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Foreword 
 
by Jim Gray, Microsoft Research  
Series Editor, Morgan Kaufmann Series in Data Management Systems 

Each database product comes with an extensive tuning and performance guide, and then there 
are the after-market books that go into even more detail. If you carefully read all those books, 
then did some experiments, and then thought for a long time, you might write this book. It 
abstracts the general performance principles of designing, implementing, managing, and use of 
database products. In many cases, it exemplifies the design trade-offs by crisp experiments 
using all three of the most popular products (IBM's DB2, Oracle's Oracle, and Microsoft's 
SQLServer). As such, it makes interesting reading for an established user as well as the novice. 
The book draws heavily from the author's experience working with Wall Street customers in 
transaction processing, data warehousing, and data analysis applications. These case studies 
make many of the examples tangible. 

For the novice, the book gives sage advice on the performance issues of SQL-level logical 
database design that cuts across all systems. For me at least, the physical database design 
was particularly interesting, since the book presents the implications of design choices on the 
IBM, Oracle, and Microsoft systems. These systems are quite different internally, and the 
book's examples will surprise even the systems' implementers. It quantifies the relative 
performance of each design choice on each of the three systems. Not surprisingly, no system 
comes out "best" in all cases; each comes across as a strong contender with some blind spots. 
The book can be read as a tutorial (it has an associated Web site at 
http://www.mkp.com/dbtune/), or it can be used as a reference when specific issues arise. In 
either case, the writing is direct and very accessible. The chapters on transaction design and 
transaction chopping, the chapters on time series data, and the chapters on tuning will be of 
great interest to practitioners. 
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Preface 
Goal of Book 
Database tuning is the activity of making a database application run more quickly. "More 
quickly" usually means higher throughput though it may mean lower response time for some 
applications. 

To make a system run more quickly, the database tuner may have to change the way 
applications are constructed, the data structures and parameters of a database system, the 
configuration of the operating system, or the hardware. The best database tuners, therefore, 
can solve problems requiring broad knowledge of an application and of computer systems. 

This book aims to impart that knowledge to you. It has three operational goals.  

1. To help you tune your application on your database management system, 
operating system, and hardware. 

2. To give you performance criteria for choosing a database management system, 
including a set of experimental data and scripts that may help you test particular 
aspects of systems under consideration. 

3. To teach you the principles underlying any tuning puzzle. 

The best way to achieve the first goal is to read this book in concert with the tuning guide that 
comes with your particular system. These two will complement each other in several ways.  

 This book will give you tuning ideas that will port from one system to another and 
from one release to another. The tuning guide will mix such general techniques 
with system- and release-specific ones. 

 This book embodies the experience and wisdom of professional database tuners 
(including ourselves) and gives you ready-made experimental case study scripts. 
Thus, it will suggest more ideas and strategies than you'll find in your system's 
tuning guide. 

 This book has a wider scope than most tuning guides since it addresses such 
issues as the allocation of work between the application and the database server, 
the design of transactions, and the purchase of hardware. 

 
NOTE TO TEACHERS Although this book is aimed primarily at practicing professionals, you 
may find it useful in an advanced university database curriculum. Indeed, we and several of our 
colleagues have taught from this book's predecessor, Database Tuning: A Principled Approach 
(Prentice Hall, 1992). 

Suppose your students have learned the basics of the external views of database systems, 
query languages, object-oriented concepts, and conceptual design. You then have the 
following choice:  

 For those students who will design a database management system in the near 
future, the best approach is to teach them query processing, concurrency control, 
and recovery. That is the classical approach. 

 For those students who will primarily use or administer database management 
systems, the best approach is to teach them some elements of tuning. 
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The two approaches complement each other well if taught together. In the classical approach, 
for example, you might teach the implementation of B-trees. In the tuning approach, you might 
teach the relevant benefits of B-trees and hash structures as a function of query type. To give a 
second example, in the classical approach, you might teach locking algorithms for concurrency 
control. In the tuning approach, you might teach techniques for chopping up transactions to 
achieve higher concurrency without sacrificing serializability. 

We have tried to make the book self-contained inasmuch as we assume only a reading 
knowledge of the relational query language SQL, an advanced undergraduate-level course in 
data structures, and if possible, an undergraduate-level course in operating systems. The book 
discusses the principles of concurrency control, recovery, and query processing to the extent 
needed. 

 
If you are using this book as a primary text for a portion of your classes, we can provide you 
with lecture notes if you e-mail us at shasha@cs.nyu.edu or bonnet@diku.dk. 
 
What You Will Learn 
Workers in most enterprises have discovered that buying a database management system is 
usually a better idea than developing one from scratch. The old excuse—"The performance of 
a commercial system will not be good enough for my application"—has given way to the new 
realization that the amenities offered by database management systems (especially, the 
standard interface, tools, transaction facilities, and data structure independence) are worth the 
price. That said, relational database systems often fail to meet expressability or performance 
requirements for some data-intensive applications (e.g., search engines, circuit design, 
financial time series analysis, and data mining). Applications that end up with a relational 
database system often have the following properties: large data, frequent updates by 
concurrent applications, and the need for fault tolerance. 

The exceptional applications cited here escape because they are characterized by infrequent 
bulk updates and (often) loose fault tolerance concerns. Further, the SQL data model treats 
their primary concerns as afterthoughts. 

But many notable applications fall within the relational purview: relational systems capture 
aggregates well, so they are taking over the data warehouse market from some of the 
specialized vendors. Further, they have extended their transactional models to support e-
commerce. 

Because relational systems are such an important part of the database world, this book 
concentrates on the major ones: DB2, SQL Server, Oracle, Sybase, and so on. On the other 
hand, the book also explores the virtues of specialized systems optimized for ordered queries 
(Fame, KDB) or main memory (TimesTen). 

You will find that the same principles (combined with the experimental case study code) apply 
to many different products. For this reason, examples using one kind of system will apply to 
many. 

After discussing principles common to all applications and to most data base systems, we 
proceed to discuss special tuning considerations having to do with Web support, data 
warehousing, heterogeneous systems, and financial time series. We don't discuss enterprise 
resource planning systems such as SAP explicitly, but since those are implemented on top of 
relational engines, the tuning principles we discuss apply to those engines. 
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How to Read This Book 
The tone of the book is informal, and we try to give you the reasoning behind every suggestion. 
Occasionally, you will see quantitative rules of thumb (backed by experiments) to guide you to 
rational decisions after qualitative reasoning reaches an impasse. We encourage you to rerun 
experiments to reach your own quantitative conclusions. 

 
The book's Web site at http://www.mkp.com/dbtune contains SQL scripts and programs to run 
the experiments on various database systems as well as scripts to generate data. The Web 
site also details our setup for each experiment and the results we have obtained. 

You will note that some of our experimental results are done on versions of DBMSs that are 
not the latest. This is unfortunately inevitable in a book but serves our pedagogical goal. That 
goal is not to imply any definitive conclusions about a database management system in all its 
versions, but to suggest which parameters are important to performance. We encourage you to 
use our experimental scripts to do your own experiments on whichever versions you are 
interested in. 
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Chapter 1: Basic Principles 
 
1.1 The Power of Principles 
Tuning rests on a foundation of informed common sense. This makes it both easy and hard. 

Tuning is easy because the tuner need not struggle through complicated formulas or theorems. 
Many academic and industrial researchers have tried to put tuning and query processing 
generally on a mathematical basis. The more complicated of these efforts have generally 
foundered because they rest on unrealizable assumptions. The simpler of these efforts offer 
useful qualitative and simple quantitative insights that we will exploit in the coming chapters. 

Tuning is difficult because the principles and knowledge underlying that common sense require 
a broad and deep understanding of the application, the database software, the operating 
system, and the physics of the hardware. Most tuning books offer practical rules of thumb but 
don't mention their limitations. 

 
For example, a book may tell you never to use aggregate functions (such as AVG) when 
transaction response time is critical. The underlying reason is that such functions must scan 
substantial amounts of data and therefore may block other queries. So the rule is generally true, 
but it may not hold if the average applies to a few tuples that have been selected by an index. 
The point of the example is that the tuner must understand the reason for the rule, namely, 
long transactions that access large portions of shared data may delay concurrent online 
transactions. The well-informed tuner will then take this rule for what it is: an example of a 
principle (don't scan large amounts of data in a highly concurrent environment) rather than a 
principle itself. 

This book expresses the philosophy that you can best apply a rule of thumb if you understand 
the principles. In fact, understanding the principles will lead you to invent new rules of thumb 
for the unique problems that your application presents. Let us start from the most basic 
principles— the ones from which all others derive. 

 
1.2 Five Basic Principles 
Five principles pervade performance considerations.  

1. Think globally; fix locally. 

2. Partitioning breaks bottlenecks. 

3. Start-up costs are high; running costs are low. 

4. Render unto server what is due unto server. 

5. Be prepared for trade-offs. 

We describe each principle and give examples of its application. Some of the examples will 
use terms that are defined in later chapters and in the glossary. 

1.2.1 Think Globally; Fix Locally 

Effective tuning requires a proper identification of the problem and a minimalist intervention. 
This entails measuring the right quantities and coming to the right conclusions. Doing this well 



Database Tuning  Chapter 1: Basic Principles 

-10- 

is challenging, as any medical professional can attest. We present here two examples that 
illustrate common pitfalls.  

 A common approach to global tuning is to look first at hardware statistics to 
determine processor utilization, input-output (I/O) activity, paging, and so on. The 
naive tuner might react to a high value in one of these measurements (e.g., high 
disk activity) by buying hardware to lower it (e.g., buy more disks). There are 
many cases, however, in which that would be inappropriate. For example, there 
may be high disk activity because some frequent query scans a table instead of 
using an index or because the log shares a disk with some frequently accessed 
data. Creating an index or moving data files among the different disks may be 
cheaper and more effective than buying extra hardware. 

 In one real case that we know of, there was high disk activity because the 
database administrator had failed to increase the size of the database buffer, thus 
forcing many unnecessary disk accesses. 

 Tuners frequently measure the time taken by a particular query. If this time is high, 
many tuners will try to reduce it. Such effort, however, will not pay off if the query 
is executed only seldom. For example, speeding up a query that takes up 1% of 
the running time by a factor of two will speed up the system by at most 0.5%. That 
said, if the query is critical somehow, then it may still be worthwhile. Thus, 
localizing the problem to one query and fixing that one should be the first thing to 
try. But make sure it is the important query. 

When fixing a problem, you must think globally as well. Developers may ask you to take their 
query and "find the indexes that will make it go fast." Often you will do far better by 
understanding the application goals because that may lead to a far simpler solution. In our 
experience, this means sitting with the designer and talking the whole thing through, a little like 
a therapist trying to solve the problem behind the problem. 

1.2.2 Partitioning Breaks Bottlenecks 
A slow system is rarely slow because all its components are saturated. Usually, one part of the 
system limits its overall performance. That part is called a bottleneck. 

A good way to think about bottlenecks is to picture a highway traffic jam. The traffic jam usually 
results from the fact that a large portion of the cars on the road must pass through a narrow 
passageway. Another possible reason is that the stream from one highway merges with the 
stream from another. In either case, the bottleneck is that portion of the road network having 
the greatest proportion of cars per lane. Clearing the bottleneck entails locating it and then 
adopting one of two strategies:  

1. Make the drivers drive faster through the section of the highway containing fewer 
lanes. 

2. Create more lanes to reduce the load per lane or encourage drivers to avoid rush 
hour. 

The first strategy corresponds to a local fix (e.g., the decision to add an index or to rewrite a 
query to make better use of existing indexes) and should be the first one you try. The second 
strategy corresponds to partitioning. 

 
Partitioning in database systems is a technique for reducing the load on a certain component of 
the system either by dividing the load over more resources or by spreading the load over time. 
Partitioning can break bottlenecks in many situations. Here are a few examples. The technical 
details will become clear later.  
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 A bank has N branches. Most clients access their account data from their home 
branch. If a centralized system becomes overloaded, a natural solution is to put 
the account data of clients with home branch i into subsystem i. This is a form of 
partitioning in space (of physical resources).  

 Lock contention problems usually involve very few resources. Often the free list 
(the list of unused database buffer pages) suffers contention before the data files. 
A solution is to divide such resources into pieces in order to reduce the concurrent 
contention on each lock. In the case of the free list, this would mean creating 
several free lists, each containing pointers to a portion of the free pages. A thread 
in need of a free page would lock and access a free list at random. This is a form 
of logical partitioning (of lockable resources). 

 A system with a few long transactions that access the same data as many short 
("online") transactions will perform badly because of lock contention and resource 
contention. Deadlock may force the long transactions to abort, and the long 
transactions may block the shorter ones. Further, the long transactions may use 
up large portions of the buffer pool, thereby slowing down the short transactions, 
even in the absence of lock contention. One possible solution is to perform the 
long transactions when there is little online transaction activity and to serialize 
those long transactions (if they are loads) so they don't interfere with one another 
(partitioning in time). A second is to allow the long transactions (if they are read-
only) to apply to out-of-date data (partitioning in space) on separate hardware. 

Mathematically, partitioning means dividing a set into mutually disjoint (nonintersecting) parts. 
These three examples (and the many others that will follow) illustrate partitioning either in 
space, in logical resource, or in time. Unfortunately, partitioning does not always improve 
performance. For example, partitioning the data by branches may entail additional 
communication expense for transactions that cross branches. 
So, partitioning—like most of tuning—must be done with care. Still, the main lesson of this 
section is simple: when you find a bottleneck, first try to speed up that component; if that 
doesn't work, then partition.  

1.2.3 Start-Up Costs Are High; Running Costs Are Low 

Most man-made objects devote a substantial portion of their resources to starting up. This is 
true of cars (the ignition system, emergency brakes), of certain kinds of light bulbs (whose 
lifetimes depend principally on the number of times they are turned on), and of database 
systems.  

 It is expensive to begin a read operation on a disk, but once the read begins, the 
disk can deliver data at high speed. Thus, reading a 64-kilobyte segment from a 
single disk track will probably be less than twice as expensive as reading 512 
bytes from that track. This suggests that frequently scanned tables should be laid 
out consecutively on disk. This also suggests that vertical partitioning may be a 
good strategy when important queries select few columns from tables containing 
hundreds of columns. 

 In a distributed system, the latency of sending a message across a network is 
very high compared with the incremental cost of sending more bytes in a single 
message. The net result is that sending a 1-kilobyte packet will be little more 
expensive than sending a 1-byte packet. This implies that it is good to send large 
chunks of data rather than small ones. 

 The cost of parsing, performing semantic analysis, and selecting access paths for 
even simple queries is significant (more than 10,000 instructions on most 
systems). This suggests that often executed queries should be compiled. 
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 Suppose that a program in a standard programming language such as C++, Java, 
Perl, COBOL, or PL/1 makes calls to a database system. In some systems (e.g., 
most relational ones), opening a connection and making a call incurs a significant 
expense. So, it is much better for the program to execute a single SELECT call 
and then to loop on the result than to make many calls to the database (each with 
its own SELECT) within a loop of the standard programming language. 
Alternatively, it is helpful to cache connections. 

These four examples illustrate different senses of start-up costs: obtaining the first byte of a 
read, sending the first byte of a message, preparing a query for execution, and economizing 
calls. Yet in every case, the lesson is the same: obtain the effect you want with the fewest 
possible start-ups.  

1.2.4 Render unto Server What Is Due unto Server 

Obtaining the best performance from a data-intensive system entails more than merely tuning 
the database management portion of that system. An important design question is the 
allocation of work between the database system (the server) and the application program (the 
client). Where a particular task should be allocated depends on three main factors.  

1. The relative computing resources of client and server: If the server is overloaded, 
then all else being equal, tasks should be off-loaded to the clients. For example, 
some applications will off-load compute-intensive jobs to client sites.  

2. Where the relevant information is located: Suppose some response should occur 
(e.g., writing to a screen) when some change to the database occurs (e.g., 
insertions to some database table). Then a well-designed system should use a 
trigger facility within the database system rather than poll from the application. A 
polling solution periodically queries the table to see whether it has changed. A 
trigger by contrast fires only when the change actually takes place, entailing much 
less overhead. 

3. Whether the database task interacts with the screen: If it does, then the part that 
accesses the screen should be done outside a transaction. The reason is that the 
screen interaction may take a long time (several seconds at least). If a transaction 
T includes the interval, then T would prevent other transactions from accessing 
the data that T holds. So, the transaction should be split into three steps:  

a. A short transaction retrieves the data. 
b. An interactive session occurs at the client side outside a 

transactional context (no locks held). 
c. A second short transaction installs the changes achieved during the 

interactive session. 
We will return to similar examples in the next chapter and in Appendix B when we discuss 
ways to chop up transactions without sacrificing isolation properties. 

1.2.5 Be Prepared for Trade-Offs 

Increasing the speed of an application often requires some combination of memory, disk, or 
computational resources. Such expenditures were implicit in our discussion so far. Now, let us 
make them explicit.  

 Adding random access memory allows a system to increase its buffer size. This 
reduces the number of disk accesses and therefore increases the system's speed. 
Of course, random access memory is not (yet) free. (Nor is it random: accessing 
memory sequentially is faster than accessing widely dispersed chunks.) 
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 Adding an index often makes a critical query run faster, but entails more disk 
storage and more space in random access memory. It also requires more 
processor time and more disk accesses for insertions and updates that do not use 
the index. 

 When you use temporal partitioning to separate long queries from online updates, 
you may discover that too little time is allocated for those long queries. In that 
case, you may decide to build a separate archival database to which you issue 
only long queries. This is a promising solution from the performance standpoint, 
but may entail the purchase and maintenance of a new computer system. 

A consultant for one relational vendor puts it crassly: "You want speed. How much are you 
willing to pay?" 

 
1.3 Basic Principles and Knowledge 
Database tuning is a knowledge-intensive discipline. The tuner must make judgments based 
on complex interactions among buffer pool sizes, data structures, lock contention, and 
application needs. That is why the coming chapters mix detailed discussions of single topics 
with scenarios that require you to consider many tuning factors as they apply to a given 
application environment. Here is a brief description of each chapter.  

 Chapter 2 discusses lower-level system facilities that underlie all database 
systems.  

o Principles of concurrency control and recovery that are important to 
the performance of a database system and tuning guidelines for 
these subcomponents. 

o Aspects of operating system configuration that are important to 
tuning and monitoring. 

o Hardware modifications that are most likely to improve the 
performance of your system. 

 Chapter 3 discusses the selection of indexes.  

o Query types that are most relevant to index selection. 
o The data structures that most database systems offer (B-trees, hash, 

and heap structures) and some useful data structures that 
applications may decide to implement on their own. 

o Sparse versus dense indexes. 
o Clustering (primary) versus nonclustering (secondary) indexes. 
o Multicolumn (composite) indexes. 
o Distribution considerations. 
o Maintenance tips. 

 Chapter 4 studies those factors of importance to relational systems.  

o Design of table schema and the costs and benefits of normalization, 
vertical partitioning, and aggregate materialization.  

o Clustering tables and the relative benefits of clustering versus 
denormalization. 

o Record layout and the choice of data types. 
o Query reformulation, including methods for minimizing the use of 

DISTINCT and for eliminating expensive nested queries. 
o Stored procedures. 
o Triggers. 

 Chapter 5 considers the tuning problem for the interface between the database 
server and the outside world.  
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o Tuning the application interface. 
o Bulk loading data. 
o Tuning the access to multiple database systems. 

 Chapter 6 presents case studies mainly drawn from Shasha's work on Wall Street. 

 Chapter 7, written by veteran DBA Alberto Lerner, describes strategies and tools 
for performance monitoring. 

 Chapter 8 presents tuning techniques and capacity planning for e-commerce 
applications. 

 Chapter 9 discusses the uses and abuses of data warehouses from Joe Celko's 
experience. 

 Chapter 10 presents the technology underlying tuning techniques for data 
warehouses. 

 The appendices discuss specialized performance hints for real-time, financial, and 
online transaction processing systems.  

o Description of considerations concerning priority, buffer allocation, 
and related matters for real-time database applications. 

o Systematic technique to improve performance by chopping up 
transactions without sacrificing isolation properties. 

o Usage and support for time series, especially in finance. 
o Hints on reading query plans. 
o Examples of configuration parameters. 

 A glossary and an index will attempt to guide you through the fog of tuning 
terminology. 
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Chapter 2: Tuning the Guts 
 
2.1 Goal of Chapter 
This chapter discusses tuning considerations having to do with the underlying components 
common to most database management systems. Each component carries its own tuning 
considerations.  

 Concurrency control—how to minimize lock contention. 

 Recovery and logging—how to minimize logging and dumping overhead. 

 Operating system—how to optimize buffer size, process scheduling, and so on. 

 Hardware—how to allocate disks, random access memory, and processors. 

 
Figure 2.1 shows the common underlying components of all database systems. 
 

 
Figure 2.1: Underlying components of a database system.  

WARNING ABOUT THIS CHAPTER This is the most difficult chapter of the book because we 
have written it under the assumption that you have only a passing understanding of concurrent 
systems. We want to lead you to a level where you can make subtle trade-offs between speed 
and concurrent correctness, between speed and fault tolerance, and between speed and 
hardware costs. 

So, it may be tough going in spots. If you have trouble, take a break and read another chapter. 

 
2.2 Locking and Concurrency Control 
 
Database applications divide their work into transactions. When a transaction executes, it 
accesses the database and performs some local computation. The strongest assumption that 
an application programmer can make is that each transaction will appear to execute in 
isolation—without concurrent activity. Because this notion of isolation suggests indivisibility, 
transactional guarantees are sometimes called atomicity guarantees.[1] Database researchers, 
you see, didn't bother to let 20th-century physics interfere with their jargon. 

The sequence of transactions within an application program, taken as a whole, enjoys no such 
guarantee, however. Between, say, the first two transactions executed by an application 
program, other application programs may have executed transactions that modified data items 
accessed by one or both of these first two transactions. For this reason, the length of a 
transaction can have important correctness implications. 
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EXAMPLE: THE LENGTH OF A TRANSACTION 

Suppose that an application program processes a purchase by adding the value of the item to 
inventory and subtracting the money paid from cash. The application specification requires that 
cash never be made negative, so the transaction will roll back (undo its effects) if subtracting 
the money from cash will cause the cash balance to become negative. 

To reduce the time locks are held, the application designers divide these two steps into two 
transactions.  

1. The first transaction checks to see whether there is enough cash to pay for the 
item. If so, the first transaction adds the value of the item to inventory. Otherwise, 
abort the purchase application. 

2. The second transaction subtracts the value of the item from cash. 

They find that the cash field occasionally becomes negative. Can you see what might have 
happened? 

Consider the following scenario. There is $100 in cash available when the first application 
program begins to execute. An item to be purchased costs $75. So, the first transaction 
commits. Then some other execution of this application program causes $50 to be removed 
from cash. When the first execution of the program commits its second transaction, cash will 
be in deficit by $25. 

So, dividing the application into two transactions can result in an inconsistent database state. 
Once you see it, the problem is obvious though no amount of sequential testing would have 
revealed it. Most concurrent testing would not have revealed it either because the problem 
occurs rarely. 

So, cutting up transactions may jeopardize correctness even while it improves performance. 
This tension between performance and correctness extends throughout the space of tuning 
options for concurrency control. You can make the following choices:  

 The number of locks each transaction obtains (fewer tends to be better for 
performance, all else being equal). 

 The kinds of locks those are (read locks are better for performance). 

 The length of time that the transaction holds them (shorter is better for 
performance). 

Because a rational setting of these tuning options depends on an understanding of correctness 
goals, the next section describes those goals and the general strategies employed by database 
systems to achieve them. 

Having done that, we will be in a position to suggest ways of rationally trading performance for 
correctness. 

2.2.1 Correctness Considerations 
 
Two transactions are said to be concurrent if their executions overlap in time. That is, there is 
some point in time in which both transactions have begun, and neither has completed. Notice 
that two transactions can be concurrent even on a uniprocessor. For example, transaction T 
may begin, then may suspend after issuing its first disk access instruction, and then transaction 
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T′ T′ may begin. In such a case, T and T′ would be concurrent. Figure 2.2 shows an example 
with four transactions. 
 

 
Figure 2.2: Example of concurrent transactions. T1 is concurrent with T2 and T3. T2 is 
concurrent with T1, T3, and T4.  
 
Concurrency control is, as the name suggests, the activity of controlling the interaction among 
concurrent transactions. Concurrency control has a simple correctness goal: make it appear as 
if each transaction executes in isolation from all others. That is, the execution of the transaction 
collection must be equivalent to one in which the transactions execute one at a time. Two 
executions are equivalent if one is a rearrangement of the other; and in the rearrangement, 
each read returns the same value, and each write stores the same value as in the original. 

Notice that this correctness criterion says nothing about what transactions do. Concurrency 
control algorithms leave that up to the application programmer. That is, the application 
programmer must guarantee that the database will behave appropriately provided each 
transaction appears to execute in isolation. What is appropriate depends entirely on the 
application, so is outside the province of the concurrency control subsystem. 

Concurrent correctness is usually achieved through mutual exclusion. Operating systems allow 
processes to use semaphores for this purpose. Using a semaphore S, a thread (or process) 
can access a resource R with the assurance that no other thread (or process) will access R 
concurrently. 

A naive concurrency control mechanism for a database management system would be to have 
a single semaphore S. Every transaction would acquire S before accessing the database. 
Because only one transaction can hold S at any one time, only one transaction can access the 
database at that time. Such a mechanism would be correct but would perform badly at least for 
applications that access slower devices such as disks. 

 
EXAMPLE: SEMAPHORE METHOD 

Suppose that Bob and Alice stepped up to different automatic teller machines (ATMs) serving 
the same bank at about the same time. Suppose further that they both wanted to make 
deposits but into different accounts. Using the semaphore solution, Alice might hold the 
semaphore during her transaction during the several seconds that the database is updated and 
an envelope is fed into the ATM. This would prevent Bob (and any other person) from 
performing a bank transaction during those seconds. Modern banking would be completely 
infeasible. 
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Surprisingly, however, careful design could make the semaphore solution feasible. It all 
depends on when you consider the transaction to begin and end and on how big the database 
is relative to high-speed memory. Suppose the transaction begins after the user has made all 
decisions and ends once those decisions are recorded in the database, but before physical 
cash has moved. Suppose further that the database fits in memory so the database update 
takes well under a millisecond. In such a case, the semaphore solution works nicely and is 
used in some main memory databases. 

An overreaction to the Bob and Alice example would be to do away with the semaphore and to 
declare that no concurrency control at all is necessary. That can produce serious problems, 
however. 

EXAMPLE: NO CONCURRENCY CONTROL 

Imagine that Bob and Alice have decided to share an account. Suppose that Bob goes to a 
branch on the east end of town to deposit $100 in cash and Alice goes to a branch on the west 
end of town to deposit $500 in cash. Once again, they reach the automatic teller machines at 
about the same time. Before they begin, their account has a balance of 0. Here is the 
progression of events in time.  

1. Bob selects the deposit option. 

2. Alice selects the deposit option. 

3. Alice puts the envelope with her money into the machine at her branch. 

4. Bob does the same at his branch. 

5. Alice's transaction begins and reads the current balance of $0. 

6. Bob's transaction begins and reads the current balance of $0. 

7. Alice's transaction writes a new balance of $500, then ends. 

8. Bob's transaction writes a new balance of $100, then ends. 

Naturally, Bob and Alice would be dismayed at this result. They expected to have $600 in their 
bank balance but have only $100 because Bob's transaction read the same original balance as 
Alice's. The bank might find some excuse ("excess static electricity" is one favorite), but the 
problem would be due to a lack of concurrency control. 

So, semaphores on the entire database can give ruinous performance, and a complete lack of 
control gives manifestly incorrect results. Locking is a good compromise. There are two kinds 
of locks: write (also known as exclusive) locks and read (also known as shared) locks. 
Write locks are like semaphores in that they give the right of exclusive access, except that they 
apply to only a portion of a database, for example, a page. Any such lockable portion is 
variously referred to as a data item, an item, or a granule. 
 
Read locks allow shared access. Thus, many transactions may hold a read lock on a data item 
x at the same time, but only one transaction may hold a write lock on x at any given time. 
Usually, database systems acquire and release locks implicitly using an algorithm known as 
Two-Phase Locking, invented at IBM Almaden research by K. P. Eswaran, J. Gray, R. Lorie, 
and I. Traiger in 1976. That algorithm follows two rules.  

1. A transaction must hold a lock on x before accessing x. (That lock should be a 
write lock if the transaction writes x and a read lock otherwise.) 

2. A transaction must not acquire a lock on any item y after releasing a lock on any 
item x. (In practice, locks are released when a transaction ends.) 
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The second rule may seem strange. After all, why should releasing a lock on, say, Ted's 
account prevent a transaction from later obtaining a lock on Carol's account? Consider the 
following example. 

 
EXAMPLE: THE SECOND RULE AND THE PERILS OF RELEASING SHARED LOCKS 

Suppose Figure 2.3 shows the original database state. Suppose further that there are two 
transactions. One transfers $1000 from Ted to Carol, and the other computes the sum of all 
deposits in the bank. Here is what happens.  

1. The sum-of-deposits transaction obtains a read lock on Ted's account, reads the 
balance of $4000, then releases the lock. 

2. The transfer transaction obtains a lock on Ted's account, subtracts $1000, then 
obtains a lock on Carol's account and writes, establishing a balance of $1000 in 
her account. 

3. The sum-of-deposits transaction obtains a read lock on Bob and Alice's account, 
reads the balance of $100, then releases the lock. Then that transaction obtains a 
read lock on Carol's account and reads the balance of $1000 (resulting from the 
transfer). 

 
Figure 2.3: Original database state.  

So, the sum-of-deposits transaction overestimates the amount of money that is deposited. 

The previous example teaches two lessons.  

 The two-phase condition should apply to reads as well as writes. 

 Many systems (e.g., SQL Server, Sybase, etc.) give a default behavior in which 
write locks are held until the transaction completes, but read locks are released as 
soon as the data item is read (degree 2 isolation). This example shows that this 
can lead to faulty behavior. This means that if you want concurrent correctness, 
you must sometimes request nondefault behavior.  

2.2.2 Lock Tuning 

Lock tuning should proceed along several fronts.  

1. Use special system facilities for long reads. 

2. Eliminate locking when it is unnecessary. 

3. Take advantage of transactional context to chop transactions into small pieces. 

4. Weaken isolation guarantees when the application allows it. 

5. Select the appropriate granularity of locking. 
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6. Change your data description data during quiet periods only. (Data Definition 
Language statements are considered harmful.) 

7. Think about partitioning. 

8. Circumvent hot spots. 

9. Tune the deadlock interval. 

You can apply each tuning suggestion independently of the others, but you must check that the 
appropriate isolation guarantees hold when you are done. The first three suggestions require 
special care because they may jeopardize isolation guarantees if applied incorrectly. 

For example, the first one offers full isolation (obviously) provided a transaction executes alone. 
It will give no isolation guarantee if there can be arbitrary concurrent transactions. 

Use facilities for long reads 
 
Some relational systems, such as Oracle, provide a facility whereby read-only queries hold no 
locks yet appear to execute serializably. The method they use is to re-create an old version of 
any data item that is changed after the read query begins. This gives the effect that a read-only 
transaction R reads the database as the database appeared when R began as illustrated in 
Figure 2.4. 
 

 
 
Figure 2.4: Multiversion read consistency. In this example, three transactions T1, T2, and T3 
access three data items X, Y, and Z. T1 reads the values of X, Y, and Z (T1:R(X), R(Y), R(Z)). T2 
sets the value of Y to 1 (T2:W(Y: = 1)). T3 sets the value of Z to 2 and the value of X to 3 (T3:W(Z : 
= 2), W(X: = 3)). Initially X, Y, and Z are equal to 0. The diagram illustrates the fact that, using 
multiversion read consistency, T1 returns the values that were set when it started.  

Using this facility has the following implications:  

 Read-only queries suffer no locking overhead. 

 Read-only queries can execute in parallel and on the same data as short update 
transactions without causing blocking or deadlocks. 

 There is some time and space overhead because the system must write and hold 
old versions of data that have been modified. The only data that will be saved, 
however, is that which is updated while the read-only query runs. Oracle snapshot 
isolation avoids this overhead by leveraging the before-image of modified data 
kept in the rollback segments. 
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Although this facility is very useful, please keep two caveats in mind.  

1. When extended to read/write transactions, this method (then called snapshot 
isolation) does not guarantee correctness. To understand why, consider a pair of 
transactions  

 T1 : x : = y  

 T2 : y : = x  

Suppose that x has the initial value 3 and y has the initial value 17. In any serial execution 
in which T1 precedes T2, both x and y have the value 17 at the end. In any serial execution 
in which T2 precedes T1, both x and y have the value 3 at the end. But if we use snapshot 
isolation and T1 and T2 begin at the same time, then T1 will read the value 17 from y 
without obtaining a read lock on y. Similarly, T2 will read the value 3 from x without 
obtaining a read lock on x. T1 will then write 17 into x. T2 will write 3 into y. No serial 
execution would do this. 
 
What this example (and many similar examples) reveals is that database systems will, in 
the name of performance, allow bad things to happen. It is up to application programmers 
and database administrators to choose these performance optimizations with these risks 
in mind. A default recommendation is to use snapshot isolation for read-only transactions, 
but to ensure that read operations hold locks for transactions that perform updates. 
 

2. In some cases, the space for the saved data may be too small. You may then face 
an unpleasant surprise in the form of a return code such as "snapshot too old." 
When automatic undo space management is activated, Oracle 9i allows you to 
configure how long before-images are kept for consistent read purpose. If this 
parameter is not set properly, there is a risk of "snapshot too old" failure. 

Eliminate unnecessary locking 
Locking is unnecessary in two cases.  

1. When only one transaction runs at a time, for example, when loading the 
database 

2. When all transactions are read-only, for example, when doing decision support 
queries on archival databases 

In these cases, users should take advantage of options to reduce overhead by suppressing the 
acquisition of locks. (The overhead of lock acquisition consists of memory consumption for lock 
control blocks and processor time to process lock requests.) This may not provide an 
enormous performance gain, but the gain it does provide should be exploited. 

Make your transaction short 
The correctness guarantee that the concurrency control subsystem offers is given in units of 
transactions. At the highest degree of isolation, each transaction is guaranteed to appear as if 
it executed without being disturbed by concurrent transactions. 

An important question is how long should a transaction be? This is important because 
transaction length has two effects on performance.  

 The more locks a transaction requests, the more likely it is that it will have to wait 
for some other transaction to release a lock. 
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 The longer a transaction T executes, the more time another transaction will have 
to wait if it is blocked by T. 

Thus, in situations in which blocking can occur (i.e., when there are concurrent transactions 
some of which update data), short transactions are better than long ones. Short transactions 
are generally better for logging reasons as well, as we will explain in the recovery section. 
Sometimes, when you can characterize all the transactions that will occur during some time 
interval, you can "chop" transactions into shorter ones without losing isolation guarantees. 
Appendix B presents a systematic approach to achieve this goal. Here are some motivating 
examples along with some intuitive conclusions. 

 
EXAMPLE: UPDATE BLOB WITH CREDIT CHECKS 

A certain bank allows depositors to take out up to $1000 a day in cash. At night, one 
transaction (the "update blob" transaction) updates the balance of every accessed account and 
then the appropriate branch balance. Further, throughout the night, there are occasional credit 
checks (read-only transactions) on individual depositors that touch only the depositor account 
(not the branch). The credit checks arrive at random times, so are not required to reflect the 
day's updates. The credit checks have extremely variable response times, depending on the 
progress of the updating transaction. What should the application designers do? 

Solution 1: Divide the update blob transaction into many small update transactions, each of 
which updates one depositor's account and the appropriate branch balance. These can 
execute in parallel. The effect on the accounts will be the same because there will be no other 
updates at night. The credit check will still reflect the value of the account either before the 
day's update or after it. 
 
Solution 2: You may have observed that the update transactions may now interfere with one 
another when they access the branch balances. If there are no other transactions, then those 
update transactions can be further subdivided into an update depositor account transaction 
and an update branch balance transaction. 

Intuitively, each credit check acts independently in the previous example. Therefore, breaking 
up the update transaction causes no problem. Moreover, no transaction depends on the 
consistency between the account balance value and the branch balance, permitting the further 
subdivision cited in solution 2. Imagine now a variation of this example. 

 
EXAMPLE: UPDATES AND BALANCES 

Instead of including all updates to all accounts in one transaction, the application designers 
break them up into minitransactions, each of which updates a single depositor's account and 
the branch balance of the depositor's branch. The designers add an additional possible 
concurrent transaction that sums the account balances and the branch balances to see if they 
are equal. What should be done in this case? 

Solution: The balance transaction can be broken up into several transactions. Each one would 
read the accounts in a single branch and the corresponding branch balance. The updates to 
the account and to the branch balance may no longer be subdivided into two transactions, 
however. The reason is that the balance transaction may see the result of an update to a 
depositor account but not see the compensating update to the branch balance. 
 
These examples teach a simple lesson: whether or not a transaction T may be broken up into 
smaller transactions depends on what is concurrent with T.  
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Informally, there are two questions to ask.  

1. Will the transactions that are concurrent with T cause T to produce an inconsistent 
state or to observe an inconsistent value if T is broken up? 

2. That's what happened when the purchase transaction was broken up into two 
transactions in the example entitled "The Length of a Transaction" on page 11. 
Notice, however, that the purchase transaction in that example could have been 
broken up if it had been reorganized slightly. Suppose the purchase transaction 
first subtracted money from cash (rolling back if the subtraction made the balance 
negative) and then added the value of the item to inventory. Those two steps 
could become two transactions given the concurrent activity present in that 
example. The subtraction step can roll back the entire transaction before any 
other changes have been made to the database. Thus, rearranging a program to 
place the update that causes a rollback first may make a chopping possible. 

3. Will the transactions that are concurrent with T be made inconsistent if T is broken 
up? 

That's what would happen if the balance transaction ran concurrently with the finest 
granularity of update transactions, that is, where each depositor-branch update 
transaction was divided into two transactions, one for the depositor and one for the branch 
balance. 
 
Here is a rule of thumb that often helps when chopping transactions (it is a special case of the 
method to be presented in Appendix B): 
Suppose transaction T accesses data X and Y, but any other transaction T′ accesses at most 
one of X or Y and nothing else. Then T can be divided into two transactions, one of which 
accesses X and the other of which accesses Y.  

This rule of thumb led us to break up the balance transaction into several transactions, each of 
which operates on the accounts of a single branch. This was possible because all the small 
update transactions worked on a depositor account and branch balance of the same branch. 
CAVEAT Transaction chopping as advocated here and in Appendix B works correctly if 
properly applied. The important caution to keep in mind is that adding a new transaction to a 
set of existing transactions may invalidate all previously established choppings. 

Weaken isolation guarantees carefully 
Quite often, weakened isolation guarantees are sufficient. SQL offers the following options:  

1. Degree 0: Reads may access dirty data, that is, data written by uncommitted 
transactions. If an uncommitted transaction aborts, then the read may have 
returned a value that was never installed in the database. Further, different reads 
by a single transaction to the same data will not be repeatable, that is, they may 
return different values. Writes may overwrite the dirty data of other transactions. A 
transaction holds a write lock on x while writing x, then releases the lock 
immediately thereafter. 

2. Degree 1—read uncommitted: Reads may read dirty data and will not be 
repeatable. Writes may not overwrite other transactions' dirty data. 

3. Degree 2—read committed: Reads may access only committed data, but reads 
are still not repeatable because an access to a data item x at time T2 may read 
from a different committed transaction than the earlier access to x at T1. In a 
classical locking implementation of degree 2 isolation, a transaction acquires and 
releases write locks according to two-phase locking, but releases the read lock 
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immediately after reading it. Relational systems offer a slightly stronger guarantee 
known as cursor stability : during the time a transaction holds a cursor (a pointer 
into an array of rows returned by a query), it holds its read locks. This is normally 
the time that it takes a single SQL statement to execute. 

4. Degree 3—serializable: Reads may access only committed data, and reads are 
repeatable. Writes may not overwrite other transactions' dirty data. The execution 
is equivalent to one in which each committed transaction executes in isolation, 
one at a time. Note that ANSI SQL makes a distinction between repeatable read 
and serializable isolation levels. Using repeatable read, a transaction T1 can 
insert or delete tuples in a relation that is scanned by transaction T2, but T2 may 
see only some of those changes, and as a result the execution is not serializable. 
The serializable level ensures that transactions appear to execute in isolation and 
is the only truly safe condition. 

Figures 2.5, 2.6, and 2.7 illustrate the risks of a weak isolation level and the value of 
serializability. The experiment simply consists of a summation query repeatedly executed 
together with a fixed number of money transfer transactions. Each money transfer transaction 
subtracts (debits) a fixed amount from an account and adds (credits) the same amount to 
another account. This way, the sum of all account balances remains constant. The number of 
threads that execute these update transactions is our parameter. We use row locking 
throughout the experiment. The serializable isolation level guarantees that the sum of the 
account balances is computed in isolation from the update transactions. By contrast, the read 
committed isolation allows the sum of the account balances to be computed after a debit 
operation has taken place but before the corresponding credit operation is performed. The 
bottom line is that applications that use any isolation level less strong than serializability can 
return incorrect answers. 

 
Figure 2.5: Value of serializability (DB2 UDB). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). The read committed 
isolation level does not guarantee that the summation query returns correct answers. The 
serializable isolation level guarantees correct answers at the cost of decreased throughput. 
These graphs were obtained using DB2 UDB V7.1 on Windows 2000.  
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Figure 2.6: Value of serializability (SQL Server). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). Using the read committed 
isolation level, the ratio of correct answers is low. In comparison, the serializable isolation level 
always returns a correct answer. The high throughput achieved with read committed thus comes 
at the cost of incorrect answers. These graphs were obtained using SQL Server 7 on Windows 
2000.  
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Figure 2.7: Value of serializability (Oracle). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). In this case, Oracle's 
snapshot isolation protocol guarantees that the correct answer to the summation query is 
returned regardless of the isolation level because each update follows a read on the same data 
item. Snapshot isolation would have violated correctness had the writes been "blind." Snapshot 
isolation is further described in the next section on facilities for long reads. These graphs were 
obtained using Oracle 8i EE on Windows 2000.  

Some transactions do not require exact answers and, hence, do not require degree 3 isolation. 
For example, consider a statistical study transaction that counts the number of depositor 
account balances that are over $1000. Because an exact answer is not required, such a 
transaction need not keep read locks. Degree 2 or even degree 1 isolation may be enough. 
The lesson is this. Begin with the highest degree of isolation (serializable in relational systems). 
If a given transaction (usually a long one) either suffers extensive deadlocks or causes 
significant blocking, consider weakening the degree of isolation, but do so with the awareness 
that the answers may be off slightly.  

Another situation in which correctness guarantees may be sacrificed occurs when a transaction 
includes human interaction and the transaction holds hot data. 

 
EXAMPLE: AIRLINE RESERVATIONS 

A reservation involves three steps.  

1. Retrieve the list of seats available. 

2. Determine which seat the customer wants. 

3. Secure that seat. 
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If all this were encapsulated in a single transaction, then that transaction would hold the lock on 
the list of seats in a given plane while a reservations agent talks to a customer. At busy times, 
many other customers and agents might be made to wait. 

To avoid this intolerable situation, airline reservation systems break up the act of booking a 
seat into two transactions and a nontransactional interlude. The first transaction reads the list 
of seats available. Then there is human interaction between the reservation agent and the 
customer. The second transaction secures a seat that was chosen by a customer. Because of 
concurrent activity, the customer may be told during step 2 that seat S is available and then be 
told after step 3 that seat S could not be secured. This happens rarely enough to be 
considered acceptable. Concurrency control provides the lesser guarantee that no two 
passengers will secure the same seat. 

 

 

It turns out that many airlines go even farther, allocating different seats to different cities in 
order to reduce contention. So, if you want a window seat in your trip from New York to San 
Francisco and the New York office has none, consider calling the San Francisco office. 

Control the granularity of locking 
Most modern database management systems offer different "granularities" of locks. The default 
is normally record-level locking, also called row-level locking. A page-level lock will prevent 
concurrent transactions from accessing (if the page-level lock is a write lock) or modifying (if 
the page-level lock is a read lock) all records on that page. A table-level lock will prevent 
concurrent transactions from accessing or modifying (depending on the kind of lock) all pages 
that are part of that table and, by extension, all the records on those pages. Record-level 
locking is said to be finer grained than page-level locking, which, in turn, is finer grained than 
table-level locking. 

If you were to ask the average application programmer on the street whether, say, record-level 
locking was better than page-level locking, he or she would probably say, "Yes, of course. 
Record-level locking will permit two different transactions to access different records on the 
same page. It must be better." 

By and large this response is correct for online transaction environments where each 
transaction accesses only a few records spread on different pages. 
Surprisingly, for most modern systems, the locking overhead is low even if many records are 
locked as the insert transaction in Figure 2.8 shows. 
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Figure 2.8: Locking overhead. We use two transactions to evaluate how locking overhead 
affects performance: an update transaction updates 100,000 rows in the accounts table while an 
insert transaction inserts 100,000 rows in this table. The transaction commits only after all 
updates or inserts have been performed. The intrinsic performance costs of row locking and table 
locking are negligible because recovery overhead (the logging of updates) is so much higher than 
locking overhead. The exception is DB2 on updates because that system does "logical logging" 
(instead of logging images of changed data, it logs the operation that caused the change). In that 
case, the recovery overhead is low and the locking overhead is perceptible. This graph was 
obtained using DB2 UDB V7.1, SQL Server 7, and Oracle 8i EE on Windows 2000.  
There are three reasons to ask for table locks. First, table locks can be used to avoid blocking 
long transactions. Figures 2.9, 2.10, and 2.11 illustrate the interaction of a long transaction (a 
summation query) with multiple short transactions (debit/credit transfers). Second, they can be 
used to avoid deadlocks. Finally, they reduce locking overhead in the case that there is no 
concurrency. 

 
Figure 2.9: Fine-grained locking (SQL Server). A long transaction (a summation query) runs 
concurrently with multiple short transactions (debit/credit transfers). The serializable isolation 
level is used to guarantee that the summation query returns correct answers. In order to 
guarantee a serializable isolation level, row locking forces the use of key range locks (clustered 
indexes are sparse in SQL Server, thus key range locks involve multiple rows; see Chapter 3 for 
a description of sparse indexes). In this case, key range locks do not increase concurrency 
significantly compared to table locks while they force the execution of summation queries to be 
stopped and resumed. As a result, with this workload table locking performs better. Note that in 
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SQL Server the granularity of locking is defined by configuring the table; that is, all transactions 
accessing a table use the same lock granularity. This graph was obtained using SQL Server 7 on 
Windows 2000.  

 
Figure 2.10: Fine-grained locking (DB2). A long transaction (a summation query) with multiple 
short transactions (debit/credit transfers). Row locking performs slightly better than table locking. 
Note that by default DB2 automatically selects the granularity of locking depending on the access 
method selected by the optimizer. For instance, when a table scan is performed (no index is used) 
in serializable mode, then a table lock is acquired. Here an index scan is performed and row locks 
are acquired unless table locking is forced using the LOCK TABLE command. This graph was 
obtained using DB2 UDB V7.1 on Windows 2000.  

 
Figure 2.11: Fine-grained locking (Oracle). A long transaction (a summation query) with 
multiple short transactions (debit/credit transfers). Because snapshot isolation is used the 
summation query does not conflict with the debit/credit transfers. Table locking forces debit/credit 
transactions to wait, which is rare in the case of row locking. As a result, the throughput is 
significantly lower with table locking. This graph was obtained using Oracle 8i EE on Windows 
2000.  

SQL Server 7 and DB2 UDB V7.1 provide a lock escalation mechanism that automatically 
upgrades row-level locks into a single table-level lock when the number of row-level locks 
reaches a predefined threshold. This mechanism can create a deadlock if a long transaction 
tries to upgrade its row-level locks into a table-level lock while concurrent update or even read 
transactions are waiting for locks on rows of that table. This is why Oracle does not support 
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lock escalation. Explicit table-level locking by the user will prevent such deadlocks at the cost 
of blocking row locking transactions. 
The conclusion is simple. Long transactions should use table locks mostly to avoid deadlocks, 
and short transactions should use record locks to enhance concurrency. Transaction length 
here is relative to the size of the table at hand: a long transaction is one that accesses nearly 
all the pages of the table. 

There are basically three tuning knobs that the user can manipulate to control granule size.  

1. Explicit control of the granularity  

 Within a transaction: A statement within a transaction explicitly 
requests a table-level lock in shared or exclusive mode (Oracle, DB2). 

 Across transactions: A command defines the lock granularity for a 
table or a group of tables (SQL Server). All transactions that access these tables use 
the same lock granularity. 

2. Setting the escalation point: Systems that support lock escalation acquire the 
default (finest) granularity lock until the number of acquired locks exceeds some threshold 
set by the database administrator. At that point, the next coarser granularity lock will be 
acquired. The general rule of thumb is to set the threshold high enough so that in an 
online environment of relatively short transactions, escalation will never take place. 

3. Size of the lock table: If the administrator selects a small lock table size, the 
system will be forced to escalate the lock granularity even if all transactions are short. 

Data definition language (DDL) statements are considered 
harmful 
Data definition data (also known as the system catalog or metadata) is information about table 
names, column widths, and so on. DDL is the language used to access and manipulate that 
table data. Catalog data must be accessed by every transaction that performs a compilation, 
adds or removes a table, adds or removes an index, or changes an attribute description. As a 
result, the catalog can easily become a hot spot and therefore a bottleneck. A general 
recommendation therefore is to avoid updates to the system catalog during heavy system 
activity, especially if you are using dynamic SQL (which must read the catalog when it is 
parsed). 

Think about partitioning 
One of the principles from Chapter 1 held that partitioning breaks bottlenecks. Overcoming 
concurrent contention requires frequent application of this principle. 

 

EXAMPLE: INSERTION TO HISTORY 

If all insertions to a data collection go to the last page of the file containing that collection, then 
the last page may, in some cases, be a concurrency control bottleneck. This is often the case 
for history files and security files. A good strategy is to partition insertions to the file across 
different pages and possibly different disks. 

This strategy requires some criteria for distributing the inserts. Here are some possibilities.  

1. Set up many insertion points and insert into them randomly. This will work 
provided the file is essentially write-only (like a history file) or whose only readers are 
scans. 
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2. Set up a clustering index based on some attribute that is not correlated with the 
time of insertion. (If the attribute's values are correlated with the time of insertion, then use 
a hash data structure as the clustering index. If you have only a B-tree available, then 
hash the time of insertion and use that as the clustering key.) In that way, different 
inserted records will likely be put into different pages. 
You might wonder how much partitioning to specify. A good rule of thumb is to specify at least 
n/4 insertion points, where n is the maximum number of concurrent transactions writing to the 
potential bottleneck. 
Figure 2.12 and Figure 2.13 illustrate the impact of the number of insertion points on 
performance. An insertion point is a position where a tuple may be inserted in a table. In the 
figures, "sequential" denotes the case where a clustered index is defined on an attribute whose 
value increases (or even decreases) with time. "Nonsequential" denotes the case where a 
clustered index is defined on an attribute whose values are independent of time. Hashing 
denotes the case where a composite clustered index is defined on a key composed of an 
integer generated in the range of 1 … k (k should be a prime number) and of the attribute on 
which the input data is sorted. 

 
Figure 2.12: Multiple insertion points and page locking. There is contention when data is 
inserted in a heap or when there is a sequential key and the index is a B-tree: all insertions are 
performed on the same page. Use multiple insertion points to solve this problem. This graph was 
obtained using SQL Server 7 on Windows 2000.  

 
Figure 2.13: Multiple insertion points and row locking. Row locking avoids contention 
between successive insertions. The number of insertion points thus becomes irrelevant: it is 
equal to the number of inserted rows. This graph was obtained using SQL Server 7 on Windows 
2000.  

With page locking, the number of insertion points makes a difference: sequential keys cause all 
insertions to target the same page; as a result, contention is maximal. Row locking ensures 
that a new insertion point is assigned for each insert regardless of the method of insertion and 
hence eliminates the problem. 
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EXAMPLE: FREE LISTS 
Free lists are data structures that govern the allocation and deallocation of real memory pages 
in buffers. Locks on free lists are held only as long as the allocation or deallocation takes place, 
but free lists can still become bottlenecks. 

For example, in Oracle 8i, the number of free lists can be specified when creating a table (by 
default one free list is created). The rule of thumb is to specify a number of free lists equal to 
the maximum number of concurrent threads of control. Each thread running an insertion 
statement accesses one of these free lists. Oracle recommends to partition the master free list 
either when multiple user threads seek free blocks or when multiple instances run.[2]  

 

 

Circumventing hot spots 
A hot spot is a piece of data that is accessed by many transactions and is updated by some. 
Hot spots cause bottlenecks because each updating transaction must complete before any 
other transaction can obtain a lock on the hot data item. (You can usually identify hot spots 
easily for this reason: if transaction T takes far longer than normal at times when other 
transactions are executing at normal speeds, T is probably accessing a hot spot.) There are 
three techniques for circumventing hot spots.  

1. Use partitioning to eliminate it, as discussed earlier. 
2. Access the hot spot as late as possible in the transaction. 

Because transactions hold locks until they end, rewriting a transaction to obtain the lock 
on a hot data item as late as possible will minimize the time that the transaction holds the 
lock. 

3. Use special database management facilities. 
Sometimes, the reason for a hot spot is surprising. For example, in some versions of Sybase 
Adaptive Server, performing a "select * into #temp…" locks the system catalog of the 
temporary database while the select takes place. This makes the system catalog a hot spot. 

Here is another example. In many applications, transactions that insert data associate a unique 
identifier with each new data item. When different insert transactions execute concurrently, 
they must somehow coordinate among themselves to avoid giving the same identifier to 
different data items. 

One way to do this is to associate a counter with the database. Each insert transaction 
increments the counter, performs its insert and whatever other processing it must perform, then 
commits. The problem is that the counter becomes a bottleneck because a transaction will 
(according to two-phase locking) release its lock on the counter only when the transaction 
commits. 
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Some systems offer a facility (sequences in Oracle and identity in SQL Server, DB2 UDB, or 
Sybase Adaptive Server) that enables transactions to hold a latch[3] on the counter. This 
eliminates the counter as a bottleneck but may introduce a small problem. 
Consider an insert transaction I that increments the counter, then aborts. Before I aborts, a 
second transaction I′ may increment the counter further. Thus, the counter value obtained by I 
will not be associated with any data item. That is, there may be gaps in the counter values. 
Most applications can tolerate such gaps but some cannot. For example, tax authorities do not 
like to see gaps in invoice numbers. 
Figure 2.14 compares the performance of transactions that rely on a system counter facility 
with the performance of transactions that increment unique identifiers. 

 
Figure 2.14: Counter facility. There is a significant difference in throughput between system 
insertions that rely on a counter facility for generating counter values (sequence for Oracle, 
identity data type for SQL Server) and ad hoc insertions that explicitly increment a counter 
attribute in an ancillary table for generating counter values. This difference is due to blocking 
when accessing the ancillary counter table. Note that in Oracle, we use the default sequence 
iteration mechanism that caches blocks of 20 sequence numbers. This graph was obtained using 
SQL Server 7 and Oracle 8i EE on Windows 2000.  

[1]Three excellent references on the theory of this subject are the following: 

Phil Bernstein, Vassos Hadzilacos, and Nat Goodman, Concurrency Control and Recovery in 
Database Systems. Reading, Mass.: Addison-Wesley, 1987. Now in the public domain at: 
http://research.microsoft.com/pubs/ccontrol/. 
Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques. San 
Francisco: Morgan Kaufmann, 1993. 
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Gerhard Weikum and Gottfried Vossen, Transactional Information Systems: Theory, 
Algorithms, and Practice of Concurrency Control and Recovery. San Francisco: Morgan 
Kaufmann, 2001. 

[2]Oracle 8i Parallel Server Concepts and Administration (8.1.5), Section 11. 

[3]A latch is a simple and efficient mechanism used to implement exclusive access to internal data 
structures. A latch is released immediately after access rather than being held until the end of a 
transaction like a lock. Also unlike a lock, a latch does not allow shared access (in read mode) 
and does not provide any support for queuing waiting threads. 

2.3 Logging and the Recovery Subsystem 
Many database management systems make a claim like the following: 
Our system has an integrated physical and logical recovery mechanism that protects database 
integrity in case of hardware and software failures.  

The claim is exaggerated, to say the least. After all, an arbitrary software failure could 
transform a good database state to an arbitrarily erroneous one. (Even the failure to use the 
serializability isolation level could spoil the integrity of the data as we illustrated earlier.) 
Similarly, enough hardware failures could cause data to be lost or corrupted. For the best 
database management systems, the truth is much closer to the following: 
Our system can protect database integrity against single hardware failures (of a processor, 
network, or any disk drive) and a few software failures (failures of the client, a few addressing 
errors within the server, and fail-stop crashes of the operating system). 

Specifically, two kinds of hardware failures can be tolerated:  

1. A fail-stop failure of a processor and erasure of its random access memory. (Fail-
stop means that when the processor fails, it stops. On the hardware of many vendors 
such as IBM and HP, redundant checking circuitry stops the processor upon detection of 
failure.) 

2. The fail-stop failure of a disk, provided enough redundant disks are available. 

Systems that use mirrored disks, dual-powered controllers, dual-bus configurations, and 
backup processors can essentially eliminate the effect of such errors. In a still relevant paper, 
Jim Gray reported that Tandem Non-Stop systems have relegated hardware failures to under 
10% of their system outages.[4]  

 
Figure 2.15: Transaction states. Once a transaction commits or aborts, it cannot change its 
mind. The goal of the recovery subsystem is to implement this finite state automaton.  

As a side benefit, certain facilities (like database dumps to remote backups and process pairs) 
used to protect against hardware failures can be used to recover a database state, at least 
partially, even in the face of software failures. Many software failures (over 99%) occur only 
once and cause the system to stop. They are called "Heisenbugs."[5]  
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From the viewpoint of speed and hardware cost, however, the recovery subsystem is pure 
overhead and significant overhead at that. To understand how to tune to minimize this 
overhead, you should understand the basic algorithms for recovery. 

2.3.1 Principles of Recovery 
Theseus used a string to undo his entry into the labyrinth. Two thousand years later, the 
Grimm brothers report a similar technique used by Haensel and Gretel who discovered that the 
log should be built of something more durable than bread crumbs.[6]  

Recall that transactions are the unit of isolation for the purposes of concurrency control. 
Transactions are also the unit of recovery in the following two senses:  

1. The effects of committed transactions should be permanent. That is, changes 
should persist even after the completion of the transactions that make those changes. 

2. Transactions should be atomic. That is, following the recovery from a hardware 
failure, it should be possible to reconstruct the database to reflect the updates of all 
committed (i.e., successfully completed) transactions. It should also be possible to 
eliminate the effects of any updates performed by aborted (also known as rolled back) or 
unfinished transactions.[7] Figure 2.15 shows the states of transactions. 
Achieving the first objective requires putting the data of committed transactions on stable 
storage—storage that is immune to failures. Complete immunity is impossible to achieve, but a 
good approximation is possible. As a first step, stable storage must be built out of media (disks, 
tapes, or battery-backed random access memory) that survive power failures. Such media are 
called durable. As a second step, in order to survive failures of durable media, such as disk 
crashes, the data must be replicated on several units of durable media, such as redundant 
disks. 

Achieving transaction atomicity 
Algorithms to achieve transaction atomicity are based on two simple principles.  

1. Before a given transaction commits, it must be possible to undo the effects of that 
transaction, even if random access memory fails. This implies that the before images of 
the updates of the transaction (i.e., the values of the data items before the transaction 
writes them) must remain on stable storage until commit time. On failure, they can be 
written to the database disks if they are not already there. 

2. Once a transaction commits, it must be possible to install the updates that the 
transaction has made into the database, even if random access memory fails. Therefore, 
the after images of the updates of the transaction (i.e., the values of the data items that 
the transaction writes) must be written to stable storage some-time before the commit 
actually takes place. In that way, if there is a failure any time after the database commit 
takes place, it will be possible to "redo" the effects of those updates (install the updates 
into the database). 

The sharp (but still uneducated) reader may wonder how it is possible to have both the before 
and after images on stable storage before the commit point. After all, there is room for only one 
of them on the database disks.[8]  
The answer is simple: stable storage holds more than just the database. The other area on 
stable storage is called the log (Figure 2.16). It may contain after images, before images, or 
both. 
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Figure 2.16: Stable storage holds the log as well as data. Consider a transaction T that writes 
values stored on two pages Pi and Pj. The database system generates log records for these two 
write operations: lri and lrj (which contain the after images of Pi and Pj—or a logical representation 
of the write operation). The database system writes the log records to stable storage before it 
commits transaction T. The dirty pages Pi and Pj are written after the transaction is committed, 
unless the database buffer is full and these pages are chosen as victims by the page replacement 
algorithm. If the buffer fails, then data will be moved from the log to the database disks.  

Commercial logging algorithms work as follows:  

 The recovery subsystem writes the after images of each transaction's updates to 
the log before the transaction commits in order to satisfy principle 2. The reader may 
wonder whether the transaction's after images should be written to the database disks 
immediately after commit or whether those updates can be delayed. Delaying is better for 
failure-free performance. Here is why: forcing writes to disk immediately upon commit 
could require writes to random pages scattered over the disk. This in turn requires disk 
seeks, a very expensive operation. (Solid state memory caches reduce the seek delay, 
but they may be overwhelmed if update traffic is heavy.) 

 Most systems also write uncommitted after images to the database disks when 
there is no room left in the database buffer. In order not to jeopardize principle 1, the 
recovery subsystem must ensure that the log contains the before image of each data item. 
It can do this by explicitly writing the before image or by using the value written by the last 
committed write on that data item. This is known as a redo-undo or write-ahead logging 
algorithm. 

Every logging algorithm establishes the following guarantee:  

i. Current database state = current state of database disks + log  

The current database state is the state reflecting all committed transactions. By contrast, the 
database disks reflect only the committed transactions physically on the database disks. 
During normal operation, some transactions may have been committed on the log, but some of 
their updates may not yet have been written to the data-base disks. 
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Logging variants 
Most commercial systems log an entire page whenever a portion of a page is modified. This is 
called page-level logging. It is also possible to log just a portion of a page, for example, divide 
the page into some number of portions and log all modified portions. This is called byte-level 
logging. This saves log disk space, especially if the page size is large. A third possibility is to 
log each changed record. This is called record-level logging. 
By contrast, there is a technique known as logical logging in which the log information is the 
operation and argument that caused an update. For example, the logged operation might be 
"insert into employee," and the argument may be "(143-56-9087, Hackett,…)." This technique 
saves log space because it omits detailed information about index updates. As we mentioned, 
IBM DB2 uses logical logging and thereby reduces logging overhead. 

Logical logging works without complication if the operations are guaranteed to be executed 
sequentially. This is the case in a main memory database (a database system that holds all the 
data of each database in memory) that executes transactions serially as well as in certain 
implementations of database replication. 

Checkpoints 
To prevent the log from growing too large, the recovery subsystem periodically copies the 
latest committed updates from the log to the database disks. This act is called a checkpoint. 
Setting the interval between checkpoints is a tuning parameter as we will discuss. Checkpoints 
cause overhead, but save space in some cases and reduce recovery time. 

Database dump 
A database dump is a transaction-consistent state of the entire database at a given time. A 
transaction-consistent state is one that reflects the updates of committed transactions only. 
Note that, in contrast to a checkpoint, the database dump consists of the entire database 
(rather than the latest updates only). Thus a dump is a form of transaction-consistent backup. 

If a failure corrupts the database disks, then it is possible to reconstruct the correct state of the 
database from the previous database dump combined with the log. (In the absence of a dump, 
a failure of a database disk entails a loss of data, unless the data on that disk is duplicated on 
at least one other disk.) That is, the dump offers the following guarantee:  

ii. Current database state = log + database dump  

Because the log enters into both equations (i) and (ii), make sure it is reliable. It is usually a 
good idea to mirror the log, that is, replicate the log on two disks. Further, since the equations 
show that re-creating the current database state requires the presence of either the disk 
database or the dumped database, separate the dumped data from the disk database. 

Database dumps offer an important side benefit that can be relevant to an application that can 
afford hardware but has trouble fitting all its long transactions into the batch window. The 
database dump can be used to populate an archival database (a data warehouse) against 
which queries can be posed that do not require extremely up-to-date information, for example, 
decision support queries or statistical queries. 

Applications for which the data must be available virtually all the time may require that the 
entire system be mirrored. In that case, database dumps may not be necessary because one 
of the two mirrored systems is likely to survive any single failure. 

Group commit 
If every committing transaction causes a write to the log, then the log disk(s) may become a 
bottleneck. Therefore, many systems use a strategy known as group commit. According to this 
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strategy, the updates of many transactions are written together to a log from a space in 
memory sometimes called a log buffer. If your application must support many concurrent short 
update transactions, then ensure that your database management system offers group commit, 
that it is turned on, and that the log buffer is big enough. 
Figure 2.17 shows the significant performance improvement provided by group commit. 

 
Figure 2.17: Group commit. Increasing the group commit size improves performance. This 
experiment was performed using DB2 UDB V7.1 on Windows 2000.  

The only conceivable disadvantage of group commit is that a transaction's locks cannot be 
released until its updates have been written to the log. Because group commit delays those 
updates, group commits will cause locks to be held longer. This may cause a problem with very 
hot data items. 

Some systems such as Informix, however, allow locks on data to be released even while the 
committed data is in the log buffer but not in the log. This allows the possibility that a 
transaction might read an updated item, report its result to a user, and then have the system 
fail along with the update of that item. Such a failure condition is a remote possibility, so many 
users consider the risk worthwhile. 

2.3.2 Tuning the Recovery Subsystem 

There are four main ways to tune the recovery subsystem. They can be applied individually or 
in combination.  

1. Put the log on a dedicated disk or disks to avoid seeks. 
2. Delay writing updates to database disks as long as possible. 
3. Trade desired recovery time against failure-free performance when setting 

checkpoint and database dump intervals. 
4. Reduce the size of large update transactions. 

Put log on separate disk 
Because the log is on stable storage and because, for many systems, stable storage means 
disk, transactions that update must perform disk writes to the log. This is bad news. The 
corresponding good news is that, in the absence of a failure, the log can be written sequentially 
and in large chunks. Therefore, if a disk has nothing but the log on it, then the disk is written 
sequentially, rarely does seeks, and hence can maintain a very high I/O rate. So, the very first 
use of an extra disk should be to segregate log data onto a disk of its own (or several disks if 
you are mirroring). As mentioned earlier, reliability considerations suggest separating the 
database disks from the log in any case. Any additional logs (e.g., to support multiversion read 
consistency or for completely different databases) should again be separate. One of us once 
consulted at a company that said proudly, "This is our log disk. The logs from all of our 
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databases go here." It was easy to be a hero that day. The bigger problem was to be nice 
about it. 
Figure 2.18 illustrates the advantage of placing the log on a separate disk. 

 
Figure 2.18: Log file location. For this experiment, we use the lineitem table from the TPC-H 
benchmark and we issue 300,000 insert or update statements. This experiment was performed 
with Oracle 9i on a Linux server with internal hard drives (no RAID controller). Each statement 
constitutes a separate transaction, and each transaction forces writes. This graph shows the 
throughput obtained with the log and the data on separate disks as opposed to the throughput 
obtained with the log and the data on the same disk. Locating the log file on a separate disk gives 
approximately a 30% performance improvement. Note that we also performed this experiment 
using separate disks on a RAID controller. In that case, the disk controller cache hides much of 
the negative impact of the seeks that are necessary to switch from the log to the data when they 
are both located on the same disk. The use of the disk controller cache is further discussed in the 
storage subsystem section.  
TECHNICAL DIGRESSION: BACKGROUND COMMENT ON DISKS A disk is a collection of 
circular platters placed one on top of the other and rotating around a common axis (called a 
spindle). Each platter, except the top and bottom platters, has two read/write surfaces. (The top 
surface of the top platter and the bottom surface of the bottom platter are unused.) The data on 
each surface is held on tracks, each of which is a circle. Each platter is associated with a disk 
head. To access the data on track i of a given platter, the disk head must be over track i. At 
any time, all disk heads associated with a disk are over the same track on their respective 
platters. The set of track i's is called the ith cylinder. Thus, the set of disk heads moves from 
cylinder to cylinder (Figure 2.19). 
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Figure 2.19: Disk organization.  
On each disk, a controller is responsible for managing the positioning component, for 
transferring data between the disk and its clients, and for managing an embedded cache. As 
data is read off the platters more slowly than it is sent to clients (usually over a SCSI bus[9]), 
disk controllers partially fill their buffer before transferring data to their clients. Even if controller 
caches are small, they can be used for caching read (read-ahead) and write requests 
(immediate reporting). We discuss the use of controller caches in Section 2.5.1. 

The time that it takes to access a disk is made up of four significant components.  

1. Controller overhead: The time it takes to interpret the client commands (about 0.2 
ms in 2001). 

2. Seek time: The time it takes to move the disk head (the reading and writing device) 
to the proper track (between 4 and 9 milliseconds in 2001). 

3. Rotational delay: The time to wait until the proper portion of the spinning track is 
underneath the disk head (between 2 and 6 milliseconds in 2001). 

4. Read/write time: The time to read or write the data on the spinning track (between 
10 and 500 kilobytes per millisecond in 2001). 

Moore's law applies to disk storage capacity (disk capacity has increased 100-fold over the last 
decade), but it does not apply to access time. Gray and Shenoy[10] noted that the ratio between 
capacity and access time has increased tenfold over the last decade. This means that even if 
successive generations of disks provide faster access times, disk accesses become more 
expensive as time goes by. 
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Rotational delay can be minimized by reading or writing large chunks of data at a time. In fact 
the time to read or write a track is not much greater than the time to read or write a portion of 
the track. This explains why reading pages in advance of their need and group commits are 
important optimizations—an application of the principle that start-up costs are high, but running 
costs are low. 

Seek time can be minimized in two ways.  

1. The best way is to ensure that subsequent accesses continue from where 
previous ones left off. This explains why it is good to keep log data on a disk of its own 
(unless a memory cache can hide this latency). When writing such data, the operating 
system will ensure that after one track is filled, writing proceeds on a different track of the 
same cylinder until the cylinder is filled.  

2. The next best way is to put frequently accessed data on the middle track of the 
disk if the disk is magnetic to reduce seek time. 

The effects of seeks and rotational delay can be substantial. In 2001, a good-quality disk can 
perform 150 random disk accesses per second at best. (A random disk access is one that 
accesses a cylinder and track independently of previous accesses. So, most of these accesses 
will involve seek time and rotational delay.) If each access retrieves a 4-kilobyte page, then the 
total throughput is 600 kilobytes per second. If read (or written) sequentially, the same disk can 
offer a throughput between 10 and 500 megabytes per second. Thus, a well-organized disk 
can be a factor of ten or more faster than a poorly organized one for applications that do a lot 
of scanning.[11]  

Tuning database writes 
As you already know, before a database transaction commits, it writes the after images of the 
pages (or records, in some cases) it has updated onto the log. Thus, at the commit point the 
log (on disk) and the database buffer (in solid state memory) have the committed information, 
but the database disks may not. That is still sufficient for recovery since the log is a form of 
stable storage. 
As we observed, it would be bad for performance to force the committed writes to the database 
disks because those writes would tend to be random writes and would require seeks. In fact, 
some data need never be written to the database disks. For example, suppose item x has an 
initial value of 3. Transaction T changes x to 5 and commits. At that point, the database buffer 
and log images of x are 5, but the database disks would still have the value 3. If a subsequent 
transaction T′ changes x to 11 and commits, then the database buffer and log images of x 
would be 11. If x is then written to the database disks, the database disks would also have the 
value 11, but would never have had the value 5. This is a virtue, since we have avoided an 
entire write to the database disks without jeopardizing recoverability. 

Since the buffer is of finite size and the database may be bigger, however, we eventually want 
to update the database disks for the sake of page replacement. (Even if the buffer could hold 
the entire database, we might want to update the database disks to decrease the time 
necessary to recover from a processor or solid state memory failure.) 
Now to tuning considerations. Since writes to the database disks are potentially random writes, 
most database systems try to schedule writes when convenient, for example, write page p 
when the disk head is on a cylinder containing p. Such writes are much cheaper than totally 
random writes. 

Some database systems give users certain relevant options having to do with writes to the 
database disks such as  
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 when to start convenient writing (how full should the database buffer be before 
you start these convenient writes). Different systems do this in different ways. For 
example, Oracle 8 uses an initialization parameter to define how many dirty pages the 
buffer can hold (DB_BLOCK_MAX_DIRTY_TARGET); once the number of dirty pages is 
above this threshold, pages are replaced. SQL Server starts replacing pages when the 
number of pages in the free list falls below a given threshold (3% of the buffer pool size in 
SQL Server 7). 

 how often to checkpoint; a checkpoint is an operation that forces to disk all 
committed writes that are heretofore only in the buffer and the log. 

Setting intervals for database dumps and checkpoints 
Setting database dump intervals is a trade-off between the time to recover following a failure of 
one or more database disks and online performance. The more often the dump is performed, 
the less data will have to be read from the dumped database following a disk crash. Very few 
applications require dumps to occur more frequently than once or twice a day. 

Some system administrators wonder whether it is worthwhile to perform dumps at all. Dumps 
offer the following benefits:  

 If a database disk fails and there is no dump, then the system will lose data 
irretrievably. Thus, the dump is an insurance against database disk failure. Note, however, 
that a log failure will cause data to be lost whether or not there is a dump. 

 A dump can be used for data mining queries that do not require completely up-to-
date information. 

A dump has two costs:  

 It increases response time while it occurs. 
 It requires space to store. 

Recall that a checkpoint forces data that is only on the log and in the database buffer to the 
database disks and has the following properties:  

1. A checkpoint reduces the time and log space needed to recover when there is a 
failure of random access memory because committed updates will already be on the 
database disks. 

2. A checkpoint does not reduce the log space needed to recover from database 
disk failures. To recover from such failures, the log must hold all the updates since the last 
database dump. 

The main cost is that a checkpoint degrades online performance, though much less than a 
dump. Applications that demand high availability should do checkpoints every 20 minutes or so. 
Less demanding applications should perform checkpoints less frequently. 
In case the log file cannot accommodate all the log records that are generated during a 
transaction, Oracle forces a checkpoint (dirty pages are written to disk and log records are 
discarded). If the log is not properly sized, multiple checkpoints might thus occur while a 
transaction executes. Figure 2.20 illustrates the negatives impact of checkpoints on 
performance in this case. 
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Figure 2.20: Checkpoints. A small log file forces checkpoints. If the log file cannot 
accommodate all the long entries generated during a long update transaction, it forces dirty data 
on disk. Here, four checkpoints are triggered: they have a negative impact on throughput. This 
experiment was performed on Oracle 8i EE on Windows 2000.  

From batch to minibatch 
A transaction that performs many updates without stringent response time constraints is called 
a batch transaction. If such a transaction is excessively long, the buffer may become full, and a 
rollback resulting from a failure may be very costly. 

An approach around this problem is to break the transaction into small transactions 
(minibatching). Each minitransaction updates a persistent variable saying how much it has 
accomplished. 

For example, suppose the task is to update a set of customer accounts in sorted order based 
on customer_ID. Each minibatch transaction can update a set of account records and then put 
the customer_ID of the last account modified into a special database variable called, say, 
lastcustomerupdated. These minibatch transactions execute serially. In case of failure, the 
program will know to continue modifying accounts from lastcustomerupdated onward. 
CAVEAT Because this transformation is a form of transaction chopping, you must ensure that 
you maintain any important isolation guarantees, as discussed in Appendix B. 

[4]J. Gray, "A Census of Tandem System Availability, 1985–1990," IEEE Trans. on Reliability, vol. 
39, no. 4, 409–418, 1990. 

[5]Most such "Heisenbugs" occur because of some unusual interaction between different 
components according to another classic article by E. Adams: "Optimizing Preventive Service of 
Software Products," IBM Journal of Research and Development, vol. 28, no. 1, 1984. 

[6]Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques. San 
Francisco: Morgan Kaufmann, 1993. 

[7]These two rules imply, in practice, that no committed transaction should depend on the updates 
of an unfinished or aborted transaction. That is ensured by the locking algorithms. 

[8]We use "database disks" as shorthand for "the durable media on which the database is stored." 
Until we discuss disk failures, we will assume that the database disks are stable. 

[9]The throughput of the SCSI bus is determined by its width (e.g., Narrow-SCSI at 8 bits and 
Wide-SCSI at 16 bits) and by its clock rate or frequency (e.g., Ultra-SCSI at 20 MHz, Ultra2-SCSI 
at 40 MHz, Ultra3-SCSI at 80 MHz). 
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[10]J. Gray, P. Shenoy, Rules of Thumb in Data Engineering, Microsoft Technical Report MS-TR-
99-100, March 2000. 

[11]We provide programs for evaluating the disk throughput in the book's Web site at 
http://www.mkp.com/dbtune/. 

2.4 Operating System Considerations 
The operating system performs several functions that can have a significant impact on 
database application performance.  

 The operating system schedules threads of control (called processes in some 
operating systems), the fundamental units of execution in a computer system. Issues here 
include the amount of time needed to schedule a new thread (the less the better); the time 
slice of a database thread (should be long); and whether different threads should have 
different priorities (database threads should all run at the same priority for most 
applications). Some database systems such as Sybase implement threads within 
operating system processes so the overhead of thread switching is potentially lower. 

 The operating system manages virtual and physical memory mappings. The issue 
here is how big to make the portion of virtual memory that is shared by all database 
threads, the database buffer, and how much random access memory to devote to that 
buffer. 

 The operating system controls the number of user threads that can access the 
database concurrently. The goal is to have enough to accommodate the available users 
while avoiding thrashing. 

 The operating system manages files. Issues here include whether the files can 
span devices (necessary for large databases); whether the files can be built from 
contiguous portions of the disk (helpful for scan performance); whether file reads can 
perform lookahead (also helpful for scan performance); whether accessing a page of a 
large file takes, on the average, more time than accessing a page of a small file (which 
obviously should be avoided); and whether a process can write pages asynchronously 
(useful for the buffered commit strategy discussed earlier). 

 The operating system gives timing information. This can help determine whether 
an application is I/O-bound or processor-bound. 

 The operating system controls communication between address spaces on the 
same site (the same processor or another processor within the same shared memory 
multiprocessor) and address spaces on different sites. The main issue here is the 
performance of messages. If they are fast, then database performance will be better. 
Otherwise, database performance will be worse. There is little you can do about this as a 
tuner, except take the speed into account when deciding on a distribution strategy. 

2.4.1 Scheduling 

Each time an operating system schedules a different thread of control, it goes through some 
computation that is useless to the database application. Therefore, the database tuner should 
try to minimize the amount of time spent switching contexts. There are two obvious ways to do 
this.  

1. Choose an operating system that has a lightweight thread-switching facility. Many 
newer operating systems offer this facility. IBM's CICS, although not itself an operating 
system, introduced this notion in the late 1960s. 

2. Minimize the number of such switches. A switch is inevitable when an application 
makes an I/O request, but optional reasons for switches should be avoided. This means 
that time slice-driven interrupts should be infrequent for the great majority of database 
applications that are concerned primarily with high throughput rather than low response 
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time. A good compromise on modern microprocessors is to give each thread a 1-second 
time slice. This is enough computation time for most applications and will prevent an 
infinite loop from hanging the system. 

A second aspect of scheduling has to do with thread priorities. Two bad priority decisions can 
hurt database performance.  

1. Obviously bad decision: The database system runs at a lower priority than other 
applications. When those applications consume a lot of resources, the database 
applications will perform badly.  

2. Subtly bad decision: Transactions do not all run at the same priority. You may be 
tempted to give threads that execute transactions with greater importance higher priorities. 
Unfortunately, this strategy may backfire if transactions with different priorities access and 
may conflict on the same data item. Consider the following example. 

 

EXAMPLE: PRIORITY INVERSION 
Suppose that transaction T1 has the highest priority, followed by T2 (which is at the same 
priority as several other transactions), followed by T3.  

1. Transaction T3 executes and obtains a lock on some data item X. 
2. Transaction T1 starts to execute and requests a lock on X but is blocked because 

T3 has a lock on X. 
3. Transaction T2 now starts to execute (without accessing X). Other transactions of 

its same priority continue to execute for a long time, thereby precluding T3 from executing 
to completion. 
Indirectly, T2 and other transactions of its same priority prevent T1 from executing. This is 
called priority inversion (Figure 2.21). 

 
Figure 2.21: Priority inversion. T1 waits for a lock that only T3 can release. But the system runs 
T2, which has a higher priority than T3, thus blocking both T1 and T3.  

 

 
Some database systems handle this problem by a method known as priority inheritance. The 
idea is that once a thread acquires a lock, its scheduling priority increases to the maximum 
level of any thread that is waiting for that lock. As you can see by reviewing the previous 
example, priority inheritance protects against priority inversion.  

 If your system does not protect against priority inversion, then give the same 
priority to all pairs of transactions that may conflict. 
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 If your system does protect against priority inversion, then you may choose to give 
higher priority to online transactions than to batch ones. However, this may generate 
additional thread-switching overhead, thus hurting throughput. 

2.4.2 Database Buffer 

Because accesses to disk take much longer than accesses to random access memory, the 
database tuner must try to minimize the number of disk accesses. One way to do this is to 
store the entire database in solid state memory (RAM). This is feasible for an increasing 
number of applications. When it does hold, it is a good idea to bring the entire database into 
memory at initialization time (say, by reading every record) in order to get the best possible 
performance. 

The goal of memory tuning for all other applications is to ensure that frequently read pages 
rarely require disk accesses.[12]  
Recall that concurrent transactions in a database application share data in a certain portion of 
virtual memory known as the buffer, database buffer, or sometimes the database cache. The 
purpose of the buffer is to reduce the number of physical accesses to secondary storage 
(usually disks). Figure 2.22 shows the components of the buffer. 

 
Figure 2.22: Buffer organization. The database buffer is located in virtual memory (RAM and 
paging file). Its greater part should be in RAM. It is recommended to have the paging file on a 
separate disk. If not possible, the paging file should be on a data disk rather than on the log disk 
so that paging does not disrupt sequential access to the log.  

The impact of the buffer on the number of physical accesses depends on three different 
parameters.  

1. Logical reads and writes: These are the pages that the database management 
system accesses via system read and write commands. Some of these pages will be 
found in the buffer. Others will translate to physical reads and writes. 

2. Database management system (DBMS) page replacements: These are the 
physical writes to secondary storage that occur when a page must be brought into the 
buffer, there are no free pages, and the occupied pages have data values that are not 
present on the database disks. By keeping the database disks as up to date as possible 
through the use of convenient writes, the tuner can ensure that replacements occur rarely. 
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3. Operating system paging: These are physical accesses to secondary storage (in 
some systems, a swap disk) that occur when part of the buffer space lies outside random 
access memory. The tuner should ensure that such paging never happens. 
Assuming that paging and page replacements occur rarely, the important question is how 
many logical accesses become physical accesses. The hit ratio is defined by the following 
equation: 

 

That is, the hit ratio is the number of logically accessed pages found in the buffer divided by the 
total number of logically accessed pages. 
The tuning parameter that determines the hit ratio is the size of buffer memory. To tune the 
buffer size, run a typical load for an hour. Check to see whether the hit ratio is too low. 
Systems with ample random access memory should aim for a hit ratio of more than 90%. This 
may be impossible, however, for systems with extremely large databases and lots of random 
I/O. For example, if 30% of the accesses may touch any page in the database with equal 
likelihood and the database contains hundreds of billions of bytes, then even a system with a 
gigabyte-sized buffer will have a hit ratio of 70% or less. So, the best strategy is to increase the 
size of the buffer until the hit ratio flattens out, while making sure that DBMS page 
replacements and operating system paging are low. Some systems, such as Oracle, offer a 
utility that will tell the user what the hit ratio would be if the buffer were larger. Figure 2.23 
illustrates the impact of buffer size on performance. 

 
Figure 2.23: Buffer size. These experiments are performed with a warm buffer (the table is 
scanned before each run). The scan query is processed inside the RAM if the table fits in the 
buffer. Otherwise, the table is entirely read from disk because the LRU (least recently used) 
replacement policy will systematically evict pages before they are reread. The performance of the 
multipoint query increases linearly as the buffer size increases, up to the point where the table fits 
entirely in memory. This experiment was performed with SQL Server 7 on Windows 2000.  
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The second tuning parameter is to buy additional random access memory. This should be 
considered when two factors hold.  

1. Increasing the size of the buffer within the currently available random access 
memory would cause significantly more paging. 

2. Increasing the buffer size would increase the database access hit ratio 
significantly. That is, significantly more logical I/O's would access pages in the buffer. 
If some set of applications X have much more demanding response time requirements than the 
rest of the applications Y and access different data, then consider dedicating a database buffer 
to X and a different one to Y. (This facility is available in DB2, for example.) However, if all 
applications have basically the same requirements, then use a single buffer. 

2.4.3 How Much Memory Is Economical 

Even ignoring performance considerations, you may want to move some data into main 
memory from disk if you access it often enough. Here is some quantitative guidance derived 
from a paper by Jim Gray and Frank Putzolu.[13]  

The question they pose is when does it make sense to keep a particular page of data in 
random access memory as opposed to bringing it into memory periodically from disk? 

Clearly, the more frequently the page is accessed, the more useful it is to put the page in 
memory. Similarly, the less expensive random access memory is compared with the cost of 
disk accesses, the more pages should be kept in random access memory. Now let us derive 
simple equations to guide this decision. 

Quantitative discussion 
Consider a selection of midrange technology with the following cost characteristics (the method 
is independent of the numbers you would obtain when performing this calculation):  

 An 18-gigabyte disk offers 170 random page accesses per second and costs 
$300. That is access cost A of $1.8 per access per second. 

 Random access memory (including support circuitry and packaging hardware) 
costs $0.5 per megabyte. 

 The page size B is 8 kilobytes. 
Suppose page p is accessed every I = 200 seconds. Should you keep it permanently in 
random access memory, considering cost factors alone?  

 You save A/I dollars in accesses per second, that is, $1.8/200 = $0.009. 
 You spend $0.002 for the 8 kilobytes of random access memory. 

So, it would be worth it to keep p in random access memory. If the interaccess time is greater 
than 440 seconds (a bit more than five minutes), however, then keeping the page on disk is 
more economical. 
In general, it is better to keep a page in memory if A/I is greater than the cost of the random 
access memory to store the page (the cost of storage on disk is usually negligible by 
comparison). 

2.4.4 Multiprogramming Level 

Many system administrators believe that the more concurrent users their system supports the 
better. It is true that increasing the number of threads of control (usually, in this case, within the 
database system's server) helps consume idle cycles of underutilized processor(s). However, 
high multiprogramming levels can actually hurt performance if either of the following limitations 
is reached:  
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1. The amount of random access memory the users occupy exceeds the real 
memory of the system, causing paging either in process space or in the buffer. 

2. Lock conflicts arise from the large number of concurrently running transactions. 

Various workers have proposed conflicting rules of thumb for setting the amount of 
concurrency. It turns out that no rule of thumb is valid in all cases, so a better approach if you 
have a stable application environment is to use the incremental steps method:[14]  

 Start with a low bound on the maximum number of concurrent transactions 
allowed. 

 Increase the bound by one and then measure the performance. 
 If the performance improves, then increase the bound again. Otherwise, you have 

reached a local performance maximum. (Theoretical and practical studies indicate that the 
first local maximum is probably also an absolute maximum.) 

If your application is stable but has different transaction profiles at different times during the 
day, then your bound should change with your application's profiles. Efforts to automate the 
selection of multiprogramming level have yielded some interesting results. Gerhard Weikum 
and his students have shown that a critical ratio is the number of locks held by blocked 
transactions over the total number of locks. (When that ratio is more than about 23%, then the 
system may thrash.) Unfortunately, such results require ongoing system monitoring and 
therefore should be performed by a load control facility within the database engine. Maybe 
some database vendor will give this to us one day. 

2.4.5 Files: Disk Layout and Access 

File systems allow users to create, delete, read, and write files (which are sequences of either 
bytes or records). The main tunable parameters for file systems you are likely to encounter 
follow:  

 The size of disk chunks that will be allocated at one time: Some file systems call 
these extents. If many queries tend to scan portions of a file, then it is good to specify 
track-sized (or cylinder-sized) extents for the sake of performance. Write performance can 
also be improved by using extents. For example, logs and history files will benefit 
significantly from the use of large extents or other slicing techniques. If access to a file is 
completely random, then small extents are better because small extents give better space 
utilization.  

 The usage factor on disk pages: Oracle 8i offers users the control of how full a 
page can be and still allow insertions. The higher the usage factor, the fuller the page can 
be when insertions occur. If there are many updates to rows that may make them larger 
(e.g., conversions of NULLS to non-NULLS) or insertions to a table having a clustering 
index, then it is good to make the usage factor low (70% or less). Otherwise, use a high 
usage factor (90% or higher) to improve the performance of table scans. Figure 2.24 
illustrates how the disk usage factor affects scan queries. 
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Figure 2.24: Disk usage factor. For this experiment, we use a simple query that scans 
the lineitem table of the TPC-H benchmark (http://www.tpc.org) when it is located on disk 
and the memory is cold. We use an aggregation query to reduce the effects of transmitting 
the lineitem tuples through the database client interface. Throughput increases from 
approximately 10% as the disk usage increases from 70% to 100%. This experiment was 
performed using DB2 UDB V7.1 on Windows 2000.  

 The number of pages that may be prefetched: Again, prefetching is useful for 
queries that scan files. Unless random access memory is scarce, the number of pages to 
be prefetched should correspond to a large portion of a track. Oracle has a charming 
name for this parameter: DB_FILE_MULTIBLOCK_READ_COUNT. Try that as a pickup 
line at a bar. Figure 2.25 illustrates the effects of prefetching on the performance of scan 
queries. 

 
Figure 2.25: Prefetching. We use the lineitem table from TPC-H. The scan query is an 
aggregation query to reduce the effects of transmitting the lineitem tuples through the 
database client interface. Throughput increases by about 10% when the prefetching size 
increases from 32 Kb to 128 Kb and doesn't change thereafter. This experiment was 
performed using DB2 UDB V7.1 on Windows 2000.  

 The number of levels of indirection to access a particular page: This is an 
important issue for Unix-based systems. Because the Unix file index structure interposes 
more levels of indirection for pages toward the end of a file than for pages near the 
beginning of the file, it may take much longer to access the former than the latter. To 
avoid this, many database management systems built on top of Unix use "raw slices." 

[12]This discussion concerns the data page buffer, but similar considerations apply to the stored 
procedure buffer and the other buffers that many database systems offer. 

[13]J. Gray and F. Putzolu, "The 5-Minute Rule for Trading Memory for Disc Accesses and the 5-
Byte Rule for Trading Memory for CPU Time." ACM SIGMOD Conference, 1987. 
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[14]Hans-Ulrich Heiss and Roger Wagner, "Adaptive Load Control in Transaction Processing 
Systems." Proceedings of the 17th International Conference on Very Large Data Bases. 
Barcelona, September 1991, 47–54. 

2.5 Hardware Tuning 
The world would be much simpler if tuning the hardware could be done independently from 
tuning the software. Unfortunately, the two are intimately related. Although expert tuners often 
note the processor utilization, I/O activity, and paging, they rarely stop there. 

The reason is simple. The fact that a resource is overloaded does not imply that you have to 
buy more of it. It may be better to rewrite the queries or to add indexes to support important 
queries, for example. That is, fixing the software may lessen the load on the hardware. 

2.5.1 Tuning the Storage Subsystem 

Large-scale storage subsystems comprise multiple storage devices, that is, disks or disk arrays, 
each connected to one or several processing units. The storage subsystem also includes 
software that manages and configures storage devices, logical volume managers that tie 
multiple storage devices together, and the file system that arranges data layout on logical 
volumes. 

Tuning the storage subsystem involves  

1. configuring the disk array (RAID level) 
2. using the controller cache 
3. performing capacity planning and sizing 
4. configuring logical volumes 

Configuring the disk array 
A disk array comprises several disks managed by a controller. There are two potential benefits 
of disk arrays. First, they can provide fault tolerance by introducing redundancy across multiple 
disks. Second, they can provide increased throughput because the disk array controller 
supports parallel access to multiple disks. 

The different types of disk arrays are known by their RAID (redundant arrays of inexpensive 
disks) levels. The currently most useful defined RAID levels are  

 RAID 0—striping: RAID 0 places data evenly across all disks in the array. 
Consecutive stripes of data are placed on the disks of the array in a round-robin manner. 
For example, if there are eight disks in the array and the stripe size is 1 KB, then the first 
disk will get kilobyte 1 of the data, the next disk will get the next kilobyte 2, and so on until 
the eighth disk, which will receive kilobyte 8, and then the first disk will receive kilobyte 9. 
Thus the stripes on the first disk consist of kilobytes 1, 9, 17, and so on. The first stripe 
unit consists of kilobytes 1–8, the second consists of kilobytes 9–16, and so on. 
In RAID 0, there is no redundancy and thus no fault tolerance. A write operation (spanning 
multiple stripes) results in a write operation to a physical disk (for each stripe); a read 
operation (spanning multiple stripes) results in a read operation to a physical disk (or to 
multiple disks in parallel if several stripes are involved). 

 RAID 1—mirroring: RAID 1 mirrors one disk to another disk, so there is no striping. 
There is no downtime (or lost data) if one of the disks fails. A write operation results in a 
write operation on both physical disks (the write operation terminates when the slowest 
disk is done writing though variations of this theme in which the operation terminates 
when the cache has been written are supported by storage devices such as in EMC 
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products); depending on the controller, a read operation results either in a read operation 
on both physical disks (the read operation terminates when the fastest disk is done 
reading) or in a read operation to the disk that is least busy. RAID 1 is a good choice 
when fault tolerance is needed on a limited volume of data (the limit is the capacity of one 
disk), such as for a log. 

 RAID 5—rotated parity striping: RAID 5 relies on error correction, rather than full 
redundancy, to provide fault tolerance. As in RAID 0, data is striped. In RAID 5, however, 
each stripe unit contains an additional parity stripe. Parity is a checksum computed as an 
exclusive-or operation over all data stripes in the unit. Continuing the example used for 
RAID 0, there may be nine disks that support stripe units having eight data stripes each. 
Data and parity stripes are distributed evenly among all disks in the array. Initially, all 
disks are written with null stripes and checksums are computed. Each write to a stripe S 
requires a change to that stripe and to the parity stripe. The existing data stripe Sold and 
parity stripe Pold are read, the new parity is computed Pnew := (Sold xor Snew) xor Pold, 
and the new data and parity stripes are written. This is two disk reads and two disk writes 
for one data write. Algorithms to eliminate this overhead have been proposed by Savage 
and Wilkes and by Johnson and Shasha,[15] among others. 

 RAID 10—striped mirroring: RAID 10 (1+0) stripes data across half of the disks in 
the array as in RAID 0, and each of these disks is mirrored. RAID 10 provides the read 
throughput benefits of disk striping (RAID 0) with the fault-tolerance benefits of mirroring 
(RAID 1). RAID 10 uses twice the disks of RAID 0, so is a worthwhile alternative only 
when disks are plentiful. 

For the striping configurations (RAID 0, RAID 5, and RAID 10), you must decide on the stripe 
size. We recommend that the stripe size be the database page size since you want the 
minimum transfer unit to require access to only one disk. 

Which RAID level should you use for what?[16]  

 Log file. Use RAID 1 for log fifiles (and, in Oracle, for rollback segment 
tablespaces). Mirroring provides fault tolerance with high write throughput. Writes to the 
log are synchronous and sequential; consequently, they do not benefit from striping. If log 
writes are frequent and large, RAID 10 might be appropriate. RAID 5 is bad for log files 
(and for e-mail servers) because of the penalty it imposes on writes though caches can 
hide that penalty if the writes are bursty. 

 Temporary files. RAID 0 is appropriate for temporary files or sorting buffers 
because the system can normally tolerate the data loss resulting from disk failure. 

 Data and index files. RAID 5 is best suited for applications that require fault 
tolerance and in which read traffic vastly predominates over write traffic. 

A RAID array can be defined at the level of the array controller (hardware RAID) or at the level 
of the volume manager (software RAID). Which solution is better depends on the hardware 
configuration and indirectly on price. An array controller with a large cache and a fast on-board 
processor will perform better than an overloaded server, whereas a multiprocessor with a huge 
cache will perform better than an array controller with limited computation and memory 
resources. Some DBAs recommend software RAID rather than hardware RAID to avoid having 
a controller error corrupt data on multiple disks; this is particularly true when the log is involved. 
Figures 2.26 and 2.27 illustrate the performance of write- and read-intensive workloads on 
different levels of software and hardware RAID. With our hardware configuration, RAID 5 works 
well even for a mixed workload because of the cache. This conclusion is supported by the 
experiment illustrated in Figure 2.28 that shows that the controller buffer is seldom 
overwhelmed in practice. 
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Figure 2.26: RAID and write-intensive applications. The negative impact of the additional read 
and write operations required by RAID 5 is obvious for software RAID 5. When the controller is 
responsible for these operations (hardware RAID 5), however, it manages to hide their impact on 
performance thanks to its cache. This experiment was performed using SQL Server 7 on 
Windows 2000.  

 
Figure 2.27: RAID and read-intensive applications. RAID 1 slightly improves on a single disk 
solution. The striped RAID levels (RAID 0, RAID 5, and RAID 10) significantly improve read 
performance by partitioning the reads across multiple disks. This experiment was performed 
using SQL Server 7 on Windows 2000.  

 
Figure 2.28: Controller cache. Using the cache controller (in write-back mode) provides similar 
benefits whether the write-intensive application is cache friendly (the volume of update is slightly 
larger than the controller cache) or cache unfriendly (the volume of update is ten times larger than 
the controller cache). This experiment was performed using SQL Server 7 on Windows 2000.  
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Using the controller cache 

Disk and array controllers contain memory that can be used as a read cache or as a write 
cache. Most controller software allows selecting the read and write cache functions 
independently. 
The read cache performs read-ahead: once the disk mechanism completes a read request, it 
continues to read data into the cache. As we have discussed, database systems already 
provide a prefetching mechanism that operates at a finer grain than the controller read-ahead 
mechanism. Indeed prefetching can be defined for files where sequential reads are most 
probable while it is not defined for files where random reads are most probable. None of the 
database system vendors recommend using the controller read-ahead capability. 
The write cache performs write-back: the write requests terminate as soon as data is written to 
the cache. Contrast this with the default write-through mode where the write requests terminate 
as soon as data is written to disk. In write-back mode, the controller must guarantee that all the 
write operations that have terminated are actually performed on disk. The controller must 
preserve cached data in case of power or system failure and flush it to disk upon start-up. 

Intuitively, write-back seems always better than write-through. This is indeed the case when 
the controller is lightly loaded. However, write-through might perform better than write-back 
when a controller cache connected to several disks fills completely. Consider a controller 
connected to six disks. When its cache is full, the controller cache replacement policy kicks in 
to free space for the incoming requests. Usually the cache replacement policy writes data 
blocks to one disk at a time. As a result, when the cache is full, requests are serialized and the 
waiting time for each request depends on disk access time and on the length of the queue of 
waiting requests: the controller cache becomes a bottleneck. With write-through, each request 
accesses a disk directly and the parallelism across disks can be exploited. It is thus generally 
not recommended to use the write-back mode for controllers attached to heavily loaded 
database servers. 
Figure 2.28 illustrates the performance of two write-intensive applications using the controller 
cache. This experiment shows that controller caches handle large though perhaps not 
enormous volumes of write requests well, again even with a RAID 5 configuration. 

Disk capacity planning and sizing 
Capacity planning includes the problems of deciding on the number and types of disks and the 
interconnection between the disks and the processors.  

1. The number of disks. Because striping makes several disks act like a (faster) 
single logical disk, the question here is how many logical disks should there be. The lower 
bound in a high-performance system is dictated by considerations such as that each log 
file should be on its own logical disk (probably with redundancy), and similarly for each 
rollback segment. Secondary (nonclustering) index files should be located on different 
disks than data, as we will discuss in the next chapter. The catalog should be separated 
from user data, as we discussed earlier. Once you have this minimum number of disks, 
you can compute the aggregate expected bandwidth on each disk to see if still more are 
needed.  

2. The characteristics of each disk. We have described disk characteristics in 
Section 2.3.2. Seek time, rotational latency, cache size, and data transfer rate influence 
the performance of the storage subsystem. For SCSI drives, the parameters of the SCSI 
interface (its clock rate and data path width) are also important. 

3. The characteristics of the interconnect. SCSI is, as of this writing, the 
interconnection method of choice for database systems because it is mature and cost-
effective. In 2001, the top-performing systems on the TPC-C benchmark used SCSI 
interconnects. However, SCSI buses are limited with respect to fault tolerance, scalability 
(16 devices per bus is the upper limit), and to a lesser degree speed (40 Mb/sec for Ultra-
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2 Wide SCSI and 160 Mb/sec for Ultra-3 Wide SCSI). Storage-area networks based on 
fiber channels have started to emerge to overcome SCSI limitations. Each fiber channel 
loop can support up to 126 devices. Up to 200 loops can be connected to multiple 
processing units through hub and switches. To support high availability, disks can be 
added and removed while the interconnect remains in operation. Fiber channel is also 
faster than mid-2001 SCSI buses with a 106 Mb/sec throughput. Storage-area networks 
are best suited for shared disk architectures (see Section 2.5.2). 

Configuring logical volumes 
Logical volumes are a software layer that abstracts several disks into a single logical disk for 
higher layers. Logical volumes can be used to create a RAID device in software that appears 
as a single logical disk or can combine several physical storage devices into a single large disk 
abstraction. Multiple volumes can even be defined on a single physical storage device (a disk 
or a disk array) though we do not recommend this for frequently accessed volumes because 
this configuration would then entail significant head movement when accessing data from 
different volumes. As discussed, RAIDs constructed as logical volumes can give high 
performance provided the disk caches are large. 

2.5.2 Enhancing the Hardware Configuration 

There are three main ways to add hardware to your system: add memory, add disks, or add 
processors. This section discusses each and the general considerations guiding each 
purchase. 

Add memory 
In most systems, the cheapest hardware improvement is to add memory and then to increase 
the size of the buffer pool. This will reduce the load to the disks because it increases the hit 
ratio without increasing paging. An alternative is to buy memory for the disk cache, but 
processor memory is more versatile—it can be used for data from any disk and can be used for 
other purposes such as large sort operations. 

Add disks 
Obviously, you have to add disks if the amount of data you want to store exceeds the capacity 
of the disks, but this is unusual in most applications. In fact, most database applications 
underutilize their disks because disk bandwidth is the critical resource rather than disk space. 
Improvements to disk bandwidth can be achieved by buying more memory for disk caches or 
by buying more disks. Buying more disks is a good idea to achieve the following goals:  

1. Put the log on a separate disk to ensure that writes to the log are sequential, as 
we discussed in the recovery section. 

2. Use a different RAID level (e.g., switch from RAID 5 to RAID 10) to achieve better 
performance in update-intensive applications.  

3. Partition large tables across several logical disks. Underutilize the space on your 
disks to ensure that they can handle the access load. Depending on your application, you 
may choose two different partitioning strategies.  

 Write-intensive applications should move nonclustering (secondary) 
indexes to a disk other than the one on which the data resides. The reason is that 
each modification will have to update most of the indexes as well as the table, thus 
balancing the load. 

 Read-intensive applications should partition frequently accessed 
tables across many logical disks. This balances the read load across the disks. 
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An ascendant disk technology provided by EMC and other vendors is to bundle disks with 
intelligent controllers and lots of solid state memory and have these powerful storage devices 
communicate with one another through storage-area networks. These configurations offer 
caching of disk requests and distribution from one storage device to another. The distribution is 
quite sophisticated. For example, EMC offers storage-area networks that will do replication for 
all or part of a storage device. The replication may go from device A to B for some disk blocks 
and from B to A for other disk blocks. The replication can be synchronous or asynchronous and 
can be turned on and off. When replication is turned off and then turned on, resynchronization 
will bring the backup up to date with respect to the primary. This variety of replication options 
allows, for example, an online transaction storage device to be replicated to a data warehouse 
storage device every night and then, during the day, to turn off the replication to avoid 
overhead to the primary and to ensure a consistent image of the database to warehouse users. 
The great advantage of storage-area networks is that the database administration required for 
replication is greatly reduced since the database management system need not even be aware 
of the replication. This gain may overshadow the hardware costs. The following rule of thumb 
may be helpful: if the items to be replicated are small and widely dispersed, then the storage-
area network approach is less attractive because it replicates entire blocks. On the other hand, 
databases that are rewritten sequentially and in bulk are good targets for storage-area 
networks. 

Add processors 
Software is a gas; it expands to fit the container it's in. 

—Nathan Myhrvold, Group VP of Applications and Content for Microsoft 1997. 

It always seems possible to overload a processor. This is particularly true of application 
programs whose pretty pictures burn cycles with high efficiency. But it is also true of database 
systems for the simple reason that database scans and sorts are at least linearly proportional 
to size, and database sizes increase in proportion to our desires for information. 

For example, at the ACM Sigmod Conference in 1999, Dirk Duelmann gave a talk about a 25-
year-long physics experiment called the Hadron Collider project at CERN. (Hadrons are heavy 
particles.) Experiments are done in a vast evacuated ring that is 27 kilometers in diameter. 
Particles are accelerated to 0.035 km/h below the speed of light. Detectors get information 
about particles and their trajectories. Particles are bent by a magnetic field, so trajectories tell 
you the speed and mass. Each particle gives data so a larger number of particles gives much 
more data. Given raw data, the system produces tracks using a low-level filter. The data input 
is something like a terabyte per day and increasing. 

Few of us have to deal with petabyte databases, but a terabyte comes up a lot. For example, 
all stock market trades and quotations for the last ten years (roughly, four billion ticks) 
approaches a terabyte. Queries that attempt to find correlations among groups of stocks or 
patterns among up and down ticks require scans. 

The main decision you face when confronted with a large database is how to design your 
multiprocessor system. The cheapest way is to connect many independent computing systems 
together by a high-speed network in a so-called shared nothing environment. This can work 
well in the following situations:  

1. Part of your application (e.g., the user interface) can be off-loaded to a separate 
processing system. 

2. Your application can be divided into transaction processing and decision support, 
and the decision support application can access slightly old data without penalty. In that 
case, you can dump the online database to the backend every so often (e.g., every night) 
and allow read-only queries to go against the backend database. You might even use a 
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different database management system for the backend as we discuss in Chapters 9 and 
10. 

3. Allow read-only transactions to span several sites before allowing update 
transactions to span several sites. 
Reasons. First, some systems will not guarantee transaction atomicity if updates occur at 
several sites. Second, read-only transactions incur less overhead then update 
transactions when they span sites. (The overhead of the "two-phase commit" protocol may 
be as much as four messages per site for updates, whereas the protocol is optimized 
away for read-only transactions.)  

4. Partition the data (this applies to read-only and update applications). Partitioning 
is an art, but the basic goal is simple: every long-running query should have its work 
evenly distributed over as many processing systems as possible. 
In the case of stock quotes, for example, we might partition stocks among the processing 
systems, so a given stock has its entire history on one processing system. This works well 
for queries on the time series of individual stocks and on groups of stocks in the same 
partition. Alternatively, we might partition the data by time (round-robin by day), where 
each processing system contains information about all stocks for a given time interval. 
Correlations between stocks at time intervals would then be easy. Partial correlations are 
performed at each site and then roll-ups are performed at a master site. This is how KDB 
from Kx Systems performs time series queries, for example. 
But partitioning generalizes far beyond this example and is the basis for Teradata's data 
layout. Data in each of many tables is hash- or range-partitioned. Hash partitioning a table 
based on an attribute A and hash function h will place each row r on site h(r.A). (For 
example, if the hash function is "mod 17," then rows with A values 20, 27, and 37 will be 
placed on sites 3, 10, and 3, respectively.) Range partitioning a table based on an 
attribute A will place all rows having a range of A values on a certain site. Hash 
partitioning supports key-based queries very well and also supports parallel scans 
because the rows will be quite evenly distributed (if the partitioning attribute is a key). 
Range partitioning may fail to partition rows evenly if the ranges aren't equally populated. 
In these situations, the choice of partition attribute (or attributes) can also affect join 
behavior. For example, if R is partitioned based on attribute A and hash function h and S 
is partitioned based on attribute B and hash function h, then the join clause R.A = S.B can 
be computed locally on each site. These observations apply to transactional databases, 
enterprise resource planning systems, and data warehouses. 

5. Certain applications require "tight coupling"—there is no partition of the data that 
satisfies all important application requirements (or the application is too ill-specified to be 
sure). In that case, a shared memory multiprocessor works better than a loosely coupled 
approach. It is also easier to expand such an application by buying a bigger 
multiprocessor. The main disadvantage is that such architectures are fundamentally not 
as scalable as the partitioned applications. Figure 2.29 illustrates how the degree of 
parallelism in a multi-processor system influences the performance of sequential and 
random accesses. 

 
Figure 2.29: Degree of parallelism. This experiment is performed with DB2 UDB V7.1 on 
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a dual-processor shared memory multiprocessor running Windows 2000. When data is 
located in memory, the CPU is the critical resource and the cost of synchronization 
(between the threads that produce the data and the threads that consume them in order to 
transmit them to the client) and of context switches is higher than the benefit of increased 
data throughput that would result from increased multithreading. By contrast, when data is 
located on disk, a higher degree of parallelism significantly improves the performance of 
random access transactions as are typically found in online transaction processing. (The 
improvement for random access is further aided by the list prefetching mechanism 
implemented in DB2 that collects random accesses to a table and sorts them in order to 
minimize disk seek time.) For sequential access transactions such as are found in data 
warehouse applications, the disk is the bottleneck, and as a result, the throughput remains 
constant with increasing levels of multithreading.  
Corresponding to the type of parallelism you want, there are three hardware architectures to 
choose from (Figure 2.30).  

 Have several processors, but a single logical main memory and set of disks. Such 
an architecture is called tightly coupled and is typical of bus-based multiprocessors. 

 
Figure 2.30: Hardware architectures. This diagram illustrates the various hardware 
architectures described in the text. Site 1 implements a shared everything architecture: a 
mainframe provides tight coupling. Site 2 implements a shared disk architecture. This is 
an increasingly popular alternative to tight coupling—disks are either tethered to servers 
or directly attached to the network (NAS). Site 3 implements a shared nothing architecture 
with a cluster (where each node usually implements tight coupling). A shared nothing 
architecture is actually implemented between these different sites.  

 Have several processors, each with its own main memory and disks. Such an 
architecture is called shared nothing and is the one to use in an application that distributes 
work evenly (e.g., the stock tick application) or an application that can be decoupled into 
independent subapplications.  

 Have several processors, where each has its own main memory but the 
processors share disks. This architecture is called shared disk and should be used when 
a tightly coupled architecture would be ideal, but the application overpowers a single 
tightly coupled site. 
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Exercises 

As a kind of self-test, see if you can figure out what to do in the following situations. All 
situations begin when someone tells you that his or her application runs too slowly. 

EXERCISE 1 

The Employee table is on disk 1, the Student table is on disk 2, and the log is on disk 2. The 
Student table is smaller than the Employee table but is accessed more often. Disk 2 supports 
more than twice the I/O rate of disk 1. The customer is willing to buy a new disk. What should 
you do with it? 
Action. Probably the best thing to do is to put the log on the third disk. The log works much 
better in that case (i.e., as a sequential storage medium), and the system can tolerate the 
failure of a database disk if there is also a database dump on tape. 

EXERCISE 2 

Response time is quite variable. You learn that new tables are added to the database 
concurrently with online transactions. Those new tables are irrelevant to the online transactions. 
Action. Suggest that those new tables be added outside the online window. The reason is that 
any DDL statement will tend to interfere with online transactions that must access table 
description (catalog) information. 

EXERCISE 3 

A new credit card offers large lines of credit at low interest rates. Setting up a new card 
customer involves the following three-step transaction:  

1. Obtain a new customer number from a global counter. 
2. Ask the customer for certain information, for example, income, mailing address. 
3. Install the customer into the customer table. 

The transaction rate cannot support the large insert traffic. 
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Action. The interview with the customer should not take place while holding the lock on the 
customer number counter. Instead, step 2 should occur first outside a transactional context. 
Then steps 1 and 3 should be combined into a single transaction. If obtaining the customer 
number causes lock contention, then obtain it as late as possible, or use a special counter 
facility such as sequences in Oracle or identity fields in SQL Server. 

EXERCISE 4 

The business intelligence department would like to run data mining queries on the sales data. 
While they run their queries, arbitrary updates may occur. This slows down both the updates 
and the data mining queries. 
Action. Partition in time or space. Either run the data mining queries at night or run them on a 
separate database system. As Celko writes later, "Want to tell people that the payroll will be a 
day late because someone in marketing decided to see if there is a relationship between 25 
independent variables?" 

EXERCISE 5 

An application supports thousands of inserts per hour and hundreds of thousands of short 
update-only transactions per hour. The inserts come packaged as large transactions every 20 
minutes or so and last for 5 minutes. When the inserts enter, update response time goes up to 
15 to 30 seconds, deadlocks occur, and one of the disks shows exceedingly high utilization. In 
between the insert bursts, response time is subsecond. 
Action. The inserts appear to monopolize the system, and the data appears to be poorly 
partitioned. Two changes in conjunction or in isolation are likely to help.  

1. Smooth out the insert traffic by chopping the large insert transactions into small 
ones (if this is possible as far as concurrent correctness is concerned) and issuing them 
one at a time. 

2. Repartition the data so that the insert traffic is spread to different disks but the 
updates still enjoy fast access. A clustering index on a nonsequential key (see Chapter 3) 
will work well. 

EXERCISE 6 

The system is slow due to excessive processor utilization. An important (relational) transaction 
executes an SQL query that accesses a single record from within a loop in the programming 
language. 
Action. Replace the loop by a single query that accesses the records and then allows the 
programming language code to iterate over an array. This will save time because programming 
language to database interactions are expensive, whereas array-based access is less so. 

EXERCISE 7 

The disks show high access utilization but low space utilization. The log is on a disk by itself. 
The application is essentially read-only and involves many scans. Each scan requires many 
seeks. Management refuses to buy more disks. 
Action. Consider reorganizing the files on disk to occupy large sequential portions of disk. 
Raise the prefetching level and increase the page utilization. This will reduce the seek time and 
the number of disk accesses. 

EXERCISE 8 The new credit card company is now established. It bills its customers on the last 
Thursday of each month. The billing transaction takes all night, so other necessary batch jobs 
cannot be accomplished during this time. What should you do? 
Action. The first question to ask is whether the application has to work this way. If 1/20 of the 
bills could be sent out every working day, then the billing application would create fewer 
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demands on the system each day (partitioning in time). Another approach is to run the billing 
job as a big batch job but only on the weekend. 

[15]Stefan Savage and John Wilkes, AFRAID—A Frequently Redundant Array of Independent 
Disks. USENIX Technical Conference, January 22–26, 1996. 

Theodore Johnson and Dennis Shasha, Fault Tolerant Storage System. April 2001, U.S. 
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Chapter 3: Index Tuning 
3.1 Goal of Chapter 
An index for a table is a data organization that enables certain queries to access one or more 
records of that table fast. Proper tuning of indexes is therefore essential to high performance. 
Improper selection of indexes can lead to the following mishaps:  

 Indexes that are maintained but never used 
 Files that are scanned in order to return a single record 
 Multitable joins that run on for hours because the wrong indexes are present (we 

have seen this) 
This chapter gives you guidance for choosing, maintaining, and using indexes. (Figure 3.1 
shows the place of indexes in the architecture of a typical database system.) The hints apply 
directly to relational systems. If you use a nonrelational system, a VSAM-based, hierarchical, 
network-based, or object-oriented database system, then you will have to translate a few of the 
examples in your head, but you will find that the principles remain relevant. 

 
Figure 3.1: Place of indexes in the architecture of a typical database system. Indexes are 
provided by the storage manager. They organize the access to data in memory and, for clustering 
indexes, also organize the layout of data on disks. Indexes are tightly integrated with the 
concurrency control mechanisms. They are heavily used by the query processor during query 
optimization. 
3.2 Types of Queries 
The usefulness of an index depends on how queries use the index. For example, if there is an 
index on attribute A, but no query ever mentions A, then the index entails overhead (for 
maintenance on inserts, deletes, and some updates) without yielding any benefit. This is 
obviously folly. Less obvious sources of folly can result from placing the wrong kind of index on 
an attribute with respect to the queries performed on that attribute. Since an infinite number of 
queries are possible, we will abstract the queries into a few "types." Later, we'll characterize 
the strengths of each kind of index with respect to these types.  

1. A point query returns at most one record (or part of a record) based on an equality 
selection. For example, the following returns the name field value of the single employee 
with ID number 8478:  

2.    SELECT name 
3.    FROM Employee 
4.    WHERE ID = 8478 
5. A multipoint query is one that may return several records based on an equality 

selection. For example, if many employees may be in the same department, then the 
following is a multipoint query:  
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6.    SELECT name 
7.    FROM Employee 
8.    WHERE department = "human resources" 
9. A range query on attribute X is one that returns a set of records whose values lie 

in an interval or half-interval for X. Here are two examples.  
10.    SELECT name 
11.    FROM Employee 
12.    WHERE salary >= 120000 
13.    AND salary < 160000 
14.  
15.    SELECT name 
16.    FROM Employee 
17.    WHERE salary >= 155000 
18. A prefix match query on an attribute or sequence of attributes X is one that 

specifies only a prefix of X. For example, consider the attributes last name, first name, city 
(in that order). The following would be prefix match queries on those attributes:  

 last name = ‘Gates’ 
 last name = ‘Gates’ AND first name = ‘George’ 
 last name = ‘Gates’ AND first name LIKE ‘Ge%’ 
 last name = ‘Gates’ AND first name = ‘George’ AND city = ‘San 

Diego’ 
The following would not be prefix match queries because they fail to contain a prefix of 
last name, first name, and city:  

 first name = ‘George’ 
 last name LIKE ‘%ates’ 

19. An extremal query is one that obtains a set of records (or parts of records) whose 
value on some attribute (or set of attributes) is a minimum or maximum. For example, the 
following query finds the names of employees who earn the highest salary:  

20.    SELECT name 
21.    FROM Employee 
22.    WHERE salary = MAX(SELECT salary FROM Employee) 
23. An ordering query is one that displays a set of records in the order of the value of 

some attribute (or attributes). For example, the following query displays the Employee 
records in the order of their salaries. The first record is an Employee having the lowest 
salary, and the last record is an employee having the highest salary.  

24.    SELECT * 
25.    FROM Employee 
26.    ORDER BY salary 
27. A grouping query is one that partitions the result of a query into groups.Usually, 

some function is applied to each partition. For example, the following query finds the 
average salary in each department:  

28.    SELECT dept, AVG(salary) as avgsalary 
29.    FROM Employee 
30.    GROUP BY dept 
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31. A join query is one that links two or more tables. If the predicates linking the tables 
are based on equality, the join query is called an equality join query. For example, the 
following query finds the Social Security number of employees who are also students:  

32.    SELECT Employee.ssnum 
33.    FROM Employee, Student 
34.    WHERE Employee.ssnum = Student.ssnum 

Join queries that are not equality join queries require an examination of nearly every pair 
of records in the two tables even when indexes are present. Whenever possible, systems 
process such queries as selections following an equality join query. For example, the 
following query finds all employees who earn more than their manager.  
   SELECT e1.ssnum 
   FROM Employee e1, Employee e2 
   WHERE e1.manager = e2.ssnum 
   AND e1.salary > e2.salary 
The system will first perform the join based on  
   e1.manager = e2.ssnum 
and then filter the results with a selection based on the salary predicate. This is a good 
strategy even when an index on salary is present. To see why, notice that the number of 
records in the join based on  
   e1.salary > e2.salary 
is approximately (n2)/2, where n is the number of Employee records. If there are 100,000 
Employee records, this is 5,000,000,000 records. The time to assemble such a quantity of 
records is likely to be far longer (by a factor of 50 or more) than the time a reasonable 
database management system would take to perform the equality join, even without indexes. 
(The reasonable system would likely either create a temporary index or sort both relations 
and then perform a merge join of the results.) 
3.3 Key Types 
A key of an index is a set or sequence of attributes. Index searches use values on those 
attributes to access records of an accompanying table. Many records in the accompanying 
table may have the same key value.[1]  
From the viewpoint of the index designer, there are two kinds of keys with respect to a table T.  

1. A sequential key is one whose value is monotonic with insertion order. That is, the 
last record inserted into T, has the highest value of the key. For example, if a timestamp 
marking the time of insertion of a record were a key, then it would be a sequential key. 
Another example would be a counter that is incremented with every record insert. 

2. A nonsequential key is a key whose value is unrelated to the insertion order to the 
table. For example, if a Social Security number were a key of an Employee table, then it 
would be a nonsequential key because the last record inserted will only rarely have the 
highest Social Security number. 

In certain cases, sequential keys will cause concurrency control problems as we will see. 

[1]In normalization theory, as explained in the next chapter, the notion of key is different. In that 
theory, the key of a relation is a set of attributes with the property that no two distinct records 
have the same values on those attributes. 
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3.4 Data Structures 
Most database systems support B-trees, and some support hash tables. (We'll review the 
definitions of these structures a bit later.) Some provide multidimensional data structures such 
as variants of quadtrees and R-trees. A few also support bit vectors and multitable join indexes. 
Main memory systems will support data structures having lower fanout such as T-trees, 2-3 
trees, and binary search trees. We will start our discussion with the first two. We defer our 
discussion regarding bit vectors and multitable join indexes to our discussion of data 
warehouses, where they find their greatest use. 

3.4.1 Structures Provided by Database Systems 

The access pattern on an attribute of a table should guide the choice of data structure to 
access it. (Other factors such as whether the attribute is clustering or not also play an 
important role as we will see later in this chapter.) To understand what each data structure can 
do, you must understand a few details about its organization. 

Levels, depth, and disk accesses 
B-trees, hash structures, and multidimensional indexes can be viewed as trees. Some of the 
nodes in those trees are in random access memory and some are not. As a general rule, the 
root will often be in random access memory, and an arbitrary leaf will rarely be. In fact, the 
likelihood that a node will be in random access memory decreases the farther the node is from 
the root. 
Because an access to disk secondary memory costs at least several milliseconds if it requires 
a seek (as these index accesses will), the performance of a data structure depends critically on 
the number of nodes in the average path from root to leaf. That number is known as the 
number of levels in a B-tree. (Note that if your disk device has a large cache, then the number 
of levels that are in random access memory increases accordingly.) 
One technique that database management systems use to minimize the number of levels in a 
tree is to make each interior node have as many children as possible (several thousand for 
many B-tree implementations). The maximum number of children a node can have is called its 
fanout (Figure 3.2). 

 
Figure 3.2: Levels and branching factor. This tree has five levels and a fanout of four.  
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When there is no room for an insert to fit in the node of a data structure, the node is said to 
overflow. In a B-tree, an overflowing node n splits into two nodes n and n′ such that the 
distance between n′ and the root is the same as the distance between n and the root. In some 
hash structures, the new page n′ is pointed to from n, a technique known as overflow chaining. 
The chaining technique will cause the distance from the root to n′ to be one greater than the 
distance from the root to n. 
Oracle uses chained bucket hashing: the number of hash keys (mathematically, the size of the 
range of the hash function) is fixed, there is one node for each hash key, and an overflow chain 
is defined for each node. 

Thus, to compute the average number of nodes that must be traversed to reach a data node  

 B-trees, count the number of levels 
 for hash structures, compute the average number of overflows 

Some systems extend the tree topology of their data structures by providing right links among 
the leaf nodes (and possibly the interior nodes as well). That is, each leaf node has a pointer to 
its right neighbor. Such a link implementation helps speed range queries in B-trees. 

Specialized concurrency control methods can also use the links to remove concurrency control 
bottlenecks from data structures, as shown originally by Peter Lehman and S. B. Yao of the 
University of Maryland, and later elaborated by Yehoshua Sagiv of Jerusalem University, Betty 
Salzberg of Northeastern, and Vladimir Lanin and Shasha of New York University. C. Mohan of 
IBM Almaden research proposed practical algorithms to unify this style of concurrency control 
and recovery considerations.[2]  

B-trees 
A B-tree is a balanced tree whose leaves contain a sequence of key-pointer pairs. The keys 
are sorted by value[3](Figure 3.3). 

 
Figure 3.3: Example of B+ tree. Leaf nodes contain data entries (in this diagram, the data is 
represented by the box next to each key). All data entries are at the same distance from the root; 
that is the meaning of balance. Nonleaf nodes contain key-pointer pairs. There are actually m 
keys and m+1 pointers on each nonleaf node. Each pointer Pi, associated to a key Ki, points to a 
subtree in which all key values k lie between Ki and Ki+1 (P0 points to a subtree in which all key 
values are less than K0 and Pm points to a subtree in which all key values are greater than Km). In 
most implementations, leaf nodes (and nonleaf nodes at the same level) are linked in a linked list 
to facilitate range queries and improve concurrency.  

Evaluation B-trees are the best general data structure for database systems in that they 
seldom require reorganization, and they support many different query types well. If range 
queries (e.g., find all salaries between $70,000 and $80,000) or extremal queries (e.g., find the 
minimum salary) occur frequently, then B-trees are useful, whereas hash structures are not. If 
inserts are frequent and the B-tree key is nonsequential, then B-trees will give more consistent 
response times than hash structures because those structures may have overflow chains of 
unpredictable length. (Please note that we are discussing the data structure alone. Later, we 
will see that the data pages indexed by a clustering index, B-tree or not, may have overflow 
pages.)[4]  
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Because the fanout of a B-tree is the maximum number of key-pointer pairs that can fit on a 
node of the B-tree, the bigger the key is, the smaller the fanout. A smaller fanout may lead to 
more levels in the B-tree. 

 

EXAMPLE: INFLUENCE OF KEY LENGTH ON FANOUT 

Let us compute the number of levels deep a B-tree can be whose leaf pages contain 40 million 
key-pointer pairs. 

If pointers are 6 bytes long and the keys are 4 bytes long, then approximately 400 key-pointer 
pairs can fit on a 4-kilobyte page. In this case, the number of levels (including the leaf pages) 
of a B-tree with 64 million key-pointer pairs would be 3. The root level would consist of one 
node (the root). The next level down would have 400 nodes. The leaf level would have 160,000 
nodes, each with 400 key-pointer pairs giving a total of 64 million. 

This assumes 100% utilization. If nodes are merged when they fall to half full, then their 
utilization holds at around 69%. In order to save restructuring time and increase the amount of 
concurrency, some systems never merge nodes. Studies by Ted Johnson and Shasha have 
shown that for B-trees with more inserts than deletes (both random), the utilization will be in the 
range from 65% to 69% even if nodes are never merged.[5] That would give more than 41 
million key-pointer pairs in the leaves for a three-level B-tree. 

By contrast, if keys are 94 bytes long, then only 40 can fit per page. In that case, even 
assuming 100% utilization,  

 the root level would have one node. 

 level 2 would have 40 nodes. 

 level 3 would have 1600 nodes. 

 level 4 would have 64,000 nodes.  

 level 5 would have 2,560,000 nodes, each with at most 40 key-pointer pairs. 

Thus, a five-level B-tree is needed to store all these key-pointer pairs. 

 

 
In this example, a large key may cause the B-tree to be two levels deeper. If the data is static, 
then use your system's key compression option if it has one. This will reduce the space needed 
and save disk accesses at a relatively small processor cost (roughly 30% per record access). A 
typical compression technique is called prefix compression. Prefix compression will store in 
nonleaf nodes only that part of a key that is needed to distinguish the key from its neighbors in 
the node. For example, if there are three consecutive keys Smith, Smoot, and Smythe, then 
only Smi, Smo, and Smy need be held. Many systems use prefix compression. 
Other forms of compression are more controversial. For example, one version of Oracle had a 
form of compression called front compression in which adjacent keys had their common 
leading portion factored out. So, the preceding three keys would be stored as Smith, (2)o, (2)y, 
where the 2 indicates that the first two characters are the same as the previous key. This 
saved space but caused two problems.  
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 It entailed substantial processor overhead for maintenance. 
 It made item locking within B-tree nodes more subtle—locking (2)y would have 

implicitly required locking Smith as well. 

Oracle continues to offer some form of compression (the COMPRESS clause in CREATE 
INDEX), but you should use this only in low update environments. 

Hash structures 
Hash structures are a method of storing key-value pairs based on a pseudo-randomizing 
function called a hash function. (Pseudo-randomizing here means that for most sets of keys, 
the hash function, when applied to these keys, will yield a distribution of values that is similar to 
what would be produced by randomly, with equal probability, assigning each key to some value 
in the range of the hash function.) The hash function can be thought of as the root of the 
structure. Given a key, the hash function returns a location that contains either a page address 
or a directory location that holds a page address. That page either contains the key and 
associated record or is the first page of an overflow chain leading to the record(s) containing 
the key. The hash function will return arbitrarily different locations on key values that are close 
but unequal (e.g., Smith and Smythe). So the records containing such close keys will likely be 
on different pages. 
Evaluation Hash structures can answer point queries (e.g., find the employee with Social 
Security number 247–38–0294) in one disk access provided there are no overflow chains, 
making them the best data structures for that purpose (Figure 3.4). They are also good for 
multipoint queries especially if they are part of a clustering index (see Section 3.6).However, 
they are useless for range, prefix, or extremal queries. 

 
Figure 3.4: Hash structure with chain overflow.  

If you find that your hash structure has a significant amount of overflow chaining, you should 
reorganize (drop and add or use a special reorganize function on) the hash structure following 
a large number of inserts. Avoiding overflow chaining may require you to underutilize the hash 
space. Some performance consultants suggest that a hash table should be no more than 50% 
full to ensure that a single disk access will be enough on the average. 

So, hash structures have relatively poor space utilization, but since disk space is nearly free, 
this does not matter for most applications. Hash structures can be very sensitive to the choice 
of hash function, but the systems these days choose a hash function for you. If you choose 
your own, please make sure that you use prime numbers for modulus operations. 

Because hash functions convert keys to locations or page identifiers, the size of a hash 
structure is not related to the size of a key. The only effect of key size on a hash structure is 
that the hash function takes slightly longer to execute on a long key. Given today's processor 
speeds, this is not a major factor. 

Whereas hash structures with low space utilization perform well for point queries, they perform 
badly for queries that must scan all the data. 

3.4.2 Data Structures for In-Memory Data 
A lookup table is a table that is often read but never updated (or at least never updated during 
online transaction processing). Typical examples of lookup tables are conversion tables, for 
example, from two-letter codes to full spellings of states or countries. 
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Putting such small tables in the database system introduces unnecessary overhead, so many 
application designers store these tables as unordered arrays, linked lists, or sorted structures 
that are sequentially searched. (Basically, they use whatever their application libraries give 
them.) 
You might, however, consider different data structures. We have already discussed hash 
structures and B-trees. A special case of a B-tree, known as a 2-3 tree, is a good choice to 
maintain sorted data within random access memory. Like a B-tree, all the leaves in a 2-3 tree 
are the same distance from the root. The difference is that the maximum fanout is 3 and the 
minimum fanout is 2. This makes for a deeper, less bushy tree than a standard B-tree. 

A narrow deep tree reduces intranode search and increases the number of internode pointer 
traversals. In many situations, this reduces the number of instructions required for each search. 
In 1986, Mike Carey and his colleagues at the University of Wisconsin at Madison defined the 
T-tree to exploit this trade-off.[6] The TimesTen main memory database system uses the T-tree. 

Because CPU speed has increased much faster than memory access speed over the last 20 
years, memory accesses (especially nonconsecutive memory accesses) can be hundreds of 
times slower than an instruction cycle. Recent work has shown that in-memory data structures 
should not be optimized for reduced CPU usage but for reduced processor cache misses. 
Indeed, the gap between cache accesses and main memory accesses is continuously 
increasing. Recently, Kenneth Ross and Jun Rao have proposed a cache-sensitive B+ tree 
where each node has the size of a cache line and where pointers are eliminated when 
possible.[7] By removing pointers, more keys can be placed in each node. As a result, the 
number of key comparisons per cache line is maximized. Cache-sensitive structures may be 
included in future releases of database systems. 
A structure that is great for looking up strings (or their prefixes) in memory is the trie. If you 
want to look up the infixes of strings, then use the related structures if available: the suffix tree 
and the string B-tree.  
Another structure for designers who like the simplicity of linked lists is the frequency-ordered 
linked list. The idea of this structure is that the first entries of the linked list are the most 
frequently accessed and the last entries are the least frequently accessed. A background 
algorithm keeps track of accesses and rearranges the list appropriately during quiet periods. 
This works well for lists of frequently asked questions, where the frequency determines the 
position on the list. 
If your application concerns geography or geometry, then you should know about 
multidimensional data structures. Typical examples that can be found in the literature are 
quadtrees, R-trees, R+ trees, grid structures, and hB-trees.[8] Like composite indexes 
(discussed later in this chapter), multidimensional data structures apply to multiple attributes. 
Unlike composite indexes, multidimensional data structures apply symmetrically to their 
attributes, which often makes the processing of geographical queries more efficient. 

A typical such query finds all cities having at least 10,000 inhabitants within a certain latitude 
and longitude range—that is, symmetrically along both dimensions.  
   SELECT name 
   FROM City 
   WHERE population >= 10000 
   AND latitude >= 22 
   AND latitude < 25 
   AND longitude >= 5 
   AND longitude >= 15 
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So far, commercial geographical information systems have mainly used R-trees and quadtrees 
to answer such queries. If you have to answer such queries, make sure your database system 
has such structures built in or as an extension. 

[2]C. Mohan, ARIES—KVL: A Key-Value Locking Method for Concurrency Control of Multiaction 
Transactions on B-Tree Indexes. 16th Very Large Data Bases Conference, San Francisco: 
Morgan Kaufmann, 1990. 

Gerhard Weikum, Gottfried Vossen, Transactional Information Systems: Theory, Algorithms, 
and Practice of Concurrency Control and Recovery. Morgan Kaufmann, May 2001. 

[3]What we call B-trees here are technically called B+ trees. Strictly speaking, a B-tree has 
pointers to data pages (or records) in its internal nodes as well as in its leaf nodes; this turns out 
to be a bad strategy since it yields low fanou t. Therefore, all major database vendors use B+ 
trees (which have pointers to data only at the leaves). 

[4]In systems that use page-level locking, B-trees work poorly if they are based on sequential keys 
and there are many inserts because all inserts will access the last page, forming a concurrency 
control bottleneck. 

[5]T. Johnson and D. Shasha, "Utilization of B-trees with Inserts, Deletes, and Modifies." 8th ACM 
SIGACT-SIGMOD Conference on Principles of Database Systems, 235–246, March 189. If 
inserts enter in sorted order (i.e., not at all random), then utilization can fall to 50% in some 
systems. Check your system's tuning guide. 

[6]Tobin J. Lehman and Michael J. Carey, A Study of Index Structures for Main Memory Database 
Management Systems. VLDB 1986. 

[7]Jun Rao and Kenneth Ross, Making B+-Trees Cache Conscious in Main Memory. ACM 
SIGMOD 2000. 

[8]Volker Gaede and Oliver Günther, "Multidimensional Access Methods," ACM Computing 
Surveys, 30(2), 1998. 

3.5 Sparse Versus Dense Indexes 
The data structure portion of an index has pointers at its leaves to either data pages or data 
records.  

 If there is at most one pointer from the data structure to each data page, then the 
index is said to be sparse. 

 if there is one pointer to each record in the table, then the index is said to be 
dense. 

Assuming that records are smaller than pages (the normal case), a sparse index will hold fewer 
keys than a dense one. In fact, the  
 
Number of pointers in dense index = number of pointers in sparse index × number of records 
per page 
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If records are small compared to pages, then there will be many records per data page, and 
the data structure supporting a sparse index will usually have one level less than the data 
structure supporting a dense index.[9] This means one less disk access if the table is large. By 
contrast, if records are almost as large as pages, then a sparse index will rarely have better 
disk access properties than dense indexes. 

A significant advantage of dense indexes is that they can support ("cover" is the word used 
sometimes) certain read queries within the data structure itself. For example, if there is a dense 
index on the keywords of a document retrieval system, you can count the number of keyword 
lists containing some term, for example, "mountain trail," without accessing the documents 
themselves. (Count information is useful for that application because queriers frequently 
restrict their query when they discover that their current query would retrieve too many 
documents.) 

[9]In most systems, every pointer has an associated key. However, if many keys have the same 
value and the key is large, an important optimization for dense indexes is to store a given key 
value only once followed by a list of pointers. That optimization reduces the space needs of a 
dense index. 

3.6 To Cluster or Not To Cluster 
A clustering index (sometimes called a primary index) on an attribute (or set of attributes) X is 
an index that colocates records whose X values are "near" to one another (Figure 3.5). 

 
Figure 3.5: Data organization. This diagram represents various data organizations: a heap file 
(records are always inserted at the end of the data structure), a clustering index (records are 
placed on disk according to the leaf node that points to them), a nonclustering index (records are 
placed on disk independently of the index structure), a sparse index (leaf nodes point to pages), 
and a dense index (leaf nodes point to records). Note that a nonclustering index must be dense, 
whereas a clustering index might be sparse or dense.  
Two records are colocated if they are close to one another on disk. What "near" means 
depends on the data structure. For B-trees and other sorted structures, two X values are near if 
they are close in their sort order. For example, 50 and 51 are near, as are Smith and Sneed. 
For hash structures, two X values are near only if they are identical. That is why clustered B-
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tree structures are good for partial match, range, multipoint, point, and general join queries. By 
contrast, hash structures are useful only for point, multipoint, and equijoin queries. 

Clustering indexes are sparse in some systems (e.g., SYBASE Adaptive Server or SQL Server) 
and dense in others (e.g., DB2 UDB). Using the sparse alternative can then reduce response 
time by a factor of two or more. 

Because a clustering index implies a certain table organization and the table can be organized 
in only one way at a time, there can be at most one clustering index per table. 
A nonclustering index (sometimes called a secondary index) is an index on an attribute (or set 
of attributes) Y that puts no constraint on the table organization. The table can be clustered 
according to some other attribute X or can be organized as a heap as we will discuss later. A 
nonclustering index is always dense—there is one leaf pointer per record. There can be many 
nonclustering indexes per table. 

Just to make sure you understand the distinction between the two kinds of indexes, consider a 
classical library (the kind with books). A book may be clustered by access number, for example, 
Library of Congress number. The access number is the book's address in the library. Books 
with close access numbers will tend to be physically close to one another. In addition, there 
may be several nonclustering indexes, for example, one based on last name of author and 
another based on title. These are nonclustering because two books with the same author name 
may be physically far apart. (For example, the same author may write a book about database 
tuning and another one about a mathematical detective.) 
A heap is the simplest table organization of all. Records are ordered according to their time of 
entry. That is, new inserts are added to the last page of the data structure. For this reason, 
inserting a record requires a single page access. That is the good news. 

The bad news is that  

 concurrent insert transactions may lock one another out unless your system 
spreads the insert points across the heap. If your system offers record locks, then short-
term page locks—held only as long as it takes to obtain the record lock—may cause a 
bottleneck if the insert rate is high enough.[10]  

 no index is clustering. 

With this introduction, we are now in a position to compare clustering to nonclustering indexes. 

3.6.1 Evaluation of Clustering Indexes 

A clustering index offers the following benefits compared to a nonclustering one:  

 If the clustering index is sparse, then it will store fewer pointers than a dense 
index. (Recall that nonclustering indexes cannot be sparse.) As we discussed earlier, this 
can save one disk access per record access if the records are small.  

 A clustering index is good for multipoint queries, that is, equality accesses to 
nonunique fields. For example, a clustering index is useful for looking up names in a 
paper telephone book because all people with the same last name are on consecutive 
pages. By contrast, a nonclustering index on the first three digits of subscribers' phone 
numbers would be worse than useless for multipoint queries. For example, a query to find 
all subscribers in the 497 exchange might require an access to nearly every page (Figure 
3.6). 
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Figure 3.6: Clustering index. For all three systems, a clustering index is twice as fast as 
a nonclustering index for a multipoint query and orders of magnitude faster than a full 
table scan (no index). Each multipoint query returns 100 records out of the 1,000,000 that 
the relation contains. These experiments were performed on DB2 UDB V7.1, Oracle 8i 
and SQL Server 7 on Windows 2000.  

For the same reason, a clustering index will help perform an equality join on an attribute 
with few distinct values. For example, consider the equality join query on first names:  
   SELECT Employee.ssnum, Student.course 
   FROM Employee, Student 
   WHERE Employee.firstname = Student.firstname 

If the relation Employee has a clustering index on firstname, then for each Student record, 
all corresponding Employee records will be packed onto consecutive pages. 
If the Employee and Student tables both have a clustering index on first-name based on a 
B-tree structure, then the database management system will often use a processing 
strategy called a merge join. Such a strategy reads both relations in sorted order, thus 
minimizing the number of disk accesses required to perform the query. (Each page of 
each relation will be read in once.) This will also work if both relations have a clustering 
index on firstname based on a hash structure that uses the same hash function. 

 A clustering index based on a B-tree structure can support range, prefix match, 
and ordering queries well. The white pages of a telephone book again provide a good 
example. All names that begin with ‘St’ will be on consecutive pages. 

A clustering index based on these data structures can also eliminate the need to perform 
the sort in an ORDER BY query on the indexed attribute. 
The main disadvantage of a clustering index is that its benefits can diminish if there are a 
large number of overflow data pages (Figures 3.7, 3.8, 3.9, and 3.10). The reason is that 
accessing such pages will usually entail a disk seek. Overflow pages can result from two 
kinds of updates. 
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Figure 3.7: Index maintenance after insertions—DB2. The performance of the 
clustered index degrades with insertions. Once the index is full, additional records are 
simply appended to the relation. Each access is thus composed of a traversal of the 
clustering index followed by a scan of the additional records. In this experiment, a batch of 
100 multipoint queries is asked. After each table reorganization, the index regains its 
original performance. This experiment was performed using DB2 UDB V7.1 on Windows 
2000.  

 
Figure 3.8: Index maintenance after insertions—SQL Server. The performance of the 
clustered index degrades fast with insertions. Once the index is full, pages are split to 
accommodate new records in the index structure. For the multipoint query we are running 
in this experiment, the page split results in extra I/O for each of the 100 queries in our 
batch. After dropping and re-creating the index, performances are back to what they were 
before the insertions. This experiment was performed on SQL Server 7 on Windows 2000.  



Database Tuning  Chapter 3: Index Tuning 

-76- 

 
Figure 3.9: Index maintenance after insertions—Oracle. In Oracle, the notion of 
clustering and indexing are orthogonal. All indexes are nonclustering (except for index-
organized tables whose application is restricted to unique indexes on a primary key). In 
the general case, a clustering index can be approximated by an index defined on a 
clustered table. There is, however, no automatic physical reorganization of the clustered 
table when the index is reorganized. The only way to perform maintenance is to export 
and reimport the table. This experiment was performed on Oracle 8i EE on Windows 2000.  

 
Figure 3.10: Index maintenance after 10% updates. The updates do not concern the 
key attributes. For DB2 and SQL Server, updates introduce a penalty comparable to the 
one caused by insertions (see experiments). In Oracle, updates just add data to the 
existing clusters (by default one page is reserved for each cluster value). In this case, 
there is no overflow. Consequently, Oracle's index performance is not affected by the 
updates. These experiments were performed on DB2 UDB V7.1, Oracle 8i, and SQL 
Server 7 on Windows 2000.  

Inserts may cause data pages to overflow. 
 Record replacements that increase the size of a record (e.g., the replacement of a 

NULL value by a long string) or that change the indexed key value will also cause 
overflows of the data page. 

When there are a large number of overflow pages in a clustering index, consider invoking a 
utility to eliminate them or drop the index and then re-create it. 

Redundant tables 
Since there can be at most one clustering index per table, certain applications may consider 
establishing a redundant second table. Once again, you need to look no farther than your 
telephone book to see an illustration of this idea. The white pages are clustered by name. The 
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yellow pages contain only a subset of the entries in the white pages, but are clustered by 
category of goods and services offered (computer dealer, acupuncturist, ski shop, and so on). 
The two books both contain address and telephone information—hence, they are partially 
redundant. Adding redundancy works well when there are few updates. 

3.6.2 Nonclustering Indexes 

Because a nonclustering index on a table imposes no constraint on the table organization, 
there can be several nonclustering indexes on a given table  

1. A nonclustering index can eliminate the need to access the underlying table 
through covering. For example, suppose there is a nonclustering index on attributes A, B, 
and C (in that order) of R. Then the following query can be answered completely within 
the index, that is, without accessing the data pages.  

2.    SELECT B, C 
3.    FROM R 
4.    WHERE A = 5 

If your system takes advantage of this possibility (as do most), nonclustering indexes will 
give better performance than sparse clustering ones (though equal performance to dense 
clustering ones). Of course, updates would need to access the data pages of the R table 
(Figure 3.11). 

 
Figure 3.11: Covering index. This experiment illustrates that a covering index can be as 
good as or even better than a clustering index as long as the prefix match query that is 
asked matches the order in which the attributes have been declared. If it is not the case, 
then the composite index does not avoid a full table scan on the underlying relation. A 
covering index is also significantly faster than a nonclustering index that is not covering 
because it avoids access to the table records. This experiment was performed with SQL 
Server 7 on Windows 2000; that is, the clustering index is sparse.  

5. For critical tables having few attributes, it may be worthwhile to create several 
nonclustering indexes so that every desired query on A, B, and C is covered. This works 
as well as redundant tables. 

6. Suppose the query must touch the table R through a nonclustering index based 
on A. Let NR be the number of records retrieved and NP be the number of pages in R. If 
NR < NP, then approximately NR pages of R will be logically read. The reason is simple: it 
is likely that each record will be on a different page. 
Thus, nonclustering indexes are best if they cover the query and are good if each query 
retrieves significantly fewer records than there are pages in the file (Figure 3.12). We use 
the word significant for the following reason: a table scan can often save time by reading 
many pages at a time, provided the table is stored contiguously on tracks. Therefore, even 
if the scan and the index both read all the pages of the table, the scan may complete by a 
factor of two to ten times faster. 
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Figure 3.12: Nonclustering index. We use DB2 UDB V7.1 on Windows 2000 for this 
experiment. We use a range query and observe that the nonclustering index is 
advantageous when less than 15% of the records are selected. A scan performs better 
when the percentage of selected records is higher.  

Consider the following two examples concerning a multipoint query.  

 Suppose a table T has 50-byte records and pages are 4 kilobytes long. Suppose 
further that attribute A takes on 20 different values, which are evenly distributed among 
the records. Is a nonclustering index on A a help or a hindrance? 
Evaluation Because attribute A may contain 20 different values, each query will retrieve 
approximately 1/20 of the records. Because each page contains 80 records, nearly every 
page will have a record for nearly every value of A. So, using the index will give worse 
performance than scanning the table. 

 Consider the same situation except each record is 2 kilobytes long. 

Evaluation In this case, a query on the nonclustering index will touch only every tenth 
page on the average, so the index will help at least a little. 

We can draw three lessons from these examples.  

1. A nonclustering index serves you best if it can help you avoid touching a data 
page altogether. This is possible for certain selection, count, and join queries that depend 
only on the key attributes of the nonclustering index. 

2. A nonclustering index is always useful for point queries (recall that these are 
equality selections that return one record). 

3. For multipoint queries, a nonclustering index on attribute A may or may not help. 
A good rule of thumb is to use the nonclustering index whenever the following holds:  

4.  
5. number of distinct key index values accessed < c × number of records per page 

where c is the number of pages that can be prefetched in one disk read.  
This inequality would imply that the use of the nonclustering index would entail fewer disk 
accesses (where a disk access fetches c pages) than scanning all the pages of the relation. 

3.6.3 Composite Indexes 
A composite index (called a concatenated index in some systems) is an index based on more 
than one attribute. A composite index may be clustering or nonclustering. For example, 
consider a relation 
Person(ssnum, lastname, firstname, age, telnumber, …) 
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You might specify a composite index on (lastname, firstname) for Person. The white pages of 
telephone books are organized in this fashion. Thus, a data structure supporting a dense 
composite index on attributes (A, B, C,...) will store pointers to all records with a given A value 
together; within that collection, it will store pointers to all records with a given B value together; 
within that subcollection, it will store pointers to all records with a given C value together; and 
so on. 

Composite indexes offer the following benefits compared with single-attribute (i.e., "normal") 
indexes:  

 As mentioned, a dense composite index can sometimes answer a query 
completely, for example, how many people are there with last name ‘Smith’ and first name 
‘John’? 

 A query on all attributes of a composite index will likely return far fewer records 
than a query on only some of those attributes. 

 A composite index is an efficient way to support the uniqueness of multiple 
attributes. For example, suppose that the relation (supplier, part, quantity) records the 
quantity of a particular part on order from a particular supplier. There may be many 
records with the same supplier identifier and many records with the same part identifier, 
but there should be only one record with a given supplier-part pair. This can be supported 
efficiently by establishing a composite index on (supplier, part) in conjunction with an SQL 
UNIQUE option. 

 Oracle 9i introduces index skip scan to the Oracle product line. It is a form of scan 
that takes advantage of a composite index to avoid scanning the underlying table, even 
when a nonprefix of the index key is used. Consider a composite index defined on 
attributes (A, B) and a query with a condition on attribute B. The index skip scan searches 
the composite index to find all the A values and looks for those AB combinations that 
satisfy the condition on attribute B. This way a composite index can be used not only for 
prefix match queries but also (though at slower speed) for queries on other attributes.  

 A composite index can support certain kinds of geographical queries. For example, 
suppose we look at the relation City, having to do with cities in the Southern Hemisphere. 

City(name, latitude, longitude, population) 

If we use a clustering composite index (latitude, longitude), then the query  
   SELECT name 
   FROM City 
   WHERE population >= 10000 
   AND latitude = 22 
   AND longitude >= 5 
   AND longitude <= 15 
will execute quickly because all such cities will be packed as closely together as possible. By 
contrast, the following similar query will derive much less benefit from the composite 
clustering index:  
   SELECT name 
   FROM City 
   WHERE population >= 10000 
   AND longitude = 22 
   AND latitude >= 5 
   AND latitude <= 15 
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The reason is that all cities at latitude 5 will be packed together no matter what their 
longitude value is. As a result, a search will access the entire fraction of the database of 
cities whose latitudes fall within the range between 5 and 15 degrees south. So a 
composite index is not as good as a multidimensional one for general spatial queries. 
When designing a composite index, you must specify the order of the attributes in the index. As 
illustrated by the last example about latitude and longitude, you should put attribute A before 
attribute B if your queries tend to put more constraints on A than on B. (So, a composite index 
on latitude, longitude will perform well on queries that specify a single latitude and a range of 
longitudes but not on queries that specify a single longitude and a range of latitudes.) 

There are two main disadvantages to composite indexes:  

 They tend to have a large key size. As we saw in the description of B-trees earlier, 
this can cause B-tree structures to be very large and to contain many levels unless some 
form of compression is used. Implementing a composite index as a hash structure solves 
the size problem but doesn't support prefix match or range queries. 

 Because a composite index encompasses several attributes, an update to any of 
its attributes will cause the index to be modified. 

[10]Steve Adams, Oracle 8i Internal Services for Waits, Latches, Locks and Memory. O'Reilly, 
1999. This book describes the wait mechanisms in Oracle. 

3.7 Joins, Foreign Key Constraints, and Indexes 
Your database allows you to join two tables R and S. This can be done cleverly or badly. One 
way is to take each row of R and then search through the rows of S for matches. Such an 
approach is called a naive nested loop join. If there is no index on S, then the time required is 
proportional to the size of R times the size of S (|R| × |S|). This is bad because even modest 
million row tables require a trillion comparisons. If there is an index on the join attribute of S, 
then the work done for each row of R entails an index lookup for the appropriate rows of S, 
giving time proportional to |R| × log(|S|). So, an indexed nested loop is far better than a naive 
nested loop. 
As for selections, an index may cover a join condition, in which case the index helps even more. 
For example, an index on S.B would cover the join condition in this case  
   SELECT R.B, R.D 
   FROM R, S 
   WHERE R.A = S.B 
but not in this one  
   SELECT R.C, R.D, S.E 
   FROM R, S 
   WHERE R.A = S.B 
Another approach to equality joining that is used when neither R nor S has an index is to hash 
both tables based on the same hash function on the join attributes and then join the 
corresponding buckets. So, if the join were R.A = S.B, such a hash join would reorganize R into 
buckets based on H(R.A) and S based on H(S.B) and then would join the first bucket of R with 
the first bucket of S, the second bucket of R with the second bucket of S, and so on. If A is a 
key or nearly a key of R (i.e., there are almost as many distinct values of R.A as there are rows 
in R) or similarly B is a key or nearly a key for S, then the time to do this operation is 
proportional to the sum of |R| and |S| (|R| + |S|). By default SQL Server and DB2 UDB use a 
hash join when no index is present. As Figure 3.13 and 3.14 show, the hash join can be faster 
than an indexed nested loop join in certain circumstances. 
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Figure 3.13: Join with few matching records. A hash join with no index is faster than an 
indexed nested loop join relying on a clustering index on the joining attribute because the 
clustering index is sparse. The nonclustering index is ignored: a hash join is used. This 
experiment was performed using SQL Server 7 on Windows 2000.  

 
Figure 3.14: Join with many matching records. A hash join with no index performs worse than 
the other methods because setting up the buckets requires a lot of memory and disk 
reorganization. This experiment was performed using SQL Server 7 on Windows 2000.  
So, the basic lessons for an equijoin (for concreteness, let the predicate be R.A = S.B) are as 
follows:  

1. An indexed nested loop based on an index on S.B works better than a hash join if 
the number of distinct values of S.B is almost equal to the number of rows of S.[11] This is 
the common case because most joins are foreign key joins. 

2. The same holds regardless of the number of distinct values of S.B if the index 
covers the join because then the only accesses to S data occur within the index.  

3. The same holds regardless of the number of distinct values of S.B if S is clustered 
based on B because all S rows having equal B values will be colocated. 

4. Otherwise, the hash join may be better. 

There are two other cases where an index may be particularly helpful.  

1. In the case of a nonequijoin (e.g., R.A > S.B), an index (using an ordered data 
structure such as a B-tree) on the join attribute avoids a full table scan in the nested loop. 

2. To support a foreign key constraint such as that R.A must be a subset of S.B (e.g., 
R.A may hold the supplier identifier in a supplier-part table and S may be the supplier 
table with id field B). In this example, attribute A is said to be a foreign key in R and B is a 
primary key in S. For such a constraint, an index on S.B will speed up insertions on table 
R. The system generates the following nested loop: for every record inserted in R, check 
the foreign key constraint on S. Similarly, an index on R.A will speed up deletions in S. 
The system generates another nested loop: for every record deleted from S, check in R 
that there is no foreign key referencing the value being deleted. 
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[11]It also helps if the number of R rows having each R.A value is approximately the same. In the 
extreme case where there are only a few R.A values, the indexed nested loop join may not work 
at all well unless the database management system caches the rows of S that join with each R.A 
value. Such nonuniformities can come up. For example, if R.A represents bond interest rates, 
values will cluster around the prime rate. 

3.8 Avoid Indexes on Small Tables 
Indexes on small tables can do more harm than good. Many system manuals will tell you not to 
use an index on a table containing fewer than, say, 200 records. However, you should know 
that this number depends on the size of the records compared with the size of the index key.  

 An index search will require reads of at least one and possibly two index pages 
and one data page. By contrast, if the entire relation is held on a single track on disk, 
reading it may require only a single physical read (provided you set your prefetching 
parameter to allow the system to read an entire track at once). An index may hurt 
performance in this case. 

 If each record occupies an entire page, on the other hand, then 200 records may 
require 200 disk accesses or more. In this case, an index is worthwhile for a point query 
because it will entail only two or three disk accesses. 

 If many inserts execute on a table with a small index, then the index itself may 
become a concurrency control bottleneck. (Lock conflicts near the roots of index data 
structures can form a bottleneck. Such conflicts arise when many inserts apply to a small 
index.) 
Systematically avoiding indexes on a small table can also be harmful. In the absence of an 
index, a small table might become a serialization bottleneck if transactions update a single 
record. Without an index, each transaction scans through many records before it locks the 
relevant record, thus reducing update concurrency. We illustrate this point with an experiment 
(Figure 3.15). 

 
Figure 3.15: Indexes and updates. This graph shows the potential benefits for updates of 
creating an index on a small table (100 tuples). Two concurrent processes update this small table; 
each process works for 10 ms before it commits its update. When no index is used, the small 
table needs to be scanned when performing an update, and locks are requested for all the rows 
that are traversed by the scan operation. Concurrent updates are thus impossible. On the 
contrary, the presence of a clustered index on the attribute on which the update condition is 
expressed permits concurrent updates. This experiment was performed with SQL Server 2000 on 
Windows 2000. 
3.9 Summary: Table Organization and Index Selection 
Remember these basic rules and use the experiments to quantify choices.  
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1. Use a hash structure for equality queries. Use a B-tree if equality and nonequality 
queries may be used. 

2. Use clustering (index-organized tables in Oracle) if your queries need all or most 
of the fields of each record returned, the records are too large for a composite index on all 
fields, and you may fetch multiple records per query. 

3. Use a dense index to cover critical queries.  
4. Don't use an index if the time you will lose during inserts or updates due to the 

indexes exceeds the time you save in queries (Figures 3.16 and 3.17 illustrate low and 
high overheads). 

 
Figure 3.16: Low index overhead for insertion. Using SQL Server 7 on Windows 2000, we 
insert 100,000 records in the TPC-B table account(number, branchnum, balance). We observe 
that the cost of inserting data in a single clustering or a single nonclustering index is similar to the 
cost of inserting data in a heap; the overhead becomes significant when the number of 
nonclustering indexes increases, and the number of concurrent threads performing the insertions 
increases.  

 
Figure 3.17: High index overhead for insertion. Using Oracle 9i on a Linux server, we insert 
100,000 records in the table Order(ordernum, itemnum, quantity, purchaser, vendor). We 
measure throughput with or without a nonclustered index defined on the ordernum attribute. The 
presence of the index significantly affects performances.  

Use key compression when the following conditions all hold:  

 You are using a data structure other than a hash structure. 
 Compressing the key will reduce the number of levels in your index. 
 Your system is disk bound but has plenty of processor power. 
 Updates to the data structure are relatively rare. (Updates to the underlying table 

that don't affect the index cause no difficulty, but insertions and deletions do.) 
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Virtually all commercial database management systems offer B-trees, usually with prefix 
compression. Systems differ in whether they offer other data structures and whether their 
primary (clustering) indexes are sparse or not. (Recall that secondary indexes must be dense.) 
Table 3.1 summarizes the facilities offered by some major relational products. 

 
 
Table 3.1: Indexes offered by some relational vendors  

SYSTEM PRIMARY 
DATA 
STRUCTURE 

SECONDARY 
DATA 
STRUCTURES 

IBM DB2 UDB V7.1 B-tree 
(dense) 

B-tree 

Oracle 9i EE B-tree 
(dense), hash 
(dense) 

B-tree, bitmap, 
functions 

SQL Server 7 B-tree 
(sparse) 

B-tree 

SYBASE B-tree 
(sparse) 

B-tree 

 

What other systems call clustering indexes, Oracle calls index-organized tables. The index 
used is a B-tree. One limitation is that these indexes apply only to a key, so they support point 
but not multipoint queries. In order to support multipoint queries, you can use an Oracle cluster 
(which is a general facility that allows you to group records from one or more tables together). 
Oracle 8i and higher versions provide bitmap indexes. A bitmap index is a table where columns 
represent the possible values of the key; for each row in the relation there is one row in the 
bitmap table. Each entry in the bitmap table is a bit that is set to 1 if the key value in the given 
row corresponds to the column value and to 0 otherwise (on each row one bit is set to 1 and 
the rest is set to 0). We describe bitmap indexes further in Chapter 10. Figures 3.18, 3.19, 3.20, 
and 3.21 compare the index structures provided by Oracle 8i EE. 

 
Figure 3.18: Text indexing. Oracle 8i with the Intermedia extension supports inverted indexes 
for substring. An inverted index defined on a text column is a sequence of (key, pointer) pairs 
where each word in the text is a key whose associated pointer refers to the record it has been 
extracted from. This experiment compares the performance of multipoint queries based on 
equality and substring predicates using an inverted index and a B+ tree. We defined these 
indexes on the comments attribute of the TPC-H lineitem relation; this attribute is of type 
varchar(44). Using a B+ tree the equality predicate is =, and the substring predicate is LIKE. 
When an inverted index is defined, both equality and substring predicates are constructed using 
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the CONTAINS function that searches through the inverted index. The graph shows that the 
performance of the inverted index and B+ tree are comparable for exact matches, while the 
inverted index performs slightly better on substring search. Note that inverted indexes can be 
defined on large objects(LOBs), whereas B+ trees cannot.  

 
Figure 3.19: Comparison of B-tree, hash, and bitmap index multipoint queries. One hundred 
records are returned by each equality query. In the hash structure, these 100 records map to the 
same hash key, thus requiring an overflow chain. The clustered B-tree offers good performance 
because the records returned are on contiguous pages. The bitmap index does not perform well 
because it is necessary to traverse the entire bitmap to fetch just a few matching records. This 
experiment was performed using Oracle 8i EE on Windows 2000.  

 
Figure 3.20: Comparison of B-tree, hash, and bitmap index—range queries. As expected, 
hash indexes don't help when evaluating range queries. This experiment was performed using 
Oracle 8i EE on Windows 2000.  



Database Tuning  Chapter 3: Index Tuning 

-86- 

 
Figure 3.21: Comparison of B-tree and hash index—point queries. Hash index outperforms 
B-tree on point queries. This experiment was performed using Oracle 8i EE on Windows 2000.  
INDEX TUNING WIZARD  

 

SQL Server 7 and higher versions provide an index tuning wizard. The wizard takes as input a 
schema (with existing indexes) and the description of a workload (trace of SQL statements). It 
produces as output a set of recommendations: new indexes to be created and possibly existing 
indexes to be removed. 

The wizard relies on the cost-evaluation module of the optimizer to perform its magic. First, the 
wizard evaluates the best index for each SQL statement in the workload. To do so, it 
enumerates relevant indexes on one attribute, then two attributes, and so on; computes the 
cost of the execution plans that would use these indexes (the maintenance overhead is 
considered for insert/delete statements); and picks the best one. In a second step, the wizard 
computes the cost of combining the indexes that have been picked up in the first phase (the 
cost of maintaining existing indexes is considered in addition to the query speed-up). The 
subset of indexes with the lowest combined cost is used for the final recommendation. 

The wizard does a great job most of the time. We collected traces for some of the experiments 
presented in this chapter (clustering, covering, index on small table), and we let the wizard 
choose the appropriate index. In each case, the wizard chose the appropriate index: a covering 
index when a limited number of attributes are involved in a query, a clustering index for 
multipoint queries, or an index on a small table because updates are performed. 

We can see two limitations in the use of the tuning wizard. 

1. There is no priority among the different statements in the workload. The wizard 
computes the cost for the workload globally while we might favor a particular aspect of 
performance (query speed-up over maintenance cost). For instance, an index might not 
be recommended because the cost of maintaining it is greater than the performance 
speed-up. This is valid from a global point of view; however, we might have specific 
constraints on query response time that would justify the presence of the index while we 
do not have particular constraints on the insertions that are negatively affected by index 
maintenance. 

2. It is possible that the wizard does not recommend the best index for a query 
because its maintenance cost is too high, while the second best index for that query would 
have provided a good speed-up or maintenance trade-off. 

The wizard does a very good first-cut job. It is, however, important to keep a critical eye on its 
recommendations in particular when joins and insert/update/delete are part of the workload. 
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You can find further information on the tuning wizard in Surajit Chaudhuri and Vivek 
Narasayya's "An Efficient, Cost-Driven Index Selection Tool for Microsoft SQL Server," 
Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997. 
3.10 Distributing the Indexes of a Hot Table 
A hot table is one that is accessed by many transactions concurrently. If several disks are 
available, then it may be worthwhile to partition accesses to that table across the disks either in 
a RAID configuration or otherwise. Depending on the access patterns, you may choose one of 
two organizations.  

 Insert- or delete-intensive applications should move their nonclustering indexes to 
a disk other than the one containing the table data (Figure 3.22). The reason is that all 
indexes will have to be updated when an insert takes place. This partitioning balances the 
load between the disks having the nonclustering indexes and the disks having the 
clustering index and the table data. It is useful to keep the clustering index with the table 
data because most read accesses and all insert accesses will use that index. 

 
Figure 3.22: Distributing indexes. In this experiment, placing the index on a separate 
disk provides some advantage when inserting data. Point or multipoint queries do not 
always benefit from separating data and indexes. We used Oracle 8i on Windows 2000 for 
this experiment.  

 Applications that perform many point queries and multipoint queries with few 
updates or with updates that modify only nonindexed attributes may consider spreading 
the table, the clustering index, and the nonclustering indexes over several available disks 
(possibly in a RAID-5 or similar configuration). This maximizes the number of queries that 
can execute concurrently (Figure 3.23). 

 
Figure 3.23: Partitioning indexes. Data is range partitioned on three disks; on each disk 
reside index and data. Insertions are slower compared to a single disk storage. Point 
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queries benefit slightly from this partitioning. This experiment was performed on Oracle 8i 
EE on Windows 2000. 
3.11 General Care and Feeding of Indexes 
Here are some maintenance tips on indexes.  

 From time to time, your indexes need the data equivalent of a face lift. For 
example,  

o In a clustering index on attribute A, data page overflows have caused 
new pages to be placed on a different cylinder from old pages whose records have 
the same A values. (Chapter 7 will tell you how.)  

o A hash structure has long overflow chains. 
o Hash structures showing poor performance for point or multipoint 

queries may have insufficient space on disk. Recall that some systems suggest that 
hash spaces be no more than 50% utilized—check your tuning manual. 

o A B-tree has many empty nodes that have not been removed (this 
occurs in some systems such as DB2 that do not automatically free index nodes that 
are empty). 
To fix these problems, you can drop the index and rebuild it, perhaps allocating more 
space. Some systems allow you to modify an index in place. Oracle 9i allows dropping 
and re-creating an index while queries are running. 

 Drop indexes when they hurt performance. If an application performs complicated 
queries at night and short insert transactions during the day, then it may be a good idea to 
drop the indexes when the updates occur and then rebuild them when the inserts have 
completed. 

 Run the catalog statistics update package regularly to ensure that the optimizer 
has the information it needs to choose the proper indexes. When running those statistics, 
consider the options carefully. Some systems offer histogram options on the statistics 
update package. The idea is to give the density of values in a given range. For example, if 
most bonds have interest rates near the prime rate, but only a few have higher rates, then 
the system should be smart enough to use a nonclustering index for queries on the 
outlying interest rates but not for the popular interest rates. Choosing many histogram 
cells will help the query optimizer make the correct decision. 

 Use a system utility that tells you how the system processes the query, that is, the 
system's query plan. The query plan will tell you which indexes are being used. Aside from 
out-of-date catalog statistics, there are several reasons why a query optimizer may not 
use indexes that might help.  

o The use of a string function. For example, the following query may 
not use an index on name in some systems:  

o    SELECT * 
o    FROM Employee 
o    WHERE SUBSTR(name, 1, 1) = ‘G’ 
o If a bind variable (a variable set by the programming language) has a 

different type than the attribute to which it is being compared, the index might not be 
used. So, if you compare a bind variable with a table attribute, ensure they are of the 
same type. This means integer with integer of same size, float with float of same size, 
and string with string of the same maximum size. 

o A comparison with NULL.  
o    SELECT * 
o    FROM Employee 
o    WHERE salary IS NULL 
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o Some systems may not use indexes effectively for certain types of 
queries, such as nested subqueries, selection by negation, and queries that use ORs. 
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Exercises 

The exercises use the following tables:  

 Employee(ssnum, name, dept, manager, salary) 



Database Tuning  Chapter 3: Index Tuning 

-90- 

 Student(ssnum, name, course, grade, stipend, written_evaluation) 

EXERCISE 1 

When the Student relation was created, a nonclustering index was created on name. However, 
the following query does not use that index:  
   SELECT * 
   FROM Student 
   WHERE name = ‘Bayer’ 
Action. Perhaps the catalog statistics have not been updated recently. For that reason, the 
optimizer concludes that Student is small and hence the index should not be used. Try 
updating the statistics. 

EXERCISE 2 

You discover that the following important query is too slow. It is a simple query, and there is a 
nonclustering index on salary. You have tried to update the catalog statistics, but that did not 
help.  
   SELECT * 
   FROM Employee 
   WHERE salary/12 = 4000 
Action. The index is not used because of the arithmetic expression. Reformulate the query to 
obtain a condition of the form attribute_value = constant. Alternatively, you can use a function-
based index if available. 

EXERCISE 3 

Your customer eliminates the arithmetic expression, yielding the following query:  
   SELECT * 
   FROM Employee 
   WHERE salary = 48000 

However, the system uses the index without improving performance. 
Action. The index is not a clustering index. Many employees happen to have a salary of 
$48,000. Using the index causes many random page reads, nearly one for each employee. 
The index may be useful for other salaries that are less common, however. 

EXERCISE 4 

Your system has a 2-kilobyte size page. The Student table records are very long (about 1 
kilobyte) because of the length of the written_evaluation field. There is a clustering index on 
Social Security number, but the table suffers overflow chaining when new written_evaluation 
data is added. 
Action. The clustering index doesn't help much compared to a nonclustering one on Social 
Security number because of the large record size. The nonclustering index will be easier to 
maintain. 

EXERCISE 5 

Suppose there are 30 Employee records per page. Each employee belongs to one of 50 
departments. Should you put a nonclustering index on department? 
Action. If such an index were used, performance would be worse unless the index covers the 
query. The reason is that approximately 3/5 (=30/50) of the pages would have Employee 
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records from any given department. Using the index, the database system would access 3/5 of 
the pages in random order. A table scan would likely be faster. As Figure 3.12 showed, even 
when only 10% of the records are selected by a nonclustering index, that index may not be 
worthwhile. 

EXERCISE 6 

Suppose there are 30 Employee records per page. However, in this case, there are 5000 
departments. Should you put a nonclustering index on department to support multipoint queries 
on departments? 
Action. Each page has only a 30/5000 chance of having an Employee record. Using the index 
would be worthwhile. 

EXERCISE 7 

Auditors take a copy of the Employee file to which they wish to apply a statistical analysis. 
They allow no updates but want to support the following accesses:  

1. Count all the employees that have a certain salary (frequent). 
2. Find the employees that have the maximum (or minimum) salary within a 

particular department (frequent). 
3. Find the employee with a certain Social Security number (rare). 

Initially, there is no index. 
Action. A clustering index on salary would give less benefit than a nonclustering index because 
the first query can be answered solely based on the nonclustering index on salary. That is, a 
dense index will cover the query. By contrast, the same query using a clustering index may 
have to access the Employee records if the clustering index is sparse. A nonclustering 
composite index on (dept, salary) using a B-tree would be useful to answer the second style of 
query. A sparse clustering index on Social Security number will help if the Employee records 
are small because a sparse index may be a level shorter than a dense one. 

EXERCISE 8 

Suppose that the student stipends correspond to monthly salaries, whereas the employee 
salaries are yearly. To find out which employees are paid as much as which students, we have 
two choices.  
   SELECT * 
   FROM Employee, Student 
   WHERE salary = 12*stipend 
or  
   SELECT * 
   FROM Employee, Student 
   WHERE salary/12 = stipend 

Which is better? 
Action. Many systems will use an index on salary but not on stipend for the first query, whereas 
they will use an index on stipend but not on salary for the second query. If there is an index on 
only one of these, it should be used. 

If there are indexes on both, then the situation is a bit complicated.  

 If the index on the larger table is clustering, then arrange your query to use it. This 
will avoid reading the larger relation. 
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 Even if the index on the larger table is nonclustering, but the larger table has more 
pages than the smaller table has records, then arrange your query to use the index on the 
larger table. Again, this will avoid reading all the pages of the larger relation. This will be a 
common case. 

 By contrast, suppose the index on the larger table is nonclustering and you 
suspect that every page of the larger table will have at least one record that matches 
some record of the smaller table. In that case, using the index on the larger table may 
cause the query to access the same page of the larger table several times. So, it may be 
worthwhile to arrange your query to use the index on the smaller table. 

The ideal would be that the two fields be placed on the same basis, that is, both monthly or 
both yearly. Then the optimizer would make the choice. 

EXERCISE 9 

A purchasing department maintains the relation Onorder(supplier, part, quantity, price). The 
department makes the following queries to Onorder:  

1. Add a record, specifying all fields (very frequent). 
2. Delete a record, specifying supplier and part (very frequent). 
3. Find the total quantity of a given part on order (frequent).  
4. Find the total value of the orders to a given supplier (rare). 

Action. If there is time to eliminate overflow pages at night, then a clustering composite index 
on (part, supplier) would work well. Part should come first in the composite index because then 
a prefix match query on part will answer query 3. (Because of this prefix match query, the data 
structure in the clustering composite index should be a B-tree rather than a hash structure.) 

EXERCISE 10 

Consider a variant of Exercise 9 in which the queries access an archival read-only Onorder 
relation. 
Action. Once again, a clustering composite index on (part, supplier) would work well. To 
support query 4, a nonclustering index on supplier alone would be helpful though a separate 
table holding the aggregated totals per supplier would be even better. 

EXERCISE 11 

A table has a clustering B-tree index on Social Security number and performs simple retrievals 
and updates of records based on Social Security number. The performance is still not good 
enough. What should be done? 
Action. B-trees are not as fast as hash structures for point queries. 

EXERCISE 12 

Ellis Island is a small island south of Manhattan through which flowed some 17 million 
immigrants to the United States beteen the late 1800s and the mid-1900s. Immigration workers 
filled in some 200 fields on each immigrant, containing information such as last name (as 
interpreted by the immigration worker), first name, city of origin, ship taken, nationality, religion, 
arrival date, and so on. You are to design a database management system to allow the 
approximately 100 million descendants of these 17 million to retrieve the record of their 
ancestors. 

To identify an immigrant, the querier must know the last name of the immigrant as well as 
some other information (the more the merrier). Most queriers will know the last name and 
either the first name or the year of arrival. What is a good structure? 
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Action. Once the records are loaded, this database is never updated. So, a B-tree structure 
having high space utilization is a good possibility. Because nearly all queriers know the last 
name of their ancestor and many know the first name as well, a clustering composite index on 
(last name, first name) would help. Indexes on other single fields would probably not help 
because they would not be selective enough. However, a composite index on (last name, year 
of arrival) might be helpful. Because there are no updates, the only cost to indexes is space. 
Indeed, one radical solution is to have many composite indexes, one for each likely 
combination of attributes. 

EXERCISE 13 

An airline manages 1000 flights a day. In their database, there is a table for each flight (called 
Flight) containing a flight identifier, a seat identifier, and a passenger name. There is also a 
master table (called Totals) that has the total number of passengers in each flight. Each 
reservation transaction updates a particular Flight table and the Totals table. They have a 
performance bottleneck whose symptom is high lock contention. They try to resolve this by 
breaking each reservation transaction into two: one that updates the appropriate Flight table 
and the other that updates the Totals table. That helps but not enough. 
Action. The Totals table may be a serialization bottleneck for all transactions because every 
flight reservation transaction must update that table and the table is small, possibly only a few 
pages in size. Therefore, there is going to be contention on that table. Even if your system has 
record-level locking, an update to the Totals table might have to scan through many records to 
arrive at the one relevant to a given flight. This may also lead to lock contention. Consider 
reorganizing Totals to establish an index on that table in order to avoid the need to scan. 
Figure 3.15 illustrates this principle. 

Notice that making Totals a view on Flight would not be useful because it would not be 
updatable (data derived from an aggregate never is). 
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Chapter 4: Tuning Relational Systems 
4.1 Goal of Chapter 
Nearly all the database systems sold today are relational—not bad for a data model that was 
dismissed as totally impractical when Ted Codd first introduced it in the early 1970s (shows 
you how much to trust critics). The relational model offers a simple, more or less portable, 
expressive language (usually SQL) with a multitude of efficient implementations. 
Because of the spectrum of applications that relational systems cover, making them perform 
well requires a careful analysis of the application at hand. Helping you do that analysis is the 
goal of this chapter. The analysis will have implications for lower-level facilities, such as 
indexes and concurrency control. This chapter, however, discusses higher-level facilities 
(Figure 4.1). The discussion will concentrate on four topics.  

 Table (relation) design—trade-offs among normalization, denormalization, 
clustering, aggregate materialization, and vertical partitioning. Trade-offs among different 
data types for record design. 

 Query rewriting—using indexes appropriately, avoiding DISTINCTs and ORDER 
BYs, the appropriate use of temporary tables, and so on. 

 Procedural extensions to relational algebra—embedded programming languages, 
stored procedures, and triggers. 

 Connections—to conventional programming languages. 

 
Figure 4.1: Database system architecture. Responsibility of people with different skills. 
4.2 Table Schema and Normalization 
One of the first steps in designing an application is to design the tables (or relations) where the 
data will be stored. Once your application is running, changing the table design may require 
that you change many of your application programs (views don't work for most updates). So, it 
is important to get the design right the first time. 

Normalization is a rational guide to the design of database tables. 

4.2.1 Preliminary Definitions 
A relation schema is a relation name and a set of attribute names. If you think of a relation as a 
table name, then its schema is the table name plus the column headers of that table. A relation 
instance for a relation R is a set of records over the attributes in the schema for R. Informally, a 
relation instance is the set of records (or rows or tuples, if you wish) in the table. 
For example, the table in Figure 4.2 is called Purchase and has attributes name, item, price, 
quantity, suppliername, and year. The records are the four bottom rows. 



Database Tuning  Chapter 4: Tuning Relational Systems 

-95- 

 
Figure 4.2: Purchase table.  

4.2.2 Some Schemas Are Better Than Others 

Consider the following two schema designs concerning information relating suppliers and their 
addresses to the parts on order and the quantity ordered of each part from each supplier. 

Schema design I:  

 Onorder1(supplier_ID, part_ID, quantity, supplier_address) 
Schema design II: 

 Onorder2(supplier_ID, part_ID, quantity) 
 Supplier(supplier_ID, supplier_address) 

Let us compare these two schema designs according to three criteria. Assume that there are 
100,000 orders outstanding and 2000 suppliers altogether. Further assume that the 
supplier_ID is an 8-byte integer (64-bit machine) and the supplier_address requires 50 bytes.  

1. Space: The second schema will use extra space for the redundant supplier_ID = 
2000 × 8 = 16,000 bytes. The second schema stores will save space, however, by storing 
2000 supplier addresses as opposed to 100,000 supplier addresses in the first schema. 
So, the second schema consumes 98,000 × 50 = 4,950,000 bytes less space for address 
information. Adding these two effects together, the second schema actually saves 
4,934,000 bytes under the given assumptions. We admit that 5 megabytes has no 
importance, but the principle holds even if the number of rows was increased by 1000-fold, 
in which case the space difference becomes 5 gigabytes. 

2. Information preservation: Suppose that supplier QuickDelivery has delivered all 
parts that were on order. The semantics of the relation Onorder1 dictate that the records 
pertaining to QuickDelivery should be deleted since the order has been filled. The problem 
is that the database would lose any record of QuickDelivery's address. Using the second 
schema, you would not lose the address information because it would be held in the 
Supplier relation. 

3. Performance: Suppose you frequently want to know the address of the supplier 
from where a given part has been ordered. Then the first schema, despite the problems 
mentioned so far, may be good, especially if there are few updates. If, however, there are 
many new orders, that is, many insertions, then including the supplier address in every 
Onorder1 record requires extra data entry effort (which is likely to introduce dirty data) or 
entails an extra lookup to the database system for every part ordered from the supplier. 
So, these two schemas present a tuning trade-off that we will revisit later. 
Relation Onorder2 is normalized, whereas Onorder1 is unnormalized. What do these terms 
mean? 

Intuitively, the problem of the first schema is that the relationship between supplier_ID and 
supplier_address is repeated for every part on order. This wastes space and makes the 
presence of a given supplier's address dependent on the presence of an open order from that 
supplier. 
We can formalize this intuition through the notion of functional dependencies. Suppose X is a 
set of attributes of a relation R, and A is a single attribute of R. We say that X determines A or 
that the functional dependency X → A holds for R if the following is true: for any relation 
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instance I of R, whenever there are two records r and r′ in I with the same X values, they have 
the same A values as well. The functional dependency X → A is interesting (or, to use the term 
of the research community, nontrivial) if A is not an attribute of X. 
Suppose you discover that each supplier is to be associated with a single address. This implies 
that any two records with the same supplier_ID value have the same supplier_address value 
as well. Thus, supplier_ID → supplier_address is an interesting functional dependency. 
Having defined a functional dependency, we can now define a key. Attributes X from relation R 
constitute a key of R if X determines every attribute in R and no proper subset of X determines 
every attribute in R. For example, in the relation Onorder1, supplier_ID and part_ID together 
constitute a key. In the relation Supplier, supplier_ID by itself constitutes a key. So a key of a 
relation is a minimal set of attributes that determines all attributes in the relation.[1]  

Check yourself with the following:  

 Do you see why supplier_ID by itself does not constitute a key of relation 
Onorder1? 
Answer. Because supplier_ID does not determine part_ID. 

 Do you see why supplier_ID and supplier_address together do not constitute a 
key of Supplier? 
Answer. Because supplier_ID by itself determines all the attributes. That is, supplier_ID 
and supplier_address do not constitute a minimal set of attributes that determines all 
attributes, but supplier_ID by itself is minimal. 
A relation R is normalized if every interesting functional dependency X → A involving attributes 
in R has the property that X is a key of R. 

Relation Onorder1 is not normalized because the key is supplier_ID and part_ID together, yet 
supplier_ID by itself determines supplier_address. It does not matter that supplier_ID is part of 
the key. For the relation to be normalized, supplier_ID would have to be the whole key. 

Relation Onorder2 and Supplier are both normalized. 

4.2.3 Normalization by Example 

Practice Question 1 Suppose that a bank associates each customer with his or her home 
branch, that is, the branch where the customer opened his or her first account. Each branch is 
in a specific legal jurisdiction, denoted jurisdiction. Is the relation (customer, branch, jurisdiction) 
normalized? 

Answer to Practice Question 1 Let us look at the functional dependencies. Because each 
customer has one home branch, we have  

  customer → branch 
Because each branch is in exactly one jurisdiction, we have  

  branch → jurisdiction 
So, customer is the key, yet the left-hand side of the functional dependency branch → jurisdiction 
is not customer. Therefore, (customer, branch, jurisdiction) is not normalized. Its problems are 
exactly the problems of Onorder1 earlier.  

Relation (customer, branch, jurisdiction) will use more space than the two relations (customer, 
branch) and (branch, jurisdiction). Further, if a branch loses its customers, then the database 
loses the relationship between branch and jurisdiction. (The bank directors may not care, but 
information scientists dislike losing information by accident.) 
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Practice Question 2 Suppose that a doctor can work in several hospitals and receives a 
salary from each one. Is the relation (doctor, hospital, salary) normalized? 
Answer to Practice Question 2 The only functional dependency here is doctor, hospital → 
salary. Therefore, this relation is normalized. 

Practice Question 3 Suppose that we add the field primary_home_address to the previous 
question. Each doctor has one primary_home_address, but many doctors may have the same 
primary home address. Would the relation (doctor, hospital, salary, primary_home_address) be 
normalized? 

Answer to Practice Question 3 We have a new functional dependency.  

  doctor → primary_home_address 
Unfortunately, doctor is a proper subset of the key of the relation so the relation is unnormalized. 
The key is doctor and hospital together. A normalized decomposition would be  
  (doctor, hospital, salary) 
  (doctor, primary_home_address) 

Practice Question 4 Suppose that a new law forbids doctors from working in more than one 
hospital. However, nothing else changes. In that case, is (doctor, hospital, salary, 
primary_home_address) normalized? 

Answer to Practice Question 4 In this case, we have the following functional dependencies:  

  doctor → primary_home_address 

  doctor → hospital 

  doctor → salary 
So, doctor by itself is the key, and the relation is normalized.  

Practice Question 5 Suppose we have the situation of the previous question, but we add the 
hospital_address associated with each hospital. In that case, is (doctor, hospital, 
hospital_address, salary, primary_home_address) normalized? 

Answer to Practice Question 5 To the functional dependencies that we have already, we 
would add  

hospital → hospital_address 
Because doctor is still the key of the relation, we have a functional dependency involving the 
attributes of a relation in which the left-hand side is not the key of the relation. Therefore, the 
relation is not normalized.  

A possible decomposition would yield the relations  
   (doctor, hospital, salary, primary_home_address) 
   (hospital, hospital_address) 

Notice that these two relations would probably occupy less space than the single unnormalized 
one because the hospital address would be represented only once per hospital. 

4.2.4 A Practical Way to Design Relations 
There are algorithms to design normalized relations given functional dependencies. In practice, 
such algorithms are far more complicated than necessary. An easier strategy is to find the 
entities in the application. Intuitively, entities make up what the application designer considers 
to be the "individuals" of the database. For example, doctors, hospitals, suppliers, and parts 
would be the entities of the applications we've spoken about so far (Figure 4.3). Usually, an 
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entity has attributes that are properties of the entity. For example, hospitals have a jurisdiction, 
an address, and so on. There are two formal constraints on attributes. 

 
Figure 4.3: Entities. This entity-relationship diagram represents the hospital and doctor entities 
in our sample hospital application as well as the works_in relationship connecting those entities.  

 

 An attribute cannot have attributes of its own. Only entities can have attributes. 
 The entity associated with an attribute must functionally determine that attribute. 

(For example, there must be one value of address for a given hospital.) Otherwise, the 
attribute should be an entity in its own right. 

Each entity with its associated attributes becomes a relation. For example, the entity doctor 
with attributes salary, primary_home_address, and so on becomes a relation. Hospital is not 
part of that relation according to this design methodology because hospital is an entity in its 
own right with attributes hospital_address and so on. 
To that collection of relations, add relations that reflect relationships between entities. For 
example, there is a relationship works_in between doctors and hospitals. Its schema might be 
(doctor_ID, hospital_ID). 

Three relations would result from this design strategy for an application concerning doctors and 
hospitals.  

1. Doctor(doctor_ID, primary_home_address, …) 
2. Hospital(hospital_ID, hospital_address, …) 
3. Works_in(doctor_ID, hospital_ID) 

Most CASE (computer-aided software engineering) tools include something similar to this 
entity-relationship design strategy. 

4.2.5 Functional Dependency Test 
In most cases, your relations will be normalized after you have used this entity-relationship 
methodology. To be sure, you should identify the functional dependencies and see. The two 
main conditions to check are that (1) each relation is normalized, and (2) the attributes 
constituting each "minimal" functional dependency are a subset of the attributes of some 
relation. For example, if the functional dependency AB → C holds and is minimal because 
neither A → C nor B → C holds, then attributes A, B, and C should all be attributes of some 
relation R. 
Intuitively, a functional dependency is minimal if it is not implied by other functional 
dependencies and it does not have too many attributes on the left-hand side. For an example 
of a redundant functional dependency, consider the three functional dependencies A → B, B → 
C, and A → C. The third one is implied by the other two. That is, any table satisfying the first 
two will also satisfy the last one. Given these functional dependencies, we would construct two 
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relations having schemas (A, B) and (B, C), but no relation having schema (A, B, C) or (A, C) 
because A → C is not minimal in this context. 
Now let's see how a functional dependency can have too many attributes on its left-hand side. 
Suppose there are three functional dependencies A → B, ABF → C, and BD → E. Then the 
second one has an unnecessary attribute on its left-hand side. The reason is that any table 
satisfying the first two functional dependencies will also satisfy AF → C. (If two rows of the 
table have the same AF values, then they have the same B values because of A → B and the 
same C values because of ABF → C.) On the other hand, the third functional dependency has 
no extra attributes on the left-hand side. So, the three corresponding minimal functional 
dependencies are A → B, AF → C, and BD → E. This leads to the schemas (A, B), (A, F, C), 
and (B, D, E), but not (A, B, C, F). 

If you are a mathematician at heart, you may want to read the rigorous but clear discussion of 
the preceding procedure in the freely available book by Serge Abiteboul, Rick Hull, and Victor 
Vianu on database theory.[2]  

4.2.6 Tuning Normalization 

Different normalization strategies may guide you to different sets of normalized relations, all 
equally good according to our criteria so far. Which set to choose depends on your 
application's query patterns. 

Scenario: Different normalization sets 1 
Suppose that we have three attributes: account_ID, balance, and address. The functional 
dependencies are  

 account_ID → address 
and 

 account_ID → balance 

There are two normalized schema designs in this case.  

 (account_ID, address, balance) 
and 

 (account_ID, address) 
 (account_ID, balance) 

 
The question is which design is better? Let us look at the query patterns.  

In most U.S. banks, the application that sends a monthly statement is the principal user of the 
address of the owner of an account. By contrast, the balance is updated or examined much 
more often, possibly several times a day. In such a case, the second schema might be better 
because the (account_ID, balance) relation can be made smaller.[3] Small size offers three 
benefits.  

1. A sparse clustering index on the account_ID field of the (account_ID, balance) 
relation may be a level shorter than it would be for the (account_ID, balance, address) 
relation because the leaves of such an index will have only one pointer per data page, and 
there will be far fewer data pages. 

2. More account_ID-balance pairs will fit in memory, thus increasing the hit ratio for 
random accesses. 
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3. A query that must scan a significant portion of account_ID-balance pairs will read 
relatively few pages. 
In this case, two relations are better than one even though the two-relation solution requires 
more space. This principle is illustrated in Figure 4.4. 

 
Figure 4.4: Vertical partitioning and scan queries. A relation R is defined with three attributes 
X (integer), Y, and Z (large strings); a clustered index is defined on X. This graph compares the 
performance of scan queries that access all three attributes, or only two of them (X and Y) 
depending on whether vertical partitioning is used or not. Vertical partitioning consists of defining 
two relations R1 and R2: R1 has two attributes X and Y with a clustered index on X, whereas R2 
has two attributes X and Z with a clustered index on X, too. As expected, the graph shows that 
vertical partitioning exhibits poorer performance when all three attributes are accessed (vertical 
partitioning forces a join between R1 and R2 as opposed to a simple lookup on R) and better 
performances when only two attributes are accessed (fewer pages need to be scanned). This 
graph was obtained with SQL Server 2000 on Windows 2000.  

Scenario: Different normalization sets 2 

Suppose that the address field in scenario 1 was actually divided into two fields, a street 
address and a zip code. Would the following normalized schema design make sense?  

 (account_ID, street address) 
 (account_ID, zip code) 
 (account_ID, balance) 

Because street address and zip code are accessed together or not at all in this application, 
dividing the address information between two relations hurts performance and uses more 
space. 

In this case, having one relation (account_ID, street address, zip code) will give better 
performance than having two (account_ID, street address) and (account_ID, zip code). 
The preceding examples show that the choices among different normalized designs depend 
critically on the application's access patterns. Usually, a single normalized relation with 
attributes XYZ is better than two normalized relations XY and XZ because the single relation 
design allows a query to request X, Y, and Z together without requiring a join. The two-relation 
design is better if and only if the following two conditions hold:  

 User accesses tend to partition between the two sets most of the time. If user 
accesses do not partition between the two sets, then, as Figure 4.5 shows, the join 
overhead can make the vertically partitioned layout worse than the nonpartitioned layout, 
at least for range queries. 
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Figure 4.5: Vertical partitioning and single point queries. A relation R is defined with 
three attributes X (integer), Y, and Z (large strings); a clustered index is defined on X. A 
mix of point queries access either all three attributes, or only X and Y. This graph shows 
the throughput for this query mix as the proportion of queries accessing only X and Y 
increases. We compare query execution with or without vertical partitioning of R. Vertical 
partitioning consists of definining two relations R1 and R2: R1 has two attributes X and Y 
with a clustered index on X, whereas R2 has two attributes X and Z with a clustered index 
on X, too. The graph is obtained by running five clients that each submit 20 different point 
queries either on X, Y, Z (these require a join if vertical partitioning is used) or only on X, Y. 
The graph shows that vertical partitioning gives better performances when the proportion 
of queries accessing only X and Y is greater than 20%. In this example the join is not 
really expensive compared to a simple lookup—indeed the join consists of one indexed 
access to each table followed by a tuple concatenation. This graph was obtained with 
SQL Server 2000 on Windows 2000.  

 Attribute Y values or attribute Z values or both are large (one-third the page size 
or larger). 

Bond scenario 
In certain cases, you may start with a vertically partitioned schema and then perform what may 
be called vertical antipartitioning. Here is an example. 

Some brokers base their bond-buying decisions on the price trends of those bonds. The 
database holds the closing price for the last 3000 trading days. However, statistics regarding 
the 10 most recent trading days are especially important. (If your trading system requires 
microstructure—that is, intraday trading histories—the principles are exactly the same.) 

Consider therefore the following two schemas:  

 (bond_ID, issue_date, maturity, …)—about 500 bytes per record 
 (bond_ID, date, price)—about 12 bytes per record 

versus 
 (bond_ID, issue_date, maturity, today_price, yesterday_price, … 

10dayago_price)—about 600 bytes per record 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



Database Tuning  Chapter 4: Tuning Relational Systems 

-102- 

 (bond_ID, date, price) 

Suppose we arrange for the second schema to store redundant information. That is, both 
relations will store the data from the last 10 days of activity. This will cost a little extra space, 
but will be much better for queries that need information about prices in the last ten days 
because it will avoid a join and will avoid fetching 10 price records per bond. Even if (bond_ID, 
date, price) is clustered by bond_ID and date, the second schema will save at least one disk 
access for such queries. It may save more depending on the number of overflow pages 
needed to store all the price records associated with a given bond. 

It is possible to avoid redundancy by storing records in the (bond_ID, date, price) table only 
after they become more than 10 days old, but then queries that want the price on a given day 
or the average price over a range of 50 consecutive days (given as a parameter) become very 
difficult to write. 

4.2.7 Tuning Denormalization 
Denormalization means violating normalization. Given all the disadvantages of such a move, it 
has only one excuse: performance.  

 Even this excuse applies only to some situations. The schema design 
 Onorder1(supplier_ID, part_ID, quantity, supplier_address) 

 
is bad for performance when inserts are frequent. As mentioned earlier, the data entry operator 
must either enter address information each time or look up the supplier address when performing 
an insertion.  
That schema design would help a query that returns the parts available from suppliers having 
some zip code, however. Figure 4.6 illustrates this principle on an example based on the TPC-
H schema. 

 
Figure 4.6: Denormalization. We use the TPC-H schema to illustrate the potential benefits of 
denormalization. This graph shows the performance of a query that finds all lineitems whose 
supplier is in Europe. With the normalized schema, this query requires a four-way join between 
lineitem, supplier, nation, and region. If we denormalize lineitem and introduce the name of the 
region each item comes from, then the query is a simple selection on lineitem. In this case, 
denormalization provides a 30% improvement in throughput. This graph was obtained with Oracle 
8i EE running on Windows 2000.  

As a general rule, denormalization hurts performance for relations that are often updated. 
However, denormalization may help performance in low-update situations. For that reason, 
some applications denormalize their archival data while keeping their online data normalized. 

[1]There is an unfortunate confusion in database terminology regarding the word key. The key of 
an index is the attribute or sequence of attributes by which you can search the index. There may 
be many records in a given relation with the same value of a given index key. In normalization 



Database Tuning  Chapter 4: Tuning Relational Systems 

-103- 

theory, a key of a relation R is a set of attributes such that no two records of any instance of R 
have the same values on all the attributes of that key. You must always use context to determine 
the sense in which "key" is meant. This chapter uses "key" in the sense of normalization theory. 

[2]S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley, 1995. 

[3]In making this statement about size, we are assuming that the table is stored one row at a time. 
That is the conventional storage approach. If the table is stored one column at a time (as is done, 
for example, in KDB), then splitting this table into two has no benefit. 

4.3 Clustering Two Tables 
Oracle offers the possibility to cluster two tables together based on the key of one of the tables. 
This can be considered a compromise between normalization and denormalization because it 
groups rows together that would be joined in forming a denormalized table. For example, let us 
take our supplier/order example.  

 Supplier(supplier_ID, supplier_address) 
 Onorder(supplier_ID, part_ID, quantity) 

Oracle clustering would intermix these two tables, so there would be a single Supplier record 
followed by all the Onorder records that match that supplier. In that case, supplier_ID is said to 
be a cluster key. Here is how the layout might appear.  

 Supplier 1 record  

o Onorder 235 record 
o Onorder 981 record 
o Onorder 112 record 
 Supplier 2 record  

o Onorder 239 record 
o Onorder 523 record 
o Onorder 867 record 

Clustering tables has its good and bad points.  

 Queries on the cluster key are fast. Thus, a query that wants to find all orders 
having to do with a particular supplier will execute quickly. 

 Point queries on either Supplier or Onorder that use indexes will behave as well 
as point queries using nonclustering indexes on the standard layout. 

 Full table scans of the Onorder table will be somewhat slower than in a standard 
layout. Full table scans of the Supplier table will be much slower than in a standard layout 
because there may be many Onorder records between neighboring Supplier records. 

 Insertions may cause overflow chaining, slowing the performance of cluster key 
searches. In fact, if there are enough insertions, application performance may degrade 
badly. It is mostly for this reason that Oracle consultants rarely recommend clustering of 
two tables. In fact, the documentation advertises clustering mainly for the use of a hash 
index on a single table. 
DIGRESSION REGARDING DEFINITIONS  

 

It is important to understand the similarities and differences between table clustering and index 
clustering.  
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 Both concepts force a certain organization on table records. 
 A clustering index forces an organization onto the records of a single table and 

provides an index to access the records of that table. Table clustering forces an 
intermixing of the records between two different tables based on an attribute, essentially 
precomputing a join. 

 As far as the larger table is concerned, the performance effect of table clustering 
is similar to having a clustering index on the cluster key field. For example, clustering 
Onorder with Supplier on supplier_ID gives similar performance to a clustering index on 
Onorder.supplier_ID. 
4.4 Aggregate Maintenance 
In reporting applications, aggregates (sums, averages, and statistics) are frequently used to 
make the data more intelligible. For such queries, it may be worthwhile to maintain special 
tables that hold those aggregates in precomputed form. Even though we discuss strategies for 
constructing such "materialized views" in Chapter 9, the rationale for such tables applies even 
to transactional databases, so we present the basic ideas here. 

Consider the following example. The accounting department of a chain of convenience stores 
issues queries every 20 minutes to discover the total dollar amount on order from a particular 
vendor and the total dollar amount on order by a particular store. They have a normalized 
schema.  

 Order(ordernum, itemnum, quantity, purchaser, vendor) 
 Item(itemnum, price) 
 Store(store, vendor) 

Order and Item each has a clustering index on itemnum. Store is small; thus no index is 
defined. 

Both "total amount" queries execute very slowly and disrupt normal insert processing into these 
relations. The database administrator believes he must denormalize Order to include the price. 
What do you suggest? 
Action. Denormalizing would eliminate one join. However, updating the price of an item would 
be complicated. What's more, every insertion into Order may require a lookup in the (still 
present) Item table to discover the price. 

Another approach is to consider temporal partitioning. If the queries can be executed during 
off-hours, then they should be. 

If the queries must be executed often, then consider creating two additional relations.  

 VendorOutstanding(vendor, amount), where amount is the dollar value of goods 
on order to the vendor, with a clustering index on vendor. 

 StoreOutstanding(store, amount), where amount is the dollar value of goods on 
order by the store, with a clustering index on store. 
This approach, known as aggregate maintenance, requires updates to VendorOutstanding and 
StoreOutstanding on every update of the Order table, which makes it more expensive to insert 
Order records. The benefit is that the "total amount" queries require a simple lookup with this 
approach. Thus, aggregate maintenance is worthwhile if the time saved for the lookup queries 
is greater than the extra time required by all updates between two lookups (Figures 4.7, 4.8, 
and 4.9). 
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Figure 4.7: Aggregate maintenance. We implemented the total amount example given in 
Section 4.4 to compare the benefits and costs of aggregate maintenance using SQL Server 2000 
on Windows 2000. The aggregate maintenance solution relies on triggers that update the 
VendorOutstanding and StoreOutstanding relations whenever a new order is inserted. The graph 
shows the gain obtained with aggregate maintenance. For inserts this gain is negative: the 
execution of the triggers slows down insertions by approximately 60%. For queries, however, the 
gain is spectacular: response time is reduced from 20 seconds to 0.1 second. The reason is that 
the "total amount" queries are simple scans on very small relations when aggregate maintenance 
is used, whereas they are three- or four-way joins on the large order relations otherwise.  

 
Figure 4.8: Aggregate maintenance with materialized views (queries). We implemented the 
total amount example given in Section 4.4 to compare the benefits and costs of aggregate 
maintenance using Oracle 9i on Linux. Materialized views are transparently maintained by the 
system to reflect modifications on the base relations. The use of these materialized views is also 
transparent; the optimizer rewrites the aggregate queries to use materialized views if appropriate. 
We use a materialized view to define VendorOutstanding. The speed-up for queries is two orders 
of magnitude.  

 
Figure 4.9: Aggregate maintenance with materialized views (insertions). There are two main 
parameters for view materialization maintenance: (1) the materialized view can be updated in the 
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transaction that performs the insertions (ON COMMIT), or it can be updated explicitly after all 
insert transactions are performed (ON DEMAND); (2) the materialized view is recomputed 
completely (COMPLETE) or only incrementally depending on the modifications of the base tables 
(FAST). The graph shows the throughput when inserting 100,000 records in the orders relation 
for FAST ON COMMIT and COMPLETE ON DEMAND. On commit refreshing has a very 
significant impact on performance. On demand refreshing should be preferred if the application 
can tolerate that materialized views are not completely up to date or if insertions and queries are 
partitioned in time (as it is the case in a data warehouse).  
USE OF REDUNDANCY TO ENHANCE PERFORMANCE  

 

Denormalization and aggregate maintenance rely on redundancy to enhance performance:  

 As the schema Onorder1(supplier_ID, part_ID, quantity, supplier_address) 
showed, denormalization creates redundant relationships (many copies of a supplier_ID, 
supplier_address pair) that slow down insertions and updates, but speed join queries. 

 Maintaining aggregates as in the VendorOutstanding and Store-Outstanding 
tables is again a trade-off that slows down insertions and updates, but speeds up 
aggregate queries. 

 Defined but "unmaterialized" views have no influence on performance. They are 
the database equivalent of macros whose definition is expanded at query time. 
4.5 Record Layout 
Once you have determined the attributes of each relation, you face the far easier, but important 
task of choosing the data types of the attributes. The issues are fairly straightforward.  

 An integer is usually better to use than a float because floats tend to force 
selections to perform range queries. For example, if attribute A is computed based on 
some floating-point expression, then a selection to find records having value 5 in attribute 
A may require the qualification  

    WHERE A >= 4.999 
    AND A <= 5.001 

to avoid problems having to do with different machine precisions. Therefore, you should 
choose integer values for data such as salaries (record the salary in pennies) and stock 
prices.  

 If the values of an attribute vary greatly in size and there are few updates, then 
consider using a variable-sized field. 
On most systems, a variable-sized field will be only a few bytes longer than the value it 
represents. A fixed-sized field has to be long enough for the longest field value. So, 
variable-sized fields give better space utilization. This makes them better for scans and for 
clustering indexes. The main cost is that the overhead of doing storage management for 
variable-sized fields can become significant if there are many updates. Especially 
disruptive is an update that makes a certain field much larger, for example, changing the 
address of an Employee record from NULL to a rural postal address. Such an update may 
cause that field to be placed on another page or may move the entire containing record to 
a new page depending on your database system. As discussed in Chapter 2, there is a 
close relationship between your page utilization parameters and your application's use of 
variable-length fields. 

 Modern database systems provide support for Binary Large OBjects (BLOBs): 
variable-length values of up to 2 or 4 gigabytes. These attribute values are not stored with 
the rest of a row, but rather on separate pages (it is often a good idea to store BLOBs on 
separate disks to enable sequential scanning of the non-BLOB part).[4] Oracle even allows 
values of type BFILE to be stored in the file system outside the database system. Each 
row contains a pointer to the location of its BLOB's attributes. In IBM UDB V7.1, the size 
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of the pointer depends on the maximum size declared for the BLOB. It varies from 72 
bytes for a BLOB of less than 1 kilobyte to 316 bytes for a BLOB of 2 gigabytes. This 
improves space utilization if the maximum size of BLOBs is known beforehand. 

[4]An alternative to using BLOBs is often to store pointers to files in the database. The following 
article discusses the example of an image database. It recommends storing pointers to files as 
VARCHAR in the database instead of images that would be stored as BLOBs. 

Andy Rosebrock and Stan Schultes, "Store Images in Your Database," Visual Basic 
Programmer's journal, February 2001, vol. 11, no. 2. Fawcette Technical Publications, Palo 
Alto, Calif. 
4.6 Query Tuning 
The first tuning method to try is the one whose effect is purely beneficial. Most changes such 
as adding an index, changing the schema, or modifying transaction lengths have global and 
sometimes harmful side effects. Rewriting a query to run faster has only beneficial side effects. 

There are two ways to see that a query is running too slowly.  

1. It issues far too many disk accesses, for example, a point query scans an entire 
table. 

2. You look at its query plan and see that relevant indexes are not used. (The query 
plan is the the method chosen by the optimizer to execute the query.) 
Refer to Chapter 7 on monitoring methods. Here are some examples of query tuning and the 
lessons they offer. The examples use three relations.  

 Employee(ssnum, name, manager, dept, salary, numfriends) 
Clustering index on ssnum and nonclustering indexes on name and dept each. Ssnum 
and name each is a key. 

 Student(ssnum, name, course, grade) 

Clustering index on ssnum and a nonclustering index on name. Ssnum and name each is 
a key. 

 Techdept(dept, manager, location) 

Clustering index on dept. Dept is the key. A manager may manage many departments. A 
location may contain many departments. 
 
Let us discuss DISTINCT first.  

1. In most systems, DISTINCT will entail a sort or other overhead, so should be 
avoided. 
Query. Find employees who work in the information systems department. There should be 
no duplicates.  
   SELECT DISTINCT ssnum 
   FROM Employee 
   WHERE dept = 'information systems' 
There is no need for the keyword DISTINCT since ssnum is a key of Employee so certainly 
is a key of a subset of Employee. (Because of the index on ssnum, this particular query may 
not encounter extra overhead as a result of the DISTINCT keyword, but some cases are not 
so obvious as we will see later.)  

2. Many subsystems handle subqueries inefficiently. 
Query. Find employee Social Security numbers of employees in the technical departments. 
There should be no duplicates.  
   SELECT ssnum 
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   FROM Employee 
   WHERE dept IN (SELECT dept FROM Techdept) 
This query might not use the index on Employee dept in some systems. Fortunately, the 
query is equivalent to the following one, which would use the index on Employee dept:  
   SELECT ssnum 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
Note that if employees could belong to several departments, then the second query would 
require DISTINCT, whereas the first one would not. Since ssnum is a key of Employee and 
dept is a key of Techdept, neither query needs DISTINCT for reasons we will see shortly.  

3. The unnecessary use of temporaries can hurt performance for two reasons. First, 
it may force operations to be performed in a suboptimal order. Second, in some systems, 
the creation of a temporary causes an update to the catalog, perhaps creating a 
concurrency control hot spot. 
Query. Find all information department employees who earn more than $40,000.  
   SELECT * INTO Temp 
   FROM Employee 
   WHERE salary > 40000 
 
   SELECT ssnum 
   FROM Temp 
   WHERE Temp.dept = 'information' 
Not only is there overhead to create the temporary, but the system would miss the 
opportunity to use the index on dept. A far more efficient solution would be the following:  
   SELECT ssnum 
   FROM Employee 
   WHERE Employee.dept = 'information' 
   AND salary > 40000 

4. Complicated correlation subqueries may execute inefficiently, so perhaps should 
be rewritten. In that case, temporaries may help. 
Query. Find the highest paid employees per department.  
   SELECT ssnum 
   FROM Employee e1 
   WHERE salary = 
   (SELECT MAX(salary) 
    FROM Employee e2 
    WHERE e2.dept = e1.dept 
   ) 
This query may search all of e2 (that is, all of the Employee relation) for each record of e1 
(or at least all the records in each department). In that case, this query should be replaced 
by the following query that uses temporaries:  
   SELECT MAX(salary) as bigsalary, dept INTO Temp 
   FROM Employee 
   GROUP BY dept 
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   SELECT ssnum 
   FROM Employee, Temp 
   WHERE salary = bigsalary 
   AND Employee.dept = Temp.dept 
Observe that you would not need DISTINCT because dept is a key of Temp. In the 
terminology that we will develop later, Temp "reaches" Employee.  

5. Temporaries may also help avoid ORDER BYs and scans when there are many 
queries with slightly different bind variables. 
Queries. For the salary ranges, $40,000 to $49,999, $50,000 to $59,999, $60,000 to 
$69,999, and $70,000 to $79,999, order the employees by ssnum. Thus, there are four 
queries. 
Each query would have the form (with 40000 and 49999 replaced appropriately)  
   SELECT ssnum, name 
   FROM Employee 
   WHERE salary >= 40000 
   AND salary >= 49999 
   ORDER BY ssnum 
That is, each would require a scan through Employee and a sort of the records that survive 
the qualification on salary. A better approach would do the following:  
   SELECT ssnum, name, salary INTO Temp 
   FROM Employee 
   WHERE salary >= 40000 
   AND salary <= 79999 
   ORDER BY ssnum 
A typical query would then have the form  
   SELECT ssnum, name 
   FROM Temp 
   WHERE salary >= 40000 
   AND salary >= 49999 
The reformulation would require only  

 A single ORDER BY of the records whose salaries satisfy the 
constraints of the four queries. 

 Four scans without an ORDER BY statement of these selected 
records. 
 
The big savings comes from avoiding a scan of the entire Employee relation for each query. 
This will reduce the necessary number of disk accesses.  

6. It is a good idea to express join conditions on clustering indexes. Failing that, 
prefer a condition expressing numerical equality to one expressing string equality. 
Query. Find all the students who are also employees.  
   SELECT Employee.ssnum 
   FROM Employee, Student 
   WHERE Employee.name = Student.name 
In this case, the join is correct because name is a key, but we can make it more efficient by 
replacing the qualification as follows:  
   SELECT Employee.ssnum 
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   FROM Employee, Student 
   WHERE Employee.ssnum = Student.ssnum 
This will speed up the query by permitting a merge join, since both relations are clustered on 
ssnum.  

7. Don't use HAVING when WHERE is enough. For example, the following query 
finds the average salary of the information department, but may first perform the grouping 
for all departments.  

8.    SELECT AVG(salary) as avgsalary, dept 
9.    FROM Employee 
10.    GROUP BY dept 
11.    HAVING dept = 'information'; 

The following will first find the relevant employees and then compute the average.  
   SELECT AVG(salary) as avgsalary 
   FROM Employee 
   WHERE dept = 'information' 
   GROUP BY dept; 

12. Study the idiosyncrasies of your system. For example, some systems never use 
indexes when different expressions are connected by the OR keyword. 
Query. Find employees with name Smith or who are in the acquisitions department.  
   SELECT Employee.ssnum 
   FROM Employee 
   WHERE Employee.name = 'Smith' 
   OR Employee.dept = 'acquisitions' 
Check the query plan. If no index is used, then consider using a union.  
   SELECT Employee.ssnum 
   FROM Employee 
   WHERE Employee.name = 'Smith' 
 
   UNION 
 
   SELECT Employee.ssnum 
   FROM Employee 
   WHERE Employee.dept = 'acquisitions' 

13. Another idiosyncrasy is that the order of tables in the FROM clause may affect the 
join implementation though this does not usually take effect until more than five tables are 
involved. 
If one relation is much smaller than the other, it is better to scan the smaller one. So, the 
ordering of the tables in the query can be important for performance (though the set of 
records in the answer won't change). 

14. Views may cause queries to execute inefficiently. Suppose we create a view 
Techlocation as follows:  

15.    CREATE VIEW Techlocation 
16.    AS SELECT ssnum, Techdept.dept, location 
17.    FROM Employee, Techdept 
18.    WHERE Employee.dept = Techdept.dept 
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The view definition can be read as if it were a table. For example,  
   SELECT location 
   FROM Techlocation 
   WHERE ssnum = 452354786 
In this case, the database management system will process such a query based on the 
definition of Techlocation. That is, the system will execute  
   SELECT location 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
   AND ssnum = 452354786 
Thus, the use of a view cannot give better performance than a query against base tables. (If 
this query is performed frequently and updates are rare, then it may be worthwhile to 
maintain the unnormalized relation Techlocation as a redundant base table. However, a view 
does not do that.)  
A view can easily lead you to write inefficient or even incorrect queries, however. For 
example, consider a similar query:  
   SELECT dept 
   FROM Techlocation 
   WHERE ssnum = 452354786 
This will be expanded to a formulation having a join:  
   SELECT dept 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
   AND ssnum = 452354786 
Because dept is an attribute of Employee, the following less expensive query is possible:  
   SELECT dept 
   FROM Employee 
   WHERE ssnum = 452354786 
The query against the view might lead to an incorrect response if the given employee does 
not work in a technical department.  
Figure 4.10 shows the performance impact of some of the rewriting techniques already 
described. We can make the following observations. First, some of these cases are identified 
during optimization, and the systems perform the rewriting on their own (subquery on Oracle 
and DB2, correlated subqueries on SQL Server, HAVING on SQL Server). Second, removing 
DISTINCTs when they're not required helps though only a little. Third, the performance of 
correlated subqueries is spectacularly poor on Oracle and DB2. On these systems, it is about 
100 times faster to introduce a temporary relation. They both perform an aggregate on the 
inner branch of a nested loop join. SQL Server, on the other hand, does a good job at handling 
the correlated subquery: a hash join is performed.[5] Fourth, using numerical attributes as 
opposed to string attributes to perform a join helps significantly. Fifth, Oracle suffers a 
significant performance penalty when a query uses HAVING even though a WHERE would do. 
Note finally that the use of statistics makes a significant difference. Outdated statistics lead the 
optimizer to choose an execution plan that performs significantly worse than the execution plan 
chosen with updated statistics. 
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Figure 4.10: Query tuning. This graph shows the percent increase in throughput between the 
original query and the rewritten query for the rewriting techniques we have presented in this 
section: distinct refers to the suppression of unnecessary DISTINCTs, subquery refers to the use 
of joins instead of uncorrelated subqueries without aggregates, correlated subquery refers to the 
decomposition of correlated subqueries using intermediate tables, join and numeric attribute 
refers to the use of a numeric attribute rather than an equivalent string attribute as the joining 
attribute, join and clustered index refers to the use of attributes on which a clustered index is 
defined on join attributes, having refers to the incorporation of selection conditions in the WHERE 
clause rather than in the HAVING clause, and view refers to the use of a selection on a base 
table instead of a view expanded to a join. These experiments were performed using IBM UDB 
V7.1, Oracle 8i, and SQL Server 2000 on Windows 2000.  

4.6.1 Minimizing DISTINCTs 

The interrelated questions of minimizing DISTINCTs and eliminating certain kinds of nested 
queries can be subtle. This subsection concerns DISTINCT. 

In general, DISTINCT is needed when  

 the set of values or records returned should contain no duplicates. 
 the fields returned do not contain (as a subset) a key of the relation created by the 

FROM and WHERE clauses. 

In the query  
   SELECT ssnum 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
DISTINCT is not needed because an Employee record e will survive the join with Techdept only if 
e has the same department as some Techdept record t. Because dept is a key of Techdept, there 
will be at most one such record t, so e will be part of at most one record of the join result. 
Because ssnum is a key of Employee, at most one record in Employee will have a given ssnum 
value.  
Generalizing from this example, we conclude that if the fields returned constitute a key of one 
table T and all other tables perform an equijoin with T by their keys, then the values returned 
will contain no duplicates, so DISTINCT will be unnecessary. 
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Technical generalization: Notion of reaching 
In fact, DISTINCT is unnecessary in more general situations. To describe those situations, we 
must resort to a little mathematics and graph theory. Call a table T privileged if the fields 
returned by the select contain a key of T. 
Let R be an unprivileged table. Suppose that R is joined on equality by its key field to some 
other table S, then we say that R reaches S. We define reaches to be transitive. So, if R1 
reaches R2 and R2 reaches R3, then we say that R1 reaches R3. 

There will be no duplicates among the records returned by a selection, even in the absence of 
DISTINCT, if the following two conditions hold:  

 Every table mentioned in the select line is privileged. 
 Every unprivileged table reaches at least one privileged one. 

The reason this works is the following. If every relation is privileged, then there are no 
duplicates even without any qualification. Suppose some relation T is not privileged but 
reaches at least one privileged one, say, R. Then the qualifications linking T with R ensure that 
each distinct combination of privileged records is joined with at most one record of T. 

Here are some examples to train your intuition.  

 Note that the following slight variation of the query above would return duplicates:  
    SELECT ssnum 
    FROM Employee, Techdept 
    WHERE Employee.manager = Techdept.manager 

The reason is that the same Employee record may match several Techdept records 
(because manager is not a key of Techdept), so the Social Security number of that 
Employee record may appear several times. The formal reason is that the unprivileged 
relation Techdept does not reach privileged relation Employee.  

 If the preceding example were changed slightly to make Techdept privileged  
    SELECT ssnum, Techdept.dept 
    FROM Employee, Techdept 
    WHERE Employee.manager = Techdept.manager 

then the problem goes away because each repetition of a given ssnum value would be 
accompanied by a new Techdept.dept since Techdept.dept is the key of Techdept.  

 In fact, the qualification isn't even necessary. That is, the following query would 
have no duplicates either:  

    SELECT ssnum, Techdept.dept 
    FROM Employee, Techdept 
 If Techdept were not privileged in a query, however, then the query might produce 

duplicates as in the following example:  
    SELECT ssnum, Techdept.manager 
    FROM Employee, Techdept 
 Finally, the reaches predicate may go through an intermediate relation yet still 

ensure that there are no duplicates. Recall here that name is a key of Employee. (It also 
happens to be a key of Student though even if it weren't, there would be no duplicates in 
the result of the following query.)  

    SELECT Student.ssnum 
    FROM Student, Employee, Techdept 
    WHERE Student.name = Employee.name 
    AND Employee.dept = Techdept.dept 



Database Tuning  Chapter 4: Tuning Relational Systems 

-114- 

The formal reason is that both Employee and Techdept reach Student. However, let us try to 
show this directly. If a given Student's ssnum appeared more than once, then there would be 
some Student record s that survived twice in the qualification. That is, there are Employee 
records e and e′ and Techdept records t and t′ such that s, e, t and s, e′, t′ both survive the 
qualification. Because name is the key of Employee, however, e = e′. Because dept is the 
key of Techdept, only one record can join with e, so t = t′.  

 Can you see why the following might have duplicates?  
    SELECT Student.ssnum 
    FROM Student, Employee, Techdept 
    WHERE Student.name = Employee.name 
    AND Employee.manager = Techdept.manager 

4.6.2 Rewriting of Nested Queries 

It is unfortunate but true that most query optimizers perform much less well on some types of 
nested queries than on the corresponding nonnested ones. The four major kinds of nested 
queries are  

1. Uncorrelated subqueries with aggregates in the inner query 
2. Uncorrelated subqueries without aggregates 
3. Correlated subqueries with aggregates 
4. Correlated subqueries without aggregates 

Since the first three are the most common, we concentrate on them. 

Uncorrelated subqueries with aggregates 
Consider the following example: "Find all employees who earn more than the average 
employee salary."  
   SELECT ssnum 
   FROM Employee 
   WHERE salary > (SELECT AVG(salary) FROM Employee) 

Virtually all commercial systems would compute the average employee salary first and then 
insert the result as a constant in the outer query. This type of query causes no particular 
performance problem. 

Uncorrelated subqueries without aggregates 
Recall the example from earlier: "Find all employees in departments that are also in the 
Techdept relation."  
   SELECT ssnum 
   FROM Employee 
   WHERE dept IN (SELECT dept FROM Techdept) 

This query might not use the index on dept in employee in many systems. Consider the 
following transformation:  

1. Combine the arguments of the two FROM clauses. 
2. AND together all the where clauses, replacing IN by =. 
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3. Retain the SELECT clause from the outer block. 

This yields  
   SELECT ssnum 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 

The transformation will work for nestings of any depth, but sometimes we have to use the 
formalism concerning privilege and reaching. Consider, for example, the following:  
   SELECT AVG(salary) 
   FROM Employee 
   WHERE dept IN (SELECT dept FROM Techdept) 
This will be equivalent to  
   SELECT AVG(salary) 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
because the same number of salary values result from the join as from the nested query. The 
reason is that the salary value from a given Employee record will be included at most once in 
both queries because Techdept "reaches" (as we saw) Employee in this query.  

By contrast, the following query  
   SELECT AVG(salary) 
   FROM Employee 
   WHERE manager IN (SELECT manager FROM Techdept) 
could yield a different value from  
   SELECT AVG(salary) 
   FROM Employee, Techdept 
   WHERE Employee.manager = Techdept.manager 
because the second one may include an Employee record several times if that Employee's 
manager is the manager of several Techdepts. (As you can see, the reaches formalism is quite 
useful when duplicates matter. Duplicates do not matter for aggregates like MIN and MAX.)  

The best solution would be to create a temporary relation, say, Temp with key field manager. 
Then,  
   SELECT DISTINCT manager INTO Temp 
   FROM Techdept 
 
   SELECT AVG(salary) 
   FROM Employee, Temp 
   WHERE Employee.manager = Temp.manager 

Correlated subqueries 
Let us modify slightly the uncorrelated subquery from the preceding example: "Find employees 
who earn exactly the average salary in their department where their department is a technical 
one."  
   SELECT ssnum 
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   FROM Employee e1, Techdept 
   WHERE salary = (SELECT AVG(e2.salary) 
                   FROM Employee e2, Techdept 
                   WHERE e2.dept = e1.dept 
                   AND e2.dept = Techdept.dept) 
In most cases, this query will be quite inefficient so should be transformed to  
   SELECT AVG(salary) as avsalary, Employee.dept INTO Temp 
   FROM Employee, Techdept 
   WHERE Employee.dept = Techdept.dept 
   GROUP BY Employee.dept 
 
   SELECT ssnum 
   FROM Employee, Temp 
   WHERE salary = avsalary 
   AND Employee.dept = Temp.dept; 

This transformation can be characterized as follows:  

1. Form a temporary based on a GROUP BY on the attribute (or attributes) of the 
nested relation that is (or are) correlated with the outer relation. (The correlation must be 
equality for this to work.) In the example, the attribute was dept. Use the uncorrelated 
qualifications from the subquery in the construction of the temporary. In the example, that 
was the qualification  

2.    Employee.dept = Techdept.dept 
3. Join the temporary with the outer query. A condition on the grouped attribute 

replaces the correlation condition. In the example, the condition is  
4.    Employee.dept = Temp.dept 

A condition between the comparing attribute and the dependent attribute of the grouping 
replaces the subquery condition. In the example, that corresponds to the replacement of  
WHERE salary = (SELECT AVG(e2.salary) 
by  
WHERE salary = avsalary 
All other qualifications in the outer query remain. There were none in this example.  

By definition, the GROUP BY attribute(s) will constitute a key of the resulting temporary. 
Therefore, the temporary relation will always reach the outer relation. This eliminates any 
problem about duplicates. The correlation predicate was  
   WHERE e2.dept = e1.dept 
in the example. Can you show by example why the transformation could be incorrect if the 
correlation predicate were not equality? (Hint: The grouping operator could create the wrong 
aggregate values.)  

There is one more problem concerning empty sets and counting aggregates. Consider the 
following slight variation of the preceding query: "Find employees whose number of friends 
equals the number of employees in their department where their department is a technical 
one."  
   SELECT ssnum 
   FROM Employee e1 



Database Tuning  Chapter 4: Tuning Relational Systems 

-117- 

   WHERE numfriends = COUNT(SELECT e2.ssnum 
   FROM Employee e2, Techdept 
   WHERE e2.dept = e1.dept 
   AND e2.dept = Techdept.dept) 

Construct a similar transformation to the preceding one.  
   SELECT COUNT(ssnum) as numcolleagues, Employee.dept INTO Temp 
   FROM Employee, Techdept 
   AND Employee.dept = Techdept.dept 
   GROUP BY Employee.dept 
 
   SELECT ssnum 
   FROM Employee, Temp 
   WHERE numfriends = numcolleagues 
   AND Employee.dept = Temp.dept 
Can you see why the result of this transformation is not equivalent? (Hint: Consider an 
employee Helene who is not in a technical department.) 

In the original query, Helene's friend's list would be compared with the count of an empty set, 
which is 0, so her record would survive the selection provided she has no friends. In the 
transformed query, her dept would not correspond to a dept value in Temp (because it would 
not correspond to a department value in Techdept). So she would not appear in the output of 
the second query no matter how few friends she has. 

In the first query, this would not have been a problem because Helene's salary would never be 
equal to the average salary of an empty set (which is NULL in most systems). 

For more details, see the papers of Richard A. Ganski and Harry K. T. Wong[6] and of Won 
Kim.[7] The Ganski and Wong paper extends the Kim paper and corrects a few bugs. These 
transformations can be very tricky. 

[5]The tehniques implemented in SQL Server for optimizating subqueries and aggregates are 
described in "Orthogonal Optimization of Subqueries and Aggregates" by Cesar A. Galindo-
Legaria and Milind Joshi, SIGMOD, 2001. 

[6]R. A. Ganski and H. K. T. Wong, "Optimization of Nested SQL Queries Revisited," ACM 
SIGMOD Conference 1987, 23–33. 

[7]Won Kim, "On Optimizing an SQL-Like Nested Query," Transactions on Database Systems, vol. 
7, no. 3, 443–469, September 1982. 

4.7 Triggers 
A trigger is a stored procedure that executes as the result of an event.[8] In relational systems, 
the event is usually a modification (insert, delete, or update) or a timing event (it is now 6 A.M.). 
The event that causes a trigger to execute its modification is called the enabling event, and it is 
said to fire that trigger. The trigger executes as part of the transaction containing the enabling 
event. 
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4.7.1 Uses of Triggers 

There are three main reasons to use a trigger, only one of which has to do with performance.  

 A trigger will fire regardless of the application that enables it. This makes triggers 
valuable for auditing purposes or to reverse suspicious actions. For example, the following 
trigger rolls back transactions that try to update salaries on weekends. (We use SYBASE 
syntax here.)  

    CREATE TRIGGER nosalchange 
    ON Employee 
    FOR update 
    AS 
    IF update(salary) 
    AND datename(dw, getdate()) IN ('Saturday,' 'Sunday') 
    BEGIN 
  
      roll back transaction 
      PRINT 'Nice try, buster!' 
    END 
 A trigger can maintain integrity constraints that the application is unaware of. 

Referential integrity is the constraint that every value in some column A of table T should 
be present in column A′ of table T′. For example, the following trigger deletes all accounts 
from a deleted branch:  

    CREATE TRIGGER killaccounts 
    ON Branch 
    FOR delete 
    AS 
    DELETE Account 
    FROM Account, deleted 
    WHERE Account.branch_ID = deleted.branch_ID 
 The third use of a trigger is to respond to events generated by a collection of 

applications. In this case, triggers can provide substantial performance benefits. Consider 
an application that must write into a table Monitortable the latest data inserted into a table 
Interestingtable. Without triggers the only way to obtain this data is to query the table 
repeatedly, that is, to poll. The query might be of the form  

    INSERT Monitortable 
    SELECT * 
    FROM Interestingtable 
    WHERE Inserttime > @lasttimeIlooked 
    Update @lasttimeIlooked based on current time. 

Polling introduces a tension between correctness and performance. If your application polls too 
often, then there will be unnecessary queries in addition to concurrency conflicts with inserters 
to Interestingtable. If your application polls too seldom, you may miss important data (perhaps 
some transactions delete recently inserted records from Interestingtable). 
A better approach (known as an interrupt-driven approach) is to use a trigger to put the data 
directly into Monitortable when an insertion occurs. The trigger might have the form  
   CREATE TRIGGER tomonitor 
   ON Interestingtable 
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   FOR insert 
   AS 
   INSERT Monitortable 
   SELECT * 
   FROM inserted 

No tuning is necessary, and no inserts will be missed. 

Triggers do have one serious disadvantage: they can lead to a maintenance nightmare for two 
related reasons.  

1. In the presence of triggers, no update can be analyzed in isolation because the 
update may cause some trigger to cause a further modification. 

2. The interaction between triggers can be confusing once the number of triggers 
becomes large. This is an issue because several triggers may be enabled by the same 
modification. The system must choose which one to execute first and whether to execute 
the others at all. (A system could, in principle, execute all enabled triggers simultaneously, 
but it is not clear what that would mean if several of the triggers modify the same data.) A 
useful software tool would alert system administrators to possible conflicts among triggers 
as well as possible cascades of different triggers. 

4.7.2 Trigger Performance 

For most purposes, improving a trigger's performance entails the same analysis as improving 
any query's performance. For example, if the trigger updates the branch balance each time an 
account balance is updated, then you might consider an index on branch ID. Trigger 
performance tuning presents two unique aspects, however.  

 A trigger occurs only after a certain combination of operations. Sometimes, you 
can make use of that information to suggest a special strategy. For example, suppose 
every update to the Sale relation requires a check on whether the customer credit is good. 
It may, then, be a good idea to create an index on the Customer table to ensure that the 
resulting join is fast enough. 

 A naive application developer may often write a trigger that executes too often or 
returns too much data. For example, consider a trigger that writes records to table 
Richdepositor each time an account balance increases over $50,000.  

    CREATE TRIGGER nouveauriche 
    ON Account 
    FOR update 
    AS 
    BEGIN 
      INSERT Richdepositor 
      FROM inserted 
      WHERE inserted.balance > 50000 
    END 

Writing the trigger this way has two problems. First, it will try to write into Richdepositor 
whether or not a balance has been updated. Second, suppose that some depositor Ariana 
Carlin already had a balance greater than $50,000 before the update took place. This trigger 
will then write Ariana Carlin into the Richdepositor table unnecessarily. It would be better to 
write the trigger this way:  
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   CREATE TRIGGER nouveauriche 
   ON Account 
   FOR update 
   AS 
   IF update(balance) 
   BEGIN 
     INSERT Richdepositor 
     FROM inserted, deleted 
     WHERE inserted.balance > 50000 
     AND deleted.balance < 50000 
     AND deleted.account_ID = inserted.account_ID 
   END 
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Exercises 

EXERCISE 1 

An airline database stores information about airplanes and flights as follows:  

 Airplane(airplane_ID, dateofpurchase, model), with key airplane_ID 
Flight(airplane_ID, flight, seat, occupant), with key airplane_ID, flight, seat 

Would there be any performance-related advantage to denormalizing to  

 (airplane_ID, flight, seat, occupant, dateofpurchase, flight, model) 
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for the online portion of the database?  
Action. No. Denormalizing is unlikely to help. The number of updates on flights is likely to be 
much higher than queries relating specific flight-seat pairs to the date of purchase. 

EXERCISE 2 

Suppose you are given the relation  

 Purchase(name, item, price, quantity, suppliername, year) 
 
with a clustering index on name. You want to compute the cost of items based on a first-in, first-
out ordering. That is, the cost of the first purchase of an item should be accounted for before the 
cost of a later item. Consider Figure 4.11, which contains all the widget records in the Purchase 
relation. To account for the purchase of 98 widgets, we should account for 60 from the year 2001 
(costing $900) and 38 from the year 2002 (costing $494) for a total cost of $1394.  

 
Figure 4.11: Purchase table.  

We want to do this for all the data items. So, for each such data item @x, we return the data 
sorted by year.  
   SELECT * 
   FROM Purchase 
   WHERE item = @x 
   ORDER BY year 

There are 10,000 different items, and we discover that each query scans the entire Purchase 
table and then performs a sort based on year. The application runs too slowly. What do you do? 
Action. If there are fairly few records for each item, then one possibility is to construct a 
nonclustering index on item. The query style won't have to change. Another strategy is to sort 
all the records into a temporary by (item, year). Then go through the table sequentially using 
your favorite programming language. 

[8]We discuss the performance uses of stored procedures in the context of reducing unnecessary 
interactions between clients and servers in the next chapter. 
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Chapter 5: Communicating With the Outside 
5.1 Talking to the World 
Databases must communicate with programming languages that do specialized manipulations, 
with outside data sources, and with application servers. 

In most settings, the underlying hardware can make this communication fast, but poor use of 
the software interface tools can slow your system down significantly. This chapter suggests 
methods to make the interfaces fast. 

Most applications interact with database systems in one of two ways: by using a system-
specific fourth-generation language(4GL) or by using a programming language (such as Java, 
Visual Basic, or C) that relies on a call-level interface. 

Different vendors offer different 4GLs, so using a 4GL hinders portability, but they execute at a 
high level so often result in small programs. Call-level interfaces are libraries of functions that 
enable a program to connect to a database server, run SQL statements, fetch query results, 
and commit or abort transactions. There are a myriad of call-level interfaces. The most popular 
are ODBC for C/C++ and JDBC for Java. 

ODBC (Open DataBase Connectivity) was originally designed by Microsoft; it has become a 
standard interface for database systems on Windows platforms (Oracle and DB2 provide 
ODBC drivers for Windows).[1] JDBC is a call-level interface for Java that was defined by Sun. 
JDBC is very similar to ODBC in its architecture and in the functions it supports; we thus focus 
on ODBC in the rest of this section. 

An application using the ODBC interface relies on a driver manager (integrated with Windows) 
to load a driver that is responsible for the interaction with the target database system. The 
driver implements the ODBC functions and interacts with the underlying database server. The 
driver manager can also be configured to log all ODBC calls. This is useful for debugging but 
hurts performances, so should be disabled in production environments. 
SQL Server, Oracle, and DB2 UDB servers all have specific ODBC drivers. Companies such 
as DataDirect Technologies[2] or OpenLink [3] provide generic ODBC drivers. ODBC drivers can 
be characterized as follows:  

1. Conformance level. For portable applications, it is safe to limit the calls to level 1 
ODBC functions (e.g., core functions for allocating and deallocating handles for database 
environment, connections, and statements; for connecting to a database server; for 
executing SQL statements; for receiving results; for controlling transactions; and for error 
handling). 

2. SQL dialect. Generic ODBC drivers transform SQL statements that follow ODBC's 
definition of the SQL grammar into the dialect of a particular database system. System-
specific ODBC drivers assume that SQL statements follow the dialect of the system they 
are connected to. 

3. Client-server communication mechanism. Generic ODBC drivers rely on a 
database-independent communication layer, whereas database-specific ODBC drivers 
exploit the particular mechanisms supported by the database server they connect to (net8 
for Oracle 8, ODS for SQL Server, and Client Application Enabler for DB2 UDB). 
Database-specific ODBC drivers can run significantly faster as a result. 
Generic ODBC drivers provide transparent portability but worse performance and some loss of 
features (level 1 conformance in general). Database-specific ODBC drivers allow a program to 
run on different database systems as long as queries are expressed in the dialect of the target 
system. If portability is not an issue, or if a program needs to access specific functions of a 
given database system that are not supported by ODBC (most ODBC drivers do not support 
bulk load, for instance), then a programmer should consider using a native call-level interface 
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to access a specific database system (CLI for DB2 UDB and OCI for Oracle). Figure 5.1 
compares the performance of the ODBC driver and of the native call-level interface for Oracle 
8i EE. The native call-level interface is the most frequently chosen option for C/C++ programs 
on Unix platforms. 

 
Figure 5.1: ODBC versus native call-level interface. We compare the throughput obtained using 
ODBC and OCI (the Oracle call-level interface) to retrieve records from the database server into 
the application. Note that the ODBC driver we use for this experiment is implemented on top of 
OCI. The results show (1) that the connection and query preparation overhead is much lower with 
OCI than ODBC, almost twice as low, and (2) that the fetching overhead is lower for ODBC than 
OCI. When the number of records fetched from the result set increases, the throughput increases 
more with ODBC than with OCI. The reason is that the ODBC driver does a good job at implicitly 
prefetching records compared to our straightforward use of OCI.  

[1]As fo mid-2001, ODBC drivers are available for most database systems on Unix platforms. 

[2]http://www.datadirect-technologies.com  

[3]http://www.openlinksw.com  

5.2 Client-Server Mechanisms 
The database server produces results that are consumed by the application client. Because 
the client is asynchronous with respect to the server, this communication is mediated by a 
buffer, usually one per connection (Figure 5.2). There are two main performance issues related 
to this client-server mechanism:  

 If a client does not consume results fast enough, then the server will stop 
producing results and hold resources such as locks until it can output the complete result 
to the query. Thus a client program executing on a very slow machine can affect the 
performance of the whole database server. This is one motivation for creating three-tier 
applications: the middle tier takes the database results fast and buffers them for a 
potentially slow outer tier. 

 Data is sent from the server to the client either when the communication buffer on 
the server side is full or when a batch (one or several queries and stored procedures) is 
finished executing. A large communication buffer on the server side thus will delay the first 
rows transmitted to the client (lengthening the perceived response time). A small buffer 
entails traversing the network stack more frequently when transferring large volumes of 
data. Finally, the buffer should fit into a frame of the underlying transport layer in order to 
avoid unnecessary fragmentation overhead. The maximum transmission unit for TCP, for 
instance, is 1500 bytes, so in order to avoid unnecessary fragmentation the size of the 
communication buffer added to the header introduced by the communication layer should 
be a multiple of 1500 on an Ethernet network. Fortunately, sufficient network bandwidth 
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makes most of these considerations irrelevant. In our experiments, varying the server side 
buffer or the packet size had no effect on a 100-megabit network. If you have a slower 
network or a lot of contention on your fast network, then please consider using these 
experiment scripts to guide your specification of server side buffer and packet size. 
 

 
Figure 5.2: Client-server connection. Client-server communication is mediated by a buffer on 
the server site, usually one per connection.  
5.3 Objects, Application Tools, and Performance 
Every software developer has experienced the scenario: an innocent design decision brings 
performance to its knees. The difference can be the refactoring of an object-oriented design 
over a backend database or the use of an application development tool for a tangential 
application. Here are a few instructive examples. 

5.3.1 Beware of Small Objects 

Object-oriented databases have never achieved wide acceptance because object-relational 
systems stole most of their comparative advantage. Nevertheless, object-oriented 
programming languages such as C++ and Java have captured a large portion of the 
application development market. See the box for a quick review of object orientation. 
BASIC CONCEPTS OF OBJECT ORIENTATION  

 
An object is a collection of data, an identity, and a set of operations, sometimes called methods. 
For example, a newspaper article object may contain zero or more photographs as constituent 
objects and a text value. Typical operations will be to edit the article and display it at a certain 
width: edit(), display(width). The system prevents programs using that object (perhaps with the 
exception of a privileged few) from accessing the internal data (e.g., the text) of the object 
directly. Instead, such programs must access the operations—or, in object orientese, "invoke 
the methods"—of the object (e.g., edit). Hiding the representation of an object is known as 
encapsulation. 
A class is the definition of a data description (analogous to the relational notion of schema) and 
operations that will characterize a set of objects. For example, there may be a newspaper 
article class whose data description would consist of text, and a set of photographs whose 
operation description would consist of the code for edit and display. There may be many 
objects belonging to class newspaper article, each denoting a different article. 
Finally, many object-oriented systems have a concept of inheritance that permits class X to 
derive much of its code and attributes from another class Y. Class X will contain the data 
attributes and operations of class Y plus additional ones. For example, there may be a sports 
article class that derives its data description and operations from newspaper article, but then 
adds a table (of scores) and the operations enlarge headline and display score. 

In summary, an object-oriented programming language represents pieces of data called 
objects. Objects belong to classes that define the operations on those objects. Classes are 
related to one another through an inheritance hierarchy. 
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Object-oriented encapsulation allows the implementation of one class to be modified without 
affecting the rest of the application, thus contributing greatly to code maintenance. 
Encapsulation sometimes is interpreted as "the specification is all that counts," however, and 
then can cause terrible harm to performance. The problem begins with the fact that the most 
natural object-oriented design on top of a relational database is to make records (or even fields) 
into objects. Fetching one of these objects then translates to a fetch of a record or a field. So 
far, so good. 

But then the temptation is to build bulk fetches from fetches on little objects. The net result is a 
proliferation of small queries instead of one large query. 

Consider, for example, a system that delivers and stores documents. Each document type (e.g., 
a report on a customer account) is produced according to a certain schedule that may differ 
from one document type to another. Authorization information relates document types to users. 
This gives a set of tables of the form  
   authorized(user, documenttype) 
   documentinstance(id, documenttype, documentdate) 

When a user logs in, the user wants to know which document instances the user can see. This 
can easily be done with the join  
   select documentinstance.id, documentinstance.documentdate 
   from documentinstance, authorized 
   where documentinstance.documenttype = authorized.documenttype 
   and authorized.user = <input> 

But if each document type is an object and each document instance is another object, then you 
may be tempted to issue one query to find all the document types for the user:  
   select documentinstance.documenttype 
   from authorized 
   where authorized.user = <input> 
and then for each such type t to issue the query  
   select documentinstance.id, documentinstance.documentdate 
   from documentinstance 
   where documentinstance.documenttype = t 

This is much slower. The join is performed in the application and not in the database server. 

The point is not that object orientation is bad. Encapsulation contributes to maintainability. The 
point is that programmers should keep their minds open to the possibility that accessing a bulk 
object (e.g., a collection of documents) should be done directly rather than by forming the 
member objects individually and then grouping them into a bulk object on the application side. 

5.3.2 Beware of Application Development Tools 

Some application development packages get in the way of good performance for other reasons. 
Judy Smith, a DBA, reports the following: "The application group uses an application toolkit that 
encapsulates stored procedures rather than makes direct sql calls. Performance was quite 
poor. However, performance was quite acceptable when the underlying stored procedure was 
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run using a command-line tool (isql). The Unix 'snoop' command captured the packets passed 
to the server via the toolkit. It turned out that toolkit would fetch the metadata about a stored 
procedure prior to calling it. That is, it would fetch each column name and column type 
(whether or not the default was to be used) that the stored procedure had as a parameter. This 
was happening on every call creating additional sql with large parameter lists. Turning off this 
feature helped substantially. As a result of such situations, I have gotten into the practice of 
running ‘suspect’ sql directly on the machine where the database engine is running without 
using layered interfaces. This helps to determine if it is really the sql, and not factors such as 
the network or the API, that is causing the performance problem." 
5.4 Tuning the Application Interface 
Poorly written applications can result in poor performance. Here are some principles. 
Justification and experiments follow.  

1. Avoid user interaction within a transaction. 
2. Minimize the number of round-trips between the application and the database 

server. 
3. Retrieve needed columns only. 
4. Retrieve needed rows only. 
5. Minimize the number of query compilations. 
6. Consider large granularity locks. 

5.4.1 Avoid User Interaction Within a Transaction 
As discussed in the concurrency control section of Chapter 2, a transaction should not 
encapsulate user interactions (e.g., manual screen updates) because such interactions 
lengthen the transaction significantly, thereby causing concurrency problems. Imagine, for 
example, that the operator decides to go to lunch while holding important locks. To avoid such 
nightmares, the application should divide an update into a read transaction, a local update 
(outside transactional boundaries), and a write transaction. See Appendix B on transaction 
chopping to understand when it is possible to do this while maintaining correctness. 

5.4.2 Minimize the Number of Round-Trips Between the Application and the Database 
Server 

Crossing the interface between the application and the database server is costly. Here are 
some techniques to minimize the number of crossings.  

1. Application programming languages offer looping facilities. Embedding an SQL 
SELECT statement inside the loop means that there will be application-to-database 
interaction in every iteration of the loop. A far better idea is to retrieve a significant amount 
of data outside the loop and then to use the loop to process the data. 
Along the same lines, it is a far better idea to gather all insertions into one statement 
rather than issuing an INSERT statement for each row to be inserted. Figure 5.3 illustrates 
this point. 
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Figure 5.3: Loop constructs. This graph compares two programs that obtain 2000 
records from a large table (lineitem from TPC-H). The loop program submits 200 queries 
to obtain this data, whereas the no loop program submits only one query and thus 
displays much better performance. This graph was obtained using SQL Server 2000 on 
Windows 2000.  

2. Because interactions between a conventional programming language and the 
database management system are expensive, a good tuning strategy is to package a 
number of SQL statements into one interaction. The embedded procedural language that 
many systems offer includes control flow facilities such as if statements, while loops, 
goto's, and exceptions. 
Here is an example in Transact SQL-like syntax that determines whether Carol Diane is 
an ancestor of Nicholas Bennet. For the purposes of the example, assume a genealogical 
database containing at least the relation Parental(parent, child).  
   create table Temp1 (parent varchar(200)) 
   create table Temp2 (parent varchar(200)) 
   create table Ancestor (person varchar(200)) 
   /* Temp2 will hold the latest generation discovered. */ 
   INSERT INTO Temp1 
   SELECT parent 
 
   FROM Parental 
   WHERE child = 'Nicholas Bennet'; 
   WHILE EXISTS(SELECT * FROM Temp1) 
   BEGIN 
     INSERT INTO Ancestor 
     SELECT * FROM Temp1; 
 
     INSERT INTO Temp2 
     SELECT * FROM Temp1; 
 
   DELETE FROM Temp1; 
 
   INSERT INTO Temp1 
   SELECT Parental.parent 
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   FROM Parental, Temp2 
   WHERE Parental.child = Temp2.parent; 
 
   DELETE FROM Temp2; 
 
   END 
   IF EXISTS ( 
        SELECT * 
 
        FROM Ancestor 
        WHERE person = 'Carol Diane' 
      ) 
     PRINT 'Carol Diane is an ancestor of Nicholas Bennet.' 
   ELSE 
     PRINT 'Carol Diane is not an ancestor of Nicholas Bennet.' 
Using the embedded procedural language reduces the number of calls from the application 
program to the database management system, saving significant overhead.  
The main disadvantage is that many such languages are product specific, so they can 
reduce the portability of your application code. 

3. Object-relational systems such as SQL Server 2000, Oracle 8i (and higher), and 
DB2 UDB V7.1 (and higher) support user-defined functions (UDFs). Scalar UDFs can be 
integrated within a query condition: they are part of the execution plan and are executed 
on the database server. UDFs are thus a great tool to reduce the number of round-trips 
between the application and the database system. Figure 5.4 illustrates the benefits of 
user-defined functions. 

 
Figure 5.4: User-defined functions. We compare processing a function on the client site 
(retrieving all data + executing the function) with executing a function as a UDF within a 
query. The function computes the number of working days between two dates; the query 
selects the records in the lineitem table where the number of working days between the 
date of shipping and the data the receipt was sent is greater than five working days (80% 
of the records) or smaller than five working days (20% of the records). Using the UDF 
reduces the amount of data transferred, but applying the function at the application level 
happens to be faster when there are many records. This graph was obtained using SQL 
Server 2000 on Windows 2000.  

4. Call-level interfaces such as ODBC allow so-called positioned updates. A 
positioned update consists in updating the rows that are obtained as the result of a query. 
The application thus iterates over a set of rows and updates each row in turn. This forces 
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the processing of updates one row at a time. This might be required in some cases, but 
unsophisticated programmers might be tempted to overuse this feature. In fact, set-
oriented update statements should be used as much as possible in order to minimize the 
number of round-trips between the application and the database server. 

5.4.3 Retrieve Needed Columns Only 

There are two reasons why this is usually a good idea, one obvious and one less so.  

1. The obvious reason is that retrieving an unneeded column will cause unnecessary 
data to be transferred. 

2. A subtle reason is that retrieving an unneeded column may prevent a query from 
being answered within (being covered by) the index (Figure 5.5). For example, if there is a 
dense composite index on last name and first name, then a query that asks for all the first 
names of people whose last name is ‘Codd’ can be answered by the index alone, 
provided no irrelevant attributes are also selected. 

 
Figure 5.5: Retrieve needed columns only. This graph illustrates the impact on 
performance of retrieving a subset of the columns as opposed to retrieving all columns. In 
this experiment, we compare retrieving one-fourth of the columns with retrieving all 
columns using select *. We performed this experiment in two situations: (1) without 
indexes and (2) with a nonclustering index covering the projected columns. The overhead 
of crossing the database interface with larger amounts of data is significant. Using 
covered indexes yields an additional performance boost to the carefully written query. This 
experiment was run on Oracle 8i on Windows 2000.  

5.4.4 Retrieve Needed Rows Only 

Here is how to minimize the amount of data that crosses the interface between the application 
and the database server.  

1. In case users end up viewing only a small subset of a very large result set, it is 
only common sense to transfer just the subset of interest.[4] Sometimes the subset is just a 
few rows of a larger selection. The user just wants a "feel" for the data in the same way 
that Web users want a "feel" for the responses to a search engine query. In that case, we 
recommend that you use a construct such as TOP or FETCH FIRST to fetch just a few 
rows. 
You should avoid cursors, however, since they are terribly slow in almost all systems 
(Shasha once had the experience of rewriting an 8-hour query having nested cursors into 
a cursor-free query that took 15 seconds). We illustrate this with an experiment (Figure 
5.6). 
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Figure 5.6: Beware of cursors. This experiment consists in retrieving 200,000 rows from 
the table Employee (each record is 56 bytes) using a set-oriented formulation (SQL) or a 
cursor to iterate over the table contents (cursor). Using the cursor, records are transmitted 
from the database server to the application one at a time. This has a very significant 
impact on performance. The query takes a few seconds with the SQL formulation and 
more than an hour using a cursor. This experiment was run on SQL Server 2000 on 
Windows 2000.  

2. Applications that support the formulation of ad hoc queries should permit users to 
cancel those queries. Query cancellation avoids holding resources when a user realizes 
that he or she made a mistake in the query formulation or when query execution takes 
unusually long to terminate. Query cancellation can be implemented by maintaining in the 
application a supervisor thread that signals the querying thread to stop. 

5.4.5 Minimize the Number of Query Compilations 

Query parsing and optimization is a form of overhead to avoid. There are two aspects to this 
cost.  

1. The compilation of simple queries requires from 10,000 to 30,000 instructions; 
compiling a complicated query may require from 100,000 to several million instructions. If 
this seems surprisingly high, remember that compilation requires parsing, semantic 
analysis, the verification of access privileges, and optimization. In fact, for simple queries 
that use indexes, compilation time can exceed execution time by a factor of three or more. 

2. Compilation requires read access to the system catalog. This can cause lock-
induced blocking if other transactions modify the catalog concurrently. 
For these reasons, a well-tuned online relational environment should rarely if ever perform 
query compilations. Moreover, the query plan resulting from a compilation (telling which 
indexes will be used and which tables will be scanned) should be rapidly accessible to the 
query processor. All systems offer a procedure cache for this purpose. You should make sure 
that your cache is big enough for frequently executed queries. Figure 5.7 illustrates the benefits 
of precompiled queries. 
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Figure 5.7: Benefits of precompiled queries. This graph illustrates a benefit of precompiled 
queries. We have run a simple query (uncorrelated subquery without aggregate) several times 
either by submitting the query each time (using ODBC direct execution) or by compiling it once 
(using ODBC prepare command) and executing it repeatedly. The results show that 
precompilation is advantageous when the query is executed more than twice.  

Optimal query plans may become suboptimal if the relations upon which they work change 
significantly. Here are some changes that should induce you to recompile a query (after you 
update the catalog statistics):  

 An index is added on an attribute that is important to the query. The query should 
be recompiled, so the new query plan will take advantage of this index. Some systems do 
this automatically. 

 A relation grows from nearly empty to a significant size. The query plan for the 
nearly empty relation will not use any index on the grounds that it is cheaper to scan a 
nearly empty relation than to use an index to access it. So, once the relation grows, the 
query should be recompiled so it will use the index. 

Defining a stored procedure is a way to precompile a query. Using a call-level interface, it is 
also possible to prepare a query and execute it several times. Note that SQL Server version 7 
and higher maintains a cache of execution plans for all queries that are asked; as a result all 
already submitted queries (whose plan fits in the cache) can be considered precompiled. 

[4]For a psychological reason whose roots in early childhood remain mysterious, Java and C++ 
programmers seem to prefer to pull everything from the database and then perform selections in 
a loop of their favorite language. We call this disease loopphlia. If you discover this, then the 
proper bedside manner is to ask in a nonthreatening way: "Could it be that your application 
throws away most of what it receives from the database? Is there any restriction we could add to 
the where clause to bring back only what you need?" 

5.5 Bulk Loading Data 
The partitioning principle suggests loading large volumes of data into a database while there 
are no applications accessing it. In most organizations, this state of affairs holds at night. In 
that case, the loading process operates under a time constraint: it has to be finished before 
database users come back to work in the morning. 

Database systems provide bulk loading tools that achieve high performance by bypassing 
some of the database layers that would be traversed if single row INSERT statements were 
used.  
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 SQL Server 7 provides a bulk loading tool called bcp and a Transact-SQL 
command called BULK INSERT. The T-SQL command is directly run within the SQL 
engine and bypasses the communication layer of SQL Server 7. BULK INSERT is 
therefore much more efficient when loading data from a local disk. BULK INSERT can 
also be configured to avoid logging so that rows are loaded full extent at a time instead of 
row at a time. 

 SQL * Loader is a tool that bulk loads data into Oracle databases. It can be 
configured to bypass the query engine of the database server (using the direct path 
option). SQL * Loader can also be configured so that it does not update indexes while 
loading the data (SKIP_INDEX_MAINTENANCE option). Deferring index updates to the 
end is often much faster. 

 The Load utility from DB2 UDB loads data into a table one page at a time and 
deactivates triggers and constraints while the data is being loaded (the database 
administrator has to check which constraints have been violated after data has been 
loaded). The DB2 loading utility can be configured to skip the collection of statistics. 
An important factor influencing the performance of a bulk loading tool is the number of rows 
that are loaded in each transaction as a batch. The DB2 loading utility loads rows one page at 
at time. The SQL Server BULK INSERT command and SQL*Loader allow the user to define 
the number of rows per batch or the number of kilobytes per batch. The minimum of both is 
used to determine how many rows are loaded in each batch. There is a trade-off between the 
performance gained by minimizing the transaction overhead and the work that has to be 
redone in case a failure occurs. Figure 5.8 illustrates the performance benefits of large batches, 
Figure 5.9 illustrates the benefits of bypassing the SQL engine, and Figure 5.10 illustrates the 
impact of various storage engine parameters on load performance. 

 
Figure 5.8: Batch size. This graph shows the influence of the batch size on performance. We 
used the BULK INSERT command to load 600,500 tuples into the lineitem relation on SQL Server 
2000 on Windows 2000. We varied the number of tuples loaded in each batch. The graph shows 
that throughput increases steadily until batch size reaches 100,000 tuples, after which there 
seems to be no further gain. This suggests that a satisfactory trade-off can be found between 
performance (the larger the batches the better up to a certain point) and the amount of data that 
has to be reloaded in case of a problem when loading a batch (the smaller the batches the better).  
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Figure 5.9: Direct path. This graph illustrates the performance benefits obtained by bypassing 
the SQL engine (conventional usage of SQL * Loader with a commit every 100 records) and the 
storage manager (direct path option of SQL * Loader) compared to the performance of inserts 
(using one thread and a commit after each insertion). These results were obtained by inserting 
600,500 tuples into the lineitem relation on Oracle 8i on Windows 2000.  

 
Figure 5.10: Storage engine parameters. This graph illustrates the influence of three 
parameters on the performance of the DB2 UDB data loading utility. We first loaded 600,500 
records in the lineitem relation into DB2 UDB V7.1 on Windows 2000 using the recoverable 
option (before images are maintained so that the original relation can be restored), no statistics 
were collected, and a clustering index was rebuilt after data was loaded. We varied in turn each 
of these parameters. As expected, performing a nonrecoverable load increases throughput, 
whereas collecting statistics decreases throughput. The impact of these parameters on 
performance is, however, not dramatic. Incremental index maintenance (as opposed to rebuilding 
the index after the load has terminated) decreases throughput significantly.  

Bulk loading tools allow an application to transform the format of the inserted data by executing 
SQL functions before actually inserting data into the tables. If such functions are used during 
the load, then the SQL engine cannot be bypassed. A better alternative is to perform the bulk 
load without changing the format and then to issue a query to create a new format. 
5.6 Accessing Multiple Databases 
As companies acquire new database servers or are reorganized (say, after a merger), they 
have to deal with various legacy systems. As a consequence, they create data warehouses 
from disparate data sources following a more or less honest attempt at integration. Whereas 
the problem of integration lies outside the scope of this book, you should know that there is a 
never-ending demand for reconciling databases, entailing data cleaning and semantic 
reconcilation. Data cleaning is needed, for example, to unify two databases based on names 
and addresses—rarely are formats or spellings consistent. Semantic reconcilation is required 
when two databases have different understandings of who an employee is; perhaps the 
organizational chart database views consultants as employees, whereas the human resources 
database does not. 
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When forming a data warehouse costs too much, organizations must allow business 
applications to access multiple heterogeneous databases. The goal is to make this reasonably 
easy and efficient. 

Modern database servers provide transparent access to external relational or nonrelational 
data sources (generic connectivity and transparent gateways in Oracle 8i and higher versions, 
IBM DataJoiner or DB2 relational connect in DB2 UDB V7.2, and linked servers in SQL Server 
7.0 and higher). They support  

 distribution transparency. The client-server mechanisms normally used between 
an application and the database server are reused to connect the database server with 
external data sources. The database server executes SQL statements on the external 
data source and obtains result sets. Because these client-server mechanisms are often 
not standard, extra components are needed as interfaces between the client-server layer 
and the remote sources. These extra components either are encapsulated within ODBC 
drivers (Oracle generic connectivity or SQL Server linked servers) or are specially tailored 
for popular data sources (i.e., Oracle open gateways or DB2 relational connect). 

 heterogeneity transparency. The database server acts as a frontend to the remote 
sources. It translates the queries submitted by the application into the dialect of the 
external data sources and performs postprocessing in case the external data source has 
limited capabilities (e.g., the database server may perform time or math functions). 

Performance and tuning considerations are similar to those for application interfaces as 
described earlier. Here are a few differences.  

 Use shared connections to reduce start-up cost. Connections to the remote data 
sources are implicit. In Oracle, for instance, a connection is established the first time a 
remote data source is contacted by an application; the connection remains open until the 
application disconnects from the database server. Oracle allows a set of database server 
processes to share connections. The benefit of shared connections is that existing 
connections can be reused thus avoiding the start-up cost of connection establishment. 
The disadvantage is that there might be conflicts accessing the shared connection if 
several processes submit statements to the same external data sources at the same time. 
Thus individual connections should be chosen when you expect a lot of concurrent access 
across the connections. 

 Use pass-through statements when performance is CPU bound. All 
interconnection mechanisms support pass-through SQL statements, written in the dialect 
of an external data source. Pass-through statements are submitted to an external data 
source without any translation or postprocessing. These pass-through statements break 
the heterogeneity transparency, but they can improve performance if the translation of the 
result turns out to be time consuming or if the external data source has some special 
capability (e.g., a time series accelerator). 

 Transfer larger blocks of data when performance is network bound. The interface 
components between the client-server mechanism and the external data sources control 
the size of the data being transferred when returning a result set. This parameter should 
be tuned to minimize the number of round-trips between the database server and the 
remote data source. In particular, a larger block size should be favored when large 
volumes of data are transferred. 
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Chapter 6: Case Studies From Wall Street 
One reason we believe expert human database tuners will always be in demand is that many 
of the biggest performance improvements come from viewing an application in a new light. 
Tools can, of course, help, but they would have to confront an enormous variety of situations, 
some of which we outline here. 

Many of these examples come from our work on Wall Street, but we don't think the lessons are 
specific to that environment. For the sake of concreteness, however, we have left the context 
intact. 
6.1 Techniques for Circumventing Superlinearity 
As in many other applications, financial data often must be validated when it enters. This often 
happens in the context of a data warehouse, slet us study such a situation. You will see that 
small rewritings can yield big results (Figure 6.1). 

 
Figure 6.1: Circumventing superlinearity. This graph compares the four techniques that we 
describe for circumventing superlinearity: (a) insertion followed by a check for deletions, (b) same 
as (a) with an index on the table used to check for deletions, (c) inserting sales and checking for 
deletions in small batches, and (d) using outer join. We use the unsuccessful sales example 
given in the text with two configurations of the data: small (500,000 sales, 400,000 items, 400,000 
customers and 10,000 stores, and 400,000 successful sales) and large (1,000,000 sales, 800,000 
items, same customers and stores tables as for the small workload, and around 800,000 
successful sales). The experiment is performed using SQL Server 2000 on Windows 2000. Using 
the small workload, the minibatch approach does not provide any benefit. Indeed, the 
successfulsales table is small enough so that the overhead of the successive iterations 
(insertions/deletions in a temporary table) is high compared to the benefit of checking the deletion 
condition on a reduced number of records. There is a benefit in using an index on successful 
sales (SQL Server 2000 uses an index nested loop in that case instead of a hash join in the 
absence of an index). The outer join approach is very efficient because the detection of 
unsuccessful sales is performed using a selection (itemtest is null, or storetest is null, or 
customertest is null) as opposed to a join with the successfulsales table. The large workload 
illustrates the benefit of the batch approach. The outer join approach still gives the best 
performance.  

There is a fact table 

sales(id, itemid, customerid, storeid, amount, quantity) 

The itemid field must be checked against the item table, the customerid field against the 
customer table, and the storeid field against the store table. With dense indexes on each of the 
dimension tables item, customer, and store, this can be done in linear time without even 
touching those tables. 
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Create an empty table. 

successfulsales(id, itemid, customerid, storeid, amount, quantity) 

Then issue the query.  
    insert successfulsales 
    select * 
    from sales 
    where itemid in (select itemid from item) 
 
    and customerid in (select customerid from customer) 
    and storeid in (select storeid from store) 
Depending on your system, this may be faster or slower than  
    insert successfulsales 
    select sales.id, sales.itemid, sales.customerid, sales.storeid, 
    sales.amount, sales.quantity 
    from sales, item, customer, store 
    where sales.itemid = item.itemid 
    and sales.customerid = customer.customerid 
    and sales.storeid = store.storeid 

Now comes the difficult part. We want to create a table unsuccessfulsales that did not make it 
into successfulsales possibly with a reason saying why they didn't make it. 

One way to do this is to initialize the unsuccessfulsales table with all sales and then to delete 
the successful ones. 
    create unsuccessfulsales 
    as select * from sales 
 
    delete from unsuccessfulsales 
    where id in (select id from successfulsales) 

The trouble is that neither unsuccessfulsales nor successfulsales is indexed, so the result will 
take time proportional to the square of the number of sales (assuming most sales are 
successful). The time is thus superlinear with respect to the input time. So, one solution is to 
index successful sales. That will help enormously. 

An alternative solution is to use an outer join and to detect rows having nulls. 
    insert successfulsales 
    select sales.id, sales.itemid, sales.customerid, sales.storeid, 
    sales.amount, sales.quantity, 
    item.itemid as itemtest, 
    customer.customerid as customertest, 
    store.storeid as storetest 
    from 
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    ((sales left outer join item on sales.itemid = item.itemid) 
    (left outer join customer on sales.customerid = 
     customer.customerid) 
    left outer join store on sales.storeid = store.storeid); 
 
    create unsuccessfulsales as 
    select * 
    from successfulsales 
    where itemtest is null 
    or customertest is null 
    or storetest is null 
 
    delete 
    from successfulsales 
    where itemtest is null 
    or customertest is null 
    or storetest is null 
6.2 Perform Data Integrity Checks at Input Time 
Consider the TPC/B schema  

 account(id, balance, branchid,…) 
 branch(branchid,…) 

It is better to make sure the branchid in the account row is correct when putting in the account 
row rather than each time an account balance is updated. 

This may seem obvious, but we so often see extra checks for integrity being thrown in that we 
wonder whether people have been reading too many surgeon general warnings. 
6.3 Distribution and Heterogeneity 
In finance as in other international businesses, distributed databases reflect two organizational 
cliches: workflow from one department to another (e.g., sales to back office) and physical 
distribution of cooperating departments (e.g., global trading). 

6.3.1 Interoperability with Other Databases 

As in many industries, financial data must travel from clients to midoffice servers to a variety of 
back-office servers and risk management systems. Acknowledgments and corrections travel 
back. 

Case You have a front-office system that records trade for profit and loss and risk 
management purposes. You want to send trades to the back office for final clearing. You don't 
want to lose any trades because of the financial loss implied. How should you solve this 
problem? 

A replication server is one approach, but it has a few problems:  
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 Commits at the source aren't guaranteed to flow to the destination. 
 Sometimes the destination must respond, and this is awkward with replication 

servers. 
 It is hard to determine where a piece of data is in the chain from source to 

destination. 

The standard academic recommendation is to use two-phase commit, but this is widely 
mistrusted on Wall Street because of horror stories about blocking (the situation in which the 
failure of one machine causes another one to stop). In addition, there is the serious problem 
that many database applications fail to provide an interface to the first phase of two-phase 
commit. 
A good strategy is to implement a buffer table on the source system side that holds information 
in the denormalized form required by the destination system (Figure 6.2). 

 
Figure 6.2: Buffer table. Source system transaction write to buffer tables and back-office 
systems read from them. If back-office systens must respond, then either build a clustering index 
on the buffer tables or use a second response table written by the back-office system.  
A process from the destination database reads a new tuple t, from the buffer table at the 
source site. Then, in a second transaction, that process puts the tuple into a buffer table on the 
destination site. A second process, as one transaction, processess the tuple on the destination 
site and marks the tuple as "deletable" in the destination site buffer. A third process issues a 
transaction to delete the tuple from the source buffer, then it performs a second transaction to 
remove the deletable tuple from the buffer table on the destination site. (The order is important 
to avoid processing tuples twice at the destination. Recovery can always repeat the third 
process for any tuples marked "deletable" at the destination.) Such a scheme frequently runs 
into lock contention because both the source and the destination are scanning the buffer table 
for update purposes. What would you do about this problem? 

Here are two approaches.  

 The destination process can mark a table other than the buffer table to avoid 
update-update conflicts on the buffer table. 

 If the exact order of updates at the destination site is not important, then the 
primary site can use a clustering index based on a hash of a key. The destination process 
can then check one bucket or another of the hash on each of its polling steps to the buffer 
table. This reduces the likelihood of conflict. 

Case Another typical scenario is that a single transaction in a master database system 
performs complete transactions on several other foreign databases. If the transaction on the 
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master aborts, some of the transactions on the foreign databases may have committed. When 
the master transaction restarts, it should not redo already committed foreign database 
transactions. 

Avoiding this requires a judicious use of a "breadcrumb table" at each foreign database. That is, 
design your system so that each update on the foreign database has an identifier that can be 
determined from its arguments. This identifier must be unique for all time. For example, you 
can generate a unique key given the date and time of a trade. Write this unique identifier into 
the breadcrumb table in the same transaction as the actual update. That is how to keep track 
of how much of the global transaction has completed. This is a special case of "workflow." In 
our experience, this is such a common case that it constitutes a design pattern. 

6.3.2 Global Systems 

Most large and many small businesses today are global. Information businesses have global 
inventories that are traded around the clock on different markets. (Markets have, in fact, 
converted most atom businesses into bit businesses, to use Nicholas Negroponte's 
terminology. Oil, for example, is traded several times while a tanker makes a single voyage.) In 
finance, stocks and bonds are traded nearly 24 hours per day (there is a small window 
between the time New York closes and Tokyo opens). 

Global trading of this sort suggests two solutions: have a centralized database that traders can 
access from anywhere in the world via a high-speed interconnect. This works well across the 
Atlantic, but is expensive across the Pacific. It also makes people feel psychologically 
uncomfortable since they are dependent on a far-away data source. 

Replication is delicate for concurrency control reasons, however. If updates on all data can 
happen anywhere, then serialization errors can occur. 
Example At 11:59 A.M. account X has a cash position of $10 million at sites A and B (say, in 
New York and Tokyo). Suppose that site A increases the cash position of account X by $2 
million and site B increases it by $1 million at 12 noon. A replication server translates the 
update at site A to a delete and insert sent to site B and similarly for the update at site B one 
second later. Two seconds later, site A writes the value that B had written at noon (yielding $11 
million) and B writes the value that A had written at noon (yielding $12 million). The values are 
inconsistent with one another and with the truth ($13 million ).[1] This is a classic "lost update" 
problem and is avoided in centralized systems that make use of serialized transactions. 

Gray et al. have examined the lost update and related problems in a replication server setting 
from a probabilistic point of view. The error probability increases superlinearly as the number of 
sites increase. In the idealized model of that paper, a factor of 10 increase in sites leads to 
more than a 1000-fold increase in the probability of error. 

Sometimes, you can exploit knowledge of the application to avoid a problem. If you know, for 
example, that all updates are additions and subtractions, you can send the update operation 
itself to all sites, and they will all eventually converge to $13 million. Such a replication strategy 
must, unfortunately, be explicitly programmed by the user if the database management system 
sends delete-insert pairs to reflect each update. The problem is, in general, difficult and argues 
for centralized databases whenever possible. 

Sometimes application semantics helps, however. 

Case A trading group has traders in eight locations accessing six servers. Access is 90% local. 
Trading data (trades made and positions in securities) are stored locally. Exchange rate data, 
however, is stored centrally in London. Rate data is read frequently but updated seldom (about 
100 updates per day). Wide-area network performance is a big issue and slows things down a 
lot; 64-kilobit links between the sites (even not all possible pairs) costs $50,000 per month. 
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Here are the two problems.  

 For traders outside London, getting exchange rates is slow. It would be nice if 
exchange rates could be replicated. But consistency is required in at least the following 
senses. (1) If a trader in New York changes a rate and then runs a calculation, the 
calculation should reflect the new rate. This consistency requirement precludes a 
replication strategy that updates a primary in London and then does an asynchronous 
replication to all other sites because the replication has an unpredictable delay. (2) After a 
short time, all sites must agree on a new exchange rate. Before reading on, what would 
you do? 
Here is one possibility. Synchronize the clocks at the different sites. Put a database of 
exchange rates at each site. Each such database will be read/write. Attach a timestamp to 
each update of an exchange rate. Each exchange rate in the databases will be associated 
with the timestamp of its latest update. An update will be accepted at a database if and 
only if the timestamp of the update is greater than the timestamp of the exchange rate in 
that database. This scheme will guarantee consistency requirement (1) and will cause all 
sites to settle eventually to the most recent update, satisfying (2). 

 Trade data is mostly local, but periodically traders collect baskets of securities 
from multiple sites. The quantity available of each security must be known with precision. 
Right now, retrieving this information is slow largely because of WAN delays. The current 
implementation consists of an index that maps each security to its home database and 
retrieves necessary data from the home site. 
A possible improvement is to maintain a full copy of all data at all sites. Not all this data 
will be up to date ("valid") at all times, however. When a market closes, all its trades for 
the day will be sent to all other sites. When receiving these updates, a site will apply them 
to its local database and declare the securities concerned to be "valid." When a site s, 
opens for trading, all other sites will declare securities belonging to s, to be "invalid." 

6.3.3 Managing Connections Socialistically in a Distributed Setting 

As CICS designers knew in the 1960s, batching connections to databases is a good idea. If we 
have an application server that communicates to many clients, then that application server 
should be a funnel to the database. Each client state is represented by a data structure. A 
program managing a single server connection can visit each client data structure, access the 
server on behalf of that client, and then go on to the next one. 
Whereas this conserves connections, it is sometimes slow because too many calls to the 
database are made. For this reason, it is sometimes helpful to collect the requests from many 
clients and send them all in one query to the database system (Figure 6.3). This is obvious if 
every client requires the same information, for example, they all need to know the table of 
exchange rates. This holds even if that isn't the case. For example, if there are 10 requests for 
account balances, it is better to ask for all 10 in a single request having an in clause than to 
issue 10 single selects. 
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Figure 6.3: Managing connections socialistically. Instead of opening a database connection 
for each client, the application server serves as a funnel to the database.  

[1]If your replication server is smart enough to send updates, then imagine that B had performed 
an update by 10% instead of an increase of $1 million. The result would still be inconsistent. 

6.4 Trading Space for Time in History-Dependent Queries 
Money is an important motivator on Wall Street. Applications that determine bonuses enjoy a 
lot of attention. 

Case An application calculates the position of each trader per security (either a stock or a bond) 
broken down by lots, where each lot corresponds roughly to a date of purchase. Traders are 
penalized for having old lots. Selling securities from a position to an outsider (including 
someone at another trader's desk) reduces the position in a FIFO manner (reduces from the 
oldest lot first). Selling securities to someone at the same desk reduces the position from the 
newest lot first. 

The process of calculating the position of a trader at the end of a day runs into the following 
complication: a cancel of a trade from several days ago may change the lots held by various 
people. For example, suppose  

1. day 1—Glen buys 10 of security S from outsider Judy 
2. day 2—Glen buys 5 of security S from outsider Vivian 
3. day 3—Glen sells 6 of security S to Dennis who is on the same desk 
4. day 4—Dennis sells 3 of security S to Ying who is on the same desk 

Then Dennis holds 2 shares of day 2 securities and 1 share of day 1 securities. Ying holds 3 
shares of day 2 securities. If the day 2 sale is canceled, however, Dennis owns only day 1 
securities and similarly for Ying. One way to deal with this is to replay all trades on a given 
security from the beginning of time after removing canceled trades. The application then 
requires all night to run. 
Algorithmic optimization: Trade space for time. Have the application maintain the position of 
each trader in each security for each lot for all (or most) days. In the case that a given security 
has cancels against it, the oldest affected trade will be identified. Suppose that is on day d. 
History will be rolled forward from the position of day d −1 (or the most recent position 
available preceding d). This reduced the time from eight hours to one hour. 

A critical component of this roll-forward operation is finding all the relevant trade tuples. It 
turned out that one of the tables needed to calculate these tuples had no indexes on it. Adding 
an index reduced the time from 1 hour to 20 minutes. 
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6.5 Chopping to Facilitate Global Trades 
Case When the trading day is over, many operations must be done to move trades to the back 
office, to clear out positions that have fallen to zero. This "rollover" procedure is a single-
threaded application. It causes no problems provided no trades are hitting the database at the 
same time. In a global trading situation, however, rollover in New York may interfere with 
trading in Tokyo. 
It is therefore of great interest to "chop" the rollover transaction into smaller ones. See 
Appendix B for a discussion of the theory of chopping. The conditions for chopping are that the 
ongoing trades should not create cycles with the rollover pieces. In point of fact, these trades 
don't conflict at all with the rollover pieces. They appear to because they touch some of the 
same records. Further, the rollover pieces are idempotent so if one aborts because of deadlock, 
it can be rerun without any harm. 

Typical such operations (1) send trades that haven't yet gone to the back office, (2) clear out 
positions having balance 0, and (3) compute statistics on each trader's profit and loss. 

Separating these transactions into separate ones decreases the time during which there is a 
lock conflict. 
6.6 Clustering Index Woes 
Many optimizers will use a clustering index for a selection rather than a nonclustering index for 
a join. All else being equal, this is a good idea. The trouble is that if a system doesn't have bit 
vectors, it may use only one index per table. 

Case Bond is clustered on interestRate and has a nonclustered index on dealid. Deal has a 
clustered index on dealid and a nonclustered index on date. 
    select bond.id 
    from bond, deal 
    where bond.interestRate = 5.6 
    and bond.dealid = deal.dealid 
    and deal.date = '7/7/1997' 

The query optimizer might pick the clustered index on interestRate. Unfortunately, interestRate 
is not normally very selective because most bonds have about the same interest rate. This 
prevents the optimizer from using the index on bond.dealid. That in turn forces the optimizer to 
use the clustered index on deal.dealid. This leaves many tuples to search through. By causing 
deal to use the nonclustering index on date (it might be more useful to cluster on date, in fact) 
and the nonclustering index on bond.dealid, the query used around 1/40 of the original reads. 
6.7 Beware the Optimization 
Case Position and trade were growing without bound. Management made the decision to split 
each table by time (recent for the current year and historical for older stuff). Most queries 
concern the current year, so should run faster. 
What happened: A query involving an equality selection on date goes from 1 second with the 
old data setup to 35 seconds in the new one. Examining the query plan showed that it was no 
longer using the nonclustered index on date. Why? 

The optimizer uses a histogram to determine whether to use a nonclustering index or not. The 
histogram holds around 500 cells, each of which stores a range of, in this example, date values. 
The ranges are designed so that each cell is associated with the same number of rows (those 
in the cell's date range). 
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The optimizer's rule is that a nonclustering index may be used only if the value searched fits 
entirely in one cell. When the tables became small, an equality query on a single date spread 
across multiple cells. The query optimizer decided to scan. 

The fix is to force the use of the index (using hints) against the advice of the optimizer. 
6.8 Disaster Planning and Performance 
If you take a database course in school, you will learn a model of recovery that features a 
convenient fiction: stable storage. The idea is that failures affect only volatile storage, whereas 
stable storage survives failures unscathed. In some lecture halls, disks soon acquire the 
character of stable storage. Discussions that admit the possibility of disk failure posit the use of 
a disk mirror or a RAID disk to do away with this problem. Do you believe this fiction? 

Case A server is used for trading bond futures having to do with home mortgages. The 
application needs to be up only a few days per month, but the load is heavy during those few 
days. During a weekend batch run, 11 out of 12 disks from a single batch from a single vendor 
failed. Nothing terrible happened, but everyone was quite spooked. 

The system architect didn't want a backup machine because his understanding was that the 
backup could catch up to the primary only after 20 minutes. His traders couldn't stop trading for 
that long, so would have reverted to calculations by hand, at which point they would be 
unwilling to reenter trades to the system. 

In this organization, policy requires that backups be remote because an entire building may 
suffer from a fire or bomb scare. (This happens in real life. Credit Lyonnais's Paris office 
burned up a few years ago. Smoke has shut down the New York Stock Exchange's principal 
computers. Even the destruction of the World Trade Center caused no loss of data. In those 
cases, remote backups allowed continued operation.) So, as a first case study, how would you 
design a remote backup? Here are some of the high-availability choices typically made on Wall 
Street. 

 Shared disk high-availability servers—A pair of shared memory multiprocessors 
are attached to RAID disks. If the primary multiprocessor fails, the backup does a warm 
start from the disks. If a disk fails, the RAID parity prevents any error from being visible 
(and the faulty disk is replaced by a hot spare). This configuration survives any single disk 
plus any single processor failure, but does not survive site disasters or correlated failures. 
So, it is not a remote backup solution (Figure 6.4). 
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Figure 6.4: High-availability disk subsystem. Writes go to the primary and into the high-
availability disk subsystem. This subsystem is normally a RAID device, so it can survive 
one or more disk failures. If the primary fails, the secondary works off the same disk 
image (warm start recovery). This architecture is vulnerable if the high-availability disk 
subsystem fails entirely.  

 Dump and load—A full dump of the database state is made to a backup site 
nightly and then incremental dumps (consisting of the changed page images) are made at 
regular intervals (e.g., every 10 minutes) during the day. If the primary site fails, the 
backup can perform a warm start from the last incremental dump, but committed 
transactions since the last incremental dump will be lost. Dump and load imposes little 
overhead on the primary server, but the loss of committed transactions can be fatal for 
some applications. It also assumes the traders will be patient during the several-minute 
delay before the system comes up, not always a likely assumption. 

 Replication server—As in dump and load, a full dump of the database state is 
made to the backup site nightly, and then all operations done to the primary are sent to 
the secondary (typically, as SQL operations) after they are committed on the primary 
(Figure 6.5). With a replication server, the backup is within a few seconds of being up to 
date. So, a replication server loses fewer transactions than dump and load. Further, a 
replication server allows decision support queries to the backup machine. Finally, the 
backup machine can become the primary in a matter of seconds. A replication server can 
be a huge administrative headache, however, requiring an administrator to keep table 
schemas in synchrony, to ensure that triggers are disabled at the backup site, and to be 
ready when the network connection breaks though the vendors have become much better 
at helping the administrators with the bookkeeping. 
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Figure 6.5: Replication server. The backup reads operations after they are completed 
on the primary. Upon failure, the secondary becomes the primary by changing the 
interface file configuration variables. This architecture is vulnerable if there is a failure of 
the primary after commit at the primary but before the data reaches the secondary.  

 Remote mirroring—Writes to local disks are mirrored to disks on a remote site. 
The commit at the local machine is delayed until the remote disks respond. This ensures 
that the remote site is up to date, but may stop the primary in case the remote disks do 
not respond or the network link fails. To overcome this availability problem, special 
subsystems will buffer the transmission from the local to the remote, in which case, the 
result is similar to a replication server but easier to administer since they take place at the 
hardware rather than the database administration level. 

 Two-phase commit—Commits are coordinated between the primary and backup. 
If one fails, blocking can occur (Figure 6.6). This fact scares off many people on Wall 
Street. 
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Figure 6.6: Two-phase commit. The transaction manager ensures that updates on the 
primary and secondary are commit consistent. This ensures that the two sides are in 
synchrony. This architecture might block the primary in case of delays at the secondary or 
failure of the transaction manager.  

 Wide-area quorum approaches—Compaq, Hewlett-Packard, IBM, and others offer 
some subset of the following architecture. Primary and secondary servers are 
interconnected via a highly redundant wide-area cable. Clients can be connected to any 
server since the servers execute concurrently with their interaction managed by a 
distributed lock manager. Disks are connected with the servers at several points and to 
one another by a second wide-area link. Heartbeats monitor the connectivity among the 
various disks and processors. If a break is detected, one partition holding a majority of 
votes continues to execute. Other partitions don't. In this architecture, backups are 
completely up to date. Any single failure of a site, processor, or disk is invisible to the end 
users (except for a loss in performance). The same holds for many multiple-failure 
scenarios. Most money transfer applications and most major exchanges use this 
architecture (Figure 6.7). 
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Figure 6.7: Quorum approach. The quorum approach is used in most stock and 
currency exchanges. It survives processor, disk network, and site failures.  

People who don't use this architecture cite the following reasons:  

 The shared lock manager is a potential bottleneck. 
 Partitioning may occur improperly. 
 It locks them into a proprietary and expensive architecture. 
 Specialized software priests must minister to its needs. 

Whatever backup system you decide on, (1) don't buy disks in batches, especially for the 
primary and backup (such a practice undermines any hope of failure independence); and (2) 
never use a scheme in which a problem at the backup can slow down the primary. 
6.9 Keeping Nearly Fixed Data Up to Date 
Lookup information such as symbol-name mappings must be at a trader's fingertips. Relational 
systems or the connections to users' personal computers are often too slow, so the information 
is held outside the database. The problem is that this information is updated from time to time 
(e.g., when new securities or new customers are added). 

So, a critical question is what to do with the updates. The following have all been tried:  

 Ignore updates until the next day. 
 Program clients to request refresh at certain intervals. 
 Have the server hold the state of the clients. Send messages to each client when 

an update might invalidate an out-of-date copy or simply refresh the screens. One efficient 
implementation uses triggers. 
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Which would you choose? The stateful server approach gives the most up-to-date approach, 
but requires the most programming effort. 
6.10 Deletions and Foreign Keys 
Case Data is extracted from a production system and transferred to a data ware-house, then it 
is deleted. Indexes are dropped on the tables where a large number of deletions are 
anticipated to avoid the overhead of deleting index entries. Let us take as an example the TPC-
H schema, where lineitem.l_suppkey has supplier.suppkey as a foreign key. 
What happened: The deletion of 300,000 records from the lineitem relation is faster than the 
deletion of 500 tuples from the supplier relation. Why? 
There is overhead to check foreign key constraints. When tuples are deleted from a relation R, 
the system accesses the relations that define foreign keys on R in order to verify the constraint. 

In case the attribute that is referenced as a foreign key is not a prefix of the key of an index on 
the referencing relation, the verification of a foreign key constraint implies scanning the 
referencing relation. In our example, there is no foreign key constaint referencing the lineitem 
relation. By contrast, the attribute suppkey in the supplier relation is referenced as a foreign 
key of the l_suppkey attribute in the lineitem relation. This attribute is a member of a composite 
clustered index on the lineitem relation, but this index is not used by the optimizer (l_suppkey is 
not the prefix of the composite index). Consequently, the lineitem relation is scanned for each 
tuple deleted from the supplier relation. 

Adding a nonclustered index on the l_suppkey attribute in the lineitem relation (after the 
deletion from lineitem is performed) considerably speeds up the deletion from the supplier 
relation. 
6.11 Partitioning Woes: The Hazards of Meaningful Keys 
For performance and administrative reasons, a large bank partitions its clients by branch. It 
then commits the cardinal mistake of including the branch identifier inside the client key. The 
client key is used on all client accounts, the client debit card, and so on. Now, the client moves 
to a new branch. All accounts have to be closed and reopened, debit cards have to be 
destroyed and reissued. What a waste! 

If the client had been given a meaningless key (say, a sequence number unique across the 
whole bank), then changing branches would require at most an update to a few nonkey fields 
in the client reference information. It is true that accesses to the client account at the client 
branch might have to go through a level of indirection. But that is a simple operation to make 
fast. 

Please keep your keys meaningless. 
6.12 The Problem of Time 
Financial applications treat time in many ways, but the following four queries illustrate the main 
variants:  

 Compute the value of my portfolio of bonds based on future payments and 
projected interest rates. 

 Find correlations or other statistics among different stock prices over time or 
between option premiums and stock prices in order to help make better trading decisions. 

 Find all events that are likely to precede a rise in the price of a security, 
regardless of precise timing constraints. 

 Determine the data available at time X to trader T when he made the decision to 
buy Y for his own account. 

Let us discuss each variant and its generalizations in turn. 
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6.12.1 Present Value 

Contrary to what you read in the popular press, bonds are far more important than stocks for 
most investment banks. Companies, municipalities, and nations issue debt, and the markets 
buy them. Each debt note has an associated payment stream occurring at regular intervals, for 
example, each half-year. These debt notes are then swapped for cash (I'll borrow money and 
give some bonds I'm holding as collateral), tranched (sliced into payment streams of different 
risks), and otherwise manipulated. The basic computational issue is to value these payment 
streams. 
But how should you value ten yearly $1 million payments? The basic principle is to normalize 
all payments to their present value. The present value of a payment of x dollars in i years 
assuming an interest rate of r is y = (x/((1 + r)i)) dollars. (This definition is justified by the fact 
that putting y dollars in the bank at interest r would yield the same amount of money at the 
maturity of the bond as taking each of the payments and putting them in the bank at interest r.) 
So, the basic problem is to compute expressions of the form (1 + r)i for many different values of 
i. Since the value of r is never known precisely, many different r's are tried in order to calculate 
the statistics of the value of a bond. 
Notice that each such calculation involves computing the log of 1 + r, then multiplying by i, and 
then taking the inverse log of the result. Since many expressions have the same value of r but 
differ on i, we'd like to avoid doing the log more than once for a given r. 

Relational systems on Wall Street typically store each payment in the form (amount, date, 
interest). The present value of each row is then computed independently of all others through 
either a trigger or an object-relational extension. This strategy misses the significant log 
optimization described in the last paragraph, and the resulting performance is punishingly slow. 
For this reason, many applications take the data out of the relational database and perform this 
calculation in some other way. 

We have illustrated the potential benefits of user-defined functions executed on the database 
server in the previous chapter. Avoiding this exodus from the database requires the object-
relational system to share computational work even among external functions. That is an 
undecidable task in general since the external functions are written in a Turing-complete 
language. Another possibility is to call external functions on bigger entities (e.g., arrays of 
payments and dates) so the function itself can do the necessary computational sharing. 

6.12.2 Regular Time Series and Statistics 

Trends are a popular abstraction for many average stock investors. Knowing that "the market is 
going up" is a powerful motivation to buy. Unfortunately, history and countless investment 
books suggest that this does not yield good results for two reasons First, it is not clear when a 
trend has started. Second, trend trading ignores the different properties of different companies. 
A far better strategy is to make use of correlations between different companies having similar 
properties. Take two similar banks B1 and B2. In the absence of differentiating external news 
(e.g., a default of a creditee of B1 alone), the prices of the two banks should track each other 
closely. So, if B1 starts going up while B2 does not, a "pairs trader" will sell B1 and buy B2. 

In the FinTime benchmark,[2] Kaippallimali J. Jacob of Morgan Stanley and Shasha have tried 
to capture the typical queries correlation and regression analysis require. 

The model consists of a few relational tables that typically contain infrequently changing 
information about stocks and a number of time series tables about prices and stock splits. 

Here are three typical queries.  
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1. Get the closing price of a set of ten stocks for a ten-year period and group into 
weekly, monthly, and yearly aggregates. For each aggregate period determine the low, 
high, and average closing price value. 

2. Find the 21-day and 5-day moving average price for a specified list of 1000 stocks 
during a 6-month period. (Use split-adjusted prices.) 

3. Find the pairwise coefficients of correlation in a set of ten securities for a two-year 
period. Sort the securities by the coefficient of correlation, indicating the pair of securities 
corresponding to that row. 

Here are some features that relational systems require to answer such queries.  

1. The special treatment of the semantics of time (e.g., the discovery of weekly 
boundaries and the ability to aggregate over such boundaries) 

2. The ability to treat events in a time-ordered sequence (e.g., to perform moving 
averages 

3. The ability to perform time-based statistical operations on multiple sequences 

6.12.3 Irregular Time Series and Frequency Counting 

Hurricanes, oil spills, earthquakes, and other natural and man-made disasters can influence 
the stock market in many ways. These events are not regular (we hope), and so moving 
averages and complex signal processing techniques are inapplicable. On the other hand, the 
fusion of disaster events with price data may make the following queries meaningful and useful:  

 (Specific) Which disaster event type affects the price of insurance company X? 
 (General) Which event sequences affect which companies within five days? 

We have used the example of disasters, but similar queries apply to large purchases prior to 
merger announcements and other suspected insider activity.[3] One way to conceptualize such 
problems is to discover patterns in timed event sequences. Relational systems would model 
this by attaching a time attribute to events, but the discovery of sequence of events would 
require one or more joins. Most real-life systems would take some data from the database and 
do the real work outside. 

6.12.4 Bitemporality 

It is often necessary to know what someone knew at a certain date. For example, did trader 
Jeff believe that a merger was to take place between companies X and Y as of time Z when he 
bought stock in X? This might be grounds for legal concern. What was the best public guess as 
to the third-quarter profits of company X at time Z? This might explain why trader Carol took 
such a large position in the company at that time. 

Such queries are called bitemporal because they involve two times: the time of the event in 
question (the merger or the third-quarter profits in our examples) and the time of the query 
(time Z in both cases). The point is that our knowledge of the event in question may be better 
now, but what we are interested in is what was known at some time in the past based on the 
transactions that had committed up to that point. 

Whereas most queries having to do with compliance or personnel review occur rarely enough 
to be irrelevant for performance tuning, the same does not hold for other queries involving time. 
For example, consider a portfolio accounting application with queries like the following: As of 
last June, what was the anticipated revenue stream of this portfolio over the next ten years? 
Since a portfolio consists of many securities, this involves combining the streams from many 
different securities after determining which securities were in the database last June. 
As Snodgrass and Jensen show in their book, such queries can be implemented in relational 
databases, but may require pages of code and may, in fact, be very slow. Indeed, the bank 
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officer who described the portfolio accounting application put the problem this way: "The 
functionality excites the users but makes the [standard relational] server glow a dull cherry 
red…." 

At least two solutions are possible to speed up such actions.  

 Implement the bitemporal model inside the database system. The risk is that this 
may create overly specialized implementations. 

 Treat the data as ordered and see where that leads. 

6.12.5 What to Do with Time 
Our recommendations follow from a simple observation: Sequences are more powerful than 
sets.  
Membership, intersection, union, and difference can be easily applied to sequences. On the 
other hand, order, nth best, moving averages, and other statistics require a tortured and 
inefficient encoding on sets, but are linear time on sequences. So, the best way to extend 
relational systems to support time is to allow query languages to take advantage of order—a 
scary thought for those of us brought up with the relational model. 

Now let us consider two ways in which sequences might extend the relational model:  

 Tables might be maintained in a specific order, as arrables (array tables). 
Selections, joins, and projections can all carry their multiset theoretic meaning to arrables 
(SQL is a multiset language when all is said and done), but new operations can be 
defined that exploit order. These new operations may include nth best operations, moving 
averages on certain columns, correlations between columns, and so on. Ordering tables 
into arrables has certain disadvantages, however. For example, an arrable should 
probably not be clustered using a hash index. Ordering does not, however, preclude a 
secondary hash index. The extra overhead for ordering is therefore one more access in 
most cases. This extra access may be significant in disk-resident data. 

 Another approach to order is to break a relational commandment. In a normal 
SQL group by statement, for example,  

     select id, avg(price) 
     from trade 
     group by id 

each group corresponds to one stock id, and there are one or more scalar aggregates 
associated with that group (here, the average price in the group). Suppose instead that the 
following were possible:  
    select id, price, date 
    from trade 
    group by id 
    assume trade order by date 
The net result here would be to cause a vector of prices and dates to be associated with 
each stock. Now that we have vectors, we can apply vector style operations that may be 
offered by a system or that an application program may write. For example, we may sort the 
prices in each group by date and then construct moving averages. Regrettably, allowing 
vector elements in rows violates first normal form. Maybe this is all right.  

These two ways of incorporating order are separable. If introduced together, the stock arrable 
might be ordered by date and then the query becomes  
    select id, price 
    from trade 
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    group by id 
    assume trade order by date 

Prices will then be ordered by date within each date, provided the grouping preserves the sort 
order of the trade arrable. Even better, we can construct the five-day moving average in one 
shot, given a function that computes the moving average of a sequence, say, "movavg" and 
takes a time parameter  
    select id, movavg[5,price] 
    from trade 
    group by id 
    assume trade order by date 
Several systems treat sequences as first-class objects, including Fame, SAS, S-Plus, and KDB. 
We discuss these in some detail in Appendix C. 

Looking back on the time series queries we face in finance, let us see what order does for us.  

 Computing the present value and similar operations are natural on sequences. If 
the external functions to compute these functions are vector aware, then optimizations, 
such as performing the logarithm once instead of many times, can easily be incorporated. 

 Correlations, moving averages, grouping by time periods such as weeks and 
months, and special-purpose interpolations require an awareness of date as a special 
data type and the ability to add arbitrary functions in an object-relational style. Event data 
mining requires a subset of this functionality. 

 Bitemporality remains a challenge, but less of one. Because bitemporal queries 
involve unchanging historical data, you can afford to store redundant data (e.g., the 
membership history of each portfolio). So, the query that makes a current server glow a 
cherry red can perhaps become red hot. 
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Exercises 

EXERCISE 1 

You are managing the human resources database of a large manufacturing corporation. The 
employee table has the fields (id, name, salary, department). Ninety percent of the employees 
are factory workers who have four salary levels. The remainder are office employees who have 
many different salaries. 

The factory safety table has the fields (employeeid, whentrained). Consider the query  
    select whentrained 
    from employee, factorysafety 
    where employee.id = factorysafety.employeeid 
    and employee.salary = <input> 

Suppose you now have an index on employee.id and employee.salary. Which index would you 
want the query to use? 
Action. Most systems will use only one index and then generate a temporary table that will 
have no further indexes. If the query uses the index on employee.salary, it will likely not be 
very selective, and it will preclude the use of the index on employee.id. 

EXERCISE 2 

You have two independently developed databases A and B. You want to send information from 
A to B after it is processed at A. You want to be sure that each item sent is processed exactly 
once at B. What would be your design? 
Action. A replication server would be the easiest choice, but you must carefully examine what 
happens upon a failure at site A. In particular, could it happen that a transaction may commit at 
A, but the transaction's updates are not transferred to B? A buffer table would work because it 
would keep transactional breadcrumbs associated with the various steps: data committed at A, 
data transferred to B, data processed at B. Provided the recovery subsystem of each database 
does its job, you can guarantee "exactly once" semantics: each change to A will be processed 
at B exactly once. 

[2]FinTime is available at the following URL: http://cs.nyu.edu/cs/faculty/shasha/fintime.html. 

[3]Of course, such event sequence queries appear elsewhere (e.g., in Web data mining). A typical 
problem there is to infer the probability that a person will buy an item given that he has visited 
some sequence of pages. 
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Chapter 7: Troubleshooting 
—Alberto Lerner, DBA, Doctoral Candidate  
7.1 Introduction 
Monitoring your DBMS's performance indicators is one of the best ways to diagnose how well 
or badly the DBMS is performing. These indicators can be thought of as a DBMS's 
performance "vital signs" and can be calculated using counters, gauges, or details of the 
DBMs's internal activities. Monitoring performance indicators can ultimately help you determine 
the areas to which your tuning efforts should be directed. 

To give you a better idea of which indicators and which internal activities we are talking about, 
consider the path a query follows inside a DBMS from its submission to the point when a result 
set or a return code is produced. Immediately after a query is entered into the system, it is 
transformed into an access plan by the optimizer. The access plan is one of the performance 
indicators that tell you how well the optimizer is contributing to the overall performance of your 
system. This is the first place to look whenever a query presents performance problems, but 
the query's story does not stop here. 

An access plan causes other internal subsystems to run on its behalf, which will answer the 
query the plan represents. A query requires the cooperation of all components: the query 
execution subsystem may be computing a part of the plan (e.g., a join) while the disk 
subsystem may be fetching the next pages necessary for that operation; the cache manager 
may be trying to make room for those pages; the locking subsystem may be confirming that no 
one is changing the joined pages while the query is running; the recovery subsystem may be 
guaranteeing that if the application rolls back, the changes performed so far will be undone 
correctly; and so on. Each of these subsystems offers possibilities of performance monitoring. 

Unfortunately, the number of these indicators can be overwhelming. We need a methodical 
approach to applying and interpreting them. 

7.1.1 A Consumption Chain Approach 
If you view DBMS subsystems as resources, the queries and commands submitted to the 
DBMS are consumers. Subsystems in turn consume low-level resources such as CPU, 
memory, and disks managed by the operating system. Understanding this query–DB 
subsystem–raw resource consumption chain is the first step toward the systematic approach 
that we suggest for performance monitoring. Such a hierarchy of producer-consumers in a 
database system is shown in Figure 7.1. 
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Figure 7.1: A producer-consumer hierarchy of DBMS resources. Performance probing points 
exist at all points of the hierarchy. Producers are also known as resources.  

The producer-consumer hierarchy can be depicted as follows:  

 High-level consumers: Every process or user attached to the SQL or the external 
command interface of the database system. Examples of consumers in this class are 
application and online users issuing queries in SQL, online or batch processes loading or 
extracting data, maintenance routines backing up data, or reorganizing disk partitions. 

 Intermediate consumers/resources: Database subsystems that interact with one 
another to answer the queries and commands issued by the upper level. Examples of 
elements of this class are the locking, logging, cache management, and query execution 
subsystems. Each higher-level consumer concurrently uses several of the subsystems in 
this class, and its elements consume primary resources. 

 Primary resources: Raw resources of the machine along with the operating 
system services that manage them. There are four primary resources: disks and 
controllers, CPUs, shared memory, and network. The levels above this one will all depend 
directly or indirectly on these resources. 
Performance problems may involve several consumers and resources in a few recurrent 
cause-effect patterns. Here are the most common ones. A high-level consumer can 
monopolize an intermediary resource, indirectly slowing down other consumers that used that 
resource, as shown in Figure 7.2(a). For instance, a query that locks an enormous number of 
rows for its exclusive access prevents the locking subsystem from servicing other lock requests 
over those rows. Or a poorly configured subsystem can exhaust a raw resource and spread 
negative effects to high-level consumers, as depicted by Figure 7.2(b). For example, a disk 
subsystem that stores everything concerning an application (data, indexes, temporary area, 
logs, etc.) on a single disk will affect queries that belong to that application or that use that disk. 
Furthermore, an overloaded primary resource can slow down an entire system, as represented 
in Figure 7.2(c). That is the case when the CPU is overly busy because nondatabase 
processes are using it at the same time. 
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Figure 7.2: Cause-effect patterns in the consumption chain.  

The chain concept helps you understand the relationship between a problem cause and its 
effects. This should help you identify causes. 

7.1.2 The Three Questions 

If you were able to picture the DBMS as this three-level machine and understood that all its 
internal parts affect each other, then take a look at these three questions.  

 High-level consumer question (Q1): Are applications and, more specifically, their 
critical queries being served in the most effective manner? 

 Intermediate consumer/resource question (Q2): Are DBMS subsystems making 
optimal use of resources so as to reach the desired performance levels? 

 Primary resources question (Q3): Are there enough primary resources available 
for DBMS consumption and are they configured adequately, given the current and the 
expected operation workload (number of users, types and frequency of queries, etc.)? 
A systematic procedure to answering the questions can be described as follows. First, 
investigate important queries—we will say how to find those—by answering Q1 over them. If 
you find any problem, solve it. The rationale behind starting with Q1 is that having found a 
positive answer for Q1 first, if any trouble appears in the other levels or questions you can 
discard high-level overconsumption as a cause and focus on investigating system resources. 
Figure 7.3 shows this critical query monitoring part of the procedure. Then, adopt a monitoring 
methodology that investigates the consumption chain from the bottom up. The idea here is that 
if the critical consumers are tuned, your DBMS's subsystems and your machine raw resources 
should be parameterized to handle their workload. Figure 7.4 depicts such a routine monitoring 
part of the procedure. 
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Figure 7.3: Critical query monitoring.  

 
Figure 7.4: Routine monitoring. 
7.2 How to Gather Information: The Tools 
As indicators vary from simple gauges to complex data, so do the tools to extract and present 
them. Of particular interest to performance monitoring are query plan explainers, performance 
monitors, and event monitors. 

7.2.1 Query Plan Explainers 

Query plan explainers are the application developer's best friends. Whereas declarative 
languages like SQL free the developer from the burden of specifying how to retrieve data, SQL 
optimizers do not always find the best way to perform the retrieval. A query plan explainer can 
show you the exact access plan generated for a query, in case you need to verify its efficiency. 
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A query plan is usually represented as a tree whose nodes correspond to operations such as 
scans, and joins and arcs represent tuple (i.e., record) flow. Every operation has one or more 
data inputs and exactly one data output.[1] Data inputs can come from tables or from other 
operations. 

Each DBMS has a vocabulary for labeling each operator, and you should get acquainted with it. 
The leaves of the tree are made of operators that read data from single tables or from indexes. 
You will see operators called table scan, index scan, index range scan, and so on. In the 
internal nodes of the tree, you will find operators identified as nested-loop join, sort-merge join, 
hash join, filter row, aggregation, duplicate elimination, and sort. The root of the tree is the 
operator that makes that last data consolidation before showing the results to the user. In some 
systems, it has a specific name like "result" or the name of the SQL command. Besides naming 
the operators, a good explainer will annotate statistical information such as expected 
cardinality and expected CPU consumption for each operator. 
Figure 7.5 shows an example of a visual query plan. The query appears in the upper half of the 
screen while its access plan is displayed sideways in the bottom half. In the example, we can 
see that the algorithm used to solve the join expressed by the query is the Nested Loops Join. 
The outer table is connected to the join operator via the upper arrow; it is the table employee 
and it is being scanned, as the Table Scan operator suggests. The inner table is the jobs table 
and it is being accessed through its PK_jobs clustered index. Since there is nothing further to 
process than the join, its results are sent to the final operator, here called SELECT. Note that 
the explainer also estimates the percentage of the total time spent with each operator. Here, 
the time to join the tables is negligible (0%) compared to the time to scan the outer table (79%) 
and to seek the inner (21%). Other examples of explainers appear in Table 7.1. 

 
Figure 7.5: SQL Server's Query Analyzer.  

 
 
Table 7.1: Example of query access plan explainers in some DBMS products  

  VISUAL 
PRESENTATION 

TEXTUAL 
PRESENTATION 

STATISTICS 
PRESENTATION 

DB2 UDB        

Visual Explain 
tool ▪    ▪  

explain command   ▪    
SQL Server        
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Table 7.1: Example of query access plan explainers in some DBMS products  

  VISUAL 
PRESENTATION 

TEXTUAL 
PRESENTATION 

STATISTICS 
PRESENTATION 

Query Analyzer 
tool ▪    ▪  

set showplan 
command 

  ▪    

Oracle        

SQL Analyze tool ▪    ▪  
explain command   ▪    

 
A gallery of example queries with their query plans and commentary is presented in Appendix 
D. 

7.2.2 Performance Monitors 

Performance monitors are the generic name given to the tools that access the DBMS's (and 
OS's) internal counters and gauges, and compute performance indicators. 

DBMS and OS performance monitors have several flavors. For instance, to check "CPU 
usage" on Windows 2000, you can use the OS's performance monitor itself or the Task 
Manager tool; in a Unix environment, your choices range from a simple vmstat or top command 
to a more complete, sophisticated tool as sar, not to mention the graphical performance 
monitors. Similarly, a DBMS "cache-hit ratio" (cache efficiency indicator) can be monitored 
either using a supplied performance monitor—sometimes the OS's performance monitor 
itself—or with simpler utilities such as a select on the sysperfinfo system table on SQL Server, 
or through a query on the V$SYSSTAT view in Oracle, or with a get snapshot for all 
bufferpools command on DB2, to mention a few. 

The following points differentiate performance monitors and ultimately should influence your 
decision in choosing one:  

 The scope of the indicators that they access. A general performance tool can 
access every relevant indicator from both the operating system and the database system. 
More specific tools access a smaller group of correlated indicators. You should pick the 
general one when you are interested in how several distinct indicators behave together; 
otherwise, you could use the simpler tools.  

 The frequency of data gathering. There are mainly three choices: snapshotting, 
regular frequency monitoring, and threshold monitoring. Snapshotting performance 
indicators allow you to freeze a situation at a specific moment in time. Choose a tool able 
to snapshot indicators if you know when the snapshot should be taken and where the 
situation happens, for example, to analyze a disk subsystem that presents peak utilization 
at specific moments[2] or to capture data regarding a query that has irregular response 
times during known periods of the day. Regular frequency monitoring means snapshotting 
at regular intervals, and it allows you to follow the variations of a single indicator or several 
different indicators over time. Tools that implement this method are useful both when 
confronted with a specific problem and when doing routine monitoring. Threshold 
monitoring allows you to enter thresholds beyond which the system is acting abnormally. 
Choose a tool capable of threshold monitoring whenever you need to automatically verify 
that critical indicators stay within acceptable thresholds. 



Database Tuning  Chapter 7: Troubleshooting 

-161- 

 The presentation of the data. Data can be presented either graphically or textually. 
You should opt for a graphical presentation tool whenever you want to see the data trends, 
and the text presentation tool whenever you want just the precise indicator's values. 

 The storage of the data. You should pick a tool able to save data whenever you 
want to defer the analysis to a later time or if you want to collect large amounts of 
peformance analysis data in just one session. (Sometimes a ten-minute data-gathering 
session can yield enough information to analyze for a day.) 
An example of a graphical, general performance monitor is given in Figure 7.6. The top half of 
the screen allows you to choose which indicators you want to track. By selecting Average 
Physical Read Time and clicking the Graph button, you can start monitoring this indicator, as 
the bottom half of the screen shows. While the last, average, minimum, and maximum values 
of the indicator are shown on the left side, the chart on the right represents the real-time 
evolution of this indicator. Note that the chart is qualitative—there are no scales on the y-axis—
and it is divided into five stripes. Whenever the value of an indicator is considered normal, it is 
plotted on the middle stripe. The stripes immediately above and below the normal one 
correspond to alarm or warning stripes. The stripes on the top and bottom of the chart indicate 
emergency situations. The threshold values that determine when a situation is an alarm or an 
emergency are on the right side of the chart. Other performance monitor tools appear in Table 
7.2. 

 
Figure 7.6: DB2 UDB's Shows Monitor tools.  

 
 
Table 7.2: Example of performance monitors in some DBMS products  

  
SCOPE: 
GENERIC 
SPECIFIC 

FREQUENCY: 
SNAPSHOT 
REGULAR 
THRESHOLD 

GRAPHICAL 
PRESENTATION 

SAVES 
COLLECTED 
DATA 

SQL Server          

OS 
Performance 
Monitor 

G RT ▪  ▪  

sp_*procedures S S     

Oracle          

Performance G R ▪  ▪  

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 
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Table 7.2: Example of performance monitors in some DBMS products  

  
SCOPE: 
GENERIC 
SPECIFIC 

FREQUENCY: 
SNAPSHOT 
REGULAR 
THRESHOLD 

GRAPHICAL 
PRESENTATION 

SAVES 
COLLECTED 
DATA 

Manager 

V$* views S S     

DB2 UDB          

Show Monitor G RT ▪    

get snapshot 
command 

S S     

 

7.2.3 Event Monitors 

Event monitors record DBMS's performance measurements, but only when a system event 
happens. A system event can be anything from a new user connection to the beginning or the 
end of the execution of an SQL statement. An event monitor will log the event's time, duration, 
and associated performance indicator values. For example, the end-of-statement execution 
event carries information about the text of the statement, the CPU time consumed in that 
statement execution, how many reads and writes were required, and so on. 
Logging events with a monitor can extract fine-grained performance information with little 
system overhead.[3] The indicators extracted by an event monitor can be saved and further 
consolidated into specific reports. Figure 7.7 shows one example of such a report. Several 
CPU consumption indicators were collected along with their SQL execution associated events. 
This report permits the analyst to identify heavy consumers of CPU time spent in diverse 
internal query activities. Table 7.3 identifies tools capable of event monitoring in some of the 
current commercial DBMS systems. 

 
Figure 7.7: Oracle's Trace Manager (Diagnostics Pack).  

 
 
Table 7.3: Example of event monitors in some DBMS products  
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  FILTERS 
EVENTS 

SAVES 
COLLECTED 
DATA 

CONSOLIDATES 
COLLECTED 
DATA 

Oracle        

Trace Manager and       

Trace Data Viewer ▪  ▪  ▪  
DB2 UDB        

Event Monitor and       

Event Analyzer ▪  ▪  ▪  
SQL Server        

Server Profile ▪  ▪  ▪  
 

Event monitors are particularly appropriate for capturing extraordinary conditions. For instance, 
you can instruct your event monitor to capture deadlock events, which you hope are rare. The 
monitoring report will carry information about which locks led to the conflict situation and which 
transactions were involved in it—a scenario you would not easily capture with snapshotting. 
Nevertheless, an event monitor does not replace a performance monitor because performance 
indicators may need to be monitored at moments when no particular event is happening. 

7.2.4 Now What? 

You now know the tools and you know when to use them. Roll up your sleeves and hit the 
indicators! 
Which indicators to monitor will depend on whether you are tracking down the causes of an 
undesired effect or you are just doing routine monitoring. If the latteris true, proceed to a 
bottom-up search of the chain; that is, answer first the primary resource question (Section 7.5) 
and then the following two (Sections 7.4 and 7.3). If the former is true—and that is the typical 
case—you should begin wherever the problem is. For example, if you identified a slow query, 
start your analysis with the query's plan, answering the high-level consumer's question over it 
(Section 7.3), and then go down the chain. 

[1]Some parallel operators may have several outputs. 

[2]Sometimes all it takes to find it is to look at the disk's LEDs. 

[3]Little overhead does not mean zero overhead, however. Use common sense. Try not to log data 
that you know in advance you will not be interested in. 

7.3 Queries from Hell 
In this section, you will identify your system's critical queries and you will answer Q1 over them: 

 

High-level consumer question (Q1): Are applications and, more specifically, their critical 
queries being served in the most effective manner? 
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Poorly written queries can hurt performance greatly. You had better discover them before they 
cause problems (or, better put, before a user brings one of them to your attention). Suspicious 
queries are those that (a) consume a great amount of resources (read a lot of data, perform 
heavy aggregation or sorting, lock an entire table, etc); (b) are executed frequently; or (c) have 
to be answered in a short time (e.g., queries the customer care department people run while 
they are talking to customers). 

7.3.1 Finding "Suspicious" Queries 

Although to know about (c) you need to be aware of the application's response time 
requirements, queries with properties (a) and (b) can be discovered by performance monitoring. 

Which indicators to measure 
Your DBMS event monitor logs server events, along with their relevant performance indicator 
values. In this particular case, you will be interested in the end-of-statement or in the end-of-
transaction event, depending on your system. These events carry information such as the text 
(SQL) of the statement and the duration of its execution as well as CPU, IO, cache, and lock 
consumption statistics. This means that by capturing these events you can record exactly the 
resources each executed query consumed. 

Considerations and how to evaluate them 
By sorting the collected data over a given resource consumption statistic, you will be able to 
find the most expensive queries by that criterion. For instance, if you want to identify long-
running queries, you can sort by the duration information; to get heavy readers, you sort by the 
read pages or read rows information; and so on. Frequently executed queries can be found by 
sorting by the SQL command text information and counting how many times a particular SQL 
command text was executed during the data collection period. 

Keep in mind that thresholds beyond which queries are considered to be critical vary according 
to a number of parameters. For instance, a "batch" update that takes 30 minutes to complete 
may be considered normal, whereas no OLTP query should require 30 seconds to run. 

What to do in case of problems 
Well, if you find expensive queries, you should make sure they are tuned in the best possible 
way. The techniques described in Chapter 4, Sections 7.3.2 and 7.3.3, and in Appendix D will 
be able to help you here. Your analysis is just starting, and you might have to drill down 
through the consumption chain to search for the real cause of the problem. 

Which tool to use and how frequently 
Event Monitor tools are the best choice here. By turning on the logging of the end-of-statement 
and end-of-transaction events, you can obtain the query consumption data you will need in 
your analysis. Alternatively, there are specific tools that find top consumers in real time, like 
Oracle's TopSessions. Checking that expensive consumers are well tuned should be a top 
priority in your performance monitoring efforts. 
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7.3.2 Analyzing a Query's Access Plan 

As shown before, an access plan is the strategy generated by the DBMS to execute the query, 
and without proper information, or lacking better alternatives, the DBMS can generate plans 
with poor performance. To assess whether the plan that the DBMS chose was a good one, 
compare it to your own choice, that is, a plan you would have picked had you been directing 
the optimizer. 

Which indicators to measure 
Do not even bother analyzing a plan that was generated with out-of-date statistics! If you have 
outdated stats, update them and regenerate the plan. Table 7.4 gives examples of such utilities 
in some DBMS products. 

 
 
Table 7.4: Example of statistics updating utilities in some DBMS products  

DBMS TOOL 

DB2 UDB runstats 
command 

SQL Server 
update 
statistics 
command 

Oracle analyze 
command 

 

Here is what the access plan tells you:  

 Access methods choices. For every table involved on the query, determine how it 
is being accessed. For instance, are all its pages being scanned? (Probably bad.[4]) Or is 
an index used to find an entry point in the table and then a sequential scan performed? 
(Better.) Or is the table accessed only through an index? (Best.) 
Large scans in queries that do not aggregate data tend to produce large result sets. This 
sometimes suggests that the query writer might not have taken the size of the table into 
consideration. 

 Sorts. Check to see if the plan includes a sorting operation. This can be used to 
process an ORDER BY clause and also in more subtle situations, such as to process 
GROUP BY clauses and duplicate elimination in DISTINCT clauses. Check also if the 
existence of an index would eliminate the need for the sort or if the DISTINCT could be 
eliminated. 

 Intermediate results. Complex queries sometimes cause materialization of inter 
mediary results in a temporary area. They may result, for example, from correlated 
subqueries. As pointed out in Chapter 4, rewriting such queries into multiple queries can 
improve performance. 

 Order of operations. For plans consisting of several operations, pay attention to 
which order the optimizer chose to apply them. Of particular interest is the location of the 
joins, sorts, aggregations, and filtering expressions. The order chosen for a query's 
operators aims at an early reduction in the number of tuples to process inside the plan. 
This is why optimizers will place selection operations in the plan's early stages. Moreover, 
the order of the joins should follow the same rationale. If you notice the order does not 
favor such a reduction (and statistics are up to date), you might have to force an ordering. 
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 Algorithms used in operations. For operations such as joins and sorts, be sure to 
notice which algorithm the DBMS chose to use. These operations are usually named after 
the algorithm chosen to process them. 

Considerations and how to evaluate them 
If you had envisaged a plausible access plan before starting the analysis, you can now assess 
the optimizer's choice of plan and compare how it differs from yours. If the optimizer's plan 
seems to be more complex than yours, and the query is performing badly, you have probably 
caught a major source of the problem. 

7.3.3 Profiling a Query Execution 

Expensive queries that already happen to have efficient access plans should have their 
execution profile carefully analyzed. A query execution profile consists of detailed information 
about the duration and resource consumption of its execution. 

Which indicators to measure 
The duration information involves three indicators: the elapsed time for the query, which is the 
time it took to process it as perceived by a user; the CPU time, which is the time that the CPU 
was actually used to process the query; and the wait time, which is the time the query was not 
processing and waiting for a resource to become available (e.g., a data page to be read, a lock 
to be acquired). 

Resource consumption information includes  

 I/O. Physical and logical reads and physical and logical writes, where a logical 
read/write consists of the operation to access or change a page, and a physical read/write 
consists of a logical read that requires a disk access. 

 Locking. The maximum number of locks held and the number of lock escalations 
can provide an idea of how greedy a transaction or an SQL statement is in terms of data 
locking. The number of deadlocks and timeouts and total time spent waiting for locks will 
quantify the overhead involved in the locking activity. 

 SQL activity. Number of sorts and temporary area usage provide a measure of 
time spent in expensive overhead activity. 

Considerations and how to evaluate them 
Two scenarios are common. In the first, the elapsed query time is close to the CPU time. The 
wait time is negligible if compared. The consumption measured seems fair for what the query 
does: only a reasonable number of data pages are being accessed to answer the query, and 
most of them are logical accesses; the number of locks is low or nonexistent (it is possible, 
depending on the isolation level used), and there were no deadlocks or lock escalations; if 
sorts were performed, they did not seem to augment the number of physical disk reads and 
writes, indicating that they were performed in memory. Well, in this case, it seems that the 
access plan is being executed in the best way possible—no problem is identified and if the rest 
of the chain is balanced, this probably represents the best performance your system can 
deliver for this query. 
In the second scenario, we find a noticeable discrepancy between the elapsed time and the 
CPU time. The wait time seems to just about fill the gap between them. In this case, you can 
be sure to find some problem in resource consumption, either a contention problem (see 
Figure 7.2a) or a poorly performing resource (see Figure 7.2b). With a logical contention 
problem, such as a concurrently accessed table, the query was probably waiting for locks. 
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Physical resource contention requires operation-by-operation analysis. Suppose the area that 
the DBMS allocated for sorting was small. You are going to get additional I/O activity whenever 
a query performs a sort—which at first glance may be difficult to associate with the sort area 
problem. 

One way to distinguish locking contention from physical resource problems is to run the query 
in isolation. Badly parameterized subsystems leading to poor use of physical resources will 
produce consistently slow response times no matter whether a query runs alone or not. 
Concurrency problems manifest themselves in highly concurrent environments.[5]  

Which tool to use and how frequently 
Obtaining all indicators mentioned here in full detail is sometimes called "accounting." In 
systems where such a concept exists, you will find appropriate tools for the task (a notable 
example is DB2 PM for OS/390). Other tools that might provide partial information are the 
db2batch (benchmarking tool) for DB2 UDB, the trace facility, TKPROF, and SQL Analyze for 
Oracle, and the SET STATISTICS TIME and SET STATISTICS I/O for SQL Server. 

[4]As a rule of thumb, this is true. However, some examples exist in which table scans are a good 
choice (see Appendix D). 

[5]Tautologies have the advantage of being true. 

7.4 Are DBMS Subsystems Working Satisfactorily? 
In this section, we are going to check whether the main DBMS subsystems are performing their 
duties in an efficient way by gathering information to answer Q2. 

 

Intermediate consumer/resource question (Q2): Are DBMS subsystems making optimal use of 
resources so as to reach the desired performance levels? 

 

 

Poorly configured subsystems may be the source of several performance problems that 
manifest themselves as a noticeable reduction on the workload a machine could have handled 
had the DBMS subsystems been correctly configured. 

7.4.1 Disk Subsystem 
As discussed in Chapter 2, a DBMS disk subsystem will perform well if the database's tables 
are well distributed. A table whose rows are uniformly distributed among several disks where 
they occupy contiguous pages will support sequential prefetching and parallel I/O. A table in 
which good-sized chunks (bigger than an average row) of free space are easily located will 
foster fast insertions or row-expanding updates. A table whose rowIDs are accurate (rows were 
not displaced) and clustered in the sequence in which they are usually accessed will probably 
have optimal cost selections. Finally, a balanced position of data files across the available 
disks will avoid contention by making the best possible use of such resources. 
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Monitoring the disk subsystem will help you check that data contiguity, row placement, free 
space organization, and file positioning are providing the necessary support for fast 
performance. 

Which indicators to measure 
Data contiguity can be evaluated by counting the number of fragments each table or 
tablespace is divided into. Percentage of row displacement is the ratio between the number of 
rows that do not reside where their rowID indicates and the total number of rows. Free space 
fragmentation is a measure that will tell you how large free space chunks are. 
File positioning can be evaluated by breaking down the measurement made in Section 7.5.2 
for disk transfer per second or by getting the details on pages read/written by tablespaces (or 
even by table in some systems). 

Considerations and how to evaluate them 
Ideally, the space occupied by a table on a physical disk should be contiguous (i.e., its number 
of extents[6] should be 1). Having five or fewer extents will not noticeably harm performance, 
but having, say, 50 will surely cause nonnegligible additional disk arm activity—let alone 
missing prefetching opportunities—if the whole table is to be retrieved. 

The number of displaced rowIDs should be kept at lower than 5%. Here, too, values greater 
than that will force the database to visit noticeably more pages than necessary to retrieve a 
displaced row. 

Measuring free space fragmentation can be done as follows. The percentage of pages that do 
not have contiguous space for at least one average row but are listed as having free space 
should be zero. 

Pages read/written values should be grouped by disks and present balanced values. 

What to do in case of problems 
Most of the time bad indicators reflect inadequately chosen storage parameters. A few 
exceptions could come from poorly designed transactions that, for instance, insert a row with a 
null value into a column and then update that value right away, possibly causing a row to be 
displaced near birth! 
In order to choose appropriate storage parameters, you should understand the pace at which 
data grows and with what mix of inserts/updates/deletes that growth rate happens (data 
volatility). In addition, you should identify occasional but predictable fluctuations in the 
database activity due to the nature of the data or processes being supported by the 
applications (data seasonality). With such knowledge, you could then refer to Chapter 2, where 
physical disk and disk subsystem tuning parameters are discussed. 

Which tool to use and how frequently 
In most systems, contiguity information is part of the catalog. In Oracle, the number of extents 
can be obtained through the DBA_SEGMENTS view. In DB2, the catalog table 
SYSTABLEPART stores space utilization statistics, including the number of secondary 
allocations used. Systems that do not store such information in the catalog usually provide 
specific diagnostic tools. For instance, in SQL Server, DBCC showcontig provides the 
necessary information. 

Row placement and free space fragmentation diagnostic utilities have different names in the 
different systems: in DB2, the tool is REORGCHK; in Oracle, it is part of the information 
generated by the STATSPACK; and in SQL Server, it is DBCC showcontig. 
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For the monitoring of the disk activity indicators the DBMS's performance monitor is usually all 
you need. For instance, Oracle's STATSPACK can periodically extract V$FILESTAT 
information; DB2 Performance Monitor can extract disk performance indicators on a tablespace 
or on a table level. You should monitor disk activity regularly to avoid halting the database from 
a lack of space—one of the few things that can make a whole system stop. 

Keep in mind also that data file reorganization is a periodical necessity. Unfortunately, not 
every system offers you a reorganization utility. For those that don't, reorganizing a table 
should be done by carefully unloading, dropping, re-creating—with new storage parameters—
and reloading it. 

7.4.2 Buffer (Cache) Manager 

Buffer management is a central issue in a DBMS's performance because caching reduces the 
necessity for disk operations. Whenever a request for a page is filled through the database 
buffer (also known as the database cache), a physical I/O is saved. The buffer manager tries to 
balance the opposing needs of having often accessible pages in memory while keeping free 
slots for other pages. 

A well-tuned buffer manager can dramatically improve the performance of the whole system 
and, as such, must be the focus of thorough and constant monitoring. 

Which indicators to measure 
The two main performance indicators you should monitor are the cache-hit ratio, which reflects 
the percentage of times that a requested page was already in the buffer, and the number of 
free pages, which tells how much space is available in the buffer at a given moment. In some 
DBMSs, specific buffers could exist for different purposes: data buffers (table and index pages), 
dictionary buffers (metadata information), procedure buffers (code pages), and so on. If that is 
the case, check both of the indicators for each of the specialized buffers. 

Considerations and how to evaluate them 
The cache-hit ratio should ideally be greater that 90%. A lower cache-hit percentage is one of 
the most obvious signs that the system either is not well tuned or does not have enough 
memory. It can be the case, however, that some queries do not achieve a good cache-hit 
percentage—especially the ones that scan very large tables. 

The DBMS clean-up threads should also provide a steady stream of free pages. Failure to 
obtain this might indicate that the system is not maintaining free page slots in the buffer, or the 
disk subsystem is not able to provide the level of service needed. 

What to do in case of problems 
If your indicators have low values, your buffer manager is not saving as many disk accesses as 
it should. If this occurs on occasion, then one or a small number of queries may be responsible. 
Otherwise, you may have a slow disk subsystem. It is also possible that you have insufficient 
memory. 
Tuning parameters to raise the cache-hit ratio and to provide the necessary level of free pages 
were discussed in Chapter 2, and you should refer to that chapter for complete information. As 
you may recall, increasing the size of the buffer without increasing the size of physical main 
memory may lead to paging—a particularly inefficient form of input-output because it involves a 
lot of random access. 
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Which tool to use and how frequently 
Both cache hits and free pages can be obtained via your DBMS performance monitor tools. 
Usually, you would like to have their values monitored regularly as well as be notified whenever 
they fall under thresholds you consider normal (such as 90% for the hit ratio). 

7.4.3 Logging Subsystem 
The logging subsystem supports failure recovery. The "log" is used indirectly by every 
transaction that alters, inserts, or deletes data because these changes are recorded and log 
records are always saved before their corresponding data pages (using, for example, the write-
ahead log protocol discussed in Chapter 2). 

A well-tuned logging subsystem is one that can write log records at a pace that does not slow 
active transactions. 

Which indicators to measure 
To confirm that the disks storing the log files are keeping pace with the transaction workload, 
you should check the number of log waits. It is also important to know if there were any log 
expansions or log archives due to lack of space. 
To assess whether the size of the log buffer is adequate, you should check the log cache-hit 
ratio. Like its data buffer counterpart, this is the ratio between logical reads and total reads. 

Considerations and how to evaluate them 
Recording log waits greater than zero means that transactions are being held longer than 
necessary to write those log records at commit time. Recording dynamic log expansions 
indicates a configuration problem. Under an ideal configuration, log expansions can be avoided 
by coordinating log archival, or alternatively log truncation, with the backup procedures. Here is 
how. When data pages are made redundant by the backup utility, the log records referring to 
changes to those pages no longer need be kept. At that point, the log can be truncated so as 
not to include them. 

Which tool to use and how frequently 
Your DBMS performance monitor is the best way to access the log subsystem indicators. Keep 
routine monitoring here since this is one of the ways to identify overall fluctuations of database 
activity. 

7.4.4 Locking Subsystem 

Locks are the basic mechanism allowing transactions to run concurrently without harming one 
another. When transactions are not well designed or when the lock sub subsystem is not well 
parameterized, contention problems like long lock waits, eventually leading to timeouts and 
deadlocks, may appear. 

Which indicators to measure 
Some parameters can be used to check the overall efficiency of locking in your system. The 
average lock wait time and the number of locks on wait will tell you how much time transactions 
spend waiting for lock requests to be confirmed and how many locks there are in such a 
situation. 
Deadlocks can be found by checking the overall number of deadlocks or timeouts for the 
system. 
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Considerations and how to evaluate them 
Ideally, the lock wait time for a transaction should be a small fraction of its total transaction time, 
and the number of locks waiting should be low if compared to the total number of locks held by 
transactions, certainly under 20%. 

Deadlocks and timeouts are particularly harmful to the system since they cause transactions 
not only to hold locks longer, but also eventually to roll back whatever changes they had made 
before the problem was detected. 

What to do in case of problems 
The lock subsystem is often a reflection of how well your applications' transactions were 
designed, and seldom a source of a problem itself. If you are experiencing high values of wait 
times and locks requests on hold, you can move up the consumption chain without even 
finishing the evaluation of other DBMS subsystems. Section 7.3.1 explains how to find 
expensive consumer queries, including data locking ones. Deadlock-involved queries can be 
found with the tools described next. 

Which tool to use and how frequently 
The best-suited tool to monitor for deadlocks is an Event Monitor. Usually deadlock is a 
traceable event and whenever recorded carries with it information about offending locks and 
transactions involved. 

DBMS performance monitor tools are ideal for checking or monitoring locks. Breaking down the 
number of locks held is usually possible using specific lock monitoring tools. SQL Server has 
an sp_lock procedure, Oracle has a V$LOCK view, and DB2 has a get snapshot for locks 
command. 

[6]The term extent may mean different things in different systems. Here (and this is the common 
meaning) an extent is an arbitrary number of pages that are allocated contiguously. 

7.5 Is the DBMS Getting All It Needs? 
In this section, we check the DBMS resource consumption from an OS point of view by 
answering the primary resources question. 

 

Primary resources question (Q3): Are there enough primary resources available for DBMS 
consumption and are they configured adequately, given the current and the expected operation 
workload (number of users, types and frequency of queries, etc.)? 

 

 

Finally, we ensure that CPU, disks/controllers, memory, and network resources are adequately 
configured for the DBMS. 
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7.5.1 Checking on CPU 

Monitoring the CPU allows you to determine how much of its total capacity is consumed in 
general and how much is used by the DBMS in particular. 

Which indicators to measure 
The main indicator to measure CPU activity is the percentage of utilization. This indicator is 
computed by subtracting the percentage of time the CPU was running the idle process from 
100%. A busy CPU can be computing either on a user's behalf (e.g., running user programs) or 
on the OS's behalf (e.g., performing OS functions such as context switching and servicing 
interrupts). As their names suggest, the percentage of user time and percentage of system 
time represent the fractions nonidle time spent in each mode. If you have multiple CPUs, these 
measures still apply, but you will need the overall consolidated values as well. 

Considerations and how to evaluate them 
Sustained CPU utilization over 70% should get your attention. If you are getting it outside a 
heavy batch processing period of the day, you have a problem. 

System utilization greater than 40% means that the operating system is spending too much 
time on internal work. 

In a nondedicated DBMS server, you should also pay attention to the CPU time-share that the 
DBMS is using. This can be done by verifying that the DBMS processes are getting the biggest 
share of the CPU. 

Ideally, each processor in a parallel machine should have the same utilization. If not, then look 
carefully at the overloaded processors. Verify that DBMS processes are responsible by 
breaking down CPU usage for each individual process. If so, then determine which queries are 
responsible. 

Which tool to use and how frequently 
Operating systems offer specific CPU monitoring tools to break down the CPU utilization in real 
time (e.g., top in Unix and Task Manager in Windows 2000). It is a good idea to monitor the 
CPU constantly to learn when and why variations happen. 

7.5.2 Checking on Disks and Controllers 

Disk operations are several orders of magnitude slower than RAM operations, so long disk 
queues can hurt response time substantially. 

Which indicators to measure 
In order to check disk usage, you should monitor, for each physical disk in the system, the 
average size of the waiting queue, which tells how many disk requests were waiting to be 
served on the average while this disk was busy serving another request, and average time 
taken to service a request, which expresses how long, again on average, these requests 
waited in the queue. 
Along with those indicators, you should also check the number of bytes transferred per second 
from each of the disks. This parameter sums up everything read or written to a disk per unit of 
time. 
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Considerations and how to evaluate them 
Both the average size of the waiting queue and the average time taken to service a request 
should be close to zero. Long queues and long service times indicate that new requests are 
waiting. If you see long queues or service times, check the bytes transferred per second 
indicator to confirm that the disk is truly busy. Idle disks with pending requests imply that you 
have controller problems. Some controllers allow a number of devices to be attached, but only 
one data transfer at a time. If you attach two frequently used disks to the same controller, they 
might end up competing for the sole data transfer channel. 

Another analysis that can be done with these values is to compare the waits from each disk. If 
you have a group of uniform disks serving the same purpose (e.g., a disk for storing tables and 
indexes), they should support approximately the same volume of data transfer and have equal-
length queues. Otherwise, you are not dividing the disk access load evenly. 

What to do in case of problems 
Solutions to disk problems are discussed in Chapters 2 and 3, and mainly involve moving data 
among disks. However, here again, you should reorganize data only if you are sure the I/O 
problems are not coming from high-level consumer inefficiency. For example, a user data disk 
may be overloaded because a large table stored on it is erroneously being scanned. Moving 
the table will only transfer the overload, not solve the problem. Overload on system data disks 
(temporary, sort, or log areas) should direct your attention to the corresponding subsystem. 

Which tool to use and how frequently 
You can measure disk utilization using operating system utilities such as the Unix monitor 
called iostat. 

7.5.3 Checking on Memory 

At the operating system level, the most significant memory problem that can affect a DBMS is 
paging. Page faults in database processes mean their images cannot fit in the real memory if 
pages are not swapped out. 

Which indicators to measure 
Paging can be detected by analyzing the indicators' number of page faults/time, which tells you 
whether paging is happening at all, and the percentage of paging file in use, which reflects how 
much more real memory would be necessary to eliminate paging. 

Considerations and how to evaluate them 
Ideally, in a dedicated DBMS machine, there should be no paging. This means that the 
memory allocated to database buffers would not page at all. Well, ideally. In reality, paging 
happens quite often and there will be no problem with it as long as (1) data (cache) buffers are 
not paged—obviously the database cache should be configured to fit comfortably in main 
memory along with the database processes themselves—and (2) paging does not escalate to 
thrashing. 

Thrashing occurs whenever the sum of the memory working set of all processes of the systems 
significantly outgrows the available real memory. Detecting thrashing is quite straightforward.[7] 
An extremely high disk I/O activity and a noticeable slow performance characterize it. 
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What to do in case of problems 
Assuming you have properly configured your database buffer size, paging should come from 
non-DBMS sources. You should check those. 

Which tool to use and how frequently 
Again, operating system tools are helpful, such as the vmstat tool in Unix systems. Checking 
memory at the operating system level should be done whenever you change the memory 
allocation parameters of the DBMS or there are significant changes in the number of users. 

7.5.4 Checking the Network 

Network transmission time should represent a negligible fraction of query response time. The 
goal of assessing network performance is to verify that its speed and delay are negligible. 

Which parameter to measure 
To rule out network overload from a problem scenario, measure the number of collisions and 
the average network interface queue size. 
Collisions happen in a broadcast technology network when two or more devices try to transmit 
at the same time. This might represent an important source of network delay. In addition to 
these indicators, you can measure the round-trip time between client stations and the database 
server. 

[7]If you go near the machine whenever it thrashes, you can literally hear the uninterrupted disk 
activity. 

7.6 Conclusion 
A well-tuned DBMS is one in which query plans are efficient, subsystems make optimal use of 
resources, and these resources are available in sufficient quantity. Checking whether this is 
true entails first discarding the possibility that excessive workloads come from untuned queries. 
Then comes assuring that there is capacity enough on the DBMS machine to handle the 
resulting workload and checking that the DBMS's subsystems are adapted to this workload's 
nuances. 

The three questions approach is a framework that makes testing these hypotheses a 
systematic procedure. It introduces a consumption chain paradigm that helps distinguish the 
causes of performance problems from its symptoms. It points out the most relevant 
performance indicators of a DBMS, which with the available tools can be easily measured. 
Finally, it suggests how to analyze the measured values so as to determine whether they 
represent normal situations or not. 
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Chapter 8: Tuning E-Commerce Applications 
8.1 Goal 
The goal of this chapter is to describe the fundamental architecture underlying every e-
commerce system and to discuss the tuning considerations that apply to that architecture. 
Even if your system has added bells and whistles on top of these services, you would do well 
to start tuning these fundamentals. We conclude the chapter by discussing capacity planning. 
8.2 E-commerce Architecture 
E-commerce applications often have a three-tiered architecture consisting of Web servers, 
application servers, and database servers (Figure 8.1).  

1. Web servers are responsible for presentation. They call functions from the 
underlying application servers via server extensions such as servlets or dynamic HTML 
interpreters such as ASP. They deliver HTML or XML pages back to the client browsers. 

2. The application servers are responsible for the business logic. They implement 
the functions exposed to the clients. Typically, these functions include search, update 
shopping cart, pay, or create account. Each function uses data from a local cache or from 
the underlying database server and outputs HTML or XML pages. 

3. The database servers perform data access. 

 
Figure 8.1: E-commerce three-tiered architecture. The three-tiered architecture comprises 
Web servers, application servers, and database servers. Web servers might cache Web pages 
(Web cache). Application servers might cache database relations (database cache).  

The question for the database tuner is to fix bottlenecks at the interface between the 
application servers and the database servers or within the database servers. This is critical for 
these applications because sites that display pages in nine seconds lose 10% more customers 
than sites that display pages in eight seconds according to anecdotal reports. 

To achieve low response time, you need to understand the functions provided by the 
application servers and the queries that they submit to the database servers. We have 
attempted to characterize the queries in a way that is relevant to the interface designer as well 
as to the tuner.  

1. Touristic searching—access the top few pages but don't go beyond them. Pages 
may be personalized to promote special offers based on the history of products purchased 
by the customer. These queries can be very frequent. Their content can largely be cached 
(even "Akamized," i.e., cached at the edges of the Internet) except perhaps for the 
personalization piece. There is no need for transactional guarantees with respect to 
available stock. But timeliness (e.g., reflecting a close approximation to the stock available 
that day) is important. Thus, the cache may be refreshed every hour or even every day, 
for example. 
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2. Category searching—down some hierarchy, for example, men's clothing to 
hunting boots (frequent, partly cached, and need for timeliness guarantees). Again, 
absolute transactional guarantees are not required. 

3. Keyword searching (frequent, uncached, and need for timeliness guarantees). 
The index on which the keyword searching is based need not be transactionally up to date 
because the search usually pertains to descriptive information. 

4. Shopping cart interactions (rare, but transactional). Such interactions include 
marketing functionality such as displaying a list of related products after a product has 
been purchased (infrequent, cached, and need for timeliness). 

5. Electronic purchasing (rare, but transactional). 

In addition to the query breakdown, the database tuner must consider a few design issues 
common to e-commerce sites:  

 Need to keep historic information. Pierre-Yves Gibello from Expershop notes that 
a noticeable fraction of the electronic payment acknowledgments get lost. An e-commerce 
site must keep historic information about all the orders that are passed in order to 
compare them with the reports from the bank. In addition, this historic information can be 
mined in order to establish links between related products. 

 Preparation for variable load. Accesses to e-commerce Web sites (or to portals in 
general) seem to follow regular patterns within a day and within a week. Tom Barclay from 
Microsoft research reports his experience with the TerraServer Web site: the Web site is 
busiest in the mornings (morning for the people who access the site, i.e., 11 P.M. to 3 A.M. 
PST for European users, and 5 A.M. to 3 P.M. PST for American users). Similar 
experience with intranet portals suggests that Mondays are the busiest day in the week. 
As a result, there are distinct peaks in the number of accesses. The system has to be 
sized for those. 

 Possibility of disconnections. State information can be transmitted to the client 
(e.g, using cookies) so that customers can keep their shopping cart across connections to 
the e-commerce site. 

 Special considerations for low bandwidth. Not everyone has a 10 Mbyte/sec 
connection to the Internet. Many home customers as well as companies that operate 
intranet portals over leased lines can afford only limited bandwidth. On such lines, the 
HTML traffic might become the bottleneck (e.g., font information may be contained in each 
column of a table). Pictures may be particularly painful. So you should design your Web 
site with options for low-bandwidth users. 

 Schema evolution. The conceptual schema for representing items will evolve in 
order to represent new products. Creating new tables to reflect this evolution requires the 
definition of new queries and possibly the modification of existing ones and is thus 
expensive. A simpler solution is to add attributes to existing relations. This leads to the 
definition of a few tables with a large number of attributes. This design presents two main 
problems: (1) the number of attributes in a table is limited (to about 1000) and (2) tables 
with a large number of attributes have NULL values in most fields. In order to deal with 
schema evolution, a few systems, such as IBM WebSphere Commerce Server, propose 
to represent e-commerce data as attribute-value pairs, that is, tables with a vertical three-
ary schema: objectid, attribute, value. The objectid is used to recompose horizontal 
records. This representation, however, complicates the formulation of queries. Agrawal et 
al. have shown that an intermediate layer between the application and the database 
system can hide this complexity and yield good performance.[1]  

[1]R. Agrawal, A. Somani, and Y. Xu. "Storage and Querying of E-commerce Data," Proceedings 
of the 27th VLDB Conference, Rome, 2001. 
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8.3 Tuning the E-commerce Architecture 
There are three main aspects to consider when tuning the database supporting an e-
commerce site: caching, connection pooling, and indexing. 

8.3.1 Caching 

Intuitively, you should cache hard-to-generate data that is read often and written infrequently. 
Formally, we break this down into four properties of a data item: its frequency of access, the 
space it takes, the space available, and how often it might be invalidated. Let us review these 
parameters for the query types identified earlier. 

Intuitively, the pages that the tourist sees should be visually appealing (lots of pictures) and 
very inviting. Most people (about 70%) see only these. They need not be changed as a 
function of what was sold that day. For example, even if the store has no more of some hot 
item, the touristic Web pages need not reveal that fact. This is not to say that those pages are 
entirely static, but they change rarely enough that caching of these HTML/JPEG/Shockwave 
pages on the Web server is a big win. 

Category searching is the practice of going down the hierarchies or hetarchies (intersecting 
trees) of an e-commerce site. Hot categories are good candidates for caching on the 
application server. The timeliness constraints amount to saying that invalidation need not 
happen immediately but maybe only periodically. Thus, if an item goes out of stock, a Web 
page may still indicate availability. The buyer will find out the item is out of stock (and may be 
given a later delivery date) upon purchase. The net result is that searches through the catalog 
depend either entirely or largely on start-of-day data and so can be cached. 

Keyword search relies on full-text indexing capabilities provided by database servers, or by 
specific indexing engines with database interfaces. As a result, the keyword search itself does 
not benefit from caching on the application server. Frequently accessed Web pages, however, 
might be cached based on a least recently used replacement policy or something similar. 

Shopping cart interactions require the maintenance of a table relating shopper to item, quantity, 
and price. This table changes frequently: items are added and removed, and shoppers are 
removed when their purchase goes through. These update transactions are directly performed 
on the database server. The shopping cart table is, nevertheless, a good candidate for caching 
because it is accessed frequently. Even large shopping cart tables should fit in memory on the 
application server site. (Counting 100 bytes per record and a million entries in the shopping 
cart table amounts to 100 Mb.) The data describing the user profile is not updated frequently 
and may be cached as well. 

The architecture of e-commerce applications allows different technologies for caching.  

 Web cache: Static Web pages or fragments of dynamically created Web pages 
can be stored as HTML files in the portion of the file system accessed by the Web server 
or even outside the firewall in an Akamized fashion. Research has shown that caching 
fragments of dynamically created Web pages substantially reduces server-side latency. 
Indeed, for dynamic Web pages, the generation of HTML or XML pages dominates 
response time.[2]  

 Database cache: Front-Tier from TimesTen provides supports for caching 
database records in an application server. This product uses materialized views to 
represent cached data. A view is either a restriction on a database server table or the 
result of a complex query. A materialized view is stored in the cache. Most read-only SQL 
queries submitted by the application server are evaluated using these views without 
contacting the database server. Modifications are submitted directly to the database 
server. The result of these insertions, updates, or deletions is then propagated to the 
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cached views in order to keep the cached data consistent.[3] A similar result can be 
achieved with Oracle 9i using remote aggregate view maintenance. An Oracle 9i server is 
colocated with the application server and acts as the database cache. On this server, 
materialized views are defined based on tables from the remote database server. The 
application server submits the queries to the local Oracle 9i server and the updates to the 
remote Oracle 9i server. The built-in replication mechanism ensures that remote 
materialized views are maintained consistent with the tables on the database server. A 
mechanism for rewriting queries using views allows queries to make optimal use of the 
data cached in the materialized views. 
SYSTEM FEATURES FOR FAST CACHES  

 

Because (1) items can be returned up to hundreds of times faster from the cache than by being 
built and (2) some items such as shopping carts are updated frequently, it is useful to support 
an updatable cache. In one architecture, Front-Tier from TimesTen allows the following 
behavior:[4] As a shopper adds products to a shopping cart, those updates are recorded in 
Front-Tier's cache (an in-memory database cache), but are not propagated to the backend 
database server until the transaction commits. At commit time, Front-Tier pushes the group of 
changes to the backend database for server-side processing. When the backend database 
server commits, Front-Tier reports to the user that the purchase has completed. 

If there are many caches, they may have to be coordinated (unless we can force a given 
shopper always to return to the same cache). Front-Tier allows peer-to-peer replication. 

Finally, high-performance cache servers like Front-Tier run coresident with application servers. 
This avoids interprocess communication and permits the application server code to have direct 
access to the Front-Tier data structures. 

 

 

8.3.2 Connection Pooling 
To avoid thrashing, database servers are limited to a number Nmax of concurrent connections, 
which is usually lower than the number of concurrent connections accepted by a Web server or 
an application server. Connection pooling is a general client-server technique for multiplexing 
Web server connections over database connections (see Chapter 5). 
Connection pooling consists of reusing a fixed set of connections between the client and the 
server. First, a pool of Nmin connections is established. The first Nmin concurrent clients use 
these already opened connections; if additional clients request connections to the server, then 
additional connections are opened until the pool reaches its maximal size Nmax. Additional 
clients that request connections must wait until already connected clients terminate their 
transaction and give their connection back to the common pool. This general technique was 
developed for transaction monitors in the 1970s and has been rediscovered in the context of e-
commerce applications (Figure 8.2). 
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Figure 8.2: Connection pooling. For this experiment, we compare the response time using 
simple connections and connection pooling on Oracle 8i on Windows 2000. (Connection pooling 
as we have described it in this section is called connection concentration by Oracle.) We vary the 
number of client threads; each thread establishes a connection and runs five insert transactions. 
If a connection cannot be established, the thread waits 15 seconds before it establishes the 
connection again. The number of connections is limited to 60 on the database server. Using 
connection pooling, there is no problem establishing a connection; the connection requests that 
cannot be granted are queued and serviced whenever a connection becomes available. Using 
simple connections by contrast, connection requests cannot be granted when the number of 
client threads is greater than the maximum number of connections (60). When rejected, client 
threads have to wait before they try again to establish a connection.  

8.3.3 Indexing 

Shopping cart interactions require the maintenance of a table relating shopper to item, quantity, 
and price. This table changes frequently: items are added and removed, and shoppers are 
removed when their purchase goes through. So the queries are add row after checks on 
inventory, change row, remove row, bring up current shopping cart. 
A clustered index on shopper id helps in two ways. First, the index speeds up shopping cart 
lookup. More important, a clustered index allows the system to exploit row level locking. In the 
absence of a clustered index, table locking is necessary to guarantee a serializable isolation 
level. The clustered index together with key range locking gives high concurrency among 
queries, insertions, deletions, and updates while preserving serializability. The experiment 
reported in Figure 8.3 illustrates this point. The overhead of maintaining the clustered index 
when inserting new entries in the shopping cart is negligible. 

 
Figure 8.3: Clustering index. This graph illustrates the two benefits of a clustered index on 
shopper id. First, when only queries are submitted, the index speeds up response time compared 
to a scan (the table contains 500,000 entries). When updates, deletes, and insertions are 
submitted together with queries (1 delete, 1 insertion, and 10 insertions for each query), the mean 
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response time approximately doubles. Throughput is an order of magnitude lower in the absence 
of a clustered index.  
Keyword search on long strings or documents requires the use of full text indexing. Most 
database system provide this capability. They construct inverted indexes that are used to find 
the documents that reference a given keyword. The database tuner should ensure that inverted 
indexes are located in the database server memory. Experiments in Chapter 3 illustrate the 
potential benefits of inverted indexes. Note that search engines with database interfaces, such 
as MondoSearch (which can be integrated into Microsoft Commerce Server) or Verity, 
construct inverted indexes outside the database server. 

[2]A. Datta et al. "A Comparative Study of Alternative Middle Tier Caching Solutions to Support 
Dynamic Web Content Acceleration," Proceedings of the 27th VLDB Conference, Rome, 2001. 

[3]We surmise that future releases of this product will automatically decompose queries into a 
subquery using materialized views and a subquery submitted to the database server, thus taking 
maximum advantage of the materialized views and reducing the load on the database server. 
Today this decomposition is encoded by the application programmer. 

[4]Tim Shetler provided this information. 

8.4 Case Study: Shop Comparison Portal 
Kelkoo is a shop comparison portal that provides access to online shops from eight European 
countries. Like most shop comparison portals, the Kelkoo Web site allows users to navigate in 
a hierarchy of product categories and to compare the prices for which a particular product can 
be obtained from various online shops as well as to explore various discounts and special 
offers. In the second quarter of 2001, the Kelkoo portal hosted 1.4 million visits (a visit 
corresponds to a user session with a duration of 30 minutes), which generated 1.8 million hits 
on the referenced online shops. 

Kelkoo relies on Internet logs to monitor user activities. There are three purposes:  

1. How many hits are directed to which online shops? This allows Kelkoo to 
negotiate with online shops. 

2. What are the most visited pages? Where do users come from? Like every portal, 
Kelkoo buys ad banners displayed on the Internet and also hosts ad banners for other 
companies. This information is used to negotiate the price of ad banners and to improve 
the organization of the portal. 

3. What are users looking for? This is used to determine discounts and special offers. 

The Kelkoo portal follows a three-tiered architecture, where Web servers, application servers, 
and database servers are located on separate production hosts (there are several hosts for 
each tier).[5] Both the Web servers and the application servers generate logs. The Web server 
traces which pages are visited and which sites users come from, while the application servers 
trace user requests and hits generated for online shops. Each server generates a log file 
stored on the local host. There are about 100 megabytes of logs generated each day. They are 
compressed, then transferred from the production hosts to a separate data warehouse. 

There are two performance objectives.  

 The warehouse should be refreshed nightly between 2 A.M. (the time logs are 
closed for a given day) and 9 A.M. (the time at which the Kelkoo team starts querying the 
warehouse). 

 Members of the Kelkoo team should have fast access to the visual representation 
of the log warehouse; otherwise, experience shows that data in the warehouse is not used. 
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The Internet log warehouse is composed of 26 tables. The main tables concern user visits, 
pages visited, hits on ads, and hits on online stores. Other tables are materialized views 
created for aggregate maintenance (see Chapter 4). Raw data is kept for the current month 
and the three previous months. Older raw data is archived. Aggregate data is kept in the 
warehouse. The log warehouse occupied about 6 gigabytes as of July 2001. 

Statistical manipulations of the raw data are performed using scripts written in-house or using 
Webtrends; that is, statistical manipulations are performed at the application level outside the 
database system. The output of these programs is formatted so that it can be loaded into the 
database or displayed using a graph visualization tool. 

Here are two examples of the use of aggregate maintenance for this Internet log warehouse.  

 A graph representing the number of visits per month, per user, over four months 
(including the current month) is generated each day. Generating this graph is part of the 
activity that is performed at night and must be terminated within seven hours. Running a 
program that computed the graph from raw data (the number of visits) took about an hour. 
Aggregate maintenance reduced the time needed to produce the graph to a few seconds. 
A table storing the visits per month was created. Each month a row is inserted in this table 
using the raw data. Each night the graph is produced in about ten minutes using the raw 
data for the current month and the aggregated data for the previous months. 

 The list of top online shops is generated on demand. In this list, shops are ranked 
by the current number of hits; the list also includes the history of hits for these shops over 
the last months and a provision for the next month. Generating this list took a minute 
using raw data, and it now takes about five seconds using a table of the top shops. This 
table is generated each night. The gain in performance is obtained at the cost of a loss in 
accuracy, which is okay in the context of this application. 

It is more efficient to run a script and bulk insert the rows that are generated instead of 
inserting rows whenever they are generated. Performing a bulk insert has the obvious 
advantage of reducing the length of the insert transaction: 2 minutes instead of 30 minutes. 
Note finally that the whole infrastructure has been audited to ensure that the contents of the 
warehouse corresponds to the data obtained from the logs. For instance, it is important to 
ensure that the loading of the data warehouse does not cause hits to online shops to be 
counted twice or requests coming from other sites to be dropped. We discuss how to achieve 
such "exactly once" behavior in Chapter 6. The basic idea is to make the transfer of data part 
of a database transaction. 

[5]Note that 75% of the requests generated by the application servers are directed to the database 
servers on which price information is loaded every night, whereas 25% of the traffic is directed to 
remote online auctioning or flight reservation servers. 

8.5 Capacity Planning in a Nutshell 
"I am of the opinion that the boldest measures are the safest." 

—British Admiral Horatio Nelson, upon urging a direct assault on a fortified harbor and fleet in 
1801. He prevailed. 

Capacity planning is hard. The math is easy (a little probability and algebra as we will see). The 
measurement part is time consuming but straightforward (the many experiments we offer on 
our Web page should give you a head start). Getting the demand assumptions right are what 
makes it hard. It helps to be bold. 
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To give you one example, when the French national phone company introduced Minitel (a kind 
of proto-Web) in the 1980s, their engineers assumed a certain traffic. To encourage use, they 
offered added services such as e-mail sex lines. The concept was that users would engage in 
arousing conversations over the tiny monocolor Minitel screens with squarish fonts. Now who 
would find that appealing? But we're talking about France, the land of romance and poetry. The 
sex e-mail was so popular that the heavy traffic caused the communication hubs to crash! 

Unfortunately, no book can tell you how to estimate demand when the product is entirely new, 
as e-mail was to most of France or Napster was to the Internet. When your product is less 
novel (say, a new kind of insurance), then market it heavily.[6] After that, organize focus groups, 
perform telephone surveys, and hire statisticians to do the relatively straightforward 
extrapolations.[7] This tends to work a lot better than asking the system architects to estimate 
demand. 

8.5.1 Capacity Planning Essentials 
For purposes of this section, we're going to assume that someone gave you the demand 
somehow. This might come in the form, "We expect to get x hits to our Web site per minute, 
with a peak load of y. Fraction z of those hits will perform searches, and so on." We express 
that using our first mathematical tool: probabilistic Markov models. Figure 8.4 shows one 
example in which the entry point has service time S1 (the time to handle an entry). Of those 
users who enter, 0.4 go to the search node. Each search takes time S2, repeats with probability 
0.5, and otherwise enters checkout with probability 0.1. 

 
Figure 8.4: A probabilistic state transition diagram of a simple e-commerce application: 0.4 of the 
clicks on the entry proceed to S2, 0.5 of the entries to S2 visit S2 again, and 0.1 enter S3.  
The arrival rate is the number of requests that arrive in a given time interval. The arrival rate 
into entry is given by marketing, and we will call it A1. A2 is the computed arrival rate (both from 
entry and from feedback) into S2, and A3 is the computed arrival rate into checkout. The fact 
that the fractions leaving each node total to less than 1 implies that there is leakage—
customers who leave the site. 
The equations for the two unknowns, A2 and A3, are simple. 

 
Solving in terms of A1, we have A2 = 0.8 A1, and A3 = 0.08 A1. 
Now that we have the arrival rates, we must measure the service times, S1, S2, and S3. This 
involves several steps.  

1. Estimate the service time for a single server. Please be as realistic about size and 
disk resources as possible. (Feel free to modify the experiments from our Web page.) 

2. Take parallelism into account. Now, the service time for a service depends partly 
on the number of servers N. If the servers are identical, the network bandwidth is high, 
and they share no physical resources, then you can obtain the service time at a resource 
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by dividing the time at a server by N (or, if you want to be conservative, a number slightly 
less than N such as 0.8 N to take into account failures and unforeseen interactions). 

3. Decide on your server model. The single most important qualitative observation of 
queueing theory is that your system's customers will enjoy a much more uniform response 
time if you have a single queue for multiple servers than if you have one queue for each 
server.[8] Implementing a single queue requires some kind of middleware and high-
bandwidth connections to that middleware, so sometimes this is not feasible. If infeasible, 
then the next best design is to assign jobs to servers randomly or perhaps based on the 
hash of a meaningless key. The reason we stress the desirability of single queues is that 
many systems must meet stringent response time constraints in order to satisfy the many 
customers who have the attention span of fruit flies. 
So, now you have the service times S1, S2, and S3 and the arrival rates A1, A2, and A3. 
Suppose we want to determine the average response time at each node X. This will be a 
function of the arrival rate A and the service time S at X. Recall that A tells how many jobs 
arrive in a certain time period, say, 100,000 per second. S is the time to perform each request, 
say, 2 microseconds (the requests are simple). Therefore, A × S is the fraction of time the 
servers for X are busy. That is called the average utilization or U. (U is 0.2 in this case.) If this 
number is over 1, you need more servers. 
Whereas a utilization near 1 could be achieved, if the traffic arrived in a perfectly regular 
manner, as it does, say, when you load data, external traffic is seldom regular. Even assuming 
you have designed for the peak arrival rates as expressed, say, as events per second, there 
are small variations in actual arrivals. These are best characterized by a Poisson model.[9] In 
that case, the utilization should be considerably less than 1 to handle variant traffic. The rule of 
thumb is 60% or less. The mathematics underlying that rule of thumb is the following equation 
from queueing theory giving the response time R (and assuming Poisson arrivals): 

 
Thus, if the utilization is 50%, the response time R is twice the service time S. As the utilization 
approaches 1, the response time gets worse very fast. 

8.5.2 What to Purchase 

If you have bought your equipment, then the preceding discussion provides you all the basic 
tools you need. If you haven't, then try to borrow time from a manufacturer and then do your 
measurements on those. If you can't do that, then you're reduced to guesswork based on 
analogous applications. Since your measurements will probably miss some important 
transactions, you may want to purchase some multiple of the capacity the measurements and 
your demand model suggest. Most capacity planners use a multiple of 2 at least. Be bold. 
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Exercises 

EXERCISE 1 

Evaluate the relative benefits of caching for a site that  

 Delivers current stock quotes. 
 sells medieval illuminated manuscripts. 

Discussion. Caching helps when the item cached is large and difficult to construct and changes 
rarely. Both properties hold for illuminated manuscripts. Neither holds for stock quotes. 

EXERCISE 2 

As of this writing, Akamai and its competitors sell a service whereby data is downloaded from 
an e-commerce site S to many servers widely dispersed on the net. When a user connects to 
site S, the data actually comes from an Akamai server in a transparent fashion. Evaluate the 
following assertion: if it's worth caching the data, then it's worth "Akamizing" it. 
Discussion. Generally, this assertion holds. Akamizing exaggerates both the costs and benefits 
of caching.  

 Sending the data to all Akamai caches takes longer than materializing data in site 
S's cache. 

 Downloading the data from an Akamai cache takes less time than downloading it 
from s's cache for most user devices. 

So, data that changes every few minutes might not be worth Akamizing, which is also true of 
data that is accessed by hundreds rather than millions of users. 

EXERCISE 3 

You are designing an e-commerce site having an average peak demand of 8000 initial 
requests per second, each of which requires 10 milliseconds of service time on a single initial 
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request server. Of those 8000 requests, 20% turn into secondary requests requiring 100 
milliseconds of service time on a single secondary request server. Each request requires a 
response time of 500 milliseconds. You may assume that the application is nearly perfectly 
parallelizable across servers. How many servers of each type will you need? 
Action. 

 
The utilization is (A1 × S1) = 80 for the first service and (A2 × S2) = 160 for the second. These 
are both over 1. So, we must reduce the utilization through parallelism. 
Recall that, under the Poisson model, the response time R per request is given by the equation 

 

or 
 

For the initial request server, this implies S = (0.5)/(1 + (8000 × 0.5)) = 1/8002 seconds. Since 
the service time on a single server is 0.01 second, perfect parallelism would say that we would 
need 0.01 / (1/8002) = 80.02 servers. But assuming that near perfect parallelism means that N 
servers will reduce service time by only 0.8 N, we have to multiply 80.2 by 1/0.8, yielding about 
100 servers. 
Repeating this calculation for the secondary request server, S = (0.5)/(1 + (1600× 0.5)) = 
1/1602 seconds. Since the service time on a single server is 0.1 second, perfect parallelism 
would say that we would need 0.1/(1/1602) = 160.2 servers. Using the 0.8 discount gives us 
about 200 servers. It's good that hardware is cheap. 

EXERCISE 4 

Calculate the net arrival rates if 50% of the secondary request jobs return to the first server and 
30% return to a new request at the secondary request server. 
Action. 

 
The algebra is particularly simple here: simply substitute the expression for A1 into the equation 
for A2: 

 
So, 0.6 A2 = 1600 and A2 = 1600/0.6. This raises the arrival rate at 1 to 

 

MINIPROJECT 
There are a group of e-commerce-related performance experiments for you to do at the book's 
Web site at http://www.mkp.com/dbtune/. There you will find both code snippets to modify and 
example runs. Some of these experiments require external components. The projects concern 
the following issues:  

1. Where is the time spent when generating dynamic Web pages? What is the time 
spent fetching data from the database server, and what is the time spent generating 
HTML or XML code? 



Database Tuning  Chapter 8: Tuning E-Commerce Applications 

-187- 

2. Is it worth using the database cache for the data used in dynamic Web pages? Is 
the behavior similar for text and images? Is it worth using a clustered index for shopping 
cart data? 

3. Given your server configuration, how many processes run on the server once you 
have reached the maximum number of connections? 

4. Compare an external search engine combined with a database system to the 
internal full text indexing capabilities of the database server. What is the space utilization? 
What is the response time? 

MINIPROJECT 
A miniproject on the book's Web site at http://www.mkp.com/dbtune/ consists in comparing 
estimated response time with actual response time. A client application (simulating the 
application server) issues queries to the database server. The goal of the mini-project is first to 
predict utilization and response time for a given workload (i.e., a given configuration of the 
client application). To do so, it is necessary to obtain the service time parameter from the 
server. The second step consists in measuring the actual response time. 

[6]See, for example, Jon Spoelstra and Mark Cuban. Marketing Outrageously, Bard Press, Austin, 
Texas, July 2001. 

[7]Terry Dickey, Chris Carrigan (editors). Using Business Statistics: A Guide for Beginners (A Fifty-
Minute Series Book), Crisp Publications, San Francisco, May 1995. 

[8]Banks have figured this out. Supermarkets have not—don't you love those shoppers who bring 
in newspaper coupons? 

[9]In the Poisson model, the time between arrival i and arrival i + 1 is independent of the time 
between any other successive arrivals and is characterized by a function of time and the arrival 
rate. 
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Chapter 9: Celko on Data Warehouses—
Techniques, Successes, and Mistakes 
—Joe Celko, Columnist, Author, Consultant  
9.1 Early History 
Data warehousing began in the medical community with epidemiology studies. Historical data 
was kept in standardized formats that allowed researchers to look for patterns in the data and 
take appropriate actions. Cost was not much of a problem since the alternative to epidemiology 
is epidemics. People have always understood "your money or your life" as a sales pitch. 

Over the years, the cost of storage and computing power decreased drastically. Before cheap 
storage, any research done by commercial data processing users either was a special project 
that collected its own data or involved digging thru archival storage. Archival storage meant 
"magnetic tapes" and a lot of manual labor to extract data from them. Once you got your data 
out of archival storage, it would not be uniformly formatted. Changes in the way that a 
company did business, new packages, and patches to old applications all made historical 
research difficult. 

Another factor was that archival storage was destroyed. In the American legal system, old data 
can be used in court against you, but you are not obligated to retain records past a certain 
lifetime. One of the jobs of a records manager was to destroy out-of-date records. For the most 
part, this meant paper shredding, but it also meant erasing magnetic tapes. 

The technology has, of course, changed. Commercial users can keep large amounts of data in 
active storage. Suddenly, you were actually using the "high-end" metric prefixes like tera- and 
peta- in real conversations. 
9.2 Forget What the Elders Taught You 
The relational database management systems are well established, and SQL is the de jure and 
de facto language. But the mental model of a database was still the transactional systems. 
Everything you know about transactional databases is the opposite in a data warehouse. Get 
ready to unlearn. 

A transactional database holds current data. A data warehouse holds historical data. A 
transactional database should be as small as possible because a small database is usually 
faster. It can handle more transactions per minute. 

A data warehouse should be as large as possible. The more historical data and the more 
detailed that data is, the more complex and long range are the patterns that can be discovered. 

A transactional database is designed for many users who engage in short sessions. The 
session is almost always a fixed application. The classic example is an ATM machine. 

A data warehouse is designed for a few trained users who engage in long, complicated 
sessions. These sessions are ad hoc queries or statistical analyses. 

The transactional database session is very specific—move money from my saving account to 
my checking account. The data warehouse session might produce a chart of the movement of 
money from all saving accounts to checking accounts by time of day. 
A good transactional database is normalized. It has to be normalized because the data is 
changing (INSERT, UPDATE, and DELETE statements in SQL), and an unnormalized 
database will produce data anomalies (see Chapter 4). 
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A data warehouse should not be normalized because the data never changes while it is in use. 
Yes, new data comes into the warehouse, but it is bulk loaded as a separate operation, not 
while the database is being queried. 

This is where the star and snowflake schema designs come into play. They feature a large, 
denormalized "fact table," which represents a long statement about the enterprise. As a 
simplified example, the fact table might model all the information we have on all the cash 
register slips at all of our stores. 

In one row, we would find the items bought, the price, coupons used, method of payment, and 
so on. This makes asking questions like "Do people who use credit card X buy more per 
shopping trip than people who use credit card Y?" because it is available in one read. The rows 
are also ordered chronologically, so temporal queries are very easy for query systems that can 
take advantage of physical ordering to do cumulative aggregates. 

The other tables are dimensions—the units that each of the attributes in the fact tables uses. 
For example, the credit card column in the fact table might reference a table of credit cards we 
accept. This table would have the customers' names, when we added them, what our 
limitations were at that time, and other information about the cards. 

Some dimensions are hierarchical in nature. The most common example is the ZIP+4 code, 
which is a geographical hierarchy. Using the ZIP+4 code, you could query the data warehouse 
at a regional level, then "zoom in" to state level, to city level, and finally to postal route and 
street level. 

It is also possible to have more than one hierarchy on the same data. My favorite example was 
a shoe company that viewed their product with a manufacturing classification scheme that was 
constant. They also had a marketing classification scheme that changed after every market 
research study. In the manufacturing classification scheme, steel-toed work boots were one 
item. In the marketing classification scheme, small steel-toed work boots were a totally different 
product from large steel-toed work boots. Why? Construction workers bought the larger sizes, 
and teenage girls bought the smaller sizes—two different sales channels.Classification brings 
up the topic of how to represent hierarchies. The answer is surprising. 
REPRESENTING HIERARCHIES  

 

The usual example of a tree structure in SQL books is called an adjacency list model, and it 
looks like this:  

     CREATE TABLE Personnel 

     (emp CHAR(10) NOT NULL PRIMARY KEY, 

     boss CHAR(10) DEFAULT NULL REFERENCES Personnel(emp), 

     salary DECIMAL(6,2) NOT NULL DEFAULT 100.00); 

 

     Personnel 

     emp           boss        salary 

     --------------------------------- 
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     'Albert'    'NULL'       1000.00 

     'Bert'      'Albert'      900.00 

     'Chuck'     'Albert'      900.00 

     'Donna'     'Chuck'       800.00 

     'Eddie'     'Chuck'       700.00 

     'Fred'      'Chuck'       600.00 

Another way of representing trees is to show them as nested sets. Since SQL is a set-oriented 
language, this is a better model than the usual adjacency list approach you see in most 
textbooks. Let us define a simple personnel table like this, ignoring the left (lft) and right (rgt) 
columns for now.  

     CREATE TABLE Personnel 

     (emp CHAR(10) NOT NULL PRIMARY KEY, 

     lft INTEGER NOT NULL UNIQUE CHECK (lft > 0), 

     rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1), 

     CONSTRAINT order_okay CHECK (lft < rgt) ); 

 

     Personnel 

     emp          lft        rgt 

     --------------------------- 

     'Albert'      1         12 

     'Bert'        2          3 

     'Chuck'       4         11 

     'Donna'       5          6 

     'Eddie'       7          8 

     'Fred'        9         10 
Figure 9.1 represents the organizational chart as a directed graph. 
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Figure 9.1: Organizational chart as a directed graph.  

A problem with the adjacency list model is that the boss and employee columns are the same 
kind of thing (i.e., names of personnel), and therefore should be shown in only one column in a 
normalized table. To prove that this embodies redundancy, assume that Chuck changes his 
name to Charles; you have to change his name in both columns and several places. The 
defining characteristic of a non-redundant table is that you have one fact, one place, one time. 

Further, the adjacency list model does not model subordination. Authority flows downhill in a 
hierarchy, but if I fire Chuck, I disconnect all his subordinates from Albert. There are situations 
(i.e., water pipes) where this is true, but that is not the expected situation in this case. 

That brings us to lft and rgt. Do a traversal on the outside of the tree. Associate with each leaf 
a number and its successor, and associate with each interior node the number as you traverse 
downward and the number as you traverse upward. 

If that mental model does not work, then imagine a little worm crawling counterclockwise along 
the tree. Every time he gets to the left or right side of a node, he numbers it. The worm stops 
when he gets all the way around the tree and back to the top. 

This has some predictable results that we can use for building queries. The root is always (left 
= 1, right = 2 * (SELECT COUNT(*) FROM TreeTable)); leaf nodes always have (left + 1 = 
right); subtrees are defined by the BETWEEN predicate; and so forth. Here are two common 
queries that can be used to build others. 

1. An employee and all of their supervisors, no matter how deep the tree.  
2.      SELECT P2.* 
3.        FROM Personnel AS P1, Personnel AS P2 
4.       WHERE P1.lft BETWEEN P2.lft AND P2.rgt 
5.         AND P1.emp = :myemployee; 
6. The employee and all subordinates. There is a nice symmetry here.  
7.      SELECT P2.* 
8.        FROM Personnel AS P1, Personnel AS P2 
9.       WHERE P1.lft BETWEEN P2.lft AND P2.rgt 
10.         AND P2.emp = :myemployee; 

Add a GROUP BY and aggregate functions to these basic queries and you have hierarchical 
reports; for example, the total salaries that each employee controls:  

     SELECT P2.emp, SUM(S1.salary) 

       FROM Personnel AS P1, Personnel AS P2, 
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            Salaries AS S1 

      WHERE P1.lft BETWEEN P2.lft AND P2.rgt 

        AND P1.emp = S1.emp 

      GROUP BY P2.emp; 

To find the level of each node so you can print the tree as an indented listing, use the following:  

     DECLARE Out_Tree CURSOR FOR 

      SELECT P1.lft, COUNT(P2.emp) AS indentation, P1.emp 

        FROM Personnel AS P1, Personnel AS P2 

       WHERE P1.lft BETWEEN P2.lft AND P2.rgt 

       GROUP BY P1.emp 

       ORDER BY P1.lft; 

This approach will be two to three orders of magnitude faster than the adjacency list model for 
subtree and aggregate operations. 
For details, see the chapter in my book Joe Celko's SQL for Smarties (Morgan Kaufmann, 
1999, second edition). 

 

 

Time is important at this level since dimensions can change over time. For example, when did 
you start selling soft drinks in liters instead of fluid ounces? How do you compute dollar values 
that are adjusted for inflation? 

The snowflake schema is like a star schema, but the dimension tables have associated smaller 
tables that explain their attributes. Think of a fractal design or a snowflake. The goal is to help 
with changes in dimensions. 

Imagine a central fact table that holds sales data. Some of the dimensions of a sale are the 
product, the price, and the store where the sale was made. The store dimension is linked by an 
identifier to a store table. But a store has geography and demographic subdimensions 
associated with it. If store number 5 has a change in demographics, say, a swinging singles 
condo opens next to the old folks home in the neighborhood, the store dimension table is 
"relinked" to a new demographic code and some temporal data about when the switch in the 
neighborhood occurred. 

Going back to the differences between transactional databases and data warehouses, we want 
to use the minimal number of tables in a transactional query, and we can be pretty clever about 
the code. 

Writing an SQL query for a snowflake or star schema is not difficult, but it is bulky because the 
dimensions are joined to the fact table in the majority of the queries. But you have a large 
number of tables in those joins compared to a transactional system. The solution has been to 
build frontend tools with a graphic interface that constructs the SQL under the covers and 
perhaps brings the answers back in a graphic display. 
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One implication of all this is that it is a bad idea to put a data warehouse on the same hardware 
as an OLTP system. The transactions will be unpredictable when all the disk space is eaten by 
the warehouse, and the CPU time suddenly goes off to perform some massive statistical 
calculations. Want to tell people that the payroll will be a day late because someone in 
marketing decided to see if there is a relationship between 25 independent variables? 
9.3 Building a Warehouse Is Hard 
Data warehouses were originally done at the corporate level and took a long time to build. A 
major reason for the high cost and time was that they went across departmental lines and had 
to pull data from many different systems. These systems never worked together before. 

Building a uniform data model at that level is hard. Each data element has to be sweated over 
and rigorously defined. One of the classic examples was a project at a major airline that 
discovered they had just over 60 different definitions of a "passenger" in their application 
systems. Is an infant who does not have a ticket a passenger? Is an animal in the cargo hold 
with a ticket a passenger? Are you the same passenger on each leg of your flight? Is an empty 
seat a passenger when it was paid for on a nonrefundable ticket? Are overbooked passengers 
accounted for in some logical fashion? Standby passengers? Do airline employees on a free 
ticket count? 

Because the data warehouse was so expensive, we then came up with the less ambitious 
"data mart" concept. These databases would be something like a small data warehouse, but 
they would focus on one topic, which might be at a departmental level or might go across 
departments. For example, I might wish to look at payment patterns over time and I would 
need only the accounting department records. But if I wanted to look at customer relations, I 
would track orders, payments, returns, service requests, and other things that are not in one 
department. 
The misconception was that by building a lot of data marts, you could merge them into a data 
warehouse. Remember how hard it was to get a uniform data model across multiple application 
databases? It is just as hard or harder to get a uniform data model across multiple data marts.  

The data warehouse queries deal with aggregates rather than with single transactions. 
Computing the same aggregations over and over is a waste of time. But storage is cheap, so it 
is possible to store the aggregations in the data warehouse. You would never do this in a 
transactional database because you would then have to maintain the redundant aggregate 
information. 

This leads to analytical processing and a host of unpronounceable abbreviations. The first one, 
OLAP, On-Line Analytical Processing, was defined by E. F. Codd, the inventor of the relational 
model. If you use a relational database, it is called ROLAP; however, a relational database is 
not good at storing a hierarchy of aggregations. This lead to Multiple Dimensional Databases 
(MDDBs), which have storage structures for doing aggregations. 

Hybrid OLAP (HOLAP) allows you to construct aggregations in a relational system and store 
them in an MDDB. This attempts to give you the best of both worlds, but you will pay for it in 
storage. 
9.4 The Effect on the Bottom Line 
Now, the bottom line: does it work? There are a lot of failed data warehouse projects. I know 
that people will argue over why they failed, but my guess is that most of the failed projects 
were never really data warehouses. A data warehouse is not a large pile of historical data in 
one black box, it is not a collection of data marts, and it is not a magic lamp that grants wishes. 
I think that companies started such projects as corporate fads and did not want to take the time 
to unify the schemas, could not overcome the departmental desire to hoard data, or did not 
learn enough statistics to do the data mining. 



Database Tuning                                         Chapter 9: Celko on Data Warehouses-Techniques, Successes, and Mistakes 

-194- 

Are there successes? Oh yes! The first good consequence is that setting up the data 
warehouse made companies do data audits and clean up their production databases. The 
amount of dirty data in the production systems was always an unpleasant surprise. 

The second effect of a data warehouse project is that people look at the entire enterprise as an 
integrated process, instead of separate parts only vaguely related to each other. 

The third effect of a data warehouse project is that you get useful information out of the 
warehouse. One drugstore chain had been removing regular candy from the shelves to make 
room for Valentine's Day candy in most of their stores. Regular candy has a high markup while 
Valentine's Day candy has a low markup. The logic is simple: the candy companies know you 
have to have Valentine's Day candy, but one candy bar is much like any of the hundreds of 
other brands and thus has to compete for display shelf space. 

The question was, how does leaving the regular candy on the shelves during the Valentine's 
Day season affect sales? Based on their data, they saw a halo effect— Valentine's Day candy 
increased all candy sales. The data warehouse project paid for itself over the Valentine's Day 
season. 

Some information that comes out is just weird and might be just random correlations. Did you 
know that people who wear tweed eat twice as much chocolate as the average person; and 
that having a sale on beer at a Quicky Mart will increase the sale of disposable diapers? 

People can invent explanations after the fact. The traditional rationale for the beer and diapers 
was that working-class fathers on their way home would see the beer sale, buy a case, see the 
diapers and remember to bring them home so they would not catch hell about the beer. A less 
traditional explanation was that working-class mothers would go to the Quicky Mart to get 
diapers and see the beer sale. She's been home with the kids all day, so she needs the beer 
even more than the father does. But does the cause matter if you have the fact and can turn it 
into a course of action? 

9.4.1 Wal-Mart 

The classic case study for a successful data warehouse is Wal-Mart. It is so much so that there 
is even a book about their techniques.[1] The input of every scanner in every Wal-Mart is fed 
into Bentonville, Arkansas, to the Retail Link, a proprietary system. Wal-Mart averages about 
100 million customers a week. 

My personal view of Wal-Mart was formed when my wife and I took a cruise to Alaska. I do not 
like the standard stops that cruises plan for you—they never include a brew pub or a strip joint. 
Before Wal-Mart arrived in one small town in Alaska, the price of milk was just over $6.00 a 
carton at their local mom-and-pop stores. Wal-Mart sold milk for just over $3.00 a carton, and 
gave their employees stock plans and benefits they had never had before. 

They have been able to come into small towns and different countries to offer local customers 
huge savings in large part due to their volume buying, but also because of their reduced 
overhead. That reduced overhead is due in part to their data warehouse. 

Their data warehouse is measured in terabytes and might be in petabytes by the time you are 
reading this chapter. The mental image that IT people form when hearing about such a system 
for such a large company is that it is great for expected cycles, but not for unexpected changes. 
But that is not the case for Wal-Mart. 

Let me make that clearer with a deliberately silly example. Imagine you are the buyer for 
women's swimwear. Given long-range weather forecasting, a purchasing history by each store, 
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and other demographics, you can predict with some certainty how many and what kinds of 
swimwear to put in each store. 

In Florida, you ship large-sized, one-piece maillots with Godzilla tummy control panels for 
retirement villages. The only thongs they wear are on their feet. The string bikinis with hip, cool 
name-brand labels head for Fort Lauderdale just before spring break. You adjust your shipping 
dates by the expected weather forecast for warm weather and you are done. 

But let's imagine that the weather suddenly changes and we get a prolonged snow-storm 
instead of a hurricane in Florida this year. What happens at the individual stores; what does the 
individual employee do? The immediate thought is that a huge system cannot adjust to sudden 
radical change. It is like a dinosaur that is so large it needs two brains; by the time the front 
brain tells the back brain that we are heading for the La Brea tar pits, the tail is swishing the 
asphalt. The bikinis will arrive, and parkas will not, according to schedule and last year's 
planning. The individual manager will try to adjust, but the system as a whole will keeping 
heading for the tar pits. 

In a traditional IT environment, the disjoint systems would have been like the dinosaur's brains. 
By contrast, the centralized warehouse becomes the "mammal brain" for the enterprise. 

My bikinis-in-a-snowstorm scenario was meant to be funny. Some scenarios are less so. On 
September 11, 2001, the World Trade Center in New York City was destroyed, and the 
Pentagon was damaged. I see no humor in these things, but we had to get back to normalcy 
and restore commerce. Let's look at what happened to Wal-Mart. 

Nationwide, Wal-Mart store sales dropped 10%, but the stores in northern Virginia and those 
around New York dropped as much as 40% from the year earlier. When people did start 
coming back to shop, the purchases changed. 

On the Tuesday of the attack, people began buying American flags (116,000 versus 6400 the 
year before), canned food, bottled water, other emergency supplies, guns, and ammo—but in 
the Midwest, not on the East Coast where the attacks occurred. 

Wednesday saw what Wal-Mart called "the CNN effect"—early morning shopping for candles, 
more flags (200,500 of them), and T-shirts. 

By Thursday, shopping patterns were starting to return to normal, but at a reduced individual 
purchase level. The expectation was the weekend after the attack would be a tidal wave of 
pent-up buying needs. 

A Nebraska store manager named MacNeil made a decision based on this data and 
predictions. He increased his weekend staff by 20. 

Moral to the story: a good warehouse can respond faster to catastrophe than a traditional set of 
disjoint systems. It does so by giving global feedback to the individual units. 

9.4.2 Supervalu 

Perhaps the most enlightening case study is the one that deals with a company that starts from 
scratch and hits all the walls that you can hit while trying to get started. A person should learn 
from experience—but not his or her own. Let some other guy get the arrows in his back. 

Supervalu is one of the top ten grocery chains in the United States with $23.5 billion in sales 
(Price-Waterhouse) and in the top ten in retail sales at $9 billion. Their retail outlets include 
Cubb Foods, Shop 'n Save, Metro, Bigg's, Save-a-lot, Farm Fresh, Scot's, and Hornbacher's 
for a total of 11,658 stores, serving 9 million customers a week. 
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Rick Collison, director of retail merchandising, and his team began a data ware-house project 
with a set of clear goals. They were to start small but still model the entire enterprise and 
support the category managers with at least one year of history. 

They started with a few reasonable hypotheses about their data.  

1. Captured sales data is accurate. 
2. We sell stuff we purchased. 
3. The item hierarchy is stable. 

 
Of course, this was all wrong. Let's start with premise number one.  

The stores had different POS (point of sale) systems (IBM, ACR, ICL S-18, and some NCR 
ACS units, if you wanted the details). Each of the systems works a little differently. The 
machines summarize data differently. Some of the systems would use the number of units per 
week and the price at the end of the week for their summary report. Let's say we are selling 
Coca-Cola for $1.00 a six-pack on a special on Wednesday and Thursday only. The normal 
price is $3.00, and the price returns to that on Friday when the POS report is issued. Some 
POS units returned the units sold but not the sales. 

Then the stores would report duplicate files two weeks in a row, report truncated files, or not 
report at all. 

There is also the subtle problem of the grocery items like meat and bulk items that do not come 
in neat packages. The systems that price the meat when it arrives at the store, the scales that 
weigh it when it is cut, and the POS unit that puts it on the check-out slip are all different. 

Then the accounting department and the category managers had a different hierarchy of 
categories, so they did not really talk to each other in the same language. 

Premise two, we sell what we buy, was also wrong. Many of the stores sold things they did not 
buy through the company. The franchise stores are not obligated to sell only what they get 
from the company. 

Things bought by weight are sold by "the each" and vice versa. The warehouse works on the 
item codes rather than the UPC codes. Mixed pallets and mixed shippers for the same item 
mean different prices for the same UPC. 

Another cute "gotcha" is that the UPC code on the item is not the same as the UPC code in the 
vendor's book. Which code did the store managers report to you? Both, of course. 

If you are not familiar with UPC bar codes, you might wonder how the two could be different. 
The UPC codes really identify the vendor (the first five digits you see in the bar code) and 
package (the last five digits), not the product. Thus, a brand of toothpaste that comes in five 
sizes will have a UPC code for each of those sizes. But the vendor is relatively free to reuse a 
code when a product is discontinued or to reassign the codes to other products. 

Add bad UPC codes and other data quality problems, and you can get an idea of what life in 
the real world is like. 

Premise three, a stable product hierarchy, was endangered by another team that was using the 
same data to develop a new gross profit accounting system. The solution was to combine the 
project so that they did not get "two versions of the truth" in the company. 

So much for the premises that we started with. The next kicker was that they decided to use 
Teradata for the warehouse and they had no experience with that database. Oh, did I mention 
that the data warehouse was to be ready for prime time in 90 days? It wasn't. 
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Data scrubbing was a major problem. The team soon recognized that they were not scrubbing 
data—they were really starting to make up data to get it to fit their model. But when it was all 
over, the data "smelled bad" to an experienced user. 

The real solution was not to scrub the data, but to make sure that the equipment at the stores 
were all reporting by the same units of measure and playing by the same rules. 

Once you have your data, you can do simple reasonableness checks with simple cross-
tabulations, looking at minimum and maximum values (ask yourself, does anyone really buy 
5000 bananas?). 

The moral to the story, according to Mr. Collison, is "Whatever work you think this will be, it will 
be more." 

9.4.3 Harrah's 

Harrah's operates 21 casinos in the United States, is listed on the New York Stock Exchange, 
and has served about 18 million people. Their concern was customer relations management 
(CRM), and their method was a customer rewards program under the name Total Rewards. 
This is not a radical new idea; everyone from supermarkets to airline frequent flyer programs 
has a plastic card for their regulars. 

The Harrah player puts his Rewards card into a slot machine, and the system looks for his data 
locally. If he is not a local at this casino, the system goes to the central data warehouse and 
downloads his profile. I think of this as a reverse ATM since you are going to put money in and 
not take it out. 

Before the warehouse project, each casino kept its own database and did not communicate 
with the other properties in the company. The local OLTP databases still hold more customer 
information than the central warehouse. 

The goal of this warehouse is the analysis of the customers and their buying patterns as 
related to Harrah's offerings. It is not a general enterprise-level warehouse, and that is a good 
thing. This lets the IT people develop their own customer profiles and focus on one job. 

When you check into a property, the system knows who and where you are and can make a 
customized offer to you. If the player is from out of town, discounts at a local hotel would be 
important. If the player is local, then perhaps theater tickets would be a better offer. If the show 
is not selling out, the ticket offer might be made to all the customers. 

The marketing can go down to individuals. Look at the history of a family and see that they visit 
Las Vegas about the same time every year. Harrah's can mail them a list of events and things 
to do before they make their annual visit. The rewards can be the deciding factor in their 
vacation plans. 

Does it work? Harrah's has gotten awards for their CRM system, but that is the trade honoring 
its own. The best measures of success are on the bottom line of the company. New customer 
visits increased by as much as 15% per month, and repeat visits increased from 1.2 to 1.9 per 
month. The Tunica, Mississippi, casino doubled the profitability per customer. The overall profit 
improvement was $50 million in 1999 from a 72% growth in business. 

There is a moral here: a data warehouse does not have to be huge to produce results. It has to 
be smart. 

[1]Paul Westerman. it Data Warehousing: Using the Wal-Mart Model: Morgan Kaufmann, 2001. 
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Chapter 10: Data Warehouse Tuning 
10.1 What's Different About Data Warehouses 
Data warehouses differ from transactional databases in three main ways.  

 They are bigger—terabytes instead of megabytes or gigabytes. 
 They change less often, often daily or at most hourly. If online changes are 

allowed, they are normally appends. 
 Queries use aggregation or complex WHERE clauses. 

The implications of these three points are surprising.  

 Scanning all the data is too slow. Redundant information is needed in the form of 
special indexes (such as bitmaps or R-trees) or in the form of structures that hold 
aggregate information. In Chapter 4, we discussed holding aggregate information about 
total store sales in one table and total sales per vendor in another table. Data warehouses 
raise such tricks to high art—or try to. 

 There is time to build data structures because the data changes slowly or large 
parts of the data (e.g., all old data) change slowly. 

 Queries that perform aggregates benefit from structures that hold aggregate 
information. Queries having complex WHERE clauses benefit from query processing 
engines that can exploit multiple indexes for a single table. 

 Because of the large variety of data warehouse applications (aggregate rich, 
complex WHERE clause, massive joins), many technologies have survived and have 
found niches. 

In this chapter, we discuss the use and tuning of a wide variety of indexing techniques (e.g., 
bitmaps and star schemas), table caching techniques (e.g., tables and matrices that store 
aggregate data), sampling (e.g., extrapolate from portions of tables), and query processing 
methods (e.g., optimized foreign key joins). 
In the spirit of Celko (but who could hope to imitate his style?), we start by illustrating several 
applications of data warehouses. In many of these applications, aggregates (e.g., find hot-
selling items) suggest decisions but the effect (e.g., organize a promotion) is directed at 
individual data items or perhaps individual customers. That is, aggregates flow up from a wide 
selection of data, and then targeted decisions flow down. We call this process aggregate 
targeting. Please notice how often that applies in the real world. 

10.1.1 Uses of Data Warehouses 

At an abstract level, the principal goals of data warehouses are to increase the efficiency of the 
supply chain and to improve customer relationship management (CRM). What do these 
buzzwords mean in a concrete sense?[1]  

1. Companies can negotiate better buying terms from their suppliers and enforce 
high-quality deliveries. 

2. Large-volume suppliers can get information on the sales of their products so they 
can ship the product and avoid out-of-stock items. Some retailers take advantage of this 
by paying their suppliers on consignment (i.e., only when the retailer is paid). 

3. Companies can identify and reward loyal customers by giving them frequent flier 
miles, for example, or by giving special discounts. 

4. Data warehouses form the nucleus for data mining techniques using statistics, 
neural nets, decision trees, or association rules. Data mining can help discover fraud, 
identify good candidates for mortgage loans, or identify prospects for advanced telephone 
services. Market basket (what people buy at one time) analysis can help suggest 
promotions. In a notorious example cited by Celko, Wal-Mart, for example, discovered that 



Database Tuning  Chapter 10: Data Warehouse Tuning 

-199- 

people who buy Pampers often buy beer, so they moved Pampers and beer close 
together. The result was that sales of both increased (Computer Business Review, 
October 1996). 

Wal-Mart is the world's most successful retailer. Some indications: a 200,000-square-foot Wal-
Mart opens every few days; a Barbie doll is sold at a Wal-Mart every two seconds. The 
company credits much of its success to the control of its data. Many of Wal-Mart's large-
volume suppliers, such as Procter & Gamble, have direct access to the Wal-Mart data 
warehouse, so they deliver goods to specific stores as needed. Wal-Mart pays such companies 
for their product only when it is sold. Procter & Gamble ships most of its items this way, 
eliminating paperwork and sales calls on both sides, a clear benefit of aggregate targeting. The 
Wal-Mart data warehouse is also the source for corporatewide decisions. The company can 
effect price changes globally and instantaneously at its more than 3000 locations. 

Data warehouses enable many companies to identify hot-selling items and avoid out-of-stock 
conditions (aggregate targeting again).  

1. An analyst discovers that bags of multicolored confetti sell out in certain cities of 
the southwest United States. A store manager in Texas informs him that the confetti was 
being used in Latino communities to fill Easter eggs. The buyer authorized stores in other 
parts of the country to ship their confetti to these stores. 

2. A food store discovers that a best-selling item in college towns is albacore tuna. 
3. Greeting card analysts can ask questions like "Do people buy valentines at the 

last minute?" "Do they buy photo albums more on Father's Day or for graduations?" 
4. Casino Supermarche, a superstore in France, recouped several million dollars 

when its analysts noticed that Coca-Cola was often out of stock in many of their stores. 

Warehouses help retailers practice trend merchandising by "riding the waves of clothing fads" 
that begin on either U.S. coast and work their way inland. There is also weather-induced 
clothes-buying fashion (e.g., spring clothes sell earlier in Houston than in Minneapolis). 

Warehouses can identify the effectiveness of advertisements. At Buttrey Food and Drug, a 
report can be generated that includes units sold, average cost, retail price, gross margin 
percentage, and dollars realized during an advertisement campaign. Buttrey also uses their 
warehouse to index competitors' prices against their own—competitive analysis meets data 
warehousing. 

Warehouses can support business-critical ad hoc queries. A clothing store started a line for 
petite women. Many catalogs were requested, but few purchases. It turns out that many 
women wanted to be petite so requested that catalog but were no longer petite. The store did a 
directed ad campaign to women who had bought small sizes (dresses under size 7, shoes 
under size 5, etc.). They got a 12% response rate, a fantastically high rate. 

Data warehouses can also be used to keep customers happy by supporting strategic 
preventive maintenance. For example, in the mid-1990s, Whirlpool engineers detected a faulty 
hose clamp on hundreds of washing machines that had already been sold. The affected 
customers were identified through the data warehouse. Mechanics replaced the clamps before 
flooding could occur. 

Warehouses can improve productivity in a variety of industries. A railway company uses their 
warehouse to analyze the work habits of all crew members and thus reduce absenteeism. 
They also do data mining on their warehouse to try to identify the underlying causes of 
derailments. An airplane manufacturer uses its data warehouse to track the quality records of 
its suppliers. 
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An airline uses its warehouse for customer information. Which special routes were frequent 
flier customers flying? Which agencies fail to promote that airline? How many no-shows were 
there on a particular route? Flights with many no-shows might be good candidates for 
overbooking. 

The data warehouse is a good place to put bought data. Continental buys rental car customer 
data. It tries to attract people who live on one coast yet rent cars on the other. 

An airline tracks delays that affect its frequent customers. If it determines that a frequent 
customer was delayed several times in the space of a few weeks, it sends a letter explaining 
how rare such delays are along with a free ticket. An angered customer turns into a loyal one 
(aggregate targeting, again). 

In telecommunications, a company may use its data warehouse to identify operational 
problems. Any item can be drilled down. For example, given installation times by region, a 
manager can drill down to the installation times by switching area. If one switching area is bad, 
he or she can drill down by problem type. If one problem type is bad, the reason may be that a 
switch doesn't support a sold service. 

Data warehouses can support new marketing campaigns. Sprint once ran a promotion called 
"The Most" in which Sprint halved the bill for whomever a customer called the most. 

Coming back to the frequent theme of aggregate targeting, please notice that the performance-
critical step normally has to do with computing the aggregates. Finding the customers (or other 
targets) to apply the decisions to is often just a selection. Constructing the rule involves either 
human judgment or data mining. 

10.1.2 Technology for Data Warehousing 

Whereas online transaction systems (OLTP systems) are optimized for finding a record 
associated with a specific key (e.g., finding the information about employee 123124), data 
warehousing applications require finding information about sets of records very quickly. 
As we've seen, some of these queries are aggregates in nature, for example, find all sales by 
region and quarter, or find stores that sell the greatest volume of sportswear per month, or 
select the top five stores for each product category for the last year. Query conditions are often 
over ranges of values (e.g., a range of sales) or on categorical attributes (e.g., sportswear). 
The challenge is to process these queries without doing a linear scan of all or most of the 
database. Because these queries aggregate data, (1) data structures or materialized views that 
store the aggregates are a promising approach; (2) compression techniques and sampling are 
possible because slight inaccuracies matter little. We call applications requiring this class of 
queries broad. 
Other queries, however, require precise individualized information, for example, which women 
actually bought petite clothes or which frequent fliers suffered several delays in a short time. 
We call applications requiring this class of queries deep. 

Aggregate targeting applications are always broad and often deep. 
An additional issue is whether the application requires information to be up to date and if so 
whether the data is updated frequently. If both are required, then the data structures to be used 
must be incrementally updatable. Otherwise, they can be reconstructed from time to time. In 
the first case, we say the application is dynamic. In the second case, we say the application is 
static. 

Five main approaches have been used to address this problem: multidimensional arrays, 
special indexes, table caching, main memory database techniques, and approximation by 
sampling. 
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Multidimensional arrays (matrices) 
Ideal application parameters: broad, static, moderately sized database 

In this approach, each array dimension corresponds to an attribute of the data. For example, 
the line order table can be viewed as a matrix having coordinates store location, product type, 
customer id, and so on. A particular line order can be identified by specifying all values for 
these attributes, and queries are expressed by specifying values for a subset of the attributes. 
Corresponding to many of these subsets, the data structure stores aggregate values. This is 
the basic strategy used by Hyperion's Essbase[2] (distributed with IBM DB2 OLAP) and Oracle 
Express. It works best for relatively small databases (under one gigabyte as of this writing) or 
very dense ones. By dense, we mean that nearly all members of the cartesian product of 
possible values should be meaningful (i.e., every customer is likely to buy every product from 
every store). Because density doesn't usually hold for all combinations of values, this scheme 
must be modified to deal with sparse matrices. Hyperion does this by defining a notion of 
sparse attributes and dense ones. For example, it might be that every store carries every 
product (a dense relationship that can be stored in a matrix), but only some of these 
combinations are valid for any given customer. In that case, a conventional index would be 
used for customer sales, but a dense one for storewide or productwide sales. The dense 
attributes of such structures are optimized for range queries. 

Using our categorization at the beginning of this section, this approach works best for broad, 
static applications. The precomputation can take a long time as well as multiply the database 
size sevenfold or more. 

Bitmaps 
Ideal application parameters: deep and broad, static, many query attributes 

Bitmap indexes are index structures tailored to data warehouses. These indexes have already 
been used in some commercial products to speed up query processing: the main early 
example was Model 204, a prerelational DBMS from Computer Corporation of America. Many 
DBMS vendors, including Oracle, Informix, and Sybase, have introduced bitmap indexes into 
their products. 

In its simplest form, a bitmap index on an index consists of one vector of bits (i.e., bitmap) per 
attribute value, where the size of each bitmap is equal to the number of records in the indexed 
relation. For example, if the attribute is day of the week, then there would be seven bitmap 
vectors for that attribute, one for each day. The bitmap vector corresponding to Monday would 
have a 1 at position i if record i contains Monday in the day-of-week attribute. This approach is 
called a value-list index. 

Other techniques associate bitmap vectors with ranges of values, so there could, for a salary 
attribute, be a vector for the range 0 to 20,000 euros, 20,000.01 to 35,000 euros, and so on. 
Still others associate each bitmap vector with a bit value (a 1 or a 0) in a given position. So, if 
the attribute holds 32 bit numbers, then there would be 64 bitmaps (position 1, bit value 1; 
position 1, bit value 0; position 2, bit value 1;…; position 32, bit value 1; position 32, bit value 0). 
Such bitmaps may be useful particularly if the attribute is a mask where each bit position 
represents a binary alternative (male/female; healthy/sick; etc.). Figure 10.1 illustrates such 
bitmaps for the l_linestatus and l_returnflag attributes of the TPC-H line item relation that we 
are using for our experiments. 
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Figure 10.1: Bitmap. The l_returnflag attribute takes three possible values (A, N, R), while 
l_linestatus takes two values (O, F). The bitmap associates a value to each record in the lineitem 
relation. In the figure, records are represented vertically, and the associations are marked with 
black rectangles: the first record (from the left) has value A in the l_returnflag attribute and value 
F in the l_linestatus attribute.  
The comparative advantage of bitmaps is that it is easy to use multiple bitmaps to answer a 
single query. Consider a query on several predicates, each of which is indexed. A conventional 
database would use just one of the indexes, though some systems might attempt to intersect 
the record identifiers of multiple indexes. Bitmaps work better because they are more compact, 
and intersecting several bitmaps is much faster than intersecting several collections of record 
identifiers (Figure 10.2). In the best case, the improvement is proportional to the word size of 
the machine because two bitmaps can be intersected word-sized bits at a time. That best case 
occurs when each predicate is unselective, but all the predicates together are quite selective. 
Consider, for example, the query, "Find people who have brown hair, glasses, between 30 and 
40, blue eyes, in the computer industry, live in California." This would entail intersecting the 
brown hair bitmap, the glasses bitmap, the union of the age bitmap representing the ages 
between 30 and 40, and so on. One of the first users of bitmaps was the CIA. 

 
Figure 10.2: Bitmaps. We use the lineitem relation from the TPC-H benchmark for this 
experiment. We run a summation query, and we vary the WHERE clause so that it involves 1, 2, 
or 3 attributes. The attributes involved are l_returnflag, l_linenumber, and l_linestatus. The entire 
lineitem relation contains 600,000 records; the conditions on each attribute have approximately a 
50% selectivity. The query on one attribute selects 300,000 records, the query on two attributes 
selects 100,000 records, and the query on three attributes selects 2000 records. To avoid 
crossing the application interface too often, each query is an aggregate that returns one record. 
We compare the performance of these aggregation queries using linear scan and bitmap indexes 
constructed on single attributes. This graph shows that bitmaps yield a significant performance 
improvement: the throughput is increased by an order of magnitude compared to a linear scan. 
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Note that the experiment is conducted with a warm buffer, so CPU cost dominates. The graph 
shows that there is a slight overhead when combining several bitmaps. This experiment was 
conducted on Oracle 8i EE on Windows 2000.  

Comparing bitmaps with matrix approaches, we see that bitmaps work best if queries apply to 
many attributes, each having few values, and the result is a set of rows or an aggregate 
(though the advantage is less if the result is an aggregate). Multidimensional array approaches 
work better if there are few attributes in a query (especially if they are the dense ones) and the 
query seeks an aggregate. 

If you'll excuse the caricature, the marketing department might prefer aggregates to detect 
trends, whereas the customer relationship management group might want information about 
classes of individuals (e.g., those whose flights have been frequently delayed). 

Multidimensional indexes 
Ideal application parameters: deep and broad, static, few query attributes with range queries 
on at least two of them 

Multidimensional indexes are an alternative way to access multiple attributes. Multidimensional 
indexes such as quadtrees, R-trees, and their successors are conceptually grids on a 
multidimensional space. In the simplest case, you can imagine a big checkerboard. However, 
the grid cells are of different sizes, the population of points differs on different places in a 
hyperspace. For intuition, consider a map of equipopulation rectangles of France. The 
rectangles would be far more dense in Paris and in Nice than in the Alps. Indexes like this work 
well for spatial data queries (where they are used to find the points contained in latitude-
longitude quadrants). The geographical example illustrates an important advantage of 
multidimensional indexes over composite indexes. A multidimensional index over latitude-
longitude allows a range specification over both latitude and longitude, whereas a composite 
index on the attributes (latitude, longitude) works best for equality on latitude and a range 
query over longitude. 
One popular structure is the R-tree, which consists of hierarchically nested, possibly 
overlapping boxes (Figure 10.3). The tree is height balanced, making it good for large 
databases. Variants of the quadtree also work well for such applications. 

 
Figure 10.3: R-tree. We use a synthesized relation on top of the spatial extension to Oracle 8i to 
compare point and range queries on two-dimensional data using an R-tree and bitmaps. We 
define two-dimensional points as a spatial data type, and we use spatial functions in the queries. 
Using bitmaps, the X and Y coordinates of each point are simply represented as integers. In both 
cases, the relation contains eight other attributes; there are few distinct points stored in this 
relation. The graph shows the response time of a point query and a range query using bitmaps 
and the R-tree. The R-tree index loses. This is largely due to the over-head of using spatial 
functions to encode simple point or range queries. This result suggests that an R-tree (or at least 
this implementation of an R-tree) should be used only to support far more complex spatial 
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operations, such as overlap or nearest neighbor search, on spatial objects such as polygons. This 
graph comes from data from Oracle 8i running on Windows 2000.  
Multidimensional indexes are little used outside geographical applications, however, because 
they do not scale well with increasing dimensionality, and commercial systems typically have 
far more than three dimensions (as in the CIA-style query). The scalability problem comes from 
the fact that a multidimensional index on attributes A1, A2,…,Ak alternates its search criterion 
among the different attributes at different levels of the tree. For example, consider the case 
when k=3. The top level may select based on A3, then the next level based on A1, then the next 
based on A2, then on A3 again, and so on. So, a search that is unselective for attribute A1 will 
have to search many subtrees below the A1 level. 

Materialized views 
Ideal application parameters: broad, static, also dynamic at a cost 

If you don't have the luxury to design new indexes on top of a database system, you can 
precompute a large number of anticipated aggregate queries. For example, if a large retailer 
frequently asks queries that sum the total sales across multiple stores or multiple products, you 
may store such information in special tables. The main cost of such a strategy is maintaining 
these tables in the face of updates. (Disk space is no longer a significant cost.) In the example, 
every sale of item I at store S would have to update the total product sales for I and the total 
store sales for S. So, this strategy is worthwhile if there are few updates between queries, and 
is not worthwhile if there are many. Oracle 9i, Informix, and others use this strategy, and other 
vendors have at least considered it (SQL Server 2000 allows indexed views, but it requires the 
definition of a unique clustered index on those). 

Product support for materialized views is still evolving.  

 They implement different strategies for maintaining the materialized views: 
incremental or rebuild. Oracle 9i allows users to make this choice when creating the 
materialized view. RedBrick, an Informix product, automatically chooses a strategy based 
on the type of aggregate in the materialized view, the type of modification to be 
propagated, and statistics about the base table and the materialized view. 

 The optimizer uses these precomputed materialized views by rewriting the 
submitted query on the base relations (if it is cost-effective) to use the materialized views 
without requiring user intervention. It is worthwhile to check query plans (see Appendix E) 
to make sure that the optimizer is using the correct view. 
In Chapter 4, we discussed aggregate maintenance using materialized views. We illustrated 
the trade-off between query speed-up and view maintenance cost. We showed that the cost of 
view maintenance goes down if it is possible to separate insertions and view maintenance 
(refresh on demand). This is possible in a data warehouse where loading/insertions are clearly 
separated from queries. 

Table caching entails some management overhead. For example, the data warehouse of a 
small German city has 400 materialized views. Refreshment time is a problem. In such a 
situation, it would be good to  

1. eliminate redundant views. 
2. ensure that all the materialized views are in fact used at least once between 

updates to the data warehouses; others can be calculated only when needed. 
3. find an order to calculate the views that allows one view to be computed from 

already materialized views. To do this, use a little graph theory.  

a. Let the views and the base tables be nodes. 
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b. Let there be an edge from a node v1 to v2 if it is possible to compute 
the view in v2 from v1 (possibly with the help of some dimension tables in the base 
relations). Such a calculation is often possible for different views having to do with the 
same "dimension." For example, location has attributes like city, country, and so on. 
So, a view that sums the sales by country can be computed from a view that sums 
the sales by city along with the information relating city to country. 

c. Make the cost of the edge from v1 to v2 be the cost to compute view 
v2 from v1. 

d. Now compute the all pairs shortest path (look this up in your first-
year algorithms text if you have a chance) where the start node is the set of base 
tables. The all pairs shortest path can be programmed to return a set of edges that 
are used in the paths from the start node to all other nodes. 

e. The result is an acyclic graph A. Take a topological sort (again, 
consult your algorithms text) of this graph and let that be the order of view 
construction. 

f. Construct a view v from v′ when the resulting acyclic graph has an 
edge from v′ to v. Figure 10.4 illustrates the result of this algorithm on an example. 

 
Figure 10.4: Materialized view creation graph. This graph illustrates the result of the 
materialized view creation algorithm applied to the TPC-H schema, and two aggregate 
materialized views, revenue_per_nation and revenue_per_region (in TPC-H regions actually 
denote continents). The revenue is computed using a six-way join (the TPC-H query Q5 is used 
to define the aggregate materialized view). The graph shows that the revenue_per_region view 
should be computed from the existing revenue_per_nation view and two base relations, instead 
of being computed from scratch using the base relations. The algorithm suggests the order of 
view construction: first revenue_per_nation, then revenue_per_region.  
The algorithm as it stands fails to capture the possibility that a view might best be computed 
from several other views. There are two reasons we have not included this: (1) (empirical) the 
single dependency model captures most of the useful dependencies very well as in the 
nation/region example of Figure 10.4; and (2) (pragmatic) the all pairs shortest path problem is 
NP-complete for hypergraphs.[3]  
Nevertheless, as a heuristic, the following strategy should work well in most cases. First 
perform the computation as above using single views to compute other views. This results in 
an acyclic graph A computed from the all pairs shortest path algorithm. Now consider some v 
that is best computed from multiple other views v1, v2,…, vk. Tentatively add edges from each vi 
to v to the graph A. If the result is still acyclic, then leave the edges there. Otherwise, remove 
those edges. This keeps the graph acyclic. After forming the topological sort, if a view v must 
be computed, use multiple views if that is the best method to compute v and the multiple views 
are available. 
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Optimized foreign key joins 
Ideal application parameters: deep and broad, ranges from static to dynamic, large data 
Most queries in data warehouses entail joins between a fact table (e.g., line order detail in our 
running example) and a set of dimension tables (e.g., the location table in our example). Each 
dimension table consists of a collection of related attributes, say, all those having to do with 
product categorization or all those having to do with location.[4] Now the query "find the sales of 
hunting gear in the Northwest" entails a join between line order detail (which might record 
customer id, product ids, store id, quantity, and price) and product category as well as location. 
Such joins are known as foreign key joins because the product identifier in the line order table, 
for example, is a key of the product category table. (Recall that a key is a value that is unique 
in a table.) Figure 10.5 illustrates the presence of foreign keys in the TPC-H schema. The 
arrows point from the detailed fact tables to other tables called dimension tables. When a 
single fact table points to all the dimension tables, the schema is called a star schema. When 
some dimension tables point to subdimension tables, providing support for attribute hierarchies 
(and usually obtaining better normalization), the schema is called a snowflake schema. If 
several fact tables (tables that are sources but not destinations of arrows) share dimension 
tables, then the schema is called a constellation schema. 

 
Figure 10.5: Foreign key dependencies. The base tables in the TPC-H schema form a 
constellation schema. Lineitem and PartSupp are fact tables; Supplier, Part, and Order are 
dimension tables. The arrows on the diagram correspond to foreign key dependencies. If we 
consider the two aggregate materialized views balance_per_nation and balance_per_region (sum 
of supplier account balances s_acctbal grouped by nation or per region), foreign key 
dependencies link dimension tables (e.g., Supplier) and aggregate fact tables (e.g., 
balance_per_nation).  
One way to optimize these joins is to create a linkage between fact table records and 
dimension records. This can be done in several ways: (1) create an index that holds fact table 
record identifiers and dimension table record identifiers, an idea first explored in detail by 
Patrick Valduriez;[5] (2) create bidirectional pointers between fact table records and dimension 
table rows—this is what object-oriented databases do; or (3) replace the product record 
identifiers in the fact table by offsets into the dimension tables. The first choice is most robust 
to changes in the physical organization of the tables and therefore is best for heavily updated 
systems. The second choice is the least flexible to physical reorganization. The third choice 
entails marking deletions in dimension tables as opposed to removing the record in order to 
avoid changing the positions of undeleted elements. This is done, for example, in KDB 
(http://www.kx.com). Choice three allows the fact table to be reorganized at will, however. 

Approximating the result 
Ideal application parameters: broad, dynamic, large data 
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People who use data warehouses to get strategic aggregate information would be happy with a 
fast approximation as long as they know the answers are close. There has been recent 
excellent research in this area, for example, at Bell Labs (Gibbons and Poosala), at Berkeley 
(Hellerstein and Haas), at Microsoft (Surajit Chaudhuri), and at the University of North Carolina 
(Vitter and students). On a single table, classical statistical techniques can be used for fields 
with the property that no small number of records could have a large influence on results. 
Suppose you want the average of all salaries. Begin to compute the average on increasing 
sample sizes. If the average value changes little with increasing size, then it is probably 
accurate for all the data. Haas and Hellerstein call this idea "rippling." 

For multiple tables, the ripple join work at Berkeley has shown that it is possible to achieve 
increasingly accurate results as a join proceeds. This requires that the ripple join idea be 
incorporated into the database management system you happen to be using. 
The Bell Labs Aqua work by contrast is interesting even on top of existing database 
management systems. The goal is to estimate aggregate results in data warehouses while 
giving error bounds. Figures 10.6, 10.7, and 10.8 illustrate the benefits. The basic problem is 
that if you sample all tables and then do aggregates, that doesn't work in general. For example, 
if R and S have the same set of keys and you join the key of R with a key of S, then taking a 
1/10 sample of each will give a size that is 1/100 of the size of the real join. So, you must be 
more clever. Their basic idea is to take a set of tables R, S, T, … that are linked by foreign key 
joins. Suppose, for example, that R is the fact table and the others are dimension tables. Take 
a random sample R′ of R and then perform foreign key joins based on R′ yielding S′, T′, …. 
Now, if a query involves R, S, T and includes the foreign key links among these, then the query 
can be done with great accuracy on R′, S′, T′. The error can be estimated by considering the 
result obtained by several subsets of R′ and studying their variance. 

 
Figure 10.6: Approximation on one relation. We sample 1% and 10% of the lineitem table by 
selecting the top N records on an attribute in the fact table (here l_linenumber). That is, we are 
taking an approximation of a random sample. We compare the results of a query (Q1 in TPC-H) 
that accesses only records in the lineitem relation. The graph shows the difference between the 
aggregated values obtained using the base relations and our two samples. There are eight 
aggregate values projected out in the select clause of this query. Using the 1% sample, the 
difference between the aggregated value obtained using base relations and sample relations is 
never greater than 9%; using a 10% sample, this difference falls to around 2% in all cases but 
one.  
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Figure 10.7: Approximation on a six-way join. As indicated in this section, we take a sample of 
the lineitem table and join from there on foreign keys to obtain samples for all tables in the TPC-H 
schema. We run query Q5, which is a six-way join. The graph shows the error for the five groups 
obtained with this query (only one aggregated value is projected out). For one group, using a 1% 
sample (of lineitem and using the foreign key dependencies to obtain samples on the other 
tables), we obtain an aggregated value that is 40% off the aggregated value we obtained using 
the base relations, and using a 10% sample, we obtain a 25% difference. As a consequence of 
this error, the groups are not ordered the same way using base relations and approximated 
relations.  

 
Figure 10.8: Response time benefits of approximate results. The benefits of using 
approximated relations much smaller than the base relations are, naturally, significant.  

[1]The information in this section comes from conversations with data warehouse developers and 
consultants, particularly Felipe Carino and Mark Jahnke, mostly on Teradata hardware. 

[2]Robert J. Earle. Arbor Software Corporation. U.S. patent # 5359724, October 1994. 

[3]A view v that depends on v1, v2,…,vk corresponds to a hyperedge where v1,…,vk are considered 
to be sources of the hyperedge and v is the target of the hyperedge. The proof of NP-completion 
is by reduction from the hitting set problem. The smallest set of views from which all others can 
be computed constitutes a hitting set. 

[4]Often dimension tables in these star or constellation schemas are not normalized, so you might 
have store, city, and country in one table even though there is a functional dependency from city 
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to country. This is done in order to avoid an extra join and is reasonable since data warehouses 
are updated only occasionally. 

[5]Patrick Valduriez. "Join Indices." Transactions on Database Systems, 12(2), 1987. 

10.2 Tuning for Customer Relationship Management Systems 
As suggested, customer relationship management (CRM) systems are built on top of data 
warehouses. Since CRM systems typically involve cross-selling (e.g., a person who buys long-
distance telephone service from me may want to buy roadside repair service from me, too), 
they normally include four ingredients.  

 A data warehouse that gives a unified view of each customer, which services he 
or she has purchased, and any available demographics 

 A data mining toolkit to infer strategies for improving sales from the data 
 The placement of "business rules" derived from the strategies into either the data 

warehouse, the transactional database, or some special database 
 The use of those rules 

Data mining toolkits normally extract a denormalized sample of data from a large transactional 
system or from a data warehouse and then process it. The processing occurs outside the 
database system and typically involves multiple passes over the data for the purpose of 
identifying correlations (e.g., older people who have cars are good candidates for roadside 
service) or building a decision tree. By the partitioning tuning principle, that processing should 
occur far from our production database hardware. So the main impact on the database of the 
analytical portion of CRM is a potentially expensive query on the data warehouse. See the box 
for some guidance about which data mining approach to use. 
CHOOSING THE RIGHT DATA MINING ALGORITHM  

 

The goal of data mining is to discover rules, such as who makes a good credit risk, who is 
likely to be a repeat customer, and which customer is likely to buy a yacht. You will apply those 
rules to new and existing customers. 

Some data mining specialists like building decision trees. Some like neural nets. But the fact is 
that the same algorithm does not work well for all applications.[6]  

Here are the main methods.  

 Decision tree methods include symbolic or logic learning methods such as ID3 or 
C4.5 that use the divide-and-conquer paradigm to generate decision trees. 

 Case-based methods extract representative examples from the data set to 
approximate the knowledge hidden in an information repository. The idea is to apply to 
new situations the lessons learned from "similar" cases in the past. 

 Statistical methods encompass various techniques, including linear and nonlinear 
regression, Bayesian methods, and clustering methods. 

 Biological methods include neural nets and genetic algorithms. Neural nets are 
acyclic networks in which edges represent excitation or inhibition, source nodes 
correspond to input data, and end nodes represent a decision. Genetic algorithms 
emulate the Darwinian model of evolution, in which "chromosomes" represent candidate 
solutions, reproduction involves crossover, and mutation of chromosomes in which the 
"fittest" (so far, best) chromosomes have the highest chance to succeed. 
 
The characteristics of an application should guide the choice of method.  
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 Categorical/continuous. Applications in which categorical data (sex, hobbies, 
socioeconomic group, etc.) has a large influence on a decision should not use neural nets. 
Applications in which continuous data alone (e.g., temperature, pressure, wavelength) 
may influence a decision are well suited to neural nets though the other methods can also 
apply. 

 Explainability. If users may ask for the reasons behind a decision, then decision 
trees are the best choice. Case-based approaches come in second. There is no third. 

 Time to train. Each mining data structure must be built before it can be used. For 
example, a decision tree must be built before it is used. Training may occur once and for 
all but usually occurs on a regular basis (e.g., every week). Decision trees and neural 
networks are expensive (superlinear) to train. Genetic algorithms give better results the 
more training time they are given. Scalable statistical methods such as clustering require 
time linear in the size of the data. Case-based methods require minimal training. 

 Time to apply to new cases. Once a mining data structure is built, it is used to 
make decisions about input data. Decision trees, neural networks, and genetic algorithms 
do this fast. Statistical methods and case-based methods are slower. 

 Accuracy. All methods will give an answer. The quality is another story and 
depends on a collection of parameters associated with each package.  

o Decision tree methods suffer from the possibility of "overfitting" the 
training data (i.e., few records determine a rule). This may lead to incorrect rules, 
especially when the data is dirty (which, as Celko points out, is almost always). 

o Case-based methods are very sensitive to the a priori notion of 
similarity that determines which cases are "similar" to a new input case. For example, 
if you have customer information and want to determine who will buy a yacht, age 
may be relevant (90-year-olds don't buy yachts), income is certainly relevant, but 
shoe size is not. One approach is to form a decision tree and then use that to 
determine which attributes should be most important in the similarity measure.  

o In K-means-style clustering methods, where K determines the 
number of clusters, the parameter K as well as the similarity measure used for 
clustering can have a large effect on the useful ness of the clustering. 

o Neural networks require a normalization step in which data is 
converted to a value between 0 and 1. That can introduce biases. Statistical methods 
may suffer from inaccuracies having to do with initial statistical assumptions (e.g., 
should the trend be approximately linear so linear regression is appropriate?). 

 

 

The placement of business rules (e.g., if the customer has had a telephone in his name for 30 
years, he's probably old enough to need roadside service) into the database is straightforward 
and normally doesn't interfere with other updates. 

The use of business rules normally requires a join. For example, suppose you sell telephone 
services and I call up to ask for some. To know whether I am a good candidate for roadside 
services, your computer system must look me up in the business rules database. An index can 
make this efficient. 

Some enterprises use business rules to generate mass mailings. For example, they may want 
to find all people who live in California, like to surf, and own a house. Bitmaps are useful for 
such applications. 

The bottom line is that 90% of the work that goes into building the CRM system is building the 
data warehouse. 
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[6]Most of the observations of this subsection come from Hany Saleeb, a senior applications 
designer at Oracle. 

10.3 Federated Data Warehouse Tuning 
A federated data warehouse is a data warehouse constructed on top of a set of independent 
databases. That is, the data warehouse is analogous to a view table: it offers a logical picture 
of a collection of data that physically resides on different databases. One more server, the 
"federator," does the necessary final joins and may hold data itself. As Ron Yorita of IBM 
reports:  
The DB2 optimizer attempts to find the least cost access to data by looking at various join 
methods, ordering of the joins, indexes, etc. When you add datajoiner/federated multiple 
remote tables into the equation,… the network cost of transferring data becomes a factor.… 
The bulk of optimization revolves around ensuring that remote sources do as much work as 
possible and return a minimal amount of data for additional processing at the federated server. 

He suggests some more tuning optimizations:  

1. When defining a remote server (create server) to a federated database, the 
default is to push down (pushdown = ‘Y’) operations to the remote source. This will allow 
the federated server more flexibility in optimization. If you specify ‘N’, the remote source 
must return data to the federated server, and the remote source is limited to 
processing/filtering. So use the default for pushdown. 

2. Since DB2 and federated use cost-based optimization, the statistics about tables 
and indexes feed directly into the query plan selection process. It's surprising how often 
the statistics are not accurate, which in turn results in bad query plans. Maintaining current 
statistics is system dependent. For example, to gather current statistics on an Oracle 
server, you must run the analyze utility. Then to refresh the federated statistics, drop and 
re-create the nickname for the table (with DataJoiner you can just do a runstats instead of 
drop/create). 

3. When defining a data source (create server), there is a parameter called 
collating_sequence (colseq). If you set the parameter to yes, you are asserting that certain 
character fields in the server are in the same order as in the virtual DataJoiner database. 
This can make operations like Min, Max, and merge join enjoy improved performance. Of 
course if the assertion is wrong, you get incorrect results. 

The query optimizer can do strange things. Yorita reports:  

I was told of one situation that involved multiple remote sources. Two of the tables were on one 
remote source, but the optimizer decided to decompose the query. This meant that the join of 
the two tables was not done on the remote source and had to be processed on the federated 
engine. In order to push down the join, they eventually created a view. The view did the table 
join on the remote system. A nickname was created on the server using the view. The query 
was revised to reference the nickname for the view. This then allowed the join processing to be 
done at the remote server. 
10.4 Product Selection 
It is hard for a small company with a great idea to break into the transaction processing 
marketplace. Customers are wary of systems that will replace their transaction processing 
systems because their databases are the enterprises' lifeblood. A database vendor that is here 
today and gone tomorrow can render this lifeblood inaccessible. Data warehouse products that 
derive their data from the database of record are less of a risk since the transactional data is 
still available even if the warehouse goes away. 
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So, a customer can reason as follows: "Even if data warehouse vendor X goes out of business, 
my data and applications are safe. I may have to buy more hardware or eliminate some 
queries, but I'm still very much in business." 

Until a few years ago, a large player in software-based relational data warehousing was 
RedBrick. Their product embodied several clever ideas resulting in both expressibility and 
speed. Expressibility came through extensions to SQL, for example, year-to-year sales 
comparisons, running sums, and bucketing (such as grouping products into high sellers, 
medium sellers, and low sellers). They offered high speed through optimization for star 
schemas. Recall that a star schema is one in which a large central table called the fact table 
(e.g., every line order) is linked to a set of satellite tables (giving detail of the location of the 
store, the vendor of the product sold, etc.). They offered two special kinds of indexes called 
targetindexes and starindexes. Both of these are multitable indexes (meaning they related data 
in multiple tables) that mix bitmap and B-tree capabilities. 
As of this writing, however, Microsoft SQL Server seems to be winning the TPC-H benchmarks 
for 100 gigabytes or less. Redbrick (still part of Informix when the benchmark results were 
published in the spring of 2001, now owned by IBM) comes into its own at 300 gigabytes. Note 
that the benchmark results are constantly evolving and that database and hardware providers 
take turns as the top performers (http://www.tpc.org/new_result/h-ttperf.idc). The TPC-H 
benchmark is a broad benchmark in that it is oriented toward statistical queries. 

Teradata produces huge systems holding several terabytes and built on special parallel 
hardware for very large customers such as Wal-Mart, Delta Airlines, Royal Bank of Canada, 
large hospitals, the express mail services, and so on. The application area is aggregate 
targeting. Their basic strategy is to horizontally partition their data (so the rows of each table 
are partitioned across many different sites). This permits them to divide the work of processing 
queries across many sites. Their current strategy is to support what they call "active data 
warehouses" wherein their large databases implement business rules as well as gather 
statistics. For example, recall a frequent flier on an airline X who encounters two late flights in 
two weeks. An active data warehouse will contact that customer and offer him perks because 
data mining on the data warehouse reveals that customers having bad experiences in a short 
period of time are at risk of switching to another airline. 

Bibliography 

Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. Join 
synopses for approximate query answering. In Alex Delis, Christos Faloutsos, and Shahram 
Ghandeharizadeh, editors, Proceedings ACM SIGMOD International Conference on Management 
of Data, June 1–3, 1999, Philadelphia, Pa., 275–286. ACM Press, 1999. 

Benchmark Results: http://www.tpc.org/new_result/h-ttperf.idc. 

Chee Yong Chan and Yannis E. Ioannidis. Bitmap index design and evaluation. In Laura M. Haas 
and Ashutosh Tiwary, editors, Proceedings ACM SIGMOD International Conference on 
Management of Data, June 2–4, 1998, Seattle, Wash., 355–366. ACM Press, 1998. 

Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. A robust, optimization-based approach 
for approximate answering of aggregate queries. Proceedings ACM SIGMOD International 
Conference on Management of Data, 295–306. ACM Press, New York, 2001. 



Database Tuning  Chapter 10: Data Warehouse Tuning 

-213- 

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP technology. 
SIGMOD Record, 26(1):65–74, 1997. 

Excelon: http://www.exceloncorp.com/. 

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Beatrice Yormark, 
editor, SIGMOD'84 Proceedings of Annual Meeting, Boston, Mass., June 18–21, 47–57. ACM 
Press, 1984. 

Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Alex Delis, 
Christos Faloutsos, and Shahram Ghandeharizadeh, editors, Proceedings ACM SIGMOD 
International Conference on Management of Data, June 1–3, 1999, Philadelphia, Pa., 287–298. 
ACM Press, 1999. 

Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data cubes 
efficiently. In H. V. Jagadish and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM 
SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4–
6, 205–216. ACM Press, 1996. 

Hyperion: http://www.hyperion.com/.  

Theodore Johnson and Dennis Shasha. Some approaches to index design for cube forest. Data 
Engineering Bulletin, 20(1):27–35, 1997. 

KDB product: http://www.kx.com. 

Ralph Kimball. The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data 
Warehouses. John Wiley & Sons, 1996. 

Yannis Kotidis and Nick Roussopoulos. An alternative storage organization for ROLAP aggregate 
views based on cubetrees. In Laura M. Haas and Ashutosh Tiwary, editors, Proceedings ACM 
SIGMOD International Conference on Management of Data, June 2–4, 1998, Seattle, Wash., 
249–258. ACM Press, 1998. 

Yannis Kotidis and Nick Roussopoulos. Dynamat: A dynamic view management system for data 
warehouses. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, 
Proceedings ACM SIGMOD International Conference on Management of Data, June 1–3, 1999, 
Philadelphia, Pa., 371–382. ACM Press, 1999. 

Oracle Corp. Performance and scalability in DSS environment with oracle 9i. Oracle white paper, 
April 2001. 

RedBrick Software: http://www.ibm.com/software/data/informix/redbrick/. 

Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys, 
16(2):187–260, 1984. 

Sunita Sarawagi. Indexing OLAP data. Data Engineering Bulletin, 20(1):36–43, 1997. 

Stephen J. Smith, Alex Berson, and Kurt Thearling. Building Data Mining Applications for CRM. 
McGraw-Hill Professional Publishing, 1999. 



Database Tuning  Chapter 10: Data Warehouse Tuning 

-214- 

Sybase IQ Administration Guide. Sybase IQ Indexes. Sybase IQ Collection, 1997. 

Teradata software: http://www.teradata.com/. 

Erik Thomsen. OLAP Solutions: Building Multidimensional Information Systems. John Wiley & 
Sons, 1997. 

TimesTen: http://www.timesten.com. 

Patrick Valduriez. Join indices. TODS, 12(2):218–246, 1987. 

Exercise 

EXERCISE 1 

Your customers want to identify people having general characteristics, for example, in their 30s, 
driving sports cars, married, five kids, and so on. None of these characteristics by itself is very 
selective, but taken together they might be. What would be an appropriate data structure and 
why? 
Action. Neither an OLAP system nor materialized views will help identify individuals. A set of 
unselective conditions is best handled either by a set of bitmaps or, if bitmaps are unavailable, 
by a powerful scan engine. 

MINIPROJECT 
There are a group of data warehouse–related performance experiments for you to do at the 
book's Web site at http://www.mkp.com/dbtune/. There you will find code to modify and an 
example run. Some of these experiments require external components. The projects concern 
the following issues (for the sake of concreteness, we use the TPC-H data):  

1. If you have access to an OLAP system, record the space and construction time 
overhead of constructing data structures with roll-ups on profit and volume and revenue 
per month, per year, and per nations and regions. 

2. Define materialized views for profit, volume, and revenue per month, per year, per 
nation, and per region. Define the view computation graph. 

3. Compare query execution times using this OLAP system with a relational system 
with and without materialized views. 

4. Denormalize supplier and customer by including the geographic information about 
nation and region. What is the impact on query execution time and on memory usage? 

5. Find a sampling method for line item that minimizes the error on Q5 when using 
the Aqua method. 
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Appendix A: Real-Time Databases 
A.1 Overview 
A real-time database is one where some of the transactions must meet timing constraints. For 
most database applications, these constraints are of a statistical nature (e.g., 90% of all 
transactions must complete within one second and 99% within five seconds). Such applications 
are known as soft real time and apply to applications such as telemarketing, financial analysis, 
and even to certain kinds of industrial control. 

Other real-time applications are characterized as "hard" if failure to meet a deadline can lead to 
catastrophe. The prototypical example is a jet aircraft control system that must keep an 
"inherently unstable" jet from crashing. Database applications in such domains require main 
memory databases, simplified locking, and either main memory recovery mechanisms or no 
recovery at all.  

 Allocate time-critical application data to main memory, either by storing all 
important data in main memory or by placing some tables in favored buffers. Oracle and 
DB2 UDB allow database administrators to associate a buffer with specific tables. This is 
very useful in cases in which all timing constraints concern accesses to some table (or a 
few tables). If one table is critical, for example, then dedicating a large buffer to that table 
and a large enough slice of main memory to that buffer ensures that all important data is 
in main memory. 

 Try to establish predictable lock patterns to avoid deadlocks and to minimize 
delays resulting from lock conflicts. 
A real-time systems designer has the advantage of knowing what set of transactions is 
possible. He or she should use that information to chop transactions as discussed in 
Appendix B, as well as to order the accesses within each transaction. 
The question of order is essential to avoid deadlocks. One promising technique is to 
identify a total order among the lockable items (whether records or pages) and lock them 
in that order. For example, if transaction type 1 locks X, Y, and Z and transaction type 2 
locks W, X, and Z, and transaction type 3 locks Z and W, then they should all acquire 
locks in some order W, X, Y, and Z. That is, the acquisition order should be W before X; 
W and/or X before Y; and W, X, and/or Y before Z. This will eliminate the possibility of 
deadlock.[1]. 

 Give different transactions different priorities, but be careful. To avoid the priority 
inversion problem described in Chapter 2, you must give the same priority to any two 
transactions that issue conflicting locks to the same data item. That is, if two transactions 
access some item X and at least one of them obtains a write (i.e., exclusive) lock on X, 
then the two transactions should run at the same priority. 
On the other hand, if this rule does not force you to give transaction T1 and T2 the same 
priority and T1 is time critical, then you might consider giving T1 higher priority. 

 Make your data structures predictable. Usually this means some kind of balanced 
tree structure, such as a B-tree, though TimesTen and KDB use trees with less fanout for 
the in-memory part. 

Overflow chaining can cause poor response times for tasks that must traverse those 
chains. (This will affect deletes even more than inserts because a delete must traverse an 
entire chain even if the item to be deleted is not present.) 

 Minimize the overhead of the recovery subsystem.  

1. Use the fastest commit options that are available. This includes 
options that delay updates to the database and that write many transactions together 
onto the log (group commit). The only disadvantage to fast commit options is that 
they may increase recovery times from failures of random access memory. Minimize 
the chance of such failures by ensuring that your power supply is reliable. 
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2. Checkpoints and database dumps can cause unpredictable delays to 
real-time transactions so should be deferred to quiet periods. 

[1]A subtle problem can arise in systems in which the lockable items are larger than the data items 
of interest. For example, suppose that W, X, Y, and Z are records and the system uses page-
level locking. Using the lock-ordering W, X, Y, and Z, you believe you have eliminated the 
possibility of deadlock. Unfortunately, however, W and Z are on the same page P1, and X and Y 
are on the same page P2. A transaction of type 1 may lock page P2 at the same time that a 
transaction of type 2 locks page P1. Each will seek to lock the other page, resulting in a deadlock. 

A.2 Replicated State Machine Approach 
If your database can fit in your memory and you need both high performance and reliability, 
then you can use a replicated state machine approach. The idea is very simple and elegant: if 
you initialize a set of sites S1,…, Sn in the same state and you apply the same operations in 
the same order to all the sites, then they will end up in the same state.  

There are a few caveats.  

1. The transactions must be deterministic and time independent. Effectively, this 
means they must not contain calls to random number generators or to the clock. 

2. The transactions must appear to execute serially in the order they arrive. This is 
stronger than serializability by itself, which requires only that the transactions appear to 
execute in some serial order. For example, imagine that one transaction increases every 
salary by 10% and another increases Bob's salary by $10,000. If the 10% transaction 
appears to precede the $10,000 transaction on site A but follows the $10,000 transaction 
on site B, then Bob will have a higher salary on site B. Ensuring this stronger form of 
serializability is not hard: you detect transactions that conflict and forbid them from 
executing concurrently. (This is discussed in the paper "High Volume Transaction 
Processing Without Concurrency Control, Two Phase Commit, SQL or C++" by Arthur 
Whitney, Dennis Shasha, and Steve Apter, 211–217, Seventh International Workshop on 
High Performance Transaction Systems, September 1997, Asilomar, Calif.) 
One very significant benefit of executing transactions in the order they arrive (or appearing to) 
is that you can log transaction commands rather than modified records or pages. This reduces 
the overhead of the recovery subsystem substantially. It also eliminates the need for two-phase 
locking. That, too, is discussed in the Whitney et al. paper and is the basis for recovery in the 
KDB system obtainable from http://www.kx.com. 
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Appendix B: Transaction Chopping 
B.1 Assumptions 
This appendix continues the discussion in Chapter 2 about making transactions smaller for the 
purpose of increasing available concurrency. It uses simple graph theoretical ideas to show 
how to cut up transactions in a safe way. If there are no control dependencies between the 
pieces that are cut up, then the pieces can be executed in parallel. Here are the assumptions 
that must hold for you to make use of this material.  

 You can characterize all the transactions that will run in some interval. The 
characterization may be parametrized. For example, you may know that some 
transactions update account balances and branch balances, whereas others check 
account balances. However, you need not know exactly which accounts or branches will 
be updated. 

 Your goal is to achieve the guarantees of serializability. (This appendix sets 
degree 3 isolation as its goal instead of full serializability because it makes the theory 
easier to understand. To apply chopping to systems desiring full serializability, the conflict 
graph should include semantic conflicts, for example, the conflict between a read of 
everyone whose last name begins with some letter between B and S and the insertion of a 
record about Bill Clinton.) You just don't want to pay for it. 

That is, you would like either to use degree 2 isolation (i.e., write locks are acquired in a 
two-phased manner, but read locks are released immediately after use), to use snapshot 
isolation, or to chop your transactions into smaller pieces. The guarantee should be that 
the resulting execution be equivalent to one in which each original transaction executes in 
isolation. 

 If a transaction makes one or more calls to rollback, you know when these occur. 
Suppose that you chop up the code for a transaction T into two pieces T1 and T2, where 
the T1 part executes first. If the T2 part executes a rollback statement in a given execution 
after T1 commits, then the modifications done by T1 will still be reflected in the database. 
This is not equivalent to an execution in which T executes a rollback statement and 
undoes all its modifications. Thus, you should rearrange the code so rollbacks occur early. 
We will formalize this intuition below with the notion of rollback safety. 

 Suppose a transaction T modifies x, a program variable not in the database. If T 
aborts because of a concurrency control conflict and then executes properly to completion, 
variable x will be in a consistent state. (That is, we want the transaction code to be 
"reentrant.") 

 If a failure occurs, it is possible to determine which transactions completed before 
the failure and which ones did not. 
Suppose there are n transactionsT1, T2,…,Tn that can execute within some interval. Let us 
assume, for now, that each such transaction results from a distinct program. Chopping a 
transaction will then consist of modifying the unique program that the transaction executes. 
Because of the form of the chopping algorithm, assuming this is possible will have no effect on 
the result. 
A chopping partitions each, Ti into pieces ci1, ci2,…, cik. Every database access performed by Ti 
is in exactly one piece. 
A chopping of a transaction T is said to be rollback safe if either T has no rollback statements 
or all the rollback statements of T are in its first piece. The first piece must have the property 
that all its statements execute before any other statements of T. This will prevent a transaction 
from half-committing and then rolling back. 
A chopping is said to be rollback safe if each of its transactions is rollback safe. Each piece will 
act like a transaction in the sense that each piece will acquire locks according to the two-phase 
locking algorithm and will release them when it ends. It will also commit its changes when it 
ends. Two cases are of particular interest.  
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 The transaction T is sequential and the pieces are nonoverlapping subsequences 
of that transaction. 
For example, suppose T updates an account balance and then updates a branch balance. 
Each update might become a separate piece, acting as a separate transaction.  

 The transaction T operates at degree 2 isolation in which read locks are released 
as soon as reads complete. 
In this case, each read by itself constitutes a piece.[1] All writes together form a piece 
(because the locks for the writes are only released when T completes). 

EXECUTION RULES  

1. When pieces execute, they obey the order given by the transaction. For example, 
if the transaction updates account X first and branch balance B second, then the piece 
that updates account X should complete before the piece that updates branch balance B 
begins. By contrast, if the transaction performs the two steps in parallel, then the pieces 
can execute in parallel. 

2. If a piece is aborted because of a lock conflict, then it will be resubmitted 
repeatedly until it commits. 

3. If a piece is aborted because of a rollback, then no other pieces for that 
transaction will execute. 

[1]Technically, this needs some qualification. Each read that doesn't follow a write on the same 
data item constitutes a piece. The reason for the qualification is that if a write(x) precedes a 
read(x), then the transaction will continue to hold the lock on x after the write completes. 

B.2 Correct Choppings 
We will characterize the correctness of a chopping with the aid of an undirected graph having 
two kinds of edges.  

1. C edges. C stands for conflict. Two pieces p and p′ from different original 
transactions conflict if there is some data item x that both access and at least one 
modifies.[2] In this case, draw an edge between p and p′ and label the edge C. 

2. S edges. S stands for sibling. Two pieces p and p′ are siblings if they come from 
the same transaction T. In this case, draw an edge between p and p′ and label the edge S. 
We call the resulting graph the chopping graph. (Note that no edge can have both an S and a 
C label.) 
We say that a chopping graph has an SC-cycle if it contains a simple cycle that includes at 
least one S edge and at least one C edge.[3]  
We say that a chopping of T1, T2,…, Tn is correct if any execution of the chopping that obeys 
the execution rules is equivalent to some serial execution of the original transactions. 
"Equivalent" is in the sense of the textbook.[4] That is, every read (respectively, write) from 
every transaction returns (respectively, writes) the same value in the two executions and the 
same transactions roll back. Now, we can prove the following theorem. 

Theorem 1 A chopping is correct if it is rollback safe and its chopping graph contains no SC-
cycle. 
Proof: The proof requires the properties of a serialization graph. Formally, a serialization graph 
is a directed graph whose nodes are transactions and whose directed edges represent ordered 
conflicts. That is, T → T′ if T and T′ both access some data item x, one of them modifies x, and 
T accessed x first. Following the Bernstein, Hadzilacos, and Goodman textbook, if the 
serialization graph resulting from an execution is acyclic, then the execution is equivalent to a 
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serial one. The book also shows that if all transactions use two-phase locking, then all those 
who commit produce an acyclic serialization graph. 
Call any execution of a chopping for which the chopping graph contains no SC-cycles a 
chopped execution. We must show that  

1. any chopped execution yields an acyclic serialization graph on the given 
transactions T1, T2,…,Tn and hence is equivalent to a serial execution of those 
transactions. 

2. the transactions that roll back in the chopped execution would also roll back if 
properly placed in the equivalent serial execution. 
For point 1, we proceed by contradiction. Suppose there was a cycle in T1, T2, …, Tn. That is T 
→ T′ → … → T. Consider three consecutive transactions Ti, Ti + 1, and Ti+2. There must be 
pieces p1, p2, p3, and p4 such that p1 comes from Ti, conflicts with p2 from Ti + 1, which is a 
sibling of or identical to p3 from Ti + 1 and that conflicts with p4 of Ti+2. Thus the transaction 
conflicts in the cycle correspond to a path P of directed conflict edges and possibly some 
sibling edges. Observe that there must be at least one sibling edge in P because otherwise 
there would be a pure conflict path of the form p→ p′ → … → p. Since the pieces are executed 
according to two-phase locking and since two-phase locking never allows cyclic serialization 
graphs, this cannot happen. (A piece may abort because of a concurrency control conflict, but 
then it will reexecute again and again until it commits.) Therefore, P corresponds to an SC-
cycle, so there must be an SC-cycle in the chopping graph. By assumption, no such cycle 
exists. 
For point 2, notice that any transaction T whose first piece p rolls back in the chopped 
execution will have no effect on the database, since the chopping is rollback safe. We want to 
show that T would also roll back if properly placed in the equivalent serial execution. Suppose 
that p conflicts with and follows pieces from the set of transactions W1, …, Wk. Then place T 
immediately after the last of those transactions in the equivalent serial execution. In that case, 
the first reads of T will be exactly those of the first reads of p. Because p rolls back, so will T.▪  

Theorem 1 shows that the goal of any chopping of a set of transactions should be to obtain a 
rollback-safe chopping without an SC-cycle. 

CHOPPING GRAPH EXAMPLE 1 

Suppose there are three transactions that can abstractly be characterized as follows:  
    T1: R(x) W(x) R(y) W(y) 
    T2: R(x) W(x) 
    T3: R(y) W(y) 

Breaking up T1 into  
    T11: R(x) W(x) 
    T12: R(y) W(y) 
will result in a graph without an SC-cycle (Figure B.1). This verifies the rule of thumb from 
Chapter 2. 
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Figure B.1: No SC-cycle.  

CHOPPING GRAPH EXAMPLE 2 

With the same T2 and T3 as in the first example, breaking up T11 further into  
    T111: R(x) 
    T112: W(x) 
will result in an SC-cycle (Figure B.2). 

 
Figure B.2: SC-cycle.  

CHOPPING GRAPH EXAMPLE 3 

By contrast, if the three transactions were  
    T1: R(x) W(x) R(y) W(y) 
    T2: R(x) 
    T3: R(y) W(y) 

then T1 could be broken up into  
    T111: R(x) 
    T112: W(x) 
    T12: R(y) W(y) 
There is no SC-cycle (Figure B.3). There is an S-cycle, but that doesn't matter. 
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Figure B.3: No SC-cycle.  

CHOPPING GRAPH EXAMPLE 4 
Now, let us take the example from Chapter 2 in which there are three types of transactions.  

 A transaction that updates a single depositor's account and the depositor's 
corresponding branch balance. 

 A transaction that reads a depositor's account balance. 
 A transaction that compares the sum of the depositors' account balances with the 

sum of the branch balances. 

For the sake of concreteness, suppose that depositor accounts D11, D12, and D13 all belong 
to branch B1; depositor accounts D21 and D22 both belong to B2. Here are the transactions.  
    T1 (update depositor): RW(D11) RW(B1) 
    T2 (update depositor): RW(D13) RW(B1) 
    T3 (update depositor): RW(D21) RW(B2) 
    T4 (read depositor): R(D12) 
    T5 (read depositor): R(D21) 
    T6 (compare balances): R(D11) R(D12) R(D13) R(B1) R(D21) 
                           R(D22) R(B2) 

Thus, T6 is the balance comparison transaction. Let us see first whether T6 can be broken up 
into two transactions.  
    T61: R(D11) R(D12) R(D13) R(B1) 
    T62: R(D21) R(D22) R(B2) 
The absence of an SC-cycle shows that this is possible (Figure B.4). 
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Figure B.4: No SC-cycle.  

CHOPPING GRAPH EXAMPLE 5 
Taking the transaction population from the previous example, let us now consider dividing T1 
into two transactions, giving the following transaction population Figure B.5).  
    T11: RW(D11) 
    T12: RW(B1) 
     T2: RW(D13) RW(B1) 
     T3: RW(D21) RW(B2) 
     T4: R(D12) 
     T5: R(D21) 
     T6: R(D11) R(D12) R(D13) R(B1) R(D21) R(D22) R(B2) 

 
Figure B.5: SC-cycle.  

This results in an SC-cycle. 

[2]As has been observed repeatedly in the literature, this notion of conflict is too strong. For 
example, if the only data item in common between two transactions is one that is only 
incremented and whose exact value is insignificant, then such a conflict might be ignored. We 
assume the simpler read/write model only for the purposes of exposition. 

[3]Recall that a simple cycle consists of (1) a sequence of nodes n1, n2,…, nk such that no node is 
repeated and (2) a collection of associated edges: there is an edge between ni and ni+1 for 1 ≤ i < 
k and an edge between nk and n1; no edge is included twice. 

[4]See the following two references: 
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P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in 
Database Systems. Reading, Mass., Addison-Wesley, 1987. 
research.microsoft.com/pubs/ccontrol/. 
Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, 
Algorithms, and Practice of Concurrency Control and Recovery. Morgan Kaufmann, May 2001. 
B.3 Finding the Finest Chopping 
Now, you might wonder whether there is an algorithm to obtain a correct chopping. Two 
questions are especially worrisome.  

1. Can chopping a piece into smaller pieces break an SC-cycle? 
2. Can chopping one transaction prevent one from chopping another? 

Remarkably, the answer to both questions is no. 

Lemma 1 If a chopping is not correct, then any further chopping of any of the transactions will 
not render it correct. 
Proof: Let the transaction to be chopped be called T and let the result of the chopping be called 
pieces(T). If T is not in an SC-cycle, then chopping T will have no effect on the cycle. If T is in 
an SC-cycle, then there are three cases.  

1. If there are two C edges touching T from the cycle, then those edges will touch 
one or more pieces in pieces(T). (The reason is that the pieces partition the database 
accesses of T so the conflicts reflected by the C edges will still be present.) Those pieces 
(if there are more than one) will be connected by S edges after T is chopped, so the cycle 
will not be broken. 

2. If there is one C edge touching T and one S edge leaving T (because T is already 
the result of a chopping), then the C edge will be connected to one piece p of pieces(T). If 
the S edge from T is connected to a transaction T′, then p will also be connected by an S 
edge to T′ because p and T′ come from the same original transaction. So, the cycle will 
not be broken. 

3. If there are two S edges touching T, then both of those S edges will be inherited 
by each piece in pieces(T), so again the cycle will not be broken.▪  
Lemma 2 If two pieces of transaction T are in an SC-cycle as the result of some chopping, 
then they will be in a cycle even if no other transactions are chopped (Figure B.6). 

 
Figure B.6: Putting three pieces of T3 into one will not make chopping of T1 all right, nor 
will chopping T3 further.  
Proof: Since two pieces, say, p and p′, of T are in a cycle, there is an S edge between them 
and a C edge leading from each of them to pieces of other transactions. If only one piece of 
some other transaction T′ is in the cycle, then combining all the pieces of T′ will not affect the 
length of the cycle. If several pieces of T′ are in the cycle, then combining them will simply 
shorten the cycle.▪  
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These two lemmas lead directly to a systematic method for chopping transactions as finely as 
possible. Consider again the set of transactions that can run in this interval {T1, T2,…, Tn}. We 
will take each transaction Ti in turn. We call {c1, c2, …, ck} a private chopping of Ti, denoted 
private(Ti), if both of the following hold:  

1. {c1, c2, … , ck} is a rollback-safe chopping of Ti. 
2. There is no SC-cycle in the graph whose nodes are {T1, … , Ti−1 , c1, c2, … , ck, Ti 

+ 1, … , Tn}. (If i = 1, then the set is { c1, c2, … , ck, T2, … , Tn}. If i = n, then the set is 
{T1, … , Tn−1 , c1, c2, … , ck}, i.e., the graph of all other transactions plus the chopping of 
Ti.) 
Theorem 2 The chopping consisting of {private (T1), private (T2) … ,private (Tn)} is rollback 
safe and has no SC-cycles. 
Proof:  

 Rollback safe. The "chopping" is rollback safe because all its constituents are 
rollback safe. 

 No SC-cycles. If there were an SC-cycle that involved two pieces of private(Ti) 
then lemma 2 would imply that the cycle would still be present even if all other 
transactions were not chopped. But that contradicts the definition of private (Ti).▪  
B.4 Optimal Chopping Algorithm 
Theorem 2 implies that if we can discover a fine-granularity private (Ti) for each Ti, then we can 
just take their union. Formally, the finest chopping, of Ti, denoted FineChop (Ti) (whose 
existence we will prove) has two properties:  

 FineChop(Ti) is a private chopping of Ti. 
 If piece p is a member of FineChop(Ti), then there is no other private chopping of 

Ti containing p1 and p2 such that p1 and p2 partition p and neither is empty. 

That is, we would have the following algorithm:  
    procedure chop(T_1,...,T_n) 
     for each T_i 
      Fine_i := finest chopping of T_i 
     end for; 
    the finest chopping is 
      {Fine_1, Fine_2,..., Fine_n} 
We now give an algorithm to find the finest private chopping of T.  
    Algorithm FineChop(T) 
 
    initialization: 
 
     if there are rollback statements then 
      p_1 := all database writes 
       of T that may occur 
       before or concurrently with any rollback 
       statement in T 
     else 
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      p_1 := set consisting of 
      the first database access; 
    end 
    P := {{x} | x is a database access not in p_1}; 
    P := P union {p_1}; 
 
    merging pieces: 
 
     construct the connected components 
     of the graph induced by C edges alone 
     on all transactions besides T 
     and on the pieces in P 
     update P based on the following rule: 
 
     if p_j and p_k are in the same connected 
     component and j <  k, then 
      add the accesses from p_k to p_j; 
      delete p_k from P 
     end if 
    call the resulting partition FineChop(T) 
Note on efficiency. The expensive part of the algorithm is finding the connected components of 
the graph induced by C on all transactions besides T and the pieces in P. We have assumed a 
naive implementation in which this is recomputed for each transaction T at a cost of O(e + m) 
time in the worst case, where e is the number of C edges in the transaction graph and m is the 
size of P. Because there are n transactions, the total time is O(n(e + m)). Note that the only 
transactions relevant to FineChop(T) are those that are in the same connected component as 
T in the C graph. An improvement in the running time is possible if we avoid the total 
recomputation of the common parts of the connected components graph for the different 
transactions. 
Note on shared code. Suppose that Ti and Tj result from the same program P. Since the 
chopping is implemented by changing P, Ti and Tj must be chopped in the same way. This may 
seem surprising at first, but in fact the preceding algorithm will give the result that FineChop(Ti) 
= FineChop(Tj). The reason is that the two transactions are treated symmetrically by the 
algorithm. When FineChop(Ti) runs, Tj is treated as unchopped and similarly for Tj. Thus, 
shared code does not change this result at all. 
Theorem 3 FineChop(T) is the finest chopping of T. 
Proof: We must prove two things: FineChop(T) is a private chopping of T and it is the finest one.  

 FineChop(T) is a private chopping of T.  

1. Rollback safety. This holds by inspection of the algorithm. The 
initialization step creates a rollback-safe partition. The merging step can only cause 
p1 to become larger. 

2. No SC-cycles. Any such cycle would involve a path through the 
conflict graph between two distinct pieces from FineChop(T). The merging step would 
have merged any two such pieces to a single one.  

 No piece of FineChop(T) can be further chopped. Suppose p is a piece in 
FineChop(T). Suppose there is a private chopping TooFine of T that partitions p into two 
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nonempty subsets q and r. Because p contains at least two accesses, the accesses of q 
and r could come from two different sources.  

1. Piece p is the first piece; that is, p1, and q and r each contain 
accesses of p1 as constructed in the initialization step. In that case, p1 contains one 
or more rollback statements. So, one of q or r may commit before the other rolls back 
by construction of p1. This would violate rollback safety. 

2. The accesses in q and r result from the merging step. In that case, 
there is a path consisting of C edges through the other transactions from q to r. This 
implies the existence of an SC-cycle for chopping TooFine.▪  
B.5 Application to Typical Database Systems 
For us, a typical database system will be one running SQL. Our main problem is to figure out 
what conflicts with what. Because of the existence of bind variables, it will be unclear whether a 
transaction that updates the account of customer :x will access the same record as a 
transaction that reads the account of customer :y. So, we will have to be conservative. Still, we 
can achieve substantial gains. 

We can use the tricks of typical predicate locking schemes, however.[5] For example, if two 
statements on relation Account are both conjunctive (only AND's in the qualification) and one 
has the predicate  
    AND name LIKE 'T%' 

whereas the other has the predicate  
    AND name LIKE 'S%' 

they clearly will not conflict at the logical data item level. (This is the only level that matters 
because that is the only level that affects the return value to the user.) Detecting the absence 
of conflicts between two qualifications is the province of compiler writers. We offer nothing new. 

The only new idea we have to offer is that we can make use of information in addition to simple 
conflict information. For example, if there is an update on the Account table with a conjunctive 
qualification and one of the predicates is  
    AND acctnum = :x 

then, if acctnum is a key, we know that the update will access at most one record. This will 
mean that a concurrent reader of the form  
    SELECT ... 
    FROM Account 
    WHERE ... 

will conflict with the update on at most one record, a single data item. We will therefore 
decorate this conflict edge with the label "1." If the update had not had an equality predicate on 
a key, then we would decorate this conflict edge with the label "many." 
How does this decoration help? Well, suppose that the read and the update are the only two 
transactions in the system. Then if the label on the conflict is "1," the read can run at degree 2 
isolation. This corresponds to breaking up the reader into n pieces, where n is the number of 
data items the reader accesses. A cycle in the SC-graph would imply that two pieces of the 
resulting chopping conflict with the update. This is impossible, however, since the reader and 
update conflict on only one piece altogether. 
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B.5.1 Chopping and Snapshot Isolation 

Snapshot isolation (SI) is a concurrency control algorithm that never delays read operations, 
even for read/write transactions. SI has been implemented by Oracle (with certain variations), 
and it provides an isolation level that avoids many of the common concurrency anomalies. SI 
does not guarantee serializability, however. Like most protocols that fail to guarantee 
serializability, SI can lead to arbitrarily serious violations of integrity constraints. This results, 
we suspect, in thousands of errors per day, some of which may be quite damaging. Fortunately, 
there are many situations where snapshot isolation does give serializability, and chopping can 
help identify those situations.[6]  

In snapshot isolation, a transaction T1 reads data from the committed state of the database as 
of time start(T1) (the snapshot), and holds the results of its own writes in local memory store 
(so if it reads data a second time it will read its own output). Thus, writes performed by other 
transactions that were active after T1 started are not visible to T1. When T1 is ready to commit, 
it obeys the first-committer-wins rule: T1 will successfully commit if and only if no other 
concurrent transaction T2 has already committed writes to data that T1 intends to write. In the 
Oracle implementation of snapshot isolation, writes also take write locks, and a write is 
sometimes aborted immediately when a concurrent transaction has already written to that item, 
but the first-committer-wins certification check is still done at commit time. 
Snapshot isolation does not guarantee serializability, however. For example, suppose X and Y 
are data items representing bank balances for a married couple, with the constraint that X + Y 
> 0 (the bank permits either account to overdraw as long as the sum of the account balances 
remains positive). Assume that initially X0 = 70 and Y0 = 80. Transaction T1 reads X0 and Y0, 
then subtracts 100 from X, assuming it is safe because the two data items added up to 150. 
Transaction T2 concurrently reads X0 and Y0, then subtracts 100 from Y0, assuming it is safe 
for the same reason. Each update is safe by itself, but both are not, so no serial execution 
would allow them both to occur (since the second would be stopped by the constraint). Such 
an execution may take place on an Oracle DBMS under "set transaction isolation level 
serializable." 

So snapshot isolation is not in general serializable, but observe that if we consider the read 
portion of each transaction to be a piece and the write portion to be another piece, then the 
execution on pieces is serializable. The reason is that the reads appear to execute when the 
transaction begins and the writes are serializable with respect to one another by the first-
committer-wins rule. So, consider that decomposition to be the chopping. Snapshot 
serializability is serializable if the SC-graph on the pieces so constructed is acyclic. If a 
transaction program can run several times, it is sufficient to consider just two executions from 
the point of view of discovering whether a cycle is present. 

[5]K. C. Wong and M. Edelberg. "Interval Hierarchies and Their Application to Predicate Files." 
ACM Transactions on Database Systems, Vol. 2, No. 3, 223–232, September 1977. 

[6]This subsection is drawn from joint work by Alan Fekete, Pat O'Neil, Betty O'Neil, Dimitrios 
Liarokapis, and Shasha. 

B.6 Related Work 
There is a rich body of work in the literature on the subject of chopping up transactions or 
reducing concurrency control constraints, some of which we review here. Such work nearly 
always proposes a new concurrency control algorithm and often proposes a weakening of 
isolation guarantees. (There is other work that proposes special-purpose concurrency control 
algorithms on data structures.) 
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The algorithm presented here avoids both proposals because it is aimed at database users 
rather than database implementors. Database users normally cannot change the concurrency 
control algorithms of the underlying system, but must make do with two-phase locking and its 
variants. Even if users could change the concurrency control algorithms, they probably should 
avoid doing so since the bugs that might result could easily corrupt a system. 

The literature offers many good ideas, however. Here is a brief summary of some of the major 
contributions.  

1. Abdel Aziz Farrag and M. Tamer Ozsu, "Using Semantic Knowledge of 
Transactions to Increase Concurrency." ACM Transactions on Database Systems, Vol. 14, 
No. 4, 503–525, December 1989. 
Farrag and Ozsu of the University of Alberta consider the possibility of chopping up 
transactions by using "semantic" knowledge and a new locking mechanism. For example, 
consider a hotel reservations system that supports a single transaction Reserve. Reserve 
performs the following two steps:  

a. Decrement the number of available rooms or roll back if that number 
is already 0. 

b. Find a free room and allocate it to a guest. 
If reservation transactions are the only ones running, then the authors assert that each 
reservation can be broken up into two transactions, one for each step. Our mechanism 
might or might not come to the same conclusion, depending on the way the transactions 
are written. To see this, suppose that the variable A represents the number of available 
rooms, and r and r′ represent distinct rooms. Suppose we can represent two reservation 
transactions by  
    T1: RW(A) RW(r) 
    T2: RW(A) RW(r') 
Then the chopping graph resulting from the transactions  
    T11: RW(A) 
    T12: RW(r) 
    T21: RW(A) 
    T22: RW(r') 
will have no cycles. By contrast, if T2 must read room r first, then the two steps cannot be 
made into transactions. That is, dividing  
    T1: RW(A) RW(r) 
    T2: RW(A) R(r) RW(r') 
into  
    T11: RW(A) 
    T12: RW(r) 
    T21: RW(A) 
    T22: R(r) RW(r') 
will create an SC-cycle as Figure B.7 shows. However, the semantics of hotel 
reservations tell us that it does not matter if one transaction decrements A first but gets 
room r′. The difficulty is applying the semantics. The authors note in conclusion that 
finding semantically acceptable interleavings is difficult. 
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Figure B.7: SC-cycle if T2 must access room r before accessing room r′.  

2. H. Garcia-Molina, "Using Semantic Knowledge for Transaction Processing in a 
Distributed Database." ACM Transactions on Database Systems, Vol. 8, No. 2, 186–213, 
June 1983. 
Hector Garcia-Molina suggested using semantics by partitioning transactions into classes. 
Transactions in the same class can run concurrently, whereas transactions in different 
classes must synchronize. He proposes using semantic notions of consistency to allow 
more concurrency than serializability would allow and using counterstep transactions to 
undo the effect of transactions that should not have committed. 

3. N. Lynch, "Multi-level Atomicity—A New Correctness Criterion for Database 
Concurrency Control." ACM Transactions on Database Systems, Vol. 8, No. 4, 484–502, 
December 1983. 
Nancy Lynch generalized Garcia-Molina's model by making the unit of recovery different 
from the unit of locking (this is also possible with the check-out/check-in model offered by 
some object-oriented database systems). She groups transactions into nested classes 
with specified possible interleavings between them. Then she proposes a new scheduling 
mechanism that ensures that a specific order among conflict steps is maintained. 

4. R. Bayer, "Consistency of Transactions and Random Batch." ACM Transactions 
on Database Systems, Vol. 11, No. 4, 397–404, December 1986. 
Rudolf Bayer of the Technische Universitat of Munich showed how to change the 
concurrency control and recovery subsystems to allow a single batch transaction to run 
concurrently with many short transactions. 

5. M. Hsu and A. Chan, "Partitioned Two-Phase Locking." ACM Transactions on 
Database Systems, Vol. 11, No. 4, 431–446, December 1986. 
Meichun Hsu and Arvola Chan have examined special concurrency control algorithms for 
situations in which data is divided into raw data and derived data. The idea is that the 
consistency of the raw data is not so important in many applications, so updates to that 
data should be able to proceed without being blocked by reads of that data. For example, 
suppose there are three transactions with the following read/write patterns:  
    T1: W(x) 
    T2: R(x) W(y) 
    T3: R(x) R(y) W(z) 
Consider chopping each of these transactions into single accesses. There is an SC-cycle 
in such a chopping: R3(x) W1(x) R2(x) W2(y) R3(y). If reads only accessed current values, 
this would correspond to a cycle in the serialization graph. Their algorithm by contrast 
would allow the R3(y) to see the old state of y. 
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Some commercial systems such as Oracle use this scheme as well as allowing reads to 
view old data. That facility would remove the necessity to use the algorithms in this paper 
for read-only transactions. 

6. P. O'Neil, "The Escrow Transactional Mechanism." ACM Transactions on 
Database Systems, Vol. 11, No. 4, 405–430, December 1986. 
Patrick O'Neil takes advantage of the commutativity of increments to release locks early 
even in the case of writes. 

7. O. Wolfson, "The Virtues of Locking by Symbolic Names." Journal of Algorithms, 
Vol. 8, 536–556, 1987. 
Ouri Wolfson presents an algorithm for releasing certain locks early without violating 
serializability. 

8. M. Yannakakis, "A Theory of Safe Locking Policies in Database Systems." Journal 
of the ACM, Vol. 29, No. 3, 718–740, 1982. 
Yannakakis assumes that the user has complete control over the acquisition and release 
of locks. The setting here is a special case: the user can control only how to chop up a 
transaction or whether to allow reads to give up their locks immediately. As mentioned 
earlier, we have restricted the user's control in this way for the simple pragmatic reason 
that systems restrict the user's control in the same way. 

9. P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, "Concurrency Control in a 
System for Distributed Databases (SDD-1)." ACM Transactions on Database Systems, 
Vol. 5, No. 1, 18–51, March 1980. 
Bernstein, Shipman, and Rothnie introduced the idea of conflict graphs in an experimental 
system called SDD-1 in the late 1970s. Their system divided transactions into classes 
such that transactions within a class executed serially, whereas transactions between 
classes could execute without any synchronization. Their assumed concurrency control 
algorithm was based on locks and timestamps. 

10. Marco Casanova, The Concurrency Control Problem for Database Systems. 
Springer-Verlag Lecture Notes in Computer Science, No. 116, 1981. 
Marco Casanova's thesis extended the SDD-1 work by representing each transaction by 
its flowchart and by generalizing the notion of conflict. A cycle in his graphs indicated the 
need for synchronization if it included both conflict and flow edges. 

11. D. Shasha and M. Snir, "Efficient and Correct Execution of Parallel Programs that 
Share Memory." ACM Transactions on Programming Languages and Systems, Vol. 10, 
No. 2, 282–312, April 1988. 
Shasha and Snir explored graphs that combine conflict, program flow, and atomicity 
constraints in a study of the correct execution of parallel shared memory programs that 
have critical sections. The graphs used here are a special case of the ones used in that 
article. 

Ongoing work related to transaction chopping has been done by Bruno Agarwal, Arthur 
Bernstein, Alan Fekete, Wenway Hseush, Dimitrios Liarokapis, Ling Liu, Elizabeth O'Neil, Pat 
O'Neil, Calton Pu, Lihchyun Shu, Michal Young, and Tong Zhou. 
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Appendix C: Time Series, Especially for Finance 
Overview 
This section addresses several subjects.  

 How time series are used in business and finance. 
 What systems (FAME, S-Plus, SAS, KSQL) that are specialized for array 

processing do to support them. 
 A brief discussion of what the relational vendors are offering, focusing on Oracle 

8i. (The reason we are brief is that we view these offerings as evolving.) 
 An annotated bibliography in time series for computer scientists. 

Since much of this work was motivated by Shasha's consulting on Wall Street, we start with a 
trading example to serve as motivation. An analytical group discovers the desirability of "pairs 
trading." The goal is to identify pairs (or, in general, groups) of stocks whose prices track one 
another after factoring in dividends. 
You can make money (lots has been made) because, for example, you may know that the two 
banks Chase and Citibank track each other (their difference is a stationary process). Now if, on 
a certain day, Chase goes up but Citibank doesn't, then buy Citibank and sell Chase. This is 
simplified: the model often involves a whole collection of stocks, and externalities such as 
dividends and business news must be taken into account. Typical challenge queries from such 
an application include the following:  

 Correlate the price histories of two stocks or in general among many stocks and 
options. (For most traders, returns are more interesting than prices because they have 
better statistics: a stock that trends up over the years has an unstationary mean, but 
perhaps a stationary return. So, you perform correlations over "returns." The return at day 
t is ln(price(t)/price(t−1)).  

 Perform the correlation over certain time intervals to evaluate the stationarity. 
 The correlation might be weighted: recent history counts more than distant history. 

C.1 Setting Up a Time Series Database 
The raw data comes in the form of ticks (stock, quantity, price) and can be stored in a relational 
database without a problem. Time series are difficult because the relational model does not 
take advantage of the order of rows. Whereas you can perform an order by query and 
manipulate the data in some other language, you cannot natively manipulate the ordered data 
using select, from, and where. Arguably, this is good for data independence, but it is bad for 
time series queries. Realizing this, the traders curse a lot and tell their programmers to cobble 
something together. The programmers do so and create a piece of software that is part 
spreadsheet and part special-purpose database, with lots of C++ code. Employment goes up. 
Joe Celko shows how to bend SQL to the task of simulating order in his popular and excellent 
book, The SQL Puzzle Book, published by Morgan Kaufmann. Usually, the bending results in a 
loss of efficiency. It also works only for special cases. Fortunately, many relational vendors 
include time series as a special data type along with a set of functions to manipulate them. Our 
discussion at a semantic level applies to such relational extensions as well as to special-
purpose array databases. 
In order to explain the semantics, we return to the basic question: what are time series? In 
finance, marketing, and other applications, time series are a sequence of values usually 
recorded at or aggregated to regular intervals (yearly, monthly, weekly, …, secondly). For 
example, a stock market ticker tape will have the ticks of buys, sells, and offers. The ticker will 
mix different stocks, but each stock's stream will be in strictly increasing time order. The price 
for an interval of interest will be the latest price from that interval, for example, the last price of 



Database Tuning  Appendix C: Time Series, Especially for Finance 

-233- 

the day. Regularity ensures that moving averages, autocorrelations, and other time-related 
statistics make sense. 

Nonregular time series are also of interest (e.g., in finance, the history of stock splits), but 
mostly as adjustments to the regular time series. For example, if a stock has been split 2 for 1, 
then all prices preceding the split will be divided in half in order to be "split adjusted." 
To be useful, time series should also exhibit historicity: the past is an indicator of the future. 
That is why autoregression can be used to predict the future of sales and why the past volatility 
may predict future volatility, to cite two examples. 

To prepare data for time series queries, the data must be regularized to a certain frequency. 
Unfortunately, the data may not have values for every time instance at the stated frequency. 
For example, business day has the frequency of a day but has no values on holidays or 
weekends. Further, one country's holidays may not be the same as another's. For example, 
some Asian stock markets are open on Saturdays. The basic solution is to store values without 
gaps everywhere (i.e., every day). That brings up the question of how to fill in the gaps. Time 
series values are of two general types (we borrow this distinction from the FAME system).  

 Level values stay the same from one period to the next in the absence of activity. 
For example, inventory is a level value because inventory stays the same if you neither 
buy nor sell. 

 Flow values are zero in the absence of activity. For example, expenses go to zero 
if you buy nothing. 

The type clearly determines the value before interpolation. Interpolation is used to smooth 
curves. Typically, systems use various spline techniques such as a cubic spline to interpolate 
missing values though more complicated methods can be used, such as the Black-Derman-
Toy interpolation of the yield curve.[1]  

[1]The yield curve is the annualized interest that you would get if you lent money for various time 
durations. For example, you might get x% annualized interest if you lent money for 5 days, y% for 
one month, z% for 100 years. Normally, these numbers increase with the time. Given such values, 
the Black-Derman-Toy interpolation will give imputed values for, say, 17 days. It will then go on 
compute option values for interest rate options. 

C.2 FAME 
FAME is a special-purpose system that supports time series. FAME stands for forecasting, 
analysis, and modeling environment and comes from FAME information systems, Ann Arbor, 
Michigan (http://www.fame.com). Typical FAME operations include  

 cumulative sum (e.g., year-to-date sales). 
 moving averages (e.g., 30-day average of stock prices). 
 nth best (e.g., fifth best sales region). 
 median (one in the middle). 
 rank (associate ordinal to each value based on its sort order).  
 discretize (e.g., rank the revenues by whether they are in the top third, the middle 

third, or the bottom third). This implies discovering the boundaries and then using them in 
an update query. 

 year-to-year comparisons (e.g., balance of trade of this year versus last). 
 accounting functions (e.g., average growth rate, amortization, internal rate of 

return). 
 statistical functions (e.g., autocorrelation and correlation between two series). 
 forecasting functions (e.g., autoregression).[2]  

In options finance, the basic approach to forecasting is to assume that the price of an equity is 
based on a random walk (Brownian motion) around a basic slope. The magnitude of the 
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randomness is called the volatility. In a result due to Norbert Wiener (he worked it out to shoot 
down bombers over London), for this model, the standard deviation of the difference between 
the initial price and the price at a certain time t rises as the square root of time t. 

For concreteness, here are the steps in a typical FAME session.  

 Specify frequency; say, monthly, starting at January 1, 1996, and ending at the 
current time. 

 Create sales and expense time series by importing these from a file or typing 
them in. Specify that these are flow-type time series. 

 Create a new time series: formula profit = sales − expenses. 
 Create a fourth time series with weekly frequency on inventory. Specify that 

inventory is a level-type time series. 
 Convert the first three time series to a weekly frequency (by dividing the monthly 

values by 4.2 or by constructing a cubic spline to make the sales, expenses, and profits 
curve look smooth). This interpolation depends on knowing that sales and expenses are 
flow-type values. 

 Now, use autoregression to predict future time series values. 

FAME also has a relational frontend called the FAME Relational Gateway, developed by 
Thinkbank. 

[2]Yule invented the autoregressive technique in 1927 so that he could predict the annual number 
of sunspots. This was a linear model, and the basic approach was to assume a linear underlying 
process modified by noise. That model is often used in marketing (e.g., what will my sales of 
wheat be next month?). There are also seasonal autoregressive models. 

C.3 S-Plus 
S-Plus is an interpretive environment for data analysis, not specifically oriented toward time 
series, but based on vectors (http://www.mathsoft.com/splus/). S-Plus is derived from the S 
language developed at AT&T Bell Laboratories by Becker, Chambers, and Wilkens, but 
development now belongs to MathSoft Inc. 

S-Plus has  

 standard statistical and mathematical functions, including anova, wavelets, 
bootstrapping to check for model overfitting, and so on. These are the mathematical tools 
used in futures and options trading. 

 graphics capabilities for visualization (user testimonials say this is a particularly 
strong point). 

 combinatorial data mining (e.g., inference of classification trees and regression). 
 an object-oriented language allowing encapsulation and overloading. For example, 

objects of a certain class will have a special plot function. 

The S-Plus programming model is vector oriented. Here are some typical statements.  

 sum(age < mean(age)) gives the count of people who are younger than the mean. 
 agecat ← if else(age < 16, ‘Young’, ‘Old’) assigns to the vector agecat a sequence 

of Young/Old values thus discretizing the data. 
 f-sum (age, subset = sex = = ‘female’) finds the sum of the ages of all females. 

 
So, you can create vectors, do statistics on them, and perform selection-style operations on them. 
The S-Plus implementation is also vector oriented. S-Plus is slow for large databases, especially 
for data that exceeds RAM size. Below RAM size, it is very fast. For this reason, S-Plus is often 
used with SAS because SAS has data management capabilities. 
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C.4 SAS 
SAS (http://www.sas.com) is a leading vendor for statistical databases. (Originally, it stood for 
Statistical Analysis System, but now the acronym stands for itself.) An SAS programmer 
interacts with the system by parametrizing various functions, as the following example shows:  
    proc forecast data=leadprd 
      ar=1           /* number of autoregressive parameters 
                        to estimate                           */ 
      interval=month /* frequency of input time series        */ 
      trend=1        /* fit a constant trend model            */ 
      method=stepar  /* use stepwise autoregressive method    */ 
      out=leadout1   /* create output data set for forecasts  */ 
      lead=12        /* number of forecast periods            */ 
      outlimit 
      outstd; 
      var leadprod; 
      id date;       /* identification variable               */ 
      run; 

In addition, SAS has an integrated SQL dialect called Proc SQL. SAS has modules for data 
mining and data warehousing as well. To obtain support for time series data management in 
SAS, you purchase a library called ETS that enables you to do  

 interpolation 
 econometric forecasting (e.g., maximum likelihood method) 
 financial analysis (analysis of fixed-rate mortgages, adjustable-rate mortgages, 

etc.) 
 time series forecasting (exponential smoothing, ARIMA, dynamic regression) 

S-Plus is more flexible for special-purpose problems and is fast for problems that fit into RAM. 
It also has great graphics. Combining the two works well if the application selects a subset of 
data and then works on it (like a loose-coupling expert system). 
C.5 KDB 
KDB is a database system implemented on top of the K language environment (produced by 
Kx Systems: http://www.kx.com), an array language. Data structures (e.g., tables) can be 
interchanged between the two, and functions can be called in both directions. A free trial 
version can be downloaded.[3]  

KDB supports an SQL dialect called KSQL. KSQL is easy to learn (for anyone fluent in SQL) 
and carries over the speed and functionality of K to large data manipulation. KDB also supports 
most of standard SQL as well as some extensions. 
The basic data structure in KSQL is the arrable (array table), which is a table whose order can 
be exploited. In this sense, it is similar to S-Plus. Arrables are non-first-normal-form objects: a 
field of a record can be an array. For example, an entire time series can be stored in a field. 

Like most modern SQLs, KSQL allows the inclusion of user-defined functions inside database 
statements. Unlike other SQLs, KSQL allows functions to be defined over arrays as well as 
scalars. Like classical SQL, KSQL has aggregates, grouping, selections and string matching, 
and so on. 
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KSQL adds many useful functions to SQL, permitting economical expression and often better 
performance by exploiting order. Here are a few annotated examples on a table ordered by 
date whose schema is trade(stock, date, price). 

select last price, 5 avgs price by stock, date.month from trade  

 performs a group by stock and year-month in the trade table. Mathematically, the 
by clause partitions the records based on distinct stock/year-month values, like a group by 
in SQL. What is different is that each partition is guaranteed to be ordered in the same 
way as in the table (arrable). For each partition corresponding to stock s and year-month x, 
the "last price" part will return s, x, and p, where p is the price of the last record in the 
partition corresponding to stock s and date x. Because the table is ordered by date, the 
last record will be the one with the most recent date. The 5 avgs price uses the avgs 
function, which given a vector (price for each stock in this case), returns a vector of the 
same length, computing a moving average. Five avgs computes the five-day moving 
average. (In KSQL, "avg" returns the overall average as in SQL, whereas "avgs" returns a 
vector.) 

 If the user specifies a function that is not in the vocabulary of KSQL, then the 
function (autocorrelate in the following example) can easily be enclosed into the query: 

select autocorrelate[10,price] by stock from trade 

uses the autocorrelate function to compute the 10-day delayed autocorrelation of prices 
grouped by stock. 

The largest KDB application to date encompasses several billion trades and quotes on 25 
Linux Intel boxes—all U.S. equities for the last few years. Most queries return in seconds. 

[3]Disclosure note: Shasha uses K and KDB on a daily basis and has made a small contribution to 
the design of KDB, so he's biased. 

C.6 Oracle 8i Time Series 
The Oracle 8i Time Series product makes the distinction between regular and irregular data as 
follows:  

 Regular data—data that arrives at fixed intervals such as sensor data or end-of-
day stock data. Regular data can be associated with a calendar having a variety of 
frequencies such as second, minute, hour, day, week, 10-day, semimonth, month, quarter, 
semiannual, and year. The calendar feature allows the data to be checked for consistency. 

 Irregular data—data that arrives at variable intervals, such as news of shipwrecks. 

The data itself is stored either as a separate object or as a plain relational table. It is stored in 
timestamp order so functions such as moving average can be easily implemented. 

Typical functions that are supported include  

 FirstN—get the first N of a time series. 
 TrimSeries—get the time series between certain dates. 
 TSMaxN—top N elements of the time series. 
 Moving averages in a window or cumulative averages to date. This also works for 

max, min, product, and sum. 
 Scaling functions to move from, say, days to weeks, or vice versa. 
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C.7 Features You Want for Time Series 
Whether you use one of the preceding systems or another, you would do well to ensure that 
the following features, extending those mentioned in Chapter 6, are available:  

 The ability to treat sequences as first-class objects on which you can do useful 
operations within the database system. 

 The ability to treat multiple sequences together for correlations and other 
purposes. 

 A basic collection of functions, including aggregates, moving aggregates, statistics, 
cross-correlations, interpolation, and so on. 

 The ability to integrate user-defined functions into the query engine. It is our view 
that user-defined functions are essential for time series. The reason is that there is no 
analog to relational completeness that will satisfy all (or even most) time series 
applications.  

 The main helpful database amenities, including a rich relational vocabulary and 
the ability to work efficiently with disk- as well as RAM-resident data. 

 Special time-related functions, such as the ability to group by month or year based 
on timestamps. 

 Interpolation functions. This requires that values be treated appropriately, as in 
the level and flow concepts of FAME. 
C.8 Time Series Data Mining 
Financial traders have done data mining for many years. One trader described his work as 
follows: "I think about an arbitrage trick (pairs trading is such a trick). Program for a few months. 
Try the trick and either it works or it doesn't. If it doesn't, I try something new. If it works, I enjoy 
it until the arbitrage disappears." What does the research community have to offer to such 
traders? Here are some references:  

1. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, 
Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, 1996. 
The article by Berndt and Clifford about finding patterns in time series is particularly 
relevant to finance.  

2. Opher Etzion, Sushil Jajodia, and Sury Sripada, Temporal Databases—Research 
and Practice. Springer-Verlag, 1998. 
In this book, you will find articles about finding unexpected patterns (e.g., fraud) and 
multigranularity data mining.  

3. Christos Faloutsos, Searching Multimedia Databases by Content. Kluwer 
Academic Publishers, 1996. 
This book shows how to do signal processing analysis on time series to solve problems.  

Other papers explore the question of similarity search when time scaling and inversion are 
possible.  

1. R. Agrawal, K-I Lin, H. S. Sawhney, and K. Shim, "Fast Similarity Search in the 
Presence of Noise, Scaling and Translation in Time-Series Databases." 
Proceedings of the Twenty-First VLDB Conference, 1995. 

2. D. Q. Goldin and P. C. Kanellakis, "On Similarity Queries for Time-Series Data: 
Constraint Specification and Implementation." First International Conference on the 
Principles and Practice of Constraint Programming. Springer-Verlag, 1995.  

3. Davood Rafiei and Alberto Mendelzon, "Similarity-Based Queries for Time Series 
Data." Proceedings of the ACM Sigmod Conference, May 1997. 

4. Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos, "Efficient Retrieval of 
Similar Time Sequences Under Time Warping." Proceedings of the Fourteenth 
International Conference on Data Engineering, 1998. 
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As an alternative to seeing whether two sequences or subsequences match, you might want to 
describe a desirable sequence (e.g., a head-and-shoulders movement of stock prices) to see 
whether it is present. Relevant papers about this include  

1. H. V. Jagadish, A. O. Mendelzon, and T. Milo, "Similarity-Based Queries." 
Proceedings of the PODS Conference, 1995. 

2. R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait, "Querying Shapes of 
Histories." Proceedings of the Twenty-First VLDB Conference, 1995. 

3. P. Seshadri, M. Livny, and R. Ramakrishnan, "Sequence Query Processing." 
Proceedings of the ACM SIGMOD Conference, 1994. 
Data model and query language for sequences in general, with time series as a special 
case.  

4. Arie Shoshani and Kyoji Kawagoe, "Temporal Data Management." Proceedings of 
the VLDB Conference, 1986. 
One of the first papers in the literature.  

5. Snodgrass, R. T., The TSQL2 Temporal Query Language. Kluwer Academic 
Publishers, 1995. 
The TSQL2 Language Design Committee consisted of Richard Snodgrass (chair), Ilsoo 
Ahn, Gad Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Ramez Elmasri, Fabio 
Grandi, Christian S. Jensen, Wolfgang Kaefer, Nick Kline, Krishna Kulkarni, T. Y. Cliff 
Leung, Nikos Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo, and 
Suryanarayana M. Sripada. TSQL2 has time-varying aggregates, including moving 
window aggregates, aggregates over different time granularities, and weighted over time.  

6. Munir Cochinwala and John Bradley, "A Multidatabase System for Tracking and 
Retrieval of Financial Data." Proceedings of the VLDB Conference, 1994. 
A paper discussing the implementation of a tick capture and query system—for those 
brave enough to roll their own.  

7. Raghu Ramakrishnan, Donko Donjerkovic, Arvind Ranganathan, Keven S. Beyer, 
and Muralidhar Krishnaprasad, "SRQL: Sorted Relational Query Language." Proceedings 
of the SSDBM Conference, 1998. 
A paper discussing a model in which relations are tables that can be ordered. This allows 
you to do moving averages, find the 10 cheapest, the preceding 15, and so on. The 
strategy is to extend SQL with order and special operators.  

Some books on time series are appropriate for computer scientists.  

1. C. Chatfield, The Analysis of Time Series: Theory and Practice. Chapman and 
Hall, fourth edition, 1984. 
Good general introduction, especially for those completely new to time series.  

2. P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods. Springer 
Series in Statistics, 1986. 

3. B. D. Ripley and W. N. Venables, Modern Applied Statistics with S-Plus. Springer, 
1994. 
Chapter 14 has a good discussion of time series. In addition, you can find useful functions 
at http://www.stats.ox.ac.uk/ripley/. 
FinTime is a time series benchmark tailored for finance. The description of the queries and 
data generation tools are available at http://cs.nyu.edu/cs/faculty/shasha/fintime.html. 
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Appendix D: Understanding Access Plans 
Overview 
—Alberto Lerner, DBA, Doctoral Candidate  
DBMSs do not execute SQL queries in the order they are written. Rather, they first capture a 
query's meaning, translate it into a corresponding access plan, and then execute the set of 
operations contained in this plan in what you hope is an optimal way given the data structures 
available. So when you ask something like select C_NAME, N_NAME from CUSTOMER join 
NATION on C_NATIONKEY = N_NATIONKEY—show me all the customers' names and their 
corresponding nations—to an orders database,[1] DB2 would execute instead a plan like the 
one in Figure D.1. Other DBMSs' explainers would present similar plans though the display 
would differ a little. 

 
Figure D.1: Query access plan obtained using DB2's Visual Explain for the query select 
C_NAME, N_NAME from CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY. The 
query's answer is produced by a nested-loops join in which CUSTOMER is the outer table and 
NATION is the inner one. A table scan operation reads the rows of the former, while the 
nonclustered index NATION_PK is used to retrieve the latter.  
Plans are usually depicted as upward-pointing trees in which sources at the bottom are tables 
or indexes (squares and diamonds, respectively, in Figure D.1), and internal nodes are 
operators (octagons). Each operator represents a particular transformation, an intermediate 
stage in the production of a resulting node. 

A plan in fact denotes a complex assembly (or production) line—complex because it's an 
inverted tree rather than a line. "Raw" rows enter the production line via the operators 
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connected to the sources, follow the transformation path determined by the arrows, and 
eventually become resulting rows output by the target node on the top. 

Executing a plan means asking its target operator to produce results, in fact, to produce the 
next row of the result. That triggers a cascading effect that puts the entire assembly line to 
work in an elegantly synchronized way. In our example, the target operator (RETURN(1)) upon 
receiving a "produce-next-row" command asks the nested-loops join (NLJOIN(2)) to produce 
the next row itself. Similarly, the join propagates the command to its left branch, eventually 
obtaining a CUSTOMER's fragment—just the columns it needs—of a row. It repeats the 
process on the right branch and obtains the corresponding NATION's fragment row. Finally, the 
two fragments are combined and sent back to the RETURN(1) operator. The assembly line is 
ready to restart the process and to produce a subsequent row—until all the resulting rows are 
produced. 

If you understand this mechanism, you understand how plans work and ultimately how queries 
are answered. It remains only to know the transformations behind operators better and their 
relation to SQL constructs. Fortunately, only a few types of transformation, and therefore 
operators, are involved in processing SQL queries. Let us describe the main types in turn and 
see them in action. 

[1]The schema used in this and in the following examples was drawn from the TPC-H benchmark 
database, and the data was generated with their DBGEN tool (http://www.tpc.org). 

D.1 Data Access Operators 
These operators read data sources in order to feed rows into the assembly line. Table scans 
and index scans are the main operators in this class. They can transform incoming rows in two 
ways. First, they can output a subset of the columns of the rows. For instance, the operator 
TBSCAN(3) retrieves only three of the CUSTOMER's columns, as indicated by its detail 
information window in Figure D.2. Second, they can output rows that satisfy a simple predicate, 
filtering out undesired rows. The operator IXSCAN(5) selects a particular nation key, the value 
being processed at NLJOIN(2), and its corresponding row ID, or RID, as Figure D.3 shows. 
The FETCH(4) operator, which is itself a data access operator, can then use the RID to 
retrieve the N_NAME column of the selected nation. 

 
Figure D.2: Input arguments for the operator TBSCAN(3) of the query in Figure D.1. The 
operator retrieves only three columns from the table, RID, C_NAME, and C_NATIONKEY. No 
other column will be needed to process the rest of this query.  
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Figure D.3: Input arguments for the operator IXSCAN(5) of the query in Figure D.1. The 
operator filters out all keys that are different from the key being joined by the NLJOIN(2) operation.  
Table scans and index scans plus fetches perform equivalent sets of transformations. There is 
a widespread, and wrong, belief that index scans can do them cheaper. That is not always the 
case. Suppose we augmented our CUSTOMER-join-NATION query with a predicate over the 
customer account balance such as…where C_ACCTBAL > 0. Should a DBMS pick a 
nonclustered index on C_ACCTBAL (ACCTBAL_IX)? That depends on our customer's allowed 
credit. If the predicate's selectivity were small, it should pick that index. A good plan for that 
case appears in Figure D.4. Instead of scanning through the 6764 CUSTOMER table pages, 
the precise ones that contain selected customers are found by IXSCAN(4). However, in our 
case 136,308 out of 150,000 customers have positive balances. Such a plan would cause 
more pages to be read than the actual table has! (Remember that ACCTBAL_IX is not 
clustered, so if n selected keys point to a same table page, that page can potentially be read n 
times.) A table scan like the one in Figure D.1 augmented with a filtering predicate inside 
TBSCAN(3) is better. Table D.1 shows the results of running the positive balance query using 
both strategies.[2] The table scan plan reads CUSTOMER's pages only once, no matter how 
many customers were selected, and reads NATION's pages once for every selected customer. 
This is where 143,072 logical data reads come from (6764 pages +,136,308 selected 
customers = 143,072). The index scan plan reads a CUSTOMER's page for every selected 
customer, increasing the logical data reads to 272,616 (136,308 + 136,308 = 272,616), let 
alone a similar number of index accesses. Needless to say, the response time suffers. Moral: 
indexes are not a panacea. TE
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Figure D.4: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 0. The addition of 
the balance predicate over the query of Figure D.1 can make the use of the index ACCTBAL_IX 
cost-effective, or not. It will all depend on the predicate's selectivity.  

 
 
Table D.1: Partial perfomance indicators resulted by executing the query select 
C_NAME, N_NAME from CUSTOMER join NATION on C_NATIONKEY N_NATIONKEY 
where C_ACCTBAL > 0 with a plan where the CUSTOMER table is scanned and 
where it is accessed indirectly via an index scan.  

  TABLE 
SCAN 

INDEX 
SCAN 

CPU time (avg) 5 sec 76 sec 

Data logical reads 143,075 272,618 

Data physical reads 6766 131,425 

Index logical reads 136,319 273,173 

Index physical reads 7 552 

Rows selected 136,308 rows 

CUSTOMER table size 6764 pages 

ACCTBAL_IX index size 598 pages 

NATION table size 1 page 

NATION_PK index size 1 page 
 

Nevertheless, sometimes it is advantageous to use even more than one index to access a 
single table. Two additional data access operators make it possible: the RID scan and the 
index AND. Take our original join query and attach two predicates, … C_ACCTBAL > 9900 



Database Tuning  Appendix D: Understanding Access Plans 

-243- 

and … C_MKTSEGMENT = ‘AUTOMOBILE’. Consider two indexes, the account balance one 
used before, and a new nonclustered one over the market segment column, 
MKTSEGMENT_IX. If the predicates were OR-ed then the plan in Figure D.5 would be 
produced. The transformation performed by the RIDSCN operator is the merging and duplicate 
elimination of the key/RIDs lists generated by the IXSCANs and SORTs. The rest of the plan 
works like the pure join one. If, on the other hand, the predicates were AND-ed, then both 
indexes would still be used, but in the way the plan fragment of Figure D.6 shows. The IXAND 
operator outputs key/row ID pairs that occur in all indexes being scanned. 

 
Figure D.5: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 9900 or 
C_MKTSEGMENT = ‘AUTOMOBILE’. The operation RIDSCN(4) permits taking advantage of the 
fact that each predicate of the query is covered by a distinct index.  
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Figure D.6: Fragment of the access plan for the query select C_NAME, N_NAME from 
CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 9900 
and C_MKTSEGMENT = ‘AUTOMOBILE’. The operation IXAND(8) permits merging the two 
keys/RIDS list and thus taking advantage of more than one index to access the CUSTOMER 
table.  

[2]Given the necessary statistics, an optimizer would pick the correct plan. Here, it was tricked into 
generating the index scan plan by carefully manipulating the distribution statistics. 

D.2 Query Structure Operators 
Some operators exist to describe the transformations of specific SQL constructs. The three 
most common operators in this class are the ones that perform the relational join, each 
implementing a particular join algorithm.[3] The nested-loops join (NLJOIN) scans the outer 
relation and looks up each of its rows in the inner relation. The sort-merge join (MSJOIN) scans 
both relations simultaneously after making sure they are both sorted over the join predicate 
columns. The hash join (HSJOIN) builds a hash table using the outer relation and probes the 
inner relation against it. There is no algorithm that wins every time as illustrated in Chapter 3. 
DBMSs use data distribution and tables' physical storage information to decide which operator 
to use. Sometimes DBMSs can perform counterintuitive things, whenever the costs invested 
are realized in terms of using the best join strategy. For instance, take a look at the plan shown 
in Figure D.7. You might be surprised to hear that there is no ORDER BY clause or any other 
aspect in its query that justifies the existence of a sort over CUSTOMER. The SORT(4) 
operation is over C_NATIONKEY—the join column—and was put there to permit the use of the 
MSJOIN(2). It would not be worth using the ACCTBAL_IX index to retrieve 13,692 customers, 
far more than the number of pages in that table. On the other hand, that number of rows could 
be sorted in memory. A sort in memory plus a sort-merge join in that case is a better choice 
than the nested-loops join plan shown in the positive balance version of the query (Figure D.1). 
Table D.2 compares the costs of the "natural" merge-sort plan to that of a "forced" nested-
loops one for the same negative balance query. The difference in terms of logical reads is 
remarkable. Had this experiment been done while concurrent queries competed for memory, 
that is, when many more of the repetitive logical reads of the nested loops would mean 
physical reads, we would have seen a noticeable gain in the sort version. 
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Figure D.7: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL < 0. The join algorithm 
chosen was the sort-merge that requires both the inner and outer table to be sorted over the join 
column. The table CUSTOMER needs an explicit sort, whereas NATION can take advantage of 
the NATION_PK index.  

 
 
Table D.2: Performance indicators resulting from executing the query select 
C_NAME, N_NAME from CUSTOMER join NATION on C_NATIONKEY = 
N_NATIONKEY where C_ACCTBAL < 0 with a plan where a nested-loops algorithm 
was "forced" onto the optimizer instead of the "natural" sort-merge—based plan.  

  NESTED 
LOOPS 

SORT-
MERGE 

CPU time (avg) 2.7 sec 3.1 sec 

Data logical reads 20,459 6768 

Data physical reads 6766 6767 

Index logical reads 13,703 12 

Index physical reads 7 7 
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Table D.2: Performance indicators resulting from executing the query select 
C_NAME, N_NAME from CUSTOMER join NATION on C_NATIONKEY = 
N_NATIONKEY where C_ACCTBAL < 0 with a plan where a nested-loops algorithm 
was "forced" onto the optimizer instead of the "natural" sort-merge—based plan.  

  NESTED 
LOOPS 

SORT-
MERGE 

Rows selected 13,692 rows 

CUSTOMER table size 6764 pages 

NATION table size 1 page 

NATION_PK index size 1 page 
 

At this point you should realize how vital accurate statistics are in query optimization decisions. 
DBMSs must also decide the order in which to perform joins in multiway join queries. (Join is a 
binary operator; therefore, multiway joins are processed in pairs.) If more that two tables are 
involved in a join, does it make any difference in which order the joins are processed? Let's see. 
Suppose we wanted to check which nations had customers with pending orders and when 
these orders were posted—select C_NAME, N_NAME, O_ORDERDATE from CUSTOMER 
join NATION on C_ NATIONKEY=N_NATIONKEY join ORDERS on 
C_CUSTKEY=O_CUSTKEY where O_ORDERSTATUS=‘P’. There are two possibilities: 
(CUSTOMER join ORDERS) join NATION or (CUSTOMER join NATION) join ORDERS. Either 
way, the result has 38,543 rows. CUSTOMER join ORDERS with the status restriction 
generates 38,543 rows. CUSTOMER join NATION generates 150,000. The latter approach 
would unnecessarily produce a larger intermediate result. The optimizer chooses the plan 
shown in Figure D.8. 
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Figure D.8: Query access plan for the query select C_NAME, N_NAME, O_ORDERDATE 
from CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY join ORDERS on 
C_CUSTKEY = O_CUSTKEY where O_ORDERSTATUS = ‘P’. The tables ORDERS and 
CUSTOMER get joined first, and only then do the results get joined with table NATION.  

Other examples of operators in this class are the group by (GRPBY) that appears in queries 
that perform some sort of aggregation (count(), min(), etc.) or have the GROUP BY construct 
itself; and the UNION operator that merges tuples coming from distinct input streams and 
appears whenever the = SQL construct after which it is named appears. 

[3]A good discussion of the implementation and efficiency of these algorithms can be found in 
Database Management Systems by Raghu Ramakrishnan and Johannes Gehrke, McGraw-Hill, 
June 2000. 

D.3 Auxiliary Operators 
The SORT operator is the most common operator in this class. Like other auxiliary operators, it 
appears either as a result of the use of simpler SQL constructs like ORDER BYs or to prepare 
input rows for other operators, as was the case of the sort-merge join in Figure D.7. 



Database Tuning  Appendix D: Understanding Access Plans 

-248- 

Bibliography 

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2), 
June 1993. This survey is a good starting point for the tuner who wants to understand the 
algorithms involved in the execution of access plans. 

IBM. Administration Guide V7.1, Volume 3: Performance (SC09-2945-00). This manual describes 
how to use DB2's explainer tools and how to interpret their output. 



Database Tuning  Appendix E: Configuration Parameters 

-249- 

Appendix E: Configuration Parameters 
Overview 
Tuning parameters described in this book are initialization parameters set for each database at 
creation time. Depending on the system, these parameters can then be modified or not; 
possibly these modifications take effect only after the server has been shut down and restarted. 

Here is a short list of the main configuration parameters.  

 Log file size—should be big enough to hold all updates between dumps. 
 Buffer size—should be as big as possible without spilling over to swap space. 
 Block size (unit of transfer between disk and memory)—bigger for scan-intensive 

applications. Should be smaller for online transaction processing. 
 Log buffer size—unit of transfer to the log. Should be big enough to allow group 

commit. 
 Group commit size. 
 Prefetching size—should be large enough to make scanning efficient—roughly the 

size of a track. 
 Checkpoint interval—a balance between warm start recovery and overhead. 
 Degree of parallelism—if too large, blocking can occur; if too small, there can be 

insufficient parallelism. 

As an example, we present the configuration parameters used for TPC-C and TPC-H 
benchmarks with the three systems we are focusing on.[1]  

[1]Results of the TPC benchmarks are published at http://www.tpc.org. This Web site also 
contains the specifications of these benchmarks. 

E.1 Oracle 
Here are the configuration parameters used for the Sun Starfire Enterprise 10000 with Oracle 
9i (on Solaris 8) TPC-H benchmark published in April 2001. The initialization parameters are 
regrouped in a file, usually init.ora, that can be modified directly—new parameters take effect 
when the server is restarted. Oracle Performance Tuning—Tips and Techniques by Richard 
Niemiec (Oracle Press, 1999), gives a description of the main initialization parameters for 
Oracle 8i.  
   # init.ora 
   # excerpt from TPC-H full disclosure report 
   # Sun Starfire Enterprise 10000 with Oracle9i 
   # http://www.tpc.org/tpch/results/h-result1.idc?id = 101041701 
 
 
   ## Database name (multiple instances are defined: instance and 
   ## service names are initialized on a node-specific file) 
   db_name                            = inst1 
 
 
   ## Max number of user processes that connect to Oracle 
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   processes                          = 1024 
 
 
   ## Size of the buffer cache 
   db_block_buffers                   = 1222020 
   ## Block Size 
   db_block_size                      = 8192 
   ## Prefetching: Number of blocks per I/O operation 
   db_file_multiblock_read_count      = 64 
   ## Prefetching: Number of sequential blocks per I/O in a hash 
   ## join 
   hash_multiblock_io_count           = 32 
   ## Number of buffers that can be dirty in the buffer cache 
   ## (0 means that there are no limits on the number of dirty 
   ## buffers) 
   db_block_max_dirty_target          = 0 
   ## Maximum number of I/O that should be needed during recovery 
   ## (0 means that there are no limits) 
   fast_start_io_target               = 0 
   ## Maximum number of data files 
   db_files                           = 1023 
   ## Initial number of database writer processes for an instance 
   db_writer_processes                = 10 
   ## Backward compatibility with older release 
   compatible                         = 8.1.7 
   ## Location of the Oracle control files (run-time 
   ## configuration) 
   control_files                      = /dev/vx/rdsk/photon3/cntrl_1 
 
 
   ## Size in bytes of the memory pool allocated for stored 
   ## procedures, control structures,... 
   shared_pool_size                   = 150000000 
   ## Size in bytes of the memory pool allocated for message 
   ## buffer 
   ## (parallel execution) 
   large_pool_size                    = 2598790772 
   ## Size in bytes of the memory pool allocated for Java run-time 
   ## (0 means that no memory is allocated for Java run-time) 
   java_pool_size                     = 0 
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   ## maximum amount of memory, in bytes, for sorting operations 
   sort_area_size                     = 30000000 
   ## Maximum amount of memory, in bytes, for hash joins 
   hash_area_size                     = 70000000 
 
 
   ## Maximum number of DML locks (i.e., table lock obtained 
   ## during insert, update or delete if this number is exceeded) 
   dml_locks                          = 60000 
   ## Number of resources that can be concurrently locked 
   enqueue_resources                  = 50000 
 
 
   ## Maximum number of open cursors per session 
   open_cursors                       = 1024 
   ## Number of transactions accessing each rollback segment 
   transaction_per_rollback_segment   = 1 
 
 
   ## PARALLEL EXECUTION PARAMETERS 
   ## Specifies that parameters should take a default value 
   ## suited for parallel execution 
   parallel_automatic_tuning          = TRUE 
   parallel_server                    = TRUE 
   parallel_adaptive_multi_user       = TRUE 
   parallel_execution_message_size    = 8192 
   parallel_max_servers               = 2000 
   parallel_min_servers               = 600 
 
 
   ## DISTRIBUTED LOCK MANAGER 
   ## (1) Mapping of parallel cache management (PCM) locks to file 
   ## 2-350 is the set of data files 
   ## 10 is the number of PCM locks assigned for these files 
   ## EACH means that each file is assigned a separate set of 
   ## locks 
   gc_files_to_locks                  = "2-350=10EACH" 
   ## (2) Number of distributed locks available for simultaneously 
   ## modified rollback blocks. 
   ## 0-400 is the set of rollback segments 
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   ## 32 is the number of locks 
   ## !8 is the number of blocs covered by one lock 
   ## R indicates that these locks are releasable 
   ## EACH indicates that each rollback segment is assigned a 
   ##   separate set of locks 
   gc_rollback_locks                  = "0-400=32!8REACH" 
 
 
   ## No check on database link name 
   global_names                       = FALSE 
 
 
   ## Maximum size of trace files 
   max_dump_file_size                 = 100000 
   ## Maximum number of rollback segments 
   max_rollback_segments              = 512 
   ## Optimizer options 
   optimizer_features_enable          = 8.1.7.1 
   optimizer_index_cost_adj           = 300 
   optimizer_mode                     = CHOOSE 
   optimizer_percent_parallel         = 100 
 
 
   ## Join methods 
   always_anti_join                   = HASH 
   always_semi_join                   = HASH 
 
 
   ## Specifies that partitioned views are allowed 
   partition_view_enabled             = TRUE 
 
 
   ## No augmented redo records or auditing records are generated 
   transaction_auditing               = FALSE 
   audit_trail                        = FALSE 
 
 
   ## Parameters not documented 
   lm_ress                            = (70000, 70000) 
   lm_locks                           = (70000, 70000) 
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   ## Specifies that checkpoints should be logged on the alert 
   ## file 
   log_checkpoints_to_alert           = TRUE 
 
 
   ## No parallel propagation of operations on the replicated 
   ## tables 
   replication_dependency_tracking    = FALSE 
   recovery_parallelism               = 64 
 
 
   ## Maximum number of distributed transactions (0 means that 
   ## no distributed transaction is allowed - in addition the 
   ## recovery process resolving errors due to distributed 
   ## transactions does not start when the instance starts up.) 
   distributed_transactions           = 0 
 
 
   ## format used for the TODATE() function 
   nls_date_format                    = YYYY-MM-DD 
E.2 SQL Server 
Here are the configuration parameters used for the Compaq ProLiant ML570-3P with SQL 
Server 2000 Standard Edition (on Windows 2000) TPC-H benchmark published in July 2001. 
The configuration parameters are managed by SQL Server. They can be displayed, and some 
of them can be changed dynamically using a system stored procedure. The Inside SQL Server 
book series by Soukup and Delaney details the configuration parameters related to 
performance. 

NAME MIN MAX CONFIG_VALUE RUN_VALUE 
 

affinity mask 0 2147483647 7 7 

allow updates 0 1 0 0 

awe enabled 0 1 1 1 

c2 audit mode 0 1 0 0 

cost threshold for 
parallelism 

0 32767 5 5 

cursor threshold 0 2147483647 −1 −1 

default full-text 
language 

0 2147483647 1033 1033 

default language 0 9399 0 0 
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fill factor (%) 0 100 0 0 

index create memory 
(KB) 

704 2147483647 0 0 

lightweight pooling 0 1 0 0 

locks 5000 2147483647 0 0 

max degree of 
parallelism 

0 32 1 1 

max server memory 
(MB) 

4 2147483647 1800 1800 

max text repl size (B) 0 2147483647 65536 65536 

max worker threads 32 2147483647 350 350 

media retention 0 365 0 0 

min memory per 
query (KB) 

32 2147483647 1800 1800 

nested triggers 0 1 1 1 

network packet size 
(B) 

512 65536 4096 4096 

open objects 0 2147483647 0 0 

priority boost 0 1 1 1 

query governor cost 
limit 

0 2147483647 0 0 

query wait (s) −1 2147483647 −1 −1 

recovery internal 
(min) 

0 32767 35 335 

remote access 0 1 1 1  

remote login timeout 
(s) 

0 2147483647 20 20 

remote proc trans 0 1 0 0 

remote query timeout 
(s) 

0 2147483647 600 600 

scan for start-up 
process 

0 1 0 0 

set working set size 0 1 1 1 

show advanced 
options 

0 1 1 1 

two digit year cutoff 1753 9999 2049 2049 

user connections 0 32767 360 360 
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E.3 DB2 UDB 
Here are the configuration parameters used for the SGI 1450 using IBM DB2 UDB V7.2 (on 
Linux) TPC-H benchmark submitted for review in May 2001. Consultants we know start with 
these parameter settings when configuring their own systems.  
   Node type = Partitioned Database Server with local and remote 
     clients 
   Database manager configuration release level  = 0x0900 
   CPU speed (millisec/instruction) (CPUSPEED)  = 8.738368e-07 
   Communications bandwidth (MB/sec) (COMM_BANDWIDTH) = 
     1.000000e+00 
   Max number of concurrently active databases (NUMDB)  = 1 
   Data Links support (DATALINKS) = NO 
   Federated Database System Support (FEDERATED) = NO 
   Transaction processor monitor name (TP_MON_NAME) = 
     Default charge-back account (DFT_ACCOUNT_STR) = 
     Java Development Kit 1.1 installation path (JDK11_PATH) = 
     Diagnostic error capture level (DIAGLEVEL) = 3 
   Diagnostic data directory path (DIAGPATH) = 
     /home/db2_local_diaglog 
   Default database monitor switches Buffer pool (DFT_MON_BUFPOOL) = 
     OFF 
   Lock (DFT_MON_LOCK) = OFF 
   Sort (DFT_MON_SORT) = OFF 
   Statement (DFT_MON_STMT) = OFF 
   Table (DFT_MON_TABLE) = OFF 
   Unit of work (DFT_MON_UOW) = OFF 
   SYSADM group name (SYSADM_GROUP) = 
   SYSCTRL group name (SYSCTRL_GROUP) = 
   SYSMAINT group name (SYSMAINT_GROUP) = 
   Database manager authentication (AUTHENTICATION) = SERVER 
   Cataloging allowed without authority (CATALOG_NOAUTH) = NO 
   Trust all clients (TRUST_ALLCLNTS) = YES 
   Trusted client authentication (TRUST_CLNTAUTH) = CLIENT 
   Default database path (DFTDBPATH) = /home/tpch 
   Database monitor heap size (4KB) (MON_HEAP_SZ) = 56 
   UDF shared memory set size (4KB) (UDF_MEM_SZ) = 256 
   Java Virtual Machine heap size (4KB) (JAVA_HEAP_SZ) = 512 
   Audit buffer size (4KB) (AUDIT_BUF_SZ) = 0 
   Backup buffer default size (4KB) (BACKBUFSZ) = 1024 
   Restore buffer default size (4KB) (RESTBUFSZ) = 1024 
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   Sort heap threshold (4KB) (SHEAPTHRES) = 273692 
   Directory cache support (DIR_CACHE) = YES 
   Application support layer heap size (4KB) (ASLHEAPSZ) = 15 
   Max requester I/O block size (bytes) (RQRIOBLK) = 32767 
   Query heap size (4KB) (QUERY_HEAP_SZ) = 1000 
   DRDA services heap size (4KB) (DRDA_HEAP_SZ) = 128 
   Priority of agents (AGENTPRI) = SYSTEM 
   Agent pool size (NUM_POOLAGENTS) = 0 
   Initial number of agents in pool (NUM_INITAGENTS) = 0 
   Max number of coordinating agents (MAX_COORDAGENTS) = 
     (MAXAGENTS - NUM_INITAGENTS) 
   Max no. of concurrent coordinating agents (MAXCAGENTS) = 
     MAX_COORDAGENTS 
   Max number of logical agents (MAX_LOGICAGENTS) = MAX_COORDAGENTS 
   Keep DARI process (KEEPDARI) = YES 
   Max number of DARI processes (MAXDARI) = MAX_COORDAGENTS 
   Initialize DARI process with JVM (INITDARI_JVM) = NO 
   Initial number of fenced DARI processes (NUM_INITDARIS) = 0 
   Index re-creation time (INDEXREC) = RESTART 
   Transaction manager database name (TM_DATABASE) = 1ST_CONN 
   Transaction resync interval (sec) (RESYNC_INTERVAL) = 180 
   SPM name (SPM_NAME) = 
   SPM log size (SPM_LOG_FILE_SZ) = 256 
   SPM resync agent limit (SPM_MAX_RESYNC) = 20 
   SPM log path (SPM_LOG_PATH) = TCP/IP 
   Service name (SVCENAME) = tpch 
   APPC Transaction program name (TPNAME) = 
     IPX/SPX File server name (FILESERVER) = 
     IPX/SPX DB2 server object name (OBJECTNAME) = 
     IPX/SPX Socket number (IPX_SOCKET) = 879E 
   Discovery mode (DISCOVER) = SEARCH 
   Discovery communication protocols (DISCOVER_COMM) = 
   Discover server instance (DISCOVER_INST) = ENABLE 
   Directory services type (DIR_TYPE) = NONE 
   Directory path name (DIR_PATH_NAME) = /.:/subsys/database/ 
   Directory object name (DIR_OBJ_NAME) = 
   Routing information object name (ROUTE_OBJ_NAME) = 
   Default client comm. protocols (DFT_CLIENT_COMM) = 
   Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 
   Enable intra-partition parallelism (INTRA_PARALLEL) = YES 
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   No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = 4096 
   Number of FCM request blocks (FCM_NUM_RQB) = 4096 
   Number of FCM connection entries (FCM_NUM_CONNECT) = 
     (FCM_NUM_RQB * 0.75) 
   Number of FCM message anchors (FCM_NUM_ANCHORS) = 
     (FCM_NUM_RQB * 0.75) 
   Node connection elapse time (sec) (CONN_ELAPSE) = 10 
   Max number of node connection retries (MAX_CONNRETRIES) = 5 
   Max time difference between nodes (min) (MAX_TIME_DIFF) = 1440 
   db2start/db2stop timeout (min) (START_STOP_TIME) = 10 
 
   Database configuration release level = 0x0900 
   Database release level = 0x0900 
   Database territory = US 
   Database code page = 819 
   Database code set = ISO8859-1 
   Database country code = 1 
   Dynamic SQL Query management (DYN_QUERY_MGMT) = DISABLE 
   Directory object name (DIR_OBJ_NAME) = 
   Discovery support for this database (DISCOVER_DB) = ENABLE 
   Default query optimization class (DFT_QUERYOPT) = 7 
   Degree of parallelism (DFT_DEGREE) = 10 
   Continue upon arithmetic exceptions (DFT_SQLMATHWARN) = NO 
   Default refresh age (DFT_REFRESH_AGE) = 0 
   Number of frequent values retained (NUM_FREQVALUES) = 0 
   Number of quantiles retained (NUM_QUANTILES) = 300 
   Backup pending = NO 
   Database is consistent = YES 
   Rollforward pending = NO 
   Restore pending = NO 
   Multi-page file allocation enabled = NO 
   Log retain for recovery status = NO 
   User exit for logging status = NO 
   Data Links Token Expiry Interval (sec) (DL_EXPINT) = 60 
   Data Links Number of Copies (DL_NUM_COPIES) = 1 
   Data Links Time after Drop (days) (DL_TIME_DROP) = 1 
   Data Links Token in Uppercase (DL_UPPER) = NO 
   Data Links Token Algorithm (DL_TOKEN) = MAC0 
   Database heap (4KB) (DBHEAP) = 6654 
   Catalog cache size (4KB) (CATALOGCACHE_SZ) = 64 
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   Log buffer size (4KB) (LOGBUFSZ) = 128 
   Utilities heap size (4KB) (UTIL_HEAP_SZ) = 10000 
   Buffer pool size (pages) (BUFFPAGE) = 39170 
   Extended storage segments size (4KB) (ESTORE_SEG_SZ) = 16000 
   Number of extended storage segments (NUM_ESTORE_SEGS) = 0 
   Max storage for lock list (4KB) (LOCKLIST) = 40000 
   Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 384 
   Sort list heap (4KB) (SORTHEAP) = 6842 
   SQL statement heap (4KB) (STMTHEAP) = 4096 
   Default application heap (4KB) (APPLHEAPSZ) = 200 
   Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 
   Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 
   Interval for checking deadlock (ms) (DLCHKTIME) = 10000 
   Percent. of lock lists per application (MAXLOCKS) = 20 
   Lock timeout (sec) (LOCKTIMEOUT) = -1 
   Changed pages threshold (CHNGPGS_THRESH) = 60 
   Number of asynchronous page cleaners (NUM_IOCLEANERS) = 30 
   Number of I/O servers (NUM_IOSERVERS) = 30 
   Index sort flag (INDEXSORT) = YES 
   Sequential detect flag (SEQDETECT) = YES 
   Default prefetch size (pages) (DFT_PREFETCH_SZ) = 32 
   Track modified pages (TRACKMOD) = OFF 
   Default number of containers = 1 
   Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 
   Max number of active applications (MAXAPPLS) = 80 
   Average number of active applications (AVG_APPLS) = 1 
   Max DB files open per application (MAXFILOP) = 128 
   Log file size (4KB) (LOGFILSIZ) = 14080 
   Number of primary log files (LOGPRIMARY) = 25 
   Number of secondary log files (LOGSECOND) = 30 
   Changed path to log files (NEWLOGPATH) = 
   Path to log files = 
   /home/filesystems/disk1/tpch_data/tpch/NODE0000/SQL00001/ 
   SQLOGDIR/ 
   First active log file = 
   Group commit count (MINCOMMIT) = 1 
   Percent log file reclaimed before soft chckpt (SOFTMAX) = 500 
   Log retain for recovery enabled (LOGRETAIN) = OFF 
   User exit for logging enabled (USEREXIT) = OFF 
   Auto restart enabled (AUTORESTART) = ON 
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   Index re-creation time (INDEXREC) = SYSTEM (RESTART) 
   Default number of loadrec sessions (DFT_LOADREC_SES) = 1 
   Number of database backups to retain (NUM_DB_BACKUPS) = 12 
   Recovery history retention (days) (REC_HIS_RETENTN) = 366 
   TSM management class (TSM_MGMTCLASS) = 
   TSM node name (TSM_NODENAME) = 
   TSM owner (TSM_OWNER) = 
   TSM password (TSM_PASSWORD) = 
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Glossary 
Symbol and Numbers 
→  
Same as functionally determines (functional dependencies are introduced in Chapter 4). A → B if 
any two rows having the same A value also have the same B value. 
2-3 tree  
B-tree whose maximum branching factor is 3 and minimum branching factor is 2. A tree with a 
small branching factor such as a 2-3 tree or a T-tree should be used for small data structures that 
remain in random access memory (Chapter 3). 
4GL  
Same as fourth-generation language (Chapter 5). These languages often generate very poor 
SQL. 

A 
abort  
Every database transaction completes either by committing or aborting. When a transaction 
aborts, all its writes are undone by the recovery subsystem. A transaction abort is often caused 
by a deadlock (Chapter 2). 
access path  
Strategy used to access the rows of a table. The most common alternatives are a direct access 
(i.e., a table scan) or an access through an index (i.e., an index scan) (Chapter 7 and Appendix 
D). 
after image  
The after image of a data item x with respect to transaction T is the value of x that T last writes 
(Chapter 2). 
aggregate maintenance  
Maintenance of one or more redundant relations that embody an aggregate. For example, if the 
sum of sales by store is frequently requested, then it may be worthwhile to maintain a relation 
containing that sum and then to update it whenever a sale occurs (Chapters 4 and 10). 
aggregate targeting  
A technique for using the data in a data warehouse in which aggregates are computed as an 
input to business rules that then "target" individual customers (Chapter 10). 
application servers  
The middle tier in the e-commerce architecture. Often implemented in Java, these embody 
business logic (Chapter 8). 
arrable  
An array table. A table whose order can be exploited by a query language (e.g., by doing a 
moving average over a column) (Appendix C). 
arrival rate  
Number of requests that arrive in a given time interval. 
atomicity guarantees  
Database theorists use atomicity to denote the indivisibility of transactions. That is, a transaction 
should appear to execute in isolation (without interleaving with other transactions) and in an all-
or-nothing manner (either all its effects are registered with the database or none are) (Chapter 2). 
attribute  
Name of the head of a column in a table. 

B 
B-tree  
The most used data structure in database systems. A B-tree is a balanced tree structure that 
permits fast access for a wide variety of queries. In virtually all database systems, the actual 
structure is a B+ tree in which all key-pointer pairs are at the leaves (Chapter 3). 
batch transaction  
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Transaction that performs many (possibly millions of) updates, normally without stringent 
response time constraints. 
before image  
The before image of a data item x with respect to transaction T is the value of x when T first reads 
it (Chapter 2). 
bind variable  
Variable defined in some embedding programming language (usually, COBOL, PL/1, RPG, C_) 
that is used for communication with the database system. For example, if x is a bind variable, 
then a typical database query might include the expression R.A = @x, where x has been 
previously assigned a value in the embedding programming language. 
bitmap  
Index structure used for WHERE clauses having many unselective conditions (e.g., on sex, race, 
country quadrant, hair color, and height category). Bitmaps work well in such situations because 
intersecting bit vectors is an extremely fast operation (Chapter 9). 
bottleneck  
System resource or query that limits the performance of an entire database application; breaking 
a bottleneck usually entails speeding up one or more queries or using partitioning. 
branching factor  
The average number of children of each nonleaf node in a B-tree or other tree structure. The 
larger the branching factor, the fewer the levels. Compression is a technique for increasing the 
branching factor (Chapter 3). 
broadcast technology network  
Network medium sharing strategy in which only one sender can be using the network at any time. 
Ethernet is the most prominent example of such a protocol. 
buffer  
See database buffer (Chapter 2). 
buffered commit strategy  
Logging and recovery algorithm in which a transaction's updates are not forced to the database 
disks immediately after commit, but rather written when the write would cause no seek. This is 
almost always a good strategy to choose (Chapter 2). 

C 
capacity planning  
The activity of building a system that is sufficiently powerful to handle all traffic within desired 
response time limits. This involves three components: estimating demand (an exercise in market 
analysis), an estimate of the probabilities of flow between services (perhaps by looking at industry 
standards), and a measurement of service times of each server (Chapter 8). 
case-based reasoning  
The process of describing a situation as attribute-value pairs and looking up "similar" cases from 
a database. Similarity depends on metrics that grade the relative importance of different attributes. 
For example, sex may be more important than income level for marketing in certain kinds of 
magazines. (Chapter 10). 
catalog  
Place where data type and statistical information is held in a database management system. For 
example, the catalog may hold information about the number of records in a relation, the indexes 
on its attributes, and the data type of each attribute. It is important not to modify the catalog too 
often during busy periods (e.g., by creating temporary tables). Otherwise, the catalog becomes a 
lock contention bottleneck (Chapters 2 and 3). 
checkpoint  
Activity of backing up the log onto the database disks. This reduces the time to recover from a 
failure of main memory, but costs something in online performance (Chapters 2 and 7). 
chopping  
See transaction chopping. 
class  
A data description and set of operations that characterizes some collection of objects. For 
example, an image class may define a data description consisting of a bitmap and a set of 
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operations, including zooming, rotation, and so on. This is an important concept in object-oriented 
and object-relational systems. 
cluster key  
Attribute(s) that determine a table clustering in Oracle. For example, Customer and Sale may be 
clustered based on the customer identifier in which case the Customer record with that identifier 
will be colocated with all Sales records having that identifier (Chapter 4). 
clustering  
A technique for grouping data based on some notion of similarity. Many clustering techniques are 
possible depending on the goals (e.g., the number of clusters, the largest difference within a 
cluster, and so on). The practitioner should look for a clear separation before distinguising one 
cluster from another (Chapter 10). 
clustering index  
Index structure that dictates table organization. For example, if there is a clustering index based 
on a B-tree on last name, then all records with the same last name will be stored on consecutive 
pages of the table. Because a table cannot be organized in two different ways, there can only be 
one clustering index per table (Chapter 3). 
colocate  
Putting several objects or records close to one another on disk. For example, a clustering index 
based on a B-tree would tend to colocate records having lexicographically close keys (e.g., the 
records containing Smith and the records containing Smithe). By contrast, a hash-based 
clustering index will colocate the Smith records but not necessarily the Smiths with the Smithes 
(Chapter 3). 
commit  
Every database transaction completes either by committing or aborting. When a transaction 
commits, the database management system guarantees that the updates of that transaction will 
be reflected in the database state even if there are failures (provided they are failures that the 
database system can tolerate such as main memory failures) (Chapter 2). 
composite index  
Index whose key is a sequence of attributes (e.g., last name, first name, city) (Chapter 3). 
compression  
Same as key compression (Chapter 3). 
concatenated index  
Same as composite index (Chapter 3). 
concurrency control  
Activity of synchronizing the database accesses of concurrent transactions to ensure some 
degree of isolation. Weaker degrees of isolation can result in higher performance but may corrupt 
the data (Chapter 2 and Appendix B). 
concurrent  
Activities (in this book, transactions) A and B are concurrent if there is some point in time t where 
both have begun and neither has completed (Chapter 2). 
connection pooling  
A general client-server technique for multiplexing a large number of application server 
connections over a fixed number of database connections (Chapter 8). This reduces the 
overhead needed to obtain such a connection. 
covering index  
An index on table T covers a query if the processing of the query requires access to the index 
only rather than the rows of T. For example, if the employee table has a composite index 
(department, name), then the query SELECT name FROM employee WHERE department = 
‘information’ would be covered by that index (Chapter 3). 
cursor stability  
Assurance given by a database management system's concurrency control algorithm that while a 
transaction holds a cursor, no other transaction will modify the data associated with that cursor 
(Chapter 2). 
customer relationship management  
Using data about a customer to improve an enterprise's relationship with that customer. For 
example, if an air traveler has encountered many delays, the airline may send him or her free 
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travel vouchers. Such systems embody rules (like the one about vouchers). Those rules are 
derived from data mining usually on a large data warehouse (Chapters 9 and 10). 
cylinder  
Cylinder i is the set of all track i's for a given disk spindle. Because all the disk heads will be on 
the same track of all platters, reading track i on one platter after reading track i on another 
requires no head movement (i.e., no seek). Therefore, it is good to keep frequently scanned data 
on the same cylinder. This argues for large extents (Chapter 2). 

D 
data item  
Unit of locking when discussing concurrency control and a unit of logging when discussing the 
recovery subsystem. Common data items are records, pages, and tables in relational systems; 
objects, pages, and class extents in object-oriented systems (Chapter 2). 
data mining  
The activity of finding useful patterns in data. An example is that customers who have several 
accounts at a bank are unlikely to switch banks. This might suggest a customer relationship 
management rule of giving incentives to customers to acquire more accounts (Chapters 9 and 10). 
data page  
Page of a file containing records; by contrast, a data structure page contains keys and pointers 
(Chapters 3 and 4). 
data warehouse  
Repository for a large amount of data, often historical. Changes to the data warehouse are 
usually pure inserts in time order. Most queries have an online analytical processing (OLAP) 
character (Chapters 9 and 10). 
database buffer  
Repository of databases pages in virtual memory (though, in a well-tuned system, the whole 
buffer should be held in random access memory). Ideally, most database reads will be to pages 
held in the buffer, thus eliminating the need for a disk access. Database writes can be stored in 
the buffer and then written asynchronously to the database disks, thus avoiding seeks, in a 
strategy known as buffered commit (Chapter 2). 
database cache  
In an e-commerce application, the database cache stores tables or materialized views on the 
middle tier. The application server avoids a round-trip to the database server every time it 
accesses data in the database cache (Chapter 8). The database buffer is also called database 
cache. 
database disks  
Stable storage is divided into two parts: the database disks and the log. The log contains the 
updates of committed transactions, and the database disk contains the initial database state (or 
value of last database dump) modified by some of those committed transactions (Chapter 2). 
database dump  
State of the database at some point in time. The current state of the database is equal to the 
value of the last database dump plus all the writes of transactions committed since then (Chapter 
2). 
database state  
At any time, the (logical) database state is the result of applying all committed transactions (in the 
order of commitment) to the last database dump. The database state can be physically 
reconstructed from the database disks and the log or, in case of disk failure, from the database 
dump and the log (Chapter 2). 
DDL  
Data description language. The language used to manipulate catalog data (e.g., create table and 
create index statement). It is usually a bad idea to execute DDL updates during online transaction 
processing because the catalog may then become a locking hot spot (Chapters 2 and 4). 
deadlock  
Property of a set of transactions in which each transaction waits for another in the set, so none 
can proceed. Two-phase locking allows deadlock, unless users design transactions specifically to 
avoid it (Chapter 2 and Appendix A). 
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decision tree  
A tree in which the edges are labeled and the edges descending from each interior node are 
mutually exclusive. The leaf nodes are labeled with a "decision." For example, a decision tree 
may start with a node labeled age and the edges leaving may be labeled with 17–25, 26–38, 39–
50, 51–65, 66–100. The target node of the edge labeled 17–25 may concern rock music, whereas 
the target node of the edge labeled 51–65 may concern second homes. Decision tree building 
techniques are usually based on statistical and information theoretic techniques (Chapter 10). 
degree 0 isolation  
Write locks held while writes occur, no read locks. So, reads can access dirty data and writes can 
overwrite other transactions' dirty writes (Chapter 2). 
degree 1 isolation  
Write locks acquired in two-phase manner, no read locks. So, reads can access dirty data, but 
writes cannot overwrite other transactions' dirty writes (Chapter 2). 
degree 2 isolation  
Write locks acquired in two-phase manner, read locks held while reads occur. So, reads cannot 
access dirty data, but reads are not repeatable (Chapter 2). 
degree 3 isolation  
Read and write locks acquired in a two-phase locking manner. Degree 3 isolation is the 
assurance given by a concurrency control algorithm that in a concurrent execution of a set of 
transactions that may contain reads and updates but no inserts or deletes, whichever 
transactions commit will appear to execute one at a time. Lesser degrees give lesser guarantees 
(Chapter 2). There is a higher level called serializable that ensures isolation even in the case of 
inserts and deletes. 
denormalization  
Activity of changing a schema so relations do not enjoy third normal form for the purpose of 
improving performance (usually by reducing the number of joins). Should not be used for relations 
that change often or in cases where disk space is scarce (Chapter 4). Data warehouses 
sometimes use denormalization, but aggregate maintenance is normally a better policy for them. 
dense index  
Index in which the underlying data structure has a pointer to each record among the data pages. 
Clustering indexes can be dense in some systems (e.g., DB2). Nonclustering indexes are always 
dense (Chapter 3). 
determines  
See functionally determines (Chapter 4). 
dirty data  
Data item x is dirty at time t if it has been modified by some transaction that has not yet 
committed (Chapter 2). 
dirty read  
Read of data item x written by an uncommitted transaction (WR conflict) (Chapter 2). 
disk (with movable head)  
Device consisting of one or more spindles, each of which consists of a set of platters stacked one 
on top of the other with a head positioned at the same track of each platter (except the top and 
bottom platters). Only one head can read or write at a time (Chapter 2). Reading a disk 
sequentially is at least ten times faster than reading randomly. 
disk head  
Device for reading or writing data on a disk. It is held by an arm that moves the head from one 
track to another along a single platter (Chapter 2). Such movement is called a seek. 
disk queues  
Internal operating system structures that store disk requests not yet serviced (Chapter 7). 
durable media  
Media, such as disks and tapes, that will not lose data in the event of a power failure. Random 
access memory can be made durable if it has battery backup (but then the length of this durability 
is limited by the energy storage capacity of the battery) (Chapter 2). 

E 
e-commerce  
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Business conducted over a digital network, usually the Web. Implementations often use a three-
tier architecture. In this book, we don't distinguish between end-user e-commerce and business-
to-business e-commerce (Chapter 8). 
encapsulation  
Facility of a language whereby the internal data of an object can be accessed only through its 
methods (i.e., its operations). In this way, the internal data structures of the object can be 
changed without functionally affecting users of that object. Object-relational systems rely on 
encapsulation for user-defined type definitions (Chapter 4). 
entity  
Notion from the entity-relationship model. Entities denote the objects of interest (e.g., employee, 
hospital, doctor). An entity has attributes that it must functionally determine. An attribute must not 
have attributes of its own (otherwise, it should be promoted to entity status). Entity-relationship 
diagrams are often used in table design (Chapter 4). 
equality join query  
Join in which the join predicate is equality. For example, R.A = S.B is an equality join, whereas 
R.A > S.B is not (Chapters 3 and 4). 
equality selection  
Clause of the form R.A = 5, that is, a relation-attribute pair compared by equality to a constant, 
constant expression, or bind variable (Chapter 3). 
equivalent executions  
Two executions E and F of transactions are equivalent if they consist of the same transactions 
and the same database accesses, every database read returns the same value in E and F, and 
the final writes on each data item are the same (Chapter 2). 
escalation  
See lock escalation (Chapter 2). 
exclusive lock  
See write lock (Chapter 2). 
execution site independence  
Ability to move computation between server site and client site without changing the input/output 
behavior of a computation. This is useful for low contention/high computation activities and is 
provided in many commercial object-relational database systems (Chapter 4). 
extent  
Contiguous area on disk used as a unit of file allocation (Chapter 2). Because it is contiguous, 
accessing an extent requires few seeks and thus is fast. 
extremal query  
Query that obtains the records or parts of records with the minimum or maximum of a set of 
values. For example, the following query finds the maximum salary in the employee relation: 
SELECT MAX(salary) FROM employee (Chapter 3). 

F 
fail-stop failure  
Failure in which a processor stops. The failure may destroy the processor's random access 
memory but not its disk storage. Such failures characterize hardware failures of machines that 
have redundant error-detecting circuitry, perhaps in the form of an extra processor. Software 
failures may corrupt data and therefore are not fail-stop (Chapter 2). 
fanout  
See branching factor (Chapter 3). 
federated data warehouse  
A data warehouse constructed on top of a set of independent databases (Chapter 10). 
field  
See attribute. 
finer-grained locking  
A-level locking is said to be finer grained than B-level locking if A is a smaller unit of storage than 
B. For example, if records are smaller than pages, then record-level locking is finer grained than 
page-level locking (Chapter 2). 
foreign key  
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Relationship between two tables in a relational system. The best way to define it is by example. 
Suppose table SP has fields supplier_ID, part_ID, quantity, and there is another relation Supplier 
with information about supplier. Then Supplier.supplier_ID is a primary key for Supplier and a 
foreign key for SP.supplier_ID. Every supplier_ID value in SP is in some record of Supplier 
(Chapter 4). 
fourth-generation language  
Language used mostly for data entry and report production that makes calls to the database 
system, usually through dynamically generated SQL statements (Chapter 5). Sometimes, this 
SQL results in poor performance. 
free list  
List data structure that indicates which pages in the database buffer can be used for newly read 
pages without interfering with other transactions or overwriting data that should be put on the 
database disks (Chapter 2). 
frequency-ordered linked list  
Linked list in which frequently accessed nodes are near the root of the list. 
functional dependency  
A is functionally dependent on B if B functionally determines A (Chapter 4). 
functionally determines  
"X determines A" holds for a given table T if, in every instance I of T, whenever two records r and 
r′ have the same X values, they also have the same A values (X is one or more attributes, and A 
is a single attribute) (Chapter 4). 

G 
genetic algorithm  
Genetic algorithms emulate the Darwinian model of evolution, in which "chromosptomes" 
represent candidate solutions, reproduction involves crossover, and mutation of chromosomes 
and the "fittest" (so far, best) chromosomes have the highest chance to succeed. The hope is to 
get to a better and better solution with each generation (Chapter 10). 
granule  
See data item (Chapter 2). 
group commit  
Logging strategy in which the updates of many committing transactions are written to the log at 
once. This reduces the number of writes to the log (Chapter 2). Its effectiveness can be improved 
by ensuring that the region in virtual memory holding data to be written to disk (called the log 
buffer in some systems) is big enough. 
grouping query  
Query that partitions a set of records according to some attribute(s) usually in order to perform an 
aggregate on those partitions. Each partition has records with the same values in those attributes. 
For example, the following query finds the average salary in each department. SELECT 
AVG(salary) as avgsalary, dept FROM employee GROUP BY dept (Chapter 4). 

H 
hash structure  
Tree structure whose root is a function, called the hash function. Given a key, the hash function 
returns a page that contains pointers to records holding that key or is the root of an overflow 
chain. Should be used when point or selective multipoint queries are the dominant access 
patterns (Chapter 3). 
head  
Same as disk head (Chapter 2). 
heap  
A table organization based on insertion order. That is, each newly inserted record is added to the 
end of the table. Records are never moved between pages. May cause a locking bottleneck when 
there are many concurrent inserts (Chapter 3). 
Heisenbug  



Database Tuning  Glossary 

-267- 

Failure that appears once, corrupts no data, and never reappears. Studies have shown that the 
vast majority of software failures that appear in well-written mature systems are Heisenbugs 
(Chapter 2). 
hit ratio  
Number of logical accesses satisfied by the database buffer divided by the total number of logical 
accesses (Chapter 2). The number of logical accesses satisfied by the database buffer is the 
number of logical accesses minus the number of physical accesses (Chapter 7). 
horizontal partitioning  
Method of partitioning a set of records (or objects) among different locations. For example, all 
account records belonging to one branch may be in one location and the records belonging to 
another branch may be in another location (Chapter 4). 
hot spot  
Data item that is the target of accesses from many concurrent transactions (Chapter 2). If some 
of those transactions write the data item, a hot spot may become the object of lock contention 
bottleneck. 
hot table  
Table that is accessed by many concurrent transactions (Chapter 3). 

I 
identifier  
An integer that uniquely identifies an object or record within a database system. This is a 
generalization of the notion of address from normal programming languages. An object with an 
identifier can be shared ("pointed to") by other objects (Chapter 4). 
idle time  
Wall clock time less the user and system time. Usually, this is time spent waiting for disks, 
networks, or other tasks (Chapter 2). 
impedance mismatch  
Performance and software engineering problems caused by the fact that a set-oriented language 
must interface with a record-oriented language. This term was popularized by David Maier to 
characterize the situation that occurs when programmers use a set-oriented language such as 
SQL embedded within a record-oriented language such as COBOL, C, or RPG (Chapter 5). 
index  
Data organization to speed the execution of queries on tables or object-oriented collections. It 
consists of a data structure (e.g., a B-tree or hash structure), and a table organization (Chapter 3). 
index scan  
Access path in which the keys of an index are read before or instead of the corresponding table's 
data pages. Index scans can often be better access paths than table scans (Chapter 7 and 
Appendix D). 
inheritance  
Facility whereby one class A can be defined based on the definition of a class B, plus some 
additional operations. For example, a map image class may inherit from an image class and add 
the operation locate_city (Chapter 4). 
interesting functional dependency  
"X determines A" (or X → A) is interesting if A is not an attribute in X (Chapter 4). Sometimes 
called nontrivial. 
interior node  
In a data structure characterized by a tree (e.g., a B-tree structure), an interior node is anything 
other than a leaf node or overflow page (Chapter 3). 
internal node  
See interior node. 
interrupt driven  
Action is interrupt driven if it occurs whenever a certain event occurs. It should entail negligible 
overhead until that event occurs. Triggers have this property (Chapter 4). 
ISAM structure  
In the original IBM implementation, an ISAM was a balanced tree structure with a predetermined 
number of levels. Interior nodes of an ISAM structure never change, but there may be overflow 
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chains at the leaves. Use ISAM when range queries are important and there are few updates. 
Newer ISAM structures bear a closer resemblance to B-trees. 
isolation level  
Guarantee provided by the concurrency control algorithm (see degree 0-3 definitions as well as 
read committed, read uncommitted, repeatable read, and serializable). 
item  
See data item (Chapter 2). 

J 
join attribute  
In a join clause of the form R.A = S.B, A is the join attribute of R, and B is the join attribute of S 
(Chapters 3 and 4). 
join query  
Query that links two or more table instances based on some comparison criterion. For example, 
the following query finds all students who have a higher salary than some employee: SELECT 
studname FROM students, employee WHERE student.salary > employee.salary. The two table 
instances may come from the same table. For example, the following query finds employees who 
earn more than their manager: SELECT e1.name FROM employee e1, employee e2 WHERE 
e1.manager = e2.ssnum AND e1.salary > e2.salary. 

K 
key  
When talking about an index, the key is the set of attributes the index is defined on (e.g., A is the 
key of an index on A); by contrast, in normalization theory, a key of a table is a minimal set of 
attributes such that no two distinct records of the table have the same value on all those attributes. 
Notice that the two notions are related but distinct (Chapters 3 and 4). 
key compression  
Encoding of keys in the interior nodes of B-trees and hash structures to make them shorter. This 
improves the branching factor at the cost of somewhat more computation time when updating or 
scanning (Chapter 3). 

L 
link implementation  
A data structure has a link implementation if every leaf node has a pointer to its right neighbor. 
This can improve the performance of range queries and, in a few systems, even the performance 
of concurrency control (Chapter 3). 
load  
An insertion of many records into a table. If a load occurs in isolation, then no locks are needed 
and indexes should be dropped for best performance. Further, if the load inserts records in sorted 
order into a B-tree, then check to make sure that your system performs splits in a way that 
achieves high utilization. All systems provide tools that bypass the query manager and possibly 
the storage manager to load data (Chapter 5). 
lock escalation  
Certain systems have the property that they will use a certain granularity of locking, say, record-
level locking, for a transaction T until T has acquired more locks than some user-specified 
threshold. After that point, the system obtains coarser granularity locks, say, page-level locks, on 
behalf of T. The switch to coarser granularity locks is called lock escalation (Chapter 2). 
Escalating too early may cause unnecessary blocking. Escalating too late may cause wasted 
work if transactions thereby do extra work before discovering an inevitable deadlock. 
locking  
Denotes the activity of obtaining and releasing read locks and write locks for the purposes of 
concurrent synchronization (concurrency control) among transactions (Chapter 2). 
log  
Section of stable storage (normally disk) that contains before images or after images or both for 
the purposes of recovery from failure. It should always be possible to re-create the current logical 
state of the database (up to the last committed transaction) (provided the log has the necessary 
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data) by combining the log and the active database disks or by combining the log and the last 
database dump (Chapter 2). 
logging  
Denotes the activity of storing either before images or after images or both on a log for recovery 
purposes (Chapter 2). 
logical access  
Page reads and writes requested by applications. Some of these may be satisfied by accesses to 
the database buffer (Chapter 2). 
logical logging  
Technique that consists of writing the operation that caused an update as opposed to the pages 
modified by the update; the recorded operation might look like this: insert into tycoon (780-76-
3452, Gates, Bill, ….) (Chapter 2). 
lookup table  
Small, read-only table used by many applications (e.g., a table that translates codes to city 
names). Should not be put in the database system, but rather kept in application space for best 
performance (Chapters 3 and 6). 

M 
materialization (of intermediary results)  
Step in the processing of a query where a temporary table is created and has its data saved on 
the fly. Materialization can happen in sorts or in complex correlated subqueries, for instance 
(Chapter 7). 
materialized view  
A view normally is stored in a database only as a definition. Queries using that view translate the 
definition on the fly into accesses to "base" tables. A materialized view stores the data associated 
with the view. By definition, a materialized view is redundant information, but it can speed up 
queries substantially (Chapters 4 and 10). 
merge join  
Join technique in which the two join arguments are sorted on their join attributes and then a 
mergelike procedure takes place in which matching records are concatenated and output. For 
example, if the records of R are (1, 1), (2, 4), (2, 3) and the records of S are (2, 5), (2, 1) and they 
are joined on their first attributes, then the four records (2, 4, 2, 5), (2, 4, 2, 1), (2, 3, 2, 5), and (2, 
3, 2, 1) would be output in that order (Chapter 3). 
method  
An operation that can be applied to one or to a few objects in an object-relational or object-
oriented system (Chapter 4). 
minibatch  
A long batch transaction may use up all the memory in the database buffer, causing poor 
performance because of paging. Minibatch is the style of programming that consists of chopping 
such a long batch transaction into smaller ones. It is important to check whether this causes a 
violation of desired isolation properties (Chapter 2, Appendix B). 
minimal  
(1) For sets: no smaller set satisfies some given required properties; and (2) for functional 
dependencies: a set of functional dependencies without redundancies and whose left-hand sides 
are the minimal sets possible that express the same dependency information (Chapter 4). 
mirrored disks  
Set of disks that are synchronized as follows: each write to one disk goes to all disks in the 
mirrored set; reads can access any of the disks (Chapter 2). Several RAID levels rely on mirrored 
disks. 
multidimensional data structure  
Tree data structure that is useful for spatial queries (e.g., find all cities in some range of latitudes 
and longitudes) (Chapters 3 and 10). R-trees and quadtrees are prominent examples. 
multiple inheritance  
Object-oriented and object-relational concept implying the ability to inherit definitions from more 
than one class (Chapter 4). 
multipoint query  
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Equality selection that may return several records (e.g., a query whose where clause is 
employee.department = ‘personnel’). Such queries always benefit from clustering indexes and will 
benefit from nonclustering indexes if the query is selective (Chapter 3). 
multiversion read consistency  
A lock-free concurrency control method for read-only transactions that has the following semantic 
effect: each read-only transaction T reads the committed values that were present when T began. 
Thus, T may read a value x after another transaction T′ has committed a change to x, yet the 
read may not reflect the write of T′. Instead, T will read the value of x that was last committed 
when it (T) began. Multiversion read consistency preserves serializability when read/write 
transactions use two-phase locking. Snapshot isolation uses multiversion read consistency but 
may not guarantee serializability (Chapter 2). 
multiway join query  
Join query in which more than two tables need to be joined (Appendix D). 

N 
nested-loop join  
Join technique in which for each record of the outer table (external loop), all the records of the 
inner table are read and compared (internal loop) (Chapter 7 and Appendix D). 
neural nets  
Neural nets are acyclic networks in which edges represent excitation or inhibition, source nodes 
correspond to input data, and end nodes represent a decision (Chapter 10). 
node  
When speaking about a graph structure such as a circuit or a data structure such as a hash 
structure, B-tree, or ISAM structure, a node is a section of storage that may have pointers to other 
nodes or that is pointed to by pointers in other nodes or both (Chapters 3 and 5). 
nonclustering index  
Dense index that puts no constraints on the table organization. Several nonclustering indexes can 
be defined on a table. Nonclustering indexes are also called secondary indexes. See, for contrast, 
clustering index (Chapter 3). 
nonsequential key  
Opposite of sequential key (Chapter 3). 
normalized  
Relation R is normalized if every interesting functional dependency "X functionally determines A," 
where A and the attributes in X are contained in R, has the property that X is the key or a 
superset of the key of R (Chapter 4). 
number of levels  
In a B-tree structure, the number of different nodes on any path from the root to a leaf (Chapter 3). 
You want few levels because large data structures have their bottom levels on disk, so every 
dereference costs a possibly random disk access. For example, if we have 1 gigabyte of RAM 
and we store an index that requires 100 gigabytes, a binary tree would have approximately 7(27 > 
100) levels on disk. A B-tree having a fanout of at least 100 would have just one. 

O 
object  
Collection of data, an identifier, and operations (sometimes called methods) (Chapter 4). 
online analytical processing (OLAP)  
Denotes the class of applications where queries return aggregate information or perform 
searches on millions or even billions of rows. The frequency of updates is very low. These are 
typical of a data warehouse. 
online transaction processing (OLTP)  
Denotes the class of applications where the transactions are short, typically ten disk I/Os or fewer 
per transaction, the queries are simple, typically point and multipoint queries, and the frequency 
of updates is high. 
operating system paging  
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Activity of performing disk reads to access pages that are in the virtual memory of the database 
buffer but not in random access memory. For a well-tuned buffer, this should never happen 
(Chapter 2). 
optimizer  
DBMS subsystem responsible for enumerating possible access plans for an SQL query and for 
determining the one (hopefully the best) among them to be executed. 
ordering query  
Query that outputs a set of records according to some sorted order on one or more attributes. For 
example, the following query orders the records in the employee relation from lowest salary to 
highest salary. SELECT * FROM employee ORDER BY salary (Chapter 4). 
overflow chaining  
In classical ISAM structures and hash structures (with the exception of certain exotic hash 
structures such as extendible hashing), when an insertion applies to a full page p, a new page p′ 
is created and a pointer from p to p′ is added. This is called overflow chaining (Chapter 3). 

P 
page replacement  
Activity of replacing pages in the database buffer by other pages when no free pages are 
available. A large value of this parameter indicates either that the buffer is too small or that there 
are too few asynchronous write daemons (Chapters 2 and 7). 
page-level lock  
A page-level lock on page p will prevent concurrent transactions from obtaining a write lock on p. 
If the lock is a write lock, then the lock will prevent concurrent transactions from obtaining a read 
lock on p (Chapter 2). 
page-level logging  
Property of a logging algorithm in which the smallest data items written to the log are pages 
(Chapter 2). 
performance indicator  
A quantitative measurement of a specific DBMS internal activity that allows the tuner to assess 
how well that activity is performing. See hit ratio for an example of an indicator (Chapter 7). 
persistent data item  
One that exists after the execution of the program that creates it. 
phantom problem  
A failure to achieve serializability when inserts or deletes are concurrent with other transactions. 
See serializability for a discussion. 
physical accesses  
Those logical reads and writes that are not satisfied by the database buffer and that result in 
accesses to secondary storage (Chapter 2). 
physical data independence  
Assurance given by a database system that changing a data structure (e.g., adding, dropping, or 
reorganizing a B-tree, or replacing a B-tree by a hash structure) will not change the meaning of 
any program. SQL gives this assurance to the extent that an SQL query will have the same 
input/output behavior regardless of the indexes that support the query (Chapter 4). 
point query  
Equality selection that returns a single record because the where clause pertains to a key of the 
table (e.g., where employee.socialsecurityid = ….). Such queries benefit from indexes (Chapter 3) 
because an index will provide a rapid alternative to scanning an entire table. 
poll  
Repeatedly access a data location or table to see if it has been changed in a certain way. Much 
less efficient than using an interrupt-driven mechanism such as a trigger (Chapter 5). 
prefetching (or sequential prefetching)  
Strategy used to speed up table or index scans by physically reading ahead more pages than 
requested by a query at a specific point in the hope that future requests be logically fulfilled 
(Chapters 2 and 7). 
prefix compression  
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Technique used in the interior nodes (the nonleaf ones) of a B-tree to reduce the length of the key 
portion of each key-pointer pair. For example, if three consecutive keys are Smith, Smoot, and 
Smythe, then only Smi, Smo, and Smy need be stored (Chapter 3). 
prefix match query  
Query on the prefix of a given sequence of attributes. For example, if the sequence is lastname, 
firstname, then lastname = ‘DeWitt’ AND firstname LIKE ‘Da%’ would be a prefix match query as 
would lastname LIKE ‘DeW%’. By contrast, firstname LIKE ‘Da%’ would not be a prefix match 
query because firstname is not a prefix of lastname, firstname (Chapter 3). 
primary index  
See clustering index (Chapter 3). 
priority inheritance  
Scheme to avoid lock-induced priority inversion by allowing a low-priority thread that holds a lock 
to acquire the priority of the highest-priority thread waiting for that lock (Chapter 2). 
priority inversion  
Scheduling anomaly in which a higher-priority thread waits for lower-priority one. This can occur 
in first-in, first-out queues and in situations in which there are locks (Chapter 2). 
privileged  
Table T is privileged in a select if the fields returned by the select contain a key of T. For example, 
if ssnum is a key of Employee, then any statement of the form SELECT ssnum,… FROM 
Employee.… WHERE.… privileges Employee. Important when trying to eliminate the keyword 
DISTINCT (Chapter 4). 

Q 
query plan  
The plan produced by an optimizer for processing a query. For example, if there is an index on 
R.B and on S.D, then a smart optimizer will apply the index on S.D and then scan the result from 
S against the index on R.B in the query SELECT R.A FROM R, S WHERE R.B = S.C AND S.D = 
17 (Appendix D). 
queueing theory  
A mathematical theory that computes the response time of a service given the service time and 
arrival rate, usually assuming a Poisson arrival model. If A is the arrival rate and S is the service 
time, then the utilization U is A × S and the response time is S/(1−U) (Chapter 8). 

R 
RAID disks  
Stands for redundant array of inexpensive disks, and describes a variety of configurations for 
laying data out on multiple disks (Chapter 2). Most of those configurations offer some form of fault 
tolerance. 
random access memory  
Electronic (solid state memory) whose access times are in the range of 10–100 nanoseconds 
though access is faster if it is sequential. Frequent synonyms are real memory and main memory. 
range query  
Selection of the form R.A >= 5 AND R.A >= 10. That is, a selection on an interval containing more 
than one value (Chapter 3). 
reaches  
Table S reaches a table T if S is joined by equality on one of its key fields to T. If dept is a key of 
Techdept, then Techdept reaches Employee in the query SELECT … FROM Employee, 
Techdept WHERE Techdept.dept = Employee.dept. Important when trying to eliminate the 
frequency of DISTINCT; see privileged (Chapter 4). 
read committed  
Isolation level in the ANSI/ISO SQL standard. Equivalent of degree 2 isolation. 
read lock  
If a transaction T holds a read lock on a data item x, then no other transaction can obtain a write 
lock on x (Chapter 2). 
read uncommitted  
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Isolation level in the ANSI/ISO SQL standard. Equivalent of degree 1 isolation. 
real-time database  
One in which response time guarantees must be met. These can be statistical (soft real time) or 
absolute (hard real time) (Appendix A). 
record  
Row in a relational table. 
record-level lock  
A record-level lock on record r will prevent concurrent transactions from modifying r. If the lock is 
a write lock, then the lock will prevent concurrent transactions from accessing r altogether 
(Chapter 2). 
record-level logging  
Property of a logging algorithm for a relational database system in which the data items held on 
the log are relational records (Chapter 2). 
redo-only  
Property of a logging algorithm in which a transaction T performs no updates to the database 
disks before T commits (Chapter 2). 
redo-undo  
Property of a logging algorithm in which a transaction T may perform updates to the database 
disks before T commits. The implication is that before images must be written to the log while T is 
active (Chapter 2). Also known as write-ahead logging, the most frequent recovery method used 
because it gives maximum freedom to the buffer manager and thereby avoids seeks. 
regression  
A statistical technique that infers an equation from a set of points (Chapter 10 and Appendix C). 
The equation then permits predictions about the future. 
relation instance  
Set of records that conforms to some relation schema (Chapter 4). 
relation schema  
Relation name and a set of attributes, or, equivalently, a table name and a set of column headers. 
Each attribute has a data type. In normalization theory, the functional dependencies on the 
attributes of the schema are considered to be part of the schema (Chapter 4). 
relationship  
Notion from the entity-relationship model. A relationship links two entity types (e.g., the 
relationship works_in links entity types employee and organization) (Chapter 4). 
reorganization  
Strategy in which a table's rows or an index's keys get physically rearranged in disk in an optimal 
manner (Chapter 7). 
repeatable reads  
Assurance given by a concurrency control algorithm that if a transaction T issues two reads to the 
same data item x without modifying x in between, then the two reads will return the same value 
(Chapter 2). This is a property of degree 3 isolation. Repeatable read is defined as an isolation 
level in the ANSI/ISO SQL standard. 
replicated state machine  
A distributed fault-tolerance mechanism that is used in airplanes and could be used in main 
memory databases. The idea is simple: if a set of processing sites begin in the same state, 
execute a set of operations (or transactions) sequentially and in the same order, and all 
operations are deterministic (they neither access external sources of randomness nor the time), 
then the sites will end in the same state. Main memory databases on uniprocessors can execute 
transactions sequentially without loss of efficiency because each transaction can utilize the 
processor from beginning to end. On multiprocessor devices, you can get the effect of a 
replicated state machine by ensuring that only nonconflicting transactions execute concurrently. 
response time  
Time it takes to get a response after submitting a request (Chapter 8). 
rollback  
Action of undoing all effects of a transaction that has not yet committed. Rollback may result from 
internal program logic (e.g., roll back the purchase if cash is low) or from a deadlock in the 
concurrency control subsystem (Chapter 2). 
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rotational delay  
Time required to wait for the proper portion of the track to pass underneath the head when 
performing a read or write. Around 2–7 milliseconds for magnetic disks (Chapter 2). 
row-expanding updates  
UPDATE command in which a variable-length column is updated to a larger value, possibly 
causing the row to be displaced. See also rowID (Chapters 2 and 7). 
rowID or RID  
Internal, unique identifier of a row. Usually made up of the page number and the sequence 
number where the row was initially stored (Chapter 7). 

S 
scan  
See table scan (Chapter 3). 
secondary allocation  
Storage allocated for a database object when it runs out of the space reserved for it at creation 
time (Chapter 7). 
secondary index  
See nonclustering index (Chapter 3). 
seek  
Head movement required to position a head over a given track (Chapter 2). 
seek time  
Time required to do a seek (around 5–10 milliseconds for most magnetic disks depending on the 
distance that must be traveled) (Chapter 2). 
selectivity  
A selection (e.g., R.C = 5) has high selectivity if it returns few records (i.e., far fewer records than 
there are pages in R). Point queries have extremely high selectivity, whereas multipoint queries 
may or may not have high selectivity (Chapter 3). 
semijoin condition  
Property of a join between two tables R and S such that no fields of one of the tables, say, S, are 
in the result (e.g., SELECT R.A, R.B FROM R, S WHERE R.C = S.E). If S is indexed on E, then 
the data records of S never need to be accessed. Some systems take advantage of this (Chapter 
3). See covering index. 
sequential key/field  
Field whose values are monotonic with the time of insertion (i.e., later insertions get higher field 
values) (Chapter 3). For example, if the timestamp were a field, it would be sequential. 
serializability  
Serializability is the assurance given by a concurrency control algorithm that in a concurrent 
execution of a set of transactions that may contain any operations, whichever transactions 
commit will appear to execute one at a time. This is stronger than degree 3 isolation, which does 
not make this assurance in the case of inserts and deletes. The problem with inserts and locking 
can be illustrated as follows: if one transaction T1 begins to sum the salaries in the employee 
table, and another transaction T2 inserts two new employees, one in the middle of the table and 
one at the end, T1 may see the effect of the first insert but not the second even though it is using 
two-phase locking. This phenomenon is known as the phantom problem. One way to solve the 
phantom problem is to have the summing transaction like the "end of table" pointer, so the conflict 
with the second insert would result in blocking or deadlock. 
serializable  
Isolation level in the ANSI/ISO SQL standard. Provides serializability guarantee. 
service time  
The time it takes for a particular server to handle one request. If there is a cluster of N servers 
that use no common resource, then the effective service time we would suggest for the cluster is 
the single server service time/(0.8N). The 0.8 is a fudge factor that reflects the fact that there is 
nearly always some common resource (Chapter 8). 
shared disk  
Hardware configuration in which each processor has its private random access memory but all 
disks are shared. This is a very common configuration for database systems (Chapter 2). 
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shared lock  
See read lock (Chapter 2). 
shared nothing  
Hardware configurations in which each processor has its private random access memory and 
disks (Chapter 2). An example would be a set of personal computers linked by a network. 
snapshot isolation  
A concurrency control technique in which reads obtain no locks but writes are "certified" upon 
commit. Snapshot isolation does not guarantee serializability in all cases. Here are the details of 
the protocol: A transaction T executing under snapshot isolation reads data from the committed 
state of the database as of time start(T) (the "snapshot"). T holds the results of its own writes in 
local memory store so if it reads data a second time it will read its own output. Aside from its own 
output, T reads data only from the committed state of the database as of time start(T). Thus, 
writes performed by other transactions that were active after T started are not visible to T. When 
T is ready to commit, it obeys the first-committer-wins rule: T will successfully commit if and only if 
no other concurrent transaction T′ has already committed writes to data that T intends to write. 
Here is an example of the failure to guarantee serializability: if transaction T1 assigns x to y and 
T2 assigns y to x, then in any serializable execution, x and y will have the same values after T1 
and T2 end. With snapshot isolation, this may not be the case. Snapshot isolation is a form of 
multiversion read consistency (Chapter 2). 
sparse index  
Index in which the underlying data structure contains exactly one pointer to each data page. Only 
clustering indexes can be sparse (Chapter 3). 
split  
When an insertion occurs to a full B-tree page p, a new page is created and the tree is locally 
restructured, so the new page and p are at the same distance from the root (Chapter 3). 
stable storage  
That portion of memory that tolerates "normal" failures. For example, if you assume that multiple 
disks will never fail (perhaps because disks are mirrored or some version of RAID is used), then 
disk storage is stable (Chapter 2). Note, however, that this assumption may be violated if disks 
come from the same manufacturing batch in which case several may fail nearly at the same time. 
star schema  
A set of tables whose "center" (analogous to the nucleus of the star) is a very large "fact table" 
(e.g., sales) having foreign key dependencies to other tables (e.g., on itemid to itemdescription, 
on storeid to storelocation, and on customerid to customerdescription) (Chapter 10). 
statistics  
Set of information stored in the catalog about cardinality of relations, distributions/frequency of 
values of important columns, and so on. Statistics should be up to date for the SQL optimization 
process to work correctly (Chapter 7 and Appendix D). 
storage parameters  
Space allocation parameters of a database object at creation time. These parameters determine 
how existing free space is managed and how page replacement is done when needed (Chapter 7 
and Appendix E). 
system event  
Important developments in the internal operations of a DBMS like the beginning or end of 
execution of a statement. Performance monitors that record events can help the tuner solve 
problems as deadlocks (Chapter 7). 
system time  
The processor time some activity takes while executing operating system code (Chapter 2). 

T 
table  
In technical usage, a table is the same as a relation. 
table clustering  
The interleaving of two tables for the purpose of reducing the cost of a join. For example, each 
customer record might be followed by the sales records pertaining to that customer. Oracle is the 
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main vendor offering table clustering, and it recommends the use of that facility only in rare cases 
(Chapter 4). 
table scan  
Examination of every record of every page of a table. 
table-level lock  
A table-level lock on table t will prevent concurrent transactions from modifying t. If the lock is a 
write lock, then the lock will prevent concurrent transactions from accessing t altogether (Chapter 
2). 
tablespace  
Physical portion of disk storage containing either an index or one or more tables. 
thrashing  
Phenomenon in which paging escalates to unbearable levels, bringing the performance of the 
whole system significantly down (Chapter 7). 
thread  
Unit of execution consisting of a program counter, a possibly size-limited stack with references to 
a shared address space and program text (Chapter 2). 
three-tier architecture  
Web servers at the outer layer are responsible for presentation. Application servers contain the 
code embodying business logic. Database servers hold the data (Chapter 8). 
throughput  
The number of transactions that complete per unit time. 
tightly coupled  
Hardware configuration in which all processors share random access memory and disks (Chapter 
2). 
timeout  
Name given to transactions that were aborted due to excessive lock waiting time. See also 
deadlock (Chapter 7). 
track  
Narrow circle on a single platter of a disk. If the disk head over a platter does not move, then a 
track will pass under that head in one rotation. One implication is that reading or writing a track 
does not take much more time than reading or writing a portion of a track (Chapter 2). 
transaction  
Unit of work within a database application that should appear to execute atomically (i.e., either all 
its updates should be reflected in the database or none should; it should appear to execute in 
isolation). In IBM protocols, transactions are known as logical units of work (Chapter 2). 
transaction chopping  
The division of a transaction into smaller transactions for the purposes of reducing concurrency 
control–induced contention or buffer contention (Chapter 2, Appendix B). 
trie  
A special kind of tree structure that is good for an in-memory lookup table that supports prefix 
queries (Chapter 3). Suffix trees and suffix arrays are generalizations of tries. 
trigger  
Stored procedure that performs an action when some table is updated in a certain way (e.g., 
whenever there is an insertion to table T, print the records that are inserted) (Chapter 4). 
tuple  
See record. 
two-phase commit  
Algorithm for terminating transactions that are distributed over many sites (specified by the LU6.2 
protocol in the IBM world). Two-phase commit entails an overhead of between two and four 
messages per transaction per site and may cause one site to block because of the failure of 
another one (Chapter 6). Contrast with replicated state machine. 
two-phase locking  
Algorithm for concurrency control whereby a transaction acquires write locks on data items that it 
will write, read locks on data items that it will only read, and the transaction never obtains a lock 
after releasing any lock (even on another data item). Two-phase locking can encounter deadlock 
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(Chapter 2). Two-phase locking guarantees degree 3 isolation and can be extended to guarantee 
serializability. 

U 
unbuffered commit strategy  
Logging algorithm in which a transaction's updates are forced to the database disks immediately 
after commit. This implies that there will be many random writes to those disks, thus hurting 
performance. This strategy should never be used (Chapter 2). 
unnormalized  
Opposite of normalized (Chapter 4). 
usage factor  
The percentage of a page that can be utilized, yet still permit a further insertion. This influences 
utilization (Chapter 2). 
user  
In the context of this book, a user is someone who uses a database management system as 
opposed to a developer of the database management system itself. That is, a user may be a 
database administrator or an informed application developer. 
user time  
The processor time some activity takes while executing nonoperating system code. 
utilization  
That percentage of an index or data page that actually has data on it as opposed to free space. 
For example, a B-tree has an average utilization of about 69% (Chapter 3). 

V 
vertical antipartitioning  
Technique for storing small sets in a single record. For example, if one relation contains the 
attributes (bond, descriptive information) and another one contains (bond, date, price), then 
vertical antipartitioning may consist of putting some of the prices (e.g., the last ten days' worth) 
with the descriptive information (Chapter 4). 
vertical partitioning  
Method of dividing each record (or object) of a table (or collection of objects) such that some 
attributes, including a key, of the record (or object) are in one location and others are in another 
location, possibly another disk. For example, the account ID and the current balance may be in 
one location and the account ID and the address information of each record may be in another 
location (Chapters 4 and 5). 

W 
wall clock time  
Time some activity takes as recorded by an external observer looking at a clock (Chapter 2). 
Web cache  
Cache for Web pages in the Web server tier of an e-commerce application (Chapter 8). 
Web servers  
The component of an e-commerce application that delivers pages (e.g., in XML or HTML) to client 
browsers (Chapter 8). 
workload  
Mix of all queries and commands issued to a particular database application (Chapter 7). 
write lock  
If a transaction T holds a write lock on a data item x, then no other transaction can obtain any 
lock on x (assuming degree 2 or 3 isolation) (Chapter 2). 
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Index 
Symbol and Numbers  
→ (functionally determines), 126, 361  
2–3 trees, 88, 361  
4GLs (fourth-generation languages), 165, 361, 369  

A  
Abiteboul, S., 131  
abort, 361  
access methods, query plan analysis and, 228  
access path, 361  
access plans. See query plans (access plans) 
ad hoc query cancellation, 176  
Adams, E., 36  
Adams, S., 92  
address spaces, operating system control of communication between, 50  
adjacency list model, 263, 264, 265  
after image, 361  
after images of updates 
in commercial logging algorithms, 38-39  
delayed write of, 38, 46-47  
stable storage for, 38  
Agarwal, B., 323  
aggregate maintenance 
defined, 139, 361  
Kelkoo shop comparison portal case study, 252-253  
with materialized views (insertions), 142  
with materialized views (queries), 141  
percentage of gain with, 140  
redundancy for performance enhancement, 139  
aggregate targeting, 277, 279, 361  
aggregates 
correlated subqueries with, 157-158  
data warehouse queries and, 268, 277, 279, 281  
database cache for e-commerce applications and, 248  
maintenance, 138-140, 141, 142  
with remote materialized views, 248  
uncorrelated subqueries with, 153-154  
Agrawal, R., 246, 333  
Ahn, I., 334  
airline reservations, transaction chopping and, 26  
algorithms 
computing views from already materialized views, 285-287  
concurrency control methods using links, 83  
for data mining, 292-294  
logging, commercial, 38-40  
query plan analysis and, 229  
redo-undo or write-ahead logging algorithms, 39  
trade space for time, 194  
transaction atomicity principles, 38-40  
for transaction chopping optimization, 315-317  
Two-Phase Locking, 15-16  
allocation of work, server vs. client, 5-6  
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AND data access operator, 341  
application development tool caveats, 171  
application interface tuning, 171-178  
avoiding user interaction within transactions, 171  
minimizing query compilations, 176-178  
minimizing round-trips between applications and servers, 172-174  
principles, 171  
retrieving needed columns only, 174, 176  
retrieving needed rows only, 175-176, 177  
application programming language looping facilities, 172, 173  
application servers 
defined, 361  
for Kelkoo shop comparison portal, 251-252  
overview, 243, 244  
query types, 244-245  
approximating results with data warehouses, 289, 290, 291 
Apter, S., 303  
archival databases, populating using database dumps, 41  
Ariav, G., 334  
arrables (array tables), 207, 331, 361  
arrival rate, 254, 362  
atomic transactions 
achieving atomicity, 38-40  
commercial algorithms, 38-40  
principles of algorithms, 38  
recovery and, 37  
atomicity guarantees, 10-11, 362  
attributes 
data types of, 140-143  
defined, 129, 362  
variable-sized fields and, 141-142  
auditing 
Kelkoo shop comparison portal case study, 253  
triggers for, 158-159  
auxiliary operators, 346  
average utilization, 256  

B  
B+ trees. See B-trees  
backup 
remote, 196-201  
transaction-consistent, 40-41  
bandwidth, e-commerce application issues, 245-246  
Barclay, T., 245  
batch transactions, 48-49, 362  
Batory, D., 334  
Bayer, R., 322  
bcp (SQL Server bulk loading tool), 179  
be prepared for trade-offs (basic principle), 6-7  
before images, 38, 362  
Bell Labs Aqua work, 289  
Bernstein, A., 323  
Bernstein, P., 10, 308, 323  
Beyer, K. S., 335  
Binary Large OBjects (BLOBs), 142-143  
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bind variables, 115, 362  
biological methods for data mining, 292-294  
bit vectors, clustering indexes and, 195  
bitemporality, 206-207, 209  
bitmap indexes 
in commercial products, 107, 280  
for data warehouses, 280-282  
defined, 280, 362  
multiple bitmaps for single query, 28  
for multipoint queries, 111  
other matrix approaches vs., 281  
for range queries, 112 
throughput, 282  
vendors supporting, 280  
BLOBs (Binary Large OBjects), 142-143  
bottlenecks 
concurrency control methods using links to remove, 83  
defined, 3, 362  
hot spot circumvention, 33-35  
indexes for small tables and, 105  
local fix for, 3  
log disk(s) as, 41  
partitioning to break, 3-4  
small tables as serialization bottlenecks, 105  
strategies for clearing, 3  
Bradley, J., 334  
branching factor, 83, 362  
broadcast technology network, 362  
Brockwell, P. J., 335  
B-trees, 82-86  
2–3 trees, 88  
average number of nodes traversed, 83  
B+ tree example, 84  
basic rule, 105  
branching factor, 83  
cache-sensitive B+ trees, 88  
defined, 84, 362  
empty nodes numerous on, 113  
evaluation, 84-86  
fanout, 82, 83, 85-86, 88  
front compression, 86  
hB-trees, 89  
inverted indexes vs., 110  
key length influence on fanout, 85-86  
link implementation, 83  
for multipoint queries, 111  
nodes in random access memory, 82  
number of levels, 82  
overflowing nodes, 82  
for point queries, 112 
prefix compression, 86  
for range queries, 112 
string B-trees, 88  
buffer, database. See database buffer  
buffer tables, 189-190  
buffered commit strategy, 39, 46-47, 363  
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BULK INSERT command, 179  
bulk loading data, 179-180  
bulk objects, 170-171  
byte-level logging, 40  

C  
C edges of chopping graph, 307  
cache, controller. See controller cache  
cache, database. See database buffer  
cache-sensitive data structures, 88  
caching for e-commerce applications, 246-249  
category searching and, 247  
data item properties and, 246  
database cache, 247-248  
keyword searching and, 247  
materialized views for, 247-248  
query types and, 244-245  
shopping cart interactions and, 247  
system features for fast caches, 248-249  
touristic searching and, 246-247  
Web cache, 247  
call-level interfaces 
JDBC, 165  
ODBC, 165-167  
positioned updates, 174  
query reuse and, 178  
capacity planning, 363  
capacity planning (e-commerce example), 253-256  
arrival rate, 254  
average utilization, 256  
difficulties of, 253-254  
Poisson model, 256  
purchasing equipment, 256  
server model, 255-256  
service times, 254-256  
Carey, M., 88  
Carino, F., 276  
Carrigan, C., 254  
Casanova, M., 323  
case studies from Wall Street, 185-211  
clustering indexes, 195  
data integrity checks at input time, 188  
deletions and foreign keys, 202  
disaster planning and performance, 196-201  
distribution and heterogeneity, 188-193  
global systems, 190-192  
history-dependent queries, trading space for time in, 193-194  
interoperability with other databases, 188-190  
keeping nearly fixed data up to date, 201-202  
optimization caveat, 195-196  
partitioning and meaningful key hazards, 203  
socialistic connection management in distributed setting, 192-193  
superlinearity circumvention, 185-188  
time problems, 203-209  
transaction chopping for global trade facilitation, 194-195  
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case-based methods for data mining, 292-293  
case-based reasoning, 363  
catalog, 34, 144, 232-233, 363  
catalog statistics update package, 113-114  
category searching (e-commerce), 245, 247  
Celko, J., 8, 261, 326  
chained bucket hashing, 82  
challenge queries, 325-326  
Chan, A., 322  
Chatfield, C., 335  
Chaudhuri, S., 109  
checkpoints 
costs, 48  
database dumps vs., 40-41  
defined, 40, 363  
interval setting for, 47-48  
properties, 47-48  
real-time databases and, 303  
chopping graph. See also transaction chopping  
C edges, 307  
S edges, 307  
SC-cycle in, 308  
chopping transactions. See transaction chopping  
classes, 169, 363  
CLI (call-level interface for DB2 UDB), 166  
clients 
allocation of work between servers and, 5-6  
client-server mechanisms, 166, 167-168  
client-server mechanisms 
ODBC drivers and, 166  
performance issues, 167-168  
Clifford, J., 334  
cluster keys, 137, 363  
clustering, 364  
clustering indexes, 90-96  
basic rule, 105  
benefits, 92-94  
bit vectors and, 195  
colocated records, 90  
composite indexes, 100, 101  
defined, 90, 364  
disadvantages, 94, 95, 96, 97  
for e-commerce applications, 249, 251  
equality joins and, 93-94  
illustrated, 91 
insertion point distribution using, 31  
joins, 103, 104, 146-147  
maintenance after 10% updates, 97  
maintenance after insertions, 94, 95, 96  
multipoint queries and, 93  
nonclustering indexes vs., 92-94  
one per table limitation, 92  
in Oracle (index-organized tables), 107  
ordering queries and, 94  
overflows, 94-95, 96, 97, 111  
performance degradation with insertions, 94, 95, 96  
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prefix match queries and, 94  
range queries and, 94  
redundant tables, 95  
sparse, 90, 92  
table clustering vs., 138  
throughput, nonclustering indexes vs., 93  
clustering tables, 137, 138, 383  
Cochinwala, M., 334  
Codd, E. F., 268  
Codd, T., 123  
Collison, R., 271, 273  
colocate, 364  
colocated records, 90  
commit, 364  
committed transactions 
group commit, 41-42  
recovery and, 37, 41-42  
stable storage for, 37-38  
two-phase commit, 189, 198, 200  
communicating with the outside world 
accessing multiple databases, 180-183  
application development tool caveats, 171  
application interface tuning, 171-178  
bulk loading data, 179-180  
client-server mechanisms, 167-168  
object-oriented database caveats, 169-171  
talking to the world, 165-167  
compiling queries 
frequently executed queries, 5  
minimizing compilations, 176-178  
recompiling, 177-178  
composite indexes 
benefits, 100-101  
defined, 100, 364  
dense, 100  
disadvantages, 101-102  
order of attributes, 101  
compression, key, 86, 106  
concatenated indexes. See composite indexes  
concurrency control, 9-35. See also lock tuning  
concurrent transactions defined, 12  
correctness goal, 12-13  
defined, 12, 364  
example with no control, 14  
heap files and, 92  
indexes on small tables as bottlenecks, 105  
lock tuning, 16-35  
mutual exclusion for concurrent correctness, 13  
read locks, 14, 15  
record locks for short transactions and, 27  
references, 10  
replication and, 191  
semaphore method, 13-14  
transaction chopping and, 21  
transaction functions and, 13  
Two-Phase Locking algorithm, 15-16  
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using links to remove bottlenecks, 83  
Concurrency Control and Recovery in Database Systems, 10  
"Concurrency Control in a System for Distributed Databases," 323  
Concurrency Control Problem for Database Systems, The, 323  
concurrent, 364  
concurrent threads, accommodating, 49, 56-57  
concurrent transactions, 12, 564 
configuration parameters, 349-359  
DB2 UDB, 355-359  
list of, 349  
Oracle, 350-353  
SQL Server, 354-355  
conformance level of ODBC drivers, 166  
connection management, socialistic, in distributed setting, 192-193  
connection pooling, 249, 250, 364  
"Consistency of Transactions and Random Batch," 322  
constellation schema for data warehouses, 287, 288  
consumers in producer-consumer hierarchy, 214, 215  
consumption chain 
approach to performance monitoring, 214-216  
cause-effect patterns in, 214-215, 216 
defined, 214  
producer-consumer hierarchy, 214, 215  
controller cache 
performance and write-intensive applications, 63-64, 65  
read cache, 62  
write cache, 62-63  
controllers, disk. See disk controllers  
correctness, 12-16  
goal for concurrency control, 12-13  
isolation level and, 23-26  
length of transactions and, 11  
mutual exclusion for concurrent correctness, 13  
performance vs., 11  
snapshot isolation and, 18  
transaction functions and, 13  
correlated subqueries 
with aggregates, 157-158  
rewriting, 145, 150, 155-158  
temporaries for, 145, 156  
without aggregates, 155-157  
costs (monetary) of random access memory increase, 56, 66  
costs (performance). See performance; throughput  
counters 
hot spot circumvention, 34-35  
latch facility, 34-35  
covering indexes, 96-97, 98, 365  
CPU time, 229  
CPUs. See processors  
credit checks with update blob transactions, 19-20  
critical query monitoring, 226-230  
analyzing a query's access plan, 227-229  
finding "suspicious" queries, 226-227  
flowchart, 218  
indicators to measure, 226, 228-229  
profiling query execution, 229-230  
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CRM. See customer relationship management (CRM) 
Cuban, M., 254  
cursor performance issues, 176, 177  
cursor stability guarantee, 22, 365  
customer relationship management (CRM) 
data mining algorithms, 292-294  
data mining toolkits, 290  
defined, 365  
Harrah's case study, 273-274  
ingredients of, 290  
tuning data warehouses for, 289-294  
cylinders on disks, 44, 365  

D  
data access operators, 339-342  
AND, 341  
FETCH, 339  
IXSCAN, 339-340  
NLJOIN, 339  
RID, 341-342  
TBSCAN, 339-340  
Data Definition Language (DDL), 29-30, 366  
data files, RAID 5 (rotated parity striping) for, 62  
data integrity checks at input time, 188  
data item, 365  
data marts, 267-268  
data mining 
algorithms, 292-294  
database dumps for queries, 47  
defined, 365  
time series, 333-335  
toolkits, 290  
data page, 365  
data structures. See also specific types  
2–3 trees, 88  
B-trees, 82-86, 88  
cache-sensitive, 88  
database system support for, 81-82  
frequency-ordered linked lists, 88-89  
grid structures, 89  
hash structures, 82-83, 86-87  
hB-trees, 89  
for in-memory data, 87-89  
lookup tables, 87-88  
multidimensional, 82, 89  
provided by database systems, 82-87  
R+ trees, 89  
for real-time databases, 302  
R-trees, 89  
string B-trees, 88  
suffix tree, 88  
trie, 88  
T-trees, 88  
data types of attributes, 140-143  
data warehouses, 261-299  
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adjacency list model, 263, 264, 265  
for aggregate targeting, 277, 279, 361  
approximating results, 289, 290, 291 
benefits of, 268-269  
bitmap indexes for, 280-282  
building queries, 265-266, 267  
catastrophe response and, 270-271  
constellation schema, 287, 288  
for customer relationship management (CRM), 273-274, 289-294  
data marts vs., 267-268  
data mining algorithms, 292-294  
defined, 365  
difficulties of building, 267-268  
early history, 261  
federated data warehouse tuning, 294-295  
Harrah's case study, 273-274  
hierarchy representation, 263-266  
incorrect premises for, 271-272  
Kelkoo Internet log warehouse, 252  
for legacy system integration, 180-181  
materialized views for, 284-287  
multidimensional arrays (matrices) for, 279-280  
multidimensional indexes for, 282-284  
nested set organization, 264  
OLTP systems and, 267, 278-279  
optimized foreign key joins for, 287-288  
organizational chart as directed graph, 264  
product selection, 295-296  
snowflake schema, 262, 266-267, 287  
star schema, 262, 267, 287, 296  
Supervalu case study, 271-273  
tables, 262-263, 266-267  
technology, 278-289  
TPC-H schema, 287, 288, 290, 291, 296  
transactional databases vs., 262, 275  
uses of, 276-278  
Wal-Mart case study, 269-271, 276-277  
database buffer, 52-54, 55 
DBMS page replacements and, 52-53, 54  
defined, 365-366  
for e-commerce applications, 247-248  
hit ratio, 53-54  
impact on number of physical accesses, 52-53  
increasing memory for, 54, 56  
logical reads and writes and, 52, 53-54  
manager, 233-234  
operating system paging and, 53, 54  
organization, 53  
performance monitoring, 233-234  
purpose of, 52  
size impact on performance, 55 
size issues, 49, 54, 55 
database cache, 366. See also database buffer  
database disks, 38, 366  
database dumps 
archival database population using, 41  
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benefits of, 47  
checkpoints vs., 40-41  
costs of, 47  
defined, 40, 366  
interval setting for, 47  
mirroring and, 41  
real-time databases and, 303  
recovery using, 41  
database management systems 
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shared disk architecture, 71  
table layout on, 4-5  



Database Tuning  Index 

-289- 

technical background, 44-46  
tunable file system parameters, 57-59  
DISTINCTs 
correlated subqueries and, 145  
inefficient handling by subsystems and, 144  
minimizing, 150, 151-153  
need for, 151  
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disaster planning and, 196-201  
external data source access tuning, 183  
group commit and, 42  
index tuning importance for, 77  
locking and, 11, 19  
loop constructs and, 172, 173  
memory increase for, 6, 66  
network bound, block transfers and, 183  
normalization vs. denormalization and, 136  
ODBC drivers and, 166-167  
operating system functions impacting, 49-50  
query tuning impact on, 149-150  
redundancy to enhance, 139  
relation schemas and, 126  
semaphores and, 14  
start-up vs. running costs, 4-5  
superlinearity circumvention and response time, 186  
trade-offs (basic principle), 6-7  
transaction length and, 19  
of triggers, 160-161  
performance indicators, 213, 377  
performance monitoring, 213-241  
analyzing a query's access plan, 227-229  
buffer (cache) management, 233-234  
consumption chain approach, 214-216  
CPU monitoring, 237  
critical query monitoring, 218, 226-230  
DBMS subsystems, 231-236  
deciding which indicators to monitor, 224, 225 
disk operations monitoring, 237-238  
disk subsystem, 231-233  
event monitors, 223-224, 225 
finding "suspicious" queries, 226-227  
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locking subsystem, 235-236  
logging subsystem, 234-235  
memory monitoring, 239  
network monitoring, 239-240  
performance monitors, 221-223, 224  
profiling query execution, 229-230  
query plan explainers, 217-221  
resource consumption, 236-240  
routine monitoring flowchart, 219  
three questions for approaching, 217  
tools, 217-226  
performance monitors 
choosing, 221-222  
database buffer manager performance indicators, 233, 234  
in DBMS products, 224  
disk activity indicators, 233  
frequency of data gathering by, 222  
graphical performance monitor example, 222-223  
locking subsystem performance indicators, 235, 236  
logging subsystem performance indicators, 235  
presentation of data by, 222  
scope of indicators in, 221  
storage of data by, 222  
types of, 221  
persistent data item, 377  
phantom problem, 377  
physical accesses 
database buffer impact on, 52-53  
defined, 377  
physical data independence, 377  
Piatetsky-Shapiro, G., 333  
platters of disks, 44  
point queries 
comparison of B-tree and hash indexes, 112 
defined, 78, 377  
hash structures showing poor performance for, 113  
nonclustering indexes and, 99  
partitioning indexes and, 111, 114  
table clustering and, 137  
vertical partitioning and, 133-134, 135  
Poisson model, 256  
poll, 377  
polling, triggers vs., 6, 159-160  
portability, 4GLs and, 165  
positioned updates, 174  
power failures, durable media and, 37-38  
prefetching, 58, 59, 377  
prefix compression, 86, 106, 377-378  
prefix match queries, 79, 94, 378  
present value of payments, 203-204, 208  
primary indexes. See clustering indexes  
principles of database tuning 
basic principles, 2  
be prepared for trade-offs, 6-7  
knowledge and, 7  
partitioning breaks bottlenecks, 3-4  
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power of, 1-2  
render unto server what is due unto server, 5-6  
start-up costs are high; running costs are low, 4-5  
think globally; fix locally, 2-3  
principles of recovery 
checkpoints, 40, 47-48  
commercial logging algorithms, 38-40  
database dumps, 40-41, 47  
group commit, 41-42  
logging variants, 40  
stable storage, 37-38, 39, 196  
transaction atomicity, 38-40  
transactions and recovery units, 37  
priority decisions for threads 
database as low priority (bad), 50  
priority inheritance, 52, 378  
priority inversion, 51, 378  
transactions and, 51-52, 302  
priority inheritance, 52, 378  
priority inversion, 51, 378  
privileged tables, 151, 378  
processes. See threads  
processors 
adding, 67-71  
concurrent transactions on uniprocessors, 12  
CPU monitoring, 237  
CPU time, 229  
fail-stop tolerance, 36  
hardware architectures, 70-71  
key compression and processing power, 106  
offloading part of application to separate processing system, 68  
overloading with large databases, 67-68  
partitioning data among processing systems, 69  
pass-through statements when performance is CPU bound, 183  
shared memory multiprocessors for tight coupling, 69-70  
throughput and degree of parallelism, 70  
producer-consumer hierarchy, 214, 215  
profiling query execution, 229-230  
programming languages, database system calls by, 5  
Pu, C., 323  
Putzolu, F., 54  

Q  
quadtrees, 282, 283  
queries. See also query plans (access plans); specific types  
ad hoc query cancellation, 176  
aggregate maintenance with materialized views, 141  
bitemporal, 206-207, 209  
challenge, 325-326  
compilations, minimizing, 176-178  
compiling frequently executed queries, 5  
for data warehouses, 265-266, 267  
database buffer size and throughput, 55 
database dumps for data mining queries, 47  
deciding which to optimize, 2-3  
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for e-commerce applications, 244-245  
encapsulation caveats, 170-171  
extremal, 79  
finding "suspicious" queries, 226-227  
grouping, 80  
history-dependent, trading space for time in, 193-194  
join, 80-81, 93-94, 102-104, 105  
minimizing DISTINCTs, 143-144, 150, 151-153  
multipoint, 78-79, 93, 98, 99, 111, 113, 114  
nested, 153-158  
optimization hazards, 195-196  
ordering, 80, 94  
point, 78, 99, 111, 112, 113, 114, 133-134, 135  
prefix match, 79, 94  
profiling query execution, 229-230  
query plan, 114-115, 213, 227-229  
query plan explainers, 217-221  
range, 79, 94, 99, 112 
read-only, 17-18, 68  
recompiling, 177-178  
scan, 132-133  
slow, signs of, 143  
table clustering and, 137  
time series tables and, 205  
tuning, 143-158  
types of, 77-81  
query access plans. See query plans (access plans) 
query execution profiling, 229-230  
query plan explainers, 217-221  
in DBMS products, 221  
visual query plan example, 220  
vocabulary, 218-219  
query plans (access plans), 337-348  
access method choices, 228  
algorithms used in operations, 229  
analyzing, 227-229  
auxiliary operators, 346  
data access operators, 339-342  
defined, 378  
depiction as upward-pointing trees, 337, 338  
executing, 337-338  
index maintenance and, 114-115  
indicators to measure, 228-229  
intermediate results, 228  
order of operations, 228-229  
overview, 218, 337-339  
as performance indicator, 213  
query plan explainers, 217-221  
query structure operators, 342-346, 347 
sorts, 228  
query structure operators, 342-346, 347 
GRPBY, 346  
HSJOIN, 342  
MSJOIN, 342, 343-344  
NLJOIN, 342  
UNION, 346  
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query tuning, 143-158  
correlated subqueries, rewriting, 145, 150, 155-158  
DISTINCTs, minimizing, 143-144, 150, 151-153  
FROM clause, order of tables in, 148  
HAVING vs. WHERE, 147, 150  
inefficient handling by subsystems, 144  
join conditions, expressing, 146-147  
ORDER BYs, reformulating, 145-146  
performance impact of, 149-150  
rewriting nested queries, 153-158  
signs of slow queries, 143  
for system idiosyncrasies, 147-148  
temporaries for correlated subqueries, 145, 156  
temporaries for ORDER BYs, 145-146  
temporaries, unnecessary use of, 144-145  
views, inefficient queries using, 148-149  
queueing theory, 255, 378  
quorum approaches for remote backup, 198-201  

R  
R+ trees, 89  
Rafiei, D., 334  
RAID 0 (striping) 
overview, 60  
performance for read-intensive applications, 64  
performance for write-intensive applications, 63  
stripe size, 61  
for temporary files, 62  
RAID 1 (mirroring). See also mirroring  
for log files, 61-62  
overview, 60-61  
performance for read-intensive applications, 64  
performance for write-intensive applications, 63  
RAID 5 (rotated parity striping) 
for data and index files, 62  
log files and, 62  
for mixed workloads, 62  
overview, 61  
performance for read-intensive applications, 64  
performance for write-intensive applications, 63  
stripe size, 61  
RAID 10 (striped mirroring). See also mirroring  
for log files, 62  
overview, 61  
performance for read-intensive applications, 64  
performance for write-intensive applications, 63  
stripe size, 61  
RAID disks. See also disks  
adding disks, 66  
controller cache usage, 62-64, 65  
defined, 378  
hardware vs. software RAID definition, 62  
logical volume configuration, 66  
overview, 60  
RAID levels, 60-62, 63, 64  
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stripe size, 61  
throughput for read-intensive applications, 64  
throughput for write-intensive applications, 63  
Ramakrishnan, R., 334, 335, 342  
random access memory (RAM). See memory  
Ranganathan, A., 335  
range queries 
clustering indexes and, 94  
comparison of B-tree, hash, and bitmap indexes, 112 
defined, 79, 379  
nonclustering indexes and, 99  
Rao, J., 88  
reaches, 379  
reaching, DISTINCTs and, 151-153  
read committed isolation guarantee (degree 2), 22, 305, 379  
read locks 
defined, 15, 379  
Oracle read-only query facility and, 17-18  
read uncommitted isolation guarantee (degree 1), 22, 379  
read-intensive applications 
partitioning tables across logical disks, 67  
RAID performance and, 64  
read-only queries 
backend database for, 68  
Oracle facility, 17-18  
read-only transactions 
locking unnecessary for, 19  
spanning several sites, 68  
update blob with credit checks, 19-20  
read/write heads of disks, 44  
read/write time for disks, 45  
read/write transactions, snapshot isolation and, 18  
real-time databases, 301-303, 379  
record, 379  
record layout, 140-143  
BLOBs, 142-143  
integer vs. float data type, 140-141  
variable-sized fields, 141-142  
record-level logging, 40, 379  
record-level (row-level) locking 
DB2 UDB, 30  
as default, 27  
defined, 379  
granularity of, 27  
multiple insertion points and, 33  
Oracle, 31  
SQL Server, 29  
recovery. See also logging  
batch transactions, 48-49  
checkpoints, 40, 47-48  
commercial logging algorithms and, 38-40  
database dumps for, 40-41, 47  
delayed write of after images and, 38, 46-47  
disaster planning and performance, 196-201  
goal of recovery subsystems, 37  
group commit and, 41-42  
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hardware failure tolerance, 36  
principles of, 37-42  
for real-time databases, 301, 302-303  
remote backup, 196-201  
stable storage fiction, 196  
transaction atomicity and, 37, 38-40  
transactions as recovery units, 37  
tuning the recovery subsystem, 42-49  
recovery subsystem tuning, 42-49  
chopping batch transactions, 48-49  
database writes, 46-47  
intervals for database dumps and checkpoints, 47-48  
separate disk for logs, 42-43, 45, 66  
RedBrick data warehousing software, 296  
redo-only logging algorithms, 379  
redo-undo logging algorithms, 39, 379  
redundant tables 
aggregate maintenance and, 139  
clustering indexes and, 95  
denormalization and, 139  
nonclustering indexes and, 97  
for performance enhancement, 139  
vertical antipartitioning and, 134-135  
regression, 379  
regular time series, statistics and, 204-205  
relation instances 
approximation on, 290  
defined, 124-125, 380  
designing normalized relations, 129-130  
entities as relations, 130  
normalized, defined, 127  
size and index need, 178  
relation schemas. See also normalization  
for data warehouses, 262, 266-267, 287, 288  
defined, 124, 380  
information preservation criterion for, 126  
normalized vs. unnormalized, 126-127  
performance criterion for, 126  
relation instances defined, 124-125  
space criterion for, 124-125  
Relational On-Line Analytical Processing (ROLAP), 268  
relational systems, 123-163. See also data warehouses  
aggregate maintenance, 138-140, 141, 142  
architecture, 124  
clustering tables, 137-138  
cursor stability guarantee, 22  
denormalization, 136  
normalization, 126-135  
popularity of, 123  
query tuning, 143-158  
record layout, 140-143  
schema, 124-127  
sequences in, 207-209  
time series tables and, 205  
triggers, 158-161  
Wall Street payment storage, 204  
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relationships between entities, 130, 380  
remote backup, 196-201  
dump and load, 198  
remote mirroring, 198  
replication servers, 198, 199  
shared disk high-availability servers, 197  
two-phase commit, 198, 200  
wide-area quorum approaches, 198-201  
render unto server what is due unto server (basic principle), 5-6  
reorganization, 380  
repeatable read isolation level, 22, 380  
replicated state machine, 303, 380  
replication 
concurrency control and, 191  
consistency and, 192  
in global systems, 191-192  
for remote backup, 198  
serialization from, 191  
replication servers, 198, 199  
resource consumption, 236-240  
CPU resources, 237  
disk operations, 237-238  
memory resources, 239  
network resources, 239-240  
profiling query execution, 229-230  
resource contention, partitioning to reduce, 3, 4  
response time. See also performance  
approximate results and, 291 
connection pooling, 250  
defined, 380  
superlinearity circumvention and, 186  
Reuter, A., 10, 37  
RID, 341-342, 381  
Ripley, B. D., 335  
Roddick, J. F., 334  
ROLAP (Relational On-Line Analytical Processing), 268  
rollback, 380  
rollback safe transaction chopping, 306-307, 314  
Rosebrock, A., 142  
Ross, K., 88  
rotational delay, 45, 46, 380  
Rothnie, J. B., 323  
routine monitoring 
CPU resources, 237  
database buffer management, 233-234  
DBMS subsystems, 231-236  
disk operations, 237-238  
disk subsystem, 231-233  
flowchart, 219  
locking subsystem, 235-236  
logging subsystem, 234-235  
memory resources, 239  
network resources, 239-240  
resource consumption, 236-240  
row-expanding updates, 381  
rowID or RID, 341-342, 381  
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row-level locking. See record-level (row-level) locking  
R-trees, 89, 282, 283  
running costs, start-up costs vs. (basic principle), 4-5  

S  
S edges of chopping graph, 307  
Sagiv, Y., 83  
Saleeb, H., 292  
Salzberg, B., 83  
SAS system, 329-330  
Savage, S., 61  
Sawhney, H. S., 333  
scalability, multidimensional indexes and, 284  
scan queries 
buffer size and, 55 
table clustering and, 137  
vertical partitioning and, 132-133  
SC-cycle, defined, 308  
schemas. See relation schemas  
Schultes, S., 142  
screen, database tasks interacting with, 6  
SCSI buses, 65  
secondary allocation, 381  
secondary indexes. See nonclustering indexes  
seek, 381  
seek time 
defined, 45, 381  
effects of, 46  
minimizing, 45-46  
for tree nodes, 82  
tuning database writes, 46-47  
Segev, A., 334  
SELECT calls by standard programming languages, 5  
selectivity of queries, 99, 381  
semaphore method for concurrency control, 13-14  
semijoin condition, 381  
September 11, 2001, 270-271  
sequences 
arrables (array tables), 207, 331  
as first-class objects, 208  
for present value computation, 208  
sets vs., for time, 207  
vectors, 207-208  
sequential keys, 81, 381  
seralizable, 382  
serializability 
defined, 381-382  
degree 3 isolation guarantee, 22  
snapshot isolation and, 319  
transaction chopping and, 305-306  
value for DB2 UDB, 23  
value for Oracle, 25 
value for SQL Server, 24  
weaker isolation levels vs., 23-25  
serialization 
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replication and, 191  
small tables as bottlenecks, 105  
servers 
allocation of work between clients and, 5-6  
client-server mechanisms, 166, 167-168  
for e-commerce applications, 243, 244  
for Kelkoo shop comparison portal, 251-252  
minimizing round-trips between applications and, 172-174  
replication servers for remote backup, 198, 199  
shared disk high-availability servers for remote backup, 197  
service times, 254-256, 382  
Seshadri, P., 334  
sets 
nested, for data warehouses, 264  
sequences vs., for time, 207  
shared connections for external data sources, 183  
shared disk architecture, 71, 382  
shared disk high-availability servers for remote backup, 197  
shared everything architecture, 70, 71  
shared locks. See read locks  
shared memory multiprocessors for tight coupling, 69-70  
shared nothing architecture, 70, 71, 382  
shared (read) locks, 15, 17-18  
Shasha, D., 61, 83, 85, 176, 205, 303, 318, 323, 325, 330  
Shenoy, P., 45  
Shetler, T., 248  
Shim, K., 333  
Shipman, D. W., 323  
shop comparison portal. See Kelkoo shop comparison portal case study  
shopping cart interactions (e-commerce), 245, 247  
Shoshani, A., 334  
Shu, L., 323  
Smith, J., 171  
Smyth, P., 333  
snapshot isolation 
correctness and, 18  
defined, 382  
serializability and, 319  
"snapshot too old" failure, 18  
transaction chopping and, 305, 318-319  
Snir, M., 323  
Snodgrass, R. T., 209, 334  
snowflake schema for data warehouses, 262, 266-267, 287  
socialistic connection management in distributed setting, 192-193  
software failures, "Heisenbugs," 36  
Somani, A., 246  
Soo, M. D., 334  
SORT operator, 346  
sorts, query plan analysis and, 228  
space 
partitioning in, 3, 4  
relation schemas and, 124-125  
trading for time in history-dependent queries, 193-194  
sparse indexes 
clustering indexes, 90, 92  
defined, 382  
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dense indexes vs., 89-90, 91 
split, 383  
splitting transactions. See transaction chopping  
S-Plus interpretive environment, 329  
Spoelstra, J., 254  
SQL 
ODBC driver dialects, 166  
packaging statements into one interaction, 172-174  
pass-through statements, 183  
SQL * Loader tool (Oracle), 179  
SQL Puzzle Book, The, 326  
SQL Server 
bulk loading data in, 179  
clustering index maintenance after 10% updates, 97  
clustering index maintenance after insertions, 95  
configuration parameters, 354-355  
counter facility, 34, 35  
data warehousing software, 296  
event monitors, 225 
external data source access in, 181-182  
granularity of locking and, 29  
index tuning wizard, 108-109  
indexes offered by, 108  
lock escalation mechanism, 27  
locking overhead, 28  
materialized views in, 284  
ODBC drivers, 166  
performance monitors, 222-223, 224  
query plan explainers, 220, 221  
value of serializability, 24  
Sripada, S., 333, 334  
stable storage 
for committed transactions, 37-38  
defined, 383  
as fiction, 196  
log contained on, 38, 39  
transaction commit and, 38  
star schema for data warehouses, 262, 267, 287, 296, 383  
start-up costs 
running costs vs. (basic principle), 4-5  
shared connections for external data sources and, 183  
statistical methods for data mining, 292-294  
statistics, regular time series and, 204-205  
storage parameters, 383  
storage subsystem. See also disks  
adding disks, 66-67  
controller cache usage, 62-64, 65  
disk array configuration (RAID level), 60-62, 63, 64  
disk capacity planning and sizing, 64-65  
fiber channels for storage-area networks, 65  
logical volume configuration, 66  
performance monitoring, 231-233  
SCSI bus, 65  
stable storage, 37-38, 39, 196  
tuning, 59-66  
storage-area networks, 65, 67  
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stored procedures 
defining for precompiling queries, 178  
encapsulation of, 171  
string B-trees, 88  
string functions, indexes and, 114  
striping 
for log files, 61-62  
RAID 0 (striping), 60  
RAID 5 (rotated parity striping), 61  
RAID 10 (striped mirroring), 61  
stripe size, 61  
suffix tree, 88  
Sun JDBC, 165  
superlinearity circumvention, 185-188  
Supervalu data warehouse, 271-273  
Sybase 
bitmap index support, 280  
counter facility, 34  
hot spots with, 34  
indexes offered by, 108  
system events 
defined, 223, 383  
event monitors, 223-224, 225 
system time, 383  

T  
table clustering, 137, 138, 383  
table scan, 383  
table-level locking 
DB2 UDB, 30  
defined, 27, 383  
granularity of, 27  
long transactions and, 27  
Oracle, 31  
SQL Server, 29  
tables 
arrables (array tables), 207, 331  
buffer tables, 189-190  
clustering, 137-138  
consecutive layout for frequently scanned tables, 5  
for data warehouses, 262-264, 266-267  
defined, 383  
denormalization, 136  
distributing indexes of hot tables, 110-111, 113, 114  
heap files, 91, 92  
hot, distributing indexes of, 110-111, 113, 114  
index selection and organization of, 105-108, 110, 111, 112 
normalization, 126-135  
order in FROM clause, 149  
privileged, 151  
record layout, 140-143  
redundant, 95, 97, 134-135  
relation schemas, 124-127  
small, avoiding indexes on, 105  
vertical partitioning of, 5  
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tablespace, 384  
Tandem Non-Stop systems, 36  
TBSCAN data access operator, 339-340  
temporal partitioning 
denormalization vs., 138-139  
example, 4  
trade-offs, 6-7  
temporaries 
for correlated subqueries, 145, 156  
for ORDER BYs, 145-146  
RAID 0 (striping) for, 62  
unnecessary use of, 144-145  
Teradata data warehousing software, 272, 296  
TerraServer Web site load pattern, 245  
"Theory of Safe Locking Policies in Database Systems, A," 322-323  
think globally; fix locally (basic principle), 2-3  
thrashing, 239, 384  
threads 
for ad hoc query cancellation, 176  
concurrent, accommodating, 49, 56-57  
context switching, 50  
defined, 49, 384  
priority decisions, 50-52  
scheduling by operating system, 49, 50-52  
three-tiered architecture, 243-246, 384  
throughput. See also performance  
aggregate maintenance with materialized views (insertions), 142  
bitmap indexes and, 282  
bulk loading batch size and, 180  
checkpoints and, 48  
clustering index maintenance after insertions, 94, 95, 96  
clustering indexes vs. nonclustering indexes, 93  
counter facility and, 35  
covering indexes and, 98  
cursors and, 177  
database buffer size and, 55 
defined, 384  
degree of parallelism and, 70  
disk usage factor and, 48  
granularity of locking and, 29, 30, 31  
group commit and, 42  
high index overhead for insertion, 108  
insertion point numbers and with page locking and, 32  
insertion point numbers and with row locking and, 33  
log file location and, 43  
loop constructs and, 173  
low index overhead for insertion, 107  
normalization vs. denormalization and, 136  
ODBC vs. native call-level interface, 167  
prefetching and, 59  
programs for evaluating, 46  
RAID and read-intensive applications, 64  
RAID and write-intensive applications, 63  
retrieving needed columns only and, 176  
rotational delay and, 46  
seek time and, 46  
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serializability isolation guarantee and, 23-25  
usage factor on disk pages and, 58  
user-defined functions and, 175  
vertical partitioning and point queries, 135  
vertical partitioning and scan queries, 133  
tightly coupled 
defined, 384  
hardware architectures for, 70, 71  
partitioning and, 69  
shared memory multiprocessors for, 69-70  
time, 203-209  
bitemporality, 206-207, 209  
CPU, 229  
elapsed, 229  
idle, 371  
present value of payments, 203-204, 208  
sequences vs. sets and, 207  
service times, 254-256  
superlinearity circumvention, 185-188  
system, 383  
temporal partitioning, 4, 6-7, 138-139  
trading space for, in history-dependent queries, 193-194  
user, 237, 385  
wait, 229  
wall clock, 386  
time series, 325-335  
challenge queries, 325-326  
data mining, 333-335  
FAME system, 327-329  
features desired for, 332-333  
historicity, 326  
irregular time series and frequency counting, 205-206  
KDB system, 330-331  
Oracle 8i Time Series, 332  
regular time series and statistics, 204-205  
SAS system, 329-330  
setting up a time series database, 326-327  
S-Plus interpretive environment, 329  
timeouts, 235-236, 384  
TimesTen 
Front-Tier, 247-249  
T-tree in main memory database system, 88  
timing information given by operating system, 50  
touristic searching (e-commerce) 
caching and, 246-247  
defined, 244-245  
TPC-H schema for data warehouses, 287, 288, 290, 291, 296  
tracks on disks, 44, 384  
trade-offs 
being prepared for, 6-7  
locks and, 11  
performance vs. correctness, 11  
Traiger, I., 15  
transaction chopping, 19-22, 305-324  
airline reservation example, 26  
algorithm for optimal chopping, 315-317  
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application to typical database systems, 317-319  
assumptions, 305-307  
batch transactions, 48-49  
caveat about adding transactions, 22  
chopping graph basics, 307-308  
concurrency issues, 21  
correct choppings, 307-312  
correctness and, 11  
defined, 384  
execution rules, 307  
finding the finest chopping, 312-314  
further chopping of incorrectly chopped transactions, 313  
for global trade facilitation, 194-195  
lock time reduced by, 11  
performance and transaction length, 19  
for recovery subsystem tuning, 48-49  
related work, 319-323  
rollback safe, 306-307, 314  
rule of thumb for, 21  
serializability guarantees, 305-306  
snapshot isolation and, 305, 318-319  
update blob with credit checks, 19-20  
updates and balances, 20-21  
Transaction Processing: Concepts and Techniques, 10  
transactional databases vs. data warehouses, 262, 275  
Transactional Information Systems, 10  
transaction-consistent backup, 40-41  
transaction-consistent state, 40-41  
transactions. See also transaction chopping  
achieving atomicity, 38-40  
atomic, recovery and, 37  
atomicity guarantees, 10  
batch transactions, 48-49  
concurrent, defined, 12  
correctness and length of, 10-11  
defined, 384  
equivalent executions, 12-13  
granularity of locking and transaction length, 27  
overview, 9-10  
performance and length of, 19  
priorities, 51-52, 302  
as recovery units, 37  
serializability, 22-25  
snapshot isolation and, 18  
spanning several sites, 68  
stable storage for committed transactions, 37-38  
states and recovery, 37  
Two-Phase Locking algorithm, 15-16  
user interaction within, avoiding, 171  
Transact-SQL, BULK INSERT command, 179  
trie data structure, 88, 384  
triggers, 158-161  
for auditing purposes, 158-159  
defined, 158, 384  
enabling event, 158  
for events generated by application collections, 159  
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integrity constraints and, 159  
interrupt-driven approach, 159  
maintenance problems with, 160  
performance tuning, 160-161  
polling vs., 6, 159-160  
troubleshooting. See performance monitoring  
T-trees, 88  
tuning parameters. See configuration parameters  
two-phase commit, 189, 198, 200, 385  
Two-Phase Locking algorithm, 15-16, 385  
2-3 trees, 88, 361  

U  
UDB. See DB2 UDB  
UDFs (user-defined functions), 174, 175, 204  
unbuffered commit strategy, 385  
UNION query structure operator, 346  
uniprocessors, concurrent transactions on, 12  
unnormalized, 385  
UPC bar codes, 272  
update transactions 
balances and, 20-21  
chopping update blobs, 19-20  
clustering index maintenance after 10% updates, 97  
indexes and performance issues, 106  
keeping nearly fixed data up to date, 201-202  
key compression and, 106  
positioned updates, 174  
replication and serialization, 191  
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List of Figures 
Chapter 2: Tuning the Guts 
Figure 2.1: Underlying components of a database system.  
Figure 2.2: Example of concurrent transactions. T1 is concurrent with T2 and T3. T2 is 
concurrent with T1, T3, and T4.  
Figure 2.3: Original database state.  
Figure 2.4: Multiversion read consistency. In this example, three transactions T1, T2, and T3 
access three data items X, Y, and Z. T1 reads the values of X, Y, and Z (T1:R(X), R(Y), R(Z)). 
T2 sets the value of Y to 1 (T2:W(Y: = 1)). T3 sets the value of Z to 2 and the value of X to 3 
(T3:W(Z : = 2), W(X: = 3)). Initially X, Y, and Z are equal to 0. The diagram illustrates the fact 
that, using multiversion read consistency, T1 returns the values that were set when it started.  
Figure 2.5: Value of serializability (DB2 UDB). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). The read committed 
isolation level does not guarantee that the summation query returns correct answers. The 
serializable isolation level guarantees correct answers at the cost of decreased throughput. 
These graphs were obtained using DB2 UDB V7.1 on Windows 2000.  
Figure 2.6: Value of serializability (SQL Server). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). Using the read 
committed isolation level, the ratio of correct answers is low. In comparison, the serializable 
isolation level always returns a correct answer. The high throughput achieved with read 
committed thus comes at the cost of incorrect answers. These graphs were obtained using 
SQL Server 7 on Windows 2000.  
Figure 2.7: Value of serializability (Oracle). A summation query is run concurrently with 
swapping transactions (a read followed by a write in each transaction). In this case, Oracle's 
snapshot isolation protocol guarantees that the correct answer to the summation query is 
returned regardless of the isolation level because each update follows a read on the same data 
item. Snapshot isolation would have violated correctness had the writes been "blind." Snapshot 
isolation is further described in the next section on facilities for long reads. These graphs were 
obtained using Oracle 8i EE on Windows 2000.  
Figure 2.8: Locking overhead. We use two transactions to evaluate how locking overhead 
affects performance: an update transaction updates 100,000 rows in the accounts table while 
an insert transaction inserts 100,000 rows in this table. The transaction commits only after all 
updates or inserts have been performed. The intrinsic performance costs of row locking and 
table locking are negligible because recovery overhead (the logging of updates) is so much 
higher than locking overhead. The exception is DB2 on updates because that system does 
"logical logging" (instead of logging images of changed data, it logs the operation that caused 
the change). In that case, the recovery overhead is low and the locking overhead is perceptible. 
This graph was obtained using DB2 UDB V7.1, SQL Server 7, and Oracle 8i EE on Windows 
2000.  
Figure 2.9: Fine-grained locking (SQL Server). A long transaction (a summation query) runs 
concurrently with multiple short transactions (debit/credit transfers). The serializable isolation 
level is used to guarantee that the summation query returns correct answers. In order to 
guarantee a serializable isolation level, row locking forces the use of key range locks (clustered 
indexes are sparse in SQL Server, thus key range locks involve multiple rows; see Chapter 3 
for a description of sparse indexes). In this case, key range locks do not increase concurrency 
significantly compared to table locks while they force the execution of summation queries to be 
stopped and resumed. As a result, with this workload table locking performs better. Note that in 
SQL Server the granularity of locking is defined by configuring the table; that is, all transactions 
accessing a table use the same lock granularity. This graph was obtained using SQL Server 7 
on Windows 2000.  
Figure 2.10: Fine-grained locking (DB2). A long transaction (a summation query) with 
multiple short transactions (debit/credit transfers). Row locking performs slightly better than 
table locking. Note that by default DB2 automatically selects the granularity of locking 
depending on the access method selected by the optimizer. For instance, when a table scan is 
performed (no index is used) in serializable mode, then a table lock is acquired. Here an index 



Database Tuning  List of Figures 

-321- 

scan is performed and row locks are acquired unless table locking is forced using the LOCK 
TABLE command. This graph was obtained using DB2 UDB V7.1 on Windows 2000.  
Figure 2.11: Fine-grained locking (Oracle). A long transaction (a summation query) with 
multiple short transactions (debit/credit transfers). Because snapshot isolation is used the 
summation query does not conflict with the debit/credit transfers. Table locking forces 
debit/credit transactions to wait, which is rare in the case of row locking. As a result, the 
throughput is significantly lower with table locking. This graph was obtained using Oracle 8i EE 
on Windows 2000.  
Figure 2.12: Multiple insertion points and page locking. There is contention when data is 
inserted in a heap or when there is a sequential key and the index is a B-tree: all insertions are 
performed on the same page. Use multiple insertion points to solve this problem. This graph 
was obtained using SQL Server 7 on Windows 2000.  
Figure 2.13: Multiple insertion points and row locking. Row locking avoids contention 
between successive insertions. The number of insertion points thus becomes irrelevant: it is 
equal to the number of inserted rows. This graph was obtained using SQL Server 7 on 
Windows 2000.  
Figure 2.14: Counter facility. There is a significant difference in throughput between system 
insertions that rely on a counter facility for generating counter values (sequence for Oracle, 
identity data type for SQL Server) and ad hoc insertions that explicitly increment a counter 
attribute in an ancillary table for generating counter values. This difference is due to blocking 
when accessing the ancillary counter table. Note that in Oracle, we use the default sequence 
iteration mechanism that caches blocks of 20 sequence numbers. This graph was obtained 
using SQL Server 7 and Oracle 8i EE on Windows 2000.  
Figure 2.15: Transaction states. Once a transaction commits or aborts, it cannot change its 
mind. The goal of the recovery subsystem is to implement this finite state automaton.  
Figure 2.16: Stable storage holds the log as well as data. Consider a transaction T that 
writes values stored on two pages Pi and Pj. The database system generates log records for 
these two write operations: lri and lrj (which contain the after images of Pi and Pj—or a logical 
representation of the write operation). The database system writes the log records to stable 
storage before it commits transaction T. The dirty pages Pi and Pj are written after the 
transaction is committed, unless the database buffer is full and these pages are chosen as 
victims by the page replacement algorithm. If the buffer fails, then data will be moved from the 
log to the database disks.  
Figure 2.17: Group commit. Increasing the group commit size improves performance. This 
experiment was performed using DB2 UDB V7.1 on Windows 2000.  
Figure 2.18: Log file location. For this experiment, we use the lineitem table from the TPC-H 
benchmark and we issue 300,000 insert or update statements. This experiment was performed 
with Oracle 9i on a Linux server with internal hard drives (no RAID controller). Each statement 
constitutes a separate transaction, and each transaction forces writes. This graph shows the 
throughput obtained with the log and the data on separate disks as opposed to the throughput 
obtained with the log and the data on the same disk. Locating the log file on a separate disk 
gives approximately a 30% performance improvement. Note that we also performed this 
experiment using separate disks on a RAID controller. In that case, the disk controller cache 
hides much of the negative impact of the seeks that are necessary to switch from the log to the 
data when they are both located on the same disk. The use of the disk controller cache is 
further discussed in the storage subsystem section.  
Figure 2.19: Disk organization.  
Figure 2.20: Checkpoints. A small log file forces checkpoints. If the log file cannot 
accommodate all the long entries generated during a long update transaction, it forces dirty 
data on disk. Here, four checkpoints are triggered: they have a negative impact on throughput. 
This experiment was performed on Oracle 8i EE on Windows 2000.  
Figure 2.21: Priority inversion. T1 waits for a lock that only T3 can release. But the system 
runs T2, which has a higher priority than T3, thus blocking both T1 and T3.  
Figure 2.22: Buffer organization. The database buffer is located in virtual memory (RAM and 
paging file). Its greater part should be in RAM. It is recommended to have the paging file on a 
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separate disk. If not possible, the paging file should be on a data disk rather than on the log 
disk so that paging does not disrupt sequential access to the log.  
Figure 2.23: Buffer size. These experiments are performed with a warm buffer (the table is 
scanned before each run). The scan query is processed inside the RAM if the table fits in the 
buffer. Otherwise, the table is entirely read from disk because the LRU (least recently used) 
replacement policy will systematically evict pages before they are reread. The performance of 
the multipoint query increases linearly as the buffer size increases, up to the point where the 
table fits entirely in memory. This experiment was performed with SQL Server 7 on Windows 
2000.  
Figure 2.24: Disk usage factor. For this experiment, we use a simple query that scans the 
lineitem table of the TPC-H benchmark (http://www.tpc.org) when it is located on disk and the 
memory is cold. We use an aggregation query to reduce the effects of transmitting the lineitem 
tuples through the database client interface. Throughput increases from approximately 10% as 
the disk usage increases from 70% to 100%. This experiment was performed using DB2 UDB 
V7.1 on Windows 2000.  
Figure 2.25: Prefetching. We use the lineitem table from TPC-H. The scan query is an 
aggregation query to reduce the effects of transmitting the lineitem tuples through the database 
client interface. Throughput increases by about 10% when the prefetching size increases from 
32 Kb to 128 Kb and doesn't change thereafter. This experiment was performed using DB2 
UDB V7.1 on Windows 2000.  
Figure 2.26: RAID and write-intensive applications. The negative impact of the additional 
read and write operations required by RAID 5 is obvious for software RAID 5. When the 
controller is responsible for these operations (hardware RAID 5), however, it manages to hide 
their impact on performance thanks to its cache. This experiment was performed using SQL 
Server 7 on Windows 2000.  
Figure 2.27: RAID and read-intensive applications. RAID 1 slightly improves on a single disk 
solution. The striped RAID levels (RAID 0, RAID 5, and RAID 10) significantly improve read 
performance by partitioning the reads across multiple disks. This experiment was performed 
using SQL Server 7 on Windows 2000.  
Figure 2.28: Controller cache. Using the cache controller (in write-back mode) provides 
similar benefits whether the write-intensive application is cache friendly (the volume of update 
is slightly larger than the controller cache) or cache unfriendly (the volume of update is ten 
times larger than the controller cache). This experiment was performed using SQL Server 7 on 
Windows 2000.  
Figure 2.29: Degree of parallelism. This experiment is performed with DB2 UDB V7.1 on a 
dual-processor shared memory multiprocessor running Windows 2000. When data is located in 
memory, the CPU is the critical resource and the cost of synchronization (between the threads 
that produce the data and the threads that consume them in order to transmit them to the client) 
and of context switches is higher than the benefit of increased data throughput that would 
result from increased multithreading. By contrast, when data is located on disk, a higher 
degree of parallelism significantly improves the performance of random access transactions as 
are typically found in online transaction processing. (The improvement for random access is 
further aided by the list prefetching mechanism implemented in DB2 that collects random 
accesses to a table and sorts them in order to minimize disk seek time.) For sequential access 
transactions such as are found in data warehouse applications, the disk is the bottleneck, and 
as a result, the throughput remains constant with increasing levels of multithreading.  
Figure 2.30: Hardware architectures. This diagram illustrates the various hardware 
architectures described in the text. Site 1 implements a shared everything architecture: a 
mainframe provides tight coupling. Site 2 implements a shared disk architecture. This is an 
increasingly popular alternative to tight coupling—disks are either tethered to servers or directly 
attached to the network (NAS). Site 3 implements a shared nothing architecture with a cluster 
(where each node usually implements tight coupling). A shared nothing architecture is actually 
implemented between these different sites.  
Chapter 3: Index Tuning 
Figure 3.1: Place of indexes in the architecture of a typical database system. Indexes are 
provided by the storage manager. They organize the access to data in memory and, for 
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clustering indexes, also organize the layout of data on disks. Indexes are tightly integrated with 
the concurrency control mechanisms. They are heavily used by the query processor during 
query optimization.  
Figure 3.2: Levels and branching factor. This tree has five levels and a fanout of four.  
Figure 3.3: Example of B+ tree. Leaf nodes contain data entries (in this diagram, the data is 
represented by the box next to each key). All data entries are at the same distance from the 
root; that is the meaning of balance. Nonleaf nodes contain key-pointer pairs. There are 
actually m keys and m+1 pointers on each nonleaf node. Each pointer Pi, associated to a key 
Ki, points to a subtree in which all key values k lie between Ki and Ki+1 (P0 points to a subtree 
in which all key values are less than K0 and Pm points to a subtree in which all key values are 
greater than Km). In most implementations, leaf nodes (and nonleaf nodes at the same level) 
are linked in a linked list to facilitate range queries and improve concurrency.  
Figure 3.4: Hash structure with chain overflow.  
Figure 3.5: Data organization. This diagram represents various data organizations: a heap file 
(records are always inserted at the end of the data structure), a clustering index (records are 
placed on disk according to the leaf node that points to them), a nonclustering index (records 
are placed on disk independently of the index structure), a sparse index (leaf nodes point to 
pages), and a dense index (leaf nodes point to records). Note that a nonclustering index must 
be dense, whereas a clustering index might be sparse or dense.  
Figure 3.6: Clustering index. For all three systems, a clustering index is twice as fast as a 
nonclustering index for a multipoint query and orders of magnitude faster than a full table scan 
(no index). Each multipoint query returns 100 records out of the 1,000,000 that the relation 
contains. These experiments were performed on DB2 UDB V7.1, Oracle 8i and SQL Server 7 
on Windows 2000.  
Figure 3.7: Index maintenance after insertions—DB2. The performance of the clustered 
index degrades with insertions. Once the index is full, additional records are simply appended 
to the relation. Each access is thus composed of a traversal of the clustering index followed by 
a scan of the additional records. In this experiment, a batch of 100 multipoint queries is asked. 
After each table reorganization, the index regains its original performance. This experiment 
was performed using DB2 UDB V7.1 on Windows 2000.  
Figure 3.8: Index maintenance after insertions—SQL Server. The performance of the 
clustered index degrades fast with insertions. Once the index is full, pages are split to 
accommodate new records in the index structure. For the multipoint query we are running in 
this experiment, the page split results in extra I/O for each of the 100 queries in our batch. After 
dropping and re-creating the index, performances are back to what they were before the 
insertions. This experiment was performed on SQL Server 7 on Windows 2000.  
Figure 3.9: Index maintenance after insertions—Oracle. In Oracle, the notion of clustering 
and indexing are orthogonal. All indexes are nonclustering (except for index-organized tables 
whose application is restricted to unique indexes on a primary key). In the general case, a 
clustering index can be approximated by an index defined on a clustered table. There is, 
however, no automatic physical reorganization of the clustered table when the index is 
reorganized. The only way to perform maintenance is to export and reimport the table. This 
experiment was performed on Oracle 8i EE on Windows 2000.  
Figure 3.10: Index maintenance after 10% updates. The updates do not concern the key 
attributes. For DB2 and SQL Server, updates introduce a penalty comparable to the one 
caused by insertions (see experiments). In Oracle, updates just add data to the existing 
clusters (by default one page is reserved for each cluster value). In this case, there is no 
overflow. Consequently, Oracle's index performance is not affected by the updates. These 
experiments were performed on DB2 UDB V7.1, Oracle 8i, and SQL Server 7 on Windows 
2000.  
Figure 3.11: Covering index. This experiment illustrates that a covering index can be as good 
as or even better than a clustering index as long as the prefix match query that is asked 
matches the order in which the attributes have been declared. If it is not the case, then the 
composite index does not avoid a full table scan on the underlying relation. A covering index is 
also significantly faster than a nonclustering index that is not covering because it avoids access 
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to the table records. This experiment was performed with SQL Server 7 on Windows 2000; that 
is, the clustering index is sparse.  
Figure 3.12: Nonclustering index. We use DB2 UDB V7.1 on Windows 2000 for this 
experiment. We use a range query and observe that the nonclustering index is advantageous 
when less than 15% of the records are selected. A scan performs better when the percentage 
of selected records is higher.  
Figure 3.13: Join with few matching records. A hash join with no index is faster than an 
indexed nested loop join relying on a clustering index on the joining attribute because the 
clustering index is sparse. The nonclustering index is ignored: a hash join is used. This 
experiment was performed using SQL Server 7 on Windows 2000.  
Figure 3.14: Join with many matching records. A hash join with no index performs worse 
than the other methods because setting up the buckets requires a lot of memory and disk 
reorganization. This experiment was performed using SQL Server 7 on Windows 2000.  
Figure 3.15: Indexes and updates. This graph shows the potential benefits for updates of 
creating an index on a small table (100 tuples). Two concurrent processes update this small 
table; each process works for 10 ms before it commits its update. When no index is used, the 
small table needs to be scanned when performing an update, and locks are requested for all 
the rows that are traversed by the scan operation. Concurrent updates are thus impossible. On 
the contrary, the presence of a clustered index on the attribute on which the update condition is 
expressed permits concurrent updates. This experiment was performed with SQL Server 2000 
on Windows 2000.  
Figure 3.16: Low index overhead for insertion. Using SQL Server 7 on Windows 2000, we 
insert 100,000 records in the TPC-B table account(number, branchnum, balance). We observe 
that the cost of inserting data in a single clustering or a single nonclustering index is similar to 
the cost of inserting data in a heap; the overhead becomes significant when the number of 
nonclustering indexes increases, and the number of concurrent threads performing the 
insertions increases.  
Figure 3.17: High index overhead for insertion. Using Oracle 9i on a Linux server, we insert 
100,000 records in the table Order(ordernum, itemnum, quantity, purchaser, vendor). We 
measure throughput with or without a nonclustered index defined on the ordernum attribute. 
The presence of the index significantly affects performances.  
Figure 3.18: Text indexing. Oracle 8i with the Intermedia extension supports inverted indexes 
for substring. An inverted index defined on a text column is a sequence of (key, pointer) pairs 
where each word in the text is a key whose associated pointer refers to the record it has been 
extracted from. This experiment compares the performance of multipoint queries based on 
equality and substring predicates using an inverted index and a B+ tree. We defined these 
indexes on the comments attribute of the TPC-H lineitem relation; this attribute is of type 
varchar(44). Using a B+ tree the equality predicate is =, and the substring predicate is LIKE. 
When an inverted index is defined, both equality and substring predicates are constructed 
using the CONTAINS function that searches through the inverted index. The graph shows that 
the performance of the inverted index and B+ tree are comparable for exact matches, while the 
inverted index performs slightly better on substring search. Note that inverted indexes can be 
defined on large objects(LOBs), whereas B+ trees cannot.  
Figure 3.19: Comparison of B-tree, hash, and bitmap index multipoint queries. One 
hundred records are returned by each equality query. In the hash structure, these 100 records 
map to the same hash key, thus requiring an overflow chain. The clustered B-tree offers good 
performance because the records returned are on contiguous pages. The bitmap index does 
not perform well because it is necessary to traverse the entire bitmap to fetch just a few 
matching records. This experiment was performed using Oracle 8i EE on Windows 2000.  
Figure 3.20: Comparison of B-tree, hash, and bitmap index—range queries. As expected, 
hash indexes don't help when evaluating range queries. This experiment was performed using 
Oracle 8i EE on Windows 2000.  
Figure 3.21: Comparison of B-tree and hash index—point queries. Hash index outperforms 
B-tree on point queries. This experiment was performed using Oracle 8i EE on Windows 2000.  
Figure 3.22: Distributing indexes. In this experiment, placing the index on a separate disk 
provides some advantage when inserting data. Point or multipoint queries do not always 
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benefit from separating data and indexes. We used Oracle 8i on Windows 2000 for this 
experiment.  
Figure 3.23: Partitioning indexes. Data is range partitioned on three disks; on each disk 
reside index and data. Insertions are slower compared to a single disk storage. Point queries 
benefit slightly from this partitioning. This experiment was performed on Oracle 8i EE on 
Windows 2000.  
Chapter 4: Tuning Relational Systems 
Figure 4.1: Database system architecture. Responsibility of people with different skills.  
Figure 4.2: Purchase table.  
Figure 4.3: Entities. This entity-relationship diagram represents the hospital and doctor entities 
in our sample hospital application as well as the works_in relationship connecting those entities.  
Figure 4.4: Vertical partitioning and scan queries. A relation R is defined with three 
attributes X (integer), Y, and Z (large strings); a clustered index is defined on X. This graph 
compares the performance of scan queries that access all three attributes, or only two of them 
(X and Y) depending on whether vertical partitioning is used or not. Vertical partitioning 
consists of defining two relations R1 and R2: R1 has two attributes X and Y with a clustered 
index on X, whereas R2 has two attributes X and Z with a clustered index on X, too. As 
expected, the graph shows that vertical partitioning exhibits poorer performance when all three 
attributes are accessed (vertical partitioning forces a join between R1 and R2 as opposed to a 
simple lookup on R) and better performances when only two attributes are accessed (fewer 
pages need to be scanned). This graph was obtained with SQL Server 2000 on Windows 2000.  
Figure 4.5: Vertical partitioning and single point queries. A relation R is defined with three 
attributes X (integer), Y, and Z (large strings); a clustered index is defined on X. A mix of point 
queries access either all three attributes, or only X and Y. This graph shows the throughput for 
this query mix as the proportion of queries accessing only X and Y increases. We compare 
query execution with or without vertical partitioning of R. Vertical partitioning consists of 
definining two relations R1 and R2: R1 has two attributes X and Y with a clustered index on X, 
whereas R2 has two attributes X and Z with a clustered index on X, too. The graph is obtained 
by running five clients that each submit 20 different point queries either on X, Y, Z (these 
require a join if vertical partitioning is used) or only on X, Y. The graph shows that vertical 
partitioning gives better performances when the proportion of queries accessing only X and Y 
is greater than 20%. In this example the join is not really expensive compared to a simple 
lookup—indeed the join consists of one indexed access to each table followed by a tuple 
concatenation. This graph was obtained with SQL Server 2000 on Windows 2000.  
Figure 4.6: Denormalization. We use the TPC-H schema to illustrate the potential benefits of 
denormalization. This graph shows the performance of a query that finds all lineitems whose 
supplier is in Europe. With the normalized schema, this query requires a four-way join between 
lineitem, supplier, nation, and region. If we denormalize lineitem and introduce the name of the 
region each item comes from, then the query is a simple selection on lineitem. In this case, 
denormalization provides a 30% improvement in throughput. This graph was obtained with 
Oracle 8i EE running on Windows 2000.  
Figure 4.7: Aggregate maintenance. We implemented the total amount example given in 
Section 4.4 to compare the benefits and costs of aggregate maintenance using SQL Server 
2000 on Windows 2000. The aggregate maintenance solution relies on triggers that update the 
VendorOutstanding and StoreOutstanding relations whenever a new order is inserted. The 
graph shows the gain obtained with aggregate maintenance. For inserts this gain is negative: 
the execution of the triggers slows down insertions by approximately 60%. For queries, 
however, the gain is spectacular: response time is reduced from 20 seconds to 0.1 second. 
The reason is that the "total amount" queries are simple scans on very small relations when 
aggregate maintenance is used, whereas they are three- or four-way joins on the large order 
relations otherwise.  
Figure 4.8: Aggregate maintenance with materialized views (queries). We implemented the 
total amount example given in Section 4.4 to compare the benefits and costs of aggregate 
maintenance using Oracle 9i on Linux. Materialized views are transparently maintained by the 
system to reflect modifications on the base relations. The use of these materialized views is 
also transparent; the optimizer rewrites the aggregate queries to use materialized views if 
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appropriate. We use a materialized view to define VendorOutstanding. The speed-up for 
queries is two orders of magnitude.  
Figure 4.9: Aggregate maintenance with materialized views (insertions). There are two 
main parameters for view materialization maintenance: (1) the materialized view can be 
updated in the transaction that performs the insertions (ON COMMIT), or it can be updated 
explicitly after all insert transactions are performed (ON DEMAND); (2) the materialized view is 
recomputed completely (COMPLETE) or only incrementally depending on the modifications of 
the base tables (FAST). The graph shows the throughput when inserting 100,000 records in 
the orders relation for FAST ON COMMIT and COMPLETE ON DEMAND. On commit 
refreshing has a very significant impact on performance. On demand refreshing should be 
preferred if the application can tolerate that materialized views are not completely up to date or 
if insertions and queries are partitioned in time (as it is the case in a data warehouse).  
Figure 4.10: Query tuning. This graph shows the percent increase in throughput between the 
original query and the rewritten query for the rewriting techniques we have presented in this 
section: distinct refers to the suppression of unnecessary DISTINCTs, subquery refers to the 
use of joins instead of uncorrelated subqueries without aggregates, correlated subquery refers 
to the decomposition of correlated subqueries using intermediate tables, join and numeric 
attribute refers to the use of a numeric attribute rather than an equivalent string attribute as the 
joining attribute, join and clustered index refers to the use of attributes on which a clustered 
index is defined on join attributes, having refers to the incorporation of selection conditions in 
the WHERE clause rather than in the HAVING clause, and view refers to the use of a selection 
on a base table instead of a view expanded to a join. These experiments were performed using 
IBM UDB V7.1, Oracle 8i, and SQL Server 2000 on Windows 2000.  
Figure 4.11: Purchase table.  
Chapter 5: Communicating With the Outside 
Figure 5.1: ODBC versus native call-level interface. We compare the throughput obtained 
using ODBC and OCI (the Oracle call-level interface) to retrieve records from the database 
server into the application. Note that the ODBC driver we use for this experiment is 
implemented on top of OCI. The results show (1) that the connection and query preparation 
overhead is much lower with OCI than ODBC, almost twice as low, and (2) that the fetching 
overhead is lower for ODBC than OCI. When the number of records fetched from the result set 
increases, the throughput increases more with ODBC than with OCI. The reason is that the 
ODBC driver does a good job at implicitly prefetching records compared to our straightforward 
use of OCI.  
Figure 5.2: Client-server connection. Client-server communication is mediated by a buffer on 
the server site, usually one per connection.  
Figure 5.3: Loop constructs. This graph compares two programs that obtain 2000 records 
from a large table (lineitem from TPC-H). The loop program submits 200 queries to obtain this 
data, whereas the no loop program submits only one query and thus displays much better 
performance. This graph was obtained using SQL Server 2000 on Windows 2000.  
Figure 5.4: User-defined functions. We compare processing a function on the client site 
(retrieving all data + executing the function) with executing a function as a UDF within a query. 
The function computes the number of working days between two dates; the query selects the 
records in the lineitem table where the number of working days between the date of shipping 
and the data the receipt was sent is greater than five working days (80% of the records) or 
smaller than five working days (20% of the records). Using the UDF reduces the amount of 
data transferred, but applying the function at the application level happens to be faster when 
there are many records. This graph was obtained using SQL Server 2000 on Windows 2000.  
Figure 5.5: Retrieve needed columns only. This graph illustrates the impact on performance 
of retrieving a subset of the columns as opposed to retrieving all columns. In this experiment, 
we compare retrieving one-fourth of the columns with retrieving all columns using select *. We 
performed this experiment in two situations: (1) without indexes and (2) with a nonclustering 
index covering the projected columns. The overhead of crossing the database interface with 
larger amounts of data is significant. Using covered indexes yields an additional performance 
boost to the carefully written query. This experiment was run on Oracle 8i on Windows 2000.  
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Figure 5.6: Beware of cursors. This experiment consists in retrieving 200,000 rows from the 
table Employee (each record is 56 bytes) using a set-oriented formulation (SQL) or a cursor to 
iterate over the table contents (cursor). Using the cursor, records are transmitted from the 
database server to the application one at a time. This has a very significant impact on 
performance. The query takes a few seconds with the SQL formulation and more than an hour 
using a cursor. This experiment was run on SQL Server 2000 on Windows 2000.  
Figure 5.7: Benefits of precompiled queries. This graph illustrates a benefit of precompiled 
queries. We have run a simple query (uncorrelated subquery without aggregate) several times 
either by submitting the query each time (using ODBC direct execution) or by compiling it once 
(using ODBC prepare command) and executing it repeatedly. The results show that 
precompilation is advantageous when the query is executed more than twice.  
Figure 5.8: Batch size. This graph shows the influence of the batch size on performance. We 
used the BULK INSERT command to load 600,500 tuples into the lineitem relation on SQL 
Server 2000 on Windows 2000. We varied the number of tuples loaded in each batch. The 
graph shows that throughput increases steadily until batch size reaches 100,000 tuples, after 
which there seems to be no further gain. This suggests that a satisfactory trade-off can be 
found between performance (the larger the batches the better up to a certain point) and the 
amount of data that has to be reloaded in case of a problem when loading a batch (the smaller 
the batches the better).  
Figure 5.9: Direct path. This graph illustrates the performance benefits obtained by bypassing 
the SQL engine (conventional usage of SQL * Loader with a commit every 100 records) and 
the storage manager (direct path option of SQL * Loader) compared to the performance of 
inserts (using one thread and a commit after each insertion). These results were obtained by 
inserting 600,500 tuples into the lineitem relation on Oracle 8i on Windows 2000.  
Figure 5.10: Storage engine parameters. This graph illustrates the influence of three 
parameters on the performance of the DB2 UDB data loading utility. We first loaded 600,500 
records in the lineitem relation into DB2 UDB V7.1 on Windows 2000 using the recoverable 
option (before images are maintained so that the original relation can be restored), no statistics 
were collected, and a clustering index was rebuilt after data was loaded. We varied in turn 
each of these parameters. As expected, performing a nonrecoverable load increases 
throughput, whereas collecting statistics decreases throughput. The impact of these 
parameters on performance is, however, not dramatic. Incremental index maintenance (as 
opposed to rebuilding the index after the load has terminated) decreases throughput 
significantly.  
Chapter 6: Case Studies From Wall Street 
Figure 6.1: Circumventing superlinearity. This graph compares the four techniques that we 
describe for circumventing superlinearity: (a) insertion followed by a check for deletions, (b) 
same as (a) with an index on the table used to check for deletions, (c) inserting sales and 
checking for deletions in small batches, and (d) using outer join. We use the unsuccessful 
sales example given in the text with two configurations of the data: small (500,000 sales, 
400,000 items, 400,000 customers and 10,000 stores, and 400,000 successful sales) and large 
(1,000,000 sales, 800,000 items, same customers and stores tables as for the small workload, 
and around 800,000 successful sales). The experiment is performed using SQL Server 2000 
on Windows 2000. Using the small workload, the minibatch approach does not provide any 
benefit. Indeed, the successfulsales table is small enough so that the overhead of the 
successive iterations (insertions/deletions in a temporary table) is high compared to the benefit 
of checking the deletion condition on a reduced number of records. There is a benefit in using 
an index on successful sales (SQL Server 2000 uses an index nested loop in that case instead 
of a hash join in the absence of an index). The outer join approach is very efficient because the 
detection of unsuccessful sales is performed using a selection (itemtest is null, or storetest is 
null, or customertest is null) as opposed to a join with the successfulsales table. The large 
workload illustrates the benefit of the batch approach. The outer join approach still gives the 
best performance.  
Figure 6.2: Buffer table. Source system transaction write to buffer tables and back-office 
systems read from them. If back-office systens must respond, then either build a clustering 
index on the buffer tables or use a second response table written by the back-office system.  
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Figure 6.3: Managing connections socialistically. Instead of opening a database connection 
for each client, the application server serves as a funnel to the database.  
Figure 6.4: High-availability disk subsystem. Writes go to the primary and into the high-
availability disk subsystem. This subsystem is normally a RAID device, so it can survive one or 
more disk failures. If the primary fails, the secondary works off the same disk image (warm 
start recovery). This architecture is vulnerable if the high-availability disk subsystem fails 
entirely.  
Figure 6.5: Replication server. The backup reads operations after they are completed on the 
primary. Upon failure, the secondary becomes the primary by changing the interface file 
configuration variables. This architecture is vulnerable if there is a failure of the primary after 
commit at the primary but before the data reaches the secondary.  
Figure 6.6: Two-phase commit. The transaction manager ensures that updates on the primary 
and secondary are commit consistent. This ensures that the two sides are in synchrony. This 
architecture might block the primary in case of delays at the secondary or failure of the 
transaction manager.  
Figure 6.7: Quorum approach. The quorum approach is used in most stock and currency 
exchanges. It survives processor, disk network, and site failures.  
Chapter 7: Troubleshooting 
Figure 7.1: A producer-consumer hierarchy of DBMS resources. Performance probing 
points exist at all points of the hierarchy. Producers are also known as resources.  
Figure 7.2: Cause-effect patterns in the consumption chain.  
Figure 7.3: Critical query monitoring.  
Figure 7.4: Routine monitoring.  
Figure 7.5: SQL Server's Query Analyzer.  
Figure 7.6: DB2 UDB's Shows Monitor tools.  
Figure 7.7: Oracle's Trace Manager (Diagnostics Pack).  
Chapter 8: Tuning E-Commerce Applications 
Figure 8.1: E-commerce three-tiered architecture. The three-tiered architecture comprises 
Web servers, application servers, and database servers. Web servers might cache Web pages 
(Web cache). Application servers might cache database relations (database cache).  
Figure 8.2: Connection pooling. For this experiment, we compare the response time using 
simple connections and connection pooling on Oracle 8i on Windows 2000. (Connection 
pooling as we have described it in this section is called connection concentration by Oracle.) 
We vary the number of client threads; each thread establishes a connection and runs five 
insert transactions. If a connection cannot be established, the thread waits 15 seconds before it 
establishes the connection again. The number of connections is limited to 60 on the database 
server. Using connection pooling, there is no problem establishing a connection; the 
connection requests that cannot be granted are queued and serviced whenever a connection 
becomes available. Using simple connections by contrast, connection requests cannot be 
granted when the number of client threads is greater than the maximum number of connections 
(60). When rejected, client threads have to wait before they try again to establish a connection.  
Figure 8.3: Clustering index. This graph illustrates the two benefits of a clustered index on 
shopper id. First, when only queries are submitted, the index speeds up response time 
compared to a scan (the table contains 500,000 entries). When updates, deletes, and 
insertions are submitted together with queries (1 delete, 1 insertion, and 10 insertions for each 
query), the mean response time approximately doubles. Throughput is an order of magnitude 
lower in the absence of a clustered index.  
Figure 8.4: A probabilistic state transition diagram of a simple e-commerce application: 0.4 of 
the clicks on the entry proceed to S2, 0.5 of the entries to S2 visit S2 again, and 0.1 enter S3.  
Chapter 9: Celko on Data Warehouses—Techniques, Successes, 
and Mistakes 
Figure 9.1: Organizational chart as a directed graph.  
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Chapter 10: Data Warehouse Tuning 
Figure 10.1: Bitmap. The l_returnflag attribute takes three possible values (A, N, R), while 
l_linestatus takes two values (O, F). The bitmap associates a value to each record in the 
lineitem relation. In the figure, records are represented vertically, and the associations are 
marked with black rectangles: the first record (from the left) has value A in the l_returnflag 
attribute and value F in the l_linestatus attribute.  
Figure 10.2: Bitmaps. We use the lineitem relation from the TPC-H benchmark for this 
experiment. We run a summation query, and we vary the WHERE clause so that it involves 1, 
2, or 3 attributes. The attributes involved are l_returnflag, l_linenumber, and l_linestatus. The 
entire lineitem relation contains 600,000 records; the conditions on each attribute have 
approximately a 50% selectivity. The query on one attribute selects 300,000 records, the query 
on two attributes selects 100,000 records, and the query on three attributes selects 2000 
records. To avoid crossing the application interface too often, each query is an aggregate that 
returns one record. We compare the performance of these aggregation queries using linear 
scan and bitmap indexes constructed on single attributes. This graph shows that bitmaps yield 
a significant performance improvement: the throughput is increased by an order of magnitude 
compared to a linear scan. Note that the experiment is conducted with a warm buffer, so CPU 
cost dominates. The graph shows that there is a slight overhead when combining several 
bitmaps. This experiment was conducted on Oracle 8i EE on Windows 2000.  
Figure 10.3: R-tree. We use a synthesized relation on top of the spatial extension to Oracle 8i 
to compare point and range queries on two-dimensional data using an R-tree and bitmaps. We 
define two-dimensional points as a spatial data type, and we use spatial functions in the 
queries. Using bitmaps, the X and Y coordinates of each point are simply represented as 
integers. In both cases, the relation contains eight other attributes; there are few distinct points 
stored in this relation. The graph shows the response time of a point query and a range query 
using bitmaps and the R-tree. The R-tree index loses. This is largely due to the over-head of 
using spatial functions to encode simple point or range queries. This result suggests that an R-
tree (or at least this implementation of an R-tree) should be used only to support far more 
complex spatial operations, such as overlap or nearest neighbor search, on spatial objects 
such as polygons. This graph comes from data from Oracle 8i running on Windows 2000.  
Figure 10.4: Materialized view creation graph. This graph illustrates the result of the 
materialized view creation algorithm applied to the TPC-H schema, and two aggregate 
materialized views, revenue_per_nation and revenue_per_region (in TPC-H regions actually 
denote continents). The revenue is computed using a six-way join (the TPC-H query Q5 is 
used to define the aggregate materialized view). The graph shows that the revenue_per_region 
view should be computed from the existing revenue_per_nation view and two base relations, 
instead of being computed from scratch using the base relations. The algorithm suggests the 
order of view construction: first revenue_per_nation, then revenue_per_region.  
Figure 10.5: Foreign key dependencies. The base tables in the TPC-H schema form a 
constellation schema. Lineitem and PartSupp are fact tables; Supplier, Part, and Order are 
dimension tables. The arrows on the diagram correspond to foreign key dependencies. If we 
consider the two aggregate materialized views balance_per_nation and balance_per_region 
(sum of supplier account balances s_acctbal grouped by nation or per region), foreign key 
dependencies link dimension tables (e.g., Supplier) and aggregate fact tables (e.g., 
balance_per_nation).  
Figure 10.6: Approximation on one relation. We sample 1% and 10% of the lineitem table by 
selecting the top N records on an attribute in the fact table (here l_linenumber). That is, we are 
taking an approximation of a random sample. We compare the results of a query (Q1 in TPC-H) 
that accesses only records in the lineitem relation. The graph shows the difference between 
the aggregated values obtained using the base relations and our two samples. There are eight 
aggregate values projected out in the select clause of this query. Using the 1% sample, the 
difference between the aggregated value obtained using base relations and sample relations is 
never greater than 9%; using a 10% sample, this difference falls to around 2% in all cases but 
one.  
Figure 10.7: Approximation on a six-way join. As indicated in this section, we take a sample 
of the lineitem table and join from there on foreign keys to obtain samples for all tables in the 
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TPC-H schema. We run query Q5, which is a six-way join. The graph shows the error for the 
five groups obtained with this query (only one aggregated value is projected out). For one 
group, using a 1% sample (of lineitem and using the foreign key dependencies to obtain 
samples on the other tables), we obtain an aggregated value that is 40% off the aggregated 
value we obtained using the base relations, and using a 10% sample, we obtain a 25% 
difference. As a consequence of this error, the groups are not ordered the same way using 
base relations and approximated relations.  
Figure 10.8: Response time benefits of approximate results. The benefits of using 
approximated relations much smaller than the base relations are, naturally, significant.  
Appendix B: Transaction Chopping 
Figure B.1: No SC-cycle.  
Figure B.2: SC-cycle.  
Figure B.3: No SC-cycle.  
Figure B.4: No SC-cycle.  
Figure B.5: SC-cycle.  
Figure B.6: Putting three pieces of T3 into one will not make chopping of T1 all right, nor 
will chopping T3 further.  
Figure B.7: SC-cycle if T2 must access room r before accessing room r′.  
Appendix D: Understanding Access Plans 
Figure D.1: Query access plan obtained using DB2's Visual Explain for the query select 
C_NAME, N_NAME from CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY. 
The query's answer is produced by a nested-loops join in which CUSTOMER is the outer table 
and NATION is the inner one. A table scan operation reads the rows of the former, while the 
nonclustered index NATION_PK is used to retrieve the latter.  
Figure D.2: Input arguments for the operator TBSCAN(3) of the query in Figure D.1. The 
operator retrieves only three columns from the table, RID, C_NAME, and C_NATIONKEY. No 
other column will be needed to process the rest of this query.  
Figure D.3: Input arguments for the operator IXSCAN(5) of the query in Figure D.1. The 
operator filters out all keys that are different from the key being joined by the NLJOIN(2) 
operation.  
Figure D.4: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 0. The addition of 
the balance predicate over the query of Figure D.1 can make the use of the index 
ACCTBAL_IX cost-effective, or not. It will all depend on the predicate's selectivity.  
Figure D.5: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 9900 or 
C_MKTSEGMENT = ‘AUTOMOBILE’. The operation RIDSCN(4) permits taking advantage of 
the fact that each predicate of the query is covered by a distinct index.  
Figure D.6: Fragment of the access plan for the query select C_NAME, N_NAME from 
CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL > 9900 
and C_MKTSEGMENT = ‘AUTOMOBILE’. The operation IXAND(8) permits merging the two 
keys/RIDS list and thus taking advantage of more than one index to access the CUSTOMER 
table.  
Figure D.7: Query access plan for the query select C_NAME, N_NAME from CUSTOMER 
join NATION on C_NATIONKEY = N_NATIONKEY where C_ACCTBAL < 0. The join 
algorithm chosen was the sort-merge that requires both the inner and outer table to be sorted 
over the join column. The table CUSTOMER needs an explicit sort, whereas NATION can take 
advantage of the NATION_PK index.  
Figure D.8: Query access plan for the query select C_NAME, N_NAME, O_ORDERDATE 
from CUSTOMER join NATION on C_NATIONKEY = N_NATIONKEY join ORDERS on 
C_CUSTKEY = O_CUSTKEY where O_ORDERSTATUS = ‘P’. The tables ORDERS and 
CUSTOMER get joined first, and only then do the results get joined with table NATION.  
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