numeric representation
of the weekday given by date. The values returned are 1
for Sunday through 7 for Saturday.

DAYOFYEAR(date) The DAYOFYEAR function returns a numeric representation
(an integer) of the current day in the calendar year. Values
returned range from 1 to 366, depending on whether the
current year is a leap year.

EXTRACT(date_type The EXTRACT function returns the portion of the given
FROM date) date specified by the date_type. The values for the

date_type can be found in the table below.

FROM_DAYS(value) The FROM_DAYS function returns the date, counting up
from 0 B.C. The FROM_DAYS function should not be used
with dates preceding the year 1582, due to the loss of
calendar days caused by the advent of the Gregorian
Calendar.

FROM_UNIXTIME(stamp), The FROM_UNIXTIME function returns a date string based
FROM_UNIXTIME(stamp, upon the given UNIX time stamp. If a date_string_
date_string_format) format option is given the string is formatted by the given

parameter. With no format option, the data returned is
given as “YYYY-MM-DD HH:MM:SS” if referenced as a
string. If used as a number, the return is formatted as
YYYYMMDDHHMMSS.

HOUR(time) The HOUR function returns the hour value in integer format
from the given time string. Values returned range from 1
to 12.

MINUTE(time) The MINUTE function returns the minute value in integer
format from the given time string. The function returns
values between 0 and 59.

4932-4 AppC.F 5/29/02 3:55 PM Page 630

631Appendix C ✦ Function and Operator Reference

Function Description

MONTH(date) The MONTH function returns the month value in integer
format from the given time string. Values returned range
from 1 to 12.

MONTHNAME(date) The MONTHNAME function returns the full text-string
representation of the month for the given date (January,
February, March, . . .).

NOW() The NOW function returns the current date and time. The
data returned is given as “YYYY-MM-DD HH:MM:SS” if
referenced as a string. If used as a number, the return
format follows YYYYMMDDHHMMSS.

PERIOD_ADD(date, months) The PERIOD_ADD function allows the addition of months
to a given date. The date can be formatted either as YYMM
or YYYYMM. Data is returned as YYYYMM.

PERIOD_DIFF The PERIOD_DIFF function calculates the number of
(date1, date2) months between two dates. The dates can be given in

either the YYMM or YYYYMM formats. Data returned is in the
YYYYMM format.

QUARTER(date) The QUARTER function returns the quarter of the year given
by the specified date. The function returns values between
1 and 4.

SECOND(time) The SECOND function returns the second value from the
given time string. Return values range from 0 to 59.

SEC_TO_TIME(seconds) The SEC_TO_TIME function returns the time in the
HH:MM:SS format from the given number of seconds.

SYSDATE() The SYSDATE function returns the current date and time.
The data returned is given as “YYYY-MM-DD HH:MM:SS”
if referenced as a string. If used as a number, the return is
formatted as YYYYMMDDHHMMSS.

TIME_FORMAT(time, The TIME_FORMAT function returns the given time
date_string_format) formatted to fit a particular date style. The function may

only use the date format options used for time display. Use
of the other options returns 0 or NULL. The date_
string_format structures are listed in the table below.

TIME_TO_SEC(time) The TIME_TO_SEC function returns the given time,
converted to seconds.

TO_DAYS(date) The TO_DAYS function returns the number of days
associated with a given date, counting up from 0 A.D. The
TO_DAYS function should not be used with dates
preceding the year 1582, due to the loss of calendar days
caused by the advent of the Gregorian Calendar.

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 631

632 Part VI ✦ Appendixes

Function Description

UNIX_TIMESTAMP([date]) The UNIX_TIMESTAMP function is used to return the UNIX
timestamp for Epoch time. (Epoch time is the number of
seconds since 1970-01-01 00:00:00.) If the optional date
is given, the stamp returned is for the particular date given.
The date can be in the format of DATE, DATETIME,
YYMMDD, or YYYYMMDD. With no date, the stamp returned
shows the current system time.

WEEK(date The WEEK function returns the integer value for the week of
[,day_indicator]) the given date. If the day_indicator option is included,

the first day of the week can be specified as either Sunday
(0) or Monday (1).

WEEKDAY(date) The WEEKDAY function returns a numeric representation of
the day for the week given by date. The values returned are
0 for Monday through 6 for Sunday.

YEAR(date) The YEAR function returns the year portion of the given
date. Return value is formatted as YYYY.

YEARWEEK(date The YEARWEEK function returns the year and week for the
[,day_indicator]) given date. The data returned is in the format YYYYWW. If

the day_indicator option includes the first day of the
week, either Sunday (0) or Monday (1) can be specified.

date_type Value

SECOND, MINUTE, HOUR, The listed date_type values can take any integer value as
DAY, MONTH, YEAR their internal representation.

MINUTE_SECOND The MINUTE_SECOND value must be formatted as
“MINUTES:SECONDS”.

HOUR_MINUTE The HOUR_MINUTE value must be formatted as
“HOURS:MINUTES”.

DAY_HOUR The DAY_HOUR value must be formatted as “DAYS
HOURS”.

YEAR_MONTH The YEAR_MONTH value must be formatted as “YEARS-
MONTHS”.

HOUR_SECOND The HOUR_SECOND value must be formatted as
“HOURS:MINUTES:SECONDS”.

DAY_MINUTE The DAY_MINUTE value must be formatted as “DAYS
HOURS:MINUTES”.

DAY_SECOND The DAY_SECOND value must be formatted as “DAYS
HOURS:MINUTES:SECONDS”.

4932-4 AppC.F 5/29/02 3:55 PM Page 632

633Appendix C ✦ Function and Operator Reference

date_string_format Description

%a Displays the day of the week abbreviated as a three-letter string.
(Sun, Mon, Tue, . . .)

%b Displays the month abbreviated as a three-character string. (Jan,
Feb, Mar, . . .)

%c Displays the month as an integer with no zero padding. (1...12)

%D Displays the day of the month with the English suffix. (1st,
2nd, 3rd, ...)

%d Displays the day of the month as a two-digit integer. (1...12)

%e Displays the day of month as an integer with no zero padding.
(1...31)

%H Displays the hour as a two-digit integer in military time format.
(00...23)

%h Displays the hour as a two-digit integer in the standard clock
format. (01...12)

%I Displays the hour as a two-digit integer in the standard clock
format. (01...12)

%i Displays the minutes as a two-digit integer. (00...59)

%j Displays the day of year as a three-digit integer. (001...366)

%k Displays the hour as an integer with no zero padding, in military
time format. (0...23)

%l Displays the hour as an integer with no zero padding, in the
standard clock format. (1...12)

%M Displays the month as its full text string. (January, February,
March, . . .)

%m Displays the month as a two-digit integer. (01...12)

%p Displays either AM or PM, depending on the time of day.

%r Displays the time in standard clock format (including AM or PM).
All integer values are zero-padded.

%S Displays the seconds as a two-digit integer (00...59).

%s Displays the seconds as a two digit integer (00...59).

%T Displays the time in standard military format.
(00:00:00...23:59:59)

%U Displays the week of the year in integer format, with no zero
padding, where Sunday is the first day of the week (0...53).

%u Displays the week of the year in integer format, with no zero
padding, where Monday is the first day of the week (0...53).

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 633

634 Part VI ✦ Appendixes

date_string_format Description

%V Displays the week of the year in integer format, with no zero
padding, where Sunday is the first day of the week. This is used
in conjunction with %X.

%v Displays the week of the year in integer format, with no zero
padding, where Monday is the first day of the week. This is used
in conjunction with %x.

%W Displays the day of the week as its full text string (Monday,
Tuesday, Wednesday, . . .).

%X Displays the year designated by the first Sunday of the calendar
year. This is used in conjunction with %V.

%x Displays the year designated by the first Monday of the calendar
year. This is used in conjunction with %v.

%Y Displays the year as a four-digit integer.

%y Displays the year as a two-digit integer.

%% Displays a %.

Decimal math functions
The decimal math functions allow basic decimal procedures. If a string is given as

either operand, most decimal math functions attempt to treat it as a decimal. A

good example of this conversion is the expression (1apple + 2orange). The value

returned from the Addition function would be 3.

Function Description

+ Addition function operator.

- Subtraction function operator.

* Multiplication function operator.

/ Division function operator.

CEILING(value) The CEILING function is used to round values to the nearest
whole number above the given value.

DEGREES(value) The DEGREES function returns the conversion of the given
value from radians to degrees.

EXP(value) The EXP function returns the value of e raised to the given
value. The base of natural logs is represented by e in its
notation.

FLOOR(value) The FLOOR function is used to round values to the nearest
whole number less than the given value.

4932-4 AppC.F 5/29/02 3:55 PM Page 634

635Appendix C ✦ Function and Operator Reference

Function Description

GREATEST(value1, The GREATEST function determines the largest entity in a list
value2, ...) of values. In addition to comparing numbers, stings can be

compared with the GREATEST function. The value for the
largest item in the list is returned.

LEAST(value1, The LEAST function being the inverse of the GREATEST
value2, ...) function returns the value for the lowest value. The LEAST

function can additionally take on string values.

LOG(value) The LOG function returns the natural log of the given value.

LOG10(value) The LOG10 function returns the base-10 logarithm of the
given value.

MOD(value1, value2) The MOD function returns the modulus of operation that
divides the given value1 by value2. The modulus is the
remainder given after division.

PI() The PI function takes on no values and returns the value for
PI. Although the values are displayed with a precision of 5
digits, the system uses the precision of a double to perform its
internal calculations.

POW(value1, value2) The POW function is used for exponentiation. The data
returned is given as value1 raised to the power of value2.

RADIANS(value) The RADIANS function converts a given value from degrees to
radians.

RAND([value]) The RAND function returns a “random” number between 0
and 1. The function additionally can take a value as the seed
for the number generation.

ROUND(value1 The ROUND function is used to round the number given as
[, value2]) value1 to the nearest whole number. If the optional value2

is given, the number is rounded to the specified number of
decimal places.

SIGN(value) The SIGN function is used to determine whether a given value
is negative, positive, or zero. Values returned are –1, 1, or 0.

SQRT(value) The SQRT function returns the square root of the given value.
If a negative value is given, the function returns NULL.

TRUNCATE The TRUNCATE function is used to alter the precision of the
(value1, value2) given number value1 that contains a decimal portion. The

integer given for value2 determines the number of places in
the return value. If the given value2 equals 0, the return
value has no decimal, and no decimal point.

4932-4 AppC.F 5/29/02 3:55 PM Page 635

636 Part VI ✦ Appendixes

Select operators
The select operators are a specific subset used in addition to the GROUP BY syntax.

Using these operators without a GROUP BY clause causes the system to return an

error.

Operator Description

AVG(column_name) The AVG function returns the average value of the return
set for the designated column_name.

BIT_OR(column_name) The BIT_OR function performs a binary OR upon the
designated column_name for all rows returned to the
SELECT statement.

BIT_AND(column_name) The BIT_AND function additionally performs a binary
AND upon the designated column_name. The return
value also encompasses all rows from the SELECT.

COUNT([DISTINCT] * or The COUNT function performs differently
column_name depending on the declaration. Purely the COUNT(*)
[, column_name]) and COUNT(column_name) versions return a count of

all non-NULL values returned in a given column. The
COUNT(column_name, ...) version returns a count
of all non-NULL cells for the columns specified. The
DISTINCT modifier can be applied to the function to
force the data that is counted to be unique.

MAX(column_name) The MAX function returns the largest value for a column
based upon a given GROUP BY clause.

MIN(column_name) The MIN function returns the smallest value for a
column based upon a given GROUP BY clause.

STDDEV(column_name) The STDDEV function produces the standard deviation
for the given column_name.

SUM(column_name) The SUM function returns the total of all values for a
column, based on a given GROUP BY clause.

4932-4 AppC.F 5/29/02 3:55 PM Page 636

637Appendix C ✦ Function and Operator Reference

String functions
The string functions provide the capability to modify the format of text values.

Function Description

ASCII(string) The ASCII function returns the ASCII value for the
first character in the given string. Any characters
other than the leftmost is ignored.

BIN(value) The BIN function returns the binary string
representation of the integer given as value.

BIT_LENGTH(string) The BIT_LENGTH function returns the number of
bits required to represent the given string.

CHAR(value1 [, value2 ...]) The CHAR function returns a string made up of the
ASCII representation of the decimal value list. Strings
in numeric format are converted to a decimal value.

CONCAT(string1, The CONCAT function returns a string created by
string2, ...) appending all values in the string list.

CONCAT_WS(separator, The CONCAT_WS function much like the CONCAT
string1, string2, ...) function appends the given values. The string

created has all elements of the list separated by the
given separator value.

CONV(value1, base1, base2) The CONV function converts a given value from one
numeric base to another. The value given as base1
is the current state; base2 is the state the number is
converted to. Values for the bases may be in a range
from 2 to 32.

ELT(value, string1, The ELT function returns the string represented by
string2, ...) the index given as value. If the value given is

negative, it returns NULL. If there are fewer elements
than the given value, NULL is returned.

EXPORT_SET(value, string1, The EXPORT_SET function is used to generate binary
string2 [, separator_string strings with custom atoms. The on bit is given as
[, length_value]]) string1 and the off bit by string2. The value

given must be an integer; any floating-point values
are rounded. If the optional separator_string is
given, each atom is separated by the string. If a
length_value is given, the returned string is right-
padded with string2 to the given length.

FIELD(base_string, string1, The FIELD function returns the index value of the
string2, ...) string that matches the given base_string. If none

of the strings in the list is a match, the function
returns 0.

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 637

638 Part VI ✦ Appendixes

Function Description

FIND_IN_SET(base_string, The FIND_IN_SET function returns the index value
string1 [, string2, ...]) of the string that matches the base string. If none of

the given strings match the function, it returns 0. If
either the base_string or all values given in the
list are NULL, the function returns NULL. The
function has a similarity to the FIELD function,
however: It uses bitwise arithmetic to optimize the
operation time.

HEX(value) The HEX function returns the hexadecimal value if
value is given as an integer. If a string is given, the
return is a 2-digit hexadecimal representation of the
string.

INSTR(string, substring) The INSTR function is used to determine the first
character of a matching subset in the given string. If
the substring value matches the value of the first
character in the matching set is returned. If there are
no matching subsets, 0 is returned.

INSERT(string1, The INSERT function is used to place one string into
position_value, another, replacing the existing characters. The value
length_value, string2) of string2 is placed upon string1. The position

of the insertion places the first character of string2
at the position_value. If length_value is larger
than the length of string2, that many characters
are removed from string1.

LEFT(string, length_value) The LEFT function returns the leftmost number of
characters given as length_value from the string.

LCASE(string) The LCASE function returns the given string in all-
lowercase letters.

LENGTH(string) The LENGTH function returns the length of the given
string. If string is given as a column name, the
length of the text column or the number of digits is
returned.

LOAD_FILE(file_path) The LOAD_FILE function reads in the given
file_path and returns the contents of the file. If
the file cannot be read or does not exist, the
function returns NULL.

4932-4 AppC.F 5/29/02 3:55 PM Page 638

639Appendix C ✦ Function and Operator Reference

Function Description

LOCATE(substring, string The LOCATE function attempts to match a substring
[, position_value]) in the given string. If an optional position value is

given the search begins at that point. The function
returns the position of the first character in the
matching substring. If there are no matches found, 0
is returned.

LPAD(string1, length_value, The LPAD function applies string2 as left-padding
string2) to the value given as string1. The length_value

determines the length of the string returned. If the
value is less than string1, if returns the string
shortened to that length.

LTRIM(string) The LTRIM function returns the given string with all
of the left whitespace removed.

MAKE_SET(value, string1, The MAKE_SET function creates a comma-delimited
string2, ...) string based on the binary representation of value.

All on bits (1s) in the binary value associate with
their matching element positions in the string list.

OCT(value) The OCT function converts the given integer value
into its octal representation as a string.

ORD(string) The ORD function returns the ASCII code for the
leftmost character of the given string. If the leftmost
character in the string is a multiple-byte character,
the values returned are added (where all character
values after the first are multiplied by 256). If the
leftmost character does not take up multiple bytes,
the function performs exactly like the ASCII function.

REPEAT(string, value) The REPEAT function returns the given string
repeated the number of times given as value. The
function returns a NULL value if either the string or
value is NULL.

REPLACE(string1, string2, The REPLACE function substitutes a specific subset
string3) of a string with another value. The value of string1

is returned with all instances of string2 being
replaced by string3.

REVERSE(string) The REVERSE function returns the given string with
the order of the characters inverted.

RIGHT(string, length_value) The RIGHT function returns the rightmost number of
characters given as length_value from the string.

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 639

640 Part VI ✦ Appendixes

Function Description

RPAD(string1, length_value, The RPAD function is used to apply string2 as
string2) right-padding to the value given as string1. The

length_value determines the length of the string
returned. If the value is less than string1, the
returned string is shortened to that length.

RTRIM(string) The RTRIM function returns the given string with all
of the right whitespace removed.

SOUNDEX(string) The SOUNDEX function converts strings into their
soundex notation. The conversion of any two strings
that sound the same when pronounced should
return the same soundex value. The value returned
is an arbitrary length, although soundex format is
traditionally 4 characters in length.

SPACE(value) The SPACE function returns a string made up of the
number of spaces designated by the given value.

STRCMP(string1, string2) The STRCMP function is used to determine whether
two given strings are larger, smaller, or equal to one
another. The values returned are 1, -1, and 0
respectively.

SUBSTRING(string, The SUBSTRING function is used to remove all
position_value characters in a given string that come before the
[, length_value]) given position_value. Additionally an optional

length_value can be given to designate the
number of characters in the return value.

SUBSTRING_INDEX(string, The SUBSTRING_INDEX function is used to return a
delimiter, value) subset of a delimited list. If the given value is

positive, the returned string consists of the number
of segments given (starting from the left). If the
value is negative, the function starts from the right,
with the number of segments equaling a positive
value.

TRIM([[BOTH or LEADING or The TRIM function is used to remove extra
TRAILING] [remove_string] characters from a given string. The characters to be
FROM] string) removed are denoted by the remove_string. If an

optional LEADING, TRAILING, or BOTH modifier is
included, the function is applied only to the specified
side. If no modifier is given, BOTH is assumed as
default.

UCASE(string) The UCASE function returns the given string in all-
uppercase letters.

4932-4 AppC.F 5/29/02 3:55 PM Page 640

641Appendix C ✦ Function and Operator Reference

System functions
The System functions are used to gather system specific data.

Function Description

BENCHMARK(value, expression) The BENCHMARK function performs time testing
upon a call to a database. The given value
determines how many iterations of the expression
to perform. In general, this function is used in the
CLI because of the process time returned. The
function always returns 0.

CONNECTION_ID() The CONNECTION_ID function returns the
identifier for the current thread. Every connection
to the MySQL server has a different ID for its
connection.

DATABASE() The DATABASE function returns the name of the
database to which the client is presently
connected. If there is no current connection to a
database, an empty string is returned.

DECODE(crypt_string, string) The DECODE function deciphers a string encrypted
with a key given as crypt_string.

ENCODE(string, crypt_string) The ENCODE function performs the inverse
operation of the DECODE function. The given string
is encrypted with the key given as crypt_string.

ENCRYPT(string The ENCRYPT function encrypts a string using the
[, salt_string]) UNIX crypt() system function. An optional,

2-character salt_string can also be used. Extra
characters in strings with a length longer than 8 are
ignored. If the crypt() function is not available
on the system, NULL is returned.

FORMAT(value, decimal_value) The FORMAT function creates a string represen-
tation of a number. The returned value has as
many decimal places as the given decimal_value.
Data returned has comma-separated sets for every
3 places in the whole portion of the number.

FOUND_ROWS() The FOUND_ROWS function is used to return the
number of rows in the preceding SELECT query.

Continued

4932-4 AppC.F 5/29/02 3:55 PM Page 641

642 Part VI ✦ Appendixes

Function Description

GET_LOCK(string, value) The GET_LOCK function determines whether a lock
designated by the given string is in use. The value
given is the number of seconds the request should
wait before timing out on the request for the lock.
The function returns 1 if the request for the lock
was successful, 0 if it was denied or NULL if there
was an error in the function. The GET_LOCK
function is used in conjunction with the
RELEASE_LOCK function to allow external
representation of locking without actual locks
being applied to tables. The GET_LOCK is also
terminated if the system thread concludes.

INET_ATON(ip_address) The INET_ATON function returns the numeric
representation of an IP address. This value is
created by adding each segment of the dotted
quad, raised to the power of the index of its
segment from the right (starting with 0). For
example, 10.0.0.1 is calculated as (10*256^3) +
(0*256^2) + (0*256^1) + (1*256^0).

INET_NTOA(value) The INET_NTOA function performs the inverse of
the INET_ATON function. The given numeric value
is converted to an IP address and is returned.

LAST_INSERT_ID([exp]) The LAST_INSERT_ID function returns the key of
the last insert done on a column with the AUTO
INCREMENT property. This function operates only
for the current connection, so an INSERT
command from a different client does not affect
the return value. If the last INSERT spanned
multiple rows, the value for the first row inserted is
returned.

MASTER_POS_WAIT(log_path, The MASTER_POS_WAIT function is used during
log_position) data replication to force a client to wait. The client

does not resume until the position in the master
log file is past the given low_position in its
replication. If the master log has not been created,
the function returns NULL. Otherwise the function
returns the number of positions elapsed before the
client resumed.

MD5(string) The MD5 function returns a hexadecimal checksum
for the given string. The return value for the
function is 32 characters long.

4932-4 AppC.F 5/29/02 3:55 PM Page 642

643Appendix C ✦ Function and Operator Reference

Function Description

PASSWORD(string) The PASSWORD function creates a password string
from a given cleartext string. (Unlike the ENCRYPT
function, the PASSWORD function does not create
passwords equal to UNIX passwords.)

RELEASE_LOCK(string) The RELEASE_LOCK function designates that the
lock given by string is no longer in use. The
function returns 1 if the lock has been released, 0 if
the given lock was not created by the current
thread, or NULL if the lock does not exist.

USER() The USER function returns the current user account
as which the client is connected. The data is
returned in the format user@hostname.

VERSION() The VERSION function returns a string with the
MySQL version for the current server.

Trigonometric math functions
The trigonometric math functions allow computations using the sides and angles of

triangles.

Function Description

ACOS(value) The ACOS function represents the arc cosine, or the inverse of the
COS function. The given value is assumed to be in radians.

ASIN(value) The ASIN function represents the arc sine, or the inverse of the
SIN function. The given value is assumed to be in radians.

ATAN(value1 The ATAN function represents the arc tangent, or the inverse
[, value2]) of the TAN function. If an optional value2 is given, the function is

used to determine the quadrant that the values would exist in as
(X,Y) in a graph. The given values are assumed to be in radians.

COS(value) The COS function represents the cosine function. The given value is
assumed to be in radians.

COT(value) The COT function represents the cotangent function. The given
value is assumed to be in radians.

SIN(value) The SIN function represents the sine function. The given value is
assumed to be in radians.

TAN(value) The TAN function represents the tangent function. The given value
is assumed to be in radians.

✦ ✦ ✦

4932-4 AppC.F 5/29/02 3:55 PM Page 643

4932-4 AppC.F 5/29/02 3:55 PM Page 644

Datatype
Reference

D.1. Integer Datatypes
All Integer types can take on two additional modifiers, ZERO-
FILL and UNSIGNED. The ZEROFILL modifier will force column

data to be stored left, padded with zeroes filling the maximum

length of the column. For example an INT(6) ZEROFILL given

a value of 8 will return 000008 for all queries on the column.

The UNSIGNED modifier designates that no negative values for

the column are allowed. If you use the ZEROFILL modifier,

UNSIGNED is automatically assigned.

BIGINT
The BIGINT type is the largest of the Integer members. The

range of this column covers –9223372036854775808 to

+9223372036854775807 for the signed values and 0 to

18446744073709551615 for unsigned values.

Designated by BIGINT(p) where p equals the number of dig-

its allowed, and the maximum length for the BIGINT type is 20

digits.

Due to the size of the unsigned BIGINT, it is possible to cause

rounding errors in arithmetic when using values larger than

9223372036854775807. This can be avoided by using bitwise

shift operators or by using external systems from MySQL for

the math calculations.

INT
The INT datatype is generally considered the median of the

Integer types; it also has the shortest designation. The range

of the INT column covers –2147483648 to 2147483647 for the

signed values and 0 to 4294967295 for unsigned values.

DDA P P E N D I X

✦ ✦ ✦ ✦

4932-4 AppD.F 5/29/02 3:55 PM Page 645

646 Part VI ✦ Appendixes

Designated by INT(p) where p equals the number of digits allowed, and the maxi-

mum length for the INT type is 10 digits.

MEDIUMINT
The MEDIUMINT type has a range of –8388608 to 8388607 for the signed values and 0

to 16777215 for unsigned values.

Designated by MEDIUMINT(p) where p equals the number of digits allowed, the

maximum length for the MEDIUMINT type is 8 digits.

SMALLINT
The SMALLINT type has a range of –32768 to 32767 for the signed values and 0 to

65535 for unsigned values.

Designated by SMALLINT(p) where p equals the number of digits allowed, the maxi-

mum length for the SMALLINT type is 5 digits.

TINYINT
The TINYINT type has a range of –128 to 127 for the signed values and 0 to 256 for

unsigned values.

Designated by TINYINT(p) where p equals the number of digits allowed, the maxi-

mum length for the TINYINT type is 3 digits.

D.2. Decimal Datatypes
Identical to the Integer datatype in the way they work, the Decimal datatypes can

take on the ZEROFILL and UNSIGNED modifiers. A Decimal type with the ZEROFILL
modifier will be left padded to the precision of the column with zeroes. The

UNSIGNED modifier also behaves equivalently and disallows negative values on the

column.

Using the ZEROFILL modifier assigns the UNSIGNED modifier automatically.

Each Decimal datatype encompasses a range of numbers it can represent. Due to a

limit on how many bits can be allocated for any given column, eventually a number

is too small to represent. Thus each Decimal type represents a range of numbers

that each decimal type can represent both in the negative and positive.

Additionally, each type can hold a value of zero.

Tip

4932-4 AppD.F 5/29/02 3:55 PM Page 646

647Appendix D ✦ Datatype Reference

FLOAT
The FLOAT datatype is the smallest of the 3 numeric datatypes used for fractional

values. The ranges for the column are –3.402823466 * 1038 to –1.175494351 * 10-38 for

negative values and 1.175494351 * 10-38 to 3.402823466 * 1038 for positive values.

Designated by FLOAT(p,m) where m is the number of digits in the mantissa or deci-

mal portion of the number and p is the precision of the number, or number of

places in the entire number.

DECIMAL
The DECIMAL datatype while having an identical range to the DOUBLE type is stored

as a string much like the CHAR types. The ranges for the column are

–1.7976931348623157 * 10308 to –2.2250738585072014 * 10-308 for negative values and

2.2250738585072014 * 10-308 to 1.7976931348623157 * 10308 for positive values. The

storage of the value being a string, each digit in the number is written as a charac-

ter.

Designated by DECIMAL(p,m) where m is the number of digits in the mantissa or

decimal portion of the number and p is the precision of the number, or number of

places in the entire number.

DOUBLE
The DOUBLE datatype is the largest fractional column type that is stored in a binary

format. The ranges for the column are –1.7976931348623157 * 10308 to

–2.2250738585072014 * 10-308 for negative values and 2.2250738585072014 * 10-308 to

1.7976931348623157 * 10308 for positive values.

Designated by DOUBLE(p,m) where m is the number of digits in the mantissa or dec-

imal portion of the number and p is the precision of the number, or number of

places in the entire number.

D.3 Date Datatypes
The DATE types encompass all of the time-based datatypes in MySQL. The major dif-

ference in behavior between the Date types and all other numeric types is in the

zero value. All DATE types return the full date string with every digit zeroed. For

example the DATE type would return 0000-00-00 and TIME would return 00:00:00.

4932-4 AppD.F 5/29/02 3:55 PM Page 647

648 Part VI ✦ Appendixes

DATE
The DATE type represents a full calendar date in the format YYYY-MM-DD. Legal val-

ues for the DATE column range between 1000-01-01 and 9999-12-31. Invalid values for

the column will result in a value of 0000-00-00.

DATETIME
The DATETIME type is equivalent to the DATE column with the addition of a time

constituent. The DATETIME column follows the format YYYY-MM-DD HH:MM:SS. Valid

DATETIME values can range between 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

Invalid column values result in a value of 0000-00-00 00:00:00.

TIMESTAMP
The TIMESTAMP column is a string representation of the Unix timestamp. The Unix

timestamp is derived from what is known as Epoch time. Valid TIMESTAMP values

range from 1970-01-01 00:00:00 through 2038-01-19 03:14:07. An invalid value will

return a zerofill to the designated size of the column.

Designated by TIMESTAMP(p) where p is the number of digits displayed and returned

on queries to the column. The maximum length of the TIMESTAMP type is 14 places.

If a TIMESTAMP is designated with 0 digits or greater than 14 it will default to 14. If an

odd value is given for p it will be converted to p+1. NULL inserts into the first time-

stamp column in a table will result in the current date and time being returned.

p Maximum Size

2 YY

4 YYMM

6 YYMMDD

8 YYYYMMDD

10 YYMMDDHHMM

12 YYMMDDHHMMSS

14 YYYYMMDDHHMMSS

TIME
The TIME type is a generic representation of time values in hours, minutes, and sec-

onds. The column besides representing time in the standard from of a 24-hour clock

also can represent time in both the past and future. The valid range for the TIME
type is –838:59:59 to 838:59:59.

4932-4 AppD.F 5/29/02 3:55 PM Page 648

649Appendix D ✦ Datatype Reference

The TIME type can additionally take a day modifier upon inserts. The valid formats

for inserts are D HH:MM:SS, HH:MM:SS, MM:SS, and SS. Where the day or time con-

stituent can be preceeded by – to represent negative time. Return values will have

left zero padding.

YEAR
The YEAR type represents the calendar year in either a 2-digit or 4-digit format.

In the 4-digit format, YEAR can range from 1901 to 2155 or 0000. In the 2-digit format,

the YEAR range is 1970 through 2069, represented as 70 to 69. Invalid values

inserted into the YEAR column will return 0000. With the 2-digit format, a single 0 is

considered an invalid value; 00 must be used to represent the year 2000.

D.4. STRING Datatypes
The STRING datatypes encompass all column types used for textual data. In addi-

tion to the NULL value, all STRING types additionally have the empty string value

(‘’). Inserts into STRING types that exceed the maximum allotted length will be

truncated to fit the space allocated.

BLOB
TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

BLOB is the STRING datatype used for binary data. Any queries on a BLOB type

result in a case-sensitive return. For example a BLOB type with the value ‘string’
will not be matched by queries for ‘STRING’. This is opposite to the behavior of

the TEXT type.

Data exceeding the maximum size of the column is forcibly truncated after
insertion.

Column Type Maximum Size

TINYBLOB 255

BLOB 65535

MEDIUMBLOB 16777215

LONGBLOB 4294967295

Note

4932-4 AppD.F 5/29/02 3:55 PM Page 649

650 Part VI ✦ Appendixes

CHAR
The CHAR datatype is used for string storage.

Designated by CHAR(p) where p designates the field length, the maximum length for

the CHAR type is 255. When stored the data in the column will pad to the full length

(p) of the field with whitespace. Upon retrieval from the database, the appended

whitespace is removed.

TEXT
TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

TEXT is the STRING datatype used for character data. It works much like the BLOB
datatype; queries upon the TEXT type will return case insensitive values. For exam-

ple a TEXT type with the value ‘string’ will be matched by queries for ‘STRING’.

This is opposite to the behavior of the BLOB type.

Column Type Maximum Size

TINYTEXT 255

TEXT 65535

MEDIUMTEXT 16777215

LONGTEXT 4294967295

VARCHAR
The VARCHAR datatype works like the CHAR type except for its data-storage method.

The VARCHAR type removes all trailing whitespace from inserted data.

Designated by VARCHAR(p) where p designates the field length, the maximum

length of the VARCHAR type is 255 characters.

In considering space requirements for some systems, the VARCHAR type should be

used as opposed to the CHAR type. The addition of whitespace trailing all CHAR enti-

ties can dramatically increase the space used in a table containing even very few

rows of data.

4932-4 AppD.F 5/29/02 3:55 PM Page 650

651Appendix D ✦ Datatype Reference

D.5. Grouping Datatypes
The Grouping datatypes are the only types that all valid values can be defined for a

column. Declaring a Grouping type as NULL will force the first member in the group

to be NULL.

ENUM
The ENUM type allows for the casting of particular values as valid within the column.

When a value which not yet cast into the type is inserted into the column, an empty

value (“”) is assigned.

Designated by ENUM(‘string1’,’string2’,‘string3’...) where the numbered

strings are the casted members. The maximum number of constituents for the ENUM
datatype is 65535.

SET
The SET type works much like the ENUM type except it can store multiple values in

the column.

Designated by SET(‘string1’,’string2’,‘string3’...) where the numbered

strings are the casted members. The maximum number of constituents for the SET
datatype is 64.

The SET type allows insertion of the strings given during the creation of the table;

integer values can be used to assign members by their binary values. For example,

a SET consisting of values (‘mother’,’father’,‘sister’,‘brother’,’dog’,
’cat’), each member is assigned a numeric value of 2n where n is the member’s

order alphabetically. Therefore ‘brother’ = 1, ‘cat’ = 2, ‘dog’ = 4, ‘father’ = 8,

‘mother’ = 16 and ‘sister’ = 32. By binary math the members that would be

assigned can be determined. For example 7 = 1 + 2 + 4 returning (‘brother’,
‘cat’, ‘dog’) additionally 12 = 8 + 4 would return (‘dog’, ‘father’).

✦ ✦ ✦

4932-4 AppD.F 5/29/02 3:55 PM Page 651

4932-4 AppD.F 5/29/02 3:55 PM Page 652

Glossary

ACID Acronym for Atomic, Consistent, Isolated, Durable,

refers to an ideal environment within which database transac-

tions can take place. For example, if a given database transac-

tion fails, it does not affect other transactions currently

running.

ANSI92 SQL Standard specifying how to implement SQL in

your RDBMS according to a set of conventions developed by

the American National Standards Institute (ANSI).

API Acronym for Application Programming Interface. The API

defines which functions of a software program are available

for modification via programming techniques.

BerkeleyDB A transaction-safe table type, supported by

MySQL. BDB tables can be compiled in or installed with the

Max versions of MySQL.

CGI Short for Common Gateway Interface. CGI provides a pro-

gramming interface to enable programs operating on the

backend to work with a Web server. CGI programs or CGI

scripts are the names given to programs that produce or work

with World Wide Web data.

character set In a particular language, the entire range of

characters available for use with MySQL. The Default

Character Set determines sorting order for columns.

CLI Acronym for command-line interface. The MySQL CLI is

the program through which users frequently interact with

MySQL databases. The MySQL CLI can be used interactively

or in a non-interactive mode.

command recall In the MySQL CLI’s interactive mode, use the

up-arrow on the keyboard to display the most recently

entered MySQL command(s) on-screen.

EEA P P E N D I X

✦ ✦ ✦ ✦

4932-4 AppE.F 5/29/02 3:55 PM Page 653

654 Part VI ✦ Appendixes

connection-level authentication The first step in the authentication process when

a user or program attempts to connect to a MySQL database server. Authentication

at the level of the connection checks the username, password, and host that the

information is coming from.

constraints Restrictions placed on columns to determine what is and is not accept-

able for that column. An example would be a UNIQUE constraint that requires that

every value in the column be different from every other.

cookies Information that the server sets inside an HTTP header for later use,

includes in the response it sends to the client via browser, and stores on the client

machine. Cookies are frequently used to track and store customer information (or

values referring to the information that a query requests from a database).

datadir (also DATADIR) The path or location within the file system where the

MySQL databases are stored.

DBD Short for DataBase Driver, the software integrated with the Perl DBI that actu-

ally interacts with a database.

DBI Short for DataBase Interface, the software written in (and for) Perl to enable

Perl to interact with a particular RDBMS.

DDL Short for Data Definition Language. DDL includes SQL statements to create,

delete or alter databases, tables, columns, indices, and the like.

DML Short for Data Markup Language. DML includes SQL statements to modify

actual data within databases.

foreign key A database constraint that refers to a column in another table for

reference.

FTP Short for File Transfer Protocol. Protocol to transfer files over TCP.

Gemini A transaction-safe table type included with NuSphere Enhanced MySQL.

GPL Short for the General Public License that MySQL is released under. This is the

most popular license for Open Source software.

GUI Short for Graphical User Interface — the environment, tools, pictures, buttons,

menus, and the like that produce a non-text-based method for interacting with a

computer. Examples include Microsoft Windows and XWindows.

HEAP A volatile-memory-based table in MySQL that is very useful for creation of

temporary tables.

InnoDB A transaction-safe table type supported by MySQL. InnoDB tables can be

compiled into MySQL or installed with the Max version.

4932-4 AppE.F 5/29/02 3:55 PM Page 654

655Appendix E ✦ Glossary

ISAM Acronym for Indexed Sequential Access Method. ISAM is the original table type

supported by MySQL. ISAM tables are not transaction-safe and are deprecated.

JDBC Short for Java Database Connectivity. JDBC is the API for connecting Java to

a relational database. MySQL has a JDBC API to enable Java programs and applets

to work with MySQL.

JDK (also SDK) Short for the Java Software Development Kit, is the software

released by Sun as a development tool that uses the Java programming language.

LGPL Short for Lesser General Public License. Some MySQL software is released

under the LGPL as is some Open Source software. It is the sister to the main GPL or

General Public License and provides for the use of a software library to be used in

proprietary software. More information is available at http://www.gnu.org/.

libdir (also LIBDIR) The directory or location on the file system where MySQL

libraries are installed. Some software needs access to the MySQL libraries in order

to function.

localhost The current host or machine that you are operating on. By default,

MySQL CLI connections (and many other programs with MySQL) attempt to con-

nect to the MySQL server on localhost, or the local machine.

lock A hold, placed at either the table or row level, that lasts until a process such

as an update is complete. No other similar operation can take place when a lock is

in place.

master replicator In a replication set, the host or other MySQL server that receives

updates and other data changes and places them in a log for the slave replicators to

use.

Merge A table type in MySQL that results from combining tables.

my.cnf Filename of the file that contains the configuration settings and variables

settings for MySQL programs including the main server. The my.cnf file usually

refers to the Linux or Unix variant of the configuration file.

my.ini Filename of the file (in this case, a Windows configuration file) that con-

tains the settings that determine configuration and variables for MySQL programs,

including the main server.

MyISAM The default table type in MySQL. It is not transaction-safe.

mysqladmin The main administration program for MySQL where the administrator

can set passwords, look at server status, and shut down the server.

mysqld The name of the program that is the MySQL server.

4932-4 AppE.F 5/29/02 3:55 PM Page 655

656 Part VI ✦ Appendixes

MySQLGUI A graphical user interface for MySQL, usable for creating SQL state-

ments and performing server administration.

NSS Short for Name Service Switch, configured through the /etc/nsswitch.conf
configuration file. NSS defines the order for a given account’s information queries.

There is software called NSS-MySQL to enable MySQL integration with NSS.

NULL A logical value that is, literally, nothing (which differs from zero because zero

can often be a mathematical placeholder). NULL can be thought of as an object that

is nothing, holds nothing, and can be nothing. NULL is neither zero nor an empty

string. You may commonly hear that a column or value is NULL. If a value is NULL,
there is nothing in it.

ODBC Short for Open Database Connectivity — ODBC defines the API by which

applications work with data. MySQL AB has a version of ODBC called MyODBC.

Open Source Software-development approach that keeps an application’s source

code open (available) for contributions from the programming community.

Although not proprietary in the same sense (or to the same degree) as closed-

source commercial software, Open Source software is not necessarily available free

of charge, and is almost always covered by a license (such as the GNU GPL or

LGPL). MySQL, for example, is covered by the GPL and/or LGPL, depending on the

portion of the software you are using.

pager In programming terms, a program that splits output into virtual pages on the

screen or terminal. Without the pager capabilities of the more and less commands

in MySQL, output would scroll off the screen too quickly to read.

PAM Short for Pluggable Authentication Modules, standardized units of code that

define methods for authentication and access to resources.

Perl Originally an acronym for Practical Extraction and Reporting Language, Perl is

now the name of a powerful and versatile programming language used for system

administration, as well as for creating CGIs for Web applications.

PHP Acronym meaning Hypertext Preprocessor, a powerful and somewhat intuitive

programming language frequently used to create Web applications.

phpinfo A PHP function used to determine settings for the PHP environment, often

given as phpinfo().

PHPMyAdmin A program developed in PHP that handles administration and man-

agement of a MySQL server and databases.

process-level authentication The second tier of authentication that takes place for

every MySQL operation, the first being connection-level authentication. During process-

level authentication, the MySQL grants database is examined to determine

whether the given user/password/host combination has the permissions or privi-

leges it needs to perform the requested operation.

4932-4 AppE.F 5/29/02 3:55 PM Page 656

657Appendix E ✦ Glossary

RDBMS Short for Relational Database Management System, software that stores

data within tables, columns, and rows and supports relationships between tables.

Examples include MySQL, Oracle, Informix, and Microsoft SQL Server.

replication The process that automatically copies the changes to data — exactly,

and almost instantly — from one MySQL server to another.

RPM Acronym for Red Hat Package Manager, the format for many software pack-

ages in the Red Hat Linux operating system. Various Linux versions, both commer-

cial and freeware, can support RPMs.

root In UNIX-based operating systems (including Linux), the “superuser” account

that has all possible privileges; root should be used primarily for administration

activities.

scp Short for Secure Copy, a program that uses encryption to transfer files between

hosts.

slave replicator A host or other MySQL server in a replication set that receives

updates from the master server.

SQL Short for Structured Query Language, a language created for working with rela-

tional databases (such as MySQL).

SQL-92 Another name for ANSI92 SQL, the industry standard by which an RDBMS

implements SQL.

SSL Short for Secure-Sockets Layer. As of MySQL 4.0, many functions in MySQL can

use this encrypted form of communication.

subselect A SELECT statement within a SELECT statement, normally used to obtain

more specific information from the SELECT statement.

symbolic link An alias that points to a file on the file system. Symbolic links (also

called symlinks) can point to system files (such as the MySQL socket file).

TCO Acronym for Total Cost of Ownership, the sum of all money spent on a

system — including the cost of hardware, software, operating system, installation,

configuration, maintenance, and the like.

transaction-safe Said of a table in MySQL that complies with and supports the ACID

concept of database environment. For example, if a given SQL statement fails, it can

be rolled back so as not to affect the consistency of other operations within the

database.

WinMySQLAdmin A GUI-based program for administering and managing a MySQL

server running on a Windows-based operating system. WinMySQLAdmin and can

perform the same operations and tasks as the text-based mysqladmin program.

✦ ✦ ✦

4932-4 AppE.F 5/29/02 3:55 PM Page 657

4932-4 AppE.F 5/29/02 3:55 PM Page 658

About the
CD-ROM

The CD at the back of the book contains programs dis-

cussed in the book as well as some other goodies.

System Requirements
You need this hardware and software to use the CD:

✦ A Pentium or greater PC or a Mac

✦ One of: Linux, Microsoft Windows 9x, Windows Me,

Windows 2000, Windows XP, Mac OS X

✦ At least 16 MB of RAM installed, depending on OS

✦ A CD-ROM drive

✦ A VGA monitor

✦ An Internet connection (to use the links file)

What’s on the CD
This section provides a summary of the software on the

MySQL Bible CD-ROM.

✦ Scripts and Programs There are scripts and programs

within chapters of the book. The scripts are written in

Perl or they are plain shell scripts.

✦ SQL There are two plain text files that contain SQL used

in some chapters.

✦ Links page The links in a file called Links.htm jump to

useful internet sites.

FFA P P E N D I X

✦ ✦ ✦ ✦

4932-4 AppF.F 5/29/02 3:55 PM Page 659

660 Part VI ✦ Appendixes

✦ Perl The scripting language Perl is on the CD and in most Linux distributions.

✦ Perl DBI The Perl interface for databases connects Perl programs through

Msql-Mysql-modules, included on the CD.

✦ Acrobat Reader The Adobe Acrobat Reader program opens the PDF version

of the book from the CD.

✦ Apache The web server Apache is included on the CD so that you can use it

with the other software such as Perl and PHP to build MySQL-enabled web

applications.

✦ PHP PHP is popular scripting software frequently used to build web-based

applications.

✦ phpMyAdmin phpMyAdmin controls MySQL databases through a web-based

interface.

✦ msql-mysql-modules msql-mysql-modules enables Perl support with MySQL.

✦ PDF copy of the book A copy of the book in electronic PDF format is included

on the CD.

If You Have Problems
If you have problems with programs on the CD, try these troubleshooting steps.

✦ Disable any antivirus software

✦ Close running programs

✦ Try loading/running the program through Windows Explorer

If you still have trouble, you can call at (800) 762-2974, or (317) 596-5430 outside the

US or email at techsudum@wiley.com.

✦ ✦ ✦

4932-4 AppF.F 5/29/02 3:55 PM Page 660

SYMBOLS AND NUMERICS
* (asterisk), 13, 95, 211

@ (at symbol), 462

\ (backslash), 13

[] (brackets), 90

$ (dollar sign), 462

/* (enclosing non-standard extensions in), 13

= (equal sign), 138, 199, 201

<=> (equal-to operator for NULL-safe equaltions), 626

> (greater-than), 201, 261, 626

>= (greater-than-or-equal-to), 626

< (less-than), 201

<= (less-than-or-equal-to), 626

- (minus sign), 205, 211

\n (newline), 267, 421

!= (not-equal-to) operator, 626

|| (OR operator), 14

% (percent), 13, 100-101, 180, 199, 211

+ (plus sign), 205, 211

(pound sign), 456

? (question mark), 415

; (semicolon), 88, 146

:= (set operator), 14

-# switch

mysqlcheck, 352, 603

mysqlimport, 604

-? switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqld, 607

mysqlimport, 604

mysqltest, 606

-1 switch, mysqlcheck, 356, 603

\t (tab), 267

_ (underscore), 180, 200

A
-A option

mysql, 596

mysqlcheck, 603

mysqldump, 268–269, 598

-a switch

MySQL Command-Line Interface, 147

mysqlcheck, 353, 603

mysqldump, 598

ABS() function, 210

Access Denied error, 99, 158–159, 333–334

Access to MySQL conversion tool, 27

accounting data, Internet service provider, 6

ACOS() trigonometric function, 643

—add switch, mysqldump, 265

ADD variable, ALTER TABLE statement, 99

ADDDATE() function, 205

—add-drop-table switch, mysqldump, 264–265, 598

adding new user, mysqladmin, 86–87

—add-locks switch, mysqldump, 264–265, 598

address, basic customer database information, 4

administration configuration, MySQL Command-Line

Interface, 157

AIX, 12, 23

aliasing, support for, 17

—all switch, mysqldump, 598

—all-databases function

mysqlcheck, 355, 603

mysqldump, 268–269, 598

—all-in-one switch, mysqlcheck, 355, 603

—allow-keywords switch, mysqldump, 598

—allowold switch, mysqlhotcopy program, 346

Alpha, 12

ALTER privilege, 324

ALTER TABLE statement

changing CHAR to VARCHAR, 236

example, 99–100, 187–191

syntax, 90, 99, 185–186, 611–613

using multiple statements with, 17

Amazon.com, 5

American National Standards Institute (ANSI), 7

Amiga, 23

—analyze switch, mysqlcheck, 353, 603

ANALYZE TABLE statement, 14, 364, 618

AND function, 201

andand operator, 13

anonymity online, 6

ANSI. See American National Standards Institute

ANSI SQL-92, 7, 13

—ansi switch, mysqld, 607

ANSI_QUOTES mode, 609

Apache Web server software, 452

application development software, 24–26

Application Programming Interface (API), 12, 24–26

apt-get tool, Linux, 30

apxs module, Apache, 453

AS keyword, SELECT statement, 198

Index

4932-4 Index.F 5/29/02 3:55 PM Page 661

662 Index ✦ A–B

ASC keyword, SELECT statement, 14, 225

ASCII() string functions, 213

ASIN() trigonometric function, 643

asterisk (*), 13, 95, 211

at symbol (@), 462

ATAN() trigonometric function, 643

attacks, 6, 306

attribute, logical design phase, 110–112

authentication

passwords, 325–327

phases, 323–324

privileges, 324–325

auto_increment field attribute, 14

AUTO_INCREMENT option, CREATE TABLE statement,

184

Auto_increment value, SHOW TABLE STATUS
statement, 176

—auto-repair switch, mysqlcheck, 354, 603

AVG() function, 225

Avg_row_length value, SHOW TABLE STATUS
statement, 176

B
-B switch

myisamcheck, 361, 364

mysql, 596

mysqlcheck, 355, 603

mysqldump, 268–269, 598

-b switch, mysqld, 607

backslash (\), 13

backup

BACKUP TABLE statement, 350, 621

changing database ownership, 343

developing strategy, 369–370

importance of, 260, 338

importance of performing, 26, 338

mysqldump, 348–349

overwriting database with same name, 345–346

password, 340

restoring database, 366

sample output, 341–342

suffix, specifying, 347

syntax, 339

table name, specifying, 344–345

BACKUP option, myisam-recover variable, 238–239

—backup switch, myisamcheck, 361, 364

BACKUP TABLE statement, 350

—basedir= switch, mysqld, 607

—batch switch, mysql, 596

BDB. See Berkeley DB

bdb table type, 90–91

bdb_cache_size server variable, 282

—bdb-home= parameter, mysqld, 245, 607

—bdb-lock-detect= parameter, mysqld, 245, 607

bdb_log_buffer_size server variable, 282

—bdb-logdir= parameter, mysqld, 245, 607

bdb_max_lock variable, 245

bdb_max_lock_size server variable, 282

—bdb-no-recover parameter, mysqld, 245, 607

—bdb-no-sync parameter, mysqld, 245, 607

—bdb-shared-data parameter, mysqld, 607

—bdb-tmpdir= parameter, mysqld, 245, 607

BENCHMARK() system function, 641

Benchmark application

importance of, 291–292

requirements, 292–293

running tests, 293–295

BeOS, 23

Berkeley DB (BDB), 12

BerkeleyDB table type, 245–246

BIGINT type, 645

—big-tables switch, mysqld, 607

billing system, telephone company customer

database, 4

BIN() function, 210–211

binary code, downloading, 12, 30–31

binary field attribute, 14

binary installation

Linux environment, 45–47

Mac OS X, 74–75

BINARY keyword, LIKE function, 219

binary log, 374

binary math function, 628–629

binary statement extension, 17

bind-address option, my.cnf file, 40–42

—bind-address= switch, mysqld, 607

—bindir=DIR option, MySQL source installation, 49

bind_param() method, Perl Database Interface,

415–416

binlog_cache_size server variable, 282

binlog-do-db option, MySQL master server

replication, 528

binlog-ignore-db option, MySQL master server

replication, 528

bit_and() statement extension, 14

bit_count() function, 14

bit_or() statement extension, 14

BLOB type, 14, 235, 241, 648–449

—bootstrap switch, mysqld, 607

brackets ([]), CREATE TABLE statement, 90
BSDi, 12, 22

B-tree index type, 234, 241

buffer, size of, 237, 253

4932-4 Index.F 5/29/02 3:55 PM Page 662

663Index ✦ C

C
C API, 12, 18, 25

C++ API, 12, 25

-C switch

myisamcheck, 354

mysql, 596

mysqladmin, 601

mysqlcheck, 354, 603

mysqldump, 598

mysqlimport, 604

mysqlshow, 600

-c switch

myisamcheck, 357

mysqlcheck, 354, 603

mysqldump, 262, 598

mysqlimport, 276, 604

mysqlshow, 600

cache, size of, 237, 253

—cache-file=FILENAME option, MySQL source

installation, 49

call identification, telephone company customer

service, 4

Cardinality value, SHOW INDEX statement, 175

case function, 14

CASE operator, 626

CASE WHEN operator, 626

case-sensitive file system, 16

category table, 90

cd command, 70

CGI. See Common Gateway Interface program

CGI.pm, 428

change statement extension, 14

CHANGE MASTER TO option, MySQL slave server

replication, 528

CHANGE variable, ALTER TABLE statement, 99

changing permissions, 43

CHAR() string functions, 213

char column type, 124

char function, 17

CHAR type, 650

character set, selecting default, 28

—character-sets-dir= switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqld, 607

mysqlshow, 600

—check switch

myisamcheck, 357

mysqlcheck, 354, 603

CHECK TABLE statement, 14, 365, 622

checking server status, mysqladmin, 83–84

checking tables with myisamchk, 357–361

—check-only-changed switch

myisamcheck, 357

mysqlcheck, 354, 603

check_session() function, PHP, 487

chkconfig command, 35–36

chown command, 78, 343

—chroot= switch, mysqld, 607

city, basic customer database information, 4

CLI. See MySQL Command-Line Interface

client software, stability of, 18

client-only configuration, MySQL Command-Line

Interface, 157

COALESCE, 627

collation column, SHOW INDEX statement, 175

column, fixed-length, 387

Column_name field, SHOW INDEX statement, 175

—columns= switch, mysqlimport, 276, 604

Command column, processlist function, 252

command-line interface

basic syntax, 133

command recall feature, 136

configuration options, 156–157

creating a database, 88–89

database, specifying, 140

environment variables, 141–146

host, specifying, 139–140

importance of, 28–30

interactive mode, 134–135, 146–151

non-interactive mode, 135, 152–156

password, specifying, 138–139

starting, 136–137

username, specifying, 137–138

command-line options, mysqld
my.cnf file, Linux, 39–42

my.ini file, Windows 2000, 58–62

comma-separated values (CSV), 26

Comment field, SHOW INDEX statement, 175

COMMIT feature

Berkeley table, 245

InnoDB table, 242

Common Gateway Interface program (CGI), 428

Compact installation type, 65

comparison operator, SELECT statement, 17, 626

compatibility, database, 13

compiling

Linux environment, 51–52

Mac OS X, 77–78

—complete-insert switch, mysqldump, 262, 598

4932-4 Index.F 5/29/02 3:55 PM Page 663

664 Index ✦ C–D

—compress switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqldump, 598

mysqlimport, 604

mysqlshow, 600

CONCAT() string functions, 213, 216

concat function, 17

CONCAT_WS() string functions, 213, 216

CONCURRENT keyword, LOAD DATA INFILE statement,

274–275

config.cache file, 453

configuration file

developing your own, 298–302

monitoring performance, 302–303

multiple MySQL servers, 303–304

sample, 296–298

configure command, 450

configure script

Linux environment, 51–52

Mac OS X, 77

connect() method, Perl Database Interface, 404–405

connect command, MySQL Command-Line Interface,

97, 146

CONNECT statement, 179

connection timeout, 253

CONNECTION_ID() system function, 641

connect_timeout server variable, 283

constraint, 17, 119–120

conversion tool, 27

cookie, 482

copy function (cp), 17

—core-file switch, mysqld, 607

correspondence notes, basic customer database

information, 4

COS() trigonometric function, 643

COT() trigonometric function, 643

COUNT() function, 225

count(distinct) statement extension, 14

cp. See copy function

crash, automatic recovery from, 237

Crash-me test, 291–292

create

database, 88–89

table, 89–92

CREATE DATABASE statement

extension, 14

syntax, 88, 183, 613

create, mysqladmin, 602

CREATE INDEX statement, 387

CREATE privilege, 324

CREATE TABLE statement

examples, 92, 184–185

index, 387

syntax, 90, 183, 613

Create_time value, SHOW TABLE STATUS
statement, 176

credentials, 405–407

$credentials variable, 404

credit card number, tracking with customer

database, 5

cron command, 322

cross-platform versions, MySQL, 11–12

CSV. See comma-separated values

CURDATE() function, 202–203

cursor, 17

CURTIME() function, 202–203

Custom installation type, 65

customer database

custom-service Web site, 5

Internet service provider, 6

mail-order store, 5

online store, 5

sharing information with other company, 3

telephone company, 4

D
-D switch

myisamcheck, 361

mysql, 596

mysqltest, 606

-d switch

mysqldump, 263–264, 598

mysqlimport, 276, 604

data, 106

Data Definition Language (DDL), 122, 181

data, exporting

comments, 260

creating backup, 348–349

dropping tables, 264–265

dumping databases, 268–271

formatting output, 265–268

importance of, 26–27, 260

insert options, 262

locking tables, 264–265

my.cnf file, 38

redirecting output, 261

restoring database, 368–369

SELECT INTO OUTFILE statement, 271–273

specifying records with where clause, 262

support, 26–28

suppressing data, 263–264

suppressing database creation, 271

4932-4 Index.F 5/29/02 3:55 PM Page 664

665Index ✦ D

suppressing DDL, 263

suppressing DML, 263–264

syntax, 260

tables with large columns, 260

data, importing

LOAD DATA INFILE statement, 274–275

MySQL Command-Line Interface, 273

mysqlimport, 276

support, 26–28

Data Markup Language (DML), 122, 191

database

advantages of using, 7

connecting to, 89

creating, 88, 182–183

definition, 106–107

deleting, 182

metadata, 516–517

naming, 16

opening multiple connections to, 252

optimization, 386–387

uses, 107

DATABASE() function, 223

DATABASE() system function, 641

database design

definition, 107

life cycle, 108–109

database handle, Perl Database Interface, 403

database layout, e-commerce Web site example,

435–436

database replication

binary log, 526

configuration, 530–533

errors, 544

importance of, 525

kickstarting, 544–546

master server, 526

monitoring through Web, 540–543

monitoring with Perl, 537–540

multiple master replication, 534–537

multiple slave replication, 533

MySQL version, 527

pass-through slave replication, 537

planning, 525

security, 527

settings, 527–529

slave server, 526

stability of, 18

—database= switch

mysql, 596

MySQL Command-Line Interface, 140

mysqltest, 606

database variable, MySQL Command-Line

Interface, 144

—databases function

mysqlcheck, 355, 603

mysqldump, 269–271, 598

DATADIR, 243

—datadir=DIR option, MySQL source installation,

49, 608

—data-file-length switch, myisamcheck, 361

Data_free value, SHOW TABLE STATUS statement, 176

Data_length value, SHOW TABLE STATUS
statement, 176

$datasource variable, 408

date and time functions

ADDDATE(), 205

CURDATE(), 202–203

CURTIME(), 202–203

date string format, 633–634

date type, 632

DATE_ADD(), 202, 205

DATE_FORMAT(), 202, 208–210

DATE_SUB(), 202, 205

DAYNAME(), 202, 204

DAYOFMONTH(), 202, 204

DAYOFWEEK(), 202, 204

DAYOFYEAR(), 202, 204

FROM_DAYS(), 202, 207

FROM_UNIXTIME(), 202, 207

HOUR(), 202, 205

MINUTE(), 202, 205

MONTH(), 202, 204

MONTHNAME(), 202, 204

NOW(), 202–203

PERIOD_ADD(), 203, 206

PERIOD_DIFF(), 203, 206

QUARTER(), 203, 204

SECOND(), 203, 205

SEC_TO_TIME(), 203, 207

SUBDATE(), 205

TIME_TO_SEC(), 203, 207

TO_DAYS(), 203, 207

UNIX_TIMESTAMP(), 203, 207

WEEK(), 203–204

WEEKDAY(), 203–204

YEAR(), 203–204

DATE type, 648

DATETIME type, 648

db column, processlist function, 252

DBD. See MySQL Database Driver

dbf2mysql conversion tool, 27

$dbh variable, 404

DBI. See Perl Database Interface

DDL. See Data Definition Language

Debian Linux, 30

4932-4 Index.F 5/29/02 3:55 PM Page 665

666 Index ✦ D–E

—debug switch

mysqlcheck, 352, 603

mysqlhotcopy, 339

mysqlimport, 604

—debug-info, mysql, 597

DEC UNIX 4.x, 23

decimal column type, 124

decimal math function, 634–635

DECIMAL type, 647

DECODE() system function, 641

decode() function, 14

decode_bits variable, 362

default databases, installing, 43

DEFAULT option, myisam-recover variable, 238

—default-character-set= switch

mysql, 596

mysqlcheck, 352

mysqld, 607

mysqldump, 598

uses, 28

—default-table-type= switch, mysqld, 608

—defaults-file= switch, mysql, 304

defragmentation, 387

DELAYED keyword, INSERT statement, 92–93, 194

delayed statement extension, 14

—delayed-insert switch, mysqldump, 598

delayed_insert_limit server variable, 283

delayed_insert_timeout server variable, 283

delayed_queue_size server variable, 283

delay_key_write server variable, 283

—delay-key-write-for-all-tables switch,

mysqld, 608

DELETE privilege, 324

DELETE statement, 229–230, 240, 330, 614

—delete switch, mysqlimport, 276, 604

DESC keyword, SELECT statement, 225

DESCRIBE statement

MySQL extension, 14

similarity to EXPLAIN command, 125

similarity to SHOW COLUMNS statement, 173

syntax, 100–101, 180, 613

development version, 30

die() function, PHP, 468

digits, using in object name, 16

—disable-largefile option, MySQL source

installation, 50

disc, 63

disconnect() method, Perl Database Interface, 409

disk space, 236

DISTINCT statement, 388

DML. See Data Markup Language

do() method, Perl Database Interface, 415–416

dollar sign ($), 462

Domain Name Service (DNS)

BIND DNS server software, 556–560

importance of, 316

DOUBLE type, 647

downloading Mac OS X files, 74–75

driver handle, Perl Database Interface, 403

DriverManager class, Java Database Connectivity,

514–515

drop statement extension, 14

DROP DATABASE statement

extension, 14

syntax, 182

drop, mysqladmin, 602

drop index statement extension, 14

DROP privilege, 324

DROP TABLE statement

extension, 14

syntax, 181–182

DROP variable, ALTER TABLE statement, 99

—dryrun switch, mysqlhotcopy program, 347

dselect tool, Linux, 30

dump_results() method, Perl Database Interface,

420–423

duplicate value, inserting, 195

dynamic page, 428

Dynamic Shared Objects, 453

E
-E switch

mysql, 596

MySQL Command-Line Interface, 148

mysqladmin, 601

-e switch

myisamcheck, 354, 361

mysql, 596

MySQL Command-Line Interface, 135

mysqlcheck, 354, 603

mysqldump, 262, 598

each() function, PHP, 470

e-commerce Web site example

database layout, 435–436

inventory-input program, 436–441

product search engine, 441–448

Eiffel API, 25

elt() function, 14

e-mail support, 22

—enable-locking, mysqld, 608

—enable-named-commands, mysql, 596

ENCODE() system function, 641

encode() function, 14

ENCRYPT() function, 14, 223, 326

ENCRYPT() system function, 641

encrypting usernames, 485

4932-4 Index.F 5/29/02 3:55 PM Page 666

667Index ✦ E–F

encryption, Unix compared to MySQL, 326

End Task box, Windows, 335

enterprise-level applications, 18

entity, logical design phase, 109–112

entity integrity, 119

Entity-Relationship Diagram (ERD)

definition, 113

foreign key, 116

many-to-many relationship, 113–115

one-to-many relationship, 115–116

refining, 116–118

ENUM type, 651

environment variables, MySQL Command-Line

Interface

default values, 141–143

frequently used, 144

overriding default values, 144–146

equal sign (=), 138, 199, 201

equal-to operator for NULL-safe equations (<=>), 626

ERD. See Entity-Relationship Diagram

err() method, Perl Database Interface, 413–414

.err file extension, 374

err-log option, MySQL configuration file, 374–375

error

Access Denied, 99, 158–159, 333–334

Invalid Option, 340

error log, 374

errstr() method, Perl Database Interface, 413–414

ESCAPE keyword, LIKE function, 219

excel2mysql conversion tool, 27

exclusion constraint, logical design phase, 119–120

—exec-prefix=DIR option, MySQL source

installation, 49

execute() method

Java Database Connectivity, 515

Perl Database Interface, 415–416

—execute switch, MySQL Command-Line Interface,

135, 596

executeBatch() method, Java Database

Connectivity, 515

executeQuery() method, Java Database

Connectivity, 515

executeUpdate() method, Java Database

Connectivity, 515

exit command, MySQL Command-Line Interface, 146

EXPLAIN command, 126, 386, 614

explain select statement, 14

exploit, 305

exporting data

comments, 260

creating backup, 348–349

dropping tables, 264–265

dumping databases, 268–271

formatting output, 265–268

importance of, 26–27, 260

insert options, 262

locking tables, 264–265

my.cnf file, 38

redirecting output, 261

restoring database, 368–369

SELECT INTO OUTFILE statement, 271–273

specifying records with where clause, 262

support, 26–28

suppressing data, 263–264

suppressing database creation, 271

suppressing DDL, 263

suppressing DML, 263–264

syntax, 260

tables with large columns, 260

ExportSQL conversion tool, 27

—extended switch, mysqlcheck, 354, 603

—extended-check switch, myisamcheck, 354, 361

—extended-insert switch, mysqldump, 262, 265, 598

extended-status function, mysqladmin, 248, 251, 602

extensible index type, 19

extensions, MySQL, 13–16

F
-F switch

myisamcheck, 354

mysqlcheck, 354, 603

mysqldump, 598

-f switch

myisamcheck, 354, 361

mysql, 596

MySQL Command-Line Interface, 150

mysqladmin, 601

mysqlcheck, 603

mysqldump, 598

mysqlimport, 604

—fast switch

myisamcheck, 357

mysqlcheck, 354, 603

fetchall_arrayref function, Perl Database

Interface, 417

fetchrow() function, Perl Database Interface, 417

fetchrow_array() function, Perl Database Interface,

417–418

fetchrow_arrayref() function, Perl Database

Interface, 417–419

fetchrow_hashref() function, Perl Database

Interface, 417–419

Fibernet, 558

FIELD() string functions, 213, 219–220

field padding, 235

4932-4 Index.F 5/29/02 3:55 PM Page 667

668 Index ✦ F–G

FIELDS ENCLOSED BY option, SELECT INTO OUTFILE
statement, 271

FIELDS ESCAPED BY option, SELECT INTO OUTFILE
statement, 271

—fields switch, mysqldump, 267

FIELDS TERMINATED BY option, SELECT INTO
OUTFILE statement, 271

—fields-enclosed-by= switch

mysqldump, 599

mysqlimport, 276, 605

—fields-escaped-by= switch

mysqldump, 600

mysqlimport, 276, 605

—fields-optionally-enclosed-by= switch

mysqldump, 600

mysqlimport, 276, 605

—fields-terminated-by= switch

mysqldump, 599

mysqlimport, 276, 604

FILE privilege, 222, 324, 533

file system, case-sensitive, 16

$filedes variable, 415

finish() method, Perl Database Interface, 423

firewall, 312

first name, basic customer database information, 4

First Normal Form (1NF), 120

fixed-length column, 387

FLOAT type, 647

flow-control operator, 626

FLUSH (option) statement, 14, 618–619

—flush switch, mysqld, 608

Flush tables parameter, status function, 250

FLUSH TABLES WITH READ LOCK statement, MySQL

Command-Line Interface, 383

flush-hosts function, mysqladmin, 253, 602

—flushlog switch, mysqlhotcopy program, 348

flush-logs function, mysqladmin, 254, 602

—flush-logs switch, mysqldump, 598

flush-privileges function, mysqladmin, 255,

335, 602

flush-status function, mysqladmin, 254, 602

flush-tables function, mysqladmin, 254, 602

flush-threads, mysqladmin, 602

flush_time server variable, 283

FORCE option, myisam-recover variable, 238–239

—force switch

myisamcheck, 357, 361

mysql, 596

MySQL Command-Line Interface, 150

mysqladmin, 601

mysqlcheck, 356, 603

mysqldump, 598

mysqlimport, 604

foreign key, 17, 19, 243

FORMAT() function, 15, 210–211

FORMAT() system function, 641

forName() method, Java Database Connectivity, 514

/* (enclosing non-standard extensions in), 13

FOUND_ROWS() system function, 641

fragmentation, repairing, 236

FreeBSD, 12, 23

.frm extension, 350

FROM argument, SHOW INDEX statement, 175

from clause, SELECT statement, 17

FROM_DAYS() function, 15, 202, 207

FROM_UNIXTIME() function, 202, 207

front slash (/), 211

FTP server, 308

full join, 17

FULL modifier, SHOW PROCESSLIST statement, 177

FULLTEXT, SHOW INDEX statement, 175

G
-G, mysql, 596

-g, mysql, 596

Gemini table type, 90–91

gemini_buffer_cache= option, NuSphere MySQL

Advantage, 581, 590

gemini_connection_limit= option, NuSphere

MySQL Advantage, 581, 590

—gemini-flush-log-at-commit option, NuSphere

MySQL Advantage, 581, 590

gemini_io_threads= option, NuSphere MySQL

Advantage, 581, 590

gemini_lock_table_size= option, NuSphere MySQL

Advantage, 581, 590

gemini_lock_wait_timeout= option, NuSphere

MySQL Advantage, 581, 590

—gemini-recovery= option, NuSphere MySQL

Advantage, 581, 590

—gemini-unbuffered-io option, NuSphere MySQL

Advantage, 581, 590

get() method, Java Database Connectivity, 515

getBoolean() method, JDBC, 515

getByte() method, JDBC, 515

getColumnName() method, JDBC, 516

getColumnType() method, JDBC, 516

getConnection() method, Java Database

Connectivity, 514–515

getDate() method, JDBC, 515

getDouble() method, JDBC, 515

getFloat() method, JDBC, 515

getInt() method, JDBC, 515

GET_LOCK() system function, 642

getLong() method, JDBC, 515

getMessage() method, Java Database

Connectivity, 517

4932-4 Index.F 5/29/02 3:55 PM Page 668

669Index ✦ G–I

getMetaData() method, Java Database

Connectivity, 516

getShort() method, JDBC, 515

getString() method, JDBC, 515

getTime() method, JDBC, 515

getTimestamp() method, JDBC, 515

glibc, 31, 45

GNU General Public License (GPL), 12, 21–22

GRANT privilege, 324

GRANT statement, 98, 255, 327–329, 623

grants database, 474

GRANTS tables, 255

Graphical User Interface (GUI), 19

greater than (>), 201, 261, 626

greater-than-or-equal-to (>=), 626

GREATEST() function, 210, 212

group() function, PHP, 482

group by clause, SELECT statement, 95, 227, 636

grouping functions, SELECT statement, 225

GUI. See Graphical User Interface

H
-H switch

mysql, 596

MySQL Command-Line Interface, 150

-h switch

mysql, 596

MySQL Command-Line Interface, 139–140

mysqladmin, 601

mysqlcheck, 352, 603

mysqld, 608

mysqldump, 598

mysqlimport, 605

mysqlshow, 384

mysqltest, 606

HANDLER statement, 614–615

have_bdb server variable, 283

have_gemini server variable, 283

have_innodb server variable, 283

have_isam server variable, 283

have_raid server variable, 283

have_ssl server variable, 283

HAVING keyword, SELECT statement, 225

HEAP table type, 90–91, 241–242

—help switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqld, 607

mysqlimport, 604

mysqlshow statement, 384–385

mysqltest, 606

HEX() function, 210–211

host, multi-homed, 40

Host column, processlist function, 251

—host= switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqldump, 598

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

host variable, MySQL Command-Line Interface, 144

hostconfig file, 72

HOUR() function, 202, 205

HP-UX, 12, 23

.htaccess file, 317

htdocs folder, 450

.htm extension, 428

.html extension, 428

—html switch, MySQL Command-Line Interface,

150, 596

html variable, MySQL Command-Line Interface, 144

htpassword command, 318

httpd command, 450

httpd.conf, 455

Hyptertext Markup Language (HTML)

<form> tag, 429

input form example, 431–434

<p> tag, 431

static web page example, 429–431

I
-i switch

myisamcheck, 354

mysql, 596

mysqladmin, 601

mysqlimport, 605

mysqlshow, 600

-I switch, mysqlimport, 276

IA64, 12

IBM Informix, 11

Id column, processlist function, 251

identity thief, 5

IF() function, 15, 223–224

if exists statement extension, 15

if not exists keyword

CREATE DATABASE, 88

CREATE TABLE statement, 90

if not exists statement extension, 15

IF operator, 626

IFNULL() function, 223–224

IFNULL operator, 626

4932-4 Index.F 5/29/02 3:55 PM Page 669

670 Index ✦ I–J

IGNORE keyword

ALTER TABLE statement, 90, 99, 185–186

INSERT statement, 92–93, 195

LOAD DATA INFILE statement, 274–275

ignore statement extension, 15

—ignore switch, mysqlimport, 276, 605

—ignore-space, mysql, 596

IGNORE_SPACE mode, 609

image recognition, 3

implementation phase, database life cycle, 129–130

importing data

LOAD DATA INFILE statement, 274–275

MySQL Command-Line Interface, 273

mysqlimport, 276

support, 26–28

in clause, SELECT statement, 20

inactive connections, mysqladmin, 84–85

include() function, PHP, 468, 479

—includedir=DIR option, MySQL source

installation, 49

index, sorting, 388–389

INDEX privilege, 324

index statement extension, 15

indexing, physical design phase, 125–128

INET_ATON() system function, 642

INET_NTOA() system function, 642

Info column, processlist function, 252

—infodir=DIR option, MySQL source installation, 49

—information switch, myisamcheck, 357

Informix, 8, 11

inherited table, 19

init.d directory, 35

—init-file=, mysqld, 608

InnoDB table type, 12, 90–91, 242–245

innodb_additional_mem_pool_size variable, 245

innodb_buffer_pool_size variable, 244

innodb_data_file_path parameter, 243

innodb_data_home_dir parameter, 243

innodb_flush_log_at_trx_commit variable, 244

innodb_lock_wait_timeout variable, 245

innodb_log_buffer_size variable, 244

innodb_log_files_in_group variable, 244

innodb_log_file_size variable, 244

innodb_log_group_home_dir parameter, 243

INSERT ... SELECT ... statement, 196–197

INSERT ... SET ... statement, 196

INSERT INTO statement, 615

INSERT privilege, 324

INSERT statement

example, 192

execution of, 194

expression, 193–194

MERGE table type, 240

mysqldump, 262

syntax, 192

value exceeds column size, 192–193

INSERT test application, 294

INSERT...VALUES... statement, 195

install command, 77

installation

binary, Linux environment, 45–47

binary, Mac OS X, 74–75

binary, Windows 2000, 63–68

Java Database Connectivity, 511–514

MySQL Database Driver, 398–402

Perl Database Interface, 394–397

RPM, Linux environment, 47–48

source code, Linux, 48–52

source code, Mac OS X, 75–76

insurance company customer database, 3

INT type, 645

Intel libc6, 12

interactive mode, MySQL Command-Line Interface

creating tab-delimited output, 150–151

displaying results vertically, 148–149

importance of, 134–135

producing HTML output, 150

saving output, 148–149

semicolon, terminating commands with, 147

startup, 147

suppressing column names, 150

working with large amounts of data, 147

interactive_timeout server variable, 283

Internet service provider (ISP)

accounting data, 6

customer database, 6

database use compared to other industries, 5

user-preference database, 6

INTERVAL, 627

INTO keyword, INSERT statement, 92–93, 192

into outfile statement extension, 15

Invalid Option error, 340

inventory-input program, e-commerce Web site

example, 436–441

IP address, tracking usage of, 6

isam logfile, 374

ISAM table type, 90–91, 194, 240–241

isamchk, 241

ISNULL() function, 223–224

ISO/IEC 9075:1992 (SQL standard), 7

J
Java Database Connectivity (JDBC)

API, 25, 493

application example, 520–521

connecting to MySQL, 518–519

4932-4 Index.F 5/29/02 3:55 PM Page 670

671Index ✦ J–L

DriverManager class, 514–515

execute() method, 515

executeBatch() method, 515

executeQuery() method, 515

executeUpdate() method, 515

forName() method, 514

get() method, 515

getConnection() method, 514–515

getMessage() method, 517

getMetaData() method, 516

installation, 511–514

Java Software Development Kit, 511

obtaining software, 511

ResultSet object, 515, 518

SQLException class, 517

wasNULL() method, 517

Java Software Development Kit (JDK), 511

java.sql package, 511

join, SELECT statement, 202

JOIN statement, 388

join_buffer_size server variable, 283

K
-k switch

myisamcheck, 361

mysqlshow, 600

—keepold switch, mysqlhotcopy program, 346

key statement extension, 15

key_buffer_size server variable, 283, 301, 362

Key_name field, SHOW INDEX statement, 175

Keys column, EXPLAIN command, 387

—keys switch, mysqlshow, 600

—keys-used switch, myisamcheck, 361

kill command, Linux, 335

kill function, mysqladmin, 255–257, 602

KILL statement, 180, 619

L
-L switch

mysql, 596

mysqld, 608

mysqlimport, 276, 605

-l switch

myisamcheck, 361

mysqld, 608

mysqldump, 264–265, 598

mysqlimport, 276, 605

—language=, mysqld, 608

language, selecting default, 28

large_files_support server variable, 283

last name, basic customer database information, 4

LAST_INSERT_ID() function, 15, 223–224, 642

Latin1 character set, 28

law enforcement database, 6

LCASE() string functions, 213, 215

ldconfig, 454

LEAST() function, 210, 212

least-privilege system, 305, 326

LENGTH() string functions, 213, 221

less than (<), 201

Lesser GNU Public License (LGPL), 12

—libdir=DIR option, MySQL source installation, 49

—libexecdir=DIR option, MySQL source

installation, 49

licensing, 21–22

LIKE keyword, SELECT statement, 199

LIKE modifier, SHOW DATABASES statement, 172

like operator, 15

LIKE string functions, 213, 218

limit clause, SELECT statement, 95

limit statement extension, 15

—line switch, mysqldump, 267

LINES TERMINATED BY clause

LOAD DATA INFILE statement, 275

SELECT INTO OUTFILE statement, 271

—lines-terminated-by= switch

mysqldump, 600

mysqlimport, 276, 605

Linux

binary installation, 45–47

changing permissions, MySQL files and

directories, 43

command-line options, my.cnf file, 39–42

default databases, installing, 43

Kernel 2.0, 23

MySQL version, 11

obtaining MySQL with, 30

RPM installation, 47–48

shutdown, MySQL server, 36–38

source installation, 48–52

startup, MySQL server, 35–36, 44

list() function, PHP, 470

Liyanage, Marc, 75

ln command, 46

LOAD DATA FROM MASTER option, MySQL slave server

replication, 528

LOAD DATA INFILE statement, 15, 274–275

LOAD TABLE FROM MASTER option, MySQL slave

server replication, 528

LOAD_FILE() string functions, 213, 222

LOCAL keyword, LOAD DATA INFILE statement,

274–275

—local switch, mysqlimport, 276, 605

localhost connection, 73

—localstatedir=DIR option, MySQL source

installation, 49

4932-4 Index.F 5/29/02 3:55 PM Page 671

672 Index ✦ L–M

LOCK TABLES statement, 350

locking behavior, 246

—lock-tables function, mysqlimport, 276, 605

—lock-tables switch, mysqldump, 264–265, 598

—log=, mysqld, 608

.log file extension, 376

log function, 299

log option, MySQL configuration file, 376

log server variable, 283

log-bin option

MySQL configuration file, 374–375

MySQL master server replication, 528

log_bin server variable, 283

—log-bin= switch, mysqld, 608

log-bin-index option, MySQL master server

replication, 528

—log-bin-index= switch, mysqld, 608

logfile, 243, 374–477

logical AND function, 201

logical design, database life cycle

attribute, 110–112

constraint, 119–120

Data Definition Language, 122

Data Markup Language, 122

entity, 109–112

Entity-Relationship Diagram, 113–119

importance of, 108–109

normalization, 120–122

relationship, 112–113

writing CREATE TABLE statements, 123–124

logical NOT function, 201

logical operator, 627

logical OR function, 201

login support, 22

—log-isam= switch, mysqld, 608

—log-long-format switch, mysqld, 376–377, 608

log-slave-updates option, MySQL slave server

replication, 528

log_slave_updates server variable, 283

log-slow-queries option, MySQL configuration

file, 376

—log-slow-queries= switch, mysqld, 608

log_update server variable, 283

—log-update= switch, mysqld, 608

LONGBLOB type, 648–449

long_query_time server variable, 283, 376

long_query_time value, status function, 250

low overhead, 18

LOW_PRIORITY keyword

INSERT statement, 15, 92–93, 194

LOAD DATA INFILE statement, 274–275

—low-priority switch, mysqlimport, 605

—low-priority-updates switch, mysqld, 608

LPAD() string functions, 213–214

LTRIM() string functions, 213–214

M
-m switch

myisamcheck, 354, 603

mysqlcheck, 354

Mac OS X

binary installation, 74–75

compiling MySQL, 77–78

configuring MySQL, 78–79

installing MySQL, Mac OS X Server, 73–74

MySQL version, 12, 23

root password, setting, 73–74

shutdown, MySQL server, 73

source code installation, 75–76

startup, MySQL server, 69–72

testing MySQL, 79

mail-order store customer database, 5

make command, 51–52, 77, 450

makemap command, 563

—mandir=DIR option, MySQL source installation, 49

manual shutdown, MySQL server, 38

manufacturer table, 90

master-connect-retry option, MySQL slave server

replication, 529

master-host option, MySQL slave server

replication, 528

master-info-file option, MySQL slave server

replication, 529

master-password option, MySQL slave server

replication, 529

master-port option, MySQL slave server

replication, 529

MASTER_POS_WAIT() system function, 642

master-ssl option, MySQL slave server

replication, 529

master-ssl-cert option, MySQL slave server

replication, 529

master-ssl-key option, MySQL slave server

replication, 529

master-user option, MySQL slave server

replication, 528

MAX() function, 225

Max memory value, status function, 250

max_allowed_packet variable, 222, 260, 283

max_binlog_cache_size server variable, 284

max_binlog_size server variable, 284

max_connect_errors server variable, 284

max_connections server variable, 284

4932-4 Index.F 5/29/02 3:55 PM Page 672

673Index ✦ M

max_data_length value, SHOW TABLE STATUS
statement, 176

max_delayed_threads server variable, 284

max_heap_table_size server variable, 241, 284

max_sort_length server variable, 284

max_tmp_tables server variable, 284

max_user_connections server variable, 284, 302

max_write_lock_count server variable, 284

md5() function, 15, 223, 485, 642

MEDIUMBLOB type, 648–449

—medium-check switch

myisamcheck, 357

mysqlcheck, 354, 603

mediumint field type, 15

MEDIUMINT type, 645

—memlock switch, mysqld, 608

Memory in use value, status function, 250

memory shortage, 244

MERGE table type, SELECT statement, 240

Microsoft Access, importing MySQL output into, 272

Microsoft SQL Server

characteristics of, 9–10

compared to other database products, 19

Structure Query Language, implementation of, 8

MIN() function, 225

minus sign (-), 205, 211

MINUTE() function, 202, 205

mkdir command, 70

MOD() function, 210

MODIFY variable, ALTER TABLE statement, 99

MONTH() function, 202, 204

MONTHNAME() function, 202, 204

move function (mv), 17

msql2mysql conversion tool, 27

mssql2mysql conversion tool, 27

multi-homed host, 40

MyAccess conversion tool, 27

my.cnf file

environment variables, 141

innodb_data_file_path variable, 242

[mysqld] section, 39–42

replication, 530

setting command options, 38–39

.MYD extension, 350

my-huge.cnf, 292, 297

my.ini file

displaying connections with WinMySQLAdmin, 60

environment variables, 141

replication, 530

setting command options, 58–59

skip-network option, 61

Windows 2000, 33

MyISAM table type

compressed format, 237

DELAYED keyword, 93, 194

dynamic format, 236

importance of, 234

LOW_PRIORITY keyword, 93, 194

MySQL default, 90–91

static format, 235–236

variables, 237–240

myisamchk
checking tables with, 357–361

importance of, 234, 356

my.cnf file, 38

repairing tables with, 361–364

sorting indexes, 388–389

syntax, 357

myisam_max_extra_sort_file_size variable,

240, 284

myisam_max_sort_file_size variable, 240, 284

myisampack
Compressed table, 237

my.cnf file, 38

—myisam-recover= switch, mysqld, 608

myisam-recover variable, 238–239

myisam-sort-buffer-size variable, 239, 284

my-large.cnf, 292, 297

my-medium.cnf, 292, 297

MyODBC

API, 25–26

changing options, 497–499

downloading software, 494

installation, 494–497

Microsoft Access, importing MySQL data into,

499–503

Microsoft Word, importing MySQL data into,

504–510

my_print_defaults script, 39

my-.cnf file, 38

my-small.cnf, 292, 296

mysql, 29, 38

MySQL Advantage

administration, 578–579, 587

compatibility, 572

configuration, 581–582

Gemini table type, 572, 579–581, 588–589

gemini_buffer_cache= option, 581, 590

gemini_connection_limit= option, 581, 590

—gemini-flush-log-at-commit option, 581, 590

gemini_io_threads= option, 581, 590

gemini_lock_table_size= option, 581, 590

gemini_lock_wait_timeout= option, 581, 590

Continued

4932-4 Index.F 5/29/02 3:55 PM Page 673

674 Index ✦ M

MySQL Advantage (continued)

—gemini-recovery= option, 581, 590

—gemini-unbuffered-io option, 581, 590

importance of, 571

installation, 573–578, 582–586

management tools, 572

Pro Advantage, installing, 582–586

—skip-gemini option, 581, 590

—transaction-isolation= option, 581, 590

MySQL Command-Line Interface (CLI)

basic syntax, 133

command recall feature, 136

configuration options, 156–157

creating a database, 88–89

database, specifying, 140

environment variables, 141–146

host, specifying, 139–140

importance of, 28–30

interactive mode, 134–135, 146–151

non-interactive mode, 135, 152–156

password, specifying, 138–139

starting, 136–137

username, specifying, 137–138

MySQL database

advantages of using, 7

connecting to, 89

creating, 88, 182–183

definition, 106–107

deleting, 182

metadata, 516–517

naming, 16

opening multiple connections to, 252

optimization, 386–387

uses, 107

MySQL Database Driver (DBD), 398–402

MySQL Free Public License, 22

MySQL server

manual shutdown, 38

shutdown, Linux environment, 36–38

startup, Linux environment, 35–36

mysqladmin
checking server status, 83–84

common switches, 246

create function, 249

creating a database, 88–89

drop function, 249

extended-status function, 248, 251, 298, 301

flush-hosts function, 253

flush-logs function, 254

flush-privileges function, 255

flush-status function, 254

flush-tables function, 254

-i switch, 247

importance of, 81

inactive connections, 84–85

kill function, 255–257

Mac OS X, 73–74, 79

my.cnf file, 38

password command, 258–259

ping function, 258

processlist command, 41, 251–252, 295

-r switch, 248

refresh function, 255

—relative switch, 248

reload function, 255

root password, setting, 44–45, 62–63, 83–84

shutdown command, 38

shutdown function, 259

shutting down server, 86

-sleep=N switch, 247

start-slave function, 259

status command, 247

status function, 250

stop-slave function, 259

variables command, 233, 241, 252–253, 281,

285–291

version function, 257

Windows environment, 56

mysql_affected_rows function, PHP, 465, 472–473

mysql.allow_persistent configuration option,

PHP, 464

mysql-bench-version.i386.rpm, 31

mysql_change_user function, PHP, 465

mysqlcheck
improving performance, 353

key distribution, analyzing, 353

my.cnf file, 38

repairing table, 354–356

syntax, 352–353

mysql-client-version.i386.rpm, 31

mysql_close function, PHP, 465, 468

mysql_connect function, PHP, 465, 467

mysql_create_db function, PHP, 465

mysqld
command-line options, Linux, 38

my.cnf file, 38

Windows 2000, 57

Windows executable, 33

mysql_data_seek function, PHP, 465

mysql_db_name function, PHP, 465

mysql_db_query function, PHP, 465

mysql.default_host configuration option, PHP, 464

mysql.default_password configuration option,

PHP, 464

mysql.default_port configuration option, PHP, 464

mysql.default_socket configuration option,

PHP, 464

mysql.default_user configuration option, PHP, 464

4932-4 Index.F 5/29/02 3:55 PM Page 674

675Index ✦ M–N

mysql-devel-version.i386.rpm, 31

mysqld-max, 33, 57

mysqld-max-nt, 33, 57

mysqld-nt, 33, 57

mysqld-opt, 33, 57

mysql_drop_db function, PHP, 465

mysqld_safe, 38

mysqldump
comments, 260

creating backup, 348–349

dropping tables, 264–265

dumping databases, 268–271

formatting output, 265–268

importance of, 26–27, 260

insert options, 262

locking tables, 264–265

my.cnf file, 38

redirecting output, 261

restoring database, 368–369

specifying records with where clause, 262

suppressing data, 263–264

suppressing database creation, 271

suppressing DDL, 263

suppressing DML, 263–264

syntax, 260

tables with large columns, 260

mysql_errno function, PHP, 465

mysql_error function, PHP, 465

mysql_escape_string function, PHP, 465, 480

mysql_fetch_array function, PHP, 466

mysql_fetch_assoc function, PHP, 466, 469–470

mysql_fetch_field function, PHP, 466

mysql_fetch_lengths function, PHP, 466

mysql_fetch_object function, PHP, 466

mysql_fetch_row function, PHP, 466, 470–471

mysql_field_flags function, PHP, 466

mysql_field_len function, PHP, 466

mysql_field_name function, PHP, 466

mysql_field_seek function, PHP, 466

mysql_field_table function, PHP, 466

mysql_field_type function, PHP, 466

mysql_free_result function, PHP, 466, 485

mysql_get_client_info function, PHP, 466

mysql_get_host_info function, PHP, 466

mysql_get_proto_info function, PHP, 466

mysql_get_server_info function, PHP, 466

MySQLGUI

Administration menu, 166–167

Client tab, 161–162

Connection button, 162–163

executing SQL statements, 163–166

importance of, 29, 160

Options screen, 161

startup, 160

mysqlhotcopy
changing database ownership, 343

importance of, 260, 338

overwriting database with same name, 345–346

password, 340

restoring database, 366

sample output, 341–342

suffix, specifying, 347

syntax, 339

table name, specifying, 344–345

mysqlimport, 38, 276

mysql_insert_id function, PHP, 466

mysql_install_db script, 47, 78–79

mysql_list_dbs function, PHP, 466

mysql_list_fields function, PHP, 466

mysql_list_tables function, PHP, 466

MySQL-Max, 12

mysql.max_links configuration option, PHP, 464

mysql.max_persistent configuration option,

PHP, 464

mysql_num_fields function, PHP, 466

mysql_num_rows function, PHP, 466, 472

mysql_pconnect function, PHP, 466, 468

mysql_query function, PHP, 466, 469, 472

mysql_query_db function, PHP, 468–469

mysql_result function, PHP, 466

mysql_safe, 38

mysql_select_db function, PHP, 466, 468–469

mysql.server file, 35–36, 38

mysql-shared.i386.rpm, 31

mysqlshow statement, 38, 384–385

MySQL-specific extensions, 13–16

MySQL-specific properties, 16–17

mysql-src-version.i386.rpm, 31, 32

mysql_tablename function, PHP, 466

mysql_unbuffered_query function, PHP, 466

mysql-version.i386.rpm, 31

mysql-version.tar.gz, 32

mysql-version-win-src.zip, 32

N
-N switch

mysql, 596

MySQL Command-Line Interface, 150

-n switch

myisamcheck, 361

mysql, 596

mysqld, 608

mysqldump, 271, 599

mysqlhotcopy program, 347

4932-4 Index.F 5/29/02 3:55 PM Page 675

676 Index ✦ N–O

Name Service Switch (NSS)

configuration, 555

importance of, 551

installation, 555

nesting functions, SELECT statement, 201–202, 223–225

NetBSD 1.3-1.4, 23

net_buffer_length server variable, 284

net_buffer_length variable, mysqldump, 260

net_read_timeout server variable, 284

net_retry_count server variable, 284

netstat program, 309

net_write_timeout server variable, 284

—new switch, mysqld, 608

newline (\n), 267, 421

news site, 6

1NF. See First Normal Form

2NF, See Second Normal Form

3NF. See Third Normal Form

nmap scan, 308

—no-auto-rehash switch

mysql, 596

MySQL Command-Line Interface, 147

—no-create option, MySQL source installation, 49

—no-create-db switch, mysqldump, 271, 599

—no-create-info switch, mysqldump, 263, 599

—no-data switch, mysqldump, 263, 598

—no-defaults switch, MySQL Command-Line

Interface, 144

—noindices switch, mysqlhotcopy program, 348

—no-named-commands, mysql, 596

non-interactive mode, MySQL Command-Line Interface

creating tab-delimited output, 155–156

executing statements, 152

printing results vertically, 155

producing HTML output, 152–154

suppressing column names, 154

non-standard extensions, MySQL, 13–16

non-transactional table types, 232

Non_unique field, SHOW INDEX statement, 175

—no-pager switch, mysql, 596

normalization, 120–122

—no-symlinks switch, myisamcheck, 361

NOT function, 201

not regexp operator, 15

—no-tee= switch, MySQL Command-Line Interface,

149, 596

not-equal-to (!=) operator, 626

NOW() function, 201–203

NSS. See Name Service Switch

nss-mysql.conf, 555

nssswitch.conf, 551, 555

null field attribute, 15

NULL keyword, INSERT statement, 92–93

NULLIF operator, 626

numerical functions, SELECT statement, 210–212

NuSphere MySQL Advantage

administration, 578–579, 587

compatibility, 572

configuration, 581–582

Gemini table type, 572, 579–581, 588–589

gemini_buffer_cache= option, 581, 590

gemini_connection_limit= option, 581, 590

—gemini-flush-log-at-commit option, 581, 590

gemini_io_threads= option, 581, 590

gemini_lock_table_size= option, 581, 590

gemini_lock_wait_timeout= option, 581, 590

—gemini-recovery= option, 581, 590

—gemini-unbuffered-io option, 581, 590

importance of, 571

installation, 573–578, 582–586

management tools, 572

Pro Advantage, installing, 582–586

—skip-gemini option, 581, 590

—transaction-isolation= option, 581, 590

O
-O switch

myisamcheck, 361

mysql, 597

mysqld, 608

mysqldump, 599

-o switch

myisamcheck, 361

mysql, 597

mysqlcheck, 353, 603

mysqld, 608

obtaining MySQL software, 30

ODBC. See Open Database Connectivity

—oldincludedir=DIR option, MySQL source

installation, 49

—old-protocol switch, mysqld, 608

—one-database switch, mysql, 597

-1 switch, mysqlcheck, 356, 603

online store customer database, 5

ONLY_FULL_GROUP_BY mode, 609

Open Database Connectivity (ODBC)

API, 25–26

changing options, 497–499

downloading software, 494

importance of, 493

installation, 494–497

Microsoft Access, importing MySQL data into,

499–503

Microsoft Word, importing MySQL data into,

504–510

Open tables value, status function, 250

4932-4 Index.F 5/29/02 3:55 PM Page 676

677Index ✦ O–P

OpenBSD, 23

open_files_limit server variable, 284

Opens value, status function, 250

open-source support, 18

operating systems, used by MySQL, 23–24

—opt switch, mysqldump, 264–265, 599

optimization

database, 386–387

query, 388–389

table, 386–387

—optimize switch, mysqlcheck, 353, 603

OPTIMIZE TABLE statement, 15, 180, 364, 387, 620

OR function, 201

OR operator (||), 14

Oracle

compared to other database products, 19

Oracle Technology Network, 8–9

porting applications to MySQL, 27–28

Structured Query Language, implementation of, 8

oracledump conversion tool, 27

ORDER BY() function, 225

order by clause, SELECT statement, 95

OS/2 Warp, 23

P
-P switch

mysql, 303, 597

mysqladmin, 601

mysqlcheck, 352, 604

mysqld, 608

mysqldump, 599

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

-p switch

mysql, 597

MySQL Command-Line Interface, 138

mysqladmin, 258–259, 601

mysqlcheck, 352, 604

mysqldump, 599

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

mysqlshow statement, 384

mysqltest, 606

PACK_KEYS option, CREATE TABLE statement, 234

padding fields, 235

—pager= option, MySQL Command-Line Interface,

147–148, 597

pager variable, MySQL Command-Line Interface, 144

password

changing, 258–259, 331–333

root, 334–335

security, 325–326

—password
mysqlcheck switch, 604

mysqlimport switch, 605

PASSWORD() function, 15, 223, 326, 643

password [new password], mysqladmin, 602

—password switch

MySQL Command-Line Interface, 138–139

mysqlcheck, 352

mysqldump, 599

mysqlhotcopy, 340

—password= switch

mysql, 597

mysqladmin, 601

mysqlshow, 600

mysqltest, 606

password variable, MySQL Command-Line

Interface, 144

pattern of attack, 6

payment information, tracking with customer

database, 5

percent (%), 13, 100–101, 180, 199, 211

PERIOD_ADD() function, 15, 203, 206

PERIOD_DIFF() function, 15, 203, 206

Perl Database Interface (DBI)

API, 12, 18, 25

bind_param() method, 415–416

connect() method, 404–405

connecting to database, 404–409

database driver, 393

database handle, 403

disconnect() method, 409

disconnecting from database, 409

do() method, 415–416

driver handle, 403

dump_results() method, 420–423

err() method, 413–414

error handling, 410–413

error status methods, 413–414

errstr() method, 413–414

execute() method, 415–416

fetchall_arrayref function, 417

fetchrow() function, 417

fetchrow_array() function, 417–418

fetchrow_arrayref() function, 417–419

fetchrow_hashref() function, 417–419

finish() method, 423

Continued

4932-4 Index.F 5/29/02 3:55 PM Page 677

678 Index ✦ P

Perl Database Interface (DBI) (continued)

installing, 394–397

object-oriented programming, 402–403

prepare() method, 415–416

quote() method, 423–424

statement handle, 404

perldoc command, 338

permission

granting to user, 97–98

viewing with SHOW FULL COLUMNS command, 174

writing into directory, 266

pervasive use of databases, 3

PHP

API, 12, 18, 25

basic Web page example, 459–461

configuration settings, 463–465

connecting to MySQL, 467–468

cookie example, 482–491

functions, 465–467

inserting data, 472–473

installation, 449–451

Linux system, 452–459

obtaining software, 451–452

PHPMyAdmin, 29

phpMyAdmin, 168–169

selecting data, 468–472

user manager application example, 474–481

Web form example, 462–463

.php file extension, 456

phpinfo() function, 457

php.ini, 459, 463

physical design, database life cycle

importance of, 109, 124–125

indexing, 125–128

PI() function, 210–211

pico text editor, 70

ping function, mysqladmin, 258, 602

PIPES_AS_CONCAT mode, 609

Pluggable Authentication Module (PAM)

importance of, 550–551

installation, 551

obtaining software, 551–552

syntax, 552–553

testing, 553–555

plus sign (+), 205, 211

port scan, 308–309

—port= switch

mysql, 303

mysqladmin, 601

mysqlcheck, 352, 604

mysqld, 608

mysqldump, 599

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

port variable, MySQL Command-Line Interface, 144

—portmysql, 597

POSITION() string functions, 213, 219–220

possible_keys column, EXPLAIN command, 126, 387

—post= switch, mysqltest, 606

PostgreSQL

characteristics of, 10–11

compared to other database products, 19

Structure Query Language, implementation of, 8

pound sign (#), 456

-# switch

mysqlcheck, 352, 603

mysqlimport, 604

POW() function, 210

—prefix option, MySQL source installation, 49

prepare() method, Perl Database Interface, 415–416

primary key, 92, 119, 126–128

PRIMARY KEY index, 386

primary_keys column, EXPLAIN command, 126

—print-defaults switch, MySQL Command-Line

Interface, 141–143

PrintError attribute, 410–412

priority e-mail support, 22

priority login support, 23

problems, troubleshooting

extended-status function, mysqladmin, 380–382

FLUSH HOSTS statement, MySQL Command-Line

Interface, 382

FLUSH LOGS statement, MySQL Command-Line

Interface, 382

FLUSH PRIVILEGES statement, MySQL Command-

Line Interface, 382

FLUSH STATUS statement, MySQL Command-Line

Interface, 382

FLUSH TABLES statement, MySQL Command-Line

Interface, 382–383

flush-hosts function, mysqladmin, 379

flush-logs function, mysqladmin, 378

flush-privileges function, mysqladmin, 379

flush-status function, mysqladmin, 379

flush-tables function, mysqladmin, 379

flush-threads function, mysqladmin, 379

logfiles, 374–377

mysqlshow statement, 384–385

ping function, mysqladmin, 380

processlist function, mysqladmin, 380

refresh function, mysqladmin, 379

reload function, mysqladmin, 379

server performance, 373

4932-4 Index.F 5/29/02 3:55 PM Page 678

679Index ✦ P–R

SHOW PROCESSLIST statement, MySQL Command-

Line Interface, 382

SHOW STATUS statement, MySQL Command-Line

Interface, 382

SHOW VARIABLES statement, MySQL Command-

Line Interface, 382

status function, mysqladmin, 380

variables function, mysqladmin, 380

PROCESS privilege, 324

processlist, mysqladmin, 602

product search engine, e-commerce Web site example,

441–448

product table, 89

—program-prefix=PREFIX option, MySQL source

installation, 49

—program-suffix=SUFFIX option, MySQL source

installation, 49

PURGE MASTER LOGS TO option, MySQL master server

replication, 528

Python, 12, 25

Q
-q switch

myisamcheck, 361, 364

mysql, 597

mysqlcheck, 354, 604

mysqldump, 599

mysqlhotcopy, 339

mysqltest, 606

-Q switch, mysqldump, 599

QUARTER() function, 203, 204

query log, 374

query optimization, 388–389

query_buffer_size server variable, 284

question mark (?), 415

-? switch

mysql, 596

mysqladmin, 601

mysqlcheck, 352, 603

mysqld, 607

mysqlimport, 604

mysqltest, 606

Questions value, status function, 250

QUICK option, myisam-recover variable, 238

—quick switch

myisamcheck, 361, 364

mysql, 597

mysqlcheck, 354, 604

mysqldump, 265, 599

—quiet switch

MySQL source installation, 49

mysqlhotcopy, 339

mysqltest, 606

quit command, MySQL Command-Line Interface, 146

quote() method, Perl Database Interface, 423–424

—quote-names switch, mysqldump, 266, 599

R
-r switch

myisamcheck, 361

mysql, 597

mysqladmin, 601

mysqlcheck, 354, 604

mysqldump, 261, 599

mysqlimport, 276, 605

mysqltest, 606

-R switch, mysqltest, 606

RAID. See Redundant Array of Inexpensive Disks

RaiseError attribute, 410–412

rate group, telephone company customer database, 4

—raw switch, mysql, 597

rc.d directory, 35

rc.local script, 36

RDBMS. See Relational Database Management System

read_buffer_size variable, 362

README.configure, 459

—read-only switch, myisamcheck, 357

read-write access (rw), 468

REAL_AS_FLOAT mode, 609

—record switch, mysqltest, 606

record_buffer server variable, 284

—recover switch, myisamcheck, 361

Red Hat Linux system, 35

Red Hat Package Manager (RPM), 31

Redundant Array of Inexpensive Disks (RAID), 32

REFERENCES privilege, 324

referential integrity, 120

refresh function, mysqladmin, 255, 602

regexp operator, 15

REGEXP string functions, 213, 219

—regexp switch, mysqlhotcopy program, 347

Relational Database Management System (RDBMS),

21, 510

relationship, logical design phase, 112–113

—relative switch, mysqladmin, 601

RELEASE_LOCK() system function, 643

reload function, mysqladmin, 255, 602

RELOAD privilege, 324

Remote Authentication Dial-In Service (RADIUS)

importance, 561

Radiator, 561–562

rename statement extension, 16

rename table statement, 16

RENAME variable, ALTER TABLE statement, 99

—repair switch, mysqlcheck, 354, 604

REPAIR TABLE statement, 365, 622

4932-4 Index.F 5/29/02 3:55 PM Page 679

680 Index ✦ R–S

repair table statement, 16

repairing table, 354–356, 361–364

REPLACE() string functions, 213, 220–221

REPLACE keyword, LOAD DATA INFILE statement,

274–275

replace statement, 16

—replace switch, mysqlimport, 276, 605

replicate-do-db option, MySQL slave server

replication, 529

replicate-do-table option, MySQL slave server

replication, 529

replicate-ignore-db option, MySQL slave server

replication, 529

replicate-ignore-table option, MySQL slave

server replication, 529

replicate-rewrite-db option, MySQL slave server

replication, 529

replicate-wild-do-table option, MySQL slave

server replication, 529

replicate-wild-ignore-table option, MySQL slave

server replication, 529

replication

binary log, 526

configuration, 530–533

errors, 544

importance of, 525

kickstarting, 544–546

master server, 526

monitoring through Web, 540–543

monitoring with Perl, 537–540

multiple master replication, 534–537

multiple slave replication, 533

MySQL version, 527

pass-through slave replication, 537

planning, 525

security, 527

settings, 527–529

slave server, 526

stability of, 18

report-host option, MySQL slave server

replication, 529

report-port option, MySQL slave server

replication, 529

requirements analysis, database life cycle, 108

RESET MASTER option, MySQL master server

replication, 528, 620

RESET SLAVE option, MySQL slave server replication,

529, 544, 620

—resetmaster switch, mysqlhotcopy program, 348

—resetslave switch, mysqlhotcopy program, 348

RESTORE TABLE statement, 366–367, 623

—result-file= switch

mysqldump, 261, 599

mysqltest, 606

ResultSet object, Java Database Connectivity,

515, 518

return() function, PHP, 487

REVERSE() string functions, 213, 221

REVOKE statement, 98, 255, 330–331, 624

RLIKE() function, 219

ROLLBACK feature

Berkeley table, 245

InnoDB table, 242

root server administrator account

Linux, 44–45

Mac OS X, 73–74

resetting password, 334–335

Windows 2000, 54, 62–63

ROUND() function, 210, 212

row-level locking, 242

Rows value, SHOW TABLE STATUS statement, 176

RPAD() string functions, 213–214

RPM. See Red Hat Package Manager

.rpm extension, 31

rpm -i command, 47

RPM installation, 47–48

R-Tree index type, 19

RTRIM() string functions, 213–214

run-all-tests application, 294

rw. See read-write access

S
-S switch

mysql, 304, 597

mysqladmin, 601

mysqlcheck, 352, 604

mysqld, 609

mysqldump, 599

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

-s switch

myisamchk, 357

mysql, 597

MySQL Command-Line Interface, 147

mysqladmin, 601

mysqlcheck, 604

mysqlimport, 605

—safe-mode, mysqld, 609

safe_mysqld, 38

—safe-recover switch, myisamcheck, 361

4932-4 Index.F 5/29/02 3:55 PM Page 680

681Index ✦ S

—safe-show-database switch, mysqld, 609

—safe-updates switch, mysql, 597

—safe-user-create switch, mysqld, 609

—sbindir=DIR option, MySQL source installation, 49

SCI Irix, 12

SCO OpenServer, 12, 24

SECOND() function, 203, 205

Second Normal Form (2NF), 121

SEC_TO_TIME() function, 203, 207

Secure Socket Layer (SSL), 312

security

applying patches, 308

changing default MySQL port, 313–314

disabling DNS, 316

disabling unused programs, 308–310

dynamically monitoring Web pages, 316–322

firewall, 312

host server, 305–306

keeping up to date, 306–307

monitoring data, 315–316

non-privileged user, 311

passwords, 325–326

personal information, 5

Secure Socket Layer, 312

Security Focus Web site, 307

socket-based connection, 313

SELECT INTO OUTFILE statement, 271–273

SELECT privilege, 324

SELECT statement. See also date and time functions;

string functions

aliasing, 198

AS keyword, 198

from clause, 17

group by clause, 95, 227

grouping functions, 225

in clause, 20

join, 202

LIKE keyword, 199

limit clause, 95

MERGE table type, 240

MySQL updates, 310–311

mysql_num_rows function, PHP, 472

nesting functions, 201–202, 223–225

numerical functions, 210–212

order by clause, 95

syntax, 94, 197–198, 615–617

union, 202

where clause, 94–95, 199–200

wildcard, 199–200

semicolon (;), 88, 146

Sendmail

importing e-mail entries, 564–566

virtual e-mail database, 563

virtual services interface, 569

virtual users table, 562–563

Web interface, 566–568

Seq_in_index field, SHOW INDEX statement, 175

SERIALIZE mode, 609

server administrator account, Linux, 44–45

server status, checking with mysqladmin, 83–84

server variables

deciding which to change, 291–292

default settings, 285–290

importance of, 281–282

list of, 282–285

server-id option

MySQL master server replication, 528

MySQL slave server replication, 529

Services applet, Windows 2000, 56

set field type, 16

set operator (:=), 14

set option statement, 16

SET PASSWORD statement, 331–333

SET SQL_LOG_BIN option, MySQL master server

replication, 528

SET type, 651

setcookie() function, PHP, 486

setup files, 64

—set-variable switch

myisamcheck, 361

mysql, 597

mysqld, 608

mysqldump, 599

SGI Irix 6.x, 24

SHARE directory, 28

—sharedstatedir=DIR option, MySQL source

installation, 49

sharing customer database information with other

company, 3

SHOW BINLOG EVENTS option, MySQL master server

replication, 528

SHOW COLUMNS statement, 173

SHOW CREATE TABLE statement, 178–179

SHOW DATABASES statement, 172

SHOW FULL COLUMNS statement, 174

SHOW GRANTS statement, 177–178, 330

SHOW INDEX statement, 175

SHOW MASTER LOGS statement, 179, 528

SHOW MASTER STATUS statement, 179, 528

SHOW NEW MASTER statement, 529

SHOW OPEN TABLES statement, 173

SHOW PROCESSLIST statement, 177, 295

SHOW SLAVE STATUS statement, 179, 529, 535

SHOW statement

extension, 16

syntax, 100–102, 171–172, 620–621

SHOW STATUS statement, 177

SHOW TABLE STATUS statement, 176–177, 358–359

4932-4 Index.F 5/29/02 3:55 PM Page 681

682 Index ✦ S

SHOW TABLES statement, 173, 617

SHOW VARIABLE statement, 177, 281, 285–291

shutdown, MySQL server, 36–38

shutdown function, mysqladmin, 86, 259, 602

SHUTDOWN privilege, 324, 335

SIGN() function, 210

—silent switch

mysql, 597

MySQL Command-Line Interface, 147

MySQL source installation, 49

mysqladmin, 601

mysqlcheck, 604

mysqlimport, 605

mysqltest, 606

SIN() trigonometric function, 643

—skip-bdb parameter, 245

—skip-bdb switch, mysqld, 610

—skip-column-names switch, MySQL Command-Line

Interface, 144, 150, 596

—skip-concurrent-insert switch, mysqld, 609

—skip-delay-key-write switch, mysqld, 609

—skip-gemini option, NuSphere MySQL Advantage,

581, 590

—skip-grant-tables switch, MySQL Command-Line

Interface, 335

—skip-grant-tables switch, mysqld, 609

—skip-host-cache switch, mysqld, 609

—skip-line-numbers switch, mysql, 596

skip_locking server variable, 284

—skip-locking switch, mysqld, 609

—skip-name-resolve switch, mysqld, 316, 609

skip-networking option, my.cnf file, 41

—skip-networking switch, mysqld, 609

—skip-new switch, mysqld, 609

—skip-show-database switch, mysqld, 609

skip-slave-start option, MySQL slave server

replication, 529

—skip-stack-trace switch, mysqld, 609

—skip-thread-priority switch, mysqld, 609

Slackware Linux system, 36

Slashdot, 5

SLAVE START option, MySQL slave server

replication, 529

SLAVE STOP option, MySQL slave server replication,

529, 533

slave-read-timeout option, MySQL slave server

replication, 529

slave-skip-errors option, MySQL slave server

replication, 529

—sleep= switch

mysqladmin, 601

mysqltest, 606

Slow Queries value, status function, 250

slow query log, 374

slow_launch_time server variable, 285

SMALLINT type, 645

SMP. See Symmetric Multi-Processing

social security number, basic customer database

information, 4

socket, 41

—socket= switch

mysql, 304

mysql, 597

mysqladmin, 601

mysqlcheck, 352, 604

mysqld, 609

mysqldump, 599

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

socket variable, MySQL Command-Line Interface, 144

Solaris, 12, 24

sort_buffer server variable, 285

sort_buffer_size variable, 362

sort_key_blocks variable, 362

—sort-recover switch, myisamcheck, 361

source code, downloading, 12

source code installation, Linux environment

compiling, 51–52

configure options, 49

directory and file options, 49

features and add-on options, 50–51

reasons to use, 48

source code installation, Mac OS X, 75–76

source-code version, MySQL, 32

SPACE() string functions, 213, 216

SPARC, 12

SQL-92, 7

sql-bench directory, 291, 294

SQLException class, Java Database Connectivity, 517

—sql-mode= switch, mysqld, 609

sql_small_result statement extension, 16

—srcdir=DIR option, MySQL source installation, 49

ssh connection, 309

stability, MySQL, 18–19

stable version, 30

standard table types, 18

start-slave function, mysqladmin, 259, 602

startup, MySQL server

Linux environment, 35–36, 44

MacOS X, 69–92

Windows 2000, 56–58

startup parameters file, Mac OS X, 72

4932-4 Index.F 5/29/02 3:55 PM Page 682

683Index ✦ S–T

startup script file, Mac OS X, 70–71

StartupItems folder, Mac OS X, 70

state, basic customer database information, 4

State column, processlist function, 252

statement handle, Perl Database Interface, 404

statement operator, 627

static page, 428

status function, mysqladmin, 250

—status switch

mysqladmin, 602

mysqlshow, 600

std() statement extension, 16

STDOUT, 421

$sth variable, 415

S/390, 12

stop-slave function, mysqladmin, 259, 602

stored procedure, 17, 20

straight join statement extension, 16

STRCMP() string functions, 213, 217

string comparison, 17

string functions

ASCII(), 213

CHAR(), 213

CONCAT(), 213, 216

CONCAT_WS(), 213, 216

FIELD(), 213, 219–220

LCASE(), 213, 215

LENGTH(), 213, 221

LIKE, 213, 218

LOAD_FILE(), 213, 222

LPAD(), 213–214

LTRIM(), 213–214

POSITION(), 213, 219–220

REGEXP, 213, 219

REPLACE(), 213, 220–221

REVERSE(), 213, 221

RPAD(), 213–214

RTRIM(), 213–214

SPACE(), 213, 216

STRCMP(), 213, 217

TRIM(), 213–214

UCASE(), 213, 215

string operator, 628

Structured Query Language (SQL)

definition, 7

Oracle, 8–9

standard, 7

su command, 79

SUBDATE() function, 205

Sub_part field, SHOW INDEX statement, 175

subselect, 17, 20

sudo command, 77–78

—suffix switch, mysqlhotcopy program, 347

SUM() function, 225

Super-smack, 292

support, MySQL, 22–23

support-files directory, 38, 292, 296

symbolic link, creating, 46

Symmetric Multi-Processing (SMP), 24

—sysconfdir=DIR option, MySQL source

installation, 49

system function, 641–643

T
-T switch

myisamcheck, 354

mysql, 597

mysqldump, 266, 599

mysqltest, 606

-t switch

myisamcheck, 361

mysql, 597

mysqld, 609

mysqldump, 263, 599

mysqltest, 606

tab (\t), 267

—tab= switch, mysqldump, 266, 599

table

altering, 98–100, 185–190

creating, 89–92, 183–185

defragmenting, 387

deleting, 181–182

describing, 100–101

granting permission to access, 97–98

inserting data into, 92–93

naming, 16

optimization, 386–387

repairing, 354–356

selecting data from, 93–96

size, 18

updating data, 96–97

—table switch, mysql, 597

table types

BerkeleyDB, 245–246

determining types supported by server, 252

HEAP, 241–242

InnoDB, 242–245

ISAM, 240–241

MERGE, 240

MyISAM, 234–240

non-transactional, 232

overview, 90–91, 231–232

transactional, 232–233

table_cache server variable, 285

4932-4 Index.F 5/29/02 3:55 PM Page 683

684 Index ✦ T–U

—tables switch

mysqlcheck, 356, 604

mysqldump, 271, 599

TAN() trigonometric function, 643

tar command

binary installation, Linux, 45

binary installation, Mac OS X, 77

PHP installation, 452

source code installation, Linux, 48

TB. See terabyte

Tcl, 12, 25

TCO. See total cost of ownership

—tee= switch

mysql, 597

MySQL Command-Line Interface, 144, 149

telemarketer, 5

telephone company customer database, 4

telephone support, 23

temporary keyword, CREATE TABLE statement, 90

temporary statement extension, 16

—temp-pool switch, mysqld, 610

terabyte (TB), 18

testing MySQL, 79

test-select application, 294

TEXT field type, 16, 241

TEXT type, 650

Third Normal Form (3NF), 121

thread_cache_size server variable, 285

Threads column, status function, 250

thread_stack server variable, 285

time() function, PHP, 485

Time column, processlist function, 252

TIME type, 648–449

timeout, connection, 253

timestamp, 487

TIMESTAMP type, 648

TIME_TO_SEC() function, 203, 207

TINYBLOB type, 648–449

TINYINT type, 645

—tmpdir= switch

myisamcheck, 361

mysqld, 609

mysqlhotcopy program, 348

mysqltest, 606

tmp_table_size server variable, 285

TO_DAYS() function, 203, 207

to_days() function, 16

total cost of ownership (TCO), 9, 549

tracking visitor patterns, online store, 5

transactional table types, 17-18, 232–233

—transaction-isolation= option, NuSphere MySQL

Advantage, 581, 590

—transaction-isolation switch, mysqld, 610

transaction-safe table, 12

trigger, 17, 20

trigonomic math function, 643

TRIM() string functions, 16, 213–214

troubleshooting

extended-status function, mysqladmin, 380–382

FLUSH HOSTS statement, MySQL Command-Line

Interface, 382

FLUSH LOGS statement, MySQL Command-Line

Interface, 382

FLUSH PRIVILEGES statement, MySQL Command-

Line Interface, 382

FLUSH STATUS statement, MySQL Command-Line

Interface, 382

FLUSH TABLES statement, MySQL Command-Line

Interface, 382–383

flush-hosts function, mysqladmin, 379

flush-logs function, mysqladmin, 378

flush-privileges function, mysqladmin, 379

flush-status function, mysqladmin, 379

flush-tables function, mysqladmin, 379

flush-threads function, mysqladmin, 379

logfiles, 374–377

mysqlshow statement, 384–385

ping function, mysqladmin, 380

processlist function, mysqladmin, 380

refresh function, mysqladmin, 379

reload function, mysqladmin, 379

server performance, 373

SHOW PROCESSLIST statement, MySQL Command-

Line Interface, 382

SHOW STATUS statement, MySQL Command-Line

Interface, 382

SHOW VARIABLES statement, MySQL Command-

Line Interface, 382

status function, mysqladmin, 380

variables function, mysqladmin, 380

Tru64 Unix, 24

Typical installation type, 65

U
-U switch

myisamcheck, 354

mysql, 597

-u switch

myisamcheck, 361

mysql, 597

MySQL Command Line Interface, 137

mysqladmin, 258–259, 601

mysqlcheck, 352, 604

mysqld, 610

mysqlhotcopy, 339

mysqlimport, 605

4932-4 Index.F 5/29/02 3:55 PM Page 684

685Index ✦ U–V

mysqlshow, 600

mysqlshow statement, 384

mysqltest, 606

UCASE() string functions, 213, 215

unauthorized use, 305

—unbuffered, mysql, 596

uncompressing setup files, 64

undef, 406

underscore (_), 180, 200

UNION command

SELECT statement, 202

support, 17

syntax, 617

uniqueness constraint, logical design phase, 119–120

Unix socket, 41

UNIX_TIMESTAMP() function, 203, 207

UNLOCK TABLES statement, MySQL Command-Line

Interface, 383

—unpack switch, myisamcheck, 361

unsigned field attribute, 16

update logs, 374

UPDATE privilege, 324

UPDATE statement

changing password, 331–333

example, 228–229

MERGE table type, 240

syntax, 96–97, 228, 617–618

—update-state switch, myisamcheck, 357

Update_time value, SHOW TABLE STATUS
statement, 176

Uptime parameter, status function, 250

USE statement, 179, 269

user

adding, 327

deleting, 330

granting privileges, 327–330

managing, 327

revoking privileges, 330–331

USER() system function, 643

User column, processlist function, 251

user manager application example, 424–428

—user= switch

mysql, 597

mysqladmin, 601

mysqlcheck, 352, 604

mysqlhotcopy, 339

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

-user switch, mysqld, 610

user-preference database, 6

V
-V switch

mysql, 597

mysqladmin, 602

mysqlcheck, 352, 604

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

-v switch

myisamchk, 357

mysql, 597

mysqladmin, 602

mysqlcheck, 604

mysqld, 610

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

VALUE keyword, INSERT statement, 92–93

VARCHAR column type, 124, 235

VARCHAR type, 650

variable-length column type, 235

variables, mysqladmin, 602

—verbose switch

mysql, 597

mysqladmin, 602

mysqlcheck, 604

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

VERSION() function, 223, 257

VERSION() system function, 643

version numbering scheme, MySQL, 30

—version switch

mysql, 597

mysqladmin, 602

mysqlcheck, 352, 604

mysqld, 610

mysqlimport, 605

mysqlshow, 600

mysqltest, 606

versions, MySQL, 11–12

—vertical switch

mysql, 596

MySQL Command-Line Interface, 148

mysqladmin, 601

vi editor, 126

view, 17, 19

<Virtual> directive, 458

Visual C++, 53

volatile-memory table type, 235, 241

4932-4 Index.F 5/29/02 3:55 PM Page 685

686 Index ✦ W–Z

W
-W, switch mysqld, 610

-w switch

mysql, 597

mysqladmin, 602

mysqldump, 262, 600

—wait switch

myisamchk, 357

mysql, 597

mysqladmin=, 602

wait_timeout server variable, 285

-warnings, mysqld, 610

wasNULL() method, Java Database Connectivity, 517

Web applications, speed of, 18

Web page

Common Gateway Interface program, 428

creating with scripts, 319–322

input form example, 431–434

static Web page example, 429–431

WEEK() function, 203–204

WEEKDAY() function, 16, 203–204

where clause, SELECT statement, 94–95, 199–200

—where switch, mysqldump, 262, 600

wildcard

asterisk (*), 95

percent (%), 100–101, 180, 199

underscore (_), 180, 200

Windows 2000

root server administrator account, 54, 62–63

setting command-line options, 58–62

startup, MySQL server, 56–58

WinMySQLAdmin tool, 53–56

Windows 95/98/NT/2000

availability, 24

executables, 32–33

MySQL versions, 11

winmysqladmin, 54

WinMySQLAdmin tool, 33

WINNT directory, 33

—with-berkeley-db[=DIR] option, MySQL source

installation, 50

—with-berkeley-db-includes=DIR option, MySQL

source installation, 50

—with-berkeley-db-libs=DIR option, MySQL source

installation, 50

—with-charset=charset_name option, MySQL source

installation, 28, 50

—with-extra-charsets=charset option, MySQL

source installation, 28, 50

—with-gemini[=DIR] option, MySQL source

installation, 50

—with-innodb option, MySQL source installation, 50

—with-low-memory option, MySQL source

installation, 50

—with-mysqld-user=username option, MySQL source

installation, 50

—without-bench option, MySQL source

installation, 51

—without-debug option, MySQL source

installation, 50

—without-docs option, MySQL source installation, 51

—without-server option, MySQL source

installation, 50

—with-raid option, MySQL source installation, 50

—with-tcp-port=port-number option, MySQL source

installation, 50

—with-unix-socket-path=socket option, MySQL

source installation, 50

wrapper script, 38

write_buffer_size variable, 362

X
—x-includes=DIR option, MySQL source

installation, 51

—x-libraries=DIR option, MySQL source

installation, 51

Y
YEAR() function, 203–204

YEAR type, 648–449

Z
zerofill field attribute, 16

4932-4 Index.F 5/29/02 3:55 PM Page 686

[More information available at http://www.gnu.org/copyleft/gpl.html]

GNU General Public License
Version 2, June 1991

Copyright  1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom to

share and change free software—to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation’s software and to any

other program whose authors commit to using it. (Some other Free Software Foundation soft-

ware is covered by the GNU Library General Public License instead.) You can apply it to your

programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish), that you receive source code or can get it if

you want it, that you can change the software or use pieces of it in new free programs; and

that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. These restrictions translate to certain responsi-

bilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or

can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-

stands that there is no warranty for this free software. If the software is modified by someone

else and passed on, we want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in effect

making the program proprietary. To prevent this, we have made it clear that any patent must

be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

4932-4* GNU.F 5/29/02 3:55 PM Page 687

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by

the copyright holder saying it may be distributed under the terms of this General

Public License. The “Program”, below, refers to any such program or work, and a

“work based on the Program” means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modifications and/or translated into another language. (Hereinafter,

translation is included without limitation in the term “modification”.) Each licensee is

addressed as “you”.

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give

any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright

notice and a notice that there is no warranty (or else, saying that you provide a

warranty) and that users may redistribute the program under these conditions,

and telling the user how to view a copy of this License. (Exception: if the Program

itself is interactive but does not normally print such an announcement, your

work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of

that work are not derived from the Program, and can be reasonably considered inde-

pendent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

for other licensees extend to the entire whole, and thus to each and every part regard-

less of who wrote it.

4932-4* GNU.F 5/29/02 3:55 PM Page 688

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribu-

tion of derivative or collective works based on the Program. In addition, mere aggrega-

tion of another work not based on the Program with the Program (or with a work based

on the Program) on a volume of a storage or distribution medium does not bring the

other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source

distribution, a complete machine-readable copy of the corresponding source

code, to be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute

corresponding source code. (This alternative is allowed only for noncommercial

distribution and only if you received the program in object code or executable

form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-

tions to it. For an executable work, complete source code means all the source code for

all modules it contains, plus any associated interface definition files, plus the scripts

used to control compilation and installation of the executable. However, as a special

exception, the source code distributed need not include anything that is normally

distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a

designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such parties remain in full

compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its deriva-

tive works. These actions are prohibited by law if you do not accept this License.

Therefore, by modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and all its terms and

conditions for copying, distributing or modifying the Program or works based on it.

4932-4* GNU.F 5/29/02 3:55 PM Page 689

6. Each time you redistribute the Program (or any work based on the Program), the recip-

ient automatically receives a license from the original licensor to copy, distribute or

modify the Program subject to these terms and conditions. You may not impose any

further restrictions on the recipients’ exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License,

they do not excuse you from the conditions of this License. If you cannot distribute so

as to satisfy simultaneously your obligations under this License and any other perti-

nent obligations, then as a consequence you may not distribute the Program at all. For

example, if a patent license would not permit royalty-free redistribution of the Program

by all those who receive copies directly or indirectly through you, then the only way

you could satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-

cumstance, the balance of the section is intended to apply and the section as a whole is

intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the sole

purpose of protecting the integrity of the free software distribution system, which is

implemented by public license practices. Many people have made generous contribu-

tions to the wide range of software distributed through that system in reliance on con-

sistent application of that system; it is up to the author/donor to decide if he or she is

willing to distribute software through any other system and a licensee cannot impose

that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written in

the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a

version number of this License which applies to it and “any later version”, you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify a

version number of this License, you may choose any version ever published by the

Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are different, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the

two goals of preserving the free status of all derivatives of our free software and of

promoting the sharing and reuse of software generally.

4932-4* GNU.F 5/29/02 3:55 PM Page 690

No Warranty
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL

NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-

ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

4932-4* GNU.F 5/29/02 3:55 PM Page 691

4932-4* GNU.F 5/29/02 3:55 PM Page 692

SUEHRING

If MySQL can do it, you can do it too . . .
MySQL is the leading open source relational database management system. It’s powerful, it’s stable, and best
of all, it’s free. Covering everything from RDBMS basics to advanced topics such as replication, database veteran
Steve Suehring shows you how to put together and maintain your own MySQL database system. Whether
you’re a database newcomer who needs help with the command line interface, an administrator who wants tips
on security and performance tuning, or a developer looking for the lowdown on building MySQL-enabled Perl,
PHP, Java, and ODBC applications, this is the only guide you need to harness the power of MySQL.

Inside, you’ll find complete coverage of MySQL
• Install MySQL on a Linux, Windows, or Mac system

• Get the scoop on database design

• Take control of MySQL using the command line interface

• Configure MySQL for any sized system and implement security

• Debug databases and servers and tune performance

• Build applications using Perl, PHP, and ODBC

• Find out how to handle MySQL replication

• Integrate Linux services with PAM-MySQL/NSS-MySQL

• Harness NuSphere enhancements to MySQL

• Use phpMyAdmin for MySQL administration through the Web

Shelving Category:
Database

Reader Level:
Beginning to Advanced

System Requirements:
PC with a Pentium processor running
120 MHz or faster. Linux/Unix or Windows
9X, NT, XP, 2000, Macintosh running Mac OSX.
See About the CD appendix for details. ISBN 0-7645-4932-4

$49.99 USA
$74.99 Canada
£38.99 UK incl. VAT

M
ySQ

L
M

ySQ
L

Master the
leading open source
relational database
management system

Tune performance
and security on
database servers

Build MySQL
database applications
using Perl, PHP, Java,
and ODBC

MySQL

Steve Suehring

“The MySQL Bible introduces the essential concepts and
skills you’ll need to get started with MySQL.”

— Jeremy Zawodny, Senior Editor of Linux Magazine
and the MySQL database expert at Yahoo! Finance

,!7IA7G4-fejdci!:p;o;t;T;T
Sample code
on CD-ROM

BONUS
CD-ROM!
Perl, sample code
from the book, and more

w w w . w i l e y . c o m / c o m p b o o k s

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Fine-tune
control of
data entry
and tailor
special
reports for
your needs

Bonus CD-ROM MySQL
Bible

Perfect Bind • Trim: 7 3/8 x 9 1/4 •
• 4 color process • Yellow prints 110y 15m • + spot varnish (see spot varnish pdf) • Matte laminate

*85555-BAHGIh

100%
C O M P R E H E N S I V E

™™

™™

• Sample code from the book
• Perl DBI
• PHP and phpMyAdmin
• Apache

Configure powerful custom
options for administrators and users

4932-4 Cover 5/20/02 10:56 AM Page 1

	MySQL™ Bible
	About the Author
	Credits
	Preface
	Why I Wrote This Book
	What You Need to Know
	What You Need to Have
	What the Icons Mean
	How This Book Is Organized
	Part I: Getting Started
	Part II: SQL Essentials
	Part III: Administration
	Part IV: Development
	Part V: Advanced Performance
	Part VI: Appendixes

	About the Companion CD-ROM
	How to Use This Book
	Talk To Me

	Acknowledgments
	Contents at a Glance
	Contents
	PART I: Getting Started
	Chapter 1: Relational Database Management
	Applications for Databases
	Customer databases
	Internet service providers' databases
	Criminology and databases
	Advantages of using databases

	Comparing SQL Implementations
	Oracle
	Microsoft SQL Server
	PostgreSQL
	Informix

	Introducing MySQL
	MySQL versions and features
	Standards and compatibility
	MySQL-specific properties
	What MySQL Does Best
	What MySQL Can't Do – Quite Yet

	Summary

	Chapter 2: Preparing for Installation
	Prerequisites for MySQL
	Licensing
	Support
	Operating system and architecture
	Development
	Existing data
	Default language and character set
	Management

	Where to Obtain MySQL
	Overview of MySQL Versions
	MySQL numbering scheme
	Binary versions of MySQL
	Source-code versions of MySQL
	MySQL for Windows
	MySQL for Mac OS X

	Summary

	Chapter 3: Linux Installation
	Common Binary, RPM, and Source MySQL Installation Tasks
	MySQL server startup and shutdown
	Common command-line options for mysqld
	Creating default databases and completing installation
	Setting an administrator password for MySQL

	MySQL Linux Binary Installation
	MySQL Linux RPM Installation
	MySQL Linux Source Installation
	Choosing Options for MySQL
	Compiling MySQL

	Summary

	Chapter 4: Windows Installation
	Tasks Common to Binary and Source MySQL Installation
	MySQL server administration the Windows way
	MySQL server startup and shutdown
	Common command-line options for mysqld
	Setting an Administrator password for MySQL

	Installing MySQL on Windows 2000
	Summary

	Chapter 5: Macintosh Installation
	Binary and Source-Code MySQL Installation in Mac OS X: Tasks in Common
	Setting up MySQL to start automatically
	Shutting down MySQL Server
	Setting an administrator password for MySQL

	Installing MySQL With Mac OS X Server
	Installing MySQL Binary on Mac OS X
	Installing MySQL Source Code on Mac OS X
	Creating the MySQL User
	Compiling MySQL
	Configuring MySQL
	Testing MySQL

	Summary

	Chapter 6: Starting MySQL
	MySQL Server Administration and Security
	Using mysqladmin
	Setting the root password
	Checking MySQL server status
	Dealing with inactive connections
	Shut down the server
	Basic MySQL security

	Frequently Used MySQL Database Functions
	Creating a database
	Creating tables
	Inserting and updating data
	Preparing a new user for access to the database

	Summary

	Chapter 7: Database Concepts and Design
	Concepts of Databases
	What is data?
	What is a database?
	Why use a Database?
	How are databases used?

	Database Design
	The Database Life Cycle

	Logical Design
	Entities and attributes
	Relationships
	Entity-relationship diagrams
	Analysis of diagrams
	Constraints
	Normalization
	Data Definition Language and Data Markup Language
	Producing the SQL

	Physical Design and Implementation
	Indexing
	Implementation

	Summary

	PART II: SQL Essentials
	Chapter 8: Command Line Interface (CLI)
	Introducing the CLI
	Starting the CLI – the Basics
	Specifying the username
	Specifying the password
	Specifying the host
	Specifying the database

	MySQL CLI Environment Variables
	Determining and changing default variables

	Using the CLI in Interactive Mode
	Speeding startup of the CLI
	Making the CLI quieter
	Using a pager to work with larger amounts of data
	Displaying query results vertically
	Using tee to save output
	Printing output in HTML format
	Suppressing column names
	Using batch mode to produce tab delimited output

	Using the CLI in Non-Interactive Mode
	Executing a statement
	Printing HTML output
	Suppressing column names
	Printing results vertically
	Using batch mode to produce tab-delimited output

	Creating a Useful MySQL CLI Environment
	A basic MySQL CLI configuration
	A MySQL administration configuration
	A client-only MySQL CLI configuration
	Your MySQL CLI configuration

	Common CLI Errors
	Access Denied errors

	Alternatives to the CLI
	The basics of MySQLGUI
	Running SQL statements with MySQLGUI
	Administration with MySQLGUI
	The basics of phpMyAdmin
	Running SQL statements with phpMyAdmin
	Administration with phpMyAdmin

	Summary

	Chapter 9: SQL According to MySQL
	Utility and Administrative Statements and Commands
	SHOW statements
	USE/CONNECT
	DESCRIBE
	KILL
	OPTIMIZE TABLE <tablename>

	Data Definition Language
	Deleting tables
	Deleting and creating databases
	Creating tables
	Altering tables

	Data Markup Language
	Inserting data into the database with INSERT
	Gathering data with SELECT
	Updating data with the UPDATE statement
	Delete

	Summary

	Chapter 10: Databases and Data
	Choosing the Right MySQL Table Type
	MySQL table types
	MyISAM
	MERGE
	ISAM
	HEAP
	InnoDB
	BerkeleyDB

	Administering Your Database with mysqladmin
	Common switches
	Special switches
	Functions with mysqladmin

	Exporting Data
	mysqldump
	SELECT INTO OUTFILE

	Importing Data
	CLI
	LOAD DATA INFILE
	mysqlimport

	Summary

	PART III: Administration
	Chapter 11: Server Configurations
	MySQL Server Variables
	Viewing current server variables

	MySQL Benchmarking and Testing
	Requirements for the applications
	Running the tests

	Sample Configuration Files
	Examination of the sample configuration files

	Developing your own configuration file
	Bringing it all together

	Running More Than One MySQL Server on the Same Machine
	Configuration of multiple MySQL servers
	Connecting to multiple MySQL servers

	Summary

	Chapter 12: Security
	Security of the MySQL Host Server
	Locating security information
	Apply patches and fixes
	Disable unused programs and services

	MySQL Software Security
	MySQL updates
	Run the server as a non-privileged user
	Firewalling the MySQL server
	Communicating securely with the MySQL server
	Using socket-based connections
	Changing the MySQL default port
	Monitoring data sent to MySQL
	Disabling DNS
	Dynamic MySQL monitoring of Web pages

	MySQL Authentication and Privileges
	Overview of MySQL authentication
	MySQL privileges
	Security of passwords
	MySQL passwords

	MySQL User Management
	Adding users and granting privileges
	Deleting users and revoking privileges
	Changing passwords and other parameters

	Common Problems
	Access denied
	Oops, I forgot the root password

	Summary

	Chapter 13: Debugging and Repairing Databases
	Performing Database Backups
	mysqlhotcopy
	mysqldump
	BACKUP TABLE

	Troubleshooting and Repairing Table Problems
	mysqlcheck
	myisamchk
	ANALYZE TABLE
	OPTIMIZE TABLE
	CHECK TABLE
	REPAIR TABLE

	Restoring a MySQL Database
	mysqlhotcopy
	RESTORE TABLE
	The MySQL CLI

	Devising a Plan for Database Backups
	Summary

	Chapter 14: Performance Tuning
	Troubleshooting Servers
	MySQL logfiles
	Troubleshooting and performance functions with mysqladmin
	MySQL CLI troubleshooting and performance functions
	mysqlshow

	Optimizing Databases and Tables
	Optimizing Queries
	Summary

	PART IV: Development
	Chapter 15: Perl Development
	Installing the Perl DBI And MySQL DBD
	Where to get the DBI and DBD
	Installing the DBI
	Installing the MySQL DBD

	Introducing the DBI
	Basic DBI Usage
	Connecting to and disconnecting from the database with the DBI
	Handling errors with the DBI

	Functions with the DBI
	Building Basic Applications
	MySQL User Manager

	Building Web Pages with the DBI
	A simple Web application to query MySQL
	Accepting input from a form

	Producing an E-Commerce Web site
	Database layout
	Building an inventory-input program
	Building a simple product search engine
	Present and future expansion

	Summary

	Chapter 16: PHP Development
	PHP Installation
	What you need for installation
	Where to get the software
	Installing PHP on a Linux system

	Brass Tacks: PHP Essentials
	A PHP Web page
	PHP and forms

	PHP MySQL Configuration
	Configuration settings

	PHP MySQL Functions
	The functions
	Connecting to MySQL with PHP
	Selecting data from a MySQL database
	Inserting and updating data in MySQL

	Building MySQL-Enabled Applications With PHP
	A PHP version of the user manager
	Cookies with no milk

	Summary

	Chapter 17: ODBC/JDBC
	An Introduction to MyODBC
	Where to get MyODBC
	Installing MyODBC
	Changing MyODBC Options

	Using MyODBC
	Importing MySQL data into Microsoft Access
	Importing data into Microsoft Word

	An Introduction to JDBC
	The JDBC interface
	Where to get the JDBC and MySQL JDBC Driver
	Installing the MySQL JDBC Driver

	Using the JDBC and the MySQL Driver
	The concepts and terms of JDBC
	The basics of handling statements and results
	Database metadata
	Working with JDBC errors
	Testing for NULL values
	Cached connections
	Connecting to MySQL with the JDBC API and MySQL Driver
	Creating a basic MySQL JDBC Program

	Summary

	PART V: Advanced Performance
	Chapter 18: Replication
	Planning and Preparing for Replication
	Considerations for replication
	MySQL server versions
	Security

	Configuring Replication
	Replication variables and settings
	A basic replication configuration
	Multiple slave replication
	Multiple master replication
	Pass-through slave replication

	Monitoring Replication
	Monitoring replication with Perl
	Monitoring replication through the Web

	Kick-starting Replication
	When good replication goes bad
	Kick-starting replication revealed

	Summary

	Chapter 19: Integration of Internet Services
	PAM and NSS User Authentication in MySQL
	Installing PAM-MySQL
	PAM-MySQL syntax
	Testing PAM-MySQL
	Installing NSS-MySQL
	Configuration of NSS-MySQL

	DNS Management with MySQL
	Creating a DNS management interface

	MySQL and RADIUS Integration
	A closer look at Radiator

	E-Mail Integration and Management with MySQL
	Building a virtual users table for Sendmail
	A virtual e-mail database
	Importing existing virtual e-mail entries
	A Web interface for virtual e-mail management

	Building a Full-Scale Virtual-Services Interface
	Summary

	Chapter 20: NuSphere Enhanced MySQL
	NuSphere MySQL Advantage: A Closer Look
	Gemini: A new table type
	NuSphere integration with popular software
	NuSphere management tools

	Installing NuSphere Pro Advantage on Linux
	The NuSphere installation process
	NuSphere administration
	Creating Gemini tables
	Gemini configuration options

	Installing NuSphere Pro Advantage on Windows 2000
	The NuSphere installation process
	NuSphere administration
	Creating Gemini tables
	Gemini configuration options

	Summary

	PART VI: Appendixes
	Appendix A: MySQL Application Reference
	A.1 Data-Access Applications
	mysql
	mysqldump
	mysqlshow

	A.2 Server-Administration Applications
	mysqladmin
	mysqlcheck
	mysqlimport
	mysqltest

	A.3 The mysqld Server Daemon

	Appendix B: Language Reference
	B.1 Data Definition Language and Data Markup Language
	ALTER TABLE
	CREATE DATABASE
	CREATE TABLE
	DESCRIBE
	DELETE FROM
	EXPLAIN SELECT
	HANDLER
	INSERT INTO
	SELECT
	SHOW TABLES
	UNION
	UPDATE

	B.2. Administrative Commands
	ANALYZE TABLE
	FLUSH
	KILL
	OPTIMIZE TABLE
	RESET
	SHOW

	B.3 Backup/Recovery Commands
	BACKUP TABLE
	CHECK TABLE
	REPAIR TABLE
	RESTORE TABLE

	B.4. User-Account Commands
	GRANT
	REVOKE

	Appendix C: Function and Operator Reference
	C.1. MySQL Operators
	Comparison operators
	Flow-control operators
	Logical operators
	Statement operators
	String operators

	C.2. MySQL Functions
	Binary math functions
	Date functions
	Decimal math functions
	Select operators
	String functions
	System functions
	Trigonometric math functions

	Appendix D: Datatype Reference
	D.1. Integer Datatypes
	BIGINT
	INT
	MEDIUMINT
	SMALLINT
	TINYINT

	D.2. Decimal Datatypes
	FLOAT
	DECIMAL
	DOUBLE

	D.3 Date Datatypes
	DATE
	DATETIME
	TIMESTAMP
	TIME
	YEAR

	D.4. STRING Datatypes
	BLOB
	CHAR
	TEXT
	VARCHAR

	D.5. Grouping Datatypes
	ENUM
	SET

	Appendix E: Glossary
	Appendix E: About the CD-ROM
	System Requirements
	What’s on the CD
	If You Have Problems

	Index
	GNU General Public License

