UNIX

Administration

A Comprehensive Sourcebook
for Effective Systems and
Network Management

BOZidar LEVi E€)CRC PRESS

UNIX Administration

Table of Contents

UNIX Administration—A Comprehensive Sourcebook for Effective Systems and Network

1= 1 T 1= 3 T 4 1
= = o - 3
Section I: UNIX AdminiStration.......c.ccceiiiimmiiinssinscsss s s sssss s s ssss s s s ssms s snsas 6
(O 0 F=T o] (=T gl I S PP RPP 6
.. 6

Chapter 1: UNIX — Introductory NOteS.......cccccmiiiiismmrrissens s s s s s s ssms s e 7
1.1 UNIX Operating SYSEM....cooeiiie et e e 7

1.2 User's VIew OFf UNDX ... et 9

1.3 The History Of UNIXttt e e e 10

1.3.1 Berkeley Standard Distribution — BSD UNIX........oouiiiiie e 10

1.3.2 System V Or ATT UNIX ..ottt 11

1.4 UNIX System and Network Administration.............ooceeeo i 15

1.4.1 System AdmiInistrator's JOD.........oouuiiiiii e 16

1.4.2 COMPULING POICIES. ...t 19

1.4.3 Administration GUIAEIINES.........cooi i e 22

1.4.4 1IN THIS BOOK ... e e 28

Chapter 2: The Unix Model — Selected TOPICS.......cocmrrirrmmrmisssmmrrnnssssrssssss s ssss s ssssssssssnns s 30
P2 I [g1 oo [e i o o FOU PSP PP PPR 30

2 | PP PPP S PPRP 30

P2 B 1 L= @ 1 =T €] 11 o N PR RR 31

2.2.2 File ProteCtion/File ACCESS.....uuiiiiiiiiiiee et 34

2.2.3 Access CoNntrol LiStS (ACLS)...cooiuuieieiiieie et 41

P | =T N o= F PP PRSP PPPPPP 45

2.3 Devices and Special DevViCe FileS......ouuiiiiiiiii e 49

2.3.1 Special File NAMES.......ooi i 50

2.3.2 Special File Creation.........ocuuiii e 50

2.4 PrOCESSES. ...ttt e neees 53

2.4.1 Process Parameters. ... 53

2.4.2 ProCess Life CYCIES.oui i e 55

2.4.3 Process HanaliNgooooiiiiiiiieeeee e 57

Chapter 3: UNIX Administration Starters..........ccccucciemiiniissnnnissr s 65
3.1 SUPEIUSEE AN USEIS....ciiiiiiiiii ittt ettt e s e e e e e e e e e e e neeas 65

3.1.1 BECOMING @ SUPEIUSEL.......eeeiiieiiiieee ettt e et e e e e e nae e e e neeas 65

3.1.2 Communicating With Other USErS...........uoiiiiiiiiieiie e 65

3.1.3 The SU COMMANG........oiiiiiiiiii e et e e e e e neeas 66

3.2 UNIX Online DOCUMENTALION.........eiiiiiiiiiee et 67

3.2.1 The Man COMMEANG.......ccoiiiiiii et e s e e e e e e e aneeas 67

3.2.2 The whatis Database.............oueiiiiiiiiii e 71

3.3 System INfOrMatioN........coo i e 72

3.3.1 System Status INfOrmMation..........c.eeoi e 72

3.3.2 Hardware INformation.............eeiiiiiiiiii e e e 74

3.4 Personal DOCUMENTALION.......ciiiiiiiitie et e e 78

3.5 Shell Script ProgramimMing.........o oot 79

5.1 UNDX USEE SNEIL. ..ot 80

Table of Contents
Chapter 3: UNIX Administration Starters

3.5.2 UNIX Shell SCHPES. .. utteiie ittt e 80
Chapter 4: System Startup and ShUtdOWN..........cciiriiiiic 87
4.1 INTrOAUCTONY NOTES...ceeiiiiiiie ettt e e e e e e e e e e r e e e e e e e e e e e eeas 87
4.2 SYSTEIM STAMTUP.eeeee ettt sttt e e e e e e e e nbe e e e e e anbeeeeeenneeeeeanns 88
4.2.1 The BoOtStrap Programi... ...t e e 88
4.2.2 The Kernel EXECULION ... 89
4.2.3 The Overall System Initialization...........cceeiiiiiiii e 90
4.2.4 SYStEM SHALES ... i 91
4.2.5 The Outlook of a Startup ProCeaUIe...........cooiiiiiiiiiiie e 92
4.2.6 INitialiZation SCHPLS. ... et 95
4.3 BSD INIAlIZALON....ceiiiieiiee e e e re e e 95
4.3.1 The BSD IC SCIIPES. .o eiieiie ittt e a e 95
4.3.2 BSD Initialization SEQUENCE.......coiuiiii e 96
4.4 System V INHIAlZation........ooeeiiii e 98
4.4.1 The Configuration File /etc/inittab...........c..oooiiiii e 98
4.4.2 System V rc Initialization SCrPLS......oiiiiiiiie e 101
4.4.3 BSD—Like INItialiZation........ccueeiiiiiiei e 105
4.5 ShULAOWN PrOCEAUIES.....coiiiiiii ettt e e e e nneeaeean 106
4.5.1 The BSD shutdown Command...........coocueiiiiiiiiieiiiiee e 107
4.5.2 The System V shutdown Command............coocueeiiiiiiiiiiiiiie e 108
4.5.3 AN EXAMIPIE ... 108
Chapter 5: UNIX Filesystem Management..........ccoomiiiinmmminnsnsnnssssss s s s sssssssssssssnns 109
5.1 Introduction to the UNIX FileSyStem........coov i 109
5.2 UNIX Filesystem Directory Organization..............ccueeeeiiiiiie e 110
5.2.1 BSD Filesystem Directory Organization.............oocueeieiiiieeeeniieee e 110
5.2.2 System V Filesystem Directory Organization.............ooccueeeeiiieeeiiniieee e 112
5.3 Mounting and Dismounting FileSyStemMS..........ccuuiiiiiiiiii e 114
5.3.1 Mounting @ FileSyStemL..........u e 114
5.3.2 Dismounting @ FileSYSIeML........ooi i 118
5.3.3 Automatic Filesystem MoOuUNTING.........ccuumiiiiiiieeee e 119
5.3.4 Removable Media Management............oeiiioiiiiiiiieeee e 120
5.4 Filesystem Configuration. ... e 120
5.4.1 BSD Filesystem Configuration File............coccuiiiiiiiiiie e 121
5.4.2 System V Filesystem Configuration File............coocueiiiiiiii e 122
5.4.3 AIX Filesystem Configuration File..........ccooiiiiii e 125
5.4.4 The Filesystem Status File........ocueiii e 127
5.5 A Few Other FileSyStem ISSUES......ccooiuiiiiiiiiee e 128
5.5.1 FIleSYSIEM TYPES....oeiiiiiiiiitee et a e 128
5.5.2 Swap Space — Paging and SWappiNg........ccuueueerueeieiniieiee e 130
5.5.3 Loopback Virtual FileSYStem........ccooi i 132
5.6 Managing Filesystem USage........ooiuiiiiiiiiieeeeie et 133
5.6.1 Display Filesystem Statistics: The df Command.............cccoiiiiiiiiiiii i 133
5.6.2 Report on Disk Usage: The du Command...........ccueeiiiiiiiiiiiieee e 135
5.6.3 Report on Disk Usage by Users: The quot Command..........ccccceeviiiieeiiiiienennnee. 138
5.6.4 Checking Filesystems: The fsck Command.............coooiiiiriiiiiieniniiiee e 138

Table of Contents

Chapter 6: UNIX Filesystem LayOuL........cccccouiiiiiniinssmemmmmimnnsssssssssnss 141
L I [g 0T [e o] o FE PSP PUPPPPPPI 141
6.2 Physical FileSystem LayOuUL.........ooo i 142

6.2.1 DISK PartiliONS........eeeiiiiiiiie e 142
6.2.2 FleSyStem SHUCIUIES.cooueiiie e 144
6.2.3 Filesystem Creation.............eii e 147
6.2.4 File Identification and AllOCALION.............ueiiiiiiiie e 148
6.2.5 Filesystem Performance ISSUES.........ocuuiii i 152
6.3 Logical FileSysStem LayOuUL.......ccooii it 154
6.3.1 Logical Volume Manager — AIX FIaVor.........coooiiiiii e 154
6.3.2 Logical Volume Manager — HP-UX Flavor...........c..oooiiiiiieeeeen 158
6.3.3 Logical Volume Manager — Solaris FIavor..........cc.ooooiiiiiiiiiiieee e 160
6.3.4 Redundant Array of Inexpensive Disks (RAID)..........coooeiiiiiiiiiieeiiiiiieeeeeeen 163
B.3.5 SNAPSNOL ... 163
6.3.6 Virtual UNDX FileSyStemL.........oeiiieeieee e 166
6.4 DiSK SPACE UPGrade......ccoiueiiiieiiiiie ettt ettt e e e e e s e e e nes 167

Chapter 7: User Account Management...........ccccuuuemiimmmnisssmnsssmnsssmnsssmsss s sssssssssssnssnses 169

7.1 USEIS QN0 GrOUPSueeeeeeiitiete e ettt ee e ettt e e ettt e e e et e e e e aabe e e e e asae e e e e asbeeeesansbeeeeanneeeeeannnes 169
7.1.1 Creation of USEr ACCOUNTS......ccoiiiiiieiiiee e 169
7.1.2 User Database — File /etC/passwd..........cooouiiiiiiiiieieieeeee e 170
7.1.3 Group Database — File /etC/group.........couaiiiiiiiiie e 172
7.1.4 Creating User HOmMe Dir€CtOries.....cooiuiiiiiiiiieie e 172
7.1.5 UNIX Login INtialization............ooeoooiiieeeeee e 173

7.2 Maintenance Of USer ACCOUNTS..........uuiiiiiiiieeeiiiiie e 177
7.2.1 Restricted USer ACCOUNTS.euiiiiiiiiiiiii et 178
7.2.2 Users and SeCONAAry GrOUPSueeeaueeeerruiieaeaatieeeeaiuteeeesassseeessssseessnsseeesssnees 178
7.2.3 AsSigNINg USEr PasSWOIS........cooiiiiiiiiiiiiei e 179
7.2.4 Standard UNIX Users and GrOUPS........ceeeeiuiieeeiiiieieeaiiee e ee e e sieeee e 179
7.2.5 RemoVving USer ACCOUNTS.uuiiiiiiiiiiiie ittt 180

7.3 DiISK QUOTAS. ...ttt ettt e ettt e e et e e e nb e e e e e nn e e e e e e nne e e e e nnnes 181
7.3.1 Managing Disk Usage by USers........cccuuuiiiiiiiiiiiieee e 181

74 ACCOUNTING. ..ttt e et e e e e e e e et e annnneeees 183
7.4.1 BSD ACCOUNTING ...ciiiitiiieiiitiie ettt e e e e e e nae e e e e 184
7.4.2 SyStemM V ACCOUNTING ...ceiiiiiiiie ettt e e e e 185
7.4.3 AIX—F1avored ACCOUNTING. ... uuurriieiiiiiiiiie ettt e e e e e e e 188

Chapter 8: UNIX System SeCUNItY.....cccurirrimiriiiinrinsimss s s s s sssss s s s ssms s s nnns 189

8.1 UNIX LiNes Of DEENSE......uueiiii e 189
8.1.1 PRYSICAl SECUIMEY. ..ttt e 189
8.1.2 PASSWOIGS. ...t a e 190
8.1.3 File PermiSSIONS.....cooiiiiiiiie e 190
8114 ENCIYPIION. .. 191
8.1.5 BaACKUPS. ..ttt a e 191

8.2 PaSSWOIT ISSUBScciiiiiitiie ettt e e e e e e s r e e e e e e e e ennnee s 192
8.2.1 Password ENCIYyPHION...........ueiieieeeee ettt e 192
8.2.2 ChoOSING @ PASSWOIT.........ueiiiiiiiiiie et 193
8.2.3 Setting Password RestriCliONS........ccoouiiiiiiiiii e 194
8.2.4 A Shadowed PasSWOI.........coouiiiiiiiiiiiee e 195

8.3 Secure Console and TermiNalS.........oo i 198

Table of Contents
Chapter 8: UNIX System Security

8.3.1 Traditional BSD APPrOACH.......coiuiiiiiiiiee e 199
8.3.2 The WheEel GrOUD ettt e e e 199
8.3.3 Secure Terminals — Other Approaches...........ooocueeiiiiiiiiiiiee e 199
8.4 Monitoring and Detecting Security Problems...........ccooiiiiii e 201
8.4.1 Important Files for System SeCUrity.........ccouiiiiiiiiii e 201
8.4.2 Monitoring System ACHVItIES.........ueiiiiiiiee e 203
8.4.3 Monitoring LOgin ATEMPTS.ceeiiiiiiiiee e 203
Chapter 9: UNIX Logging SUDSYSteML.........cciiiiimiiiiimnsiiness s s s s ssms s snnanns 205
9.1 The Concept of System LOGQiNg......ccouureeiiiiiiieiiiiee e 205
9.1.1 The Syslogd DaemON...........uuiiiiiieei i e 206
9.2 System Logging Configuration............c.uiei i 207
9.2.1 The Configuration File /etc/syslog.conf..........oooi i 207
9.2.2 Linux Logging ENhancementS.........ooeiiiiiiiiieeee e 211
9.2.3 The 10gger COMMANG.........uuuiieiiiiiie et e e e e e s be e e e e nne e e e e enns 212
9.2.4 Testing SyStem LOGQING.......ueeeaiuiiiaeiiitieeeeieee ettt e et e s e e e e e e nae e e e enees 212
9.3 AcCoUNTINg LOG FIlES.. .. e 214
9.3.1 The 1ast COMMANG........coiiiiiie e e 215
9.3.2 Limiting the Growth of LOg FileS.....ccoouiiiiiii e 215
Chapter 10: UNIX Printing.......coocmmiiimmmiinssinscssssssssssss s s sssss s sssss s s sssssssssssmss s sssssssssnssnnns 218
10.1 UNIX Printing SUDSYSTIEM......coiiiiiiii ettt 218
10.1.1 BSD Printing SUDSYSIEM.......ooiiiiiiie e 219
10.1.2 System V Printing SUDSYSIEML........oooiiiiiii e 222
10.2 Printing Subsystem Configuration.............cooiiiii e 226
10.2.1 BSD Printer Configuration and the Printer Capability Database...............c......... 226
10.2.2 System V Printer Configuration and the Printer Capability Database................. 234
10.2.3 AIX Printing FaCIlities........ooiiiiiiieeeee e 236
10.3 ADdING NEW PriNTErS.....ccoiieeeeee e e e e e 239
10.3.1 Adding @ New Local Printer.........ccoo e 239
10.3.2 Adding a New Remote Printer.........ooo e 242
10.4 UNIX Cross—Platform Printer SPOOliNgG........c..eeeiiiiiiiiiiiiie e 245
10.4.1 BSD and AIX CroSS—Printing..........couoiiuiiiiiiiiiiee e 245
10.4.2 Solaris and BSD CroSS—Printing.........cccuueieiiiiieiiiiie e 246
10.4.3 Third—Party Printer Spooling SyStemS.........ccueiiiiiiiii e 248

(0 1T T o) (=T B T 1= 0 1T - 1= 250
11.1 Terminal CharaCteriStCS........uoui i 250
11.1.1 BSD Terminal SUDSYSIEML......cooiiiiiiiie e 250
11.1.2 System V Terminal SUDSYSIEML........cooiiiiiii e 257
11.1.3 Terminal-Related Special Device Files..........cooiiiiiiiiiiiee e 264
11.1.4 Configuration Data SUMMAIY.........ooiiiiiiiiie e 264
11.2 The tset, tput, and stty COMMEANAS..........ooiiiiiiiii e 264
11.2.1 The tSet COMMANG........oii e 265
11.2.2 The tput COMMEANG.......eiiiiiiiii e e e 266
11.2.3 The sty COMMEANG.......ooiiiiiiii e e e 267
11.3 PSEUAOD TeIMINGAIS.....ciiiiiiiie et e e e e e e e e e e e e e 268
11.4 TerMINAI SEIVEIS...co ettt e st e e s e e e e e anreeaeaans 270

Table of Contents

Chapter 12: UNIX Backup and ReStore........cccccemimiiimmmmiismsrsnsess s s sssssmss s sssssss s snssnnns 272
12,1 INEFOAUCTION. ...t e aaaanns 272
L= I /=T = T USROS 273
12.2 Tape—-Related COMMANGS......cooiiiiiiii i nre e 274
12.2.1 The tar COMMEANG.........oiiiiiiiiii et e e e e 274
12.2.2 The CPIio COMMANG.......ooiiiiiiiii et e e nreea e 276
12.2.3 The dd COMMANG........eiiiiiiiiiii ettt e s enre e e e 277
12.2.4 The Mt COMMANG.......eiiiii e e e e e e s nreea e 278
12.2.5 Magnetic Tape Devices and Special Device Files..........cccceiiiiiiiiiiiiiiciiiiieeeee 279
12.3 Backing Up @ UNIX FileSYSIemL.....coooiiieeeeee e 280
12.3.1 Planning a Backup SChedUIe............cooouiiiiiiiiiiiie e 280
12.4 Backup and DUmMP COMMANGS........ccoiiuiiiiaiiiiie ettt e s ee e 282
12.4.1 The SVR3 and SVR4 backup Commands............cccuereiiiiiieiniiiee e 282
12.4.2 The fbackup COMMEANG.........ooiiiiiiiii e 284
12.4.3 The dump/ufsdump COMMANG........ccoiiiiiiiiiiee e 285
12.4.4 A FEW EXaMPIES.....ooiiiiiiiiieee e 288
12.5 Restoring Files from @ BaCKUP.......ooiiuiiiiiieeee e 291
12.5.1 The restore COMMEANGS.ueiiiiiiiie et a e 292
12.5.2 The frecover COMMANG..........oii i 295
12.5.3 Restoring Multiple Filesystems Archived on a Single Tape........ccccocceeeriiieeeenne 297
12.8 TAPE CONIIOL ...ttt e st e e s nne e e e e enneeaeeans 298
Chapter 13: Time-Related UNIX FacCilities........ccccruiirmmrminrsmrrinisss s sssssse s sssanns 301
13.1 Network Time DiStriDULION.......oeiiie e 301
13.1.1 The NTP D@EIMON....eiiiiiiiiiiiee et e e e e e e e e 301
13.1.2 The NTP Configuration File............ooi i 302
13.2 Periodic Program EXECULION.cooii it 307
13.2.1 The UNIX Cron Da@mON..........cuiiiiiiiiiiiiiie et 307
13.2.2 The Crontab Files........ooo i 309
13.2.3 The crontab COMMANG.........eeiiiiiiiie e e e 311
13.2.4 LINUX APPIOACK.......eiiieeieeee ittt e e e e e e e e 312
13.3 Programs Scheduled for a Specific TimMe.........ooi i 314
13.3.1 The UNDX @t ULty . ..o 315
13.4 BalCh PrOCESSING ...eeiiiiiiii e e e e e e 317
13.4.1 The UNIX batCh ULtyooooeeeiee e 317
Section II: Network AdminiStration........ccccuiiicimiiniissr s 319
(O] g F=T o] (T gl I SRR 319
.. 319
Chapter 14: Network Fundamentals..........cccoiicemiiniiimninn s s s sssanns 320
14.1 UNIX and NEetWOIKING. ..ottt e e e e e e e 320
14.2 COMPUEIET NEIWOIKS. ...ttt e e e e e e e snreeeeeans 320
14.2.1 Local Area Network (LAN).......eu oo 321
14.2.2 Wide Area NetWOork (WAN).......ui e 324
14.3 A TCOP/IP OVEIVIEW.......eiieiiiiiiee ettt ettt e e e e rne e e e s enneeaeeans 326
14.3.1 TCP/IP and the INterNet.........ooo oo 326
14.3.2 ISO OSI Reference Model..........cuuiiiiiiiieeee e 327
14.3.3 TCP/IP Protocol ArChiteCIUrE.........eeiiiiiiee e 329
14.4 TCP/IP Layers and ProtOCOIS.oiiiiiiiiiiiie et 331

Table of Contents

Chapter 14: Network Fundamentals

14.4.1 NetWOrk ACCESS LaYE ...t 331
14.4.2 Internet Layer and [P ProtoCol...........oooiiiiiiiii e 332
14.4.3 Transport Layer and TCP and UDP ProtoCoIS..........ccooieiiiieiiiieceie e 333
14.4.4 APPLICALION LAYEL.....eeeiiieeieiee ettt e 335
Chapter 15: TCP/IP NEIWOrK........ccuioiiiiemmiisniisssnnissnisss s ssssssssssssssssss s sss s sssssssasss s ssssssnssassnssnns 338
15.1 DAt DEIIVEIY......eeeeeeeeee et e e e e e e e e e e e e 338
15.1.1 IP AdAreSS ClasSES. .. .uuiiiiiiiiiiiiiiiee ettt e e s anreea e 338
15.1.2 Internet ROUTING......euiiiiiieeeee e 341
15.1.3 MURIPIEXING. c.. et e e e e e e e 345
15.2 Address Resolution (ARP)....... e 350
15.2.1 The arp COMMANG.........ooiiiiiiiie et e e e e nreea e 351
15.3 Remote Procedure Call (RPC)........oo e 352
15.3.1 The portmapper DaMON...........oeiiiiiiiiiieiie e 354
15.3.2 The /e1C/IPC File. .. 354
15.4 Configuring the Network INterface...........ooo e 355
15.4.1 The ifconfig CommMaNnd...........coooiiiiiiiiii e 356
15.4.2 The netstat ComMMaNd...........ooiiiiiiiiie e 357
15.5 SUPET INTEINEE SEIVEL ..o e 360
15.5.1 The inetd Da@mMON.......cooo e 360
15.5.2 Further Improvements and Development............oooiiiiiiiiiieeee e 362
Chapter 16: Domain Name SyStem........cccccciiiiiiemriiiimnisnssess s sssss s s s s sams s s sanns 367
16.1 NAMING CONCEPIS. ...ttt e e rbe e e e s enreeeeeans 367
16.1.1 Host Names and AdArESSES.......ueiiii it 367
16.1.2 Domain Name Service (DNS).........ooi i 368
16.1.3 Host Database Files.......coo i 371
16.2 UNIX Name Service — BIND.........oooiiiiie e 375
16.2.1 BIND CONfiguration.........coooueiiiiiiiie e 376
16.2.2 RESOIVEIS....cooiieee e e e e e e e e e 377
16.2.3 NAIME SEIVEIS......eiiiiiiiiie ettt e e e s e e s anreeaeen 380
16.3 ConfIQUING NAMEA........iiiiieii e e e e e e e nreeeeeans 382
16.3.1 BIND VErsion 4. X X oottt e e e e 383
16.3.2 BIND Version 8. K. X. ... ettt e e e e 389
16.4 USING NSIOOKUP. ...ttt e e e e e e e e e e e e e e e e e 397
16.4.1 The nslookup Interactive Mode............cocuiiiiiiiiiiii e 398
16.4.2 A Few Examples of nslookup Usage...........coooveiiiiiiiiiiiiiiiieeeee e 400
Chapter 17: Network Information Service (NIS).......ccccoiiiiiiiismmmmmmiinsssssnrsssssssssssssssssssssses 402
17.1 PUIPOSE @Nd CONCEPES. e iiiiiiee ettt e e e e s enreee e 402
17.2 NIS Paradigm.... ..ottt et e e e rnne e e e e e nneeeeaans 404
17.2.1 YP PrOCESSES. ... e e e e e e e e e 404
17.2.2 TOo Create an NIS SErVer........ooo e 406
17.2.3 To Create an NIS Client.........oo e 409
17.2.4 NIS DOMAIN NAIME.......eiiiiiiiiii ettt e e nreea e 409
17.2.5 Databases/NIS MaPsS......ccoouuiiiiiiiiie et 410
17.3 NIS MANAGEMENL......eeiie et e e e e s rne e e e e enreeeeeans 413
17.3.1 YP COMMEANGS ...ttt ettt e e e e e e e rne e e e e anreeaeaan 413
17.3.2 Updating NIS MapS.......ccoiiiiiiie et e e 415

Table of Contents

Chapter 17: Network Information Service (NIS)

17.3.3 TroubIESNOOTING. ... et 418
17.3.4 SECUNLY ISSUBSeiiiiiiiie ettt e e e 420
17.3.5 A FEW NIS StOMES ... 421
174 NIS VS, DNG et e e e e s nre e e eans 423
17.4.1 The /etc/nssWitCh.CONf Fil@......oooiiiie e 423
17.4.2 ONCE UPON @ TIMIB...iiiiiie ittt ettt e e s e e e e nreeaeaans 425
Chapter 18: Network File System (NFS)........ccccooiiiiimiiime s ssssssss s sssnnns 426
181 NFS OVEIVIBW......eie ettt e et e e s e et e e e e rnne e e e e anneeaeaans 426
18.1.1 NFS DABMONS. ... e a e 426
18.2 Exporting and Mounting Remote Filesystems............oooooiiiiiiiiieeeeeeeeeee 427
18.2.1 EXporting @ FileSYStem.. ... 427
18.2.2 Mounting Remote FileSyStemS.....ccooo i 432
18.3 AUTOMOUNTEN. ...ttt e e e e e e e e et e e e e e e e s e e e e e e e e e e aaanns 434
18.3.1 The AUTOMOUNT MaAPS....cci e 435
18.4 NFS — SECUNTY ISSUBS ...t 439
Chapter 19: UNIX Remote COMMANAS........ccesmmmisummmisnsmmssssmsssssssssmssssssssssssssssssssssssssssssssssssssnnes 440
1.1 UNDX r COMMANGS ...ttt e e s e e s rnne e e e e enreeeeeans 440
19.1.1 The rlogin COMMEANG......ccoiiiiiii e 441
19.1.2 The rep COMMEANG.......eiiiiiiiie et e e e e s anre e e e 441
19.1.3 The remsh (rsh) CoOmMMAaN...........uiiiiiiiiiie e 442
19.2 Securing the UNIX r CoOmMMAaNGS........ooueiiiiiiiiie et 443
19.2.1 The /etc/hostS.eqUIV File.........eeiiieeee e 444
19.2.2 The SHOME/.ThOSIS FilE.....ooeeeeeeeeeeeeeeeeeee et 444
19.2.3 Using UNIX r—Commands — An EXample..........cccoeiiiiiiiiiiiieeiee e 445
19.3 SECUIe SNEIl (SSH).....eeieiieee e e 446
19.3.1 SSH CONCEPL.....eeeeeee et e e e e e e anreeaeeans 447
19.3.2 SSH CoNfIQUIAtioN.......eeiii i 449
19.3.3 SSH Installation and User ACCESS SEIUD.....uuiiii it 452
19.3.4 SSH — VEISION 2.ttt e s e e e 455
Chapter 20: Electronic Mail..........c.cccviimimiimmiimiisnis s s s sss s nses 458
20.1 E—mail FUND@MENTAIS........oeoiiieiiie e 458
20.1.1 Simple Mail Transport Protocol (SMTP)........cooiiiiiiieieee e 461
20.1.2 The MTA Program Sendmalil...........cccuuuiiiiiiiiioiiii e 464
20.2 Sendmail ConfiIQUIatioN.........coiuiiiiiiiiee e e 470
20.2.1 The sendmail.Cf File.....cooueiiie e 470
20.2.2 Rulesets and Rewrite RUIES.........ooouiiiiiiieieeeee e 478
20.2.3 Creating the sendmail.Cf File........cooiiiiiii e 484
20.3 The Parsing of E—mail ADAreSSES.......ceuiiiiiiiiiiiiiiiee e 486
20.3.1 Rewriting an E—mail ADAress. ..o 486
20.3.2 PatterN MatChINGcceoo it e e e e e e 486
20.3.3 Address TranSfOrMatiON..........ooiii i e 488
20.4 Testing sendmail ConfiQUIatioN............oiiiiiiiii e 489
20.4.1 Testing ReWrite RUIES..........oi e 489
20.4.2 The sendmail =bt Command............ccuiiiiiiiii e 490
20.4.3 The Debugging LeVel ... 491
20.4.4 Checking the Mail QUEUE...........eiiiiiiee e 491

Table of Contents
Chapter 20: Electronic Mail

20.5 Mail USEI AQENIS. ...ttt e e e e e e e e e e e e e nnnne s 492
20.5.1 The Mail Program and .mailrC File...........oooiiiiiii e 492
20.5.2 POP @nd IMAP.......eeeiee et e e e 494

Chapter 21: UNIX NetWOrK SUPPOI.......ccc i iisiesss s s s s s s ssms s snnnnns 500

21.1 Common UNIX Network AppliCations........c.eeeie i 500
21100 TeINEL.c e e 500
P2 O - e I PRSPPI 502
P2 I G B T T SO P PRSPPI 507

21.2 HOSE CONNECHIVITY. ...t e e e e 509
21.2.1 The ping COMMEANG.cciiiiiiieiiiie e e e 509
21.2.2 The traceroute COMMEANG..........uuiiiiiiiiee e 511

Section lll: Supplemental UNIX TOPICS....ccccumiimimssssssmmmmmmmmmmsssssssssssssssssssssssssssssssssssssssnsssssssssssssns 513

(O g F=T o] (T gl I SRR PP 513

.. 513
Chapter 22: X WINAOW SYSteML......ccccciiiiiiemiriiismnssisssssssssssss s ssss s s sssss s s ssss s sssssmss s sssssssssssssnns 514

22.1 An Introduction to the X WIindow System.........oocuiiiiiiiiiiie e 514
22.1.1 The DesSign Of X1 T, et 514
22.1.2 The X Administration PhiloSOPNY...........oooviiiii e 517
22.1.3 WINAOW MaN@QEIS. ..o ittt e e e e e e 518

22.2 The X Display ManagersS.......cccouuiiiiiiiieie ettt 520
22.2.1 XAM/AHOGIN CONCEPLS.ueeeiieiiieie et e e e 521
22.2.2 xdm Configuration Files..........oiiiiii e 524
22.2.3 CDE Configuration Files.........oocueiiiiiiee e 531
22.2.4 Vendor-Specific X Flavors — a Configuration Example............ccccceiniiinennnn 539

22.3 Access Control and Security Of X171o 540
22.3.1 XDMOCP QUETIES. ... eeeeeuteeeeiie et eee ettt e e e e e e et e e e sneeeeeneeeaaneeeeenneeenes 540
22.3.2 The XaCCSS Fill...coe i 541
22.3.3 Other Access Control Mechanisms.........oocueeiiiiiii i 544

22.4 The User X ENVIFONMENT.coii et e e e e 547
22.4.1 Components of the xdm-Based User X Environment............ccccoevveeiiieeenneennn 547
22.4.2 Components of the CDE User X Environment...........ccccooiiiiiiii e 549
22.4.3 Window Manager Customizations..........cooouiiiiiiiiiiiiiee e 554
22.4.4 The Shell ENVIFONMENT........ooi e 557

22.5 MISCEIIANEOUS......coiiieiee ettt e e e e e e e e e e e e e e nnnen s 563
22.5.1 Other Startup Methods........coooiii e 563
22.5.2 A Permanent X11 InStallation..........ccuueiiiioiiio e 564
22.5.3 A Few X—Related Commands..........ccueeiiiiiiiiiiiiiee e 565

Chapter 23: Kernel Reconfiguration...........cccucccmiiniimmsnnisss s s s ssss s s sssssssssnssanns 567

23.1 Introduction to Kernel Reconfiguration.............oouiiiiiiiii e 567

23.2 Kernel Configuration Database............eeeiiiiiiiiiiiiee e 567

23.3 BSD-Like Kernel Configuration APProach............eeeeiiuiiiiiiiiieeeeriiee e 568
23.3.1 Basic Configuration ENtries.........oooo i 569
23.3.2 The BSD-Like Kernel Configuration Procedure............cccoiieeiiiiiiieiiiiieeeee 572
23.3.3 The config CoOmMMEANG.........ooiiiiiiiieie e 574

23.4 Other Flavored Kernel Reconfigurations.cueeioiiiiii e 575

viii

Table of Contents

Chapter 23: Kernel Reconfiguration

23.4.1 HP-UX 10.x Kernel Configuration.............ccueio i 575
23.4.2 Solaris 2.x Kernel Configuration............coouiiiiiii e 577
23.4.3 Linux Kernel Configuration...........coooiiiei i 583
Chapter 24: Modems and UUCHR............cccuimmmimmiissmissinsssnsssssss s ssssssssssssssssssssssssssssssssnses 590
P2 3 I o o [8 T 1o I (o TN 1Y, Fo o [=T o 4 1= 30 590
24.1.1 UNIX @Nd MOGEMIS ... neseennnnnes 591
24.2 UNIX MOAEM CONIIOL.....uiiiiiiiie ettt e e e e e s s e e e e e e e e e nnnnneees 592
24.2.1 Terminal Lines and Modem COntrol..........cceoeiiiiiiiiiiee e 592
24.2.2 Modem—Related UNIX Commands.coouuiiiiiiiiiiiiiieee e 593
24.3 Third—Party Communication SOftWare...........coooiiiiiiiiiiie e 595
P2 TR T O =T 1 | PRSP 595
24.4 IntroducCtion 10 UUGCP.........eiiiiie e e e e e e e e nees 601
24.4.1 HOW D0ES UUCP WOIK?......oeiiiieeeiieeieeeee ettt e e ee e 602
24.4.2 UUGCP VEISIONS....ciiiiieiiiiiiiiiiiieee e e e e ettt e e e e e e e s e e e e e e e s s ssnnssaneeeeeeeesasssnnneeeaaens 602
24.4.3 UUCP Chat—Transfer SESSION.......ccoiuuiiiiiiiiie e 603
24.5 UUCP Commands, Daemons, and Related ISSUES.............couuvueeeieiiiiiiiieeieee e, 604
24.5.1 The Major UUCP ComMMaNGS........ccooueiiiiiiiiiie it 604
24.5.2 The UUCP DaBmONS.........uuiiiiiieeeiieiiiiieiee e e e e e e e e e e e e e esnnseeeeee e e e e snsnsnnneeaaaens 607
24.5.3 The UUCP Spool Directories and Files..........cooiiiiiiiiiiiiiiie e 609
24.6 Configuring @ UUGCP LiNK.......oouuiiiiiie e 611
24.6.1 Serial Line—Related ISSUES........ccciiiiiiiiiiiiiee et 612
24.6.2 UUCP Configuration FileS........c.uiiiiiiiiee e 613
24.7 UUCP Access and Security Consideration.............coooiuiiieiiiiiiiiniiieee e 616
24.7.1 Additional Security in BNU UUCP..........ooo e 617
24.7.2 Additional Security in Version 2 UUCP...........coooiiiieee e 619
Chapter 25: INTranet..... ..o s s s e am e n e 621
P24 T I o oo [8 Te o] o I (o TN 10 (7= 0 = 621
25. 1.7 Intranet Vs, INTEIMEL 622
25.1.2 Intranet Design APPrOACK........cooi it 623
25.2 Intranet Front—ENd SErVICES........ccccuuiiiiiiie ettt a e e e e 625
25.2. 1 FIrEWAIIS. ... nnnnnnnnnnn 625
25.2.2 VIFUSWAIIS ... ennnnnnnnnnnnnes 631
25.2.3 PrOXY SEBIVEIS. ...eiiiiieie ettt e e s et e e e e nae e e e e nees 636
25.2.4 WED SEIVICES.....uueiiiiie e i ettt e e e e e e e et r e e e e e e e s s nnananeeeaaens 639
25.2.5 Other EXternal SEIVICES.......uuuiiiiiiiiiiieeiie ettt a e 644
25.3 INSide the INTran@t.......eeeeeeeeeeeeee e e e e e e e e e e eeees 646
25.3.1 Network Infrastructure and DesKtOPS.......ccuuuiiiiumiiiiriieeeeeeieie e 646
25.3.2 INtEINAI SEIVICES. ..ciiii i i it e e e e e e e e e s nnnaeeeeaaeas 647
25.3.3 Virtual Private Network (VPN)....cooo e 650
25.3.4 UNIX and Not-UNIX Platform Integration...........ccccoooiiieiiniiiniiniie e 653
Section IV: Case StUAIES. . ..ccccreerrrriiiiiissssmessrrssssssssssssss s s rsssssssssssss s s sssssssssnmsssssssssssssssnnnsnnnsssssssnn 656
(O] g F=T o] (T gl I SRR 656
.. 656

Table of Contents

Chapter 26: UNIX Installation...........cccceiiimiiinicmiinncssssnsse s s s snsnnns 657
26.1 INtrodUCTIOrY NOTES... ... a e e 657

26.2 UNIX Installation ProCeAUIES.......cueiiiiiieeiiiiiieeeeeeeeeeeeeeeeeeeee ettt e e e e e 657

26.2.1 HP—=UX INStallation.... ... 657

26.2.2 Solaris INStallation..........c.uuiiiiiie e 660

26.2.3 LiNUX INSTAllAtiON. ... e 667

26.3 Supplemental INStallations............oii i 670

26.3.1 Supplemental System SOftWare...........oooiiiiiiiiiiii e 671

26.3.2 PalCes. .. nnnnnnnn 677

Chapter 27: Upgrade DiSK SPacCe........cccurremrriirssmrmssismnsssssmssnns 681
P2 I Yo (o [g To J= T I]GPSO PP UPPP SRR 681

27.1.1 New Disk on the Solaris Platform...........cccoeeeiiiiiiie e 681

27.1.2 New Disk on the SUnOS Platform..........ccooveiiiiiiiiiiiiee e 683

27.1.3 New Disk on the HP—UX Platform....... ... 683

27.2 Logical Volume Manager Case StUAY.......uuuiiiiiiiiiieiiiiee e 687

27.2.1 LVM 0on the HP=UX Platform.. 687

27.2.2 LVM on the Solaris Platform..........ooociiiiiiiie e 689

Chapter 28: UNIX Emergency Situations.........cccciiiiimmmminsmsrinssess s s ssssssssssssss s sssssss s sssanns 692
28.1 INtrodUCTIOrY NOTES... ... e e e e e 692

P2t B2 Mo] e o) Bl = (ST o] o 692

28.2.1 Solaris and Lost ROOt PasSWOrd..........ccooiiiiiiiiiiiiieiceeeeee e 692

28.2.2 HP-UX and Lost Root Password............ccoooiiiiiiiiieeeeeee e 693

28.3 Some Special Administrative Situations...........cocueiiiiiiiii e 694

28.3.1 Solaris Procedure to Create an Alternate Boot Partition............ccccceeiviiiinennne. 694

28.3.2 Solaris Recovery of the Failed Mirrored Boot Disk............cccceeiiiiiiiiiniiiiieeee 699

28.3.3 HP—=UX Support Disk USAQE........cceiiiiiiiiiiiiiie et 702

28.3.4 HP-UX Procedure to Synchronize a Mirrored Logical Volume.............c..c........ 704

28.3.5 HP-UX Support Tape and Recovery of ROOt DiSK...........cccovuviveeeeeiieiiciiiiieeeen. 705

=3 Q0 1 (o 11 710
= G o 0 1= o == 713
=3 Q0] ST e =T o - T 714

UNIX Administration—A Comprehensive Sourcebook
for Effective Systems and Network Management

Bozidar Levi

CRC PRESS

Boca Raton London New York Washington, , D.C .
Library of Congress Cataloging-in—-Publication Data

Levi, Bozidar.

UNIX administration : a comprehensive sourcebook for effective systems and network management / by
Bozidar Levi.
p. cm. —— (Internet and data comunications series

Includes bibliographical references and index.

ISBN 0-8493-1351-1 (alk. paper)

1. Operating systems (Computers) 2. UNIX System V (Computer file) I. Title. Il. Series.
QA76.76.063 L4853 2002

005.4'82—dc21 2002017438
CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the
consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any information
storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC
Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at_ www.crcpress.com
Copyright © 2002 by CRC Press LLC

No claim to original U.S. Government works

International Standard Book Number 0-8493-1351-1
Library of Congress Card Number 2002017438

Printed in the United States of America1234567890
Printed on acid-free paper

About the Author

Dr. Bozidar Levi is an electronics engineer by education, a hardware designer and programmer by
evocation, and an UNIX administration expert by profession. He received his education at the
University of Belgrade, Yugoslavia, and was awarded B.S., M.S., and Ph.D. degrees in electronics
and computer science. Dr. Levi joined Belgrade's Pupin Institute and had a successful career path
from a junior associate to a top senior scientist, dealing with many challenging projects — mostly as
a project leader. A majority of the devices and equipment he designed are still operational
worldwide.

UNIX was a logical continuation of Dr. Levi's rich and extensive IT background. He has focused with
enthusiasm and strength on system and network administration issues. Again, Dr. Levi made a full
circle by working in academia (Hunter College of the City University of New York), in the financial
industry (New York Stock Exchange), retail industry (J. Crew), and currently the Internet (Linkshare
Corporation). Such a wide working range has resulted in accumulated administrative expertise and
experience.

Dr. Levi has also fully exercised his educational mission: first by teaching at the University of
Belgrade, and now at Columbia and New York University. His teaching has always been a rational
balance between theory and practice, with strong emphasis on reallife problems. Many of his former
students are employed as IT professionals in various industrial and non-industrial segments
nationwide. UNIX Administration: A Comprehensive Sourcebook for Effective Systems and Network
Management is an extended and updated version of his UNIX administration course syllabi, which
are appreciated and highly rated by his students. The book merges the required theoretical
background with the practical needs for a successful UNIX administration in almost any
environment.

Dr. Levi has also appeared as an author or co—author in more than 60 published and presented
articles and papers and has received several awards for excellence and achievement.

Preface

Unix Administration: A Comprehensive Sourcebook for Effective Systems and Network
Management attempts to make UNIX essential and network administrative topics more accessible
to a wide audience, including both academic and professional users. The selected book title fully
reflects this idea: to present UNIX administration in a comprehensive way and enable effective
systems and network management based on the presented text.

To achieve this goal, the book gives equal weight to UNIX systems and network concepts and their
practical implementations. During the many years that | have worked as a computer hardware
designer and programmer, and most recently as a UNIX administrator, | have tackled many
practical UNIX and network problems. Working for different employers, | faced real-life situations in
an academic environment, in the financial industry and the retail industry, and on the Internet. At the
same time, while teaching at New York University and Columbia University, | met many novices in
this field and learned an optimal and quick way to teach UNIX administration. This accumulated
knowledge and experience have helped me to select UNIX topics that are of the utmost relevance
to successful administration, and those topics served as the basis for this book. Some additional
UNIX topics, significant from a historical point of view, or necessary for an overall presentation of
UNIX administration, are also included. In concert, they create a logical and comprehensive text,
easy to read and follow. It is impossible to say that everything existing in the UNIX administration
arena is covered here — it would be impossible to put it all in a single book. However, the principal
and most important UNIX administrative topics that make a complete UNIX administration
environment and a sufficient base for overall UNIX management are fully explored.

UNIX was developed in two different environments: academic and industrial. Consequently, two
main UNIX platforms, Berkeley UNIX (also known as Berkeley Software Distribution — BSD UNIX)
and System V UNIX (also known as AT&T UNIX) have emerged. Both platforms have coexisted for
many years, continuing to develop and promote UNIX. Simultaneously, many vendors started to
develop their own UNIX flavors by trying to adopt the best from the two main platforms. Today we
see a number of vendorspecific UNIX flavors, all based on these two main platforms. In most cases,
it is even difficult to evaluate which platform is prevailing — each flavor is simply a hybrid of both
platforms, often bringing something new and specific to the UNIX market. However, upon looking
further at specific UNIX segments — for example, file system management, printing, accounting,
etc. — one is more easily able to describe them as mostly Berkeley-like, or System V-like.

Networking, which appeared later, at a time when UNIX had already developed into quite a mature
product, merged very efficiently into both UNIX platforms and virtually eliminated their differences in
the network area. The TCP/IP protocols became a network standard, while UNIX provided the main
underlying layer of core network services. The net effect was that UNIX network administration is
more or less uniform among many existing UNIX flavors, although far from identical. Differences in
kernels, available commands, and some other details do make a difference in some cases.

This book basically follows a historical UNIX path, i.e., it addresses UNIX administration with an eye
to the two main UNIX platforms, Berkeley and System V. For easier conceptual understanding of
administrative topics, Berkeley UNIX seems more convenient. This is probably the case, because it
was primarily developed in academia. By following that pattern for each individual UNIX topic, the
Berkeley platform is discussed first and afterward its System V counterpart. A practical
implementation of a specific UNIX topic is accomplished through many real-life examples from
different vendor-specific UNIX flavors. Now, at the start of a new millennium, Solaris, HP-UX,
Linux, and AIX and SGI IRIX are the most dominant flavors, and thus, this book mainly addresses
them. SunQOS, as a dominant UNIX flavor for many years, is also occasionally quoted, especially
because SunOS is a typical representive of Berkeley UNIX, and is still widely in use. In combination,

3

the book is an instrumental source of the information needed to learn UNIX administration and
efficiently perform the most essential and network-related UNIX administrative tasks.

This book presents a reliable UNIX administration reference book for practical UNIX
implementation. However, it could be easily used for educational purposes, as a textbook, due to its
education-related organization, conceptual clarifications, as well as an appropriate selection of
administrative topics. Not many books of this kind are on the market that are so diverse and detailed
oriented at the same time. Many practical examples and specific administrative procedures, logically
connected to theoretical issues, strongly support the educational significance of this book.

UNIX Administration Sourcebook started as handouts prepared for the course "UNIX System
Administration" at NYU's School of Continuous and Professional Studies and has been in full use
for quite some time with very encouraging feedback from students. During this time, a number of
text improvements and updates have been made, until this version was reached. UNIX is changing
continually (supposedly always better) and this text presents an up—to—date version organized in a
logical and comprehensive way. It can be easily used by beginners, as well as experienced
administrators.

There are many books related to UNIX systems and network administration, and they all contribute
to this complex arena in some way. This book contains elements that make it different from others:

e The comprehensive organization and presentation of the text

e The condensed explanation of concepts and their practical implementations

¢ The inclusion of both UNIX systems and network administration, in full detail

e The choice of crucial administrative topics and their full coverage

e The discussion of the most common UNIX flavors

e The text is self-sufficient for successful administration on a daily basis

e The coverage of all basic and many advanced UNIX administrative topics

e The coverage of X window system, a complex administrative topic almost always excluded
from UNIX administration books

e Up-to—date text with coverage of the latest main UNIX flavors and releases

e Usefulness as a reference book as well as a textbook

e A careful selection of relevant examples based on many years of professional experience in
this field

e And last but not least, many years use of the initial book text in a handout form
demonstrates high usability of the text by students and professionals.

The book consists of four parts: UNIX Administration, Network Administration, Supplemental UNIX
Topics, and Case Studies. A total of 82 figures fully support the existing text. Such an organization
is logical, comprehensive, and easy to read.

UNIX Administration covers essential UNIX administration and contains 13 chapters. The first three
chapters are an introduction to the UNIX operating system, an overview of a certain number of
selected UNIX topics important for the administration, and an overview of the UNIX administration
itself. The remaining chapters cover UNIX system startup and shutdown, detailed UNIX filesystem
management and layout, user account management and system security, logging and printing
subsystems, terminals, system backup and recovery, and time-related UNIX facilities. In
combination they provide sufficient material for a successful "out—of-network" UNIX administration,
which can also be called stand-alone UNIX administration.

Network Administration covers network-related UNIX administration and contains eight chapters.
The first two chapters present an introduction to networking and, more specifically, to TCP/IP

networks. Other chapters cover the main network services: domain name system (DNS), network
information system (NIS), network filesystem (NFS), UNIX remote commands and secure shell,
electronic mail, and the most common network applications such as telnet and ftp. Selected network
topics present core network services with which each networked UNIX system has to comply.

Supplemental UNIX Topics covers several more subjects, which, by implementing certain criteria,
make UNIX administration complete. These administrative topics are often handled separately, out
of basic UNIX administration. Four chapters include X window system, kernel reconfiguration,
modems and related UNIX facilities, and intranet technologies. X windowing, with its quite complex
administration, is almost always handled separately, as well as most of the advanced intranet
technologies.

Finally, Case Studies are presented in three chapters on subjects extremely important to practical
UNIX implementation: UNIX installation, disk space upgrade, and several emergency situations that
every UNIX administrator should expect to face at some point. Most administrators have
experienced a need to bypass a "forgotten root password," and while this routine bypassing task
varies among different flavors, the general hints presented can be helpful in any case.

Finally, | would like to point out that during many years of active UNIX administration, | was always
thinking how nice it would be to have a single book in front of me, which together with standard
UNIX online documentation (UNIX manual pages) would be sufficient for effective usual daily
systems and network management. This book is a response to that idea.

Dr. Bozidar Levi
New York City
October 2001

Section I: UNIX Administration

Chapter List

Chapter 1: UNIX — Introductory Notes
Chapter 2: The Unix Model — Selected Topics
Chapter 3: UNIX Administration Starters
Chapter 4: System Startup and Shutdown
Chapter 5: UNIX Filesystem Management
Chapter 6: UNIX Filesystem Layout
Chapter 7: User Account Management
Chapter 8: UNIX System Security
Chapter 9: UNIX Logging Subsystem
Chapter 10: UNIX Printing

Chapter 11: Terminals

Chapter 12: UNIX Backup and Restore
Chapter 13: Time—Related UNIX Facilities

Chapter 1: UNIX — Introductory Notes
1.1 UNIX Operating System

UNIX is a popular time-sharing operating system originally intended for program development and
document preparation, but later widely accepted for a number of implementations. UNIX is today's
most ubiquitous multi—user operating system, with no indication of any diminishment in the near
future. Today, when a period of several years represents the lifetime of many successful IT
products, UNIX is still considered the most stable and the most secure operating system on the
market, three decades after its appearance. Of course, during 30 years of existence UNIX has
changed a great deal, adapting to new requirements; it is hard to compare today's modern UNIX
flavors with initial (now obsolete) UNIX versions. In fact, these changes and adaptations are unique
to the UNIX operating system; no other operating system has so successfully evolved, time and
again, to meet modern needs. The concept and basic design of UNIX deserve the credit for this
remarkable longevity, as they provide the necessary flexibility for the permanent changes required
to make UNIX suitable for many new applications.

UNIX, like any other operating system, is an integrated collection of programs that act as links
between the computer system and its users, providing three primary functions:

1. Creating and managing a filesystem (sets of files stored in hierarchical-structured
directories)

2. Running programs

3. Using system devices attached to the computer

UNIX was written in the C computer language, with careful isolation and confinement of
machine—-dependent routines, so that it might be easily ported to different computer systems. As a
result, versions of UNIX were available for personal computers, workstations, minicomputers,
mainframes, and supercomputers. It is somewhat curious to note that portability was not a design
objective during UNIX development; rather, it came as a consequence of coding the system in a
higher—level language. Upon realizing the importance of portability, the designers of UNIX confined
hardware—-dependent code to a few modules within the kernel (coded in assembler) in order to
facilitate porting.

The kernel is the "core" of the UNIX operating system. It provides services such as a filesystem,
memory management, CPU scheduling, and device I/O for programs. Typically, the kernel interacts
directly with the underlying hardware; therefore, it must be adapted to the unique machine
architecture. However, there were some implementations of UNIX in which the kernel interacted
with another underlying system that in turn controlled the hardware. The kernel keeps track of who
is logged in, as well as the locations of all files; it also accepts and enables instruction executions
received from the shell as the output of interpreted commands. The kernel provides a limited
number (typically between 60 and 200) of direct entry points through which an active process can
obtain services from the kernel. These direct entry points are system calls (also known as UNIX
internals). The actual machine instructions required to invoke a system call, along with the method
used to pass arguments and results between the process and the kernel, vary from machine to
machine.

The machine—dependent parts of the kernel were cleverly isolated from the main kernel code and
were relatively easy to construct once their purpose had been defined. The machine-dependent
parts of the kernel include:

¢ L ow-level system initialization and bootstrap

e Fault, trap, interrupt, and exception handling

e Memory management: hardware address translation

e Low-level kernel/user mode process context switching
¢ |/O device drivers and device initialization code

The rest of the UNIX kernel is extremely transportable and is largely made up of the system call
interface from which application programs request services.

An early implementation of the UNIX kernel consisted of some 10,000 lines of C code and
approximately 1000 lines of assembler code. These figures represent some 5 to 10% of the total
UNIX code. When the original assembler version was recoded in C, the size and execution time of
the kernel increased by some 30%. UNIX designers reasoned that the benefits of coding the system
in a higher-level language far outweighed the resulting performance drawback. These benefits
included portability, higher programmer productivity, ease of maintenance, and the ability to use
complex algorithms to provide more sophisticated functions. Some of these algorithms could hardly
have been contemplated if they were to be coded in assembly language.

UNIX supports multiple users on suitable installations with efficient memory—management and the
appropriate communication interfaces. In addition to local users, log—in access and file transfer
between UNIX hosts are also granted to remote users in the network environment.

Virtually all aspects of device independence were implemented in UNIX. Files and I/O devices are
treated in a uniform way, by means of the same set of applicable system calls. As a result, 1/0
redirection and stream-level 1/O are fully supported at both the command-language and
system-call levels.

The basic UNIX philosophy, to process and treat different requests and objects in a uniform and
relatively simple way, is probably the key to its long life. In a fast—-changing environment in which
high—tech products become obsolete after a few years, UNIX is still in full operational stage, three
decades after its introduction. UNIX owes much of its longevity to its integration of useful building
blocks that are combinable according to current needs and preferences for the creation of more
complex tools. These basic UNIX blocks are usually simple, and they are designed to accomplish a
single function well. Numerous UNIX utilities, called filters, can be combined in remarkably flexible
ways by using the facilities provided by I/O redirection and pipes. This simple, building—block
approach is obviously more convenient than the alternative of providing complex utilities that are
often difficult to customize, and that are frequently incompatible with other utilities.

UNIX's hierarchical filesystem helps facilitate the sharing and cooperation among users that is so
desirable in program-development environment. A UNIX filesystem (or filesystem, as it has become
known) spans volume boundaries, virtually eliminating the need for volume awareness among its
users. This is especially convenient in time—sharing systems and in a network environment.

The major features of UNIX can be summarized as:

e Portability

e Multi-user operation

¢ Device independence

e Tools and tool-building utilities
e Hierarchical filesystem

1.2 User's View of UNIX

UNIX users interact with the system through a command-language interpreter called the shell. A
shell is actually what the user sees of the system; the rest of the operating system is essentially
hidden from the user's eyes. A UNIX shell (or shells, because there are different
command-interpreters) is also a programming language suitable for the construction of versatile
and powerful command files called shell scripts. The UNIX shell is written in the same way as any
user process, as opposed to being built into the kernel. When a user logs into the system, a copy of
the corresponding shell is invoked to handle interactions with the related user. Although the shell is
the standard system interface, it is possible to invoke any user—specific process to serve in place of
the shell for any specific user. This allows application—specific interfaces to coexist with the shell,
and thus provide quite different views and working environments for users of the same system.

All programs invoked within the shell start out with three predefined files, specified by corresponding
file descriptors. By default the three files are:

1. Standard input — normally assigned to the terminal (console) keyboard
2. Standard output — normally assigned to the terminal (console) display
3. Error output — normally assigned to the terminal (console) display

The shell fully supports:

e Redirection — Since I/O devices and files are treated the same way in UNIX, the shell treats
the two notions as files. From the user's viewpoint, it is easy to redefine file descriptors for
any program, and in that way replace attached standard input and output files; this is known
as redirection.

® Pipes — The standard output of one program can be used as standard input in another
program by means of pipes. Several programs can be connected via pipes to form a
pipeline. Redirection and piping are used to make UNIX utilities called filters, which are used
to perform complex compound functions.

e Concurrent execution of the user programs — Users may indicate their intention to invoke
several programs concurrently by placing their execution in the "background" (as opposed to
the single "foreground" program that requires full control of the display). This mode of
operation allows users to perform unrelated work while potentially lengthy operations are
being performed in the background on their behalf.

Since UNIX was primarily intended for program development, it offers several editors, compilers,
symbolic debuggers, and utilities. Other useful program development facilities of UNIX include a
general-purpose macro—processor, M4, that is language-independent, and the MAKE program,
which controls creation of other large programs. MAKE uses a control file (or description file) called
MAKEFILE, which specifies source file dependencies among the constituent modules of a program.
It identifies modules that are possibly out of date (by checking the last program update), recompiles
them, and links them into a new executable program.

A much more elaborate system for large programming projects, called Source Code Control
System — SCCS, is also available under UNIX. Although SCCS was designed to assist production
of complex programs, it can also be used to manage any collection of text files. SCCS basically
functions as a well-managed library of major and minor revisions of program modules. It keeps
track of all changes, the identity of the programmers, and other information. It provides utilities for
rolling back to any previous version, displaying complete or partial history of the changes made to a
module, validation of modules, and the like. A complex implementation of SCCS evolved into a
simpler version named Revision Control System — RCS, which is more suitable to manage text

9

files. RCS provides most of the SCCS functionality in a simpler and more user friendly way.

Users generally have restricted access to the UNIX filesystem; however, they are fully authorized in
their home directories, where they can create their own subdirectories and files. This
restricted—access approach is necessary to protect the system from intended and unintended
corruption, while still allowing users to have full control over their own programs.

Filesystem protection in UNIX is accomplished by assigning ownership for each file and directory
that is created. At creation, the access modes for the three access classes (user-owner,
group-owner, and others) are also specified. Within each access class, three separate permissions
are specified: for reading, writing, and execution of the file. Since everything in UNIX is a file (or is
file-like), this simple protection scheme is widely implemented throughout the whole operating
system, making UNIX security and protection very efficient.

Finally, UNIX is extremely well suited for networking. One of the reasons for UNIX's enormous
popularity and wide implementation lies in its inherent network-related characteristics. UNIX
facilitates most network functions in such a way that it can appear the network has been designed
expressly for the UNIX architecture. The truth is that UNIX and modern networks have been
developed independently, with UNIX preceding modern network architecture by a decade. The
reason UNIX handles networking so well is simple: UNIX's flexible internal organization and
structure allow an almost perfect union between the UNIX and network environments.

1.3 The History of UNIX

Ken Thompson (later joined by Dennis Ritchie) wrote the first version of UNIX at Bell Labs in the
late 1960s. Everything started with MULTICS (MULTiplexed Information and Computing System), at
that time the joint venture project between GE, AT&T Bell Laboratories, and MIT. The next phase
was the project UNICS (UNiplex Information and Computing System), which was created by some
of the people from the MULTICS project (Ken Thompson, Dennis Ritchie, and Rudd Canaday).
UNICS was an assembly language, single-user system for the DEC PDP-7, which at that time was
the most popular minicomputer. Soon the system had been enhanced to support two users. The
name UNICS was later changed to UNIX.

After a major rewriting in C and porting to the DEC PDP-11 family of computers, UNIX was made
available to users outside of AT&T. At the time, AT&T was banned from selling computing
equipment by the U.S. antitrust law, and so was forced to release UNIX practically for free.
Favorable licenses for educational institutions were instrumental in the adoption of UNIX by many
universities. Soon the mutual benefits for both the academic users and UNIX itself became obvious.
The leader was the University of Berkeley, which adopted UNIX and tailored it significantly. UNIX
also became commercially available from AT&T, together with several other variants of the system
provided by other vendors. Two versions of UNIX emerged as the main UNIX platforms, with a
number of "flavors" between them.

1.3.1 Berkeley Standard Distribution — BSD UNIX

BSD originated at the University of Berkeley in California and is also known as Berkeley UNIX.
Since the 1970's more BSD-based UNIX releases have been derived from version 4.3 BSD, which
for a long time was a dominant version in the university and engineering communities. At the same
time, the even older version of 4.2 BSD UNIX is still in use in some commercial implementations.
The evolution of BSD is illustrated in_Figure 1.1.

10

First Edition
(1969)

\ 4
Fifth Edition
(1973)
\ 4
Sixth Edition
(1976)
T v
1BSD
(1977)
Seventh Edition 2 BSD
(1 978) (1978)
v - v
3BSD
(1978-1979)
4.0 BSD
(1979-1980)
4.1 BSD
(1980—1981)

4.1a BSD
(1981-1982)

4.1c BSD
(1982-1983)

4.2 BSD
(1984)

43 BSD
(1987)

4.3 BSD Tahoe
(1988-1989)

4.4 BSD

Figure 1.1: The development of BSD UNIX.

Sunsoft (later Sun Microsystems) was most successful at bringing UNIX into the commercial world
with its SunOS, which was originally based on SVR4 UNIX, but with many incorporated
improvements of BSD. SunOS 4.1.x (mostly referred to only as SunOS) is actually the best—-known
representative of the mostly BSD UNIX. The word "mostly" indicates a number of SunOS features
that did not originate in the Berkeley version of UNIX. SunOS also introduced many new features
(NIS, NFS, etc) that later became overall standards in the UNIX community. In the 1990s, Sun
Microsystems changed this very successful UNIX version with the next generation version SunOS
5.x, better known as Solaris. The new version presented a significant shift from BSD UNIX toward
System V UNIX. SunOS continues to exist thanks to many operating commercial installations. It
survived "Year 2000 syndrome" and still is supported by Sun Microsystems.

1.3.2 System V or ATT UNIX

System V was derived from an early version of System Il developed at AT&T Bell Labs, which is
why it is also known as ATT UNIX. For a long time, the best-known versions were Release 3 —
SVR3.x and Release 4 — SVR4.x. SVR4 attempted to merge older UNIX versions (SVR3 and 4.2
BSD) into a new more powerful UNIX system; the attempt was not a complete success, although its
overall contribution has been significant. Certain steps in the development of System V UNIX during
this period are illustrated in_Eigure 1.2.

11

System Il (1982):
Named pipes
The run queue

v

System V (1983):
Hash tables
Buffer and inode caches
Semaphores
Shared memory
Message queues

v

System V Release 2 (1984):
Record and file locking
Demand paging
Copy on write

v

System V Release 3 (1987):
Inter Process Communication (IPC)
Remote File Sharing (RFS)
Enhanced signal operations
Shared libraries
File System Switch (FSS)
Transport Layer Interface (TLI)
STREAMS communication facility

v

System V Release 4 (1989):
Real time processing support
Process scheduling classes
Enhanced signal processing
Dynamically allocated data structures
Extended open file facilities
Virtual Memory management (VM)
Virtual File System capabilities (VFS)
Berkeley Fast File System (UFS)
Enhanced STREAMS
Preemptive kernel
File system quotas
Driver Kernel Interface facility (DKI)

Figure 1.2: The development of ATT UNIX.

Later on, many vendors accepted System V UNIX as a base for their own, vendor—specific UNIX
flavors, like: IRIX by Silicon Graphics Inc., HP-UX by Hewlett—Packard, A/X by IBM, or Solaris 2.x
by Sun Microsystems. However, it is not fair to classify all of these vendor—specific UNIX flavors as
the System V UNIX. Such a statement sounds quite biased. Each vendor—specific flavor includes
elements from both main UNIX platforms, so we can talk about mostly BSD, or mostly ATT UNIX
flavors. It is even better to talk about BSD or ATT implementations in some segments of
vendor-specific UNIX flavors.

In the 1980s Richard Stallman started development of a C compiler for UNIX. He then started the
Free Software Foundation — FSF, also known as GNU (GNU stands for "Gnu is Not Unix"). FSF
just as it did when it started, manages many free pieces of UNIX-related software, such as GNU C
compiler (GCC) and emacs.

UNIX development in the last decade has been characterized by many vendor-specific UNIX
flavors on the market. It is difficult to consider them as part of two main UNIX platforms. Each
vendor tried to take the best from each of the main UNIX platforms to make a flavor better than the
other vendors. In that light we can focus on, and talk about, development within individual flavors.

12

And each of these flavors does have a certain impact on the overall trends in the UNIX
development.

In its early days, UNIX was primarily run on high and mid-range computers, minicomputers, and
relatively powerful workstations (by that time's standards). The appearance of microcomputers
presented a new challenge for UNIX. Microsoft wrote a version of UNIX for microcomputer-based
systems. Called XENIX, it was licensed to the Santa Cruz Operation and was closest to System V
UNIX. It was later renamed SCO UNIX; later still it merged with Unixware. Other commercial
versions also became available, like Unixware, and even Solaris for x86. However, the main
contributor in this area of microcomputer-based UNIX is Linux, a freeshare UNIX available to
anyone who wants to try to work in the UNIX arena. Sometimes UNIX for microcomputers is
classified as the third UNIX platform. We will treat different UNIX versions for minicomputers as
different UNIX flavors related to one of the two main UNIX platforms.

In 1993, Linus Travalds released his version of UNIX, called Linux. Linux was a complete rewrite,
originally for Intel 80386 architecture. Linux was quickly adopted and "ported" to some other
architectures (including Macintosh and PowerPC); currently there are ports of LINUX for practically
every single 32— and 64-bit machine available.

Today it is very difficult to differentiate between microcomputers and workstations; the boundaries
between them are indistinct. Tremendous IT development has made very powerful IT resources
available at low prices. This burst of activity had a very positive impact on UNIX, too — the number
of installed UNIX sites rose dramatically, more people were involved in UNIX, and new application
areas were conquered. The best example of this IT booming is the Internet, which primarily relies on
UNIX-based servers. A thorough knowledge of UNIX has become a prerequisite for any real
success in IT.

Figure 1.3 presents the main stages of the UNIX genealogy, showing mutual impacts among the
different stages and within and out of the discussed UNIX platforms. For a fuller picture, this figure
should continue with the list of today's available UNIX flavors presented in_Eigure 1.4. (Note:_Figure
1.4 is only a partial list of the many UNIX flavors currently in use, and in no way indicates the extent
of the individual flavor's usage.)

13

Seventh Edition

l

MP-based BSD
UNIX |
Sun0S <« 43BSD <€— 4.2BSD
[
4.4 BSD

v

System lll

v

SVR2

v

SVR3

v

SVR4

v

v

\ 4 Many UNIX
Flavors
Solaris (see Fig. 1.4)
Figure 1.3: UNIX genealogy.
UNIX Flavor Hardware Platform
386BSD i386+
AIX RS6000, PowerPC
A/UX Macintosh
BSD different hardware
BSD/OS i486+
BSD/386 i386+
BSDI x86
ConvexOS Convex
Digital UNIX Alpha
DGUX Data General
DolphinOS i486
FreeBSD Pentium
HP-UX HP HPPA
IRIX SGl Indy; Mips-R8000
Linux Slackware i486+; Sparc
Linux RedHat i486+; Sparc; HP; IBM
Linux Suse i486+; Sparc
Linux Turbolinux i486+; Sparc
Linux Debian i486+
Linux 4.0 Alpha
Linux/Mach3 Macintosh; PowerPC
Linux/m68k Mac68k
Mach3 Mips

14

Mach3/Lites i386+

Machten/m68k Mac68k

NCR Unix NCR S40

NetBSD Pentium; Spark; Mac68k,
Alpha

OpenBSD x86; Mac68k

NextSTEP Motorola

OSF/1 Alpha

Sequent i386+

SCO Unix i386+

SINIX Mips R4000

Solaris Sparc, i386+

Sony NEWS-0S Mac68k

SunOS Sparc, Sun3

SysV different hardware

Ultrix Mips

Unicos Cray C90

Unixware i386+

Figure 1.4: UNIX flavors.

1.4 UNIX System and Network Administration

Organizations that rely on computing resources to carry out their mission have always depended on
systems administration and systems administrators. The dramatic increase in the number and size
of distributed networks of workstations in recent years has created a tremendous demand for more,
and better trained, systems administrators. Understanding of the profession of systems
administration on the part of employers, however, has not kept pace with the growth in the number
of systems administrators or with the growth in complexity of system administration tasks. Both at
sites with a long history of using computing resources and at sites into which computers have only
recently been introduced, system administrators sometimes face perception problems that present
serious obstacles to their successfully carrying out their duties.

Systems administration is a widely varied task. The best systems administrators are generalists:
they can wire and repair cables, install new software, repair bugs, train users, offer tips for
increased productivity across areas from word processing to CAD tools, evaluate new hardware and
software, automate a myriad of mundane tasks, and increase work flow at their site. In general,
systems administrators enable people to exploit computers at a level that gains leverage for the
entire organization.

Employers frequently fail to understand the background that systems administrators bring to their
task. Because systems administration draws on knowledge from many fields, and because it has
only recently begun to be taught at a few institutions of higher education, systems administrators
may come from a wide range of academic backgrounds. Most get their skills through on-the—job
training by apprenticing themselves to a more experienced mentor. Although the system of informal
education by apprenticeship has been extremely effective in producing skilled systems
administrators, it is poorly understood by employers and hiring managers, who tend to focus on

15

credentials to the exclusion of other factors when making personnel decisions.

System administrators are the professionals that provide specific services in the system software
arena. These professionals are often known by their acronym SYSADMIN. A system administrator
performs various tasks while taking care of multiple, often heterogeneous, computer systems in an
attempt to keep them operational. When computer systems are connected to the network, which is
almost always the case today, the system administration also includes network-related duties.

UNIX administrators are part of the larger family of the system administrators. Their working
platform is UNIX, and it caries many specific elements that make this job unique. UNIX is a powerful
and open operating system. As with any other software system, it requires a certain level of
customization (we prefer the term "configuration") and maintenance at each site where it is
implemented. To configure and maintain an operating system is a serious business; in the case of
UNIX it can be a tough and sometimes frustrating job. Why is UNIX so demanding? Here are some
observations:

¢ A powerful system means there are many possibilities for setting the system configuration.

¢ An open system results in permanent upgrades with direct impacts on administrative issues.
¢ UNIX is implemented at the most mission critical points, where a downtime is not allowed.

e Networking presents a new challenge, but also a new area of potential problems.

e Different UNIX flavors bring additional system administration difficulties.

Networking in particular, with its many potential external failures, can affect a UNIX system
significantly. Periodical global network degradation (too high of a load, low throughput, or even
breaks in communication) can cause complex problems and bring a lot of headaches. It is easy to
be misguided in tracing a problem, and to be looking for the source of troubles at the wrong place.
Usually at such times everyone is looking to the UNIX people for a quick solution. The only advice
is: "Be ready for such situations."

As a matter of fact, system and network administration are relatively distinct duties, and sometimes
they are even treated separately. However, it is very common to look at system and network
administration as two halves of the same job, with the same individuals or team responsible for
both. It is fair to say that the term network administration is strictly related to the computer system
as part of the network, and remains within the network service boundaries required for the computer
functioning in the network environment. It does not cover core network elements like switches,
bridges, hubs, routers, and other network—only devices. Nevertheless, the basic understanding of
these topics also could make overall administration easier.

So to get to the heart of the topic, let us start with a brief discussion of the administrator's role,
duties, guidelines, policies, and other topics that make up the SYSADMIN business. Most of the
paragraphs that follow are not strictly UNIX related, although our focus remains on UNIX systems
and network administration.

1.4.1 System Administrator's Job

Understanding system administrators' background, training, and the kind of job performance to be
expected is challenging; too often, employers fall back into (mis)using the job classifications with
which they are familiar. These job classification problems are exacerbated by the scarcity of job
descriptions for systems administrators. One frequently used misclassification is that of programmer
or software engineer. Production of code is the primary responsibility of programmers, not of the
systems administrator. Thus, systems administrators classified as programmers often receive poor
evaluations for not being "productive" enough. Another common misclassification is the confusion of

16

systems administrators with operators. Especially at smaller sites, where systems administrators
themselves have to perform many of the functions normally assigned to operators at larger sites,
system administrators are forced to contend with the false assumption they are nonprofessional
technicians. This, in turn, makes it very difficult for systems administrators to be compensated
commensurate with their skill and experience.

The following text lists the main elements that describe the system administrator's job at various
levels. The basic intention is to describe the core attributes of systems administrators at various
levels of job performance, and to address site—specific needs or special areas of expertise that a
systems administrator may have.

Generally, as for many other professions, system administrators are classified regarding their
background and experience into several categories:

e Novices

¢ Required background: 2 years of college or equivalent post-high—school education
or experience

¢ Desirable background: a degree or certificate in computer science or a related field.
Previous experience in customer support, computer operations, system
administration, or another related area; motivated to advance in the profession

¢ Duties: performs routine tasks under the direct supervision of a more experienced
system administrator; acts as a front-line interface to users, accepting trouble reports
and dispatching them to appropriate system administrators

e Junior

¢ Required background.: 1 to 3 years system administration experience

¢ Desirable background: a degree in computer science or a related field, familiarity with
networked/distributed computing environment concepts (for example, can use the
route command, add a workstation to a network, and mount remote filesystems);
ability to write scripts in some administrative language (Tk, Perl, a shell);
programming experience in any applicable language

¢ Duties: administers a small site alone or assists in the administration of a larger
system; works under the general supervision of a system administrator or computer
systems manager

e Intermediate/Advanced

¢ Required background. three to five years' systems administration experience

¢ Desirable background: a degree in computer science or a related field; significant
programming background in any applicable language

¢ Duties: receives general instructions for new responsibilities from supervisor;
administers a midsized site alone or assists in the administration of a larger site;
initiates some new responsibilities and helps to plan for the future of the site/network;
manages novice system administrators or operators; evaluates and/or recommends
purchases; has strong influence on purchasing process

e Senior

¢ Required background: more than five years previous systems administration
experience

¢ Desirable background: a degree in computer science or a related field; extensive
programming background in any applicable language; publications within the field of
system administration

17

¢ Duties: designs/implements complex LAN and WANs; manages a large site or
network; works under general direction from senior management;
establishes/recommends policies on system use and services; provides technical
lead and/or supervises system administrators, system programmers, or others of
equivalent seniority; has purchasing authority and responsibility for purchase
justification

This is a general job classification and description for potential UNIX administrators. It can easily
vary from one site to another, especially regarding official job titles. A number of other skills could
also be considered:

e Interpersonal and communication skills; ability to write proposals or papers, act as a vendor
liaison, make presentations to customer or client audiences or professional peers, and work
closely with upper management

e Ability to solve problems quickly and completely; ability to identify tasks that require
automation and automate them

e A solid understanding of a UNIX-based operating system, including paging and swapping,
inter—process communication, devices and what device drivers do, filesystem concepts
(inode, superblock), and use of performance analysis to tune systems

e Experience with more than one UNIX-based operating system; with sites running more than
one UNIX-based operating system; with both System V and BSD-based UNIX operating
systems; with non—-UNIX operating systems (for example, MS-DOS, Macintosh OS, or
VMS); and with internetworking UNIX and other operating systems (MS-DOS, Macintosh
0OS, VMS)

e Programming experience in an administrative language (shell, Perl, Tk); extensive
programming experience in any applicable language

e Networking skills — a solid understanding of networking/distributed computing environment

concepts, principles of routing, client/server programming, and the design of consistent

networkwide filesystem layouts; experience in configuring network filesystems (for example,

NFS, RFS, or AFS), in network file synchronization schemes (for example, rdist and track),

and in configuring automounters, license managers, and NIS; experience with TCP/IP

networking protocols (ability to debug and program at the network level), with non-TCP/IP
networking protocols (for example, OSI, Chaosnet, DECnet, Appletalk, Novell Netware,

Banyan Vines), with high-speed networking (for example, FDDI, ATM, or SONET), with

complex TCP/IP networks (networks that contain routers), and with highly complex TCP/IP

networks (networks that contain multiple routers and multiple media); experience configuring
and maintaining routers and maintaining a sitewide modem pool/terminal servers;
experience with X terminals and with dial-up networking (for example, SLIP, PPP, or

UUCP); experience at a site that is connected to the Internet, experience

installing/configuring DNS/BIND; experience installing/administering Usenet news, and

experience as postmaster of a site with external connections

Experience with network security (for example, building firewalls, deploying authentication

systems, or applying cryptography to network applications); with classified computing; with

multilevel classified environments; and with host security (for example, passwords, uids/gids,
file permissions, filesystem integrity, use of security packages)

e Experience at sites with over 1000 computers, over 1000 users, or over a terabyte of disk
space; experience with supercomputers; experience coordinating multiple independent
computer facilities (for example, working for the central group at a large company or
university); experience with a site with 100% uptime requirement; experience
developing/implementing a site disaster recovery plan; and experience with a site requiring
charge-back accounting

e Background in technical publications, documentation, or desktop publishing

18

e Experience using relational databases; using a database SQL language; and programming
in a database query language; previous experience as a database administrator

e Experience with hardware: installing and maintaining the network cabling in use at the site,
installing boards and memory into systems; setting up and installing SCSI devices;
installing/configuring peripherals (for example, disks, modems, printers, or data acquisition
devices); and making board-level and component-level diagnosis and repairing computer
systems

¢ Budget responsibility, experience with writing personnel reviews and ranking processes; and
experience in interviewing/hiring

Do not be afraid of this long list of additional requirements. Nobody expects UNIX systems and
network administrators to be Supermen. UNIX administration is a normal job that is demanding but
definitely doable.

To end this discussion, here is a joke about UNIX administrators. Consider the similarities between
Santa Claus and UNIX administrators:

e Santa is bearded, corpulent, and dresses funny.

¢ When you ask Santa for something, the odds of receiving what you wanted are infinitesimal.
e Santa seldom answers your mail.

e When you ask Santa where he gets all the stuff he has, he says, "Elves make it for me."

e Santa does not care about your deadlines.

e Your parents ascribed supernatural powers to Santa, but did all the work themselves.

¢ Nobody knows who Santa has to answer to for his actions.

e Santa laughs entirely too much.

e Santa thinks nothing of breaking into your HOME.

¢ Only a lunatic says bad things about Santa in his presence.

1.4.2 Computing Policies

A successful system administration requires a well-defined framework. This framework is described
by the corresponding computing policies within the organization where the administration is
provided. There are no general computing policies; they are always site specific. Drafting computing
policies, however, is often a difficult task, fraught with legal, political, and ethical questions and
possibly consequences. There are a number of related issues: why a site needs computing policies;
what a policy document should contain, who should draft it, and to whom it should apply. There is
no a unique list of all possible rules. Each computing site is different and needs its own set of
policies to suit specific needs. The goal of this section is to point out the main computing policies
that directly influence the system administration. This is not possible without addressing security
and overall business policies as they relate to computing facilities and their use.

Good computing policies include comprehensive coverage of computer security. However, the full
scope of security, overall business, and other policies goes well beyond computer use and
sometimes may be better addressed in separate documents. For example, a comprehensive
security document should address employee identification systems, guards, building structure, and
other such topics that have no association with computing. Computing security is a subset of overall
security as well as a subset of overall computing policy. If there are separate policy documents, they
should refer to each other as appropriate and should not contain excessive redundancy.
Redundancy leaves room for later inconsistencies and increases the work of document
maintenance.

The system administrator policy usually is not completely separated from the user policy. In practice

19

there are few if any user policies from which a system administrator needs to be exempt. System
administrators are users and should be held accountable to te same user policy as everyone else in
the use of their personal computer accounts. System administrators (and any other users with
"extended" system access) have additional usage responsibilities and limitations regarding that
extended access, i.e., extra powers via groups or root. The additional policies should address the
extended access. Further, knowledge of policies governing how staff members perform their duties
(e.g. how frequently backups are done) is essential to the users. All the information on the operation
of the computing facility should be documented and available to both the end users and the support
staff to prevent confusion and redundancy as well as enhance communication. The policy
documents should be considered as a single guide for the users and the support staff alike. We
intentionally used the words "computing policies" in the plural; it is hard to talk about a unique
overall policy that could cover everything needed.

System administration is a technical job. System administrators are supposed to accomplish certain
tasks, to implement technical skills to enforce certain decisions based on certain rules. In other
words, the system administrator should follow a specific administrative procedure to accomplish the
needed task. A system administrator is not supposed to make nontechnical decisions, nor dictate
the underlying rules. It is important to have feasible procedures, and in that sense, the
administrator's opinion could be significant. But the underlying rules must be primarily based on
existing business—driven computing policies.

At the end of the day, we reach the point of asking: "Will a SYSADMIN really have strictly defined
procedures in the daily work that will make the administration job easier; especially, would these
procedures be in written form?" The most probable answer regarding procedures will be negative.
There are usually multiple ways to accomplish a certain administrative task because system
configurations are changing (just think about different UNIX flavors, or new releases, or network
changes). However this is not the case with computing policies; they are usually general enough to
last a longer time.

We already mentioned that the computing policies are business related. They are different in
academia than in industry; they are different in the financial industry than in the retail industry, or in
the Internet business. They are, at least for a moment, always internal and stay in the boundaries of
a college, university, or company. So they can differ by moving from one place to another. Still there
are many common elements and we will try to address them.

Security policy — Definitely the most important policy, a good security policy is the best guarantee
for uninterrupted business. Clear guidance in that direction is extremely important. Requests for
Comments (RFCs) that present standards for new technologies also addressed this important issue.
The RFC-2196 named "Site Security Handbook," a 75-page document written in 1997 by IETF
(Internet Engineering Task Force), suggests the need for internal security documents as guidelines
for:

¢ Purchasing of hardware and software

e Privacy protection

e Access to the systems

e Accountability and responsibility of all participants
e Authentication rules

e Availability of systems

e Maintenance strategy (internal vs. outsourcing)

Policy toward users — Users are main players in the ongoing business, but they must obey
certain rules, and they do not have to have unrestricted access to all available resources. It is

20

crucial to define the following user rights and responsibilities:

e Who is an eligible user

e Password policy and its enforcement
e Mutual relationship among users

e Copyright and license implementation
e Downloading of software from Internet
¢ Misusing e-malil

e Disrupting services

e Other illegal activities

Policy toward privileged users — The primary audience for this policy is SYSADMIN and other
privileged users. These users have unrestricted access to all system resources and practically

unlimited power over the systems. The policy addresses:

e Password policy and its enforcement

e Protection of user privacy

e License implementation

e Copyright implementation

e Loyalty and obedience

e Telecommuting

e Monitoring of system activities

e Highest security precaution and checkup

¢ Business-time and off-business—time work

Emergency and disaster policies — Good policies mean prevention and faster recoveries from
disaster situations. They are essential to maintain system availability and justify spending an
appropriate amount of time to protect against future disastrous scenarios. Data are priceless, and

their loss could be fatal for overall business. Emergency and disaster policies include:

¢ Monitoring strategies

e Work in shifts

e Tools

¢ Planning

e Distribution of information (pager, beepers, phones)
e Personnel

Backup and recovery policy — This is a must for each system — in the middle of disastrous
situations, there is no bargaining regarding the need for backup. However, the level and frequency
of implemented backup vary and are business related. Generally the policy should address the

following issues:

e Backup procedures

e Backup planning

e Backup organization

e Storage of backup tapes
¢ Retention periods

e Archiving

e Tools

e Recovery procedures

Development policy — This policy should address the need for permanent development and

21

upgrading of the production systems. Today continual development of the IT infrastructure is
essential for overall business growth; however, the development should not endanger basic
production. In that light, the focus should be on:

¢ Development team

e Planning

e Support

e Testing

e Staging

e Cutting new releases
e Fallback

System administration will be easier if more computing policies are covered and elaborated
internally and if more of the corresponding procedures are specified. It sounds strange, but less
freedom in doing something usually makes the job easier. Unfortunately (or maybe fortunately) this
is mostly the case only for large communities with strong IT departments that have been running for
years. The majority of medium-size and small companies do not have, or have only rudimentary,
specified procedure. The system administrator often does have freedom in enforcing listed policies.
This freedom in action increases the administrator's responsibility, but also enhances the creativity
in the work (that is why we used the word "fortunately" earlier).

1.4.3 Administration Guidelines
This section provides some additional system administration-related information.
1.4.3.1 Legal Acts

Computer network and UNIX are quite young, but they have significantly affected all spheres of
human life. Today the Internet is strongly pushing ahead to replace, or at least to alter, many
traditional pieces of economic infrastructures: the telecommunication industry, the entertainment
industry, the publishing industry, the financial industry, postal services, and others. All kinds of
middleman services, such as travel agencies, job agencies, book sellers, and music retainers, are
also dramatically changing. Business—to—business (B2B) links are growing, providing an efficient
mechanism to merge customers and merchants and make our online shopping easier. The full list of
all affected businesses would be very, very long.

Such a huge area of human activities also opened up possibilities for misuse, fraud, theft, and other
kinds of crimes. While the technological and financial capabilities have fully supported booming
information technologies, legal infrastructure seems to stay far below our real needs. In many cases
even when the perpetrator is caught, actual conviction is very difficult under the current laws.
Recent cases involving very destructive viruses that cost businesses millions of dollars stayed in
limbo even though the perpetrators were known. The case against "Napster Music Community,"
relating to music copyrights, was closed after a long time and was only partially successful.

At this moment we have only a few legal acts in this area, covering only several
computer—crime-related topics, and sometimes those not even effectively. Definitely they do not
constitute a sufficient legal framework, and further improvements and expansions are necessary.

The existing legal acts are:

e The Federal Communication Privacy Act
e The Computer Fraud and Abuse Act

22

e The No Electronic Theft Act
e The Digital Millenium Copyright Act

A pending problem in the implementation of the listed legal acts, as well as others that will
presumably come in the future, lies in the fact that even if the corresponding laws exist in the United
States, they do not exist in many other countries. Because of the global nature of the Internet and
its presence in countries worldwide, it is very difficult to enforce any court decision.

1.4.3.2 Code of Ethics

The lack of general legal guidance, and often the lack of clear internal administration rules and
procedures, presents new challenges in the system administrator's job. More freedom in doing the
job also means more chances for wrongdoing. Under such circumstances, an extremely responsible
attitude of the administrators toward all these challenges is very important. System administrators,
regardless of their title and whether or not they are members of a professional organization, are
relied upon to ensure proper operation, support, and protection of the computing assets (hardware,
software, networking, etc.). Unlike problems with most earlier technologies, any problem with
computer assets may negatively impact millions of users worldwide — thus such protection is more
crucial than equivalent roles within other technologies. The ever—increasing reliance upon
computers in all parts of society has led to system administrators having access to more
information, particularly information of critical importance to the users, thus increasing the impact
that any wrongdoing may have. It is important that all computer users and administrators
understand the norms and principles to be applied to the task. At the end of the day, we come to the
informal set of behavioral codes known as the code of ethics that each administrator should be
aware of. A code of ethics supplies these norms and principles as canons of general concepts.
Such a code must be applied by individuals, guided by their professional judgment, within the
confines of the environment and situation in which they may be. The code sets forth commitments,
responsibilities, and requirements of members of the system administration profession within the
computing community.

The basic purposes of such a code of ethics are:

e To provide a set of codified guidelines for ethical directions that system administrators must
pursue

e To act as a reference for construction of local site acceptable—use policies

¢ To enhance professionalism by promoting ethical behavior

e To act as an "industry standard" reference of behavior in difficult situations, as well as in
common ones

e To establish a baseline for addressing more complex issues

This code is not a set of enforceable laws, or procedures, or proposed responses to possible
administrative situations. It is also not related to sanctions or punishments as consequences of any
wrongdoing. A partial overview of one proposal for the code of ethics follows:

e Code 1: The integrity of a system administrator must be beyond reproach — System
administrators must uphold the law and policies as established for the systems and networks
they manage, and make all efforts to require the same adherence from the users. Where the
law is not clear, or appears to be in conflict with their ethical standards, system
administrators must exercise sound judgment and are also obliged to take steps to have the
law upgraded or corrected as is possible within their jurisdiction.

e Code 2: A system administrator shall not unnecessarily infringe upon the rights of
users — System administrators will not exercise their special powers to access any private

23

information other than when necessary to their role as system managers, and then only to
the degree necessary to perform that role, while remaining within established site policies.
Regardless of how it was obtained, system administrators will maintain the confidentiality of
all private information.

Code 3: Communications of system administrators with all whom they may come in
contact shall be kept to the highest standards of professional behavior — System
administrators must keep users informed about computing matters that might affect them,
such as conditions of acceptable use, sharing and availability of common resources,
maintenance of security, occurrence of system monitoring, and any applicable legal
obligations. It is incumbent upon the system administrator to ensure that such information is
presented in a manner calculated to ensure user awareness and understanding.

Code 4: The continuance of professional education is critical to maintaining currency
as a system administrator — Since technology in computing continues to make significant
strides, a system administrator must take an appropriate level of action to update and
enhance personal technical knowledge. Reading, study, acquiring training, and sharing
knowledge and experience are requirements to maintaining currency and ensuring the
customer base of the advantages and security of advances in the field.

Code 5: A system administrator must maintain an exemplary work ethic — System
administrators must be tireless in their effort to maintain high levels of quality in their work.
Day to day operation in the field of system administration requires significant energy and
resiliency. The system administrator is placed in a position of such significant impact upon
the business of the organization that the required level of trust can only be maintained by
exemplary behavior.

Code 6: At all times system administrators must display professionalism in the
performance of their duties — All manner of behavior must reflect highly upon the
profession as a whole. Dealing with recalcitrant users, upper management, vendors, or other
system administrators calls for the utmost patience and care to ensure that mutual respect is
never at risk.

1.4.3.3 Organizations

There are several UNIX and system administration related organizations, support groups, and
conferences. Following are just a few words about the best known ones.

1.4.3.3.1 USENIX

USENIX is the advanced computing systems association. This was originally a nonprofit
membership organization for those individuals with an interest in UNIX, UNIX-related, and other
modern operating systems. Since 1975 the USENIX association has brought together the
community of engineers, system engineers, system administers, scientists, and technicians. All of
these people have been working on the cutting edge of the computing world. The USENIX
conferences have become the meeting grounds for presenting and discussing new and advanced
information on developments from the computing systems. USENIX is dedicated to sharing ideas
and experiences of those working with UNIX and other advanced computing systems. USENIX
members are dedicated to solving problems with a practical bias, fostering research that works,
communicating with both research and innovation, and providing critical thought.

USENIX supports its members' professional and technical development through a variety of ongoing
activities, including:

e Member benefits
e Annual technical and system administration conferences, as well as informal, specific-topic
conferences

24

e A highly regarded tutorial program

e Student programs that include stipends to attend conferences, low student membership
fees, best paper awards, scholarships, and research grants

e Online library with proceedings from each USENIX conference

e Participation in various IEEE and Open Group standards efforts

e International programs

e Cosponsorship of conferences by foreign technical groups

e Prestigious annual awards which recognize public service and technical excellence

e Membership in the Computing Research Association and the Open Group

e SAGE, a Special Technical Group (STG) for system administrators

1.4.3.3.2 System Administrators Guild — SAGE

At the moment the System Administrators' Guild, known by its acronym SAGE, is a Special
Technical Group (STG) of the USENIX Association. It is organized to help advance computer
systems administration as a profession, establish standards of professional excellence and
recognize those who attain them, develop guidelines for improving technical capabilities, and
promote activities that advance the state of the art of the community. SAGE members are also
members of USENIX.

Since its inception in 1992, SAGE has grown immensely and has matured into a stable community
of system administration professionals. Organization management has been codified and stabilized.
As an USENIX STG, reviews by USENIX are scheduled periodically, principally for assessing
continued viability. SAGE's viability has not been an issue for some time — quite the opposite, the
growth of SAGE has exceeded reasonable expectations and those of USENIX as a whole. At this
point in SAGE's development, it is prudent for both SAGE and USENIX to review organizational
structures, their relationships, and future developments. To that end, the SAGE executive
committee reviewed the existing mission statement, its relevance for the present and the future, and
the future interests and projects as they relate to that mission. While the existing SAGE Charter and
Mission Statement are still relevant, the following text was adopted as a working draft that better
expresses its current nature and future:

The System Administrators Guild is an international professional organization for
people involved in the practice, study, and teaching of computer and network system
administration. Its principal roles are:

¢ To always understand and satisfy the needs of system administrators so as to
provide them with products and services that will help them be better system
administrators
¢ To empower system administrators through information, education,
relationships, and resources that will enrich their professional development
and careers
¢ To advance the thought, application, and ethical practice of system
administration
As SAGE grows, the majority of its members will be professionals who are not
currently involved with SAGE. This will come as a result of the growing awareness of
SAGE, different certification programs, and other future projects.

The SAGE executive committee, the USENIX board of directors, and USENIX staffs
have discussed how to meet the growing needs of SAGE. At this time, there are
ideas that these needs may be better met by changing SAGE from a USENIX
internal STG to a sister organization established as an independent nonprofit entity.
If this process continues as expected, this transition could be implemented soon. The

25

SAGE executive committee to be elected will become the initial board of directors of
SAGE. The precise legal structure and implementation details are yet to be
determined.

In this plan, SAGE will continue to serve its members with the benefits with which
they have become accustomed. SAGE member services and information will move
to a more electronic community model. SAGE will publish its own newsletter while
SAGE news will continue to be available as before. LISA will continue to be
cosponsored by USENIX and SAGE. SAGE will also sponsor new conferences and
programs to reach out to the broader system and network administration community.
All the assets of USENIX used exclusively by SAGE will be transferred to the
independent SAGE organization, including intellectual property, inventory, and
current operating funds. SAGE will then operate independently from USENIX. The
LISA conference will continue without change, being operated by USENIX and
cosponsored by SAGE. The responsibility for all current and pending SAGE projects
will also be transferred. Membership in USENIX and SAGE will be decoupled such
that a person can become a member of SAGE without having to become a USENIX
member. However, SAGE and USENIX will continue to provide close cooperation
and mutual benefits to their members.

1.4.3.3.3 Conferences

One of the ongoing activities of USENIX and SAGE is to organize UNIX and UNIX
administration-related annual and ad hoc conferences. The big events for system administrators
include the general conference LISA, which is organized every year during the fall or the winter. For
example, LISA '02 is scheduled for November 2002 in Philadelphia, PA. LISA stands for Large
Installation System Administration.

LISA is more than just an exchange of technical topics. This is also the place where many system
administration issues are generated, including essential ones for the sysadmin community. For
example, the initial idea for an independent SAGE was born and presents the state of the
discussions as of LISA 2000.

1.4.3.4 Standardization

There are no explicit standards regarding UNIX administration. There are no standards regarding
system administration generally. Anyhow, administrators are obliged to follow a strict set of rules to
make the system function properly. These rules were, and are, determined by the OS designers.
Although they are not official standards, they have an even stronger impact on the system
administration; otherwise a system will not work at all. The problem is, at least in case of the UNIX
administration, different administrative rules exist for different UNIX flavors. It makes our lives more
difficult, and any standardization in that way will be well received by the administrators.

In the UNIX and network arena there are significant efforts toward standardization. There are
several standards bodies, both formal and informal. Each body has different rules for membership,
voting, and clout. From a system administration standpoint, two significant bodies are: IETF
(Internet engineering task force) and POSIX (portable operating system interfaces). Especially
POSIX has contributed a lot in the area of UNIX standardization, making also a corresponding
ground for its uniform and more standardized administration.

26

1.4.3.4.1 POSIX

The POSIX standardization effort used to run by the POSIX standards committee. During a major
overhaul of the names and numbers used to refer to this project, the IEEE Portable Application
Standards Committee (PASC) came into being. So currently the POSIX standards are written and
maintained by PASC.

POSIX is the term for a suite of applications program interface standards to provide for the
portability of source code applications where operating systems services are required. POSIX is
based on the UNIX operating system (UNIX is registered trademark administrated by the Open
Group), and is the basis for the Single UNIX Specification (SUS) from the Open Group. Although it
is essentially based on UNIX (and the kernels services), it covers much more than just UNIX
(Windows NT can be made to be POSIX compliant).

POSIX is intended to be one part of the suite of standards (a "profile") that a user might require of a
complete and coherent open system. This concept is developed in IEEE Std. 1003.0-1994: Guide
to the POSIX Open System Environment. The joint revision to POSIX and the Single UNIX
Specification, involving the IEEE PASC committee, ISO Working Group WG15, and the Open
Group (informally known as the Austin Group), is underway. More information, including draft
specifications, can be found at the Austin Group Web site.

The PASC continues to develop the POSIX standards. In accordance with a synchronization plan
adopted by the IEEE and ISO/IEC JTC1, many of the POSIX standards become international
standards shortly after their adoption by the IEEE. Therefore, these standards are available in
printed form from both IEEE and ISO, as well as from many national standards organizations.
Approved standards can also be purchased from the IEEE in electronic (PDF) format. The IEEE
also publishes Standards Interpretations for many of the standards (more details are available at
IEEE Web site).

Cooperation among IEEE, the Open Group (X/Open), and ISO is now underway for the common
UNIX/POSIX standard. Everybody can participate in the process (see the Austin Group Web site). A
revision of the whole suite of UNIX and POSIX standards is going on. The plan is to make just one
document, based on the UNIX 98 Single UNIX Specification, and the same document will serve as
the standard in all three of the participating organizations. It is not clear, though, whether the name
on the standard will be UNIX or POSIX.

POSIX System Interface standards cover those functions that are needed for applications software
portability in general purpose, real time, and other applications environments. Many of the
extensions and options within the POSIX system interface standards reflect the ongoing focus on
more demanding applications domains such as embedded real time, etc. Interfaces that require
administration privileges, or that create security risks are not included. The POSIX work consists of:

e System interface specifications for C, ADA, and FORTRAN

e Shell and utility specification

e System administration specifications for software installation, user administration, and print
management

e Test methods: general methods, for system interfaces, and for shell and utilities

¢ Profiles documents: guide to POSIX-based profiles (concepts); supercomputing application
environment, real-time application environment, multiprocessing environment, and general
purpose or "traditional" environment

The POSIX shell and utility standards define tools that are available for invocation by applications
software, or by a user from a keyboard. The system administration interfaces are targeted at areas

27

where consistency of interfaces between systems is important to simplify operations for both users
and systems operators. The POSIX test methods describe how to define test methods for interfaces
such as those in the POSIX suite of standards. The explicit test methods for the system interface
and shell and utilities standards apply the approach defined in the overview to these specific
documents.

1.4.4 In This Book

This text covers related issues for both system administration and network administration on a UNIX
platform. This is a challenging (but doable) task, given the many different UNIX platforms and
flavors. To make the terminology simpler, we will use the term UNIX Administration to address
both UNIX systems and network administration; the administration personnel we will call UNIX
administrators. This will not make UNIX administration easier, nor it will simplify our task; however,
it could help to clarify some of the topics under discussion.

UNIX systems administration related issues are:

e System startup and shutdown

e User and group accounts management
e System resources management

e Filesystems

e System quotas

e System security

¢ Backup and restoration of the system

e Automating routine tasks

e Printing and spooling system

e Terminals and modem handling

e Accounting

e System performance tuning

e System customization — kernel reconfiguration

UNIX network administration related issues are:

e Network interface and connectivity
e Data routing

e Data multiplexing

e Network security

e Domain name service

¢ Network information service — NIS
¢ Network filesystem — NFS

e UNIX remote commands

¢ Network applications (telnet, FTP, etc)
¢ Remote printing

e Electronic mail

e UUCP

e X windowing

Despite many promises, wishes, advertisements, and attempts to standardize UNIX, the differences
among existing UNIX favors are not negligible. The differences exist in UNIX implementations, but
the main differences are seen in the UNIX administration. This text attempts to cover most of the
UNIX administrative topics on both the BSD and System V (ATT) UNIX platforms. This is primarily
achieved through brief theoretical explanations of certain topics, and the selective presentation of

28

related examples from the different UNIX flavors. Assuming the basic knowledge of UNIX and shell
programming, the presented material should be sufficient per se for a successful UNIX and network
administration. To clarify certain operational details, UNIX online documentation (manual pages
available on every UNIX platform) is also supposed.

29

Chapter 2: The Unix Model — Selected Topics

2.1 Introduction

UNIX administration presents a complex job that requires certain skills to be accomplished
successfully. These skills range from a basic knowledge of computer hardware, operating systems,
and programming techniques, up to ethics, psychology, and social behavior. It supposes a
responsible approach to very challenging problems, and a readiness for a nonstop follow—up of
everything done. An administrator usually covers many different systems (different hardware,
different configurations, different software, different purposes), and each of those systems is the
"baby" that requires a certain amount of attention, and the administrator must pay that attention.

Of course the level of the required skills varies; it would be wrong to expect that an UNIX
administrator (especially a successful one) has to graduate in each of the listed fields to be able to
respond to all administrative demands. However, it is true that some of the required skills need
more than just a basic knowledge; mostly these are strictly UNIX-related skills. Nobody can fight
with UNIX administrative challenges without being familiar with the UNIX operating system, the
UNIX commands and how to use them. An even deeper expertise in UNIX internals could be very
instrumental in an easier UNIX administration. Script programming is another fighting arena. An
average UNIX administration time consists of 75 to 80% of shell programming, and only the rest is a
manual administration from the keyboard.

Some selected UNIX topics are briefly discussed in this chapter to point out the most important
issues for a successful UNIX administration. A certain level of knowledge of the discussed topics is
still supposed — this chapter is simply trying to highlight the needed background for a
comprehensive UNIX administration. The chapter should refresh the reader's memory and push
ahead to consider all holes in the reader's knowledge and understanding of discussed issues.
Another purpose is to present in one place most of the relevant UNIX fundamentals needed for
better understanding of different administrative tasks. The reader is also advised to look into other
literature for more detailed descriptions, if necessary. The terminology used is common in the UNIX
community.

To help readers better understand the material, a number of examples and figures illustrate the
discussed UNIX topics.

2.2 Files

In UNIX everything is a file, or rather, file-like — this makes file issues central to UNIX. What
does this really mean? A file is a collection of data, or, better, a sequence of bytes, stored in a
memory or on a disk. A file can be a program that can be executed. When such a program is
running, it creates a process. Therefore, a file lies in the origin of every process. On UNIX each
device is also described by a file — these are called special device files, but are still file—like
entities. Even users on UNIX are file related, as they have associated attributes (such as what they
are allowed access to) that are specified in a file—like way.

UNIX has a hierarchical tree—structured directory organization known collectively as the filesystem
(or filesystem). The base of this tree is the root directory with the special name "/" (the slash
character). In UNIX all user—available disk space is integrated into a single directory tree under /, so
the physical disk unit (the disk drive itself) where a file resides is not a part of the UNIX file
specification.

30

We already mentioned that a file is a sequence of bytes. Such a sequence could be a newly created
user's program, written text, acquired data, or a program that is a part of the operating system itself.
Many files are understandable by users, but a number of files (mostly binary executable files) are
machine-interpretable only. All files, no matter what their purpose, must be stored somewhere and
uniquely identified within the system. A disk is the most common medium to store files, and files are
identified by inodes within accessible disk space. The kernel handles information about inodes and
maintains and updates the corresponding inode table (the inode table is laid out when a filesystem
is created and its size and location do not change). We will discuss those issues in more detalil later.

UNIX file access is restricted and determined by file ownership and the protection settings on the
file itself. A user and a group own each file; correspondingly, the file's access rights for the user and
group owners, as well as for others, (those who do not belong to the owners) are explicitly specified.

2.2.1 File Ownership

Files have two owners: user and group, which are decoupled and nondependent. The file's
user—owner could actually be outside of the group that owns the very same file. Such flexibility
enables full UNIX scalability to exclude certain members of the user-owner's group and treat them
as others.

Information about a file's ownership and permissions is kept in the file's index node, better known
by its short name inode. UNIX does not allow direct managing of index nodes; indirect management
is provided through a certain number of commands that handle specific segments of the index
nodes. A brief overview of the most common of these commands follows.

The long form of the Is command is used to display the ownership of a file or a directory, with a
slightly different meaning of options for System V and BSD UNIX:

#ls-1 System V
#ls-Ig BSD
The system response looks like:

drwx—————-— 2 bjl mail 24 Mar 24 13:19 Mail
—-rw—rw—rw— 1 bjl users 20 May 2 13:26 modefilel
—-rw-rw—-rw— 1 bjl wusers 20 May 2 13:30 modefileZ
—-rw-rw—rw— 1 bjl users 20 May 2 13:30 modefile3

The file ownerships are presented in the third column (for a user—owner), and fourth column (for a
group-owner). In this example, all files (modefiles 1, 2, and 3) are owned by the user bjl and the
group users.

Ownership of a newly created file is determined in the following way:

¢ The user—-owner is the user who has created the file
® The group—owner is:

¢ Same as the group—owner for the directory where the new file was created (for BSD)
¢ Same as the group to which the user who created the file belongs (for System V)

Please note that this rule only applies to newly created files; once a file is created, its ownership can
be arbitrarily modified.

31

The chown command is used to change the user ownership of a file or a directory:

chown newowner filename (s)

where:

newowner A user name, or user—ID (UID)
filename A file name in the current directory, or a full-path file name (if multiple files are specified,
they are separated by a space)

Directories are treated in the same way as files; to change the user ownership of a directory itself,
type the command:

chown newowner directoryname (s)

where:

newowner A user name, or user—ID (UID)

directoryname A subdirectory name in the current directory, or a full-path directory name (if
multiple directories are specified, they are separated by a space).

However, to change the user ownership of a directory and all subdirectories and files within it, the

chown command should be used recursively (the option —R):

chown -R newowner directoryname (s)
(The command arguments are the same as those in the previous example.)

Who is authorized to change the user ownership?

user-owner of the file, or root (System V)

root only (BSD)

Please note that on the System V platform, if the original user—owner transfers user—ownership to
another user, it can only be transferred back to the original user—owner by the new user who now

owns the file, or by root. Also, such a change of ownership is restricted: some access rights cannot
be transferred to the new user (we will discuss this issue in more details later).

Generally, each recursive command must be accomplished extremely carefully; the started
command does not stay within the specified directory; it is propagated toward all existing
subdirectories, files in these subdirectories, subsequent subdirectories, and so on, until the very end
of the directory hierarchy (could be very, very deep). If implemented in the root directory, each
recursive command affects every single file in the system.

Try to remember an unpleasant event when an administrator wanted to change recursively the
owner for a certain directory (of course the administrator did that as the superuser). The
administrator typed in the command and started to specify the full pathname of the directory;
unfortunately the administrator hit unintentionally the [Enter] key too early, just after the leading "/"
(slash character) of the directory path was typed. The disastrous command: chown -R newuser /
was issued, causing recursive changes of many system files, and soon a collapse of the system.
The only solution was to reinstall and restore the system from a backup (if such a backup is
available at all).

The chgrp command is used to change the group ownership of a file or a directory:

32

chgrp newgroup filename (s)/directoryname (s)
where:

newgroup A group name, or a group-ID (GID)
filename A file name in the current directory, or a full-path file name

directoryname A subdirectory name in the current directory, or a full-path directory name (multiple
names are separated by a space)

To change the group ownership of a directory, and all subdirectories and files within it, the chgrp

command should be used recursively (the option —R):

chgrp -R newgroup directoryname (s)
Who is authorized to change the group ownership?
user-owner of the file, or root

Originally, the BSD UNIX allowed simultaneous changes of the file's user and group ownership,
using the same chown command in the following way:

chown newowner.newgroup filename (s)

chown -R newowner.newgroup directoryname
where:

newowner A user name, or an UID
newgroup A group name, or a GID
filename A file name in the current directory or a full-path file name

directoryname A subdirectory name in the current directory, or a full-path directory name
Today, most modern UNIX flavors (whether BSD- or System V-derived) accept this useful idea and
allow the same simultaneous change, with slightly different syntax:

chown newowner:newgroup filename (s)
chown —-R newowner:newgroup directoryname

Instead of a dot (.) that was originally used as a separator between the new user and group name,
now the colon (:) is introduced.

For a better understanding, a few examples follow:

Let's start with a long listing of a directory (the logged-in user is bjl):

$ 1s -1
drwx—————-— 2 bjl mail 24 Mar 24 13:19 Mail
—IW-Irw—Irw-— bjl users 20 May 2 13:26 modefilel
—IW-IW—IW-— bjl users 20 May 2 13:30 modefile2

bjl users 20 May 2 13:30 modefile3
bjl wusers 2106 May 2 13:31 sesl.tmp

—I'W—IW—IW-—

[A

—Irw—Iw—Irw-—
The user can change the user and group owners for certain files:

$ chown dubey modefilel

33

$ chgrp other modefile2

$ 1s -1

drwx—————- 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw—-rw— 1 dubey users 20 May 2 13:26 modefilel
—-rw-rw—-rw— 1 bjl other 20 May 2 13:30 modefilelZ
—-rw-—rw-rw— 1 bjl users 20 May 2 13:30 modefile3
—-rw-rw—-rw— 1 bjl users 2106 May 2 13:31 sesl.tmp

And then regains the group ownership of the changed file modefile2:

$ chgrp users modefile2

Regaining user ownership of the changed file modefile1 is not as simple; the logged—in user bjl
doesn't own this file anymore, and only the new owner or the superuser can reassign user
ownership to bjl. Supposing that switching to root is possible (in most cases it is not possible, only
administrators know the root password that is always required to become the superuser):

$ su
Password: **xxxxxxk
chown bjl modefilel

1s -1
total 8
drwx—————-— 2 bjl mail 24 Mar 24 13:19 Mail

—IW-IW—IW-— bjl users 20 May 2 13:26 modefilel
bjl users 20 May 2 13:30 modefilel
bjl users 20 May 2 13:30 modefile3

bjl users 2106 May 2 13:31 sesl.tmp

—IrW—IW—Irw—
—IrW—IW—Irw—

[R A]

2.2.2 File Protection/File Access

First, let us introduce the terminology we will use to identify access rights to a certain file. We will
use three different terms that are related to the very same issue: file protection, file access, and file
permissions. These three terms are mutually related, and their use is primarily dependent upon the
angle from which we are viewing the issue. Though file access and file permissions are directly
proportional, and we often use the composite term access permissions (more file permissions
permit wider access to the file), file access and file protection are inversely proportional (a higher file
protection requires more restricted file access). Finally, they are all known as the file mode.

Every file has a set of permission bits that determine who has access to the file, and the type of
access they have. UNIX supports three types of file access:

Access File Meaning Directory Meaning
Read (r) View file contents |Search directory contents (/s)
Write (w) |Alter file contents |Alter directory contents (rm)
Execute (x) |Run executable file [Make it the current directory (ecd) for a search

Notes: (x) is sometimes identified as "execute/search" access right; For a script
file execution, r and x access permissions are required (each line in the script
must be read to be executed).

The following table lists the permissions required to perform some of the most common UNIX
commands.

Minimum Access Required

Command On File |On Directory |[Comments
Itself File Isin

34

cd N/A X
/home/username
Is none r
/home/username
Is -s none rx A file size determination requires a logical move to the
/home/username directory itself to search the content of the inode of the
specified file
cat filename r X
cat >> filename w X
filename x (if X
binary)
filename rx (if X
script)
rm filename w XW w permission for a file is not a requirement (but an
additional confirmation will be required); w permission
for a directory is mandatory (removing a file means
altering the directory)

Notes: It is important to understand the difference between a simple Is command, and any other,
more elaborated Is command (with an option that requires a search of the file's inode). Simple

listing of the directory means just to read the content of the directory; options require information
from the inode of the specified file.

2.2.2.1 Access Classes

UNIX defines three basic classes of access to files, for which permissions can be specified

separately:

User access (u)
Group access (g)

Other access (0)
All classes (a)

Access granted to the user-owner of the file

Access granted to members of the group that owns
the file

Access granted to everyone else (except root)
Access granted to everyone (includes all three

classes)
The access classes independently specify file modes for different categories (classes) of users. The
long format (the " I" option) of the Is command is used to display the file mode — see the previous

example. The first column in the listing, a set of letters and hyphens, represents a file mode; the file
mode includes three triplets for the three access classes u, g, and o. This is illustrated in the

following table:

File Type User |Group |Other
Access [Access [Access
(u) |(9) (o)
Position 11213 41516 |7 |181]9 |10
Letter —r wix|r |w [x |r |w|x
Read access + + +
Write access + + +
Execute access + + +
Note:The first letter (or hyphen) in a line (the
leftmost position) represents a file type.

35

2.2.2.2 Setting a File Protection

We have already discussed myriad terms to refer to file protection; UNIX simply refers to a file
protection as file mode. In UNIX parlance, to set file permissions means to change a file mode; for
that purpose, the UNIX chmod command is used:

#chmod access-string filename (s)

where
access-string Includes:

e Access class: u, g, 0, 0or a
e Operator: +, —, or =
e Permissions: r, w, or x
filename File name in the current directory, or the full-path file name (multiple files are
separated by a space).

Multiple access classes and/or permissions could be also simultaneously specified. The recursive
chmod command is also supported, for example:

#chmod -R go-rwx /home/username

This command will change the file mode of all files and subdirectories beneath the directory
/home/username. It will deny any kind of access for group and other, and the user access will
remain unchanged.

This example specifies the file mode, using what is called symbolic mode notation. Alternatively, the
absolute, or numeric, mode notation could be also used. The difference between the two is shown
below:

user |group|other |Access classes
rwx|r—x |r-— |Symbolic mode
111|101 |100 |Convertto binary
7 5 4 Convert to digit

754 The corresponding absolute (numeric) mode
The command to set this particular file mode is:

chmod 754 filename

Access rights for a certain user are strictly determined by the individual permissions within the
related class. It means that UNIX first determines where the user belongs — is that the user-owner,
a member of the group—owner, or any other user. Once it is done, only the related file's access
class is checked and accordingly a needed access to the file granted or denied. There is no a
gradual top—down access class checkup in the cases when an user belongs to multiple classes (an
user—owner could also be a member of the group—owner, and definitely belongs to others). Here is
an example:

The user is bjl; the long listing for the text file textfile is:

$ 1s -1 testfile
-rw-r——r—-— 1 bjl users 15 Jul 6 20:49 textfile

36

¢ With the following content:

$ cat textfile

#

This is just a test file
#

e L et us deny read access to the user—owner bjl:

$ chmod u-r testfile
$ 1s -1 testfile
--w-r—--r -—-— 1 bjl users 15 Jul 6 20:49 textfile

¢ And try to read the file again:

$ cat textfile
cat: textfile: Permission denied
e However, the file can be modified

$ echo "# This is added text" >> textfile
$ echo "#" textfile

e Besides the fact that user bjl is the owner of the file textfile and a member of the group
users, as well as that read permission is granted to the group users and to all others, the
file cannot be opened for reading. The file's owner, user bjl, can modify or delete the file
(there is the w permission), but the file cannot be read. To overcome this "unusual situation,”
the owner has to change the file mode, and make the file readable.

$ chmod 644 testfile

$ 1s -1 testfile

-rw-r——r—-— 1 bjl users 15 Jul 6 20:49 textfile
$ cat textfile

#

This is just a test file
This is added text
#

e The same is valid for a group—owner toward group permissions.
2.2.2.3 Default File Mode

The default file mode determines file permissions for newly created files. Once a file is created, the
file mode can be changed as desired. UNIX is quite flexible regarding default file mode — there is a
coded system setting, and a possibility for a program setting. First of all, the usual system default
file modes for directories and files are different:

e For a directory rwxrwxrwx, i.e., all permissions are granted
e For a file rw-rw-rw-, i.e., the execute permissions are initially denied

However, do not be surprised if some specific UNIX flavors or even UNIX releases behave
differently.

The program setting of the default file mode is always adjusted toward a system setting, and a
specified permission can only be denied (never granted); it means only a more restrictive default file
mode can be dynamically created. Pay attention that this is related to the default file mode only; the
chmod command, or renaming and copying files, are not restricted in that way.

The command umask is used for that purpose. Upon the command execution, all newly created
files in the new environment will be automatically set according to the new default file mode. The
umask command itself uses numeric notation to specify the default file mode, but in a slightly

37

different way than the chmod command. The umask command sets permissions to be inhibited
(masked out) when a file is created — it denies permissions. The implemented numeric notation
should be an octal complement to the numeric notation of the desired file mode. Old UNIX releases
supposed only the numeric notation; modern UNIX flavors allow also the use of the symbolic
notation. It is highly recommended to stay familiar with the numeric notation (it works always and
everywhere).

For example, to have a default file mode same as the file mode "754" in the previous example:

777 All access granted

- 754 Desired access granted

023 Masked out access for default
mode

The corresponding command is umask 023.
2.2.2.4 Additional Access Modes

We have discussed common file permissions, which are quite self-explanatory (read and write are
obvious) and relatively easy to use. Some confusion is possible with respect to the execute (x)
permission on a directory, but once we accept execution as a condition to "search the directory —>
cd," everything seems to be reasonable; that is why it is also known as execute/search permission.
However, the three file permissions (r, w, and x) are far from sufficient to cover all file permission
needs in UNIX, and consequently UNIX has to support additional access modes. These additional
access modes are listed below:

Code Name Meaning

t sticky bit Keep executable image in memory after exit (memory resident program)
s set UID (SUID) [Set process user ID on execution (will be discussed in greater detail)

s set GID (SGID) |Set process group ID on execution (will be discussed in greater detail)

1 file locking Set mandatory file locking on r/w for this file (originally System V)

When using the Is =l command, SUID and SGID access bits are displayed in the position of "x

access" for the corresponding access class (SUID in the user class, SGID in the group class); the
sticky bit is displayed in the position of x access for the class "others."

SUID and SGID are extremely important and are very sensitive issues from the system security
standpoint. Normally, when an executable file (a program) is invoked, and the corresponding
process created, the access rights to system resources of such a process (known as a process's
effective IDs: EUID and EGID) are related to the user and group who started the program execution
(known as the process's real IDs: RUID and RGID). However, if SUID or SGID access is set on an
executable file, access to system resources is based upon the file's user or group owner rather
than on the real user who started the program execution. This means, for example, for an
executable file owned by the root, regardless of who has started its execution, the program will be
executed in the same way as if the superuser had invoked it. (We will discuss this issue in more
detail later by addressing process attributes.)

SUID and SGID, as well as a sticky bit, are supposed to be implemented primarily on executable
files; however, they could be implemented on any file, as well as on a directory. In such a case, they
have different meanings. Here is a summary:

Set ‘ File or Directory Meaning

38

Bit

SUID |Executable file Effective user ID on execution (EUID) is equal to the file user
owner's ID

SUID |Nonexecutable file or |None

directory

SGID |Executable file Effective group ID on execution (EGID) is equal to the file group
owner's ID

SGID |Nonexecutable file Enable mandatory locking of the file

SGID |Directory Opposite semantic in propagation of the group ownership; BSD
behaves like System V, and vice versa

Sticky |Executable file Memory resident program

Sticky |Nonexecutable file Memory resident file (system's paging is skipped, as in swap files)

Sticky |Directory Deletion of files in the directory is restricted only to the owner of
the directory, or of the file itself

The aforementioned chmod command is used to set additional file modes. Both symbolic and
absolute (numeric) notations are supported; however, on some UNIX platform only the symbolic
mode notation can be used to clear an SGID bit on a directory.

The symbolic notation uses the letter s, together with a corresponding access class to set/clear
additional access bits:

chmod u+s filename Set SUID on filename
chmod g+s filename Set SGID on filename

chmod o+s filename Set sticky bit on filename
Alternately, the minus sign (-) is used to clear additional access bits.

An additional, fourth triplet was introduced for the numeric notation; it corresponds to SUID | SGID |
sticky, and can be presented numerically, like any other triplet. This additional triplet is the leading
one, positioned in front of the other three triplets, and the leading digit in the 4-digit numeric
notation identifies it. The 3—digit numeric notation is still valid; UNIX simply assumes 0 for additional
access bits (there is no need for a leading zero).

The following example should make this clear; it presents the procedure to change a file mode.
The login user is bjl; the current long listing of an arbitrary directory shows:

$ 1s -1

drwx—————-— 2 bjl mail 24 Mar 24 13:19 Mail
bjl wusers 20 May 2 13:26 modefilel
bjl wusers 20 May 2 13:30 modefile2
bjl wusers 20 May 2 13:30 modefile3
bjl wusers 322 May 2 13:31 sesl.tmp

—I'W—Iw—Iw-—
—IW—Iw—Iw-—
—IW—IwW—Iw-—

[N e)

—IrW—IW—Iw—

e The user wants to change the file mode for certain files (the symbolic notation is
implemented):

$ chmod u+x modefilel
$ chmod g - w+x modefile2 modefile3

$ 1s -1

drwx—————-— 2 bjl mail 24 Mar 24 13:19 Mail
—IWXIW—ILW— 1 bjl wusers 20 May 2 13:26 modefilel
—IW—Ir—XIW— 1 bjl wusers 20 May 2 13:30 modefileZ

39

—rwW—Ir—XIrw-— 1 bjl wusers 20 May 2 13:30 modefile3
—IrW—IrwW—IWw— 1 bjl wusers 322 May 2 13:31 sesl.tmp

e The required changes in file modes are shown in the new long listing of the directory. Now
let us set SUID and SGID on certain files:

$ chmod u+s modefilel
$ chmod g+s modefile2
$ 1s -1
2 bjl mail 24 Mar 24 13:19 Mail
—rWSIrw—rw-— 1 bjl users 20 May 2 13:26 modefilel
- rw—r—-srw- 1 bjl users 20 May 2 13:30 modefile2
—IrW—F—XIW— 1 bjl users 20 May 2 13:30 modefile3
—IrW—IrW—XW— 1 bjl wusers 322 May 2 13:31 sesl.tmp
Pay attention to the displayed position of SUID and SGID bits (they overwrite x permission).

Finally, let us return to the initial file modes:

$ chmod 666 modefilel modefile2 modefile3

bjl mail 24 Mar 24 13:19 Mail

bjl wusers 20 May 2 13:26 modefilel
bjl wusers 20 May 2 13:30 modefileZ
bjl wusers 20 May 2 13:30 modefile3
-rw-rw-rw— 1 bjl users 322 May 2 13:39 sesl.tmp

e Note that SUID and SGID were cleared also; in this case (this is HP-UX flavor),
implemented numeric notation works.

Q,
.
>‘<.'
|
|
|
|
|
\N)

—I'W—IW—Iw-—
—I'W—IwW—Iw-—

==

—IW—IwW—Iw-—

On the System V platform, a user—-owner can change the file's ownership. Practically, it means that
a user—owner can give the file to another user, also transferring owner access rights to the new
owner. If the SUID or SGID bit is set on the file, such a change of file ownership could be a potential
security problem. It would be very easy to create a particularly nasty scenario that would affect the
new owner. Just imagine a simple script that purges the home directory of the new owner, and can
be triggered by everybody (there is x permission for others). Once the script ownership was
modified, and supposing the SUID is set, whoever starts the script's execution will appear as the
new owner — i.e., the targeted home directory will really be purged (very unpleasant!).

Obviously System V UNIX has to protect itself from such unwelcome surprises. Let us see how in
the next example:

e Three test files are created by the user bjl: testfile1, testfile2, and testfile3.

$1ls -1

—-rw-r———-—-— 1 bjl wusers 0 May 27 15:07 testfilel
-rw—r————-— 1 bjl users 0 May 27 15:07 testfilel
-rw-r————-— 1 bjl users 0 May 27 15:07 testfile3

e The SUID and SGID are set by the user—owner (numeric notation is used):

chmod 4777 testfilel

chmod 2777 testfile2

chmod 4640 testfile3

1ls -1
—IrWSIWXIWX 1 levi wusers 0 May 27 15:07 testfilel
—IrWXIWSIWX 1 levi wusers 0 May 27 15:07 testfileZ
—rwSr————-— 1 levi users (0 May 27 15:07 testfile3

e The "set IDs" hide existing "x access bits" in the corresponding access classes. To make the
hidden bit recognizable, the low case letter "s" is displayed if both bits "set ID" and "x access
bit" are set, and capital letter "S" is displayed if only "set ID" bit is set (pay attention, not for
all UNIX flavors). In this example, the file testfile3 is not an executable file. (In that light,
SUID on this file does not make a lot of sense, but it is still a good illustration of the previous

v U

40

point.)
e The file ownership is now changed by the user—owner:

$ chown dubey testfilel testfile2 testfile3

S 1ls-1

—rwxrwxrwx 1 dubey users 0 May 27 15:07 testfilel
—rwxrwxrwx 1 dubey users 0 May 27 15:07 testfilel
—rw—r————-— 1 dubey users 0 May 27 15:07 testfilel3

What happened? We can see that the "set IDs" have not been transferred to the new owner.
Simply, if the file ownership was changed by the user—owner for files in which SUID and
SGID were set, the file modes would also change — SUID and SGID are not transferable to
another user; only the superuser can make it. (Anyhow, the superuser can make whatever it
wants.)

Now, let us return everything to the initial state; since the user bjl does not own the files
anymore, it will be done by the superuser. First switch to the superuser account:

S su
Password: **kkkkik*k
chown bjl testfilel testfile2 testfile3

su bjl

S chmod 640 testfilel testfile2

$ 1s -1

—-rw-r———-—-— 1 bjl wusers 0 May 27 15:07 testfilel
-rw-r———-—-— 1 bjl wusers 0 May 27 15:07 testfilel
—rw-r———-—-— 1 bjl wusers 0 May 27 15:07 testfilel3

¢ Note that a switch to the superuser (root) account always requires the root password, while
the switch from the superuser to some other user account does not. A superuser already
has full control over the system, including all user accounts.

2.2.3 Access Control Lists (ACLSs)

File access permissions originate from the early days of UNIX, and they provide enough flexibility in
accessing UNIX resources (objects) to meet most daily needs. This approach was made even more
flexible by introducing secondary groups as desired, and by grouping individual users on a per need
basis. Nevertheless, the continual development and growth in the implementation of UNIX as a
platform for different applications required an even more selective approach. Modern UNIX flavors
introduced Access Control Lists (ACLs) to respond to new demands.

ACLs are a key enforcement mechanism of discretionary access control (DAC), used to specify
access to files by users and groups more selectively than with traditional UNIX mechanisms. ACLs
permit or deny access to a list of users, groups, or combinations thereof. ACLs are supported as a
superset of the UNIX operating system DAC mechanism for files, directories, and devices.

An access control listis a set of (user.group, mode) entries associated with a file that specify
permissions for all possible user—ID/group-ID combinations. An entry in an ACL specifies access
rights for one user and group combination. Three bits in an ACL entry represent read, write, and
execute—search permissions. These permissions coexist with the traditional mode bits associated
with every file in the filesystem.

An individual ACL entry could be considered restrictive or permissive depending on the context.
Restrictive entries deny a user and/or group access that would otherwise be granted by less specific
base or optional ACL entries. Permissive entries grant a user and/or group access that would
otherwise be denied by less specific base or optional ACL entries.

41

The right to alter ACL entries is granted to file (object) owners and to privileged users. Privileged
users are superusers and members of certain privileged groups.

For a better understanding of the relationship between ACLs and traditional file permissions, let us
consider the following file and its permissions:

Permissions User |Group|Filename
—IrWXF=Xr—— bjl admin |datafile
The file owner is: bjl

The file's group is: admin

The name of the file is: datafile

The file owner permissions are: |rwx
The file group permissions are: |r-x
The file other permissions are: |r—-—
When a file is created, three base access control list entries are mapped from the file's access

permission bits to match the file's owner and group and its traditional permission bits. The three
base ACL entries are:

1. Base ACL entry for the file's owner: (uid.%, mode)
2. Base ACL entry for the file's group: (%.gid, mode)
3. Base ACL entry for other users: (%.%, mode)

The basic form of an ACL entry is (user.group, mode). user and group can be represented by
names or ID numbers; mode is represented by a letter (r, w, and x if the corresponding access is
granted, or dash "-" if the access is denied). Two special symbols may also be used:

1. % symbol, representing no specific user or group
2. @ symbol, representing the current file owner or group

ACLs are superimposed on the file's traditional permissions; however, managing ACLs does not
affect the traditional file mode. There is no way to change the traditional file permissions by using
ACL-specific commands (the opposite is not true because base ACL entries are synchronized with
the traditional file permissions). Both the traditional UNIX command chmod and ACL-specific
commands may be used to change base ACL entries.

Optional ACL entries contain additional access control information, which the privileged user can set
with the available ACL-specific commands to further allow or deny file access. Up to 13 additional
user/group combinations may be specified. For example, the following optional ACL entries could
be associated with the presented file datafile:

(mhr.admin, rwx) Grant read, write, and execute access to user mhrin group
admin
(mnm.%, ——-) Deny any access to user mnm in no specific group (any group)

ACL entries are unique; there can only be one (user.group, mode) entry for any pair of user and
group values; one (user.%, mode) entry for a given value of user; one (%.group, mode) entry for a
given value of group; and one (%.%, mode) entry for each file.

There are several UNIX commands to manage ACLs, and they are all UNIX-flavor specific.

Although they all have essentially the same mission, they have different command names. We will
focus on Solaris—specific ACL commands.

42

The getfacl command is available on Solaris to display discretionary file information:

getfacl [-ad] filename (s)

where

option —a Display the filename, owner, group, and file's ACL
option —d Display the filename, owner, group, and default file's ACL (if it exists)
no option Display the filename, owner, group, file's ACL, and default file's ACL (if it exists)

filename The filename in the current directory, or full-path filename. (multiple filenames are
separated by a space; a blank line separates displayed ACLSs)
A few examples (the selected file is /etc/vistab):

$ getfacl /etc/vEfstab
file: /etc/vfstab

owner: root
group: other
user::r—-

group: :r—-

mask:r——

other:r—-—

#effective:r ——

The first three lines specify the filename, user—-owner
and group owner; they start with pound sign ("#").

Permissions for user-owner (because the second field
is empty).

Permissions for group owner (because the second field
is empty).

Maximum permissions allowed to any user except
user-owner, and to any group (including group owner);
they restrict the permissions specified in other entries.
Permissions granted to others.

In order to indicate when the group class permission bits restrict an ACL entry, an additional string
"#effective.!" specifies the actual permissions granted in the same line of the restricted entry; the
string is separated by a tab character.

$ cd /etc
$ getfacl vfstab
file: vfstab

owner: root
group: other
user::r—-—

group::r—-— #effective:

mask:r——
other:r——

$ getfacl -a vfstab

file: vfstab

owner: root
group: other

user::r—-
group::r—— #effective:
mask:r—-—

other::r—-—

$ getfacl -d vfstab
file: vfstab

r——

r——

This is the same command as in the previous example,
except that the relative filename was specified.

For this file, the "option -a" and "no options" display
the same output because there is no default ACL.

Only the first three lines are displayed because there
is no default ACL.

43

owner: root
group: other

The Solaris setfacl command is available to modify an ACL for a file or files. Two forms of the
command may be used:

setfacl [-r] [-s |-m | -d] acl_entries filename (s)
setfacl [-r] [-f] acl file filename(s)

where

option —-r Recalculates the permissions for the file's group class entry (known as the mask
entry). These permissions are ignored and replaced by the maximum permissions
needed for the file group class, to grant access to any additional user, owning group,
and additional group entries in the ACL. The permissions for these entities remain
unchanged.

option —s Sets the ACL to the entries specified on the command line; all old ACL entries are
removed and replaced with the newly specified ACL.

option -m Adds one or more new ACL entries, and/or modifies one or more existing ACL entries;
when modified, the specified permissions will replace the current permissions.

option —=d Deletes one or more ACL entries; the file owner, owning group, and others may not be
deleted. Deleting an ACL entry does not necessarily have the same effect as removing
all permissions from the entry by modifying the entry itself (an ACL entry superimposes
on traditional file permissions).

option -f Sets the ACL to the entries contained within the file named acl/_file on the the acl_file
hold as with —s option.

acl_entries One or more comma-separated ACL entries of the following format (all entries are not
applicable for all options):

e u[ser]::operm|perm

e u[ser]:uid:operm|perm

e g[roup]::operm|perm

e g[roup].gid:operm|perm

e m[ask]:.operm|perm

e dlefault]:ufser]::operm|perm

e dlefault]:ufser]:uid:operm|perm
e dlefault]:g[roup]::operm|perm
e d[efault]:g[roup]:gid:operm|perm
e d[efault]:m[ask].operm|perm

e d[efault]:ofther]:operm|perm

Where perm is a permissions string composed of the letters r(read), w(write), and
x(execute); the dash (-) may be specified as a place holder. operm is an octal
representation of the above permissions, 7 —> all permissions (rwx), 0 —> no
permissions (—-)

uid is a login name or user ID; for user—owner is empty
gid is a group name or group ID; for group—owner is empty
acl_file The file that contains ACL entries; an ACL entry is specified as a single line.

Comments are permitted and they start with pound sign (#). The file can be created as
an output of the getfacl command.

44

2.2.4 File Types

We mentioned earlier that in UNIX everything is a file, or is file-like. Given what we now know about
file ownership and file mode, perhaps it is more appropriate to say that in UNIX everything is
"dressed like a file." This means everything appears like a file, but there are still differences in the
file content and the way the file is managed and processed.

These differences result in different kinds of files, or in UNIX terminology, different file types. The
type of a file determines how the file will be handled.

The long listing of the Is =l command also displays the file type; a leading single letter, or hyphen, in
the leftmost position of the first column in the listing that presents the file mode, identifies a file type.
The file type is identified in the following way:

— Plain (regular) file

d Directory

¢ Character special file
b Block special file

I Symbolic link

s Socket

p Named pipe

Here is an example:

$1s-1
drwx—————- 2 bjl mail 24 Mar 24 18:19 Mail
—rwxrw-rw— 1 bjl wusers 20 May 2 18:26 filel
lrwxrwxrwx 1 bjl wusers 20 May 2 18:28 file2 -> /usr/local/bin/file2

Three different file types are displayed: a regular file (-), a directory (d), and a symbolic link (/). A
brief summary of file types follows.

2.2.4.1 Plain (Regular) File

A plain file is just a sequence of bytes: a data file, an ASClI file, a binary data file, executable binary
program, etc. In most cases when we talk about files, we are thinking of plain files. They are
identified by the hyphen (-) in the long listing of a directory they reside in.

2.2.4.2 Directory

A binary file, a directory is a list of the files within it (including any subdirectories). Entries are
filename-inode pairs. In UNIX each file is identified by an inode (an official name is index node).
For simplicity, we will assume that an inode fully specifies the file, and that by knowing the inode,
UNIX actually knows everything about the file itself (ownership, mode, type, other properties,
contents, location on the disk) except its name. The directory relates the filename with the file itself;
the filename-inode pairs that make a content of a directory itself actually establish this relationship.
Although it might seem odd to a beginner, UNIX can find a filename only in the corresponding
directory. If a directory is corrupted, all of its filenames can be easily lost, while the corresponding
files remain unchanged and unnamed.

The special entries "." and ".." (single and double dots) refer to the directory itself and its parent
directory, respectively. A directory in its long listing is identified with the letter d.

45

2.2.4.3 Special Device File

A special device file is used to describe the attached I/0O device. UNIX accesses devices via their
special files. In UNIX, device drivers themselves (software interfaces that control the devices) are
part of the kernel, and can be accessed by using certain system calls (UNIX internals). A special
device file is a kind of pointer to the corresponding device driver within the kernel; it is a very simple
file that contains two pointers: major and minor numbers. The major number points to the device
class, while the minor number points to the individual device within the class.

All special device files reside in the directory /dev (and its subdirectories on System V). There are
two groups of special device files: block device files and character device files.

2.2.4.3.1 Block Device File

I/O operations are provided through a group of buffers; the system maintains a buffer pool for all
block devices. The block device is accessed in fixed—size blocks. Physically, the high—-speed data
transfer is realized using a DMA mechanism (direct memory access data transfer). The letter b in
the long listing of a directory identifies the block device files. The following disk—-related block device
files are examples of block device files: /dev/diskOa or /dev/dsk/c1d1s5.

2.2.4.3.2 Character Device File

Nonbuffered I/O operations are provided via a character or raw device. Physically, the data transfer
is performed through a registered data exchange between the device and its controller. Character
devices include all devices that do not fit the block I/O transfer. The letter ¢ in the long listing of a
directory identifies the character device files. The following disk related raw device files are
examples of character special files: /dev/rdiskOa or /dev/rdsk/c1d1s5.

2.2.4.4 Link

A link is a mechanism that allows multiple filenames to refer to a single file on a disk, i.e., a single
inode. There are two kinds of links: hard links and symbolic links.

2.2.4.4.1 Hard Link

A hard link associates two or more filenames with an inode; each inode keeps a record of a number
of linked filenames. Only when all filenames are deleted will the file itself also be deleted, and the
corresponding inode released and returned as free for new file assignments. Strictly speaking, a
hard link is not a separate file type; each hard link represents an already existing file with an
additional filename. The only way to identify mutually hard-linked filenames is to list a directory or
directories by using the "Is —i" command and check for identical inode numbers. The "-i" option
displays, beside the filename, the inode number for each displayed file in the listed directory.

Hard links always remain within the same filesystem; simply, inodes cannot be shared between
filesystems, and two hard links are always associated with the same inode. A hard link never
creates a new file; it only attaches a new filename to the existing file. This means that a hard link
only presents a new entry in a directory, a new record about a filename-inode pair.

To create a hard link use the In command:

ln myfile hardlink

46

This command will create a new entry in the current directory named hardlink paired with the same
inode number as myfile. There are no hard links for directories; it would be too confusing and
dangerous for the system.

2.2.4.4.2 Symbolic Link

A symbolic link is a pointer file to another file elsewhere in the overall hierarchical directory tree. By
creating a symbolic link, a new small file is also created; this new file contains the full-path filename
of the linked file. There is no restriction on the use of symbolic links; they span filesystem
boundaries independently of the origin of the linked file. Symbolic links are very common (this
cannot be said for hard links); they are easy to create, easy to maintain and easy to see. The letter |
in the long listing of a directory identifies them; a linked file is also displayed in a visually
comprehensive way (see previous example for file types).

To create a symbolic link use also the In command (with the option -s):
ln -s myfile symlink

This command creates another file named symlink in the current directory with a separate inode
(since this is a completely new file) that points to the file myfile. Both types of links are presented in
Figure 2.1. Let me explain it in more detail.

(A) Hard and symbolic links are created (B) The file myfile is deleted
for the file:myfile

hardlink

hardlink symlink

symlink

Seaa
e e mcam-m-="

points to the file myfile now points nowhere

(©) Another file myfile is created

hardlink symlink

’
/ o o
]
1
\
\ B1 B3 ﬂ
\\ Sty Note:
Se o ’ N - Index node
____________ - B - Data blocks

points to the new file myfile
Figure 2.1: Hard and symbolic links.
For an existing file named myname, which is determined by the inode (index node) N1, both links
are created. The hard link hardlink is another name for the file myfile, and it corresponds to the
same inode N1. The symbolic link symlink represents another file determined by the inode N2; its
contents point to the file myfile.

47

What will happen if the file myfile is deleted? Actually, only the filename "myfile" will be deleted; the
file itself remains with its other name hardlink (the file content remains unchanged). The symbolic
link symlink is now broken; it points nowhere (there is no more referenced file myfile).

What will happen if another file named myfile is created in the same directory? This is a brand new
file, determined by the new index node N3 and unrelated to the existing file hardlink, which
continues to exist as a different file. However, the file symlink is now linked with the new file
myname, and it continues to point to the newly created file myfile.

2.2.4.5 Socket

A special type of file used for interprocess communication on a single system or between different
systems; sockets enable connection between processes. There are several kinds of sockets, and
most of them are involved in network communications. UNIX domain sockets are local ones, used in
local interprocess communication; they are referenced as filesystem objects. Sockets are created
by the use of a special system call, "socket", but can be treated in a similar way as other files (using
the same system calls). However, a socket can be read or written only by processes directly
involved in the connection. For example, printing systems, X windowing, or error system logging use
sockets. Sockets were originally developed in BSD and later included in System V. The most
probable place to find sockets is the /tmp directory.

2.2.4.6 Named Pipe

Another mechanism, originated in System V, to facilitate interprocess communication; the named
pipe presents a FIFO (first-in first—out) element in this communication. The output of one process
becomes an input to another process. Named pipes are very useful when a large amount of data is
involved in the interprocess communication; sometimes some application, and even OS restrictions
could be bypassed by using the named pipe.

UNIX provides the command mknod pipename p to create a named pipe pipename. The same
command is used to create special device files and we will return to this command later. The trailing
character "p" specifies the named pipe. Pay attention this is slightly different from the usual UNIX
way in specifying the command option. In the long listing of a directory the leading letter p identifies
named pipes. Again the most probable place for named pipes is the /tmp directory.

2.2.4.7 Conclusion

Independent of a file type, the file must be mounted before it can be accessed. Mounting is a
special UNIX process of bringing online a storage device (primarily a disk) that keeps the files,
making the files accessible and their contents readable. Only mounted files become visible and can
be searched, found, and processed. We will cover mounting in full details in_Chapters 5 and_6.

All listed file types have different natures. They are created with file—type specific UNIX commands,
but other UNIX commands are mostly applicable on all file types. The output of the same UNIX
command can be different depending on the file types, but the command itself would work. For
example, the command:

cat filename

will display the contents of the file filename. But if filename is a symbolic link, the command will
display the contents of the linked file.

48

The common bond between all file types is the relationship of the file ownership and the file mode.
This relationship is fundamental to all UNIX platforms, and this is one of the main issues that make
UNIX so reliable and flexible in the constantly changing environment.

2.3 Devices and Special Device Files

A device is a dedicated piece of hardware that provides a particular function within the computer
system. A device itself can be located internally or externally. Regardless of the location, devices
are treated equally within their classes.

A device driver is a program that manages the system's interaction with a particular device; it
presents a needed interface to translate between the hardware commands understood by the
device, and the kernel. Such a system structure keeps UNIX reasonably hardware—independent.

Device drivers are parts of the kernel; they are not user processes. However, they can be accessed
both from within the kernel and from the user space. User-level access is provided through special
device files. The kernel transforms operations on these special files into calls to the driver code.

Special device files are also called device special files. Independent of their naming, these files are
really special and different than regular files. Their mission is special in the UNIX paradigm. We will
use both names arbitrarily, or even simply special files.

Special device files are mapped to devices via two pointers: major and minor device numbers.
These numbers are stored in the inode for a particular special file. The major device number
identifies a device driver for a specific class of devices (a single driver can be used for a number of
devices of the same type); the minor device number is a parameter within the specified device
driver.

Each device driver has routines for performing necessary functions in its interaction with the device.
These basic functions are: probe, attach, open, close, read, reset, stop, select, strategy, dump,
psize, write, timeout, interrupt processing, and i/o control (ioctl). The addresses of these functions
for each driver (independent of the character and block devices) are stored in the jump table inside
the kernel. The major device number indexes the jump tables; this is provided through another table
known as device switch table. Briefly, the mapping is performed in the following way: the major
device number points to the corresponding entry in the device switch table. The minor device
number is passed as a parameter to the relevant function in the device driver. The device driver is
free to interpret the minor number as it sees fit, although in most cases it uses it as a port number
(as is the case when a single driver controls multiple devices of the same type). As soon as the
kernel catches the reference, it looks up the appropriate function name in the driver's jump table and
transfers control to it. To perform a device—specific operation that does not have a direct analog in
the filesystem model (for example, ejecting a floppy disk), the ioctl system call is used to transfer a
request directly into the driver.

This treatment of devices in a file-like way is one of the fundamental design elements that make
UNIX so powerful. Just as the proven solutions for files' ownership, mode, access rights, and
protection have been implemented in the case of devices, the same has been done with user
commands as well. Meanwhile, existing differences in command interpretations were maintained.
We will see what this all means in the following example of the copy command:

cp /pathl/filenamel /path2/filename2

49

This command will copy the contents of the file /path1/filename1 to the file named
/path2/filename2, effectively overwriting the file if it already existed, or creating the file if it did not.

However, the command:
cp /pathl/filenamel /dev/console

will copy the file /path1/filename1 to the file /dev/console which is the special file for the physical
console terminal. The contents of the file /path1/filename1 will be displayed on the console screen.
As we can see, special files allow 1/0O operations to be performed with regular interactions among
UNIX files.

It is convenient to implement a device driver as an abstraction, even when there is no actual device
for it to control. Such devices are known as pseudo-devices; for example, pseudo-TTY (assigned
as PTY) is used to communicate with users over a network. From a higher-level software point of
view, a pseudo-device looks like a regular device; consequently, preexisting software is
transparent, allowing immediate use without the need for any modification.

2.3.1 Special File Names

By convention, special files are kept in the /dev directory. On large systems there may be hundreds
of devices, including pseudo-devices. On System V (ATT) flavors, special files are hierarchically
organized, with separate subdirectories for different device types: disk, tape, terminal,
pseudo-terminal, etc. On BSD platforms, /dev is a flat directory containing all of the special files.

Special file naming is different among different UNIX flavors; however, some common rules are
recognized. The following table presents the usual naming algorithms for disk-related special files:

BSD System V
File name /dev/rdiskOd [/dev/rdsk/c1d0s2
Access mode [/dev/rdiskOd |/dev/rdsk/c1d0s2
Device type |/dev/rdiskOd |/dev/rdsk/c1d0s2
Drive /dev/rdiskQd |/dev/rdsk/c1d0s?2
Disk partition |/dev/rdiskOd |/dev/rdsk/c1d0s2
Controller /dev/rdsk/c1d0s?2

Unfortunately, the implemented rules are very restricted and are usually valid only for the specific
flavor; naming procedures vary among flavors within the same UNIX platform.

2.3.2 Special File Creation

To create a special file, UNIX provides the mknod command, which has the following syntax:

mknod filename type major minor

where

filename A name of the special file to be created
type A type of the special file to be created

e ¢ — for a character (row) type

50

special file
e b — for a block type special file
e p — for a named pipe (FIFO)
major A major device number (decimal or octal)
minor A minor device number (decimal or octal)
Special files are very small and simple files; they contain only two numbers (major and minor

number), which are pointers to corresponding device drivers within the kernel. Only the superuser
can create a special device file.

Both BSD and System V flavors often include some kind of utility program to create and install
special files; usually this is a script based on mknod commands. One such script is makedev that
originates from SunOS 4.1 .x.

UNIX administrators like script utilities. First these scripts make their jobs easier. But the scripts are
also very instructive. We can read them and learn precisely how the utility works and fully
understand what happens behind the scenes. We can discover many of the UNIX secrets that are
so useful in its daily administration.

Special files are special by nature, but they are dressed like regular files. Several years ago one
student raised the questions: "Are the ownership and permissions of special files uniform over all
UNIX platforms? Their purposes are the same — is there any regularity? How do you recreate a lost
special device file?"

Despite the fact that these questions are very logical, there is no simple response. Ownership and
mode of special files vary among different UNIX flavors, as do special file names. A very brief
review of several UNIX flavors made several years ago easily proved this. Things are not changed
nowadays. The ownership and mode of the /dev directory and reviewed same-purpose special files
are presented for several UNIX flavors.

SunOS

#1s -lg / | grep dev

11 drwxr-sr-x 2 |bin |staff 11264 |May 16 09:24 |dev/
#Is -lg /dev

total 13

0 crw—w——— 1 |root|wheel 0, 0 May 26 14:52 |console
0 crw—f————— 1 |root|lkmem 3, 1 Mar 19 1993 |kmem
0 crw————— 1 |root|lkmem 3, 0 Mar 19 1993 |mem
0 srwxrwxrwx 1 |root|staff O May 16 09:24 |printer
0 crw—rw—rw— 1 |root|staff 21, 16 Jun 11 1993 |ptyq0
0 crw—rw—rw— 1 |root|staff 30, 1 Mar 19 1993 |rmti1

0 crw—r———— 1 |root|operator 17, |0 Jan 20 14:58 |rsd0a
0 brw—r————— 1 |root|operator 7, |0 Sep 22 1993 |sd0a
ULTRIX 4 [root system 12800 (May 27 10:23 (dev
#1s -lg / | grep dev

51

drwxr-xr-x

#Is -lg /dev

total 46

Crw——w———— 1 |operator|tty 0, 0 May 27 13:01 |console
CrW—f————— 1 |root kmem 3, |1 May 14 15:18 |kmem
CrW—————— 1 |root kmem 3, |0 Aug 71992 |mem
SIWXIWXrwx 1 |root system 0 May 27 10:23 |printer
CrW—rw—rw— 1 |root system 21, |16 May 27 13:09 |ptyq0
brw———————— 1 |root system 23, |0 Mar 22 1993 |ra0a
CIrW—rw—rw— 1 |root system 36, |8 Mar 22 1993 |rmtOh
HP-UX

$Is -1/]| grep dev

drwxr-xr-x 13 |root|root |30(72 May 26 09:51 (dev

$Is -l /dev

total 42

CrW——w——w— 1 |root [sys |0 |0x000000|May 26 09:51 |console
CrW—rw—rw— 1 |root |sys |24|0x203010|Dec 13 16:31 |hil1
CrW—————— 1 |bin |sys |3 |0x000001|Dec 13 16:31 |kmem
CrW—r——r—— 1 |lp [bin |11|0x206002|May 26 15:32 |Ip_panlaser
CIrW—f————— 1 |bin [sys |3 |0x000000|Dec 13 16:31 |mem
Crw—rw—rw- 1 |root |other|16|0x000010|Dec 13 17:14 |ptyq0
CrW—rw—rw— 1 |root [sys |23|0x203000|Dec 13 16:31 |rhil

IRIX

$Is -1/]| grep dev

drwxr-xr-x 10 [root|sys|358(4 |May 16 08:59 dev

$Is -l /dev

total 87

CrwW——w——w-— 3 |root |sys |58, |0 |May 25 14:33console
brw——————— 1 |root |sys |22, |71 |Mar 31 1993 disk2
CrW—————— 1 |root|sys|1, |1 |May27 1993 kmem
CIW—————— 1 |root|sys|1, |0 |May27 1993 mem
SIWX—————— 1 |root|lp |0 May 16 08:59 printer|
CrW——————— 1 |root |sys |22, |71 |Sep 20 1993 rdisk2
CIrW—Irw—rw- 3 |root |sys |23, [192|Nov 8 1993 tape
Crw——w——w- 2 root [sys |0, |1 |Sep 10 1992 ttyd1

It is very easy to conclude that there is no uniformity among different UNIX flavors — naming,
ownerships, and file modes are different. What to do if a special file is accidentally lost? Do we have
to remember them all?

52

The only logical answer is to search for help within the same UNIX flavor. For example, to look up
the same special files on another same—flavor UNIX system (if applicable). Other options are to
check vendor documentation, or use other flavor-related sources (call technical support,
newsgroups, Internet, etc.).

2.4 Processes

A process is a single program that is running in its virtual address space. The process should be
distinct from a job or a command, which may be composed of many processes working together to
perform a specific task. One of the main administrative tasks is to manage UNIX processes. In this
section we will cover main process-related topics.

2.4.1 Process Parameters

This is a brief reminder about process parameters. We will start with the process types and main
process attributes. Full understanding of process attributes is crucial for certain administrative
activities, as well as for the system security. Other discussed issues are file descriptors attached to
a process and process states.

2.4.1.1 Process Types
The three distinct types of processes are:

e Interactive processes — Interactive processes are initiated and controlled by a terminal
session; they run in the foreground attached for the standard input STDIN (in a terminal
session STDIN corresponds to the terminal) or in the background. Job control (which
originated in BSD) allows a foreground process to be sent to the background and vice versa.

e Batch processes — Processes not associated with a terminal; these are explicitly
submitted to a batch queue and executed with a lower priority in sequential order, primarily
at off—peak times. Originally, batch processing was not very thoroughly developed on UNIX
platforms, but third—party vendors have improved it. Batch processing is very convenient for
non-urgent, long-lasting data processing such as iterative calculations and the like.

e Daemons — Server background processes, usually initiated at the system boot time, which
continue running as long as the system is up. Daemons perform different system-related
tasks; they wait in the background until some process requires their service.

2.4.1.2 Process Attributes

There are many attributes associated with UNIX processes. The following paragraphs discuss the
major attributes.

e Process ID (PID) — The PID is a unique identifying number used to refer to the process. It
is an integer assigned by the kernel when the process was created and cannot be changed
for the lifetime of the process. Crucial for process handling, a process is always identified by
its PID.

e Parent process ID (PPID) — The PPID is the PID of the parent process, which is the
process that was directly involved in the creation of the new process. The PPID is not
unique, because the same parent process could have a number of child processes. The
PPID cannot be changed during the lifetime of the process.

* Real and effective user ID (RUID and EUID) — The real user ID (RUID) is the UID of the
user who started the process; the effective user ID (EUID) is the UID used to determine the

53

user access rights of the process to system resources (objects). The relationship between
the two user ID attributes is: RUID =EUID, except if the SUID access mode was set on the
program that created the process, and then EUID corresponds to the owner UID of the
program (see also the_File Permissions section of the text).

Real and effective group ID (RGID and EGID) — The real group ID (RGID) is the GID of
the group of the user who started the process; the effective group ID (EGID) is the GID used
to determine the group access rights of the process to system resources (objects). The
relationship between the two group ID attributes is: RGID =EGID, except if the SGID access
mode was set on the program that created the process, and then EGID corresponds to
owner GID of the program (see also the_Eile Permissions section of the text).

e Process group ID (PGID) —The process group ID (PGID) identifies the process group that
the process belongs to; typically, multiple processes are members of the same process
group and they share the same PGID. The PGID is the PID of the process group leader; this
is usually the initial parent process. Unlike PID and PPID, which cannot be changed during
the life of the process, PGID is under program control and can be changed by the
corresponding system call (as is the case with job control). PGIDs are important in the
processing of signals in interprocess communications. For example: the invoked shell is the
process group leader for all subsequent commands that are members of the created
process group; once the user logs out and terminates the shell, all currently running related
processes will also terminate.

Control terminal (TTY) — The control terminal is the terminal (or pseudo-terminal)
associated with the created process — the terminal that the process was started from.

e Terminal group ID (TGID) — The terminal group ID (TGID) is the PID of the process group
leader that opened the terminal, which is typically the login shell.

The TGID identifies the control terminal (TTY) for a process group, i.e., the terminal
associated with a process. The TGID is important for job control.

Current working directory (CWD) — The current working directory (CWD) defines the
starting point for all relatively specified pathnames (filenames that do not begin with the "/"
character).

Nice number — A number indicating the process priority relative to other processes.
Generally, a lower nice number means a higher priority; this is true also when the nice
numbers are in the range — 20 to +20 (lower number in this case means more negative).

2.4.1.3 File Descriptors

File descriptors are integers used to identify files that have been attached to a process and opened
for 1/0. Modern UNIX systems provide more than 20 different files to be opened for a process. File
descriptors 0, 1, and 2 are associated with the standard input (a keyboard), standard output (a
screen), and a standard error (a screen also), respectively; they are, by default, attached to a newly
created process. UNIX provides an easy method of 1/O redirection by simple replacement of the
input, output, and error files. In the case of sockets, the descriptors are called socket descriptors.

2.4.1.4 Process States

The existence of a process does not automatically mean it is eligible to receive and consume CPU
time. There are multiple process execution states, as discussed in the following text.

Runnable — The process is ready to execute whenever there is CPU time available.
Sleeping — The process is waiting for a specific event to occur, or for some resource to become

available. Interactive processes and daemons spend most of their time sleeping, waiting for terminal
input or a network connection.

54

Stopped — The process is suspended and forbidden to run as the result of a received STOP
signal; it can be restarted if it receives a CONT signal.

Zombie — The process is trying to die; another common term is defunct.

Swapped — The process is removed from the system main memory to a disk (more precisely, a
process image is removed). This occurs when the competition for memory is intense, a lack of
available memory for new processes is obvious, and regular memory paging is unable to solve the
problem efficiently. Strictly speaking, swapped is not a true process state, because a swapped
process can be in one of the previously mentioned states: sleeping, stopped, or even runnable.

2.4.2 Process Life Cycles

Each process is living as long as the corresponding program is running. Process life cycles vary in
range from "extremely short" up to "indefinitely" like for daemons (or better to say "as long as the
system lives"). Process starts with its creation and lasts until terminated (program exit upon its
completion) or forced to quit.

2.4.2.1 Process Creation

In UNIX a new process is created with the fork system call. An existing process, a parent process,
makes a copy of itself into the address space of a child process. From the user's point of view, the
child process is an exact duplicate of the parent process, except for two values: the PID and the
parent PID. The fork system call returns the child PID to the parent process and "zero" to the child
process (thus, a program can determine whether it is the parent or the child process). The fork
system call involves three main steps:

1. Allocating and initializing a new structure for the child process
2. Duplicating the context of the parent process for the child process
3. Scheduling the child process to run

The memory organization and layout associated with a UNIX process contains three memory
segments called:

A shared read-only segment that includes program code

1. Text
segment
A private read-write segment divided into initialized and uninitialized data parts
2. Data (the uninitialized part is also known as "block started symbol" (BSS))
segment
A private read—write segment for system and process related data
3. Stack
segment

There are two modes of the fork operation:

1. A process makes a copy of itself to handle another task; this is typical for network server
daemons.

2. A process wants to execute another program. Since the only way to create a new process is
through the fork operation, the process first makes a copy of itself and then the child process
issues an exec system call to execute a new program.

55

In the later case, the fork is followed shortly thereafter by an exec system call that overlays the
address space (text and data segments) of the child process with the contents of the new
executable. Such a procedure is also known as fork-and-exec. A new program replaces the
contents of the parent process in the address space of the child process but in the same parent's
environment. In this way all global environment variables, standard input/output/error, and priority
are kept unchanged.

The ultimate ancestor for every process on a UNIX platform is the process with PID 1, named init
and created by the system kernel during the boot procedure. The init process presents a starting
point in the chain of process creations; it creates a number of other processes based on
fork—-and-exec. Among the many created processes are one or more getty processes, assigned to
existing terminal lines. Their main duty is to keep the system from unauthorized login attempts; they
protect the system from potential intruders, and from the damage they can cause to the system.

This is illustrated in_Eigure 2.2. Different stages of the creation of involved processes are presented,
assuming four existing terminal lines.

init init init init
(PID=nn) (PID=mm) (PID=kk) (PID=jj)
exec exec Lexec iexec
\Z N
getty getty getty getty
{PID=nn) (P1ID=mm) (PID=kk) (P1D=jj)
Waiting for users Lexec G e
N2 N7
login login login
(PID=mm) (PID=kk) (PID=jj)

A user has entered
his/her login name

exec exec

N7 NZ

. - fork :
/bin/sh /bin/sh /b/n/sh
(PID=kk) (PID=ijj) (PID=ii)
The login shell is exec

started

/bin/ls

(PID=ii)

The command “Is"
is invoked
Figure 2.2: UNIX process creation (fork and exec).
Four getty processes have been forked—and-exec by the init process. Each getty process is
taking care of one terminal line. Since a user attempts to access the system via a terminal line
(more precisely via an attached terminal), getty will exec another program login to supply a login
prompt, and to authenticate the user (it will look up the user's login and password data in the file
/etc/passwa); this is shown in the figure for the second terminal line. Upon login, it checks the

56

user's password and sets the user ID, group ID, and working directory. It will exec the user's shell
(specified in the user's password entry in the / etc/passwd file). In the figure this is the case with the
third terminal line, and the exec—ed shell is Bourne shell sh. In the next step, a user executes any
command from the shell command line, as the presented Is command on the fourth terminal line.
The shell sh forks its copy and then execs the program (command) Is. All presented process IDs
are generally specified; however, please note that only fork creates a new child process with a new
process ID.

2.4.2.2 Process Termination

A process terminates either voluntarily through an exit system call, or involuntarily as the result of a
received signal. In either case, termination of a process causes a status code to be returned to its
parent process. The process then cleans and closes all process-related resources:

e |t cancels any pending timers.

e |t releases virtual memory resources.

e |t closes open descriptors.

e |t handles stopped or traced child processes.

After completing those tasks the process can "die," i.e., it can be deleted from the kernel process
table.

2.4.3 Process Handling

UNIX system administration involves dealing with processes on a regular basis. Monitoring a UNIX
system primarily means monitoring running processes. Any change in the configuration usually
requires restart of the corresponding daemons. And occasionally a certain process has to be
restarted or destroyed. Handling processes is one of the main tasks in maintaining a UNIX system.
Every UNIX administrator very quickly becomes familiar with these issues. This is less true for a job
control, which is also mentioned at the end of this section. All together, the text that follows is a
"good appetizer" — just for the start.

2.4.3.1 Monitoring Process Activities

Monitoring the processes running on the system is highly recommended; this is the best way to get
a good sense of what normal system activity is like: what programs are run, how long they run, who
runs them, and so on. In addition, when a problem on a system is encountered, the first step to
figure out what the problem could be is to check the status of running processes. You can discover
a lot from a simple cross-view of the status of the processes running on your system at a certain
time. Such a routine procedure is also very important for system security, because any unusual
system activity can be noticed and quickly stopped.

The UNIX ps (process status) command lists the characteristics of running processes; the format of
the command is:

#ps [options]

Basic options are explained in the following text. Unfortunately, there are certain differences in
command options between the two main UNIX platforms, BSD and System V.

57

2.4.3.1.1 BSD Flavored ps Command

The p

s command displays the status of currently running processes; without any options specified

only the processes that are running with the effective user's ID and those that are attached to a
controlling terminal are shown. Additional categories of processes can be added to the display using
certain options:

Includes processes that are not owned by the user who issues the command

e-a itself; displays all processes attached to the control terminal
option
Includes processes without control terminals; when both —a and -x are specified,
* —Xx ps displays processes owned by anyone, with or without a control terminal
option

Restricts the list of displayed processes to the running processes: runnable
e —r option processes, those in page wait, or those in short—term noninterruptible waits
Displays a long listing with many additional fields; gives a full picture of each
e —| option displayed process
Displays a user—oriented listing with additional user-related fields
e —-u
option

In its standard format, ps displays:

e The process ID, in the PID column

¢ The control terminal (if any), in the TT column

e The CPU time used by the process so far, including both user and system time, in the TIME
column

¢ The state of the process, in the STAT column

¢ An indication of the COMMAND that is running

Here is an example:

$ ps —ax
PID TT STAT TIME COMMAND
0 ? D 0:07 swapper
1 ? Iw 0:00 /shin/init -
2 ? D 0:00 pagedaemon
2087 pl S 0:00 -csh (csh)
2091 pl R 0:00 ps —ax
1996 p2 Iw 0:00 -sh (csh)

The long listing (option =1) and the user—oriented (option —u) formats are different, as seen in the
following examples (only the first six lines in the listing are displayed):

#ps -
USER
bijl
bijl
root
bald
root

#ps -
F

aux | head -6

PID $CPU $MEM SZ RSS TT STAT START TIME COMMAND

2905 30.8 3.3 228 476 pl R 09:29 0:00 ps -aux

2906 7.7 1.4 40 200 pl S 09:29 0:00 head -6
2 0.0 0.0 0 0 ? D Maylé 0:00 pagedaemon

2499 0.0 0.0 36 0 co Iw May23 6:23 telnet rsOl-ch
85 0.0 352 0.0 0 ? Iw Maylé 0:36 1in.named

alx | head -6
UID PID PPID CP PRI NI SZ RSS WCHAN STAT TIT TIME COMMAND

58

80003
20088000
80003
88000
88000

o eBelele)

5
5

O NN RO

0 0 =25 0 0 0 runout D
0 0 5 0 52 0 child Iw
0 0 -24 0 0 0 child D
1 0 1 0 68 0 select IW
1 0 1 0 120 0 select IW

RS S B A)

S eleleie)

:41
:00
:00
:29
:40

swapper
/sbin/init -
pagedaemon
portmap
ypserv

The meaning of the columns in the listings is given below; the letters "u" and "I" indicate the options
user and long; "all" stands for both.

Column Meaning

USER (u) The user name of the process owner

UID (1) The user ID of the process owner

PID (all) The process ID of the process

PPID (I) The process ID of the parent process

% CPU (u) Percentage of the CPU this process used in the previous
minute

% MEM (u) Percentage of real memory this process is using

PRI (I) The priority of the process

NI (I) NICE value; used in priority computation

RSS (all) Resident set size (real memory size) in KB

SZ (u) The combined size of the data and stack segment in KB

WCHAN (I) The event for which the process is waiting or sleeping

START (u) Starting time of the process (if created this day) or the
date otherwise

TT (all) The controlling terminal for the process

TIME (all) The CPU time (both user and system) the process has

consumed

COMMAND (all)

The command name and its arguments

STAT (all) The state of the process given as a sequence of four
letters:
R = runnable D= short—term wait for disk
* First S = sleeping (<20 sec) |l = sleeping (>20 sec)
letter. T = stopped Z = zombie
P=page wait
W = swapped out > = memory soft limit exceeded
e Second
letter
N = reduced priority < = raised priority
e Third
letter
Indicates some special process treatment
e Fourth
letter

F (1)

Flags associated with the process and presented in
hexadecimal notation (up to 8 hex. numbers). A number
of flags describe the process in more detail. For a flag

specification consult manual pages.

The most common format of the BSD-flavored ps command is:

59

ps —aux

The output of this command is an extensive listing of process-related data sufficient for most
administrative needs.

2.4.3.1.2 System V (AT&T) Flavored ps Command

The ps command displays the status of currently running processes; without any options, only the
processes associated with the current terminal are displayed. The basic options are:

Displays all processes
ee
option
Produces a full listing, including the process start time
of
option
Displays a long listing with many additional fields
o
option
The regular output of this command is a so—called "short" listing (as opposed to the full or long
listing). A short listing contains only the user and process IDs (including parent process ID), terminal
identifier, start and cumulative execution time, and the command name. An example of the short
listing for all processes follows:

$ ps -e
UID PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Dec 31 ? 0:05 swapper
root 1 0 0 11:23:17 ? 0:00 init
root 2 0 0 11:23:16 ? 0:00 vhand
dubey 1550 1549 0 08:40:13 ttys0 0:00 -sh
bjl 1618 1591 10 09:25:59 ttysl 0:00 ps —ef

A full or long listing displays many additional pieces of information:

$ ps —ef | head -6

F S UID PID PPID C PRI NI ADDR Sz WCHAN STIME TTY TIME COMD

3 S root O 0 0 128 20 1e0568 0 Dec 31 ? 0:06 swapper

1 S root 1 0 0 168 20 2056540 54 7ffe6000 May 16 ? 0:00 init

3 S8 root 2 0 0 128 20 2056480 0 lee3dO May 16 ? 0:01 vhand

3 S root 3 0 0 128 20 20564c0 0 lec4d4 May 16 ? 0:00 statdaemon

3 S root 7 0 0 128 20 2056500 0 1e8dcO May 16 ? 0:00 unhash—- daemon
$ ps -1 | head -5

F S UID PID PPID C PRI NI ADDR Sz WCHAN TTY TIME COMD

15 201 9444 9443 0 158 20 2151100 52 350clc ttysl 0:00 sh

18 0 9443 106 0 154 20 2151a40 17 221728 ttysl 0:00 telnetd

1 R 201 9473 9472 7 179 20 20d7f40 17 ttysl 0:00 ps

1S 201 9472 9444 4 154 20 2151680 6 3300e4 ttysl 0:00 head

The column headings and the meaning of the columns in a ps listing are given below; the letters "f"
and "I" indicate the option (full or long) that causes the corresponding heading to appear; "all"
means that the heading always appears. Note that these two options determine only which
information would be displayed for a process; they do not determine the processes to be listed.

Column Meaning

60

F () |Flags (octal and additive) associated with the process:

0 = swapped 1 =in core
2 = system process 4 = locked in core (e.g., for I/O)
10 = traced by another process [20 = another tracing flag
S () |The state of the process:
0 = nonexistent S = sleeping
W = waiting R = running
| = intermediate Z = terminated
T = stopped X = growing
uiD (f, 1) |The real user ID number of the process owner; the login name is
printed under the — f option
PID (all) |The process ID of the process; it is possible to kill a process if

you know this datum

PPID (f, 1) |The process ID of the parent process

C (f, I) |Processor utilization for scheduling

PRI () |The priority of the process; higher numbers mean lower priority

NI () |Nice value; used in priority computation

ADDR |(I) [The memory address of the process, if resident; otherwise, the
disk address

SZ () [The size in blocks of the core image of the process

WCHAN|(I) [The event for which the process is waiting or sleeping; if blank,
the process is running

STIME |(f) [Starting time of the process. The starting date is printed instead if
the elapsed time is greater than 24 hours

TTY (all) |The controlling terminal for the process

TIME |(all) |[The cumulative execution time for the process (reported in the
form "min:sec")

COMD |(all) [The command name; the full command name and its arguments
are printed under the — f option. This field is renamed COMMAND
except when the -1 option is specified

The most common format of the System V flavored ps command is:

ps —ef
The full listing provides all the process-related data we need for a successful administration.
2.4.3.2 Destroying Processes

The UNIX kill command will eliminate a process entirely:

kill [-signal] pid

where

signal Signal to be sent to the process (default: signal #15 =TERM)
pid Process identification number (PID)

A signal is optional. BSD allows the user to specify either the signal number or its symbolic name.
System V requires the signal to be specified numerically.

61

The signal #9 (KILL) guarantees that the process will be destroyed. When a process is killed, it
informs its parent process of its imminent termination (death), and waits for the parent's
acknowledgment. After receiving acknowledgment, the PID of the killed process is removed from
the process table.

Normally, the default kill command is used to terminate a process without the specified signal that
corresponds to the signal #15 (TERM); such a command is also known as a soft kill. Upon receipt of
the TERM signal, the process should exit in a normal way by closing all the resources it is using.
Occasionally, a process may still exist after a soft kill command. If this occurs, another so-called
hard kill has to be applied. By executing the kill command with the signal #9 (KILL signal), a
process is forced to exit. However, this kind of process termination is not good for the system
because some system resources may remain unclosed and still busy. A hard kill should be used
only as a last resort in attempting to terminate a process.

Processes will not terminate (die) even after being sent the KILL signal if they fall in one of the
following three categories:

1. Zombies — A process in the zombie state (presented as Z status or defunctin ps display) is
one in which all of the process's resources have been freed, but the parent process's
acknowledgment has not occurred. Zombies are always cleared when the system is booted
and do not affect system performance.

2. Processes waiting for unavailable NFS resources — In such a case, a kill command with
signal #3 (QUIT) or #2 (INT) should be used.

3. Processes waiting for a device to complete an operation — For example, waiting for a
tape to finish rewinding.

Killing a process also kills all of its child processes that share the same process group. For
example, killing a shell usually Kills all the foreground and stopped background processes initiated
from that shell, including other invoked shells. Killing a login shell is equivalent to logging the user
out. It is common for children and parents to belong to the same process group, but this is not
necessarily always true (see_Job Control at the end of this section).

Although the name kill indicates that the command should destroy a process, its real effect
depends on the selected signal that is sent to the process. Sometimes the command does not
destroy a process at all, and it can even do the opposite. For example, by sending the signal CONT
to a previously stopped process, the process will continue to run; you would not think a "killed"
process could be "revived." In that light, a more appropriate name for the command could be "send
signal," because it better describes what the command is really doing.

The -1 option is available to display a list of signal names:

$ kill -1 (SunOS, Solaris)

HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM
TERM URG STOP TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM
PROF WINCH LOST USR1 USR2

$ kill -1 (HP-UX)

NULL HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE
ALRM TERM USR1 USR2 CHLD PWR VTALRM PROF POLL WINCH STOP
TSTP CONT TTIN TTOU URG LOST DIL

As we can see, the order of listed signal names is not necessarily the same. Fortunately, the most
important and most often—-used signals match. The list of signals with descriptions follows.

62

flll?r:?)ler ﬁ'agmnzl Symbolic Signal Description
0 NULL No effect
Hang-up (for daemons, force a daemon to reread its

1 HUP configuration data)
2 INT Interrupt for a process

QUIT Quit

ILL lllegal instruction
3 TRAP Trace trap

ABRT ABR (I0T) trap

EMT EMT trap

FPE Arithmetic exception

KILL Kill — destroy a process

BUS Bus error
9 SEGV Segmentation fault

SYS Bad argument for a system call

PIPE Broken pipe

ALRM Alarm clock

TERM Soft termination — terminate a process

URG Socket in extremes

STOP Stop a process

TSTP Keyboard stop for a process

CONT Continue a stopped process

CHLD Status change for a child process

TTIN Invalid read
15 TTOUT Invalid write

10 10 possible on FD

XCPU CPU time limit up

XFSZ File size limit up

VTALRM Virtual time alarm

PROF Profiling time alarm

WINCH Window change

LOST Resource lost

USR1 User—defined

USR2 User—defined
Note: An empty Signal Number field indicates that it varies among flavors. The most important
signals are presented in bold letters.

2.4.3.3 Job Control

A job is a collection of one or more processes that share the same process group ID. Job control
is a feature that allows multiple processes to start from a single terminal, and also allows some
control over their execution. Job control requires support from the terminal driver, the signal
mechanism, the used shell, and the underlying operating system. Job control allows the user to
have multiple jobs sharing a single terminal, to move jobs from foreground to background and vice
versa, to suspend and restart jobs, and to perform other miscellaneous activities. A job

63

control-compatible shell makes each child process sent to the background a leader of its own
process group. In this way, it makes a child process insensitive to signals sent to the parent shell
(recall that signals have an effect on all processes within the same process group). One of the
consequences is, for example, that all background processes remain alive upon the termination of
the shell (when the user logs out).

There are several job-related UNIX commands, i.e., jobs, fg, bg, which are quite comprehensive

and easy to use. They are primarily user oriented, although they can play a role in UNIX
administration, too.

64

Chapter 3: UNIX Administration Starters

3.1 Superuser and Users

The central entity in UNIX is a file — every activity on the system represents some kind of
transaction with or between files. Consequently, administrators of UNIX systems are expected to
deal with files, including the special purpose files known as configuration files. Configuring system
functions, setting some system parameters, tuning a kernel, and restoring a lost file, all require the
appropriate access to the needed data within the file. On the other side, system files always require
privileged access. In practice, this means that the administrator has to be a superuser on the
system in order to effectively administer the UNIX system.

3.1.1 Becoming a Superuser

On a UNIX platform, the superuser is a privileged user with unrestricted access to all files and
commands. The name of this user account is root; the account is protected with a password as with
any other user account.

There are two ways to become the superuser:

1. Log in directly as root. This is always possible from the system console; it is recommended
that you disable the direct root log—in from other terminals as a security precaution, but this
is not a requirement.

2. Switch from another user log—in account to the superuser's account by executing the su
command.

In both cases the system will prompt for the root password. After entering the correct password, the
superuser is logged into the system and has full control over all its resources. The root account is
extremely sensitive; one wrong move can easily destroy important files and crash the system itself.
Only knowledgeable persons should enjoy superuser status; it is very important to restrict root
access only to a certain group of people who are responsible for the system itself. Obviously UNIX
administrators should belong to this group.

3.1.2 Communicating with Other Users
The UNIX administrator frequently needs to communicate with other users, mostly to inform them of
current administrative activities being performed on the system. Some examples include instructing
all logged-in users to close their files and logout on time when a system is going to be shut down
informing users when new software is installed, or passing along any other information important for
regular system operations.
Several UNIX commands are available for this purpose:

e Sending a message to the user:

write username [tty]

where

username User to whom the message is sent
[tty] Optional terminal if the user is logged in to more than one

65

The text of the message should be typed after the command is issued; typing Ctrl-D ("D)
terminates the command. Once the message is terminated, the shell returns the command prompt.
The typed text of the message will be displayed at the terminal screen of the addressed user.

e Sending a message to all users

¢ wall (stands for "write all')
The text of the message should be typed after the command was issued; typing Ctrl-D ("D)
terminates the command. The typed text of the message will be displayed at the terminals of
all logged-in users.
e Sending the message of the day

The message of the day —"motd" — can be used to broadcast systemwide information to
all users. The file /etc/motd keeps an arbitrary message which will be displayed during any
user's log-in procedure. Log-in is probably the most convenient time to catch the user's
attention, because the user is fully concentrated on the output of the log—in procedure. That
makes it an ideal time to inform users about changes in the system, newly installed software,
and so on.

Any editor can be used to edit the /etc/motd file; the default UNIX editor is "vi."
e Sending e-mail to user(s)

E-mail is a convenient vehicle for communicating nonurgent or lengthy messages to users.
E-mail is especially convenient for informing users about automated jobs because it is very
easy, for example, to send a message about the status of an executed job to the users from
the script that ordered the execution.

3.1.3 The su Command

We already mentioned the su command when we discussed how to become the superuser. But the
su commands does more; su allows an already logged—-in user to become another user without
logging out. The format of the su command is:

su [-] [username [arg..]]

where

— (dash) Must be specified as the first option when the environment for the specified user
is passed along unchanged, as if this user actually logged in. Otherwise, the
environment is passed along with the exception of certain environment variables.
Please note the differences to avoid any possible confusion regarding the new
user environment.

username Specifies the name of the new user to whom to switch; the default user name is
root. Without a specified user name, the command will try to switch to the
superuser.

arg... One or more optional arguments to be passed to the new shell; an arg of the
form "—=c cmd_string" executes the command string using the shell; an arg of
"—r" gives the user a restricted shell.

The su command requires the user to supply the appropriate password unless a switch from the

root to another user account is performed. If the password is correct, su creates a new shell

process with the characteristics of the specified user (RUID, EUID, RGID, EGID, and supplementary

groups). The new shell will be the shell specified in the username's passwd entry ; otherwise the

66

default Bourne shell sh will be invoked. To return to the initial user's account, type exit, or Ctrl-D
("D) to exit the new shell. All attempts to become su are logged in the log file /var/adm/sulog.

A few examples follow:

e To become user bjl while retaining the previously exported environment, execute:

$ su bjl
e To become user bjl but also change the environment as if bjl had originally logged in,
execute:

$ su - bjl
¢ To execute commands with the temporary environment and permissions of user bjl, type:

$ su - bjl -c command args

3.2 UNIX Online Documentation

3.2.1 The man Command

UNIX has integrated online documentation, which is available to all users and UNIX administrators.
It is very hard to imagine successful administration without the extensive online help provided by the
UNIX manual pages. Every command, every option, all system calls, and many other details are
fully documented and available whenever you need them, and they are always flavor-specific and
accurate.

The basic online version of the UNIX reference manuals is usually located under the manual page
directory /usr/man, with possible additional topics located in the other "man" directories
/dirpath/man. The environment variable $MANPATH should include all "man" directories in a
complete search of the selected manual page title; otherwise, the system will not be able to find and
display the required manual pages.

UNIX manual pages are divided into a number of sections, each containing similar topics. The basic
section organization is presented in the following table:

Contents BSD section |System V section
User commands 1 1

System calls 2 2

C and other library routines 3 3

Special files, device drivers, hardware |4 7
Configuration files 5 4

Games 6 6 or 1 or N/A
Miscellaneous commands 7 5
Administration commands 8 1M
Maintenance commands 8 8

Note: An older organizational scheme under System V is also in use.

Modern UNIX flavors introduced new sections that were usually appended to the existing ones. It is
entirely possible for the manual pages to be organized somewhat differently on your UNIX system.

67

Sections reside in separate subdirectories beneath the initial "man" directory. Here is an example
from the Solaris 2.x platform:

$ 1s -F /usr/man

cat-w/ manlf/ man3c/ man3r/ man4/ man7fs/ man9ft/
cat/ manlm/ man3e/ man3s/ man4b/ man71i/ man9s/
man.ct manls/ man3g/ man3t/ man5/ man7m/ manl/
manl/ man2/ man3k/ man3x/ mané/ man7p/ mann/
manlb/ man3/ man3m/ man3xc/ man7/ man9/ windex
manlc/ man3b/ man3n/ man3xn/ man7d man9e/

The UNIX man command is available to display specific manual pages. The command has several
options, but its basic format is:

man man_page title

where
A title we are looking for. If the specified title does not exist, or if it is spelled
incorrectly, the system informs us; otherwise the required manual pages will
man_page_title be displayed, page by page.

The general format of the displayed manual pages includes the following paragraphs, if applicable:

NAME A specified title with a brief description

SYNOPSIS A format for using the specified title

DESCRIPTION A full description of the specified title

OPTIONS Available options for the specified title

ADDITIONAL INFO Title—specific additional information such as like environment issues,
exceptions, additional explanation, etc.

EXAMPLES Examples for further explanation

FILES Title-related files

SEE ALSO Other related titles

The following example for the title man (referring to the man command) fully documents how to use
the man command.

$man man

MAN(1) USER COMMANDS MAN(1) NAME
e man — display reference manual pages; find reference pages by keyword
SYNOPSIS
e man [-] [-t] [-M path] [-T macro—package] [[section] title ...]...
e man [-M path] -k keyword...
e man [-M path] —f filename...

DESCRIPTION

68

e man displays information from the reference manuals. It can display complete manual pages
that you select by title, or one-line summaries selected either by keyword (-k), or by the
name of an associated file (-f).

e A section, when given, applies to the titles that follow it on the command line (up to the next
section, if any). man looks in the indicated section of the manual for those titles. section is
either a digit (perhaps followed by a single letter indicating the type of manual page), or one
of the words new, local, old, or public. The abbreviations n, /, o, and p are also allowed. If
section is omitted, man searches all reference sections (giving preference to commands
over functions) and prints the first manual page it finds. If no manual page is located, man
prints an error message.

e The reference page sources are typically located in the /usr/man/man? directories. Since
these directories are optionally installed, they may not reside on your host; you may have to
mount /usr/man from a host on which they do reside. If there are preformatted, up-to—date
versions in corresponding cat? or fmt? directories, man simply displays or prints those
versions. If the preformatted version of interest is out of date or missing, man reformats it
prior to display. If directories for the preformatted versions are not provided, man reformats
a page whenever it is requested; it uses a temporary file to store the formatted text during
display.

e [f the standard output is not a terminal, or if the flag is given, man pipes its output
through cat(1V). Otherwise, man pipes its output through more(1) to handle paging and
underlining on the screen.

OPTIONS

e -t man arranges for the specified manual pages to be troffed to a suitable raster output
device (see troff(1) or vtroff(1)). If both the — and -t flags are given, man updates the troffed
versions of each named title (if necessary), but does not display them.

e —-M path

¢ Change the search path for manual pages. path is a colon-separated list of
directories that contain manual page directory subtrees. For example,
/usr/man/u_man:/usr/man/a_man makes man search in the standard System V
locations. When used with the —k or —f options, the —M option must appear first. Each
directory in the path is assumed to contain sub-directories of the form man[1-8/-p].
e -T macro-package

¢ man uses macro-package rather than the standard -man macros defined in
/usr/lib/tmac/tmac.an for formatting manual pages.
e —k keyword...

¢ man prints out one-line summaries from the whatis database (table of contents) that
contain any of the given keywords. The whatis database is created using the
catman(8) command with the —w option.
e —f filename...

+ man attempts to locate manual pages related to any of the given filenames. It strips
the leading pathname components from each filename, and then prints one-line
summaries containing the resulting basename or names. This option also uses the
whatis database.

MANUAL PAGES

69

e Manual pages are troff(1)/nroff(1) source files prepared with the —=man macro package.
Refer to man(7), or formatting documents for more information.

When formatting a manual page, man examines the first line to determine whether it
requires special processing.
 Referring to Other Manual Pages

+ If the first line of the manual page is a reference to another manual page entry fitting
the pattern: .so man?*/sourcefile
¢ man processes the indicated file in place of the current one. The reference must be
expressed as a pathname relative to the root of the manual page directory subtree.
¢ When the second or any subsequent line starts with .so, man ignores it; troff(1) or
nroff(1) processes the request in the usual manner.
® Preprocessing Manual Pages

¢ If the first line is a string of the form:

\ nz
¢ where Xis separated from the" by a single SPACE and consists of any combination

of characters in the following list, man pipes its input to troff(1) or nroff(1) through the
corresponding preprocessors.

e eqn(1), or negn for nroff
r refer(1)

t tbl(1)

v vgrind(1)

¢ If eqgn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see
eqnchar(7)). If nroff(1) is invoked, col(1V) is automatically used.

ENVIRONMENT

MANPATH If set, its value overrides /usr/man as the default search path. (The =M flag, in
turn, overrides this value.)

PAGER A program to use for interactively delivering man 's output to the screen. If not
set, 'more -s' (see more(1)) is used.

TCAT The name of the program to use to display troffed manual pages. If not set, 'lIpr-t'
(see lpr(1)) is used.

TROFF The name of the formatter to use when the -t flag is given. If not set, troffis
used.

e FILES

root of the standard manual page directory subtree

/usr/[share] /man

unformatted manual entries

/usr/[share] /man/man ?/%*

70

manual entries

/usr/[share]/man/cat ?/*nroffed

manual entries

/usr/[share] /man/fmt ?/*troffed

table of contents and keyword database

/usr/[share]/man/what 1is

standard —man macro package /usr/pub/egnchar

/usr/[share]/lib/tma c/tmac.an

SEE ALSO

apropos (1), cat(l1V), col(1V), eqn(1l), lpr(l), more(l), nroff(l1), refer(l), tbl(l), troff(l), vgrind(1l),
vtroff (1), whatis (1), eqnchar(7), man(7), catman(8)

NOTES

e Because troffis not 8—bit clean, man has not been made 8-bit clean.
e The —f and -k options use the /usr/man/whatis database, which is created by catman(8).

BUGS

e The manual is supposed to be reproducible either on a photo-typesetter or on an ASCII
terminal. However, on a terminal some information (indicated by font changes, for instance)
is necessarily lost.

e Some dumb terminals cannot process the vertical motions produced by the e (eqn(1))
preprocessing flag. To prevent garbled output on these terminals, when you use e also use
t, to invoke col(1V) implicitly. This workaround has the disadvantage of eliminating
superscripts and subscripts even on those terminals that can display them. CTRL-Q will
clear a terminal that gets confused by eqn(7) output.

Linux provides even more; besides this, for UNIX standard online documentation, Linux also offers
Texinfo Manual, which presents more detailed technical descriptions of related topics. Again its
use is very simple; by typing "info topic-name" the required information about the specified topic is
displayed.

3.2.2 The whatis Database

The man command is very useful for getting information on a specific title; a title could be a
command name, system call, library item, or something similar, but an existing title must always be

71

specified. If such a title is unknown and you are searching for the manual pages related to a topic
(but that topic is not the title itself), the whatis database has been provided.

UNIX allows you to build the whatis database, which is instrumental in finding information about a
certain topic without knowing the relevant manual page title. The whatis database contains all of
the manual page titles with a brief description of them; it primarily resides in the /usr/man/windex file
(sometimes the file name is whatis), but also in other additional database files in the corresponding
"man" directory. The command "man -k topic_item" will search through the whatis database and
display all manual page titles that refer to the specified "topic_item." Once the relevant title is
known, the corresponding manual pages can be displayed. For a better understanding, see the -k
option in the manual pages for the man command.

The whatis database must first be created locally; copying a database from another system does
not work because the database must be directly linked with existing manual pages on the system
where it resides. Additionally, the database should always be recreated when new manual pages
are added to the system; the database must integrate the newly available titles.

The UNIX command catman-w is available to create a whatis database. It is very easy to begin to
create a database, but it takes quite a while for the process to finish. It is a good idea to create a
whatis database immediately upon UNIX installation.

Some UNIX flavors introduced new commands to create the whatis database. In Linux, the whatis

and apropos commands are available (they have almost the same appearance as "man -k"), and
the command makewhatis to create the whatis database.

3.3 System Information

UNIX administration means administering UNIX software or, more precisely, UNIX system software.
Software requires maintenance just like any other product; but because of their complexity, software
systems require a more sophisticated level of maintenance. Among the increased requirements are
highly educated and skilled personnel who are capable of managing, upgrading, configuring, and
fixing unpredictable and very sophisticated problems.

Software could not exist without the corresponding computer hardware. Knowledge of hardware can
be very instrumental and helpful in UNIX system administration. At the very least, a UNIX
administrator has to be familiar with basic system hardware configuration.

In the following text, several UNIX commands of this nature will be discussed.

3.3.1 System Status Information
To begin, let us introduce a few commands useful for checking the system status.
3.3.1.1 The uname Command

The uname command prints the basic UNIX system information to the standard output file. The
displayed system data contain: hostname, operating system data, and hardware architecture data.

The format of the command is:

uname [options]

72

where the available options are:

-n Print the hostname (the hostname may be the name by which the system is known to
a communications network)

-s Print the operating system name (default)

-r Print the operating system release

-V Print the operating system version

-m Print the machine hardware name (architecture)

-a Print all the above information

The output of the uname —a command for several UNIX flavors is presented in the following table:

ULTRIX acf4 4.3 1 RISC

HP-UX apollo A.09.03 A 9000/715 2004998919 two-user license

HP-UX baltic B.10.20 A 9000/800 1293244351 two-user license

IRIX indigol 4.0.5 06151813 IP12

SunOS patsy 4.1.3 1 sundc

SunOS apollo 5.3 Generic sun4m sparc

SunOS aegean 5.6 Generic_105181-17 sun4u sparc SUNW,Ultra-Enterprise
AIX rsOl-ch 2 3 000187963100

Linux broome 2.2.16 #2 SMP Thu Oct 12 22:32:13 GMT 2000 1686 unknown

Supposing a default system startup, Linux offers more detailed information about OS in the file
/etc/issue. By typing:

$> cat /etc/issue
Red Hat Linux release 7.0 (Guinness)
Kernel 2.2.16 on a 4-processor 1686

we will definitely learn more about our Linux installation.
3.3.1.2 The uptime Command
The uptime command displays:
e The current time
¢ How long the system has been up (the length of time)
e Number of users

¢ A rough estimate of the system load over the last estimate, every 5 and 15 minutes

Here are a few examples:

#uptime

6:47am up 6 days, 16:38, 1 user, load average: 0.69, 0.28, 0.17 (Solaris)
9:50am up 9 days, 34 min, 3 users, load average: 0.00, 0.00, 0.00 (SunOS)
9:38am up 9 days, 27 min, 1 user, load average: 2.07, 2.03, 2.03 (HP-UX)

3.3.1.3 The dmesg Command

The dmesg command collects system diagnostic messages; it looks in a system buffer for recently

generated messages when errors occur and forwards them to the standard output. When the "-
option is used, the dmesg command incrementally generates messages that are new since the last

73

time it was executed.

Sometimes, existing imperfections can stay hidden and the system appears to be working fine; in
such cases the dmesg command could be very useful. However, the system error message buffer
is of a small, finite size, so there is no guarantee that all error messages will be logged.

In the past, the dmesg command was also used to update the system log file (usually
/usr/adm/messages) by its periodic execution through the cron facility. A typical crontab entry:

/etc/dmesg — >> /usr/adm/messages

would update the system log file periodically. Today, such a task is obsolete, and an update of the
system log file is performed by the syslogd daemon (see_Chapter 9).

An example follows (from the HP-UX platform):

Sdmesg
May 20 16:59
Floating point coprocessor configured and enabled.
I/0 System Configuration:
Block TLB entry #8 from 0 x £5000000 to 0 x f5ffffff allocated.
HPA1991AC19 Bit-Mapped Display (revision 8.02/10) in SGC slot 0
SGC at select code 0 x 0
Built-In SCSI Single-Ended Interface at select code 0 x 20: function number 1
Built-In LAN controller found at select code 0 x 20: function number 2
HIL interface at select code 0 x 20: function number 3
Built-In RS-232C Serial Interface at select code 0 x 20: function number 4
Built-In RS-232C Serial Interface at select code 0 x 20: function number 5
Parallel port at select code 0 x 20: function number 6
Advanced Digital Audio Interface at select code 0 x 20: function number 8
System Console is on the ITE
Networking memory for fragment reassembly 1is restricted to 2957312 bytes
Swap device table: (start & size given in 512-byte blocks) entry
0 - auto-configured on root device; start = 869400, size = 152702
Core image of 8192 pages will be saved at: block 478283 on device 0 x 7201600
Warning: filesystem time later than time-of-day register
Getting time from filesystem
B2352A HP-UX (A.09.03.nodebug) #1: Mon Aug 30 21:05:26 MDT 1993
Memory Information:
Physical: 32768 Kbytes, lockable: 26168 Kbytes, available: 27880 Kbytes
Copyright (c) 1990-1998, Rational Software Corporation.
Covered by U.S. patent no. 5,574,898.
Other U.S. and foreign patents pending.
automountd not running, retrying
automountd OK

3.3.2 Hardware Information

It is logical to want to upgrade your UNIX system to improve its overall performance. The first thing
you need to know is the current hardware configuration of the UNIX system: how many CPUs are
installed? How much memory is used? What is the size of the disk space? These simple questions
are very common, and the UNIX administrator always addresses them.

A partial answer can be obtained with the UNIX command top. The top command lists the
top—most CPU-consuming processes. The command is extremely instrumental in performance
measurement and the tracing of potential problems. However, the command also displays basic
data about the number of CPUs and memory usage, which is what we are looking for right now. An

74

example follows:

top
System: mekong Mon Jul 17 22:51:28 2000
Load averages: 0.91,0.77,0.75
199 processes: 197 sleeping, 2 running
CPU states:

CPU LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
0 0.83 1.0% 0.0% 1.4% 97.6% 0.0% 0.0% 0.0% 0.0%
1 0.99 75.2% 0.0% 24.8% 0.0% 0.0% 0.0% 0.0% 0.0%
avg 0.91 38.0% 0.0% 13.1% 48.8% 0.0% 0.0% 0.0% 0.0%

Memory: 49676K (40972K) real, 100316K (83172K) virtual, 196720K free Page# 1/19
CPU TTY PID USER PRI NI SIZE RES STATE TIME $WCPU $CPU COMMAND

NAME
1 q2 27047 <cbhbwl 239 20 4740K 968K run 173:59 99.09 98.92 udt
0 ? 398 root 154 20 108K 140K sleep 1324:09 0.93 0.93 syncer
0 ? 7448 rpsc 168 20 4484K 696K sleep 35:57 0.89 0.89 udt
0 pl 8405 root 178 20 1260K 340K run 0:00 0.85 0.49 top
0 ? 6948 root 155 2 6288K 6340K sleep 28:49 0.41 0.41 lcp

It is also a good idea to try using the available system administration tools, like the HP-UX flavored
SAM, or AlX flavored SMIT. These always provide hardware-related information among their many
other menu selections. They are very well suited to this purpose, because a search for hardware
information is almost always interactive.

Otherwise, each UNIX flavor provides a different set of commands used to diagnose the installed
hardware. We will discuss some of them.

3.3.2.1 The HP-UX ioscan Command

On the HP-UX platform, the special command ioscan is available for dealing with actual hardware.
The command scans system hardware, usable 1/O system devices, or kernel 1/0 system data
structures, as appropriate, and lists the results. For each hardware module on the system, ioscan
displays (by default) the hardware path to the hardware module, the class of the hardware module,
and a brief description of it.

By default, the ioscan command scans the system and lists all reportable hardware found. The
types of hardware reported include processors, memory, interface cards, and I/O devices. Entities
that cannot be scanned are not listed.

The ioscan command recognizes the following options:

-C class Restricts the output listing to those devices belonging to the specified class
—d driver Restricts the output listing to those devices controlled by the specified driver

—f Generates a full listing, displaying the module's class, instance number, hardware path,
driver, software state, hardware type, and a brief description

-F Produces a compact listing of fields separated by colons

-H Restricts the scan and output listing to those devices connected at the specified

hw_path hardware path

-l Restricts the scan and output listing to the specified instance
instance

75

-k Scans kernel 1/0 system data structures instead of the actual hardware and lists the

results

-n Lists device file names in the output; only special files in the /dev directory and its
subdirectories are listed

-u Scans and list usable 1/0O system devices instead of the actual hardware. Usable I/O

devices are those having a driver in the kernel and an assigned instance number.
Some of the options require additional arguments, known as fields, which are defined as follows:

class A device category, for example: disk, printer, or tape

instance The instance number associated with the device or card; it is a unique number assigned
to a card or device within a class

hw_path A numerical string of hardware components, noted sequentially from the bus address to
the device address; typically, the initial number is appended by slash ("/"), to represent a
bus converter (if required by the machine), and subsequent numbers are separated by
periods ("."). Each number represents the location of a hardware component on the path
to the device.

driver The name of the driver that controls the hardware component
The following example shows a partial output of the ioscan command:

/usr/sbin/ioscan H/'W Path |Class Description
bc
8 bc I/O Adapter
10 bc I/O Adapter
10/0 ext bus |GSC built-in Fast/Wide SCSI Interface
10/0.5 target
10/0.5.0 disk SEAGATE ST15150W
10/0.6 target
10/0.6.0 disk SEAGATE ST15150W
10/0.7 target
10/0.7.0 ctl Initiator
10/4 bc Bus Converter
10/4/0 ity MUX
10/4/12 ext bus |HP 28696A-Wide SCSI ID =7
10/4/12.12 target
10/4/12.12.0 disk SEAGATE ST32550W
10/12/5.0 target
10/12/5.0.0 tape HP C1533A
10/12/5.2 target
10/12/5.2.0 disk TOSHIBA CD-ROM XM-5401TA
10/12/5.7 target
10/12/5.7.0 ctl Initiator
10/12/6 lan Built-in LAN

76

10/12/7 ps2 Built-in Keyboard/Mouse
32 processor|processor

34 processor|processor

49 memory |Memory

3.3.2.2 The Solaris prtconf Command

On the Solaris platform, the prtconf command displays the system configuration information. The
output includes the total amount of memory and the configuration of system peripherals formatted
as a device tree.

The prtconf command has several options:

Includes information about pseudo devices; by default, information regarding pseudo devices is
omitted
-v Specifies verbose mode

_ Returns the device pathname of the console frame buffer, if one exists. If there is no frame
buffer, prtconf returns a non-zero exit code

—-p Displays information derived from the device tree provided by the firmware (PROM)

-V Display platform-dependent information
For each system peripheral in the device tree, displays the name of the device driver used to
manage the peripheral

The following example presents a partial output of the command running on a Sun4/65 series

machine:

/usr/sbin/prtconf
System configuration: Sun Microsystems sun4c
Memory size: 16 megabytes
System peripherals (software nodes):
Sun 4_65
options, instance #0
zs, 1nstance #0
zs, lnstance #1
fd (driver not attached)
audio (driver not attached)
sbus, instance #0
dma, instance #0
esp, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #0
sd, instance #1 (driver not attached)

le, instance #0

cgsix (driver not attached)
auxiliary-io (driver not attached)
interrupt-enable (driver not attached)
memory-error (driver not attached)
counter-timer (driver not attached)
eeprom (driver not attached)

pseudo, instance #0

The output of the prtconf command is highly dependent upon the version of the PROM installed in
the system. The output will be affected in potentially all circumstances.

77

The "driver not attached" message means that no driver is currently attached to that specific device.
In general, drivers are loaded and installed (and attached to hardware instances) on demand and
when needed, and may be uninstalled and unloaded when the device is not in use.

3.3.2.3 The Solaris sysdef Command

Another Solaris command that can be used for this purpose is sysdef. The sysdef command
outputs the current system definition in tabular form. It lists all hardware devices, as well as pseudo
devices, system devices, loadable modules, and the values of selected kernel tunable parameters.
It generates the output by analyzing the named bootable operating system file (namelist) and
extracting the configuration information from it. The default system namelist is /dev/kmem. However,
the command output is not entirely comprehensive for figuring out basic hardware information; it is
more suitable for kernel-related information. This command should probably not be the first choice.

3.4 Personal Documentation

UNIX administration is a challenging job; it requires a substantial level of expertise and skills. But
UNIX administration is also a routine job, in which the tasks can only be successfully accomplished
by following the required procedures. To install UNIX, you must follow the vendor's instructions and
recommendations; to configure an application you must strictly obey configuration rules. There is no
room for improvisation; improper settings are the main causes of system instability and all related
problems. Bugs in the software are a good excuse for our wrongdoings, but only rarely are they the
real cause of the problems we experience.

Properly configuring a system, and ensuring all of its settings are correct, is not an easy task. Often
there are plenty of small but important details that we must take care of. It is easy to forget these
small issues, especially if we only deal with them occasionally. Taking notes on everything done to
the system can be very instrumental for future work; such notes can be the lifesaver in some critical
situations. These moments are always very stressful, and an administrator has to act quickly and
accurately. There is no better advice for that time than to follow your own, already tested and
proven notes.

Many administrative tasks repeat a number of times; it is common to install the same UNIX version
on different machines, to configure hosts in the same network environment, to set the same
application software multiple times, etc. Any notes about jobs you have done previously can be very
helpful; the length of time between jobs can be large enough that you may forget many important
details.

Note by note a substantial personal documentation will be built; this is your "knowledge database,"
and it is very important for efficient work. You will always be more familiar with your own documents
than with any vendor—provided documentation. There is no need to worry about style, syntax, or
language — as long as they are explicit and complete, you will always understand your own texts.

A key issue for successful UNIX administration is to be well organized. System administration is
based on rules designed by others: different configuration files have different formats and syntax.
Each required letter, number, dot, dash, or whatever is specified must be fully respected — there is
not a great deal of freedom of choice. A UNIX administrator cannot invent another set of
configuration rules, even if the existing ones do not seem very logical or convenient. It simply will
not work. Past experiences can save time and make everything easier; copying a workable
procedure is definitely more efficient than reinvestigating something you have already done.

78

In most cases, UNIX administration is also a team task. It takes a number of UNIX administrators
(as well as others such as NT administrators, network administrators, helpdesk staffers, etc.) to
support large company networks. One important issue, then, is how to make their collective work
more efficient. One logical solution is to combine all individual documentation and then make all of
this documentation available to all team members. The organization of this effort, however, is
crucial.

A very efficient approach to making all system documentation available yet well organized is to put
individual personal documents on the company network, creating substantial internal company
site—specific documentation, and make the documentation available to all relevant associates. By
posting these documents on an internal company Web site (if necessary even creating an internal
Web site for this purpose), everyone will be able to obtain the necessary information about any
described topic. The documentation remains open for any required update or upgrade. To prevent
potential frauds, the access to documents should be restricted to administrative personnel only.

There are third—party products that provide tools to create internal knowledge databases; in most
cases they offer other features, as well. However, they can be costly and sometimes too complex to
work with. Creating your own internal, Web—based documentation site is simple, inexpensive, and
very efficient.

3.5 Shell Script Programming

Shell programming is one of the strongest parts of the UNIX administration. This is also one of the
key elements of an overall UNIX success. UNIX administrators are in love with shell programming.
Where is this authoritative statement coming from? It is coming from the fact that the shell
programming presents an extremely powerful tool to customize and automate your UNIX system, as
well as to accomplish many manual administrative activities easier.

An intuitive and colorful graphic user interface (GUI) sounds challenging for certain complex
administrative actions. However, GUI actions remain quite hidden from us. GUI is great as long as
everything is going smoothly, but very frustrating once it starts to fail. And what do you do when GUI
is not even running because of underlying problems? Or, how do you automate some repeated
actions? Even to document needed steps in the GUI administration is not an easy task.

A good UNIX administrator tends to pack needed administrative actions into the corresponding shell
scripts, and then to use the scripts instead. Well-written and tested shell scripts are always working
properly, even in the most critical situations when the pressure on the UNIX administrator is always
very high. There are no typos and mistyping in the shell-script implementations nor are there
incorrect command options — frequent errors during manual procedures. Everything is happening
correctly and in the fastest possible way. Simply, shell scripts are lifesavers.

There are also many other reasons in favor of the intensive shell programming. Time-scheduled
scripts will execute successfully the same job as many times as needed, withor without provided
verbose logging, e-mailing, paging, or whatever is required. We should spend the time only once,
when we write the script, and only to use the script later. And always when we write a script, we
should have enough time, and be doing it far from any of the pressure typical of urgent
administrative actions.

Shell programming is a prerequisite for good UNIX administration. It is assumed that a UNIX

administrator is familiar with shell programming. This section is not a tutorial in shell programming.
Rather it points to certain aspects of shell programming that could be confusing for UNIX

79

administrators (even if not beginners in this area). A thorough shell-programming tutorial is
definitely not in the scope of this book; however, these skills are assumed throughout the pages of
this book.

3.5.1 UNIX User Shell

UNIX user shell is an interface layer between the UNIX operating system and the user. It is

presented in the_Eigure 3.1.

kil UNIX
sl Operating
USER : System
Output b

SHELL

Figure 3.1: The user's shell layer.

There are many different UNIX shell flavors: Bourne shell sh, Korn shell ksh, C shell csh, Bourne
again shell bash, enhanced C shell tcsh, etc. Some shells are very similar — like ksh and bash,
sh is the subset of ksh — but generally they are not mutually compatible (at least in both
directions). This is important to know when a shell script is invoked.

3.5.2 UNIX Shell Scripts

Shell scripts are programs that comply with the shell programming language. Shell scripts are not
compiled programs; instead they are readable text files where each command line is read and
processed by the shell command interpreter at the time the script is executed. Shell command
interpreter processes a shell script until an erroneous command line is encountered or until it ends.
A shell command line can contain:

e Any UNIX command or command sequence
¢ Any shell-flavored command or statement

¢ Any other program or shell script

e A combination of previously listed items

Each shell has a number of its own commands and statements that actually make shell
programming so powerful. Make sure that they are very shell-specific in every sense: syntax and
action.

3.5.2.1 Shell Script Execution

A shell script (as any other program in UNIX) can be simply invoked by its name, but the read and
execute permissions for the script are required. The following example illustrates this:

sh# cat /tmpMyScript.sh (to see content)

80

FHEFHHHFEH A
echo "Just a test of x permission”
FHEHHHE A

sh# 1s -1 /tmp/MyScript.sh (to see permissions)
-rw-r—--r-- 1 root root 39 Aug 21 18:27/tmp/MyScript.sh
sh# /tmp/MyScript.sh (to invoke shell script)

sh: /tmp/testd4.sh: Permission denied

The script can also be invoked with an explicitly specified shell. In that case the execute permission
on the script is not mandatory. Some UNIX flavors will execute a shell script even without read
permission granted.

sh# /bin/sh /tmp/MyScript.sh
Just a test of x permission

When invoked directly, the shell script is executed in the environment of the current user shell. The
current user shell is forked, and then each command line of the shell script is processed by the shell
interpreter and executed (already discussed fork—and-exec start of the program). If two shell flavors
do not match (the shell script and the parent shell — for example bash script is invoked in csh
environment), most probably a number of errors will be encountered for basically correct shell script.

The following examples present such situations. The arbitrary bash script named myscript.bash is
invoked in the bash and csh environment:

bash# cat /tmp/myscript.bash
FHERFHE A AR A AR AR
Define variables

export TEXT1 = "This is a bash script myscript.bash"
export TEXT2="Running the script myscript.bash"
#

Run the command

echo "STEXTI1"

echo "STEXT2"

FHEH S H A A A

bash# /tmp/myscript.bash
This is a bash script myscript.bash
Running the script myscript.bash

bash# /bin/csh (Switch to csh)
cshi /tmp/myscript.bash

export: Command not found.

export: Command not found.

TEXT1: Undefined variable.

The previous problematic situation could be skipped in two ways. First, as we mentioned previously,
the script can be invoked with explicitly specified shell:

bash# /bin/bash /tmp/myscript.bash (Here shells match)
This 1is a bash script myscript.bash
Running the script myscript.bash

csh# /bin/bash /tmp/myscript.bash (Here shells don't match)

This is a bash script myscript.bash
Running the script myscript.bash

81

Or the shell can be implicitly specified in the script itself. The very first line in the script of the format
— #!/bin/shellname — has a special meaning. The "/bin/shellname" identifies the full path of the
desired shell, which will be invoked first and then the script executed in this shell environment.
Remember that it can be any other executable program, not necessarily the shell. However, we are
assuming a shell. Here are examples:

bash# cat /tmp/myscriptl.bash
#!/ bin/bash
i i i
Define variables
export TEXT1="This is a bash script myscriptl.bash"
export TEXT2="Running the script myscriptl.bash"
#
Run the command
echo "STEXT1"
echo "STEXT2"
FHEHEHE AR A

bash# /tmp/myscriptl.bash
This is a bash script myscriptl.bash
Running the script myscriptl.bash

csh# /tmp/myscriptl.bash
This is a bash script myscriptl.bash
Running the script myscriptl.bash

In all the examples, the current shell spawns itself or another shell, making a "parent—child
relationship" between two shells (current user's shell and the invoked shell script). However, a shell
script can also be executed directly in the user's shell environment. For this purpose the shell script
must be "sourced." A special shell command is used to source the script.

source myscript.sh # for csh and csh-like shells.
.myscript.sh # for ksh, bash, and Bourne shells

To source a shell script means to skip the forking of the user's shell and to execute the script
directly in the user's shell environment.

3.5.2.2 Shell Variables

We can define and redefine shell environment within the shell script. By invoking a new shell script,
the current shell environment is transferred and the new initial shell environment created.
Remember that this is a unidirectional transfer, from parent toward child shell (child inherits the
parent's environment); the reverse is never possible. Regarding shell variables, only global, i.e.,
exported, variables could be inherited; local variables remain always within the current shell
environment, and they disappear once the shell is terminated. This sometimes sounds very
confusing for the novices in UNIX administration.

In this light we can better understand the need and purpose of the shell command: source. If we
want to define a shell environment within a single script (let us call it environment definition script),
and then share these definitions among many other shell scripts, we must source the environment

definition script. Otherwise, all definitions will last as long as the execution of the environment
definition script. The following example illustrates that situation.

The user's shell is Bourne shell. Variables VARA and VARB are not defined.

sh# echo SVARA # To check 1if SVARA is defined

82

sh# echo SVARB # To check if SVARB is defined

The script /tmp/myscript2.sh defines the global variables VARA and VARB:

sh# cat /tmp/myscript2.sh
Variable definitions
s LT EE S
VARA="VariableA"
VARB="VariableB"
Export VARA VARB
s E L LS

Upon the script execution, variables VARA and VARB are still undefined in the user's shell
environment. There is no way to export variables toward the parent shell environment.

sh# /tmpi/myscript2.sh # Execute the script
sh# echo SVARA # To check if SVARA 1is defined
sh# echo SVARB # To check i1f SVARB is defined

Upon the sourcing of the script variables, VARA and VARB remain defined within the user's shell
environment.

sh# . /tmp/myscript2.sh # Source the script

sh# echo SVARA # To check if SVARA is defined
VariableA
sh# echo SVARB # To check if SVARB 1is defined
VariableB

The previous discussion is instrumental in understanding the user's log—in process and the initial
definition of the user's shell environment, which is discussed in_Chapter 7.

3.5.2.3 Double Command-Line Scanning

Shell variables are often used on the shell command-lines, as a part of UNIX or shell commands.
Unfortunately, sometimes they can easily be misinterpreted. Simply, under certain conditions, shell
variables could be understood literally: the variable $VARA from the previous example can be
understood as "$VARA" instead of its value "VariableA." Just think about versatile and powerful
UNIX commands (better to say UNIX utilities) like, awk, sed, or other commands that have their
own syntax somehow different from the shell syntax. This makes a great difference and could make
the use of shell variables very restricted.

The shell response to this situation is the command: eval. This command allows so—called "double
command-line scanning," where the shell variables are first processed, developed, and then
replaced for the second command-line processing. For better understanding of this command, let
us see how the shell command interpreter processes a command line at all. This is presented in
Figure 3.2 and explained in the following text.

83

- Tokenize command

(1)

Check quotes

Double quotes Single quote

No quote

P
Expand alias ————————p»
Read next command —Jp»

Syntax error

_»

Error

Check 1% token

Not alias

(4)

Tilde expansion — substitution of home directory

> .

Variable substitution

v (6)

Command substitution

v o

Arithmetic expression substitution

v o

Tokenize eventually expanded text

v ©)

Wildcard expansion
>+<

Command lookup
(built-in commands - functions — executables)

Make arguments into next command

Double quotes “

Run

eval command

Figure 3.2: Shell processing of the command line.

1. The command line is "tokenized," i.e., split into its constituents: word, keywords, 10
redirectors, and semicolons, according to the separating metacharacters: space, tab, new
line,), (, <, >, \,/, and &.

2. The first token is tested if it is "a single-line unquoted keyword" (a keyword without quotes or
continuation character). Shell statements (if, while, until ...) and functions are treated as
"opening keywords," set up internally; the processing continues with the next token.

3. The command is tested against the list of command aliases; eventual aliases are expanded
and reprocessed.

4. The substitution of an eventual user's home directory.

5. The variable substitution for any expression with leading $. This is also the second

84

processing step for double—quoted tokens (steps between are skipped).

6. The command substitution for any single back—quoted expression of the form expression or
$ (expression). The expression is executed and substituted with the obtained result for
additional processing.

7. The evaluation of the arithmetic expressions of the form $((expression)). Remember that the
double—quoted expressions are processed differently from others after this step.

8. The eventual expanded text (as a result of the previous step processing) is now "tokenized"
according to the shell environment internal field separators (IFS).

9. The wildcard expansion of *, ? and [/] pairs, and processing of regular expression operators.

10. The search for the command in all predefined command directories (according to the shell
$PATH or $path variable). This is also the second, and the only, step in processing
single—quoted command-line tokens.

At this point everything is ready for the command-line execution. However, if the shell command
eval was specified, another round of the command processing will be performed. This is known as
double command-line scanning.

The format of the command is: eval args where args includes the actual command itself and
command arguments. For better understanding of this command, see the following example. The
user's shell is bash, but it does not have any specific impact on the example (could be any other
shell).

bash# VAR1='SVAR2' # Define variable VARI
bash# VAR2='Example' # Define variable VAR2
bash# echo S$SVARI1 # Check the values of variables
SVARZ2
bash# echo $VAR2
Example
bash# eval echo $VAR1 # Check the values of variables upon double scanning
Example
bash# eval echo SVAR2
Example

3.5.2.4 Here Document

An extremely powerful feature of the shell programming is its Here Document. The shell redirector
of the form: "<< label" forces the input to the specified command to be the shell's standard input,
which is read until the line that contains only "label" is reached. It means that all script
command-lines within the Here Document will not be processed by the shell command interpreter.
Instead they will be processed by the command specified at the start of the Here Document.

Here is an example:

#H##
myprogram << !EOF
mycommandA
mycommandB
mycommandC
!EOF
#H##

This shell script command-line sequence will start the execution and transfer the further
command-line control to myprogram. Command lines that follow until the terminating label /JEOF
are submitted to and strictly processed by myprogram. The specified label can be any string, but
two labels must match literally; no leading or trailing blanks on the terminating line are allowed.

85

Here Document enables an unattended execution of not-shell and not-UNIX commands within the
shell script. It is used frequently for inception of SQL, FTP, and other command sequences into the
shell environment. Unfortunately Here Document does not support interactive procedures — simply
the next command-line is submitted as soon as the previous one is done. Generally the main
disadvantage of the shell programming is its inability to act interactively if used unattended. For this
purpose Espect or Perl patches are required.

Here Document makes shell script programming easier and more powerful. For more details see
the_ETP example in_Chapter 21.

3.5.2.5 Few Tips

At the end of this brief overview of certain shell programming topics, few tips for using the shell
scripts:

e A shell script inherits the caller's environment, usually the user's shell. However there are no
rules for the initial environment setting. Everything defined—out-of-script is uncertain,
including the search path for the implemented commands in the script. Some good advice
follows:

¢ Define the PATH variable in the script.
¢ Or, use the full-path command names.

e |t is very common that the fully tested shell script from the command line fails when it is run
as a cron job. The reason is simple: cron environment is reduced to several default values,
usually insufficient for the successful script execution.

e Always clean everything that the shell script creates temporarily. Each file is owned by its
creator, and remaining temporary files could be obstacle for other script invokers.

e Pay attention to the standard and error output. The shell scripts are often running in
background either.

86

Chapter 4: System Startup and Shutdown

4.1 Introductory Notes

UNIX systems run continuously under normal circumstances. Shutting down and powering-off a
UNIX system should be done rarely, usually only when a hardware upgrade is being performed or a
system is being allocated, or occasionally when another action requiring a system shutdown is
performed. In real life, system shutdown is more frequent, because unpredictable situations always
occur.

Power—cycling a UNIX system is not the only way the system can be shut down. Rebooting is also a
familiar task for any UNIX administrator; UNIX administrators know well how system rebooting can
be healthy for overall system maintenance.

Nevertheless, keeping the UNIX system running is the most visible task of a system administrator. If
the system crashes, everyone will complain, your phone will ring constantly, and you will find
yourself anxiously trying to fix the problem and bring the system back into production. Quickly you
will learn how important the system you are in charge of really is, and how many users depend on it.
Even more important, you will learn how crucial a smooth, fast, proper system startup can be.

This chapter covers topics related to normal UNIX system startup and shutdown procedures.
Invoking a system startup and shutdown is quite simple; the main requirement is to be the
superuser on the system (an easy task for an administrator). On the other hand, making the system
behave correctly, especially during startup, requires a great deal of knowledge and administrative
skill. Proper system startup is supposed to customize and set the myriad of existing system
configuration files that will control each portion of the UNIX system. Some of these files include
system-related configuration data, but there are also site—added applications; the bottom line is that
the system should be fully operational after any system startup.

Given the complexity of properly configuring the system startup, this chapter could easily be located
at the end of the overall text, rather than at its beginning. However, discussing the administration of
a running UNIX system without knowing how that system came to be running seems strange; it is as
though we are talking about administering a nonexistent UNIX system. So this material remains in
the beginning by design; it will focus on the topic of global system startup and shutdown, and we will
return to individual startup and shutdown issues later, whenever it is appropriate in discussing
specific UNIX topics.

From an administrative standpoint, system shutdown is the simpler procedure; at the end of the
procedure a system must terminate all running processes, dismount all filesystems, and stop any
other system activity. System shutdown works even if we never touch the default shutdown
procedure — or perhaps it is better to say it mostly works, because the author of this text has
witnessed a UNIX system that could not be shut down from the command line, and the only choice
was to power—cycle the system. Our administrative task is to provide a graceful system shutdown.
Everything must be stopped in a regular way, or the administrator will have to use the brute force
method of power—cycling. System startup, on the other hand, must be done properly or the system
will never come up. Obviously, more attention should be paid to system startup, and we will spend
much more time discussing the startup procedure than the shutdown process.

System startup is often referred to as system booting. Although "booting" specifies only one phase

in the overall system startup, the two terms are commonly interchanged, as you will see in this
chapter. Strictly speaking, system startup has a broader meaning than system booting.

87

All UNIX systems must be shut down in a regular way before any further action can be taken. You
should never directly power—off UNIX systems (such as DOS-based PCs); the shutdown procedure
must be implemented, otherwise disk data integrity can be corrupted (a UNIX filesystem could be
damaged). The corruption can range between a relatively benign loss of data to heavy filesystem
damage, which in the worst case scenario can leave a system unbootable.

The two major UNIX platforms BSD and System V have different startup and shutdown procedures,
with, of course, the main differences occurring in startup. Among existing commercial UNIX flavors,
the System V approach is more common; it provides more flexibility and some other administrative
advantages. However, the BSD approach is some-what easier to understand, and we will start our
discussion with the BSD startup/shutdown procedure. Once the startup/shutdown concept is well
understood, it will be easy to continue with the System V procedure.

4.2 System Startup

The system startup procedure is a continuous process that a UNIX system goes through, from its
initial hardware—determined stage until the final production-ready stage. However, this unique
system journey passes through several distinct phases, and each of these phases has its specific
characteristics. The startup phases, listed in the order they occur, are:

¢ Bootstrap program execution
e Kernel execution

e rc system initialization

¢ Terminal line initialization

It is easier to understand the system startup procedure when the whole process is divided into
several phases and each of the phases is analyzed separately, so this is the approach we will take.
Although each of the listed phases is equally important for successful system startup, the system
initialization phase requires the most administrative attention, so most of the following discussion
will address this phase.

In each of the startup phases, the system learns enough to execute the next phase. Each phase
contributes a bit to the overall system startup. At the very beginning, the system does not know very
much; at the very end, the system is ready for multi—user operations.

4.2.1 The Bootstrap Program

The origin of the word boot (as in, "to boot the system") is bootstrapping, which is the process of
bringing a computer system to life and ready for use. ("Bootstrapping" is actually the "nerd word" for
starting up a computer.) The computer system itself is only a collection of hardware resources
(registers, arithmetic/logical unit, program counter, memories, etc.) capable of executing a
sequence of instructions that make a program. The program, stored in the computer's memory (any
kind of memory: ROM, RAM, external magnetic memory, etc.), defines the system's activity at every
moment, including its first steps during the system startup.

An initial program, the bootstrap program, must be stored in the fast nonvolatile memory directly
accessible by a processor, or CPU (CPU stands for central processing unit and is another term for a
processor). This portion of the computer memory is known as internal read—only memory (ROM).
The execution of the bootstrap program is always automatically initiated when the system is
powered-on or when a system hardware reset is applied. It is also initiated when the system is
rebooted from the system console. Only the initial part of the bootstrap program, the part sufficient

88

to bring the system into a workable state to deal with other memory types, must be stored in ROM.
Once this level is achieved, the bootstrap program execution can be continued from another
nonvolatile media such as a hard disk, a floppy disk, a tape, or a CD-ROM, or even through the
network from a boot-server (in the case of diskless workstations). For UNIX systems, regular
system booting is commonly executed from a hard disk, while first—time UNIX OS installation is
performed from a CD-ROM (not long ago, a tape was used).

The system has to learn enough from the ROM to be able to access a disk to continue the bootstrap
program, but it still assumes a simple flat data structure on the disk. A complex disk data
organization such as the UNIX filesystem data structure is still too complicated for the system at this
stage; more learning is needed to deal with a filesystem. That is why the rest of the bootstrap
program is stored in a special part of the disk known as the boot partition (sometimes also known as
the boot segment). The main characteristic of the boot partition is its easy access and flat data
structure, so the system is able to continue with the bootstrap program execution, and further
learning.

The ratio of the percentage of the bootstrap program stored in the ROM versus the disk boot
partition varied through time. In the early days of UNIX when only low capacity, expensive ROM
was available, the first part of the bootstrap program was reduced to the bare minimum size. Today,
systems include high—density ROM sufficient to store quite sophisticated bootstrap programs; this
makes boot partitions less important, although they are still a part of every system startup.

Once the bootstrap program is completely executed, the system is knowledgeable enough to
continue with the kernel execution.

Traditionally UNIX presents the only OS running on underlying hardware; and traditionally this is a
proprietary hardware for that UNIX flavor. This fact makes a booting process unique and quite
straightforward. However, once PC hardware also became common in the UNIX arena, a more
flexible booting, with UNIX as one of several choices, emerged as a preferable system
characteristic. Linux is an example.

On the Linux platform, the three most common booting mechanisms are:

e To boot Linux from the floppy, and leave hard drive for other OSs
¢ To use the Linux loader (LILO), the most common case
e To run Loadlin, an MS-DOS program that boots Linux from within DOS

What is exceptional with LILO is the possibility of configuring this loader in different ways to match
different needs; multiple-choice booting, including a non-UNIX startup, is also possible. The
configured loader should then be installed in the boot sector of the first disk, known as MBR (master
boot record). When the system is started, the PC BIOS transfers control to MBR and triggers a
corresponding LILO booting. Linux provides an easy LILO configuration through its /etc/lilo.conf
configuration file, and the command lilo for its installation as MBR.

4.2.2 The Kernel Execution

The bootstrap program is responsible for loading the UNIX kernel into the system memory. The
kernel image, originally named unix under System V, or vmunix under BSD, is intentionally located
in the root filesystem, because the root filesystem is the first filesystem the system mounts to
access data. Mounting is a UNIX-specific procedure that makes data on the disk accessible. (We
discuss this issue in great detail in following chapters.) In the past, the kernel image was located in
the root directory for easier access, but today, it usually resides in a separate subdirectory. We do

89

not refer to "mounting” the kernel; we usually just say that the kernel image was loaded into the
system memory and its execution was started.

The kernel manages all system hardware; all hardware drivers are part of the kernel, and the only
OS access to the system hardware is through the kernel. Therefore the system hardware will be
available upon the completion of this phase.

Once control passes to the kernel, it prepares itself to run the system by initializing its internal tables
and completing the hardware diagnostics that are part of the boot process. The level of diagnostics
implemented varies from one UNIX flavor to another. At the very end, the kernel verifies the integrity
of the root filesystem and remounts it, and starts three programs that create three basic processes.
Two of them, named kernel processes, function wholly within the kernel in the kernel's privileged
execution mode. They are actually portions of the kernel itself, only "dressed" like processes for
scheduling reasons.

On BSD systems, the two processes are:

1. Swapper (process #0), responsible for the "swapping" — to schedule the transfer of whole
processes between the main system memory and a mandatory swap partition on the primary
disk when system resources are low

2. Pagedeamon (process #2), responsible for supporting the memory—management system
regarding paging — a regular transfer of data in the pages between the main system
memory and the disk

On System V systems, the processes are named differently: sched for the process #0, while the
process #2 is replaced with various memory handlers.

The third process created by the system is the init process (process #1), which performs all
administrative tasks during the system startup and shutdown. The init process is an extremely
important process that enables the creation of all subsequent processes (in UNIX a process can be
created only by another parent process). The init process has the PID=1, and it is the ancestor of
all subsequent UNIX processes and the direct parent of each user's login shell.

In the case of diskless workstations, the procedure is slightly different. Obviously, the kernel cannot
be read from a nonexisting root filesystem; therefore, it must be downloaded from the network.
Further kernel activities are adapted to the diskless environment.

The kernel is quite verbose and it prints messages on the console that report on the current
execution status, total memory used and free, and some other information. However, the
information reported varies among different UNIX flavors.

4.2.3 The Overall System Initialization
The init process does the rest of the work needed to bring the system into its final stage:

e Mounting the remaining local disk partitions

¢ Performing some filesystem cleanup

¢ Bringing on major UNIX subsystems (accounting, printing, etc.)
e Setting the system's name and time zone

e Starting the network

e Mounting remote filesystems

e Enabling user logins

90

4.2.3.1 rc Initialization Scripts

Most of the initialization activities are specified and carried out by means of the system rec
initialization scripts stored in the /etc directory and its subdirectories. Rc initialization scripts are
usually named in the way that they include the acronym rc as part of their names (as a prefix, a
suffix, or in a fullpath name). rc stands for run—-command and basically explains the purpose of the
scripts. These mostly Bourne shell programs are organized differently on BSD and System V
platforms, although their purpose is the same. As with any other script, rc initialization scripts are
readable, so we can manage them in a very comprehensive way. Besides that, rc scripts are
sufficiently verbose during execution, and this is a great help if the system hangs midway through
the startup, or if there are any other related problems.

Main administrative activities are related to this phase. System site-related customization means
editing the rc initialization scripts. Any system upgrade means to upgrade (or to add) rc initialization
scripts; any startup modification means to do something with rc initialization scripts. The rest of this
section exclusively addresses these issues. Afterward, a full picture of the necessary administration
in this segment should be complete.

4.2.3.2 Terminal Line Initialization

The terminal line initialization is a part of the overall system initialization; however, the implemented
initialization technique is quite different than that in the rc system initialization, which is sufficient
reason to handle this topic separately. UNIX is extremely cautious with terminal line initialization —
terminal lines are "gates" to the outside world. Users access the system via terminal lines, and the
essence of UNIX existence is to serve users.

Once the initialization scripts have been executed, the system is fully operational, except for the fact
that no one can log in to the system. In order to provide login via a particular terminal line, there
must be a corresponding controlling process listening on it (usually the getty process, but the
ttymon is used on the Solaris platform). At the final initialization phase, init spawns the getty
processes to all indicated terminals and the startup procedure is completed. Today, users typically
log in over a network using pseudo-terminals; however, the getty program is still doing its job.

Terminal line initialization is fully covered in_Chapter 11.

4.2.4 System States

Once the initialization activities are completed, the UNIX system enters the multi-user mode, and
users may log in to the system. But init can also place the system in single-user mode instead of
completing the initialization tasks required for multi-user mode. The single—user mode corresponds
to a functionally reduced UNIX system. In single—user mode, a UNIX system looks very much like a
personal computer. The single—-user mode is primarily dedicated to administrative and maintenance
activities that require complete control over the system. The user has all superuser privileges.

In some cases, the system will automatically enter single—user mode if there are any problems in
the boot process that the system cannot handle on its own (for example, filesystem problems that
fsck cannot fix), so the system administrator must resolve the problem. The init simply spawns the
Bourne shell on the system's console and waits for it to terminate before continuing with the rest of
the startup sequence. Entering <CTRL-D> or the exit command from the shell prompt can
terminate the spawned single—user shell. Once this is done, the system may continue into
multi-user mode.

91

Single—user mode represents a minimal system startup with no daemons running, so many UNIX
facilities are disabled. Only the root filesystem is mounted (in the most common case) and a
restricted number of commands are available (commands residing in the root filesystem). Under
normal circumstances, other filesystems can be mounted by hand to access other commands.

Single—user mode can be a security problem for a system, because full control over the system is
granted. On older UNIX systems, no password was required, but physical access to the system was
required in the single—user mode. On some systems, a front panel lock with normal (secure) vs.
maintenance (service) key positions enabled multi-user vs. single—user mode; the system
protection was the key, and only authorized personnel could acquire the key. Modern UNIX systems
usually require a root password to enter single—user mode. None of these approaches are perfect,
and all of them have some disadvantage. A request for the root password could make difficulties
under different circumstances, if the root password was forgotten.

While the BSD flavored system could be in one of three possible states — off, single-user, and
multi-user mode — the System V platform explicitly defines a series of system states, called
run-levels designated by a one-character name. System V run-levels are flavor dependent; an
example is listed in the following table:

Run-Level Name and Uses

0 Power—down state => safe to power—off the system

1 Administrative state

sorS Single—-user mode (on many systems same as 1)

2 Multi—-user mode for stand—alone system

3 Multi—-user mode for networked system, possibly sharing disks with other
systems => via RFS, TCP/IP, and NFS, or some other protocol

4 Unused => can be user defined locally

5 Firmware state => for maintenance and running diagnostics, and for booting
from an alternate not-root disk

6 Shutdown and reboot state => to reboot system from some running state (s, 2,
3, or 4); the system is taken down (to run—level 0) and then rebooted back

To display the current system run—level, the following command is available:

$ who -r
.run-level 3 Mar 14 11:14 3 0 S

The system was taken to run-level 3, from run-level S, via run—level 0, on March 14, at 11:14. The
leading dot is by default at the beginning of the line.

On the System V platform, movement between run-levels is managed by init, and each run-level is
controlled by its own set of initialization scripts.

4.2.5 The Outlook of a Startup Procedure

UNIX systems are configured to boot automatically when powered-on. If this is not possible,
systems enter some form of the "ROM monitor mode" — a restricted ROM resident command
interpreter that enables essential diagnostics, booting, and some other basic system activities. The
ROM monitor mode is also the state that the system enters after being shut down; in that state, a
system can be safely powered off. On some systems there is also a keystroke combination to enter
this mode — for example on Sun Microsystems systems, the key (STOP-A) followed by the specific
ROM monitor prompt "OK>."

92

The ROM monitor always provides the boot command, specified as "b" or "boot," among the other
commands it provides. Certain options sufficient to control the system startup when problems are
encountered (to boot the system from different media, into different modes, etc.) are also provided.
The default booting media is the hard disk.

On old UNIX systems, manual booting from the ROM monitor was a two—stage procedure:

1. The boot command first loaded a boot program with a stand-alone shell (actually a
mini—operating system).
2. A second command was then issued in a stand—alone shell to load UNIX kernel.

This two—-step procedure looked like this:

>b
$$ unix

Different prompts specify two steps in the boot procedure. The technology available in the past
limited the bootstrap program possibilities, which led to a more complicated startup procedure.

Today all UNIX flavors provide a relatively verbose system startup; a number of messages are
directed to the console indicating the stage and status of the startup procedure. It is highly
recommended that you monitor the system startup on the console. Otherwise, some trouble
messages can remain undetected, which leads to a high probability for later surprises.

The startup sequences for two system user modes are presented in_Eigures 4.1 and_4.2. The UNIX
system named "atlas" is running Solaris 2.x.; brief comments follow.

------------------------ boolstrap program slarts --------=--====sereeeeeen

SPARCstation 20 (1 X 390250), Keyboard Present

SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530
Ethernet address 8:0:20:72:4f:ca, Host ID: 72724fca.

Rebooting with command:
Boot device: /fiommu/sbus/espdma @f, 400000/esp @f, 800000/sd@3,0 File and args:

------------------------ boolstrap program ends, and kernel starls ----------==-===========-
SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.

------------------------ kernel ends, and rc initialization Starfs «--ss-ssssesesmmmcmmaaan

configuring network interfaces: le0.
Hostname: atlas
The system is coming up. Please wait.
checking ufs filesystems
/dev/rdsk/c0t2d0s6: is clean
/dev/rdsk/c0t3d0s7: is clean
/dev/rdsk/c0t2d0s0: is clean
Flushing routing table:
add net default: gateway 146.95.8.250
starting rpc services: rcpbind keyserv kerbd done.
Setling netmask of le0 to 255.255.255.0
Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.
Print services started.
volume management starting.
HTTP service starting.
The system is ready.

atlas console login:
Figure 4.1: An illustration of a multiple-user startup sequence.

93

------------------------ bootstrap program starts ----=-========rreeesemen

SPARCstation 20 (1 X 390250), Keyboard Present

SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530
Ethernet address 8:0:20:72:4f.ca, Host ID: 72724fca.

Rebooting with command: -s
Boot device: /iommu/sbus/espdma @f, 400000/esp @f, 800000/sd@3, 0 File and args: -s

------------------------ bootstrap program ends, and kernel starts -----------=-=-==seevv---
SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.
------------------------ kemel ends, and single-user rc initialization stans ----------------eem----=-
configuring network interfaces: le0.
Hostname: atlas

INIT: SINGLE USER MODE

Type Ctri-d to proceed with normal startup,
(or give root password for system maintenance):

>>>>>>>>>>>>>> Since Ctrl-D is entered <<<<<<<<<<<<<<
------------------------ re initialization continues --——-----———---——-=---—-

INIT: New run level: 3

The system is coming up. Please walit.

checking ufs filesystems

/dev/rdsk/cOt2d0s6: is clean

/dev/rdsk/c0t3d0s7: is clean

/dev/rdsk/c0t2d0s0: is clean

Flushing routing table:

add net default: gateway 146.95.8.250

starting rpc services: rcpbind keyserv kerbd done.
Setting netmask of le0 to 255.255.255.0

Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.

Print services started.

volume management starting.

HTTP service starting.

The system is ready.

atlas console login:

Figure 4.2: An illustration of a single—user startup sequence.

The Sun logo and first five lines are printed from the bootstrap program. These lines list basic
system configuration and identification data, as well as the kind of boot device. The somewhat
cryptic description of a boot device indicates an SCSI disk. The kernel prints only two identification
lines that include the system version and release. Other lines are printed from initialization scripts
invoked by the program init. One of the lines indicates that the system was customized. The
message that indicates the start of the HTTP service is not a part of a regular OS installation —
obviously, this site has been customized to provide an Internet service. At the end, the login prompt
is displayed upon the console initialization.

The startup procedure includes filesystem checking, one of the most important activities performed
by the fsck utility (fsck is discussed in greater detail in_Chapter 5). The filesystem verifications are
different on BSD and System V platforms. BSD checks all filesystems on every boot; System V
does not check filesystems if they were dismounted normally when the system last went down (the
fsstat command is used for this purpose), and faster booting is enabled. Filesystem checking can
result in the display of many messages depending on the current filesystem status. If more serious
filesystem corruption is encountered, the system is left in single—user mode, and manual filesystem
checking and repair by the administrator may be required.

A single—user startup sequence is much shorter, and it includes the boot and kernel lines. The next
two lines about the network interface configuration and host's name are printed from corresponding
initialization scripts involved in the system single—user startup. Finally, the console is activated and
the user is informed of two possibilities:

94

1. Enter the system in single—user mode by entering the root password
2. Or continue with multi-user startup by entering [Ctrl-D]

If [Ctrl-D] is entered, the system continues with the multi-user startup, as in the previous case.
4.2.6 Initialization Scripts

Once the init process is born, the system startup is determined by a series of rc initialization scripts
which define a detailed procedure to bring the system into the multi-user mode. This is the most
common case, although other system modes (run-levels) are also possible. These files control all
custom-defined and site—dependent items (there are multiple rc initialization scripts), and they are
executed sequentially. Generally, rc initialization scripts represent Bourne shell script files,
executable at any time and on any UNIX platform. (The Bourne shell is the default shell, and it is
available at the very early system stage on every UNIX platform.) The rc initialization scripts do not
differ from any other shell script, except at the time of their execution. (This, by the way, is why the
prefix "rc" is used in their description, as well as in the name.) However, they can also be executed
from the command line at any time, and administrators can make full use of this opportunity: on
System V, individual function—specific initialization scripts are often used to stop and start specific
UNIX functions during regular system production. On modern UNIX platforms, sometimes Korn shell
rc initialization scripts are also included (for example, on the HP-UX platform) which indicated the
early availability of the Korn shell.

Understanding rc initialization scripts is a vital part of system administration — this is the place for
system customization. A system administrator must be familiar with these files, their locations and,
in many cases, their contents. Only then is full control over the system startup possible, and quick
corrective action can follow any problem encountered during system boot time. Each modification in
the initialization scripts must be done very carefully with respect for the basic administrative rule:
save original script files before making any changes. If this rule is not followed, various problems
can ensue.

Despite the fact that rc initialization scripts on both UNIX platforms BSD and System V serve the
same purpose, the mechanisms by which they are initiated and executed are quite different. These
differences require great attention, knowledge, and skills from system administrators working in a
heterogeneous environment, which is very common today. Today, the System V rc approach
prevails — the System V organization of the rc initialization scripts offers more flexibility and other
administrative advantages. We will discuss System V initialization in greater detail after a quick
survey of the BSD-style initialization.

4.3 BSD Initialization

4.3.1 The BSD rc Scripts

Originally, the BSD initialization was controlled only by two rc initialization scripts: /ete/rc and
/etc/rc.local. A general system initialization was supported by the /etc/rc script, while the
/etc/re.local script referred to a local site, i.e., to issues that should be customized (probably a more
appropriate script name would be "rc.site" to avoid any possible confusion toward the logical
association with a "network-local relationship"). During system booting to the multi-user mode, init
executed the rc script, which in turn executed the rc.local script. If a single—user boot was
performed, scripts were only partially executed; the remaining parts were executed when the
single—user shell was exited.

95

Having only two rc initialization scripts would lead one to believe that system maintenance was
easy, but in fact the reality is quite the opposite. The work required for system initialization remained
the same, regardless of how many rc scripts were involved, and huge rc script files were more
difficult to manage and more vulnerable to corruption during modification. It could be very difficult to
find an appropriate control sequence, items were often doubled, and so on.

SunOS introduced additional script files: /etc/rc.boot and /etc/rc.single. The program init invokes
first rc.boot script and from there rc.single (regardless of whether the system is booting to single vs.
multi—-user mode); then the /etc/rc and /etc/rc.local files follow.

4.3.2 BSD Initialization Sequence

For a clearer picture, the block diagram of the SunOS execution sequence is presented in_Eigure
4.3 (it is assumed the system is booting from the local disk). The SunOS organization made a clear
distinction between single and multiple-user modes; it was immediately easier to follow any
problems that developed in the system booting.

The Program
init

The Script File The Script File
/ete/re.boot /ete/re.single

multi-user mode single-user mode

The Bourne Shell

< Ctrl-D =

The Script File The Script File
/etc/re /ete/re.local

first-time startup

The Script File

Jusr/etc/install/run_configure

Figure 4.3: The execution sequence of SunOS initialization scripts.

To make system customization easier, SunOS provided a special interactive script named
/usr/etc/install/run_configure that was invoked only once, the very first time the system was
started upon the OS installation. Through the provided dialogue, the required parameters such as:
system name, time zone, date, time, and network data were entered. The system administrator had

96

to answer a number of questions, and new system and network data were saved for future use. The
dialogue was performed via the system console. Upon successful completion, the program is never
again invoked; subsequent modification can be done directly in the rc scripts.

In the single-user mode, the only way to communicate with the system is via the console; other
terminals are not initialized at all. SunOS assumes that anyone who has physical access to the
console is an administrator, because from the console it is easy to gain full control over the system.
There is no additional system protection.

All rc files live in the /etc directory; this is an example from SunOS 4.1.3:

$ 1s -1 /etc | grep rc

—rw—r——r—-— 1 root 2993 Jan 20 1996 rc

—rw—r——r-—- 1 root 5476 Jun 23 1996 rc.boot
—rw—r——r—- 1 root 352 Jan 20 1996 rc.ip
—rw—r——r—-— 1 root 6169 Aug 3 1997 rc.local
—rw-r——r-—- 1 root 5911 Jan 20 1996 rc.local.orig
—rw—r——r-—-— 1 root 2172 Jan 20 1996 rc.single

We can easily recognize all of the listed files; the file rc.local was modified according to the local
(site) requirements, and the original file was saved. An exception is the file rc.ip, which is used to
start up diskless systems.

All of the listed files are excellent examples of what shell scripts should look like; extremely skillful
programmers write them, and it is a good idea to read them to learn the art of shell programming.
However, this is out of the scope of this text.

The description of the BSD system startup should be sufficient to explain how a UNIX system is
brought into an operational stage. To conclude this discussion, an additional brief report related to
this topic is presented. This report is taken directly from the manual pages for rc files on the SunOS
platform; nevertheless, there are some discrepancies between the actual initialization scripts and
this report, even though the described scripts and manual pages belong to the very same system.
This is not so unusual, and a UNIX administrator must be prepared for such surprises. The supplied
online documentation simply does not always fully support all system changes and upgrades.

$ man rcfiles

NAME
e rc, rc.boot, rc.local — command scripts for auto—reboot and daemons
SYNOPSIS

e /etc/rc
e /etc/rc.boot
e /etc/rc.local

DESCRIPTION

e rc and rc.boot are command scripts that are invoked by init(8) to perform filesystem
housekeeping and to start system daemons. rc.local is a script for commands that are
pertinent only to a specific site or client machine.

e rc.boot sets the machine name and, if on SunOS 4.1.1 Rev B or later, invokes ifconfig, which
uses RARP to obtain the machine's IP address from the NIS network. Then a "whoami"

97

bootparams request is used to retrieve the system's host-name, NIS domain name, and
default router. The ifconfig and hostconfig programs set the system's host-name, IP
address, NIS domain name, and default router in the kernel.

e /[f coming up multi-user, rc.boot runs fsck(8) with the —p option. This "preens" the disks of
minor inconsistencies resulting from the last system shutdown and checks for serious
inconsistencies caused by hardware or software failure. If fsck(8) detects a serious disk
problem, it returns an error and init(8) brings the system up in single—user mode. When
coming up single—user, when init(8) is invoked by fastboot(8), or when it is passed the —b
flag from boot(8S), functions performed in the rc.local file, including this disk check, are
Skipped.

e Next, rc runs. If the system came up single-user, rc runs when the single-user shell
terminates (see init(8)). It mounts 4.2 filesystems and spawns a shell for /etc/rc.local, which
mounts NFS filesystems, runs sysIDtool (if on SunOS 4.1.1 Rev B or later) to set the
system's configuration information into local configuration files, and starts local daemons.
After rc.local returns, rc starts standard daemons, preserves editor files, clears/tmp, starts
system accounting (if applicable), starts the network (where applicable), and if enabled, runs
savecore(8) to preserve the core image after a crash.

4.4 System V Initialization

System V organizes the initialization procedure in a more flexible, but also a more complex way
using up to three levels of initialization files. During a system startup, when init takes control from
the kernel, it scans its configuration file /etc/inittabto learn what to do next. We should recall that
System V can have multiple run-levels. The file /etc/inittab defines init's action whenever the
system enters a new level; the commands to execute at each run-level are specified in the
corresponding inittab entries. Usually, the entries are initialization script files named ren(where "n"
is a run—level number); the scripts files themselves are located in the directory /ete, or sometimes in
/sbin (HP-UX platform). The various rcn scripts in turn invoke other scripts that reside in the
corresponding subdirectories ren.d (again, "n" represents the specified run-level). A simplified
version of the System V rebooting procedure is illustrated in_Eigure 4.4; the rebooting procedure first
shuts down a system (the run-level 0) and then brings a system into a normal operating state (in

this case the run-level 2).

I [+ R
[sinitd_| [reod ||| .e2d |

K==
+ + + T I T+ +
[ol | [1|1 ﬁ\\ e | e |
[modwtFs | [nissever || e | [somounTFs | [kasnfs.server]
[T + + +
| KooannoUNCE | | | Kaocron |
| K39Ip | | K28n&5ewed

Figure 4.4: A graphical presentation of System V rebooting.
4.4.1 The Configuration File /etc/inittab

We will start with init's configuration file /etc/inittab; here is an example:

$ cat /etc/inittab (from Red Hat Linux, partly presented)

98

1

SR NN N N R
oy 0 i W N

H

Default run-level.
07

inittab This file describes how the INIT process should set up
the system in a certain run-level.

The run-levels used by RHS are:

halt (Do NOT set initdefault to this)
Single user mode
Multi-user,
Full multi-user mode
unused

X11

without NFS (The same as 3, if you do not have networking)

reboot (Do NOT set initdefault to this)

id:2:initdefault:
System initialization
si::sysinit:/etc/rc.d/rc.sysinit

10:
11:
12:
13:
14:
15:
16:

N G LW N RO

rwait:
rwait:
rwait
cwait:
rwait
rwait
rwait

/etc/rc.
/etc/rc.
:/etc/rc.
/etc/rc.
:/etc/rc.
:/etc/rc.
:/etc/rc.

d/rc
d/rc
d/rc
d/rc
d/rc
d/rc
d/rc

0

oy G i W N =

Things to run in every run-level.

Each entry in the /etc/init file is of the form:

cc:states:action:process

With the following definitions of the individual fields:

cc
states
action

process

Two-character case—sensitive label identifying the entry (some new
A list of the run—levels to which the entry applies; if blank, indicates all run—levels
wait

respawn
once
boot
bootwait
initdefault
sysinit
off
The command to execute

The system scans inittab entries from the top down, checks that they belong to a current run-level,
and executes them sequentially, respecting the contents of the entry fields. Let us analyze the
previous example.

Start the process and wait for it to finish before going on to the next
entry for this run-level

Start the process and automatically restart it when it dies
Start the process if it is not already running; do not wait for it
Only execute entry at boot time and do not wait for it

Only execute entry at boot time and wait for it to finish
Specify the default run-level for system reboot

Use to initialize the console

Kill the process if it is running

The first entry named "id" is not the executable one; this entry (determined as "initdefault') specifies
the default run-level (here it is run-level 2) to be implemented when the run-level is not explicitly

specified by init itself. The following entry "si," marked as "sysinit," must be executed first to make

the console and some other initial items operational. The specified initialization script

99

/etc/re.d/re.sysinit performs many of the "housecleaning" jobs to prepare the system for other
run-level specific scripts that will come afterward. The run-level scripts for different run—levels are
specified by subsequent inittab entries identified as 10 to 16, for the run—levels 0 to 6; this is actually
the same rc initialization script named /etc/rc.d/rc, invoked with an argument that specifies the
run-level (argument 0 to 6). The script invokes other specific "stop" and "start" scripts needed for
specific run—level initialization. This part of the /etc/inittab file is crucial to our discussion; other
inittab entries are not presented at all, and they relate to other required general initialization tasks
such as power supply control, terminal line initialization, etc.

Linux has located rc initialization scripts in a separate directory /etc/rc.d and its sub—directories, as
we see in the following example:

$ 1s -1 /etc/rc.d
total 18

Adrwxr—-xr—x 2 root root 1024 May 13 12:24 init.d
—IWXI—XI—X 1 root root 1871 Oct 15 1998 rc
—IrWXIr—XI—X 1 root root 693 Oct 15 1998 rc.local
—IWXI—XI—X 1 root root 7165 Oct 15 1998 rc.sysinit
drwxr—-xr—x 2 root root 1024 May 13 12:24 rc0.d
Adrwxr—-xr—x 2 root root 1024 May 13 12:24 rcl.d
drwxr—-xr—x 2 root root 1024 May 13 12:24 rc2.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc3.d
drwxr—-xr—x 2 root root 1024 May 13 12:24 rc4.d
Adrwxr—-xr—x 2 root root 1024 May 13 12:24 rch.d
drwxr—-xr—x 2 root root 1024 May 13 12:24 rcé.d

Besides the scripts rc, rc.sysinit, and rc.local, which are accomplishing specific tasks, other needed
scripts for particular run—levels are located in the corresponding subdirectories rc0.d to rc6.d. The
subdirectory init.d is a "depot" directory for all scripts, and it will be explained later.

The described startup procedure is almost identical on other System V platforms; the existing
differences are mostly concentrated in the naming of the initialization scripts. Here is another
example:

#cat /etc/inittab (on Solaris 2.x platform)

ap::sysinit:/ sbin/autopush -f /etc/iu.ap

fs::sysinit:/sbin/rcS >/ dev/console 2>&1 </dev/console
is:3:initdefault:

p3:sl234:powerfail:/ usr/sbin/shutdown -y -i5 —-g0 >/dev/console 2>&1

s0:0:wait:/ sbhin/rc0 >/dev/console 2>&1 </dev/console
sl:l:wait:/ usr/shin/shutdown -y -1iS -g0 >/dev/console 2>&1 </dev/console
s2:23:wait:/ sbin/rc2 >/dev/console 2>&1 </dev/console
s3:3:wait:/ sbin/rc3 >/dev/console 2>&1 </dev/console
s5:5:wait:/ sbin/rc5 >/dev/console 2>&1 </dev/console
s6:6:wait:/ sbin/rcé >/dev/console 2>&1 </dev/console
fw:0:wait:/ sbin/uadmin 2 0 >/dev/console 2>&1 </dev/console
of:5:wait:/ sbin/uadmin 2 6 >/dev/console 2>&1 </dev/console
rb:6:wait:/ sbin/uadmin 2 1 >/dev/console 2>&1 </dev/console
sc:234:respawn:/ usr/lib/saf/sac -t 300

co:234:respawn:/ usr/lib/saf/ttymon -g -h -p "'uname -n' console login:" -T sun -d /dev/console \

-1 console —-m ldterm, ttcompat

Briefly, the main differences regarding the previous example are: the default run-level is #3, the
system always passes through the single—user stage (the script /etc/rcS), and the spawned
console—monitoring process is ttymon, instead of getty (this issue is discussed in greater detail in
Chapter 11). Other entries are either quite similar, or they are out of the scope of this text.

100

4.4.2 System V rc Initialization Scripts

As is seen from the /etc/inittab, an inittab entry points to the corresponding re script to be directly
executed by init for the specified run—level. However, what is more important is the part that stays
hidden behind the scenes — this rc scripts invokes a series of additional scripts for specific system
functions associated with the corresponding run-level. The invoked scripts can terminate (stop) or
start a specific function, whatever is appropriate for the run—level. Sometimes the same script can
be invoked twice for the same run-level: first to stop, and then to restart a specific function (so a
clean function start is guaranteed).

We will start a more detailed analysis with one of the "directly invoked scripts," the script /etc/rc2 on
the IRIX platform (obviously this script corresponds to run-level #2). This script is quite typically
found on other System V flavors, too. For better understanding additional explanations are in bold.

$cat /etc/rc2

#! /bin/sh

#Tag 0x00000£00

#ident "SRevision: 1.12 S$"

#

"Run Commands" executed when the system is changing to init state 2

traditionally called "multi-user"

./etc/TIMEZONE Setup the time zone
(source another script)

Pickup startup packages for mounts, daemons, services, etc.

set who -r Show run-level arguments
if [$9 = "S"] $9 corresponds to a previous state
then - was "single user mode"
echo 'The system is coming up. Please wait.' Display the message and ...
BOOT=yes ...mark the system booting
elif [§7 = "2"] 87 corresponds to a required state
then - is the state 2

This Section Invokes Individual Termination Scripts

echo 'Changing to state 2.'
if [-d /etc/rc2.d]
then
for f in /etc/rc2.d/K* Every termination script in the directory /etc/rc2.d
is invoked with "stop" argument
{
if [-s ${f}]
then
/bin/sh ${f} stop
fi
}
fi
fi
handle local mounts specially, rather than as part of a generic rc2.d
operation, so that if the some mounts fail, we can warn the user
#
if [-f /etc/mountall] Mount filesystems
then
if /etc/mountall
then:
else
echo '\07Some filesystems failed to mount; may be unable to reach multiuser state'
sleep 5
fi
fi

101

This Section Invokes Individual Start Scripts

if [-d /etc/rc2.d]
then
for f in /etc/rc2.d/S* Every initialization script in the directory /etc/rc2
is invoked with "start" argument
{
if [-s S{f}]
then
/bin/sh S${f} start

fi

}
fi
if ["${BOOT}" = "yes"]
then

stty sane tab3 2>/dev/null Set the terminal
fi
if ["S$S{BOOT}" = "yes" -a $7 = "2"]
then

echo 'The system is ready. Display messages
elif [§7 = "2"]
then

echo 'Change to state 2 has been completed.'
fi

Besides a number of common run-level #2 housekeeping tasks that /etc/rc2 performs, the individual
start and termination scripts for all associated functions are also executed. The general mechanism
for installing and executing start and termination scripts is common for all /etc/rc n files:

Filenames in rcn.d directories are of the form "[S/K]nn[init.d filename]' where S
means start this job, K means Kill (terminate) this job, and nn is the relative
sequence number to terminate or start the job. When entering a state (n=S, 0, 2, 3,
etc.), the rcn script executes those scripts in the /etc/ren.d directory that are prefixed
with K followed by those scripts prefixed with S. When executing each script in one
of the /etc/rcn.d directories, the rcn script passes a single argument. It passes the
argument stop for scripts prefixed with K and the argument start for scripts prefixed
with S. There is no harm in applying the same sequence number to multiple scripts.
In this case the order of execution is deterministic but unspecified. Guidelines for
selecting sequence numbers are provided in the README files located in the
directory associated with that target state (e.g.: /etc/ ren.d/README).

For example, when changing to init state 2 (in this case, multi-user mode with nonexported network
resources), the init process initiates rc2. The following steps are performed by rc2:

1. In the directory /etc/rc2.d are scripts used to stop processes that should not be running in
state 2. The filenames are prefixed with K. Each K file in the directory is executed in
alphanumeric order when the system enters init state 2.

2. Also in the /etc/rc2.d directory are scripts used to start processes that should be running in
state 2. As in the step above, each Sfile is executed.

To illustrate the above, assume the arbitrary file /etc/init.d/netdaemon is a script that will initiate
networking daemons when given the argument start, and will terminate the daemons if given the
argument stop. It is linked to /etc/rc2.d/S68netdaemon, and to /etc/rc0.d/K67netdaemon. The file is
executed by /etc/rc2.d/S68netdaemon start when init state 2 is entered and by
/etc/rc0.d/S67netdaemon stop when shutting the system down (init state 0).

102

All scripts for individual system functions are written to accept the passed argument stop or start,
and to behave accordingly as a termination or a start script. All scripts are located in the separate
"depot directory" /etc/init.d, and they are linked to the corresponding K and S files in the /etc/rcn
subdirectories.

Let us see how this looks for the IRIX flavor:

#ls -1 /etc/rc*

—IWXr—XIr—x 1 root sys 790 Sep 8 1992 /etc/rc0O

—IWXI—XI—X 1 root sys 1440 Sep 8 1992 /etc/rc2

—IrWXr—Xr—-x 1 root sys 444 Sep 8 1992 /etc/rc3

/etc/rc0.d:

total 10

1= 1 root sys 16 Sep 8 1992 Kl5cron -> /etc/init.d/cron

I-———— 1 root sys 16 Sep 8 1992 Kl8uucp -> /etc/init.d/uucp

1= 1 root sys 16 Sep 8 1992 K20mail -> /etc/init.d/mail

/etc/rc2.d:

total 19

I I root sys 21 Sep 8 1992 SOIMOUNTFSYS -> /etc/init.d
/MOUNTFSYS

- 1 root sys 19 Sep 8 1992 S20sysetup -> /etc/init.d/sysetup

- 1 root sys 16 Sep 8 1992 SZ2lperf -> /etc/init.d/perf

/etc/rc3.d:

total 0

What can we conclude from this directory listing? The three directly invoked rc scripts specified in
the /etc/inittab file reside in the /etc directory; they are scripts re0, re2, and re3. The corresponding
rcn.d subdirectories are re0.d, rc2.d, and rc3.d(although rc3.d is an empty subdirectory).
Termination and start files in the /etc/ren.d subdirectories are symbolic links to the scripts located in
the depot directory /etc/init.d. In that way, the same files appear under different names, which are
more appropriate for their implementation.

The listing of the depot directory /etc/init.d is:

$ls —-C /etc/init.d

MOUNTFSYS autoconfig cron mail sysetup
README bsdlpr floppy network uucp
RMTMPFILES cdromd. 2 hyperchem_elm perft winattr
audio configmsg 1p savecore xdm

The linked files in the /etc/rcn directories have slightly modified names; the original filenames from
the /etc/init.d directory are preceded with the letter S or K, and a two-digit number; numbers define
the sequence in which the files are listed as well as executed, while the letters S and K classify files
into two categories: start and termination scripts, so they can be invoked differently, with the start
or stop argument.

IRIX has introduced, and Linux accepted and further developed, a specific command to handle
needed rc links. Many init run-levels require a careful implementation of rc start/stop scripts, i.e.,
the corresponding links toward init.d depot directory. The command chkconfig makes this job
easier. So if your system is running Linux, do not forget this possibility. If you prefer to make needed
links manually, it also works.

103

Linux introduced one more directory level "/etc/rc.d" to confine all rc-related programs. Another
Linux specific issue is that all rc scripts use functional wrappers to handle individual processes. A
separate script /etc/rc.d/init.d/functions defines a number of functions instrumental for conditional
start or stoppage of programs. This script is sourced at the beginning of each individual rc script
defining a very convenient environment for the system startup and shutdown, status display, and
logging. Unfortunately, while such an approach works well for this purpose, in some other cases it
could fail. UNIX administrators love to use rc start/stop scripts to control running daemons — it is
quite common to recycle, stop, or restart daemons by executing rc scripts with an appropriate
argument. Functional wrappers check for possible remaining processes and, if they exist, bypass
the start of a corresponding daemon, what is correct for most situations. However, under certain
circumstances remaining processes could be "legal" until they complete their task (like sendmail
children during processing of the mail queue); unfortunately, a new daemon would not be started.

Basically, all listed System V rc scripts provide the same functions as BSD rc scripts. This makes
sense because their task is the same: to bring the UNIX system into a workable multi-user (or any
other) state. However, they are organized in very different ways, and must be administered
accordingly. The System V approach prevails today.

The presented IRIX flavor is quite typical of the System V startup. Another example we will discuss
is the Solaris 2.x; we will primarily emphasize the differences. The long listing of Solaris rc scripts
shows:

#ls -1 /etc/rc*

1 rwxXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc0 -> ../ sbin/rc0
1 rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rcl -> ../ shin/rcl
1 rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc2 -> ../ sbin/rc2
I rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc3 -> ../ sbin/rc3
1 rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc5 -> ../ sbin/rc5
1 rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc6 -> ../ sbin/rcé
1 rwXrwxrwx 1 root root 11 Apr 4 11:16 /etc/rcS -> ../ sbin/rcS

What specifies the Solaris re script files? There are seven re n scripts, although not all of them are
specified in the /etc/inittab file. They actually reside in the directory /sbin and are symbolically linked
to the /etc directory. The corresponding rc directories are:

/etc/rc0.d:
total 34
—IrWXr——I—— 3 root sys 103 Aug 3 1994 KOOANNOUNCE
—IrWXIr——r—- 4 root sys 318 Jul 15 1994 K201p
—IrWXI——Ir—— 4 root sys 388 Aug 3 1994 K42audit
/etc/rcl.d:
total 34
—IrWXIr——r—- 3 root sys 103 Aug 3 1994 KOOANNOUNCE
—IrWXI——Ir—— 4 root sys 388 Aug 3 1994 K42audit
—IrWXr——Ir—— 3 root sys 534 Aug 3 1994 SOIMOUNTFSYS
/etc/rc2.d:
total 100
—IrWXI——Ir—— 4 root sys 318 Jul 15 1994 K201p
—Irw—r——r—-— 1 root Sys 1369 Aug 3 1994 README
—IrWXr——Ir—— 3 root sys 534 Aug 3 1994 SOIMOUNTFSYS
—rw—r——r—- 2 root other 547 Jun 16 12:15 S93httpsvc

104

/etc/rc3.d:

total 8

—Irw—r——r—-— 1 root Sys 1708 Aug 3 1994 README
—IrWXI——I—— 5 root sys 1387 Aug 3 1994 Slb5nfs.server
/etc/rcS.d:

total 32

—rw—r——r—-— 1 root sys 2392 Aug 3 1994 README
—r—Xr——r-—- 2 root sys 369 Jul 16 1994 S00sxcmem
—IWXr——I—— 2 root Sys 4514 Aug 3 1994 S30rootusr.sh

Not every ren script has an associated rcn.d subdirectory (there is simply no need for all of them; do
not forget that ren scripts can be written in a different way). Finally, the existing start and
termination files in the rcn.d subdirectories represent hard links to the function—specific scripts
residing in the depot directory /etc/init.d (this can be easily seen by using the Is —i command to
check the file's inode numbers). Obviously, both types of links can be equally implemented.

4.4.3 BSD-Like Initialization

The System V initialization approach dominates today, but it is hard to judge this approach as the
better one overall. Sometimes the use of a few larger script files would be more convenient, versus
the implementation of a multidirectory structure with many small script files. This is probably the
reason that some hybrid solutions have appeared; some System V flavors made a compromise by
introducing something of the BSD initialization spirit into a System V initialization body. They
avoided a more complex multilayer initialization approach, and provided one or more larger script
files for any run-level, which are directly invoked from the /etc/inittab file, or even coded in the
start/stop procedures. In this way, the System V initialization reminds us very much of the BSD one,
with the occasional exception as to how the scripts are invoked. A substantial level of flexibility is
preserved because the /etc/inittab file remains available. Such an approach characterized, for
example, the HP-UX 9.0x, or IBM AIX 3.x platforms. Today, we can even recognize elements of
such an organization in Linux.

The HP-UX 9.0x platform included only a few rc script files with almost the same names as on the
BSD platform. Some of them were even written as Korn shell scripts, which implies the Korn shell
as the default one on the system.

$1ls -1 /etc/rc*

—-r—-Xr——r—-— 1 bin bin 15988 Apr 4 11:10 /Jetc/rc
—-r——r—-—r—- 1 bin bin 21584 Mar 5 18:43 /etc/rc.utils
—IrW—rw—Irw-— 1 root root 0 May 4 11:23 /Jetc/rcflag

This does not necessarily mean that the presented files are the only files used in the system
initialization; other files with other names can be called by these rc files. If we take a look into the
/etc/inittab file, we see a single inittab entry, named "rc" for this purpose.

$cat /etc/inittab
init:4:initdefault:
Sstty::sysinit:stty 9600 clocal icanon echo opost onlcr iengak ixon icrnl ignpar </dev/systty

brcl::bootwait:/ etc/bcheckrc </dev/console >/dev/console 2>&1 # fsck, etc.
slib::bootwait:/etc/recoversl </dev/console >/dev/console 2>&1 #shared libs
brc2: :bootwait:/ etc/brc >/dev/console 2>&1 # boottime commands
link::wait:/ bin/sh -c "rm -f /dev/syscon; 1ln /dev/systty /dev/syscon" >/dev/console 2>&l1
rc::wait:/ etc/rc </dev/console >/dev/console 2>&1 # system initialization
powf: :powerwait:/ etc/powerfail >/dev/console 2>¢&l1 # power fail routines

Ip::off:nohup sleep 999999999 </dev/lp & stty 9600 </dev/Ip
halt:6:wait:/ usr/lib/X11/ignition/shutdown.ksh \

105

NOTE: run-level 6 is reserved for system shutdown

cons:012456:respawn:/ etc/getty —-h console console # system console
vue:34:respawn:/ etc/vuerc # VUE validation and
invocation

A similar situation was used by the AIX flavor with several more initialization script files:

$ls -1 /etc/rc*

—-r—Xr—-Xr—-— 1 bin bin 1750 Feb 10 1994 /etc/rc
-r—XIr—-Xr—- 1 bin bin 1866 Feb 10 1994 /etc/rc.bsdnet
~IW—IWXI—— 1 root system 667 Feb 10 1994 /etc/rc.ncs
—Ir—Xr—-Xr—-— 1 bin bin 7680 Feb 10 1994 /etc/rc.net
—IrWXr—XIr—x 1 root system 2628 Jul 17 13:35 /etc/rc.nfs
—IrWXI—XIr—Xx 1 root system 1161 Feb 12 1993 /etc/rc.pci
—rwX—————— 1 root system 20832 Feb 10 1994 /etc/rc.powerfail
—IrWXIWXI—— 1 root system 3950 Jul 17 13:35 /etc/rc.tcpip

Most of the listed rc files are invoked directly through the inittab entries; others are called by the
invoked files, which can be seen from the /etc/inittab file:

Scat /etc/inittab
init:2:initdefault:

brc::sysinit:/ etc/brc >/dev/console 2>&l1 # phase 2 of system boot
rc:2:wait:/ etec/rc > /dev/console 2>&1 # multi-user checks
rctcpip:2:wait:/ etc/rc.tcpip >/dev/console 2>&1 # start TCP/TP daemons
rcnfs:2:wait:/ etc/rc.nfs >/dev/console 2>&1 # start NFS daemons
srcmstr:2:respawn:/ etc/srcmstr #system resource controller
cons: :respawn:/ etc/getty /dev/console

cron:2:respawn:/ etc/cron #periodic (cron) daemon

gdaemon:2:once:/ bin/startsrc —-sgdaemon

Linux implements three task—specific scripts: re, re.local, and re.sysinit. They are located in the
rc.d directory, out of individual rcn.d subdirectories. In the Linux rc directory structure shown earlier,
the three files have special meaning. They are presented again here.

$ 1s -1 /etc/rc.d

—IrWXIr—Xr—x 1 root root 1871 Oct 15 1998 rc
—IrWXI—XIr—X 1 root root 693 Oct 15 1998 rc.local
—IWXI—XI—X 1 root root 7165 Oct 15 1998 rc.sysinit

Their names strongly evoke "old-style" BSD rc organization, as does their purpose.
Correspondingly, rc.local is assumed for a site—specific customization.

4.5 Shutdown Procedures

UNIX systems are designed to run continuously. In real life, however, from time to time it will be
necessary to shut the system down (for scheduled maintenance, diagnostic purposes, relocating the
system, hardware upgrades, etc.). Before the system can be powered off, a clean system shutdown
is required; otherwise substantial system damage can occur. The shutdown procedure consists of
several steps that should be followed:

¢ Notify all users that the system will be shutdown at a certain time.
e Signal all users' processes that they will be killed, allowing them time to exit gracefully.

106

¢ Place the system into single-user mode, log off all remaining users and Kill all remaining
processes.
e Ensure that filesystem integrity is maintained by completing all pending disk updates.

Fortunately, UNIX designers have provided the shutdown command and its derivatives to fulfill all
the required steps smoothly. The only responsibility of a system administrator is to implement the
command when the system is going to be shut down.

The reboot command is also supported for a majority of UNIX flavors on both platforms. It usually
represents a renamed version of the shutdown command, although it can also have its own
options. For example, on the HP-UX platform the reboot command behaves differently from the
shutdown -r command (the -r option indicates rebooting). While the shutdown command
terminates all processes gracefully (it sends the TERM signal to processes), the reboot command
kills all processes unconditionally (it sends the KILL signal to processes). It is highly recommended
that you check the manual pages for the availability, options, and behavior of the reboot command
before using it on any UNIX platform.

4.5.1 The BSD shutdown Command

The BSD shutdown command has the following syntax:

shutdown time message

where

time Can have one of the three forms:

now For immediate shutdown

+m For shutdown after m minutes

hh:mm For shutdown at this time on the 24—-hour clock
message An announcement that is sent to all users; the message

is repeated with increased frequency as the shutdown

time approaches
Some BSD flavors support a nonstandard shutdown configuration file /etc/rc.shutdown. In this case,
the system administrator may place any desired command in the file, enabling its execution at
shutdown. The shutdown command also creates the file /etc/nologin, which automatically denies
any future user attempts to log in to the system, and the contents of the file are displayed to the
user. The file is deleted by the /etc/rc script during system booting.

Several options are supported, among them:

shutdown Allows the system to be shut down and rebooted automatically as soon as the system
-r enters single—user mode(or after a default time interval if not specified with command
itself)

shutdown Allows the system to be shut down and quickly rebooted automatically as soon as the
~f system enters single-user mode (without filesystem checking)

shutdown Allows the system to be shut down and halted at the point where the power may be
-h safely turned off

shutdown Performs a fake shutdown with the message sent to all users, but no shutdown
-k actually occurs

107

4.5.2 The System V shutdown Command

The System V shutdown command has the following syntax:

shutdown -gn -ilevel [-y]

where

n Number of seconds to wait for the shutdown to begin (the default value is 60 s)
level Run-level in which system should be placed:

e 0 — to turn off power

e 1 — administrative state

e S — single—-user mode (default)

e 5 — firmware state

* 6 — reboot to initdefault state in /etc/inittab

y Optional preanswered query for shutdown confirmation ("yes"); otherwise the command will
prompt for confirmation just before the system goes down

Older System V flavors required input to the shutdown command from the system console.

However, this could be easily bypassed by executing the command from any terminal and

redirecting the standard input to the console, with the =y option included:

shutdown -gl120 -i6 -y < /dev/console > /dev/console 2>&l
To shutdown a system immediately and reboot automatically:
shutdown -g0 -i6 -y

To shutdown and halt a system (after 60 s — default time):

shutdown -i5 -y

4.5.3 An Example

An example from the Solaris 2.x platform is presented to illustrate a system shutdown process.
Even though Solaris 2.x belongs to the System V category, the shutdown command is more
BSD-like. Once the command to halt the system is entered, a series of messages about the
system's behavior appears on the console until the final halt has been reached.

$ shutdown -h now
Broadcast message from root (ttyl) Thu Sep 21 10:38:59 2000 ...
The system is going down NOW !!
Sep 21 10:39:01 getty [61]: exiting on TERM signal
halt: sending all processes the TERM Signaleeeeeeen.
halt: sending all processes the KILL signal ..
Unmounting filesystems
Done
The system is halted

108

Chapter 5: UNIX Filesystem Management
5.1 Introduction to the UNIX Filesystem

The UNIX filesystem is the widely accepted name for UNIX's hierarchical tree—structured directory
organization, which holds all files merged together, enabling equal access to them regardless of
their nature or type. Any file in the UNIX filesystem can be identified by its position in the tree in two
ways: by an absolute file name, a full-path file name that starts from the root directory (represented
by "/"); or by a relative file name, which is relative to the current working directory. Since everything
in UNIX is either a file or file-like, UNIX filesystem management is one of the most important
administrative tasks. Good filesystem management is the key issue for successful UNIX
administration; since most activities are related, in some way, to the filesystems, most problems are
related to the filesystems, too. Sufficient knowledge and understanding of this topic is crucial for
administration. The purpose of the following text is to help readers better understand UNIX
filesystem issues.

The system administrator is responsible for ensuring that users have access to the files they need,
as well as for keeping those files uncorrupted and secure. Basically, administering the filesystem
includes the following tasks:

¢ Making local and remote files available to users

e Monitoring and managing file corruption, hardware failures, and user errors

¢ Monitoring and preventing filesystem overloading and unrestricted file growths
e Ensuring data confidentiality by limiting file and system access

e Checking for, and correcting, filesystem corruption

e Enabling a full data restore via a well-planned backup schedule

e Connecting and configuring new storage devices when needed

Some of these tasks can be performed automatically (like checking for filesystem corruption), while
others are usually done manually on an as—needed basis. Some of these tasks are also discussed
in greater detail in other chapters.

When discussing the UNIX filesystem, two basic issues should be made clear:

1. Filesystem visibility, i.e., how the UNIX filesystem is seen by users. The administrator's duty
is to provide this visibility. We will refer to this topic as UNIX Filesystem Directory
Organization, and discuss it in this chapter.

2. Filesystem layout, i.e., how the UNIX filesystem is seen by the operating system itself, and
how a selected file is found, opened, modified, or stored within the available disk space.
How this "jungle of files" functions at all, and how to ensure that it works well at any time. We
will refer to this topic as UNIX Filesystem Layout, and discuss it in the_next chapter.

As with everything in UNIX, both filesystem topics are BSD or System V colored and the main UNIX
filesystem types originate from the two basic UNIX platforms. However, the differences between the
two platforms are such that the corresponding filesystem types are mutually incompatible. They
differ in the way directories are organized, as well as in the filesystem layout; they differ also
performance-wise.

Despite differences, the filesystem layout and filesystem directory organization are relatively

independent issues, and UNIX vendors are free to select the best of each filesystem type and
combine and improve them, thereby making new higher—performance hybrid solutions. The

109

Berkeley filesystem layout prevailed and today all UNIX vendors implement it. The System V
filesystem layout is obsolete; however, the System V filesystem directory organization is widely
implemented.

5.2 UNIX Filesystem Directory Organization

Both the BSD and the System V filesystem directory organizations will be discussed in this chapter.
We will follow the usual educational approach widely implemented in this book, and we will start
with the BSD filesystem. Originally there were very few differences between BSD and the System V
filesystem directory organizations — BSD and SVR3 (System V Release 3) were almost the same.
They are referred to as the traditional UNIX filesystem. A traditional UNIX filesystem certainly
deserves to be considered first. Later on, the SVR4 (System V Release 4) introduced several
significant changes in the directory organization that were accepted by many vendors, and which
remain, with certain improvements, up to the present time.

Generally, any directory structure can be customized and tailored for site—specific needs. New
directories can be created, and old directories can be moved or deleted. Sometimes the actual
directory tree is quite different from the initial one. However, there are always plenty of elements to
identify the basic flavor of the actual filesystem directory structure.

5.2.1 BSD Filesystem Directory Organization

The basic directory structure of a traditional UNIX filesystem is illustrated in_Eigure 5.1, which
presents an idealized BSD directory tree. The directory organization of the SVR3 filesystem was
quite similar, with some minor differences. Some vendors, like SunOS and AlX, followed such
filesystem organization. In examining the BSD directory hierarchy, we will also address these UNIX
flavors, and occasional differences will be emphasized.

!/ (root dir)

| bin ” dev ” etc ” lib ” usr ” mnt I I u(home)l | tmp I I Iosl+found|
| adm | | bin I | etc | | spooll | lib | | ucb | | tmp |
I local I I includel | skel | I man I I games | | preservel
| at | I cronl | | batch || mail | | maqueue | | news | | Ipd | I uucp ” uucppublic |

Figure 5.1: BSD filesystem directory organization.
A brief discussion and explanation of the directory organization presented in_Eigure 5.1 follows.

/ The root directory — The base of the filesystem's tree structure. All other files and
directories, regardless of their physical disk locations, are logically contained within
the root directory.

/bin Command binaries — Includes executable public programs that are part of the
UNIX operating system and its utilities. Other directories with UNIX commands are
/usr/bin, and in some versions /usr/ucb; strictly for BSD commands.

/dev

110

Device directory — Contains special files related to devices. In BSD this is a flat
directory, while in SVR3 the directory was divided into subdirectories holding special
files of a given type of devices.

/etc System configuration files and executables — Contains most of the
administration and configuration files and the executable binaries for administrative
commands (including system startup scripts). Some administrative commands are
stored in /usr/etc.

/Nib Library files — For C and other programming languages. Some library files are
also stored in /usr/lib.

/mnt Mount directory — An empty directory conventionally designed for a temporary
mounting of another filesystem.

/u, /home, User's home directory — Flavor—specific directory name sometimes even

/users changed by the local site. The oldest name was /u, later changed into /home.
Another common name for this directory is users.

/tmp Temporary directory — Scratch directory available to all users. Files in the

directory should be deleted occasionally. Originally, it was supposed to clear this
directory during the system startup; nowadays this is not a rule and it varies among
UNIX flavors.

/lost+found Lost file directory — Disk errors or incorrect system shutdown may cause files to

/usr

be "lost." They can be fully identified and located on the disk, but they are not listed
in any directory. In an attempt to repair the corrupted filesystem (by using the fsck
program — will be discussed later), UNIX finds these files and puts them into this
directory for later identification by users. By default the lost+found directory exists
in each filesystem; this one belongs to the root filesystem.

This directory contains a number of subdirectories for many important parts
of the UNIX system. A more detailed discussion about these subdirectories
follows.

Administrative directory — Home directory for the special user adm, dedicated to
e /usr/adriaccounting.” It contains UNIX accounting files and various system log files.

Command binary files and shell scripts — Public executable programs that are
e /usr/binpart of the UNIX system (similar to /bin).

Additional administrative commands — In SunOS all administrative commands
e /usr/etcare stored in this directory.

Library directory — For public library files; contains the standard C libraries for
e /usr/lib mathematics and I/O commands, and configuration files for various UNIX facilities
and services, and optional software products.

Original Berkeley UNIX commands — Developed at the University of California,
e /usr/ucBerkeley; sometimes included subdirectories for separate file types (bin for
binaries, lib for library, etc.).
Temporary directory — Another depot for temporary located files.
e /usr/tmp
Local files — By convention, its subdirectory /usr/local/bin is reserved for any
e /usr/localiblic executable programs developed on that system.

Include files — Contains C—language header files which define the C
e /usr/inciudgsmmer's interface to standard system features and program libraries. The
directory /usr/include/sys contains OS—included files.

Skeleton directory — Contains default template files to be customized and used at
e /usr/skehe site, like the users' initialization (dot) files to be copied into a user's home
directory.

111

e /usr/mahlanual pages directory — Contains online documentation of the UNIX reference

manuals, divided into subdirectories for each section of the manual. It contains
several man# subdirectories holding the raw source for the manual pages in that
section, and the cat# subdirectories holding the processed versions (sometimes
cleared to save a space).

UNIX game collections — Often removed by administrators.

* /usr/games

Preserve directory — Old—fashioned directory to store files.

e /usr/preserve

Spooling directory — Contains subdirectories for UNIX subsystems that provide

e /usr/spaigiferent kinds of spooling services, such as:

./at for time-scheduled jobs

./eron for batch jobs

./batch for batch jobs

./mail, and ./mqueue for the email subsystem
./news for news

/Ipd for the printing subsystem

Juucp, and ./ uucppublic for the UUCP subsystem

Some UNIX flavors, for example, SunOS or AlX, introduced more /usr subdirectories (which are not

presented in_Eigure 5.1), like:

/usr/5bin

/usr/lpp

Executables for System V — In SunQOS, stores executables for System
V-specific commands; over time the name was changed to /usr/sbin.

Licensed program products — In AlX, optional products are stored in this
directory; in particular, the subdirectory /usr/Ipp/bos holds information about the
current OS release.

5.2.2 System V Filesystem Directory Organization

The UNIX filesystem directory organization described next was introduced with the SVR4 (System V
Release 4). We will refer to it as the System V filesystem. The basic directory organization is
presented in_Eigure 5.2. Today, this is the prevailing directory organization, sometimes slightly
modified by UNIX vendors.

112

I I I I | I I I I

I sbin ” dev ” etc ” tmp “ usr “ mnt ” home “ var “ losl+found|
I I I I I I I
| dsk | | term | | mt | I bin I | uch | I sharel | lib l
| SA | | pts I I sbin ”game | I include |
I l I I man
| bkup | I rc.d | I rcld I [rc3.d I
| default I l Init.d | I rc0.d | [re2d | I skel I
I I |
I at ” cronl | I Ip I I mail | I preserve II news I I spool I I uucp I
l Ip | I uucp ” uucppublic]

Figure 5.2: System V filesystem directory organization.
When comparing the directory structures presented in_Eigures 5.1 and 5.2, certain organizational
changes can be seen. System V reorganized the traditional UNIX filesystem in several ways:

e The /dev directory has been changed. Instead of a flat directory, a number of new
subdirectories dedicated to specific devices were added: ./dsk for disks, ./term for terminals,
./mt for magnetic tapes, ./pts for pseudo-terminals, as well as ./SA for the device-related
system administration utilities.

e The new directories /sbin and /usr/sbin were introduced; the new names reflected System
V binaries. Executable files were moved out of the /etc and /usr/etc directories. The
contents of /bin were moved to /usr/bin, and the /bin and /usr/etc ceased to exist.
However, many UNIX flavors set up symbolic links toward the old locations, so the
commands may seem to be in both places.

e Virtually all system configuration files were placed in the /etc directory, organized in the
slightly different way. New subdirectories were created to store files in a more appropriate
way (./default for template configuration files, ./bkup for backup configuration files, ./skel for
site—customized configuration files). In particular, the system rc startup files have been
organized in a more flexible way: a separate depot subdirectory for start and stop scripts
named ./init.d and subdirectories for each system run-level, ./ren.dwere introduced.

e Certain types of static data files (like manual pages, fonts, spelling data, etc.) were stored in
the subdirectories under /usr/share. It was supposed to share these files among a group of
networked systems, eliminating the need for separate copies on each system (the name
share reflected that idea).

¢ A new top-level directory /var was introduced to hold the volatile spooling directories,
formerly placed in /usr/spool. The idea was this: if /var represents a separate filesystem
that keeps dynamic data, then the root filesystem can remain relatively static after initial
system setup. This is an important step toward full support for "read-only" (RO) system
disks. However, this very good idea is still far from its practical implementation. SunOS also
used the /var directory.

¢ The /lib directory was moved into /usr/lib.

113

5.3 Mounting and Dismounting Filesystems

At first glance, it can seem that the directories of filesystems presented in_Figures 5.1 and_5.2 reside
in a single place, in a single storage device. The filesystem directory organization gives no
indication of disk devices or disk space boundaries. The directory tree simply continues over
directories and subdirectories in a continuous fashion until the very last file in the tree.

Administrators must be aware that their filesystems could be spread over multiple disk devices. As a
matter of fact, this is the most common scenario. The actual filesystem layout is determined by the
filesystem configuration, and the configuration data must be well known to the operating system.
The filesystem configuration data defines "break points" in the overall UNIX filesystem directory
structure by establishing relationships between particular parts of the directory tree and the
implemented disk space, i.e., the corresponding disk devices.

The advantages of merging all files into a single hierarchically organized overall UNIX filesystem
tree structure are numerous. ldentifying each file in the tree simply by its position in the tree,
independently of its real physical location, makes the filesystem much easier to use. Anyone who
has ever installed and reinstalled software in a different filesystem environment would appreciate
such a concept very much.

A strict relationship between the filesystem directory organization and the filesystem physical layout,
although hidden from the user, does exist. Otherwise, the UNIX filesystem could not work at all. In
UNIX, this relationship is established in a simple and flexible way: each filesystem must be
mounted before it can be used.

Mounting is the process that makes a disk's contents available to the system, merging them into an
overall filesystem directory tree. Dismounting is the process that breaks established logical ties
and makes the disk's contents unavailable. Both processes play important roles in the UNIX system.
Mounting and dismounting are performed on the level of a filesystem that belongs to the particular
disk's space, which is defined as an individual storage unit (storage entity). This could be a partition,
or a whole disk, or lately even several disks together. Each such filesystem has its own hierarchical,
directory—tree based file structure and all individual filesystem's attributes. We will refer to such an
individual filesystem as a partition's filesystem, or simply as a filesystem. We are using the term
partition, although another term, volume, would be more appropriate. The term partition has been
perfectly serviceable in the past, when disks were partitioned into smaller parts, and the
corresponding partitions were used as basic storage units to create filesystems. But today it is quite
common to combine several disks into an equivalent storage entity known as a volume. Although it
could sound confusing and somehow inappropriate to say that a partition consists of several disks,
to keep everything simple, we will continue to use "partition" (at least until we learn more about
volumes).

Mounting enables the merging of all these partitions' filesystems into a single overall UNIX
filesystem. A filesystem can be arbitrarily mounted and dismounted — that is, it can be connected to
any point, or disconnected from the overall UNIX filesystem at will. The only exception is the root
filesystem, which is always mounted by the system itself in the root directory, and, while the system
is up, cannot be dismounted.

5.3.1 Mounting a Filesystem

Mounting a UNIX filesystem does more than merely make its data available. Mounting eliminates all
device boundaries, making the filesystem device-independent (a very important feature in software
installation and implementation)._Eigure 5.3 illustrates the relationship between disk partitions (as

114

basic storage units) with the associated filesystems and with the overall UNIX filesystem.

(root dir) /

I
]
i
]
|
)

/project/docs /project /home /var Jusr swap | root
/fdevidsk/c1d2s2 /dev/dsk/c1d1s5 /devidskic1d1s0 €1d0s5 | c1d0s3 |c1d0s1 | ¢1d0sO
Disk #3 Disk #2 Disk #1

Figure 5.3: Mounting filesystems.

The root filesystem resides in the first partition of the root disk (the first disk — Disk #1), which is
accessible via a special device file /dev/dsk/c1d0s0 (the naming of special device files can be
different among different UNIX flavors). Mounting a root filesystem establishes a logical connection
between the special device file /dev/dsk/c1d0s0 and a mounting point for the root filesystem in the
overall UNIX hierarchical directory tree. For the root filesystem, the mounting point must be the root

directory "/," and the mounting itself must be performed during the system startup (booting). A
mounted root filesystem cannot be dismounted as long as the system lives.

To mount a new filesystem, the corresponding mounting point (or, as we prefer to say, mount—point)
is required. A mount-point must be an accessible directory in the already mounted directory
hierarchy. It explains why the mounting of the root filesystem must be done during the system
startup, as well as why the root filesystem must live as long as the UNIX system itself. The
mounting of the root filesystem happens when no hierarchical directory structure exists at all.
Obviously it can be performed only by the system itself. In addition, dismounting of the root
filesystem would be fatal for the system because the complete UNIX filesystem would be lost
without chances for a recovery. A filesystem cannot be accessed if its mount-point is not
accessible, and the root filesystem is the beginning of everything. However, once the root filesystem

is available, a number of new mount-points can be created and designated to mount other
filesystems.

In_Figure 5.3, the root filesystem contains several empty directories: /usr, /var, /home, and /project
designated to merge other filesystems (any mount—points can easily be added by creating a new
directory). While the first three listed filesystems are standard ones (please make clear that they are
not mandatory as separate filesystems — they could be part of the root filesystem), the fourth one is
very site—specific. This example illustrates a special case where two additional disk partitions
(named project and docs) are dedicated to keep specific project-related data, and only the project

115

filesystem is supposed to be mounted onto the root filesystem. In any case all partition sizes and
mount—points are arbitrary, and they fully reflect flexibility in creating an overall UNIX filesystem. In
this example, partitions' filesystems are located in disks and partitions that can be accessed via the
special device files presented in_Table 5.1.

Table 5.1: Filesystem Locations and Special Device Files

Filesystem [Special Device File [Disk and Partition |Mount-Point
usr /dev/dsk/c1d0s3 disk #1 — part. #3 /usr

var /dev/dsk/c1d0s5 disk #1 — part. #5 /var

home /dev/dsk/c1d1s0 disk #2 — part. #1 /home
project /dev/dsk/c1d1s5 disk #2 — part. #5 /project
docs /dev/dsk/c1d2s2 disk #3 — whole disk |/project/docs

Note: Filesystems are usually named by their mount—points; this
convention is implemented here.

An additional partition of the disk #1 (as it can be seen in the_Figure 5.3), identified with
/dev/dsk/c1d0s1 is dedicated to the swap partition. While the swap partition is crucial for the
operating system, it is not an integral part of the UNIX filesystem and that is why it is not included in
this discussion.

Four filesystems, usr, var, home, and project, are merged into the root filesystem, while the fifth
one, docs, is merged into the project filesystem. This means that the project filesystem must be
mounted before the docs filesystem. Additionally, the project filesystem contains the empty
directory ./docs(/project/docs after the project filesystem is mounted) as a mount—point for the
docs filesystem.

Please note that there is no necessary connection (even by convention) between a mount-point for
a specific filesystem and a particular disk partition and its associated special device file. The
collection of files in a disk partition can be mounted in any directory in an already accessible
filesystem. Once the partition's filesystem is mounted, its top-level directory will take the name of its
mount-point. At the same time, the top-level directory of a mounted partition's filesystem replaces
the mount—point directory. As a side effect, the eventual files that could reside in the mount—point
directory (if it was not empty) will disappear once the new filesystem is mounted. These data can no
longer be seen and accessed, but they are not erased or overwritten. They remain unchanged but
hidden for future use; they will reappear once the filesystem is dismounted. Obviously, it is highly
recommended to select empty directories for the mount—points. Otherwise, disk space taken by
such files will be wasted — the files cannot be accessed, nor used, but they still take up disk space.

A filesystem can only be mounted in one place at one time; that is, a special device file may only
designate one mount-point in the directory tree. However, one filesystem can have another
filesystem as a subtree within it.

The previous discussion was related to the local filesystems — the filesystems that reside in local
disks. This is not necessarily always the case; UNIX also supports remote disks. Nevertheless, at
this time we will only focus on the local filesystems, and the discussion in this chapter will primarily
address these issues.

116

5.3.1.1 The mount Command

The mount command must be used to mount a filesystem. This is a regular UNIX command that
can be invoked from the command line or a script at any time. However, the command is so crucial
for the system that the security precautions require strict superuser privileges for its execution. Even
the SUID bit (discussed in_Section 2.2.2.2.4) doesn't work in the case of the mount command; if
SUID is set, the system will simply reject execution of the command. Any security risk must be
avoided, and SUID always carries a bit of it.

The generic format for the mount command is:
mount [key-options] block-special-file mount-point

The mount command attaches a named filesystem, identified by block-special-file, to the overall
filesystem hierarchy at an existing directory, identified by mount-point. A number of options are
available.

mount maintains a table of mounted filesystems in the filesystem status file, usually named
/etc/mnttab, or /etc/mtab. If invoked without an argument, mount displays the contents of this table.
If invoked with a single argument, either block-special-file or mount-point only, mount searches
the filesystem configuration file (usually named /etc/vfstab, or /etc/fstab) for a matching entry, and
mounts the specified filesystem in the specified directory.

The key-options can be generic ones, valid for all filesystem types, or specific for the different
filesystem types. The following are the most common options:

-p Print the list of mounted filesystems in a format suitable for use in the
filesystem configuration file.
-a Stands for all. Attempt to mount all the filesystems described in the

filesystem configuration file. If a type argument is specified with the -t
option, mount all file systems of that type. Some UNIX platforms have a
special mount command for this purpose.

—f Fake a filesystem status entry (in the filesystem status file /etc/ mtab, or
/etc/mnttab), but do not actually mount any filesystem.

-n Mount a filesystem without making an entry in the filesystem status file.

-v Verbose. Display messages indicating each filesystem being mounted.

-t type Specify a file system "type" (see the later text about filesystem types).

-r Mount the specified file system read—only, even if the configuration entry

specifies that it is to be mounted read-write. Physically write—protected and
read-only filesystems should be mounted read—only. Otherwise errors
occur when the system attempts to update access times, even if no write
operation is attempted.

-0 Specify the filesystem—specific options — a comma-separated list of

FS-specific-options options valid for the corresponding filesystem type (see the text about
filesystem types).

The following list shows the common options for most local UNIX filesystems.

Options Meaning
defaults Use all default options.
rw/ro Read/write, or read-only; the default is rw.

117

suid / nosuid |SUID execution allowed, or not allowed; the default is suid.

grpid Create files with BSD semantics for the propagation of the group ID. Under this
option, files inherit the GID of the directory in which they are created, regardless of
the directory's SGID bit.

noauto Do not mount the filesystem automatically, only explicitly (ignore option -a).

remount A filesystem mounted read-only can be remounted read-write (used in
conjunction with rw).

intr / nointr Allow, or do not allow, keyboard interrupts to terminate a process that is waiting
for an operation on a locked filesystem; the default is intr.

quota / noquota |Filesystem usage limits are enforced, or are not enforced; the default is noquota.

rq Read-write with quota turned on (equivalent to rw,quota).

largefiles / Attempt to enable or disable the creation of files greater than 2GB in size; the

nolargefiles filesystem must be created especially to support large files. The default is

nolargfiles.

Note: It is highly recommended that you check the manual pages for the mount command before
attempting to implement it.

A few examples of how to use the mount command follow; the presented situations are

hypothetical.

e To mount the local filesystem / dev/xy0Og in the directory /usr.

#mount /dev/xyOg /usr
¢ To mount the hfs filesystem / dev/dsk/c1d2s0 in the directory /home:

#mount -t hfs /dev/dsk/cld2s0 /home
e To fake an entry for nd root:

#mount -ft 4.2 /dev/nd0 /
e To list the filesystems that are currently mounted:

#mount

e To mount all ufs file systems:

#mount -at ufs
e To save the current mount state:

#mount -p > /etc/vfstab

5.3.2 Dismounting a Filesystem

Dismounting is the reverse process of mounting. Every mounted filesystem can be dismounted
(except the root filesystem). When system shutdown is required, before the system stops entirely,
all filesystems are dismounted. This is actually the only situation when the root filesystem is

dismounted.

The umount command is used to dismount a filesystem. Using the command is somewhat easier
than mounting; you simply type:

umount name

where

118

name is either the name of the mounted filesystem's special file or the name of the mount—point,
i.e., the directory at which the filesystem is mounted

The single argument is sufficient for full identification of the mounted filesystem. The umount

command looks in the filesystem status file /etc/mnttab (or, /etc/mtab) for another argument. If a

specified name cannot be found, it simply means there is no need for dismounting because the

specified filesystem is not mounted at all.

umount supports the same options as the mount command. Online UNIX documentation often
presents both commands in the same manual pages.

A few examples:

e To dismount the filesystem /dev/dsk/c1d2s0 mounted at /home:

umount /dev/dsk/cld2s0 or
umount /home

e To dismount all filesystems described in_the filesystem status file /etc/mtab: umount -a (Pay
attention that the root filesystem can never be dismounted.)

A filesystem can be dismounted only if it is not busy. A filesystem is busy as long as any running
process is requiring any resource within the filesystem. For example, when a user changes a
directory within a certain filesystem (by executing the cd command), that filesystem becomes busy,
and the superuser cannot dismount it. The only way to dismount a busy filesystem is to first make it
free by destroying all related running processes. Once all processes release the filesystem, it can
be dismounted. For example, to dismount the /home filesystem (supposing it as a separate
filesystem), all users must log out.

Releasing a busy filesystem is not a simple task. It is not always easy to determine which processes
are associated with the filesystem. The fuser command could be instrumental in this case:

fuser [option] fsname

where

fsname The name of the filesystem, specified as a special device file (recommended) or a
mount directory

option w/o option Lists all involved processes, identified by their PIDs
-u Lists all involved processes; the login user name is added in
parentheses besides the PIDs
-k Destroys all involved processes and makes the filesystem free

The -k option of the fuser command is dangerous, and must be used with extreme caution; for
example, "fuser -k /home" will kick—out all logged-in users from the system.

5.3.3 Automatic Filesystem Mounting

Regardless of its form, once the filesystem configuration file is set up, mounting may take place
automatically. The following commands, depending on the implemented UNIX flavor, will mount all
filesystems specified in the filesystem configuration file.

mount -a Mostly for BSD flavors
$ mountall

119

Mostly for System V
flavors

$ mount all For AIX

Once the filesystem configuration file is specified properly, even the mount command can work with
a single argument (either the mount-point or the special device file name) specified on the
command line. Another argument is read and taken from the filesystem configuration file. This is a
good opportunity to check newly specified filesystem configuration entries, and to avoid potential
surprises once the system is rebooted.

5.3.4 Removable Media Management

Mounting and dismounting can be performed manually or automatically (in the sense that a single
command can be used simultaneously for multiple filesystems). However, a command itself must
always be invoked by a user or from a script. This means that each time a floppy disk or a CD-ROM
is used a user must mount and/or dismount a filesystem residing on the medium. This can be
frustrating for many users, but this is the way things work on many UNIX systems.

Modern UNIX versions, like Solaris 2.x, introduced a special daemon, a media (volume)
management daemon, to manage an automatic mounting and dismounting of removable media
filesystems. The daemon permanently monitors devices like floppy drives or CD—ROM drives and
provides an appropriate action as soon as a medium (disk) has been inserted into a corresponding
device; it also ejects a medium if requested by the user. The name for the daemon on Solaris 2.x is
vold:

$ ps —ef | grep -v grep | grep vold
root 200 1 80 Sep 28 ? 0:01 Jusr/sbhin/ vold

The volddaemon is started during the system startup, and it lives as long as the system itself. In the
presented example, the running program is /usr/sbin/vold and the process ids are PID=200 and
PPID=1 (the parent process init, as for all daemons). Solaris uses the term volume instead of
medium, which explains the name of the daemon.

The vold daemon takes care of all replaceable mountable devices. It automatically mounts newly
inserted volumes (media), assuming a single predefined mount-point for each volume (medium) of
the same device. There is no need for any additional action. Users can simply insert floppy or
CD-ROM disks and use them.

The media (volume) management daemon vold is often referred to as a volume manager. This can
be quite confusing, because the name volume manager is commonly used on different UNIX
platforms to identify the logical volume manager — the suite of programs that manage logical
volumes, in a new approach in the management and handling of available disk space. Instead of
dealing with disk units as physical entities, they can be logically grouped and treated as logical
entities. The logical volume manager will be discussed in greater detail later.

5.4 Filesystem Configuration

Mounting and dismounting filesystems is seldom performed manually; the mount command (or
several mount commands) is executed automatically at system boot time. How does the system
know which filesystems have to be mounted? Obviously, the required configuration data must be
available to the system during its startup. The information about all filesystems, for use by the
mount and other relevant commands, is stored in the filesystem configuration file. The name and

120

form of this file vary slightly between UNIX flavors. The variations originated in the traditional BSD
and System V UNIX systems, and the two versions will be presented separately. Even though the
BSD-type filesystem is the dominant one today, we will address both BSD and System V types of
filesystem configuration files.

5.4.1 BSD Filesystem Configuration File

The BSD-style filesystem configuration file /etc/fstab was, and still is, used by many UNIX flavors:
SunOS 4.1.x, HP-UX 10.20, IRIX, Linux, etc. Here is an example from SunOS:

$ cat /etc/fstab

/dev/sd0Oa / 4.2 rw 11

/dev/sdOh /home 4.2 rw 1 3

/dev/sdOg /usr 4.2 rw 12
/dev/£d0 /pcfs pcfs rw, noauto 00
indigol:/indigol /indigol nfs rw, bg, intr, hard 00
hcprophet : /hcprophet /hcprophet nfs rw, bg, hard, intr 00
rs0l-ch:/home/2gig/rsxx—ch /rsxx—ch nfs rw, bg, hard, intr 0 0

The first three entries define three local 4.2. type filesystems: root, usr, and home, in the partitions
a, h, and g, of the same disk sd0. This used to be a very common filesystem configuration when
disk space was quite expensive. The fourth entry defines a floppy drive (pcfs filesystem type). The
last three lines define three NFS filesystems. To mount remote NFS filesystems, different syntax
and options should be implemented; this will be discussed in another chapter.

This filesystem configuration file does not include any swap-related entry. The system obviously
has used only the primary swap partition, the partition b at the disk sd0, identified by the special
device file /dev/sd0b. If it is not specified otherwise, the system by default mounts the primary swap
partition. However, as we mentioned earlier, modern UNIX versions require swap configuration
entries.

An example on Linux platform:

$> cat /etc/fstab

/dev/sdal / ext2 defaults 11
/dev/sda5b /home ext2 defaults 12
/dev/sda8 /log ext2 defaults 12
/dev/sda7 /tmp ext2 defaults 12
/dev/sda2 /usr ext2 defaults 12
/dev/sda3 /var ext2 defaults 12
none /proc proc defaults 00
/dev/sdaé swap swap defaults 00

Linux displays swap partitions, including the primary one. Most UNIX flavors today follow this
approach — it is always better to see, than to guess about, the system configuration. However, the
presented proc filesystem could be confusing. This configuration entry is Linux specific — proc is a
quasi-filesystem which allows an easy access to handle kernel parameters by using regular UNIX
commands. Although it is primarily read-only, some kernel parameters could even be modified in
that way.

In the SunOS example an entry for a local filesystem has the form:

block-special-file mount-point type opts dump-freq pass—-number

121

The fields have the following meanings:

block-special-file The name of a special block device file where the
filesystem resides

mount-point The directory at which to mount the filesystem
type The filesystem type; here the implemented values
are:
4.2 For local partitions
nfs For volumes mounted remotely via NFS

pcfs For DOS formatted floppy diskettes

These could also be:

swap For swap partition

ignore For the mount command to ignore this line

opts The field consists of one or more options, separated
by commas. These are the usual mount options for a
specified filesystem type, determined by the type
field. For ignore type entries, this field is ignored. For
swap type entries, this field should be sw. If the file's
type is 4.2, the options field may include the following
keywords, separated by commas:

rw Read-write filesystem

ro Read-only filesystem

suid The SUID access mode permitted
nosuid The SUID access mode not permitted
quota Quotas may be placed in effect
noquota Quotas not in use

dump-freq A decimal number indicating the frequency with
which this filesystem should be backed up. A value of
1 means every day, 2 means every other day, and so
on. This field should be 0 for swap devices.

pass-number A decimal number indicating the order in which fsck
should check the filesystems. The number 1
indicates that the filesystem should be checked first,
2 indicates that the filesystem should be checked
second, and so on. The root filesystem must have a
pass—number of 1. All other filesystems should have
higher numbers. For optimal performance, two
filesystems that are on the same disk drive should
have different numbers; however, filesystems on
different drives may have the same number, letting
fsck check the two filesystems in parallel. The
number should be 0 for a swap device.

5.4.2 System V Filesystem Configuration File

Since SVR4, the filesystem configuration file has been named /etc/vfstab to reflect the newly used
term virtual; this name is still the most common today. An example from Solaris 2.6 follows.

$ cat /etc/vEstab

122

#

device device mount FS fsck mount

to mount to fsck point type pass at boot options
#

/proc - /proc proc - no -
fd - /dev/fd fd - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c0t3d0s0 /dev /rdsk/c0t3d0s0 / urs 1 no -
/dev/dsk/c0t3d0s6é6 /dev /rdsk/c0t3d0s6 /usr ufs 1 no -
/dev/dsk/c0t3d0s7 /dev /rdsk/c0t3d0s7 /export/home ufs 2 yes -
/dev/dsk/c0t3d0s1 - - swap - no -
/dev/dsk/c0t2d0s0 /dev /rdsk/c0t2d0s0 /applic ufs 3 yes -
/dev/dsk/c0t2d0s6 /dev /rdsk/c0t2d0s6 /software ufs 4 yes -
/dev/dsk/c0t2d0s1 - - swap - no -

Changes in the file's syntax are visible when the two main UNIX filesystem configuration files are
compared, but the structure and contents of the file remain essentially identical. The configuration
file on Solaris includes a header, which identifies each entry field and makes the file easier to read.
Other modifications include: partitions are specified with both block and character (raw) special
device files, for the filesystem mounting and checking, respectively; the entry for nonsystem-—critical
filesystems can be bypassed during system startup (system critical filesystems are always mounted,
regardless of what is specified in the "mount at boot" field); and there is no more useless
backup-related data.

According to the filesystem configuration file, this system contains two local disks. The first disk
c0t3d0 (this is the way Solaris identifies disks, by controller#/target#/disk#) with three partitions
(root, usr, and export’home), as well as the primary swap partition; the second disk c0t2d0 contains
two partitions (applic and software) and the second swap partition. Partitions are mounted into the
corresponding directories with the same names. Based on the naming scheme, the second disk
seems to be added later.

Please note that the disk identification used here is not a generic one; the identification is very
hardware dependent (based on the disk controller, interface, and many other factors). In the
preceding example, the implemented disks are SCSI disks occupying SCSI addresses #3 and #2.

Typically, an entry in the /etc/vfstab file has the format:
blk-spfile char-spfile mount-point type fsck-pass automount? opts

where

blk-spfile Block special file (to be used by mount)
char-spfile Character special file (to be used by fsck)
mount-point Directory at which to mount the filesystem
type Filesystem type. The possible values are:
ufs (efs) For a BSD-style filesystem
nfs For volumes mounted remotely via NFS
s5 For a System V-like filesystem

fsck-pass A decimal pass—number indicating the order in which
fsck should check the filesystems. 1 indicates that the
filesystem should be checked first, 2 if it's to be checked
second, and so on. The root filesystem must have a
pass—number of 1. All other filesystems should have

123

higher numbers. Again, for optimal performance,
filesystems on the same disk drive should have different
numbers; however, filesystems on different drives may
have the same number, allowing fsck to check the two

filesystems in parallel.

automount? The keyword yes or no, indicating whether the filesystem
is to be automatically mounted by the mountall command

opts The field consists of one or more options, separated by
commas. The options field may include the following

keywords:

w Read-write filesystem

ro Read-only filesystem

rq Read-write filesystem with disk quotas in effect

suid The SUID access mode permitted

nosuid The SUID access mode not permitted
HP-UX 9.0x renamed the filesystem configuration file into /efc/checklist; HP-UX 10.x named it back
to /etc/fstab, but made a corresponding link for this unusual name to keep it compatible with the
previous releases. Regardless of what the file name was, its contents remained essentially the
same. The next example is from HP-UX 9.0x. Starting with HP-UX 9.04, the logical volume
manager (LVM) became a part of the HP-UX installation, so the logical volume can replace the

partitions presented here.

$ cat /etc/checklist

/dev/dsk/c201d6s0 /
#/dev/dsk/c201d6s0 e
/dev/dsk/c201d5s50 /disk2
/dev/dsk/c201d5s0
/dev/dsk/c201d2s0 /cdrom

Two hard disks, d6 and d5, containing a single partition and a swap partition and a CD—-ROM disk,
d2, are specified; HP-UX assumes only one partition on a disk, with or without a swap partition (this
is discussed in greater detail in_Chapter 27). The entry for the first swap partition is commented out,
but this does not affect performance, because the system always mounts the primary swap partition

by default.

hfs

. swap

hfs
swap
cdfs

rw, quota 0 1 769
end, pri= 0 00 16408
rw, suid, 0 2 16408
end, pri=1 00 16408
ro,suid, 00 0

16409

0
0
31484

The next example is IRIX related. IRIX is a primarily System V flavored version of UNIX, which uses
the slightly modified BSD-style /etc/fstab file (only local filesystem entries are presented):

$ cat /etc/fstab

/dev/root /
/dev/usr /usr
/dev/dsk/dks0d2s7 /hom e
/dev/dsk/dks0d3s7 /dis k3

efs
efs
efs
efs

rw, raw=/dev/rroot
rw, raw=/dev/rusr
rw, raw=/dev/dsk /dks0d2s7,fsc k
rw, raw=/dev/dsk /dks0d3s7,fsc k

The implemented filesystem type is IRIX-flavored "efs."

124

SO O S

SO O S

5.4.3 AIX Filesystem Configuration File

AlX has a completely different approach to filesystem configuration (as well as to a number of other
issues). AlX has introduced a journaled filesystem, jfs, which is its standard filesystem type. The
configuration data are specified in two filesystem configuration files: /etc/filesystems and /etc/vfs,
both very AIX-specific. Here is an example:

$ cat /etc/filesystems

N T

mount,

dev = /dev/hd4
vfs = jfs

log = /dev/hd8

mount= automatic
check= false

type = bootfs

vol = root

free = true

/usr:

dev = /dev/hd2
vEs = jfs

log = /dev/hd8
mount = automatic
check = false
type = bootfs
vol = /Jusr

free = false

/home:

dev = /dev/1v00
vfs = jfs

log = /dev/loglv01l
mount = true
check = true
options = rw
account = false

A filesystem is confined to a logical volume. All of the information about the filesystem is centralized
in the /etc/filesystems file. Most of the filesystem maintenance commands take their defaults from
this file. The file is organized into "stanzas" which are named as the filesystems are named; their
contents are attribute-value pairs, which specify the characteristics of the corresponding

filesystems.

The /etc/filesystems file serves two purposes:

1. It documents the layout characteristics of the filesystems.
2. It frees the person who sets up the filesystem from having to enter and remember items
such as the device where the filesystem resides, because this information is defined in the

file.

@(#)filesystems @ (#)29 1.18 com/cfg/etc/filesystems, bos, bos320

This version of /etc/filesystems assumes that only the root file system
is created and ready. As new file systems are added,
free, log, vol, and vfs entries for the appropriate stanza.

125

change the check,

Each stanza names the directory where the filesystem is normally mounted. The filesystem
attributes specify all of the parameters of the filesystem. The attributes currently used are:

account Used by the dodisk command to determine the filesystems to be processed by the

boot

check

dev

mount

size
type

vfs

vol

log

accounting system. This value can be either True or False.

Used by the mkfs command to initialize the boot block of a new filesystem. This specifies
the name of the load module to be placed into the first block of the filesystem.

Used by the fsck command to determine the default filesystems to be checked. The True
value, enables checking while the False value disables checking. If a number, rather than
the True value, is specified, the filesystem is checked in the specified pass of checking.
Multiple—pass checking, described in the fsck command, permits filesystems on different
drives to be checked in parallel.

Identifies, for local mounts, either the block special file where the filesystem resides or the
file or directory to be mounted. System management utilities use this attribute to map
filesystem names to the corresponding device names. For remote mounts, it identifies the
file or directory to be mounted.

Used by the mount command to determine whether this filesystem should be mounted by
default. The possible values of the mount attribute are:

automatic Automatically mounts a filesystem when the system is started. For example,
the root filesystem line is the "mount=automatic" attribute. This means that the
root filesystem mounts automatically when the system is started. The True
value is not used so that mount all does not try to mount it, and umount all
does not try to dismount it. Also, it is not the same as the False value because
certain utilities, such as the ncheck command, normally avoid filesystems with
a False value for the mount attribute.

False This filesystem is not mounted by default.
readonly This filesystem is mounted as read—only.
True This filesystem is mounted by the mount all command. It is dismounted by the

umount all command. The mount all command is issued during system
initialization to automatically mount all such filesystems.

nodename Used by the mount command to determine which node contains the remote
filesystem. If this attribute is not present, the mount is a local mount. The value
of the nodename attribute should be a valid node nickname. This value can be
overridden with the mount —n command.

Used by the mkfs command for reference and to build the filesystem. The value is the
number of 512-byte blocks in the filesystem.

Used to group related mounts. When the mount -t string command is issued, all of the
currently dismounted filesystems with a type attribute equal to the string parameter are
mounted.

Specifies the type of mount. For example, "vfs=nfs" specifies that the virtual filesystem
being mounted is an NFS filesystem.

Used by the mkfs command when initializing the label on a new filesystem. The value is a
volume or pack label using a maximum of six characters.

The device to which log data is written as this filesystem is modified. This is only valid for
journaled filesystems.

The asterisk (*) is the comment character used in the /etc/filesystems file. Also, the "default" stanza
can be introduced to specify default attributes valid in each of the stanzas if not otherwise specified,
as in the following example:

126

* Filesystem information

default:
vol = "AIX"
mount = false
check = false

/'
dev = /dev/hd4
vol = "root"
mount = automatic
check = true
log = /dev/hd8

..etc.

The purpose of the second file /etc/vfs is different. This is a generic file that defines filesystem
types. Here is a self-explanatory example from the very same AIX system:

$ cat /etc/vEs

Q@(#)vEfs @ (#)77 1.20 com/cfg/etc/vfs, bos, bos320

#

this file describes the known virtual file system implementations.

format: (the name and vfs_number should match what is in <sys/vmount.h>)

The standard helper directory is /etc/helpers

#

Uncomment the following line to specify the local or remote default vfs.

%defaultvfs jfs nfs

#

name vfs_number mount_helper fil sys_helper
cdrfs 5 none none
jfs 3 none /sbin /helpers/v3fshelper
nfs 2 /sbin/helpers /nfsmnthelp none remote

5.4.4 The Filesystem Status File

The filesystem configuration file defines the configuration that the system is trying to achieve. A
configuration entry does not necessarily mean that the appropriate mount attempt will be
successful; there are many reasons that can cause mounting to fail. For example, for all removable
media, a mount attempt will fail if a volume was not loaded into the device (floppy drive, COROM
drive, etc.), not to mention a broken disk or corrupted filesystem. Even after a successful mounting,
the filesystem could be automatically or manually dismounted. Briefly, the real filesystem status
does not necessarily match with the configuration requirements.

The system automatically maintains a separate table of its current filesystem status. This table is
updated always when any filesystem is mounted or dismounted. The table is an ASCII readable file
that can be manually modified; of course, manual modification is not recommended except as a last
resort to fix an obvious error. Two file names are common for the filesystem status file: /etc/mnttab
and /etc/mtab; both names reflect the file's purpose as a mounted filesystem table.

The filesystem status file contains a table of all filesystems currently mounted by the mount
command. The umount command removes entries from this file. The file contains an entry (a line of
information) for each mounted filesystem, which is structurally identical to the contents of the
filesystem configuration file. The entry format varies slightly among UNIX flavors, just as the
filesystem configuration entries do. A typical entry looks like:

fsname dir type opts freq passno

where

127

fsname A filesystem name

dir A mount-point directory

type A filesystem type

opts Are comma-separated filesystem options

freq A number indicating backup strategy for the filesystem

passno A number indicating the fsck order for the filesystem

The content of the /etc/mtab file on SunOS is presented to illustrate the previous information:

cat /etc/mtab

/dev/sd0a / 4.2 rw, dev=0700 11

/dev/sd0g /usr 4.2 rw, dev=0706 12
/dev/sd0Oh /home 4.2 rw, dev=0707 1 3
indigol:/indigol /indigol nfs rw, bg, intr, hard, dev= 8200 0 0
hcprophet : /hcprophet /hcprophet nrts rw, bg, hard, intr,dev= 8203 00

This is the filesystem status file for the same system for which the filesystem configuration file
/etc/fstab was shown earlier. If we compare the two files, and assume the filesystems were mounted
automatically during the system startup, we can conclude:

e All local filesystems are mounted.

e The floppy diskette was not inserted at the startup time, so the pcfs filesystem is not
mounted.

¢ One of the nfs filesystems is not mounted, obviously because a connection with the remote
host "rs01-ch" was not established at that time (it is a logical to speculate that the remote
host was not reachable, although there could be a number of other reasons for mounting to
fail).

5.5 A Few Other Filesystem Issues

For a better understanding of UNIX filesystems, let us make a brief overview of several other
filesystem issues. The most intriguing issue is how many different UNIX filesystems exist. We will
try to describe the actual situation in this area. We will also address another extremely important
topic related to the UNIX, the topic that affects both the operating system itself and disk usage. This
is swap space and its usage on a UNIX platform — this time from the angle of the UNIX filesystem
organization. Finally, a more detailed description of one pseudo filesystem is presented, just to
clarify mysteries around these filesystem types.

5.5.1 Filesystem Types

The filesystem type is determined by "a logical organization of the filesystem within the storage
entity," or more specifically, by the filesystem layout. The filesystem layout will be elaborated in

greater detail in the_next chapter.

Different filesystem types are mutually incompatible. Each filesystem type has a different
organization and allows a different approach to its system data and existing files. This does not
mean that different filesystem types cannot coexist within the same UNIX implementation; it means
that the OS has to support all of the implemented filesystem types.

The core of each filesystem is its superblock, a collection of filesystem tables, index nodes, and
other system data that uniquely identify the filesystem. Creating a filesystem primarily means

128

creating the superblock; differences in the superblocks (structure, contents, layout, etc.) literally
determine the filesystem differences.

Nowadays vendor-specific UNIX filesystems are dominant. The typical System V filesystem type,
known as s5, has practically disappeared. The superior BSD-like filesystems prevailed, with many
additions and improvements introduced by different vendors. Currently, the most common local
UNIX filesystem type, supported by a number of UNIX vendors, is ufs (UNIX filesystem). However,
many other flavor-specific filesystem types are also in use:

On the HP-UX platform
e hfs

On the IRIX platform
* efs

On Linux platform
e ext2

Journaled filesystem, introduced by AlX, but also implemented on other platforms. jfs
e jfs has some advantages; it is more robust in the face of filesystem corruption because a
journal of filesystem activities enables a rollback of incomplete transactions to
maintain filesystem data consistency
An improved filesystem introduced with BSD 4.2 UNIX, and widely used on the SunOS
¢ 4.2 platform (a real ancestor of the ufs filesystem)
Veritas filesystem, an improved journaled filesystem version with a number of
e vxfs beneficial filesystem characteristics
Other implemented local filesystem types are:

Andrew filesystem, provides some additional flexibility, especially regarding remote
e afgesystem sharing

High Sierra filesystem, typical for CD—ROM media
e hsfs
CD-ROM filesystem
e cdfs
PC filesystem (FAT filesystem), implemented for DOS—formatted floppy diskettes
e pcfs
Cache filesystem, allows use of local disk space to cache frequently—used data from a
e c&dhe8OM or a remote filesystem
There are also a number of specific, pseudo filesystem types supported by different UNIX flavors:

Temporary filesystem, a temporary file storage in memory that swaps to bypass the
e toyafsiead of writing into a disk

Loopback filesystem, a virtual filesystem to approach files using different pathnames (it is
e Jdfscussed in more details later in this section)

Translucent filesystem, allows mounting of a filesystem on top of existing files
e tfsnount-point does not have to be an empty directory)

Swap filesystem, used by the kernel to manage swap space

e swapfs

Process access filesystem, allows access to active processes and their images
® proc

Special filesystem, allows access to the special device files
e specfs

129

Besides the listed local filesystem types, supported remote filesystem types are:

Network filesystem, widely used on all UNIX platforms

e nfs

Remote file share filesystem, typical for System V and barely in use
e rfs

Automount filesystem, an NIS—-based automounted NFS filesystem
e autofs

Some of the listed types are barely in use, while others are widely used. This relatively long list also
is not, by any means, a complete list. In this chapter we will discuss strictly local UNIX filesystems;
network filesystems will be discussed separately.

We mentioned earlier the swap partition and its crucial role on the UNIX platform. The swap
partition definitely deserves more than this brief statement. A more detailed overview follows.

5.5.2 Swap Space — Paging and Swapping

UNIX systems require an appropriate swap space available for regular activities; otherwise, they
cannot function normally and they crash immediately. The swap space is provided as a separate
swap partition, and is sometimes several partitions (for primary and additional swap partitions).

UNIX systems use a virtual memory approach to access required programs and data. Virtual
memory space consists of the physical memory space (known as system memory) and the
corresponding disk space where programs and data actually reside. However, program execution
and data processing are performed from the system memory only; therefore special techniques are
required to provide the data needed from the system memory at the right time. This is the only task
(but it is an extremely difficult task) of a specialized subsystem known as a memory management
system (MMS). This task is crucial for system performance. The system memory is continuously
updated and synchronized with the disk, and programs and data are transferred in both directions.
The transfer is performed in "pages," and a page is the basic unit in the data transfer.

In UNIX a part of the disk space is reserved as an extension of the system memory for temporary
storage while the OS keeps track of processes that require more system memory than is available.
This temporary depot is known as a swap space. When the OS recognizes the need, swap space is
used for paging and swapping.

Paging is when individual memory segments, or pages, are moved to or from the swap area in an
ordered way. When free memory space is low, portions of processes (primarily data segments
within the process address space) are moved into the swap space to free system memory. The data
segments are selected to be moved if they have not been referenced recently (different criteria can
be implemented, but the most common is LRU — least recently used). When the running process
tries to reference the data segment that has been transferred to the swap space, a page fault
occurs and the process is suspended until the required data pages are returned into the system
memory. A page fault occurs normally when a program is started for the first time; then the required
pages must be brought from the disk.

The swap space is mostly organized as a flat partition, which reduces the overhead and enables
faster page transfer, both in and out. This is not a necessity, but it increases the transfer efficiency.
However, the existence of a swap space is a requirement; the swap space can be thought of as an
extension of the system memory, and there is no operating system to operate without a system
memory.

130

The additional swap partition improves system performances, but it is not mandatory. Certain UNIX
versions enable the use of a swap file (also known as a paging file) within a regular filesystem,
which serves the same purpose as a swap partition. It is important to note that the use of a swap file
instead of a swap partition will not save any disk space — the required swapping area must be
provided in any case, and it stays the same, independent of its "formal" organization. The main
advantage of the swap file is that it can be created at any time, while the swap partition must be
created in advance; its disadvantage is the time overhead in its use. To create a swap file, a special
UNIX command, mkfile, is available on many platforms (for example, on the SunOS platform).

Swapping occurs during a heavy workload, when memory shortage becomes critical, and the OS
lacks the needed time to perform regular paging. When swapping, the kernel moves complete
processes (including all associated code and data segments) to the swap area. The processes are
chosen if they are not expected to run for a while. Unfortunately, it is often nearly impossible to
make a perfect selection. When the process is run again it must be copied back into the system
memory from the swap space. If such a transfer has to be performed repeatedly, the system
performance drops sharply until the system stabilizes and continues with regular paging. The
system simply spends more time doing process image and data transfer between the memory and
swap areas than it spends running the same processes.

While paging represents normal system activity, swapping is an undesired event.
Performance-wise, it is preferable for swapping to never occur. Unfortunately, in real life such
situations are unavoidable. The best way to prevent swapping is to increase the system memory.
Today, huge system memory space is quite common and the need for swapping is drastically
reduced; swapping happens only occasionally, or perhaps even never.

The size of the swap space should be larger than the system memory. Theoretically, the need for
swapping the complete system memory could arise. Therefore, if the system memory is upgraded, a
new swap partition should also be added (unless the primary swap partition has already been sized
for future memory upgrades).

The swap space is also used as a dump space. In an emergency the system could dump a
complete memory image into the swap space (known as a memory core). This is an additional
reason to have a swap space larger than the memory itself. In the case of a dump space, the
requirements are even greater: the available space must be contiguous — at a dump time no
overhead is allowed, and the copying of the memory into the swap partition must be simple and fast.
In this case, an additional swap partition does not work; only a contiguous increase of the existing
primary partition helps. Unfortunately, this demand often cannot be met; a more painful yet realistic
solution is to rebuild the complete system.

Solaris 2.x went one step further by introducing the swapfs filesystem. Today, memory is not very
expensive, and therefore huge system memory is not rare; new UNIX implementations frequently
have GBs sized system memory. Under these circumstances, swap space can be expanded to
include a part of the system memory besides the usual disk-based swap area. Then pages can be
swapped from the system memory to the memory—based swap area, thereby actually staying within
the system memory. The only question, then, is how the system would tell the difference between
regular and swapped pages; this is the task of the swapfs filesystem. Anonymous swapped pages
are named by swapfs and handled appropriately. There is no need for a literal copying of pages
within memory; simply, pages stay where they were, but are marked as swapped. Swapped pages
requested by the system are released for regular use. Therefore, everything happens as it would in
typical swapping, except much, much faster; the system performance benefit is obvious. Please
note that the phrases "a swapped page" and "to swap a page" do not necessarily refer to the
swapping process; they have been also used to identify a page in the swap area and the process of

131

transferring a page into the swap area, as a part of the regular paging procedure.

As the need for system memory increases, swapfs makes more space by backing swapped pages
into the disk—-based swap area (swap partition). The worst—case scenario is a well-known swap
structure: physical memory is used as system memory, and the swap area is restricted to the swap
partition. As soon as more room has been made in the memory, a swap space can expand in that
way.

Such a flexible approach implies that all swap partitions, including the primary one, should be
mounted through entries in the filesystem configuration file. Otherwise, there is no need for a default
primary swap configuration entry; it is already well known to the system.

5.5.3 Loopback Virtual Filesystem

Modern UNIX versions introduced a more flexible way to merge individual filesystems into the
overall UNIX hierarchical filesystem. Initially, UNIX filesystems could be handled only as complete
partitions; this meant that only a complete filesystem within a partition could be merged by mounting
the top—most directory from the partition's filesystem onto the mount-point (supposedly an empty
directory within the overall UNIX filesystem). It also meant that to access any file within a partition, a
long trip from the starting partition's point was often required. The requested long pathname could
be accepted, but for a number of applications, doing so required a careful selection of the
filesystem's mountpoint. In some cases symbolic links could help in skipping a part of the path,
thereby reaching the needed data using a corresponding shortcut. However, a real advantage
would be to mount the same filesystem in different ways — such flexibility would be quite an
improvement.

A new approach was introduced, known as the loopback filesystem (lofs). Once the filesystem is
mounted in the usual way, lofs allows new, virtual filesystems to be created, which provide access
to existing files using alternate pathnames. Once the virtual filesystem is created, other filesystems
can be mounted within it without affecting the original filesystem. At the same time, filesystems that
are subsequently mounted onto the original filesystem continue to be visible to the virtual filesystem.
The new filesystem type lofs requires a slightly modified treatment by the OS; however, all of the
filesystem's issues remain transparent.

The idea for lofs came from the network filesystem (nfs), which will be discussed later in_Chapter
18. If something could be implemented through the network, obviously it could be implemented
locally, too. Instead of a network interface, the local loopback interface should be used, and that is
the origin of the filesystem's name.

An example from HP-UX 10.20 follows. The corresponding lofs entries in the filesystem
configuration file /etc/fstab are presented:

$ cat /etc/fstab (partially presented, here)
/dev/vg01/1voll0 /files vxfs rw, suid,delaylog,datainlog 0
/files/export/share/ud /usr/ud lofs defaults 0
/files/export/home /home lofs defaults 0
/files/export/home /users lofs defaults 0
/files/tmp /tmp lofs defaults 0

The first line defines how the initial (original) filesystem is mounted (the type, vxfs, will be discussed
later); the filesystem resides in the logical volume Ivol10 (which will also be discussed later); and it
is mounted into the /files directory. Other lines define how to remount parts of the very same

132

SO O o o

filesystem (of type lofs). Please note that the first column that normally identifies the logical volume,
or partition, where the filesystem lives, now identifies a starting point of the part of the filesystem we
want to remount. The last two columns (arguments for fsck and backup) obviously do not apply in
this situation, so they are 0.

How are the systems mounted? Here is the partial report of the mount command:

$ mount (partially presented too)

/files on /dev/vg01/1voll0 delaylog on Sat May 16 23:30:37 1998
/usr/ud on /files/export/share/ud defaults on Sat May 16 23:31:10 1998
/users on /files/export/home defaults on Sat May 16 23:31:10 1998

/tmp on /files/tmp defaults on Sat May 16 23:31:10 1998

/home on /files/export/home defaults on Sat May 16 23:31:10 1998

The lines presented here correspond to those presented earlier in the filesystem configuration file
/etc/fstab. It is clear to see that the system was rebooted on Saturday, May 16, 1998.

5.6 Managing Filesystem Usage

Once a filesystem is configured and mounted properly, users can start to use files. This is the
purpose of the filesystem's existence. Using filesystems also means consuming appropriate disk
space. Not only users do this; the system also consumes disk space on a regular basis because a
number of system log files grow continuously. Incorrect filesystem usage can also corrupt the
filesystem itself, making it inaccessible. The worst-case scenario is a complete collapse and crash
of the system.

Filesystems require a great deal of maintenance during their lifetimes. Primary activities are closely
related to disk space usage, and we will mainly focus on that topic. To manage disk space a
corresponding tool is needed; UNIX provides the necessary tools in a set of commands that are
sufficient for successful management. The main commands in this group are:

df To display filesystem statistics
du To report on disk usage

quot To report disk usage by users
The fsck command is used to check filesystems, and will also be discussed.

5.6.1 Display Filesystem Statistics: The df Command

The df command produces a report that describes the filesystems, the total capacities, and the
amount of free space available, all displayed in 1kB blocks. If a filesystem, or a file, or a directory
within a filesystem is specified as an argument, the report refers only to the corresponding
filesystem.

The two usual flavors of the df command (Berkeley and System V) generate different reports. A
typical BSD report displays:

df

Filesystem Kbytes used avail capacity Mounted on

133

/dev/sd0a 30191 10596 16576 39% /

/dev/sd0g 220010 173838 24171 88% /usr

/dev/sd0h 764758 243088 445195 35% /home
rsO0l-ch:/home/2gig/rsxx—ch 2031616 1854268 177348 91% /rsxx—ch
hcprophet : /hcprophet 18875 7449 9538 44% /hcprophet

This output reports the status of existing filesystems, starting with the root disk partition, and then
other mounted disk partitions. Each line of the report shows:

¢ The filesystem name

e The total filesystem capacity in Kbytes

e The number of Kbytes in use

e The number of Kbytes available (free)

e The percentage of the filesystem's storage currently in use
e The filesystem mounting point

It sounds impossible, but the displayed percentage can be sometimes larger than 100% (the
maximum value can reach 111%). How can this be? To increase transfer efficiency, 10% of the
available filesystem space is sacrificed as fragmented disk space; however, the superuser can use
this space if needed. So the full filesystem size is 90% of the total size (but 100% for df), and under
such circumstances the filesystem can appear to be overfilled. We will return to the "10% reserved
disk space" later.

This example was from SunOS 4.1.3, which supports the BSD form of the df command. Some
UNIX flavors, like HP-UX, support both command types; to distinguish between them, the BSD type
is renamed bdf. Here is an example from HP-UX 10.20:

$ bdf
Filesystem Kbytes used avail Sused Mounted on
/dev/vg00/1lvoll 91669 58532 23970 71% /
/dev/vg00/1vol7 319125 252427 34785 88% /var
/dev/vg00/1volé 350997 294527 21370 93% /usr
/dev/vg00/1vol5 99669 23060 66642 26% /tmp
/dev/vg00/1vol4 251285 189044 37112 84% /opt

The logical volume manager (LVM) is a standard part of the HP-UX 10.20 and creates the needed
special device files for existing logical volumes.

To get the report about index nodes (this is actually a numerical report about files), use df —i (the —i
option refers to index nodes):

df -i

Filesystem iused ifree %iused Mounted on
/dev/sd0a 1217 13887 8% /

/dev/sd0g 13130 100150 12% /usr

/dev/sd0Oh 10726 374426 3% /home
rsO0l-ch:/home/2gig/rsxx—ch* * * /rsxx-ch
mvaxgr:$1SDUBI : * * * /mvaxgr/disku2
hcprophet : /hcprophet * * * /hcprophet

The System V df command produces a different report. This example is from Solaris 2.6:

$ df

/ (/dev/dsk/c1t0d0s0) : 1488210 blocks 290743files

134

/proc (/proc) : 0 blocks 2866files

/dev/fd (fd) : 0 blocks Ofiles
/altboot (/dev/dsk/clt0d0 s3): 384464 blocks 98556files
/tmp (swap) : 1122128 blocks 30843 files

/files (/dev/md/dsk/d10) : 1334502 blocks 344191 files

This example is from HP-UX 10.20:

$ df

/opt (/dev/vg00/1vold) : 74224 blocks 36311 i-nodes
/tmp (/dev/vg00/1vol5): 133284 blocks 15592 i-nodes
/usr (/dev/vg00/1vol6) : 42740 blocks 44762 i-nodes
/var (/dev/vg00/1vol7) : 69570 blocks 35897 i-nodes
/ (/dev/vg00/1voll) : 47940 blocks 11893 i-nodes

The report includes:

e The filesystem mount point

¢ The special file name

e The number of blocks (block=512 bytes)
e The number of inodes, i.e., files in use

The percentage field, with the used space represented as a percentage of the total space, is
missing from the generic System V df report. However, this is the most used, and possibly the most
valuable, piece of information generated by the BSD-type command. Some vendors, therefore,
provide a special option for this purpose. On Solaris 2.x, the option =k in effect converts the existing
df command into the Berkeley style one.

$ df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/clt0d0s0 1280786 536681 740904 43% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c1t0d0s3 192241 9 192040 1% /altboot
swap 565480 4416 561064 1% /tmp
/dev/md/dsk/d10 4211882 3544631 625133 86% /files

A frequent run of the df command is strongly recommended. This is an efficient way to prevent the
filesystem from being overfilled. Typically, the administrator should be warned when 90% of the
filesystem is in use. Please note that fulfilled system-—critical filesystems (root, /usr/, /var) can be
fatal for the system. It is a good idea to automate the monitoring of filesystem statistics by
periodically running the df command. Combined with an automatically generated warning e-mail, or
a paging of the administrator, this can be a very efficient early warning method and could prevent
more serious system problems. Some system administrators put the df command in the root's login
scripts to be executed as each administrator logs into the system.

5.6.2 Report on Disk Usage: The du Command

The df command is useful in detecting possible problems related to the filesystem status and size. If
there are problems, appropriate action is required. The action is quite simple: the filesystem must be
purged of unnecessary files to make more room. On the other hand, having a clear idea of what
should be done does not mean it can be done easily. Deciding which candidates should be purged
without affecting users, installed software, and in some cases the system itself is a challenge. In
addition, the solution must actually provide relief: instead of deleting hundreds of small files, it is a

135

much better idea to remove a few larger files. The du command can help with this important task.

The du command summarizes disk usage; it recursively reports the amount of disk space used by
all files and subdirectories within a specified directory, listed on a per-subdirectory basis. Disk
usage is reported in blocks (block size varies among systems); BSD uses 1KB blocks, while System
V uses 512-byte blocks. Otherwise, there are no differences between the versions. A typical du
reports look like:

Berkeley style — SunOS

du /home/bjl

3753 /home/bjl/ncsa

376 /home/bjl/email

47 /home/bjl/publdoc
266 /home/bjl/ftp/drivers

11476 /home/bjl
System V style — HP-UX 10.x or Solaris 2.x

$ du /users/bjl

8 /users/bjl/current
18 /users/bjl//sessions
42 /users/bjl/.elm

2 /users/bjl/Mail

342 /users/bjl

Obviously there is no difference between two UNIX platforms. For each subdirectory, all of the files
and subdirectories that belong are presented, as well as a separate line indicating the total amount
of disk space occupied by this subdirectory. The last line presents the total usage for the specified
directory. Often, this report can be inordinately long and tedious; a report with several hundred lines
is obviously hard to use. By specifying the —s option, only the total amount of disk space that a
directory and its contents occupy is displayed, while the subdirectories and files are skipped:

du -s /home/bjl

11476 /home/bjl

$du -s /users/bjl
342 /users/bjl

This command can be piped with others to obtain different reports, with subdirectories sorted by
different criteria (size, reverse size, etc.).

An extremely convenient way to use the command is "du -s *;" the report will include the size of
each file and the total size of each subdirectory within the current directory only. This can be very
useful in tracking the change in the size of a filesystem and in determining the cause of any sudden
increase in size. By starting from the mount—point directory of the oversized filesystem, we can
browse through large associated subdirectories until we reach the file, or files, that caused a sudden
change in the size of the filesystem. Once the cause is detected, corrective action can be
implemented. For a better understanding, just follow this example:

$ bdf /var
Filesystem kbytes used avail Sused Mounted on

136

/dev/vg00/1vol6 524288 462700 51387 90% /var

The /var filesystem has reached the critical size (supposing 90% as a critical size) and should be
checked and cleared. To efficiently discover potential offenders, we have to find large subdirectories
and files and check whether we can remove or resize them. We will start to browse from the
filesystem mount-point, in this case /var.

$ cd /var
$ du -s *
0 X11
585562 adm
2 dt
0 lost+found
36 mail
1292 opt
186746 patches
914 preserve
1886 sam
122656 spool
10 statmon
392 stm
10900 tmp
78 yp

The adm directory seems to be oversized. So, the next step is:

$ cd adm
$ du -s *
3038 btmp
18 cron
32254 debug
7264 diag
40 ftmp.cron.log
4 inetd. sec
1914 1p
4598 maillog
2 netstat_data
1642 nettl.LOGOO
50 sulog
300892 sw
221550 syslog
52 vtdaemonlog
980 wtmp

The file syslog is the system log file; the OS permanently logs into the file after the system startup. It
seems to be unusually large (larger than 100 MB). By checking its contents, we will quickly see
many old useless log records that can be deleted from the file. Since resizing the file (preserving
only those records from the last two months), the /var filesystem appears to be doing fine.

$ bdf /var
Filesystem kbytes used avail %used Mounted on
/dev/vg00/1vol6 524288 360000 154087 70% /var

137

5.6.3 Report on Disk Usage by Users: The quot Command

Another command related to disk usage is quot, which summarizes filesystem ownership. The quot
command reports the number of 1KB blocks used by each of the users in a specified filesystem.
Only the superuser can execute this command, because it accesses the disk special files. The
command syntax is:

quot [options] block-special-file
where

block-special-file The filesystem block special file
options The usual filesystem related options
An example:

$ quot /dev/sdOh
/dev/sd0h (/home) :

68456 pam
29154 mindy
23693 georgel
11466 bjl

353 root

6 bin

5.6.4 Checking Filesystems: The fsck Command

A filesystem can be corrupted by any number of things: operator errors, hardware failures, etc. The
fsck command (it stands for filesystem check) checks the filesystem's consistency, reports any
encountered problems, and optionally tries to repair them (sometimes such repairs can cause minor
data loss). The fsck command interactively repairs inconsistent filesystem conditions.

fsck can encounter the following filesystem problems:

¢ One block belonging to several files (inodes)

¢ Blocks marked as free but in use

¢ Blocks marked as used but free

e Incorrect link counts in inodes, indicating missing or excess directory entries

e Incorrect directory sizes

e Inconsistencies between inode size value and the amount of data blocks referenced in the
address field

e lllegal blocks (e.g., system tables) within files

e Inconsistent data in the filesystem's tables

e Lost files (nonempty inodes that fully identify files not listed in any directory) — fsck places
these orphaned files in the filesystem directory named lost+found (each filesystem has its
own lost+found directory), so they can be recognized later by owners and reused; the name
assigned to a lost file corresponds to the inode number

e lllegal or unallocated numbers in directories

On BSD, the fsck command is run automatically on boots and reboots. On System V, fsck is run at

boot time on nonroot filesystems only if they have not been dismounted cleanly, i.e., if the system
crashed. A manual run of the fsck command is needed only occasionally: at boot, when fsck 's

138

automatic mode cannot fix all encountered problems, after creating a new filesystem (although it is
a good idea to reboot the system upon filesystem creation, if possible), and under a few other
circumstances. Nevertheless, a system administrator should understand how the fsck command
works to be able to quickly recognize abnormal situations.

The syntax of the fsck command is:
fsck [options] spec_ file

where

spec._file The name of the filesystem's special file
options Available options:
-n| Answer no to all prompts, and list problems but do not repair them
-N
-y | Answer yes to all prompts (Be careful when using this option! It repairs all
=Y damage regardless of the severity!)

-p Preens the filesystem and performs noninteractive repairs that do not change
any file's contents

-b nn Use an alternate superblock located at nn—th block
-m Perform a sanity check only — do not repair

-q Quiet mode; removes nonreferenced named pipes and reconstructs the free list
without comment

—f Force filesystem checking regardless of the superblock status
-F Specify a filesystem type to be fsck —ed
type

-V Echo, but do not execute, the command; verify and validate a command line
The fsck command runs faster on character special files. However, the block device must be used
for the root filesystem. If the filesystem is not specified, the fsck command checks all filesystems
listed in the filesystem configuration file (/etc/fstab, or /etc/vfstab); this happens at boot time. Under
AlX, the checking of filesystems is determined in the filesystem configuration file /etc/filesystems (if
the keyword check is true for a corresponding filesystem).

Normally, the fsck command runs with —p option, i.e., it silently fixes the following problems:

e Link counts in inodes too large

¢ Missing blocks in the free list

e Blocks in the free list and also in files

e Incorrect counts in the filesystem's table

e Nonreferenced zero-length files deleted

e Lost files placed in the filesystem's lost+found directory, and named by their inode number

More serious errors will be handled with a prompt for confirmation.
If fsck modifies any filesystem, it will display the message:
*** FILESYSTEM WAS MODIFIED ***

If the root filesystem is modified, an additional message also appears:

%% REBOOT UNIX ***

139

or

%%%* REMOUNTING ROOT FILESYSTEM *%*

When modifications happen during a boot procedure, the reboot, or remount, is initiated
automatically. If the fsck has been executed from the command line on the root filesystem, then the
reboot command has to be started manually, too:

reboot -n

The —n option is very important to prevent previous execution of the sync command, which flushes
the output buffers and might, under these circumstances, recorrupt the filesystem (the only case
when the system is rebooted without sync —ing the disks).

An example (from the Apollo workstation and HP-UX):

$ fsck -y

fsck: /dev/dsk/c201d6s0: root file system
continue (y/n)? y

** /dev/dsk/c201d6s0

** Last Mounted on/

** Root file system

** Phase 1 — Check Blocks and Sizes

** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts
FREE INODE COUNT WRONG IN SUPERBLK
FIX? yes

** Phase 5 — Check Cyl groups

SUMMARY INFORMATION (SUPER BLOCK SUMMARIES) BAD

BAD CYLINDER GROUPS

FIX? yes

** Phase 6 — Salvage Cylinder Groups

21806 files, 0 icont, 296674 used, 128312 free (1472 frags, 15855 blocks)
Frx*%x MARKING FILE SYSTEM CLEAN ****%*

*Axx% FILE SYSTEM WAS MODIFIED ****%*

Axx A% REBOOT HP-UX; DO NOT SYNC (USE reboot —-n) *****

It is not the end of the world to have messages about filesystem inconsistencies during system
startup. As long as the fsck command can fix them, sometimes even in several attempts, everything
will be fine. However, it can be very upsetting if fsck fails; the failure usually indicates a more
serious filesystem problem, frequently, a hardware-related problem that requires a more radical
approach. The fsck command can resolve many logical inconsistencies, but it cannot repair a
broken disk.

fsck is a very time—consuming command; for a large filesystem, a complete check can take a while.
This is why filesystems that were cleanly dismounted during system shutdown are skipped — they
will have no problems and checking them is a waste of the time. Also, the journaled filesystem (the
jfs type) is the most robust with regards to corruption; if it is corrupted, the recovery is much faster.
The price paid for such robustness is additional overhead in the filesystem use; the online journaling
of filesystem transactions requires more resources and time.

140

Chapter 6: UNIX Filesystem Layout

6.1 Introduction

In_Chapter 5 we discussed the UNIX filesystem primarily from the user standpoint. UNIX users
create, read, write, and purge files. And this is correct — UNIX filesystems exist to make the files
accessible to users. But there is a lot of work behind the scenes to fulfill this logical requirement.
This part is done by the UNIX system itself, and it is mostly hidden from the users. But UNIX
administrators must be aware of this fact and should understand this process. Everybody knows
that files reside on disk. They are saved somewhere, and when we need them, we get them. But
how it works is more mysterious.

We use the term filesystem layout to explain how the files are organized within the available disk
space. UNIX files cannot exist out of the UNIX filesystems. UNIX filesystem is the vehicle to
organize storage resources in a usable way. The filesystem merges files in a hierarchical way and
enables their physical storage, as well as access to the stored files when needed. This is always
true, independent of the filesystem type and organization.

The filesystem layout is the main topic discussed in this chapter. A thorough understanding of
filesystem layout is extremely important for successful filesystem management. Once this important
topic is understood, many other UNIX issues will become automatically clear. Filesystem
management is crucial for overall UNIX administration. This cannot be overstated. Just remember
what we said earlier: on UNIX everything is a file or file-like. Files are in the center of UNIX.
Consequently managing the files is the core of UNIX administration.

Disk space can vary in size, type, characteristics, and even location (a remote disk space can be
used, just as the local one), and UNIX must respond to all possible situations. The total disk space
is usually partitioned into smaller storage entities convenient for more flexible use, and a separate
UNIX filesystem is created in each storage entity. To make the created filesystem visible to users,
an additional step is required: it must be merged with other filesystems in an overall UNIX directory
hierarchy, which we will address as "an overall UNIX filesystem." Strictly speaking the overall UNIX
filesystem is not a filesystem per se, rather this is a set of merged filesystems ready for use.

UNIX filesystems are organized on two levels: physical and logical. Physical layout directly reflects
the filesystem organization within a storage entity. It takes care of files' parameters and maps them
into corresponding hardware parameters of the storage entity. However, the UNIX filesystem can be
organized and managed in a more sophisticated way within a virtual (logical) storage space that is
built around physical entities. A new level of abstraction was introduced to make filesystem
organization more flexible and powerful.

Logical layouts of a storage space and its physical counterpart do not have to be necessarily the
same. A logical storage can be spread over a part of a disk, over a whole disk, or as in today's
modern UNIX flavors, over several disks. Nearly any combination of multiple partitions of multiple
disks can be combined performance-wise in an extremely powerful way. Of course, a precise
mapping of the logical storage to the physical storage counterpart is crucial. Once this bidirectional
relationship is firmly established, UNIX can manage files on a logical level only.

Logical storage entities are known as logical volumes, and the corresponding system software for
their management is known as logical volume manager (LVM). Logical volumes appeared at the
moment when the disk technology reached the point where disk size, speed, and price stopped to
be issues. LVM is a relatively new UNIX topic; for most of the UNIX flavors it is still an optional piece

141

of software. The traditional physical partitioning of disks and their usage is still dominant, but the
situation is changing rapidly.

We will use the general term data to refer to the system and user data stored on the disk. User data
is the real data kept in files within the filesystem; system data is the data needed to identify and
manage the user data. The system data presents a necessary overhead, but from the system
standpoint this data is crucial for managing the filesystem.

The data block is the smallest data unit. Each UNIX file consumes one or more blocks. If all the file's
blocks are known, the file itself can be easily managed. An additional step to identify the sequence
of blocks that make the file is required. This is exactly why we organize files into a filesystem. We
can look to the filesystem as a kind of umbrella that covers files and provides mechanisms for their
use; system data keeps information needed for their accurate identification and allocation.

6.2 Physical Filesystem Layout

In our attempt to fully understand the filesystem layout, we will follow the traditional path in
managing disk space. There are a few good reasons for such an approach: it is still prevailing in
use; it is always easier to start with less complex issues and then go toward more complex ones;
and the strongest argument — behind any logical structure is a physical layout that can never be
bypassed. At the very end, each file must be physically stored in the magnetic disk media.

Disks have cylinders: concentric circles within the disk's plates that are farther divided into tracks, or
segments (we will use the term track). Data is always stored in blocks that are spread over the disk
space; the block can be located in any track. Each track contains a well-defined number of blocks
(usually 512 blocks). Each block is uniquely identified by the block number. The disk controller
knows how to allocate each block specified by its number within the whole disk space. Block
allocation means mapping the block number into the disk geometry (to the corresponding cylinder
and track and a block in the track). Once a block is allocated, it can easily be accessed and
processed.

Disks cannot be used directly from shelves; they must be prepared for data storage. In UNIX
terminology, it means the physical filesystem layout must be properly defined and put in the
operation. In this section we will address main issues related to the physical filesystem layout. They
are grouped around:

e Disk partitions — the way to specify a storage entity for the usage
e Filesystem structures — mechanisms to manage data on the disk
e File identification and allocation — the way to identify and access files on the disk
¢ Performance-related issues — how to improve the performances of the filesystem

This section partially refers to_Chapter 2, especially in the part about special device files.
6.2.1 Disk Partitions

For a long time the basic UNIX filesystem storage entity was a disk partition. This simply involved
partitioning of the magnetic disk into several smaller pieces suitable for additional processing. You
can compare this to putting filing cabinets (here partitions) within a filing closet (the disk) in an
office. It is the first step to take, but still the cabinets are not prepared to store the files. Some items
are still not ready; drawers and their inventories are not yet prepared. We just decided and specified
the size of the storage space.

142

In the past, disk space was expensive. Organizing a disk into smaller pieces (partitions) benefited
the system in a number of ways. The smaller partition contained a smaller filesystem that offered
more flexibility in organizing the UNIX tree hierarchy. The small filesystem was more robust with
regards to possible filesystem corruption. Many filesystem-related commands could run faster on a
smaller filesystem (like backup, fsck, etc.). And it is easier to manage smaller filesystems.

Both UNIX platforms, BSD and System V, organized disks around fixed—size partitions (but different
partitions had different sizes). UNIX treated disk partitions as independent devices; each of them
was accessed as if it were a physically separate disk — consequently, the terms partition and disk
could be used alternatively. One physical disk might be divided into several partitions, or be
configured with only one partition. In the past disk, partitions were usually defined in advance by the
OS. Thus they offered few division schemes. The number of partitions was fixed, while their size
could be specified. Imagine that only a predetermined number of filing cabinets could go into the
filing closet, but you could decide the size of each cabinet.

Typically each disk was divided into multiple partitions: eight partitions for BSD and ten for System
V, with some overlapping of the partitions. Simple BSD disk partition schemes are presented in

Figure 6.1.

Cylinder 0
a a (center)
b b
h h Cc
d
e 9
: Cylinder N
(edge)
I [a [b [h [d [e | f |
I La o [n] 9 |
C
Cylinder 0 Cylinder N
(center) (center)

‘ [/Inaccessible disk area

Figure 6.1: Simple BSD disk partitioning.

Eight different partitions might be defined for a disk, named by the letters a to h; a partition could be
skipped if its size was 0. The c partition comprised the entire disk, including the forbidden
(inaccessible) area. The g partition overlapped with the d, e, and f partitions. It was not possible to
use them all simultaneously, since some of them included the same disk space — for example,
either partitions d through f or the partition g could be accessed. Actually, this disk layout offered
three different ways of using the disk: divided into four partitions, or six partitions, or to use the
whole disk. Each partition might hold a filesystem, or it could be used as a swap partition. The OS
offered this flexibility — from today's point of view it was not much, but it was adequate to manage
everything in a decent way.

The swap partition plays a special role in each UNIX system. UNIX memory management system
(MMS) requires the dedicated disk space for normal paging and swapping. Recall the discussion of

143

these issues from_Chapter 5:

e Paging presents a regular exchange of data pages between the system memory and disk.
Paging is an ordered process based on certain performance-related criteria.

e Swapping presents an emergency situation when the system encounters a significant lack of
the memory space and a lack of time to do that in an ordered way. Swapping is an irregular
process and performance-wise it should never happen.

The swap partition is used as a "raw" partition. The complex filesystem structures would only make
the swapping slower. Swap partition must be used in the simplest possible way and this is the "flat
organization" provided by the MMS itself. Briefly, the swap partition does not know and does not
care about UNIX filesystem.

A logical question arises: Why does a disk—partitioning scheme have to be defined in advance, and
why in such a strict way? Why was the decision about partitioning not left to the system
administrator? Supposedly the UNIX designers wanted to make this sensitive and relatively tough
administrative task easier to handle; less flexibility makes things simpler. But to fully understand
such an approach, perhaps a closer look into the very early stages of UNIX systems is needed.

In the early days of UNIX development, a number of disk control functions were determined on the
hardware level, so the first disk controllers were quite restricted in the way they managed disk
partitions; even the partition sizes were hardwired within the controller hardware. So at the time
partition schemes were established, there were not a lot of choices. Since then, with the
development of the technology, things have changed and most of the disk-related issues have
been shifted into the software (or sometimes the firmware). To keep the new UNIX systems
compatible with the old ones, the slightly modified "old partition scheme" continued to exist. The
partition size can be specified arbitrarily, and in that way the number of partitions. It makes the
partition scheme sufficiently flexible even for today's standards. By simply assigning its size to zero,
a partition could be skipped, and any partition combination become viable. At the same time, the
required special device files for the selected partitions already exist, and all needs seem to be met.

The partition scheme presented in_Eigure 6.1 was, and still is, implemented by Sun Microsystems. It
was used by SunOS and is now used by Solaris. Despite the fact that today we can combine
multiple disks (or partitions) in larger logical volumes, this partition scheme remains useful and
used.

UNIX accesses any disk partition through the corresponding special device file (see_Chapter 2). A
special device file is a pointer to the disk driver within the kernel (in UNIX all device drivers are part
of the kernel). It is essential that the kernel supports implemented disk interface; otherwise the disk
cannot be used at all. You should not worry about that because UNIX fully supports all usual disk
interfaces, and the kernel has been built properly during the UNIX installation.

Most UNIX flavors provide some kind of tool to create disk partitions (the format utility on Solaris
and SunOS, SAM on HP-UX, SMIT on AlX, etc.). This tool automatically creates the required
special device files in the /dev directory. A special device file can be created also manually: the
UNIX mknod command is available. Its usage is trivial, only two arguments are required: the major
and minor device number. Sometimes other front—-end commands, or scripts, can also be available.

6.2.2 Filesystem Structures

Disk partitioning per se will not allow you to start to use the specified disk space. UNIX files cannot
be stored directly in such "raw" storage entities. UNIX files can only reside within the UNIX

144

filesystems. Imagine again a filing closet in the office. At this point, number and sizes of cabinets
are decided, but each drawer in the cabinet is still missing file holders, bars, labels, and other
needed accessories. It is time now to think about these details; otherwise, we will not be able to
organize the filing system for our papers.

Similarly, a UNIX filesystem has to be created in each disk partition before we can start to use it for
our UNIX files. When a filesystem is built in UNIX, certain system data structures are written into the
reserved system part of the partition. This system data uniquely defines the physical layout of the
filesystem. Its main task is to provide correct allocation of UNIX files within this partition.
Filesystems are mutually separated; each filesystem has its own independent system data
structures. A single file cannot be shared between two filesystems, i.e., two partitions.

The most important filesystem data structure is the superblock. The superblock is a set of tables
that contain important information about the filesystem such as its label, size, and a list of index
nodes, better known by the shorter name inodes. The superblock determines the filesystem type,
and all incompatibilities among different filesystems (including between different UNIX filesystem
types — see_Chapter 5) are caused by the superblock differences. UNIX can use a specific
filesystem only if knows how to read the filesystem superblock; without this understanding the disk
is a compilation of senseless and useless data blocks.

A visual depiction of the BSD and System V filesystem layouts are presented in_Eigure 6.2. The
Berkeley filesystem layout included some additional information about filesystems like the cylinder
group block, while System V included certain additional dynamic information about current free
space. However, the main difference was that Berkeley filesystems originally spread multiple
superblock copies over the available disk space. If a superblock is damaged, the filesystem
becomes useless. It was a good idea to keep several superblock copies separately. If one copy is
damaged, the Berkeley system automatically switches to another.

145

Berkeley filesystem SVR4 filesystem
(ufs) (s5)

Boot block

Boot block
Superblock

Superblock

> repeated

Cylinder group Inode

Inode

Superblock
> repeated

Cylinder group

Figure 6.2: The filesystem layout.

Through the years, the Berkeley filesystem proved to be faster and more robust, and provided
better performance. Eventually the traditional System V (known as the s5 filesystem) became
obsolete. System V release 4 discontinued with s5 filesystem and switched to the Berkeley
filesystem. Additional filesystem development continues to evolve among the specific UNIX flavors.
Today all filesystems have roots in the Berkeley version; the s5 filesystem disappeared. The
filesystems are identified by different names: 4.2, ufs, efs, hfs, ext2, jfs, vxfs; they are mutually
incompatible despite the fact that they all belong to the UNIX family of filesystems. The prevailing
type in use is ufs, which stands for UNIX filesystem. Even if the filesystem name is the same, some
incompatibilities among different UNIX vendors are quite possible. Throughout this text we will steer
clear of flavor-specific details and elaborate on common filesystem issues.

Another data structure, presented in_Eigure 6.2, is the single boot-block area reserved at the
beginning of the filesystem. This area contained the bootstrap program that brings the UNIX system

146

into operation. However, a boot block area is active only if a filesystem is bootable, i.e. if it is on the
root filesystem. This filesystem structure is crucial for the system startup, but not for the rest of this
chapter. That is why it is just mentioned here. We discussed booting of the system and the

bootstrap program in_Chapter 4.
6.2.3 Filesystem Creation

The discussed filesystem structures, including the superblock, are the result of the procedure known
as to create a filesystem. In the UNIX terminology, we say to make a filesystem. UNIX provides
several commands to deal with filesystems, and often additional user—friendly character-based or
GUI tools. We will focus on the related UNIX commands available on all UNIX flavors. UNIX sees
storage entities (at the moment we talk about disk partitions) through the corresponding special
device files. Remember that storage entities are accessible through both types of special device
files (character/raw and block special device files).

6.2.3.1 The mkfs Command
This the basic UNIX command for this purpose. It offers the most flexibility; practically all filesystem
parameters could be specified. For most cases, however, the default specification should be

appropriate. The format of the command is:

mkfs [options] char-spec-file size [operands]

where

options Generic or filesystem type specific options

char-spec-file The character special file for the corresponding disk partition

size The size of filesystem in 512-byte blocks

operands Optional arguments for a fine—tuning of the filesystem parameters such as a

number of inodes to create (the default is one inode for every 2 KB of disk space),
a primary block size, a fragment size, free disk space threshold, and others
The mkfs command is a versatile command that enables flexible creation of the filesystem; myriad
of options and operands specify many details of the created filesystem. It checks for dependencies
among specified parameters to prevent any wrongdoing. The command varies slightly among
different vendor's flavors.

6.2.3.2 The newfs Command

Another (BSD-style) front-end command, newfs, can also be used to create a filesystem. This
command actually invokes the mkfs command but with a number of predefined filesystem
parameters. It is much easier to work with this command, and the author recommends its use
whenever possible. The format of the newfs command is:

newfs [options] char-spec—-file
where

options Generic, filesystem-type specific, and mkfs—related options
char-spec-file Raw (character) special file for the corresponding disk partition

Remember that most of the filesystem-related commands require character special device files to
identify the storage entity (here the disk partition).

147

Some UNIX flavors maintain a special disk description file that facilitates the use of this command.
The usual file /etc/disktab contains description entries for each disk that can be used. Each
description entry is uniquely named and fully defines a partitioned disk. Usually several entries
describe the same disk with different partitioning schemes. Simply by referring to an entry, all of the
necessary filesystem parameters can be obtained. This makes the use of the newfs command
trivial:

newfs char-spec-file disk-name

where

char-spec-file Raw (character) special file for the corresponding disk partition

disk-name The name of the entry specified in the disk description file /etc/disktab

HP-UX (version 9) used such an approach. The main disadvantage was that required disktab
entries could not include all available disk models. Simply, newer disk models appeared after the file
installation cannot be included. This led to a frequent patching of the disk description table, which
could be annoying. HP-UX (version 10) retained the disk description file for backward compatibility
but switched to the new type of the newfs command: one that is not dependent on the disk
description table.

6.2.3.3 The tunefs Command

UNIX also provides the command tunefs to tune (adjust) the created filesystem. The command can
modify dynamically certain filesystem parameters. It is not unusual to realize after some time that
the created filesystem does not optimally match your needs. The used filesystem cannot be easily
recreated; in most cases it is almost impossible. This command is the UNIX response for that
purpose.

Some UNIX flavors provide other filesystem specific commands, for example, a command to extend
the size of a filesystem.

6.2.4 File Identification and Allocation

Another popular term for the filesystem creation is formatting the disk (or partition). In the PC world
this is the only official term. In UNIX context, formatting literally means to create filesystem
structures only, primarly the superblock. The created filesystem itself is absolutely empty — there is
no single—user data in it. To compare with the filing closet and cabinets in the office: all drawers are
now equipped with needed accessories; carriers and holders are there, as well as empty labels for
easy identification of documents. These accessories take up some available space in the cabinets,
but without them it would be very hard to file our papers.

The UNIX counterpart for the mentioned accessories is the superblock. The superblock contains the
filesystem structures (system data) needed for user data management. All superblock structures are
free and ready for use. The superblock consumes a certain amount of the storage space to keep its
system data.

Keeping in mind the previous discussion, it becomes clear:
e Why once we reformat (create a filesystem) a disk or partition we lose all previously stored
data. It does not mean that this data was purged. All stored data blocks remain unchanged,

but the new superblock is now created. All system data in the old superblock was erased.
UNIX does not know how to find this data.

148

e Why there is a difference in the size between unformatted and formatted storage space. The
superblock data must also be saved in the very same storage space.

Let us see now in more detail how the UNIX filesystem identifies and allocates files within the
corresponding storage space. It is worthwhile to mention that we are still staying within the physical
filesystem layout boundaries.

6.2.4.1 Index Node (inode)

The most important individual entity in the filesystem superblock is the inode. Inode is a shorter,
more convenient, name for the index node. Each file in the filesystem is completely described by its
inode. An inode includes all of the file's relevant data except the file name. File names are contained
in the directory where the files reside. The content of each directory includes the file names with the
references to the corresponding inodes. In this way, UNIX is able to find any file by scanning the
file's directory until the file name matches. Afterward only the corresponding inode is used to access
the file on the disk. A file can have several different names because several file names can be
referenced to the same inode. They can appear in the same or different directories, but must remain
in the same filesystem. These references are known as hard links (see_Chapter 2).

An inode contains around 200 bytes, enough space to uniquely identify a file. An inode structure is

presented in_Eigure 6.3.

The type and access mode for the file

The file's owner (user and group)

The time that file was last read and written and the inode was last updated

The size of the file in bytes

The total number of physical blocks used by the file

The number of references to the file (links)

Direct pointers for the 12 first data blocks used by the file

The single indirect pointer to a single indirect block of pointers to data blocks used by the file
The double indirect pointer to a double indirect block of pointers to data blocks used by the file
The triple indirect pointer to a triple indirect block of pointers to data blocks used by the file

Figure 6.3: The inode structure.

The first part of the inode contains all information about the file. Most of the information we know
from the long file listing (the Is =/ command). UNIX opens and reads the inode, and learns about the
file's type, ownership, and permissions. Based on this information, UNIX knows how to proceed with
the file itself. Do not forget that UNIX processes different file types in a different way.

Once we are familiar with the contents of an inode, many of the already discussed issues become
clear — for example, why hard links are restrained to the same filesystem, or where the system
finds information for long listing of files, or how the fsck command can check and even fix problems
in the filesystem, and many others.

The inode number, starting from one and increasing, identifies an inode. An identified inode must be
allocated in the disk space before it can be used by the system. To allocate an inode is easy,
because each inode is well defined within the superblock and the superblock is always stored in the
reserved disk space well known to the system.

149

6.2.4.2 File Allocation

It is much tougher job to locate a file in the disk space. A file can contain an arbitrary number of data
blocks, from a single block up to a huge number of blocks. These blocks could be spread over the
whole disk space. Again this is the inode that precisely allocates the file itself. The second part of
the inode contains a number of direct and indirect pointers to point to the location of each data block
that belongs to this file. For most UNIX flavors the pointers are 32 bits long (4B), and we will
assume that length in the discussion that follows.

An inode can directly point to as many as 12 data blocks consumed by the file. Assuming the block
size of 4 KB (or 8 KB), this means a file as large as 48 KB (or 96 KB) is directly accessible. For
larger files, indirect pointers must be used. A single indirect block contains additional pointers: a 4
KB block contains up to 1 K pointers, while a 8 KB block contains up to 2 K pointers. A double
indirect block contains, or, better to say, points to, millions of new pointers. And finally a triple
indirect pointer can be used in the case of extremely large files. If a file is very small, the file data is
stored directly in the inode._Eigure 6.4 illustrates how this allocation mechanism works.

150

The max. number of pointers for a single
fileis: (12 +2K + 4M +8G) > 8G .

inode However, 32-bit pointer can point only
administrative 1
information up to 4G blocks (w/o fragmentation) .
12th_direct pointer /E/% 4M blocks

Single
indirect
block

inode

Double
indirect
block

8G blocks

Figure 6.4: File layout on a disk.

A 32-bit (4 B) pointer can uniquely identify one block among as many as 4 G (4 billion) blocks. This
is, simply, the address capability of a 32-bit pointer. More precisely, assuming a block size of 4 KB
(or 8 KB), the maximum size of the reachable disk space (i.e., the filesystem) is, respectively, 4 G x
4KB= 16 TB (or 4 G x 8KB= 32 TB). Beyond that size, the block must be increased (16 KB or more)
during the filesystem creation. This is one of the options of the mkfs command. (By the way, UNIX
checks all specified options and, in the case of an inappropriate option value, cancels the command
execution.) However, disk blocks could be smaller than in this example, and they would still be
correct — today's disk sizes are still in the range of several dozens GB.

151

The presented inode structures illustrate very well a typical UNIX filesystem. It does not mean
necessarily that each UNIX flavor implements the same inode structures, primarily regarding the
number of direct and indirect pointers. Differences cause incompatibilities, but in general, issues
discussed here are valid over all UNIX platforms.

6.2.5 Filesystem Performance Issues

Once the filesystem is in place, UNIX starts to use the same filesystem very intensively. Thus the
filesystem efficiency is very important for an overall UNIX behavior. Throughout all these years, the
UNIX filesystem has been developed and improved significantly. Some of the improvements have
been integrated into the filesystem itself. Other optional issues have been left to UNIX
administrators to be implemented on an as—-needed basis. We will address a few filesystem
performance issues.

6.2.5.1 File Storage vs. File Transfer

A disk block is the basic unit of data that the filesystem manages. Data are always transferred,
written and read in blocks. Thus the block size determines:

e The storage efficiency — blocks cannot be used partially for data storage, regardless of the
actual size of the data to be stored

e The data transfer efficiency (i.e., I/O throughput) — larger blocks cause smaller overhead in
the data transfer

Two performance issues are related differently toward the block size. A large block size increases
transfer efficiency, but decreases storage efficiency.

The original System V filesystem supported block sizes of 512B and 1KB, or sometimes 2 KB. The
Berkeley filesystem supported 4, 8, 16, 32, or 64 KB. The difference in the block size was obvious.
To avoid wasting disk space, the Berkeley-style filesystem introduced "block fragmentation": each
block could be split into 2, 4, or typically 8 fragments. Block fragments could then be used
separately to store data from different files. The transfer efficiency remained unchanged because a
whole block was still used in the transfer of data. However, the storage efficiency was improved
because a block, partially used by one file, could be shared with other files. At the end, each disk
block is fully utilized. Of course nothing is free. The price paid for this storage improvement is the
need to identify individual block fragments within a specific block. Earlier, it was enough to identify
only the block; now the block fragments are also in play. The concept of block fragmentation is

presented in_Eigure 6.5.

152

1K fragment Free 1K fragments

G

1K fragment ~ Free 1K fragments 8K block
x /;,/;l i ,l i 8K block
[—
LU 8K block
|
- 8K block
8K block 8K block
8K block 8K block
25 KB file 51 KB file

Figure 6.5: Berkeley—style filesystem: Blocks and fragments.

In this example, a hypothetical 25KB large file was located in the three 8 KB blocks and one 1 KB
block fragment. Upon a change in the file size to 51 KB, the file will consume six 8 KB blocks and
three block fragments. In both cases, the remaining block fragments will be used for other files, so
the wasted space is minimized.

6.2.5.2 Reserved Free Space

File transfer efficiency can be improved by the introduction of the 10% filesystem free space. We
briefly mentioned the 10% free space in_Chapter 5 regarding the command df. We elaborate on this
issue in more detail here.

The disk space always tends to be fragmented. The filesystem content is changing dynamically, old
files are deleted and new files created. Upon the filesystem creation, the empty disk space will be
quickly filled with data. Normally the filesystem tries to keep all file blocks together, so the access to
the file could be faster. But the files are also deleted, and many gaps in the disk space remain after
the file blocks are removed. This is known as disk fragmentation.

These gaps are reused, and reused, but the fragmentation of the overall disk space through time is
unavoidable. Fragmented space requires more time to store and access files. Simply, the time
spent in seeking and transferring chaotically allocated small chunks of the file blocks is much larger
than if the blocks are allocated in larger chunks. Statistically, if 10% of the available storage space
is sacrificed and not used, the performance benefits can be significant. This space is already badly
fragmented and too "expensive" to be used. The remaining space offers more contiguous space for
faster file allocation.

Remember that this free space is dynamically allocated and is changing through time. It always
contains the most fragmented storage space in that point of time. (In addition, this 10% of space
remains a forbidden zone only for users. Superuser and high—priority processes are still allowed to
use that space.) The basic assumption is that these processes are beyond introduced restrictions.
Those are system-related processes and should not be interrupted despite expected
low—performance behavior of the system.

There is an odd consequence of this implementation. Occasionally the df-k command can report
filesystem consumption larger than 100%. Although it could be quite confusing, it is still normal
system behavior. Your system will not crash soon. It also does not mean that your data will spill
over the edges of your disk. It simply means that 10% of reserved free space of this filesystem was

153

also used by a superuser. A literally completely full filesystem reports 111% of space in use, and
after that even a superuser identity cannot help more.

The 10% free filesystem space was introduced in the Berkeley UNIX. It has to be specified when
the filesystem is created. It can be disabled at any time during the life of the filesystem. The
reserved space can be returned for regular use at any time. The opposite is not possible: there is no
way to introduce the 10% free space in an existing filesystem. If needed, the filesystem must be
recreated, whatever it takes.

6.3 Logical Filesystem Layout

The physical approach to managing disk space is easier to understand, but it carried a number of
restrictions caused by the disk hardware itself: How to overcome the finite size of a disk unit? What
to do when the maximum size of the filesystem is below that needed? How to provide redundancy?
And many other issues needed to improve overall system performances. The problem was
especially acute in the management of large databases.

A solution was found in a different, logical approach in managing disk space. Existing physical
storage entities (partitions and disks) could be combined and presented as arbitrary large logical
storage entities. They then appear simply as storage entities to the operating system. The obvious
benefits of such an approach are its inherent flexibility and increased capabilities.

For a better understanding of the terminology, here are a few introduction notes. Generally, the term
physical refers to a real situation — what something physically looks like. The term logical refers to
the way something is presented to the users. The relationship between physical and logical entities
must be strictly defined and established. Once this bidirectional relationship is done, further
management can be completely shifted to the logical layer. The required division of the storage
space continues over the logical entities in the almost identical way we have already discussed. Of
course, in real life everything is mapped back to physical entities, because they are the real
providers of the needed storage space. The basic logical entity was named the logical volume
(although this name is not used explicitly on all UNIX platforms). The most common name for the
whole suite is the logical volume manager (LVM).

UNIX vendors do not have a uniform approach regarding the LVM. There are several mutually
incompatible versions designed by different manufacturers. We cannot even discuss BSD-like and
System V-like versions; simply, the LVM appeared much later. LVM is a new, vendor-flavored
product. This section briefly covers three LVM versions: AIX, HP-UX, and Solaris. It should be
sufficient to help us become familiar with this important topic. However, it is fair to mention that the
third—party vendor VERITAS is probably the leading designer in this field. As a matter of fact,
VERITAS also contributed a great deal to all three of the versions examined.

The terminology used by the different vendors is also very vendor-specific. The same entities are
named in different ways, making a complete description quite confusing. Unfortunately, issues that
are already complex enough sometimes sound even more complicated due to the naming
ambiguities.

6.3.1 Logical Volume Manager — AIX Flavor
AIX started early the trend toward a logical approach to disk treatment. Since AIX 3.1, physical
volumes (correspond to the physical partition) were divided into a large number of relatively small

disk chunks (by default their size was 4 MB). They were called physical partitions, but we will use

154

the term disk chunks to avoid any possible confusion with physical disk partitioning. These disk
chunks are the starting point in building other disk entities.

First, a logical partition (in IBM terminology) or a logical chunk has to be created. A logical chunk is
the basic, smallest data storage unit for users. It corresponds to the single, double, or triple physical
chunks. Multiple physical chunks can store the same, mirrored data. Storage of the same data on
several physical locations significantly increases the reliability of the filesystem. Defined logical
chunks are then used to create other logical entities. Although the logical chunks are presented
continuously to the users, in reality their physical chunks could be discontinuous, expended, or
replicated.

Each physical volume is associated and identified with the appropriate special device file. Several
physical volumes can be combined into a single volume group, which is then handled as a unique
logical entity. To make it clear, a volume group can be compared to the physical disk unit, but now
not restricted to the single disk drive. In that way, an equivalent large logical disk can include
several physical disks. It can now be processed as a single large unit instead of multiple smaller
units. Therefore, all restrictions related to the limited size of a single disk have been overcome.

Once the volume group was created it could be divided (partitioned) into several smaller logical
volumes. The new entity can be compared to the already known disk partition. But a single logical
volume can be spread over several physical volumes that make the same volume group. It can
occupy an arbitrary number of logical chunks (correspondingly, a number of physical chunks) on
any of those physical volumes. This possibility of using disk chunks in an arbitrary way brought a
new level of flexibility, and presented a big advantage over the traditional UNIX approaches. This

situation is presented in_Eigure 6.6.

155

Available physical volumes (disks) are:

Created volume group is:

vg00
Created logical volumes are:
IvO1
P— . — . —— -;; ——————————————— —
Ry [
p— 4 — e — §§ — . Woz— -------- —

Figure 6.6: AlX data storage organization.
The LVM provides the necessary physical-to-logical mapping (and vice versa) and handles

filesystems. Although very complex mapping and processing is going on, everything is hidden from
the users. They simply use the available storage units.

156

For a better understanding of the new virtual entities, we will try to establish some functional
relationships between AlX logical entities and the corresponding storage entities in the traditional
UNIX approach:

AIX Traditional UNIX approach
Physical volume Disk/patrtition (as an accessible physical entity)
Disk chunk (partition) |[None

Logical chunk (partition) |[None

Volume group Disk (as a storage space)

Logical volume Partition

AlX introduced new commands and utilities to work with the newly introduced entities:

e For volume groups

mkvg Create a new volume group (from one or more physical disks)
varyonvg Activate a created volume group

varyoggvg Deactivate a created volume group

extendvg Add a new disk to an existing volume group

chvg Change certain volume group characteristics

reducevg Remove a disk from an existing volume group

importvg Add an existing volume group to the system data base

exportvg Remove an existing volume group from the system data base
e For logical volumes

mklv Create a logical volume
extendlv Increase the size of a logical volume

chlv Change certain logical volume characteristics
Islv List data about logical volumes
rmlv Delete an existing logical volume

The existing AIX menu-driven SMIT utility (system management interface tool) also supports LVM
in managing storage resources.

Once logical volumes are defined and created, we should proceed with the filesystem creation. This
procedure is more or less the same as we have discussed. There is an AlX version of the
well-known UNIX command mkfs, as well as the AlX-specific front-end command crfs (an AlX
counterpart to the usual UNIX command newfs). Other UNIX commands to manage filesystems are
also available.

AlX introduced a new filesystem named journaled filesystem (jfs), as its default filesystem. In the jfs
each data transaction in the filesystem is temporarily recorded until its successful completion. It
explains the origin of the name for the filesystem: a journaling is associated with each data
transaction. If the transaction fails, old data can easily be restored from the journal. The jfsis more
robust but also more expensive — an overhead in processing is related to the continuous
journaling.

157

6.3.2 Logical Volume Manager — HP-UX Flavor

The LVM is a standard subsystem for managing disk space on the HP-UX platform. It started with
HP-UX 9.04 and continues with HP-UX 10.x and HP-UX 11.x releases. With the optional support
software, it offers other value—-added features such as striping, or mirroring, or high availability.
LVMs allow the user to consider the disks, also known as physical volumes (PVs), as a pool of data
storage consisting of equal-sized physical extends (PEs — the default size is 4 MB). One or more
PVs are grouped into volume groups (VGs), which then represent the basic unit of the data storage.
VGs can be subdivided into virtual disks, called logical volumes (LVs). An LV consists of an arbitrary
number of logical extends (LEs) — each LE corresponds to one PE (or several PEs, if mirroring is
implemented). An LV can span a number of PVs, or it can represent only a portion of a single PV.
Once created, the LVs can be treated just like the disk partitions. LVs could be assigned to the
filesystems, used as swap or dump devices, or used for the raw access.

In that light, a functional relationship between HP-UX LVM entities and the traditional UNIX ones is:

HP-UX Standard UNIX approach

Physical volume Disk/partition (as an accessible
physical unit)

Physical extend None

Logical extend None

Volume group Disk (as a storage space)

Logical volume Partition

LVM provides a number of specific commands to create, display, and manage LV entities:
e To manage LVs

Ivchange Change LV characteristics
Ivcreate Create anLVina VG
Ivdisplay Display information about LVs
Ivextend Increase space (mirrors) for LVs
Ivinboot Prepare root, swap, and dump LV
Ivrmboot Remove an LV link to root, swap, or dump partition
Ivmigrate Migrate root filesystem from a partition to an LV
Ivreduce Decrease number of PEs allocated to LV
Ivremove Remove LVs from VG
Ivmerge Merge two LVs into one VG
Ivsplit Split mirrored LV into two LVs
lvsync Synchronize stale mirrors in an LV
e To manage VGs

vgchange Set VG availability

vgcreate Create VG

vgdisplay Display information about VGs

vgexport Export a VG and associated LVs
vgextend Extend a VG by adding physical volumes
vgimport Import a VG into the system

158

vgreduce Remove PV from a VG

vgremove Remove VG from the system

vgscan Scan PVs for VGs

vgcfgbackup Backup the VG configuration data

vgcfgrestore Restore the VG configuration from backed-up data

vgsync Synchronized stale LV mirrors in VGs
e To manage PVs

pvchange Change PV characteristics

pvcreate Create (initialize) PVs for use in volume group
pvdisplay Display information about PVs

pvmove Move allocated PEs between PVs

The basic steps in using LVM include:

1. Identify the disks to be used, and create corresponding PVs — create an LVM data structure
on each specified disk:

(a selected disk is identified by the device file c0t0d0)

pvcreate/dev/rdsk/c0t0d0

2. Create a new VG — create a corresponding special device file and collect all PVs for the
new VG (the supposed name vg07):

(the minor number for a VG must be unique among

all VGs on the system)
mkdir /dev/vg01l
mknod /dev/vg0l/group c 64 0x03000

(supposedly the VG includes a single PV)

vgcreate /dev/vg0l /dev/dsk/c0t0dO

(to check the newly created VQG)

vgdisplay -v /dev/vg0l

3. Create LVs within the created VG:

(100 MB LV named Ivol1)

lvcreate -L 100 -n 1lvoll /dev/vgO01l

159

LVM creates two special device files for each created LV: the block device file
/dev/vg01/lvol1, and the character (raw) device file /dev/vg01/rvol1.

(to check the newly created LV)

lvdisplay /dev/vg0l/lvoll

If there are more LVs, this step should be repeated:

(500 MB LV named Ivol2)

lvcreate -L 500 -n 1lvol2 /dev/vgOl

(200 MB LV named Ivol3)

lvcreate -L 200 -n 1lvol3 /dev/vgOl

4. Any operation typical for the disk partition is also allowed on the LV. To use an LV to hold a
filesystem, the corresponding filesystem must be created and mounted:

newfs /dev/vg0l/rlvoll
mkdir /mnt_dirl
mount /dev/vg0l/lvoll /mnt_dirl

HP-UX flavored LVM is discussed in greater detail in the case study in_Chapter 27.

6.3.3 Logical Volume Manager — Solaris Flavor

A powerful, versatile, and up-to—date volume manager came with Sun Enterprise Volume Manager
— VxVM on the Solaris 2.x platform. The original VERITAS Volume Manager is licensed to Sun
Microsystems and is delivered as either optional or standard software (depending on the system
configuration). VxVMbuilds virtual devices called volumes on top of physical disks in an
extraordinarily flexible way. Volumes are composed of other VM objects that can be manipulated to
make different volume configurations: to optimize performance, to provide redundancy, and to
perform backup. To achieve this goal, VxVM introduced some new virtual objects.

VxVM manages the following physical and logical objects:

e Physical disk and partition, in the standard UNIX sense.

e VM disk — assigned to one or more physical partitions (or more precisely, to one or more
physical partitions under VxVM control).

e Disk group — a collection of VM disks that share a common configuration.

e Subdisk — a basic logical unit to allocate disk space; a set of contiguous disk blocks. VM
disks can be divided into one or more subdisks (similar to the division of physical disks into
partitions).

e Plexe — a new logical entity that consists of one or more subdisks, organized in way that
can provide concatenation, striping, mirroring, or RAID-5; (plexes are also referred to as
mirrors).

160

e Volume — a logical disk device that appears to the filesystem as a physical partition, but
does not have the physical limitations. A volume can consist of as many as 32 plexes, with
one or more subdisks ; the corresponding special device file identifies the volume. An
arbitrary number of plexes within a volume, and the arbitrary way plexes are organized,
resulted in different data storages: volumes handle single data copies, mirroring, striping,
combined, or RAID-5.

The relationship between VxVM objects is presented in_Figure 6.7.

o i i i i e i i e -

| — VOL02 @ —
*_d_’/

| Volume (V) =

: : ' VM Disk (D !
Physical Disk (PD) i (O) — i
E p// Plexe i

1 1

i Disk01-01 Disk01-01 N i

c010d0s2 i Disk01-02 Disk01-02 \k\ i

i Subdisks i

c0t0do i Vol01-01 !

1 DISKO1 I

i :

| | — vowor —] |

i R M T i

Partition E i
E Vol (V) |

o | VM Disk (D Re =
Physical Disk (PD) i © — i
== | ———} |
1]

: N =

1 |}

1 \Subdlsk :

| Vol02-01 i

i i

| i

H H

E i

i i

1 |}

1]

Disk Group

Figure 6.7: Relationship between VxVM objects.
Let us try to establish a functional relationship between VxVM objects and the traditional UNIX
ones:

VxVM Standard UNIX Approach
Physical disk |Disk (as an accessible physical unit)
Partition Disk partition

VM disk None — assigned partitions

Disk group |Disk (as a storage space)

Subdisk None — disk blocks

Plexe None

Volume Partition

VxVM provides several kinds of user support tools to manage disk space. First, a suite of versatile
VM commands is provided to accomplish any VM request. Second, a character—based, user friendly
administration tool vxdiskadm enables an easy-to-use interface to manage disks. And finally, an

attractive GUI visual administrator vxva presents a drag—and-drop tool for handling physical and
logical entities.

The usual procedure to manage attached physical disks is:

161

1. Initialize all physical disks — put disks under VM control and make corresponding VM disks.
For each disk:

vxdisksetup -i disk device file

2. Create a disk group with the first disk in it:

vxdg init dg name vmdisk name= disk device file

3. Extend a disk group with other disks:

vxdg —-g dg name adddisk vmdisk name =disk device file
4. Create a volume within a disk group (including a volume layout):

vxassist -g dg name -U fsgen make volume name size layout = options
disk device file(s)
5. Mirror a created volume (if requested):

vxassist —-g dg name mirror volume name layout = options disk device file(s)
6. Create a filesystem in the volume and mount it into a selected directory:

newfs /dev/vx/rdsk/dg _ name/volume_name
mkdir /mount_dir
mount /dev/vx/rdsk/dg _ name/volume name /mount_dir

VxVM fully supports all of the steps necessary to accomplish the requested task. At the very end,
the filesystems have to be created in the volumes and then mounted to be used.

The same task can be accomplished in more steps by creating subdisks and plexes separately.
This has to be done if there are some special requests.

VxVM pays special attention to the boot disk and the root and swap partitions. VxXVM is coming after
UNIX installation, and the initial disk configuration is based on the traditional UNIX approach.
Putting blank disks under VM control is much easier than to handle preexisting filesystems,
especially crucial ones like the root filesystem and the swap partition (also /usr and /var, if they were
created as separate filesystems). The special procedure to put preexisting filesystems under VM
control is known as encapsulation, and VxVM also fully supports its implementation.

VxVM offers needed commands to deal with introduced entities:

vxdg Handle disks and disk groups with a number of options (subcommands)
vxassist Handle disks with a number of options (subcommands)
vxdisksetup Initialize physical disks

vxmake Create VM objects

vxplex Handle plexes

vxsd Perform subdisk operations

vxprint Print display VM information

vxtrace Trace kernel VM related activities

vxrecover Recover VM entities

vxinfo Identify volumes

vxstat Print volume statistics

vxvol Handle volumes

Some of the listed commands are utilities with many options, or rather subcommands, to fulfill

162

different VM tasks.

Solaris—flavored LVM is also discussed in greater detail in the case study in_Chapter 27.

6.3.4 Redundant Array of Inexpensive Disks (RAID)

A Redundant Array of Inexpensive Disks (RAID) is a disk array setup, which enables the combined
storage units to be used for storing duplicated (mirrored) data. The mirroring allows regeneration of
the data in case of disk failures.

There are several levels of RAID:

e RAID-0: Although it does not provide redundancy, striping is often referred to as a form of
RAID, known as RAID-0. Striping is a technique of mapping data so that the data is
interwoven among more physical disks. It offers a high data transfer rate and high I/O
throughput, because simultaneous data access across multiple disks can be performed.

e RAID-1: Mirroring is a form of RAID known as RAID-1. Mirroring uses equal amounts of
disk capacity to store the original data and its mirror. It provides redundancy of data and
offers protection against data loss in the event of physical disk failure.

* RAID-0+1: Striping combined with mirroring is known as RAID-0 + 1. It merges RAID-0
and RAID-1, providing redundancy and efficient access to data.

* RAID-1+0: Mirroring combined with striping is known as RAID-1 +0. It merges RAID-1 and
RAID-0, providing better redundancy and equally efficient access to data as RAID-0 + 1.
Remember that for this RAID configuration mirroring is provided before striping, so multiple
disk failures in different disk groups can still be handled.

* RAID-2: Not widely implemented, RAID-2 uses bitwise striping across disks and uses
additional disks to hold Hamming code check bits.

® RAID-3: Uses a parity disk to provide redundancy. RAID-3 stripes data across all but one of
the disks in the array, which is then used for the parity bit.

e RAID-4: Represents a modified version of RAID-3 to overcome synchronization problems
when data is accessed across multiple disks. By increasing the stripe unit size, a majority of
I/O operations can be located on a single disk without the need for synchronized
simultaneous access to multiple disks. However, it still uses a separate parity disk to store
redundant parity information. It is not widely implemented.

* RAID-5: Represents an improved version of RAID-4, and it is practically implemented.
Instead of using a separate parity disk, the parity data are also striped across all disks; the
data stripes and parity stripes could be found on all disks. In case of a disk failure, the lost
data can be recovered. RAID-5 provides the performance of RAID-0 + 1, but in a more
economical way.

For all the options stated here, RAID-1 + 0 is probably the superior one. This is also the most
expensive one, and not supported by older volume managers and disk arrays.

6.3.5 Snapshot

LVM provides a flexible way to store and manage data. But it offers also a solution for the pending
problem of the online backups. Each backup must guarantee the full consistency of the data, and a
valid data recovery is possible only from the consistently backed—up data. In real life, the contents
of volumes are changing permanently as long as the volumes are in use. The existing data is
modified or purged, and new data is written nonstop. This is the purpose of the UNIX systems — to
provide an enduring execution of application programs that always deal with data. If data is
changing during the backup, which always takes a reasonable amount of time, the required data

163

consistency cannot be achieved. At least it cannot be guaranteed. This is a big problem in the case
of database backup. Inconsistently backed database files are corrupted and useless.

A solution to this problem was found in taking a data snapshot and then making the backup.
Original data is mirrored before the start of a backup, and then backed as the "frozen" mirrored
data. In the meantime, the access to the original data remains unrestricted. The online backup can
then ensue.

The idea of performing a snapshot (a very quick copying) of the dynamic data is similar to the
concept of taking a photograph of a moving object. Once the data is snapped, we can then make a
time—consuming backup of its mirror — mirrored data is reliably consistent — it does not change.
The only requirement is the prevention of any data change during the snapshot, which is easily met
thanks to the short snapshot time period. LVM makes this approach feasible. There are two types of
snapshots: the volume and the filesystem snapshot.

6.3.5.1 The Volume Snapshot

The volume snapshot is provided on the volume level, regardless of the upper—level data structures.
The procedure is relatively simple: the snapstart operation creates a write—only backup in a
separate volume, which gets attached to and synchronized with the original, snapped volume.
Synchronized means that the original volume is mirrored to the newly attached backup volume. The
synchronization takes some time, especially in the case of large volumes. However, in this period all
activities on the system are continuing normally, without any restrictions. The end of the
synchronization procedure is signified by a change in the snapshot mirror status, known as the
snapdone state. Once the backup volume is synchronized with the snapped volume, it is ready to
be used as a "snapshot mirror."

The synchronized snapshot mirror continues to be updated until it is detached. The detachment can
be schedule for any convenient time. The snapshot volume, an image of the snapped volume, will
be created in that moment. The detachment itself represents the snapshot of the volume. The
previous synchronization is only an unavoidable process required for a successful snapshot. The
snapshot typically takes a very short time, and during this brief period the use of the system should
be strictly controlled and any change of the volume content prevented. Once the detachment is
done, the content of the created snapshot volume remains unchanged as long as this volume lives.

The main disadvantage of the volume snapshot is that the size of the snapshot volume must be the
same or larger than the snapped volume. The same snapshot volume can be used to mirror multiple
volumes at different times, but the required long-time synchronization actually restricts its multiple
usage. The synchronization itself always takes a great deal of time: each volume block must be
updated (mirrored) regardless of whether it was changed or not. Even the unused blocks in the
volume are mirrored.

6.3.5.2 The Filesystem Snapshot

The advanced VxFS filesystem (Vx origins from VERITAS) provides a mechanism for taking a
snapshot image of a mounted filesystem, which can then be used for a backup. The snapshot
filesystem is an exact image of the original snapped filesystem — it is a duplicate read-only copy.
The snapshot is a consistent view of the filesystem "snapped" at the point in time when the
snapshot was made. Afterward all further data processing is referred to the snapshot filesystem.

The basic idea is the following: Why copy (mirror) all filesystem blocks? The majority of blocks don't
change frequently. It is enough to copy only the old content of the blocks that have been changed

164

since the snapshot was activated (started). These old contents are known as before—images. And a
before-image has to be copied only once when the block was changed for the first time. In that
way, a pool of consistent data that corresponds to the moment when the snapshot was started (we
prefer to say "was taken") is preserved. It resides partially in the original (snapped) filesystem (all
unchanged data blocks) and partially in the snapshot filesystem (all saved before—-images). Keeping
in mind the limited lifetime of a snapshot filesystem (it exists as long as the backup is going on), the
expected number of modified blocks is much smaller than the total number of active blocks in the
filesystem. Statistically the value of 10 to 15% seems to be sufficient during the highest level of
system activity.

The benefits of the filesystem snapshot are obvious: a required snapshot filesystem (and the
belonging volume) is much smaller than the original one, and there is no need for time-consuming
volume synchronization. However, the implemented filesystem type has to support the filesystem
snapshot. A snapshot filesystem is presented in_Eigure 6.8.

Super-Block
Bitmap
Blockmap
Data Blocks

Figure 6.8: The snapshot filesystem structure.
The snapshot filesystem contains four parts:

1. The superblock, a copied, slightly modified superblock of the regular (snapped) filesystem.

2. The bitmap, which contains one bit for every block of the snapped filesystem; initially, all
bitmap entries are zero.

3. The blockmap, which contains one entry for each block of the snapped filesystem; initially
all entries are zero. When a before-image is copied from the snapped filesystem, the
appropriate entry is set to the block number on the snapshot filesystem; this is the local
block allocation table.

4. The data blocks, which contain before—images copied from the snapped filesystem upon
their first change.

The snapshot procedure starts with the mounting of an empty volume and the creation of the
snapshot filesystem for the mounted snapped filesystem. As the first step, the superblock of the
snapped filesystem is copied into the snapshot filesystem. After that, the visibility of the data in the
snapped filesystem could be easily maintained through this superblock. All processes now access
the snapped filesystem through the snapshot superblock rather than its own. The bitmap and
blockmap are also initialized. The snapshot filesystem handles read requests by simply finding the
data on the snapped filesystem and returning it to the requesting process. In the case of an inode
update or a write request for any block (for example, block #N) of the snapped filesystem, the
before—-image of the block #N is first taken (the block is read and copied into the snapshot
filesystem) and afterward the snapped filesystem is updated. The bitmap entry for the block #N is
changed from its initial value 0 to 1, indicating the taken before—-image of the data block #N. The
blockmap entry for the block #N is also changed from its initial value 0, to the actual block number in
the snapshot filesystem where the before-image was copied.

Any subsequent read request for the block #N in the snapshot filesystem will be provided after
checkup of the corresponding bitmap entry, and consequently by reading data locally, from the
block indicated by the blockmap entry instead of the snapped filesystem. Subsequent writes to the
block #N in the snapped filesystem do not result in additional copies to the snapshot filesystem,

165

since the before—image needs to be saved only once, the first time the block was changed.

To start a filesystem snapshot, the mount command is used. It is fair to say this is a modified
version of this command compatible with the implemented filesystem type. It is specified by the
special option "snapof=..." that also includes a snapshot volume. The snapshot filesystem exists as
long as it is mounted, and during this period its superblock controls the snapped filesystem too. By
dismounting the snapshot filesystem, the snapshot process is terminated.

For example, the following command creates a snapshot filesystem and mounts it into the /snapdir
directory:

mount -F vxfs —-o snapof= /dev/volgr/fsvol /dev/volgr/snapvol /snapdir

where

-F vxfs Defines the VxFS filesystem

-0 shapof = Defines the mounted filesystem to be snapped

/dev/volgr/fsvol

/dev/volgr/snapvol Defines the snapshot filesystem

/snapdir Defines a mount—point for the snapshot filesystem (other options are

also possible)
To terminate a snapshot, simply dismount the snapshot filesystem:

umount /snapdir

In the meantime, regular UNIX commands could be implemented on the snapshot and snapped
filesystems without any restrictions. However, never forget the real nature of a snapshot filesystem
— sometimes the command outputs could be very odd and confusing. For example, the df
—kcommand implemented on the snapshot filesystem will show the size of the snapped filesystem.
So, do not be confused when the snapshot filesystem is ten times larger than the actual size of the
volume in which it was created. Simply, the df command sees the snapshot filesystem through the
superblock of the snapped filesystem.

6.3.6 Virtual UNIX Filesystem

The diversity of the various UNIX filesystems and their mutual incompatibilities make their
simultaneous use almost impossible. UNIX faces a challenge as to how to handle different UNIX
filesystems at the same time and enables users to access their files at any time. A logical solution is
to make access to files independent of their type. This would allow the users to carry out operations
on a file without restrictions. It could be even extended to the not—-UNIX filesystems.

Such a flexible filesystem is known as virtual filesystem (VFS), but full implementation remains in
theory only. A needed flexibility is supposed to be achieved on the implementation of the filesystem
independent vnode. The underlying mechanism of each vnode operation is, however, always
dependent upon the filesystem type associated with the file being referenced by the vnode. In other
words, the system must know very well how to handle the corresponding filesystem type. Thus, to
perform an operation on a file, the kernel must provide mechanisms that allow the execution of a
filesystem-type—dependent function to carry out an operation without knowing what that function is
called or what it does. For users everything remains transparent — they can access any filesystem
without knowing anything about its type. Since the kernel is independent of the filesystem type or
construction, it is also flexible enough to accommodate nonUNIX filesystems such as NT, OS2,
Mac, and DOS.

166

Despite the fact that it sounds great, the real need for VFS implementations is very questionable.
Who really needs multiple UNIX filesystem types on the local drives? It sounds nice to disconnect a
huge disk drive from the Solaris box, connect to the Linux box, and immediately have access to all
data. But how often do we do something like that? VFS is another layer in the kernel, and another
layer means more overheads in communication with the disk. No one wants that either.
Cross—-management of different-type files on the UNIX platform is already solved in an ordered
way. Applications that deal with files on remote systems like: ftp, rcp, scp, and nfs are already fully
implemented and proved. They read, write, and transfer files without any problem. Network-based
backup and restore can also handle different types of files. And what is the most important, all UNIX
flavors fully support filesystem types implemented on portable media like floppy and CD-ROM
disks.

vnode does not have anything common with inode except that the names sound similar. These are
two completely different concepts, with different purposes. vnode is mostly unknown to UNIX
administrators and is not even mentioned in system administration books. There are at least two
good reasons for that. The first reason was discussed earlier, while the second one is based on the
assumption that VFS will not require any administration — everything should work well
automatically. Despite that, VFS is briefly discussed here.

6.4 Disk Space Upgrade

Once a shortage of a disk space becomes evident on the system and all other possibilities have
been exhausted, the only real solution is to add a new disk. Today, disks are cheap, and to make
such a decision is easy. However, the full price of additional disk space includes other elements
besides the disk price itself. In the past additional expenses have been mostly shadowed by the
high disk price. Some elements worth consideration are:

e The room available for disks — internal or external

e Hardware compatibility — implemented disk interface. On the UNIX platform, SCSI interface
is very common, but remember that single—ended SCSI is not compatible with the differential
one, or it could be a wide SCSI, or.... Also, is there a slot available on the existing SCSI
controller? And so on.

e The work on the disk installation and putting it into the operation

¢ Maintenance, including backup and other long-term disk—-related jobs

Each of these elements has its specific price. In most cases, this price is higher than the initial price
of the disk itself.

Adding a new disk is a very routine task. There is not a lot of freedom in the practical
implementation, but it is good to fully understand each of the required steps. Unfortunately, almost
every UNIX platform provides a different tool to implement these steps.

We have already discussed some of these steps. This time we will only list them. Steps traditionally
required to add a disk, independent of the UNIX platform (even independent of the UNIX itself), may
be summarized as:

e Disk formatting (also known as low, or hard, formatting) to establish the track layout onto
the contiguous magnetic media of the disk plates

e Disk partitioning to establish one or more independent storage entities within the disk for
further processing

167

e Filesystem creation (also known as soft formatting) to make disk partitions available for
data storage.

The LVM requires a few more steps before filesystem creation. UNIX systems require some
additional steps at the end to merge newly created filesystems into the overall UNIX tree
hierarchical filesystem.

Today, manufacturers of disks also perform the hard formatting of the disks. There are many
reasons for this first step to be performed by the manufacturers themselves; the number of tracks
varies among the inner and outer disk cylinders, and an appropriate hard formatting requires the
sophisticated tools. While we can skip the first step now, the other steps must be provided.
Unfortunately, the required procedures vary among UNIX vendors. In_Chapter 27, a few case
studies about the most popular UNIX flavors are presented. Similar procedures can be implemented
on other UNIX platforms.

168

Chapter 7: User Account Management

7.1 Users and Groups

Managing user accounts is an important and unavoidable administrative duty. The overall system
administration will often be evaluated by the way the user accounts are managed. Users participate
in a UNIX system through their accounts: they navigate through their environment, work from their
terminals, use their favorite commands, and do their jobs in their way. They want to control their
resources and restrict access to them by others; however, they also want to reach all available
resources. This is a profile of an average user on an UNIX system.

UNIX systems exist to be used by users; making users happy is one of the primary administrative
tasks, because happy users make for a happy administrator. The advice is very simple: manage
user accounts properly, be tough when necessary and flexible at other times, and pay special
attention to security issues, or you could experience a lot of headache later.

From the system's standpoint, a user is not necessarily an individual. A user is any entity capable of
executing programs or own files. The UNIX concepts of ownership and access privileges involve a
number of system entities. These entities may be other computer systems, they may be particular
system functions that run automatically, or they may be a group of people with similar functions. In
most cases, however, a user is a particular individual who can log-in, edit files, run programs, and
otherwise make use of the system.

Each user has a username (also known as a loginname) that uniquely identifies the user. A
system recognizes a user by the user's identification number (UID), which is assigned by the system
administrator at the time the user's account is created. The administrator also assigns each new
user to at least one group (a group is a collection of users who generally share similar functions).
Each group has a group identification number (GID), which serves the same purpose as the UID on
the user level. Together, the user's UID and GID determine the user's credentials, i.e., the access
rights a user has to files and other system resources.

Basic user account information is stored in the /etc/passwd file — this is the master user's database
for all users on the system. The /etc/passwd file is an ASCII text file, readable by everyone on the
system; this general file readability is required for regular system operations. Each user is described
by a single entry in the file; each entry is a single line of information. Similarly, information about
groups are stored in the file /etc/group. These two files contain comprehensive information about
any user in the system, regardless of the user's origin. Both files are public information; everyone
may read them, but only the superuser is allowed to modify them.

7.1.1 Creation of User Accounts

You must create a new user account to add a new user to the system. User account creation is a
routine procedure that consists of several mutually related steps; most of these steps are
mandatory, but a few are optional. The required procedure consists of:

¢ Assigning a username, a user ID number, and a primary group to the user

e Entering this data in the system user database (the /etc/passwd file) and, if required, in any
secondary password file

¢ Assigning a password to the new account

e Setting other user account parameters in use on the system, such as password aging,
account expiration date, and other resource limits

169

e Creating a home directory for the user

e Placing initialization files in the home directory

e Setting the new user ownership to the home directory and initialization files

e Adding the user to any other facilities in use such as the disk quotas system

¢ Defining any secondary group membership for the user in the system group file, /etc/group
e Performing any other site—specific initialization tasks

e Testing the new account

Basically, adding a new user means adding a new entry into the /etc/passwd file. This may be done
by simply editing the file using any editor (on the UNIX platform the common editor is vi), or on BSD
systems using the special editing command vipw (vi password file). However, all UNIX systems
provide some kind of utility for this purpose, a specific front-end command (sometimes a script, but
usually a program) that performs efficient, accurate creations of new user accounts. On many UNIX
systems, user account management is also a standard part of the existing general system
administration tools (such as SAM on HP-UX platform, or SMIT on AIX platform). All of these
tools/utilities create new user accounts by automatically performing the previously listed steps; of
course, the administrator must supply the required personal data for the user. These utilities check
the supplied data and update the system user and group databases.

Preexisting tools provide a general approach to user account creation; however, any site—specific
requirements will call for additional administration. Quite often, system administrators make their
own private utilities to perform site—specific functions in managing user accounts. Usually these are
homemade scripts (shell, expect, perl, etc.).

Even though the use of existing utilities is highly recommended, the following text has a more basic
approach. For educational purposes, the_next section of the text goes through the gradual creation
of a user account, step by step from the command line. First, though, let us see what the system
user and group databases look like.

7.1.2 User Database — File /etc/passwd

The master user configuration file is /etc/passwd; every user on the system must be specified in this
file. A user is identified by an entry of the following form:

name:encrypted-passwd:UID:GID:user information:home-directory:shell

The entry is a single line with multiple fields separated by colons; blank spaces are legal only in the
user information field. The meanings of the fields are:

Field Meaning

name The username assigned to the user. Usernames are not private or
secure information; they should be easy to remember; older UNIX
flavors restricted the name length to a maximum of eight characters,
and it is advisable to keep them within that length.

encrypted-passwd The user's encrypted password (readable encrypted text). An empty
field means no password is required to log in to the system (which is
not legal and represents a security hole); an asterisk (:*:) in the field
prevents anyone from logging into the system; the field cannot be
edited, a password can be assigned only by using the passwd
command.

uiD The user identification number. Each user must have a unique UID;

170

it is good idea to assign UIDs sequentially starting from 100; UIDs
less than 100 are conventionally used for system accounts.

GID Determines the user's primary group membership. GID corresponds

to a group identification number assigned to a group in the file
/etc/group; GIDs less than 10 are conventionally used for system
groups.

user information Usually contains the user's full name; the e-mail subsystem and

commands like finger use this information; a space is a legal
character in the field; other identification data, such as the address
or phone number, are also common.

home-directory The user's home directory; when a user logs into the system, this will

be the initial working directory.

shell The program that UNIX will use as a command interpreter for the

user; whenever the user logs in, UNIX will automatically execute this
program. The common shells are /bin/sh (Bourne shell), /bin/csh (C
shell) or /bin/ksh (Korn shell) — shells can be located in other
directories, like /usr/bin, or /sbin; other shells are also legal; if the
field is empty the default is the Bourne shell. Other programs can
also be specified instead of a shell; often an application is
automatically started once the user logs in; for example, for the user
uucp the uucp program /usr/lib/uucp/uucic is specified; another
example is a "restricted user account" when a restricted shell is
started.

There are no significant differences between the /etc/passwd files on the main UNIX platforms BSD
and System V. As examples, two /etc/passwd files are presented for the SunOS and HP-UX
flavors, respectively. As can be seen, their format and syntax are identical.

cat /etc/passwd

root :RolQ0Omij217Vrc:0:1:0perator:/:/bin/sh
daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:

nmruser:HfeLluXTpXxnI:1200:20:NMR User:/home/nmruser:/bin/csh
fstall:1vLPSqJDArJOs:1203:20::/usr/people/fstall:/bin/csh
b3j1:KVrJDBQT8fHOY:1212:20:B.J.L. : /usr/people/bjl:/bin/csh

$ cat /etc/passwd

root :PykAP9Za4p0ONA:0:3::/:/bin/sh
daemon:*:1:5::/:/bin/sh
bin:*:2:2::/bin:/bin/sh

bjl:32d496cM81jD6:201:20:B. J. L.,Rm. 1225N, (212) 123-4567, :/users/bjl:/bin/ksh
vasili:wUjuhwéavV2P. :202:20:V. F.,Fordham University,, :/users/vasili:/bin/ksh
dhuang:d5DtupNOTE.ak:204:20:D. Huang,Wayne State University,, :/users/huang:/bin/ksh
gdubey :btRPE2ZWDC/S5. :206:20:G. D.,Rm. 1246N, (212) 123-7654, : /users/gdubey:/bin/ksh

The first part of the /etc/passwd file specifies system entities (please note the asterisk in the
password field), while the second part contains individual user login accounts. As it can be seen,
encrypted passwords are readable but their contents are senseless; however, from the system
security standpoint, the fact that the encrypted passwords could be read is a security risk. We will

return to this issue later.

171

7.1.3 Group Database — File /etc/group

The master group specification file is the file /etc/group. The file specifies all existing groups on the
system. To add a new group, you add a new one-line entry to the file. Each group on the system is
specified by a single entry of the form:

group-name: *:GID:additional-users

The /etc/group entries are similar to the /etc/passwd entries. An entry consists of multiple fields
separated by a colon (":"). The fields have following meaning:

Field Meaning
group-name A name identifying the group.

* The second field is an artifact of earlier UNIX versions. It is unused and is
usually filled with an asterisk.

GID The group's identification number. By convention, standard UNIX groups have
consecutive numbers beginning with 0.

additional-users|A list of users and other groups that will have access to this group's files (as a
secondary group). Commas must separate users' names in the list.

An example of the /etc/group file is presented here:

#cat /etc/group

root:*:0:
nogroup:*:65534:
daemon:*:1:
kmem: *:2:

staff:*:10:

other:*:20:

patsyusers:*:30:
mvaxuser:*:60:root, pam, tbw, eda, shew, sweeny, varley, mindy, levi, he, \
\quigley,modest, sim, ralph, yin, baldwin, george

7.1.4 Creating User Home Directories

Upon adding a user entry to the /etc/passwd file, the system administrator must create an
appropriate home directory for the user. User directories are usually located in a separate
filesystem, dedicated to users. Most common names for directories holding users' filesystems are:
/home, /users, or /u.

User home directories are named by the usernames (however, this is not a requirement). A user
directory is a regular directory owned by the user, so to create a user home directory, as with any
other directory, the mkdir command is used:

mkdir/home/username

where

home A common starting directory for individual users' home subdirectories
username The user's name, usually the same as the name of the user account

Even when the home directory has been created, our job is not yet complete. The directory itself
has to be populated with required user—specific data, primarily related and needed for a proper user

172

login procedure. The next paragraphs address this topic.

7.1.5 UNIX Login Initialization

Upon the creation of the user home directory, the next step is to provide the appropriate initialization
data to set the user shell environment. Otherwise the whole login procedure could be compromised,
and the user unable to deal with the UNIX system at all. UNIX initialization files (or better say
scripts, because they are really shell scripts) define the initial individual environment for a
successful start of the specified shell once the user has logged in. They are also known as user
startup files. The login procedures follow different patterns depending on the specified user's shell in
the /etc/passwd file. Assuming the common UNIX shells, (Bourne, C, and Korn) when a user logs in
to the system, the following UNIX initialization files will be executed (actually, the listed files will be
sourced) after successful authentication:

User's Shell Sequence of Sourced Initialization Files

Bourne shell |/etc/profile|$HOME/.profile

C shell /etc/.login |~ /.cshrc ~ /.login
Korn shell |/etc/profile|$HOME/.profile $HOME/.kshrc

Bourne Again Shell — bash is a default shell on the Linux platform. Basically, bash and ksh are
very similar, almost identical in their implementation. So the discussion that follows related to ksh is
also relevant to bash. However, differences in naming of initialization files exist, but the files
themselves are easily recognizable. For example, a sequence of bash initialization files is:
/etc/bash_profile, SHOME/.bash_profile, and $HOME/.bashrc.

Please note that among the listed UNIX initialization files, some are strictly login initialization files,
while others are shell initialization files. Also, the order of their execution (sourcing) varies for
different shells. Most of the files are hidden files (with a leading dot in the filename), and they can be
seen only if the Is —a command is used. The listed filenames are the common names, and some
differences among UNIX flavors are possible. The three listed shells are not the only possible
shells; these are only the most common shells, and they are discussed in this section. The syntax
implemented to identify the user home directory corresponds to the actual shell.

The first login initialization file to be executed lives in the /etc directory and represents a systemwide
login initialization file; it is used to set a default environment for all users on the system. Only the
administrator can manage these files. Other, individual (personal) initialization files reside in the
user's home directory. The initialization files are shell scripts and they are sourced in the standard
input stream of the specified login shell. The login initialization files .profile and .login are executed
at the user's login; the shell initialization files .cshrc and .kshrc are executed every time a new shell
is spawned. The files are owned by the users and may be customized by the users themselves.

7.1.5.1 Initialization Template Files

The administrator's duty is not only to manage the systemwide initialization files; the administrator
must also create template initialization files for the required default personal initialization and store
them in a standard location, the skeleton directory. Usually this is the directory /usr/skel, or /etc/skel,
although the directories can vary among the different UNIX flavors. On most systems these
"proto-files" already exist upon UNIX installation and are ready for immediate use; often only small
site—specific modifications will be required. The common names for template files do not include a
leading period, i.e., the names are profile, login, and cshrc (again, these names are not mandatory,
so a number of other names are legal and used).

173

Therefore, to create a user's initialization files, it is sufficient to copy them from the skeleton
directory into the user home directory:

$ cp /usr/skel/profile /home/username/.profile
$ cp /usr/skel/login /home/username/.login
$ cp /usr/skel/cshrc /home/username/.cshrc

Copying multiple initialization files for new accounts is recommended because it enables the use of
different shells; however, if a user is restricted to using one shell exclusively, only the corresponding
file/files should be copied.

To illustrate the differences between template filenames and their locations among the various
UNIX platforms, a few UNIX flavors are presented:

e HP-UX
10.xx /etc/skel/.profile
/etc/skel/.login
/etc/skel/.cshrc

e HP-UX
9.0 /etc/d.profile
/etc/d.login
/etc/d.cshrc

e Solaris
2. /etc/skel/local.profile
/etc/skel/local.login
/etc/skel/local.cshrc

e Linux
Red /etc/skel/.bash_profile (Linux assumes a user shell: bash)

Hat

Depending on how the system is used, several other initialization files may also be of interest. For
example, many editors have their own startup files (such as .exrc for the vi editor), the e-mail agent
has an initialization file named .mailrc, the X window client utilizes several files for personal
customization (.Xdeafults, .dtprofile, even the complete startup subdirectory $HOME/.dt exists), and
other third—party software often relies on similar hidden initialization files. The C shell also supports
a .logout file, which contains commands to be executed when the user logs out. The file is an ideal
place to look if an ordered shutdown of any application is required. Under certain circumstances, all
these files should also be copied when a new user account is created.

7.1.5.2 User Login Initialization Files
The user login initialization files .login and .profile perform tasks that need to be executed upon

login, such as:

174

e Setting the search path

e Setting the default file protection (the umask command)
e Setting the terminal type and initializing the terminal

e Setting other environment variables

¢ Performing other site—specific customization functions

Login initialization files are not UNIX-platform dependent — they are shell dependent. The best way
to understand the files is by analyzing several real examples. We will start with the C shell login
initialization file .login. The content of one real user login file ./login on the HP-UX platform is
(additional comments are printed in bold):

cat /home/bjl/.login (The file lives in the user's home directory)
@(#) SRevision:64.2$
#
Default user .login file (/bin/csh initialization)
Set up the default search paths:
setenv path=(/bin/usr/bin/usr/contrib/bin/usr/local/bin.)

#set up the terminal Setting a user terminal as a "HP terminal”

eval tset -s -Q -m ':?hp' (actually the user makes the decision about the terminal)
stty erase ""H" kill "~U" intr ""C" eof ""D" susp ""Z" hupcl ixon ixoff tostop

tabs

Set up shell environment:

set noclobber Prevent file overwriting

set history=20 Peep the track about 20 last commands

Once the user has logged in, the search command path, user terminal, and a few other environment
variables are defined. Terminal initialization is an important login function; an improperly defined
terminal can completely disable user interaction with the system.

Please note that the C shell login initialization file is executed after the C shell is spawned, i.e., the
C shell initialization file .cshrc has been already executed. However, while the .cshrc file can be
executed many more times within the same login session, the ./ogin file is executed only once. This
fact can be important in setting the environment (only global variables will be inherited by the newly
spawned shells).

The contents of a real Korn/Bourne shell login initialization file .profile (again on HP-UX) follow:

$ cat /users/bjl/.profile

@(#) $SRevision: 66.1 § The systemwide profile script file has been
previously executed!

#

Default user .profile file (/bin/sh initialization).

Set up the terminal: Setting a terminal
eval tset -s -Q —-m ':?hp'
stty erase "“H" kill "~U" intr "~C" eof ""D"
stty hupcl ixon ixoff
tabs
Set up the search paths:
PATH=SPATH: . The current directory is also included
export PATH
Set up the shell environment:

set -u All unset variables are treated as errors

Set up the shell variables:
EDITOR=v1i
export EDITOR

We have called the file .profile a Korn/Bourne shell login initialization file. This is true since the script
syntax matches the Bourne shell; the Bourne shell is a subset of the Korn shell, and any Bourne

175

shell script can also be executed by the Korn shell. However, the Bourne shell cannot interpret a
Korn shell-specific command, and the script execution would fail. This means that if the .profile file
has been written as a Bourne shell script it will work for both shells; otherwise it will fail for the
Bourne shell. A potential confusing point can be the way the global environment variables are
exported; the Korn shell allows you to define and export a variable in a single command line, while
the Bourne shell requires two command lines: one to define a variable and the other to export the
defined variable. Obviously, to avoid any possible confusion, strict implementation of Bourne scripts
is recommended.

In the case of the Korn shell, after the execution of the .profile file another K shell initialization file
(usually named as .kshrc) can be also executed; this is a good place to locate all Korn shell-specific
items, and to make the .profile file acceptable for both shells.

7.1.5.3 Systemwide Login Initialization Files

The systemwide login initialization files are executed before the user's personal initialization files,
and they are ideal places to set the default systemwide environment for each individual user. Even
though the user login and shell initialization files can later be used to modify the user environment,
the execution of the systemwide files cannot be bypassed. This file sets a number of variables, such
as the search path PATH, timezone TZ, e-mail file locations, and/or default file permissions; usually
it also generates important messages related to all users, among others the message of the day —
motd.

For Bourne and Korn shell users, the systemwide initialization file is /etc/profile; pay attention to the
file name, it is not a hidden file. An example follows (from the HP-UX platform):

$ cat /etc/profile
@(#) SRevision: 70.1 S
Default (example of) system-wide profile file (/bin/sh initialization).
This should be kept to the bare minimum every user needs.

trap "" 1 2 3 # ignore HUP, INT, QUIT now.
PATH=/bin/posix:/bin:/usr/bin:/usr/contrib/bin:/usr/local/bin # default path
MANPATH=/usr/man:/usr/contrib/man:/usr/local/man # default path
if [-r /etc/src.sh]
then
/etc/src.sh # set the time zone
unset SYSTEM NAME
else
TZ=MST7MDT # change this for local time
export TZ
fi
if ["STERM" = ""] # if term is not set, set the
default terminal; to bemodified
later by the user
then
TERM=hp # the default terminal type
fi

export PATH MANPATH TERM
set erase to “H

stty erase ""H" # to erase use "backspace"
Set up the shell environment:
trap "echo 'logout'" 0 # on exit from the shell print
"logout"
This is to meet legal requirements..
cat /etc/copyright # print license agreement
if [-r /etc/motd]
then

176

cat /etc/motd # the message of the day

fi
if [-f /bin/mail]
then

if mail -e # notify if mail

then

echo "You have mail."

fi
fi
if [-f /usr/bin/news]
then

news -n # notify if new news
fi
if [-r /tmp/changetape] # might wish to delete this
then

echo "\007\nYou are the first to log in since backup:"
echo "Please change the backup tape.\n"
rm —-f /tmp/changetape
fi
trap 1 2 3 # leave defaults in user environment

The /etc/profile file can only be managed by the administrator; users can only modify their own
environment, with no impact on the other users.

For C shell users, the usual systemwide initialization file is /etc/.login; however, on some platforms
this name can be different. For example, on the HP-UX platform the systemwide initialization file is
/etc/csh.login. A real example follows:

$ cat /etc/csh.login
@(#) SRevision: 74.1 S
Default (example of) system-wide profile file (/usr/bin/csh initialization).
This should be kept to the bare minimum every user needs.
default path for all users.
set path=(/usr/bin /usr/ccs/bin /usr/contrib/bin)
set prompt="[\!] &"
default MANPATH
setenv MANPATH /usr/share/man:/usr/contrib/man:/usr/local/man
if (-r /etc/TIMEZONE) then
setenv TZ /usr/bin/sh -c '. /etc/TIMEZONE ; echo

7.2 Maintenance of User Accounts

Once a user's account is created, the user may start using the system. The user has all rights in the
user's own directory, and all privileges with regard to the user's files; for other files, a user's rights
are quite restricted. A user may execute most UNIX commands and use the system in the typical
way. However, a user is very limited in performing administrative tasks on the system, unless they
are directly and exclusively related to the user's account. An administrator must be extremely
careful in giving more privileges to a user, if such demands exist at all; otherwise, a user could
compromise the system intentionally or unintentionally. When a system is corrupted, intent is not an
issue; the issue is to recover the system.

The fact that a user has enough privileges to use the system in a normal way does not mean that

the administrator's duties regarding the users' account are over once the account has been created.
As with the system itself, user accounts also need to be managed. First, monitoring user activities is

177

highly recommended. A number of systemwide issues can be resolved through such monitoring;
sometimes troubling, even disastrous, situations can be avoided and many problems prevented in
time. In some sense, such preventive monitoring and maintenance can improve the use of the
system.

Another issue to contend with is the need to test and sometimes to recreate a user's environment.
Although environment customization is supposed to be done by the user, sometimes it is better if
the system administrator does this; often, users are not knowledgeable enough to perform this task.
By using the su — username command (please note the hyphen character), the superuser can
switch to a user account and create a real user environment; it is just the same as when the user
logs into the system, except password verification is not required for the superuser. It is extremely
useful to have the user's credentials while debugging the user's account.

The need to add a user to some other UNIX facilities in use at a specific site is also possible.
Additional administrative activities can also be required in, for example, assigning disk quotas,
defining mail aliases, setting print queue access, etc.

7.2.1 Restricted User Accounts

Some users are allowed only restricted use of the system. One example of a possible restriction on
user access is a user who has access only to execute a single application program. Such demands
are addressed by a captive account. In this case, the application program itself replaces the UNIX
shell that usually enables full use of the system. Entries for these restricted users must be created
in the /etc/passwd file, or existing entries must be modified. Once the login process for such a user
is successfully completed, the specified application program begins to execute; once the program is
completed, the user will automatically be logged out.

Unfortunately, not all programs can be used in this way; if the program requires interactive use (for
example, input of a variable is required) then sometimes simply using the program instead of the
login shell will not work. UNIX provides a restricted shell to address such demands.

A restricted shell, specified as rsh, represents a modified version of a regular shell in which some of
the "dangerous" UNIX commands are disabled (the term dangerous should be read considering the
alternative, unrestricted use of the shell). This means that the cd (change directory) command is
disabled, as are other commands designed to take the user out of the current directory. In this way,
a user stays only in the home directory, has a restricted number of available UNIX commands
sufficient to perform a specific job, but does not have the usual control over the system.

Another possible way to keep a user within the application is to execute the application program
within the user login initialization file. Such an approach could be easier to manage (a specific user
environment can be set first, and then the application started), but is more difficult to keep secure; a
user could try to find a bypass during the login procedure to reach the shell.

7.2.2 Users and Secondary Groups

Assigning users to an additional group, or even several groups, is a very common task. Only the
user's primary group is defined in the /etc/passwd file; membership in additional groups, known as
secondary groups, is specified in the group file /etc/group. There is no difference between primary
and secondary groups regarding group ownership and access permissions; the only difference
between them is the way they are specified (the /etc/passwd file versus the /etc/group file). The
BSD platform has never distinguished between primary and secondary groups (except for
accounting purposes); however, the System V platform originally allowed a user to have only one

178

active group and to switch to the other group using the newgrp command. The BSD approach is
prevailing today.

The groups command can be used to display group membership:

groups username Lists groups that username belongs to
groups Lists all user's groups
Alternatively, the id command that lists all of a user's identification data could also be used:

$ id —g username Lists groups that username belongs to
$id -g Lists groups that the user who invokes the command belongs to
7.2.3 Assigning User Passwords

All user accounts must have passwords; a password protects the system from intruders. It is up to
the user to select the password, but some rules must be respected. It is primarily in the user's best
interest to have an unbreakable password — the password maintains the user's data and privacy.
No compromises regarding password issues should be allowed.

The superuser (root) may use the passwd command to assign an initial password for a user
account. When used for this purpose, the command takes the relevant user's name as its argument:

$ passwd Will assign a password for the user with the name username; to avoid typos in
username specifying the new password, the system prompts for the password twice.

The same command may be used at any time to change a user's password, should this ever be
necessary (for example, if a user forgets the password).

Password management and system security are very important UNIX issues, and they have been
improved very much throughout the lifetime of UNIX. While in the past only some System V flavors
supported the passwd —f option, which expires a password, forcing the user to change it at the next
login, today the passwd command is a versatile command that supports a number of options.
However, this is a topic for the section on UNIX security in_Chapter 8.

A user can also change his own password. By using the passwd command (without any argument)
the user starts the procedure for the password change. The user will first be prompted for the old
password, (as a security precaution), and then twice for the new one.

7.2.4 Standard UNIX Users and Groups

All UNIX flavors predefine several standard users and groups. User names and group names are
mutually independent and have no inherent relationship, even when the same name is used.
Although the user and group names are arbitrary, and can vary among different UNIX platforms and
flavors, there are some standard users and groups. A list of some of them, with brief descriptions,
follows. This list is far from complete; these are simply a few common user and group system
entities. Some discrepancies, especially regarding entry descriptions, are also possible.

The standard UNIX users are:

User uiD Comments

root 0 |The superuser has unrestricted access to all aspects of the system; most
administrative activities must be performed by the superuser

179

daemon|1 |Used to execute system server processes; only exists to own these processes and
the associated files, and to guarantee that they execute with the appropriate file
access permission

bin 2 |Owns some executables

Sys 3 |Owns some system files

adm 4 |Typically owns the accounting files

uucp |5 |An old-fashioned UNIX-to—UNIX copy subsystem account; the user that owns the

uucp tools and files

operator A user with read-only access to the entire filesystem and write access as a normal
user; for system operators who need to do backup, initiate system shutdown, and
perform some other administrative functions

nobody |- 2 |Account primarly used by NFS; nowadays also by browsers; UID = — 2 appears in the
/etc/passwd file as a very large integer (UIDs are presented as unsigned data type
numbers)

These accounts are seldom used for login (except roof), so their passwords are consequently
disabled in the password field in the /etc/passwd file (or in the /etc/shadow file — to be discussed in

Chapter 8).

The standard UNIX groups are:

Group |GID Comments
root 0 |In principle, a highly privileged group that own's system-related files and directories
daemon This group exists to own spooling directories /usr/spool/* and programs responsible

for transferring files. The spooling directories are temporary resting places for files
that are waiting to be printed, to be transferred by uucp, or to be processed by some
other subsystem. Owning these programs and directories provides additional security
— they are not public, so no individual user can access them directly. Spooling
programs use the SGID access mode, and users can only manipulate the files in
these directories in ways allowed by the programs themselves

kmem (2 |The BSD-like special group that owns some system programs needed to read kernel
memory directly (like ps and psiat)

Sys System V-like, this group is the same as the BSD-like group kmem

tty This group owns special files connected to terminals; it controls access to the
terminals

others Group that may be used to own user-related resources

users

7.2.5 Removing User Accounts

The system's users are constantly changing; new users are added, and some old users may stop
using the system. There are many reasons: students are graduating and leaving college, employees
are moving to other companies, a worker is no longer involved in a particular project. Administrators
must therefore be ready to remove user accounts.

Removing a user account sounds very simple: remove the corresponding user entry in the
/etc/passwd file, and delete the user's home directory. It is not always so simple, though; the full
removal of a user from the system can sometimes be a very tricky job and requires a careful
approach.

180

However, disabling a user account is really very easy, and sometimes quite sufficient. It is also
recommended to start the removal of a user account by first disabling it. Simply changing the user's
encrypted password in the /efc/passwd file to an asterisk will effectively deactivate a user's account.
This method prevents file ownership problems that can crop up when a username is deleted.

When more drastic action is required, UNIX flavors usually offer utilities to remove users from the
system, similar to the ones employed to add users to the system; some flavors even provide built—in
commands for this purpose. Unfortunately, the automatic removal of a user's files from the system
could be risky, so there is always a lot to be done by hand.

When removing a user from the system, a number of issues should be considered:

¢ Removing the user's mail files

e Removing the user from the mail aliases (the file /usr/lib/aliases), or redefining the alias to
send mail to someone else

e Removing pending print requests

¢ Performing any other site—specific termination activities that may be appropriate

Users frequently interact with UNIX systems, but there are other ways a user's requests and jobs
could be submitted. Time-related UNIX utilities provide this function:

cron Enables the submission of a user's jobs for periodic execution
at Enables the submission of a user's jobs for execution at specific (usually off-peak) times

batch Enables the submission of a user's jobs for execution at off-peak times, when the system is
less busy

Removing a user account also includes making sure the user has not left any pending cron, at, or

batch jobs in the system.

7.3 Disk Quotas

Disk space shortages are a very common problem on all systems. Often some users use the
available disk space in an inappropriate way, storing and keeping everything on the system. In a
multi—-user environment such behavior is intolerable. The UNIX disk quota facility allows an
administrator to limit the amount of filesystem storage that a user may consume. If quotas are
enabled, the OS will maintain separate quotas for each user's disk space and the total number of
files the user owns on a filesystem. Originally a BSD facility, the disk quota is common today in all
UNIX flavors.

There are two distinct types of quotas: a hard limit and a soft limit. A user is never allowed to
exceed the hard limit; the user will receive a message that the quota has been exceeded, and any
more data storage will be refused. The soft limit may be exceeded only temporarily, for a limited
period of time; in such cases a user will receive a warning message, but the OS grants additional
storage if requested. The warning will be repeated as long as the user does not reduce the disk
usage, or the limited warning period expires. If either happens, at this point the OS will react as it
would in the case of a hard-limit violation.

7.3.1 Managing Disk Usage by Users

The system administrator must decide which filesystems need quotas (a disk quota is implemented
on the filesystem level); usually, candidates are filesystems where users reside (/home, /users,

181

etc.). Once the decision is made, setting the disk quota requires several steps. The first step is to
modify the entry for the selected filesystem in the filesystem configuration file /etc/fstab (or
/etc/vistab); the option which defines the quota (usually quota, or rq) must be set, and the filesystem
remounted. Next, a file named quotas (owned and writeable only by the superuser) must be created
in the top-level directory of the filesystem for which the disk quota has been established, as in the
following example:

$ cd /fs-top-dir # /fs—top—dir corresponds to the to the top—most directory of the selected
filesystem, i.e., the filesystem mount—point

$touch quotas # create an empty file "quotas" (a mandatory filename)

$ chmod 600 # make it read-write—only for the superuser

quotas

At this point, the general issues concerning disk quota are resolved; now, it is time to set the users'

quota limits. This must be done individually for each user, and the limits may be determined

arbitrarily among the different users. The edquota command is available to establish filesystem

quotas (this is the only program available to edit quotas, and it invokes the standard editor — vi by

default). The command can be used for a single user, or simultaneously for more users:

#edquota username (s)

The edquota command will create the hard and soft limits for the specified user and the
corresponding filesystem. Each user is specified by one line of the form:

fs /fsname blocks (soft=10000, hard=12000) inodes (soft=0, hard=0)

The disk space (determined by blocks) and the maximum number of user's files (determined by
inodes) can be limited; a 0 value indicates no limits.

The edquota command has several options:

-t Edit the time limits for filesystems (time limits are set on filesystems, not users); the default
value is usually seven days

—p To copy quota settings between users, for example:
e edquota -p username1 usernameZ2 username3 etc.

means copy quota settings from the user username1 to other users: username2, usernames3,
etc.
After all quota limits are defined, the quotaon command must be used to enable the disk quota
facility (some systems enable quota checking automatically with filesystem mounting). Alternatively,
the quotaoff command is used to disable quota checking.

The quotacheck command is available to check the consistency of the file quotas for the specified
filesystem with the current actual disk usage. Finally, the repquota command is available to report
the current quotas for the specified filesystem. An example follows:

#repquota -av
/dev/dsk/c201d6s0 (/) :

Block limits File limits
User used soft hard timeleft used soft hard timeleft
bjl —— 140 10000 12000 73 0 0
vasili —-— 121 10000 12000 63 0 0
ggu —— 1025 10000 12000 140 0 0

182

park—- 5 10000 12000 5 0 0
dubey - 7836 20000 23000 790 0 0
mdb - 77 10000 12000 13 0 0
xut - 837 10000 12000 44 0 0
aizin - 69 10000 12000 1z 0 0

This report refers to the brand new HP-UX workstation, which had only a few active users at that
time.

7.4 Accounting

UNIX provides versatile process accounting. The accounting subsystem records statistics about
each process that is running on the system; it records process RUID (i.e., the UID of the user who
started the process) and the system resource usage. It is designed primarily for tracking the system
resource usage so users can be charged accordingly. However, the recorded data can also be used
efficiently for other purposes, like some types of system performance and security monitoring.

The accounting subsystems on the two major platforms, BSD and System V, are different, although
both are based on the very same concept. This accounting concept is simple: perform a fast
recording of the necessary raw data, and later a slower processing of the recorded data. While the
first part, the recording of raw data, is quite similar on the two UNIX platforms, the data processing
and output methods and data formatting are very different. Besides that, on the BSD platform the
accounting is enabled by default; this means the administrator must prevent the accounting if it is
not desired. On the System V platform, the accounting is initially disabled and must be set by the
administrator if needed. Enabling and disabling of the accounting is provided through the system rc
initialization, although it can be done also from the command line.

A special system entity (a system user) adm manages accounting; all accounting—related resources
(programs, directories, and files) are owned by adm. When accounting is enabled, the kernel
records raw process data to a binary data file that resides in the home directory of adm:

For BSD and SunOS:

/usr/adm/acct and /var/adm/acct

For System V and AlX:

/var/adm/pacct and /usr/adm/pacct

Recorded raw data about processes include:

¢ Image name

e CPU time used

e Time the process started

¢ Associated UID and GID

e Memory usage

e Number of characters read and written

e Number of disk 1/0O blocks read and written
e |nitiating TTY

e Various associated flags

183

Additional accounting data are stored in files:

A binary log file containing data about currently logged—in users
e /etc/utmp

A binary log file that records each login and logout
e /usr/adm/wtmp

A database containing the date and time of the last login for each
e /usr/adm/lastlogser
The three listed files originate in, and are a part of the accounting subsystem; however, they
became standard files for almost any UNIX flavor, containing important data about login/logout
activity on the system. Some UNIX commands rely on these data.

7.4.1 BSD Accounting

Accounting is enabled by default on the BSD platform; this means the appropriate startup command
sequence is included in the system initialization rc script /etc/rc:

if [—-f Jusr/adm/acct]; then
accton /usr/adm/acct; echo -n 'accounting' > /dev/console
fi

The accton command starts (enables) accounting when an accounting file (a destination for raw
data recording) is specified as its argument. If there is no argument, this command disables
accounting. Obviously, the only condition to start accounting is the existence of the raw accounting
file /Jusr/admy/acct.

Accounting is a continuous recording of data, and the accounting file grows steadily. To control the
growth of the accounting file /usr/adm/acct, periodic file processing and resizing are required. The
tool for this is the sa command (program); sa processes recorded raw data and merges processed
data into the standard summary file /usr/adm/savacct or the user-based summary file
/usr/adm/usracct (option —m).

Here is an example of how to use the sa command:

accton # temporarily disable accounting
cd /usr/adm # move to the accounting directory
mv acct acct.tmp # rename the accounting data file
touch acct # recreate a zero-size accounting file
accton acct # re—enable accounting

sa -s acct.tmp > /dev/nul # merge data into the standard summary file "savacct" with all
generated reports discarded
rm —-f acct.tmp # delete the temporary accounting file

A similar script could be created and periodically executed via the cron facility (cron is covered

later in the_Chapter 13).

The accounting data should be saved and processed before a system shutdown. The accounting
shutdown procedure must be provided on time. However, in the event of a system crash, special
steps must be taken: all accounting records must be manually closed, saved, and processed before
accounting is restarted. The procedure essentially includes the same command sequence as in the
previous example, but it must be accomplished before the system reaches a multi-user state.
Practically, it means that during system booting, accounting startup has to be completed before the
execution of the rc initialization script /etc/rc; if the system crashed earlier, everything has been

184

done in the single—-user mode.

The aforementioned command sa includes a number of options; this is a versatile program that can
process recorded accounting data in a number of ways. For the proper use of the sa command, the
existing manual pages should be consulted.

Another useful tool is the ac program, which reports on user contact time. It relays data in the file
/usr/adm/wtmp, containing records on users' logins and logouts. The ac program also provides a
number of options.

7.4.2 System V Accounting

The System V accounting subsystem is more powerful and versatile than the BSD one. System V
uses an automated accounting system, and it includes a suite of commands, shell scripts, and C
programs designed for accounting purposes; together they offer a great deal of flexibility.

We briefly describe how System V accounting works. As is common for accounting, the related
directories are /usr/adm or /var/adm; and, as is common for System V, there is a dedicated directory
hierarchy structure starting with /usr/adm/acct (instead of the individual files typical in BSD). Three
additional subdirectories are fiscal, nite, and sum.

The three directories provide:

Keeps reports by fiscal period (usually monthly) and old binary fiscal

period summary files
/usr/adm/acct/fiscal

Keeps daily binary summary files; daily process accounting records;

raw disk accounting records; and status, error log, and lock files
/usr/adm/acct/nite

Keeps daily binary and current fiscal period cumulative summary files

and daily reports
/usr/adm/acct/sum

Several other files are of special interest:

Previously described binary data file in which the kernel writes raw

data

/var/adm/pacct
Previously described binary log file that records each login and
logout attempt

/var/adm/acct/wtmp

A raw disk usage data file

185

/var/adm/acct/nite/diskacct

A file to store additional charge records specified by the
administrator, using the chargefee command; these are extra
/var/adm/fee charges for special services not covered by the accounting system

A simplified flow chart of processed data in the System V accounting subsystem is presented in
Figure 7.1.

L L

L L ~ L —
login init]] [UNIX kernel] [dodisk chargefee

o

acct/

Files with wtmp pacct nite/
raw data diskacct

runacct & al.

y £
” = acct/ acct/ acct/ acct/
F'l_es with nite/ sum/ sum/ sum/
daily data dayacct daycms loginlog tact”

g\
Files with acct/
cumulative sum/
data cms
|
[=,

acct/ acct/

fiscal/ sum/

Reports fiscrpt* e

Figure 7.1: System V accounting subsystem.
The kernel (some of the available commands could also be used) enters initial data in the raw data

files; these data are then processed by a series of utilities, producing several intermediate binary

186

summary files. At the end, there are final ASCII reports suitable for use by the system administrator.
Any step in the data processing could be performed manually, but with the cron facility everything
can be handled automatically. Accounting utilities and other related commands such as runacct,
acctmerg, prdaily, and monacct live in the directory /usr/lib/acct. (on HP-UX 10.xx this is the
/usr/sbin/acct directory):

$ 1s -C /usr/lib/acct (Solaris 2.x)

acctcms acctmerg chargefee monacct ptelus.awk utmpZwtmp
acctcon accton ckpacct nulladm remove wtmpfix
acctconl acctprc closewtmp prctmp runacct
acctcon2 acctprcl dodisk prdaily shutacct
acctdisk acctprc2 fwtmp prtacct startup
acctdusg acctwtmp lastlogin ptecms.awk turnacct

Daily and cumulative summary files, as well as report files, are specified by the corresponding
self-explanatory names; in the case of report files, ddmm corresponds to the date (day and month).

The last step is to enable the accounting subsystem. This means the accounting should start at the
system booting. The administrator performs the following steps to enable accounting (in Linux there
is one more directory level /etc/rc.d):

e Checks the rc start/stop script acct for the accounting subsystem in the /etc/initd.d directory,
and creates the file if it does not exist

e Creates the symbolic link in the /etc/rc2.d directory (assuming the run level 2 corresponds to
the multi—user mode): /etc/rc2.d/S22acct —> /etc/init.d/acct. The startup script should initiate
accounting

e Creates the symbolic link in the /etc/rc0.d directory: /etc/rc0.d/K22acct —> /etc/init.d/acct.
The stop script should invoke the shutacct command to shutdown accounting

¢ Adds the necessary crontab entries for various accounting utilities for the users adm and
root (often, these entries already exist, and will only need to be activated)

Once these steps are completed, the accounting subsystem will start at the system booting.

For a better understanding of the start/stop procedure, the previously mentioned script files for
Solaris 2.x flavor are presented here in part.

$ cat /etc/init.d/acct
#!/ sbin/sh

Copyright (c) AT&T
All Rights Reserved
state=S51

'start')

echo "Starting process accounting"
/usr/lib/acct/startup
;7

'stop')
echo "Stopping process accounting"
/usr/lib/acct/shutacct
e

esac

187

The main parts of the start/stop procedure are the programs: /usr/lib/acct/startup and
/ust/lib/acct/shutacct. Both programs are scripts, as seen here:

$ cat /usr/lib/acct/startup
#!/ sbin/sh

Copyright (c) AT&T
All Rights Reserved
"startup (acct)- should be called from /etc/rc whenever system is brought up"

PATH=/usr/lib/acct:/usr/bin:/usr/sbin
acctwtmp "acctg on" /var/adm/wtmp

turnacct switch

"clean up yesterday's accounting files"
rm -f /var/adm/acct/sum/wtmp*

rm -f /var/adm/acct/sum/pacct*

rm -f /var/adm/acct/nite/lock*

Solaris provides the turnacct command to start or stop accounting, depending on the attached
argument. This command replaces the BSD accton command.

The script to shutdown accounting is:

$ cat /usr/lib/acct/shutacct
#!/ sbin/sh

Copyright (c) AT&T
All Rights Reserved

"shutacct [arg] - shuts down acct, called from /usr/sbin/shutdown whenever system is taken down"
"arg added to /var/wtmp to record reason, defaults to shutdown"

PATH=/usr/lib/acct:/usr/bin:/usr/shin
_reason=S${1-"acctg off"}

acctwtmp "${_reason}" /var/adm/wtmp
turnacct off

7.4.3 AIX-Flavored Accounting
On the AIX platform, the following steps are required to set the accounting subsystem:

¢ As the superuser, execute the nulladm procedure (program) to ensure that each involved
file has the proper access permission code 664.

¢ Update the file /usr/lib/acct/holidays that contains the timetable for the accounting system.

e Turn on process accounting in the rc initialization script file /etc/rc — activate the line
/usr/etc/acc/startup.

e Specify the filesystems covered by the accounting subsystem; in the filesystem configuration
file /etc/filesystems, check for an entry account=true in the stanza for each related
filesystem.

e Enable printer usage accounting by adding the stanza acctfile=/usr/adm/qacct in the
/etc/qconfig file.

e Schedule daily and monthly accounting, and fiscal summaries for automatic execution, using
the cron facility — modify the file /usr/spool/cron/crontabs/adm.

e Set the environment variable PATH in the systemwide profile file to include /usr/lib/acct.

188

Chapter 8: UNIX System Security
8.1 UNIX Lines of Defense

System security is an extremely important issue, especially today, when computer systems are
networked and directly exposed to an unknown number of intruders. UNIX designers could not
anticipate such extensive development of computer technologies, but they have paid significant
attention to system security and have provided a decent level of basic system protection. Standard
UNIX offered two basic ways to prevent security problems:

1. Passwords were designed to prevent unauthorized users from obtaining access to the
system at all.

2. File permissions were designed to allow access to the various commands, files, programs,
and system resources only to designated individuals or groups of authorized users.

On a stand-alone system, which is isolated from the external world, this approach was sufficient.
On a system connected to the network, however, which communicates with other known and
unknown computer systems, everything is more complex and there are additional risks. For
example, under some circumstances network access can bypass the regular password
authentication procedures, so the system may be only as secure as the other "trusted" systems on
the network.

Passwords and file permissions are certainly useful and necessary, but they should be only a part of
an overall security strategy for the system itself, based upon its needs and potential threats. Various
lines of defense may be set to protect the system; each of them should be seriously considered,
and most of them are relatively easy to implement.

We will discuss the most common types of system defense. Although all of them are not exclusive
to UNIX, they can certainly be used in UNIX systems. Some of them are part of the generic UNIX
security and others are optional, but they are all widely implemented across all UNIX platforms.

The UNIX security features we will discuss here are not perfect. There are third—party add-on
security packages available on the market for sites that require a higher level of security, but they
are out of the scope of this text.

8.1.1 Physical Security

The first line of defense is the physical access to the UNIX system (the computer itself). From
today's point of view, users do not need physical access to the system at all. They can use the
system extensively without being physically near it. Visual contact between a user and the system is
not a condition for successful communication (however, this is not the rule for successful system
administration).

Some of the most common issues related to the physical security of the system are:

¢ Preventing theft and vandalism by locking the door or locking the equipment to a table or
desk

e Restricting access to the system console and computer itself. To prevent the system from
crashing and rebooting to the single—user mode (which is an unsecured system mode), lock
the key in the secure key position (if applicable) and keep the key safe

189

e Controlling environmental factors such as power supply, air conditioning, and fire protection
as much as possible

e Restricting (or monitoring) access to other parts of the system (terminals, modems, network
facilities, and printers) to prevent vandalism on these exposed parts (which is a frequent
problem)

e Restricting access to backup tapes, in particular, to protect system data

8.1.2 Passwords

If an unauthorized individual gains physical access to the system, user authentication is the next
line of defense; a password keeps the system closed off, preventing unauthorized users to access
the system's files (programs and data). One weakness of passwords is that if someone breaks into
an account by finding out its password, the intruder has all the rights and privileges of the legitimate
user.

There are a variety of methods for adding additional stumbling blocks if a password is broken, such
as:

e Secondary authentication programs, which require additional input before granting access to
the system

e Dialup passwords, which act as a second password when logging in via a modem

e Enhanced network authentication systems (like Kerberos) designed to protect networked
systems and fileservers; some of these systems are very complex to install and maintain

¢ Additional authentication—-based security identification devices (tokens) synchronized with
the system

The system administrator must be sure that all available measures for system protection are
implemented before the decision is made to upgrade a system's security. In doing this, special
attention should be paid to the password-related files. It is crucial that each entry in these files
includes an encrypted password or asterisk. Entries with empty password fields are extremely
dangerous for the system and they represent large security holes in the system's defenses.

8.1.3 File Permissions

The next line of defense against an undesired intruder into the system is the file protection. Properly
set file permissions can prevent many potential security problems. Any success in breaking into the
system through the password's defense line is worthless if the protected files the intruder is
interested in cannot be reached. Breaking into a user account means access is still restricted from
most system resources that require high priority user's credentials. The most vulnerable aspects of
file protection are the SUID and SGID access modes, because they very often enable superuser's
access rights.

Some UNIX flavors provide additional ways to limit nonroot users' access to various system
resources. Disk quotas, system resource limits, and printer and batch queue access restrictions
protect computer subsystems from unauthorized use. A number of different attackers, which attempt
to overwhelm systems by completely consuming their resources, present a permanent threat. They
carry different names: bacteria, rabbits, locusts, viruses, worms, and Trojan horses but their
intentions are the same.

190

8.1.4 Encryption

There is one hope against a complete loss of security if the root account is compromised:
encryption. For some types of data files, encryption can be a fourth line of defense, providing
protection against cracked root and other privileged accounts. Encryption involves a transforming of
the original file (the plain or clear text) using mathematical functions or techniques. Encryption can
protect data stored in the files under certain circumstances:

e Someone breaking into the system (typically as the root) and copying the data

e Someone stealing the disk, or backup tapes (or floppies), or the computer itself in an effort to
get the data

e Someone acquiring the files via a network

Encryption can protect data from being read by unauthorized people, but it cannot prevent their
corruption. It cannot prevent an intruder from deleting the data.

Most encryption algorithms use some sort of key as part of the transformation, and the same key is
needed to decrypt the file later. The simplest kinds of encryption algorithms use external keys that
function much like passwords; more sophisticated ones use part of the input data as a portion of the
key.

UNIX provides a simple encryption program crypt, using an old encryption scheme that is relatively
easy to break; cryptimplements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are quite well known.
Encryption and decryption are based on the implemented key as an argument that selects a
particular transformation. The overall security is based primarily on the choice of the key and its
vulnerability (keep in mind, the implemented key is visible during the encryption procedure). The
encryption could be made a little more secure by running the program multiple times on the same
file.

Many UNIX flavors offer the Data Encryption Standard (DES) encryption subsystem as an optional
product. DES is generally regarded as very secure, although rumors flourish about supposed
built-in weaknesses. DES encrypted files are believed to be breakable, but only at great CPU-time
expense.

8.1.5 Backups

Backups provide the final line of defense against some kinds of security problems and system
disasters. Stolen, deleted, and corrupted data can only be recovered from the backup. A good
backup scheme will almost always enable you to restore the system to something near its state at
any arbitrary point in time; a worst—case scenario would be to recreate the system on entirely new
hardware.

Backups provide protection against data loss and filesystem damage only in conjunction with
frequent system monitoring designed to detect security problems quickly. Otherwise, a problem
might not be discovered for some time. If this occurs, then backups will simply save the corrupted
system state, making it necessary to go back weeks or even months to a known "clean" system
state and restore by hand newer versions of files not affected by the corruption. In such a case,
system recovery could be very hard work; nevertheless, system recovery is still possible.

191

8.2 Password Issues

Passwords play a crucial role in UNIX system protection; most UNIX systems are as secure as the
implemented password policy. There are no compromises in the password policy; all available
administrative tools are legal and recommended to enforce appropriate password implementation.
This is an extremely sensitive administration issue, and a more detailed overview of password
related issues follows.

8.2.1 Password Encryption

A password should never appear in its original form (often known as a clear password); the system
handles only the encrypted passwords. A written clear password is an immediate security risk
because a potential intruder can use it at any time. Only the users themselves should know their
clear passwords. Today, the usual method of remote login to the system through the network
involves a transfer of a password during user authentication; this makes the system more
vulnerable to attackers, because it is possible to sniff and catch the user password on the network.
Obviously, networking has introduced one more level of security risk, and we must handle this
problem appropriately.

UNIX provides a decent generic password encryption that is compliant with the Data Encryption
Standard (DES); it is based on a one-way hashing encryption algorithm with multiple variations
intended to increase security and frustrate any use of hardware implementations of a password
search. Only the first eight characters of the clear password are used; the rest are ignored. Another
input argument is a salt (also known as a seed): a two-character string chosen from lower—case
letters, capital letters, numbers, and dot and slash characters ("." and "/"). The saltis used to
perturb the hashing algorithm in one of 4096 different ways, after which the password is used as the
key to repeatedly encrypt a selected constant string. The final output is a unique encrypted
password with its first two characters equal to the input salt.

The implemented one-way encryption algorithm makes decryption of the encrypted password
impossible (although the salt is known from the encrypted password). The only way to break an
encrypted password is to try with many guessed original passwords and by implementing the known
DES encrypting algorithm to search for a matching encrypted password. This is exactly how the
system performs password authentication during the login process.

UNIX provides the passwd command to generate an encrypted password based on the original
supplied password and the time-related salf generated in that instant; the encrypted password is
then saved in the password file (originally /etc/passwd ; today /etc/ shadow). In that way, the system
knows about the salt to be used in future password authentication, as well as the encrypted
password that should be matched.

From the security standpoint, any attempt to break a password without knowing the encrypted
password is hopeless. However, by knowing the saved encrypted password (the salt and the
encrypted password itself), breaking the password becomes more promising, although it promises
to be a difficult, time—consuming job, with no guarantee of success. This is why the UNIX password
encryption was characterized as "decent" at the beginning of this section: it is breakable, but it is
extremely difficult to do so.

Obviously, the encrypted password should be hidden to increase system security and should be
known only to the authentication subsystem. We will return to this issue later.

192

8.2.2 Choosing a Password

Passwords are used to prevent unauthorized people from accessing user accounts and the system
in general. Even with the implemented password encryption algorithm, a password should be hard
to guess. This means the first step of choosing a password is crucial from the system security
standpoint. Generally, a password must be a nonobvious combination of letters and numbers, never
directly related to the user. There are some rules that should be respected in choosing an
appropriate password. We will start with the items that should be avoided as passwords:

e Any part of the user's name, or the name of any member of the user's extended family (even
a grandmother's maiden name is much easier to find out than you might think)

e Numbers that are significant to you, or to a person significant to you: SSN, car license,
phone number, birthdates, etc.

e The name of something important to you, like your favorite food, recording artist, movie, TV
character, place, etc.; the same goes for people, places, and things you hate

e Any names, numbers, people, places, or other items associated with your company or
institution or its products

e English words spelled correctly, especially if they appear in online dictionaries; the spell
command can be used to check if a word appears in the UNIX online dictionary

e The names of famous people, places, things, fictional characters, movies, TV shows, songs,
slogans, and the like

e Published password examples

Avoiding the listed items makes it harder for someone to figure out a user's password and break into
the user account using a brute force trial and error method. Also, be aware that there are a number
of commercial and homemade programs to break passwords. Once the encrypted password is
known, the original password will be very quickly broken.

Simple modifications of any of these bad passwords, created by adding a single additional
character, spelling it backward, or permuting letters, are still bad passwords and should be avoided.
It does not take a password-guessing program very long to try all combinations of adding one
character, reversing, and permuting.

Passwords that use two or more of the following modifications to ordinary words are usually good
choices:

e Embedding one or more extra characters, especially symbol and control characters
e Misspelling it

e Concatenating two or more words or parts of words

e Interleaving two or more words

Modern UNIX flavors require passwords chosen by users to conform to certain rules, usually
including being at least six characters long, including at least two alpha characters and one numeric
or special character, and having at least three characters different from the previous password
(when a password is changed). The superuser generally is not required to adhere to these rules.

Some general recommendations about passwords and system security are:
¢ The root password should be changed regularly.
e Users should be encouraged to keep their password secret and to choose passwords that

are hard to guess.
e There should be no unprotected accounts on the system. This includes accounts without

193

passwords, and still active accounts of users who have left, protected by their original
passwords.

e Finally, it is a good idea to restrict the length range for the password; eight characters for the
maximum length is a good choice; longer passwords could be typed in, but any extra
characters are ignored.

8.2.3 Setting Password Restrictions

Breaking a password is a time—consuming job; good UNIX administration makes this job even more
difficult. One of the ways to accomplish this is to force users to follow the established guidelines for
safer passwords. These criteria are primarily related to the password time restrictions (known as
password aging) and the password contents.

A periodic change of the password is an important step in password protection against attackers. A
broken password is useless for an intruder if the password was changed after the break. However,
no one likes to change passwords; once a user becomes familiar with the password it can be
difficult to change it and learn a new one. Modern UNIX flavors, however, provide mechanisms
whereby users can be forced to make these changes. An administrator can specify a maximum
password lifetime (to force a user to change passwords after a certain period of time), minimum
password time (to force a user to keep a new password for a certain period of time), the minimum
password length, and sometimes other parameters. Setting a minimum and maximum password
lifetime is referred to as specifying the password aging.

Old-fashioned UNIX flavors were not as concerned about password restrictions; this concept came
later with other security improvements, when experiences in UNIX usage taught UNIX designers
about existing real-life security challenges.

On UNIX platforms, restrictions are introduced by using the passwd command with various options.
A few options, not necessarily supported by all UNIX flavors, are:

Option Meaning Example
—f Force the user to change the password on the next login

passwd —-f username

-n Specify a minimum password life time (the password cannot be
changed during this time)
passwd -n 1 username

-X Specify a maximum password time (the password must be
changed after this time)

passwd -x 158 username

password aging may vary
between 1 and 158 days

- Lock a password so the user cannot login

passwd -1 username

194

Password aging is a questionable issue. Too-frequent password changes could be
counterproductive. It is easy to forget a new password, and it could be a new burden for the
administrator (only the superuser can change a user's forgotten password).

The administrator should carefully consider how many of the available restrictions should be used
on a specific system. Imposing too many password restrictions, sometimes pejoratively called
password fascism, tends to be very unpopular among users and carries some hidden
disadvantages. Obviously, all aspects of setting password restrictions should be seriously
considered before any final decision is made. Luckily, UNIX is sufficiently flexible to meet almost
any need.

8.2.4 A Shadowed Password

The /etc/passwd file has general read permission, so the file may be read by everyone (any
logged-in user, or any process). Although the password portion of the file is encrypted, it is visible
at any time by anyone. This visibility of the encrypted password increases the possibility of breaking
the password. To increase security, modern UNIX flavors split the data in the /etc/passwd file into
two files; all security—relevant information is removed from the /etc/passwd file and stored in a
separate file with access restricted only to the superuser and members of a selected group. This file
is known as a shadowed password file, and its name and entries vary from one UNIX flavor to
another. The format of the file is similar to the /etc/passwd file, but each entry includes only
password-related data for a specified user (the first field in the entry specifies the username).
Password-related data include the encrypted password, time of the last modification, password
aging data, and other additional data (some of the existing fields are reserved for future use).

8.2.4.1 Usual Approach

Keeping password-related data hidden is a significant security improvement, and makes any
potential intruder's job much more difficult and the system itself more secure. We will elaborate on
the shadowed password file implementation through a few examples.

On Solaris 2.x the shadowed password file is named /etc/shadow:

#1ls -1 /etc/passwd /etc/shadow
—-rw-r——-r-— 1 root sys 818 Aug 31 10:35 /etc/passwd
—r——————— 1 root sys 454 Sep 1 10:34 /etc/shadow

As can be seen, only the superuser can read the shadowed password file. Root access is required
to find any encrypted password. If an intruder already has root access privileges, there is no need to
bother with encrypted passwords at all, because the system is already defenseless.

The contents of the two files are:

$ cat /etc/passwd
root:x:0:1:0000-Admin (0000) : /root:/sbin/sh
daemon:x:1:1:0000-Admin (0000) :/:
bin:x:2:2:0000-Admin (0000) : /usr/bin:
levi:x:100:1:Bozidar Levi:/home/levi:/sbin/sh
gale:x:102:1:Gale Pedowitz:/home/gale:/sbin/sh
vxs:x:105:1:Veronika Simonian:/home/vxs:/sbin/sh

195

The password field in the /etc/passwd file is marked by "x", indicating to the system the need to
check the shadowed password file for the encrypted password.

$ cat /etc/shadow
root :MhdgjkrWmdlTg:6445::::::
daemon:NP:6445::::::
bin:NP:6445::::::
levi:ALCVt jei5TBd. :9226::::::
gale:wNdIhPIAY6A1A:9399::::::
vxs:VDjsSPUF7k3cwc:9384::::::

Each entry in the /etc/shadow file has the form:

username:password:lastchg:min:max:warn:inactive:expire:flag
where:

username The user's login name
password The encrypted password (NP indicates non-login accounts)
lastchg The date of the last change (modification), also encrypted

min The minimum number of days between changes
max The maximum number of days the password is valid
warn The number of days before a user is warned

inactive The number of days of allowed inactivity
expire An absolute date when the login expires

flag Reserved for a future use
Obviously, it is possible to perform very fine adjustments for each user's password. In this example,
a majority of the password options have not even been implemented.

8.2.4.2 Other Approaches

The next example is from ULTRIX 4.3. This example is primarily interesting because it shows a
slightly different approach to the same problem (Digital's ULTRIX 4.3 is an obsolete UNIX flavor
now). In ULTRIX the name of the shadowed password file was /etc/auth.

#ls -lg /etc/passwd /etc/auth
—rw—r——r-—- 1 root system 186340 Sep 7 13:57 /Jetc/passwd
—-rw-r————-— 1 root authread 88621 Sep 8 11:45 /Jetc/auth

Here a special, untypical group "authread" was introduced for authentication purposes. Only
members of this group and the superuser had access to the shadowed file.

The password fields in the regular /etc/passwd file were marked by the asterisk (*):

cat /etc/passwd | grep "lev"
levya:*:10694:1030:1evya:/home2/math/levya:/bin/csh
levitm:*:11246:1030:1evitm:/home2/math/levitm:/bin/csh
levi:*:11540:2020:1evi:/home3/instructors/levi:/bin/csh

An asterisk in the password field indicated that the password-related data were located in the

196

shadowed file /etc/auth. This could be somewhat confusing, given the earlier suggestion of how to
disable login access for an active user's account; obviously for this flavor the asterisk had a different
meaning.

The format of an entry in the /etc/auth file was:
UID:password:lastchg:min:max:accmask:count:auditID:auditctrl:auditmask

where:

uiD The user's ID
password The encrypted password
lastchg The time of the last change (modification)

min The minimum number of sec required between changes
max The maximum period of time the password is valid
accmask Special user's account parameters

count The count of unsuccessful login attempts

auditID The identifier used in generating audit records
auditctrl The control in generating audit records

auditmask The mask to determine which events will be audited
On the AIX platform, the following files contain password relevant data:

The passwd command

/usr/bin/passwd

Contains user IDs, user names, home directories, login shell, and finger
information
/etc/passwd

Contains encrypted passwords and security information

/etc/security/passwd

The format of the /efc/passwd file is typical, with the only difference being that an asterisk (*) in the
"password field" indicates an invalid password (no one can login), while an exclamation point (!)
points to the password-related data in the /etc/security/passwd file (this is a common and normal
situation).

A password must be specified in accordance with the password rules in the "pw_restrictions stanza"
of the configuration file: /etc/security/login.cfg, which includes:

min_alpha The minimum number of alphabetic characters
min_other The minimum number of other characters

min_diff The minimum number of characters in the new password that are not in the old
password — this is not positional; if the new password is abed and the old password
is edeb, the number of different characters is 1

197

max_repeats The maximum number of times a single character can be used in apassword
min_age The minimum age at which a password can be changed measured in weeks

max_age The maximum age of a password. After this age the password must be changed.
This value is measured in weeks

If a user entry in the /etc/security/passwd file is tagged with the NOCHECK flag, the user password

does not have to meet the password restrictions. If this flag is ADMIN, then only the superuser can

change the password. When the superuser changes a user password, the user's entry in the

/etc/security/passwd file is tagged with the ADMCHG flag, and this password must be changed the

next time the user logs in.

Only 7-bit ASCII characters are supported in the passwords. Only the first 8 characters of a
password are significant.

Access to the /etc/security directory is granted only to the superuser and the group "security."
Besides the mentioned files login.cfgand passwd, several other files reside in this directory:

Contains default attributes for new users
e /etc/security/mkuser.default

Contains extended attributes of groups (besides the /etc/group file)
e /etc/security/group

Contains extended attributes of users
e /etc/security/user

Contains environment attributes of users
e /etc/security/environ

Contains process resource limits of users
e /etc/security/limits

Obviously, the AIX platform provides extremely versatile tools to manage users' passwords.

8.3 Secure Console and Terminals

One of the ways to protect a system is to restrict the ways a superuser logs in; if superuser access
to the system is restricted to specific system peripherals, then an additional level of security is
introduced, making everything more difficult for an intruder. This idea originated in the BSD platform
where direct superuser login to the system is allowed only from a console and terminals that are
declared secure. Otherwise, only regular users may login directly (the term directly refers to the
regular authentication procedure of entering the login name); afterwards a user may switch to the
superuser account, if so authorized. In this way system security is increased, because it is easy to
monitor secure consoles and terminals. For other terminals, at least two passwords must be
supplied to reach superuser status. In addition the use of the su command is always logged by the
system and the information is stored in the system log file (usually /var/adm/messages) with precise
data about the time and the username of any su command. If necessary, it is easy to follow who
became a superuser and how and when.

System V originally did not care about secure terminals; by default all terminals were secure.

However, new releases introduced different mechanisms to control superuser login access; System
V vendors accepted the concept of "secure terminals."

198

8.3.1 Traditional BSD Approach

On the BSD platform, the terminal line configuration file /etc/ttys defines secure terminals (this file
corresponds to the /etc/ttytab file on SunOS). Both files are presented in greater detail in_Chapter
11. The file lists all available system terminals. There must be an entry for every terminal port in use
and arbitrary entries for unused ones. A terminal line entry has four fields:

terminal-port command terminal-type status

Each field is explained in the following table.

Field Meaning

terminal-port [The name of the special file in /dev that communicates with the line.
command The command that init should execute to monitor this terminal line.
getty For terminals and modems

none To not create a monitoring process

terminal-type|The name of the terminal type described in /etc/termcap ; the TERM variable will be
set to this value at login.

status Zero or more keywords, separated by spaces:
on Line is enabled
off Line is disabled and the entry ignored
secure Allow superuser (root) logins
window = cmd |init should run emd before the command specified in the field
O] command

A secure terminal is specified by the keyword secure in the statusfield for its entry. It is
recommended to specify only the system console as secure, and never to give secure status to any
modem or network terminals.

8.3.2 The Wheel Group

To become a superuser upon login on a nonsecure terminal means two passwords must be used:
first the user password to login into a user account, and then the root password to switch to the
superuser account. From security standpoint this is already quite an improvement. Generally, a
switch to the superuser account can be accomplished from any user account.

By using the wheelgroup, the number of users who may execute the switch to root can be restricted
to only the members of this group. Members of the wheel group must be specified in the /etc/group
file. In this way, the most sensitive security issue, superuser status (user root), is additionally
protected; only specific users (one or more administrators) may become the superuser from any
given terminal.

8.3.3 Secure Terminals — Other Approaches

HP-UX 10.x introduced the file /etc/securetty, which defines secure terminals that allow direct
superuser login. Usually, this is the console. Here is an example:

cat /etc/securetty
console

199

Solaris 2.x introduced the directory /etc/default that includes a number of files to define the default
system behavior. Among them, the file /etc/default/login defines the login rules, including the secure
terminals:

1s -1 /etc/default

total 26

—-r—-—-r——-r—— 1 bin bin 12 Jan 8 15:08 cron
-r-—-r——-r—— 1 bin bin 10 Jan 8 15:08 fs
-r—-—-r—-—-r—— 1 root sys 367 Jan 8 15:08 inetinit
-r--r—-—-r—— 1 root sys 462 Jan 8 15:27 init
-r—-—r——r—-— 1 root sys 678 Jan 8 15:08 kbd
-r——-r——-r—— 1 root sys 1251 Jan 9 17:26 login
-r-——r——r—-— 1 root Sys 74 Jan 8 15:08 passwd
-r—--r—-—-r—— 1 root sys 819 Jan 9 17:26 su
-r—-—-r—-—-r—— 1 root sys 609 Oct 30 1996 sys—suspend
-r-——r——r—-— 1 root sys 526 Jan 8 15:08 tar
-r—--r—--r—— 1 root sys 16 Jan 8 15:08 utmpd

The contents of the file are (pay particular attention to the CONSOLE section):

$ cat /etc/default/login
#ident "@(#)login.dfl1 1.7 93/08/20 sSMI" /* SVr4.0 1.1.1.1 */
#
Set the TZ environment variable of the shell.
#
#TIMEZONE = EST5EDT
Set the HZ environment variable of the shell.
#
HZ = 100
ULIMIT sets the file size limit for the login. Units are disk blocks.
The default of zero means no limit.
#
#ULIMIT = 0
V2223 EEETEEEIEEEEEEEEEEIELEE LTI EE
If CONSOLE is set, root can only log in on that device.
Comment this line out to allow remote login by root.
#
CONSOLE = /dev/co nsole
HERBBAFHARRRBAFHARRRRAFHARRRARFHARRRRAHHARRRB A AR R 1Y
PASSREQ determines if login requires a password.
PASSREQ = YES
ALTSHELL determines if the SHELL environment variable should be set
ALTSHELL = YES
PATH sets the initial shell PATH variable
PATH = /usr/dt/bin:/ usr/openwin/bin:/ usr/ucb/:/ share/local/bin
SUPATH sets the initial shell PATH variable for root
SUPATH = /sbin:/ usr/sbin:/ usr/dt/bin:/usr/ope nwin/bin:/ usr/bin:/ usr/ucb/:/ share/local/bin
TIMEOUT sets the number of seconds (between 0 and 900) to wait before
abandoning a login session.
#TIMEOUT = 300
UMASK sets the initial shell file creation mode mask. See umask(1).
#UMASK = 022
SYSLOG determines whether the syslog(3) LOG_AUTH facility should be used
to log all root logins at level LOG_NOTICE and multiple failed login
attempts at LOG_CRIT.
SYSLOG = YES

200

8.4 Monitoring and Detecting Security Problems

8.4.1 Important Files for System Security

Some important files for the system security are listed in_Table 8.1.

Table 8.1: Important Files for the System Security

Description

Files

Root account initialization files:

/.profile, /.kshrc, /.cshrc, /.login, /.logout

Other root initialization files:

/.forward, /.mailrc, /.exrc, /.netrc (see note)

Systemwide initialization files:

/etc/profile, /etc/.login, /etc/csh.login, /etc/login

Host equivalency related files:

/etc/hosts.equiv, /.rhosts (see note)

File permissions on device files:

/dev/*

cron and atfiles:

/usr/spool/cron/crontabs/*, /usr/spool/cron/at/*

All dialup related files:

/etc/dialup, /etc/d_passwad, /etc/remote ...

Default system settings:

/etc/default/*

Filesystem configuration:

/etc/fstab, /etc/Vistab, /etc/checklist (HP-UX), /etc/filesystems
(AIX)

Exported (shared) filesystem for
NFS:

/etc/exports, /etc/dfs/share, /etc/dfs/sharetab

User and group configuration:

/etc/passwd, /etc/group. /etc/shadow, /etc/security/* (AIX)

Network related files:

/etc/hosts, /etc/protocols, /etc/services, /etc/netgroup,
/etc/networks

Internet super daemon
configuration:

/etc/inetd.conf

FTP related files:

/etc/ftousers, /etc/shells, $HOME/.netrc

System logging configuration:

/etc/syslog.conf

System startup files:

/etc/init.d/*, /etc/rc.config.d/”, /sbin/init.d/* (HP-UX)

System initialization (System V):

/etc/inittab

E-mail related files:

/etc/mail/sendmail.cf, /etc/mail/sendmail.fc, /etc/mail/aliases,
/etc/aliases

Accounting log files:

/usr/adm/*, /var/adm/*, etc.

UUCP related files:

/usr/lib/uucp/*, /etc/uucp/”

Login related raw databases:

/var/adm/wtmp, /var/adm/utmp, /var/adm/btmp, /etc/wtmp,
/etc/utmp, etc.

All SUID and SGID files:

wherever the files might be

discrepancies are possible.

Note: Specified files are dependent on the implemented UNIX platform, flavor and release; some

An administrator should be familiar with the correct ownership and protection of these files.
Unfortunately, the correct ownership varies between BSD and System V. It is recommended to
automate the monitoring and checking of these files by making a corresponding script that will be
periodically (for example, daily) started by the cron facility. Many of the listed files are log files that
permanently grow and have a tendency to overload the filesystems they live in; certain rotating

scripts could prevent such undesired events.

201

The following script is presented as an example. It will check the size of specified files, prevent their
uncontrolled growth, keep the last two versions of the files, and e-mail the administrator when any
action is taken.

$ cat /usr/local/bin/check_logfiles.ksh
#!/ bin/ksh #

#

Purpose: To monitor the current status of log files and prevent

their uncontrolled growth. Once a log file limit was reached
the log file is copied into filename.old and zero-ed.
#

The 1list of files to be monitored is given in the file ListofFiles
Each line specifies a file and its limit value:

#

Full-path filename Limit [KB]

#

/var/adm/wtmp 500 KB

/var/adm/btmp 200 KB

L.

L.

#

Set environment

TXT = /tmp/MFtxt # temp. text file

HOST = hostname # name of the host

MAILTO = sysadmin # email address

LBIN = /usr/local/bin # local directory

LIST = ${LBIN}/ListofFiles # list of files to check
BIN = /usr/bin # bin directory

#

Prepare email header
S{BIN}/echo "\n'S{BIN}/date':">STXT
S{BIN}/echo "Checking the size of log files:" >> STXT

S{BIN}/echo "\n === " >>STXT
set —-A LSA cat SLIST \ awk '{print S2}" # extract limits from the list
I=0 # reset counter
ML = "NO" # reset email flag
for FILE in cat $LIST \ awk '{print SI1}" # extract files from the list
do
LS = ${LSA[$I]}
FS = S{BIN}/ls -1 SFILE \ /bin/awk '{print $5}" # extract the file size in Bytes
SZ = SLS
LS = expr SLS * 1000' # limit size in Bytes
if [SFS —-gt SLS]; then # check the file size vs limit
S{BIN}/cp —-p S{FILE}.old S{FILE}.older # copy *.old --> *.older
S{BIN}/cp —p SFILE S{FILE}.old # copy * ——> *.old
S{BIN}/cat /dev/null SFILE # resetting the file to zero
S{BIN}/echo "\nThe log file \"SFILE\" is larger than S{SZ}KB !" >> STXT
S{BIN}/echo "The log file \"SFILE\" copied into \"S{FILE}.old\" and resized!" >> STXT
S{BIN}/echo "\n " >> STXT
ML = "YES" # set email flag
fi
= expr SI + 1 # increment counter
done
Check if anything has been done
if ["SML" = "YES"]; then
S{BIN}/mailx —-s "S{HOST}: Log File Check and Resize!" SMAIL TO<STXT # send email
fi
S{BIN}/rm STXT > /dev/null 2 > & 1 # delete temp. text file
< This is the end of the script ——————————————————————————

202

8.4.2 Monitoring System Activities

Running monitoring processes on the system is another way to minimize system security risks. This
should be done periodically, sometimes even several times a day. In this way, you get a good sense
of what constitutes "normal" system activity (which programs are running, how long they run, and
who runs them, etc.), and it makes it easier to recognize any unusual activity.

The ps command lists the characteristics of running system processes. To display all running
processes in a useful form, the format of the command is:

ps [-ax|(BSD)

ps |-ef |(System V)
Note:The ps
command was

discussed in detail
in Chapter 2.

8.4.3 Monitoring Login Attempts

Sometimes an intruder's attempts to break into the system can be detected in time if login attempts
are monitored (especially unsuccessful ones). Of course, the superuser account is of special
interest, because a break into the superuser account could be fatal.

8.4.3.1 The su Log File

All UNIX versions provide mechanisms for logging all attempts by users to become the superuser.
Such log files can be very instrumental in tracking down potential problems caused by root actions;
at least we can figure out later who the superuser was at the time. Depending on the implemented
UNIX platform, the log files can be located differently (generally, log files are specified in the
/etc/syslog.conffile, which are discussed later in_Chapter 9); a few examples are presented.

On the BSD platform (usually the file /usr/adm/messages):

cat /usr/adm/messages

May 9 09:57:53 patsy named[82]: zoneref: Masters for secondary zone 95.146.in-addr.arpa unreachable
May 9 10:02:53 patsy named[82]: zoneref: Masters for secondary zone hunter.cuny.edu unreachable
May 9 10:22:10 patsy su: 'su root' succeeded for george on /dev/ttyp2
May 9 10:22:35 patsy named[82]: reloading nameserver
May 12 15:34:24 patsy su: 'su root' succeeded for levi on /dev/ttypZ2

On the System V platform (usually the file /usr/adm/sulog). On Solaris 2.x the file /etc/default/su
specifies where status messages from the su command will be stored.

$ cat /usr/adm/sulog

SU 04/07 15:48
SU 04/11 14:41
SU 04/12 13:56
SU 04/12 14:55

ttygll baldwin-root
ttyq0 levi-root

ttyq0 root-levi

ttyq0 franck-gargiulo

+ + + +

SU 05/02 12:00 + console root-Ip

203

SU 05/10 10:46 + ttyg0 baldwin-root

SU 05/12 16:

15 + ttyg2 levi-root

8.4.3.2 History of the Root Account

A simple way to retain some information about superuser activity is to enable a root history
mechanism (the C and Korn shell allow the history) through the superuser's login initialization files.
For example, for the C shell:

set history =200
set savehist = 200

A list of the last 200 commands will be saved in the file /.history.

8.4.3.3 Tracking User Activities

Other UNIX commands are also available for tracking what users have been doing in the system.
They can sometimes track down the cause of a security problem. Some of these commands are:

Command

UNIX versions

Displays information on:

last

BSD, System V,
AIX

User login sessions — based on the witmp file

lastcomm

BSD, System V,
AlX

All commands executed (by user and TTY) — based on the pacct
file

acctcom

System V, AlX

All commands executed (by user and TTY)

acctcms

System V, AIX

All commands executed (by time of day)

All of the commands listed find their information in the system accounting files; in the past, to use
these commands, the accounting subsystem had to be running. Today, the wimp file is a standard
raw log file independent of the running accounting subsystem.

Generally, if accounting is activated on the system, the possibilities for tracking users and system
activities are higher. This makes sense, given the basic idea of accounting, which is to collect more
data on how and by whom a system is used.

204

Chapter 9: UNIX Logging Subsystem
9.1 The Concept of System Logging

UNIX provides a flexible and configurable logging mechanism. The logging can be site—customized
to fulfill a wide range of requirements with regard to the volume and level of the logging of system
messages. Continuous system logging is provided primarily to enable later analysis of the system
behavior when the system encounters problems. Appropriate system logging is essential on every
UNIX system. A side effect of such continuous logging is the permanent growth of the number of log
files, which requires attention by the system administrator.

System logging originated with BSD UNIX, and today is widely accepted on all UNIX platforms. The
system message logger runs as a special daemon syslogd that collects messages sent by various
system processes and routes them to the defined logging destinations. The syslogd daemon is
started at boot time, and its behavior is defined by its configuration file /etc/syslog.conf. A flexible
syslogd configuration allows the administrator to choose from a wide range of system logging
options from no logging at all to very verbose logging. The logging can also be tuned and changed
throughout the lifetime of the system, enabling different levels of logging according to actual needs.

This logging flexibility is achieved by specifying three different logging issues:

1. What to log, by selecting a logging facility that indicates a subsystem (a suite of processes)
that generates a log message.

2. How to log, by selecting a logging level that indicates a severity, or priority level, of the
generated message to be logged.

3. Where to log, by selecting a logging destination which indicates an action to be taken to
log a generated message. The generated message can be logged in a local file, forwarded
to the console or users, or forwarded to a remote logging system for further processing.

The available logging facilities are:

user User processes

kern The kernel

mail The mail system

daemon System daemons, such as telnetd, ftpd, etc.

auth The authentication (authorization) system: login, su, getty, etc.

Ipr The printer spooling system: Ipr, Ipc, etc.

cron The cron/at facility: crontab, at, cron, etc.

local 0-7 Reserved for local use

mark For timestamp messages produced internally by the syslogd
daemon

news Reserved for the USENET network news system

uucp Reserved for the UUCP system

* An asterisk indicates all facilities except for the mark facility

The defined severity (priority) levels (the highest levels are at the top) are:

emerg For panic conditions, such as catastrophic failures
alert For conditions that should be corrected immediately, such as a corrupted DB

205

crit For warnings about critical conditions, such as hardware device errors

err For other errors

warning For warning messages

notice For conditions that are not error conditions, but may require special handling
info For informational messages

debug For messages that are normally used only when debugging a program
none Do not log messages; use only in combination with other levels

The listed facilities and severity levels will be discussed further when we return to the
system-logging configuration.

The monitoring and detection of the listed conditions for when a corresponding message should be
generated are not a part of the logging subsystem itself; rather, messages are ——generated within
processes themselves and redirected toward the syslogd daemon for appropriate logging. A
special device file/ dev/log is used for the interprocess communication with the syslogd daemon,
which is continuously listening for generated messages. Once a message is received, the syslogd
daemon acts according to the specified configuration data related to the logging facility, the
message severity level, and the logging destination.

From the system logging standpoint, the syslogd daemon is a core of the overall logging
procedure, and it deserves to be discussed in greater detail.

9.1.1 The syslogd Daemon

The syslogd daemon logs all system messages; it reads and forwards system messages to the
appropriate log files and/or users, depending upon the severity (priority) level of the message and
the system facility from which the message originates. The configuration file/ etc/syslog.conf
specifies where messages are forwarded. In addition, the syslogd daemon periodically generates
and logs mark (timestamp) messages (mark-interval is specified in minutes; the default is 20
minutes) at an "info" logging priority level; this facility is identified as mark in the / etc/syslog.conf
file. The presence of the mark messages in the log files is proof of the daemon's activity: the
syslogd daemon is alive, active, and ready to log any received error or other message.

Only one syslogd daemon can be running at one point in time; an attempt to start another daemon
will fail. To check for the syslogd process:

$ ps —ef | grep syslogd | grep -v grep
root 532 1 0 Apr 30 ? 0:05 /usr/sbin/syslogd

The syslogd daemon can be started with several options:
/usr/sbin/syslogd [-d] [-D] [-f configfile] [-m markinterval] [-p path]

where the options are:

-d Turn on debugging. This option should only be used interactively and not in the
start-up script.
-D Prevent the kernel from directly printing its messages on the system console. In

this case syslogd is responsible for routing all kernel messages.
-f configfile Specify an alternate configuration file.
-m Specify the interval, in minutes, between mark messages.

206

markinterval

-p path Specify an alternative special log device file instead of /dev/log.

The syslogd daemon reads its configuration file when it starts up, and again whenever it receives
an HUP signal (the signal #1), at which time it also rereads the configuration file, and then opens
only the log files that are listed in the file.

Typical rc start/stop sequences to start/stop the syslogd daemon are:

case "$1" in
'start')
if [-f /etc/syslog.conf —-a —-f /usr/sbin/syslogd]; then
echo "syslog service starting."”
if [!-f /var/adm/messages]
then
cp /dev/null /var/adm/messages
fi
/usr/sbin/syslogd 1>/dev/console 2>&1
fi
v
'stop')
[!-f /etc/syslog.pid]&& exit 0
syspid = 'cat /etc/syslog.pid’
if ["Ssyspid" -gt 0]; then
echo "Stopping the syslog service."
kill -15 Ssyspid 2>&1 | /usr/bin/grep -v "no such process"
fi
/7
*)
echo "Usage: /etc/init.d/syslog { start | stop }"
r 7

esac
This start sequence assumes /var/adm/messages for the system log file.
As the syslogd daemon is started, it creates the file / etc/syslog.pid (or / var/run/syslog.pid on some
platforms) if possible, containing its process identifier (PID). This file can be useful in handling the
running syslogd daemon afterwards. For example, the command

$ kill -HUP 'cat /etc/syslogd.pid’

will recycle the daemon, i.e., to force the syslogd daemon to reread its configuration file.

9.2 System Logging Configuration

Configuring the system logging means configuring the syslogd daemon, and to configure the
syslogd daemon means setting the appropriate configuration file / etc/syslog.conf. Please pay
attention to the configuration file name: although the daemon name is syslogd, the configuration file
name is syslog.conf (there is no letter "d" in the filename).

9.2.1 The Configuration File /etc/syslog.conf
The configuration file / etc/syslog.conf contains all of the data necessary to fully specify the logging

process provided by the system log daemon, syslogd. When started, or recycled, the syslogd
daemon preprocesses this file through the m4 preprocessor to obtain the correct information for

207

certain log files. By introducing the additional ifdef macro statement that yields one of multiple
possible conditional outcomes, m4 preprocessing makes the configuration even more flexible. The
syslogd daemon first verifies that the host is aliased as "loghost"; if the address of the loghost is
the same as one of the addresses of the host system, this system is defined as the loghost. The
idea of the loghost is to enable a different level of logging according to the defined logging mission
of the actual system; it also enables the creation of the "logging server" and a centralized collection
of logging messages from multiple hosts on the same network. The syslogd daemon first checks
the / etc/hosts file for the loghost address, and then it looks in DNS or NIS (discussed in_Chapters
16 and_17).

The / etc/syslog.conf file contains an arbitrary number of configuration entries needed to fully define
the system logging. Blank lines are ignored, and lines for which the first nonwhite character is a "#"
are treated as comments.

A logging configuration entry is composed of two TAB-separated fields:

selector action

Or more specifically:

facility.level [; facility.level] [...] destination [, destination] [...]

The selector field contains a semicolon—separated list of priority specifications of the form:

facility.level [; facility.level]
where

e facility — the subsystem sending the message to:

user User processes

kern The kernel

mail The mail system

daemon System daemons

auth The authentication (authorization) system
Ipr The printer spooling system

cron The cron/at facility

local 0-7 Reserved for local use

mark For internal timestamp messages

news Reserved for the USENET network news system
uucp Reserved for the UUCP system
* All facilities except for the mark facility

¢ Level — the severity (priority) level of the message:

emerg For panic conditions such as catastrophic failures
alert For conditions that should be corrected immediately
crit For warnings about critical conditions

err For other errors

warning For warning messages

208

notice For nonerror notices

info For informational messages

debug For messages during debugging (very verbose logging)
none Do not log messages

Please note that an entry is a logging of all messages from the specified facility, with the severity
(priority) level equal, or higher than the specified one. In that sense, the level debug indicates the
logging of all generated messages from a specified facility. Linux introduced the characters "=" and
"I' that, used as a prefix to the specified severity level, change its basic meaning. The character "="
indicates this severity level only, while "I" negates the entry by indicating except this severity level

and higher. However, this enhancement remains Linux specific only.

The message logging is active only for specified entries; nonspecified facilities within the
configuration file (not included in any configuration entry) are simply ignored by the syslogd
daemon. In that sense, the level none should be combined with other facilities and severity levels
for a more accurate and condensed specification of a logging selector; for example:

"*. debug,;mail.none"
will send all messages except mail messages to the specified destination.

The action field contains a comma-separated list of the logging destinations (where to forward the
messages for logging):

e destination The file, device, username, or hostname to forward messages to; values for this
field can have one of four forms:

1. A filename, beginning with a leading slash, which indicates that messages specified
by the selector are to be written to the specified file (the file will be opened in the
append mode).

2. The name of a remote host, prefixed with an @, as in @hostname, which indicates
that messages specified by the selector are to be forwarded to the syslogd daemon
on the dedicated remote system. The hosthame /loghost is an alias given to the
system that is supposed to be the logging server. Every system is supposed to be
the loghost by default, which is defined in the local / efc/hosts file. It is also possible
to specify one system on a network to be a loghost by making the appropriate host
name entries in the local/etc/hosts files over included systems, or in DNS, or NIS.
The usual way to configure the syslogd daemon on a loghost is: if the local machine
is designated to be a loghost, then logging messages are written to the appropriate
files; otherwise, they are sent to the remote loghost on the network.

3. A comma-separated list of usernames, which indicates that messages specified by
the selector are to be forwarded to the specified users if they are logged in.

4. An asterisk (*), which indicates that messages specified by the selector are to be
forwarded to all logged-in users.

A few examples:

e To log all mail subsystem messages except the debug ones, and all notice (or higher)
messages into the file / var/log/notice:

*_ notice;mail.info /var/log/notice
e To log all critical messages into the file / var/log/critical:

209

* crit /var/log/critical
e To forward all kernel messages and 20-minute marks onto the system console:

kern, mark.debug /dev/console
e To forward kernel messages of err (error) severity level, or higher, to the system named
"hostname™:

kern.err @hostname
e To forward emergency messages to all users who are currently logged in to the system:

*.emerg *

e To inform the users "root" and "operator" (if currently logged in) of any alert and emergency
messages:
*.alert root, operator

Two typical configuration files are shown next. The first example (Solaris 2.x) corresponds to a
system with higher logging requirements; the configuration data are processed by the preprocessor
m4, and depending on the actual system logging status (if the system is the loghost, or not:
LOGHOST =YES or NO), the system logging configuration is defined.

$ cat /etc/syslog.conf

#ident "@ (#)syslog.conf 1.4 /* Solaris 2.x */

#

syslog configuration file.

#

This file is processed by m4 so be careful to quote ('') names
that match m4 reserved words. Also, within ifdef's, arguments
containing commas must be quoted.

#

*.err;kern.notice;auth.notice /dev/console
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages
*.,alert; kern.err;daemon.err operator

*.alert root

*.emerg *

1f a non-loghost machine chooses to have authentication messages
sent to the loghost machine, un-comment out the following line:
#auth.notice ifdef ('LOGHOST', /var/log/authlog, @loghost)
mail.debug ifdef ('LOGHOST', /var/log/syslog, @loghost)
#

non-loghost machines will use the following lines to cause "user"
log messages to be logged locally.
ifdef ('LOGHOST',,

user.err /dev/console
user.err /var/adm/messages
user.alert 'root, operator'
user.emerg *

)
Briefly, the first section defines unconditionally:

e Forwarding to the system console all messages of a severity level equal to or higher than
"err," and kernel and authentication messages greater than level "notice"

* Logging in the / var/adm/messages file all messages of a severity level equal to or higher
than "err," except for kernel, daemon, and mail messages where the threshold severity level
is defined differently

e The messages to forward to the defined user operator (if defined on the system at all, and if
the user is logged in at the time)

210

¢ Forwarding the alert and emergency messages to the superuser (if logged in)
e Forwarding the emergency messages to all logged-in users

The_next section (entries are presented in bold) defines a conditional logging configuration. The m4
macro statement:

ifdef ('LOGHOST, 'VAR1, VAR2)

generates the output VAR1, or VAR2 depending on the status of the LOGHOST.
For example:

mail.debug ifdef ('LOGHOST, ' /var/log/syslog, @loghost)

specifies the file / var/log/syslog as a logging destination for all mail messages if the system is the
loghost, and if it is not, forwards messages to the remote loghost.

Please note that the similar configuration entry for the authentication subsystem is commented out,
and first should be activated (uncommented).

The last section, again the m4 preprocessor ifdef macro, has an output only if the local system is
not the loghost; otherwise this part is ignored (an empty ifdef output). If active, user's processes are
joined to all other processes specified in the first part of the configuration file (some UNIX platforms
distinguish user's processes from all other processes). The bottom line in both cases is the same,
because defined user processes are already covered by the first part of the configuration file (user
processes are not excluded from all processes).

The second example (HP-UX 10.20) is easier to understand and still quite adequate for many
implementations; however, it provides only local logging:

$ cat /etc/syslog.conf
@(#) SRevision: 74.1 $

#

syslogd configuration file.

#

See syslogd(1M) for information about the format of this file.
#

mail.debug /var/adm/syslog/mail.log
*.info;mail.none /var/adm/syslog/syslog.log

*.alert /dev/console

*.alert root

*_ emerg; user.none *

The last entry illustrates the meaning of the none level, which defines the following: Send system
panic messages from all processes, except from users' processes, to all logged-in users!

9.2.2 Linux Logging Enhancements

Linux has introduced few improvements into logging subsystem. Linux's logging subsystem
supports sending of log messages to named pipes as well as to log files. But the main
enhancements are configuration related.

In the configuration file /etc/syslog.conf few new configuration characters are introduced:

e "space” as a separating character

211

¢ "=" 10 prefix a priority level and indicate this priority level only (eliminates higher levels from
logging)

¢ "I" to prefix a priority level and negate its meaning; it excludes this and higher priority levels
from logging, specifying logging of only lower priority levels

To protect syslogd daemon from potential network intruders, new options —r and —h are introduced;
they control daemon behavior toward accepting and forwarding log messages between hosts in the
network. The daemon must be started appropriately if the corresponding network related logging is
supposed.

Although listed logging enhancements could be disputed, under certain circumstances their
implementation could be handy.

9.2.3 The logger Command

UNIX provides the logger command, which is an extremely useful command to deal with system
logging. The logger command sends logging messages to the syslogd daemon, and consequently
provokes system logging. This means we can check (from the command line at any time) the
syslogd daemon and its configuration. The command itself can also be a part of a user
program/script to generate necessary operational logging messages.

The logger command provides a method for adding one-line entries to the system log file from the
command line. One or more message arguments can be entered with options on the command line,
in which case each of them is logged immediately. If an optional message is not specified, either an
optional file specified with the —f option or the standard input is added to the log.

The format of the command is:

logger [-i] [-f file] [-p priority] [-t tag] [message]...

Where the available options and operands are:

—f Use the contents of file filename as the message to log.

filename

=i Log the process ID of the logger process with each line.

-p Enter the message with the specified priority (specified selector entry); the message

priority priority can be specified numerically, or as a facility.level pair. The default priority is
user.notice.

-t tag Mark each line added to the log with the specified tag.

message The string arguments whose contents are concatenated together in the specified order,
separated by the space (a quoted message presents a single string argument).

9.2.4 Testing System Logging

It is a good idea to test the system logging after it has been configured and the syslogd daemon
has been recycled. The logger command allows efficient and detailed logging testing. Here is an
example from the HP-UX 10.20 system; it is named black and has the following configuration:

$ cat /etc/syslog.conf
This is the /etc/syslog.conf file
#
#
Time marks

212

mark.info /var/log/syslog

mark.info /var/log/debug

Message passing

* info;mail.none;mail.crit /var/log/syslog
*.debug;mail.none /var/log/debug
mail.info /var/log/maillog
Some local screams

* . emerg *

Now send everything "important" to a centralized host
mark.info @loghost
*.info;mail.none @loghost

mail.crit @loghost

#

We will test the mail subsystem, or, to use the system logging terminology, the mail facility. All
entries in the configuration file relevant to the mail logging are printed in bold. The system is
configured to enable logging of all mail log messages above the info level in the / var/log/maillog file;
this includes everything except debug messages. Critical-level and above mail messages are also
logged in the system log file /var/log/syslog (besides many other system messages), and they are
sent to the remote loghost, as well. Further processing and logging of the sent messages is defined
by the logging configuration file / etc/syslog at the remote system. Finally, all emergency (panic)
messages are sent to all logged-in users.

The user bjl has issued a sequence of the logger command from the command line with different
logging options and test messages. The syslogd daemon should catch all generated messages
and forward them into corresponding logging files, according to the actual logging configuration.

$ logger -p mail.debug "Testing mail.debug"

logger -p mail.info "Testing mail.info"
logger —-p mail.notice "Testing mail.notice"
logger —-p mail.warning "Testing mail.warning"
logger —p mail.err "Testing mail.err"

logger -p mail.crit "Testing mail.crit"
logger -p mail.alert "Testing mail.alert"
logger -p mail.emerg "Testing mail.emerg"

«“rwv»»n e n

Next, we check the local log files:

$ cat /var/log/maillog | grep Testing
May 11 16:57:38 black bjl: Testing mail.info
May 11 16:58:04 black bjl: Testing mail.notice
May 11 16:58:23 black bjl: Testing mail.warning
May 11 16:58:39 black bjl: Testing mail.err
May 11 16:58:54 black bjl: Testing mail.crit
May 11 16:59:12 black bjl: Testing mail.alert
May 11 16:59:29 black bjl: Testing mail.emerg

Simultaneously, the panic (emerg) message was sent to all logged—-in users:

Message from syslogd@black at Tue May 11 16:59:29 1999 ...
black bjl: Testing mail.emerg

As expected, all test messages have been logged in the / var/log/maillog file except the debug
message; the emergency message was also sent, and displayed, on the terminals of all logged-in
users.

$ cat /var/log/syslog

213

May 11 16:00:19 black syslogd: restart

May 11 16:03:42 black inetd[964]: Rereading configuration
May 11 16:03:42 black inetd[964]: bootps/udp: Deleted service
May 11 16:03:42 black inetd[964]: Configuration complete

May 11 16:14:32 black — MARK —-—

May 11 16:34:32 black —-—- MARK —-—
May 11 16:45:21 black syslogd: restart
May 11 16:54:32 black —-—- MARK —-

May 11 16:58:54 black bjl: Testing mail.crit
May 11 16:59:12 black bjl: Testing mail.alert
May 11 16:59:29 black bjl: Testing mail.emerg
May 11 17:14:32 black —-—- MARK —-

Only the section of the interest in the huge /var/log/syslog file is presented; the mail messages
(higher than the level: crit) are presented in bold. Pay attention to the MARK messages generated
by the syslogd daemon, in which logging is defined by the entry:

"mark.info /var/log/syslog"

Generated mail log messages are also forwarded to the loghost for remote logging; this is the
Solaris 2.6 system. Consequently, the loghost's / etc/syslog.conf configuration file defines the way
these messages will be locally logged. The loghost process receives remote messages in the same
way as locally generated ones. The following syslog.conf entries at the loghost are related to the
mail messages, and define their logging:

*.err;kern.debug;daemon.notic;mail.crit /var/adm/messages
mail.debug /var/log/maillog

Checking the log files on the loghost:

$ cat /var/adm/messages | grep black | grep mail
May 11 16:58:54 black.logview.com bjl: Testing mail.crit
May 11 16:59:12 black.logview.com bjl: Testing mail.alert
May 11 16:59:29 black.logview.com bjl: Testing mail.emerqg

Only mail log messages received with a level higher than crit are logged in the /var/adm/messages
file. However, all received mail log messages are logged in the loghost's file /var/log/maillog,
because the lowest logging level is defined as debug (however, the debug mail message was not
sent from the host black, because of the local logging configuration):

$ cat /var/log/maillog | grep black | grep "Testing mail"
May 11 16:57:38 black.logview.com bjl: Testing mail.info
May 11 16:58:04 black.logview.com bjl: Testing mail.notice
May 11 16:58:23 black.logview.com bjl: Testing mail.warning
May 11 16:58:39 black.logview.com bjl: Testing mail.err
May 11 16:58:54 black.logview.com bjl: Testing mail.crit
May 11 16:59:12 black.logview.com bjl: Testing mail.alert
May 11 16:59:29 black.logview.com bjl: Testing mail.emerg

9.3 Accounting Log Files

Up to now, we have discussed generic UNIX system logging. However, if the accounting subsystem
is active on the system, a number of accounting-related log files provide useful logging information.

214

The accounting is generally based on system usage statistics, and reliable statistics require
continuous system monitoring and frequent data logging. The files were discussed from a system
security standpoint. Here we focus strictly on their logging characteristics.

Among different accounting log files, the most significant files are / var/adm/utmp and
/var/adm/wtmp from the system logging point of view. Accounting binary log files include raw data
related to the user login/logout events: utmp refers to actual login sessions, while wtmp contains
historical login/logout data; obviously, special attention should be paid to the file wimp, because it
grows continuously. Some platforms, like HP-UX, introduce one more file btmp to keep data about
bad login attempts separate.

A set of UNIX commands is available to manage these binary files: login, who, write, last, etc. The
fwtmp command provided on the HP-UX platform will convert a file's raw data into ASCII data,
suitable for further processing. If corrupted, these files could interfere with the regular login
procedure; in most cases, a simple removal and recreation of files helps. On the HP-UX platform,
another command wtmpfix is also provided for this situation.

9.3.1 The /last Command

The last command displays login and logout information about users and terminals. It looks in the /
var/adm/wtmp file (which records all logins and logouts) for information about a user, a terminal, or
any group of users and terminals. The format of the command is:

last [-n number | -number] [—-f filename] [name | tty] ...

The trailing arguments specify the names of users or terminals of interest. If multiple arguments are
given, the data applicable to any of the arguments is printed. For example, the command: last root
console lists all of root's sessions, as well as all sessions on the console terminal. The displayed
sessions of the specified users and terminals are listed starting from the most recent session first,
indicating the times at which the session began, the duration of the session, and the terminal on
which the session took place. The last command also indicates whether the session is continuing or
was cut short by a reboot.

By default all logged data about sessions are displayed in the reverse order. The option —n
number, or simply —number can be used (number corresponds to the desired number of sessions
to be presented) to restrict the display to a certain number of last user's sessions.

The option —f filename enables the specification of log file other than the default file /
var/adm/wtmp.

The system automatically logs information about each system reboot and addresses them to the
pseudo-user reboot. Thus, the command:

last reboot

will give an indication of the mean time between reboots.
9.3.2 Limiting the Growth of Log Files
Log files grow continuously. This is the nature of the logging process; new logging data are

appended onto preexisting ones. If left unattended, the number of system log files will grow without
limit, and if a verbose logging is configured, the file growth under some circumstances could be

215

dramatic. Log files tend to consume disk space and bring a filesystem to a point that could
endanger it. This is primarily a problem for the / var filesystem — most often it is a separate
filesystem and the usual location for a majority of system log files (directory / var/adm, or / var/log).

The significance of and the need for regular system logging is beyond question; in a critical
moment, the log files could be the only source of information available to trace a problem. System
logging is a requirement and has to be active on every system. However, you must monitor the
growth of system log files; the system administrator is responsible for reaping any needed data from
these files and keeping the files to a reasonable size.

The major offenders include:

e The various system log files in / varsadm (or / usr/logs), which may include sulog, messages,
and other files determined in the system logging configuration file /etc/syslog.conf, or
sometimes determined in the / etc/default directory (on some flavors, default values are
defined in this directory).

e Accounting files in the directory / var/adm (or sometimes /usr/adm), especially files wtmp
and acct (BSD) or pacct (System V).

e On some UNIX flavors, default subsystem log files originated from different UNIX facilities,

such as cron, printing subsystem, uucp subsystem, etc. The usual names and locations
include:

Printing log file (BSD)

/ usr/spool/lp/log

Changes to printer status (System V)

/ usr/spool/lp/logs/lpsched

Individual print requests (System V)

/ usr/spool/lp/logs/requests

cron log file

/ usr/lib/cron/log

cron log file (SVR4)

/ usr/sbin/cron.d/log

BNU uucp log file

/ usr/spool/uucp/LOGFILE

216

Version 2 uucp subdirectories

/ usr/spool/uucp/SYSLOG

(each contains multiple log files)

/ usr/spool/uucp/LOG*

There are several approaches to control the growth of system log files:

e The easiest way is to truncate them by hand when they become too large. This is only
possible for ASCII log files. To reduce a file to zero length, use a command like:

$ cp /dev/null /usr/adm/sulog

or

$ cat /dev/null > /usr/adm/sulog

Copying the null device onto the file is preferable to removing the file because in some
cases the subsystem will not recreate the log file if it does not exist.

Use the tail command to retain a small part of the current logging information (the most
recent one), as in the following example:

$ cd /usr/adm

$ tail -100 sulog > sulog.tmp
$ cp sulog.tmp sulog

$ rm sulog.tmp

The 100 last lines of the sulog file will be retained.
Keep several old versions of a log file in the system by periodically deleting the oldest one,
renaming the current one, and then recreating it. The appropriate command sequence is:

cd /usr/adm

cp -p messages.old2 messages.old3
cp -p messages.old messages.old2
cp —-p messages messages.old

cat /dev/null > messages

«w v v n

The last three versions of the log file /usr’7adm/messages are preserved for the eventual need to
trace some events in the past. It should to be sufficient if any problem occurs, while it also keeps
disk space consumption at an acceptable level (although there is no guarantee for individual log file
sizes). Such an approach is ideal for automatic periodic execution, perhaps at the beginning of each
month, so the logging within the last 3 months is always available. Some UNIX flavors integrate this
approach in the startup procedure, i.e., the corresponding rc startup script saves and resizes the
system log file / usr/adm/messages in an almost identical way. Under regular conditions, this works
very well, but if there are several consecutive system boots, the complete logging from the previous
periods could be lost. Other approaches are, of course, possible. One homemade solution, the
check_logfiles.ksh script, is presented in_Chapter 8.

217

Chapter 10: UNIX Printing
10.1 UNIX Printing Subsystem

Printing is a very important issue on any UNIX platform, and is important to the job of system
administration, as well. Every user on the system expects quick, reliable, high—quality printing at any
time. Many users evaluate a system's performance primarily on its printing capabilities, so this is
one of the most sensitive issue from the user standpoint.

As expected, UNIX offers two basic flavors of printing systems: BSD and System V. Unfortunately,
the differences between these two flavors are quite significant, making them mutually incompatible.
Neither flavor is more commonly used than the other; both are used widely. Some platforms even
support both flavors, but the majority of UNIX systems integrate one of the two available UNIX
printing subsystems.

Before we continue with a more detailed description of the two printing subsystems, let us first
define the terminology used for this topic. The common term printing subsystem (or sometimes
even printing system) identifies the entire suite of all printing related items (primarily software, but
also hardware items) that effectively enable and provide printing on an arbitrary UNIX platform.
Often, a printing subsystem is also identified as a spooling subsystem or printer spooling
subsystem. While the first alternative name is too general (spooling is not only related to printing —
it can also refer to e-mailing and other queued message subsystems), the second term seems to
be quite appropriate. Nevertheless, the spooling subsystem in most cases refers just to the printing.
In the following text, we will try to use the more comprehensive terms among the available ones.

Except for the existing differences between the BSD and System V printing subsystems, the
concept of printing in both cases is quite similar. A printing subsystem consists of:

e User commands — Required to initiate printing. A user specifies the file to print, the print
device to print it on (if there is more than one device), and other mandatory and optional
details. The common terminology to identify an invoked printing is also different: on BSD
they are called print jobs, on System V, print requests.

e Queues — To store and sequentially process print jobs (print requests). In its simplest form,
a queue is a line of print jobs/requests waiting to use a specified print device.

e Spooling directories — To hold pending print jobs (print requests). On BSD, the entire file to
be printed is copied in the spooling directory; on System V, by default only a small print
request file is generated, while the file to be printed is accessed in its original location at the
proper time when printing actually occurs.

e Server processes — Printing daemons that transfer a print job (a print request) from the
spooling directory to the specified printing device.

e Administrative commands — Print-related administrative commands to start and stop the
printing subsystem or specific printers, and to manage queues and individual print jobs (print
requests).

A functional diagram of a printing subsystem (with indicated differences between BSD and System
V) is presented in_Figure 10.1.

218

A look-up for a A look-up for a printer

- PRINTER
spooling directory ™~ €—— and other relevant data

DATABASE

User executes

- Print

notifies the print daemon 2
Print

command 4 daomen
i Spooling Director Printer
e i - . : Y »| special
printed puts a print job/request and | (for each print job/requestl sends print data device
a copy of a file (BSD only) keeps a control file - cf*, file
and a data files - df*)

Figure 10.1: Functional diagram of a printing subsystem.
Once a user (or a user's process, invokes a printing, the print command performs the following:

e [t looks in the printer database for necessary printing-related data such as the spooling
directory and other printing arguments.

e [t creates a print job (a print request for System V printing subsystem) and puts a
corresponding control and data file (ef and df) in a printing queue in the corresponding
spooling directory, and if it is a BSD printing subsystem, copies the file to be printed into the
spooling directory.

e |t notifies the print daemon about the started printing procedure.

The print daemon provides the actual printing:

e It looks in the printer database for necessary printer—related data for the started print
job/request.

e |t checks the status of the corresponding printer.

e [t completes the printing procedure by sending the file to the printer for printing.

The start of printing and the actual printing do not necessarily coincide; a delay between the two
actions is quite possible, and such delays can vary significantly, depending on the actual printer
status, the volume of required printing, the queue length, and other factors. Generally, the physical
printing is performed slowly, and sometimes the delays can be quite annoying.

10.1.1 BSD Printing Subsystem

The BSD UNIX system maintains multiple printers on local and/or remote sites, and multiple print
queues. It can be adopted to support different types of printers. It began as a standard "line—printer
spooling subsystem," but very soon it added laser printers, raster—printers, and other printing
devices. Today the BSD printing subsystem represents a collection of five programs and several
files:

Ipr Adds a print job to a print queue by copying the file into its spooling
directory. A print job is assigned a job ID number when it is submitted, and
this number is used to refer to the print job in subsequent commands. The
name of the command originates from "line—printer," the most advanced
printer in the early days of UNIX.

Ipq Lists jobs that are currently in the print queues.
Iprm Removes jobs from the print queues. Users may remove only their

own jobs, but the superuser may remove any print job.

Ipd The printer daemon, responsible for sending data from the spooling
directory to a printer (i.e., printing device).

219

Ipc The administrative interface to the printing subsystem.

/etc/printcap The printer configuration file, which contains entries describing each printer
on the system. The standard template version includes a number of the
most common printers, which an administrator can then customize for a
specific system. Usually, entries are commented-out, so the administrator
should activate (remove the comment markers from) all needed entries in
the file. Sometimes minor adjustments are required.

10.1.1.1 The lpr, Ipq, and Iprm Commands

The Ipr command is available to activate the printing of a printable file:
lpr -P printer printfile

where

-P Option to select a printer for this printing

printer The name of the selected printer

printfile The name of the file to be printed

Please note that there is no space between the =P option and the printer name (some UNIX

platforms allow this). If the =P option is missing, the default printer is selected. The default printer is
defined in the printer configuration file /etc/printcap, as are all other printers.

The Ipqg command is available to check the current status of a print queue, i.e. to list the contents of
the queue:

lpg -P printer
where

-P Option to select a printer
printer The name of the selected printer the queue belongs to
If the —P option is missing, the default printer is selected.

A few examples:

#lpg —Ppp (post—script printer pp)

no entries
or

#1pq (default local printer)

no entries
The Iprm command is available to remove individual print jobs:

lprm -P printer jobs-to-remove
where

-P Option to select a printer

220

printer The name of the selected printer jobs to remove from
jobs-to-remove A list of job IDs

A list of usernames for whom to remove all jobs

A single hyphen to remove all jobs (only if superuser)
The Iprm command identifies print jobs by their IDs (obtained with the Ipq command); obviously,
the Ipq command should be issued before the Iprm command is used.

10.1.1.2 The Ipd Daemon

Ipd is the BSD printer spooling daemon; it sends data stored in the spooling directory to a printer to
be printed. The Ipd daemon is started by the corresponding rc start script during system startup.
Please note that some UNIX platforms might have a commented rc startup sequence for the printer
spooling daemon; the comment markers must be removed from the corresponding lines when the
first printer is attached to the system. If they are not removed, the Ipd daemon will not be invoked
with each subsequent system booting.

The Ipd daemon works in the logical space between users and printers; this complex task often
involves unpredictable conditions that must be handled accordingly. Occasionally, the Ipd daemon
gets hung. The main symptom of this hung state is a queue filled with jobs but not printing any of
them. In this case, the old daemon should be killed and a new one started. The command sequence
is shown in the following example:

Sps —aux | grep lpd | grep -v grep

root 208 0.0 0.2 1536 32 ? I 0:00 /usr/1ib/lpd
$kill -9 208

$/usr/1lib/1lpd

10.1.1.3 Managing the BSD Printing Subsystem

The "line—printer control utility," Ipc is available to perform most administrative tasks connected with
the BSD spooling subsystem. The Ipc utility includes a number of internal commands
(subcommands) required to handle such printer-related tasks as: shutting a printer down for
maintenance, displaying a printer's status, and manipulating jobs in print queues. To invoke the Ipc
utility, simply type:

#lpc
lpc>

Ipc is now running and issues its own prompt. The available internal Ipc commands are:

status Displays the status of the line printer daemon and queue for the specified printer.
printer

abort Immediately terminates any printing in progress and disables all printing on the specified
printer printer. The job stays in the queue and its printing will continue as soon as the printer is
restarted (with the start command).

stop Stops all printing on the specified printer after the current job has finished. New jobs can

printer be added to the queue with the Ipr command, but they will not be printed until the printer
is started again. This command is very useful when the time comes to add or replace the
printer's supplies (paper, ribbon, etc.).

Restarts printing on the specified printer after an abort or stop command.

221

start

printer

disable Prevents users (except the superuser) from putting new jobs into a specified printer's

printer queue. Existing jobs continue to print, so this command is useful when a printer needs to
be turned off.

enable Allows users to spool jobs to the queue again, restoring normal operation after the

printer disable command is issued.

down Stops printing and disables the queue for a specified printer (its action is equal to disable

printer plus stop).

up Enables the queue and starts printing on the specified printer (its action is equal to

printer enable plus start).

If the specified printer is "all," the command itself is forwarded to every printer on the system.

10.1.2 System V Printing Subsystem
The System V spooling subsystem has the following major components:
e User commands:

Ip Initiates print requests (equivalent to Ipron BSD)

Ipstat Lists print queue contents (equivalent to Ipgon BSD)

cancel Cancels a pending print request (equivalent to [prmon BSD)

When a user submits a print request, it is assigned a unique request ID that is used to
identify it thereafter; request ID s usually consist of the printer name and a request number.

e The spooling daemon Ipsched, responsible for carrying out print requests by sending data
to the appropriate printer.

¢ A suite of administrative commands (accept, reject, enable, disable, Ipadmin, Ipmove,
Ipusers) usually stored in the directory /usr/lib. It is a good idea to add this directory to the
root's command search path, which makes sense, because administrative printing
commands require superuser privileges.

e Spooling directories in /usr/spool/lp/request for each printer, named by the printer name.
Only the print request information is stored in the corresponding directory; by default, the
actual file to print is not copied. Thus, changing or deleting a file before it is printed affects
the final output. The Ip option —c can be used to force the copying of the file to the spooling
area when it is submitted for printing.

10.1.2.1 The Ip, Ipstat, and cancel Commands

Print requests are sent to the queue for a destination, which can be either a specific printer
(including the default one), or a device class (a group of the same type of printers). A device class
provides the mechanism to group similar printing devices and declare them to be equivalent to, and
substitutable for, one another. Printing is performed on the first available device in the class — for

example, class laser can include all of the compatible laser printers on the system. All of the
devices within a device class share a single queue.

The Ip command places a print request into a queue, either for a specific device or adevice class:
lp [options] file—name

where

222

file-name The name of the file to be printed.

options Many options are available, but —d printer specifies the printer (queue) for printing;
if this is missing the default printer is used.
The Ipstat command will provide status information on current printing queues and devices:

lpstat options
The Ipstat command is more versatile than its BSD counterpart; there are a number of options that
make this command a printing monitoring tool. The command will monitor not only the print queue

status, but can handle printers themselves, as well.

The Ipstat options are:

Option Meaning

—a [list] |Display the acceptance status of the destinations for output requests for printers and
classes specified in the list

—c [list] |Display the members of the classes specified in the list

-0 [list]|Display print requests; the list may include request IDs, printer names, and class names
—p [list]|Display the current status of the printers specified in the list

—u [list]|Display the status of all jobs belonging to the users specified in the list

-V [list] |Display the name of printers and the pathnames of the associated devices

-s Summary; display all classes and their members and all printers and their associated
devices

-t Display all status information (reports everything)

-d Display the default printer destination

-r Display the status of the printer spooling daemon

Note: "list" specifies one or more comma separated printing entities.

Here is an example: a number of printers, mostly remote ones, are defined on the HP-UX 10.20
printing—client system. The partial Ipstat summary report on printers and their special device files
presented below includes local printers (indicated in bold letters), and other remote printers.

$ lpstat -s
system default destination: 1p26
device for 1lpl: /dev/null
remote to: 1p31 on ps3.printview.com
device for 1p26: /dev/null
remote to: 1lp26 on ps3.printview.com
device for 1p29: /dev/null
remote to: 1p29 on printhost.printview.com
device for foxy: /dev/null
remote to: LF1 on foxip.printview.com
device for poprt3: /dev/tty3 => local printer
device for poprt8: /dev/tty8 => local printer
device for wprtl: /dev/null
remote to: LF1 on wprip.printview.com
device for xerox: /dev/null
remote to: xerox on psb.printview.com

A partial report on the printers' current status (for the same printers in the previous report) is:
$ lpstat -p

223

printer foxy is idle. enabled since Nov 30 11:17
fence priority: 0

printer poprt3 disabled since Mar 12 16:46 —
reason unknown
fence priority: 0

printer poprt3 is idle. enabled since Mar 15 11:45
fence priority: 0

printer wprtl is idle. enabled since May 6 14:47
fence priority: 0

printer xerox 1s idle. enabled since May 14 05:41
fence priority: 0

printer 1p26 is idle. enabled since Aug 26 12:38
fence priority: 0

printer 1lpl is idle. enabled since Jan 27 10:44
fence priority: 0

printer 1p29 is idle. enabled since Nov 24 14:12
fence priority: 0

Finally, the Ipstat -t command reports on everything. However, if there are a large number of
attached printers (and especially if some remote printers are down), the command itself can take a
long time to execute. In critical situations, when every second counts, it may be preferable to
manually cancel pending print requests.

A system administrator may cancel any pending print request with the command:
cancel request-id(s)

or

cancel destination

where

request-id(s) The ID(s) of the job/jobs to be canceled (even if they are currently printing)
destination The name of the queue for which all jobs should be canceled

Solaris 2.x even supports the lpr command, this time adjusted to the System V LP environment.
This means that the command is serviced by the Ipsched daemon (there is no Ipd daemon or
printcap database). The —s option makes the command behave like the System V version: it does
not copy the file to be printed into the spooling directory.

10.1.2.2 The Ipsched Daemon

The printer spooling daemon Ipsched is responsible for carrying out print requests by sending data
to the appropriate printer/printers. It is also known as the print service daemon. The Ipsched
daemon under System V is actually the equivalent to the Ipd daemon under BSD. The daemon is
invoked during the system booting and is permanently running, waiting for new print requests to be
stored in the spooling queues.

Each printing-related administrative action requires the Ipsched daemon to temporarily shut down

and restart. The special Ipshut command was introduced to make this simpler; the Ipsched
daemon can be stopped with Ipshut command.

224

10.1.2.3 Managing the System V Printing Subsystem

There is no System V equivalent to the BSD Ipc utility; instead, a number of individual
administrative printing-related commands are available. Together they form an extremely powerful
and versatile suite of high—level commands to provide full control over the administration of various
printing issues. The System V printing subsystem configuration also fully relies on these
administrative commands. While the BSD printing subsystem requires a direct access to and
interaction with printing—related configuration data/files, on System V all that is somewhat hidden
from the administrator, and provided by these front—-end administrative commands. We will return to
these issues later.

For example, the System V printing subsystem enables the user to move a pending print request
between print queues (i.e., printers) with the special command Ipmove (there is no BSD
equivalent):

Ipmove request-id(s) new-printer To move some print requests
Ipmove old-printer new-printer To move all print requests
where

request-id(s) The ID(s) of the print request/requests to be moved

new-printer The name of the new printer (queue) to move print requests

old-printer The name of an old printer (queue) where print requests are pending

Another command pair, accept and reject, may be used to permit and inhibit spooling to a print
queue; both accept a list of destinations as their argument. With the —r option, reject may specify a
reason for denying requests, which will be displayed to users attempting to send new jobs to that
queue.

The enable and disable commands are used to control the status of a specified printing device
(printer).

The "master" printing-related administrative command is Ipadmin. This command is so powerful
that it is even more appropriate to refer to it as an administrative tool, a set of joined commands
invoked through different Ipadmin options. This is the "magic" command for managing all printing
devices in the System V printing subsystem.

The Ipadmin command is used to manage printers and destination classes. It defines and modifies
the characteristics of printer devices and classes. All these administrative tasks are important for the
printing subsystem and require full support by the Ipsched daemon; any possible problem can be
skipped with this command, but only when the Ipsched daemon has been stopped. Once the
daemon is restarted, it has learned about the new configuration.

The Ipadmin command is a powerful tool in managing printing devices. The online manual pages
contain a complete explanation of all available options for this command. Here, only some of
options are listed and briefly discussed.

e To set the default destination:

lpadmin -d printer name

where

225

printer_name The name of the printer or device class

e To place a printer into a class (if the class does not exist it is created):

lpadmin -p printer name -c class_name
where

printer_name The name of the printer
class_name The name of the class

e To remove a printer from a class:

lpadmin -p printer name -r class_name
e To restrict (or even deny) access to destinations to specific users (by default, all users are
allowed to use any destination):

lpadmin -p printer name -u 'allow:user list'
lpadmin -p printer name -u 'deny:user._ list'

where

user_list List of users with restricted access to printer print_name; users in the list are separated
by commas. Each user in the list is specified in the form: host!luser-name, where host is
the name of the host, and username indicates the user on that host (a missing host
corresponds to the local system). The keyword all corresponds to all users, or all hosts. If
an allow list exists, the access is allowed only to users in the list.

e Finally, the Ipadmin command is used to add a new printer (local or remote) to the system,
as well as to remove a printer from the system. We will discuss this important administrative
task later.

It is important to remember that the proper use of the Ipadmin command involves shutting down the
Ipsched daemon, and reinvoking it afterward.

10.2 Printing Subsystem Configuration

10.2.1 BSD Printer Configuration and the Printer Capability Database

The BSD and System V printing subsystems perform the same job, but in a different way. At first
they seem similar, but once we reach the subject of configuring them, their differences become
more apparent. While System V relies on existing front—-end administrative commands (such as the
Ipadmin command), the BSD printing subsystem is mostly administered through the corresponding
printer capability database using the usual UNIX tools and skills — in other words, by manual
editing of the necessary configuration data. The next few paragraphs focus on these topics.

Printer configuration requires a clear understanding of the administration procedure, and there are
many steps involved before the procedure is complete. System administrators, however, are quite
happy with this approach, because it involves editable ASCII configuration data with full control of
the configuration itself, easy scripting, and an easy multiplication of the printing configuration over

226

multiple systems.
10.2.1.1 The /etc/printcap File

The master printer configuration database is contained in the /etc/printcap file. This file lists all
devices serviced by the BSD printer spooling subsystem. A more precise description of the file
would be "printer capability database," which the name stands for. UNIX systems are usually
shipped with a standard version of the /etc/printcap file (the template file), which describes most of
the printers that could be used on the system. Each printer type is described by one printcap entry,
which consists of a sufficient number of printcap fields describing different printer characteristics.
Upon its installation, the entries can be commented-out; the system administrator should configure
/etc/printcap by activating the proper entries for the implemented printers. Sometimes minor
modifications of entries are required, though in most cases the entries match existing printers. The
/etc/printcap file includes other printer configuration data necessary for successful printing, as well
as data related to the printer characteristics, making it a true master printer configuration file.

The Ipd daemon reads the printer-related data from the /etc/printcap file on an as—needed basis.
This means any configuration change will be effective immediately, and there is no need to reinvoke
the daemon itself (as would be the case for the majority of daemons).

Here is an example of a /etc/printcap file:

$ cat /etc/printcap
Printer Capability Data Base

Entry for HP LaserJet IV printer
\1Ip\1j4\hplj\ljiv\ascii\HP LaserJdet 4: \
cmx#0:\
:ms=-parity, -cstopb, -clocal, cread, ixon, ixoff, —opost :\
:1lp=/dev/ttya:sd=/usr/spool/laserjet :br#9600:\
:fc#0777:£s#06021:sb:sh:xc#07737:x s#040:\
:1f=/usr/adm/lpd-errs:of=/usr/lib/hplaserjet:

#
#
Modified on Feb. 2, 1998 by the System Administrator
#
#
0

#

Entry for HP plotter (for future use)
#5|HP |hp plotter|HP Plotter:\

:1p=/dev/ccplot:\

rof=/usr/spool/spfrf:\

:xn=146.95.1.3:\

:xp=6:\

:pl#0:\

:1f=/usr/adm/errorlog:\
:sh:\

:ff="[.Y:fo:tr=PG; :

#

##POSTSCRIPT laser printer

pplpp|PostScript |postscript:\
:1lp=/dev/ppplot:\
rof=/usr/spool/spff:\
:xn=146.95.1.3:\

xp=2:\

:1f=/usr/adm/errorlog:\

:sh:
#
Remote printers on the microVAX computer (MVAXGR)
#

10| prvax|vx|vax|sysSprint |decwriter|/line printer:\
:lp=:rm=mvaxqgr:sd=/ usr/spool/lpd/vax:1f=/usr/ adm/lpd-errs:\

227

rrp=sysSprint:

11/1svax|laser|sysSlspr|lsprinter|laser printer:\
:lp=:rm=mvaxgr:sd=/usr/spool/lpd/vax:1f=/usr/ adm/lpd-errs:\
rrp=sysSlspr:

#Remote printers on RISC computers (RSOICH and RS09CH)

#

15/exrisc|/rs09ch|ex|ex printer:\
:1p=:rm=rs09ch:sd=/usr/spool/lpd/risc:1f=/usr/adm/Ipd-errs:\
rrp=ex:

16|psrisc|/rsOlch|ps|/postscript|ps printer:\
:1p=:rm=rs0lch:sd=/usr/spool/lpd/risc:1f=/usr/adm/lpd-errs:\
:rp=ps:

Printer for SGI

20[1sv:\
:1lp=:rm=mvaxgr:sd=/ usr/spool/lpd/sgi:1f=/usr/ adm/lpd-errs:\
:rp=sys$Slspr:

The /etc/printcap is a simplified version of the termcap database (discussed in_Chapter 11), adapted
to fully describe printers. The printer spooling subsystem accesses the printcap file every time it is
used, allowing dynamic addition and deletion of a printer's data.

The basic rules for creating a printcap entry are:

* The lines beginning with # (a number sign) are comments, and are not active lines.

e Each entry can have an arbitrary number of items (fields) separated by colons (:); an entry
can continue from one line to another using the usual UNIX continuation backslash
character (\) at the end of a line.

e Each printer is often identified by multiple names; the names are arbitrary and are the
names available to that user on the system. The first name is, by convention, a number; the
second given name is the most common abbreviation for the printer, and the last name
should be the long name fully identifying the printer. The second name should contain no
blanks; the last name may contain blanks for readability. A vertical line (the pipe character
"|") separates the printers' names, and at least one of the names should be easy to use:
short, logical, and easy to remember.

e The default printer is identified by the generic name Ip, appended to its other names; this will
be explained in greater detail later. The BSD printing commands supports a =P printer
option to explicitly determine the destination printer.

e The remaining fields describe the printer's capabilities (characteristics), resources, and its
use.

All capabilities in the printcap file are specified by two—character codes, and may be of three
possible types:

Boolean Capabilities, which, if they appear in a field, indicate that the printer has some
particular feature. Boolean capabilities are simply written in an entry's fields
between the ":" characters. In the capability table that follows, they are indicated by
the word "bool" in the type column.

Numeric Capabilities that supply information such as baud-rates, number of lines per page,
etc. Numeric capabilities are specified by the word "num" in the type column of the
capabilities table that follows. Numeric capabilities are identified by the

228

String

two—character capability code with the trailing "#" character followed by the
numeric value. The following example is a numeric entry stating that this printer
should run at 1200 baud: ":br#1200:"

Capabilities that specify a sequence that should be used to perform particular
printer operations, for example, a cursor motion. String valued capabilities are
specified by the word "str" in the type column of the capabilities table that follows.
String valued capabilities are identified by the two—character capability code with
the trailing "=" sign, followed by a string up to the next colon ":". For example, ":
rp=spinwriter." is a sample entry stating that the remote printer is named
spinwriter.

The table of various capabilities (in alphabetic order) follows; the most common capabilities are
presented in bold.

Name |Type Default Description

af str |NULL Name of accounting file

br num |none If Ipis a tty, set the baud rate

cf str |NULL Cifplot data filter

df str |NULL TeX data filter (DVI format)

du str |0 User ID of user "daemon"

fc num |0 If Ip is a tty, clear flag bits

ff str |"\f" String to send for a form feed

fo bool [false Print a form feed when device is opened

fs num |0 Like "fc" but set bits

of str |NULL Graph data filter (plot(3X) format)

hi bool |[false Print the burst header page last

ic bool |[false Driver supports (nonstandard) ioctl to indent printout
if str |NULL Name of input/communication filter (created per job)
If str |"/dev/console” |Error logging file name

lo str |"lock" Name of lock file

Ip str |"/dev/Ip" Device name to open for output

mc |num |0 Maximum number of copies

ms |str [NULL List of terminal modes to set or clear

mx num {1000 Maximum file size (in BUFSIZ blocks), zero = unlimited
nd str [NULL Next directory for list of queues (unimplemented)

nf str [NULL Ditroff data filter (device independent troff)

of str |NULL Name of output/banner filter (created once)

pc num (200 Price per foot or page in hundredths of cents

pl num |66 Page length (in lines)

pw [num (132 Page width (in characters)

pX num |0 Page width in pixels (horizontal)

py num |0 Page length in pixels (vertical)

rf str [INULL Filter for printing FORTRAN style text files

rg str |NULL Restricted group, only members of group allowed access
rm |str |NULL Machine name for remote printer

rp str ["Ip" Remote printer name argument

229

rs bool |[false Restrict remote users to those with local accounts
rw bool |[false Open printer device read/write instead of write—only
sb bool |[false Short banner (one line only)

SC bool |[false Suppress multiple copies

sd str ["/var/spool/lpd"” [Spool directory

sf bool |[false Suppress form feeds

sh bool [false Suppress printing of burst page header

st str ['status” Status file name

tc str [NULL Name of similar printer; must be last

tf str [NULL Troff data filter (C/A/T phototypesetter)

tr str |NULL Trailer string to print when queue empties

vf str [NULL Raster image filter

XC num |0 If Ip is a tty, clear local mode bits

XS num |0 Like "xc" but set bits

10.2.1.2 Setting the BSD Default Printer

The system default printer is defined by the generic name Ip within the /etc/printcap file. The entry
for the default printer should have attached Ip to one, or more of its valid names, and only one entry
can have such a name. Otherwise, the default printer will not be defined properly, and the first
defined default entry within the file will be interpreted as the default destination. In the past, the local
printer accessed via the special file /dev/Ip was usually assumed to be the default one; however, the
default printer could be any local or remote printer (Ip could be assigned to any entry in the file). It is
not mandatory to specify a default printer at all, in fact. Obviously, none of the existing printers can
be regularly named "Ip"; otherwise BSD printing subsystem will assume this printer for the default
one. Such a restriction does not present a real problem in the implementation.

Individual users can specify their own default printers with the PRINTER environment variable. The
default printer is usually the most used printer, and the only benefit of using the default printer is the
shorter printing commands (since there is no need for the =P option). All other printing
characteristics are defined in the printcap file in the same way as for other printers.

10.2.1.3 Spooling Directories

The spooling directory holds files destined for a particular printer until the Ipd daemon can process

them for printing. Spooling directories are conventionally subdirectories located in /usr/spool or

/var/spool. Each printer has to have a defined spooling directory; otherwise, the printing will be

disabled.

The spooling directory is defined within the printer's printcap entry in the /etc/printcap file. The field:
Defines the spooling directory for the corresponding printer

sd=/usr/spool/dir._name

All spooling directories must be owned by the user daemon, and the group daemon, with the

access mode 755 (drwxr—xr—x). Such a protection scheme gives the necessary write access to files

that have been spooled, forcing users to use the printer spooling system and preventing anyone
from deleting someone else's pending files, or otherwise abusing the system.

230

For example, to create a new spooling directory named /usr/spool/newprinter when the new printer
newprinter is added to the system, the following commands should be executed:

cd /usr/spool

mkdir newprinter

chown daemon.daemon newprinter (original BSD syntax)

chmod 755 newprinter

1s -1d

drwxr—-xr—-x 2 daemon daemon 2048 May 12 11:15 newprinter

The location of spooling directories varies among BSD UNIX flavors (for example, the common
location of the spooling directory on SunOS was /var/spool).

10.2.1.4 Filters

The UNIX "piping" ability is widely implemented in the printing subsystem. A number of filters can be
inserted in sequence in print job processing; these filters match printing files with printers. This
approach provides the maximum possible flexibility in printing and makes the printing subsystem
independent of the implemented printers. Quite simply, all required matching and any necessary
adjustment of any specific printer characteristic becomes programmable. Filters are usually shell
script files, and they are specified within the printer capability database in the /etc/printcap file. Most
of the filters are correlated with the options of the print command lpr; a corresponding filter provides
the necessary preprocessing of data to fulfill the option's requirements. However, two filters are the
most common: if — the input filter — and of — the output filter. Their names often cause confusion,
because the filters are used in an almost identical way: they are called by the daemon when a print
job is sent to a printer (in that sense they are both output filters for the daemon, or input filters for a
printing device).

When a user does not specify a filter—related option, either the if or of filter will be used. There are
three cases of the corresponding printcap entry in the /etc/printcap database worth examining:

1. If the field if occurs, but no of field exists, the if filter will be called every time any print job is
sent to the print device.

2. If the field of occurs, but no iffield exists, the Ipd daemon will call the of filter once for all
print jobs in a queue and send them en masse to the print device.

3. If both fields if and of exist, the of filter will be used to send the banner page, while the if
filter will be called for every print job separately.

It is highly recommended that a system administrator use iffilters, because they are much easier to
debug; of filters can be very confusing.

One of the common problems related to printing is the so-called staircase effect in the printing.
What is the staircase effect? The character pair CRLF (carriage-return/line—feed) is a common way
to terminate each line of text, because old mechanical teletypes required a carriage return before
shifting to a new line. UNIX continued this traditional text treatment. However, in a DOS text file,
each line of text is terminated with a LF (line-feed) character only, assuming an automatic insertion
of the CR (carriage-return) character. If such a file reaches the UNIX environment unchanged, from
the UNIX standpoint, the file is corrupted and incomplete. Taken literally, this text file printed on an
ASCII device will start each line below the end of the previous line. This is known as the staircase
effect.

In today's heterogeneous system environment, transfer of files between UNIX and non-UNIX
platforms is quite common (for added confusion, on the Apple/Macintosh platform each line of the

231

text is terminated with CR character only), and situations such as the staircase effect are quite
possible. The commands unix2dos and dos2unix (sometimes named ux2dos, and dos2ux) are
available on the UNIX platform to correct transferred files.

This pending problem can also be fixed by providing the appropriate data filtering during printing.
Some printers can be set to treat the single LF character as the (LF+ CR) pair, while others cannot.
In the later case, one solution is to create an appropriate input shell script filter, which will convert
each line of text before printing. Below we will see two possible solutions, tested on the Linux
platform. These examples are written for the bash shell (Bourne Again Shell) and the Panasonic
KX-P4411 laser printer.

A shell script input filter that adds a CR character at the end of each line can be created:

#!/bin/sh
if ["$1" = -1],;then
cat
else
sed —e s/S$/"M
/
fi

The "echo -ne" assumes that /bin/sh is really bash
echo —-ne \\f

Let us name the file crif-if1. The test of the first argument "$1" allows a bypass of the insertion of
CR when the Ipr -l command is used; otherwise, the CR character is inserted at the end of each
line using the sequential editor sed ("*M" is a CR character, edited by vias "CTRL-v CTRL-m"). At
the end of the file, the "form—feed" is sent to print the last page properly.

Alternatively, the printer itself can be controlled by an external escape sequence that sets the way
the printer handles LF character (it treats the LF character as two joint characters, CR+LF). For the
implemented PANASONIC printer, the escape sequence is: "ESC &k2G." A simple filter that uses
the echo —ne command to send this sequence at the start of printing could be:

#!/bin/sh
Filter for HP printer to treat LF as CRLF
The "echo -ne" assumes that /bin/sh is really bash
echo —ne \\033"&k2G"
cat
echo -ne \\f

Let us name this file crif-if2, and copy both filter files in the /usr/lib/filters directory:

#1s -1 /usr/lib/filters/crlf-in¥*
-rwxr-xr-x 1 root daemon 128 Dec 14 16:25 crlf-ifl
-rwxr-xr-x 1 root daemon 147 Dec 16 09:22 crlf-if2

Both filters are workable, but remember that the second filter is printer dependent (it can be slightly
different on another printer). Finally, the /etc/printcap file should be updated appropriately.

The corresponding entries in the /etc/printcap file are presented:

#cat /etc/printcap

Copyright (c) 1983 Regents of the University of California.
All rights reserved.

@(#)etc.printcap 5.2 (Berkeley) 5/5/88

#

Generic printer:

232

1lp|/Generic:\
:1p=/dev/1pl:sd=/usr/spool/lpl:sh:
typical remote printer entry

PANASONIC Partner jet
pan|pancrlf|panasonic|KX-P4410:\
:1p=/dev/1pl:\
:sd=/usr/spool/lpl:\
cmx#0:\
:sh:\
:if=/usr/lib/filters/crlf—-ifl:\
:1f=/usr/spool/lpl/pan—-err:\
ctr:
#
HP Laser jet plus
1jet /hplp/hpj|HP Laserjet:\
:1p=/dev/1pl:\
:sd=/usr/spool/Ipl:\
cmx#0:\
:sh:\
:if=/usr/lib/filters/crlf—-if2:\
:1f=/usr/spool/lpl/ hp-err:

The arbitrarily named "logical" printers ("logical" because both point to the same physical printer)
pan and ljet can easily use both of the above filters.

10.2.1.5 Linux Printing Subsystem

The Linux printing subsystem presents a fairly vanilla BSD implementation. There are some minor
differences toward a typical BSD printing subsystem, and we will focus on them. The printer
configuration database is located in the /etc/printcap file which is empty upon the system
installation. To add a printer, or printers, Linux provides the X-based graphical tool printtool which
automates editing of the /etc./ printcap file; Linux strongly recommends the use of this tool, instead
of any manual modification. Basically, the usage of printtool is easy, friendly, and straightforward.
The only disadvantage is a required X—server support, and relatively restricted number of printers
that the tool handles. For other printers, we can always manually edit the configuration data.
Several comprehensive interactive window-levels address the most common printer types, and in
most cases the tool is sufficient. Printtool is illustrated in_Eigure 10.2.

233

S RHS Linux em =10/ x|
PrintTool Ipd Tests Help

Printer Queues in /etc/printcap
ls-printer2 REMOTE lpd queue on 216,216,237,181

Names (namelpame?|...) [ls-printer2
Spool Directory [varzspeci/Z1pd/1s-pr
File Limitin Kb (0 = no limit) o
Remote Host [216.216,237.181
Remote Queue I
Input Filter Select |[vautok - Laserlet Edit ‘ Add Delete |
* Suppross Head
Ll) ___ Driver Description
__ Prnter Type - |Driver for the HP LaserJet

HP LaserJet

HP LaserJet 4 - dithered

HP LaserJet 4/5/6 series, non-PostScript

HP LaserJet IlI* with Delta Row Compression
HP LaserJet 111" with duplex capability

Resolution Paper Size
HP LaserJet lld/1ip/1lI* with TIFF P -
HP PaintJet LELEEL = J (R
HP PaintJet XL }:::r
HP PaintJet XL300 and DeskJet 1200C /
1BM 3853 JetPrinter Color Depth £
Imagen ImPress Default | J
CP30
NEC PB/P6+/P60 /
NEC Prinwriter 2X (UP) Printing Options
Oktata Microkine 162 M Send EOF after job to eject page?
PostScript printer
Ricoh 4081 laser printer I Fix stair-stepping text?
StarJet 48 1 Fast text printing (non-PS printers only)?
Tek 4693d color printar, 2 bit mode « B 4 2 ® 1 pages per output page.

Tek 4693d color printer, 4 bit mode / Margins (in pts=1772 of inch)

ok | camcer | mere | mowten s Topmotiom 8
Extra GS oplions: [

Figure 10.2: Linux graphical tool printtool.

Linux requires a defined default printer; if a default printer is not explicitly specified by the Ip name,
the first printer listed in the /etc/printcap file becomes the default one. There are also some other
Linux syntax—specific issues that we will talk more about in the paragraphs that follow about local
and remote printers.

10.2.2 System V Printer Configuration and the Printer Capability Database

We have already mentioned that the System V printing subsystem includes the versatile and
powerful administrative command Ipadmin, which can be used to manage many printing
configuration issues. The Ipadmin command configures LP spooling systems to describe printers,
classes, and devices. It is used to add and remove printing destinations, change membership in
classes, change devices for printers, change printer interface programs, and change the system
default destination.

However, this does not mean the Ipadmin command is a magic solution for any printing need or
problem. It is very helpful in defining and setting the printing resources, but the printing configuration
must be saved after the initial setting to be available to the system when needed. It is important to
understand the Ipadmin background — what happens behind the scenes, hidden from users, and
even hidden from the system administrators, for successful administration of the System V printing
subsystem.

10.2.2.1 The Printer Database Directory Hierarchy on System V
The System V printer capability database is organized differently from BSDs. Instead of a huge
single database file (the BSD /etc/printcap file), in System V there is a printing-related directory

hierarchy, or even hierarchies. The core of this hierarchy is the /usr/spool/lp directory (or
/var/spool/lp, for some flavors) and the /etc/Ip (regardless of the name of the directory, the

234

corresponding links provide uniform access to the data).

Let us examine the directory hierarchy. The Ipadmin command helps the system administrator
handle the printer capability database for different printer models (types). Model interface
programs are supplied, and installed, with the LP software. These are shell procedures, C
programs, or other executable programs that interface between the Ipsched daemon and printing
devices; using the BSD terminology, they are filters for printing on different printers. The standard
LP software should include model programs for existing standard printers; the printer vendors
should supply less—common models' files. All printer model files reside in the directory
/usr/spool/lp/model. Models should have 644 permission set if owned by Ip and bin, or 664
permission if owned by bin and bin. Model file names must not exceed 14 characters.

Model programs are important when a new printer is added to the system; the Ipadmin command
relies on model programs (the ljpadmin —m option) to establish an appropriate interface program for
proper future printing on the new printer. Adding new printers could be quite painful without these
programs, and could require advanced system administration skills. If only minor modifications are
needed, one way around this quandary could be the creation of a new model program by modifying
a copy of an existing model. In general, though, it is not easy to deal with model programs this way.

Model programs are scripts, i.e., readable ASCII files. Unfortunately, this is not the case with all
printing related files; there are a number of binary files that can only be handled with the available
LP front-end commands.

A Dbrief trip through the /usr/spool/lp hierarchy can provide a better understanding of the System V
printing subsystem. Here is an example from the HP-UX platform:

1ls -F /usr/spool/lp

FIFO cmodel/ interface/ model/ gstatus sinterface /
SCHEDLOCK default log oldlog receive/ smodel/
cinterface/ fonts/ Ipd.log outputqg request/

class/ info member/ pstatus segfile

#ls -C /usr/spool/lp/model

HPGLI dumb hp2560 hp2934a laserjet
HPGL2 dumbplot hp2563a h p33440a laserjetIIISi
HPGLZ2.cent fonts hp2564b hp33447a paintjet
PCLI hp2225a hp2565a hp3630a postscript
PCL2 hp2225d hp2566b hp7440a quiet jet
PCL3 hp2227a hp2567b hp7475a rmodel

PCL4 hp2228a hp256x.cent hp7550a ruggedwriter
clustermodel hp2235a hp2631g hp7570a thinkjet
colorpro hp2276a hp2684a hp7595a

deskjet hp2300-1100L hp2686a hp7596a

draftpro hp2300-840L hp2932a hpC1208a

Model programs correspond to all printer models that can be attached and used on the system. This
does not mean that they all are active. Only certain model files take part in creating other active files
named "interface" files that reside in the directory /usr/spool/lp/ interface. Interface files are directly
involved in the printing process and are important for printers currently in use. In most cases, but
not all, these files are direct copies of the corresponding model files.

For example:

#1ls -1 /usr/spool/lp/interface
total 36
—rwxr-xr-x 1 1lp 1lp 18416 Mar 30 14:31 panlaser

235

Only one printer is attached to this system, and it has a site—specific name panlaser. The
administrator named this particular printer, and the choice was quite logical since it was a
Panasonic Laser Printer (please note that the choice of the printer name is arbitrary, but once the
printer was installed, users must use this name). It easy to conclude from an inspection of the
interface file that the file is a renamed copy of the model file laserjet (obviously, this Panasonic laser
printer is compatible with the HP Laserjet printer).

On Solaris 2.x a majority of the LP related files reside in the /var/spool/lp and /etc/lp directories:

$ 1s -1 /var/spool/lp

total 18
—IrWw—Irw—I—-— 1 1p 1p 0 Sep 28 09:25 SCHEDLOCK
Adrwxrwxr—x 2 1p 1p 512 Apr 4 1995 admins
I rwXrwxrwx 1 root root 23 Apr 4 1995 bin -> ../../../ usr/lib/Ilp/bin
AdrwXrwxr—x 4 1p 1p 512 Sep 21 15:24 fifos
I rwxXrwxrwx 1 root root 13 Apr 4 1995 logs -> ../../ 1lp/logs
1 rwXrwxrwx 1 root root 25 Apr 4 1995 model -> ../../../ usr/l1ib/lp/model
Adrwxrwxr—x 3 1p 1p 512 Apr 4 1995 requests
Adrwxrwxr—x 2 1p 1p 512 May 9 12:20 system
I rwXrwxrwx 1 root root 23 Apr 4 1995 temp -> /var/spool/lp/tmp/atlas
drwx——-x--x 4 1p 1p 512 Apr 4 1995 tmp
$ 1s -1 /etc/1lp
total 24
—rWw—Irw—r—-— 1 1p lp 2141 Apr 4 1995 Systems
AdrwXrwxr—x 2 l1p 1p 512 Apr 4 1995 alerts
Adrwxrwxr—x 2 1lp 1p 512 Apr 4 1995 classes
drwxr—xr—x 2 1lp 1p 512 Apr 4 1995 fd
Adrwxrwxr—x 2 l1lp 1p 512 Apr 4 1995 forms
Arwxrwxr—x 2 1p 1p 512 May 9 13:09 interfaces
lrwXrwxrwx 1 root root 17 Apr 4 1995 logs —> ../../ var/lp/logs
lrwXrwxrwx 1 root root 17 Apr 4 1995 model -> /usr/lib/lp/model
ArwXrwxr—x 2 1lp 1p 512 May 9 13:09 printers
Adrwxrwxr—x 2 1lp 1p 512 Apr 4 1995 pwheels

10.2.2.2 Setting the System V Default Printer

We should again use the mighty Ipadmin command to set a systemwide default printer. The
command:

$ lpadmin -d hpljédp

will set the printer named hplj6édp as the default one. Any previously set default printer will no longer
be the default, and the new default printer become active.

To check a system for the default printer, use the command:

$ lpstat -d

The default printer data is stored in the file /usr/spool/lp/default.

10.2.3 AIX Printing Facilities

AlX has a different approach to the printing facility: printing is serviced by the spooler daemon

qdaemon, which is the background server for handling all kinds of queues. gdaemon responds to
the enq program, which enqueues print jobs and transfers all of the arguments necessary for

236

proper printing. The front-end print commands are lpr, Ip, and qprt, which submit print jobs to the
spooler daemon via the enq program. On the other side, qdaemon invokes the printer backend
program to manage a print job: to initialize a printer, provide filtering, generate a header, etc. Finally,
the printer 1/0 backend piobe command, the print job manager, is called.

AIX introduces a bit more flexibility, and a great deal of complexity into printing, but the System
Management Interface Tool (SMIT) provides a relatively easy-to—use and user—friendly way to
administer it.

Programs that administer printing work with virtual printers — sets of attributes that define a specific
software "view" of real printers. A user submitting a print job always specifies (directly or indirectly) a
particular print queue for the print job. The print request can also specify a particular virtual printer;
otherwise, the spooler will select the first available virtual printer associated with the print queue (in
the case of multiple associated virtual printers, they are all treated as equals).

A real printer is the printer hardware attached to a serial or parallel port at a unique hardware device
address. The kernel communicates with it and provides an interface with a corresponding virtual
printer (however, the kernel is not aware of the concept of virtual printers). The SMIT can and
should be used to add a real and a virtual printer (although the commands mkdev and mkvirprt
can do the same job).

Multiple virtual printers can use the same real printer, but only one real printer (and one queue) can
be associated with each virtual printer.

The attribute values used by the printer backend program reside in colon files in the Predefined and
Customized Databases subdirectories: /usr/Ipd/pio/predef and /usr/lpd/pio/custom (an AlX
example):

$ 1s -1 /usr/lpd/pio

total 56
Adrwxrwxr—x 2 root printqg 512 Sep 22 15:48 burst
1rwXrwxrwx 1 root system 25 Sep 22 14:31 custom -> /var/spool/lpd/
pio/custom
1 rwXrwxrwx 1 root system 22 Sep 22 14:31 ddi -> /var/spool/lpd/pio/ddi
drwXrwxr—x 2 root printqg 1024 Sep 22 16:34 etc
1 rwXrwxrwx 1 root system 24 Sep 22 14:31 flags —-> /var/spool/lpd/pio/flags
Adrwxrwxr—x 2 root printqg 512 Sep 22 16:34 fmtrs
Adrwxrwxr—-x 2 root printqg 512 Sep 22 14:39 fonts
drwxrwxr—x 2 root printg 2048 Sep 22 16:34 predef

When a new virtual printer is added, the predefined attribute values for the particular printer type
and data stream type are copied to create a customized set of attributes for the virtual printer (they
can be further customized manually). Two database directories are presented in an example from
AlX:

$ 1s -1 /usr/lpd/pio/predef

total 912

—IW-Irw—Ir—-— 1 root printqg 4978 Oct 18 1992 2380.asc
—Irw—rw—r—-— 1 root printqg 5794 Jul 19 1993 2390.asc
—IrW—Irw—r—-— 1 root printqg 2598 Oct 12 1993 4019.ps
—Irw—rw—r—-— 1 root printg 2345 Aug 5 1993 dp2665.ps
—Irw—rw—r—-— 1 root printqg 4500 Oct 15 1993 hplj-2.pcl
—Irw—rw—r—-— 1 root printqg 4892 Dec 2 1993 hplij-3.pcl
—IrW—Irw—r—-— 1 root printqg 2351 Aug 5 1993 hplj-3.ps

237

—IW-Irw—Ir-—- 1 root printqg 5182 Mar 15 1994 hplij-3si.pcl
—Irw—rw—r—-— 1 root printqg 2595 Jul 19 1993 hplj-3si.ps
—Irw—rw—r—-— 1 root printqg 5266 Apr 17 1994 hplij-4.pcl
—IW—Irw—I—— 1 root printg 2644 Apr 17 1994 hplj-4.ps

$ 1s -1 /var/spool/lpd/pio/custom
total 8
—IrW—Irw—r—-— 1 root printg 2367 Oct 2 09:45 ps:1p0

File names in the predefined database are of the form PrinterType.DataStreamType. For instance,
"hplj-4.ps" indicates a Hewlett Packard Laser Jet series 4 with a Post Script. File names in the
customized database are of the form QueueName:QueueDeviceName, given by the administrator;
as in Ip0:ps.

All attribute values in the database colon files are character strings, regardless of whether they
represent strings, integers or Boolean. An attribute value can contain embedded references to other
attribute values, and can be dynamically determined.

$ cat /var/spool/lpd/pio/custom/ps:1p0

:056:_ _FLG::
:466:_1::!
:467:_2::!
:030:_L::+
:046:_X::IBM-850
:050:_Z::!
:063:_a::0
:083:_p::8?78G 2%t5{1}%e%{0}%;%78G_z%t%{1}%e%{0}%;%+8?2%{2}%=%t7%e — 10%;
:090:_s::Courier
:093:_u::l
:100:_w::80
:107:_z::0
:060:___SYS::

:321:sh::%Ide/pioburst $F[H] %Idb/H.ps | $Ide/pioformat -@%$Idd/$Imm —!%Idf/piofpt $f[jJ]
:274:1ia::test "SPIOTITLE" != $I@1 && BFLAG=" -b SPIOTITLE ";/usr/bin/enscript $?%$CX%t%f[X]%e -
X$I_X%; —-p— —qg%?%G 2%t -2%;%7?%G _z%t -r%;%?%G 3%t - G%;%7%G_1%t%e -B%;%?%G_L3%t%e —-c%;
$?78Ch%t%$fbh%e%$?%L_h% t -b'$I_h'$%e SBFLAG %;%; —-L%G_1%d —-f$%$?%Cs%t%f!s%e%Il_s%;%G p%d -
P3G _1%t-F3Iw7%G_p%d%;%7%G_4%t —-g%;%7%G_5%t —-0%;,%7?%L_f3%t%e - %I@1%; |%Iis

:269:fn::/usr/bin/psc%is
:270:fp::/bin/pr —-1%G_1%d -wG_wd$F[h] $%I@1%ia
:331:mL::PostScript Printer

The customized ps:Ip0 file is a copy of the predefined hplj-4.ps file; in this case, the implemented
post-script printer is actually the Hewlett Packard LaserJet Series 4 post- script printer.

Each attribute is specified by an entry with five fields:
msg_catalog ID:msg number:attribute name::attribute value

where:

238

msg_catalog_ID ldentifies the message catalog where the attribute description is stored. It can be
an empty field and then the catalog is defined as the name of the colon file with
the extension "cat."

msg_number |dentifies the message index in the catalog that contains the description of the
attribute.

attribute_name The unique name of the attribute. Alphanumeric characters and underscore ()
are permitted; longer names correspond to comments.

null-string An empty field for future use.

attribute_value Specifies the value of the attribute (zero to 1000 characters). Embedded
references and logic for dynamically defined attribute values can be included
(which generally provides an extremely powerful way to specify an attribute).
Obviously the attribute value string can be a very complex expression used in the communication
between the print job manager (the piobe command) and the device driver interface program (the
pioout command).

10.3 Adding New Printers

Adding a new printer onto a system is a common, unavoidable administrative task, and the system
administrator must be familiar with this procedure. The following text covers printing subsystem
flavors BSD and System V for both local and remote printers.

10.3.1 Adding a New Local Printer
10.3.1.1 Adding a Local BSD Printer
To add a new local printer to a BSD system, several steps must be performed:

e Physically connect a printer to the computer (parallel or serial connection).

e For serial line printers, create or modify an entry in the terminal line configuration file
/etc/ttys, or /etc/ttytab on SunOS (this will be discussed in greater detail in_Chapter 11). The
entries should have status off, type unknown, and the keyword none in the command field.

e |f this is the first printer on the system, verify that the part of the rc scripts to start the Ipd
daemon is active.

e Add an entry for the printer to the /etc/printcap file. If the new printer is of the same type as
an existing one, the entry for the existing printer can be copied and then modified to the new
values:

¢ The printer name, in the name field of the entry (multiple names are allowed)
¢ The special device file, in the field ":Ip= ... :"; this field identifies the hardware
connection of the local printer, which is the system address of the corresponding
special device file
¢ The spooling directory, in the field ":sd= ... "
¢ An accounting file, in the field ":af= ... ;" if accounting is active
¢ An error log file, in the field ":If= ... "
¢ Other fields remain unmodified for the same type of printer
e |f the new printer is the first of its type on the system, then the lines for corresponding entries
in the /etc/printcap file should be commented-out and edited. Printer vendors often provide
printcap entries for their products.
e Create the corresponding spooling directory for the printer.

239

e Create the corresponding printer accounting file (if required, and given the printer name
"newprinter"):

touch /usr/adm/lp_acct/newprinter
chown daemon /usr/adm/lp_acct/newprinter
chmod 755 /usr/adm/lp_acct/newprinter

Note On some platforms (such as SunOS) the printer account directory could
be / var/adm/Ip_acct.
e If the new printer should be the default printer on the system, append "/p" to the printer's
name and remove "[p" from the entry of the previous default printer.
e Start the printer and its queue (given the printer name newprinter):

lpc up newprinter
e Test the new printer by spooling a short message for printing. An effective way to do this is:

banner "Testing" "of" "newprinter" | lpr -Pnewprinter
An attractive, banner—style, message should be printed.

The following example illustrates a printcap entry for a local HP Laserdet5 printer, connected to the
serial port specified by the special device file /dev/ttya; all names are arbitrary. The previously
discussed fields are printed in bold.

Entry for HP LaserJet IV printer named newprinter
newprinter \13j5\hplj5\1jv\HP LaserJdet 5: \
:1p=/dev/ttya:sd=/usr/spool/newprinter:\
:1f=/usr/adm/newprinter.log:\
:ms=-parity, -cstopb, -clocal, cread, ixon, ixoff, —opost : \
:fc#0777:fs#06021:sb:sh:xc#07737:xs#040:\
:mx#0:br#9600:0f=/usr/1lib/hplaserjet:

10.3.1.2 Adding a Local Linux Printer

To add a Linux printer, we use the available Linux printtool utility (it is recommended, but not
mandatory). In the following example we see how the /etc/printcap file looks like after adding a local
printer Ip1 by using this tool.

$ cat /etc/printcap

Please don't edit this file directly unless you know what you are doing!
Be warned that the control-panel printtool requires a very strict format!
Look at the printcap(5) man page for more info.

S

This file can be edited with the printtool in the control-panel.
##PRINTTOOL3## LOCAL laserjet 300 x 300 letter {} LaserJet Default {}
Ipl/iplocal:\

:sd=/var/spool/lpd/1pl:\
cmx#0:\

:sh:\

:1lp=/dev/1pl:\
:if=/var/spool/lpd/lpl/filter:

From the listed printcap entry, it can be seen that the printer Ip1 has an alternative name Iplocal. 1t
is connected to the parallel port /dev/Ipl, as well as the names of the spooling directory and input
filter. Other printing parameters are related to the maximum job size and print header. The specified
filter file is one among available printer—filters located in the corresponding filter depot directory. It is

240

easy to conclude by listing the filter file itself:

$ 1s -1 /var/spool/lpd/lpl|grep filter

lrwxrwxrwx 1 root root 44 Feb 5 20:10 filter->/usr/lib/rhs/rhs-printfilters//master—1f

When a single Linux printer is specified, this printer is automatically the default one; there is no
need to label this printer with the additional name Ip.

10.3.1.3 Adding a Local System V Printer
In System V, the administrative command Ipadmin -v is used to add a new local printer. The option
"-v" specifies a local printer and requires as argument the corresponding special device file. When

a new printer is added to the system, the following information must be supplied:

lpadmin -pnewprinter -vspecial file interface option

where
newprinter The name of the new printer.
special_file The full pathname of the special file through which the system will communicate

with the new printer.
interface-options Includes several possible options.

-m model Specify a printer by the existing model type. The corresponding model program
from the /usr/spool/lp/model directory is copied into the /usr/spool/lp/interface
directory (or on some platforms, /var/spool/Ip).

—e oldprinter Copy oldprinters interface file; oldprinter must be an existing printer.
—i interface_path Specify the full pathname of the printer interface file, introduced for this
purpose.

The "-e" option is the easiest to implement when the same, already tested and proven interface
from an existing printer is used for the new printer. The "-m" option is also easy to implement if a
standard, well-known model program defines the new printer.

Creating a new custom-designed interface program (the "=i" option) can be a hard job; an interface
program (often a script, but not necessarily a script) can be very complex. By convention, the
program takes the following arguments:

$1 job ID

$2 username

$3 job title

$4 number of copies

$5 printer—specific options

$6 files to be printed

When it is invoked, the interface program standard output is redirected to the printer, and the

program arguments can be processed in an arbitrary number of ways for different printing
scenarios.

The simplest possible interface program is:

This is the simplest LP interface
It ignores most initial arguments, and
prints the file as it 1is.

241

#
#!/ bin/sh
cat S6 2>&1

The Ipsched daemon must be shut down during printer installation and reinvoked afterward. It is
recommended that you test the new printer after installation:

$ banner "Testing" "of" "newprinter" | lp -d newprinter
g WP P WP

10.3.2 Adding a New Remote Printer

Both printer spooling subsystems allow remote printing. A destination printer could be a part of
another remote UNIX system or an individual network printer that supports UNIX-style printing
(basically the TCP/IP and the corresponding type of the printing subsystem). UNIX does not
differentiate between remote and network printers, it simply treats a network printer as a single
printer on a remote system. This is a logical approach because a network printer is identified within
the network in the same way as any other remote UNIX system.

Remote printing corresponds to the server/client model, where a client is a UNIX system in which
the remote printer is defined, and where users use this printer; this is the origin of a printing request.
A client requests a printing service, which is provided at another remote system, known as a print
server (may not be a UNIX system).

10.3.2.1 Adding a Remote BSD Printer

The BSD printing subsystem defines remote printers, as any other printers, through its printer
capability database in the /etc/printcap file. A remote printer requires a printcap entry slightly
different from that of a local printer. It is important to understand that:

¢ A number of printer characteristics are determined on the server side, where the printer is
local; the client has no influence on these predefined printer characteristics, and
corresponding printcap entries are meaningless and automatically outposted.

¢ New printcap entries, specific for remote printing, were introduced and they must be used.

e The remote destination has to be known to the system, as does the way to reach the
destination. In other words, the system must be properly connected to the network.

e The print server has to support BSD printing.

In the already presented section of the /etc/printcap file, several printcap entries refer to the remote
printers. We will analyze one of them:

16/psrisc| rsOlch|ps|postscript|ps printer:\
:1lp=:rm=rs0lch:sd=/usr/spool/lpd/risc:1f=/usr/adm/Ipd-errs:\
:rp=ps:

The name of the remote printer is psrisc (Postscript printer on the RS6000 system); alternative
names are possible.

e The empty ":Ip=:" field shows that this entry describes a remote printer (remember, for a
local printer this field specifies a corresponding special device file).

e The field ":rm=rs01ch:" indicates the destination system for remote printing (on a remote
machine). It can be specified with the valid DNS name of the system (in this case, "rs01ch")
or its IP address (DNS and IP addressing are discussed in_Chapters 15 and_16).

e The field ":rp=ps:" holds the name of the target remote printer on the remote system (in this

242

case, "ps"). This name must match the name of the corresponding local printer on the
remote system.

These three fields are mandatory for the proper definition of a remote printer. It is a good idea to
define several more fields that strictly define printing issues on the client side, such as:

e The field ":sd=/usr/spool/Ipd/risc:" specifies the spooling directory (in this case
"/usr/spool/lpd/risc"). It is recommended that you use the printer name as a spooling
subdirectory.

e The field ":If=/usr/adm/Ipd-errs:" specifies the error log file. A single log file may be defined
for multiple printers.

The entry does not contain any specific details about the remote printer other than its name. The
needed information is specified in the /etc/printcap file on the remote system (if the remote system
is a BSD UNIX system at all), or in another appropriate way.

On the printer server side, very little administration is required. Assuming the selected remote
printer already exists as a local printer there, the server's/etc/printcap file remains unmodified.
However, to allow users from a client system to access and print on the print server, the client
system itself must be specified as a trusted system; the hostname of the client system must be
included in the server's /etc/hosts.equiv file (this is discussed in_Chapter 19), or in the server's
/etc/hosts.lpd file (the structure of this file is the same as the /etc/hosts.equiv). Otherwise, remote
print requests from the client system will be refused.

10.3.2.2 Adding a Remote Linux Printer

Although Linux is mainly BSD compliant in the printing segment, there are some odds we have to
mention. Of course, use of the available printtool utility is again recommended. Supposing we are
adding two more remote printers on the Linux system we have already discussed, two more
/etc/printcap entries have been specified afterward:

##PRINTTOOL3## REMOTE POSTSCRIPT 600 x 600 letter {} PostScript Default 1
1p02|testlip:\

:sd=/var/spool/lpd/1p02:\

cmx#0:\

:rm=1s-printer2:\

rrp=1p02:\

:1pd_bounce=true:\

:sh:\

:if=/var/spool/lpd/lp02/filter:
##PRINTTOOL3## REMOTE 13j4dith 600 x 600 letter {} LaserJet4dither Default {}
1p01:\

:sd=/var/spool/lpd/1p01:\

mx#0:\

:sh:\

srm=1ls-printerl:\

:rp=1p01:\

:I1pd_bounce=true:\

:if=/var/spool/lpd/ 1pOl/filter:

Two added remote printers are local printers on remote machines Is-printer2 and Is-printer1
(actually they are network printers identified by these names); this is specified within the usual
"rm=" fields. What is unusual is the lack of the expected BSD configuration field "Ip=;" Linux simply
assumes a remote printer except if it is not explicitly specified as the local one. Other fields are the
known ones, or their variations.

243

10.3.2.3 Adding a Remote System V Printer

The basic concept of remote System V printing is the same as with BSD: the client/server model
and the required local setting of printers on the server side remain the same. However, setting
remote printers on the client side is different, and again the powerful Ipadmin command is used.
Three arguments are required to appropriately set a remote printer: a printer name on the client
side, a print server (a remote machine) name, and a remote printer name (the name of a local
printer on the server side). The Ipadmin command provides corresponding options for these
arguments. Unfortunately, the use of the command is not uniform among System V flavors —
different "lpadmin options" are available for this purpose. We will consider two of them: Solaris 2.x
and the HP-UX flavor.

10.3.2.3.1 Setting a Remote Printer on Solaris 2.x

lpadmin -p printer—-name -s remsystem—name!remprinter-name

where

printer-name Name selected to designate the remote printer

remsystem-name Name of the remote system that should provide printing (in versions up to
Solaris 2.6, must be listed in the /etc/lp/Systems file)

remprinter-name Local name of the printer on the remote system

The /etc/Ip/Systems file contains a list (table) of all associated remote systems and printers. The
Ipsystem command is available to update the file. We will discuss this issue later in more detail, as
a part of cross—platform printing.

10.3.2.3.2 Setting a Remote Printer on HP-UX

The HP-UX platform is consistent regarding this issue within releases HP-UX 9.0x, HP-UX 10.xx,
and HP-UX 11.xx.

lpadmin -p printer—name -orm remsystem—-name —-orp remprinter—name

where

printer-name Name selected to designate the remote printer
remsystem-name Name of the remote system that should provide printing
remprinter-name Local name of the printer on the remote system

The HP-UX approach is more flexible; it enables several printing issues besides a remote printer to
be set, like specifying the commands to cancel requests to remote printers and to obtain the status
of requests to remote printers. Specifying the corresponding "cancel" and "status" models provides
these functions, so when the cancel and Ipstat commands for remote printers are used, they refer
to defined models. The template models are supplied with the LP software residing on the
/usr/spool/lp/cmodel and /usr/spool/lp/smodel directories, and they should be sufficient for most
implementations.

The corresponding Ipadmin options to set remote cancel and status models are:

Ipadmin —ocm recmodel recmodel is the remote cancel model

Ipadmin —osm rsmodel rsmodel is the remote status model
Let us see what the template cancel and status models look like:

244

#1s -1 /usr/spool/lp/cmodel
total 2
-r—-—r——-r-—- 1 bin bin 107 Dec 2 1993 rcmodel

#cat /usr/spool/lp/cmodel/rcmodel

#!/ bin/sh

/* @(#) SRevision: 66.1 S */

This model is for remote cancel operation.
/usr/lib/rcancel §*

#1ls -1 /usr/spool/lp/smodel
total 2
-r—-—r——r-— 1 bin bin 107 Dec 2 1993 rsmodel

#cat /usr/spool/lp/smodel/rsmodel

#!/ bin/sh

/* @(#) SRevision: 66.1 § */

This model is for remote status operation.
/usr/lib/rlpstat S$*

Both models are scripts and rely on special commands (rcancel and ripstat) provided by HP-UX to
deal with remote printers. If you execute the usual printing-related commands for remote printers:

cancel -p remprinter print-requests

or
lpstat -p remprinter

instead of the expected cancel and Ipstat commands, the corresponding rcancel and ripstat
commands will be executed.

10.4 UNIX Cross-Platform Printer Spooling

We have discussed BSD and System V printing subsystems in great detail; however, besides the
fact that they are very different from one another, they are also mutually noncompatible.
Incompatibility can be a serious obstacle in providing the unique print service on a multiplatform
environment. UNIX vendors treat this problem differently (if they do at all); some UNIX flavors
include both versions of printer spooling subsystems as standard parts of the UNIX distribution,
while others provide specific filters, programs, commands, or utilities to bridge two subsystems. We
will discuss a few cases.

10.4.1 BSD and AIX Cross-Printing

AlIX supports BSD-like remote printing; the BSD-like daemon Ipd is running on the system and
monitoring port 515 for incoming remote print requests. In a sense, AlX supports the BSD printer
spooling subsystem; the /etc/hosts.lpd or /etc/hosts.equiv files define trusted systems from which
remote printing is allowed.

However, this is not sufficient for successful cross—printing; incoming print jobs must be additionally
filtered as appropriate. Special BSD filters exist for this purpose.

1s -1 /usr/lib/lpd
total 5504

245

—Ir—XIr—X——-— 1 root printqg 2601 Jul 16 1994 aixlong
—Ir—Xr—x——-— 1 root printqg 2797 Jul 16 1994 aixshort
—Ir—Xr—X——-— 1 root printqg 3229 Jul 16 1994 aixvZ2long
—r—Xr—x——-— 1 root printqg 3189 Jul 16 1994 aixvZshort
—r—-Xr—-xXr-x 1 bin bin 3394 Jul 16 1994 attlong
—Ir—XIr—XI—X 1 bin bin 2983 Jul 16 1994 attshort
—Ir—XIr—X——-— 1 root printqg 4654 Jul 16 1994 bsdlong
—Ir—Xr—x——-— 1 root printqg 3867 Jul 16 1994 bsdshort

Different filtering methods should be applied when remote print requests are received from other
AlIX systems, from System V (AT&T) systems, or from BSD systems. The corresponding
administration is performed through the SMIT tool.

10.4.2 Solaris and BSD Cross-Printing

Solaris 2.x introduced the special Ipsystem command to register remote systems with the print
service; the command handles the master file for remote printing /etc/Ip/Systems and defines
requested parameters to control communication with remote systems (parameters such as type,
retry and timeout). The type parameter defines the remote system as one of two types: "s5"
(System V-like, or Solaris-like, which is default), or "bsd" (BSD-like). The format of the command
is:

lpsystem [-t type] [-T timeout] [-R retry] [-y "comment"] remote system name

remote_system_name is the name of the remote system from/to which print jobs can be
received/sent. If it is a plus sign ("+"), then anonymous client support is enabled. If the "bsd" type is
defined, then cross—platform printing is selected.

Other options of the Ipsystem command enable the user to print out a description of the
parameters associated with a specific system, to remove an entry associated with a system, and
other miscellaneous functions.

The remaining steps to enable remote printing are the same as in the case of single—platform
spooling, which we have already discussed.

Let us look at a practical example of remote printing setup. We want to provide remote printing on a
default printer connected to the specific PC (of course, this PC is a separate host on the network,
and Windows-based BSD-like remote printer and spooler daemons are running on it). The first
step is to execute the command:

$ lpsystem -t bsd -R 1 levi
levi has been added # this was the system response

The command defines BSD-like printing on the remote PC-host named levi. The new entry is
automatically added into the /etc/Ip/Systems file for a new remote host; although the file is an ASCII
one, do not use editors to modify it. We will check the file (it is well commented, so additional
explanations are not needed):

$ cat /etc/lp/Systems

#
#ident "@(#)Systems 1.6 93/03/19 SMI" /* SVr4.0 1.2 */

246

#
#
#
#

#
#

The following "#VERSION=" keyword 1is neccessary.

#VERSION=1

#

LP Spooler System Information

#

S o R HR R W Y IR R W R R R W%

e S e Y R R R R T R R ¥ T e R R e R R R R W R R R R

#

HH

Format (same line separated by ":")

System—name
The name of the remote system.

System—-password
The remote systems password (encrypted) for using our local LP services.
(Currently unused. Reserved for security version.)

Reserved
Must be a "-"

system—-type (s5/bsd)
The type of the remote system
sb: implies an SVR4.0 machine AND SVR4.0 lp (network independent)
communication protocol.
bsd: implies TCP/IP network communication AND BSD lpd specific communication
protocol. (This is used ONLY if the remote system 1s connected to the
local system via TCP/IP AND it is a BSD OS.

Reserved
Must be a "-"

timeout (minutes)

"n" == never timeout
"0" == do not wait for work
>0 == wait for work

Default: Never

retry (minutes)

"n" == do not retry if connection is dropped.
"0" == retry immediately if connection is dropped.
>0 == retry every N minutes until timeout.

Default: 10 minutes

Reserved
Must be a "-"

Reserved
Must be a "-"

Comment

#NOTE : Unused fields must contain a dash except for the password field which should contain an "x"

S W R R W

#

comment field which can be blank.

Example:
Kepler:x:—:s5:-:n:10:-:-:SVR4.0 0OS
fubar:x:—:bsd:10:n:—-:-:BSD 0S

Galileo:x:—-:85:-:30:10:-:-:

and the

If the first field (i.e. the System Name) contains a "+", then *all* incoming connections will be establis

regardless of whether or not there's an entry here for the remote system!

This will reduce your maintenan

you have a number of clients, and you don't really care about restricting your printer. Conceivably a pri
server could just contain a single entry of the following form for both BSD and SVR4 clients:
+:x:-:s5:-:n:10:-:-:Allow all connections
#HEAFFHAS

247

#
+t:x:-:85:-:n:10:-:-:Allow all connections
levi:x:-:bsd:-:n:1:-:-:Local printer on PC

The first entry is the default one and it allows System V remote printing from/to all hosts in the
network. Sometimes it is a good idea to move out this line with the command:

$ lpsystem -r +
Removed "+" #this is the system response

The second entry is our contribution; it defines BSD printing on the remote host "levi."

To list current remote printing possibilities:

$ lpsystem -1

System: +

Type: s5

Connection timeout: never

Retry failed connections: after 10 minutes
Comment: allow all connections
System: levi

Type: bsd

Connection timeout: never

Retry failed connections: after 1 minutes
Comment: local printer on PC

The next step is to define the remote printer: the name of the printer for users and a real printer's
name on the remote system.

$ lpadmin -p local -s levil!default

The new printer is identified as "local" (the name is arbitrary, but once defined users must use it to
identify this specific printer). The remote printer name "default" is used here to denote the default
PC printer (in this case there is a single printer connected to the PC).

Two more steps are required to enable the defined printer. The following two commands should be
executed at the end of the process:

$ accept local
$ enable local

Please note that starting with Solaris 2.6, the Ipsystem command and the /etc/Ip/Systems file are
becoming obsolete.

10.4.3 Third-Party Printer Spooling Systems

Generally, UNIX provides a decent printer spooling subsystem independent of the specific flavor of
the given system. It works well, it is flexible enough, and it is fully supported and well documented.
However, in administering it, you will soon see occasional strange printing-related behaviors,
unexpected problems with printers, hangs of the printing daemon, and difficulties in maintaining
printing queues. During production hours, fixing these problems can be quite painful.

These problems left a market open for third parties to develop better printer spooling software, and

several solutions came into being, including third—party software (for example, EasySpooler by the
Seay Systems, Inc.) and UNIX vendor-specific optional software (like HP-UX JetAdmin software).

248

This software offers a more reliable, more stable, and easier-to—use printing environment. Of
course, additional burdens are also placed on the system administrator, who must be familiar with
the new software. The full benefits of the additional (or optional) software are achieved only if this
software is configured and maintained appropriately.

From the user standpoint, the use of the printing subsystem must be completely transparent; users
should not be aware of underlying printing software, they simply need to be able to print. From the
administration standpoint, however, it is crucial to have a reliable, stable, and easy to maintain
printing subsystem. Though there are no "universal formulas" to make any specific decision in
creating such a subsystem, it seems that the generic UNIX printing subsystem is quite sufficient for
a print client, while under some circumstances, it is worth considering third—party printer spooling
software for a print server. In any case, the final decision is up to the system administrator or the
administration team responsible for the actual system.

249

Chapter 11: Terminals

11.1 Terminal Characteristics

Terminals have been common devices in the communication between users and UNIX systems for
a very long time. The modus vivendi for each UNIX system is to provide services to users, so from
the very early days of its development, UNIX has paid full attention to terminals as vehicles for
users to log into the system. Evidence of this attention can be seen in many UNIX administration
issues, primarily by the fact that the system guarantees an immediate respawning of the eventually
killed getty process which controls each connected terminal. A terminal connection is too valuable
for UNIX to allow it to be lost; a connected terminal without an attached getty process cannot
function properly, so the getty process can never die. We will discuss this topic and other
terminal-related issues in this Chapter.

While terminals were, in the past, the only way for the system to communicate with users, today
they are used only sporadically, primarily for the system console. All major communication with
users is now performed through the network. Does this mean that terminals are obsolete? Well, this
statement is partially true for terminal units themselves; however, the UNIX concept of
communicating with users via terminals remains. The appropriate adaptation was needed:
pseudo-terminals, "logical terminals" that behave like real terminals without having a corresponding
physical unit, replace the old terminals. We will also address pseudo-terminals in this Chapter.

Terminals are connected with the computer over serial lines and are accessed, like all other devices
in UNIX, by the corresponding special device files. Modems are treated in almost the same way as
terminals.

As with many other issues, UNIX manages terminals in two major ways; again we will address two
platforms: BSD and System V (or AT&T). The two approaches are quite different; they rely on
different configuration files, they are based on different terminal capability databases, and
sometimes they use different administrative commands. On the other hand, they also overlap in
many aspects, and through their development, some of the administrative commands have become
common for both platforms.

11.1.1 BSD Terminal Subsystem

Although most of the UNIX flavors that support BSD terminal subsystem are old-fashioned
platforms, sometimes even obsolete ones (or on their way to becoming obsolete), we will start with
the BSD terminal subsystem. Obsolescence is generally true for terminals as input/output devices,
with the exception of the console. In any case, it is difficult to discuss this topic without going back to
the earlier days of UNIX, when terminals were a part of every UNIX system. However, there is no
doubt about the educational benefits of discussing the BSD terminal subsystem; it explains the
continuity in the UNIX development and makes it easier to understand the System V approach to
terminals.

11.1.1.1 BSD Terminal Line Initialization

Terminals are connected to a system via terminal lines. To make a system available to users, the
terminal lines must be initialized and put into operational mode during the system startup.

The terminal line initialization is a regular part of the startup procedure to bring the system into
multi-user mode. Originally, on the BSD system, init, the process #1, first spawns a shell during the

250

system startup to interpret the commands in the initialization script /ete/re. Once the script /ete/re is
successfully completed, init forks a copy of itself for each terminal device that is specified for use in
the terminal line configuration file /etc/ttys. Copies of the init program then invoke (by the exec
system call) other system programs specified by the corresponding terminal line entries in the
configuration file; usually, this was the /etc/getty program. The getty program is responsible for
opening and initializing the terminal line; it sets the initial parameters for a terminal line and
establishes the type of terminal attached to the line. The getty program can be directed to accept
connections at a variety of baud rates. The getty's actions are driven by another configuration file
/etc/gettytab, known as the terminal line definition file. The whole procedure, as well as a terminal
initialization, is illustrated in_Eigure 11.1.

Terminal Line Terminal Line Definition
Configuration File: File: /etc/gettytab
pointer)
Wookiti letclttys (ttytab) | P »
—— — || Database to define terminal
PQ” CO"‘Qanﬁt type: Jook-up speed, login message, efc.
P \u P u Termilial USER
rogram rogram —> ermina ¢
init getty i line
/ ‘ ‘ User is
logged-in*
_ TERM |
Terminal Type | variable
—p»| Capability Database A/‘- o
/etc/termcap g | Loginshell

. script file
i (-profile / .login)

User's shell

Figure 11.1: BSD terminal line and terminal initialization. *Note: The login procedure and password
checking authentication are not presented.

A good BSD representative is SunOS 4.1.x, which uses a slightly modified initialization procedure;
besides some changes in rc initialization scripts, it also renamed the terminal line configuration file
into /etc/ttytab. However, the purpose and initialization steps remained the same.

The getty program waits for a user to log into the system, but the getty program invokes another
authentication program /bin/login to complete the login procedure.

We will examine, in greater detail, the structures of the terminal line configuration and definition
files. Both types of terminal line configuration files, /etc/ttys and /etc/ttytab, are presented below:

#cat /etc/ttys
@(#)ttys 6.1 (ULTRIX)

#

name getty type status comments

#

console "/etc/getty std.9600" vt100 on secure # console terminal

tty00 "/etc/getty std.9600" vt100 off nomodem # direct connect tty

tty0l "/etc/getty std.9600" vt100 off nomodem # direct connect tty

ttyd0 "/etc/getty std.9600" vt100 off shared secure # modem line
ttyp0 none network secure

ttyvf none network secure

#cat /etc/ttytab
@(#)ttytab 1.7 SMI (SunOS 4.1.3)

251

#

name getty type status comments
#

console "/usr/etc/getty cons8" sun on local secure

ttya "/usr/etc/getty std.9600" unknown off local

ttyb "/usr/etc/getty std.9600" unknown off local

tty00 "/usr/etc/getty std.9600" unknown off local

ttyO0f "/usr/etc/getty std.9600" unknown off local

ttyp0 none network off

ttyTf none network off

Both configuration files list all available system terminals; both files are partially shown here. The file
has to include an entry for every terminal port in use, and may have entries for unused ports. Each
entry has four fields:

terminal-port command terminal-type status

where

terminal-port The name of the special device file in the /dev directory that corresponds to the line.
All serial peripherals (RS-232), such as terminals, serial printers, and modems
have a port name of the form "ttynn," where "nn" is a two-digit hexadecimal
number. Virtual terminal devices (pseudo terminals) are also listed.

command The command that init should execute to monitor this terminal line:
getty For terminals and modems
none Do not create a monitoring process

terminal-type The name of a terminal type described in /etc/termcap ; the TERM variable will be
set to this value at login. Alternatively, the field could contain a keyword to be used
by user initialization files or the tset command:

network Used for virtual terminal devices over the network
unknown Used for lines without a specific attached terminal (includes modem
lines)

dialup Another type used for modem lines

plugboard Used for a board that allows different terminal cables to be swapped
status Zero or more keywords, separated by spaces:

on Line is enabled, and command will be run by init

off Line is disabled, and the entry ignored

secure Allow direct root logins

window=cmd init should run cmd before the one in the field command
The files also list virtual terminals, better known as pseudo terminals; they are widely used to
establish network connections to the system, which is the prevailing mechanism today for users to
log in to the system. From the examples presented above, it can be seen that only the console is
used locally; all other connections are provided over a network, or modem, using different terminals
unknown in the time of terminal line initialization. Terminals will identify themselves once the
sessions have been established.

It is interesting to note that SunOS 4.3.x, to preserve compatibility with older-style software that
might still explicitly require the configuration file under the original name "/etc/ttys," also maintained
another configuration file with that name. The file /etc/ttys was derived from the actual terminal line

252

configuration file /etc/ttytab by the program init during the system startup.

This file looked like:

#cat /etc/ttys
12console
O2ttya

02ttyb

02tty00

Each entry in this auxiliary configuration file described, in a condensed way, the corresponding entry
in the /etc/ttytab file. The format of an entry was:

on-flag | speed | (All fields follow one another with no space between; here the presented

dev-name "|" character is only to indicate fields, and it does not exist in a real
entry.)

where

on-flag Specifies the entry is active (on).
On/off correspond to 1/0

speed Specifies a baud-rate of the
line:
0 automatic baud-rate selection
f 1200 Baud
6 2400 Baud
2 9600 Baud
5 dial-in 1200

dev-name Specifies a special device file on

the /dev directory
Today, this file has only historical value. Let us return to the terminal line configuration file
/etc/ttytab. When reading this file, one can see that the getty program is invoked with an argument
that actually points to another entry in the terminal line definition file /etc/gettytab. Each entry in the
file /etc/gettytab describes one class of terminals. The entry is accessed every time the getty
program is started.

#cat /etc/gettytab
@ (#)gettytab 1.11 SMI; from UCB 5.7 #

Copyright (c) 1980 Regents of the University of California
All rights reserved. The Berkeley software License Agreement
specifies the terms and conditions for redistribution .

Most of the table entries here are just copies of the

old getty table, it is by no means certain, or even likely ,
that any of them are optimal for any purpose whatever .

Nor is it likely that more than a couple are even correct

The default gettytab entry, used to set defaults for all other
entries, and in cases where getty is called with no table name
default:\
rap:1lm=\r\n%h login\72 :sp#9600: The field "Im" stands for login message, and it specifies the
displayed prompt; here, the default login prompt is: "hostname

S o R HR R W ¥ IR R W R R R H%

253

login:". This field can be combined with another field
(initial message) .

#

This is a new entry to internationalize the console. It needs to be

8 bit clean so that ISO 8859 characters can be displayed without

the window system.

cons8:\

:p8:1m=\r\n%h login\72 :sp#9600:

#
Fixed speed entries

The "std.NNN" names are known to the special case

portselector code in getty, however they can

be assigned to any table desired.

The "NNN-baud" names are known to the special case

autobaud code in getty, and likewise can

be assigned to any table desired (hopefully the same speed).
#
a

\std.110\110-baud:\
:nd#l:cd#1:uc:sp#110:

2\std.9600\9600-baud: \
:sp#9600:
#
Dial in rotary tables, speed selection via 'break'
d1200\Dial-1200:\
:nx=d150:fd#1:sp#1200:
#
Odd special case terminals

This file is a kind of simplified database that describes terminal lines. There is a default terminal
class, default, which is used to set global defaults for all classes; it is read first, and then the entries
for the selected class are read and they override particular settings. The file layout and the syntax
and meaning of individual fields in the file are the same as in the termcap database, a description
of which follows.

11.1.1.2 The BSD termcap Database

UNIX programs are written to be independent of the characteristics of any particular kind of
terminal; they call a standard manipulation library, which is then responsible for interfacing to actual
terminals. Such libraries serve to map general terminal characteristics and functions to the specific
character sequences required to perform them on any specific terminal.

While the actual terminals are indicated in the terminal line configuration file (ttys, or ttytab), or by
users who indicate what kind of terminal they are using by setting TERM environment variable, the
terminal definitions are stored in a separate database on the system. For the BSD terminal
subsystem, the database is known as the termcap database (this stands for "terminal capabilities"),
and it is contained in the huge ASCII file /etc/termcap. The /etc/termcap file contains a large number
of entries that fully describe different terminals. It is important to notice that only terminals described
in the termcap database can be implemented; otherwise the system does not know how to handle
terminals that are not described.

Some third—party software, and sometimes even a part of the system software, is based on the
termcap terminal capability database. This software requires an appropriate termcap file, even
when running on the System V UNIX platforms that provide a different kind of terminal capability
database known as terminfo. This is sufficient reason for some System V UNIX flavors to include

254

this file as a standard part of their installation. For example, Solaris 2.x provides the file /etc/termcap
as a link to the file /usr/share/lib/termcap, which is an exact copy of the termcapdatabase on
SunOS 4.1.x; most of the dates in the comments are from as long as twenty years ago.

$ 1s -1 /etc | grep termcap (Solaris)
1 rwxXrwxrwx 1 root root 24 May 28 1998 termcap -> ../ usr/share/lib/termcap

Similarly, Linux provides an updated /etc/termcap file; even the getty program uses this file (i.e., the
termcap terminal database), while other screen-based programs use the terminfo terminal
database. For example, on Red Hat Linux Rel. 5.2 (Apollo):

$ 1s -1 /etc | grep term
—rw—r——r—-— 1 root root 434898 Sep 10 1998 termcap

In both cases, the /etc/termcap file includes a complete parallel terminal database (both platforms,
Solaris and Linux, resemble System V-flavored UNIX in this area, so the primary terminal database
is terminfo).

For a better idea of what the termcap database looks like, here is a part of it:

Scat /etc/termcap

Termcap source file @ (#)termcap.src 1.33 SMI; from UCB 5.28
Please mail changes to (arpanet): termcap@berkeley

#

Mu\sun\Sun Microsystems Workstation console:\ This is a console
ram:bs:km:mi:ms:pt:1i# 34:co# 80:cl= "L:cm=\E[%$1%d;$dH:\
;ce=\E[K:cd=\E[J:\

:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:rs=\E[s:\
:md=\E[Im:mr=\E[7m:me=\E[m:\
ral=\E[L:dl=\E[M:im=:ei=:ic=\E[@:dc=\E[P:\
:AL=\E[%dL:DL=\E[$dM:IC=\E[%d@:DC=\E[%dP: \
;up=\E[A:nd=\E[C:ku=\E[A:kd=\E[B:kr=\E[C:k1=\E[D:\
(k1=\E[224z:k2=\E[225z:k3=\E[226z:k4=\E[227z:k5=\E[228z:\
:k6=\E[229z:k7=\E[230z:k8=\E[231z:k9=\E[232z:

#

This file describes capabilities of various terminals, as needed by

software such as screen editors. It does not attempt to describe

printing terminals very well, nor graphics terminals. Someday .

See termcap (5) in the Unix Programmers Manual for documentation.

#

Conventions: First entry is two chars, first char is manufacturer,

second char is canonical name for model or mode.

Third entry is the one the editor will print with "set" command.

Last entry is verbose description.

Others are mnemonic synonyms for the terminal.

#

Terminal naming conventions:

Terminal names look like <manufacturer> <model> - <modes/options>

Certain abbreviations (e.g. cl00 for conceptl00) are also allowed

for upward compatibility. The part to the left of the dash, if a

dash is present, describes the particular hardware of the terminal.

The part to the right can be used for flags indicating special ROM's,

extra memory, particular terminal modes, or user preferences.

All names are always in lower case, for consistency in typing.

255

S oH R R R W R R HR W

S o R R W R IR

H

S TR o R ¥R S S ¥R S o IR T o TR H R IR T R ¥R Hh R IR R R IR R W I

The following are conventionally used flags:

rv Terminal in reverse video mode (black on white)

2p Has two pages of memory. Likewise 4p, 8p, etc.

w wide - in 132 column mode.

pp Has a printer port which is used.

na No arrow keys - termcap ignores arrow keys which are

actually there on the terminal, so the user can use
the arrow keys locally.

Comments in this file begin with # - they cannot appear in the middle
of a termcap entry. Individual entries are commented out by
placing a period between the colon and the capability name.

This file is to be installed with an editor script (reorder)
that moves the most common terminals to the front of the file.
If the source is not available, it can be constructed by sorting
the above entries by the 2 char initial code.

d: DEC (DIGITAL EQUIPMENT CORPORATION) These are DEC terminals

Note that xn glitch in vt100 is not quite the same as concept, since
the cursor is left in a different position while in the weird state
(concept at beginning of next line, vtl00 at end of this line) so
all versions of vi before 3.7 don't handle xn right on vtl100.

I assume you have smooth scroll off or are at a slow enough baud
rate that it doesn't matter (1200? or less). Also this assumes

that you set auto-nl to "on", if you set it off use vtl100-nam below.

Since there are two things here called vt100, the installer can make
a local decision to make either one standard "vtl100" by including

it in the 1list of terminals in reorder, since the first vt100 in
/etc/termcap is the one that it will find. The choice 1is between

nam (no automatic margins) and am (automatic margins), as determined
by the wrapline switch (group 3 #2). I personally recommend turning
on the bit and using vtl00-am, since having stuff hammer on the right
margin 1s sort of hard to read. However, the xn glitch does not occur
if you turn the bit off.

I am unsure about the padding requirements listed here. I have heard
a claim that the vtl00 needs no padding. It's possible that it needs
padding only if the xon/xoff switch is off. For UNIX, this switch
should probably be on.

The vt100 uses rs and rf rather than is/ct/st because the tab settings
are in non-volatile memory and don't need to be reset upon login.
You can type "reset" to get them set.

dOo\vt100\vt100-am\vt100am \dec vt100:\

rdo=*J:co#80:1i #24:cl=50\E[;H\E[2J:sf=5\ED:\
:le="H:bs:am:cm=5\E[%i%d; $dH:nd=2\E[C:up=2\E[A:\
:ce=3\E[K:cd=50\E[J:s50=2\E[7m:se=2\E[m:us=2\E[4m:ue=2\E[m:\
:md=2\E[Im:mr=2\E[7m:mb=2\E[5m:me=2\E[m:is=\E[1;24r\E[24;1H:\
:rf=/usr/share/lib/tabset/vt100:\
:rs=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h:ks=\E[?1h\E=:ke=\E[?11\E>:\
:ku=\EOA :kd=\EOB:kr=\EOC:k1=\EOD:kb="H:\
:ho=\E[H:k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:pt:sr=5\EM:vt#3:xn:\
:sc=\E7:rc=\E8:cs=\E[%i%d; %dr:

dp\vt100-np\vt100 with no padding (for psl games) :\

256

:cl=\E[H\E[2J:sr=\EM:cm=\E [%$1%d; $dH:nd=\E[C:up=\E[A:\

:ce=\E[K:cd=\E[J:s0=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:\

:md=\E[Im:mr=\E[7m:mb=\E[5m:me=\E[m:tc=vt100:
di\vt100-nam\vt100nam\vt100 w/no am:\

ram@:xn@:\

:18=\E\E[?31I\E[?41\E[?5]I\E[?71\E[?8h:ks=\E[?1h\E=:ke=\E[?11\E>:\

cte=vtl00—-am:

END OF TERMCAP

Only part of the /etc/termcap file is presented. We have focused on the entries for DEC VT100 type
terminals, as they are very common (VT100 is presented in bold). The termcap entries are very
similar to the printcap entries which present in many cases simplified versions of termcap entries.

The first line in the entry is a series of names and aliases for the terminal; any of them (if they do not
contain spaces) could be used as the value of the TERM environment variable. The remainder of
the entry is a colon—-separated series of capability codes and values. There are several kinds of
capabilities:

e Data about the terminal — For example, the am code says that the terminal can
automatically wrap long output strings onto multiple lines on the terminal screen. (Some
other codes describe how many columns the terminal screen has (80), or how many lines it
has (24), and so on.)

e The sequence of characters to send to the terminal to get it to perform some action — The
codes indicate what ESCAPE sequence is required to perform some action on the terminal,
for example, to move the cursor to some position (the ESCAPE character is abbreviated \E).

e The sequence of characters emitted when a special key is pressed — These codes hold the
sequence for the special keys on the terminal (the ESCAPE character is abbreviated \E).

There are three types of capability:

1. Boolean capabilities — Consist of a capability name with no argument; for example, the
aforementioned am for automatic wrapping

2. Numeric capabilities — Consist of a capability name, a sharp sign (#), and a number; for
example, co#80 says that the terminal has 80 columns

3. String capabilities — Consist of a capability name, an equal sign (=), and a string (a
command sequence); for example, up=2K specifies that the sequence CTRL-K will move
the cursor up one line

Once a terminal is described in the termcap database, each time a reference is made to the
terminal, the system addresses the database, searches for a corresponding entry, and learns about
its capabilities. The local environment variable TERMCAP can be introduced and set to the values
of the terminal capabilities to make this process faster, so the repeated browsing of the termcap
database can be skipped.

11.1.2 System V Terminal Subsystem

The System V approach to terminal configuration and initialization is quite different from that of the
BSD terminal subsystem. The bottom line, though, is the same: to initialize terminal lines and
terminals themselves. It is the details that are different: file names, their structures and layouts, and
even process names. A schematic of System V terminal line and terminal initialization is presented

in_Figure 11.2.

257

Terminal Line Definition
ST P Lol pointer | File: fetc/getydefs
look-up fetc/inittab ____}——
D —_ D[Database to define terminal
I dgvice; cswz\nd;others look-up speed, login message, etc.

P NIRRT | —
rogram % rogram > ‘ermina ¢
init getty line

/ User is
logged-in*
B
Terminal Type |+~ | variable
——p»| Capability Database :
Jetc/terminfo/?/* v Login shell
script file
(.profile / .login)

User's shell

Figure 11.2: System V terminal line and terminal initialization. *Note: Login procedure and password
checking authentication are not presented.
11.1.2.1 System V Terminal Line Initialization

System startup on System V is partially controlled by the system run-level initialization file (table)
/etc/inittab; this is actually the configuration file for the init process which manages the system
startup in the last phase, including the initialization of terminal lines. Consequently, the configuration
entries for the System V terminal line initialization are included in the /etc/inittab file. Two examples
(HP-UX and Solaris) follow:

Scat /etc/inittab (HP-UX platform)
init:4:initdefault:
stty::sysinit:stty 9600 clocal icanon echo opost onlcr iengak ixon icrnl ignpar </dev/systty

cons:123456:respawn:/ usr/sbin/getty console console # system console

vue :4:respawn:/usr/vue/bin/vuerc # VUE invocation
ttpl:234:respawn:/usr/sbin/getty-h ttyOpl 9600

ttp2:234:respawn:/usr/shbin/getty-h tty0Op2 9600

ttp3:234:respawn:/usr/sbin/getty-h tty0Op3 9600

ttp4:234:respawn:/usr/shbin/getty—h tty0Op4 9600

ttp5:234:respawn:/usr/sbin/getty-h ttyOp5 9600

To activate the corresponding terminal lines, these entries should be commented-out.

HH H W W

$cat /etc/inittab (Solaris 2.x platform)

ap::sysinit:/sbin/autopush -f/etc/iu.ap

fs::sysinit:/sbin/rcS >/dev/console 2>&1 </dev/console
is:3:initdefault:

s0:0:wait:/sbin/rc0 off >/dev/console 2>&1 </dev/console
sl:1:wait:/sbin/shutdown -y —-iS —-g0 >/dev/console 2>&1 </dev/console
co:234:respawn:/usr/lib/saf/ttymon -g -h -p "'uname -n' console login:" -T sun \

-d/dev/console -1 console -m ldterm, ttcompat

In both examples there are no defined terminal lines in the configuration file; literally, there are no
terminals connected to the systems. The only terminal represented is the console, which is
connected to the serial terminal port and included in the /etc/inittab configuration file. Any other
terminal line would be defined in the same way. The console entries define the programs to be
invoked to initialize terminal lines.

258

While the getty program exists on the HP-UX platform to initialize terminal lines, on the Solaris
platform another program is renamed ttymon (to preserve compatibility with previous versions, the
getty program also exists as a symbolic link to the ttymon program).

The common name for the terminal line definition file is /etc/gettydefs, and the getty program looks
there for the terminal line settings. On the Solaris platform, the file is renamed /etc/ttydefs to match
the new program name ttymon.

Despite differences in file naming, the purpose of the files is the same, and the Solaris file has
almost the same contents as the BSD terminal subsystem:

Scat /etc/gettydefs (HP-UX)
@(#) SRevision: 66.2 §
Default gettydefs file, see gettydefs(4).

The entries below allow the following sequences, changing
each time a BREAK is received:
1200 -> 2400 —-> 4800 —-> 9600 -> 300 [repeats]
1200 # B1200 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD ISIG ICANON ECHO
ECHOK PARENB ISTRIP IXANY TAB3
B1200 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #2400 #next to try: 2400 Baud!
2400 # B2400 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B2400 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #4800 #next to try: 4800 Baud!
4800 # B4800 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B4800 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #9600 #next to try: 9600 Baud!
9600 # B9600 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B9600 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #300 #next to try: 300 Baud!
300 # B300 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B300 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #1200 #to try 1200 Baud again!

HH oH W W R H

#
This entry is for high speed modems. Most of these tend to always
communicate to the cpu at 19200, regardless of the connection speed.
19200 # B19200 HUPCL50.0 pt IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD ISIG
ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B19200 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #19200

#
This entry is used for the console
console # B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL

B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL
#Console Login: #console

Each entry in the /etc/gettydefs file has the format:
entry-label#initial-settings# final-settings#login-prompt#next—label

where

259

entry-label Identifies the entry; it is used in the /etc/inittab file for reference

initial-settings Specifies the termio I/O control codes that getty will initialize the line

final-settings Specifies the termio I/O control codes to be set before turning control over
to the login program

login-prompt Specifies the prompt that getty will display

next-label Specifies the entry-label to be used instead, if the current attempt is

broken (BREAK-key, noise, etc.). In that way, the linked list of entries can
be created to enable automatic switching to other entries, for example to
change the terminal line baud-rate (as is the case in the presented
/etc/gettydefs file)

The other file /etc/ttydefs looks like:

$cat /etc/ttydefs (Solaris)
VERSION=1
38400:38400 hupcl:38400 hupcl::19200
19200:19200 hupcl:19200 hupcl::9600
9600:9600 hupcl:9600 hupcl::4800

console:9600 hupcl opost onlcr:9600::console
consolel:1200 hupcl opost onlcr:1200::consoleZ2

contty:9600 hupcl opost onlcr:9600 sane::conttyl
conttyl:1200 hupcl opost onlcr:1200 sane::contty2

11.1.2.2 The System V terminfo Database

The terminfo database is the System V equivalent to the BSD termcap database. The basic
difference between the two databases is that terminfo is a compiled database that consists of a
series of binary files describing terminal capabilities. Each entry is a separate binary file in the
/usr/lib/terminfo directory hierarchy in the subdirectory named for the first letter of its name. For
example, the terminfo entry for a vt100 is stored in the file /usr/lib/terminfo/v/vt100 . The terminfo
entries are compiled from source code vaguely similar to termcap entries . Such an approach
improves efficiency, but at the price of accessibility.

The terminfo database had the advantage of being developed with the working model of the
termcap database already in place. A critical analysis of the existing termcap capabilities made it
easier to make decisions about terminfo capability needs, including capability improvements.
Nevertheless, it is unfair to say that the terminfo database is better than the termcap database,
especially because both databases continue to be developed. Simply, each database provides
needed data about terminal characteristics on the corresponding UNIX platform.

The System V terminfo directory hierarchy can easily be seen with a simple listing of the basic
terminfo directory: /usr/lib/terminfo.

#ls -C /usr/lib/terminfo
13579CGXbdfhjlnprtvsxz
246 8ADHacegilkmogsuwy

All listed items are subdirectories, which can be seen from:

#1ls -1 /usr/lib/terminfo
total 100
dr—-Xr—-xr—x 2 bin bin 1024 Mar 5 18:28 1

260

dr-Xr—-xr—x 2 bin bin 2048 Mar 5 18:28 2

dr—-Xr—-xr—x 2 bin bin 1024 Mar 5 18:28

X
dr-xr-xr-x 2 bin bin 1024 Mar 5 18:28 y
Adr—-Xr-xr—x 2 bin bin 1024 Mar 5 18:28 z

A separate binary file defines each terminal:

#1ls -CF /usr/lib/terminfo/v

vcl03 vc4ls vi300-ss vt100-bot-s vt100-top -s vt1l25
vc203 vi200 vi550 vt100 -nam vt100-w vt132
ve303 vi200-f viewpoint vt100—-nam-w vt100- w—am vt220
vc303-a vi200-ic virtual vt100-nav vt100-w —nam vt220-am
vc403a vi200-rv visual vt100-nav-w vt100-w —nav vt320
vc404 vi200-rv-ic vitty vt100-np vt100am vt320-am
vc404-na vi300 vk100 vt100-s vt100nam vt50
vc404-s vi300-aw vt100 vt100-s-bot vt100s vt50h
vc404-s-na vi300-rv vt100-am vt100-s—top vt100w vt52

The System V terminal subsystem provides a corresponding tool to manage binary terminfo files;
several commands are available for manipulating terminfoentries:

tic Compile terminfo source
infocmp List source for a compiled terminfo entry (sometimes named the untic
command)

A number of commands are also available for converting between terminfo and termcap entries:

infocmp -C List the equivalent termcap entry for a compiled terminfo entry; i.e., translate
from terminfo to termcap
captoinfo Translate a termcap entry into terminfo source

Please note that the conversion (translation) is never perfect, and some discrepancies are always
possible.

The following example will illustrate the use of these commands. Our task is to create a new
terminfo entry for a modified vt100 terminal; we will name this terminal "vt100mod ." The
implemented platform is Solaris 2.6.

In the first step, we will convert one of the existing vt100-related terminfo entries into a termcap
entry, which then can easily be modified (termcap entries are ASCII, while terminfo entries are
binary files); there is no need to create the entry from scratch. The available vt100-related entries
are:

$ 1s -1 /usr/share/lib/terminfo/v | grep vt1l00
-rw-r——r—-— 2 bin bin 1493 Jul 16 1997 vt100
-rw-r——r—— 2 bin bin 1493 Jul 16 1997 vtl100-am
-rw-r——r—-— 2 bin bin 1554 Jul 16 1997 vtl100-bot-s
-rw-r——r—-— 1 bin bin 1490 Jul 16 1997 vtl100-nam

1 bin bin 1424 Jul 16 1997 vt100am
-rw-r——r—— 1 bin bin 1426 Jul 16 1997 vtl100nam
—-rw-r——r—— 1 bin bin 1480 Jul 16 1997 vt100s
-rw-r——r—— 1 bin bin 1416 Jul 16 1997 vtl100w

—Irw—r——Ir——

We will pick up "vt100" and convert it into the corresponding termcap entry:

261

$ infocmp -C vt100 > /tmp/vt100mod

$ cat /tmp/vt100mod

Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/vt100

vt100\vt100-am\dec vt100 (w/advanced video) :\
ram:mi:ms:xn:xo:bs:pt:\
rco#80:11i#24:\
:DO=\E[%dB:LE=\E[%dD:RI=\E[%dC:UP=\E[%dA:ae="0:as="N:\
:cd=50\E[J:ce=3\E[K:cl=50\E[H\E[J:cm=5\E[%1%d; $dH:\
:cs=\E[%I%d;%dr:ct=\E[3g:ho=\E[H:k0=\EOy:k1=\EOP:\
:k2=\EOQ:k3=\EOR:k4=\EOS :k5=\EOt : k6=\EOu:k7=\EOv: \
:k8=\EO1:k9=\EOw:kb=\b:kd=\EOB:ke=\E[?11\E:k1=\EOD:\
:kr=\EOC:ks=\E[?1h\E=:ku=\EOA:nd=2\E[C:\
:r2=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h:rc=\E8:sc=\E7:\
:se=2\E[m:s50=2\E[1;7m:sr=5\EM:st=\EH:ue=2\E [m:\
rup=2\E[A:us=2\E[4m:

The file was edited and modified, respecting the rules for termcap entries :

$ vi /tmp/vt100mod

This terminal present the modified version of the vt100

Was reconstructed by using "infocmp -C vtl100"

#

Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/ vt100

#

vt100mod\vti100-am—-mod\dec vt100 modified (w/advanced video) :\
ram:mi:ms:xn:xo:bs:pt:\
rco#l132:11i#24:\
:DO=\E[%dB:LE=\E[%dD:RI=\E[%dC:UP=\E[%dA:ae="0:as="N:\
:cd=50\E[J:ce=3\E[K:cl=50\E[H\E[J:cm=5\E[%1%d; $dH:\
:cs=\E[%1%d; %dr:ct=\E[3g:ho=\E[H:k0=\EOy:k1=\EOP: \
:k2=\EOQ:k3=\EOR:k4=\EOS :k5=\EOt : k6=\EOu:k7=\EOv: \
:k8=\EO1l:k9=\EOw:kb=\b:kd=\EOB:ke=\E[?11\E>:k1=\EOD: \
:kr=\EOC:ks=\E[?1h\E=:ku=\EOA:nd=2\E[C:\
:r2=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h:rc=\E8:sc=\E7:\
:se=2\E[m:s50=2\E[1;7m:sr=5\EM:st=\EH:ue=2\E [m:\
rup=2\E[A:us=2\E[4m:

Minor modifications were performed: comments, names, and column number. To make a
corresponding terminfo entry, this modified termcap entry must be first converted into a terminfo
source entry and then compiled:

$ captoinfo /tmp/vtl00mod > /tmp/vt100.ti
captoinfo: obsolete 2 character name 'vt' removed.
synonyms are: 'vtl00mod\vtl00-mod\dec vt100 mod'

The ASCII source terminfo entry file /tmp/vt100mod.ti was created in addition to the displayed
message:

$ cat /tmp/vtl00mod.ti
This terminal present the modified version of the vt100
Was reconstructed by using "infocmp -C vt100"

Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/vt100

vt100mod\vt100-mod\dec vt100 mod,
am, mir, msgr, xenl, xon,
cols#132, lines#24,
bel="G, clear=\E[H\E[JS$<50>, cr=\r,
csr=\E[%$1%pl%d; $p2%dr, cub=\E[%$pl%dD, cubl=\b,
cud=\E[$pl1%dB, cudl=\n, cuf=\E[$%$pl1%dC, cufl=\E[C$<2>,
cup=\E[%1%pl%d; $p2%dHS<5>, cuu=\E[%pl%dA,

262

cuul=\E[AS$<2>, ed=\E[JS<50>, el=\E[KS$<3>, home=\E[H,
ht=\t, hts=\EH, ind=\n, kbs=\b, kcubl=\EOD,
kcudl=\EOB, kcufl=\EOC, kcuul=\EOA, kf0=\EOy,
kf1=\EOP, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\ES8,
ri=\EMS<5>, rmacs="0, rmkx=\E[?11\E>, rmso=\E[mS$<2>,
rmul=\E[m$<2>, rs2=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h,
sc=\E7, smacs="N, smkx=\E[?1h\E=, smso=\E[l;7m$<2>,
smul=\E[4mS$<2>, tbc=\E[3g,

Pay attention to the different syntax of two entries (files). Finally, the terminfo entry for the modified
vt100 terminal can be compiled:

$ tic -v /tmp/vt1l00mod.ti
Working in /usr/share/lib/terminfo
Created v/vt100mod
Linked v/vt100-mod

The tic command informed us of two new terminfo entries: "vi100mod" and "vt100-mod" (although
the file "vt100-mod" that corresponds to the alternate entry name is the link) in the
/usr/share/lib/terminfo/v directory:

$ 1s -C /usr/share/lib/terminfo/v

v5410 vi200 viewpoint—-90 vt100—-nam vt100mod
v90 vi200-f virtual vt100-nam-w vt100nam
vanilla vi200-ic visual vt100-nav vt100s
vcl03 vi200-rv visual50 vt100-nav-w vt100w
vc203 vi200-rv-ic vitty vt100-np vt102
vc303 vi300 vk100 vt100-s vtl25
vc303-a vi300-aw vs100 vt100-s—-bot vt132
vc403a vi300-rv vs100s vt100-s-top vt220
vc404 vi300-ss vt-102 vt100-top-s vt50
vc404-na vi50 vt-61 vt100-w vt50h
vc404-s vi550 vt100 vt100-w—am vt52
vc404-s-na vic vt100-am vt100-w—-nam vt6l
vc4ls vic20 vt100-bot-s vt100-w—nav vt6l.5
venix viewpoint vt100-mod vt100am

Or, to see more details about new entries:

$ 1s -1 /usr/share/lib/terminfo/v | grep vt1l00

—-rw—r——r—-— 2 bin bin 1493 Jul 16 1997 vt100
-rw—r——r—- 2 bin bin 1493 Jul 16 1997 vt100-am
—rw—r——r—-— 2 bin bin 1554 Jul 16 1997 vt100-bot-s
-rw-r——r—-— 2 root other 1267 May 21 17:19 vt100-mod
—-rw—r——r—-— 2 root other 1267 May 21 17:19 vt100mod
-rw—r——r—- 1 bin bin 1426 Jul 16 1997 vt100nam
—rw—r——r—-— 1 bin bin 1480 Jul 16 1997 vt100s
—rw—r——r—-— 1 bin bin 1416 Jul 16 1997 vt100w

The new entries (files) have been created by the root, so there is a difference in the files' ownership
(it can be changed at any time, although it is not necessary); compared to the initial entry "vt100,"
there is also a difference in the size and file timestamps, which was expected.

Any modification of a terminfo entry must be done very carefully. The original version of an entry

should be saved as a backup, and it is highly recommended that you use a slightly different name
for the new entry until its testing is complete.

263

The method presented above is not the only way to create a new terminfo entry. A terminfo-like
source ASCII entry can be directly obtained with the command infocmp -1, and there is no need to
deal with a termcap -like entry at all. However, the purpose of the previous example is to
demonstrate how to perform an eventual termcap/terminfo conversion.

11.1.3 Terminal-Related Special Device Files

The special device files that correspond to the serial lines vary between UNIX flavors; they usually
have names of the form /dev/ttyn (n is a single or two digit number), where n refers to the line
number, and starts from 0. Directly connected terminals were/are accessed via these special files.
The special file /dev/console refers to the system console device. Originally, the SVR4
terminal-related special device files resided in the directory /dev/term, and had names
corresponding to their line numbers (for example: /dev/term/14); there were often also links to the
ttyn-type names.

The special file /dev/tty (no suffix) serves a special purpose. It is a synonym for each process
controlling TTY; it can be used to ensure output goes to the terminal, regardless of any |I/O
redirection.

There are also other terminal devices in /dev that are used for indirect login sessions via a network
or windowing system; these are called pseudo-terminal devices. They can also be easily
recognized in the BSD terminal line configuration files /etc/ttys, or /etc/ttytab presented earlier;
simply, the getty process is not associated with these devices. We will discuss pseudo terminals
later.

11.1.4 Configuration Data Summary

The configuration and definition files relevant to terminal lines are different between the two main
UNIX platforms, as well as between different UNIX flavors. Proper terminology can help somewhat
in managing terminal configuration.

e On BSD platform, the following configuration files are used for terminal lines:

/etc/ttys Terminal line configuration file
/etc/ttytab SunOS terminal line configuration file
/etc/gettytab Terminal line definition file

/etc/termcap Terminal type capability database
e On System V platform, the following configuration files and directories are used for terminal

lines:

/etc/inittab System initialization configuration file
/etc/gettydefs Terminal line definition file
/etc/ttydefs Solaris terminal line definition file

/usr/lib/terminfo/?/ * Terminal type capability database

11.2 The tset, tput, and stty Commands

264

11.2.1 The tset Command

In UNIX, the type of the terminal to be used must be defined before communication with a user can
commence. A terminal type can be set in several different ways. Assuming a BSD terminal
approach, the type can be set through the terminal line configuration file ttys, or ttytab, or a user can
set the terminal type by the TERM environment variable, or a terminal could be set with the tset
command. However, only the tset command can be used to initialize the terminal itself.

Those two functions, setting a terminal type and initializing the terminal itself, overlap in some
nonobvious ways and can be confusing for users and system administrators. Let us examine how
the tset command works (tset stands for "terminal set"):

e |If no arguments are specified and the environment variable TERM is already set, tset uses
the value of TERM to determine the terminal type.

e |If no arguments are specified and the environment variable TERM is not set, then tset uses
the value specified in the /etc/ttytab or /etc/ttys files (BSD only).

e |[f a terminal type is specified as an argument, that argument is used as the terminal type,
regardless of the value of the environment variable TERM.

e The -m (map) option allows a fine degree of control in cases where the terminal type may
be ambiguous: for example, if the user logs in over different types of terminal lines
(sometimes on a dialup, sometimes over a network, sometimes on a hardwired line). If the
-m option was specified, tset would ask the user for the currently used terminal type, and
the user could respond accordingly. For example:

$ tset -m ":?vt100"
TERM = (vt100)

will prompt the user for a terminal type, assuming vt100. If the user hits Enter, tset will use
vt100 as the terminal type; otherwise the user can enter any other actual terminal type, and
tset will accept it.

To prompt for and set the TERM variable in a user's login files (.profile or .login), tset is often used
because it accomplishes this task so well. The user can specify the TERM variable through tset, or
generic entries can be mapped from the terminal line configuration file:

f#isetenv TERM 'tset - -Q -m ":?vtl00"' # Can be implemented in the.login file;
STERM='tset — —-Q -m ":?vtl00"'; export TERM # Can be implemented in the.profile file.

Given the "-" option, tset displays a value that it determines for the terminal type. The -Q (quiet)
option causes tset to suppress the displaying of messages it normally sends regarding the values
set for the "Erase" and "Kill' characters.

The TERMCAP environment variable can also be set with tset. When used this way, the entire
extracted termcap entry corresponding to the terminal type named in the TERM variable becomes
the value of the TERMCAP variable. This allows programs to start up more quickly since they do
not need to search the termcap database file. The eval shell command is commonly used to
provide this functionality, because it forces double command scanning and an appropriate variable
replacement:

#eval 'tset -sQ -m ":?vt1l00"'

The -s option causes tset to invoke a series of shell commands to set the TERM and TERMCAP
variables accordingly (TERMCAP is set to the actual contents of the appropriate termcap entry).

265

The main purpose of the tset command is to initialize the terminal itself. It outputs an initialization
string defined in the terminal's termcap entry, which should set the terminal to a reasonable state.
When done, it displays a message such as:

Erase is control-H
Kill is control-X

or whatever else these characters are set to. This message can be skipped with the —Q option.

The real effect of the initialization string that is sent to a terminal now depends only on the terminal
itself. If everything is defined properly, a terminal should be initialized (reset) and ready for use.

The tset command originates from the BSD platform, but exists today in both versions of UNIX,
BSD, and System V, albeit with slightly different executions.

11.2.2 The tput Command

The tput command is the System V counterpart to tset and is used with the terminfo capability
database, but it does not have tset 's ability to determine the terminal type. By default, tput
assumes that a user is using the terminal type specified by the TERM variable. To override the
value of TERM, another terminal type can be specified with the =T option, for example:

$ tput -Tvt100
However, the tput command can also manage terminals:

$ tput init
$ tput reset

The command issues the initialization string, or the reset string, as they are defined in the
corresponding terminfo entries. If no reset entry is defined, tput issues the initialization string
instead, and the command acts exactly like tput init.

The tput command enables easy control of displayed data, and it can be used within scripts to
facilitate flexible and powerful data presentation. For example:

$ tput clear # To clear the terminal screen
$ tput cup 0 O # To move the cursor to the home position
$ tput cup 23 4 # To move the cursor to row 23, column 4

The tput command echoes (sends) the specified screen—control sequence compatible with the
already specified terminal. The same can be done from the shell script.

Highlighting displayed text is the most popular use of the tput command. The so-called "stand-out
mode" of the screen enables highlighting of the subsequent text in the current line on the screen, as
long as the mode is on. By turning the stand—out screen mode on and off, a specified line of the text
or character strings can be emphasized (highlighted) from the other text. The tput command:

$ tput smso # Set stand-out mode on
$ tput rmso # Reset stand-out mode (set stand-out mode off)

The following script illustrates this capability in greater detail:

$ cat /tmp/mso_example.ksh

266

#!/ bin/ksh

This is the script: "/tmp/mso_example.ksh"

This is an example how to use the screen mode
Defining variables HI to set "mso", and LO to
HI="tput smso'

LO="tput rmso'

"stand-out"
reset "mso"

(mso)

illustrates how to highlight a specified parts of the line

"This is an S${HI}exampleS${LO} of how to highlight a specified S${HI}part of the text${LO}

#
The following line will be highlighted; pay attention to the ${HI} and ${LO}
echo "\n"
echo "S${HI}This line is highlighted!S$S{LO}"
#
The following line
echo "\n"

echo

echo "\n"

Upon execution, the script will display (letters printed in bold are highlighted):

$ /tmp/mso_

example. ksh

This line is highlighted!

This is an example of how to highlight a specified part of the text!
<= The system prompt appears at the end of the script's execution.

$

11.2.3 The stty Command

The stty command is used to specify generic terminal and terminal line characteristics. While the
tset command performs a complete type—specific terminal initialization, stty sets individual terminal

characteristics. The command syntax is:

stty option [value]

where the most common options are:

Option Meaning Example
n Baud-rate 9600
rows n Lines on the screen rows 36
columns n|Columns on the screen columns 80
erase c Set the delete previous character to ¢ erase "h
kill c Set the erase command character to ¢ Kkill "u

intr ¢ Set the interrupt character to ¢ intr *c

eof ¢ Set the end-of-file character to ¢ eof "d
susp ¢ Set the suspend job character to ¢ susp "z
Inext ¢ Set the literal next character to ¢ Inext v
werase ¢ |Set the word erase character to ¢ werase ‘w
reprint ¢ |Set the reprint line character to ¢ reprint r
oddp Enable odd parity oddp
evenp Enable even parity evenp
—parity No parity is generated or detected —parity
markp Enable mark parity markp
cstopb Use two stop bits cstopb
—cstopb |Use one stop bit —cstopb

267

rn

sane Reset many options to reasonable settings |sane

Note: Not all options require a value.
The stty command may also be used to display the current terminal settings, for example:

$stty -a
speed 9600 baud; line = 0; susp <undef>; dsusp <undef>
rows = 24; columns = 80
intr = “C; quit = "\; erase = "“H; kill = "U; swtch <undef>
eof = "D; eol = "@; min = 4; time = 0; stop = "S; start = "Q

parenb -parodd cs7 —-cstopb hupcl —-cread —-clocal —-loblk -crts

—ignbrk brkint ignpar -parmrk —-inpck istrip -inlcr —-igncr icrnl -iuclc
ixon -ixany ixoff -rtsxoff —-ctsxon -ienqgak

isig icanon iexten -xcase echo echoe echok -echonl -noflsh

opost -—-olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel -tostop

On the BSD platform the same command has the format:
$ stty everything

The displayed data could be different from that specified in the termcap or terminfo databases.
While the termcap and terminfo databases provide generic information about a terminal type
(befitting all terminals of a given type), stty provides information about the current setting for a
specified terminal.

The most common character to set with stty setting is the "erase" character. When logging from
different places, a user can sometimes face the problem of which key to use to erase the last
entered character (the most common are the "Backspace," "Delete," or "Control-Backspace" keys).
The preferred erase character can be set from the command line on any type of terminal, simply by

typing:
$ stty erase [desired erase key]

The erase character will be set appropriately and can be used in the familiar way.

The stty command can be used to set the erase character separately in the user's login script,
.profile, or .login to avoid such surprises:

To set "Backspace'" as the erase character
stty erase “H

If viis used to edit the login script, the sequence "Av,Ah" (Ctrl-v, Ctrl-h) should be typed to specify
"AH' (Ctrl-H).

11.3 Pseudo Terminals

While terminal issues are a normal part of UNIX administration, terminals as physical devices
belong to the past. With the exception of the console, which is still very common at most UNIX sites,
terminals are quite rare today, especially those connected to a UNIX system via serial terminal
lines. Networking is a more efficient and beneficial way to communicate with a UNIX system.

268

The switch from serial terminal lines to networks required a corresponding UNIX adaptation to the
new environment; the whole user login and authentication procedure had been based on user
access via terminals. The logical approach was to preserve this concept as much as possible, and a
logical consequence of this preservation was the introduction of pseudo terminals.

A pseudo terminal is, as the name implies, a logical terminal that behaves like a regular terminal,
except it does not include a physical device. Internally (within UNIX), it is seen as any other
terminal; externally, it provides a needed interface (including the necessary data conversion) to the
new environment.

The corresponding kernel-based driver supports a pseudo terminal, which consists of a pair of
character devices: a master, or control pseudo device, and a slave pseudo device. The slave
device provides an interface to application processes identical to the one specified in the terminal
database (termcap or terminfo). Unlike regular terminals, the slave device does not have a
hardware device behind it; instead, it has another process manipulating it through the master half of
the pseudo terminal. Thus anything written on the master device is given to the slave device as an
input, and anything written on the slave device is presented as input on the master device, as

presented in_Eigure 11.3.

g Pseudo terminal functions
Application Server

Processes <+ > <+ > Process

Slave side | Master side

Figure 11.3: The pseudo terminal.

Application processes treat pseudo terminals as regular terminals, without knowing anything about
what is happening behind the scenes; for getty, login, and shell, this is just a terminal. On the
master side a network-related server process adapts the network-based data transfers into
terminal-based serial data transfers. The bottom line is preestablished terminal-based
communication without any real terminal involvement.

The master side of a pseudo terminal has the device name /dev/pty[p-s] n. Examples include
ptyp0, ptyq3, ptyr5, or ptys2. The original name on System V was (and still is) /dev/ptc/n.

The slave side of a pseudo terminal (also known as a virtual terminal) has the device name
/dev/tty[p-s] n; for example: ttypO0, ttyq3, ttyr5, or ttys2. The original System V name was and is
/dev/pts/n, nis a single hexadecimal digit. The slave pseudo terminal provides a TTY-like interface
to user (application) processes. The two parts work in pairs, each having the same device number
n.

The tty command displays the special device file used for any login session; it always displays the
slave pseudo terminal. For example, the user bjl has opened a telnet session and logged into a
system named patsy:

$ telnet patsy
Sun0OS UNIX (patsy)
Login :bjl
Password: ++++++++
Last login: Mon May 17 10:21:30 from atlas.ph.hunter.cuny.edu
SunOS Release 4.1.3 (PATSY) #1: Tue May 18 13:59:37 EST 1999

To check for the terminal through which this connection was established (in this case a pseudo
terminal) use this command:

269

$ tty
/dev/ttyp2

The tty command displays the slave device of a pseudo terminal pair. This makes sense, given that
the slave side is visible to the application and to user programs.

New UNIX flavors have introduced another, similar command, pty, to check for the master device of
a pseudo terminal pair currently in use, as seen here:

$ pty
/dev/ptyp2

Selection of a pseudo terminal to establish a user telnet session is out of the user's control. The
server process picks up one of the pseudo devices available at the time and establishes the
required telnet connection, i.e., session. All pseudo terminals are interchangeable, and there is no
advantage or disadvantage in using any given pseudo terminal.

Pseudo terminal availability is a condition for a new user's connection (telnet or any other kind of
user's session); if there is no free pseudo terminal, the UNIX system will refuse the requested user
connection.

The total number of pseudo terminals limits the maximum number of simultaneous connections to
the system. This number is usually sufficiently large with respect to other system characteristics,
and it is more likely that a system will hit limits due to other system restrictions. Nevertheless, if the
total number of pseudo terminals could cause a problem, additional pseudo terminals should be
created; all UNIX flavors provide tools to create special device files, including pseudo devices.

11.4 Terminal Servers

Networks have put terminals out of business; the huge pool of existing terminals suddenly became
obsolete. Terminal servers were introduced to prolong the use of the existing equipment in the new
networked environment. A terminal server is a dedicated system that enables the connection of
multiple old fashioned local terminals onto the network.

A terminal is connected to the terminal server via a serial line, in the same way terminals used to be
connected directly to the computer system. The terminal server is connected to the network, and
provides a mapping of each of its local serial lines into an IP address; in this way each connected
terminal can appear as a networked device (IP addressing is discussed in_Chapter 15). Of course, a
terminal server should also convert each local serial terminal session into an appropriate telnet
session with the host UNIX system. Groupings of terminals around one or more terminal servers
enable more efficient connections to the host system. The benefits are obvious: idle but usable
equipment can be reactivated, large lengths of cabling are not needed, and optimal locations for
terminals can be selected — all thanks to relatively cheap terminal servers.

Another very useful implementation of terminal servers is somewhat unorthodox. Given a site with
multiple UNIX systems and other computing facilities (a very common case, since almost every
computer center can be described this way), multiple serial console lines from multiple computer
systems can be connected to the terminal server. Each connected system console will be identified
by an IP address, and remote access to the system consoles will be enabled. This arrangement
could be extremely useful when performing regular system maintenance and administration. There
is no need for physical access to the system consoles, no need to switch from one console to
another, and everything can be accomplished from a single location in a more comfortable and

270

efficient way. In fact, there is really no need even for a physical console device itself, though a
single remote terminal can now emulate a number of local consoles.

271

Chapter 12: UNIX Backup and Restore

12.1 Introduction

We live in a computer age. We use computers and they help us, but we also rely on them. And the
worthiest part of any computer is the data; data is priceless, and often irreplaceable. UNIX systems
are no exception to this rule. In UNIX systems, data live in files, and files live in filesystems, so
discussing data means discussing files and filesystems. Readers familiar with databases know that
data may also live in database spaces other than filesystems.

Users know very well the importance of their files. The files may be the results of users' hard work
over several years; often, the significance of the files cannot be measured in the usual way. They
are simply invaluable. On the other hand, every user knows that, sometimes, data is lost. These
losses have many causes: users may delete their own files accidentally, a bug can cause a program
to corrupt its data file, a hardware failure may ruin an entire disk, and so on. The damage resulting
from these losses can be minor (in the best case scenario) or it can be very expensive and
disastrous harm. Experience teaches us to prepare for the worst outcomes.

One of a system administrator's primary responsibilities is to plan and implement a regular backup
system to protect users from such unpleasant surprises by saving all of the important files on the
system. It is also the administrator's responsibility to monitor and confirm that backups are
performed in a timely manner, and that backed—up files are stored safely and securely.

Files can be backed up or archived. A backup is the process of copying files onto another media,
while archiving is moving files onto another media (the usual media is a tape). Data compression is
used in both cases, and in both cases data can be restored if necessary. The difference is that
archiving removes files from the live system as they are archived, while a backup keeps the live
system unchanged. Generally, UNIX commands do not differentiate between the two procedures;
this task is delegated to the backup/archive utilities. This session primarily addresses backup,
except where specified otherwise.

The term archive is also used to identify a backup media that contains the saved data, regardless of
the type of media that was implemented. This terminology can cause confusion, but it is used
frequently.

Finally, archiving data raises the question of data consistency during a backup. Obviously, only
consistently archived data is of any use; keeping and reusing inconsistent data is pointless and can
cause many problems. Therefore, any modification of the data must be prevented during a backup;
i.e., access to the files must be prohibited. This precaution led to the long-standing
recommendation to backup only dismounted filesystems (so nobody can modify files), but this
practice means bringing the system into single—user mode during the backup. Such a drastic
limitation of the system does not work for most real-life UNIX systems, and so most system
administrators ignore this recommendation. The calculated risk of backing up data from mounted
filesystems is balanced by several factors:

e System activity is usually very low during a backup (backups are commonly performed at
night or some other time when there are no users on the system).

e Standard filesystems have a huge number of relatively small files and any given file's backup
time is a small fragment of the total filesystem's backup time. Consequently, the probability
that a file could be modified in the small period of time when it is being backed up is
extremely low.

272

e Even if a file were to be corrupted during archiving, the file could simply be excluded from
that backup, and the probability that the same file would be affected during the next backup
is almost nonexistent.

e Finally, in the worst—case scenario, even such a loss of a single file is not a tragedy or a
disaster from the system standpoint, because the primary candidates for that kind of
corruption are usually files in the spooling directory such as continually active e-mail, or
something similar.

These statistically based assumptions work in many cases, especially for regular UNIX filesystems.
However, once we shift into the issue of databases, data consistency becomes crucial and no
chances can be taken. Database backups require stable, static conditions, which requires alternate
approaches. One of these is volume and filesystem snapshots, which is discussed in_Chapter 6.

12.1.1 Media

Magnetic tape is the most suitable media for a backup; magnetic tape was actually invented for this
purpose. The nature of backing up perfectly matches the economical sequential data storage
magnetic tape provides. Although magnetic tape is not the only backup media available, it is the
most widely used, and is the standard backup media for almost any UNIX installation.

There are a number of different types of magnetic tapes available for backups, so selecting the
most appropriate type can sometimes be a difficult task. It was simpler in the past, when 9-track
tape was the only convenient media available for backing up data. Today, the situation has changed
and many suitable magnetic tapes are available; backups can be performed faster and safer. A brief
summary of the available choices follows:

The old (and today obsolete) medium. However, 9-track tape has been used for a very

e 9—-trawkg time, and 9-track tape drives have been installed almost everywhere, so it was

tapeeasy to move tapes from one system to another and from one site to another. The

9-track tape technology was quite reliable and reasonably fast, but rather expensive.
Tapes were bulky, and their capacity was not too large — roughly 150 MB at the
highest density. From today's standpoint, with huge disk space common, such an
extremely small tape capacity sounds odd, but it worked in the past. Unfortunately,
even given the small size of old disks, unattended backup was not often possible
because new tape reels had to be mounted (loaded) during the backup. A night
operator's shift was almost a necessity. Today, 9-track tape drives exist (if they are
used at all), primarily to restore some long—ago archived data.

This tape cartridge is known as QIC. For some time it was the medium of choice for
¢ 1/4 UNIX workstations. The tapes were very reliable and the tape drives were reasonably
in. inexpensive, so they became standard equipment for most workstations. The tapes are
cartridgd smaller than the 9—track ones, with almost the same capacity (150 MB cartridges
tapeare also known as QIC 150). The troubles with backing up the larger disks still
persisted, but it was much easier to store and keep them.

The new video technology has found its place in this field, revolutionizing the backup
e 8 approach itself. Small in size, the tapes come in 8 mm and 4 mm, and they have an

and extremely large capacity: initially 2 GB, followed by 8 GB DDS-2 tapes, and today's

4 DDS-3 tapes with an incredible capacity of 12 GB (even up to 24 GB with

mm compression). They have become the ideal media for unattended backups for a

tapenumber of implementations. Several filesystems can be backed up overnight. Today, 4
mm tapes are very common and are almost a standard device on any UNIX system.
The only disadvantage is that these tapes are more sensitive to heat than other storage
media.

273

e DLT An extremely high—density and high—capacity medium. With the capacity of 35 GB
tape(with compression up to 70 or more GB) a DLT tape is suitable for the backup of large
databases. Today, it is a very common medium for a large volume backup.

A number of different robotics devices (tape changers, juke boxes, etc.) are widely
¢ Robaties today. They enable flexible, unattended backups within large computer networks,
devieesh automatic mounting and dismounting of requested tapes. Equipped with bar code
readers, they can fulfill various backup demands.

A floppy disk drive is a well-known, cheap, and reliable device. However, the capacity
¢ Flopplya floppy disk is extremely small, and it cannot be a reasonable backup option; an
diskaverage filesystem backup can easily use several hundred diskettes. A floppy drive can
efficiently be used to back up a few files.

12.2 Tape-Related Commands

UNIX provides a complete suite of commands designed for data archival. The commands range
from those suitable to save a single file, several files, and a directory structure, up to those
commands for an elaborate backup of a complete filesystem/filesystems. Of course, the reverse
process is also covered: corresponding commands for data restoration/ recovery are also available.
All these commands are also widely implemented within the available UNIX backup/archive/restore
tools, forming powerful and sophisticated vehicles for handling this unavoidable UNIX task.

Originally, all these UNIX commands were tape related, i.e., tape was assumed to be the archive
media. We will discuss most of the UNIX commands of this type, which are divided into two basic
groups:

1. Tape-related commands, designed to backup and restore individual files to/from a magnetic
tape
2. Filesystem-related commands, designed for more elaborated archival/restoration

The UNIX commands belonging to the first group are generally available on almost all UNIX
platforms; these include tar and cpio, and the dd command. In addition, the mt command is
available to control the tape itself (rewinding, erasing, retention, etc.). The listed commands overlap
in some respects, but each of the commands has a specific mission, unique to the command itself.
There are other, flavor-specific commands as well (for example, bar on SunOS, or tcio on HP-UX)
— they will not be covered in this text.

12.2.1 The tar Command

The tar command saves and restores files to and from archive media, usually a tape, but also any
other media, such as floppy disks or others. The tar command can also be used to copy files to
other files. The origin of the name tar is tape archiving, which obviously describes the nature of this
command. It saves files, a kind of compression is applied, and a single archive file is created. When
it restores files, tar decompresses them and returns them to their original forms.

The syntax of the tar command is:
tar key[options] [filenames]

where

filenames The files on the specified directory, or the name of the file
key[option] Determines what action the tar command will take

274

The list of key and additional options follows:

Key Function

r |Append filenames to an existing archive (does not work on most tapes)

x |Extract filenames from the archive; if a directory is specified, it is recursively extracted

t |Print the names of the specified files each time they occur in archive and extract them

u |Add filenames to the archive only if they are not already there or if they are modified in the

meantime

¢ |Create a new archive and write filenames to it, destroying any existing files

Option Function Modifier

number Selects the tape or disk drive with the number; if missing, the default drive is
selected

b number Specifies the blocking factor for archive records; the default is 20 (for standard
input it is always 1)

h Forces tar to follow symbolic links as if they were normal files and directories,
otherwise, tar archives only a path of the linked file or directory

v Causes tar to display the name of each of the files it reads or writes

w Displays the action to be performed on each file and waits for confirmation

f argument Causes tar to use the device or file specified by the argument instead of the
default one, standard input or output is specified by a hyphen (-)

1 Causes tar to display a message if there is a problem

m Causes tar to set the current time rather than original one (when extracting)

k number Specifies the size of archive as number kB (min. 250)

e Prevents files from being split across backup volumes (tapes or floppies). If a file
does not fit, tar prompts for a new volume; this option can only be used together
with the k option

Note: All options can be used without the usual hyphen (-); however, most UNIX flavors allow also

the use of the hyphen. The reference directory is the current directory. This is not a complete list,

other options are also possible — check the manual pages.

Default values are usually defined in a separate file, such as /etc/default/archive or /etc/default/tar.

The tar command is very popular among UNIX administrators; they like this command and use it
frequently. The main reasons for this popularity are:

e |t is an easy to use and flexible command.

e |t preserves file ownership and mode (if it is used by the superuser).
e |t compresses data, creating a single archive file.

e The tar command can both "tar"(archive) and "untar" (extract) data.

The tar command is often used to transfer files or directory hierarchies from one place to another,
especially in a networked environment. The selected files are first "tar-ed," then transferred as a
single archive file to the destination, and at the end "untar-ed." Besides the fact that it is easier to
handle and copy a single file, tar also preserves files' ownership, modes, and time stamps. Tar also
handles symbolic links (on most UNIX platforms there is the option to copy a link or follow a link and
copy a linked file).

Pay attention that un tar-ing is always performed in the reverse way from the original tar-ing. This
means that archived files with absolute pathnames can be extracted only into their original

275

locations; extracting such files to other locations requests extraordinary skills (and the use of the
chroot command, which is definitely not recommended for novices). However, archived files with
relative pathnames can be extracted into an arbitrary reference directory. The GNU flavor of the tar
command even allows an arbitrary extraction of files archived with absolute pathnames.

In most cases the use of the tar command involves the following command options:

e To tar data (create an archive):

tar -cvf /dev/rmt/mt_device files to tar
e To list the archive (tar-ed data):

tar -tvf /dev/rmt/mt_device
e To untar (extract) all far-ed data:

tar -xvf /dev/rmt/mt_device
e To untar (extract) selected tar-ed data:

tar -xvf /dev/rmt/mt_device files to_ untar

Using the v (verbose) option to show exactly what tar is doing is recommended. Sometimes, it can
take quite a while for the command to terminate, and it is always good to know what happens in the
meantime.

12.2.2 The cpio Command

The epio command copies files into and out of archives for storage, moving, and backups. Archives
can be ordinary files, directories, or backup media such as tape or floppy disks. cpio has several
advantages over the tar command:

e |t can back up arbitrary sets of files.

e [t can back up special device files and so is suitable for full system backups on small
systems.

e [t packs data on tape significantly more efficiently than tar.

e On restore, it skips over bad spots on the tape while tar dies in such cases.

cpio takes its input from the standard input (i.e., keyboard), not from files specified as arguments. It
waits for input (names of files typed in one line) terminated by CTRL-D.

The cpio command can be used in three different ways, defined by three different generic formats.
Each format uses different required options that cannot be combined. There are additional options
that can be used in all three command formats. The syntax is:

cpio —-o [acBv]
cpio —-i [option] [pattern]

cpio -p [option] directory

The required and additional options have the following meaning:

Required
Options
-0 [option] Causes cpio to read a list of file names from its standard input and combine them
into an archive file, which it prints as its standard output (copy out)

Meaning

276

-i [option] Causes cpio to retrieve files specified by pattern (? and * are legal) from an

[pattern] archive created with cpio —0; these files are then copied to the current directory

-p [option] Causes cpio to read a list of ordinary files from its standard input and copy them

directory to the specified directory

Add_itional Meaning

Options

a Resets access times of input files after they are copied

c Writes the header information in ASCII characters for portability to other
machines

d Creates directories as needed; used when directories are specified to be copied

f Copies only files not matched by pattern

| Creates links to files in the new directories instead of copying them (if possible)

m Does not change modification time of files when copying them

r Allows files to be renamed as they are copied; cpio waits for a new name

t List the names of the input files without copying them

u Pushes cpio to overwrite files if they already exist (ordinarily, cpio does not copy
files if they already exist)

v Prints a list of the files being copied

The cpio command is usually combined (piped) with other UNIX commands to perform a requested
command sequence (often within scripts). The manual use of the command (from the command
line) is not very convenient, but still workable. The need to handle special device files makes this
command unavoidable. Here are a few examples:

e To archive all files, starting in the current directory and continuing with subsequent
subdirectories, onto the magnetic tape (identified by the tape device file 0m):

find . -print | cpio -o > /dev/rmt/Om
e To copy all files in the directory /dir1 into /dir2:

1ls /dirl | cpio -p /dir2
Although it works for any directory, the example is used primarily to copy special device files:
1s /dev/dirl | cpio -p /dev/dir2

The d option is required if the directory dir2 does not already exist.

12.2.3 The dd Command

The dd command converts and copies files with various data formats; it copies a specified input file
to a specified output with possible conversions. The standard input and output are used by default.

The input and output block size may be specified to take advantage of raw physical 1/0.
The format of the dd command is:
dd [option=value]..

The options are:

if=namdnput file is taken from name; standard input is default

277

of=nam®utput file is taken from name; standard output is default

ibs=n Input block size n bytes (default is 512)

obs=n Output block size n bytes (default is 512)

bs=n Set both input and output block size, superseding ibs and obs

cbs=n Conversi on buffer size

skip=n Skip ninput records before starting copy

files=n Copy ninput files before terminating (makes sense only when the input is a magnetic tape
or similar device)

seek=nSeek n records from beginning of output file before copying. This option generally only
works with magnetic tapes and raw disk files and is otherwise usually useless if the explicit
output file was named with the of option

count=rCopy only ninput records
conv=..Specify a conversion (EBCDIC, ASCII, etc.)

After completion, dd reports the number of whole and partial input and output blocks. A few
examples are:

e To read an EBCDIC tape, with blocked ten 80-byte EBCDIC card images per record, into
the ASCII file filename:

$ dd if=/dev/rmt0 of = filename ibs=800 cbs=80 conv=ascii, lcase
e To write the file filename to a 3.5-inch floppy and read from the floppy into a file filename,
respectively:

$ dd if= filename of=/dev/rfd0c bs=9k
$ dd if=/dev/rfdOc of= filename bs=9k

e This command can be used to figure out the actual size of a raw disk partition or a logical
volume, for example:

$ dd if=/dev/vg00/1lvol5 of=/dev/null bs=2k
51200+0 records in
51200+0 records out

In this example, the complete logical volume Ivol5 was copied into null device (nowhere); the
reported number of input and output records for the defined block size of 2K determines the total
raw volume size of 102.4 MB. Be careful in using this command, because a reverse selection of the
input and output file would have a completely different meaning: it will erase the contents of the
volume.

12.2.4 The mt Command
The mt command controls a magnetic tape drive. It can be used to position a tape at a particular

place, so it is very useful when multiple filesystems/files are archived on a single tape. The
command syntax is:

mt [-t tapename] command..[count]
Or on some UNIX platforms (like Solaris 2.x):

mt [—-f tapename] command..[count]

If tapename is not specified, the environment variable TAPE is used. If TAPE does not exist, mt

278

uses the default device (on Solaris, /dev/rmt/0). tapename refers to a raw tape device. By default,
mt performs the requested operation once; specify count to perform multiple operations. The
available commands are listed below. Only as many characters as are required to uniquely identify
a command need be specified.

mt supports the following internal commands:

eof Write count EOF marks at the current position on the tape, (weof).

fsf Forward space over count EOF marks. The tape is positioned on the first block of the
file.

fsr Forward space count records.

bsf Back space over count EOF marks. The tape is positioned on the beginning—of-tape
side of the EOF mark.

bsr Back space count records.

nbsf Back space count files. The tape is positioned on the first block of the file; this is
equivalent to { count +1 } bsf 's followed by one fsf.

asf Absolute space to count file number; this is equivalent to a rewind followed by a fsf
count. For the eom commands, count is ignored.

eom Space to the end of recorded media on the tape. This is useful for appending files onto

previously written tapes.
rewind Rewind the tape.
offline Rewind the tape and take the drive unit off-line by unloading the tape, (rewoffl).
status Print status information about the tape unit.

retention Rewind the cartridge tape completely, then wind it forward to the end of the reel and
back to beginning—of-tape to smooth out tape tension.

erase Erase the entire tape.
12.2.5 Magnetic Tape Devices and Special Device Files

All tape-related commands deal with magnetic tape drives via corresponding special device files.
The command specifies the device file, which then provides the requested operation with the tape
drive. Once the operation is completed, the tape is usually rewound. To properly understand tape
device files, a bit of history can be instructive. In the past, only low density and small capacity tapes
were available, so it was necessary to use a number of tape volumes to backup a complete system.
A multivolume backup also included the rewinding of the tape volumes once the desired transaction
was completed. The easiest way to provide this unavoidable rewinding was to delegate this task to
the device file; rewinding was performed automatically before the device file was closed.

The new technology brought new demands. High density and large capacity tapes enable the
archival of many files, directories, and/or filesystems on a single tape, so there is no need for a
multivolume backup. In fact, today the opposite exists; often, multiple filesystems must be archived
on the same medium. The fact that a tape was rewound automatically when the archiving was
completed became an obstacle; a new command always started from the beginning of the tape, so
everything previously stored was overwritten.

That is why modified, "nonrewinding" device files have been introduced; they provide everything
contained in the original device files except for the rewinding at the end, and usually they carry an
additional "n" in their names (as a prefix or a suffix).

The permanent improvements in tape density were addressed in a similar way — new, modified

279

device files handle the new higher density tapes.

Let us see what this means in practice. On Solaris 2.x (which is System V-like), all tape device files
reside in the subdirectory /dev/rmt.

$ 1s -C /dev/rmt
0 Obn Ochb Ocn Ohb Ohn 0lb 0ln Omb Omn Ou Oubn
0b Oc Ocbn Oh Ohbn 01 Olbn Om Ombn 0On Oub Oun

This is an example from the SunSparc20 workstation with a single 4mm DDS2 tape drive. Each
device file is identified by:

/dev/rmt/ <unit number> [<density>][<BSD behavior>] [norewind>]

where

<density> Is identified by the letters I, m, h, u, and c for low, medium, high, ultra, and
compressed, respectively

<BSD By the letter b

behavior>

<horewind> By the letter n
Tape device files can be identified in a similar way on other systems.

12.3 Backing Up a UNIX Filesystem

Filesystem-related UNIX backup/restore commands enable the handling of large, complex volume
data archiving in a relatively simple way. This is especially important if a system crash occurs, when
fast filesystem recovery (primarily of the root filesystem) is extremely significant. Besides the
commands themselves, some UNIX platforms provide other backup/restore tools (mostly shell script
based, which makes it easy to understand what they are doing and how) for the same purpose. We
will discuss many of them. However, before starting with the commands/tools, a few words about
planning the process of a successful data archival.

12.3.1 Planning a Backup Schedule

Performing regular backup is essential for system data security. It is a good idea to assume that the
next time you use the system, all system disks will have crashed and the only available files to
restore are those you had backed up previously. Keeping such a catastrophe in mind will make it
obvious what needs to be backed up and how often. Backups are convenient for accidentally
deleted files, but they are also essential in the event of serious hardware failures or other disasters;
all hardware has a finite lifetime, and failures are always possible.

Therefore, planning is an important part of the backup process. In planning a backup schedule,
several factors need to be taken into account:

e What files are critical to the users on this system?

e Where are these files located? Are they isolated in a single filesystem, for example?

e How often do these files change?

e How quickly would they need to be restored in the event of damage or loss?

e How often are the relevant filesystems available for backup? (ldeally, backups should not be
performed on mounted filesystems.)

280

e What kinds of media are available for backups?

For example, if the system supports a large ongoing development project, it can be assumed that
the files change frequently and should be backed up often. On the other hand, if the only volatile file
on the system is a large database, its filesystem might need to be backed up more often than the
other filesystems on the system.

In performing backups, a system administrator invests time in the present to prevent future losses.
The time required for any backup schedule must be weighed against the potential losses if the files
are needed but are not available.

Strictly speaking, a filesystem should be dismounted before a backup is performed (except for the
root filesystem). This means that the system should be placed in singleuser mode. However, this
recommendation is rarely followed; in practice, backups are almost always performed on mounted
filesystems. Consequently, any file modified while the backup is in progress may not be backed up
correctly.

The simplest backup scheme is to copy a whole disk to a tape. This type of full backup is time
consuming, and restoring a single filesystem from a large set of tapes is inconvenient; if the files do
not change frequently, it can be a waste of time. On the other hand, if the files are changing very
rapidly, then even daily full backups might be reasonable. In any case, a periodic full backup is
recommended (once per month, biweekly, or once per week).

Another approach is incremental backup; in an incremental backup, a system copies only those files
that have been changed since the previous backup. The concept of a backup level to distinguish
different backup types is often used; each backup type has an assigned level number. By definition:

Level 0 Full backup

Level 1 Backup of all files that have changed since the last full backup
Level 2 Backup of all files that have changed since the last level 1 backup
Level 3 Backup of all files that have changed since the last level 2 backup

Level 4 Backup of all files that have changed since the last level 3 backup
and so on.

This approach and the concept of numeric backup levels are generally valid for any UNIX system,
but they are only fully supported by BSD-style backup commands.

A typical backup strategy usually includes a full backup at the beginning of the determined backup
period, and then several incremental backups during that period. As examples, two schemes are
presented:

The Backup Period One Week

Monday Level 1 backup (incremental backup to the last full backup)
Tuesday Level 1 backup (incremental backup to the last full backup)
Wednesday Level 1 backup (incremental backup to the last full backup)
Thursday Level 1 backup (incremental backup to the last full backup)
Friday Level 0 backup (full backup)

The Backup Period One Month

First Monday of each month [Level 0 backup (full backup)

281

All other Mondays Level 1 backup (total incremental to the last level 0)

Tuesday Level 2 backup (daily incremental to the previous level 1)
Wednesday Level 2 backup (daily incremental to the previous level 1)
Thursday Level 2 backup (daily incremental to the previous level 1)
Friday Level 2 backup (daily incremental to the previous level 1)

The main criterion for planning a backup schedule is how the system is used. The most used
portions of the filesystem may need to be backed up more often than the other parts; for example,
the root filesystem with standard UNIX programs and files that rarely change does not require
frequent backup. Some parts of the system, like the /tmp directory, need never be backed up.
Sometimes, additional filesystems can be created; they might need to be backed up often, or very
rarely, or never at all.

The full backup should be performed whenever significant changes are made to the system,
regardless of the current backup schedule. This might be one of the few times that the root
filesystem gets backed up.

The worst part of doing backups is sitting around waiting for them to finish; this will often feel like
wasted time. Unattended backups solve this problem for some sites. If the backup will fit on a single
tape, and new technologies enable it, then the tape can be put in the drive and the backup
performed during the night. In the morning the operator simply has to pick up and label the tape.
However, unattended backups can be a security risk; nontrusted users with physical access to the
tape drive may cause a problem.

12.4 Backup and Dump Commands

Despite the fact that system backups have always been one of the main issues in the administration
of any software system, there is no uniform approach for handling this task in UNIX. Rather, the
opposite is true: there are many different approaches. More specifically, there are many different
utilities and commands (mostly flavor— and releasebased) that address data backup and restoration.
The following text is an attempt to at least briefly specify and present some of them.

12.4.1 The SVR3 and SVR4 backup Commands

First, a quick look into the history: backups under System V went through several phases before
arriving at today's process. SVR3 provided the backup command, which was really an interface to
the cpio command. It could perform a full or an incremental backup of the filesystem, or backup a
list of files, or user's home directories, to either a tape or a floppy disk. Today, the command itself is
obsolete. The syntax of this backup command was:

backup [options]

The options specified the action to be performed, as seen in the following table.

Options Meaning

-C Complete (full) backup

-p Partial (incremental) backup

—f file_list |Backup the specified files (place the list in quotes)
-u user Back up all files under users home directory

282

—-d spec_file |Specify backup target device (a character special file)
-t The specified device is a tape device (default is floppy)
-h List the dates of the last incremental and full backup

A few examples:

$ backup -c -t -d /dev/rmt/c0s0 # The full backup to the first tape drive;
$ backup -p # The incremental backup to the default
floppy drive
(/dev/rdsk/£f05h) ;
$ backup -u username -d /dev/rdsk/f03h # Copy all files under user username's home
directory to a high density 3-1/2" floppy
drive.

SVR4 introduced an improved backup tool — a highly sophisticated and powerful backup utility
that enabled administrators to implement and manage an arbitrarily elaborate backup plan. It
enabled automation of most backup tasks (except physical mounting of tapes). On the other hand, it
was more complex than absolutely necessary for some systems. Unfortunately, we cannot talk
about a uniquely accepted and implemented backup utility — each System V flavor had some
peculiarities. For example, on SGI IRIX even the name of the utility was abbreviated and modified
into /usr/sbin/bru, the Backup and Restore Ulility, to point out its inherent restore capabilities.

A typical example of a SVR4 backup utility is the one that existed on HP-UX 9.0x. Although HP-UX
9.0x is a more—or-less obsolete UNIX flavor today, the backup utility can be used to provide an
understanding of different backup/restore issues. First, it is a shell script that could be easily read
and understood; second, it is based primarily on the find and cpio UNIX commands, with which
administrators should be familiar.

Briefly, the backup scheduling was controlled by the configuration file /etc/archivedate (on some
UNIX systems the file was /etc/bkup/bkreg.tab). The configuration file defined each participating
filesystem in the backup, a backup schedule, destinations, and other information.

The format of the command to start a backup is:
/etc/backup [-A] [-archive] [-fsck]

The —A option suppressed warning messages regarding optional access control list entries.
Normally, a warning message was printed for each file having optional access control list entries.

The —archive option caused backup to save all files, regardless of their modification date, and then
update /etc/archivedate using the touch command. backup sent a prompt when a new tape
needed to be loaded and continued, if there was no more room on the current tape. However, the
prompting did not occur if backup had been run from cron.

The —fsck option caused backup to start a filesystem consistency check (without correction) once
the backup was complete. For correct results, it was important that the system had been effectively
single—user while fsck was running (with the corresponding filesystem dismounted), especially if
—-fsck was allowed to automatically fix whatever inconsistencies it found. backup itself did not
ensure that the system was in single—user mode.

The script /ete/backup could be customized, and several local values were available for
customization:

backupdirs Specified which directories to back up recursively (usually /, which meant all directories)

283

backuplog The name of the file where start and finish times, block counts, and error messages
were logged

archive The name of the file whose date was the date of the last archive

remind The name of the file that was checked by /etc/profile to remind the next logged-in
person to change the backup tape

outdev Specified the output device for the backed-up files

fscklog The name of the file where start and finish times and fsck output was logged
In all cases, the output from backup utility was a normal cpio archive file.

For data recovery, it is important to note that backup creates archive tapes with all files and
directories specified relative to the root directory. Consequently, data recovery should be invoked
from the root directory with recovered files' directory path names specified relative to the root
directory (/).

12.4.2 The fbackup Command

HP-UX 10.x introduced a new flavor of the backup command, this time renamed fbackup. The
command itself is a powerful replacement for previous backup commands/utilities, a combination of
the best characteristics of the backup and dump commands. fbackup enables a file/directory
related backup, with an optional selection to overcome filesystem boundaries. In this way a partial
backup of a single filesystem could be done, as well as a complete backup of several filesystems.

The command itself was designed to allow backups while the system is in use by providing the
capability to retry an active file. However, when absolute consistency in a full backup is important,
the corresponding filesystem should be dismounted, or the system placed in a single-user mode.

The fbackup command has the following form:
fbackup options—-arguments

where

options-arguments A list of options with corresponding arguments

Note Files and directories to be backed up are defined as arguments, or are a list defined as an
argument.

Selected options are immediately followed by corresponding arguments (if the arguments are

requested) in a comprehensive way. The most common options are:

Option Meaning

c Specifies a configuration file for the backup (an argument), unless the default configuration
is used

i Includes a filename or a directory name for the backup (an argument), and can be repeated
many times

e Excludes a filename or a directory name from the backup (an argument), and can be
repeated many times

g Specifies a "graph-file" (an argument), which is a list of included and excluded
filenames/dirnames

f Identifies the backup device to be used instead of the default /dev/rmt/Om (an argument)

n Cross NFS mount—points (by default fbackup does not cross)

284

[Includes specified LOFS files and directories (by default it does not)
s Follows symbolic links (by default it does not)

\J Verbose (otherwise fbackup works silently)

u Updates the backup database

0-9 Specifies the backup level (0 is a full backup)

| Also writes the "index" (the list of backed-up files) in the file specified as an argument (by
default it is written only into the tape/volume)

\" Also writes the "volume header" in the file specified as an argument (by default it is written
only into the tape/volume)
R Continues (restarts) an interrupted backup

Note: There are more options that make fbackup more powerful and flexible.
The following script illustrates how the command can be used. The script provides a full backup of
data defined in the graph file, a list of backed-up files is created in the index file, and the
corresponding logging is provided.

$ cat /usr/local/fbackup/bin/fbackup.full
#!/bin/sh
#

#**

#

MT _DEVICE=/dev/rmt/0Om

GRAPH_FILE=/usr/local/fbackup/graph/graph. full
INDEX_FILE=/usr/local/fbackup/index/index. full
LOG_FILE=/usr/local/fbackup/log/fbackup.log. date +%a

mt -t SMT DEVICE rewind

echo "'date': Fbackup started" > SLOG FILE

/etc/fbackup —-f SMT_DEVICE/dev/rmt/Om -0 —-u -v —-g SGRAPH FILE -I SINDEX FILE >> SLOG_FILE
echo "'date': Fbackup finished." >> SLOG_FILE

#

#**

#

12.4.3 The dump/ufsdump Command

Originally a BSD-type command, the dump command is the most common filesystem-related
UNIX backup command. Some flavor—colored variations of the command exist among different
UNIX platforms, including modified command names on some System V versions: ufsdump or
even ufsbackup. Despite the discrepancies in the names, the two commands dump and ufsdump
behave the same (or almost the same). We will call the command dump/ufsdump, just to
emphasize their common functions and similar behavior.

dump/ufsdump keeps track of when it last saved each filesystem and the level at which the
filesystem was saved. This information is stored in the file /etc/dumpdates. A typical entry in this file
is:

/dev/disk2e 2 Sun May 8 13:14:56 1998

This entry indicates the filesystem /dev/disk2e was last backed up on Sunday, May 8, 1998, and it
was level 2 backup. If the filesystem cannot be found in this file, it can be assumed that it was not
backed up.

Here is a real example (from a still-active ULTRIX system):

285

$ cat /etc/dumpdates

/dev/rrz0a 0 Tue Sep 20 00: 38:28 1998
/dev/rrz0h 0 Tue Sep 20 00: 39:53 1998
/dev/rrzlh 0 Tue Sep 20 01: 12:35 1998
/dev/rrz2h 0 Tue Sep 20 01: 37:19 1998
/dev/rra35c 0 Tue Sep 20 02: 25:42 1998
/dev/rra34c 0 Mon Apr 19 16: 02:51 1997
/dev/rrz0a 9 Fri Sep 23 05: 48:50 1998
/dev/rrz0h 9 Fri Sep 23 05: 52:44 1998
/dev/rrzlh 9 Fri Sep 23 06: 08:55 1998
/dev/rrz2h 9 Fri Sep 23 06: 12:54 1998
/dev/rra35c 9 Fri Sep 23 06: 19:45 1998

The file /etc/dumpdates must exist before the dump/ufsdump command is performed, and it must
be owned by the user root (the best way to create the file the first time using touch
/etc/dumpdates).

The general form of the dump command is:

dump options arguments special file

or, alternatively:

ufsdump options arguments special_ file

where

options A list of options to be used for this backup
arguments A list of arguments corresponding to these options; not all options require arguments

special_file A block special file corresponding to the mounted filesystem to be backed up (on
some systems a character special file is requested)

The dump/ufsdump command should be used carefully. Options and corresponding arguments are
specified within two separate lists, but the list of arguments must strictly correspond, in order and in
number, to the list of options requiring arguments. Failing to observe this rule could have disastrous
effects and consequences, including destroying the filesystem. It is highly recommended that you
create shell scripts that will automatically invoke dump/ufsdump commands with proper options
and arguments to avoid human errors.

Special attention should be paid to the following two issues in using dump/ufsdump:

1. The filesystem to be backed up should always be the last item on the command line. If a
tape drive specification accidentally follows the disk drive specification, the filesystem could
be corrupted because dump will backup the tape onto the disk.

2. If the tape drive specification is missing, the backup will be performed assuming the default
values. On some systems, it is necessary to select the density on the tape drive's front panel
in addition to specifying the correct special device file (dump can unexpectedly run out of
tape).

At the end the universal advice: check the manual pages for each individual command flavor,
because there may be differences in their use.

The important dump/ufsdump options are:

Option Meaning

286

0-9 The numbers 0-9 indicate the level number of the backup. Given any level n,
dump will search /etc /dumpdates for an entry reporting the last level n-1
filesystem backup (or lower). dump then backs up all files that have been changed
since this date. If nis zero, or there is no record in /etc/dumpdates,
dump/ufsdump will back up the complete system. The default value for the level
option is 0 (complete backup).

b This option requires an argument, which specifies the blocking factor for tape
writing (default is 20 blocks per write, for cartridge 126 blocks per write). A block is
512 bytes.

c Indicates a cartridge instead of the standard half-inch reel; sets another set of
default arguments.

d This option requires an argument, which specifies the tape density in bpi (bits per

inch): 1600 bpi for 1/2" tape, 1000 bpi for QIC, 54,000 bpi for 8mm tape. If the
option is omitted, the default is 7600 BPI.

f This option requires an argument, which specifies another dump medium instead
of the default tape drive (it can be a file or another device).
s This option requires an argument, which specifies the size of the backup tape in

feet The argument does not correspond literally to the tape size, so the values for
different tapes must be read. If the option is omitted, the default is 2300-foot tape.

t This option requires an argument, which specifies the number of tracks for a
cartridge tape (60MB QIC has 9 tracks; 150MB QIC has 18 tracks).

c

If dump finishes successfully, this option updates its history file /etc/dumpdates.

w This option asks dump/ufsdump to report which filesystems need to be backed
up, without taking any action. It reads /etc/dumpdates and /etc/fstab to determine
what filesystems need backups. If this option is present, dump/ufsdump will
ignore all other options, except for the dump level.

Here are some argument values that produce satisfactory results on a number of typical tape drives.
Note that individual options can be in any order; however, the position of each argument depends
on the relative position of each option.

Tape Command (partial)

60MB QIC dump cdst 1000 425 9...

150 QIC dump cdst 1000 700
18...

1/2" tape dump dsb 1600 2300
126...

2GB 4mm tape dump dsb 54000 6000
126...

The dump/ufsdump command is used in the following way:

$ dump 2usfd 2300 /dev/rmtl 6250 /dev/diskld # Performs a level 2 backup on
the filesystem accessed via /dev/
diskld, using a 9-track 2300 foot
long (s) tape drive /dev/rmtl at
6250 BPI density (d), then updates
the file /etc/dumpdates (u).

$ dump 3usdf 2300 6250 /dev/rmt20 /dev/diskld # Performs a level 3 backup on the
filesystem accessed via /dev/
diskld using the 9-track 2300 foot
long (s) tape drive /dev/rmt20 at

287

$ dump lusdf 1422 /dev/rfdOa /dev/rsdOg

$ dump 4Wd 6250 /dev/diskld

12.4.4 A Few Examples

Two real examples, one from Sun OS 4.1.x (as a BSD representative) and the other from Solaris
2.x (as a System V representative), follow. Both UNIX flavors originate from the same manufacturer,
Sun Microsystems, and both examples are related to the backup of multiple filesystems on a single
magnetic tape. In the first example, two filesystems are dumped to the 150 MB 1/4 inch cartridge
(QIC-150). In the second example, five filesystems are dumped to the 2GB 4mm DAT tape. The
BSD-like commands dump and ufsdump are used, respectively. In both cases an appropriate
Bourne shell script has been created to perform the backup. In that way the possibility for any
mistake was eliminated, because the scripts were tested and verified previously. The complete

6250 BPI density (d), then updates
the file/etc/dumpdates (u).

Performs a level 1 backup on
the filesystem accessed via /dev/
rsdOg to a floppy drive/dev/rfd0Oa
on a Sun system, then updates

the file /etc/dumpdates.

Does not back up any filesystem.
It will print a complete list of
all filesystems indicating the
last time each filesystem was
backed up, the level at which it
was backed up, and whether or

not it needs to be backed up at
level 4 (when the W option is

specified, all other options but the

level number are ignored).

backup procedure has been logged in the file named "dumpit.log."

Here is the corresponding script, named "backup_system," on Solaris 2.x:

$ cat /usr/local/bin/backup_system
#!/ bin/sh
#

The filesystems on two disk drives
(c0t3d0s3 and c0t2d0s3) are backed-up.

S H R R R

The sh script to dump filesystems on ATLAS
(This is Solaris 2.6 UNIX and "ufsdump" is used).

echo "Backing all filesystems on ATLAS on:" >/tmp/dumpit.log

date >> /tmp/dumpit.log
echo "" >> /tmp/dumpit.log
#

echo "Verifying the tape drive.." >> /tmp/dumpit.log
/bin/mt -f /dev/rmt/0 status >> /tmp/dumpit.log 2>¢&1

#

echo "Rewinding the tape..." >> /tmp/dumpit.log
/bin/mt -f /dev/rmt/0 rewind >> /tmp/dumpit.log 2>&1
echo "" >> /tmp/dumpit.log

#

echo "Starting system backup.." >> /tmp/dumpit.log
echo "Dumping root filesystem.." >> /tmp/dumpit.log
/usr/sbin/ufsdump Oubf 96 /dev/rmt/On /dev/rdsk/c0t3d0s0 >> /tmp/dumpit.log 2>&1

echo "" >> /tmp/dumpit.log

echo "Dumping /usr filesystem.." >> /tmp/dumpit.log
/usr/sbin/ufsdump Oubf 96 /dev/rmt/0On /dev/rdsk/c0t3d0sé6 >> /tmp/dumpit.log 2>&1

echo "">> /tmp/dumpit.log

288

echo "Dumping /home filesystem.." >> /tmp/dumpit.log

/usr/sbin/ufsdump Oubf 96 /dev/rmt/On /dev/rdsk/c0t3d0s7 >> /tmp/dumpit.log 2>&1
echo "" >> /tmp/dumpit.log

echo "Dumping /applic filesystem.." >> /tmp/dumpit.log

/usr/sbin/ufsdump Qubf 96 /dev/rmt/On /dev/rdsk/c0t2d0s0 >> /tmp/dumpit.log 2>&1
echo "" >> /tmp/dumpit.log

echo "Dumping /software filesystem.." >> /tmp/dumpit.log

/usr/sbin/ufsdump Oubf 96 /dev/rmt/0On /dev/rdsk/c0t2d0sé6 >> /tmp/dumpit.log 2>&1
echo "" >> /tmp/dumpit.log

#

echo "Rewinding the tape.." >> /tmp/dumpit.log

/bin/mt -f /dev/rmt/0 rewind >> /tmp/dumpit.log 2>&l1

echo "" >> /tmp/dumpit.log

#

echo "Backup is done!" >> /tmp/dumpit.log

echo "Backup is donel!™

#
The corresponding log file /tmp/dumpit.log is:

$ cat /tmp/dumpit.log

Backing all filesystems on ATLAS on:

Tue Nov 7 16:37:35 EST 1998

Verifying the tape drive..

Archive Python 4mm Helical Scan tape drive:
sense key (0x0) =No Additional Sense residual=0 retries=0
file no=0 block no=0

Rewinding the tape..

Starting system backup..

Dumping root filesystem.
DUMP: Writing 48 Kilobyte records
DUMP: Date of this level 0 dump: Tue Nov 07 16:37:36 1998
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0t3d0s0 (atlas:/) to /dev/rmt/On.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Estimated 168074 blocks (82.07MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 167998 blocks (82.03MB) on 1 volume at 624 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Tue Nov 07 16:37:36 1998

Rewinding the tape..
Backup is done!

The script on SunOS has an identical structure; the only difference is that the dump command
(instead of ufsdump), is applied, as follows:

$ cat /usr/local/bin/dump_system
#!/ bin/sh
#
The csh script to dump / and /usr filesystems
(this is level 0 dump to the QIC 150 tape)
echo "Dumping root filesystem.." >> /tmp/dumpit.log
/usr/etc/dump Ocdstfu 1000 700 18 /dev/nrst0 /dev/sdOa >> /tmp/dumpit.log 2>&l1
echo "" >> /tmp/dumpit.log
echo "Dumping usr filesystem.." >> /tmp/dumpit.log
/usr/etc/dump Ocdstfu 1000 700 18 /dev/nrst0 /dev/sd0g >> /tmp/dumpit.log 2>&1

289

echo ""

>> /tmp/dumpit.log

The corresponding log file /tmp/dumpit.log is:

$ cat /tmp/dumpit.log

Wed Nov
Backing

1 16:43:38 EST 1998
root and usr filesystems

Verifying the drive..

Archive

QIC-150 tape drive:

sense key (0x0) =no sense residual = 0 retries = 0

file

no=0 block no=0

Rewinding the tape..
Starting backup..

Dumping

DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :

Dumping

DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :
DUMP :

root filesystem..

Date of this level 0 dump: Wed Nov 1 16:43:42 1998
Date of last level 0 dump: the epoch

Dumping /dev/rsd0Oa (/) to /dev/nrst0

mapping (Pass I) [regular files] DUMP: mapping (Pass II) [directories]
estimated 13278 blocks (6.48MB) on 0.05 tape(s).
dumping (Pass III) [directories]

dumping (Pass IV) [regular files]

level 0 dump on Wed Nov 1 16:43:42 1998

Tape rewinding

13262 blocks (6.48MB) on 1 volume

DUMP IS DONE

usr filesystem.

Date of this level 0 dump: Wed Nov 1 16:45:00 1998
Date of last level 0 dump: the epoch

Dumping /dev/rsd0Og (/usr) to /dev/nrst0

mapping (Pass I) [regular files] DUMP: mapping (Pass II) [directories]
estimated 275898 blocks (134.72MB) on 0.96 tape(s).
dumping (Pass III) [directories]

dumping (Pass IV) [regular files]

21.60% done, finished in 0:18

43.98% done, finished in 0:12

66.08% done, finished in 0:07

87.82% done, finished in 0:02

level 0 dump on Wed Nov 1 16:45:00 1998

Tape rewinding

275898 blocks (134.72MB) on 1 volume

DUMP IS DONE

Rewinding the tape..
Backing is done!

The log files /tmp/dumpit.log on both systems report on the backup procedures, step by step —
partially because of the echo lines in the scripts, and partially because of the verbose nature of the

dump and ufsdump commands themselves. We will analyze them in greater detail.

Pay attention to the bold DUMP message "Tape rewinding" in the second log file. Although the
device file /dev/nrmt0 was selected, the dump command informs us of the tape
rewinding at the end of each individual filesystem's dump. It is easy to