

Professional Apache Tomcat 5

Vivek Chopra
Amit Bakore

Jon Eaves
Ben Galbraith

Sing Li
Chanoch Wiggers

a 559028 FM.qxd 4/22/04 3:54 PM Page i

a 559028 FM.qxd 4/22/04 3:54 PM Page vi

Professional Apache Tomcat 5

Vivek Chopra
Amit Bakore

Jon Eaves
Ben Galbraith

Sing Li
Chanoch Wiggers

a 559028 FM.qxd 4/22/04 3:54 PM Page i

Professional Apache Tomcat 5

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Card Number: 2004103742

ISBN: 0-7645-5902-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RR/QV/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail: permcoordinator@
wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEB
SITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEB SITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, and Programmer to Programmer are
trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

a 559028 FM.qxd 4/22/04 3:54 PM Page ii

About the Authors

Vivek Chopra
Vivek Chopra has over nine years of experience as a software developer, architect, and team lead, and is
currently working on Web Services, J2EE, and middleware technologies. He has worked and consulted
at a number of Silicon Valley companies (including Hewlett-Packard, Sun, and currently Sony) and
startups. He actively writes about technology and has co-authored half a dozen books on topics such as
Apache/open-source software, XML, and Web services. He is also a committer for UDDI4J, an open-
source Java API for UDDI. His other areas of experience and interest include compilers, middleware,
clustering, GNU/Linux, RFID systems, and mobile computing.

Sing Li
Sing Li, bitten by the microcomputer bug since 1978, has grown up with the Microprocessor Age. His
first personal computer was a $99 do-it-yourself Netronics COSMIC ELF computer with 256 bytes of
memory, mail-ordered from the back pages of Popular Electronics magazine. Currently, Sing is a consultant,
system designer, open-source software contributor, and freelance writer specializing in Java technology, as
well as embedded and distributed systems architecture. He writes for several popular technical journals
and e-zines, and is the creator of the “Internet Global Phone,” one of the very first Internet telephones
available. He has authored and co-authored a number of books across diverse technical topics, including
Tomcat, JSP, Servlets, XML, Jini, and JXTA.

Ben Galbraith
Ben Galbraith was introduced to Java in 1999, and has since become something of a Java enthusiast. He
has written dozens of Java/J2EE applications for numerous clients, and has built his share of Web sites.
He actively tinkers on several open-source projects and participates in the Java Community Process. He
has also co-authored a gaggle of books on various Java/XML-related topics, including the one you’re
holding now. He is president of the Utah Java User’s Group (www.ujug.org) and Director of Software
Development for Amirsys (www.amirsys.com).

Jon Eaves
Jon Eaves is the Chief Technology Officer of ThoughtWorks Australia and has more than 15 years of soft-
ware development experience in a wide variety of application domains and languages. He can be
reached at jon@eaves.org.

a 559028 FM.qxd 4/22/04 3:54 PM Page iii

Amit Bakore
Amit Bakore is a Sun-certified Web component developer and Java programmer. He works at Veritas
Software R&D center, Pune (India). Earlier, he was a part of the Server Technologies group at Oracle,
Bangalore (India), as a Senior Member Technical Staff. He has been working primarily on Java, J2EE,
XML, and Linux. His areas of interest include open-source technologies and satellite-launching vehicles.
He can be reached at bakoreamit@yahoo.com. Amit dedicates this work to his parents, Dr.
Ramkrishna and Sau. Vaijayanti.

Chanoch Wiggers
Chanoch Wiggers is a senior developer with Kiwi DMD, U.K., programming with J2EE and VB. He
previously worked as a technical architect with Wrox Press, editing, architecting, and contributing to
Java books.

a 559028 FM.qxd 4/22/04 3:54 PM Page iv

Credits
Acquisitions Editor
Robert Elliott

Development Editor
Kevin Shafer

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Kathryn A. Malm

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists
Beth Brooks, Sean Decker, Lauren Goddard,
Shelley Norris, Lynsey Osborne

Quality Control Technician
Carl W. Pierce
Brian H. Walls

Media Development Specialist
Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

a 559028 FM.qxd 4/22/04 3:54 PM Page v

a 559028 FM.qxd 4/22/04 3:54 PM Page vi

Acknowledgments

The behind-the-scenes work undertaken to create this book was as critical as writing the book itself. For
this, we would like to acknowledge the efforts of our editorial team: Bob Elliot (our executive editor),
Kathryn Malm (our editorial manager), and Kevin Shafer (our development editor). In addition, we
certainly couldn’t have done this without the expert help of Rupert Jones, our technical reviewer.

We would also like to acknowledge our respective families for all the support they gave us in this project.

a 559028 FM.qxd 4/22/04 3:54 PM Page vii

a 559028 FM.qxd 4/22/04 3:54 PM Page viii

Contents

Acknowledgments vii
Introduction xxi

Chapter 1: Apache and Jakarta Tomcat 1

Humble Beginnings: The Apache Project 2
The Apache Software Foundation 3
The Jakarta Project 3

Tomcat 4
Other Jakarta Subprojects 4

Distributing Tomcat 5
Comparison with Other Licenses 6

GPL 6
LGPL 7
Other Licenses 7

The Big Picture: J2EE 7
Java APIs 7
The J2EE APIs 8
J2EE Application Servers 9
“Agree on Standards, Compete on Implementation” 10
Tomcat and Application Servers 10

Tomcat and Web Servers 11
Summary 12

Chapter 2: JSP and Servlets 13

First Came CGI 14
Then Servlets Were Born 14

Servlet Containers 15
Accessing Servlets 16

And on to JSPs . . . 18
JSP Tag Libraries 21
Web Application Architecture 24
Java Site Architecture 25
Summary 27

a 559028 FM.qxd 4/22/04 3:54 PM Page ix

x

Contents

Chapter 3: Tomcat Installation 29

Installing the Java Virtual Machine 29
Installing the Sun JVM on Windows 29

Installing Tomcat 33
Tomcat Windows Installer 33
Finishing the Installation 34
Setting Environment Variables 34
Testing the Installation 34
Installing Tomcat on Windows Using the ZIP File 39
Installing Tomcat on Linux 40

The Tomcat Installation Directory 41
The bin Directory 41
The shared Directory 42
The common Directory 42
The conf Directory 42
The logs Directory 42
The server Directory 42
The webapps Directory 42
The work Directory 43

Troubleshooting and Tips 43
The Port Number Is in Use 43
Running Multiple Instances 44
A Proxy Is Blocking Access 44

Summary 44

Chapter 4: Tomcat Architecture 45

An Overview of Tomcat Architecture 45
The Server 47
The Service 47
The Remaining Classes in the Tomcat Architecture 50

Summary 50

Chapter 5: Basic Tomcat Configuration 51

Tomcat 5 Configuration Essentials 52
Tomcat 5 Web-Based Configurator 53

Enabling Access to Configurator 54
Files in $CATALINA_HOME/conf 58
Basic Server Configuration 60

Server Configuration via the Default server.xml 60
Operating Tomcat in Application Server Configuration 66

a 559028 FM.qxd 4/22/04 3:54 PM Page x

xi

Contents

Web Application Context Definitions 76
Authentication and the tomcat-users.xml File 77
The Default Deployment Descriptor – web.xml 77
How server.xml, Context Descriptors, and web.xml Work Together 81
Fine-Grained Access Control: catalina.policy 84
catalina.properties: Finer-Grained Control over Access Checks 87
Configurator Bootstrapping and the Future of Tomcat Configuration 87
A Final Word on Differentiating Between Configuration and Management 88

Summary 88

Chapter 6: Web Application Configuration 91

The Contents of a Web Application 91
Public Resources 92
The WEB-INF Directory 94
The META-INF Directory 95

The Deployment Descriptor (web.xml) 96
Servlet 2.3-Style Deployment Descriptor 97
Servlet 2.4-Style Deployment Descriptor 110

Summary 125

Chapter 7: Web Application Administration 127

Sample Web Application 128
Tomcat Manager Application 129

Enabling Access to the Manager Application 130
Manager Application Configuration 132

Tomcat Manager: Using HTTP Requests 134
List Deployed Applications 135
Installing/Deploying Applications in Tomcat 4.x 136
Deploying a New Application 136
Installing a New Application 137
Installing/Deploying Applications in Tomcat 5.x 139
Deploying a New Application Remotely 139
Reloading an Existing Application 142
Listing Available JNDI Resources 143
Listing Available Security Roles 144
Listing OS and JVM Properties 144
Stopping an Existing Application 145
Starting a Stopped Application 146
Removing an Installed Application (Tomcat 4.x Only) 146
Undeploying a Web Application 147

a 559028 FM.qxd 4/22/04 3:54 PM Page xi

xii

Contents

Displaying Session Statistics 148
Querying Tomcat Internals Using the JMX Proxy Servlet 149
Setting Tomcat Internals Using the JMX Proxy Servlet 150

Tomcat Manager: Web Interface 150
Displaying Tomcat Server Status 151
Managing Web Applications 151
Deploying a Web Application 153

Tomcat Manager: Managing Applications with Ant 154
Possible Errors 157
Security Considerations 158
Tomcat Deployer 160
Summary 160

Chapter 8: Advanced Tomcat Features 161

Valves — Interception Tomcat-Style 162
Standard Valves 162
Access Log Implementation 163

Scope of Log Files 163
Testing the Access Log Valve 165

Single Sign-On Implementation 166
Multiple Sign-On Without the Single Sign-On Valve 166
Configuring a Single Sign-On Valve 169

Restricting Access via a Request Filter 170
Remote Address Filter 170
Remote Host Filter 170
Configuring Request Filter Valves 171
Request Dumper Valve 172

Persistent Sessions 172
The Need for Persistent Sessions 172
Configuring a Persistent Session Manager 173

JNDI Resource Configuration 176
What Is JNDI? 176
Tomcat and JNDI 177
Typical Tomcat JNDI Resources 178
Configuring Resources via JNDI 179
Configuring a JDBC DataSource 182
Configuring Mail Sessions 184

a 559028 FM.qxd 4/22/04 3:54 PM Page xii

xiii

Contents

Configuring Lifecycle Listeners 187
Lifecycle Events Sent by Tomcat Components 187
The <Listener> Element 187
Tomcat 5 Lifecycle Listeners Configuration 188

Summary 191

Chapter 9: Class Loaders 193

Class Loader Overview 194
Standard J2SE Class Loaders 194
More on Class Loader Behavior 199
Creating a Custom Class Loader 199

Security and Class Loaders 200
Class Loader Delegation 201
Core Class Restriction 201
Separate Class Loader Namespaces 201
Security Manager 202

Tomcat and Class Loaders 202
System Class Loader 203
Common Class Loader 203
Catalina Class Loader 204
Shared Class Loader 204
Web Application Class Loader 205

Dynamic Class Reloading 206
Common Class Loader Pitfalls 206

Packages Split Among Different Class Loaders 207
Singletons 207
XML Parsers 208

Summary 209

Chapter 10: HTTP Connectors 211

HTTP Connectors 212
Tomcat 4.0: HTTP/1.1 Connector 212
Tomcat 4.1: Coyote HTTP/1.1 Connector 212
Tomcat 5.x: Coyote HTTP/1.1 Connector 216

Configuring Tomcat for CGI Support 220
Configuring Tomcat for SSI Support 222
Running Tomcat Behind a Proxy Server 223
Performance Tuning 224
Summary 226

a 559028 FM.qxd 4/22/04 3:54 PM Page xiii

xiv

Contents

Chapter 11: Web Server Connectors 229

Reasons for Using a Web Server 229
Connector Architecture 230

Communication Paths 230
Connector Protocols 231

Choosing a Connector 233
JServ 233
JK 234
webapp 234
JK2 234

Summary 235

Chapter 12: Tomcat and Apache Server 237

Introducing the JK2 Connector 238
The mod_ jk2 Apache module 238
The Apache JServ Protocol (AJP) 238
Coyote JK2 Connector 239

Understanding Tomcat Workers 239
Plug-In versus In-Process 239
Multiple Tomcat Workers 240
Types of Workers 240

Connecting Tomcat with Apache 241
Installing the Apache mod_ jk2 Module 241
Configuring the AJP 1.3 Connector in server.xml 243
Configuring Tomcat Workers 243
Adding Directives to Load the jk2 Module (httpd.conf) 247
Configuring the jk2.properties File 247
Testing the Final Setup 248

Configuring SSL 250
Configuring SSL in Tomcat 250
Configuring SSL in Apache 251
Testing the SSL-Enabled Apache-Tomcat Setup 254

Tomcat Load Balancing with Apache 255
Changing CATALINA_HOME in the Tomcat Startup Files 256
Setting Different AJP Connector Ports 256
Setting Different Server Ports 257
Disabling the Coyote HTTP/1.1 Connector 257
Setting the jvmRoute in the Standalone Engine 257
Commenting Out the Catalina Engine 258
Tomcat Worker Configuration in jk2.properties 258

a 559028 FM.qxd 4/22/04 3:54 PM Page xiv

xv

Contents

Tomcat Worker Configuration in workers2.properties 259
Sample workers2.properties File 263

Testing the Load Balancer 265
Testing Sticky Sessions 266
Testing Round-Robin Behavior 267
Testing with Different Load Factors 269

Summary 270

Chapter 13: Tomcat and IIS 271

Role of the ISAPI Filter 272
Connecting Tomcat with IIS 272

Testing Tomcat and IIS Installations 273
Configuring the Connector in Tomcat’s server.xml file 274
Installing the ISAPI Filter 274
Updating the Windows Registry for the ISAPI Filter 275
Configuring Tomcat Workers (workers2.properties) 277
Configuring the jk2.properties File 280
Creating a Virtual Directory Under IIS 280
Adding the ISAPI Filter to IIS 283
Testing the Final Setup 285

Troubleshooting Tips 287
Performance Tuning 289

Web Site Hits per Day 289
Keep Alive and TCP Connection Timeout 290
Tuning the AJP Connector 291
Load-Balanced AJP Workers 291

Using SSL 291
Summary 292

Chapter 14: JDBC Connectivity 293

JDBC Basics 294
Establishing and Terminating Connections to RDBMSs 295
Evolving JDBC Versions 295
JDBC Driver Types 296
Database Connection Pooling 297
Tomcat and the JDBC Evolution 298

JNDI Emulation and Pooling in Tomcat 5 299
Preferred Configuration: JNDI Resources 300

Resource and ResourceParams tags 301
Hands-On JNDI Resource Configuration 304
Testing the JNDI Resource Configuration 310

a 559028 FM.qxd 4/22/04 3:54 PM Page xv

xvi

Contents

Alternative JDBC Configuration 311
Alternative Connection Pool Managers 312

About PoolMan 312
Deploying PoolMan 313
PoolMan’s XML Configuration File 313
Obtaining JDBC Connections Without JNDI Lookup 315
Testing PoolMan with a Legacy Hard-coded Driver 316
Obtaining a Connection with JNDI Mapping 317
Testing PoolMan with JNDI-Compatible Lookup 319
Deploying Third-Party Pools 319

Summary 320

Chapter 15: Tomcat Security 321

Securing the Tomcat Installation 321
ROOT and tomcat-docs 322
Admin and Manager 322
Further Security 323
jsp-examples and servlets-examples 323
Changing the SHUTDOWN Command 323

Running Tomcat with a Special Account 324
Creating a Tomcat User 324
Running Tomcat with the Tomcat User 324

Securing the File System 326
Windows File System 326
Linux File System 328

Securing the Java Virtual Machine 328
Overview of the Security Manager 328
Using the Security Manager with Tomcat 332
Recommended Security Manager Practices 335

Securing Web Applications 337
Authentication and Realms 337

Authentication Mechanisms 337
Configuring Authentication 340
Security Realms 341

Encryption with SSL 362
JSSE 363
Protecting Resources with SSL 366

Host Restriction 368
Summary 368

a 559028 FM.qxd 4/22/04 3:54 PM Page xvi

xvii

Contents

Chapter 16: Shared Tomcat Hosting 369

Virtual Hosting 370
IP-Based Virtual Hosting 370
Name-Based Virtual Hosting 372

Virtual Hosting with Tomcat 375
Example Configuration 375

Introduction to Virtual Hosting with Tomcat 377
Tomcat Components 377
Tomcat 5 as a Standalone Server 378
Tomcat 5 with Apache 381

Fine-Tuning Shared Hosting 386
Creating Separate JVMs for Each Virtual Host 387
Setting Memory Limits on the Tomcat JVM 391

Summary 393

Chapter 17: Server Load Testing 395

The Importance of Load Testing 395
Load Testing with JMeter 396

Installing and Running JMeter 396
Making and Understanding Test Plans with JMeter 397
JMeter Features 401
Distributed Load Testing 413

Interpreting Test Results 414
Setting Goals and Testing Them 414
Establishing Scalability Limitations 416
Further Analysis 416

Optimization Techniques 416
Java Optimizations 417
Tomcat Optimizations 418

Exploring Alternatives to JMeter 419
Summary 419

Chapter 18: JMX Support 421

The Requirement to Be Manageable 421
All About JMX 423

The JMX Architecture 424
Instrumentation Level 426

a 559028 FM.qxd 4/22/04 3:54 PM Page xvii

xviii

Contents

Agent Level 427
Distributed Services Level 430

JMX Remote API 430
An Anthology of MBeans 430

Standard MBeans 431
Dynamic MBeans 431
Model MBeans 431
Open MBeans 431

JMX Manageable Elements in Tomcat 5 431
Manageable Tomcat 5 Architectural Components 432
Manageable Nested Components 436
Manageable Run-Time Data Objects 437
Manageable Resource Object 439

Accessing Tomcat 5’s JMX Support via the Manager Proxy 444
Working with the JMX Proxy 445
Modifying MBean Attributes 447
Accessing Tomcat JMX Support Remotely via the RMI Connector 450
Setting Up the JNDI Initial Context 452
Remote Tomcat Probing with queryjmx 452

Security Concerns 454
Summary 454

Chapter 19: Tomcat 5 Clustering 457

Clustering Benefits 458
Scalability and Clustering 458
The Need for High Availability 459

Clustering Basics 460
Master-Backup Topological Pattern 460
Fail-Over Behavioral Pattern 460

Tomcat 5 Clustering Model 461
Load Balancing 462
Session Sharing 464

Working with Tomcat 5 Clustering 468
Session Management in Tomcat 5 468
The Role of Cookies and Modern Browsers 469
Configuring a Tomcat 5 Cluster 469
Common Front End: Load Balancing via Apache mod_ jk2 473
Back-End 1: In-Memory Replication Configuration 475
Back-End 2: Persistent Session Manager with a File Store 483

a 559028 FM.qxd 4/22/04 3:54 PM Page xviii

xix

Contents

Back-End 3: Persistent Session Manager with a JDBC Store 487
Testing a Tomcat Cluster with JDBC Persistent Session Manager Back-End 490

An Application-Level Load Balancing Alternative (Balancer) 490
Load Balancing with the balancer Filter 491
Working with the balancer Filter 492
Testing the balancer Filter 495
Redirection and the Cookie Problem 496
Hardware-Assisted Request Distribution with Common NAT 496

The Complexity of Clustering 497
Clustering and Performance 497
Clustering and Response Time 498
Solving Performance Problems with Clustering 498

Summary 498

Chapter 20: Embedded Tomcat 501

Importance of Embedded Tomcat in Modern System Design 502
Typical Embedded Application Scenarios 503
The Role of the Administrator with Embedded Tomcat 503

Overview of Embedded Mode in Tomcat 505
The MBean Server and Object Bus 505
Internal Versus External Control 506
Apache Ant as a Scripting Engine 506

The Apache Jakarta Commons Modeler 507
Custom JMX Ant Tasks in the Commons Modeler 507
<jmx-service> Task 508
<mbean> Subelement 509
<attribute> Subelement 509
<modelerRegistry > or <mbean-descriptor> Task 509
<jmx-operation> Task 510

Ant Script Operational Flow 510
Using an Ant Script to Start Up a Minimal Embedded Server 512
Downloading and Installing Embedded Tomcat 512
The min.xml Minimal Embedded Startup Script 512
Testing the Embedded Tomcat Server 517
Starting Up a Minimal Server 517
Accessing Embedded Tomcat 5 517
Shutting Down the Embedded Server 519
Adding the manager Web Application 519
Adding the Manager Role for Authentication 520

a 559028 FM.qxd 4/22/04 3:54 PM Page xix

xx

Contents

Adding an <mbean> Element to the manager Context 521
Using the manager Application on the Embedded Server 521

Summary 522

Appendix A: Log4J 525

Appendix B: Tomcat and IDEs 551

Appendix C: Apache Ant 559

Index 573

a 559028 FM.qxd 4/22/04 3:54 PM Page xx

Introduction

Professional Apache Tomcat 5 is primarily targeted toward administrators. However, developers (espe-
cially those with additional responsibilities for Tomcat configuration, performance tuning, system secu-
rity, or deployment architecture) will find this book extremely useful.

In this book, we have attempted to address the needs of two diverse groups of administrators. The first
group has a job to do right away, and needs a line-by-line analysis of configuration options to assist in
meeting the needs of a customer. The second group seeks to understand Tomcat’s administrative features
in their entirety for professional development, and to explore its capabilities. For example, this group
might like to get some hands-on experience in building a cluster of Tomcat servers with inexpensive
components.

This is the second edition in our Apache Tomcat series. Our first edition, Professional Apache Tomcat,
covered Tomcat versions 3.x and the (then) new Tomcat 4.x. Since then, Tomcat has undergone a lot of
changes, and hence the need for this book.

What’s Changed Since the First Edition
Those of you who own a copy of our previous book will no doubt be wondering what’s changed in
this one.

Well, a lot has! There is a new specification (Servlet 2.4, JavaServer Pages 2.0) and a brand-new Tomcat
version (Tomcat 5.x) implementing it. Other than updated content, you will find the following changes:

❑ Complete coverage of Tomcat 5.x. This book still retains the Tomcat 4.x-related sections, how-
ever, recognizing that it’s going to be around for some time.

❑ A new chapter on the new and exciting JMX support in Tomcat.

❑ A new chapter on Tomcat clustering. Administrators (as well as system architects) should
find this chapter interesting when planning for and deploying Tomcat installations for mission-
critical production environments.

❑ A new chapter on embedded Tomcat.

❑ Coverage of the new JK2 Connector.

❑ Expanded coverage of security concepts in Tomcat.

❑ Coverage of support for Tomcat in popular IDEs such as IntelliJ IDEA, Eclipse, NetBeans/Sun
Java Studio, and Jbuilder.

❑ Many other topics!

a 559028 FM.qxd 4/22/04 3:54 PM Page xxi

xxii

Introduction

We value your feedback, and have improved on areas that needed some changes in our first edition. You
will find several of our original chapters rewritten, with better organization and more content. As a small
sample of the many improved areas, check out the streamlined coverage of Log4J and Apache Ant.

How to Use This Book
The best way to read a book is from cover to cover. We do recognize, however, that for a technical book
of this nature, it is often not possible to do that. This is especially true if a busy administrator only wants
to refer to this book for a particular urgent task at hand.

We have written this book to address both needs.

The chapters are structured so that they can be read one after another, with logically flowing content.
The chapters are also independent to the degree possible, and include references to other sections in the
book when it is necessary to have an understanding of some background material first.

This book is organized as follows:

❑ Chapter 1, “Apache and Jakarta Tomcat,” provides an introduction to the Apache and Tomcat
projects, their history, and information about the copyright licenses under which they can
be used.

❑ Chapter 2, “JSP and Servlets,” is a “10,000-foot overview” of Web technologies for administra-
tors unfamiliar with them, including CGI, Servlets, JSPs, JSP tag libraries, MVC (Model-View-
Controller) architecture, and Struts.

❑ Chapter 3, “Tomcat Installation,” details the installation of JVM and Tomcat on Windows and
Unix/Linux systems, and offers troubleshooting tips.

❑ Chapter 4, “Tomcat Architecture,” provides a conceptual background on components of the
Tomcat server architecture, including Connectors, Engines, Realms, Valves, Loggers, Hosts,
and Contexts.

❑ Chapter 5, “Basic Tomcat Configuration,” covers the configuration of the Tomcat server compo-
nents introduced in Chapter 4, both by manually editing the XML configuration files and by
using the Web-based GUI.

❑ Chapter 6, “Web Application Configuration,” describes the structure of Web applications
deployed in Tomcat, and their configurable elements.

❑ Chapter 7, “Web Application Administration,” explains how these Web applications can be
packaged, deployed, undeployed, and, in general, managed. There are three ways to do this
in Tomcat: via HTTP commands, via a Web-based GUI, and through Ant scripts. This chapter
describes all of them.

❑ Chapter 8, “Advanced Tomcat Features,” details advanced Tomcat configuration topics, such as
Access log administration, Single Sign-on across Web applications, request filtering, the Persistent
Session Manager, and JavaMail session setup.

❑ Chapter 9, “Class Loaders,” introduces Java class loaders and discusses their implications for
Tomcat, including (but not limited to) security issues.

a 559028 FM.qxd 4/22/04 3:54 PM Page xxii

xxiii

Introduction

❑ Chapter 10, “HTTP Connectors,” describes Tomcat’s internal HTTP protocol stack that enables it
to work as a Web server. It covers its configuration, as well as security and performance issues.

❑ Chapter 11, “Web Server Connectors,” explains why using a Web server such as Apache or IIS is
a better option than using Tomcat’s internal HTTP implementation, and provides an overview
of how this works.

❑ Chapter 12, “Tomcat and Apache Server,” covers the use of Apache as a Web server front end for
Tomcat. It also describes load-balancing configurations, as well as SSL setup.

❑ Chapter 13, “Tomcat and IIS,” provides detailed coverage of the use of IIS as a Web server front
end for Tomcat.

❑ Chapter 14, “JDBC Connectivity,” discusses JDBC-related issues in Tomcat, such as connection
pooling, JNDI emulation, configuring a data source, and alternative JDBC configurations.

❑ Chapter 15, “Tomcat Security,” deals with a wide range of security issues, from securing Tomcat
installations to configuring security policies for Web applications that run on it.

❑ Chapter 16, “Shared Tomcat Hosting,” will prove very useful to ISPs and their administrators,
as it covers Tomcat installations in virtual hosting situations.

❑ Chapter 17, “Server Load Testing,” offers detailed coverage about how to load-test Web applica-
tions deployed in Tomcat using the open-source JMeter framework. It also notes alternatives to
JMeter, such as commercially available products such as Silk Performer and Load Runner, and
details strategies for optimizing performance.

❑ Chapter 18, “JMX Support,” explores Tomcat 5’s Java Management Extension (JMX) support in
detail.

❑ Chapter 19, “Tomcat 5 Clustering,” covers Tomcat configurations for providing scalability and
high availability to Web applications. This is a “must read” chapter for production deployments
of Tomcat.

❑ Chapter 20, “Embedded Tomcat,” details the new mechanism for embedding Tomcat 5 within
custom applications.

❑ Appendix A, “Log4J,” provides a short (yet comprehensive) tutorial introduction to logging and
the use of Log4j in Tomcat’s Web applications. It provides configuration settings for various
deployment scenarios, such as sending log alerts via e-mail.

❑ Appendix B, “Tomcat and IDEs,” covers the support available for Tomcat in popular IDEs such
as IntelliJ IDEA, Eclipse, NetBeans/Sun Java Studio, and JBuilder.

❑ Appendix C, “Apache Ant,” provides a tutorial introduction to Ant. Apache Ant is used exten-
sively in the book, both as a build/install tool, as well as a scripting engine. Ant is being used
increasingly by administrators to automate repetitive tasks.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

a 559028 FM.qxd 4/22/04 3:54 PM Page xxiii

xxiv

Introduction

Tips, hints, tricks, and cautions regarding the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New and defined terms are highlighted in bold when first introduced.

❑ Keyboard strokes appear as follows: Ctrl+A.

❑ Filenames, URLs, directories, utilities, parameters, and other code-related terms within the text
are presented as follows: persistence.properties.

❑ Code is presented in two different ways:

In code examples, we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the given
context or for code that has been shown before.

Downloads for the Book
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-5902-8.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We made every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending us errata, you may save
another reader hours of frustration, and you will be helping to provide even higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.
shtml.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

a 559028 FM.qxd 4/22/04 3:54 PM Page xxiv

xxv

Introduction

If you don’t spot the error you found on the Book Errata page, go to www.wrox.com/contact/tech
support.shtml and complete the form that is provided to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in a subsequent edition of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages pertinent to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature if you wish to be sent e-mail
about topics of particular interest to you when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail message with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Caveat
Finally, a caveat: Tomcat, like all active open-source projects, is a constantly evolving piece of software.
This is usually good, because it keeps the software abreast of new technologies and improves existing
ones. However, this can make the content in any related book outdated over time. This is especially true
of new features that have been added in Tomcat 5 — JMX support, clustering, and support for the embed-
ded mode of operation. While we have made every effort possible to ensure that the book remains cur-
rent, we would like to point you to the following additional resources:

a 559028 FM.qxd 4/22/04 3:54 PM Page xxv

xxvi

Introduction

❑ Book Errata — Any changes in the book caused by new (or modified) Tomcat features will be
posted in the book errata section of the Wrox Web site (www.wrox.com) under the Book List link.

❑ Wrox P2P forum — The place (http://p2p.wrox.com) where you can consult with the Wrox
user community.

❑ Tomcat User’s mailing list — Mailing list for Tomcat users. This is where questions relating
to Tomcat’s usage and configuration should be posted. The archives for the list are at www.
mail-archive.com/tomcat-user@jakarta.apache.org, and directions for joining the list
are at http://jakarta.apache.org/site/mail2.html#Tomcat.

❑ Tomcat Developer’s mailing list — Mailing list for developers of the Tomcat Servlet container. This
is the place to track new developments in Tomcat. Do not post user questions on this list; use the
Tomcat User’s mailing list instead. The archives for the list are at www.mail-archive.com/
tomcat-dev@jakarta.apache.org, and directions for joining the list are at http://
jakarta.apache.org/site/mail2.html#Tomcat.

❑ The Apache bug database — Apache currently uses a Bugzilla-based system to track bugs (http://
nagoya.apache.org/bugzilla), but will eventually migrate to a Scarab-based system
(http://nagoya.apache.org/scarab/issues). This is where (use the Query Existing Bug
Reports option in Bugzilla) you can verify whether the issue you are facing is configuration-
related or a known Tomcat bug.

a 559028 FM.qxd 4/22/04 3:54 PM Page xxvi

Apache and Jakarta Tomcat

If you’ve written any Java Servlets or JavaServer Pages (JSPs), chances are good that you’ve down-
loaded Tomcat. That’s because Tomcat is a free, feature-complete Servlet container that developers
of Servlets and JSPs can use to test their code. Tomcat is also Sun Microsystems’ reference imple-
mentation of a Servlet container, which means that Tomcat’s first goal is to be 100 percent compliant
with the versions of the Servlet and JSP API specifications that it supports. Sun Microsystems (Sun)
is the creator of the Java programming language and functions as its steward.

However, Tomcat is more than just a test server. Many individuals and corporations are using
Tomcat in production environments because it has proven to be quite stable. Indeed, Tomcat is
considered by many to be a worthy addition to the excellent Apache suite of products of which it
is a member.

Despite Tomcat’s popularity, it suffers from a common shortcoming among open source projects:
lack of complete documentation. Some documentation is distributed with Tomcat (mirrored at
http://jakarta.apache.org/tomcat/), and there’s even an open source effort to write a
Tomcat book (http://tomcatbook.sourceforge.net/). Even with these resources, however,
there is a great need for additional material.

This book has been created to fill in some of the documentation holes, and uses the combined
experience of the authors to help Java developers and system administrators make the most of the
Tomcat product. Whether you’re trying to learn enough to just get started developing Servlets or
trying to understand the more arcane aspects of Tomcat configuration, you should find what you’re
looking for within these pages.

The first two chapters are designed to provide newcomers with some basic background information
that will become prerequisite learning for subsequent chapters. If you’re a system administrator
with no previous Java experience, you are advised to read these first two chapters, and likewise if
you’re a Java developer who is new to Tomcat. If you’re well informed about Tomcat and Java, you’ll
probably want to jump straight ahead to Chapter 3, “Tomcat Installation,” although skimming this
chapter and its successor is likely to add to your present understanding.

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 1

The following points are discussed in this chapter:

❑ The origins of the Tomcat server

❑ The terms of Tomcat’s license and how it compares to other open source licenses

❑ How Tomcat fits into the Java “big picture”

❑ An overview of integrating Tomcat with Apache and other Web servers

Humble Beginnings: The Apache Project
One of the earliest Web servers was developed by Rob McCool at the National Center for Supercomputer
Applications (NCSA), University of Illinois, Urbana-Champaign, referred to colloquially as the NCSA
project, or NCSA for short. In 1995, the NCSA server was quite popular, but its future was uncertain
because McCool left NCSA in 1994. A group of developers got together and compiled all the NCSA bug
fixes and enhancements they had found, and patched them into the NCSA code base. The developers
released this new version in April 1995, and called it Apache, which was somewhat of an acronym for
“A PAtCHy Web Server.”

Apache was readily accepted by the Web-serving community from its earliest days, and less than a year
after its release, it unseated NCSA to become the most used Web server in the world (measured by the
total number of servers running Apache), a distinction that it has held ever since (according to Apache’s
Web site). Incidentally, during the same period that Apache’s use was spreading, NCSA’s popularity was
plummeting, and by 1999, NCSA was officially discontinued by its maintainers.

For more information on the history of Apache and its developers, see http://httpd.apache.org/
ABOUT_APACHE.html.

Today, the Apache Web server is available on just about any major operating system (as of this writing,
binary downloads of Apache are available for 29 different operating systems, and Apache can be com-
piled on dozens more). Apache can be found running on some of the largest server farms in the world,
as well as on some of the smallest devices (including several hand-held devices). In Unix data centers,
Apache is as ubiquitous as air conditioning and UPS systems.

While Apache was originally a somewhat mangy collection of miscellaneous patches, today’s versions
are state-of-the-art, incorporating rock-solid stability with bleeding edge features. The only real competi-
tor to Apache in terms of market share and feature set is Microsoft’s Internet Information Server (IIS),
which is bundled free with certain versions of the Windows operating system. As of this writing, Apache’s
market share is estimated at around 67 percent, with IIS at a distant 21 percent (statistics courtesy of
http://news.netcraft.com/archives/web_server_survey.html, January 2004).

It is also worth noting that Apache has a reputation of being much more secure than Microsoft IIS. When
new vulnerabilities are discovered in either server, the Apache developers fix Apache far faster than
Microsoft fixes IIS.

2

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 2

The Apache Software Foundation
In 1999, the same folks who wrote the Apache server formed the Apache Software Foundation (ASF).
The ASF is a nonprofit organization that was created to facilitate the development of open source soft-
ware projects. Tomcat is developed under the auspices of the ASF. According to their Web site, the ASF
accomplishes this goal by the following:

❑ Providing a foundation for open, collaborative software development projects by supplying
hardware, communication, and business infrastructure

❑ Creating an independent legal entity to which companies and individuals can donate resources
and be assured that those resources will be used for the public benefit

❑ Providing a means for individual volunteers to be sheltered from legal suits directed at ASF
projects

❑ Protecting the Apache brand (as applied to its software products) from being abused by other
organizations

In practice, the ASF does indeed sponsor a great many open source projects. While the best-known of
these projects is likely the aforementioned Apache Web server, the ASF hosts many other well-respected
and widely used projects, including such respected industry standards as the following:

❑ PHP — Perhaps the world’s most popular Web scripting language

❑ Xerces — A Java/C++ XML parser with JAXP bindings

❑ Ant — A Java-based build system (and much more)

❑ Axis — A Java-based Web Services engine

The list of ASF-sponsored projects is growing fast. Visit www.apache.org to see the latest list.

The Jakarta Project
Of most relevance to this book is Apache’s Jakarta project, of which the Tomcat server is a subproject. The
Jakarta project is an umbrella under which the ASF sponsors the development of many Java subprojects.
As of this writing, there is an impressive array of more than 20 such projects. They are divided into the
following three categories:

❑ Libraries, tools, and APIs

❑ Frameworks and engines

❑ Server applications

Tomcat fits into the latter of these three.

3

Apache and Jakarta Tomcat

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 3

Tomcat
The Jakarta Tomcat project has its origins in the earliest days of Java’s Servlet technology. Servlets are a
certain type of Java application that plugs into special Web servers, called Servlet containers (originally
called Servlet engines). Sun created the first Servlet container, called the Java Web Server, which demon-
strated the technology but wasn’t terribly robust. Meanwhile, the ASF folks created the JServ product,
which was a Servlet engine that integrated with the Apache Web server.

In 1999, Sun donated their Servlet container code to the ASF, and the two projects were merged to create
the Tomcat server. Today, Tomcat serves as Sun’s official reference implementation (RI), which means that
Tomcat’s first priority is to be fully compliant with the Servlet and JavaServer Pages (JSP) specifications
published by Sun. JSP pages are simply an alternative, HTML-like way to write Servlets. This is discussed
in more detail in Chapter 2, “JSP and Servlets.”

An RI also has the side benefit of refining the specification. As an RI team seeks to implement a committee-
created specification (for example, the Servlet specification) in the real world, unanticipated problems
emerge that must be resolved before the rest of the world can successfully make use of the specifications.
As a corollary, if an RI of a specification is successfully created, it demonstrates to the rest of the world
that the specification is technically viable.

The RI is in principle completely specification-compliant and therefore can be very valuable, especially
for people who are using very advanced parts of the specification. The RI is available at the same time as
the public release of the specification, which means that Tomcat is usually the first server to provide the
enhanced specification features when a new specification version is completed.

The first version of Tomcat was the 3.x series, and it served as the reference implementation of the
Servlet 2.2 and JSP 1.1 specifications. The Tomcat 3.x series was descended from the original code that
Sun provided to the ASF in 1999.

In 2001, Tomcat 4.0 (code-named Catalina) was released. Catalina was a complete redesign of the Tomcat
architecture, and built on a new code base. The Tomcat 4.x series is the RI of the Servlet 2.3 and JSP 1.2
specifications.

Tomcat 5.0, the latest release of Tomcat, is an implementation of the new Servlet 2.4 and JSP 2.0 API
specifications. In addition to supporting the new features of these specifications, Tomcat 5 also intro-
duces many improvements over its predecessor, such as better JMX support and various performance
optimizations.

Earlier in this chapter, it was mentioned that Tomcat is Sun’s RI of the Servlet and JSP APIs. Yet, it is the
ASF that develops Tomcat, not Sun. It turns out that Sun provides resources to the ASF in the form of
Sun employees paid to work on Tomcat. Sun has a long history of donating resources to the open source
community in this and other ways.

Other Jakarta Subprojects
Wise Java Web application developers who want to save valuable time will familiarize themselves with
the other Jakarta projects. These peer projects of Tomcat include the following:

4

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 4

❑ Commons — A collection of commonly needed utilities, such as alternative implementations of
the Collection Framework interfaces, an HTTP client for initiating HTTP requests from a Java
application, and much more

❑ JMeter — An HTTP load simulator used for determining just how heavy a load Web servers and
applications can withstand

❑ Lucene — A high-quality search engine written by at least one of the folks who brought us the
Excite! search engine

❑ Log4J — A popular logging framework with more features than Java 1.4’s logging API, and
support for all versions of Java since 1.1

❑ ORO and Regexp — Two different implementations of Java-based regular expression engines

❑ POI — An effort to create a Java API for reading/writing the Microsoft Office file formats

❑ Struts — Perhaps the most popular Java framework for creating Web applications

This list is by no means comprehensive, and more projects are added frequently.

Distributing Tomcat
Tomcat is open source software, and, as such, is free and freely distributable. However, if you have much
experience in dealing with open source software, you’re probably aware that the terms of distribution
can vary from project to project.

Most open source software is released with an accompanying license that states what may and may not
be done to the software. At least 40 different open source licenses are in use, each of which has slightly
different terms.

Providing a primer on all of the various open source licenses is beyond the scope of this chapter, but the
license governing Tomcat is discussed here and compared with a few of the more popular open source
licenses.

Tomcat is distributed under the Apache License, which can be read from the $CATALINA_HOME/LICENSE
file. The key points of this license state the following:

❑ The Apache License must be included with any redistributions of Tomcat’s source code or
binaries.

❑ Any documentation included with a redistribution must give a nod to the ASF.

❑ Products derived from the Tomcat source code can’t use the terms “Tomcat,” “The Jakarta
Project,” “Apache,” or “Apache Software Foundation” to endorse or promote their software
without prior written permission from the ASF.

❑ Tomcat has no warranty of any kind.

5

Apache and Jakarta Tomcat

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 5

However, through omission, the license contains the following additional implicit permissions:

❑ Tomcat can be used by any entity (commercial or noncommercial) for free without limitation.

❑ Those who make modifications to Tomcat and distribute their modified version do not have to
include the source code of their modifications.

❑ Those who make modifications to Tomcat do not have to donate their modifications to the ASF.

Thus, you’re free to deploy Tomcat in your company in any way you see fit. It can be your production Web
server or your test Servlet container used by your developers. You can also redistribute Tomcat with any
commercial application that you may be selling, provided that you include the license and give credit to
the ASF. You can even use the Tomcat source code as the foundation for your own commercial product.

Comparison with Other Licenses
Among the previously mentioned and rather large group of other open source licenses, two licenses are
particularly popular at the present time: the GNU General Public License (GPL) and the GNU Lesser
General Public License (LGPL). Let’s take a look at how each of these licenses compares to the Apache
License.

GPL
The GNU Project created and actively evangelizes the GPL. The GNU Project is somewhat similar to
the ASF, with the exception that the GNU Project would like all of the nonfree (that is, closed source or
proprietary) software in the world to become free. The ASF has no such (stated) desire and simply wants
to provide free software.

Free software can mean one of two entirely different things: software that doesn’t cost anything, and
software that can be freely copied, distributed, and modified by anyone (thus, the source code is included
or is easily accessible). Such software can be distributed either free or for a fee. A simpler way to explain
the difference between these two types of free is to compare “free as in free beer” and “free as in free
speech.” The GNU Project’s goal is to create free software of the latter category. All uses of the phrase
“free software” in the remainder of this section use this definition.

The differences between the Apache License and the GPL thus mirror the distinct philosophies of the
two organizations. Specifically, the GPL has the following key differences from the Apache License:

❑ No nonfree software may contain GPL-licensed products or use GPL-licensed source code.
If nonfree software is found to contain GPL-licensed binaries or code, it must remove such
elements or become free software itself.

❑ All modifications made to GPL-licensed products must be released as free software if the
modifications are also publicly released.

These two differences have huge implications for commercial enterprises. If Tomcat were licensed under
the GPL, any product that contained Tomcat would also have to be free software.

6

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 6

Furthermore, while the Apache License permits an organization to make modifications to Tomcat and
sell it under a different name as a closed source product, the GPL would not allow any such act to occur;
the new derived product would also have to be released as free software.

LGPL
The LGPL is similar to the GPL, with one major difference: Nonfree software may contain LGPL-licensed
products. The LGPL license is intended primarily for software libraries that are themselves free software,
but whose authors want them to be available for use by companies who produce nonfree software.

If Tomcat were licensed under the LGPL, it could be embedded in nonfree software, but Tomcat could
not itself be modified and released as a nonfree software product.

For more information on the GPL and LGPL licenses, see www.gnu.org.

Other Licenses
Understanding and comparing open source licenses can be a rather complex task. The preceding expla-
nations are an attempt to simplify the issues. For more detailed information on these and other licenses,
the following two specific resources can help you:

❑ The Open Source Initiative (OSI) maintains a database of open source licenses. Visit them at
www.opensource.org.

❑ The GNU Project has an extensive comparison of open source licenses with the GPL license.
See it at www.gnu.org/licenses/license-list.html.

The Big Picture: J2EE
As a Servlet container, Tomcat is a key component of a larger set of standards collectively referred to as
the Java 2 Enterprise Edition (J2EE) platform. The J2EE standard defines a group of Java-based APIs that
are suited to creating Web applications for enterprises (that is, large companies). To be sure, companies
of any size can take advantage of the J2EE technologies, but J2EE is especially designed to solve the
problems associated with the creation of large software systems.

J2EE is built on the Java 2 Standard Edition (J2SE), which includes the Java binaries (such as the JVM
and bytecode compiler), as well as the core Java code libraries. J2EE depends on J2SE to function. Both
the J2SE and J2EE can be obtained from http://java.sun.com. Both J2SE and J2EE are referred to as
platforms, as they provide core functionality that acts as a sort of platform or foundation upon which
applications can be built.

Java APIs
As mentioned, J2EE is a standardized collection of Java APIs. The term API (or application programming
interface) is used by software developers in general to describe services made available to applications
by an underlying service provider (such as an operating system). In the Java world, this term is used to
describe many of the services that the Java Virtual Machine (JVM) and its code libraries make available
to Java programs.

7

Apache and Jakarta Tomcat

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 7

An important characteristic of APIs is that they are separated from the services that provide them. In
other words, an API is a kind of technical contract defining the functionality that two parties must pro-
vide: a service provider (often called an implementation), and an application. If both parties adhere to
the contract, an API is pluggable (that is, a new service provider can be plugged into the relationship).
Of course, if a service provider fails to conform to the contract, the applications that use the API will fail
to function properly.

The Java Community Process (JCP)
APIs in the Java world are created and modified by a standards body known as the Java Community
Process (JCP). The JCP is composed of hundreds of Java Specification Requests (JSRs). Each JSR is a
request to either change an existing aspect of Java (including its APIs) or introduce a new API or feature
to Java. New JSRs can be submitted by a member of the JCP. Anyone can become a member of the JCP
and, notably, individuals may do so at no cost (organizations pay a nominal fee). Once submitted, the
JCP Executive Committee must approve the JSR. The Executive Committee consists of JCP members
who have been elected to three-year terms in an annual election.

When a JSR is approved, the submitter becomes the Spec Lead. The Spec Lead forms an Expert Group
composed of JCP members who assist the Spec Lead in creating a specification detailing the change or
addition to the Java language. The Expert Group shepherds the specification along through various
review processes (to other JCP members and to the public) until, finally, the JSR is judged completed and
is approved by the Executive Committee. If a JSR results in an API, the Expert Group must also provide
a reference implementation of the API (discussed earlier in this chapter in the context of Tomcat) and a
technology compatibility kit (TCK) that other implementers can use to verify compatibility with the API.

Thus, via the JCP, any Java developer can influence the Java platforms, either by submitting a JSR, by
becoming a member of an existing JSR’s Expert Group, or by simply giving feedback to JSR Expert Groups.
While not the first attempt to create a technology standards body, the JCP is probably the world’s best
combination of accessibility and influence. As a contrast, the influential World Wide Web Consortium
(W3C) standards body charges almost $6,000 for individuals to join. Visit the JCP at www.jcp.org.

The J2EE APIs
As mentioned, the J2EE 1.4 platform consists of many individual APIs. The Servlet and JSP APIs are two
of these. The following table describes some of the other J2EE APIs.

J2EE API Description

Enterprise JavaBeans (EJB) Provides a mechanism that is intended to make it easy for
Java developers to use advanced features in their compo-
nents, such as remote method invocation (RMI),
object/relational mapping (that is, saving Java objects to a
relational database), distributed transactions across multi-
ple data sources, statefulness, and so on.

Java Message Service (JMS) Provides high-performance asynchronous messaging.
Among other things, enables J2EE applications to
communicate with non-Java systems on top of various
transports.

8

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 8

J2EE API Description

JAX-RPC Binds Java objects to Web services. This is the key API
around which J2EE Web services support revolves.

Java Management Extensions (JMX) Standardizes a mechanism for interactively monitoring
and managing applications at run-time.

Java Transaction API (JTA) JTA enables applications to gracefully handle failures in
one or more of its components by establishing transactions.
During a transaction, multiple events can occur, and if
any one of them fails, the state of the application can be
rolled back to how it was before the transaction began.
JTA provides the functionality of database-transactions
technology across an entire distributed application.

Connector Provides an abstraction layer for connecting with enter-
prise information systems, especially those that have no
knowledge of Java and expose no Java-compatible inter-
faces (such as JDBC drivers).

JavaMail Provides the capability to send and receive e-mail via the
industry-standard POP/SMTP/IMAP protocols.

In addition to the J2EE-specific APIs, J2EE applications also rely heavily on J2SE APIs. In fact, over the
years, several of the J2EE APIs have been migrated to the J2SE platform. Two such APIs are the Java
Naming and Directory Interface (JNDI), used for interfacing with LDAP-compliant directories (and
much more), and the Java API for XML Processing (JAXP), which is used for parsing and transforming
XML (using XSLT). The vast collection of J2EE and J2SE APIs form a platform for enterprise software
development unparalleled in the industry. In the coming years, Microsoft’s .NET platform may present
itself as a viable alternative to J2EE, but that day is still far off.

J2EE Application Servers
As mentioned, an API simply defines services that a service provider (i.e., the implementation) makes
available to applications. Thus, an API without an implementation is useless. While the JCP does pro-
vide RIs of all the APIs, most of the J2EE API reference implementations are inefficient and difficult to
use (with the exception of Tomcat, of course). Furthermore, the various J2EE RIs are not well integrated,
making it all the more difficult to write applications that make use of several different APIs. Enter the
J2EE application server.

Various third parties provide commercial-grade implementations of the J2EE APIs. These implementa-
tions are typically packaged as a J2EE application server. Whereas Tomcat provides an implementation
of the Servlet and JSP APIs (and is thus called a Servlet container), application servers provide a super-
set of Tomcat’s functionality: the Servlet and JSP APIs plus all the other J2EE APIs, and some J2SE APIs
(such as JNDI).

9

Apache and Jakarta Tomcat

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 9

Dozens of vendors have created J2EE-compatible application servers. Being “J2EE-compliant” means
that a vendor of an application server has paid Sun a considerable sum and passed various compatibility
tests. Such vendors are said to be J2EE licensees.

For a list of the J2EE licensees, visit http://java.sun.com/j2ee/licensees.html.

It is worth mentioning that several open source J2EE application servers are emerging. Currently, none
of these products have paid Sun the requisite fees to become officially J2EE-compatible, but the products
make informal claims stating that they are as good as such. One example is the popular JBoss project. The
ASF has itself recently begun a project to develop a J2EE-compatible application server named Geronimo.

“Agree on Standards, Compete on Implementation”
Developers who use the J2EE APIs can use a J2EE-compatible application server from any vendor, and it
is guaranteed to work with their applications. This flexibility is intended to help customers avoid vendor
lock-in problems, enabling users to enjoy the benefits of a competitive marketplace. The Java slogan along
these lines is “Agree on standards, compete on implementation,” meaning that the vendors all cooperate
in establishing universal J2EE standards (through participation in the JCP) and then work hard to create
the best application server implementation of those standards.

That’s the theory, at least. In reality, this happy vision of vendor neutrality and open standards is slightly
marred by at least two factors. First, each application server is likely to have its own eccentricities and
bugs. This leads to a popular variation on the famous “Write Once, Run Anywhere” Java slogan: “Write
Once, Test Everywhere.” Second, vendors are rarely altruistic. Each application server typically includes
a series of powerful features that are outside the scope of the J2EE APIs. Once developers take advantage
of these features, their application is no longer portable, resulting in vendor lock-in. Developers must,
therefore, be vigilant to maintain their application’s portability, if such a capability is desirable.

Tomcat and Application Servers
Up to this point, Tomcat has been referred to as an implementation of the Servlet/JSP APIs (i.e., a Servlet
container). However, Tomcat is more than this. It also provides an implementation of the JNDI and JMX
APIs. However, Tomcat is not an application server; it doesn’t provide support for even a majority of the
J2EE APIs.

Interestingly, many application servers actually use Tomcat as their implementation of the Servlet and
JSP APIs. Because Tomcat permits developers to embed Tomcat in their applications with only a one-line
acknowledgment, many commercial application servers quietly rely on Tomcat without emphasizing
that fact. The JBoss application server mentioned previously makes explicit use of Tomcat (although it
can also use other Servlet/JSP implementations).

Developers seeking to create Java Web applications that utilize the Servlet, JSP, JNDI, and JMX APIs will
find Tomcat an excellent solution. However, those seeking support for additional APIs will probably be
better served to either find an application server, or use Tomcat in addition to an application server. A
third option is to find an implementation of the individual J2EE APIs required and use them in conjunc-
tion with Tomcat. This piecemeal approach is perfectly valid, although integration problems are likely to
manifest themselves.

10

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 10

Tomcat and Web Servers
Tomcat’s purpose is to provide standards-compliant support for Servlets and JSPs. The purpose of
Servlets and JSPs is to generate Web content such as HTML files or GIF files on demand, using changing
data. Web content that is generated on demand is said to be dynamic. Conversely, Web content that never
changes and is served up as is is called static. Web applications commonly include a great deal of static
content, such as images or Cascading Style Sheets (CSS).

While Tomcat is capable of serving both dynamic and static content, it is not as fast or feature-rich as
Web servers written specifically to serve up static content. While it would be possible for Tomcat to be
extended to support many additional features for serving up static content, it would take a great deal of
time. The popular Apache Web server (and others like it) has been under development for many years.
In addition, because most Web servers are written in low-level languages such as C and take advantage
of platform-specific features, it is unlikely that Tomcat (a 100-percent Java application) could ever per-
form as well as such products.

Recognizing that Tomcat could enjoy a synergistic relationship with conventional Web servers, the earli-
est versions of Tomcat included a connector that enabled Tomcat and Apache to work together. In such a
relationship, Apache receives all of the HTTP requests made to the Web application. Apache then recog-
nizes which requests are intended for Servlets/JSPs, and passes these requests to Tomcat. Tomcat fulfills
the request and passes the response back to Apache, which then returns the response to the requestor.

The Apache connector was initially crucial to the Tomcat 3.x series, because its support for both static
content and its implementation of the HTTP protocol were somewhat limited.

Starting with the 4.x series, Tomcat features a much more complete implementation of HTTP and better
support for serving up static content, and should by itself be sufficient for people who aren’t looking for
maximum performance, but do need compliance with HTTP. However, as mentioned above, Apache and
other Web servers will most likely always have superior performance and options when it comes to serv-
ing up static content and communicating with clients via HTTP. For this reason, anyone who is using
Tomcat for high-traffic Web applications may want to consider using Tomcat together with another Web
server.

This book describes how to integrate Tomcat with the Apache and Internet Information Server (IIS) Web
servers in Chapters 11–13.

If you’re not using either Apache or IIS, then don’t give up hope entirely. It is still very possible to inte-
grate Tomcat with other Web servers, even one that resides on the same machine. All you have to do is
set up Tomcat to run on a port other than 80 (the default HTTP port). Note that, by default, Tomcat runs
on port 8080. Thus, any normal Web requests to a server are sent to an HTTP server sitting on port 80,
and any requests to port 8080 are sent to Tomcat. You can then design your Web application’s HTML to
request its static resources from the Web server on port 80.

11

Apache and Jakarta Tomcat

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 11

Summary
To conclude this chapter overview of Tomcat, let’s review some of the key points that have been discussed:

❑ The Apache Software Foundation (ASF) is a nonprofit organization created to provide the world
with quality open source software.

❑ The ASF maintains an extensive collection of open source projects. Many of the ASF’s Java
projects are collected under the umbrella of a parent project called Jakarta.

❑ Tomcat is one of the most popular subprojects in the Jakarta project.

❑ Tomcat can be freely used in any organization. It can be freely redistributed in any commercial
project so long as its license is also included with the redistribution and proper recognition is
given.

❑ J2EE is a series of Java APIs designed to facilitate the creation of complex enterprise applica-
tions. J2EE-compatible application servers provide implementations of the J2EE APIs.

❑ Tomcat is a J2EE-compliant Servlet container and is the official reference implementation for the
Java Servlet and JavaServer Pages APIs. Tomcat also includes implementations of the JNDI and
JMX APIs, but not the rest of the J2EE APIs, and is not, thus, an application server.

❑ While Tomcat can also function as a Web server, it can also be integrated with other Web servers.

❑ Tomcat has special support for integrating with the Apache, IIS, and Netscape Enterprise Server
(NES) servers.

This chapter has provided a basic introduction to Tomcat. Chapter 2 describes what Tomcat-served Web
applications look like and what files comprise them.

12

Chapter 1

b 559028 Ch01.qxd 4/22/04 3:56 PM Page 12

JSP and Servlets

From its humble beginnings as a document-exchange medium, the Internet has now become a
much more complex beast that is the backbone of much industry and social discourse. It quickly
outgrew its beginnings as a document publishing forum when it was obvious that these docu-
ments were changing very quickly. To prevent it from being filled with great amounts of stale
information, a system was needed to keep the information up-to-date.

It was also realized that the Internet represented an excellent medium for communication. Customers
and companies, service providers and clients, and all peer groups could communicate over it. To
facilitate this exchange of information and the provision of dynamic content, additional technolo-
gies were designed.

This chapter examines why there was a need for another type of server when Apache was already
doing such a good job as a Web server. We look at the types of services that Tomcat provides for
the programmer and the applications that run on it. This chapter also provides an introduction to
the following technologies for building dynamic Web sites:

❑ CGI scripts

❑ Servlets and JSP pages

❑ JSP tag libraries

❑ Web application architecture

❑ MVC architecture

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 13

First Came CGI
Well, perhaps HTML (static content) came first. However, as far as dynamic content was concerned, the
first mechanism was the Common Gateway Interface (CGI). Executable applications (usually written in
Perl or C) were provided with an interface that enabled clients to access them in a standard way across
HTTP.

The World Wide Web Consortium (W3C) has more details on CGI at www.w3.org/CGI/.

A URL for a CGI program looks something like this:

http://www.myserver.com/cgi-bin/MyExecutable?name1=value1&name2=value2

The first part of the URL is the protocol name (Hypertext Transfer Protocol, or HTTP, in this case), fol-
lowed by the name of the server. Everything after this and before the question mark is the context path.

The /cgi-bin/ part of the URL alerts the server that it should execute the CGI program specified in the
next part of the URL. The section after the question mark is known as the query string, and it enables
the client to send information to the CGI program specific to the client. In this way, the program can run
with client-specific information affecting the results.

CGI suffers from several drawbacks. The languages used to write applications must be procedural.
Instability in a CGI program can bring the entire machine down. In terms of performance, CGI applica-
tions require that a new instance of the application be created for every request, creating a new thread,
and thus making scalability difficult. This can cause a significant drain on the server. Each user requires
the same amount of resources, and any setup of those resources must be performed once per user
request. However, improvements in CGI (such as the FastCGI extension) have meant that CGI suffers
less from performance problems than it did previously.

Note that CGI describes only the contract between the Web server and the program. No services are pro-
vided to help implement user-centric systems. These include maintaining the identity of the client, provid-
ing access to ways of maintaining a user’s information, restricting access to the application to authorized
users, and storing run-time information in the application.

Thus, it became necessary to provide a framework in which applications that were created for the Web
could reside. This framework would provide the services mentioned previously, in addition to providing
a more mature life-cycle management service so that performance becomes less of an issue.

Then Servlets Were Born
Servlets are portions of logic written in Java that have a defined form and which are invoked to dynami-
cally generate content and provide a means for deploying an application on the Internet. All Servlets
implement an interface called Servlet, which defines a standard life cycle (a list of methods that are
called in a predictable way). Servlets were created by Sun Microsystems to address the problems with
CGI discussed in the preceding section.

Initialization is facilitated through a method called init(). Any resources needed by the Servlet, along
with any initialization that the Servlet must do before it can service client requests, is done in this method,
which is called just once for each instance of the Servlet.

14

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 14

Each Servlet may handle many requests from many clients. The Servlet interface defines a method
called service() that is called for each client request. This method controls the computation of the
response that is returned to the client. When a request has been serviced and the response returned to
the client, the Servlet waits for the next request. In HTTP applications, the service() method checks
which type of HTTP request was made (whether GET or POST, and so on), and forwards the request to
methods defined for handling these requests.

Finally, a method called destroy() is called once before the Servlet class is disposed of (see Figure 2-1).
This method can be used to free any resources acquired in the init() method.

Figure 2-1: Servlet methods.

Servlet Containers
The fact that the life cycle of the Servlet is predetermined means that many vendors may implement an
execution environment for Servlets (known as a Servlet container). All they must do is ensure that they
follow the contract defined for Servlets in the Servlet specifications. Therefore, a Servlet written accord-
ing to the specifications should run without modification in any compliant Servlet container.

Furthermore, Web containers provide services to the Servlet in addition to life-cycle management (such
as making initialization parameters available, enabling database connections, and enabling the Servlet to
find and execute other resources in the application). Containers can also maintain a session for the Servlet.
HTTP by design is stateless — once the response is returned to the client, there is nothing in HTTP that
enables the server to recognize the client when it makes another request.

To circumvent this issue, the container maintains the client’s identity through temporary cookies that
store a special token referencing the user. This token is known as the user’s session. By doing this, the
container can identify a client to the Servlet across multiple requests. This enables more complex interac-
tions with the client. If cookies are unavailable, the container can also rewrite links in the HTML that is
returned to the client, which offers an alternative way to maintain session information.

Servlet Container

Servlet

Client

Call once init()

service()

destroy()Call once

call

call

call

call

15

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 15

This means that instead of the application setting cookies in the client browser (and then failing if cookies
are disabled), the container automatically determines whether cookies are enabled. If so, it uses them,
or alternatively uses URL rewriting to maintain the session. The application developer can then create
objects that are stored in the user’s session and which are available to other Servlets in subsequent client
requests.

Security (that is, authentication and authorization) is provided through a declarative security framework.
This means that restricted resources and authorized users are not hard-coded into the application. Instead,
a configuration document specifies the types of users to whom the resources are available. Thus, security
policies can be changed easily according to requirements.

Tomcat is one such Servlet container. It provides an execution environment for Servlets, provides them
with access to system resources (such as the file system), and maintains the client’s identity. As mentioned
in Chapter 1, it is also the reference implementation for the Servlet specifications.

Although the Servlet specifications allow for other transports besides HTTP, in practice, Servlets are
almost exclusively used to provide application functionality across the Internet, servicing HTTP requests.
Like CGI, the Servlet specifications were designed to provide a standard way for extending Web servers
beyond static content and creating Web-enabled applications. Unlike CGI, the Servlet specifications are
confined to the Java language, although this carries with it the benefits of platform-independence.

Like the Java language, the Servlet specifications were created with the purpose of enabling third parties
to offer containers that compete on price, performance, and ease of use. In principle, because these con-
tainers are standard, customers of these third parties are free to choose between them and can enjoy a
relatively painless migration.

In practice, the vendors of Servlet containers also compete with services that exceed the specifications. In
addition, there are several areas in which the exact way to implement the specifications is open to inter-
pretation. One example of this is the way in which class loaders (responsible for making classes available
within the container so that they can be used by the application) work within the container.

However, migration is usually more a container configuration issue than a matter of reprogramming and
recompiling the application. This assumes, however, that the programmers were not tempted into using
nonstandard services of the Servlet container, and programmed the application with cross-container
compatibility in mind.

Tomcat, as a result of its reference implementation status, does not provide extra-specification features
that create application dependencies on it.

Accessing Servlets
If you consider Servlets as program resources, how are these resources accessed? Well, like CGI, the
server maps URLs to programmatic resources.

In the case of Servlets, this can be done in two ways. As part of the application configuration, each
Servlet is mapped to a Servlet name. The name is arbitrary, but is often descriptive of the service the
Servlet provides. The Servlet can then be accessed by entering a URL such as the following:

www.server.com/servlet/ServletName

16

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 16

where ServletName is the name given to the Servlet in the configuration files. Alternatively, a Servlet
may be accessed by its fully qualified name as follows:

www.server.com/servlet/com.wrox.db.ServletName

where com.wrox.db.ServletName is the fully qualified name of the Servlet.

Servlets can also be accessed through a logical mapping, which maps context paths to Servlets. This is
often more obvious in its intention than the straight Servlet name, because it is possible to add informa-
tion into the path that provides users with a clue as to the intention of the Servlet’s action. For example,
a Servlet that loads all available documents to enable administrative procedures may be called
AdminLoaderServlet, and may be mapped to a context path such as the following:

/admin/LoadDocumentsForAdministration

thus giving the user a better idea of what is occurring at this point in the application.

The container intercepts all requests and looks for patterns in the URL that correspond to a specified
Servlet, invoking the Servlet that matches that pattern. For example, all URLs that end with the .db
extension may be mapped to com.wrox.db.ServletName.

Another possibility is matching a character sequence to a Servlet. For example, a system could match
all requests that include the character sequence upload to an upload manager Servlet that manages the
uploading process. Thus, in principle, all of the following URLs would invoke this Servlet:

http://localhost:8080/upload?file=Hello&locationResolver=World

http://localhost:8080/admin/uploadUserDocument/Hello/World/auth

http://localhost:8080/core/Hello.World.upload

Although Servlets are an improvement over CGI (especially with respect to performance and server
load), they too have a drawback. Their primary use is processing logic. For the creation of content (i.e.,
HTML) they are less usable. Firstly, hard-coding textual output (including HTML tags) in code makes
the application less maintainable, because when text in the HTML must be changed, the Servlet must be
recompiled. Take a look at an excerpt of Servlet code:

out.println(“<html>”);
out.println(“ <head>”);
out.println(“ <title>Hello World example</title>”);
out.println(“ </head>”);
out.println(“ <body bgcolor=\”white\”>”);
out.println(“ <h1>Hello World</h1>”);
out.println(“ </body>”);
out.println(“</html>”);

The intended effect of this section of code is to output the following HTML:

<html>
<head>

<title>Hello World example

17

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 17

</head>
<body bgcolor=”white”>

<h1>Hello World</h1>
</body>

</html>

This is a rather cumbersome way of doing Web programming.

Secondly, it requires the HTML designer to understand enough about Java to avoid breaking the Servlet.
More likely, however, the programmer of the application must take the HTML from the designer and
then embed it into the application, which is an error-prone task.

To solve this problem, the JavaServer Pages (JSP) technology was created by Sun Microsystems.

And on to JSPs . . .
The first edition of the JavaServer Pages (JSPs) specifications resembled Active Server Pages (ASPs), a
Microsoft technology. Both have since evolved from those early days so much that the resemblance is
now purely superficial. JSP has made a huge leap forward with the introduction of tag libraries. These
tag libraries are collections of custom tags, and each tag corresponds to a reusable Java module. In addi-
tion, ASP.NET introduces a more object-oriented way of creating Web applications and includes a system
similar to JSP tags for moving code away from the HTML in which it is embedded. JSP tags are discussed
later in this chapter.

ASP is a technology for creating dynamic content. In its initial (and still the most popular) incarnation,
the programmer inserts sections of code into the page. These snippets of code are executed by the server,
and the returned content appears to the browser to be just HTML. The insertion of dynamic content is
done in a way that is transparent to the user. Following is an ASP page, HelloWorld.asp:

<% @Language = “VBScript” %>
<% Response.buffer = true %>
<html>

<head>
<title>Hello World</title>

</head>
<body>

<%
Dim HelloMessage
HelloMessage=”Hello World”
If request.QueryString(“message”) <> “” Then

HelloMessage=request.QueryString(“message”)
End If

response.write HelloMessage
%>

</body>
</html>

This page carries out one of two actions. The default is to show the message “Hello World” should the
URL http://localhost/HelloWorld.asp be called. However, if the URL provided is, for example,

18

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 18

http://localhost/HelloWorld.asp?message=HelloHello, then the message “HelloHello” will be
shown instead.

JSP initially resembled this style very closely. The same page coded in JSP could look like the following:

<%@ page language=”java” %>
<html>

<head>
<title>Hello World</title>

</head>
<body>

<%
String message = request.getAttribute(“message”);
if(message == null || message.equals(“”)) {

message = “Hello World”;
}
%><%=message%>

</body>
</html>

Behind the scenes, the JSP pages are compiled into Servlet classes the first time the JSP is invoked. The
Servlet is called for each request, thus making the process far more efficient than ASP because it avoids
parsing and compiling the document every time a user accesses the site. This means that a developer can
write software whose output is easy to verify visually (because the intended result is a visual one), and
the result works like a CGI program (a piece of software). In fact, JSP took off largely as a result of its
suitability for creating dynamic visual content at a time when the Internet was growing massively in
popularity.

One major practical difference between Servlets and JSP pages is that Servlets are provided in compiled
form, whereas JSP pages are often not (although pre-compilation is possible). What this means for a sys-
tem administrator is that Servlet files are held in the private resources section of the server, whereas JSP
files are mixed in with static HTML pages, images, and other resources in the public section. You will see
later how this can affect maintenance.

In the early days of JSP, the logic of the site, including what content should be shown, was always present
in the JSP pages themselves, and user interaction was entirely managed by the JSP pages. This is known
as Model 1 architecture. This architecture is suitable only for small sites with limited functionality, or Web
pages with minimal requirements for expansion. It is quite easy to create sites in this way and, therefore,
productivity is improved when complexity is low. This model is not recommended for larger sites. The
cost of this initial productivity is the time lost in debugging complex pages as the complexity and the size
of the site increase. The architecture for Model 1 is illustrated in Figure 2-2.

Each JSP page must know where the user should be sent next, and from where the user has originated.
This is embedded in information about how the site should be presented, the color of the fonts, and so
on. As such, this approach is quite inflexible.

There are, however, quite severe limitations to implementing large projects using only JSP pages. Mixing
code and HTML on the same page means that the designer must be sufficiently proficient with code to
avoid breaking the functionality of the page, as well as be able to work with the logic on the page to pro-
duce the desired output. At the same time, the developer must do some of the designer’s work of laying
out the page when the logic is sufficiently convoluted.

19

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 19

Figure 2-2: Model 1 Architecture.

In addition, because pieces of logic may be strewn around the page embedded in sections of HTML, it
is by no means straightforward to figure out the intended result without a fair amount of inspection.
This can cause significant problems with maintenance, as the code is mixed with markup. As such, code
reusability is very limited, so that sections of code are often repeated across the site and, unlike in tradi-
tional code, it is not easy to identify where a piece of code is.

The obvious alternative to this is to keep the pages as free from Java as possible, and have the processing
logic localized to Java classes.

JSP pages are often used like templates. For example, the header that includes the company logo may be
in one page, the main menu for the site may be in another, and a current news table may be defined in a
third. When the client makes a request, these separate elements of the page are assembled together and
presented to the user as though they were all created as one, as shown in Figure 2-3.

This enables the designer to effect changes globally by updating a single page. The HTML has been cen-
tralized. However, code may be spread out according to functionality across the various parts of the site.

Like Servlets, JSP pages operate within a container. The JSP container provides the same services as a
Servlet container, but requires the additional steps of conversion to Servlet code and compilation before
the JSP pages are executed. Tomcat includes both the Servlet container that executes Servlets and com-
piled JSP pages (named Catalina), and the compiler service for JSP pages (the Jasper compiler). The
combination of a JSP container and a Servlet container is known as a Web container (a container capable
of hosting Java Web applications).

Client

JSP

JSP

JSP

20

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 20

Figure 2-3: JSP pages.

A Web container provides the JSP developer with the services required to create complex, interactive,
and personalized applications on the Internet.

JSP Tag Libraries
Since the introduction of JSP tag libraries (also known as JSP tag extensions), JSP files look more like the
following (only the changed portions of the previous JSP are illustrated here):

<%@ page language=”java” %>
<html>

<head>
<title>Hello World</title>

</head>
<body>

<app:HelloWorld/>
</body>

</html>

Menu.jsp

Menu1
Menu2
Menu3
Menu4

Advert.jsp

Login.jsp

Web page header

SomePage.jsp

Disclaimer Copyright

Some content
created by this
page

Contact

Menu1
Menu2
Menu3
Menu4

ADVERTISING

ADVERTISING

Disclaimer Copyright Contact

Web page header

21

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 21

Compare this with the previous incarnation of the page:

<%@ page language=”java” %>
<html>

<head>
<title>Hello World</title>

</head>
<body>

<%
String message = request.getAttribute(“message”);
if(message == null || message.equals(“”)) {

message = “Hello World”;
}
%><%=message%>

</body>
</html>

You can already see that this is an improvement. An HTML-like tag has encapsulated the entire func-
tionality behind our code. In fact, the more complex the application is, the more this replacement of Java
code scriptlets with JSP tags improves the readability of the site. The page designer is presented with
sections of dynamic content that are far more familiar, and, more important, the page designer could
insert the HelloWorld tag without understanding how it works.

Each tag has a corresponding Java class that contains the code that would otherwise appear on the page.
Tags are structured in pairs, with a start tag followed by an end tag, with optional content:

<aTag>Something here</aTag>

The tag life cycle includes a method that is called when the start tag is encountered, called doStartTag();
a method that is called when the end tag is encountered, called doEndTag(); and a method that is called
to reset any state (request specific data) in readiness for the next request.

The tag also has power over which parts of the page are parsed by the application. Depending on the
behavior of the tag, it can stop the execution of the page, conditionally include its contents, and have its
contents evaluated multiple times. You can use this tag as shown here:

<app:if cookie=”user” value=””>
Please enter your name...

</app:if>

The app: prefix denotes a group of tags to which this tag belongs. In the preceding example, the contents
of the <app:if> tag are evaluated if the cookie named user has an empty string as its value. In this case,
the user is prompted for a name.

Here is an example of a JSP page that uses the Struts Framework tags:

<%@ page language=”java” %>
<%@ taglib uri=”struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”struts-html.tld” prefix=”html” %>

<html:html locale=”true”>
<head>

22

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 22

<title>Intranet Title</title>
<html:base/>

</head>
<body bgcolor=”white”>

<html:errors/>

<html:form action=”/ChangePassword” focus=”email”>
<table border=”0” width=”20%”>

<tr>
<th><bean:message key=”prompt.username”/></th>
<td align=”left”>

<html:text property=”email” size=”20” maxlength=”50”/>
<html:errors property=”email”/>

</td>
</tr>

<tr>
<th><bean:message key=”prompt.oldpassword”/></th>
<td>

<html:password property=”oldPassword”
size=”16” maxlength=”16” redisplay=”false”/>

<html:errors property=”oldPassword”/>
</td>

</tr>

<tr>
<th><bean:message key=”prompt.password”/></th>
<td>

<html:password property=”password”
size=”16” maxlength=”16” redisplay=”false”/>

<html:errors property=”password”/>
</td>

</tr>

<tr>
<th><bean:message key=”prompt.confirmpassword”/></th>
<td>

<html:password property=”password2”
size=”16” maxlength=”16” redisplay=”false”/>

<html:errors property=”password2”/>
</td>

</tr>

<tr>
<th><html:submit property=”submit” value=”Submit”/></th>
<td><html:reset/></td>

</tr>

</table>
</html:form>

</body>
</html:html>

23

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 23

The scripted version of this page runs to several pages, and, hence, is not included here. The point is that
tags present an elegant way to write pages that create dynamic content.

The encapsulation of code within tags means that, in principle, page designers could use them to con-
struct sites. This depends, however, on the tags being quite generic so that they can be reused in many
situations. Moreover, there must be sufficient information in the form of documentation and training
in order for the designer to understand the significance of what they are doing and to correctly define
the tags.

The next section briefly looks at the structure of a typical Web application. Chapter 6, “Web Application
Configuration,” discusses this structure in far more detail.

Web Application Architecture
The set of all the Servlets, JSP pages, and other files that are logically related constitute a Web application.
The Servlet specification defines a standard directory hierarchy in which all of these files must be placed.
It is described in the following table.

Relative Path Description

/ Web application root: all files that are publicly accessible are placed in
this directory. Examples include HTML, JSP, and GIF files.

/WEB-INF All files in this directory and its subdirectories are not publicly accessi-
ble. A single file, web.xml, called the deployment descriptor, contains
configuration options for the Web application. The various options for
the deployment descriptor are defined by the Servlet API.

/WEB-INF/classes All of the Web application’s class files are placed here.

/WEB-INF/lib Class files can be archived into JAR files and placed in this directory.

All Servlet containers are required to use this directory hierarchy. What’s more, because the location and
features of the deployment descriptor (the web.xml file mentioned previously) are set by the specifica-
tion, Web applications only need to be configured once and they are compatible with any Servlet con-
tainer. The deployment descriptor defines options such as the order in which Servlets are loaded by a
Servlet container, parameters that can be passed to the Servlets on startup, which URL patterns map to
which Servlets, security restrictions, and so on. Chapter 6 provides a full description of the deployment
descriptor.

To make distribution easier, all the files in the directory hierarchy described in the preceding table can be
archived in a WAR (Web ARchive) file. Server administrators can then place this WAR file into the direc-
tory specified by the Servlet container, and the Servlet container takes care of the rest.

This means that developers need only expend effort creating a Web application once. They can then
take their WAR file and simply install it into the proper location in their Servlet container, and the Web

Tags represent the future of JSP and Java-based dynamic content.

24

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 24

application will be deployed and ready to run. Thus, distributing and deploying Web applications is
remarkably simple, even if you switch Servlet containers.

Chapter 7, “Web Application Administration,” provides more detail on deploying Web applications and
WAR files.

Java Site Architecture
The ideal balance for the majority of sites is, as seen previously, a mix of Servlets and JSP pages. Servlets
are ideal for encapsulating the logic of the application, while being somewhat poor at visual representa-
tion, whereas JSP pages are designed for displaying visual material. This suggests that the combination
of the two can provide a balance and cover the needs of the majority of sites.

The architecture that aids this separation between logic and presentation is known as Model 2 architecture
or Model View Controller (MVC) architecture. The Model is the logic of the site — the rules that determine
what is shown and to whom it is shown. The View component of this architecture is naturally the JSP
pages that display the content that is created. Finally, the Controller designates which part of the Model
is invoked, and which JSP page is used to render the data. Another way to put this is that the Controller
defines the structure of the site. Figure 2-4 shows a diagram of the MVC architecture.

Figure 2-4: MVC architecture.

There are two typical types of Model 2 architectures: strict and loose. The strict version designates the
role of the Controller to a single Servlet, which extracts the information needed to route the query to a
piece of logic, executes the logic component, and then forwards the result of the execution to a JSP page.

An example of a strict MVC architecture is the Struts Framework, which was introduced in Chapter 1.
This framework implements a standard Servlet for routing execution. Each piece of functionality is
implemented as a special type of Struts component known as an Action. Each Action defines a single
method and can place a variety of objects where the JSP that is invoked can use them to render the page.
In this type of architecture, the sequence of execution is often very reliable. Figure 2-5 illustrates this
sequence.

Client
View

Model

Controller

Server

25

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 25

Figure 2-5: Sequence of execution in the Struts Framework.

An expanded example of the MVC strict architecture is shown in Figure 2-6. In this diagram, you can see
that the single Controller selects the correct logic to execute, and then forwards the result to the View,
which renders the results for the client.

Figure 2-6: Expanded MVC architecture.

Small-scale, homegrown sites that are not based on a framework are often a looser version of this archi-
tecture. Several Servlets each take the role of a Controller and part of the Model. In this version of the
Model 2 architecture, the JSP pages are still designed so that they contain very little or no logic, and
the Servlets handle all of the function of the application. This second model is quite popular because
it promotes high productivity in the short term, and can be easier to understand than the strict MVC
architecture.

In sites that have a pure MVC architecture, the structure of the site is (at least in principle) quite flexible.
The site is divided into units of functionality that can be reused in multiple situations, as well as pages
that can be reused. This structure, therefore, represents the most work for the administrator in frequently
changing sites. For example, a page that displays contact details in a Web site may be used for creating a
new contact, updating an old contact, viewing an existing contact, and updating a user’s contact details.

A site that allows content management may use the same JSP page and Servlet code for uploading a
variety of documents, each with different needs (such as a report, a tender request, and a procedures
manual). As the site expands, these components will need to be integrated with new functionality. The
flow control must be configured before the various components will work together correctly.

This does, however, represent a very reusable and updateable site. The site can be reconfigured according
to business needs and customer requests without rewriting code, and can be extended without affecting
existing code to any great extent.

Client

Server

Request

Returns result
to client

Controller

Returns result

Returns rendered
request result

Forwards
request

Forwards result

M

M

M

M
M

V

V

V

V
V

client outputJSPactioncontrollerrequest

26

Chapter 2

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 26

Summary
To conclude this chapter, let’s review some of the key points that have been discussed:

❑ Tomcat came about as a result of a need for complex sites that provide dynamic content and
features such as personalization through maintaining client identity, authentication and autho-
rization, and an environment for providing system services to simplify the creation of Web
applications.

❑ Servlets are portions of logic written in Java that have a defined form and which are invoked to
dynamically generate content and provide a means for deploying an application on the Internet.

❑ As part of the application configuration, each Servlet is mapped to a Servlet name. The name is
arbitrary, but is often descriptive of the service the Servlet provides. The Servlet can then be
accessed by entering a URL. Alternatively, Servlets can be accessed through a logical mapping,
which maps context paths to Servlets.

❑ Although Servlets are an improvement over CGI (especially with respect to performance and
server load), they are primarily suitable for processing logic. For the creation of content (that is,
HTML), they are less usable.

❑ JSP has made a huge leap forward with the introduction of tag libraries. In addition, ASP.NET
introduces a more object-oriented way of creating Web applications and includes a system simi-
lar to JSP tags for moving code away from the HTML in which it is embedded.

❑ JSP pages are compiled into Servlets, which are then kept in memory or on the file system indef-
initely, until either the memory is required back or the server is restarted. One major practical
difference between Servlets and JSP pages is that Servlets are provided in compiled form and
JSP pages are often not (although pre-compilation is possible).

❑ The more complex the application is, the more the replacement of Java code scriptlets with JSP
tags improves the readability of the site. Each tag has a corresponding Java class that contains
the code that would otherwise appear on the page.

❑ The set of all the Servlets, JSP pages, and other files that are logically related constitute a Web
application. The Servlet specifications define a standard directory hierarchy in which all of
these files must be placed.

❑ Servlets are ideal for encapsulating the logic of the application, while being somewhat poor at
visual representation; conversely, JSP is designed for displaying visual material. Therefore, the
combination of the two can provide a balance and cover the needs of most sites. The architec-
ture that aids this separation between logic and presentation is known as Model 2 architecture
or Model View Controller (MVC) architecture.

In Chapter 3, you will learn how to install Tomcat.

27

JSP and Servlets

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 27

b 559028 Ch02.qxd 4/22/04 3:56 PM Page 28

Tomcat Installation

Having read a couple of chapters on the history of and reason for Tomcat’s existence, you are now
probably raring to start with Tomcat. This chapter covers the following aspects of installation:

❑ How to install Tomcat on both Windows and Linux

❑ How to install Java

❑ The Tomcat installation directory structure

❑ How to troubleshoot typical problems encountered while installing Tomcat

Installing the Java Vir tual Machine
Tomcat, like any Java-based application, requires a Java Virtual Machine (JVM) to function. Sun
Microsystems distributes a free JVM for Windows, Linux, and Solaris. Other third-party vendors
and open-source groups make JVMs for other platforms — some for free, others commercially.

Installing the Sun JVM on Windows
In the Windows environment, the installer is an executable with easy-to-follow steps. First, down-
load the latest JVM from Sun’s Java Web site:

http://java.sun.com

Once downloaded, double-click the downloaded file and you will shortly have the JDK installed.
The folder in which you have chosen to install the JDK is known as your Java Home folder. It con-
tains several subfolders, but the only one of interest here is the bin directory in which the various
executables are stored (including the JVM, the compiler, the debugger, and a packaging utility).

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 29

The next step of the installation is to add the Java Home folder as an environment variable named
JAVA_HOME so that Windows can find it when it is invoked. The bin subdirectory of the Java Home
folder should also be added to the PATH environment variable.

To do this, select Start ➪ Settings ➪ Control Panel and choose the System option. Now choose the
Advanced tab and select the Environment Variables button. If desired, you can add the variable settings
to the specific user that you are operating as, so that it will only exist when you are logged in as that
user. Alternatively, you could add the settings for the entire system.

To add the JAVA_HOME environment variable for the entire system, select the New button in the lower
half of the window, as shown in Figure 3-1.

Figure 3-1: Selecting the New button.

Now enter the information shown in Figure 3-2.

Figure 3-2: The JAVA_HOME information.

This information may vary depending on the specific version of the JVM you have installed and the
location of your installation. Next, modify the PATH variable to include %JAVA_HOME%\bin, making sure
that it is the first entry in PATH, as shown in Figure 3-3.

30

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 30

Figure 3-3: Modifying the Windows PATH.

This will make the Java executables available to the command prompt. To test the installation, open an
instance of the command prompt (Start ➪ Programs ➪ Accessories ➪ Command Prompt) and enter the
following instruction in the command window:

> javac

This should bring up a standard usage message such as the following (cropped short here):

Usage: javac <options> <source files>
where possible options include:

-g Generate all debugging info
-g:none Generate no debugging info
-g:{lines,vars,source} Generate only some debugging info

Linux Installation
For a Linux installation, first download a suitable distribution from the following URL:

http://java.sun.com

The official supported platform is Red Hat Linux, but Sun’s JDK can be adapted to work with other dis-
tributions without too much trouble.

The following sections describe the two types of download: a tar/gzip version and an RPM package for
systems supporting RPMs.

Tar/gzip installation
For the tar/gzip version, the installation process is as follows: Once the archive has been downloaded,
extract its contents, which is a single self-extracting binary file. In these instructions, installing the JDK
for all users is demonstrated. You should sign in as root using the su command. Begin by moving the
file into the directory in which you would like to install the JDK.

If you are installing the JDK for a specific user, then you must install it into the user’s home directory.
Alternatively, if you wish to install the JDK for all users (which the Sun installation documentation
assumes), then an accepted location is /usr/java/jdk-[version number] where version number is the
version number of the JDK being installed.

Now add execute permissions for the file as follows:

chmod o+x j2sdk-1_4_2_03-linux-i586.bin

31

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 31

Run the file using the following line:

./j2sdk-1_4_2_03-linux-i586.bin

You will be presented with a license agreement before installation commences. Once installation has fin-
ished, you should add the environment variable $JAVA_HOME to your system, with the location of the
JDK. For example, if you installed it in /usr/java/j2sdk-1_4_2_03-linux-i586, you should give it
this value. This value can be added to the ~/.bashrc file for personal use or to /etc/profile for all
users. Alternatively, /etc/profile runs any shell scripts in /etc/profile.d, so the following lines
can be added to a script (here named tomcat.sh) in that directory (changing the details of the Java
directory as appropriate):

JAVA_HOME=/usr/java/jdk-1.4.2_03/
export JAVA_HOME
PATH=$JAVA_HOME/bin:$PATH
export PATH

Note that you may have to log out and log in again for /etc/profile or tomcat.sh to be read by your
system. You should also allow execute permissions for the $JAVA_HOME/bin folder for all users or for
yourself as owner as appropriate.

To test the installation, type the following:

javac

This should provide the following output (cropped for the sake of brevity):

Usage: javac <options> <source files>
where possible options include:

-g Generate all debugging info
-g:none Generate no debugging info
-g:{lines,vars,source} Generate only some debugging info

RPM installation
To install the JDK using the RPM, you must first download the file. The format is as follows:

j2sdk-[version number]-linux-i586-rpm.bin

On executing this file, you will be presented with the license terms for Apache. After execution, an RPM
with the same name, but with the trailing .bin removed, is automatically uncompressed. If you wish to
install the JDK for all users, you must now sign in as root. Set execute permissions for the file as follows:

chmod o+x j2sdk-1_4_2_03-linux-i586-rpm.bin
./j2sdk-1_4_2_03-linux-i586-rpm.bin

The script will display a binary license agreement, which you will be asked to agree to before installation
can proceed. Once you have agreed to the license, the install script will create the RPM file in the current
directory. To install the RPM, type the following:

rpm -iv j2sdk-1_4_2_03-linux-i586-rpm

32

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 32

This will install the Java 2 SDK at /usr/java/j2sdk1.4.2_03. You should now follow the previous
instructions to modify various environment settings. You should also test the installation as described
earlier.

Installing Tomcat
For each of the following steps (for Windows, Linux, and Unix systems), you can download the distribu-
tions from the same folder on the Jakarta Web site. Navigate to the following URL:

http://jakarta.apache.org/tomcat

Click the download binaries link (which at the time of this writing is on the left-hand side). The link will
take you to a page of various Jakarta projects; choose the most recent Tomcat 5.x link.

Tomcat Windows Installer
The Jakarta download page contains many different links for Tomcat 5.x. The one you want has an
extension of .EXE. Save this file at a convenient location on your machine, and double-click it to begin
installation.

Once you’ve agreed to the Apache license, the installer will present you with a screen labeled “Choose
Components,” as shown in Figure 3-4. You should probably select the Full option, which will install all
of the Tomcat components. Some of the components deserve some discussion, however.

Figure 3-4: The Tomcat setup’s Choose Components screen.

33

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 33

NT Service
One component you may not wish to install is the Service component (a subcomponent of Tomcat; if you
can’t see it, click the plus symbol next to Tomcat). The Service component enables you to start, stop, and
restart Tomcat in the same way as any other Windows NT service, and this option is recommended if you
are accustomed to managing your system services in this way. The chief advantage of a service is that it
will automatically start Tomcat for you when your system starts, and it will do so without displaying
any command prompts or other open windows.

An NT service is clearly the better option for production servers, but may not be what you want for
development; starting and stopping an NT service repeatedly can be a pain.

Example Web Applications
The example Web applications may be useful as a reference. However, if they are installed and opera-
tional, they represent a certain security risk because they provide a documented and known path into
your server. Choose to install them for now, as you will use them to confirm that the installation is work-
ing correctly. Chapter 15, “Tomcat Security,” describes the possible security implications.

Finishing the Installation
Once you’ve chosen the components you wish to install, click the Next button. You will be prompted to
choose a directory into which Tomcat should be installed. While the default directory is C:\Program
Files\Apache Software Foundation\Tomcat 5.0, you should consider installing Tomcat into a
path that does not contain spaces in the name, such as c:\java\tomcat-5.0. Once you’ve reviewed
the destination folder, click Next.

The next screen requests the Tomcat port and an administrator login. Leave the port value as 8080, but
choose a unique user name for the administrator login, and select a hard-to-guess password. Once done,
click Next.

The final screen will ask for the location of the JDK you installed earlier. Enter it if it was not automati-
cally found. Then, click Install.

Setting Environment Variables
While not strictly required when Tomcat’s Windows installer is used, it is a good idea to add an environ-
ment variable that points to the directory in which you installed Tomcat. The environment variable is
named CATALINA_HOME. To add the environment variable, navigate to Start ➪ Settings ➪ Control Panel
and choose System. Now choose the Advanced tab and select the Environment Variables button. Now
select the New button in the system variables (lower half) section and enter CATALINA_HOME as the vari-
able name and the path to your Tomcat installation (for example, c:\java\tomcat-5.0).

Testing the Installation
To test the installation, you must first start the server. You can start Tomcat manually or, if you installed
Tomcat as a service, you can start the service.

34

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 34

Starting the Server Manually
You can start the server manually by selecting Start ➪ Programs ➪ Apache Tomcat 5.0 and choosing
Start Tomcat. A new command-prompt window will appear, demonstrating that the server is running.

Alternatively, you can start Tomcat by opening a command-prompt window, navigating to
%CATALINA_HOME%\bin, and typing startup, as shown in Figure 3-5.

Figure 3-5: Starting Tomcat from the command line.

If Tomcat does not start up, you can find some troubleshooting tips at the end of this chapter. You may
also get error messages if your %JAVA_HOME% variable is not defined, and if the %JAVA_HOME%\bin
directory within the JDK is not in the PATH. If this is the case, you will get an error message such as the
following:

‘java’ is not recognized as an internal or external command, operable program or
batch file.

Refer to the instructions in the section “Installing the Java Virtual Machine,” earlier in this chapter, if this
is the case.

To shut down Tomcat, use the Shutdown shortcut, Start ➪ Programs ➪ Apache Tomcat 5.0 ➪ Stop
Tomcat, or type shutdown into the command prompt from Tomcat’s bin directory.

Starting the Server as a Service
If you wish to start the server as a service (and assuming you chose this option when installing Tomcat),
you will need to start up the service. This is done by double-clicking Administrative Tools in the Control
Panel. In Administrative Tools, you should select Services. In the window that opens, you should find an
entry for Tomcat, as shown in Figure 3-6.

To start the server, right-click the Tomcat entry and choose Start. No window will appear because the
server is running as a service in the background. Once the server is started, the options for restarting and
stopping the server will also be enabled.

35

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 35

Figure 3-6: The Apache Tomcat service.

Changing NT Service Options
Looking at Figure 3-6, you can see that the Startup Type is set to Automatic, which means that restarting
the computer also starts an instance of Tomcat automatically. From now on, every time Windows is
started, Tomcat will automatically start up at boot time and will be available from then on.

You can further customize the service by choosing the Properties option from the context menu. This
enables the startup type to be changed to Manual, or for the service to be disabled entirely. It also enables
you to choose to automatically restart the service should it crash. This last option is especially useful
because it enables you to run a script should the server fail, as well as reboot the computer.

You can also perform different actions depending on how many times the service has failed (by choosing
the Recovery tab), so you can initially request a reboot of the service, then a reboot of the machine, after
which any subsequent failures will cause a script to run that perhaps alerts you of the failure.

If you wish to set the recovery options, right-click the Tomcat service entry in the list and choose
Properties. In the window that opens, choose Recovery, and you should be presented with the options
shown in Figure 3-7.

36

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 36

Figure 3-7: The Recovery options.

As you can see, the default is for no action to be taken. As you desire, you can configure the service to be
restarted on failure, and/or run programs when a failure occurs.

Tomcat 5 as a Daemon Thread
If you chose not to run Tomcat as an NT service, you can still run Tomcat without a command
prompt/DOS prompt window being open all the time that Tomcat is running.

To do this, you need to amend the catalina.bat file in %CATALINA_HOME%\bin. Search and replace the
text

%_RUNJAVA%

with

%_RUNJAVAW%

Note the added W character. This new command calls the windowless version of the Java executable using
startup.bat, which is also in the %CATALINA_HOME%\bin directory. Tomcat will now start without an
attached Tomcat window, although one will appear and disappear.

You should create a shortcut to startup.bat because the provided shortcuts in the Start menu will not
start a daemon process.

37

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 37

Because the appearing and disappearing window resembles a port contention problem, you should ver-
ify that the server is running by attempting to connect to it with a Telnet session or using a browser. If it
is not running, run the startup.bat file from the %CATALINA_HOME%\bin folder and look at the error
message, which should explain the problem.

Viewing the Default Installation
Tomcat, like most servers, comes with a default home page that can be used to confirm that the installa-
tion is working. Enter the following address in a browser:

http://localhost:8080/

The page shown in Figure 3-8 should appear.

Figure 3-8: The default Tomcat home page.

38

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 38

Assigning Port Numbers
Note that if you are not accustomed to the port number assignation (the :8080 section of the address),
including it in the address of the server is required in the default installation. Ports are logical addresses
in a computer that enable multiple communications with the server and the channeling of different pro-
tocols. For example, POP3 traffic is commonly addressed to port 25, SMTP is addressed to port 110, SSL
is addressed to port 21, Telnet to 23, and so on. Browsers automatically point at port 80 if no port is spec-
ified (443 for HTTPS); hence, the use of ports is not immediately visible to the average user.

Because the majority of server hardware already includes a standard Web server installation (usually
Apache for Linux, and IIS for Windows), Tomcat does not attempt to connect to the standard HTTP traf-
fic port (which is 80 by default), but rather to port 8080.

The configuration file that specifies the port number is called server.xml and can be found in the
installation folder of Tomcat in the %CATLINA_HOME%\conf directory. It’s just a text file, and somewhere
within it you should find an entry similar to the following:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector acceptCount=”100” connectionTimeout=”20000” debug=”0”

disableUploadTimeout=”true” enableLookups=”false” maxSpareThreads=”75”
maxThreads=”150” minSpareThreads=”25” port=”8080” redirectPort=”8443”/>

You can find this entry by searching for the string port=”8080”. Changing this to another number will
change the Tomcat port number. Changing it to 80 will enable you to connect to Tomcat using the follow-
ing URL without the trailing colon and port number:

http://localhost/

If you have any problems, refer to the “Troubleshooting and Tips” section at the end of this chapter.

Conversely, if all has gone well, you are now the proud owner of your own Tomcat instance. Before you
are finished, you should check Tomcat’s capability to serve JSP pages and Servlets.

To do this, choose the JSP Examples link from the left-hand menu and select some of the examples to
run. Confirm that they all run as they are supposed to without error messages. Do the same for the
Servlet Examples link to test this functionality.

Installing Tomcat on Windows Using the ZIP File
Installing Tomcat using the ZIP file is not much different from the process described earlier. The ZIP file
is provided for those who prefer manually installing Tomcat.

To install Tomcat using the ZIP file, simply unpack the contents of the file to your directory of choice,
such as c:\java\tomcat-5.0.

Now add the %CATALINA_HOME% environment variable as shown in the preceding directions. To check
your installation, you need to follow slightly different instructions than before. Because the shortcuts
for the server are not created automatically, you need to call a couple of batch files provided in the
%CATALINA_HOME%\bin directory for this purpose.

39

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 39

To start the server, type the following at the command prompt:

> cd %CATALINA_HOME%\bin
> startup.bat

As with the preceding installation method, a new window will open, indicating that the server has
started. To shut down Tomcat, type shutdown.

Installing Tomcat on Linux
Installing Tomcat on Linux or Unix is easy. Download the tar/gzip file of the latest Tomcat 5.x binary
release from the following URL:

http://jakarta.apache.org/tomcat

Extract the downloaded file onto your hard drive to a path such as /usr/java/jakarta-tomcat-5.
Note that you should use the GNU version of the tar utility to ensure that long filenames are handled
properly.

You should now export the $CATALINA_HOME variable, using the following command (in bash):

CATALINA_HOME=/usr/java/jakarta-tomcat-5
export CATALINA_HOME

Alternatively, add these commands to ~/.bashrc or /etc/profile as you did for the JDK installation
or create a shell file, tomcat.sh, and place it in /etc/profile.d. It will be run automatically by /etc/
profile at boot time to make the variable available to all users.

You can now start Tomcat by running the following shell command:

$CATALINA_HOME/bin/startup.sh

Viewing the Default Installation
To confirm that Tomcat is running, point your browser to the following URL:

http://localhost:8080/

Choose the JSP Examples link from the menu on the left-hand side and select some of the examples to
run. Confirm that they run without error messages. Do the same for the Servlet Examples to test their
functionality.

Modifying Port Numbers
Tomcat uses port 8080 by default. Because the majority of server hardware already includes a standard
Web server installation, usually Apache, Tomcat does not attempt to connect to the standard HTTP traf-
fic port, 80, by default.

If you wish to have Tomcat use port 80 (and thus eliminate the need for a port number to be provided in
the URL), you first need root privileges.

40

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 40

The configuration file that specifies the port number is called server.xml and can be found in the
$CATALINA_HOME/conf directory. Somewhere within it you should find the following entry:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector acceptCount=”100” connectionTimeout=”20000” debug=”0”

disableUploadTimeout=”true” enableLookups=”false” maxSpareThreads=”75”
maxThreads=”150” minSpareThreads=”25” port=”8080” redirectPort=”8443”/>

You can find this entry by searching for the string port=”8080”. Changing this to another number
(higher than 1024 in Linux) will change the Tomcat port number. Changing it to 80 will enable you to
connect to Tomcat using the following URL, providing that the server is started with root permissions:

http://localhost/

If you have any problems, refer to the “Troubleshooting and Tips” section at the end of this chapter.

The Tomcat Installation Directory
The Tomcat installation directory contents are as follows:

(Tomcat Directory)/
bin/
common/

classes/
endorsed/
lib/

conf/
logs/
server/

classes/
lib/
webapps/

shared/
classes/
lib/

temp/
webapps/
work/

The bin Directory
The bin directory contains the shell scripts and batch files for starting Tomcat in various modes. It also
includes a pre-compiler for JSP pages that can improve startup time and first-time response (the time
it takes for the server to respond to a request for a JSP page that has not been previously compiled).
Compilation occurs only once, but it can frustrate the first visitor to a site after the server is restarted
because of the long response time.

41

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 41

The shared Directory
The shared directory contains Java classes to which any Web application can have access, such as JDBC
drivers or shared utility libraries. Class files are placed in shared/classes, and JAR files are placed in
shared/lib. See Chapter 9, “Class Loaders,” for more details.

The common Directory
The common directory’s subdirectories are for class files and JAR files that are available to all Web appli-
cations and to Catalina’s internal class files as well. Users should not place their own libraries in these
directories.

The conf Directory
The conf directory contains the configuration files for Tomcat. These include general server configura-
tion files, a default user list for file-based authentication and security for Web applications, and a global
configuration file. Later chapters discuss these files in greater detail.

The logs Directory
The $CATALINA_HOME/logs directory contains the server logs.

The server Directory
Classes that are to be made available to Catalina only are placed within the server directory’s subdirec-
tories. You should not place files here.

The webapps Directory
The Web applications provided with Tomcat are contained in webapps. The Web applications provided
with Tomcat are as follows:

❑ servlet-examples and jsp-examples— These are numerous example Servlets and JSP
pages. These are the examples used earlier to test the Tomcat installation.

❑ manager— This Web application enables remote management of the server, including installing
and uninstalling Web applications. Chapter 7, “Web Application Administration,” covers this
application in detail.

❑ ROOT— This is the default Web application for Tomcat. The contents of this folder are shown when
no subcontext is provided in the URL to the server. For example, http://localhost:8080/
will load index.html, or index.jsp, whichever is present, with the latter taking precedence if
both exist.

❑ tomcat-docs— The documentation for Tomcat is available with a default installation.

Your own Web applications will also be installed in this directory. The structure of the webapps directory
is discussed in greater detail in Chapter 6, “Web Application Configuration.”

42

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 42

The work Directory
The work directory contains temporary files, precompiled JSP pages, and other intermediate files.

Troubleshooting and Tips
This final section deals with some common problems you may encounter after installing Tomcat. If you
have further problems, more material can be found on the Tomcat Web site at the following URLs (as
well as on various forums):

http://jakarta.apache.org/tomcat/
http://java.sun.com/

You should also read the release notes available with each download.

Sometimes, when you attempt to launch Tomcat, the Tomcat window will appear briefly and then
disappear. This usually occurs because of an error that causes Tomcat to crash and, thus, its window
to disappear. The error message is also displayed, but because the window disappears so rapidly, the
error cannot be seen.

If Tomcat does not start, it can be run in the current shell or as a command prompt (as opposed to a new
pop-up window) so that the problem can be seen. To do this in Linux, type the following:

$CATALINA_HOME/bin/catalina.sh run

Or, in Windows, type the following:

> %CATALINA_HOME%/bin/catalina run

This will produce the normal startup messages, and any errors will be displayed. These errors also appear
in the stdout.log file in the $CATALINA_HOME/logs subdirectory.

Some common problems are discussed next.

The Port Number Is in Use
One possible error is that the chosen port is already in use. The error message will look similar to the
following:

LifecycleException: Protocol handler initialization failed:
java.net.BindException: Address already in use: JVM_Bind:8080

Tomcat uses port 8080 by default, as mentioned previously. You can determine whether another program
is using this port by using the netstat utility on both Windows and Linux. Typing netstat -ao on
Windows and netstat -lp on Linux into your shell/command prompt will list open ports on your system,
which should indicate any process that is interfering with Tomcat. You have two options: shut the process
down or change Tomcat’s port as described earlier.

43

Tomcat Installation

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 43

Running Multiple Instances
A common problem is trying to start a new Tomcat instance when one is already running. This is espe-
cially true if it’s running as a daemon thread. Check to ensure that you aren’t already running another
instance of Tomcat.

A Proxy Is Blocking Access
If you have a proxy set up for all HTTP services, it may be blocking access to the server. You should
bypass the proxy for all local addresses. Instructions are provided below.

Choose Edit ➪ Preferences. Choose the Advanced option and choose Proxies. Select Manual proxy con-
figuration and enter localhost and 127.0.0.1 in the No proxies for box. This may vary between different
versions of Netscape and Mozilla, but the principles remain the same.

Choose Tools ➪ Internet Options and choose the Connections tab. Select the Lan Settings button and
enter your proxy configuration by selecting the Advanced button in the window that opens. Enter
localhost and 127.0.0.1 in the Exceptions box. This should work in all versions of Internet Explorer.

Summary
This chapter has provided a great deal of information about selecting and installing a JDK and Tomcat in
a variety of ways. Key points of this chapter include the following:

❑ In the majority of cases, installing the server is a very straightforward process, as binary versions
are available for the common platforms.

❑ The Tomcat installation directory structure includes eight important directories.

❑ Common installation problems include the port number being in use, multiple instances running,
and a proxy blocking access.

If you have any problems, you can contact the support network at the following URL:

http://p2p.wrox.com/

The following URL also offers several lists that can be helpful to the beginner:

http://jakarta.apache.org/

The user list is also archived and you will find that most questions have been asked, and answered,
before.

Chapter 4 examines Tomcat’s architecture.

44

Chapter 3

b 559028 Ch03.qxd 4/22/04 3:56 PM Page 44

Tomcat Architecture

An understanding of Tomcat’s architecture is important both for its effective use and for getting
the most out of the remainder of this book. Tomcat’s internal architecture closely mirrors the way
that it should be administered. Each section of the Tomcat architecture is closely associated with a
function of the Server. It is possible to group administration tasks around these functional compo-
nents, making administration more intuitive.

In this chapter, you will gain an understanding of the Tomcat architecture, including the following
roles:

❑ Connectors

❑ Engines

❑ Realms

❑ Valves

❑ Loggers

❑ Hosts

❑ Contexts

An Overview of Tomcat Architecture
Tomcat’s architecture was completely revised for version 4. It was rebuilt from the ground up
because some users felt that the refactoring done in the previous Tomcat release, while improving
its performance and flexibility, was always going to result in a somewhat limited server. A rather
heated debate ensued regarding whether this was actually the case. The result of this controversy
was the 3.2 architecture branching from the main development tree in a continued refactoring
effort, leaving the 4.0 version to become the main focus of the project.

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 45

Tomcat 5 is the latest iteration of the Tomcat 4 architecture. Tomcat 5 supports the latest Servlet and JSP
specifications, versions 2.4 and 2.0, respectively.

Tomcat 5 consists of a nested hierarchy of components. Some of these components are called top-level
components because they exist at the top of the component hierarchy in a rigid relationship with one
another. Containers are components that can contain a collection of other components. Components that
can reside in containers, but cannot themselves contain other components, are called nested components.
Figure 4-1 illustrates the structure of a typical Tomcat 5 configuration.

Figure 4-1: Tomcat’s architecture.

This diagram represents the most complete topology of a Server. However, you should be aware that
some of these objects may be removed without affecting the Server’s performance. Notably, the Engine
and Host may be unnecessary if an external Web server (such as Apache) is carrying out the tasks of
resolving requests to Web applications.

Here, components that can be contained multiple times are denoted by a symbol that has multiple pro-
files, including Logger, Valve, Host, and Context. Connectors are drawn separately to illustrate a point
that is covered in just a moment.

The following sections examine each component in turn. Chapter 5 discusses each component’s
configuration.

Client
8080

Client
443

Client
80

Tomcat - The Server

port no.
Connector (AJP)

port no.
Connector (SSL)

port no.
Connector (Coyote)

Service
Engine (Catalina)

Realm

Logger
Logger

Logger

JSP

Servlet

Context
Host

Valve

Valve

Valve

46

Chapter 4

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 46

The Server
The Server is Tomcat itself — an instance of the Web application server — and is a top-level component.
It owns a port that is used to shut down the server. In addition, the Server can be set in debug mode,
which instantiates a version of the Java Virtual Machine (JVM) that enables debugging.

Only one instance of the Server can be created inside a given Java Virtual Machine (JVM).

Separate Servers configured to different ports can be set up on a single machine to separate applications
so that they can be restarted independently. That is, if one Server running in a JVM were to crash, the other
applications would be safe in another Server instance. This is sometimes done in hosting environments
in which each customer has a separate instance of a JVM, so a badly configured/written application will
not cause others to crash.

The Service
A Service groups a container (usually of type Engine) with that container’s Connectors and is a top-level
component.

An Engine is a request-processing component that represents the Catalina Servlet engine. It examines
the HTTP headers to determine the virtual host or context to which requests should be passed.

Each Service represents a grouping of Connectors (components that manage the connection between the
client and server) and a single container, which accepts requests from the Connectors and processes the
requests to present them to the appropriate Host. Each Service is named so that administrators can easily
identify log messages sent from each Service.

In other words, the container contains the Web applications. It is responsible for accepting requests,
routing them to the specified Web application and specific resource, and returning the result of the pro-
cessing of the request. Connectors stand between the client making the request and the container. They
provide additional services such as SSL support.

The Connectors
Connectors connect the applications to clients. They represent the point at which requests are received
from clients and are assigned a port on the server. The default port for nonsecure HTTP applications is
kept as 8080 to avoid interference with any Web server running on the standard HTTP port, but there is
no reason why this cannot be changed as long as the port is free. Multiple Connectors may be set up for
a single Engine or Engine-level component, but they must have unique port numbers.

The default port to which browsers make requests if a port number is not specified is port 80. If Tomcat
is run in standalone mode, the port for the primary Connector of the Web application can be changed to
80 by reconfiguring this component.

The default Connector is Coyote, which implements HTTP 1.1. Alternative Connectors are Apache JServ
Protocol (AJP), an SSL Connector for secure connections, and an HTTP 1.0 Connector. These are discussed
as part of Chapters 10–13, which deal with Tomcat’s Connectors and integrating Tomcat with Web servers
such as Apache and IIS.

47

Tomcat Architecture

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 47

The Engine
The next component in the architecture is the top-level container — a container object that cannot be
contained by another container. This means that it is guaranteed not to have a parent container. It is at
this level that the objects begin to aggregate child components.

Strictly speaking, the container does not need to be an Engine, it just has to implement the container
interface. This interface mandates the following: that the object implementing it is aware of its position
in the hierarchy (it knows its parent and its children), that it provides access to logging, that it provides
a Realm for user authentication and role-based authorization, and that it has access to a number of
resources, including its session manager (and some internally important aspects that you do not need to
worry about).

In practice, the container at this level is usually an Engine and so it makes sense to discuss it in that role.
As mentioned previously, an Engine is a request-processing component that represents the Catalina
Servlet engine. It examines the HTTP headers to determine the virtual host or context to which requests
should be passed.

When the standalone configuration is used, the Engine that is used is the default one. This Engine does
the checking mentioned earlier. When Tomcat is configured to provide Java Servlet support for a Web
server, the default class used to serve requests is overridden because the Web server has normally deter-
mined the correct destination of the request.

The host name of the server to which the Engine belongs is set here in multi-homed machines. An
Engine may contain hosts representing a group of Web applications and contexts representing a single
Web application.

The Realm
The Realm for an Engine manages user authentication and authorization. During the configuration of an
application, the administrator sets the roles that are allowed for each resource or group of resources, and
the Realm is used to enforce this policy.

Realms can authenticate against text files, database tables, LDAP servers, and the Windows network
identity of the user. You will learn more about this in Chapter 15.

A Realm applies across the entire Engine or top-level container, so applications within a container share
user resources for authentication. This means that, for example, a manager for the intranet will have the
same rights as the manager of the e-commerce site should both these applications be in the same Engine.

By default, a user must still authenticate separately to each Web application on the server. You will see
how this can be changed in Chapter 8 using Single Sign-on, but, in brief, this is implemented as a Valve
in Tomcat.

The Valves
Valves are components that enable Tomcat to intercept a request and pre-process it. They are similar to
the filter mechanism of the Servlet specifications, but are specific to Tomcat. Hosts, contexts, and Engines
may contain Valves.

48

Chapter 4

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 48

Valves are commonly used to enable Single Sign-on for all Hosts on a Server, as well as log request pat-
terns, client IP addresses, and server usage patterns (peak traffic, bandwidth use, mean average requests
per time unit, the resources that most requests ask for, and so on). This is known as request dumping,
and a request dumper Valve records the header information (the request URI, accept languages, source
IP, host name requested, and so on) and any cookies sent with the request. Response dumping logs the
response headers and cookies (if set) to a file.

Valves are typically reusable components, and can therefore be added and removed from the request
path according to need. Their inclusion is transparent to Web applications, although the response time
will increase if a Valve is added). An application that wishes to intercept requests for pre-processing and
responses for post-processing should use the filters that are a part of the Servlet specifications.

A Valve may intercept a request between an Engine and a Host/context, between a Host and a context,
and between a context and a resource within the Web application.

The Loggers
Loggers report on the internal state of a component. They can be set for components from top-level con-
tainers downward. Logging behavior is inherited, so a Logger set at the Engine level is assigned to every
child object unless overridden by the child. The configuration of Loggers at this level can be a convenient
way to decide the default logging behavior for the server.

This establishes a convenient destination for all logging events for those components that are not specially
configured to generate their own logs.

The Host
A Host mimics the popular Apache virtual host functionality. In Apache, this enables multiple servers
to be used on the same machine, and to be differentiated by their IP address or by their host name. In
Tomcat, the virtual hosts are differentiated by a fully qualified host name. Thus, the two Web sites
www.websitea.com and www.websiteb.com can both reside in the same server, with requests for each
routed to different groups of Web applications.

Configuring a Host includes setting the name of the host. The majority of clients can be depended on to
send both the IP address of the server and the host name they used to resolve the IP address. The host
name is provided as an HTTP header that an Engine inspects to determine the Host to which a request
should be passed.

If the Host is not within an Engine, it is possible that it is the top-level container.

The Context
Finally, there is the Web application, also known as a context. Configuration of a Web application
includes informing the Engine/Hosts of the location of the root folder of the application. Dynamic
reloading can also be enabled so that any classes that have been changed are reloaded into memory.
However, this is resource-intensive, and is not recommended for deployment scenarios.

The context may also include specific error pages, which enable a system administrator to configure
error messages that are consistent with the look and feel of the application, and usability features (such
as a search Engine, useful links, or a report-creating component that notifies the administrator of errors
in the application).

49

Tomcat Architecture

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 49

Finally, a context can also be configured with initialization parameters for the application it represents and
for access control (authentication and authorization restrictions). Chapter 15 provides more information
on these two aspects of Web application deployment.

The Remaining Classes in the Tomcat Architecture
Tomcat also defines classes for representing a request, a response, a session that represents a virtual con-
nection between a server and a client, and listeners. These classes are described in detail in the remainder
of the book.

Listeners listen for significant events in the component they are configured in. Examples of significant
events include the instantiation of the component and its subsequent destruction.

Summary
To conclude this chapter on Tomcat’s architecture, let’s review some of the key points that have been
discussed:

❑ A Web application is represented by the context component. It may include Loggers that log
messages and Valves that intercept and process requests and responses. Valves intercept just
before and just after a request is processed and a response is generated.

❑ A context sits within a Host that represents a virtual host (an alias assigned to the currently
assigned IP address) and many contexts may share a Host. The context component may define
Valves and Loggers.

❑ The Host sits in an Engine that resolves requests to virtual hosts. It can define Valves and
Loggers, too.

❑ Finally, an Engine sits inside a Service that groups together the Engine with the Connectors that
connect the Engine with clients. The entire object tree lives within the Server component that is
Tomcat.

Now you should be comfortable with Tomcat’s architecture. In Chapter 5, you will examine the steps for
configuring Tomcat.

50

Chapter 4

b 559028 Ch04.qxd 4/22/04 3:56 PM Page 50

Basic Tomcat Configuration

The focus of this chapter is on the basic configuration of Tomcat 5. The Tomcat 5 server is config-
ured by setting parameter values for the components of Tomcat 5 before starting the server. All
architectural components (such as Service, Servers, Engine, Connectors, Realm, and Valves) can
be configured. This chapter describes how to configure these components, the range of allowed
parameter values, and how they affect Tomcat’s operation. Major differences between Tomcat 5
and Tomcat 4.1.x configuration files will be noted wherever applicable.

Tomcat 5 can be completely configured using a Web-based GUI configurator called the admin
application. The admin application is itself a Tomcat-hosted Web application. This chapter includes
step-by-step coverage of how to use the admin application.

As with the Tomcat 4.1.x series of servers, the persistent data of a Tomcat 5 configuration (even if
configuration changes are made through the admin application) is stored within XML file(s). There
are numerous XML elements in these files, and each element has attributes that correspond to a
configurable aspect of a Tomcat 5 architectural component (see Chapter 4 for more information
about Tomcat 5 architecture). This chapter examines each of these configurable attributes, and
describes how they affect the behavior of the corresponding Tomcat 5 components.

Some hard-core administrators may insist on hand-editing the underlying configuration XML files
instead of using the Web-based GUI to gain maximum control. Others may not enable the admin
utility for security reasons during deployment. If you belong in either of these categories, this chap-
ter provides a detailed, line-by-line explanation of the most important Tomcat 5 configuration files,
including the server.xml file (the primary configuration file for Tomcat servers).

Special attention is paid to the default Tomcat 5 configuration in this chapter’s coverage. This
default configuration exists in the form of a set of default configuration files that are included with
the Tomcat 5 distribution. If you start Tomcat 5 without first editing any of the XML configuration
files, this is the configuration that is used. Incidentally, it is also the bootstrap configuration used if
you start up Tomcat 5 to gain access to the admin application to make configuration changes.

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 51

Therefore, it is important to understand what this special bootstrap configuration will do, and how you
may be able to modify it for specific production environments.

This chapter also touches on some advanced configuration topics, (such as Realm configuration and the
configuration of fine-grained security policy control over Tomcat 5 server instances), but detailed
descriptions of these concepts are provided in later chapters.

By the end of this chapter, you will be fluent with basic Tomcat 5 configuration, and be able to configure
Tomcat 5 using either one of the following two methods:

❑ The admin application

❑ Editing the XML configuration file by hand

You will also be completely familiar with the basic (default) configuration of the Tomcat 5 server, and
will be able to modify this configuration for your own production needs.

Tomcat 5 Configuration Essentials
A Tomcat 5 server instance reads a set of configuration XML files upon startup. To configure a Tomcat 5
server instance, it is necessary to modify these XML files. The following table shows the files that affect
the behavior of the Tomcat 5 instance.

File Name Description

server.xml Primary configuration file for the Tomcat server components. This includes the
configuration of Service, Connector, Engine, Realm, Valves, Hosts, and so on.

web.xml Default deployment descriptor for Web applications. This is used by Tomcat 5
for all automatically deployed Web applications, or applications without their
own specific deployment descriptor. If a Web application has its own deploy-
ment descriptor, its content will always override the configuration settings
specified in this default descriptor.

Tomcat 5 looks for these configuration files in a specified configuration directory. This configuration
directory is specified via an environment variable. Tomcat 5 first checks the $CATALINA_BASE
(%CATALINA_BASE% on Windows) environment variable. If this environment variable is defined, Tomcat 5
looks in the specified directory for a conf subdirectory. The configuration files are expected to reside in
this conf subdirectory. It is quite straightforward to configure multiple, concurrently running Tomcat 5
instances on the same physical machine. This can be done by specifying different $CATALINA_BASE
directories for each Tomcat instance. Typically, this is performed using a different shell script or batch
file to set the $CATALINA_BASE variable and start each instance.

If $CATALINA_BASE is not specified, the $CATALINA_HOME (%CATALINA_HOME% on Windows) environ-
ment variable is used instead. The $CATALINA_HOME environment variable is a required variable that
specifies where Tomcat 5 is installed on your system. In fact, the $CATALINA_HOME variable is used to
locate the executables (i.e., Catalina, Jasper, and Coyote) to run Tomcat. In this case, Tomcat 5 will look

52

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 52

into the conf directory under $CATALINA_HOME for the server configuration files. This behavior is com-
patible with Tomcat 4.x servers. However, if you need to run multiple instances on the same machine
(using $CATALINA_HOME), you must duplicate the entire Tomcat 5 distribution (including the large
bin, common/lib, server/lib directories, and so on). In the rest of this chapter, references to the
$CATALINA_HOME variable can be taken to mean $CATALINA_BASE if you are using Tomcat 5’s multi-
instances support.

Tomcat 5 Web-Based Configurator
Tomcat 5 configuration can be performed via a Web browser using the included Web-based configurator
application (called the admin application). Figure 5-1 shows a typical screen from this Web-based config-
urator. In this case, a JDBC data source is being configured.

Figure 5-1: Tomcat 5 Web-based configurator (admin).

Some earlier versions of Tomcat supported only file-based configuration, mandating hand editing of
the configuration files via a text editor. While manual editing of configuration file is still supported, this
error-prone approach can be completely avoided by using the Web-based GUI provided by the admin

53

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 53

application. Another major advantage of a Web-based GUI configuration is the capability to perform
remote, off-site administration. With Tomcat 5, administrators can now reconfigure and maintain server
instances wherever a Web browser connected to the Internet is available.

Even though the configuration is performed graphically, the XML configuration files are still being mod-
ified. These files are kept in the $CATALINA_HOME/conf directory of the Tomcat 5 distribution (or, if you
have configured multiple Tomcat 5 instances, the corresponding $CATALINA_BASE/conf directory).

Figure 5-2 illustrates how Web-based Tomcat 5 configuration can be performed, and the behind-the-
scenes work that takes place.

Figure 5-2: How Tomcat 5 Web-based configuration works.

In Figure 5-2, the user changes the value of a certain attribute of a Tomcat 5 component via the Web-
based GUI. The admin Web application then makes the corresponding change in the configuration XML
file. The user can control when the change to the XML file occurs by clicking the Commit Changes but-
ton on the top panel of the user interface. The admin Web application can be conceptually viewed as a
user-friendly editor for the XML-based configuration files, whereby the Commit Changes button enables
the user to save any changes to the files.

Enabling Access to Configurator
Before you can use the configurator, you must enable access to it. For security reasons, only users with
an admin role are allowed to access the Web-based configurator, and the role of admin is not defined for
any user in the list of users that comes with the default installation. This means that no one can access
the admin application by default. Instead, a user must be explicitly configured for the admin role before
access is granted. Therefore, to use the Web-based configurator, you should follow these steps:

User configures Tomcat 5
using Web-based GUI

through browser Running Tomcat 5 Instance

Web-based
configurator

(admin)

server.xml

Updates configuration
XML files

54

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 54

1. Define the role of admin.

2. Assign this role to one of the Tomcat users.

To perform these two tasks, it is necessary to edit one of the XML files in the $CATALINA_HOME/conf
directory. The tomcat-users.xml file contains user and password information used by the admin
application. Following is the modification required for this file:

<?xml version=’1.0’ encoding=’utf-8’?>
<tomcat-users>
<role rolename=”admin”/>
<user username=”tomcat” password=”tomcat” roles=”tomcat,admin “/>

<user username=”both” password=”tomcat” roles=”tomcat,role1”/>
<user username=”role1” password=”tomcat” roles=”role1”/>

</tomcat-users>

The modification here first adds the role “admin.” This role is then assigned to the user named “tomcat,”
with a password of “tomcat.”

If you had installed Tomcat on Windows using the installer executable, the admin user name and pass-
word would have been specified during the install. In this case, your tomcat-users.xml file will have
these values already set.

Of course, in a production scenario, you need to ensure that access to the admin application is secured.
Some of the mechanisms for securing the admin application are as follows:

❑ Use a more rigorous mechanism of authentication than BASIC, such as one that is client-
certificate-based (CLIENT-CERT).

❑ Use JDBC or JNDI-based Realm implementations to store the manager and admin user
name/password.

❑ Configure the Realm implementation to use encrypted passwords.

❑ Use RemoteAddrValve or RemoteHostValve in the admin’s Context to restrict the machines
from which the admin application can be accessed.

See Chapter 15, “Tomcat Security,” for details about performing some of these steps. You may even want
to completely disable access to admin and require that all configuration be hand-edited.

The admin utility accesses this tomcat-users.xml file through a UserDatabase Realm. See Chapter 15
for a detailed discussion of Realms configuration and system security in general. Instead of XML files,
it is possible to use specialized Realms that access an external directory service, or an external table in a
relational database containing user and password information for added security and ease of maintenance
during production deployment.

Once the admin role has been assigned, you can start Tomcat 5 and use the following URL to access the
admin utility (assuming you are using the default configuration and have not manually modified the
configuration files):

http://localhost:8080/admin/

55

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 55

The custom login screen is then displayed, as shown in Figure 5-3.

Figure 5-3: Web-based configurator custom login screen.

You can now use the user name “tomcat” and the password “tomcat” to log in to the admin application.
However, once the admin application is up and running, a new user can easily be added via the GUI.
Simply click the User Definition link on the left pane of the admin GUI, and then click the Users selec-
tion. You will see the list of users in the right pane, as shown in Figure 5-4.

In the User Actions drop-down list in the right pane, select the Create New User option. You can then
enter the user name and password of the new user, and assign it the admin role. Figure 5-5 shows this
in action.

Click the Save button to add the user. This will update the underlying tomcat-users.xml file immedi-
ately with the new user and password information. There is no need to click the Commit Changes button
when working with user definitions in this case.

56

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 56

Figure 5-4: Users and role management via Tomcat 5’s Web-based configurator.

Once the administrative user gains access to the admin application, it is possible to use the GUI to
perform detailed Tomcat 5 component configuration. The following discussion assumes that you are
already familiar with the hierarchical, components-based internal architectural model of Tomcat 5 (pre-
sented in Chapter 4). This is the same model that the admin application presents to the administrator for
configuration.

All the components in the component-based model are represented by elements in XML files. This makes
it very easy to change component nesting relationships and configuration (indirectly via the admin
application, or directly via a text editor). All the configuration files for a specific Tomcat configuration
are located in its $CATALINA_HOME/conf directory. The next section describes the tabulation of files.

57

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 57

Figure 5-5: Adding a user with Tomcat 5’s Web-based configurator.

Files in $CATALINA_HOME/conf
In the $CATALINA_HOME/conf directory of the Tomcat 5 server distribution, you will see several config-
uration files (this list of files varies between the Tomcat 5 and Tomcat 4.1.x series of servers). Following is
a brief synopsis of each of these files:

❑ server.xml— This is the main configuration file for the Tomcat server and is the one that
Tomcat actually reads at startup. By default, it contains a configuration that is ready to run on
your machine immediately.

Note that any changes made using the Web-based configurator are saved to the server.xml
file. Comments in the XML file are not preserved during the save operations. However, Tomcat 5
will make a backup copy of the server.xml file in the same directory. The name of this com-
mented server.xml file is suffixed by the date and time that the backup is created, enabling
multiple versions of the server.xml file to be maintained in the same directory.

58

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 58

In Tomcat 4.1.x, the server.xml file contains declarations for the Context of many example Web
applications that come with the Tomcat 4 distribution. Because the example applications take up
memory space and consume processing time to load, it is usual practice to remove them in pro-
duction systems, as they are not needed. This is the main reason for a server-noexamples.xml.
config file in Tomcat 4.1.x server distributions. Tomcat 5 servers no longer maintain any Web-
application-specific information in the server.xml file.

❑ server-minimal.xml— This is a minimal server.xml file, similar to the default server.
xml above, but without the extensive comments and optional features support (clustering,
persistence manager, and so on).

❑ server-noexamples.xml.config (Tomcat 4.1.x only) — This file contains a template of
server.xml. This enables you, as the administrator, to easily create your own version of
server.xml without having to remove standard Tomcat examples definitions from it. In prac-
tice, if you need to custom configure your server, it may be easier to start with this file and then
rename the resulting file to server.xml. Also contained in this file are detailed comments to
assist in understanding the options available when configuring the server.

❑ server.xml.2004-08-21.23-45-49 (date suffix varies) — The existence of these files indicates
that you have executed the Tomcat 5’s admin application to modify the configuration. These are
backup versions of the server.xml file before a new one is saved. The suffix indicates the time
when the backup is performed. Because the admin application does not preserve comments when
it writes a new server.xml file, this is the one way to retain comments/annotations in your
server.xml configuration file.

Only the file named server.xml will be used by the Tomcat 5 server upon startup. You can
store multiple configuration files here, and rename the one you want to use to server.xml
before starting Tomcat 5. Other configuration files in the $CATALINA_HOME/conf directory
include the following:

❑ tomcat-users.xml— This file contains user authentication and role-mapping infor-
mation for setting up a UserDatabase Realm. Both Tomcat’s admin and manager appli-
cations use this file by default. UserDatabase Realm is a component in Tomcat 5 used to
implement a database of users/passwords/roles for authentication and Container-
managed security. In Tomcat versions prior to 4.1.x, a more limited memory Realm
may be used instead (see Chapter 15 for the difference between memory Realms and
UserDatabase Realms), requiring a slightly different tomcat-users.xml file.

❑ web.xml— This is a default deployment descriptor file for any Web applications that
are deployed on this Tomcat server instance. It provides basic Servlet definition and
MIME mappings common to all Web applications, and also acts as the deployment
descriptor for any Web application that does not have its own deployment descriptor.

❑ catalina.policy— Java 2 has a fine-grained security model that enables the adminis-
trator to control in detail the accessibility of system resources. This is the default policy
file for running Tomcat 5 in secured mode. This is covered in detail later in this chapter.

❑ catalina.properties— Tomcat 5 reads and uses the properties value in this file
upon startup. It provides for internal package access and definition control, as well
as control over contents of Tomcat class loaders (see Chapter 9).

You may also find other properties files (e.g., jk2.properties) in this configuration directory. See
Chapter 12 for JK2 Connector configuration information.

59

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 59

Basic Server Configuration
This section provides a line-by-line analysis of the default server.xml file. This file is created as an
XML 1.0 document; it is assumed that you are familiar with XML.

Server Configuration via the Default server.xml
The default server configuration is stored in the server.xml file included with the distribution. Figure 5-6
illustrates this default configuration, as viewed from the admin application. If you have started admin
from the default distribution, this is also the configuration used to run the admin application.

Figure 5-6: The Tomcat 5 default server.xml configuration.

The Tomcat 5 primary configuration file, server.xml, is not backwardly compatible. Tomcat 5 has addi-
tional features such as new configurable component attributes, decoupled application Context, and so
on. The server.xml file from previous versions of Tomcat servers may require significant changes to
work with Tomcat 5.

60

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 60

The server.xml file associated with the default configuration is listed here. In the listing, advanced
configuration components have been deleted (indicated by the ellipses, “...”), and comments have also
been removed. The focus in this chapter is on the configuration of the remaining basic components.
Chapter 8 discusses configuration of the advanced components.

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
...

<Service name=”Catalina”>

<Connector port=”8080”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” redirectPort=”8443” acceptCount=”100”
debug=”0” connectionTimeout=”20000”
disableUploadTimeout=”true” />

<Connector port=”8009”
enableLookups=”false” redirectPort=”8443” debug=”0”
protocol=”AJP/1.3” />

<Engine name=”Catalina” defaultHost=”localhost” debug=”0”>

<Logger className=”org.apache.catalina.logger.FileLogger”
prefix=”catalina_log.” suffix=”.txt”
timestamp=”true”/>

<Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
debug=”0” resourceName=”UserDatabase”/>

<Host name=”localhost” debug=”0” appBase=”webapps”
unpackWARs=”true” autoDeploy=”true”>

<Logger className=”org.apache.catalina.logger.FileLogger”
debug=”0” directory=”logs” prefix=”localhost_log.”
suffix=”.txt” timestamp=”true” verbosity=”1”/>

</Host>

</Engine>
</Service>

</Server>

The default configuration has the following nesting of components:

Server
Service

Connector
Connector
Engine

Logger
Realm

Host
Logger

The next few sections examine each of these configurable components.

61

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 61

The Server Component
Our initial examination of the default service.xml file reveals that it configures a single service inside
a single instance of the server component. When viewed from the Web-based configurator, the top-level
server element appears, as shown in Figure 5-7.

Figure 5-7: Configuring the Server component.

In the server.xml file, the very first active line of the file defines the server component, which corre-
sponds to the XML <Server> element. Here is the line from the configuration file:

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>

This tells Tomcat 5 to start a server instance (a JVM) listening to port 8005 for a shutdown command. Be
careful if you need to change this port number. Tomcat or other servers may not start properly if identical
ports are configured — causing a conflict. The shutdown command will contain the text “SHUTDOWN.”
This provides a graceful way for an administrator (or management console software) to shut down this
Tomcat server instance. The server instance will not print debugging messages to the log because debug
is set to “0.” Any unspecified attributes will take on default values. The following table describes the
allowed attributes of the <Server> element and their default values, followed by a list of the sub-elements
that the XML <server> may contain.

62

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 62

Attribute Description Required

className The Java class of the server to use. This class is required to No
implement the org.apache.catalina.Server interface.
By default, the Tomcat 5 supplied code is used.

Port The TCP port to listen to for the command specified by the Yes
shutdown attribute before shutting down gracefully. Tomcat
will confirm that the connection is made from the same physical
server machine. Together with a custom shutdown command
string that you can specify (discussed next), this provides a
measure of security against hacker attacks.

Shutdown The command text string that the server should monitor for, Yes
at the TCP port specified by the port attribute, before shutting
down gracefully.

Debug Controls the amount of debug information logged by the No
server instance. Setting this to a higher number provides more
debugging details. For Tomcat 5, the levels can range from 0 to
4. A value of 0 will log only fatal failure messages. A value of 4
will log all debug messages. The default is 0. See configuration
for the Logger component, later in this chapter, for more
information on the range of allowed values.

Within the <Server> element, the XML sub-elements shown in the following table are allowed.

Sub-element Description How Many?

<Service> A grouping of Connectors associated with an 1 or more
Engine. The Connectors handle different client
protocols (HTTP, HTTPS, JK2, and so on) and
manage request concurrency, while the Engine
processes the requests.

<Listener> Life-cycle listener for interception of the server’s 0 or more
life-cycle events (start, stop, before start, before
stop, after start, after stop). The installed listener
is called at a prescribed point of the server’s life
cycle. Life-cycle events can be used by develop-
ers to add custom components, additional
logging, management, resource allocation, or
other added functionality to the server instance.
See Chapter 8 for more details on the configu-
ration this advanced component.

<GlobalNamingResources> JNDI resources that are defined to be globally 0 or more
available throughout this server component
instance. See Chapter 8 for more details on the
configuration of this advanced component.

63

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 63

The Service Component
The next line in the file defines a service component. The main purpose of a Service component is to
group a request processing Engine with its configured set of protocol/concurrency handling Connectors.
The service component is a top-level element, and it appears in the admin application, as shown in
Figure 5-8.

Figure 5-8: Configuring a service component.

The figure shows how a service component is used to group together all the Connectors that may be used
with the Catalina request processing Engine. This is defined by the <Service> element shown here:

<Service name=”Catalina”>

Here, a service instance was defined with the name “Catalina.” This name will be visible in logged mes-
sages, clearly identifying the component. It is also used as the name to identify the service instance when
using the admin application.

A <Service> element can have the attributes shown in the following table.

64

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 64

Attribute Description Required

className The Java class name for the service class to use. By default, No
the Tomcat 5–supplied Catalina container code org.apache.
catalina.core.StandardService is used. The default is
adequate unless you’re modifying Tomcat’s source code.

name A name for the service, used in logging, administration, Yes
and management. If you have more than one <Service>
element inside the <Server> element, you must make sure
their name attributes are different.

debug Controls the amount of debug information logged by the No
service instance. Setting this to a higher number provides
more debugging details. The default is 0.

The sub-elements that a <Service> element can have are shown in the following table.

Sub-element Description How Many?

Connector This is a nested component that handles external client 1 or more
connections and feeds them to the Engine for processing.
A Connector also manages the number of threads and their
allocation for request handling. The configuration of
Connectors is explained in detail in the next section.

Engine This is the request-processing component in Tomcat: Exactly 1
Catalina.

The Connector Component
It is necessary to understand the two modes of Tomcat operations before you can appreciate the role of
the Connector component. Following are two very different ways of operating Tomcat 5:

❑ Tomcat as an application server — In this configuration, a front-end Web server (Apache, iPlanet,
IIS, and so on) serves static content to end-users, while all JSP and Servlet requests are routed to
the Tomcat server(s) for processing. In turn, Tomcat-hosted Web applications interface to back-
end J2EE-compliant services. (See Chapters 11–13 for an in-depth examination of this mode of
Tomcat operation.)

❑ Tomcat in standalone mode — In this case, any static pages and graphic files from your Web appli-
cation are served directly from the Tomcat 5 server. In this mode, an additional front-end Web
server is not necessary because Tomcat is acting as both the Web server and the JSP/Servlet con-
tainer. Tomcat 5 uses its built-in HTTP Connector to process the incoming HTTP request, bypass-
ing the need for an external Web server altogether. Tomcat-hosted Web applications can interface
to back-end J2EE services.

65

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 65

This mode of operation is seldom used in production because of the huge gap in performance,
support, and industry experience between production Web servers (such as Apache, iPlanet,
and IIS) and Tomcat’s built-in Web server. The only exception may be the case in which the
production site’s operation is almost completely Web-application-driven, requiring relatively
few static pages and elements. (See Chapter 10 for an in-depth exploration of this mode of
Tomcat operation.)

Operating Tomcat in Application Server Configuration
In the application server configuration, some intelligent piece of software must run inside the Web server
and decide on the requests that will be routed to the Tomcat server for processing. This usually exists in
the form of a loadable module (that is, mod_jk2 in Apache 2.0) containing a redirector plug-in.

In this case, multiple independent Tomcat servers may be running simultaneously (that is, across a net-
worked bank of machines for scalability and load balancing), and the loadable module or redirector plug-
in may also decide to which Tomcat server instance requests are sent. This sort of hardware configuration
is technically known as a Tomcat cluster. (See Chapter 19 for a detailed description of clustering with
Tomcat 5.)

For operational efficiency, the protocol between the Web server and the Tomcat instance(s) is not HTTP.
It is typically one of two specially designed protocols: AJP or WARP. For Tomcat 5, the official support
for the Web server to Tomcat link is the AJP protocol. As of this writing, the WARP protocol, managed by
the mod_webapp project, has not been modified for Tomcat 5 compatibility. Chapters 11–13 provide more
information about these protocols. For now, you only need to appreciate that there must be a native code
extension to the Web server that routes incoming requests to Tomcat, and a corresponding piece of request
receiving software (a Connector component) at the Tomcat server-side that understands this protocol and
connection convention.

Figure 5-9 shows the Connector component as it appears in the admin application.

In the default server.xml file, an HTTP 1.1 Connector is also defined for the Catalina service:

<Connector port=”8080”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” redirectPort=”8443” acceptCount=”100”
debug=”0” connectionTimeout=”20000”
disableUploadTimeout=”true” />

66

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 66

Figure 5-9: Configuring the Connector component.

The following table describes two standard Connectors supplied with Tomcat 5.

Connector Name Description

HTTP/1.1 Connects browser or Web services to the Catalina Engine using HTTP 1.1
if supported by the client, and adaptively falls back to using HTTP 1.0 if
necessary. This Connector can also be configured to support secured
HTTPS/SSL connections.

JK2 Used for connecting between external Web servers (Apache included)
and Tomcat 5 using the AJP 1.3 protocol. It uses the external Web server
for static Web content, while Tomcat 5 will handle Servlet and JSP pro-
cessing. It can also use the Web server’s SSL support. See Chapter 12 for
more details.

67

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 67

In the default server.xml file, you can see an additional configuration for the JK2 Connector, supporting
the AJP 1.3 protocol:

<Connector port=”8009”
enableLookups=”false” redirectPort=”8443” debug=”0”
protocol=”AJP/1.3” />

Note that the 4.x.x versions of Tomcat may include up to four standard Connectors, although several are
deprecated by 4.1.2x releases. The new Connector technology, code-named Coyote in Tomcat 5, unified
the support of HTTP 1.0, HTTP 1.1, and HTTPS/SSL into a single Connector. Coyote also provides a JK2
Connector for AJP protocol support. Coyote was created from scratch to work efficiently with Tomcat 5’s
(and a later revision of Tomcat 4.1.x) optimized architecture. This unification greatly simplifies configu-
ration, administration, management, and operation of Tomcat Connectors in general. Chapters 11–13
provide the details of configuring Connectors.

While you can have as many Connectors as you need in a service (to handle the different incoming client
protocol requirements), there can be only one Engine. The Engine component is a container; think of it as
Catalina — the Servlet/JSP processor. An Engine executes Web applications while processing incoming
requests and generating outgoing responses.

The Engine Component
The one and only Engine component associated with the Catalina service is defined next in the default
server.xml file:

<Engine name=”Catalina” defaultHost=”localhost” debug=”0”>
...
</Engine>

An Engine is a container (see Chapter 4 for an architectural discussion of containers and nested elements),
essentially representing a running instance of the Servlet processor. The name “Catalina” is given to this
configured Engine instance. An Engine can process a request destined for multiple configured virtual
hosts. The defaultHost attribute indicates the virtual host to which Tomcat will direct a request if the
request is not specifically destined for one of the virtual hosts configured in the server.xml file. The
debug=”0’ indicates that no Engine-specific debug messages will be written to the log — only fatal fail-
ure messages will be logged.

The attributes that an <Engine> element can have are shown in the following table.

Attribute Description Required

className The Java class name for the Engine code. If not No
specified, the default Tomcat code, org.apache.
catalina.core.StandardEngine, is used, and
is seldom overridden unless you’re modifying
Tomcat code.

68

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 68

Attribute Description Required

backgroundProcessDelay The delay in seconds before the background No
processing is enabled for this Engine and other
nested Host and Context components. Any nested
component with its own backgroundProcessDelay
set to a negative value will be ignored, indicating that
it will manage its own background processing (if any).
Background processing is typically used by compo-
nents to perform low-priority tasks such as lazy
reclamation of unused resources. One example of
background processing is the occasional checking
for Web application changes by a <Host> component
for hot application re-deployment. See Chapter 4 for
more details on background processing resources.
The default delay is 10 seconds.

defaultHost Selects one of the virtual hosts within this Engine Yes
to field all the incoming requests by default. This is
only used if the Engine cannot find the host named
on the request within this server.xml file.

jvmRoute This is an identifier used in load-balancing Tomcat 5. No
See Chapter 19 for more information on using this
attribute and configuring Tomcat 5 for clustering and
load balancing.

name A name given to this Engine, which will be used in Yes
error logging and by management applications such
as the admin application.

debug Controls the level of debugging information written No
by this Engine to the log files.

As a container, the <Engine> element can have the sub-elements shown in the following table.

Sub-Element Description How Many?

Host Each <Host> element specifies a virtual host handled 1 or more
by the Engine. Tomcat 5 can handle multiple virtual
hosts per Engine/Service instance. This mirrors one of
the most popular features of the Apache Web server.

DefaultContext Creates a Context (collection of settings for config- 0 or 1
urable properties/elements) for the Web applications
that are automatically deployed when Tomcat 5 starts.
The properties specified in this default Context are
also available to all Web applications running within
the Engine.

Table continued on following page

69

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 69

Sub-Element Description How Many?

Logger Specifies the logging component instance used by this 0 or 1
Engine for logging messages. Unless overridden by
inner containers, this is the default Logger instance for
any nested components inside the Engine.

Realm This Realm is used by default in the declarative 0 or 1
security support (see Chapter 15 for more details)
to map users into roles; it is used for authentication
purposes. Each individual virtual host’s <Host> and
<Context> elements may have their own Realm for
this purpose. If they do not define their own, the Realm
configured at the Engine level is used.

Valve Valves add processing logic into the request- and 0 or more
response-handling pipeline at the Engine level.
Standard Valves are used to perform access logging,
request filtering, implement Single Sign-on, and so on.
Chapter 8 discusses the configuration of these standard
Valves, as well as advanced configuration.

Listener This is used to configure lifecycle listeners that 0 or more
monitor the starting and stopping of the Engine.
See Chapter 4 for information about how lifecycle
listeners fit into Tomcat 5’s architecture.

The Logger Component
The first nested component inside the Engine component is a Logger component. This component is
configured as an XML <Logger> element:

<Logger className=”org.apache.catalina.logger.FileLogger”
prefix=”catalina_log.” suffix=”.txt”
timestamp=”true”/>

A Logger is a nested component that collects log information (information, debug, or error messages)
from the Tomcat system, as well as application programming code, and stores or displays it in an efficient
manner. Web application programmers can access the configured Logger through the Servlet Context
that is passed into their code. These log files are placed in the $CATALINA_HOME/logs directory by default.
This location can be changed by configuring the directory attribute, described later in this section.

You can define an optional default Logger at the Engine level. In the default configuration, the standard
Catalina FileLogger class is configured as the default Logger for the Engine.

For the Engine component, the default Logger configuration will create files in the
$CATALINA_HOME/logs directory. The sample log files that follow were created with the default values
of the prefix (catalina_log) and timestamp (true) attributes:

catalina_log.2003_11_02.txt
catalina_log.2003_11_03.txt

70

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 70

All <Logger> elements can have the attributes shown in the following table.

Attribute Description Required

className The Java class to use for this instance of the Logger Yes

verbosity Controls what level of logging is performed. No
The range is from 0 to 4, with a default of 1:
0 — Log fatal messages only
1 — Log error messages
2 — Log warning messages
3 — Log information messages
4 — Log debug information
The numbers are cumulative (that is, 4 logs all messages,
3 logs everything but debug information, and so on).

Unlike other components, the <Logger> element must specify a className attribute. This attribute
specifies which standard Logger implementation (all included with Tomcat 5) you want to be used.
The following table shows the available standard Logger implementations included with Tomcat 5.

Java Class Name Description

org.apache.catalina.logger.FileLogger Log to a file. This option is most
frequently used.

org.apache.catalina.logger.SystemErrLogger Log to the standard error stream
(configurable in most operating
systems). Seldom used; may be suit-
able for console-based debugging.

org.apache.catalina.logger.SystemOutLogger Log to the standard output stream
(configurable in most operating
systems).

If org.apache.catalina.logger.FileLogger is selected, then the optional attributes shown in the
following table can also be configured.

Attribute Description

directory Specifies where to place the log files; relative or absolute paths may be used.
$CATALINA_HOME/logs is the default.

prefix A prefix for all generated log filenames; catalina_log is the default.

suffix A suffix for all the generated log filenames; .txt is the default.

timestamp Specifies whether the messages in the log files will have a date and time
stamp. The default is to have no time stamps. It is recommended that this
setting be set to true for production systems.

71

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 71

The Realm Component
In the default server.xml file, after the configuration of the Logger component, the only other config-
ured nested component inside the Engine is a Realm component:

<Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
debug=”0” resourceName=”UserDatabase”/>

This configures a UserDatabase Realm to load the tomcat-users.xml file into memory for use in
authentication by default applications such as the admin application and the manager application.
Chapter 15 discusses the attributes for the <Realm> element, including how to specify your own XML
file or data source for user authentication information.

A Realm is a security mechanism used to perform authentication and implement container-managed
security. Essentially, Realms are data sources that provide mappings between user names and passwords
(for authentication), and between user names and roles that users assume (for container-managed secu-
rity). For example, user johnf may have password xyzzy (authentication) and a role of supervisor.

A Realm can access data sources external to Tomcat 5 where the user/password/role relationships are
stored. There are many different implementations of Realms, differing only in the source from which
they retrieve the information. Following are several types of Realms that are standard with Tomcat 5:

❑ Memory — Uses a memory based table that is populated with the user/password/role mappings.
Typically, this is read into memory from an XML file during server startup and stays static
throughout the lifetime of the server. For the default implementation that comes with Tomcat,
the size of the mappings is seriously constrained by the memory available. This is typically used
only in testing and development, and seldom in production.

❑ UserDatabase — UserDatabase implements a completely updateable and persistent memory Realm.
It is backwardly compatible with the standard Memory Realm. This Realm implementation is
also available on Tomcat 4.1.x servers. Chapter 15 provides extensive coverage of UserDatabase.

❑ JDBC — Uses a relational database sources for obtaining authentication information. Any other
data sources with a JDBC-compatible access interface may also be used (for example, ODBC-
compliant sources via the JDBC-to-ODBC bridge).

❑ JNDI — This uses JNDI (Java Naming and Directory Interface) to access the Realm data. This data
is typically stored in an LDAP-based directory, although any authentication system compatible
with the LDAP protocol can be used. (For instance, OpenLDAP, Microsoft, or Novell all have
LDAP-compatible access drivers.)

❑ JAAS — Works in conjunction with the Java Authentication and Authorization Service (JAAS) to
obtaining the authentication and authorization information for the Realm.

Chapter 15 provides details about how to configure different Realms.

The Host Component
After the default Logger and global UserDatabase Realm component configuration, the next configured
component is a Host component. A Host component is a container; it can contain other nested components.
The Host component represents a virtual host handled by a Tomcat 5 server instance. It is configured

72

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 72

as a <Host> element within the server.xml file. Each <Host> element defined within the enclosing
<Engine> element represents another virtual host that is handled by this Engine. In our case, the Host
definition is as follows:

<Host name=”localhost” debug=”0” appBase=”webapps”
unpackWARs=”true” autoDeploy=”true”>

This defines a virtual host named localhost matching the defaultHost specified in the <Engine> outer
container. The applications to be deployed for this virtual host are located under the $CATALINA_HOME/
webapps directory (all the examples from the Tomcat 5 distribution are installed there). In addition, the
unpackWARs attribute specifies that if Tomcat 5 finds any WAR files in the appBase directory, they will
be expanded before the Web application is executed. If you set unpackWARs to false, Tomcat will execute
the Web applications in place, without unarchiving them — saving space but sacrificing performance.
The autoDeploy attribute is set to true, meaning that Tomcat will actively scan for the addition of new
Web applications or changes in existing ones, and then automatically deploy, or re-deploy, them. See the
description of the autoDeploy attribute in the next section for more details.

Chapter 16, “Shared Tomcat Hosting,” discusses the techniques used to support virtual hosting. For
now, however, Figure 5-10 illustrates the basic concept of virtual hosting.

Figure 5-10: Virtual hosting in Tomcat 5.

Virtual Host 3
(betterbookends.com)

Virtual Host 2
(buycarsnow.com)

Engine

Service

Server

Virtual Host 1
(foodnuts.com)

WebApp1
Restaurant
Operations

WebApp2
Supply

Ordering

WebApp1
Car

Showroom

WebApp2
Leasing

WebApp1
Author
BBS

WebApp2
Book Store

73

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 73

In this figure, a single Engine supports three different Web sites via virtual hosts. The first one is
foodnuts.com, the second one is buycarsnow.com, and the third one is betterbookends.com. Each
virtual host is running a completely different Web application. The Engine is responsible for forwarding
any incoming request to the corresponding host. If the system were to be configured as depicted in the
figure, there would be three <Host> nested elements nested within the single <Engine> definition.

A <Host> element is a container. It can have any one of the attributes shown in the following table.

Attribute Description Required

className The Java class that is used to handle requests for No
the host. The default is the Tomcat-supplied class
org.apache.catalina.core.StandardHost, and
this almost never needs to be changed.

appBase Used to set the default application-deployment Yes
source directory. Tomcat 5 will look in this directory
for applications to be deployed. The path should be
specified relative to the installation or per-instance
base directory for the Tomcat 5 server.

autoDeploy Setting this attribute to true means that Web appli- No
cations will be automatically deployed or re-deployed
while Tomcat 5 is running. This includes any new
applications placed into the directory specified by
appBase (in WAR form or unarchived), any applica-
tion whose web.xml deployment descriptor has
bee modified, and any application whose Context
descriptor has been modified. The default value
is true. Background processing must be enabled for
this to work properly. See deployOnStartup for
auto application deployment during Tomcat startup.

name The resolvable name of this virtual host. Yes

debug Sets the level of debugging information that will No
be emitted for the log from the virtual host.

backgroundProcessDelay The delay in seconds before the background No
processing is enabled for this host and other nested
components. Any nested component with its own
backgroundProcessDelay set to a negative value
will be ignored, indicating that it will manage its
own background processing (if any). The default
delay is 10 seconds.

configClass Specifies the Java class name of the Context No
configuration class for Web applications on this
virtual host. The default is org.apache.catalina.
startup.ContextConfig.

74

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 74

Attribute Description Required

contextClass Specifies the Java class name of the Context No
implementation class for Web applications on this
virtual host. The default is org.apache.catalina.
core.StandardContext.

deployOnStartup When set to true, will automatically deploy Web No
applications from this host during component startup.
The default is true.

deployXML Used primarily in shared Tomcat hosting to restrict No
access. Set this to false if you’d like to restrict
the capability to deploy an application based on
a Context XML Descriptor file. When set to false,
Web applications must be placed in the appBase
directory (see appBase attribute) under
$CATALINA_HOME/conf/<engine>/<host> to be
deployed successfully. The default value is true.

errorReportValveClass Specifies the Java class that implements the error No
reporting Valve used by this host. The default
implementation is org.apache.catalina.
valves.ErrorReportValve.

unpackWARs Set this to false if you want Tomcat 5 to run Web No
applications without unarchiving the WAR files
found at the directory specified by the appBase
attribute. The default is true and Tomcat 5 will
unpack these applications. The trade-off here is
typically performance (lower performance when
WAR files are not unarchived) versus storage
(no need to write to the appBase directory).

xmlNamespaceAware Indicates if the XML parser used by Tomcat is No
namespace aware. The default is false.

xmlValidation Pass through to control the XML parser used No
by Tomcat 5 (Apache Xerces by default), indicates
if XML document validation is enabled. The default
is false.

Note that there must be at least one <Host> entry associated with the <Engine> element. This makes
sense because you must be able to reach the Engine by at least one virtual host name. Due to this reason,
the defaultHost attribute of the <Engine> element must be assigned with one of the <Host> entries.

The XML subelements that can be placed inside a <Host> element are described in the following table.

75

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 75

Sub-Element Description How Many?

Context A <Context> can contain a set of property values for 0 or more
a Web application deployed within this host. There can
be as many <Context> elements as there are Web
applications. The default server.xml included with
the Tomcat 5 distribution does not include any appli-
cation Context. This enables a clean separation between
server configuration and Web application configuration.
Instead, all Web application contexts are maintained
under the $CATALINA_HOME/conf/<engine>/<host>
directory.

DefaultContext The <DefaultContext> specifies the set of property 0 or 1
values for a Web application that is deployed within
this host, but that does not have its own <Context>
specified. Typically, this <DefaultContext> is used for
Web applications that are part of the standard behavior
of the Tomcat server, and Web applications that are
automatically deployed.

Logger A default Logger that is configured for this host, and any 0 or 1
application Context within. It overrides any previously
specified Logger.

Realm A Realm that can be accessed across all the Web 0 or 1
applications running within this host, unless a lower-
level component specifies its own Realm.

A Nested Logger Inside the Virtual Host
Inside the Host component is another configured Logger component. This one overrides the default
specified earlier in the parent Engine component. For this Host component, the newly configured
Logger will create log files in the $CATALINA_HOME/logs directory. Sample log files are as follows:

localhost_log.2005_11_02.txt
localhost_log.2005_11_03.txt

Overriding the default Logger enables you to log component-specific debug or error messages. This is
vital in configurations that involve many virtual hosts. By overriding the default, the debug or error mes-
sages from each virtual host will be placed in their own file instead of being mixed within the Engine-
level log file.

Web Application Context Definitions
Administrators familiar with earlier versions of Tomcat may wonder where the <Context> elements for
Web applications are defined. In Tomcat 5, application Context Descriptor XML files are placed in the
$CATALINA_HOME/conf/<engine name>/<host name> directory. This is done to maximize the decou-
pling between server and application configuration, and to improve deployment security.

76

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 76

Each deployed Web application will have a Context Descriptor XML file in the directory. If the original
Web application does not have one, Tomcat 5 can generate one.

This concludes the examination of the default server.xml file. The remainder of the chapter examines
the other configuration files found in the $CATALINA_HOME/conf directory.

Authentication and the tomcat-users.xml File
Another configuration file found in the $CATALINA_HOME/conf directory is tomcat-users.xml. Earlier
examples showed that the tomcat-users.xml file is used by Tomcat 5 to authenticate admin application
users. Tomcat 5 makes use of a UserDatabase Realm component to accomplish this. The UserDatabase
Realm enables modification of the loaded data and will properly persist (write back to the XML file) any
changes made to the data (that is, by the admin application). The Tomcat 5 manager application also
uses this UserDatabase Realm for authentication. Only users assigned to role “admin” will be able to
access the Web-based configurator; only users assigned to role “manager” will be able to access the man-
ager application.

The Default Deployment Descriptor – web.xml
According to the Servlet 2.4 specification, every Web application should include a deployment descriptor
(web.xml file). This file must be placed in the WEB-INF/ directory of the Web application.

There is also a web.xml file under the $CATALINA_HOME/conf directory. This file is similar to a Web
application’s web.xml file. However, this particular web.xml file is used to specify the default properties
for all Web applications that are running within this server instance. Be very careful when making modi-
fications to this file (such as any additions or changes) because they will affect all Web applications run-
ning on the same server instance. Note also that other application servers may or may not support a
global default web.xml, as this is not a requirement for Servlet 2.4 standard compliance.

It is time to see what default server-wide properties are configured in this web.xml file. First, there is the
standard XML header and a reference to the Servlet 2.4 schema. Unlike server.xml, web.xml can be
formally validated against a schema:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd”
version=”2.4”>

Servlet 2.3 (and Tomcat 4.x) uses a DTD instead of a schema. The Servlet 2.4 schema provides a signifi-
cantly more rigorous mechanism for document validation. Chapter 6 provides detailed coverage of the
Servlet 2.3 Document Type Definition (DTD) and the Servlet 2.4 schema.

Default Servlet Definitions
In the following <servlet> definition, a default Servlet is specified. This default Servlet is used to serve
any static resources (static HTML files, GIF files, and so on) within all Web applications:

77

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 77

<servlet>
<servlet-name>default</servlet-name>
<servlet-class>

org.apache.catalina.servlets.DefaultServlet
</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<init-param>

<param-name>listings</param-name>
<param-value>true</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

The invoker Servlet can be used to load and execute any Servlet directly using a URL similar to the
following:

http://<host name>/<web app name>/servlet/<servlet name>

Because of its capability to invoke any Servlet directly (with or without prior configuration within a Web
application) the invoker Servlet is considered a major security risk in production systems. Therefore,
this Servlet should only be used in test configurations. Tomcat 5’s default web.xml file has the invoker
Servlet configuration commented out for this security-related reason. You can uncomment it and enable
the Servlet on test configurations.

The invoker Servlet is configured as follows:

<!--
<servlet>

<servlet-name>invoker</servlet-name>
<servlet-class>

org.apache.catalina.servlets.InvokerServlet
</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
-->

The JspServlet converts JSP pages to Servlets and executes them. It is used to process JSP pages:

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
<init-param>

<param-name>fork</param-name>
<param-value>false</param-value>

</init-param>

78

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 78

<init-param>
<param-name>xpoweredBy</param-name>
<param-value>false</param-value>

</init-param>
<load-on-startup>3</load-on-startup>

</servlet>

The next set of Servlets is commented out. You should uncomment them if you plan to add Apache-style
server-side include (SSI) processing features to the standalone Tomcat 5 server.

<!--
<servlet>

<servlet-name>ssi</servlet-name>
<servlet-class>org.apache.catalina.ssi.SSIServletServlet</servlet-class>
<init-param>

<param-name>buffered</param-name>
<param-value>1</param-value>

</init-param>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<init-param>

<param-name>expires</param-name>
<param-value>666</param-value>

</init-param>
<init-param>

<param-name>isVirtualWebappRelative</param-name>
<param-value>0</param-value>

</init-param>
<load-on-startup>4</load-on-startup>

</servlet>
-->

The next Servlet definition is also used exclusively for configuring the Tomcat 5 server to mimic an
Apache Web server. If you would like the standalone Tomcat 5 server to process CGI, you need to
uncomment the following section:

<!--
<servlet>

<servlet-name>cgi</servlet-name>
<servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>
<init-param>

<param-name>clientInputTimeout</param-name>
<param-value>100</param-value>

</init-param>
<init-param>

<param-name>debug</param-name>
<param-value>6</param-value>

</init-param>
<init-param>

<param-name>cgiPathPrefix</param-name>

79

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 79

<param-value>WEB-INF/cgi</param-value>
</init-param>
<load-on-startup>5</load-on-startup>

</servlet>
-->

Matching URLs: Servlet Mappings
A <servlet-mapping> element specifies how incoming requests containing a specific URL pattern are
to be handled:

<servlet-mapping>
<servlet-name>default</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

The rule set up here specifies the following:

❑ When you see a URL request fitting the pattern /, route it to the default Servlet.

For example, if the host is www.wrox.com, and a standalone version of the Tomcat 5 server is running,
then the following URL will map to the Servlet named default:

http://www.wrox.com/

Looking back at the <servlet> definition earlier in this file, it was specified that the
org.apache.catalina.servlets.DefaultServlet will be handling this request.

The second <servlet-mapping> is commented out because it is for the security-sensitive invoker
Servlet. You may uncomment this to enable the invoker Servlet in test configurations:

<!--
<servlet-mapping>

<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>
-->

The rule here specifies the following: When you see a URL request fitting the pattern /servlet/*, route
it to the invoker Servlet.

Therefore, the following URL request is sent to a Servlet called invoker:

http://www.wrox.com/servlet/<name of servlet>

Referring back in the file, the org.apache.catalina.servlets.InvokerServlet is specified to pro-
cess the request. This invoker Servlet will in turn invoke the Servlet that is named by examining the
incoming URL.

80

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 80

The next two <servlet-mapping> elements specify that all URLs containing *.jsp and *.jspx should
be passed to the Servlet named jsp for processing. In the earlier <server-mapping>, the jsp Servlet is
declared to be the org.apache.jasper.servlet.JspServlet class:

<servlet-mapping>
<servlet-name>jsp</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>jsp</servlet-name>
<url-pattern>*.jspx</url-pattern>

</servlet-mapping>

How server.xml, Context Descriptors, and web.xml
Work Together

Figure 5-11 illustrates how an incoming URL is parsed by the various components of a Tomcat 5 server,
and how a <servlet-mapping> with a <url-pattern> controls the final mapping of the request to a
specific Servlet in a Web application.

Figure 5-11: How server.xml and web.xml collaborate in Tomcat 5 URL parsing.

In the figure, the URL https://www.wrox.com/bookstore/BuyBook/proTomcat5 is parsed through
the nested components that make up a Tomcat server. First, the protocol portion (https://) is parsed
by the Service and the Coyote Connector with SSL support is selected, and the request is passed to the
Engine. Next, the host name (www.wrox.com) is parsed by the Engine and one of its Host components is
selected (the one that matches the www.wrox.com host name).

1. Coyote connector
with SSL support
(/conf/server.xml)

https://www.wrox.com/bookstore/BuyBook/proTomcat5

2. Virtual host name
(/conf/server.xml)

4. Servlet mapping
using URL pattern
"/BuyBook/"
(application's web.xml)

5. Processed by
Servlet

3. Context Path
(in Context Descriptor XML file)

81

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 81

The Host then attempts to match the URL against the contexts of its deployed Web applications — the
match in this case is /bookstore and the bookstore Web application is selected to handle the request
(the Context information itself is stored in a Context descriptor file). Last, but not least, the Context host-
ing the Web application performs a match against the <servlet-mapping> defined in the deployment
descriptor (the web.xml file of the Web application), and the URL pattern /BuyBook/* matches the
BookPurchase Servlet. This Servlet is finally handed the URL request to process. It is easy to see how
the component hierarchy helps in forwarding the request to a single Servlet in a Web application for
processing.

SSI and CGI Mappings
Now it’s time to take a look at the next section of the default web.xml file.

The next two default Servlet mappings are commented out. They support SSI and CGI when Tomcat 5 is
configured to work in standalone mode:

<!--
<servlet-mapping>

<servlet-name>ssi</servlet-name>
<url-pattern>*.shtml</url-pattern>

</servlet-mapping>
-->

<!-- The mapping for the CGI Gateway servlet -->
<!--

<servlet-mapping>
<servlet-name>cgi</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>
-->

Session Timeout Configuration
The <session-config> element configures the amount of time during which Tomcat 5 will maintain a
session on the server side on behalf of a client. For example, the client may be in the middle of an online
shopping transaction and still has products in the shopping cart. In this case, if the client does not return
to the cart for 30 minutes, and no session persistence is used (see Chapter 8 for a description of the session
persistence manager), all their cart information will be lost. As administrators, it is important to carefully
balance the <session-timeout> value with the potential of overloading the server with too many stale
sessions:

<session-config>
<session-timeout>30</session-timeout>

</session-config>

Handling Client-Side Helper Activation — Mime Mappings
The next set of elements contains the default <mime-mapping> elements. Tomcat 5 uses these mappings
to serve static files with specific extensions to the client. It will generate an HTTP Content-Type header
when transmitting the file to the client (typically a browser). Most browsers use a helper application to
process the file being transmitted if they recognize the content type specified. For example, Microsoft
Internet Explorer may start Microsoft MediaPlayer when it detects the video/x-mpeg content type.

82

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 82

Note that these are only the default mappings; a Web application’s own deployment descriptor
(web.xml file) can override or add to this list:

<mime-mapping>
<extension>abs</extension>
<mime-type>audio/x-mpeg</mime-type>

</mime-mapping>
<mime-mapping>

<extension>ai</extension>
<mime-type>application/postscript</mime-type>

</mime-mapping>
<mime-mapping>

<extension>aif</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>
<mime-mapping>

<extension>aifc</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

... more mime mappings...

<mime-mapping>
<extension>Z</extension>
<mime-type>application/x-compress</mime-type>

</mime-mapping>
<mime-mapping>

<extension>z</extension>
<mime-type>application/x-compress</mime-type>

</mime-mapping>
<mime-mapping>

<extension>zip</extension>
<mime-type>application/zip</mime-type>

</mime-mapping>

Simulating Apache Web Server: Welcome File Handling
The last section in the web.xml file pertains only to Tomcat’s standalone mode of operation. To be com-
patible with the default behavior of the Apache Web server, the default Servlet will display a welcome
file if the incoming URI is terminated in /, as shown in the following example:

http://www.wrox.com/

The default Servlet will examine the root directory of the named virtual host (www.wrox.com) and look
for index.html, index.htm, or index.jsp in turn to be displayed. Each Web application may override
this list in its own deployment descriptor (web.xml) file:

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>
</web-app>

83

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 83

In the following section, the last file in the $CATALINA_HOME/conf directory—catlina.policy—is
examined.

Fine-Grained Access Control: catalina.policy
Chapter 15, “Tomcat Security,” provides complete coverage of the role of the Tomcat security manager
and its use of this policy file. For now, it is adequate to take a quick browse through the file to understand
how it provides access control for a Tomcat 5 server administrator.

Tomcat 5 leverages the built-in fine-grained security model of Java 2. When enabled, the basis of the
security system is as follows:

Any access to system resources that is not explicitly allowed is prohibited.

This means that we must anticipate all the resources that the Tomcat 5 server will access, and explicitly
grant permission for it to do so.

By default, Catalina starts up without security. You need to start Tomcat 5 with the following option for
it to run with a security manager:

> startup –security

It is only in this secured mode that the catalina.policy file will be read, processed, and enforced.
Some of the more important sections of the catalina.policy file are discussed below, but details of the
file are not covered at this time. The general policy entry is in the following form, where the <security
principal> is typically a body of trusted code:

grant <security principal> { permission list... };

Looking at the catalina.policy file, the first set of permissions grant code from the Java compiler
directories all access to all resources (this is essentially the Java compiler and run-time system code):

// These permissions apply to javac
grant codeBase “file:${java.home}/lib/-” {

permission java.security.AllPermission;
};

// These permissions apply to all shared system extensions
grant codeBase “file:${java.home}/jre/lib/ext/-” {

permission java.security.AllPermission;
};

// These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre
grant codeBase “file:${java.home}/../lib/-” {

permission java.security.AllPermission;
};

// These permissions apply to all shared system extensions when
// ${java.home} points at $JAVA_HOME/jre
grant codeBase “file:${java.home}/lib/ext/-” {

permission java.security.AllPermission;
};

84

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 84

One clear message here is that you must protect these directories using your operating system file-
protection features (that is, via file ownership and permission settings).

The next section grants Catalina server code and API libraries access to all resources:

// These permissions apply to the launcher code
grant codeBase “file:${catalina.home}/bin/commons-launcher.jar” {

permission java.security.AllPermission;
};

// These permissions apply to the server startup code
grant codeBase “file:${catalina.home}/bin/bootstrap.jar” {

permission java.security.AllPermission;
};

// These permissions apply to the Servlet API classes
// and those that are shared across all class loaders
// located in the “common” directory
grant codeBase “file:${catalina.home}/common/-” {

permission java.security.AllPermission;
};

// These permissions apply to the container’s core code, plus any additional
// libraries installed in the “server” directory
grant codeBase “file:${catalina.home}/server/-” {

permission java.security.AllPermission;
};

// These permissions apply to shared web application libraries
// including the Jasper page compiler in the “lib” directory
grant codeBase “file:${catalina.home}/lib/-” {

permission java.security.AllPermission;
};

// These permissions apply to shared web application classes
// located in the “classes” directory
grant codeBase “file:${catalina.home}/classes/-” {

permission java.security.AllPermission;
};

Again, in a secure configuration, you must be careful to lock down the preceding directories, thus pre-
venting an attacker from adding malicious code to them. Any class files introduced into these directories
will automatically be granted access to all system resources.

The final set contains the permissions given to Web applications by default. They are significantly more
restrictive (that is, they are never granted the all-powerful permission
“java.security.AllPermission”).

85

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 85

The first section enables access to system properties that enable JNDI and JDBC access:

grant {
// Required for JNDI lookup of named JDBC DataSource’s and
// javamail named MimePart DataSource used to send mail
permission java.util.PropertyPermission “java.home”, “read”;
permission java.util.PropertyPermission “java.naming.*”, “read”;
permission java.util.PropertyPermission “javax.sql.*”, “read”;

The next section enables read-only access to some operating system description properties (the type of
operating system that is running and what it uses to separate file extensions in a filename):

// OS Specific properties to allow read access
permission java.util.PropertyPermission “os.name”, “read”;
permission java.util.PropertyPermission “os.version”, “read”;
permission java.util.PropertyPermission “os.arch”, “read”;
permission java.util.PropertyPermission “file.separator”, “read”;
permission java.util.PropertyPermission “path.separator”, “read”;
permission java.util.PropertyPermission “line.separator”, “read”;

The third section enables read-only access to some JVM-specific properties that are often used in applica-
tion programming:

// JVM properties to allow read access
permission java.util.PropertyPermission “java.version”, “read”;
permission java.util.PropertyPermission “java.vendor”, “read”;
permission java.util.PropertyPermission “java.vendor.url”, “read”;
permission java.util.PropertyPermission “java.class.version”, “read”;
permission java.util.PropertyPermission “java.specification.version”,

“read”;
permission java.util.PropertyPermission “java.specification.vendor”,

“read”;
permission java.util.PropertyPermission “java.specification.name”,

“read”;
permission java.util.PropertyPermission “java.vm.specification.version”,

“read”;
permission java.util.PropertyPermission “java.vm.specification.vendor”,

“read”;
permission java.util.PropertyPermission “java.vm.specification.name”,

“read”;
permission java.util.PropertyPermission “java.vm.version”, “read”;
permission java.util.PropertyPermission “java.vm.vendor”, “read”;
permission java.util.PropertyPermission “java.vm.name”, “read”;

The next section is required for the use of MX4J (formerly called OpenJMX), providing JMX support for
Tomcat 5 (see Chapter 18 for more information on JMX):

// Required for OpenJMX
permission java.lang.RuntimePermission “getAttribute”;

86

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 86

The last two sections provide access to XML parser debug and precompiled JSPs, required frequently
during code development (see JavaBean and JAXP specifications for more details on these properties):

// Allow read of JAXP compliant XML parser debug
permission java.util.PropertyPermission “jaxp.debug”, “read”;

// Precompiled JSPs need access to this package.
permission java.lang.RuntimePermission

“accessClassInPackage.org.apache.jasper.runtime”;
permission java.lang.RuntimePermission

“accessClassInPackage.org.apache.jasper.runtime.*”;};

These are minimal permissions that are granted by default to Web applications. Typical secured produc-
tion configuration will require opening up additional access to the Web applications, such as socket access
to a JDBC server or network access to an external authentication system.

catalina.properties: Finer-Grained Control
over Access Checks

The catalina.properties file is read during a secured Tomcat 5 server startup, and allows administrators
to configure access control at a Java package level. This level of restriction will cause a SecurityException
to be reported should an errant or malicious Web application attempt to access these Tomcat 5 internal
classes directly, or if new class definition is attempted under these highly privileged packages.

The following lines in the catalina.properties file specify the name of the internal packages that
should be restricted. Where partial package names are specified, any subpackages are protected as well.

package.access=sun.,org.apache.catalina.,org.apache.coyote.,org.apache.tomcat.,org.
apache.jasper.,sun.beans.
package.definition=sun.,java.,org.apache.catalina.,org.apache.coyote.,org.apache.to
mcat.,org.apache.jasper.

Configurator Bootstrapping and the Future
of Tomcat Configuration

Before concluding this chapter, it is important to reiterate that the admin application is itself a Tomcat 5
hosted Web application. This means that Tomcat 5 must be running and operating for you to be able to
access it. Tomcat 5 includes a default bootstrap configuration to ensure that the admin application can
start under most circumstances. However, in the unlikely event that you have made manual modifications
and the Tomcat 5 instance will not start up, your only remaining recourse is to edit the XML configuration
files via a text editor. This is the primary reason why this chapter has devoted considerable coverage to
Tomcat administration from the perspective of manually editing the XML configuration files.

It is rather ironic that beyond the initial release of Tomcat 5, the art of hand-editing XML files for config-
uration may quickly become obsolete. The introduction of support for the Java Management Extensions
(JMX) enables Tomcat configuration to be automated and integrated as part of a larger configuration

87

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 87

process. See Chapter 18 for more information on Tomcat 5’s brand-new support for JMX. While JMX
support is still in its nascent stage within Tomcat 5, it is envisioned that today’s server.xml file will
eventually become a collection of persisted JMX MBean descriptors meant for machine-based read/
write, and not intended for manual editing. Until this happens, however (likely to be in the Tomcat 5.1.x
or Tomcat 6 time frame), the capability to understand and edit XML configuration files will still be a
valuable Tomcat administrator asset.

A Final Word on Differentiating Between
Configuration and Management

Inexperienced Tomcat administrators often confuse the Web-based configurator (admin) application
with the Web-based manager (the manager Web application, covered in more detail in Chapter 7) appli-
cation. At first glance, they appear to offer similar capabilities. In reality, however, they are completely
separate Web applications that offer a mutually exclusive set of administrative capabilities. One easy
way of distinguishing between the two is to realize that the Web-based configurator is used primarily to
modify static configuration files that will be read and used by Tomcat before server startup, and that the
manager application is used to manage Tomcat operations after server startup. In other words, admin is
used for configuration, and manager is used during operations.

Summary
This chapter has described the setup and operation of the Web-based configurator (admin application)
for Tomcat 5 in detail. Because every configurable component maps to elements in XML files in the con-
figuration directory, all the Tomcat server configuration files in the $CATALINA_HOME/conf directory of
the Tomcat 5 distribution have also been covered. These files include the following:

❑ server.xml

❑ server-noexamples.xml.config

❑ tomcat-users.xml

❑ web.xml

❑ catalina.policy

❑ catalina.properties

It is obvious from the discussion that server.xml is the essential server configuration file for Tomcat 5.
To understand the model of configuration, it is necessary to understand the concept of a top-level com-
ponent, a container hierarchy, and nested components. In addition, the function and configuration of the
following Tomcat components were covered:

❑ Server

❑ Service

❑ Connector

❑ Engine

88

Chapter 5

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 88

❑ Host

❑ Logger

❑ Realm

An understanding of how these components relate to each other and work together during normal
Tomcat 5 operation was developed. To conclude this chapter, let’s review some of its key points:

❑ The tomcat-users.xml file is the authentication and authorization data supply for a Memory
Realm that is used by the Tomcat manager application, as well as a sample Realm implementa-
tion that programmers may use. In a production system, a more robust implementation of a
Realm (such as a JDBC Realm or a JNDI Realm) should be used.

❑ The default web.xml file in $CATALINA_HOME/conf specifies properties that are used in every
single Web application running on the server. Many of the default Servlets configured here
provide Web server-like features (serving static content, SSI, CGI, and so on) for running Web
applications.

❑ While Tomcat 5 starts up by default in an unsecured mode, the catalina.policy file is very
important in secured Tomcat 5 installations. It specifies in excruciating detail what can be
accessed by whom — and anything else that is not specified cannot be accessed. Tomcat 5 takes
advantage of the sophisticated, built-in security infrastructure of Java 2. To protect against tam-
pering with Tomcat internal classes, the catalina.properties file can be used to restrict
internal package access and definition.

❑ The in-depth analysis of these configuration files should provide an understanding of the basic
configuration features of the Tomcat 5 server.

Chapters 6 and 7 discuss the configuration and administration of Web applications that execute within a
Tomcat 5 server instance.

89

Basic Tomcat Configuration

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 89

b 559028 Ch05.qxd 4/22/04 3:56 PM Page 90

Web Application
Configuration

Web applications consist of static content (such as HTML pages and images files) as well as dynamic
content (such as Servlets, JSPs, and Java classes). Chapter 2 briefly discussed Servlets and JSPs.

Though these Web applications usually are created by developers, they often require a system
administrator to configure and deploy them. There are a number of things that a systems adminis-
trator needs to know about in order to administer Web applications, such as the structure of a Web
application and its configuration files.

This chapter describes the configuration-related issues for Web applications:

❑ The structure and content of a Web application

❑ The deployment descriptor for a Web application (that is, the web.xml configuration file).
Significant changes to this file resulted from the Servlet 2.4 specification, and there is a
new XML schema definition for the deployment descriptor.

Chapter 7 discusses other administrative activities for Web applications (for example, deploying,
undeploying, and listing Web applications).

The Contents of a Web Application
Web applications are usually installed under the CATALINA_HOME/webapps directory. The Servlet
2.4 specification requires that a certain basic directory structure be followed. Figure 6-1 shows a
sample Web application structure.

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 91

Figure 6-1: Directory structure for a sample Web application.

The Web application is deployed in a directory typically named after the Web application. This name is
also used in the Web application URL. For example, the sample Web application in Figure 6-1 is located
in a directory called exampleapp, and can be accessed by the URL http://localhost:8080/
exampleapp/. Here, /exampleapp/ is called the context path for the Web application. The context path
refers to everything in the URL after the server and port number, and is the part of the URL that is used
to resolve the location of the resource.

An exception to this is the ROOT application. The ROOT application is the application that is available
when no context path is specified, as shown in the following URL:

http://servername:8080/

Regarding the structure of the Web application, the minimum that is required is a WEB-INF directory
with a web.xml file in it. As discussed previously in Chapter 2, HTML and JSP pages belong to the pub-
lic resources that a client may request directly. All the contents of the WEB-INF and META-INF directories
fall into the category of an application’s private resources, and cannot be accessed directly by client
applications.

Public Resources
Everything outside the WEB-INF and META-INF directories are public resources, and can be accessed via
an appropriate URL. For example, the contact.html file can be accessed as follows:

webapps/

+ exampleapp/
 index.jsp
 contact.html

+ images/
 photo.jpg
 graphic.png

+ META–INF/

+ WEB–INF/
 web.xml

+ classes/
 SampleServlet.class

+ lib/
 struts.jar
 webdav.jar

+ tlds/

92

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 92

http://localhost:8080/exampleapp/contact.html

The placement of publicly accessible files (such as JSP and HTML pages, CSS, and images) is arbitrary as
far as the specifications for Web applications are concerned, and they can be accessed directly by a client.

By arbitrary we do not mean that they can be placed anywhere and the server will find them. Rather, as
long as the files are put within the Web application directory, and outside of the WEB-INF directory,
then the application itself (and its designer) decides where files are placed.

In the example Web application shown in Figure 6-1, index.jsp is the default welcome page for the
Web application. The welcome page is the Web page served up when you access the Web application
URL — in this case, at the following URL:

http://localhost:8080/exampleapp/

If this Web page were not present, then, by default, index.html and index.htm will be looked for and
served. These welcome pages are subject to configuration and can be modified, as you will see later in
the chapter. Besides index.jsp and contact.html, the other public resources in the example applica-
tion are the image files in the images directory.

URL Mappings
In most cases, when you request a Web resource from your browser (such as an HTML page), it is served
to you without modification by the Web server. JSP pages are an exception to this. A JSP page is first
passed through a JSP compiler that compiles the file to a Java file, and then compiles the Java file to a
Servlet class. This Servlet class then executes, and the output is displayed on your browser.

The code that makes this happen is a URL mapping defined using a <servlet-mapping> element, as
shown next. This URL mapping is defined in CATALINA_HOME/conf/web.xml. This file is the deploy-
ment descriptor for all the Web applications — individual Web applications can define their own deploy-
ment descriptors.

<servlet-mapping>
<servlet-name>jsp</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

The preceding code specifies that any URL that ends in .jsp should be passed to a Servlet named jsp
that is defined elsewhere in the same $CATALINA_HOME/conf/web.xml configuration file. The defini-
tion for this Servlet is as follows:

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
<init-param>

<param-name>logVerbosityLevel</param-name>
<param-value>WARNING</param-value>

</init-param>
<load-on-startup>3</load-on-startup>

</servlet>

93

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 93

As you can see, the fully qualified name of the Servlet is org.apache.jasper.servlet.JspServlet.
The Servlet is handed the request, uses the context path to load the JSP page, and passes it to Tomcat’s
JSP compiler, known as Jasper. The remaining options set the logging level for the JSP compilation and
execution process, and ensure that the Servlet class is loaded into memory on startup with a priority of 3
(where 1 is most important) to ensure that it is loaded before any JSP pages are requested.

The WEB-INF Directory
The contents of the WEB-INF directory are also shown Figure 6-1. As shown, it has a deployment
descriptor (web.xml) and three subdirectories. These subdirectories include the following:

❑ The classes directory

❑ The lib directory

❑ The tlds directory

The classes Directory
The classes directory contains Servlet and utility classes, including JavaBeans. It may also contain a
number of resource files such as key/value message lists, which contain error messages and user
prompts for the application, and application-specific configuration information.

Each class is stored within a directory hierarchy that matches its Fully Qualified Name (FQN). Therefore, a
class with package structure com.wrox.db.DatabaseServlet will be stored in the classes/com/wrox/
db directory structure. Because Servlets are merely Java classes that implement a specified interface, they
are stored in the classes directory, too. Previously, it was common to place Servlets in an additional direc-
tory within the WEB-INF directory named servlets. Classes placed into this directory are no longer on the
classpath by default, and they need to be moved into the classes directory.

Ideally, an administrator need not be concerned with the contents of the classes directory. However, it
is worth noting that there may be configuration files present in it. The resource files mentioned earlier
may be within this directory and are typically text files that contain configuration information or are
used to externalize error messages. This is merely a programming practice and you may have any kind
of file here.

For example, there may be an ApplicationResources.properties file (the name is determined by
the application developer) that looks like the following:

prompt.username=User Name (your email address)
prompt.password=Please enter you password
error.password.mismatch=The password is incorrect. Please try again.

This type of list enables an application developer to refer to the text by its name (for example,
prompt.username), thereby enabling an administrator to change the values, minimizing the need to
touch the sensitive JSP code.

The tlds Directory
An optional tlds directory within the WEB-INF directory contains configuration files for tag libraries.

94

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 94

A tag library is a group of Java classes that define the functionality of dynamic markup tags. For exam-
ple, you could use a tag that you define as follows:

<date:today/>

This would output the current date whenever it is placed in a JSP file. To enable the container to recog-
nize which Java class to invoke when it comes across the tag, you must provide a configuration file that
lists the number of arguments the tag can have, its name (in this case, the tag’s name is today and the
library it belongs to is date). The tag library configuration files have a .tld extension. The configura-
tion of a tag library is the territory of developers and designers, and thus beyond the scope of this book.

The lib Directory
This directory contains packaged Java libraries that the application requires and that are bundled with
the application. JAR files that are placed here are available only to the Web application.

The following section describes what aspects of the web.xml configuration file you can administer.

The META-INF Directory
As mentioned, the WEB-INF directory represents the private resources of an application. However, this is
not the only directory for private resources. A Web application may have an optional META-INF direc-
tory that contains deployment information for tools that create war files and resources that applications
may rely on. Therefore, a Servlet container will refuse to show the contents of the META-INF directory
to a client.

The META-INF directory often contains only one file, named MANIFEST.MF. This file may contain a list of
jar files on which an application relies. The container can then check all the required libraries that are to
be made available for the Web application.

An entry in this text file should be provided as follows, on a single line:

Extension-List: extension1 extension2 extension3

Each extension name is separated by a space and is placed as a separate entry in the MANIFEST.MF file.
The entries are named with a prefix, followed by the string -Extension-Name, which is an attribute
name, as shown here:

extension1-Extension-Name: com.wrox.extension1
extension1-Specification-Version: 1.0
extension1-Implementation-Version: 0.8
extension1-Implementation-Vendor: WROX Press Ltd
extension1-Implementation-Vendor-Id: com.wrox
extension1-Implementation-URL: http://www.wrox.com/extension1/

As you can see, the name of the extension is referenced in each entry. This is suffixed by a specific
attribute name describing the extension. The name of the extension in this file is an alias for the exten-
sion’s name as defined in the jar file. Thus, the declaration of the extension’s alias is accomplished by
simply prefixing it to the attribute names; it does not need to be explicitly defined.

95

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 95

The extension’s proper name is referred to in the first entry. The server will investigate the contents of
each jar file installed on it and check packages to determine whether the names match. The specifica-
tions and implementation version numbers are self-explanatory, as should be the vendor name that is
specified in the Implementation-Vendor attribute. The vendor should be a globally unique ID. The
custom of including the reversed host name is common. In the preceding example, this is com.wrox.

Finally, the Implementation-URL should be provided, providing the location of additional information
and often download instructions. For our purpose, this is the most useful line. If the extension is not
installed, the URL should provide enough information to ensure that it is made available to the Web
application by other means.

The jar files may be placed in the application’s lib directory, the Web application shared $CATALINA_
HOME/shared/lib directory, the system-wide $CATALINA_HOME/server/lib directory, or alternatively
placed on the classpath in some way.

The MANIFEST file is typically generated automatically when a Web application is packaged as a Web
archive (.war) file. Packaging Web applications for distribution as .war files is described in Chapter 7.

The Deployment Descriptor (web.xml)
A deployment descriptor is an XML file that contains configuration information used by the Web appli-
cation for execution on the Servlet engine. The deployment descriptor for a Web application is the
CATALINA_HOME\webapps\<webapp name>\WEB-INF\web.xml file. There is another web.xml file
that is applicable for all Web applications deployed in the Servlet engine, and this is located under
CATALINA_HOME\conf. This section examines application-specific deployment only. However, the
configuration-related information is valid for all deployment descriptors.

The Servlet 2.4 specifications introduce a new schema for the deployment descriptor — the previous
specifications provided a Document Type Definition (DTD). However, the older Servlet 2.3-style
web.xml is still supported for backward compatibility with existing Web applications. Because you
might need to support existing Web applications, this chapter covers both the Servlet 2.3-style web.xml
and the new schema-based version. The first few lines of the deployment descriptor will indicate
whether it is the Servlet 2.4 schema-based web.xml or the older DTD-based version.

Following is a Servlet 2.3 DTD-based web.xml:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
...

</web-app>

96

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 96

Following is a Servlet 2.4 schema-based web.xml:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd”
version=”2.4”>

...
</web-app>

Servlet 2.3-Style Deployment Descriptor
The web.xml file takes the following generalized form:

<?xml version=”1.0”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

<web-app>
<icon>
<display-name>
<description>
<distributable>
<context-param>
<filter>
<filter-mapping>
<listener>
<servlet>
<servlet-mapping>
<session-config>
<mime-mapping>
<welcome-file-list>
<error-page>
<taglib>
<resource-env-ref>
<resource-ref>
<security-constraint>
<login-config>
<security-role>
<env-entry>
<ejb-ref>
<ejb-local-ref>

</web-app>

The order of elements inside the <web-app> element must be as shown previously, but some elements
are optional, and others may appear multiple times. The following table may be used as a quick refer-
ence to the functionality of each element. A more detailed explanation is provided later in the chapter.

97

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 97

Element Description How Many?

<icon> Image for an application 0 or 1

<display-name> Display name for a Web application 0 or 1

<description> Description used for display 0 or 1

<distributable> A Boolean value indicating whether an 0 or 1
application is distributable across servers

<context-param> Initialization parameters for the entire 0 or more
application

<filter> Defines a filter Valve 0 or more

<filter-mapping> Defines a URL pattern to which the given 0 or more
filter needs to be applied

<listener> Defines a lifecycle event listener 0 or more

<servlet> Defines a Servlet 0 or more

<servlet-mapping> Defines a URL pattern to invoke a 0 or more
named Servlet

<session-config> Defines session configuration 0 or 1

<mime-mapping> Defines the MIME type for a given file type 0 or more

<welcome-file-list> A list of files to be served if no resource 0 or 1
is specified explicitly in the URL

<error-page> Defines a Java exception or an HTTP 0 or more
code-based error page

<taglib> Declares a tag library 0 or more

<resource-env-ref> Declares a resource-administered object 0 or more

<resource-ref> Declares an external resource 0 or more

<security-constraint> Restricts access to a resource to a required 0 or more
transport guarantee and by user role

<login-config> Defines authentication parameters 0 or 1

<security-role> Declares a security role by name 0 or more

<env-entry> Defines a Web application’s environment entry 0 or more

<ejb-ref> Declares a reference to an EJB’s home 0 or more

<ejb-local-ref> Declares a reference to an EJB’s local home 0 or more

In the following sections, you will examine a minimal web.xml file to understand what must be present.

98

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 98

The XML Header
Every web.xml file complies with the XML specifications that require an XML header in the beginning
of the file, as shown here:

<?xml version=”1.0”?>

Optionally, the declaration may also include an encoding type that identifies the character encoding of
the document, as is standard for XML. For example, if the document is encoded in UTF-8, the declara-
tion may be provided as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

The DTD Declaration
The next tag is a Document Type Definition (DTD) tag. A DTD is a document that outlines the structure
of the web.xml elements, what elements are allowed and in which order, and their content. The inclu-
sion of a standard DTD declaration in our web.xml file looks as follows:

<?xml version=”1.0”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

Applications that comply with the Servlet specifications prior to 2.3, such as Tomcat 3 web.xml files, for
example, will have the following DTD reference:

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

Backward compatibility is required as per the Servlet 2.3 specifications, so applications that were written
for the Servlet 2.2 specifications will work unaltered on Tomcat 5, except for any dependencies on the
exact configuration of the server (such as the location of databases, network authentication, and the
name of the server and the host). Because the Servlet 2.3 specifications have introduced a number of
new tags since 2.2, we will also highlight these tags where appropriate.

<web-app>
The root element of the web.xml file is <web-app>, and all other XML elements reside inside it:

<?xml version=”1.0”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
</web-app>

This is all that is required for the web.xml file to be complete. However, in many practical cases, there
will be more. Let’s begin by covering elements that describe the application. A number of elements are
provided so that deployment tools can identify Web applications visually and textually.

99

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 99

<icon>
This tag holds the location of the image files within the Web application that may be used by a tool to
represent the Web application visually. The <icon> tag may contain two child elements (<small-icon>
and <large-icon>) that carry the location of a 16 × 16 pixel image file and a 32 × 32 pixel image file,
respectively.

<icon>
<small-icon>/images/icons/exampleapp_small.gif</small-icon>
<large-icon>/images/icons/exampleapp_large.gif</large-icon>

</icon>

<display-name>
This tag provides a name that can be used for display in a GUI. The name need not be unique. For exam-
ple, the following display name is typical:

<display-name>Example Application</display-name>

<description>
This tag contains the description of a Web application, as shown in the following example:

<?xml version=”1.0”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<icon>

<small-icon>/images/icons/exampleapp_small.gif</small-icon>
<large-icon>/images/icons/exampleapp_large.gif</large-icon>

</icon>

<display-name>Wrox Example Application</display-name>

<description>
The Wrox example application contains a number of simple resources
for illustrating configuration points.

</description>
</web-app>

These element tags must be listed in the same order as shown earlier in the section (refer to http://
java.sun.com/dtd/web-app_2_3.dtd for more information). The actual number of tools for deploy-
ing Web archives (especially in a drag-and-drop manner as suggested by the use of icon files) is some-
what low, so it is common for these values not to be provided. The web.xml may be heavily commented.
XML comments take the same form as HTML ones:

<!--
This is a comment
-->

<distributable>
This tag describes a Web application that is designed to be distributable for load balancing and fail-over.
By default, the value of this is false.

100

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 100

<context-param>
Context parameters are mechanisms used for setting application-initialization parameters. For example,
you could set the URL to a database here. The following example enables the administrator to change
the title and greeting of the example application:

<context-param>
<param-name>title</param-name>
<param-value>Wrox example application – Chapter 6</param-value>

</context-param>
<context-param>

<param-name>greeting</param-name>
<param-value>Welcome to the example application</param-value>

</context-param>

There may be any number of context parameters in the application, known as initial parameters. Each
dynamic resource (such as a Servlet, a JSP page, or a class) with access to the application context is able
to look up the value associated with a given parameter name. Typical items provided as a context
parameter are the debug status of the application, the verbosity of logging (these two are often inter-
linked), and as much other externalized configuration as the application developer has allowed.

<filter>
Filters are new to the Servlet 2.3 specifications. Filters are reusable components that intercept the client
request and response and apply some type of processing to them. For example, a filter may apply com-
pression to the contents of the response, thus reducing bandwidth usage and improving the perfor-
mance of the application by minimizing the size of the response packet. This is just an example, of
course, and to make it work in a real-world situation would require additional support in the browser.

Filters are intended to be the ultimate reusable Web components. They should be virtually independent
of the content being created. Examples include the compression filter, a transformation filter that may
convert XML to HTML or WML, a filter to provide logging of resource usage, and a filter to restrict
access to resources.

A filter, like all Web application resources, can be mapped to a URL pattern, including the extension of
the resource, a section of the site (such as everything within the images directory), or even a URL alias
such as the servlet alias that exists on most default installations of Java Web servers.

In addition, filters can have an icon associated with them, and configuration parameters (initialization
parameters). An example configuration is shown here:

<filter>
<icon>/images/icons/filter.jpg</icon>
<filter-name>Compressor</filter-name>
<display-name>Compression Filter</display-name>
<description>This filter applies compression</description>
<filter-class>com.wrox.utils.CompressionFilter</filter-class>
<init-param>

<param-name>compression_type</param-name>
<param-value>gzip</param-value>

</init-param>
</filter>

101

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 101

Once a filter is defined, it can be mapped against any number of URL patterns. In addition, when many
filters are defined for a given URL pattern, they are all applied in the order in which they are defined in
the web.xml file. In the following example, the compression filter is applied to every URL:

<filter-mapping>
<filter-name>Compressor</filter-name>
<url-pattern>*</url-pattern>

</filter-mapping>

Chapter 8 provides further information on filters, listeners, and Servlet configuration.

<listener>
Listeners are designed to respond to events in an application. For example, a JavaBean could send an
e-mail when an event requiring administration is recorded:

<listener>
<listener-class>com.wrox.listeners.ExampleListener</listener-class>

</listener>

<servlet>
A Servlet is declared in the web.xml file by assigning it a unique name, which references its fully quali-
fied name against a shorter, more intuitive name:

<servlet>
<icon>/images/icons/DownloadServlet.jpg</icon>
<servlet-name>Download</servlet-name>
<display-name>File Download Servlet</display-name>
<description>

This Servlet manages file downloads in the application
</description>
<servlet-class>com.wrox.servlets.DownloadServlet</servlet-class>
<!-- require terms and conditions agreement? -->
<init-param>

<param-name>require_tc</param-name>
<param-value>true</param-value>

</init-param>
<load-on-startup>5</load-on-startup>
<!-- uncomment this if Servlets must run in user role
<run-as>

<description>
This Servlet does not require authorization to resources

</description>
<role-name>admin</role-name>

</run-as>
-->

</servlet>

In the preceding example, the Servlet manages the download process, enabling you to decide at run-time
if a user is required to sign a terms and conditions acceptance form before download commences. The
optional <icon>, <display-name>, and <description> elements work in the same way as described
previously. The fully qualified name of the Servlet is specified in the <servlet-class> element.

102

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 102

Because JSP pages are ultimately compiled into Servlets, an alternative to the Servlet class name
(<servlet-class> element) is to specify the JSP filename (<jsp-file> element) to which these config-
uration parameters should be applied, thus making JSP files fully configurable. The reference is a full
path, from the root of the application to the JSP file, as shown in the following example:

<servlet>
<servlet-name>ExampleJSP</servlet-name>
<jsp-file>/admin/users/ListAllUsers.jsp</jsp-file>

<!-- list disabled user accounts -->
<init-param>

<param-name>list_disabled_accs</param-name>
<param-value>false</param-value>

</init-param>
</servlet>

The initialization parameters work in the same way as the application context parameters. However,
they are specific to the Servlet.

The <load-on-startup> element specifies an integer value indicating whether the Servlet must be
loaded when the Tomcat server boots, rather than on a client’s request. If this value is not specified or it
is negative, the container loads the Servlet into memory when the first request comes in.

If the value is zero or a positive integer, the container must load the Servlet into memory at startup of the
Web application. Servlets assigned lower integers are loaded before those with higher integers. Servlets
with the same <load-on-startup> values are loaded in an arbitrary sequence by the container.

In the Download Servlet example, the <run-as> attribute is not specified because it is commented out.
However, if the Servlet requires a privileged role, it can be specified here, so that any resource requiring
a privileged user will discover it while calling the isUserInRole() method.

<session-config>
Session configuration enables sessions to be configured for every application. The <session-timeout>
element can be used to set a session timeout value. This value can be calculated by considering typical
client usage patterns, along with security requirements. For example, if a user is asked to enter a great
deal of information, the session timeout value may be set to a larger number to avoid information being
lost.

Alternatively, in low security environments with serializable sessions, it is possible to set sessions to
never expire so that the user is always recognized.

The session configuration is defined as follows:

<session-config>
<session-timeout>40</session-timeout>

</session-config>

If the value is zero or less, the session is never expired and the application must explicitly remove it as
required. If the element is not provided, the default value of 30 is used as specified in the global
web.xml file within Tomcat’s $CATALINA_HOME/config directory.

103

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 103

<mime-mapping>
MIME types enable browsers to recognize the file type of the content being returned by the server so
that the browser can handle it correctly, to determine whether to display it (as HTML, plain text,
images); pass the content to a plug-in (such as Flash); or prompt the user to save the file locally.

Tomcat comes preconfigured with the majority of MIMI mappings set, which can be seen in the
$CATALINA_HOME/conf/web.xml file. MIME mappings set in this file apply to all applications.
Additional MIME mappings may be configured on each Web application with the <mime-mapping>
element. This can be especially useful when the developer defines new extensions to suit the application.
In addition, this can be useful if you wish to have a certain MIME type treated differently from how it is
normally. For example, for a content management application, you may want to prevent Internet
Explorer from recognizing the MIME type and thus opening the file in the appropriate application,
and instead prompt the user with the File Save dialog box.

Another example might be the automatic generation of Excel files. Excel will accept comma-separated
values and convert them to an Excel spreadsheet if the MIME type sent to Internet Explorer is set to
the Excel MIME type of application/x-excel or application/ms-excel. This will open Excel,
although the file is a CSV file. This technique is used in Web applications for non-integrated applications
in which a company administrator wants to be able to dynamically generate Excel files from a site into
their reports, as creating Excel sheets on-the-fly is quite complex.

For those interested in creating Excel sheets or manipulating documents on-the-fly, a number of pro-
grams can be used for this, such as JExcel (http://jexcelapi.sourceforge.net/) or Jakarta
POI (http://jakarta.apache.org/poi/index.html).

This is a common technique when it is desirable to use an external application to view content from a
Web application/script. The following example shows how the Excel-CVS MIME mapping is done:

<mime-mapping>
<extension>csv</extension>
<mime-type>application/x-msexcel</mime-type>

</mime-mapping>
...

<welcome-file-list>
Sometimes a request is made from a client to an application without a definite resource specified in the
URL. For example, the root of the application is requested as follows:

http://localhost:8080/exampleapp/

whereas a definite resource is requested as shown in the following URL:

http://localhost:8080/exampleapp/whatsnew.jsp

In such cases, the Web application looks for a file called index.jsp in the Web application’s directory
and executes this file if it exists. If this file cannot be found, it looks for index.htm and index.html in
turn. This is because the welcome file list defined in $CATALINA_HOME/conf/web.xml lists these files
by default. If the web.xml file in the WEB-INF directory of your Web application does not mention a
welcome file list, the default will be used.

104

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 104

The format for the welcome file list is as follows (this will apply to each request that does not specify a
resource). This means that each of the subdirectories within the application root will also have this rule
applied to it. In the following example, default.jsp will be loaded instead of index.jsp:

<welcome-file-list>
<welcome-file>default.jsp</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>UserWelcome.jsp</welcome-file>

</welcome-file-list>

Note that if none of the files in the example list are found, then, depending on the configuration, an
HTTP 404–Not Found error message is displayed.

<error-page>
The default behavior for Web applications written in JSP is to return a stack trace, which is a complex
view into the internals of the virtual machine that greatly reduces the user-friendliness of the application.

You can configure error pages to provide a user-friendly mechanism for informing users about a prob-
lem, enabling them to continue using the application. The errors are mapped to the HTTP specification
error mappings (such as a code for a resource that cannot be found, server malfunctioning, authentica-
tion issues, resource issues, and so on).

In addition, because there are no one-to-one correspondences between HTTP errors and Java exceptions,
the exception class type may be specified. This enables the creation of error pages that are generic, and
follows good programming practice. Someone without an understanding of the application’s internals
can configure them. Following is an example for the common 404 message for a
NullPointerException:

<error-page>
<error-code>404</error-code>
<location>/errors/oops.jsp</location>

</error-page>
<error-page>

<exception-type>java.lang.NullPointerException</exception-type>
<location>/errors/badlycodedpage.jsp</location>

</error-page>

Like the JSP page example, <location> must be a reference from the root of the application.

These pages often have a message that notifies the user of the problem, and provisionally provides both
a search box so that users can locate the resources they need and a list of likely links in the site from
which they might receive help.

Often the problem is a configuration issue, and users are best served by being informed that the problem
will be fixed and they should return later. The developer may be informed through automated parsing
of error logs or through a notification system that sends e-mails to a watched e-mail address or directly
to the administrator or the development team.

Should any problem occur in a page (such as missing resources, a bug in the software, or parts of the
system being down), a page configured here would be returned. Error pages can also be written so that

105

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 105

they display contextual information (that relates to the specific problem at hand), but this requires an
understanding of the inner workings of the system and can only be provided by a developer.

HTTP return codes can be found at the following URL:

www.w3c.org/Protocols/HTTP/HTRESP.html

Error pages are configured by associating them with the HTTP return code that covers the error group.
Two examples are provided in the following example, one for the HTTP 404 code and one for a
NullPointerException (an internal error is often hard to debug in an application and may require a
developer’s intervention to correct it):

<error-page>
<error-code>404</error-code>
<location>/errors/ResourceNotFound.htm</location>

</error-page>
<error-page>

<exception-type>java.lang.NullPointerException</exception-type>
<location>/errors/ApplicationProblem.jsp</location>

</error-page>

<taglib>
Tag libraries, as previously discussed in Chapter 2, are reusable Java components that may be invoked
using markup tags in the page. The tag library definition is specified by the application developer and
the HTML designers. However, the main configuration of these reusable components is done in a sepa-
rate file (one with a .tld extension), as this entry simply enables aliasing of the location of this configu-
ration document against a URI. The exact location of the configuration file, which is given as a reference
to the file from the Web application’s root directory, can then be referred to by its alias.

This aliasing enables location-independence (that is, the tag library configuration files can be moved
around without editing the JSP pages that refer to the tag library configuration file, so long as the tag
entry points to it). An example entry is shown here:

<taglib>
<taglib-uri>applicationtags.tld</taglib-uri>
<tablib-location>/WEB-INF/tlds/web-app.tld</taglib-location>

</taglib>

In this example, the tag library configuration file that the Web application container needs for resolving
references, looking up initialization parameters, and enforcing proper use of the tags is referred to by its
alias, applicationtags.tld. The location of the configuration file is customarily within the WEB-INF
directory in a directory called tlds. If this location is changed, you must adjust the <taglib-location>
entry, but any code referencing it can stay the same.

<resource-ref>
Two elements, <resource-ref> and <resource-env-ref>, are provided for configuring resources for
a Web application environment. These elements enable two things:

❑ The management of connections to resources, such as a reference to the object pooling resource connection
(much like database-connection pooling), to make the process more efficient

106

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 106

Object pooling enables efficient use of resources by defining a component that manages connec-
tions to those resources. In the case of databases, the pool will make a number of connections and
when a client requests one, it is handed over to the client to be used. When the client requests the
connection to be closed, the pool retrieves the connection, but rather than closing it and establish-
ing a new connection, it reuses the connection by handing it over to the next client (as long as the
authority constraints and the type of connection matches).

Because establishing a connection to a database is a resource-intensive process, this can affect
application performance. A pool can also be configured to refresh the connections periodically
and to restore dropped connections so that the application can efficiently recover from database
failures.

❑ A reference to administered objects, which provides the application with access to run-time administration
of the resource

Administered objects enable the application configuration to be changed without restarting the server.
They can also be used to monitor the state of the application by interrogating administered objects for
their current state.

<security-constraint>
Web resources may be associated with some security constraints for authentication purposes. The con-
straints limit access to the resource according to user roles (such as manager, administrator, user, and
guest) and by transport guarantee (which can include SSL secure data transmission), guaranteeing
delivery and non-interference.

The <security-constraint> element enables a Web resource to be defined against an authentication
constraint and a user data constraint.

An entry takes the following form:

<security-constraint>
<display-name>Name String</display-name>
<web-resource-collection>

<web-resource-name>GETServlet</web-resource-name>
<description>

Group together all Servlet GET requests on the server using
/servlet/servletname. We are grouping these requests as (we have
decided) they require additional security being inherently less secure
than the POST method and aliased Servlet calls.

</description
<url-pattern>/servlet/*</url-pattern>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>
All roles are constrained to secure connection to Servlet resource
via GET calls

</description>
<role-name>*</role-name>

</auth-constraint>
<user-data-constraint>

<description>

107

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 107

Constrain the user data transport for GET Servlet requests to secure
sockets

</description>
<transport-guarantee>INTEGRAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

<web-resource-collection>
The <web-resource-collection> element identifies a group of resources and the methods by which
these resources can be requested. In the previous example, all Servlets identified by the pattern
/servlet can be accessed via the HTTP GET method. Any number of URL patterns and valid HTTP
methods may be provided to exactly define the resource collection.

<auth-constraint>
The <auth-constraint> element uses role-based authentication to constrain access to Web resources.
You can limit groups of users to whom this security constraint is applied to using role-based authentica-
tion. Therefore, placing administrator in the <role-name> tag above would allow only users belong-
ing to that role to be able to access the Servlets. Role-based authentication is discussed in more detail in
Chapter 15.

Valid values are specified by the developer of the application. In the preceding example, * indicates that
all roles should be allowed access. An empty element indicates that no roles should be allowed access to
the resource.

There is no constraint on the number of <role-name> elements required to define security constraints. If
none are provided, then the resource is unavailable as no authentication is possible. You might make
resources unavailable for security reasons by removing all references to <role-name> elements in the
web.xml file and then restarting Tomcat.

<user-data-constraint>
The <user-data-constraint> element indicates what guarantees are given about the communication
of data from and to the client. A value of NONE indicates that no guarantees are provided that the data
has not been tampered with or intercepted by anyone other than the client and the system (the server).
Conversely, a value of INTEGRAL requires the authenticity of the data to be guaranteed, or that the data
has not been interfered with, while CONFIDENTIAL requires guarantees that the data has not been inter-
cepted by a third party. Specifying INTEGRAL or CONFIDENTIAL means that SSL will be used by redirect-
ing the client to the SSL port of the server.

This type of configuration is likely to be defined at design time. However, in a well-designed application,
it is up to the deployment engineer/system administrator to follow the design architecture to enforce the
security constraints defined within it. This enables authentication requirements to be absent from the
application code itself, thus allowing the application to be very flexible so that it can be configured as
business needs dictate.

<login-config>
This element relates to the configuration of login authentication in the application. The <login-config>
element contains the authentication method, the Realm name and login page, and the authentication
error page that should be used if form-based authentication is specified:

108

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 108

<login-config>
<auth-method>FORM</auth-method>
<realm-name>MemoryRealm</realm-name>
<form-login-config>

<form-login-page>login.jsp</form-login-page>
<form-error-page>notAuthenticated.jsp</form-error-page>

</form-login-config>
</login-config>

The authentication method consists of the HTTP methods available — namely, BASIC, DIGEST, FORM, and
CLIENT-CERT. These correspond to basic authentication (plain text), digest (base64-encoded responses),
FORM-based authentication (which enables an HTML page with a form that prompts the user to log in and
returns the user name and password), and client-certificate-based authentication, respectively.

The <realm-name> identifies the Realm that the server should use to authenticate the user against — in
our example, the Realm name alludes to the file-based list of users and passwords provided by the mem-
ory Realm with Tomcat. In a production environment, using the memory Realm is not recommended.
Instead, a JDBC or JDNI Realm is far more robust and maintainable.

Having chosen form-based authentication, we must specify the login page and the error page, in case a
login fails. In this case, we have specified that login.jsp contains the login request form. Bad authenti-
cation requests are redirected to notAuthenticated.jsp.

<security-role>
Security roles have been discussed in brief earlier in the chapter. The <security-role> element enables
roles to be defined along with the optional description:

<security-role>
<description>

Administrator of the application is allowed read/write rights to the
content

</description>
<role-name>administrator</role-name>

</security-role>

Further detail is provided in Chapter 15.

<env-entry>
The <env-entry> element is used to declare environment entries. These are JNDI value parameters
that can be used to configure the application. Unlike context initialization parameters, these values are
dynamic. They can be referred to and updated at run-time so that the application can be reconfigured
dynamically, and resources outside the Web application can access them. In particular, they can be admin-
istered by non-Java application components, and can be managed as part of the entire enterprise adminis-
tration system.

This works like all JNDI resources; the parameter is referenced from the JNDI initial context and can be
accessed using the java:comp/env environment naming context. The env-entry is defined as relative
to this context.

109

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 109

The environment entry must be typed to a Java data type (such as String or Integer) so that it can be
used within the application and can be used to define environment limits (such as minimum and maxi-
mum values). The general structure of an environment entry is as follows:

<env-entry>
<description>Lower limit – minimum allowable value</description>
<env-entry-name>MinimumValue</env-entry-name>
<env-entry-value>5</env-entry-value>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>

Environment entries are usually specific to the environment in which they are operating (that is, they are
application-specific). However, accepted norms for resource naming may be adopted in an attempt to
harmonize resource configuration.

The value can then be accessed using code such as the following:

// obtain the initial context.
Context initCtx = new InitialContext();
Context envCtx = (Context) initCtx.lookup(“java:comp/env”);

// Look up environment entry
Integer minValue = (Integer)envCtx.lookup(“MinimumValue”);

Servlet 2.4-Style Deployment Descriptor
In the new web.xml schema, the web-app element is the root element for the deployment descriptor. A
sample web-app element is shown here:

<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd”
version=”2.4”>
...

</web-app

The web-app element contains all other elements. Unlike the DTD-style 2.3 Deployment Descriptor, the
enclosed elements can be in any order.

These elements are listed in the following table. Except for session-config, jsp-config, and login-
config, all other elements can occur multiple times in the web.xml file.

Element Name Description

context-param Contains the Web application’s Servlet context initialization
parameters

description Provides a description for the Web application

display-name Specifies a short name for the Web application

110

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 110

Element Name Description

distributable Indicates that this Web application is programmed to be
deployed in a distributed Servlet container

ejb-local-ref Declares a reference to the Enterprise bean’s (EJB) local home

ejb-ref Declares the references to the EJB’s home

env-entry Declares the Web application’s environment entries

error-page Defines a mapping between an error code or exception and
an error page

filter Declares and configures a filter for the Web application

filter-mapping Specifies the filters to be applied to the Web application, and
the order in which they are applied

icon Specifies filenames for icons used to represent the parent
elements

jsp-config Specifies global configuration properties for the JSP pages in
the Web application

listener Configures the properties of an application listener bean

locale-encoding-mapping-list Specifies the mapping between locales and their encoding

login-config Specifies the authentication methods to be used for access-
ing the Web application

message-destination Specifies a message destination

message-destination-ref Contains the deployment component’s reference to a mes-
sage destination

mime-mapping Defines the mapping between an extension and a MIME type

resource-env-ref Contains a reference to an administered object associated
with a resource

resource-ref Contains a reference to an external resource

security-constraint Specifies security constraints for one or more groups of Web
resources

security-role Defines the security roles used in the security-constraint
element

service-ref Contains the reference to a Web service

servlet Configuration for a Servlet

servlet-mapping Specifies the mapping between a Servlet and URL pattern

session-config Defines the session parameters for the Web application

welcome-file-list Specifies a list of welcome files for a Web application

111

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 111

The following sections describe these elements in more detail.

Some of the deployment descriptor elements deal with configuration for J2EE components, such as
Enterprise JavaBeans (EJBs) and Web services. The following sections cover their configuration, but do
not explain these components in any detail.

context-param
The context-param element contains name-value pairs containing a Web application’s Servlet context
initialization parameters. The context-param has the following sub-elements:

❑ description— A text description of the name-value pair

❑ param-name— Name of the initialization parameter

❑ param-value— Value of the initialization parameter

A sample usage is shown here:

<context-param>
<param-name>webmaster</param-name>
<param-value>webmaster@foobar.com</param-value>
<description>Email address of webmaster</description>

</context-param>

description
The description element provides a textual description for its parent element. When included under
the web-app element (as shown in the “JSP examples” section of the Web application included in the
Tomcat distribution), it describes the Web application. This element is used elsewhere, too (for example,
the context-param element and the filter element), where it provides a description for that element:

<description>
JSP 2.0 Examples

</description>

The description element has an optional attribute, xml-lang, which indicates the language of the
description text. This defaults to en for English. There can also be multiple description elements, usually
with different xml-lang attributes, to support localization.

display-name
The display-name element gives a short, descriptive name for the parent element. For example, when
used directly under the web-app element, it provides a name for the Web application. This name is dis-
played by software tools that work with deployment descriptors. Like the description element, it too has
an xml-lang attribute (which defaults to en) to indicate the language; and multiple display-name
elements with different xml-lang values can be used to handle multiple-language support. A sample
display-name element is shown here:

<display-name xml-lang=”en”>JSP 2.0 Examples</display-name>

112

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 112

distributable
The presence of a distributable element indicates that the Web application has been programmed to
be deployed (if required) in a distributed Servlet container. Such a Servlet container may distribute the
Web application to multiple JVMs for scalability or performance considerations.

<distributable/>

Chapter 19 discusses a deployment scenario in which this is used.

ejb-local-ref
The ejb-local-ref element declares a reference to the enterprise bean’s (EJB) local home. This element
has the following child elements:

❑ ejb-ref-name— The EJB reference name

❑ ejb-ref-type— The EJB reference type

❑ ejb-link— Specifies that the EJB reference is linked to an enterprise bean

❑ local— The fully qualified name of the EJB’s local interface

❑ local-home— The fully qualified name of the EJB’s local home interface

ejb-ref
This element contains a reference to an EJB’s home. It has the following child elements:

❑ ejb-refname— The name used in the deployment component to refer to the EJB

❑ ejb-ref-type— Type of the EJB (Entity/Session)

❑ home— Fully qualified name of the EJB’s home interface

❑ remote— Fully qualified name of the EJB’s remote interface

❑ ejb-link— Specifies that the EJB reference is linked to an enterprise bean

❑ description— A text description of the EJB reference

A sample ejb-ref element is shown here:

<ejb-ref>
<description>Employee bean/description>
<ejb-ref-name>EmployeeBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.foobar.employee.EmployeeHome</home>
<remote>com.foobar.employee.Employee</remote>

</ejb-ref>

113

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 113

env-entry
The env-entry element declares environment parameters for a Web application. Each env-entry has
the following child elements:

❑ env-entry-name— The JNDI name of the deployment component’s environment entry. This
name is relative to the java:comp/env context, and must be unique within a context.

❑ env-entry-type— The type for the environmental entry (for example, java.lang.Integer,
java.lang.String)

❑ env-entry-value— The value of the deployment component’s environment entry

The following example shows a sample env-entry:

<!-- Environment entry examples -->
<env-entry>

<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>

error-page
The error-page element specifies the mapping between an error code or Java exception type and a Web
resource. It contains the following child elements:

❑ error-code— The HTTP error code

❑ exception-type— The fully qualified class name of the Java exception type

Either the error-code or the exception-type should be specified in an error-page element, but not both.

❑ location— The location of the resource (that is, the error Web page) that handles the error. The
location is relative to the root of the Web application, and must have a leading slash (/).

A sample error-page is shown in the following code:

<error-page>
<error-code>404</error-code>
<location>/myApp/jsp/notFound.jsp</location>

</error-page>
<error-page>

<error-code>500</error-code>
<location>/myApp/jsp/SystemErr.jsp</location>

</error-page>

114

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 114

filter
The filter element declares a filter in the Web application. The filter is mapped to either a Servlet or a
URL pattern in the filter-mapping element, using the filter-name value as a reference key.

The filter element consists of the following sub-elements:

❑ filter-name— The name of the filter. This must be unique in the Web application, and should
not be empty. This name must match the filter-name specified in the filter-mapping ele-
ment described in the next section.

❑ filter-class— The fully qualified Java class name of the filter

❑ init-param— Initialization parameters for the filter specified as name-value pairs. These have the
same structure as the context-param element described earlier, and consist of the param-name,
param-value, and description sub-elements.

❑ description— A text description of the filter

❑ display-name— A short, descriptive name that can be used by tools while displaying the filter
configuration

❑ icon— The icon element specifies icons that can be used by tools to symbolically represent the
filter in GUI tools. It has two sub-elements: a small-icon and large-icon (see the icon ele-
ment, described later in this chapter).

A sample filter configuration is shown in the following example:

<filter>
<filter-name>Compression Filter</filter-name>
<filter-class>compressionFilters.CompressionFilter</filter-class>

<init-param>
<param-name>compressionThreshold</param-name>
<param-value>10</param-value>

</init-param>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
</filter>

<filter>
...
</filter>

filter-mapping
As specified earlier, the filter is mapped to either a Servlet or a URL pattern in the filter-mapping
element, using the filter-name value for reference. The Compression Filter was declared in the
filter element above, and the following example shows it being mapped to URL patterns that begin
with /CompressionTest:

115

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 115

<filter-mapping>
<filter-name>Compression Filter</filter-name>
<url-pattern>/CompressionTest</url-pattern>

</filter-mapping>

The filter-mapping element can contain the following sub-elements:

❑ filter-name— The filter name. This must match the filter-name specified in the filter
element.

❑ url-pattern— The URL pattern to which the filter applies

❑ servlet-name— The Servlet to which the filter applies. You should specify either the
url-pattern or servlet-name, but not both.

icon
The icon element specifies icons that can be used by GUI tools to symbolically represent the parent
element. It can occur under the web-app element (specifying icons to represent the Web application) or
other elements (for example, the filter element described earlier). It has two sub-elements:

❑ small-icon

❑ large-icon

These set the small and large icon images, respectively. The images are relative path names to gif or
jpeg files. The following is an example icon element:

<icon>
<small-icon>an-icon16x16.jpg</small-icon>
<large-icon>an-icon32x32.jpg</large-icon>

</icon>

jsp-config
The jsp-config element is used to configure JSP files in the Web application. It has the following child
elements:

❑ taglib— Configure tag libraries used within the JSP pages. This is done via its two child ele-
ments: taglib-uri and the taglib-location (the location of the tag configuration .tld file).

❑ jsp-property-group— Configure JSP pages. This in turn has a number of child elements of
its own:

❑ url-pattern— The URL pattern for the JSPs

If a URL pattern is also specified in the servlet-mapping (described later in this section), then the
more specific pattern applies. If both match, then the jsp-property-group takes precedence.

❑ el-ignored— Sets the isELIgnored property for JSP pages. EL evaluation is enabled
by default. JSP EL is a new expression language for accessing data from JSP pages.

❑ page-encoding— The encoding to be used for the page (for example, ISO-8859-1)

116

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 116

❑ scripting-invalid— Used to disable scripting in JSP pages (enabled by default)

❑ is-xml— If true, implies that the documents matching the pattern are JSP pages, and
can be interpreted as XML.

❑ include-prelude— Specifies the path to a Web resource to be included in the begin-
ning of the JSP page

❑ include-coda— Specifies the path to a Web resource to be included at the end of the
JSP page

❑ description— A text description of the filter

❑ display-name— A short, descriptive name that can be used by tools while displaying
the filter configuration

❑ icon— The icon element specifies icons that can be used by GUI tools to symbolically represent
the filter. It has two sub-elements: a small-icon and large-icon (see the icon element, described in
more detail earlier in the chapter).

The jsp-config element for the example JSPs bundled along with Tomcat is shown here:

<jsp-config>
<taglib>

<taglib-uri>
http://jakarta.apache.org/tomcat/examples-taglib

</taglib-uri>
<taglib-location>/WEB-INF/jsp/example-taglib.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>

http://jakarta.apache.org/tomcat/jsp2-example-taglib
</taglib-uri>
<taglib-location>

/WEB-INF/jsp2/jsp2-example-taglib.tld
</taglib-location>

</taglib>

<jsp-property-group>
<description>

Special property group for JSP Configuration JSP example
</description>
<display-name>JSPConfiguration</display-name>
<url-pattern>/jsp2/misc/config.jsp</url-pattern>
<el-ignored>true</el-ignored>
<page-encoding>ISO-8859-1</page-encoding>
<scripting-invalid>true</scripting-invalid>
<include-prelude>/jsp2/misc/prelude.jspf</include-prelude>
<include-coda>/jsp2/misc/coda.jspf</include-coda>

</jsp-property-group>
</jsp-config>

117

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 117

listener
The listener element specifies the deployment properties for an application listener bean. It has the
following sub-elements:

❑ listener-class— The fully qualified class name of the Java class corresponding to the
listener

❑ description— A text description of the listener

❑ display-name— A short, descriptive name that can be used by tools while displaying the
listener configuration

❑ icon— The icon element specifies icons that can be used by GUI tools to symbolically represent
the listener. It has two sub-elements: a small-icon and large-icon (see the icon element, described
in more detail earlier in the chapter).

A sample listener element is shown here:

<listener>
<listener-class>listeners.ContextListener</listener-class>

</listener>
<listener>

<listener-class>listeners.SessionListener</listener-class>
</listener>

locale-encoding-mapping-list
This element contains the locale-encoding-mapping element that specifies the mapping between the
locale and the encoding. The locale-encoding-mapping element has two child elements:

❑ locale— The locale to be encoded

❑ encoding— The encoding to be used

A sample is shown here:

<locale-encoding-mapping-list>
<locale-encoding-mapping>

<locale>en</locale>
<encoding>en_US</encoding>

</locale-encoding-mapping>
</locale-encoding-mapping-list>

login-config
This element is used to configure the authentication method, the Realm name, and the attributes needed
for FORM-based login. It has the following child elements:

❑ auth-method— The authentication method to be used. It must be one of the following: BASIC,
DIGEST, FORM, or CLIENT-CERT.

118

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 118

❑ realm-name— The name of the Realm

❑ form-login-config— If FORM-based authentication is used, this element is used to configure
it. It specifies the form’s login page (form-login-page element) and the error page (form-
error-page element).

The login-config element is described in more detail in Chapter 15. A sample login-config is
shown here:

<!-- Default login configuration uses form-based authentication -->
<login-config>

<auth-method>FORM</auth-method>
<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config>

<form-login-page>/security/protected/login.jsp</form-login-page>
<form-error-page>/security/protected/error.jsp</form-error-page>

</form-login-config>
</login-config>

message-destination
The message-destination element specifies a message destination. The destination specified here is
mapped to a physical destination by the deployer. It consists of the following child elements

❑ message-destination-name— The name of the message destination. This name must be
unique across all message destinations described in the deployment descriptor.

❑ description— A text description of the destination

❑ display-name— A short, descriptive name that can be used by tools while displaying the
destination

❑ icon— The icon element specifies icons that can be used by GUI tools to symbolically repre-
sent the message-destination. It has two sub-elements: a small-icon and large-icon
(see the icon element, described in more detail earlier in the chapter).

message-destination-ref
The message-destination-ref element declares a reference to a message destination associated with
a resource in the deployment component’s environment. It consists of the following child elements:

❑ message-destination-ref-name— Name of the message destination reference. This name is
a JNDI name, relative to the java:comp/env context, and must be unique within the deploy-
ment descriptor.

❑ message-destination-type— Type of the destination. The type is specified as a fully quali-
fied Java interface that is implemented by the destination.

❑ message-destination-usage— Specifies the use of the message destination. The destination
is used for consuming messages (Consumes), producing messages (Produces), or both (Both).

119

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 119

❑ message-destination-link— Links the message destination reference to a message destina-
tion (see the message-destination element described earlier) or a message-driven bean. This
value should match the message-destination-name defined in the message-destination
element.

❑ description— Used for documentation

mime-mapping
The mime-mapping element specifies the mapping between the extension for a resource and its MIME
type. It has two child elements for this: extension and mime-type. A sample mime-mapping is shown
in the following example:

<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>

</mime-mapping>

resource-env-ref
This element contains a reference to the administered object associated with a resource. It has the follow-
ing child elements:

❑ resource-env-ref-name— Name of the resource environment reference. This name is a JNDI
name, relative to the java:comp/env context, and must be unique within the deployment
descriptor.

❑ resource-env-ref-type— The type of the resource environment reference. This must be the
fully qualified name of a Java class or interface.

❑ description— Used for documentation

resource-ref
The resource-ref element specifies a reference to an external resource. It consists of the following
child elements:

❑ res-ref-name— Name of the resource manager connection factory reference. This name is a
JNDI name, relative to the java:comp/env context, and must be unique within the deployment
descriptor.

❑ res-type— Type of the data source. The type is specified as a fully qualified Java class or inter-
face that is implemented by the data source.

❑ res-auth— Specifies whether the deployment component code signs on programmatically to
the resource manager (Application), or whether the container signs on to the resource manager
on its behalf (Container). If the container handles this, the deployer needs to supply information
for the sign on.

❑ res-sharing-scope— Specifies if the connections obtained through the resource manager are
sharable (Sharable) or not (Unsharable)

❑ description— Used for documentation

120

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 120

The example resource-ref element shown here is reference to a JDBC DataSource:

<!-- JDBC DataSources (java:comp/env/jdbc) -->
<resource-ref>

<description>The default JDBC datasource</description>
<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

security-constraint
This element specifies the security constraints on one or more Web resource collections, as follows:

❑ display-name— The display name for the security constraint

❑ web-resource-collection— Specifies the resources (url-pattern element) and the HTTP
methods (http-method element) that are allowed on these resources

❑ auth-constraint— Indicates the user roles (role-name element) that are permitted to access
the Web resources protected by this security constraint. These role names must match those
defined in the security-role element described later in the chapter. The pattern * matches all
roles defined in the Web application.

❑ user-data-constraint— Specifies how the data transmitted between the client and the
Servlet container is protected. This is done via its transport-guarantee child element, and it
can be set to NONE, INTEGRAL, or CONFIDENTIAL.

A sample security-constraint is shown in the following example:

<security-constraint>
<display-name>Example Security Constraint</display-name>
<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>
<!-- Define the context-relative URL(s) to be protected -->

<url-pattern>/security/protected/*</url-pattern>
<!-- If you list http methods, only those methods are protected -->
<http-method>DELETE</http-method>

<http-method>GET</http-method>
<http-method>POST</http-method>

<http-method>PUT</http-method>
</web-resource-collection>
<auth-constraint>

<!-- Anyone with one of the listed roles may access this area -->
<role-name>tomcat</role-name>

<role-name>role1</role-name>
</auth-constraint>

</security-constraint>

121

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 121

security-role
The security-role element lists all the security roles used in the Web application. These role names
are specified via the role-name child element, and are used in the security-constraint (see the pre-
vious element) to specify the security constraints for a Web application. A sample security-role ele-
ment is shown in the following example that corresponds to the role used in the security-constraint
in the previous example:

<security-role>
<role-name>role1</role-name>

</security-role>
<security-role>

<role-name>tomcat</role-name>
</security-role>

service-ref
A service-ref element declares a reference to a Web service. It consists of the following child elements:

❑ service-ref-name— The logical name that components in the module use to look up the
service. It is recommended that this name start with /service/.

❑ service-interface— The fully qualified class name of the JAX-RPC Service interface on
which the client depends

❑ wsdl-file— The URI location for the WSDL file. The location is relative to the Web application
root.

❑ jaxrpc-mapping-file— File that specifies the JAX-RPC mapping between the Java interfaces
used by the application and the descriptions in the WSDL file

❑ service-qname— The name of the WSDL service element

❑ port-component-reference— This element declares the service endpoint interface or pro-
vides the link to a port component that specifies this. It has two child elements:

❑ service-endpoint-interface— A fully qualified Java class that represents the ser-
vice endpoint interface of a WSDL port

❑ port-component-link— Links the port component reference to a specific port
component

❑ handler— Declares the handler for the port component. This in turn has a number of child
elements:

❑ handler-name— Name of the handler. The name must be unique within the module.

❑ handler-class— Fully qualified Java class name for the handler

❑ init-param— This contains parameter name (param-name) and value (param-value)
pairs for initialization parameters.

❑ soap-header— Qualified name (QName) of the SOAP header that will be processed
by this handler

122

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 122

❑ soap-role— SOAP actor definitions that the handler will play as a role

❑ port-name— WSDL port name that the handler is associated with

❑ description— A text description of the service reference

❑ display-name— A short, descriptive name that can be used by tools while displaying the
service reference

❑ icon— The icon element specifies icons that can be used by GUI tools to symbolically repre-
sent the element. It has two sub-elements: a small-icon and large-icon (see the icon ele-
ment, described in more detail earlier in the chapter).

servlet
The servlet element is used to configure a Servlet or JSP file. It consists of the following child elements:

❑ servlet-name— The name of the Servlet. This must be unique across the Web application.

❑ servlet-class— The fully qualified Java class name of the Servlet

❑ jsp-file— The full path of the JSP file within the Web application (that is, beginning from /). If
the load-on-startup element is enabled (described later), then the JSP should be pre-compiled.

Only one of the servlet-class or jsp-file elements should be specified.

❑ init-param— The init-param element is used to pass initialization time parameters to the
Servlet. This is done via its param-name and param-value elements. It also has a description
element that is used to document the parameters.

❑ load-on-startup— The load-on-startup element indicates to the Servlet container that this
Servlet should be loaded at startup time. This element can also contain an optional positive inte-
ger value that specifies the startup sequence (lower-integer-valued Servlets are loaded before the
higher-integer-valued ones). A negative or missing value indicates that the order doesn’t matter.

❑ run-as— The security role to be used for the execution of the Servlet or JSP page. This has two
child elements: an optional description and a role-name that specifies the role.

❑ security-role-ref— This element declares the security role reference in a component’s code. It
consists of the security role name (role-name element) and a link to the security role (role-link
element). It also has an optional description element, again used for documentation purposes.

❑ description— A text description of the listener

❑ display-name— A short, descriptive name that can be used by tools while displaying the
listener configuration

❑ icon— The icon element specifies icons that can be used by GUI tools to symbolically represent
the listener. It has two sub-elements: a small-icon and large-icon (see the icon element,
described in more detail earlier in the chapter).

123

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:55 PM Page 123

A sample servlet element is shown here:

<servlet>
<servlet-name>org.apache.jsp.num.numguess_jsp</servlet-name>
<servlet-class>org.apache.jsp.num.numguess_jsp</servlet-class>

</servlet>

servlet-mapping
The servlet-mapping element defines the mapping between a Servlet (servlet-name element) and a
URL pattern (url-pattern element). The servlet-name must match the name defined in the servlet
element, as shown in the following example:

<servlet-mapping>
<servlet-name>org.apache.jsp.num.numguess_jsp</servlet-name>
<url-pattern>/num/numguess.jsp</url-pattern>

</servlet-mapping>

session-config
This element defines the session parameters for the Web application. It has a session-timeout ele-
ment, which specifies the default session timeout interval, in minutes, for all sessions for this applica-
tion. The following example specifies a session timeout of 30 minutes:

<session-config>
<session-timeout>30</session-timeout>

</session-config>

If set to 0 (zero) or less, the session is set to never timeout.

welcome-file-list
This element contains an ordered list of welcome files (for example, index.html), and is specified via the
welcome-file child element. This file is displayed when someone browses to the Web application URL:

http://hostname:port/<web application name>/

Following is a sample welcome-file-list element:

<welcome-file-list>
<welcome-file>index.jsp<welcome-file>
<welcome-file>index.html<welcome-file>
<welcome-file>home.html<welcome-file>

</welcome-file-list>

If more than one of these files are present in the Web application, then the order in which they are speci-
fied determines which one is shown — the file listed earlier has higher precedence. If none of the files in
the example list are found, then, depending on the configuration, an HTTP 404–Not Found error mes-
sage is displayed.

124

Chapter 6

b 559028 Ch06.qxd 4/22/04 3:56 PM Page 124

Summary
Configuring Web applications on production and test systems is an important part of an administrator’s
job. This involves tasks such as adding or removing filters for given URL patterns, session configuration,
error page configuration, the addition of tag libraries, and the configuration of initialization parameters
for the Web application. Understanding the Web application structure, and the deployment descriptor is,
therefore, important for administrators. This chapter focused on these issues, and described the various
elements that make up a Web application. It highlighted the following aspects:

❑ The directory structure for a typical Web application

❑ A detailed examination of both the Servlet 2.3-style (DTD-based) deployment descriptor and the
Servlet 2.4-style (schema-based) deployment descriptor.

Chapter 7 covers how Web applications are managed within Tomcat.

125

Web Application Configuration

b 559028 Ch06.qxd 4/22/04 3:56 PM Page 125

b 559028 Ch06.qxd 4/22/04 3:56 PM Page 126

Web Application
Administration

This chapter discusses the management of Web applications using tools available with Tomcat
versions 4.x and 5.x. Tomcat’s management tools include the manager application and the admin
application. The manager application helps manage Web application deployment. It enables
administrators to deploy Web applications, view deployed applications, and finally undeploy
them. While these tasks can also be performed manually by editing Tomcat’s configuration files,
this method requires Tomcat to be restarted. The manager application automates these tasks and
enables them to be performed on a running instance of Tomcat. This way, applications that are
already running are left undisturbed.

The admin application enables management of the Tomcat server itself: You can add, delete, or
modify Connectors, Hosts, and Context; manage Resources such as DataSources and Environment
parameters, and manage users and roles. In short, it provides a Web-based GUI for tasks that oth-
erwise would require editing Tomcat’s configuration files (server.xml, tomcat-users.xml, and
so on) and restarting the Tomcat server.

Chapter 5 discussed the admin application, along with basic Tomcat configuration. This chapter
covers the manager application. The chapter first looks at a sample Web application that is used as
an example throughout the chapter. Then it discusses in detail the manager application, including
the following areas:

❑ Enabling access to the manager application

❑ The three ways of interacting with the manager application (via HTTP commands, Ant
scripts, and the new Web-based user interface)

❑ Security considerations while using the manager application

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 127

Sample Web Application
This chapter uses a simple Web application for testing the manager commands. This application consists
of nothing more than one HTML file and one JSP file.

The HTML file (index.html) contains a form that asks for the user’s name and uses HTTP POST to
send the result to a JSP page:

<html>
<head>

<title>Hello Web Application</title>
</head>

<body>
<h1>Hello Web Application</h1>
<form action=”/hello/hello.jsp” method=”POST” >

<table width=”75%”>
<tr>

<td width=”48%”>What is your name?</td>
<td width=”52%”>

<input type=”text” name=”name” />
</td>

</tr>
</table>
<p>

<input type=”submit” name=”Submit” value=”Submit name” />
<input type=”reset” name=”Reset” value=”Reset form” />

</p>
</form>

</body>
</html>

The JSP page (hello.jsp) then prints a Hello <name> message. The <name> portion is the name that
the user entered in the index.html form:

<html>
<head>

<title>Hello Web Application</title>
</head>
<body>

<h1>Hello Web Application</h1>

<%
String name = request.getParameter(“name”);
if (name.trim().length() == 0) {
%>

You didn’t tell me your name!

<%
} else {
%>

Hello <%=name%>

128

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 128

<%
}
%>
Try again?

</body>
</html>

This Web application will be deployed with the /hello context path; therefore, http://
localhost:8080/hello/index.html would be the URL to access it.

The commands for building the WAR file are as follows:

$ cd /path/to/hello
$ jar cvf hello.war.

The /path/to/hello is the directory in which the index.html and hello.jsp files reside.

Tomcat Manager Application
The Tomcat manager application is a Web application that enables you to carry out various system
administration tasks related to deploying, undeploying, and managing a Web application.

Following are the three ways of interacting with the manager application:

❑ Using HTTP requests — This can be done either via the browser or by writing scripts to automate
the process. The section “Tomcat Manager: Using HTTP Requests,” later in this chapter covers
this in more detail.

❑ Using the Ant based interface — This is discussed in the section “Tomcat Manager: Managing
Applications with Ant,” later in this chapter.

❑ Using the Web interface to the Admin application — This is discussed in the section “Tomcat
Manager: Web Interface,” later in this chapter.

Future versions of Tomcat might add a Web Service interface, thus enabling easier integration of the
Tomcat management tasks from third-party applications.

Access to the manager application is restricted to authorized users. This prevents unauthorized users
from undeploying (or deploying) applications, or performing any other operation that they shouldn’t.
The next section discusses how this access control is configured, and then examines the other configura-
tion parameters for the manager application. Finally, it describes all the manager application commands
in more detail.

Following is a summary of some of the tasks that the manager application can perform:

❑ Deploy a new Web application

❑ List the currently deployed Web applications, as well as the sessions that are currently active for
those Web applications

❑ Reload an existing Web application

129

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 129

❑ List the available global JNDI resources

❑ List the available security roles

❑ Start a stopped application

❑ Stop an existing application, but not undeploy it

❑ Undeploy a Web application

❑ Display session statistics

An application can be deployed manually, too. Following are the ways to do this:

❑ Add a <Context> entry in Tomcat’s server.xml configuration file. This enables you to place
the Web application in a location other than the default $CATALINA_HOME/webapps directory.

❑ Copy the entire application directory into the $CATALINA_HOME/webapps directory. The
server.xml file does not have to be edited in this case.

❑ Copy the WAR file for the application into the $CATALINA_HOME/webapps directory. In this
option, too, the server.xml file does not have to be edited.

However, there are advantages to using a manager application. First, all these ways of deploying just
described require you to restart Tomcat. When deploying is done via the manager application, Tomcat is
not restarted and, hence, the other running Web applications are not affected.

Alternatively, the autoDeploy attribute in the Host (see server.xml) could be set to true, which is
actually the default in Tomcat 5.x. This would cause any Web application dropped into Tomcat’s applica-
tion base to be deployed automatically. Doing this compromises performance, however, because Tomcat
must continually monitor the application base directory; hence, autoDeploy is often set to false.

Another advantage of using the manager application is that it supports remote installs. That is, the Web
application directory (or WAR file) doesn’t need to be transferred via FTP or some other means to the
host machine running Tomcat. The deploy command takes care of transferring the Web application
WAR file from the local development machine to the remote machine running the Tomcat server.

Enabling Access to the Manager Application
Before using the manager application, the server needs to be configured to enable access. Access to this
application is controlled via a Security Realm. Any Realm implementation can be used (Memory, User
Database, JDBC, JNDI, or JAAS). This example uses a User Database Realm for simplicity.

In a User Database Realm, the user names and their supporting information are stored in memory and
are initialized at startup from an XML configuration file ($CATALINA_HOME/conf/tomcat-users.xml)
kept on the file system. This file needs to be edited to add a user with a role of manager. In the following
entry, the user name and password for this role are “admin” and “secret” respectively:

<tomcat-users>
...
<user username=”admin” password=”secret” roles=”manager” />
...

</tomcat-users>

130

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 130

Tomcat now needs to be restarted to make it re-read the tomcat-users.xml file. To determine
whether the manager application setup was successful, browse to the default Tomcat URL (http://
localhost:8080), and click the Tomcat Manager link. The user is then prompted for a user name and
password. After entering the values set in the tomcat-users.xml file, the Web page of the manager
application shown in Figure 7-1 should be displayed.

Figure 7-1: The Tomcat Web Application Manager.

As you can see in the figure, the response for a successful command execution (the Message parameter)
is an OK string. A missing OK is an indication of failure, and the rest of the message provides the cause.
The possible causes of failure for each command are listed later in this chapter in the section “Possible
Errors.”

During installation of Tomcat 4.1 and 5.x on Windows using the installer executable (and not the zip
file), the installer asks the user for the admin user name and password. The user name and password
entered at install time are used to generate entries for the tomcat-users.xml file for both the
manager and admin Web applications. Hence, no configuration is needed in this case, unless another
user with manager privileges is to be added or the manager password is to be changed.

131

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 131

Manager Application Configuration
The previous section looked at tomcat-users.xml, which defines the user name and password for the
manager role. The other manager application related configuration parameters are the manager context
entry and the deployment descriptor.

No changes have to be made for the manager application to work — the settings are configured by
default. They can, however, be modified for deployment requirements — for example, to change the
security constraints for the manager application, to change the authentication mechanism for users
in the manager role, or even to change the name of the role from “manager” to some other name if
required. This section covers these configurable parameters for the manager application.

Manager Application Context Entry
In Tomcat 4.0, the manager context is configured in the same way as the other application contexts.
Following is the default configuration for the manager application from the
$CATALINA_HOME/conf/server.xml file:

<!-- Tomcat Manager Context -->
<Context path=”/manager” docBase=”manager” debug=”0” privileged=”true”/>

In Tomcat 4.1 and 5.x, the configuration information for the manager application is picked up from the
manager.xml file. The default manager context from the configuration file is listed here:

<Context path=”/manager” docBase=”../server/webapps/manager”
debug=”0” privileged=”true”>

<!-- Link to the user database we will get roles from -->
<ResourceLink name=”users” global=”UserDatabase”

type=”org.apache.catalina.UserDatabase”/>
</Context>

The manager.xml file is located under $CATALINA_HOME/webapps/ for Tomcat 4.1 and under the appli-
cation base for your host in Tomcat 5.x (for example, $CATALINA_HOME/conf/Catalina/localhost).
If you have multiple virtual hosts, you need to configure a manager for each virtual host via a manager.
xml file.

The Context entry specifies the context path for the manager application via the path and the document
base directory for the Web application via the docBase attribute (“../server/webapps/manager”).
The privileged attribute is set to true. This enables the application to access the container’s Servlets.
This attribute is false for a normal Web application deployed in Tomcat. The <ResourceLink> element
creates a link to a global JNDI resource database from which the user names and roles are retrieved.

Manager Application Deployment Descriptor
The tomcat-users.xml file shown earlier defined the user name and password for the manager role.
This section discusses how the security constraints for this role are specified. The deployment descriptor
for the Tomcat 4.0 manager application is $CATALINA_HOME/webapps/manager/WEB-INF/web.xml. In
Tomcat 4.1 and 5.x, the web.xml file is in $CATALINA_HOME/server/webapps/manager/WEB-INF.

132

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 132

The web.xml defines, among other things, the security constraints on the manager application. The fol-
lowing snippet describes the default security constraint definition for the manager Web application. The
<role-name> defined here (shown in bold) specifies that only users in that role can access the manager
Web application:

<!-- Define a Security Constraint on this Application -->
<security-constraint>

<web-resource-collection>
<web-resource-name>HTMLManger and Manager command</web-resource-name>
<url-pattern>/jmxproxy/*</url-pattern>
<url-pattern>/html/*</url-pattern>
<url-pattern>/list</url-pattern>
<url-pattern>/sessions</url-pattern>
<url-pattern>/start</url-pattern>
<url-pattern>/stop</url-pattern>
<url-pattern>/install</url-pattern>
<url-pattern>/remove</url-pattern>
<url-pattern>/deploy</url-pattern>
<url-pattern>/undeploy</url-pattern>
<url-pattern>/reload</url-pattern>
<url-pattern>/save</url-pattern>
<url-pattern>/serverinfo</url-pattern>
<url-pattern>/status/*</url-pattern>
<url-pattern>/roles</url-pattern>
<url-pattern>/resources</url-pattern>

</web-resource-collection>
<auth-constraint>

<!-- NOTE: This role is not present in the default users file -->
<role-name>manager</role-name>

</auth-constraint>
</security-constraint>

The authentication mechanism for the manager application is also defined here. The default setting is
BASIC authentication. Administrators could set up a more rigorous mechanism for manager application
authentication — for example a client-certificate-based mechanism (<auth-method> set to CLIENT-CERT):

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Tomcat Manager Application</realm-name>

</login-config>

The <security-role> lists all the roles that can log in to the manager application. In this case, it is
restricted to only one user role (that is, the manager role):

<!-- Security roles referenced by this web application -->
<security-role>

<description>
The role that is required to log in to the Manager Application

</description>
<role-name>manager</role-name>

</security-role>

133

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 133

Tomcat Manager: Using HTTP Requests
The manager application commands that are issued via the Web browser have the following format:

http://{hostname}:{portnumber}/manager/{command}?{parameters}

In this command, the various parts are as follows:

❑ hostname— The host on which the Tomcat instance is running

❑ portnumber— The port on which the Tomcat instance is running

❑ command— The manager command to be run. The allowed values for command are list,
sessions, start, stop, install, remove, deploy, undeploy, reload, serverinfo, roles,
resources, status, and jmxproxy. These commands are covered in more detail later in this
chapter.

❑ parameters— The parameters passed to the commands listed above. These are command-
specific, and are explained in detail along with the specific command below. Many of these
parameters contain the context path to the Web application (the path parameter) and the URL
to the Web application file (the war parameter). The context path for the ROOT application is an
empty string. For all other Web applications, the context path must be preceded by a slash (/).
The URL to the Web application can be in one of the following formats:

❑ file:/absolute/path/to/a/directory— This specifies the absolute path to a
directory in which a Web application is present in an unpackaged form. This entire path
is then added as the context path of the Web application in Tomcat’s configuration.

❑ file:/absolute/path/to/a/webapp.war— This specifies the absolute path to a
WAR file. The Tomcat documentation states that this format is not allowed for the
install command. However, our tests with Tomcat 4.1.3 indicate that it works fine
for install, too.

❑ jar:file:/absolute/path/to/a/warfile.war!/— The jar protocol enables
the specifying of the URL for a WAR file. This is handled by the java.net.
JarURLConnection that provides a URL connection to a JAR/WAR file. Here, the
URL specified is for a file on the local file system.

❑ file:/absolute/path/to/a/context.xml— This specifies the absolute path to the
context configuration file. This is an XML file that contains the <Context> configura-
tion for the Web application.

❑ directory— This is the directory name for the Web application within the Tomcat
application base directory. The application base directory is typically $CATALINA_HOME/
webapps.

❑ webapp.war— This is the directory name for the Web application archive (that is, WAR
file). This WAR file is looked for in the Tomcat application base directory (typically,
$CATALINA_HOME/webapps).

The !/ characters at the end of these URLs enable them to be used in a Web browser and not cause the
default MIME type action for the .war extension to take effect. For example, if the following URL is used
to install a Web application and the !/ is omitted at the end, the user may be prompted to (depending

134

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 134

on how the browser’s MIME settings are configured) save to disk, open the file in the browser, or open
the file in an application (for example, Winzip):

http://localhost:8080/manager/install?path=/hello&war=jar:file:/path/to/hello.war!/

Numerous problems can occur while working with the manager application. The possible causes of
failure are listed later in this chapter in the section “Possible Errors.”

List Deployed Applications
The format for the list command URL that lists all deployed and installed applications is as follows:

http://{hostname}:{portnumber}/manager/list

Figure 7-2 shows the list command being run.

Figure 7-2: Listing deployed applications.

As shown in the figure, the response for a successful command execution begins with an OK string
(OK — Listed applications of virtual host {hostname}). A missing OK is an indication of
failure, and the rest of the response page provides the cause(s). The possible causes of failure for each
command are covered later in the chapter. The response page is in the text/plain format (that is, it
contains no HTML markup).

The data fields returned in a manager command response are always delimited by the colon (:) character.
In Figure 7-2, each line indicates the (unique) context path of the Web application, the status (running or
stopped), the number of active sessions for the application, and the document base for the Web application.

These conventions enable scripts to be written that retrieve the output of the manager command and
perform appropriate actions.

135

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 135

Installing/Deploying Applications in Tomcat 4.x
Tomcat 4.x has both an install command and a deploy command. At first glance, these look the same.
However, there are differences as far as the Tomcat manager application is concerned.

When a Web application is deployed, it makes permanent changes to Tomcat’s configuration, so the Web
application is available across Tomcat restarts. The install option, however, does not make permanent
changes to Tomcat’s configuration. Thus, the install command is useful for test purposes. Developers
can build a Web application, install it, and then try it out. Once it is sufficiently robust, it can then be
deployed via the deploy command to permanently place it into a Tomcat installation.

Furthermore, the deploy command enables administrators to deploy a Web application remotely. With
install, the Web application JAR file (or the extracted Web application path) must be on the same
machine as that of the Tomcat instance.

The undeploy and uninstall commands undo the effects of deploy and install. These are discussed
later in this chapter.

However, note that Tomcat 4.0 has a command called install that actually has an effect similar (though
not identical) to the deploy command in Tomcat 4.1. The Tomcat documentation, to help matters, calls it
the command to deploy applications (even though the name of the command is install).

Deploying a New Application
The deploy command is used to deploy a Web application to a running instance of Tomcat. The effect of
this command is as follows:

❑ The WAR file for the Web application is uploaded from the client machine to the machine on
which Tomcat is running, and copied into the application base directory of the given virtual
host. For example, if the virtual host name configured in server.xml were localhost itself,
the WAR file would be copied under $CATALINA_HOME/work/Standalone/localhost/
manager.

❑ The client machine may very well be the same machine on which Tomcat is running.

❑ An entry for the Web application’s context is added into Tomcat’s run-time data structures.

❑ The Web application is loaded.

❑ The WAR file can contain a <Context> element definition (META-INF/context.xml), and this
would take precedence over the default Context that the manager application generates for it.

The general format for the deploy command is as follows:

http://{hostname}:{portnumber}/manager/deploy?path={context_path}

Here, hostname and portnumber are the host and port for the Tomcat instance, and context_path
is the context path for the application. The WAR file to be deployed is passed inside the request data
of the HTTP PUT request. Therefore, to deploy the hello application shown at the beginning of the
chapter at the context path /hello, an HTTP PUT request would need to be directed to the URL http://
{hostname}:{portnumber}/manager/deploy?path=/hello.

136

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 136

Because the WAR file is passed as the request data, this command cannot be invoked directly via a Web
browser. Instead, it should be invoked from a tool — for example, within an Ant script (see the section
“Tomcat Manager: Managing Applications with Ant,” later in this chapter) or via the manager Web
interface (see the section “Tomcat Manager: Web Interface,” later in this chapter).

Essentially, the tool that sends the deploy command will have to build an HTTP request that looks
something like the one shown in Figure 7-3, and execute an HTTP PUT command to send it over to the
manager Servlet.

Figure 7-3: Deploy command sent over an HTTP connection.

A successful deploy command returns the success message “OK — Deployed application at context path
{context_path}.” If the operation failed, the error message would start with a FAIL string, and contain the
cause for failure.

Recall that Tomcat 4.0 has an install command that it calls a deploy command! The behavior of the
install command varies between versions 4.0 and 4.1. This difference is discussed in the next section.

Installing a New Application
The Tomcat 4.0 documentation says that the command called install deploys an application. This is
true because this command has a permanent effect in Tomcat’s configuration. The effect that the Tomcat
4.0 install command has is as follows:

1. The Web application WAR file (or extracted directory) is copied into the application base
directory.

2. The Web application is started.

3. Tomcat’s internal run-time data structures are updated to reflect the new application context.

The last two steps ensure that the new Web application is available for use immediately. The first step
(the copying) makes the installation permanent (that is, across Tomcat restarts).

In Tomcat 4.1, the install option performs only the last two steps: It updates Tomcat’s internal runtime
data structures and starts the application. Thus, if Tomcat is restarted, the Web application is not reloaded.
This is the correct behavior, because the install command is meant for developers to test new Web

HTTP Connection
Deploy tool

(for example: Ant task)

Tomcat instance
with manager
application

PUT/manager/deploy?path=/hello HTTP/1.1
Content-type: application/octet stream
Content-length: nnn
Authentication: Basic <credentials>

<The serialized bytes for the war to be deployed>

137

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 137

applications. Once they are happy with them, the deploy command (shown earlier) should be used to
update Tomcat’s installation.

The general format for the install command URL (in both Tomcat 4.0 and 4.1) is as follows:

http://{hostname}:{portnumber}/manager/install?path={context_path}&war={war_url}

To install from a WAR file, the following command is used. Here, file:/path/to/hello.war is the
URL for the local file system location of hello.war:

http://localhost:8080/manager/install?path=/hello&war=jar:file:/path/to/hello.war!/

The extracted Web application can also be installed from a file system path (/path/to/hello). The
following command entered via the browser does this:

http://localhost:8080/manager/install?path=/hello&war=file:/path/to/hello

The command assumes that the hello application is extracted into /path/to/hello.

The Windows version uses the following:

http://localhost:8080/manager/install?path=/hello&war=file:/C:\path\to\hello.war

If this succeeds, the message OK—Installed application at context path /hello is displayed in
the browser window. If the operation fails, an appropriate error message is displayed.

Figure 7-4 shows the hello application WAR file (hello.war) being installed with the context path
/hello:

Figure 7-4: Installing a Web application from a WAR file in Tomcat 4.x.

If this command is rerun, it fails with an Application already exists error message, as shown in
Figure 7-5. The context path for a Web application is unique. If an already installed application is to be
updated, it needs to be either reloaded or removed and installed again. These options are covered later
in this chapter:

138

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 138

Figure 7-5: Error message returned after trying to install over an existing Web application in Tomcat 4.x.

Tomcat 4.1 introduces two new options in the install command (unfortunately, these are not listed in
the current Tomcat documentation):

http://{hostname}:{portnumber}/manager/install?config={config_url}
http://{hostname}:{portnumber}/manager/install?config={config_url}&war={war_url}

The config_url is the URL for a context configuration file. This file contains the <Context> element
entry for the Web application. The document base in the context is used to point to the location of the
WAR file or to the directory in which the Web application is extracted. The second version of the com-
mand enables administrators to pass the URL to the WAR file (war_url). This overrides the document
base specified in the context configuration file.

Installing/Deploying Applications in Tomcat 5.x
Tomcat 5.x simplifies the confusion around the 4.x install/deploy commands by having just one com-
mand: deploy. Correspondingly, there is no uninstall command in 5.x, just an undeploy command.

The deploy command enables Web applications to be deployed either from the local file system (local to
the machine on which Tomcat is running) or remotely. The deployment changes are permanent (that is, it
survives Tomcat restarts) until the application is undeployed.

Deploying a New Application Remotely
The minimum format for the remote deploy command is as follows:

http://{hostname}:{portnumber}/manager/deploy?path={context_path}

In addition to this, the (remote) deploy command can take three additional and optional parameters:

❑ update— When set to true, the previously deployed instance of the Web application will first
be undeployed, and then the new one deployed. This defaults to false.

❑ tag— This assigns a version tag to the deployed Web application. This enables versioning
of Web applications, and a subsequent redeployment of the Web application using only this
version tag.

139

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 139

❑ pause— This property causes the Web application to be paused during the deployment so that
incoming requests are not lost. The pause property defaults to false, and is used in conjunc-
tion with the update property.

Thus, deploying the hello Web application with default parameters and a tag of hello_ver1 could look
like the following:

http://localhost:8080/manager/deploy?path=/hello&update=false&tag=hello_ver1&pause=false

Because the WAR file is passed as the request data (via an HTTP PUT), this command cannot be invoked
directly via a Web browser. Instead, it should be invoked from a tool — for example, within an Ant script
(see the section “Tomcat Manager: Managing Applications with Ant,” later in this chapter) or via the
manager Web interface (see the section “Tomcat Manager: Web Interface,” later in this chapter). This is
similar to the deploy command in Tomcat 4.x (see the previous section).

Deploying a New Application from a Local Path
The deploy command also enables the installation of a Web application from a local path. That is, the
Web application is present either as a WAR file or a directory on the same machine on which Tomcat is
installed. The directory from which the Web application is installed must, as always, have a directory
structure corresponding to the conventions of a Web application.

A lot of combinations are possible while deploying from a local path. These enable you to do the following:

❑ Install from a local directory or WAR file (anywhere on the file system)

❑ Install from a local directory or WAR file within the Tomcat application base

❑ Install using a Context configuration file

❑ Redeploy a previously deployed version of a Web application

If installation is being done from a file system location outside the Tomcat application base
($CATALINA_HOME/webapps), the fully qualified path to the WAR file or directory needs to be specified.

For example, the following is used to install from a directory:

http://localhost:8080/manager/deploy?path=/hello&war=file:/path/to/hello

Alternatively, the following is used from a WAR file:

http://localhost:8080/manager/deploy?war=jar:file:/path/to/hello.war!/

Figure 7-6 shows a deployment of a WAR file (C:\hello.war) with tag hello_ver1.

In the current version of Tomcat 5.x (5.0.9), a local path deployment as shown above does not copy
the WAR files into the Tomcat application base, and, hence, the deployment does not persist across
Tomcat restarts. In this case, it behaves similarly to the Tomcat 4.1 install command. Deployment on
the local machine can also be done by copying the WAR file (or directory) to the application base. In this
case, the deployment would naturally persist across Tomcat restarts.

140

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 140

Figure 7-6: Deploying a Web application from a local path in Tomcat 5.x.

Another way to deploy is to first copy the directory or WAR file over to the Tomcat application base
directory. If the autoDeploy attribute in the Host (see server.xml) had been set to true (that is, the
default), the Web application would be automatically deployed once it was copied over. Because this is
turned off for performance reasons (at least it should be), the administrator would need to deploy the
Web application explicitly. As the directory or WAR file is copied to the application base directory
($CATALINA_HOME/webapps), the full pathname does not need to be specified (see Figure 7-7):

http://localhost:8080/manager/deploy?war=hello.war

Figure 7-7: Deploying a Web application from a WAR file in Tomcat 5.x.

In this command, the Web application would be accessible under the context named /hello. If it is to be
deployed under another context name (such as /bye), it could be specified as follows:

http://localhost:8080/manager/deploy?path=/bye&war=hello.war

In each of these cases, the WAR file or the expanded directory can contain a context.xml file with a
Context entry for the Web application. The context file can, however, be overridden by specifying it in
the following command:

http://localhost:8080/manager/deploy?config=file:/path/context.xml&war=jar:file:/path/hello.war!/

141

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 141

Finally, installation can be done via a context.xml file:

http://localhost:8080/manager/deploy?config=file:/path/context.xml

The context.xml in this case would contain the details for the Web application — the context name
(/hello) and the docBase:

<Context path=”/hello” docBase=”/path/to/hello”
debug=”0”>

<!-- Link to the user database we will get roles from -->
<ResourceLink name=”users” global=”UserDatabase”

type=”org.apache.catalina.UserDatabase”/>

</Context>

However, using a context.xml file is subject to the deployXML flag in the Host element (server.
xml). If this is set to false (the default is true), applications cannot be installed via a context defini-
tion. Nor can they be installed outside the Host’s config base directory ($CATALINA_HOME/conf/
[engine_name]/[host_name]).

If a Web application has already been deployed with a version tag (either remotely or locally), it can be
redeployed using the tag name. This is very useful during development because it enables rolling back
to an older version:

http://localhost:8080/manager/deploy?path=/hello&tag=hello_ver1

Another Host attribute to note for deploying Web applications is unpackWARs. This controls whether
the WAR is unpacked into a directory (unpackWARs=true), or the Web application is run from a
WAR file itself (unpackWARs=false).

Reloading an Existing Application
An existing application can be reloaded by accessing the manager application via the following URL:

http://{hostname}:{portnumber}/manager/reload?path={context_path}

This causes the existing application to shut down and then restart. The application’s deployment descrip-
tor (web.xml) is not reread (at least not in the current version of Tomcat), even though the Tomcat docu-
mentation states that it is. This is a known bug, and it is expected that a future version of Tomcat will fix
it. The workaround is to stop and then start the application again. The server.xml configuration file is
not reread either, but this is by design.

The reload command is useful when a Web application has not been configured to be reloadable. A Web
application’s <Context> entry in the server.xml file has a reloadable attribute. When this attribute
is set to true, Tomcat monitors all its classes in /WEB-INF/classes and /WEB-INF/lib and reloads the
Web application if a change is detected. This causes a performance hit in production environments, as
the class loader keeps comparing the date and time stamps for Servlets in memory with those on disk.
To avoid this, the reload command can be used to make Tomcat reload the Web application when
developers change any classes.

142

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 142

The standard Java class loader is designed to load a Java class just once. So how does the reloadable
attribute work? Tomcat implements its own custom class loader that is used to reload the classes in
/WEB-INF/classes and /WEB-INF/lib if required. Chapter 9 discusses this topic in more detail.

The current version of Tomcat supports reloading only if a Web application has been installed from an
unpacked directory. It does not support reloading if the Web application has been installed from a WAR
file. The workaround with a WAR file is to either restart Tomcat or remove and then deploy the applica-
tion again.

Figure 7-8 shows the hello Web application being reloaded.

Figure 7-8: Reloading a Web application.

A successful execution of the reload command returns an OK—Reloaded application at context
path {context_path} message, where {context_path} is the context path for the application.

Listing Available JNDI Resources
The general format of the URL for listing available JNDI resources is as follows:

http://{hostname}:{portnumber}/manager/resources[?type={jndi_type}]

In this URL, the type argument is optional. When it is not specified, all the available JNDI resources are
listed. Otherwise, JNDI resources corresponding to the specified type alone are listed. The type field
needs to be a fully qualified Java class name. For example, for JDBC data sources, the type needs to be
specified as javax.sql.DataSource:

http://localhost:8080/manager/resources?type=javax.sql.DataSource

The response to this contains a success string (OK—Listed global resources of all types or
OK—Listed global resources of type {jndi_type}), followed by information about the resources
(one per line). Each line contains the global resource name and the global resource type. The global
resource name is the name of the JNDI resource as specified in the global attribute of the <ResourceLink>
element in Tomcat’s configuration. The global resource type is the fully qualified Java class name of this
JNDI resource (see Figure 7-9).

143

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 143

Figure 7-9: Listing JNDI resources.

Listing Available Security Roles
The URL for listing all security role names is as follows:

http://{hostname}:{portnumber}/manager/roles

On successful execution, the output of this command is an OK — Listed security roles message,
followed by the security role name and a (optional) description. There is one security role listed per line,
and the fields are separated by colons (:) as before, as shown in Figure 7-10.

Figure 7-10: Listing available security roles.

The security roles listed by this command are those that are defined in the user database. The manager
application’s configuration defines the user database resource that should be searched for the roles in its
<ResourceLink> section.

Listing OS and JVM Properties
The URL for listing these properties is as follows:

http://{hostname}:{portnumber}/manager/serverinfo

Figure 7-11 shows the serverinfo command being run. It displays the OS name, the OS version, and
information about the Java Virtual Machine (JVM) being used.

144

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 144

Figure 7-11: Listing OS and JVM properties.

Stopping an Existing Application
The manager application can be used to stop a running application. The following URL shows how this
can be done:

http://{hostname}:{portnumber}/manager/stop?path={context_path}

This command sends a signal to the Web application to stop. This application is no longer available to
users, though it still remains deployed. If the list command is run again, the state of the application is
shown as “stopped” (see Figure 7-12).

Figure 7-12: Stopping a Web application.

If the application stops successfully, the message OK—Stopped application at context path
{context_path} is displayed. If the operation fails, a FAIL message with appropriate error information
is shown. Stopping a Web application does not affect any Tomcat configuration information kept on the
file system, so if Tomcat is restarted, the application is started, too.

The application can be restarted using the start command.

145

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 145

Starting a Stopped Application
The manager application can be used to start a stopped application. The following URL shows how this
can be done:

http://{hostname}:{portnumber}/manager/start?path={context_path}

Here, {context_path} is the context path for the Web application (an empty string for the ROOT application).

If the application starts successfully, the message OK—Started application at context path
{context_path} is displayed (see Figure 7-13).

Figure 7-13: Starting a stopped Web application.

If the operation fails, a FAIL message with appropriate error information is displayed.

Removing an Installed Application (Tomcat 4.x Only)
The remove command is obsolete in Tomcat 5.x. It is replaced by the undeploy command.

The format of the remove command URL is as follows:

http://{hostname}:{portnumber}/manager/remove?path={context_path}

This command is the opposite of the install command. It signals the Web application to shut down
gracefully, and then makes the application context available for reuse. This is done by removing the
context entry from Tomcat’s run-time data structures.

As described previously, the Tomcat 4.0 install command behaves like a deploy command, because it
copies the Web application to $CATALINA_HOME/webapps. The remove command should undo this and
remove the Web application directory and/or the WAR file, but because of a bug in Tomcat, it does not.
The extracted Web application directory needs to be removed manually.

146

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 146

Figure 7-14 shows the Web application running at context path /hello being removed. Its context
entry is deleted from Tomcat’s internal run-time data structures, so any attempt to access http://
localhost:8080/hello will now fail.

Figure 7-14: Removing a Web application in Tomcat 4.x.

If the application is removed successfully, the message OK — Removed application at context
path {context_path} is displayed.

Undeploying a Web Application
This command should be used with care. It deletes the Web application directory that was created when
the application was deployed. In Tomcat 4.x, there is an option to use the remove command instead,
which does not remove the Web application permanently, but only for the current Tomcat lifetime.

This command first signals the application to shut down (if it is still running) and then deletes the Web
application directory and the application WAR file. It then removes the <Context> entry for the Web
application from $CATALINA_HOME/conf/server.xml.

In short, the undeploy command does the opposite of the deploy command described earlier in the
chapter. However, the undeploy command works only on applications installed in the application base
directory of the virtual host (the location where the deploy command put the Web application WAR
files or the extracted directories).

The URL for the undeploy command is as follows:

http://localhost:8080/manager/undeploy?path={context_path}

If the application undeploys successfully, the message OK — Undeployed application at context
path {context_path} is displayed, as shown in Figure 7-15. If the operation fails, a FAIL message
with appropriate error information is displayed.

147

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 147

Figure 7-15: Undeploying a Web application.

Displaying Session Statistics
The manager application can be used to retrieve statistics about a particular Web application. The statis-
tics shown are the default session timeout and the number of current active sessions.

The URL for accessing this information is as follows:

http://localhost:8080/manager/sessions?path={context_path}

For example, the statistics for the hello application can be checked using the following command (see
Figure 7-16):

http://localhost:8080/manager/sessions?path=/hello

Figure 7-16: Displaying session statistics.

148

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 148

Querying Tomcat Internals Using the JMX Proxy Servlet
The JMX proxy Servlet enables the querying of Tomcat internals classes (or any other class exposed via
MBeans). The general format of this command is as follows:

http://{hostname}:{portnumber}/manager/jmxproxy/?qry=QUERY_STRING

A missing query string (that is, only http://{hostname}:{portnumber}/manager/jmxproxy/) will
show all the MBeans (a long listing!). The query parameters are not well documented and some experi-
mentation is required to see what works. For example, a query string “qry=*:j2eeType=Servlet,*”
shows all loaded Servlets. As a browser URL, this would be written as follows (see Figure 7-17):

http://localhost:8080/manager/jmxproxy/?qry=*%3Aj2eeType=Servlet%2c*

Figure 7-17: Querying Tomcat internals using the JMX proxy Servlet.

149

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 149

The % values in the command are hexadecimal escape sequences for reserved characters used in URLs
(as defined in RFC 2396): %3A for the colon (:), %2C for the comma (,), and %3D for the equals sign (=).
When this command is run via the Ant task interface (see the section “Tomcat Manager: Managing
Applications with Ant,” later in this chapter), the escape sequences don’t have to be used.

The JMX proxy Servlet also allows for changes to these values.

Setting Tomcat Internals Using the JMX Proxy Servlet
The general format for the JMX set command is as follows:

http://{hostname}:{portnumber}/manager/jmxproxy/?set=BEANNAME&att=MYATTRIBUTE&val=NEWVALUE

Here BEANNAME is the bean name, MYATTRIBUTE is the name of the bean attribute that needs to be modi-
fied, and NEWVALUE is the new value for the bean attribute.

As shown in Figure 7-18, the following command sets the debug level for the ErrorReportValve to 10
in a running Tomcat instance (set the debug attribute in the bean
Catalina:type=Valve,name=ErrorReportValue,host=localhost to 10):

http://localhost:8080/manager/jmxproxy/?set=Catalina%3Atype%3DValve%2Cname%3DErrorR
eportValve%2Chost%3Dlocalhost&att=debug&val=10

Figure 7-18: Setting Tomcat internals using the JMX proxy Servlet.

As before, the % values in the command are hexadecimal escape sequences for reserved characters. When
this command is run via the Ant task interface (see the section “Tomcat Manager: Managing Applications
with Ant,” later in this chapter), the escape sequences don’t have to be used.

Chapter 18 discusses JMX support in Tomcat in more detail.

Tomcat Manager: Web Interface
Tomcat also has a Web interface for the manager application. This interface enables you to start, stop,
remove, reload, and install Web applications without having to type the command URL.

150

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 150

To access the Tomcat manager Web application, access http://localhost:8080/ and click the Tomcat
Manager link on the left-hand side of the Tomcat home page, as shown in Figure 7-19.

Figure 7-19: Tomcat Manager’s Web interface.

You will then be prompted for a user name and password. This will take you to the manager application
home page.

Displaying Tomcat Server Status
The status command retrieves miscellaneous information about a running instance of Tomcat (such
as the free and total memory used by the JVM, number of threads, and so on). This is accessible via the
Server Status command.

Information such as the class load time, processing time, and so on, on every Servlet class/JSP for all the
deployed Web applications can be obtained using the Complete Server Status option (visible while view-
ing the server status).

Managing Web Applications
Administrators can start, stop, reload, and remove Web applications by clicking on the relevant links
provided at the end of each application.

In Tomcat 4.0 and 4.1.3, the Manager tasks were handled by a Servlet called ManagerServlet (org.
apache.catalina.servlets.ManagerServlet). From Tomcat 4.1.7 onward, the new interface is
HTMLManagerServlet. This class extends the ManagerServlet and internally invokes the same
commands that were discussed earlier in the chapter.

151

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 151

The Applications table has five columns (see Figure 7-20):

❑ Path — This lists the Web application path. The pathname links to the URL for the Web application.

❑ Display Name — This is picked up from the <display-name> element in the application’s
deployment descriptor (web.xml).

❑ Running — This indicates the running status for the application (true if the application is
running, and false otherwise).

❑ Sessions — This indicates the number of active sessions for the Web application. Clicking the link
for the number of sessions returns the session statistics for that particular Web application. This
internally invokes the sessions command discussed earlier.

❑ Commands — These are the links to thestart, stop, reload, and remove commands for the
Web application. The manual commands for this were shown earlier, but using the Web applica-
tion manager saves the effort (and possible errors) of typing a command URL for performing
these tasks.

Figure 7-20: Commands for Tomcat Manager’s Web interface.

152

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 152

Deploying a Web Application
A new Web application can be deployed using the manager application both locally (“Deploy directory
or WAR file located on server”) as well as remotely (“Upload a WAR file to deploy”).

Some of the options available via the HTTP command interface (such as the tag, update, and pause
parameters) are not currently usable from the Web interface.

Figure 7-21 shows the manager Web interface after successfully executing the deploy command to deploy
the hello application. As you can see, Tomcat adds another row for the application in the list of deployed
applications.

Figure 7-21: Successful deployment of a Web application.

153

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 153

Tomcat Manager: Managing Applications
with Ant

Tomcat 4.1 and 5.x enable administration commands to be run from an Ant script. Ant is a Java-based
build tool from the Apache Software Foundation. Appendix C provides a brief introduction for those
unfamiliar with it.

Using the Tomcat Manager commands from Ant is convenient for development purposes because the
Ant build file can be used to compile, deploy, and even start a Web application. The steps for doing this
once Ant is installed are as follows:

❑ Copy the $CATALINA_HOME/server/lib/catalina-ant.jar file into Ant’s library directory
($ANT_HOME/lib). This JAR file contains the Tomcat management task definitions for Ant.

❑ Add $ANT_HOME/bin to your PATH.

❑ Add a user with the manager role to Tomcat’s user database if such a user does not exist.

❑ Add to your custom build.xml script the <taskdef> elements that call the Tomcat manager
commands.

The following sample build.xml file builds and deploys the hello Web application discussed at the
beginning of the chapter:

<project name=”HelloApplication” default=”compile” basedir=”.”>

<!-- Configure the directory into which the web application is built -->
<property name=”src” value=”.”/>
<property name=”build” value=”${basedir}/build”/>

<!-- Configure the context path for this application -->
<property name=”path” value=”/hello”/>

The <project> tag has attributes for the name of the project and the default target. The default target in
this case is called compile. Running Ant with no options will invoke the tasks associated with this default
target. The basedir attribute is the base directory for all path calculations in the Ant build script. This is
set to . (the current directory), so all the paths for the build process are assumed to be relative to the direc-
tory from which Ant is run. The properties for the build are defined next, such as the location of the source
directory and the target directory to which the compiled .class files will be sent.

The following properties specify the access URL and user name/password for the manager application.
This password can be passed via the command line, too:

<!-- Configure properties to access the Manager application -->
<property name=”url” value=”http://localhost:8080/manager”/>
<property name=”username” value=”myusername”/>
<property name=”password” value=”mypassword”/>

The task definitions for the manager application are now specified. Ant allows for custom tasks that
extend its functionality. Tomcat implements the custom tasks shown in the following example for exe-
cuting the manager application commands. For example, org.apache.catalina.ant.DeployTask
executes the deploy command against the manager application:

154

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 154

<!-- Configure the custom Ant tasks for the Manager application -->
<taskdef name=”deploy”

classname=”org.apache.catalina.ant.DeployTask”/>

The following install and remove commands are deprecated in Tomcat 5.x. The deploy/undeploy
commands should be used instead.

<!-- Valid for Tomcat 4.x only, deprecated in 5.x -->
<taskdef name=”install”

classname=”org.apache.catalina.ant.InstallTask”/>

<!-- Valid for Tomcat 4.x only, deprecated in 5.x -->
<taskdef name=”remove”

classname=”org.apache.catalina.ant.RemoveTask”/>

The rest of the commands (list, resources, roles, start, stop, and undeploy) are the same in
Tomcat 4.x and 5.x:

<taskdef name=”list”
classname=”org.apache.catalina.ant.ListTask”/>

<taskdef name=”reload”
classname=”org.apache.catalina.ant.ReloadTask”/>

<taskdef name=”resources”
classname=”org.apache.catalina.ant.ResourcesTask”/>

<taskdef name=”roles”
classname=”org.apache.catalina.ant.RolesTask”/>

<taskdef name=”start”
classname=”org.apache.catalina.ant.StartTask”/>

<taskdef name=”stop”
classname=”org.apache.catalina.ant.StopTask”/>

<taskdef name=”undeploy”
classname=”org.apache.catalina.ant.UndeployTask”/>

The following Ant tasks (serverinfo, sessions, jmxquery, and jmxset) are missing from Tomcat 4.x,
and are found only in Tomcat 5.x, from version 5.0.10 onward:

<taskdef name=”serverinfo”
classname=”org.apache.catalina.ant.ServerinfoTask”/>

<taskdef name=”sessions”
classname=”org.apache.catalina.ant.SessionsTask”/>

<taskdef name=”jmxquery”
classname=”org.apache.catalina.ant.JMXQueryTask”/>

<taskdef name=”jmxset”
classname=”org.apache.catalina.ant.JMXSetTask”/>

Next is the Ant target that performs initializations (in this case, creates the build directory):

<target name=”init”>
<!-- Create the build directory structure used by compile -->
<mkdir dir=”${build}”/>
<mkdir dir=”${build}/hello”/>
<mkdir dir=”${build}/hello/WEB-INF”/>
<mkdir dir=”${build}/hello/WEB-INF/classes”/>

</target>

155

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 155

The default compile target is shown here. This has Ant instructions to compile all the Java files into
class files. The hello application doesn’t have any class files, so nothing will be done, but any serious
Web application will contain Java files. Notice how the compile task depends on the init task. This
ensures that the initializations steps are performed before Ant compiles the Java files:

<!-- Executable Targets -->
<target name=”compile” description=”Compile web application”

depends=”init”>
<javac srcdir=”${src}” destdir=”${build}”/>

</target>

The build target builds the application WAR file. It has instructions to move the files to the correct
directory format for a Web application and build the WAR file:

<target name=”build” description=”Build web application”
depends=”compile”>

<copy file=”index.html” toDir=”${build}/hello”/>
<copy file=”hello.jsp” toDir=”${build}/hello”/>
<jar destfile=”${build}/hello.war” basedir=”${build}/hello”/>

</target>

Finally, the manager tasks for listing all Web applications, and installing/uninstalling and deploying/
undeploying Web applications:

<target name=”list” description=”List all web applications”>
<list url=”${url}” username=”${username}” password=”${password}”/>

</target>

<target name=”reload” description=”Reload web application”
depends=”build”>

<reload url=”${url}” username=”${username}” password=”${password}”
path=”${path}”/>

</target>

<target name=”deploy” description=”Deploy web application”
depends=”build”>

<deploy url=”${url}” username=”${username}” password=”${password}”
path=”${path}” war=”file:${build}/hello.war”/>

</target>

<target name=”undeploy” description=”Undeploy web application”>
<undeploy url=”${url}” username=”${username}” password=”${password}”

path=”${path}”/>
</target>

</project>

Before using the Ant script, $CATALINA_HOME/server/lib/catalina-ant.jar must be added to the
CLASSPATH, and the Ant install directory must be added to the system path (Ant version 1.5 was used
for this example):

$ CLASSPATH=$CLASSPATH:$CATALINA_HOME/server/lib/catalina-ant.jar
$ PATH=$PATH:/path/to/ant1.5/bin
$ export CLASSPATH PATH

156

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 156

The password property in the Ant script contains the password for the user with manager privileges.
This is useful for development environments in which developers don’t want to specify the password
each time. The password value can be overridden from the command line, or even omitted from the
build file altogether and passed only from the command line. This avoids the security risk of putting the
password in a clear text file:

$ ant --Dpassword=secret list

The capability to run the manager commands from within Ant files allows for a very integrated develop-
deploy-test cycle for Web application development. For example, after developing the HTML pages,
Servlets, JSP pages, and other Java classes for the Web application, the developer would need to compile
all the Java code:

$ ant build

The build target in the build.xml file compiles all the Java code and puts the class files into the appro-
priate location (the /WEB-INF/classes directory). It then builds the deployable JAR file. Developers
may need to fix compilation errors, if any, and then rerun the Ant command.

The deploy target can then be used to deploy the Web application in the Tomcat instance specified in
the Ant build file:

$ ant deploy

This installed application can then be tested, and errors ironed out. During each iteration, developers
would (re)build, undeploy the previous installation, and then (re)deploy the new Web application.

Possible Errors
Numerous things can go wrong while working with the manager application. The following list describes
some of the typical error messages and the possible causes of failure. These errors are applicable for the
HTTP command interface, the Web application interface, and the Ant task interface to the manager
application commands.

❑ Application already exists at path {context_path} — A Web application already exists at the path
specified. The context path for each Web application must be unique. Tomcat returns an error if
there is another application with the same context path. This can be the same application (that
is, deploy was executed twice for the same application) or a different one with the same context
path. To fix this, the previous application must be undeployed/removed, or a different context
path chosen.

❑ Encountered exception — An exception occurred while trying to start the Web application. The
Tomcat log files will contain error messages relating to the specific error. Typical causes of this
error are missing classes/JAR files while loading the application, and invalid commands in the
application’s web.xml file.

❑ Invalid context path specified — The context path must start with a slash (/). The exception to this
is when the ROOT Web application (that is, at context path / itself

157

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 157

) is being deployed, in which case the context path must be a zero-length string.

❑ No context path specified — The context path is mandatory.

❑ Document base does not exist or is not a readable directory — The value specified for the WAR file
path/URL in the war parameter is incorrect. This parameter must point to an expanded Web
application or an actual WAR file.

❑ No context exists for path {context_path} — The context path is invalid; there is no Web application
deployed that corresponds to it.

❑ Reload not supported on WAR deployed at path {context_path} — The Web application was installed
from a WAR file, instead of from an unpacked directory. The current version of Tomcat does not
support this.

❑ No global JNDI resources — No JNDI global resources were configured for this Tomcat instance.

❑ Cannot resolve user database reference — There was an error looking up the appropriate user database.
For example, in the case of the roles stored in a JNDI Realm, a JNDI error would result in such a
message. Tomcat’s log files would have more error information.

❑ No user database is available — The <ResourceLink> element has not been configured properly
in the manager.xml configuration file. See the section “Manager Application Configuration,”
earlier in this chapter for more information.

The error messages shown here are in English, but Tomcat supports numerous languages. The locale-
specific versions of these messages (error as well as the success messages) are picked up from resource
bundles.

Security Considerations
Securing the manager application is critical. An insecurely configured manager could be used to cause
denial of service by stopping existing applications, or worse, to install malicious Web applications over
existing ones. Some of the ways in which the manager application can be secured are as follows:

❑ Use a more rigorous mechanism of authentication for the manager application than BASIC.
Administrators can, for example, set the authentication method to be client-certificate-based
(CLIENT-CERT) in the deployment descriptor. BASIC authentication is very insecure, because
the password is sent across as a standard base64-encoded string. CLIENT-CERT uses SSL for
securing the transport layer. The manager deployment descriptor configured for CLIENT-CERT
is shown as follows:

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Tomcat Manager Application</realm-name>

</login-config>

❑ Use JDBC or JNDI-based Realm implementations to store the manager user name/password.
These are more secure than Memory/UserDatabase Realms because they don’t save the pass-
word in a text file on the file system. This can be a security risk if the file permissions aren’t set
correctly, though similar problems can occur with JDBC/JNDI realms, too, if the access rights to
the database, LDAP server, and so on, were too permissive.

158

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 158

❑ Configure the Realm implementation to use encrypted passwords. This is especially useful if
Memory or UserDatabase Realm implementations are used. Two sample configurations of this
are as follows.

The server.xml file:

<Realm className=”org.apache.Catalina.realm.UserDatabaseRealm”
debug=”5”
digest=”sha”
pathname=”conf/tomcat_users.xml” />

The tomcat-users.xml file:

<user name=”manager”
password=”c23e4c2003a93af2dad4dae78f5e1c4a4735732”
roles=”manager” />

The character sequence in the password attribute is the SHA digest version of the password.

❑ Use a RemoteAddrValve or RemoteHostValve Valve in the manager’s Context to restrict the
machines from which the manager application can be accessed. In the following example, access
is restricted to the host on which Tomcat runs by using the loopback IP address (127.0.0.1):

<Context path=”/manager”
debug-”0”
privileged=”true”
docBase=”/usr/local/tomcat/server/webapps/manager”>

<Valve className=”org.apache.Catalina.valves.RemoteAddrValve”
allow=”127.0.0.1”/>

</Context>

❑ The deployXML parameter in the configuration for a Host (see server.xml) controls whether
Web applications can be deployed using a context configuration file, and whether they can be
installed outside the Host’s config base directory ($CATALINA_HOME/conf/[engine_name]/
[host_name]). This is set to true by default (that is, allowing an install outside the config
base). Setting it to false can prevent users from deploying Web applications anywhere else on
the file system, where the admin may not be able to control file permissions as can be seen in the
following example:

<Host name=”localhost”
deployXML=”false”
debug=”0”
appBase=”webapps”
unpackWARs=”true”
autoDeploy=”false”>

...
</Host>

159

Web Application Administration

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 159

Tomcat Deployer
Tomcat comes with a “deployer” distribution that can be downloaded from the Apache Web site. These
distributions are named as jakarta-tomcat-5.x.y-deployer.tar.gz or jakarta-tomcat-5.x.
y-deployer.zip, where x.y is the Tomcat version.

The deployer distribution is a stripped-down version of Tomcat that includes the following:

❑ Tomcat’s Ant tasks for managing the Web application. These tasks are discussed in detail earlier
in the chapter.

❑ A sample build file (build.xml) for deploying a Web application. This build file uses a property
file (deployer.property) that can be modified as per requirements.

❑ A JSP compiler (Jasper) for precompiling JSP pages

The deployer distribution can be used to validate, compile, deploy, and manage Web applications, and
includes only those parts of Tomcat that are required for this.

Summary
The manager application provides an easy-to-use interface (via the Web-based interface), and enables
the automation of tasks (for example, via the manager application’s Ant tasks). This chapter covered
issues related to the manager Web application, including the following:

❑ Configuration for the manager application

❑ Administration capabilities of the Tomcat 4.x and 5.x manager application

❑ Security-related issues

Securing the manager application is important. As discussed earlier, someone who gains unauthorized
access to applications can do a lot of harm, such as deploy malicious applications or cause a Denial of
Service (DoS) by shutting down running ones. Administrators concerned about security should perform
the appropriate configuration as specified in the section “Security Considerations,” or, if they are para-
noid, disable the manager Web application altogether from production deployments.

Chapter 8 discusses advanced features of Tomcat.

160

Chapter 7

b 559028 Ch07.qxd 4/22/04 3:55 PM Page 160

Advanced Tomcat Features

Earlier chapters discussed Tomcat 5 administration basics, system architecture, and Web applica-
tions deployment. Basic administrative functions were performed using the Web-based admin or
manager application, or by editing XML configuration files. This chapter explores a collection of
administrative tasks that involve advanced features built into standard Tomcat 5. As a Tomcat 5
administrator, you are likely to encounter requests for many of these features from the develop-
ment team.

More specifically, the following advanced administration tasks are explored:

❑ Access log administration

❑ Single Sign-on across Web applications

❑ Request filtering

❑ Installation of a Persistent Session Manager

❑ Setting up Tomcat JNDI emulation resources to enable developers access to external
JDBC and JNDI resources

❑ Setting up Tomcat for access to a JavaMail session

❑ Configuration of lifecycle listeners

Note that configuration of Realms, a very important advanced Tomcat 5 administration topic, is
discussed in Chapter 15. A basic understanding of Tomcat 5’s security infrastructure is a prerequi-
site for appreciating the configuration options in Realms configuration.

This chapter serves as a “cookbook” for these specific tasks. For each task, the reasons why a user
or a developer may need the feature are provided, followed by the configuration and administra-
tive details. Finally, a practical sample configuration is presented, which you can experiment with.
Useful hints, tips, or problems that may apply are pointed out along the way.

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 161

Valves — Interception Tomcat-Style
Valves are intrinsic architectural elements, similar to filters and specific to Tomcat, that have been available
since early versions of Tomcat 4. As a Filterlike element, a Valve can intercept any incoming request and
outgoing response. In Tomcat 5, a set of standard Valves is delivered with the distribution. Architecturally,
they are managed by the Engine and are given access to the incoming request from the Connectors before
(and after) they are handled by the Servlet and JSP processing logic. Logically, they can also be applied on a
per-virtual-host or per-Web-application level (although application developers will typically use Tomcat 5
application filters instead of Valves if they need per-application filtering). Valves offer value-added func-
tionality that includes the following:

❑ Access logging

❑ Single Sign-on for all Web applications running under Tomcat

❑ Requests filtering/blocking by IP address and/or host name

❑ Dumping of incoming and outgoing request headers for debugging purposes

The following sections examine the set of standard Valves available with Tomcat 5.

Standard Valves
Valves are nested components in the Tomcat 5 configuration component model (configured using the
<Valve> XML element in the server.xml file) that can be placed inside <Engine>, <Host>, or
<Context> containers (refer to Chapter 4 for architectural details on containers). The Engine passes an
incoming request and outgoing response through any Valve that is incorporated within these containers.
This process is illustrated in Figure 8-1.

Figure 8-1: Position of Valves in Tomcat 5’s architecture.

Engine

Before the addition of a Valve

Incoming Request

Outgoing Request

After the addition of a Valve

Every request to every virtual host in this engine
goes through the added Valve

Host Context

Engine

Incoming Request

Outgoing Request

HostValve Context

162

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 162

In Figure 8-1, every single incoming request is passed through the added Valve. Because of this, Valves
can be configured to perform work on each request. The Java language programming interface,
org.apache.catalina.Valve, is well-documented. Java application programmers may create their
own Valves using this programming interface. For the most common application of Valves, however,
Tomcat 5 already has basic implementations built in. The following table describes these standard
Valves.

Valve Name Description

Access Logging Enables logging of the request (the URL of the resource
requested, date and time of request)

Single Sign-on Enhances the user experience by requesting a password
only once, even when the user accesses different Web
applications on the same host or server

Request Filtering Enables selective filtering (blocking) of incoming
requests based on a list of IP addresses or host names

Request Dump Prints the headers and cookies of incoming requests and
outgoing responses to a log

The configuration of each of these Valves is illustrated in the following sections.

Access Log Implementation
Logging access to resources is a very common activity for Web server administrators. This can include
either static resources (such as Web pages and graphic files) or dynamic resources (such as CGI, JSP, and
Servlets). In Tomcat 5, access logs can be generated by inserting an Access Log Valve.

Note that this standard Valve is completely separate and different from the <Logger> nestable compo-
nent. The <Logger> component provides Tomcat — as well as applications running within it — with a
method to capture information, warning, and error messages. The standard Access Log Valve uses its
own logic to examine each incoming request for Web resources (that is, the URL requested), and captures
only the access request information to its own log file.

In the case of the <Logger> component, the format of the log file content is variable (it depends on the
system or application), whereas the typical format for the standard Access Log Valve is a well-known
common log file format (for more information, see W3C link http://www.w3.org/Daemon/User/
Config/Logging.html#common-logfile-format). This format is supported by almost all popular
Web servers, including Apache. Analysis tools are widely available for the analysis of log files in the
common log file format.

Scope of Log Files
The scope of logging depends on where the Access Log Valve is inserted. For example, to log all the
access within a specific Web application, the Valve (the <Valve> element) should be placed in the
<Context> container in the $CATALINA_HOME/conf/server.xml file. To log all the resource access
within a virtual host across all Web applications, the Valve should be placed in the <Host> container.

163

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 163

Finally, if you want to track all access to all resources on a particular instance of the Catalina engine
(across all the virtual hosts in that Engine and across all the Web applications), the Valve should be
placed in the <Engine> scope.

If you are using the default Access Log Valve (that is, if the className attribute is set to
org.apache.catalina.valves.AccessLogValve), then you can specify the attributes shown in the
following table.

Attribute Description Required?

className The Java programming language executable class representing Yes
the Valve, org.apache.catalina.valves.AccessLogValve

directory The directory in which the log files will be placed. Usually No
relative to the $CATALINA_HOME, but can also specify an

absolute path instead. The default value is logs.

pattern This attribute specifies the format used in the log. You can No
customize the format, or you can use the common format or
the combined format (common log file entry plus referrer and
user-agent logged). The default format is common. To
customize the format, you can use any of the following
pattern identifiers interspersed with a literal string in this
pattern attribute:

%a— Insert remote IP address.

%A— Insert local IP address (of URL resource).

%b— Insert bytes sent count, excluding HTTP headers; will
show - if zero.

%B— Insert bytes sent count, excluding HTTP headers.

%h— Insert remote host name (or IP address if the
resolveHosts attribute is set to false).

%H— Insert the request protocol (HTTP).

%l— Insert remote logical user name (always -).

%m— Insert request method such as GET or POST.

%p— Insert the local TCP port on which the request is received.

%q— Insert the query string of the request.

%r— Insert the first line of the request.

%s— Insert the HTTP status code of the response.

%S— Insert the user session ID.

%t— Insert the date and time in common log file format.

%u— Insert the remote user that has been authenticated
(otherwise, it is -).

%U— Insert the URL path of the request.

%v— Insert the name of the local virtual host from the request.

164

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 164

Attribute Description Required?

resolveHosts Determines if the log will contain host names via a No
reverse DNS lookup. This can take significant time if
enabled. The default is disabled (false).

prefix The prefix added to the name of the log file. No

suffix The suffix (extension) added to the name of the log file. No

The Access Log Valve supports rolling logs automatically. A new log file will be created for each day at
midnight.

Testing the Access Log Valve
Here is a practical example for the configuration of access logs. If you examine the default
$CATALINA_HOME/conf/server.xml file, you will see a commented <Valve> entry that specifies the
access log. It is placed immediately within the <Host name=’localhost’ ...> entry:

<!--
<Valve className=’org.apache.catalina.valves.AccessLogValve’

directory=’logs’
prefix=’localhost_access_log.’
suffix=’.txt’
pattern=’common’
resolveHosts=’false’

/>
-->

Uncomment this entry and modify the directory and prefix attributes as shown here:

<Valve className=’org.apache.catalina.valves.AccessLogValve’
directory=’wroxlogs’
prefix=’wroxtest_localhost_access_log.’
suffix=’.txt’
pattern=’common’
resolveHosts=’false’

/>

Now, create a wroxlogs/ directory under the $CATALINA_HOME directory (the standard Valve will actu-
ally create it for you if you forget). Start/restart Tomcat 5, and then open a browser and point it to the
following URL:

http://localhost:8080/

If you do not see the commented section detailed here, type in the <Valve> entry
manually as shown below. It is possible that you may have modified some Tomcat
settings using the admin application. Some versions of this administration tool will
strip comments when changes are saved.

165

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 165

The default Tomcat 5 welcome page should be displayed. Shut down the Tomcat server and examine the
$CATALINA_HOME/wroxlogs/ directory. You will find the access logs created by the Valve.

Note that the log file’s prefix is the same as the one configured in the <Valve> element. If you look
inside this log file, you will see the access log entries to the home page and the associated GIF files, all in
the common log file format:

127.0.0.1 - - [07/Jul/2004:17:33:14 -0500] ‘GET / HTTP/1.1’ 302 -
127.0.0.1 - - [07/Jul/2004:17:33:21 -0500] ‘GET /index.jsp HTTP/1.1’ 200 -
127.0.0.1 - - [07/Jul/2004:17:33:21 -0500] ‘GET /tomcat.gif HTTP/1.1’ 200 1934
127.0.0.1 - - [07/Jul/2004:17:33:21 -0500] ‘GET /jakarta-banner.gif HTTP/1.1’ 200 8006
127.0.0.1 - - [07/Jul/2004:17:33:21 -0500] ‘GET /tomcat-power.gif HTTP/1.1’ 200
2324

You may want to experiment further with other attributes of the standard Access Log Valve. This can be
done by modifying the <Valve> entry. If you are running multiple virtual hosts, you may want to try
configuring the <Valve> at the <Host> level as well as the <Context> level to experiment with the
scope difference. Logging involves disk writes, and will inherently introduce additional overhead into
the server hosting Web applications. This is especially true for global Engine-wide or virtual host-wide
request logging. For a production site, it is important to discuss and formulate an optimal logging strat-
egy between developers and administrators, based on the application and demand of a server.

Single Sign-On Implementation
Another standard Valve that is frequently used is the Single Sign-on Valve. During conventional Web
access, whenever a user of a Web application reaches a protected page, the user will be required to sign
on. This is required for each Web application that may be accessed. Using Single Sign-on, it is possible to
eliminate this annoying repetition (provided the user name and password are identical for each sign-on,
and usually authenticating against the same Tomcat Realm).

The Single Sign-on Valve caches credentials (passwords) on the server side, and will invisibly authenti-
cate users as they traverse between Web applications on a given virtual host. Without activating this
Valve, the user will be prompted to authenticate for each and every protected Web application, even in
cases where all applications use the same user name and password. The credential is cached against a
host-wide client session on the server side. This means that a Single Sign-on will be effective throughout
the session.

Multiple Sign-On Without the Single Sign-On Valve
Before configuring the Single Sign-on Valve, you should understand what the user must go through
without Single Sign-on. To do this, we must protect (enable authentication on) two Web applications
within the same virtual host. We will do this for two of the default applications included with the
Tomcat 5 distribution. These sample Web applications are as follows:

❑ The jsp-examples Web application

❑ The Tomcat documentation Web application

166

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 166

To begin, secure the documentation application, and edit the web.xml file in the
$CATALINA_HOME/webapps/tomcat-docs/WEB-INF directory by adding the lines shown here:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<display-name>Tomcat Documentation</display-name>

<description>
Tomcat Documentation.

</description>
<security-constraint>

<display-name>Example Security Constraint</display-name>
<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>tomcat</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Single Sign-on Example</realm-name>

</login-config>
</web-app>

This modification will protect all the pages of the documentation, via the <url-pattern>/*</url-
pattern> element, by requiring an authentication for access. Only users belonging to the tomcat role
can access these pages, as specified by the <auth-constraint> element. The <security-constraint>
and <login-config> elements are part of the Servlet 2.4 (since 2.2) specification. Note that the <login-
config> in this case specifies a BASIC authentication. This means the browser’s Security dialog box will
be used to obtain authentication information from the user.

Next, the jsp-examples Web application is protected. In the $CATALINA_HOME/webapps/jsp-examples/
WEB-INF/web.xml file, make the following modifications:

<security-constraint>
<display-name>Example Security Constraint</display-name>
<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>
<!-- Define the context-relative URL(s) to be protected -->
<url-pattern>/*</url-pattern>
<!-- If you list http methods, only those methods are protected -->
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<auth-constraint>

167

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 167

<!-- Anyone with one of the listed roles may access this area -->
<role-name>tomcat</role-name>
<role-name>role1</role-name>

</auth-constraint>
</security-constraint>

<!-- Default login configuration uses form-based authentication -->
<login-config>

<auth-method>FORM</auth-method>
<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config>

<form-login-page>/jsp/security/protected/login.jsp</form-login-page>
<form-error-page>/jsp/security/protected/error.jsp</form-error-page>

</form-login-config>
</login-config>

Here, the <url-pattern> element is modified to protect all the resources within the jsp-examples
Web application. Note that the <login-config> in this case specifies FORM-based authentication. This
means a custom-created form will be used to obtain authentication information from the user, instead of
the browser’s Security dialog box.

Start Tomcat 5, and try to access the tomcat-docs Web application via the following URL:

http://localhost:8080/tomcat-docs/

Because BASIC authentication has been configured for tomcat-docs, the browser prompts you to enter
a user name and password, as shown in Figure 8-2.

Figure 8-2: BASIC authentication for tomcat.docs application access.

You can use tomcat for User name, and tomcat for Password (the password is case-sensitive). This cor-
responds to one of the password entries added earlier in $CATALINA_HOME/conf/tomcat-users.xml,
which is the default location of the XML file for loading the Memory Realm or UserDatabase Realm (see
Chapter 15 for detailed coverage of security Realms). Once you authenticate successfully, you will be
able to reach the Tomcat documentation home page. Now, let’s switch to another Web application on the
same virtual host. Try the following URL:

http://localhost:8080/jsp-examples/

Note that you are requested to authenticate again, this time using a custom form that has been created as
part of the Web application, as shown in Figure 8-3.

168

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 168

Figure 8-3: Authentication for accessing other applications on the same virtual host.

If you enter tomcat for Username, and tomcat for Password again, you can gain access to the examples
pages. In fact, if you have more Web applications that require authentication, the user will be prompted
again when first accessing them unless you enable the Single Sign-on Valve.

Configuring a Single Sign-On Valve
To enable the Single Sign-on Valve, place a <Valve> element inside the <Host> element in the
$CATALINA_HOME/conf/server.xml file. To specify the Single Sign-On Valve, set the className
attribute to the value org.apache.catalina.authenticator.SingleSignOn. The only additional
attribute allowed with this Valve is debug, and this attribute sets the debug level:

<Valve className=’org.apache.catalina.authenticator.SingleSignOn’
debug=’0’/>

Restart Tomcat as well as your browser. (This is necessary because most browsers cache credentials for
BASIC authentication.) Try accessing the two URLs again, in any order. This time, because the Single
Sign-on Valve caches the access credentials across multiple Web applications on the same virtual host,
you will only be asked to enter the user name and password once. You can test this again by trying the
URLs in a different order after restarting the browser (to clear the browser’s password cache and create a
new session).

Note that BASIC authentication was purposely not used for both applications because
the client browser will typically cache login user names and passwords. This Valve is
not as useful whenever all the applications use BASIC authentication (because the
browser may already cache credentials for BASIC authentication, providing single
sign-on capability in this special case). Therefore, depending on the authentication
method used by Web applications, your mileage on the Single Sign-on Valve may
vary. The Single Sign-on Valve is most effective when multiple authentication
schemes are involved (common in most production scenarios).

169

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 169

Restricting Access via a Request Filter
A Request Filter is a very useful Valve that enables you to block or Filter specific client requests. This
Valve is useful for implementing policies that are based on the characteristics of requests passing
through it. These Filters are discussed next.

Remote Address Filter
If the className attribute of the <Valve> component has the value org.apache.catalina.valves.
RemoteAddrValve, then a Remote Address Filter is created. A Remote Address Filter enables the
administrator to specify a list of IP addresses (or regular expressions representing IP addresses) from
which to accept or deny requests. Any denied request is not passed through the Valve, effectively block-
ing it completely from further processing. The following table describes the attributes allowed with the
Remote Address Filter.

Attribute Description Required?

className The Java programming language executable class Yes
representing the Valve — typically,
org.apache.catalina.valves.RemoteAddrValve

allow An IP address specified using a regular expression No
that matches the address of incoming requests

deny An IP address specified using a regular expression that No
matches the address

This Valve examines the IP address of the client’s request against its allow/deny list, and attempts to
match the specified regular expression representing IP addresses. Any address that does match the
allow attribute will be passed through to downstream components. If allow is not specified, all IP
addresses other than the ones specified in deny are allowed.

Remote Host Filter
If the className attribute of the <Valve> component has the value org.apache.catalina.valves.
RemoteHostValve, a Remote Host Filter is created. A Remote Host Filter functions like the Remote
Address Filter, except the filtering performed is based on host names, rather than IP addresses. The
allowed attributes are allow and deny, but the regular expression specified is used to match a host
name, rather than an IP address.

Use of the Remote Host Filter requires a reverse DNS lookup. Therefore, the DNS
service must be accessible from the server side. In addition, you must be careful to
specify all variants (or use a regular expression) of host names that a particular
remote host can assume. For example, if a host has only two names,
printserver.wrox.com and charlie.wrox.com, you should be careful to use
printserver.wrox.com,charlie.wrox.com to match it; *.wrox.com will also
work, but will potentially match many other hosts.

170

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 170

Configuring Request Filter Valves
Let’s look at the details of configuring both Request Filter Valves discussed in the preceding section.
Before starting Tomcat, add the following line to the $CATALINA_HOME/conf/server.xml file inside
the ‘localhost’ <Host> container, and then start Tomcat:

<Valve className=’org.apache.catalina.valves.RemoteAddrValve’
allow=’121.121.121.*,111.111.111.*’/>

This will set up a Request Filter Valve to allow only requests from the two subnets: 121.121.121.* and
111.111.111.*.

Now, try accessing the following URL:

http://localhost:8080/examples/jsp/index.html

The list of allowed IP addresses does not have an entry that matches the IP (127.0.0.1); therefore, the
request is filtered out. The server returns an HTTP “Forbidden” 403 error and you get a blank page.

If you need to have a custom page returned when access is denied, you must use Servlet 2.4 filters
within a Web application instead. Custom error pages are configurable inside the deployment descriptor.

Now, edit the previous line again to include your IP address:

<Valve className=’org.apache.catalina.valves.RemoteAddrValve’
allow=’121.121.121.*,127.*.*.*’/>

Restart Tomcat, and now the URL can be accessed again, as the IP is explicitly enabled by the allow list.

You can also explicitly deny access by changing the line as shown here:

<Valve className=’org.apache.catalina.valves.RemoteAddrValve’
deny=’127.0.0.1’/>

When you try to access the URL again, a blank page is returned, as the request is filtered out again.

The Remote Host Filter works identically, but with host names instead. You can try it out by simply edit-
ing the previous configuration line as follows:

<Valve className=’org.apache.catalina.valves.RemoteHostValve’
allow=’*.wrox.com’/>

Notice the change in className from org.apache.catalina.valves.RemoteAddrValve to
org.apache.Catalina.valves.RemoteHostValve, and that the deny list now contains a host name
instead of an IP address. Restart Tomcat and try accessing the URL again.

The access fails and you get a blank page, as only hosts from wrox.com with names that are DNS-
resolvable are explicitly allowed.

171

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 171

The Request Filter Valve can be quite effective in implementing a security policy, although if filtering on
a physical server level is desired, router-based hardware filtering may be more suitable. Regardless, the
Request Filter Valve is handy for temporarily removing access to specific remote client(s).

Request Dumper Valve
A lesser-known standard Valve (useful for debugging Web applications that most administrators/users
typically overlook) is called the Request Dumper Valve. This Valve dumps the headers and cookies of
requests and responses to a log. The Request Dumper Valve assumes that a <Logger> element is prop-
erly configured (see Chapter 5 for configuration of the <Logger> nested element).

For administrators, it serves the following two purposes:

❑ It visually illustrates how the scope of a Valve affects the requests that are processed.

❑ It is used to debug the actions of other Valves (that is, when a Request Filter Valve does not
appear to work) or to request processing components.

To configure a Request Dumper Valve, simply add the following to the <Context>, <Host>, or
<Engine> elements:

<Valve className=’org.apache.catalina.valves.RequestDumperValve’/>

Make sure you remove any definitions of RemoteAddrValve or RemoteHostValve before using this
Valve. Otherwise, you may not gain access to the application at all.

Persistent Sessions
Tomcat 5 features a Persistent Session Manager to manage the backup of user sessions onto disk. This
manager is not configured by default. This section covers the need for the Persistent Session Manager, as
well as its configuration details.

The Need for Persistent Sessions
When Tomcat 5 is shut down, typically all session information is lost. Furthermore, sessions that are idle
consume valuable working memory until session timeout, which can be a long period, as some users
may leave their computers in the middle of a session.

With Persistent Session Manager, the following features can be enabled:

❑ Sessions that are inactive can be configured to be swapped onto disk, thereby releasing the
memory consumed by them, and making memory available for other active sessions.

❑ When Tomcat is shut down, all the current sessions are saved to disk. Upon restart, the saved
sessions are restored.

❑ Sessions lasting beyond a specified threshold period are automatically backed up on disk,
enabling the system to survive an unexpected crash.

172

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 172

The last feature listed here enables continuous reliable execution of the Web application despite minor
server failure (crash), and goes a long way toward enhancing the availability and robustness of the sys-
tem. However, the Persistent Session Manager is still considered to be of experimental quality, rather
than production quality, as of this writing.

Configuring a Persistent Session Manager
The Persistent Session Manager is configured through the <Manager> element in the context descriptor
of a Web application: $CATALINA_HOME/conf/<engine name>/<host name>/<app name>.xml. The
Session Manager is a nested component that must be configured at the context level. Therefore, the
<Manager> element must be configured as a sub-element of the <Context> element within the
application’s context descriptor XML file.

The <Manager> Element
The following table describes the most common attributes of the <Manager> element that are available
for configuration.

Attribute Description Required?

className The Java programming language class that Yes
implements the Persistent Session Manager

debug Controls the level of debug messages No

saveOnRestart If this is set to true, Tomcat will save all the No
active sessions to the Store upon shutdown, and
will reload the session (except the expired ones)
from the Store on startup. The default is true.

maxActiveSessions The ceiling on the number of active sessions No
before swapping out of the session via the
Persistent Session Manager begins. The default
value of -1 allows an unlimited number of
active sessions.

minIdleSwap The minimum number of seconds before a No
session will be considered for swapping. The
default value of -1 disables swapping.

maxIdleSwap The maximum number of seconds before a No
session is swapped out to the Store. Used with
minIdleSwap also to tune the session
persistence mechanism. The default value
of -1 disables swapping.

maxIdleBackup The number of seconds a session is active before No
it is backed up on the Store. This can be used to
avert a sudden crash, as the backed up sessions
will be restored from the Store upon the next
startup. The default value of -1 will disable the
backup action altogether.

checkInterval Expiry check interval for cleanup, specified in No
seconds. The default is 60 seconds.

173

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 173

The <Manager> element can have only one sub-element, as described in the following table.

Sub-Element Description How Many?

Store Used by the Persistent Session Manager to determine 1
how and where to save the session. Currently, the only
options available for a Store implementation are
org.apache.catalina.session.FileStore or
org.apache.catalina.session.JDBCStore.

Store uses object serialization to store the session. The following hands-on example uses the
FileStore Store implementation. By default, the FileStore’s serialized session information is placed
under the $CATALINA_HOME/work/<service name>/<host name>/<web-app name>/ directory.

Hands-On Configuration with the Persistent Session Manager
To configure the Persistent Session Manager, it is necessary to add a <Manager> element definition into
the context descriptor of the Web application. In this example, the servlets-examples Web application
will be used.

If you have already tried the servlet-examples Web application on your local Tomcat installation, a
default context descriptor will be created for you. Look for the $CATALINA_HOME/conf/Catalina/
localhost/servlets-examples.xml file (look for your host name if you’re not using localhost). If
you find this file, make the following modifications to it:

<Context displayName=’Servlet 2.4 Examples’
docBase=’C:\jdk1.4\tc5\webapps\servlets-examples’ path=’/servlets-examples’>

<Environment name=’foo/name4’ type=’java.lang.Integer’ value=’10’/>
<Environment name=’minExemptions’ type=’java.lang.Integer’ value=’1’/>
<Environment name=’foo/bar/name2’ type=’java.lang.Boolean’ value=’true’/>
<Environment name=’name3’ type=’java.lang.Integer’ value=’1’/>
<Environment name=’foo/name1’ type=’java.lang.String’ value=’value1’/>
<Manager className=’org.apache.catalina.session.PersistentManager’

debug=’0’
saveOnRestart=’true’
maxActiveSessions=’3’
minIdleSwap=’0’
maxIdleSwap=’60’
maxIdleBackup=’0’>

<Store className=’org.apache.catalina.session.FileStore’/>
</Manager>

</Context>

If you do not find the context descriptor, add the file manually by creating a $CATALINA_HOME/conf/
Catalina/localhost/servlets-examples.xml file containing the following:

174

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 174

<Context docBase=’ C:\jdk1.4\tc5\webapps\servlets-examples’ path=’/servlets-
examples’>

<Manager className=’org.apache.catalina.session.PersistentManager’
debug=’0’
saveOnRestart=’true’
maxActiveSessions=’3’
minIdleSwap=’0’
maxIdleSwap=’60’
maxIdleBackup=’0’>

<Store className=’org.apache.catalina.session.FileStore’/>
</Manager>

</Context>

Make sure you have adjusted the docBase attribute in this file to point to your Web application
directory.

This configures a Persistent Session Manager that will allow up to three active sessions before activating
session swapping. Any session is available for swapping at any time. All idle sessions will be swapped
within 60 seconds. An active session is backed up regularly; a value of 0 indicates that sessions should
be backed up immediately after being used.

Start Tomcat 5, start a session, and view the session information by going to the following URL:

http://localhost:8080/servlets-examples/servlet/SessionExample

Note on a piece of paper the session ID and the start date of your session.

Now, wait for about two minutes for the Persistent Session Manager to go to work. At this point, simu-
late a crash via an ungraceful shutdown. This can be done by a Ctrl+C in the Tomcat window. Make sure
you do not close the browser.

Next, start Tomcat again. When Tomcat starts, it will restore all the sessions that were backed up. Try the
following URL again:

http://localhost:8080/servlets-examples/servlet/SessionExample

Note that the session ID and backed-up session information is identical to what appeared before the
(simulated) crash. In effect, our Tomcat server has survived an unexpected sudden crash. The
Persistent Session Manager already backed up the session by the time you crashed Tomcat. Therefore,
when you restart Tomcat, it restores the session from the backed-up Store, and you resume the previous
session.

To see where the persisted sessions are stored, go to the $CATALINA_HOME/work/Catalina/
localhost/servlets-examples/ directory and look for filenames with the .session extension.

175

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 175

JNDI Resource Configuration
Within the server.xml configuration file, Java Naming and Directory Interface (JNDI) resources can
be defined; and they may be accessed in a standard J2EE-compliant manner by any Web applications.
This section provides a brief introduction to JNDI. Examples illustrate how it is used and the type of
administrative requests that developers typically make. A basic understanding of these requests is
important to any administrator, because they have an impact on how the JNDI resources must be
configured.

What Is JNDI?
JNDI is an API used to look up information pertaining to the network (via naming and directory ser-
vices). JNDI is designed to work with any compatible naming and directory service, regardless of its
native interface API. Some common information that can be obtained through JNDI includes (but is not
restricted to) the following:

❑ User name and password (authentication)

❑ Access control policy (who can access what)

❑ Organizational directories

❑ Servers (e-mail, database, and so on)

❑ Printers

❑ Other objects or resources

Before the advent of JNDI, developers had to program specifically to a particular network’s directory
service. On Microsoft-based networks, they programmed to NT Domains or the Active Directory Service
Interface (ADSI). On Solaris/Unix networks, they programmed to the Network Information Service
(NIS). On Novell networks, they programmed to the Netware Directory Service (NDS). This made the
programming even more complex because each of the network directory services assumes a different
naming convention for the resources/information that it stores, and has completely different program-
ming interfaces (APIs) to search for and locate this information.

Figure 8-4 shows how JNDI unifies directory service access across different networks:

As shown in Figure 8-4, JNDI is the top layer that provides a uniform programming interface to applica-
tions, while translating the API commands to the network-specific operations that are sent out through
its plug-in drivers. In fact, many of the modern directory services support the Lightweight Directory
Access Protocol (LDAP). JNDI often gains compatibility with new or legacy directory services through
its LDAP driver.

Beyond providing interfaces to existing directory services, JNDI has become a standard way for Java
applications (especially in the context of J2EE) to locate network resources. That is, even if there is no
physical directory service involved over the network, many of the standard Java APIs have adopted
JNDI as the de facto way of obtaining network resources. Developers expect to use JNDI to obtain these
Tomcat managed resources. The next section discusses two such examples.

176

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 176

Figure 8-4: JNDI unifies access of different directory services.

Tomcat and JNDI
The role of the Tomcat server, with respect to supporting JNDI, is quite interesting. In fact, the role of
Tomcat in this case is only to provide the JNDI lookup facilities (acting as a sort of go-between to pro-
vide a standard interface) for any Web application. Tomcat is a J2EE-compliant and Servlet 2.4-compliant
server that will facilitate the use of JNDI by hosted Web applications, as shown in Figure 8-5.

In Figure 8-5, the Web application running inside Tomcat is retrieving certain JNDI resources through
standard programming convention and APIs (specified by JNDI and Servlet 2.4 specifications). This
enables the requests to be placed in a manner independent of the application server — enabling the Web
applications to be portable across different vendors’ application servers.

The Tomcat container intercepts the standard JNDI requests from the application. To fulfil these JNDI
API requests, Tomcat must check its set of preconfigured resources (in the server.xml file) to deter-
mine what needs to be passed back to the application. Tomcat essentially provides JNDI emulation
service for accessing these resources. Tomcat’s administrator must configure these resources in the
sever.xml file.

Java Applications

To any LDAP-
compatible

directory service

To MS
ADS

service

To other
directory
services

LDAP
JNDI
driver

Microsoft
ADS
JNDI
driver

JNDI

Other
custom

JNDI
drivers

177

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 177

Figure 8-5: Tomcat facilitates resource acquisition by emulating JNDI.

Typical Tomcat JNDI Resources
Two interesting resources that are accessed via JNDI requests from Web applications include the following:

❑ A JDBC DataSource

❑ A JavaMail session

JDBC is a well-known standard API that enables application programmers to access relational databases
(such as MySQL, Oracle, and SQL Server) in a uniform and standard way. To access data from these rela-
tional databases, the application must first obtain a DataSource object. (See Chapter 14 for extensive
JDBC coverage. For now, it is sufficient to view a DataSource as a class from which it is possible to obtain
connections for a remote database.)

JavaMail is another well-known standard API that provides an interface to access e-mail client capabili-
ties (that is, to create and send mail) across different methods of handling e-mail, in a uniform and stan-
dard manner. For a Web application to access mail servers and send mail, the application must first
obtain a JavaMail Session object.

The JDBC 3 and JavaMail 1.3 specifications are synchronized with the latest J2EE specification. In both
cases, it is the responsibility of the container (application server) to provide Web applications with JNDI
access to these resources. The administrator needs to configure these resources for Tomcat 5 to find
them, passing them through to the requesting Web application by emulating JNDI action.

Preconfigured
JNDI resource
in server.xml

Read and emulate
JNDI functionality

Tomcat
Server

J2EE-compliant
view of JNDI lookup

Web applications
running in Tomcat

Returned resource

JNDI lookup

178

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 178

Configuring Resources via JNDI
For JNDI, you have the following three options for configuring the resource within the hierarchy of
Tomcat configuration components:

❑ At the server’s global <GlobalNamingResources> level

❑ At the virtual host’s <DefaultContext> level

❑ At the <Context> level associated with a single Web application, typically residing in the appli-
cation’s context descriptor XML file

Any JNDI resource configured at the <DefaultContext> level will be available to all Web applications
running on the same virtual host, whereas any JNDI resource configured at the <Context> level will be
available only within the specific Web application associated with that context.

Resources configured at the <GlobalNamingResources> level are available server-wide (across all ser-
vices and engines). These resources can then be referred to in subsequent resource configurations via
<ResourceLink> elements.

You can add the sub-elements described in the following table inside the <Context> or
<DefaultContext> element to support and configure JNDI Resources.

Sub-Element Name Description How Many?

Environment Creates environment entries available from 0 or more
the JNDI InitialContext that Tomcat will
supply to an application

Resource Provides the name of a datatype of a JNDI 0 or more
resource to the application

ResourceParams Specifies the Java programming language 0 or more
class that is used to create the resources, and
specifies a configuration JavaBean

ResourceLink Adds a link to a resource defined in the 0 or more
<GlobalNamingResource> element, which
is server-wide

The following sections examine each of the JNDI supporting sub-elements.

It is also possible for developers to directly embed environment or resource parame-
ters into their Web applications. This is done by defining <env-entry>, <resource-
env-entry>, and <ResourceParams> elements inside the web.xml descriptor. This
will make a resource specific to a Web application. However, the web.xml deployment
descriptor must be changed each time a change occurs in the resource information.

179

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 179

The <Environment> Element
The <Environment> element is used to pass named data values (like environment variables in a com-
mand shell) to the Web applications. Web applications can access these values through the JNDI context.
The following table describes the available attributes for an <Environment> element.

Attribute Description Required?

name The JNDI name for this element Yes

description Text description for this element No

override Application programmers can use the No
<env-entry> element to override the one
defined here. You can disable the override by
setting it to false.

type Java class name of the datatype represented Yes
by this element

value The actual value of the environment entry Yes

For example, the following will add a JNDI entry named maxUsers with a value of 100:

<Environment name=’maxUsers’ type=’java.lang.Integer’ value=’100’ />

The <Resource> Element
The <Resource> element is used to pass a reference via resource managers (classes that manage and
assign resources — such as JDBC connections) to Web applications using a name in simple text. A Web
application can access the reference to the resource manager through a lookup based on the textual name
using the JNDI context. The following table describes the attributes a <Resource> element can have.

Attribute Description Required?

auth Indicates who does the authentication. If the No
value is application, then the application itself
must sign-on with the resource manager. If the
value is container, then the container does a
sign-on with the resource manager.

description Text description for this element No

name Name of the resource Yes

scope Value can be either Shareable or Unsharable; No
determines if the resource can be shared

type Java class name of the datatype represented Yes
by this resource

180

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 180

For example, the following will add a UserDatabase implementation (for storing authentication and role
information on Tomcat 5):

<Resource name=’myDatabase’
type=’org.apache.catalina.UserDatabase’>

</Resource>

The <ResourceParams> Element
The <ResourceParams> element associates parameters with the resource manager already configured in
a <Resource> element. This element is often used to configure the resource manager. For example, if the
<Resource> is a JDBC DataSource, the <ResourceParams> may contain the Relational Database
Management Server (RDBMS) server location, login name, and password to use. The <ResourceParams>
element can contain the attribute shown in the following table.

Attribute Description Required?

name Name of corresponding resource Yes

Each <ResourceParams> element can contain one or more <nam>/<value> sub-elements, expressed as
follows:

<ResourceParams name=’jdbc/wroxDatabase’>
<parameter>

<name>password</name>
<value>wrox123</value>

</parameter>
</ResourceParams>

The <ResourceLink> Element
The <ResourceLink> element refers to a previously configured JNDI resource (typically in the
<GlobalNamingResource> sub-element associated with a server), making these resources available to
all <Service>, <Host>, and <Context> components. This enables resources to be defined and shared
across servers or globally. A <ResourceLink> element can have the attributes described in the following
table.

Attribute Description Required?

global The name of the resource being linked to Yes

name The name of the resource, accessible by Web Yes
application via JNDI lookup

type The Java programming language class name Yes
indicating the type of resource returned

181

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 181

For example, if the UserDatabase <Resource> element is already defined in the server’s
<GlobalNamingResource> sub-element (see the <Resource> element example earlier), then it can
be referred to within a <Context> element of a Web application using the following:

<ResourceLink name=’localDatabase’ global=’myDatabase’
type=’org.apache.catalina.UserDatabase’/>

This entry will link the previously defined UserDatabase instance (named myDatabase in
<GlobalNamingResource>) to the JNDI addressable resource called localDatabase. The Web
application can perform a JNDI lookup for localDatabase and obtain access to the UserDatabase
instance.

The next section shows how to apply these elements to configure a JDBC DataSource and JavaMail session.

Configuring a JDBC DataSource
JDBC 2.1 features, including DBCP connections pooling (a Jakarta Commons library for efficient man-
agement of JDBC connections), are directly supported by Tomcat 5. JDBC is discussed at length in
Chapter 14. For now, it is only necessary to know how JDBC connections (as a JNDI resource) can be
passed to Web applications.

Your JDBC driver can be placed in the $CATALINA_HOME/common/lib/ directory. This enables the
Tomcat server and your applications to find and access this driver.

Finally, you must configure the JNDI resource factory using <Resource> and <ResourceParams>
elements. In this case, you are configuring the database factory to use the MySQL database, with a host-
wide scope. This instance of the database will be shared between all the Web applications running
within the same virtual host:

<Host>
...
<Resource name=’jdbc/wroxTC5’ auth=’Container’

type=’javax.sql.DataSource’/>

This segment configures Tomcat’s built-in JDBC DataSource factory. The built-in DataSource factory
implementation in Tomcat is org.apache.naming.factory.DbcpDataSourceFactory. A DataSource
factory is a class from which new instances of DataSource objects can be obtained. Using this factory, the
configuration parameters described in the following table are possible.

Parameter Description

driverClassName Java programming language class name of the JDBC driver.
This driver should be placed in the $CATALINA_HOME/
common/lib directory for easy location by the DataSource
factory code.

maxActive The maximum number of active connections in this pool

maxIdle The maximum number of idle connections in this pool

182

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 182

Parameter Description

maxWait In milliseconds, indicates the maximum wait for a connection
by the DataSource factory before throwing an exception

user The user ID used to log on to the database

password The password used to log on to the database

url The JDBC-compatible URL specifies the database instance to
be used

validationQuery An optional SQL query used to validate a connection. Essen-
tially, the factory will perform this query to ensure that rows
are returned before considering the connection valid.

For example, you can parameterize the defined JDBC resource by using the following
<ResourceParams> elements:

<ResourceParams name=’jdbc/WroxTC5’>
<parameter>

<name>driverClassName</name>
<value> com.mysql.jdbc.Driver </value>

</parameter>
<parameter>

<name>url</name>
<value>jdbc:mysql://localhost/wroxtomcat</value>

</parameter>
<parameter>

<name>username</name>
<value>empro</value>

</parameter>
<parameter>

<name>password</name>
<value>empass</value>

</parameter>

<parameter>
<name>maxActive</name>
<value>20</value>

</parameter>
<parameter>

<name>maxIdle</name>
<value>30000</value>

</parameter>
<parameter>

<name>maxWait</name>
<value>100</value>

</parameter>
</ResourceParams>

183

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 183

In addition to this configuration, the developer must declare the use of the resource in a deployment
descriptor (web.xml) using a <resource-ref> element, as shown in the following example:

<resource-ref>
<res-ref-name> jdbc/WroxTC5 </res-ref-name>
<res-type> javax.sql.DataSource </res-type>
<res-auth> Container </res-auth>

</resource-ref>

Within the Web applications, the DataSource can be looked up relative to the java:comp/env naming
context. The code used will be similar to the following:

Context myInitialContext = new InitialContext();
Context localContext = (Context) myInitialContext(‘java:comp/env’);
DataSource myDataSource = (DataSource)

localContext.lookup(‘jdbc/wroxTC5’);

Connection myConn = myDataSource.getConnection();
...

At this point, myConn contains an instance of a database connection, which can be used to access the
MySQL database immediately.

Configuring Mail Sessions
JavaMail is a standard programming API used by Java developers to create and send e-mail. Tomcat 5
supports JavaMail by providing the JNDI configuration of a JavaMail session as a resource, using its
own “factory code” to create a JavaMail session for the Web application. This enables any Web applica-
tions running under Tomcat to use JNDI to look up and use the session. The example in the following
section shows how to send e-mail from within a JSP using a JavaMail session configured as a JNDI
resource. The JSP will post a form to a collaborating Servlet. The Servlet will use the configured JavaMail
session to send the actual e-mail. It takes advantage of the jsp-examples sample Web application that
is distributed with Tomcat 5.

Adding a Resource Definition to the Application Context Descriptor
The first step is to configure a mail session as a JNDI resource. In the context descriptor of the jsp-
examples Web application (the $CATALINA_HOME/Catalina/localhost/jsp-examples.xml file),
add the following resource definition inside the <Context> element. If this file does not exist, add it
explicitly:

<Context path=’/jsp-examples’ docBase=’jsp-examples’ debug=’0’ privileged=’true’>
<Resource name=’mail/Session’ auth=’Container’ type=’javax.mail.Session’/>
<ResourceParams name=’mail/Session’>

<parameter>
<name>mail.smtp.host</name>
<value>localhost</value>

</parameter>
</ResourceParams>

</Context>

184

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 184

This will configure the JNDI mail/Session context, referring to an SMTP server running on localhost.
If you are connecting to a remote SMTP server, change the value of localhost to the name or IP address
of your server. You can also modify the port used (if it is not at the standard port 25) by setting the
mail.smtp.port parameter.

Adding a Reference to a Mail Session Resource
in the Deployment Descriptor

In the deployment descriptor (the $CATALINA_HOME/webapps/jsp-examples/WEB-INF/web.xml file),
you must declare a reference to JNDI resource. Add the following lines after the <security-role> dec-
larations, but before the <env-entry> descriptions in the web.xml file:

...
</security-role>
<resource-ref>

<res-ref-name>mail/Session</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<env-entry>
...

Downloading and Installing JavaMail 1.3.1 and the
JavaBeans Activation Framework 1.0.2 Libraries

Check the %CATALINA_HOME%/common/lib directory to determine whether you have mail.jar and
activation.jar libraries there. These are the JavaMail and JavaMail-dependent JAF libraries. If they
are not there, they will need to be downloaded.

JavaMail support is a part of the J2EE download, or it can be obtained as an optional download. You can
find the required mail.jar library as part of the JavaMail distribution, downloadable from the follow-
ing URL:

http://java.sun.com/products/javamail/downloads/index.html

The latest version available at the time of writing is JavaMail 1.3.1. Because JavaMail 1.3.1 depends on
JAF, you will also need to download the JavaBeans Activation Framework from the following URL:

http://java.sun.com/products/javabeans/glasgow/jaf.html

The library that you will need from this download is activation.jar.

Compiling and Configuring the SendMailServlet
The code distribution includes the source code of SendMailServlet.java and a compile.bat file for
its compilation. This sample Servlet may already be part of your Tomcat 5 distribution. If not, place the
SendMailServlet.java and compile.bat files into the webapps/jsp-examples/WEB-INF/classes
directory.

Be sure to edit the compile.bat file to set the path to your own servlet-api.jar and mail.jar.
Otherwise, compilation will fail. Compile the Servlet.

185

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 185

To configure the Servlet, add the following Servlet definition and mapping to the web.xml deployment
descriptor of the jsp-examples Web application:

<servlet>
<servlet-name>SendMailServlet</servlet-name>
<servlet-class>SendMailServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SendMailServlet</servlet-name>
<url-pattern>/mail/SendMailServlet</url-pattern>

</servlet-mapping>

Creating the sendmail.jsp JSP
If sendmail.jsp is not included with your Tomcat 5 distribution, copy it from the code distribution to
the %CATALINA_HOM%/webapps/jsp-examples/mail subdirectory (create this directory if necessary).
This is the JSP that will accept user input and submit the e-mail details to the SendMailServlet for sending.

Sending E-mail via JavaMail Sessions
Start Tomcat 5, and you can test the example that uses JavaMail to send e-mail. Use the following URL:

http://localhost:8080/jsp-examples/jsp/mail/sendmail.jsp

Figure 8-6 shows the JSP-generated form that you can fill out to send e-mail.

Figure 8-6: Accessing JavaMail via JNDI.

You can fill out the form shown in Figure 8-6 to actually send an e-mail message (assuming that you
have the SMTP server configured properly).

186

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 186

This JSP collects information for an e-mail message from the user, and then submits it to the SendMailServlet
for processing and sending. The following code shows how SendMailServlet (or other Web application
code) can look up and utilize the JNDI mail session:

// Acquire our JavaMail session object
Context initCtx = new InitialContext();
Context envCtx = (Context) initCtx.lookup(‘java:comp/env’);
Session session = (Session) envCtx.lookup(‘mail/Session’);
...

Configuring Lifecycle Listeners
Many top-level and nested components in the Tomcat 5 architecture (including Server, Service, Logger,
Realm, and so on) support the configuration of lifecycle listeners. Lifecycle listeners are Java code mod-
ules that can be hooked into the server logic and executed during specific moments during the lifecycle
of a component. This capability enables new custom functionality to be introduced to the Tomcat 5
server without having to change the core server code base.

With Tomcat 5, the only explicit use of a lifecycle Listener is to insert code that enables the server to be
managed remotely (through JMX support). Using a simple example, the following section shows how
this support code is configured.

Lifecycle Events Sent by Tomcat Components
Lifecycle listeners are customized code that listens to specific lifecycle events. Lifecycle events are sent
by a component, to any configured Listener, at well-defined points in a component’s lifecycle. These
points include the following:

❑ Just before component startup

❑ During component startup

❑ Just after component startup

❑ Just before component stop

❑ During component stop

❑ Just after component stop

Developers may use lifecycle listeners to add new processing logic to the Tomcat server. As an adminis-
trator, you can add these custom listeners by creating a <Listener> XML element within the associated
component.

The <Listener> Element
You can add a lifecycle Listener to a Tomcat component (if the component supports lifecycle listeners) by
configuring a <Listener> XML element within the XML definition of the component. Most Tomcat 5
architectural components support lifecycle listeners.

187

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 187

In Tomcat 5, listeners for the <Server> component are used to create JMX MBeans that represent run-
time server structures and global resources. JMX MBeans are objects that enable Tomcat components,
structures, and resources to be monitored or accessed via an external management system. Chapter 18
provides more extensive coverage of JMX.

More specifically, Tomcat 5 uses the following default server.xml fragment to add JMX MBean support:

<Server port=’8005’ shutdown=’SHUTDOWN’ debug=’0’>
<Listener className=’org.apache.catalina.mbeans.ServerLifecycleListener’

debug=’0’/>
<Listener className=’org.apache.catalina.mbeans.GlobalResourcesLifecycleListener’

debug=’0’/>

Although the XML configuration syntax of a lifecycle Listener configuration is similar to the configura-
tion of a nested component inside a container, technically, a Listener is not an architectural component
(and definitely not a nested component). A lifecycle Listener should be thought of as an extended
attribute of the containing XML element. The main reasons why lifecycle listeners are configured as
XML sub-elements instead of XML element attributes are as follows:

❑ Multiple lifecycle listeners can be associated with a single component.

❑ Each Listener can be configured with its own set of attributes.

The <Listener> element, representing a lifecycle Listener, can be configured with the attributes
described in the following table.

Attribute Description Required?

className The Java programming language class that Yes
implements the Listener logic. This class must
implement the org.apache.catalina.
LifecycleListener Java interface.

debug Controls the level of debug messages No

descriptors A semicolon-separated list of MBean descriptor No
XML files. This attribute is used to provide JMX
compatibility (see Chapter 18 on Tomcat’s JMX
support) for custom components (that is, custom
Valves and custom Realms).

Tomcat 5 Lifecycle Listeners Configuration
Tomcat 5 has two custom Listener classes that will intercept lifecycle events and create (or destroy) man-
agement objects (called MBeans) to support external management of Tomcat. These two custom Listener
classes are as follows:

❑ org.apache.catalina.mbeans.ServerLifecycle— A Listener to create/destroy MBeans
for management of Tomcat architectural components

❑ org.apache.catalina.mbeans.GlobalResourcesLifecycle— A Listener to create/destroy
MBeans for management of any global resources that may be externally manageable

188

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 188

Displaying MBeans Created by Lifecycle Listeners Using the Manager
JMX Proxy

In the default server.xml file, the two lifecycle listeners are configured. You can see the result of the
created MBeans by using the manager application’s JMX proxy Servlet. Try the following URL:

http://localhost:8080/manager/jmxproxy/?qry=*%3Atype%3DRole%2C*

This proxy Servlet enables you to query specific MBeans that are created within the Tomcat 5 server.
MBeans representing roles are created only by the lifecycle listeners described earlier. When these
lifecycle listeners are not hooked in, the roles MBeans are not created.

The preceding query will enumerate all the roles MBeans. The query should return a list of the four man-
ageable objects (MBeans) for the roles that are defined in tomcat-users.xml, as shown in Figure 8-7.

Figure 8-7: Lifecycle Listener–created role-type MBeans.

Note that you will have to authenticate to use the manager application. This means that the manager
role must be added to the tomcat-users.xml file (either manually or via the admin application) for
the manager application user. In this test case, the manager role was added to the default Tomcat user.
(Chapter 7 discusses the manager application.)

189

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 189

Removing Default Lifecycle Listeners
Next, the lifecycle listeners will be removed. As a result, it is expected that the dynamically created
MBeans will no longer be available. To try this out, first stop Tomcat 5. Edit the server.xml file by hand
and comment out the two <Listener> elements. The following code shows the elements commented out:

<Server port=’8005’ shutdown=’SHUTDOWN’ debug=’0’>
<!--
<Listener className=’org.apache.catalina.mbeans.ServerLifecycleListener’

debug=’0’/>
<Listener className=’org.apache.catalina.mbeans.GlobalResourcesLifecycleListener’

debug=’0’/>
-->

This means that no lifecycle Listener will be configured for the server component, and no role-typed
MBeans will be created.

Start Tomcat 5 and try the previous proxy URL again. This time, no role-typed MBean will be found, as
shown in Figure 8-8.

Figure 8-8: No role-typed MBean is available when lifecycle listeners are disabled.

190

Chapter 8

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 190

Because the lifecycle listeners responsible for creating the role-typed MBeans are not configured, the
query reveals that no role-typed MBeans are available.

Summary
This chapter discussed Tomcat configuration topics that are beyond the basic “up-and-running” require-
ments. The following important areas were covered:

❑ The Access Log Valve can enable logging of resource access at different levels: the Web applica-
tion, the virtual host, or globally across all the virtual hosts. This Valve is highly configurable
and you can customize the name as well as the actual format of the log entries, although the
common format is the best known.

❑ The standard Single Sign-on Valve enhances the user experience because users no longer must
type in a user name and password every time they switch between Web applications running on
the same host. This Valve caches the credentials on the server and passes them between the
applications as required.

❑ The Request Filter Valves are easily configured to control all incoming requests that are to be
processed or blocked entirely. These Valves can block a list of IP addresses or host names.

❑ The lesser-known Request Dumper Valve can be used to debug other Valves and/or compo-
nents, and to visualize the effects of scoping.

❑ The configurable Persistent Session Manager component can be used to provide a measure of
reliability to Tomcat. It can periodically back up sessions on disk, and also swap out dormant
sessions to make room for active sections. Most important, it will restore sessions from disk
when it starts up. This enables sessions to persist between restarts of the Tomcat server.

❑ JNDI provides a uniform interface to different directory services. This makes it possible to write
only one set of lookup code across different directory services. Examples presented included the
configuration of JNDI resources (such as JDBC connections and JavaMail sessions).

❑ Lifecycle listeners are Java code modules and are configured as XML sub-elements of a Tomcat
component. Configured listeners are invoked by the component during well-defined points in
the lifecycle of a component. In Tomcat 5, lifecycle listeners are used to create manageable
objects (MBeans) for supporting Tomcat manageability (via JMX).

Chapter 9 discusses Tomcat’s class loaders.

191

Advanced Tomcat Features

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 191

b 559028 Ch08.qxd 4/22/04 3:55 PM Page 192

Class Loaders

Every Java developer makes extensive use of class loaders, often without realizing it. Each time a
class is instantiated as an object or referenced statically, that class must be loaded by the Java
Virtual Machine (JVM) into memory. Thus, even statements as simple as String greeting =
“hello” or int maxValue = Integer.MAX_VALUE make use of a class loader. They require the
String class and the Integer class to be loaded, respectively.

While class loaders are designed to operate fairly transparently from the developer’s point of
view, there are subtleties to their use that are important to understand. Why a chapter on class
loading in a Tomcat book? It turns out that class loaders and their behavior are a big part of
Tomcat. Following the Servlet specification, Tomcat is required to allocate a unique class loader
to each Web application. This chapter explains what this means and why it is important.

Following an explanation of class loaders in general and Tomcat’s class loaders in particular, com-
mon problems related to class loaders are discussed. By the end of this chapter, not only will you
be familiar with class loaders in general, but you’ll also understand how they relate specifically to
Tomcat.

The following topics are covered in this chapter:

❑ An overview of class loaders

❑ Security issues with class loaders

❑ Tomcat and class loaders

❑ Dynamic class reloading

❑ Common class loader issues

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 193

Class Loader Overview
Java was designed to be platform-independent and to support distributed network architectures. To ful-
fill both of these goals, Java had to innovate in many key areas. One of these areas is the basic issue of
how to load code libraries. If Java is to be truly platform-independent, it cannot rely on a specific type of
file system (or even a set of dozens of file systems) for loading its libraries. Many small embedded com-
puter systems don’t even have a file system!

Furthermore, because Java was designed to load classes from various sources spread across a network,
simply loading classes from a file system won’t work.

To deal with these issues, the Java architects introduced the notion of a class loader. The role of the class
loader is to abstract the process of loading classes, making it completely independent of any type of
underlying data store, be it a network or a hard drive.

For example, consider the following simple program:

import com.wrox.MyObject;

public class Simple {
public static void main(String[] args) {

MyObject myObject = new MyObject();
}

}

When the line MyObject myObject = new MyObject() is executed, the Java Virtual Machine (JVM)
asks a class loader to find a class named com.wrox.MyObject and return it as a Class object. The class
loader is then free to do whatever it is designed to do to locate the class. Possible actions include search-
ing a file system, checking a ROM chip, or loading a class from a network. Once returned, the Class
object that represents the MyObject class is then used to instantiate the myObject instance. Figure 9-1
depicts this process.

Standard J2SE Class Loaders
Ever since the J2SE 1.2 specification, the JVM has made use of three distinct class loaders, which are
discussed next, along with their roles:

❑ Bootstrap class loader (also called the primordial class loader)

❑ Extension class loader

❑ System class loader

These class loaders occupy a hierarchy, with the system class loader at the bottom and the bootstrap
class loader at the top. The relationships are parent-child, so the parent of the system class loader is the
extension class loader. The importance of this relationship shall soon become clear.

194

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 194

Figure 9-1: JVM and class loaders.

Bootstrap Class Loader
As its name implies, the bootstrap class loader is used by the JVM to load those Java classes that are nec-
essary for the JVM to function. Actually, the bootstrap class loader is responsible for loading all the core
Java classes (such as java.lang.* and java.io.*).

Because class loaders are written in Java, the bootstrap class loader solves a high-tech “chicken-and-egg”
problem: How can the JVM load a Java-based class loader when the class loader itself must be loaded in?
Including the bootstrap class loader in the JVM itself solves this problem, and various JVM vendors
(including Sun) implement the bootstrap class loader using native code.

Although it has been explained that the bootstrap class loader loads the core Java classes, you may be
wondering where exactly the bootstrap class loader finds these classes.

Application requests a class:
String string = ...;

The JVM routes the request to a
class loader to load String class

The class loader searches for
the class in a file system or network

Class loader finds the class file,
loads it, and returns it to JVM
as a Class class

JVM uses the Class to create a
String object and returns the
object to the application

195

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 195

It turns out that the answer to this question varies from vendor to vendor. Sun’s JVM 1.3.1 looks in the
following locations:

jdk/jre/lib/rt.jar
jdk/jre/lib/i18n.jar
jdk/jre/lib/sunrsasign.jar
jdk/jre/classes

The paths for Sun’s JVM 1.4 include a few additional items (highlighted):

jdk/jre/lib/rt.jar
jdk/jre/lib/i18n.jar
jdk/jre/lib/sunrsasign.jar
jdk/jre/lib/jsse.jar
jdk/jre/lib/jce.jar
jdk/jre/lib/charsets.jar
jdk/jre/classes

Apple’s JVM 1.3.1 uses the following locations instead:

/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Classes/ui.jar
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Classes/classes.jar
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Classes/i18n.jar
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Classes/sunrsasign.jar

Extension Class Loader
Java 1.2 introduced the standard extension mechanism. Normally, when developers want the JVM to
look in certain locations for class files, they make use of the CLASSPATH environment variable. Sun intro-
duced the standard extension mechanism as an alternative method. You can drop JAR files into a stan-
dard extension directory and the JVM will automatically find them.

The extension class loader is responsible for loading all the classes in one or more extension directories.
Just as the bootstrap class loader’s paths can vary on different JVMs, so can the standard extension
paths. On Sun’s JVM, the standard extension directory is as follows:

/jdk/jre/lib/ext

One advantage of the standard extension mechanism is that developers don’t have to struggle with a
huge CLASSPATH environment variable as they add more and more libraries to their system. Another
advantage is considered a little later in this chapter.

System Class Loader
The system class loader locates its classes in those directories and JAR files specified in the CLASSPATH
environment variable. The system class loader is also used to load an application’s entry point class (that
is, the class with the main() method), and is the default class loader for loading in any other classes not
covered by the other two class loaders.

196

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 196

The Delegation Model
As discussed, J2SE has three different class loaders. If a java.lang.String is instantiated, the boot-
strap class loader is responsible for loading its class, and if a user class is instantiated, the system class
loader is usually the responsible class loader. How does the JVM know which class loader to use?

The JVM knows which class loader to use by utilizing the delegation model. In every version of Java
since JDK 1.2, whenever a class loader receives a request to load a class, it first asks its parent to fulfil the
request (in other words, it delegates the request to its parent class loader). Before the class loader’s parent
loads the requested class, it delegates the request to its parent, and so on, until the bootstrap class loader
is reached. If the parent is successful in loading the class, then the resulting class object is returned so
that it may be instantiated (or statically referenced). Only if a class loader’s parent (and its parent, and so
on) fails to load the class does the original class loader attempt to load the class.

Thus, when a class is referenced in a Java program, the JVM will automatically route a request to the sys-
tem class loader to load the necessary class. The system class loader will then request that the extension
class loader load the specified class, which in turn will request that the bootstrap class loader load the
class. The process stops with the bootstrap class loader, which will then check the core Java libraries (and
whatever else it’s configured to search) for the requested class.

If the class doesn’t exist in the bootstrap class loader’s domain, then the extension class loader will check
the standard extensions location for the class. If it’s still not found, then the system class loader will
check the locations specified by the CLASSPATH variable for the class. If the class still cannot be located,
then a ClassNotFoundException will be thrown. Figure 9-2 summarizes this process.

Figure 9-2: Delegation model.

Application
Requests a

Class

System
Class
Loader

Extension
Class
Loader

Bootstrap
Class
Loader

Each class loader delegates
the request to its parent.

Once the top-most class loader
is reached, usually the bootstrap
class loader, it tries to load the
class. If it cannot, its child will try.

If one of the class loaders finds the
class, it is returned as a Class
object; otherwise, a
ClassNotFoundException is thrown.

3

3

2

2
2

1

1

1

197

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 197

Consider the following example:

import com.wrox.MyObject;

public class Simple {
public static void main(String[] args) {

String myString = “test”;
MyObject myObject = new MyObject();

}
}

In this example, when the JVM sees the reference to java.lang.String, it will request that the system
class loader try to load the class. However, before attempting to load the class itself, the system class
loader will request that the extension class loader load it, and the extension class loader will pass the
request to the bootstrap class loader. Because the bootstrap class loader has no parent, it will check its
paths for java.lang.String, and it will find it in the rt.jar file (at least, on Sun JVMs). The bootstrap
class loader will then return the class back down the chain until it is returned to the JVM.

The reference to com.wrox.MyObject will also trigger the JVM to make the same request to the system
class loader and, as with the String class, the system class loader will delegate this to the extension
class loader, which will delegate to the bootstrap class loader. However, the bootstrap class loader will
not find the com.wrox.MyObject class, and will return nothing to the extension class loader. The exten-
sion class loader will check its paths, and it will also not find the class (unless, of course, the class has
been explicitly placed in the extensions directory), and it, too, will return nothing to the system class
loader. The system class loader will search in the CLASSPATH locations, where it will find the
com.wrox.MyObject. The system class loader will then return the class to the JVM.

Endorsed Standard Override Mechanism
Java 1.4 has introduced an interesting concept called the Endorsed Standards Override Mechanism.
Over time, the core J2SE distribution has been including more and more of what used to be optional
extensions to Java. The best example of this is the Java API for XML Processing (JAXP) that is distributed
with J2SE 1.4. Sun included both the JAXP API classes as well as an implementation of the API. Because
the implementation classes are included in rt.jar, the bootstrap class loader loads them. As a result, if
developers try to place newer versions of the JAXP implementations that shipped with the JDK in their
CLASSPATH, their version will never be used. The system class loader will delegate all requests to the
bootstrap class loader.

The problem is solved by the override mechanism. If developers place JAR files containing an alternate
JAXP implementation in this class loader’s domain, the bootstrap class loader will load their class files
instead. In the J2SE 1.4, this location is as follows:

$JAVA_HOME/lib/endorsed

Users can change the path for this mechanism by setting the java.endorsed.dirs property.

Before developers start thinking about replacing all of the core libraries, an important limitation must be
addressed: only certain packages can be overridden. The complete list of packages can be found in the
J2SE 1.4 documentation (http://java.sun.com/j2se/1.4.1/docs/guide/standards/). In short,
only the CORBA classes and the JAXP classes can be overridden with this mechanism.

198

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 198

More on Class Loader Behavior
Now that the standard J2SE class loaders have been discussed, as well as the delegation model that
governs how these class loaders interact, the following sections address additional aspects of class
loader behavior.

Lazy Loading (Loading Classes on Demand)
None of the three class loaders preloads all classes in the paths that they search for classes. Instead, they
load the classes on demand. Such behavior is said to be lazy because the object waits to load the data
until it is requested. While laziness in human beings is generally regarded as a negative trait, it is actu-
ally quite a positive one for class loaders, for the following reasons:

❑ Faster performance — At the time of initialization, if each class loader had to load every class, it
would take much longer to initialize the JVM.

❑ Efficiency — Loading on demand results in more efficient memory usage because loading all the
classes immediately would consume more memory than necessary.

❑ Flexibility — JAR files and classes can be added to the search paths of all the class loaders even
after the class loaders have been initialized.

Class Caching
The standard J2SE class loaders look up classes on demand, but once a class is loaded into a class loader,
it will stay loaded (cached) for a period of time. However, the JVM’s garbage collector can reclaim these
Class objects. This is generally desirable, unless one such garbage-collected Class object is actually a
stateful singleton class (that is, a class that maintains a static reference to itself, is either noninstantiable
or not instantiated in practice, and that maintains some aspects of an application’s state). For this reason,
Sun JVM’s allow class garbage collection to be turned off with the –Xnoclassgc option.

Separate Namespaces
Each class loader is assigned a unique namespace. In other words, if the bootstrap class loader loads a
class named sun.misc.ClassA, and the system class loader loads a class named sun.misc.ClassB,
the two classes will be considered to be in distinct packages. They will not have access to each other’s
package-private members.

Creating a Custom Class Loader
Java allows for the creation of custom class loaders, which may seem like one of those pointless tasks
that only hard-core professional Java academics would ever want to do. However, not only is creating
custom class loaders fairly easy, it can provide enormous flexibility in controlling aspects of an applica-
tion’s behavior.

Note that when a class is loaded, all of its parent classes must also be loaded. Thus,
if ClassB extends ClassA, and ClassB is loaded, then ClassA is also loaded.

199

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 199

The key to creating a custom class loader is the java.lang.ClassLoader class. This abstract class con-
tains all the logic necessary for transforming the bytes of a compiled class file into a Class object that
can then be used in an application. It does not, however, provide any mechanism for locating and
loading such files.

The J2SE comes with two concrete implementations of ClassLoader: SecureClassLoader and
URLClassLoader. The SecureClassLoader is a relatively thin wrapper around ClassLoader that ties
class loading into Java’s security model (security issues are discussed in the section “Security and Class
Loaders,” later in this chapter). Like ClassLoader, it does not provide a mechanism for loading class files.

URLClassLoader (a subclass of SecureClassLoader) provides the default Java mechanism for locating
class files in directories or JAR files on a file system, or across a network. The extension and system class
loaders are both descended from URLClassLoader, though they do not directly extend this class.
Tomcat uses its own class loaders extensively. This is discussed in more detail later in this chapter.

Following are some neat tricks that you can perform with a custom class loader:

❑ Search a database instead of a file system for classes.

❑ Load different classes with the same fully qualified name.

❑ Swap your classes with new versions at run-time.

❑ Load classes before you need them.

Additional Class Loader Information
Covering all the details associated with writing custom class loaders is an advanced development topic
and beyond the scope of this chapter. More information about this topic can be gleaned from the follow-
ing resources:

❑ http://java.sun.com/j2se/1.4/docs/api/java/lang/ClassLoader.html— The
ClassLoader API JavaDoc file, which is fairly transparent and easy to understand

❑ http://www.javageeks.com/Papers/— A few white papers related to class loaders, notably
“Understanding Class.forName()” and “Using the BootClasspath”

Security and Class Loaders
Class loading is at the very center of the Java security model. After all, it would clearly be undesirable
for a rogue third party to be able to inject into an application a custom version of java.lang.String
that had the nasty side effect of deleting the hard drive whenever it is instantiated. Understanding the
security features of the class loader architecture will help you understand how Tomcat’s class loader
system works.

The Java class loader architecture tackles the security problem with the following strategies:

❑ Class loader delegation

❑ Core class restriction

200

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 200

❑ Separate class loader namespaces

❑ A Security Manager

The following sections describe each of these strategies.

Class Loader Delegation
Recall the class loader delegation model discussed previously. Each class loader first determines whether
its parent has the requested class before it attempts to load it.

The delegation model is described by many as a security feature. After all, it seems like it should be.
Anyone trying to load false versions of the core Java classes will fail because the bootstrap class loader
has first shot at any class, and it will always find the real copies of the core Java classes.

However, the delegation model on its own is flawed as a security mechanism because class loaders are
not required to implement it. In other words, developers are free to create a class loader that doesn’t fol-
low the delegation model.

This security flaw doesn’t impeach the class loader delegation model. Indeed, optional enforcement of
the delegation model is actually an important feature, and other aspects of the class loader architecture
resolve the security issues discussed here, as you will see shortly.

Core Class Restriction
If a custom class loader doesn’t have to delegate requests to the system class loader, what would prevent
it from loading in its own copy of java.lang.String?

Fortunately, it’s not possible for any class loader written in Java to instantiate a core Java class. The
ClassLoader abstract class (from which all class loaders must descend) blocks the creation of any class
whose fully qualified name begins with java. Thus, no false java.* classes can be caught hanging
around. Because the bootstrap class loader is not written in Java and does not descend from
ClassLoader, it is not itself subject to this restriction.

By implication, this restriction indicates that all class loaders must at least delegate to the bootstrap class
loader. Otherwise, when the class is loaded, there is no way for its class loader to load java.lang.Object,
from which all objects must descend.

Thus, the delegation model by itself does not provide security. Instead, the core class restriction mecha-
nism prevents rogue class loaders from tampering with the core Java libraries (at run-time).

Separate Class Loader Namespaces
As discussed previously, each class loader has its own namespace (thus, two different classes with the
same fully qualified name). Because every single class loader has its own completely distinct namespace,
class loader A can load a class named com.wrox.Book, and class loader B can also load a completely dif-
ferent class also named com.wrox.Book.

201

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 201

Having separate namespaces is an important security feature because it prevents custom class loaders
from stepping over each other, or the system class loader. No matter how hard a renegade class loader
may try, it cannot replace a class loaded by a different class loader. Furthermore, classes loaded by differ-
ent class loaders but otherwise in the same package cannot access each other’s package-private members.

Security Manager
If you really want to ensure that no damage can be done to a program with custom class loaders, you
can disallow their use completely in an application. This can be done through the SecurityManager
class, which is Java’s general mechanism for applying security restrictions in applications.

With a Security Manager and its associated policy files, you can disallow (or allow) a large number of
tasks. For example, a program can be prevented from opening a socket to some network host, or be pre-
vented from opening files on the local file system. In addition, of course, an application can be prevented
from loading a class loader. Developers have the following options for preventing class loader-related
operations:

❑ Prevent the loading of any class loader.

❑ Prevent a reference to any class loader being obtained (including the system class loader).

❑ Prevent the context class loader of any thread being changed.

Only two steps are required:

1. Configure a policy file with the permissions you want for a given application.

2. Turn on the application’s Security Manager.

For more detailed information on Security Managers, see Chapter 15.

Tomcat and Class Loaders
Recall the default Java class loader hierarchy, as summarized in Figure 9-3. Tomcat builds on these class
loaders by adding its own after the system class loader, as shown in Figure 9-4.

Figure 9-3: The Java class hierarchy.

System
Class
Loader

Extension
Class
Loader

Bootstrap
Class
Loader

202

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 202

Figure 9-4: Tomcat’s class loaders.

Each of these additional Tomcat-specific class loaders is discussed in the following sections.

System Class Loader
Tomcat uses the default system class loader, but it does something a little different from the default
behavior of the JVM. In the Tomcat startup file (startup.bat on Win32, startup.sh on Unix, which in
turn call catalina.bat/sh), the CLASSPATH environment variable is cleared. In its place, Tomcat points
CLASSPATH to two Tomcat files: bootstrap.jar and tools.jar.

Recall that the system class loader searches the CLASSPATH. Because Tomcat sets the CLASSPATH variable
to these two files, the normal effect of this class loader is nullified. Whatever the CLASSPATH is set to
prior to launching Tomcat is simply disregarded as far as Tomcat is concerned.

The bootstrap.jar file contains Tomcat start-up classes; tools.jar contains the javac compiler,
which is used to compile JSP pages into class files at run-time.

Endorsed Standards Override Mechanism
On startup, Tomcat changes the Endorsed Standards Override Mechanism to point to the following
directory, rather than the default ones mentioned previously:

$CATALINA_HOME/common/endorsed

Tomcat ships with a version of the popular Apache Xerces XML parser in this directory and a version of
the JAXP API. The net result is that this parser (a JAXP implementation) is preferred to any that may
have shipped with the JRE that was used to launch Tomcat (such as the Crimson parser that ships with
Java 1.4).

Common Class Loader
Next in the hierarchy is the common class loader, which is responsible for classes that are used by
Tomcat and publicly available to all Web applications. It searches for such class files from two different
locations:

$CATALINA_HOME/common/lib
$CATALINA_HOME/common/classes

Tomcat includes a number of JAR files in $CATALINA_HOME/common/lib, such as a version of Apache
Ant, many of the Jakarta Commons projects, Jasper (a JSP compiler), as well as the API classes for those
APIs that Tomcat supports (Servlet, JSP, JNDI, and JMX).

System
Class
Loader

The Web Application
Class Loader does
NOT delegate first

Web Application
Class
Loader

Extension
Class
Loader

Bootstrap
Class
Loader

Shared
Class
Loader

Catalina
Class
Loader

Common
Class
Loader

203

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 203

Tomcat can reference all the classes included in the domain of this class loader in their own Web applica-
tions, and exclude such classes from their own Web applications (indeed, developers are not allowed to
include the Servlet/JSP API classes in their Web applications). However, it’s probably a good idea not to
reference anything except the API classes, for the following reasons:

❑ Relying on the common class loader to load Jakarta Commons, Ant classes, and so on, from this
directory potentially breaks Web application portability. No requirement is made of Servlet con-
tainers to provide such classes, and other Servlet containers probably don’t provide them. Thus,
when a Web application is moved from Tomcat to another such Servlet container, problems will
occur.

❑ The versions of such libraries that Tomcat includes may be different than the versions a Web
application expects. Such bugs can be maddeningly difficult to track down.

Developers should not place their own classes or JARs in this class loader’s domain. Another class
loader, the shared class loader, is provided for just this purpose and is discussed in the section “Shared
Class Loader,” later in this chapter. Putting your own custom classes in the common class loader paths
would be bad for at least two reasons, one trivial and one nontrivial:

❑ The trivial reason is that it’s easy to forget which classes/JAR files are custom and which belong
to Tomcat. Maintenance would, therefore, be tricky, especially for others who would not expect
user classes to be in those locations.

❑ The nontrivial reason is that placing custom classes in the common class loader domain could
cause compatibility problems with Tomcat. For example, if an earlier version of the Xerces XML
parser were placed in the domain, and it wasn’t tested with Tomcat, it could cause mysterious
bugs. The same would be true if an older version of the Servlet API were placed into these paths.

Catalina Class Loader
The Catalina class loader is used to load all the Tomcat classes that are Tomcat-specific. These classes are
not visible to other applications. They are stored in the following locations:

$CATALINA_HOME/server/lib
$CATALINA_HOME/server/classes

It is a good idea to ignore the contents of this class loader.

Shared Class Loader
The shared class loader is a bit like the common class loader, except that developers can place their own
classes and JAR files into the shared class loader domain. The shared class loader looks in the following
directories:

$CATALINA_HOME/shared/lib
$CATALINA_HOME/shared/classes

Anytime developers want to share general classes among two or more Web applications, these are the
locations in which they should be placed.

204

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 204

Web Application Class Loader
Each Web application also has its own class loader, which looks in the following locations:

$CATALINA_HOME/webapps/<webapp>/WEB-INF/classes
$CATALINA_HOME/webapps/<webapp>/WEB-INF/lib

Two properties of the web application class loader make it unique. First, the Web application class
loader does not use the delegation model that class loaders are encouraged to use. Instead, it tries to load
classes first, before delegating the request to the other class loaders (except in certain conditions detailed
below). This behavior makes it easy for Web applications to override classes in the shared and common
class loaders on a per-Web-application basis.

Second, each Web application has its own instance of this class loader, which means that no two Web
applications can see each other’s class files.

Web Application Class Loader Details
Actually, the Web application class loader does delegate to other class loaders; however, it does so in a
way that is not consistent with the traditional delegation model.

When a class is requested, this class loader first checks its cache of classes to determine whether the class
has already been loaded. If the class is not found among those cached, the Web application class loader
will then delegate the request to the system class loader. This is done to prevent Web applications from
attempting to instantiate classes shipped with the JRE.

If the system class loader fails to find the class, the Web application class loader will next try to deter-
mine whether the class belongs to any of the following packages:

javax.*
org.xml.sax.*
org.w3c.dom.*
org.apache.commons.logging.*
org.apache.xerces.*
org.apache.xalan.*

If the class does belong to one of these packages, the Web application class loader will delegate the
request to its parent, the shared class loader.

If the class has still not been found, the Web application class loader will check its domain for the class. If
it fails to find it, and it has not already delegated the request to its parent (that is, if the class belongs to
one of the packages listed previously), it will do so now.

Class Loader Order Revisited
To review how these various Tomcat class loaders work together, let’s examine what happens when an
individual application requests a class. Following is a list of class loaders, and the order in which they
will look for classes:

❑ The Web application class loader looks in $CATALINA_HOME/webapp/<webapp>/WEB-INF/lib
and $CATALINA_HOME/webapp/<webapp>/WEB-INF/classes (except for those situations
mentioned in the section “Web Application Class Loader Details,” earlier in this chapter).

205

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 205

❑ The bootstrap class loader looks in the core Java classes.

❑ Under Java 1.4, the bootstrap class loader will also look in $CATALINA_HOME/common/
endorsed for alternative CORBA and JAXP classes.

❑ The system class loader looks in $CATALINA_HOME/bin/bootstrap.jar and $JAVA_HOME/
lib/tools.jar.

❑ The common class loader looks in $CATALINA_HOME/common/lib and $CATALINA_HOME/
common/classes.

❑ The shared class loader looks in $CATALINA_HOME/shared/lib and $CATALINA_HOME/
shared/classes.

Dynamic Class Reloading
As discussed earlier, once a class loader has loaded a class, it caches the class. This means that future
requests for the class always get the cached copy returned to them. Thus, if the class in the file system is
changed while the JVM is running, the changed copy will be ignored.

However, because Tomcat uses its own class loader to load each Web application, it can accomplish
dynamic class reloading simply by halting the Web application and then reloading it using a new class
loader.

The Web application’s original class loader is then orphaned and thus garbage-collected at the JVM’s
convenience. This eliminates the need to restart the JVM when new versions of classes are deployed.

Following are two mechanisms for instructing Tomcat to reload a Web application:

❑ Configure Tomcat to scan the Web application’s WEB-INF/lib and WEB-INF/classes
directories for changed files.

❑ Explicitly reload the Web application with the Tomcat manager application.

Note that in both cases, Tomcat does not simply direct its class loaders to dump their caches and reload
from disk. Rather, when it detects a change or receives an explicit reload instruction, it reloads and
restarts the entire Web application.

Because Tomcat cannot modify the JRE’s built-in class loaders, classes loaded from their domains cannot
be part of Tomcat’s reload mechanism (that is, the contents of $CATALINA_HOME/common/endorsed
won’t be reloaded with this mechanism).

Performing either of these tasks is fairly simple and is described in Chapter 5 and Chapter 7.

Common Class Loader Pitfalls
A couple of common problems may occur when dealing with Tomcat’s class loaders. The solutions to
these problems, outlined in the following sections, are derived from information covered in the preced-
ing sections.

206

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 206

Packages Split Among Different Class Loaders
If an application has multiple classes in the same package (for example, com.wrox.servlets), they
must be loaded by the same class loader. For example, consider the following two classes:

com.wrox.servlets.MyServlet
com.wrox.servlets.Constants

These classes must be placed in the same class loader domain (such as /WEB-INF/classes or
$CATALINA_HOME/classes). If they are split up, they will no longer have access to each other’s private,
protected, or package-private (default) members.

Singletons
A singleton is a class designed so that it can only be instantiated one time in any given JVM. Consider
the example of a singleton class that is an entry point to an object pool of some sort. The designers of this
class want to share this singleton among multiple Web applications, and want to maintain the contract
that only one instance be created in a single JVM.

The singleton class could look something like the following:

public class ObjectPool {
private static ObjectPool objectPool = null;

private ObjectPool {
// initialize object

}

public synchronized static ObjectPool getInstance() {
if (objectPool == null) {

objectPool = new ObjectPool();
}
return objectPool;

}
}

Placing this class in the Web application class loader domain guarantees that each Web application will
create a new instance of this class. This is because each Web application has its own class loader, and
class loaders maintain distinct namespaces.

The solution is to place this class in the shared class loader domain, where the singleton will be shared
among all Web applications because they all share the same class loader.

Recall, however, that the JVM can garbage-collect loaded class objects if memory is low. If the singleton
is not currently referenced by any classes in the JVM, it could be garbage-collected, even when its con-
tents are still important to the application. This scenario is a regrettable side effect of the singleton design
pattern. Because they can be accessed statically at any time, applications need not maintain a reference to
them. Without a reference, the JVM garbage collector cannot determine that the class is currently in use
by the application.

207

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 207

Sun’s JVMs provide a solution to this problem. Use the -Xnoclassgc start-up parameter. This param-
eter can be utilized when launching Tomcat by setting the JAVA_OPTS environment variable to this
value. An example of doing this on Windows is as follows:

set JAVA_OPTS=-Xnoclassgc

Another solution is to ensure that the singleton class is always referenced in some way by the application.
This can be as simple as adding the following member to a class that is always loaded in an application:

private ObjectPool objectPool = ObjectPool.getInstance();

XML Parsers
Unfortunately, the whole issue of XML parsers in Java has become somewhat confusing. Java defines an
API for XML parsers based on the W3C organization’s DOM standard, called the Java API for XML
Processing, or JAXP.

Starting with Java 1.4, the JAXP API was included in the J2SE platform, along with an implementation of
JAXP: the Apache Crimson parser. However, Crimson was soon discontinued by the Apache group, in
favor of the Xerces XML parser. Xerces was also soon discontinued, in favor of Xerces2.

As a result of this high level of churn, the Java community must now deal with having multiple JAXP
implementations in the marketplace and many versions of those parsers. Because these disparate ver-
sions often have classes with the exact same fully qualified names, using JAXP can often lead to weird
results and buggy behavior. The situation is further complicated by the presence of multiple versions
of JAXP.

As mentioned previously, the Endorsed Standards Override Mechanism exists to prevent the JRE’s class
loaders from loading the JAXP classes in situations where an alternate JAXP API version or alternate
implementation is desired. Tomcat uses this mechanism to sidestep the XML parser issues by including
its own JAXP API and implementation (Xerces).

Unfortunately, under Java 1.4, Tomcat must share the same version of the Xerces XML parser as its Web
applications (as well as the same version of Xalan, an XSLT engine). Tomcat relies on the Endorsed
Standards Override Mechanism for the version of Xerces it requires, and as discussed previously, the
Web application class loader delegates to this mechanism under all conditions (see the section “Web
Application Class Loader Details,” earlier in this chapter).

This is likely not a problem unless a Web application relies on an old version of Xerces/Xalan for a par-
ticular behavior. Or, it is possible that a version of Xerces/Xalan that is newer than the one that shipped
with Tomcat is required for a Web application (the version of Xerces/Xalan shipped with Tomcat can be
determined by checking the MANIFEST.MF file in the Xerces JAR). In such circumstances, the only alter-
native is to change the parser in the $CATALINA_HOME/common/endorsed directory and hope that such
a change doesn’t break Tomcat.

Of course, these parser version issues really only apply if the Apache family of XML parsers is used. If you
use another JAXP implementation whose classes are in entirely different package names, all of the issues
just described are eliminated. However, Xerces is by far the world’s most popular JAXP implementation.

208

Chapter 9

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 208

Summary
To conclude this chapter on class loaders, let’s review some of the key points that have been discussed:

❑ Class loaders abstract the process of loading class files before the first instantiation and make
them available for use. Java’s default class loaders support loading classes from the local file
system and from a network. Java also provides developers with a facility to create their own
custom class loaders. The three basic class loaders discussed are the bootstrap, extension, and
system class loaders.

❑ Class loaders use the delegation model. Every class loader passes a request to load a class to its
parent until the bootstrap class loader is reached. Each class loader looks for the class, and if it
can’t be found, the request goes back down the chain. Implementing the delegation model is
optional, but class loaders are basically useless if they don’t delegate to the bootstrap class
loader at some point. Every class loader has a unique namespace.

❑ The Java security model prevents the misuse of custom class loaders by allowing only the boot-
strap class loader to load classes that start with java.*. By using the security manager, an
application can forbid the use of custom class loaders.

❑ Tomcat introduces four different class loaders: common, Catalina, shared, and Web application.
To share classes among all Web applications, developers should place their classes and JARs in
the domain of the shared class loader.

Chapter 10 examines the first of the Tomcat Connectors: HTTP Connectors.

209

Class Loaders

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 209

b 559028 Ch09.qxd 4/22/04 3:55 PM Page 210

HTTP Connectors

When used out of the box to run Web applications, Tomcat can serve HTML pages without any
additional configuration. The reason this works is because Tomcat has been preconfigured with an
HTTP Connector that can handle requests from a user’s Web browser. Because of this Connector,
Tomcat can function as a standalone Web server. It can serve static HTML pages, as well as handle
Servlets and JSP pages.

Tomcat Connectors provide the external interface (over HTTP or HTTPS) to Tomcat clients. There
are two kinds of Connectors — those that implement an HTTP stack of their own (called HTTP
Connectors) and those that tie Tomcat to an external Web server such as Apache or IIS (called
Web server Connectors). This chapter examines in detail the configuration of the new Coyote
HTTP/1.1 Connector in Tomcat 4.1.x and 5.x. Chapters 11–13 discuss Web server Connectors.

The new Coyote HTTP/1.1 Connector is the default Connector configured for Tomcat 4.1x and 5.x.
It supercedes the older HTTP/1.0 and HTTP/1.1 Connectors in Tomcat 3.x and 4.0. The Coyote
Connector is backwardly compatible, and it can be installed in both Tomcat 3.x and 4.0.

Although no additional configuration is required to get the HTTP Connector working, you may
want to fine-tune some of its features. This chapter describes what to do when your Connector
configuration needs to be modified, such as for specific deployments (for example, running
Tomcat behind a proxy), SSL setup, or performance tuning.

The following areas are covered in this chapter:

❑ Tomcat 4.0 HTTP/1.1 Connector

❑ Tomcat 4.1 HTTP/1.1 Connector

❑ Tomcat 5.x HTTP/1.1 Connector

❑ Running Tomcat behind a proxy server

❑ Performance tuning

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 211

HTTP Connectors
The HTTP Connectors are Java classes that implement the HTTP protocol. Tomcat’s Connector class (for
example, the org.apache.coyote.tomcat5.CoyoteConnector class in Tomcat 5.x) is invoked when
there is an HTTP request on the Connector port. The port that the Connector listens on is specified in the
$CATALINA_HOME/conf/server.xml configuration file, and is usually set to 8080. The Connector class
has code to parse the HTTP request and take the required action of either serving up static content or
passing the request through the Tomcat Servlet engine. This Connector class implements the HTTP/1.1
protocol.

Tomcat 4.0: HTTP/1.1 Connector
Tomcat 4.0 introduced a new HTTP/1.1 Connector. However, the very next release (4.1) comes with an
improved HTTP Connector called the Coyote HTTP/1.1 Connector that makes the old container obsolete.

The configuration attributes for the HTTP/1.1 Connector are the same as those for the Coyote HTTP/1.1
Connector. Hence, for further details, refer to the section “Tomcat 4.1: Coyote HTTP/1.1 Configuration,”
later in this chapter. The only difference between the two is the value of the className attribute.

❑ className— The className attribute specifies the Java class name for the Connector imple-
mentation. This class must implement the org.apache.catalina.Connector interface. For
the Tomcat 4.0 HTTP/1.1 Connector, this value must be org.apache.catalina.connector.http.
HttpConnector.

The default configuration for this Connector (from $CATALINA_HOME/conf/server.xml) is as
follows. As you can be see from the configuration, the port attribute is set to 8080. Because of
this, Tomcat listens on port 8080 for HTTP requests.

<Connector
className=”org.apache.catalina.connector.http.HttpConnector”
port=”8080”
minProcessors=”5”
maxProcessors=”75”
enableLookups=”true”
redirectPort=”8443”
acceptCount=”10”
debug=”0”
connectionTimeout=”60000”/>

The other attributes of this Connector (minProcessors, maxProcessors, enableLookups, and so on)
are discussed in the next section.

Tomcat 4.1: Coyote HTTP/1.1 Connector
As a new Connector architecture introduced in Tomcat 4.1, Coyote is a higher-performance HTTP/1.1
Connector that has been completely rewritten. Coyote also comes with adaptors for Tomcat 4.0 and
Tomcat 3.x.

212

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 212

Coyote HTTP/1.1 Configuration
The default Coyote HTTP/1.1 Connector configuration is as follows (from $CATALINA_HOME/conf/
server.xml):

<Connector
className=”org.apache.coyote.tomcat4.CoyoteConnector”
port=”8080”
minProcessors=”5”
maxProcessors=”75”
enableLookups=”true”
redirectPort=”8443”
acceptCount=”10”
debug=”0”
connectionTimeout=”20000”
useURIValidationHack=”false” />

When Tomcat is serving HTML pages, a URL of http://localhost:8080/foo.html refers to the
foo.html file in the ROOT Web application ($CATALINA_HOME/webapps/ROOT). Similarly, http://
localhost:8080/examples/bar.html refers to the bar.html HTML file present in the examples
Web application ($CATALINA_HOME/webapps/examples).

Following are the other configurable attributes for this Connector:

❑ acceptCount— This is the maximum queue length for incoming connection requests when all
possible request processing threads are in use. Any requests received when the queue is full will
be refused. This value is passed as the backlog parameter while creating a Tomcat server socket.
The default queue length is 10, and the maximum is dependent on the operating system.

❑ address— This attribute specifies the IP address to which the Tomcat server binds. If the
address attribute is not specified, Tomcat would bind to all addresses (if the host has multiple
IP addresses).

❑ buffersSize— The bufferSize attribute specifies the size (in bytes) of the input stream
buffer created by this Connector. The default value is 2,048 bytes.

❑ className— The classname attribute is set to the Java class implementing the Connector. This
class must implement the org.apache.catalina.Connector interface. For the Coyote HTTP
Connector, this attribute should be set to the org.apache.coyote.tomcat4.CoyoteConnector
class.

❑ connectionTimeout— This is the number of milliseconds this Connector will wait (after
accepting a connection) for the request URI line to be presented. The default value is 60,000
milliseconds (60 seconds).

❑ debug— This attribute sets the detail level of the log messages. Higher values will return higher
levels of detail. (The maximum value for this attribute is not documented. However, turning it
to 4 or 5 will print most log messages.) The default value for this attribute is zero, which turns
off debugging. All logging and exception information is automatically redirected to the Logger
component. Logger components can be associated with the related Engine, a virtual host, or
even specified for a particular application Context. A sample Logger is shown next. This is the

213

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 213

default Logger that redirects all debug/error messages for this virtual host (in this case, local-
host) into the $CATALINA_HOME/logs/localhost_log.txt file. (Chapter 5 discusses Logger
components.)

<Host name=”localhost” debug=”0” appBase=”webapps”
unpackWARs=”true” autoDeploy=”true”>

<Logger className=”org.apache.catalina.logger.FileLogger”
directory=”logs”
prefix=”localhost_log.”
suffix=”.txt”
timestamp=”true”/>

❑ enableLookups— When this is set to true, all calls to request.getRemoteHost() (a J2EE
Servlet API call) perform a DNS lookup to return the host name for the remote client. When this
attribute is false, the DNS lookup is skipped and only the IP address is returned. The default
value for enableLookups is false. The enableLookup can remain turned off for performance
considerations, to avoid the overhead of the DNS lookup. These and other performance consid-
erations are discussed in the section “Performance Tuning,” later in this chapter.

❑ maxProcessors— This specifies the maximum number of request-processing threads to be cre-
ated by this Connector, which determines the maximum number of simultaneous requests that
can be handled. If there are more than maxProcessors concurrent requests, the remaining
incoming requests are queued. See the acceptCount attribute for information about specifying
the queue length. If not specified, this attribute is set to 20.

❑ minProcessors— This specifies the number of request processing threads that will be created
when this Connector is first started. This attribute should be set to a value smaller than the one
set for maxProcessors. The default value is 5.

❑ port— The port attribute specifies the TCP port number on which this Connector will create a
server socket and await incoming connections. Only one server application can bind to a partic-
ular port number-IP address combination.

❑ proxyName— The proxyName attribute (along with the proxyPort attribute) is used when
Tomcat is run behind a proxy server. It specifies the server name to be returned for request.
getServerName() calls. See the section “Running Tomcat Behind a Proxy Server,” later in this
chapter for more information.

❑ proxyPort— As mentioned, the proxyPort attribute is used in proxy configurations. It speci-
fies the port number to be returned for request.getServerPort() calls. See the section
“Running Tomcat Behind a Proxy Server,” later in this chapter for more information.

❑ redirectPort— If the Connector supports only non-SSL requests and a user request is
directed to this Connector for an SSL resource, Catalina will redirect the request to the
redirectPort port number.

❑ scheme— The scheme attribute is set to the name of the protocol. The value specified in scheme
is returned by the request.getScheme() method call. The default value is “http.” For an SSL
Connector, this should be set to “https.”

❑ secure— This attribute is set to true for an SSL Connector. This value is returned by the
request.getScheme() method calls. The default value is true.

214

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 214

❑ tcpNoDelay— When this attribute is set to true, it enables the TCP_NO_DELAY network socket
option. This improves performance, as explained in the section “Performance Tuning,” later in
this chapter. The default value is true.

❑ useURIValidationHack— The useURIValidationHack attribute was added for a Tomcat
4.0-related fix. This attribute performs additional validations and normalization on the URI for
security reasons. Some of these normalizations are changing /%7E at the beginning of the URI to
/~ and resolving relative path encoding in the URI (for example, /. / and /./). This attribute
is only required for Tomcat 4.0, and, hence, can be turned off in Tomcat 4.1.

Configuring Tomcat 4.x for SSL
The Connector for the Catalina instance that supports HTTPS connections must have its secure
attribute set to true and its scheme attribute set to https. In addition, it must contain a <Factory>
element with the SSL-related configuration. The <Factory> attributes for SSL are as follows:

❑ algorithm— The algorithm attribute specifies the certificate encoding algorithm to use. It
defaults to SunX509 if not specified.

❑ className— The className attribute specifies the Java class that implements the SSL server
socket factory. This must be set to org.apache.coyote.tomcat4.CoyoteServerSocketFactory.

❑ clientAuth— If the clientAuth attribute is set to true (the default is false), the client must
have a valid certificate for authenticating itself.

❑ keystoreFile— This specifies the pathname of the keystore file. The default value is a file
called keystore in the home directory of the user running Tomcat. The home directory is
operating system-specific.

❑ keystorePass— The keystorePass attribute specifies the password for the keystore file. The
default password is changeit. This password is selected while creating the certificate keystore
(see Chapter 15 for more details).

In cases where the default password is changed, the keystorePass attribute must be set to the
same value. The following is an error message that appears during Tomcat startup when this is
not done:

LifecycleException: Protocol handler initialization failed: java.io.IOException:
Keystore was tampered with, or password was incorrect.

❑ keystoreType— This specifies the type of keystore file to be used for the server certificate. It
defaults to JKS (Java Keystore). Currently, JKS is the only keystore type supported.

❑ protocol— The protocol attribute specifies the version of the SSL protocol to use. It defaults
to TLS if not specified.

Following is an example Connector with SSL configuration. This configuration is already present in the
$CATALINA_HOME/conf/server.xml file, but is commented out. Note that if the SSL port (8443) is
changed to something else, the redirectPort attribute for all the non-SSL Connectors must be changed
to that port number, too. As mentioned, the non-SSL Connectors redirect users to this port if they try to
access pages with a security constraint that specifies that SSL is required.

215

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 215

<Connector className=”org.apache.catalina.connector.http.HttpConnector”
port=”8443”
minProcessors=”5”
maxProcessors=”75”
enableLookups=”true”
acceptCount=”10”
debug=”0”
scheme=”https”
secure=”true”>

<Factory className=”org.apache.catalina.net.SSLServerSocketFactory”
clientAuth=”false”
protocol=”TLS”/>

</Connector>

Tomcat 5.x: Coyote HTTP/1.1 Connector
Even though Tomcat 5.x has a Coyote HTTP/1.1 Connector that is mostly similar to the 4.1 Connector,
there are differences in some of the configuration attributes, such as those used for thread pool and SSL
configuration.

Coyote HTTP/1.1 Configuration
The default Coyote HTTP/1.1 Connector configuration is as follows (from
$CATALINA_HOME/conf/server.xml):

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector port=”8080”

maxThreads=”150”
minSpareThreads=”25”
maxSpareThreads=”75”
enableLookups=”false”
redirectPort=”8443”
acceptCount=”100”
debug=”0”
connectionTimeout=”20000”
disableUploadTimeout=”true” />

Although the only mandatory attribute for the Connector configuration is the port attribute, numerous
other important attributes can be configured, as described in the following list:

❑ acceptCount— This is the maximum queue length for incoming connection requests when all
possible request processing threads are in use. Any requests received when the queue is full will
be refused. This value is passed as the backlog parameter while creating a Tomcat server socket.
The default queue length is 10, and the maximum is operating system-dependent.

❑ address— This attribute specifies the IP address to which the Tomcat server binds. If the
address attribute is not specified, Tomcat would bind to all addresses (if the host has multiple
IP addresses).

❑ allowTrace— This enables the TRACE HTTP method if set to true. The default is false.

❑ buffersSize— The bufferSize attribute specifies the size (in bytes) of the input stream
buffer created by this Connector. The default value is 2,048 bytes.

216

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 216

❑ compressibleMimeTypes— This is a comma-separated list of MIME types for which HTTP
compressions (see the next attribute) can be used. The default value is text/html,text/
xml,text/plain.

❑ compression— The Connector can use HTTP/1.1 GZIP compression to get better bandwidth
from the server. This can be enabled via the compression attribute. The valid values are off
(disables compression), on (enables compression), force (forces compression in all cases) or a
numerical value that specifies the minimum amount of data required before the output is com-
pressed. The default value of the compression attribute is off.

❑ connectionLinger— This sets the number of milliseconds for which socket connections will
persist after the connection is closed. A value less than 0 means don’t linger (this is the default).

❑ connectionTimeout— This is the number of milliseconds that this Connector will wait, after
accepting a connection, for the request URI line to be presented. The default value is 60,000
milliseconds (60 seconds).

❑ debug— This attribute sets the detail level of the log messages. Higher values will provide
higher levels of detail. (The maximum value for this attribute is not documented. However,
turning it to 4 or 5 will print most log messages. The default value for this attribute is zero,
which turns off debugging. All logging and exception information is automatically redirected to
the Logger component. Logger components can be associated with the related Engine, a virtual
host, or even specified for a particular application Context. The following code illustrates a sam-
ple Logger configuration. This is the default Logger that redirects all debug/error messages for
this virtual host (in this case, localhost) into the $CATALINA_HOME/logs/localhost_log.txt
file. (Chapter 5 discusses Logger components.)

<Host name=”localhost” debug=”0” appBase=”webapps”
unpackWARs=”true” autoDeploy=”true”>

<Logger className=”org.apache.catalina.logger.FileLogger”
directory=”logs”
prefix=”localhost_log.”
suffix=”.txt”
timestamp=”true”/>

❑ disableUploadTimeout— The disableUploadTimeout attribute enables a separate timeout
to be set (or not set) for data uploads during a Servlet execution. The attribute’s value defaults
to false.

❑ enableLookups— When this is set to true, all calls to request.getRemoteHost() perform a
DNS lookup to return the host name for the remote client. When this attribute is false, the
DNS lookup is skipped and only the IP address is returned. The default value for
enableLookups is false. Keeping this attribute turned off increases performance, avoiding the
overhead required for the DNS lookup. These and other performance considerations are dis-
cussed in the section “Performance Tuning,” later in this chapter.

❑ maxKeepAliveRequest— This attribute controls the “keep-alive” behavior of HTTP requests
that enables persistent connections (that is, multiple requests to be sent over the same HTTP
connection). It specifies the maximum number of requests that can be pipelined until the con-
nection is closed by the server. The default value of maxKeepAliveRequest is 100, and setting
it to 1 disables HTTP keep-alive behavior and pipelining.

217

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 217

❑ maxPostSize— This specifies the maximum size, in bytes, of the POST that can be handled by
the container. It defaults to 2,097,152 (2 MB). If set to 0 or negative, this feature is disabled.

❑ maxSpareThreads— The maxSpareThreads attribute controls the maximum number of
unused threads that are allowed to exist before Tomcat starts stopping the unused ones.
maxSpareThreads defaults to 50.

❑ minSpareThreads— The minSpareThreads attribute specifies the minimum number of
threads that are started when the Connector is initialized. minSpareThreads defaults to 4.

❑ maxThreads— This attribute specifies the maximum number of threads that are created for this
Connector to process requests. This, in turn, specifies the maximum number of concurrent
requests that the Connector can handle. maxThreads defaults to 200 threads.

❑ noCompressionUserAgents— This is a comma-separated list that matches the HTTP
UserAgent value of Web browsers that have a broken support for HTTP/1.1 compression.
Regular expressions can be used here.

❑ port— The port attribute specifies the TCP port number on which this Connector will create a
server socket and await incoming connections. Only one server application can bind to a partic-
ular port number-IP address combination.

❑ protocol— This specifies the HTTP protocol to use, and must be set to HTTP/1.1 (the default).
Setting it to anything else (such as HTTP/1.0) causes the Connector initialization to fail, return-
ing a “Protocol handler start failed” error.

❑ proxyName— The proxyName attribute (along with the proxyPort attribute) is used when
Tomcat is run behind a proxy server. It specifies the server name to be returned for request.
getServerName() calls. See the section “Running Tomcat Behind a Proxy Server,” later in this
chapter for more information.

❑ proxyPort— As mentioned, the proxyPort attribute is used in proxy configurations. It speci-
fies the port number to be returned for request.getServerPort() calls. See the section
“Running Tomcat Behind a Proxy Server,” later in this chapter for more information.

❑ redirectPort— If the Connector supports only non-SSL requests and a user request is sent to
this Connector for an SSL resource, Catalina will redirect that request to the redirectPort port
number. The default Tomcat configuration specifies 8443 as the redirect port, as shown in the
sample configuration presented earlier. If this is omitted, it defaults to 443.

❑ restrictedUserAgents— This is a comma-separated list that matches the HTTP UserAgent
value of Web browsers that have a broken support for HTTP/1.1 keep-alive behavior. Regular
expressions can be used here.

❑ scheme— The scheme attribute is set to the name of the protocol. The value specified in scheme
is returned by the request.getScheme() method call. The default value is http. For an SSL
Connector, this would be set to https.

❑ secure— This attribute is set to true for an SSL Connector. This value is returned by the
request.getScheme() method calls. The default value is false.

❑ socketBuffer— This specifies the size, in bytes, of the buffer to be used for socket output
buffering. Use of a socket buffer helps to improve performance. By default, a buffer of size 9,000
bytes is used, and setting socketBuffer to –1 turns buffering off.

218

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 218

❑ tcpNoDelay— When this attribute is set to true, it enables the TCP_NO_DELAY network socket
option. This improves performance, as explained in the section “Performance Tuning,” later in
this chapter. The default value is true.

❑ URIEncoding— This specifies the character encoding used to decode URI bytes. It defaults to
ISO-8859-1.

❑ useBodyEncodingForURI— If set to true, this attribute causes the URI encoding specified in
the contentType to be used for encoding, rather than the URIEncoding attribute. This defaults
to false.

❑ xpoweredBy— If set to true (the default value is false), an X-Powered-By header is output in
Servlet-generated responses returned by the Connector. The value of the header is Servlet/2.4,
as shown in the following sample HTTP response header:

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.4
Content-Type: text/html
Content-Length: 1437
Date: Thu, 09 Oct 2003 17:25:52 GMT
Server: Apache-Coyote/1.1

In addition to these attributes, there are others that are specific to SSL Connectors. These are valid only if
the secure attribute is set to true, and are discussed next.

Configuring Tomcat 5.x for SSL
The Connector for the Catalina instance that supports HTTPS connections must have its secure
attribute set to true and its scheme attribute set to https. Unlike Tomcat 4.x, no Factory element is
required for SSL-related configuration, although it is still supported for backward compatibility.

The new SSL-related Connector attributes are as follows:

❑ algorithm— This attribute specifies the certificate encode algorithm to use. This defaults to
SunX509.

❑ ciphers— This is a comma-separated list of encryption ciphers.

❑ clientAuth— This attribute can be set to either true or false (the default is false). When set
to true, the client connection would need to present a valid certificate. However, if clientAuth
is set to false, and the Web resource being requested is protected by CLIENT-CERT authentica-
tion, the latter would take precedence (that is, the client would still need to present a certificate).

❑ keystoreFile— This specifies the pathname to the keystore file. The keystore file contains
the server’s public and private keys in the form of certificates. keystoreFile defaults to
keystore in the user’s home directory. The home directory varies by operating system (for
example, /home/<tomcat_user_name> in Linux).

❑ keystorePass— The keystorePass attribute should be set to the password required to access
the keystoreFile. The default password is changeit.

❑ keystoreType— This specifies the keystore file type. It defaults to JKS (Java Keystore).

❑ sslProtocol— This indicates which version of the SSL protocol to use (the default value is TLS).

219

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 219

Following is an example Connector with SSL configuration. This configuration is already present in the
$CATALINA_HOME/conf/server.xml file, but is commented out. Note that if the SSL port (8443) is
changed, the redirectPort attribute for all the non-SSL Connectors must be changed to that port num-
ber, too. As mentioned, the non-SSL Connectors redirect users to this port if they try to access pages with
a security constraint that specifies that SSL is required.

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->
<Connector port=”8443”

maxThreads=”150”
minSpareThreads=”25”
maxSpareThreads=”75”
enableLookups=”false”
disableUploadTimeout=”true”
acceptCount=”100”
debug=”0”
scheme=”https”
secure=”true”
clientAuth=”false”
sslProtocol=”TLS” />

Configuring Tomcat for CGI Support
Support for CGI scripts is new for Tomcat 4.x and 5.0. This support is accomplished by a Servlet (the
org.apache.catalina.servlets.CGIServlet) that simulates the way a Web server would handle a
CGI script — processing the CGI environment variables and then executing the CGI executable.

However, CGI is disabled in the default Tomcat configuration for security reasons. For instance, a CGI
script would bypass the security policies defined for programs in the catalina.policy file. More on
these security policies is covered in Chapter 15.

Enabling CGI support in Tomcat requires the following steps:

1. Rename CATALINA_HOME/server/lib/servlets-cgirenametojar to CATALINA_HOME/
server/lib/servlets-cgi.jar.

2. Uncomment the servlet and servlet-mapping settings for CGI in CATALINA_HOME/conf/
web.xml— these settings are commented by default. The servlet-mapping causes all requests
for Web pages with a /cgi-bin/ prefix to be passed to the CGI Servlet, and the servlet ele-
ment specifies the fully qualified Java class name of the Servlet and its configurable parameters.
The sample settings are shown below and the configurable parameters are as follows:

❑ cgiPathPrefix— The directory containing CGI scripts

❑ clientInputTimeout— The timeout value in milliseconds

❑ debug— The debug level to be enabled for the CGI Servlet

220

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 220

<!-- Common Gateway Includes (CGI) processing servlet, which supports -->
<!-- execution of external applications that conform to the CGI spec -->
<!-- requirements. Typically, this servlet is mapped to the URL pattern -->
<!-- “/cgi-bin/*”, which means that any CGI applications that are -->
<!-- executed must be present within the web application. This servlet -->
<!-- supports the following initialization parameters (default values -->
<!-- are in square brackets): -->
<!-- -->
<!-- cgiPathPrefix The CGI search path will start at -->
<!-- webAppRootDir + File.separator + this prefix. -->
<!-- [WEB-INF/cgi] -->
<!-- -->
<!-- clientInputTimeout The time (in milliseconds) to wait for input -->
<!-- from the browser before assuming that there -->
<!-- is none. [100] -->
<!-- -->
<!-- debug Debugging detail level for messages logged -->
<!-- by this servlet. [0] -->
<!-- -->
<!-- executable Name of the executable used to run the script. -->
<!-- [perl] -->
<!-- -->
<!-- IMPORTANT: To use the CGI servlet, you also need to rename the -->
<!-- $CATALINA_HOME/server/lib/servlets-cgi.renametojar file -->
<!-- to $CATALINA_HOME/server/lib/servlets-cgi.jar -->

<servlet>
<servlet-name>cgi</servlet-name>
<servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>
<init-param>

<param-name>clientInputTimeout</param-name>
<param-value>100</param-value>

</init-param>
<init-param>

<param-name>debug</param-name>
<param-value>6</param-value>

</init-param>
<init-param>

<param-name>cgiPathPrefix</param-name>
<param-value>WEB-INF/cgi</param-value>

</init-param>
<load-on-startup>5</load-on-startup>

</servlet>

...

<!-- The mapping for the CGI Gateway servlet -->
<servlet-mapping>

<servlet-name>cgi</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>

3. Restart Tomcat to cause the changes to be reread. Now Tomcat should serve up CGI scripts from
the directory (typically, /WEB-INF/cgi) defined in the cgiPathPrefix element in web.xml.

221

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 221

Configuring Tomcat for SSI Support
Tomcat 4.x and 5.0 support SSIs (server-side includes). SSI enables the adding of directives to HTML
pages that are evaluated when the pages are served to the browser, and they are a popular mechanism
for adding dynamic content. SSI support in Tomcat is achieved via a Servlet (org.apache.catalina.
ssi.SSIServlet) that simulates the way in which a Web server would handle an SSI in Web pages.

However, SSI is disabled in the default Tomcat configuration for security reasons. For instance, SSI could
be used to execute external programs, and thus bypass the security policies defined in the catalina.
policy file. More on these security policies is covered in Chapter 15.

Enabling SSI support in Tomcat requires the following steps:

1. Rename CATALINA_HOME/server/lib/servlets-ssirenametojar to CATALINA_HOME/
server/lib/servlets-ssi.jar.

2. Uncomment the servlet and servlet-mapping settings for SSI in CATALINA_HOME/conf/
web.xml. These setting are commented by default. The sample settings are shown after the fol-
lowing descriptions of some configurable parameters:

❑ buffered— Enables (1) or disables (0) buffered output from the SSIServlet

❑ debug— The debug level to be enabled

❑ expires— The expiry time, in seconds, for a Web page with SSIs

❑ isVirtualWebappRelative— Virtual paths to be relative to context root (1) or server
root (0)

<!-- Server Side Includes processing servlet, which processes SSI -->
<!-- directives in HTML pages consistent with similar support in web -->
<!-- servers like Apache. Traditionally, this servlet is mapped to -->
<!-- URL pattern “*.shtml”. This servlet supports the following -->
<!-- initialization parameters (default values are in square brackets): -->
<!-- -->
<!-- buffered Should output from this servlet be buffered? -->
<!-- (0=false, 1=true) [0] -->
<!-- -->
<!-- debug Debugging detail level for messages logged -->
<!-- by this servlet. [0] -->
<!-- -->
<!-- expires The number of seconds before a page with SSI -->
<!-- directives will expire. [No default] -->
<!-- -->
<!-- isVirtualWebappRelative -->
<!-- Should “virtual” paths be interpreted as -->
<!-- relative to the context root, instead of -->
<!-- the server root? (0=false, 1=true) [0] -->
<!-- -->
<!-- -->
<!-- IMPORTANT: To use the SSI servlet, you also need to rename the -->

222

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 222

<!-- $CATALINA_HOME/server/lib/servlets-ssi.renametojar file -->
<!-- to $CATALINA_HOME/server/lib/servlets-ssi.jar -->

<servlet>
<servlet-name>ssi</servlet-name>
<servlet-class>

org.apache.catalina.ssi.SSIServlet
</servlet-class>
<init-param>

<param-name>buffered</param-name>
<param-value>1</param-value>

</init-param>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<init-param>

<param-name>expires</param-name>
<param-value>666</param-value>

</init-param>
<init-param>

<param-name>isVirtualWebappRelative</param-name>
<param-value>0</param-value>

</init-param>
<load-on-startup>4</load-on-startup>

</servlet>
...

<!-- The mapping for the SSI servlet -->
<servlet-mapping>

<servlet-name>ssi</servlet-name>
<url-pattern>*.shtml</url-pattern>

</servlet-mapping>

3. Restart Tomcat to cause the changes to be reread. Now Tomcat should handle SSIs in all Web
pages that end with *.stml.

Running Tomcat Behind a Proxy Server
A common deployment scenario involves running Tomcat behind a proxy server. In this kind of environ-
ment, the host name and port number that should be returned to the client in the HTTP response should
be those specified in the request, and not the actual host name and port on which Tomcat is running.
These are controlled via the proxyName and proxyPort attributes discussed earlier. These attributes
affect the values returned for the request.getServerName() and request.getServerPort() Servlet
API calls.

223

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 223

Apache’s HTTP server can be used as the proxy server. If so, Apache’s proxy module (mod_proxy) is
configured to pass on the servlet requests to the Tomcat server:

Load mod_proxy
LoadModule proxy_module libexec/mod_proxy.so

AddModule only required for Apache 1.x, not 2.x
AddModule mod_proxy.c

Pass all requests for the context path ‘/servlets’ to Tomcat running
at port 8080 on host ‘hostname’
ProxyPass /servlets http://hostname:8080/servlets
ProxyPassReverse /servlets http://hostname:8080/servlets

On the Tomcat side, following is the configuration in server.xml for the Coyote HTTP Connector:

<Connector
port=”8080”
proxyName=”www.mydomain.com”
proxyPort=”80”
...

/>

If the proxyName and proxyPort attributes were not specified, the response message would have indi-
cated that it came from hostname (i.e., the host on which Tomcat is installed), and 8080 instead of
www.mydomain.com and port 80.

Typically, Apache logs incoming requests, so logging shouldn’t be enabled on Tomcat — to avoid dupli-
cate access logging.

Performance Tuning
The configuration sections previously covered in this chapter discussed some of the attributes that
impact performance characteristics of the HTTP Connector.

Following are some of the actions you can perform to fine-tune Tomcat 4.x performance:

❑ Turn debug off. The debug attribute in the HTTP/1.1 and Coyote Connectors controls the detail
level for the log messages. This should be set to zero (the default value) to have minimal logging.

❑ Set tcpNoDelay to true. When this attribute is set to true, it enables the TCP_NO_DELAY net-
work socket option. This improves performance because it disables the Nagle algorithm, which
is used to concatenate small buffer messages, which decreases the number of packets sent over
the network. While this may result in better response time in a non-interactive network applica-
tion because it enables greater throughput, it results in slower response times in interactive
client-server environments (such as a Web browser interacting with the Web server).

224

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 224

❑ Set enableLookups to false. Setting enableLookup to false disables DNS lookups for the
request.getRemoteHost() API calls. This improves performance by decreasing the time
required for the lookup.

❑ Use a thread pool. Tomcat is a multi-threaded Servlet container, and each incoming request
requires a Tomcat thread to handle it. Using a thread pool is hence very important for perfor-
mance. If the thread pool were disabled, a new thread would be started for every request. If a
very large number of requests arrived concurrently, they would cause Tomcat to allocate an
equivalent number of threads. This would degrade performance, and could even cause Tomcat
to crash. To prevent this, you should use a thread pool. In Tomcat 4.x, the attributes that control
the thread pool behavior are as follows:

❑ maxProcessors— This is the maximum number of request processing threads to be
created by this Connector, which therefore determines the maximum number of simul-
taneous requests that can be handled. If there are more than maxProcessors concur-
rent requests, the remaining incoming requests are queued. The acceptCount attribute
then controls the number of requests that are queued.

❑ minProcessors— This is the number of request processing threads that will be created
when this Connector is first started. This attribute should be set to a value smaller than
the one set for maxProcessors.

Setting these to appropriate values depends on the Web site load and the server machine’s
characteristics.

❑ Java Virtual Machine (JVM) memory settings. Another limiting factor here is the JVM memory
settings. To add a larger number of threads, Tomcat startup scripts (tomcat.bat/tomcat.sh)
must be modified to pass JVM-specific parameters (such as –Xms and –Xmx to set the initial and
maximum heap size). Refer to your JVM documentation for additional information.

Now let’s revisit some of the attributes for tuning Tomcat 5.x:

❑ Turn debug off. The debug attribute in the HTTP/1.1 and Coyote Connectors controls the detail
level for the log messages. This should be set to zero (the default value) to have minimal logging.

❑ Set tcpNoDelay to true. When this attribute is set to true, it enables the TCP_NO_DELAY net-
work socket option. This improves performance as it disables the Nagle algorithm, which is
used to concatenate small buffer messages, which decreases the number of packets sent over the
network. While this may result in better response time in a non-interactive network application
because it enables greater throughput, it results in slower response times in interactive client-
server environments (such as a Web browser interacting with the Web server).

❑ maxKeepAliveRequest— This attribute controls the “keep-alive” behavior of HTTP requests,
enabling persistent connections (that is, multiple requests to be sent over the same HTTP con-
nection). It specifies the maximum number of requests that can be pipelined until the connec-
tion is closed by the server. The default value of maxKeepAliveRequest is 100, and setting it to
1 disables HTTP keep-alive behavior and pipelining.

❑ Tune the socketBuffer parameter. As mentioned, this specifies the size, in bytes, of the buffer
to be used for socket output buffering.

225

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 225

❑ Set enableLookups to false. Setting enableLookup to false disables DNS lookups for the
request.getRemoteHost() API calls. This improves performance by decreasing the time
required for the lookup.

❑ Use a thread pool. Tomcat is a multi-threaded Servlet container, and each incoming request
requires a Tomcat thread to handle it. Using a thread pool is hence very important for perfor-
mance. In Tomcat 5.x, three thread-pool-related attributes can be tuned. Setting these to appro-
priate values varies according to the Web site load and the server machine’s characteristics:

❑ maxThreads— This is the maximum number of threads allowed. This defines the
upper bound to the concurrency, as Tomcat will not create any more threads than this. If
there are more than maxThreads requests, they will be queued until the number of
threads decreases. Increasing maxThreads increases the capability of Tomcat to handle
more connections concurrently. However, threads use up system resources. Thus, set-
ting a very high value might degrade performance, and could even cause Tomcat to
crash.

❑ maxSpareThreads— This is the maximum number of idle threads allowed. Any excess
idle threads are shut down by Tomcat. Setting this to a large value is not good for per-
formance; the default (50) usually works for most Web sites with an average load. The
value of maxSpareThreads should be greater than minSpareThreads, but less than
maxThreads.

❑ minSpareThreads— This is the minimum number of idle threads allowed. On Tomcat
startup, this is also the number of threads created when the Connector is initailized. If
the number of idle threads falls below minSpareThreads, Tomcat creates new threads.
Setting this to a large value is not good for performance, as each thread uses up
resources. The default (4) usually works for most Web sites with an average load.
Typically, sites with “bursty” traffic would need higher values for minSpareThreads.

❑ JVM memory settings. Another limiting factor here is the JVM memory settings. To add a larger
number of threads, Tomcat startup scripts (tomcat.bat/tomcat.sh) must be modified to pass
JVM-specific parameters (such as –Xms and –Xmx to set the initial and maximum heap size).
Refer to your JVM documentation for additional information.

Summary
To conclude this chapter on Connectors, let’s review some of the key points that have been discussed:

❑ HTTP connectors are Java classes that implement the HTTP protocol. For Tomcat, this class is
invoked when there is an HTTP request on the Connector port.

❑ A new HTTP/1.1 Connector was introduced with Tomcat 4.0. Configuration attributes for the
HTTP/1.1 Connector are the same as those for the Coyote HTTP/1.1 Connector, with the excep-
tion of the className attribute.

226

Chapter 10

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 226

❑ Coyote HTTP/1.1 was introduced with Tomcat 4.1 and is a higher-performance Connector that
has been completely rewritten.

❑ Configuration for the Coyote HTTP/1.1 Connector in Tomcat 4.1 and 5.x, including support for
SSL and performance tuning has been covered in detail in the chapter.

❑ The HTTP Connector is often not used in a production environment where performance is a
major concern. This Connector is useful for test deployments, or in situations for which not a lot
of static content is being used. For production Web deployments, it is common to use another
Web server to serve up static content, and to have Tomcat handle only the dynamic JSP/Servlet
content. This improves performance, and enables the integration of existing Web applications
and scripts, some of which may have been written in another language, such as Perl or Python.

Chapters 11–13 discuss the Web server Connectors that enable Tomcat to work with Web servers such as
Apache and IIS.

227

HTTP Connectors

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 227

b 559028 Ch10.qxd 4/22/04 3:55 PM Page 228

Web Server Connectors

Chapter 10 examined the HTTP Connectors that enable Tomcat to work as a standalone Web
server. A Web server (such as Apache or IIS) can also be used along with Tomcat to serve up HTTP
content. In this configuration, the Web server and Tomcat communicate with each other using
Tomcat’s Web server Connectors.

This chapter looks at the reasons for using such a configuration, and introduces the various
Tomcat Connectors (jk, jk2, jserv, and webapp), including the protocols that they implement,
which include Apache JServ Protocol (AJP) and WARP.

This chapter includes sections on the following topics:

❑ Reasons for using a Web server

❑ The architecture of Web server Connectors

❑ What to look for when choosing a Connector

Reasons for Using a Web Server
You may be wondering why a separate Web server is needed when Tomcat already has an HTTP
Connector. Following are some reasons:

❑ Performance — Tomcat is inherently slower than a Web server. Therefore, it is better for the
Web server to serve up static content, while Tomcat handles the dynamic content (JSPs
and Servlets). Passing requests for static HTML pages, images, and style sheets through a
Servlet container written in Java is not as efficient compared to a Web server.

❑ Security — A Web server such as Apache has been around for much longer than Tomcat,
and has far fewer security holes.

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 229

❑ Stability — Apache is much more stable than Tomcat. In the event of a Tomcat crash, the entire
Web site will not come down. Only the dynamic content served by Tomcat would be unavailable.

❑ Configurability — Apache is also far more configurable than Tomcat. Using Apache as a front end
enables you to take advantage of its rich functionality.

❑ Legacy support — Web sites often have legacy code in the form of CGI programs. They might
also use scripting languages (such as Perl or Python) to implement specific functionality. Web
servers such as Apache have modules for Perl and Python, whereas Tomcat does not. Tomcat
does have limited support for CGI, however, using a special CGIServlet that mimics the CGI
functionality.

Connector Architecture
All the Connectors work on the same principle. They have an Apache module end (mod_jk, mod_jk2, or
mod_webapp) written in C that Apache (or other supported Web servers) loads just like the other Apache
modules.

On the Tomcat end, each Servlet container instance has a Connector module component written in Java.
In Tomcat 4.x and 5.x, this is a class that implements the org.apache.catalina.Connector interface.
For example, the Connector class for the WARP Connector is org.apache.catalina.connector.
warp.WarpConnector; for AJP version 13 it is org.apache.ajp.tomcat4.Ajp13Connector.

Communication Paths
The Web server handles all requests for static content, as well as all non-Servlet/JSP dynamic content
(CGI scripts, for example). When it comes across content targeted for the Servlet container, the Web
server passes the request to the module in question (that is, mod_jk, mod_webapp, and so on). The Web
server knows what content to pass to the Connector module because the directives in the Web server’s
configuration specify this.

To illustrate, if the JK Connector is being used, Apache’s configuration would have entries similar to the
following:

Configuration directives in Apache’s httpd.conf for mod_jk
Send all request for JSP (extension *.jsp) or
servlets (web application path /servlet) to the
AJP Connector
JkMount /*.jsp ajp13
JkMount /servlet/* ajp13

Alternatively, if the webapp Connector is being used, the entries would be similar to the following:

Configuration directives in Apache’s httpd.conf for mod_webapp
Send all request in the URL path /servlet to the webapp Connector
WebAppDeploy servlet warpConnection /servlet

The Connector module then sends the request encoded in a manner specific to a protocol (AJP or WARP)
over a network connection to a Connector. (There can be more than one instance of the Servlet container
in the back end.) The Connector gets the request serviced by the Servlet container, and sends the
response back to the Apache module. Figure 11-1 illustrates this.

230

Chapter 11

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 230

Figure 11-1: Communication between Connector and Apache modules.

Connector Protocols
Tomcat has two protocols for its Web server Connectors: AJP and WARP. These protocols essentially
define the (binary) format for the data transmitted between the Web server and Tomcat and the control
commands.

AJP Protocol
The Apache JServ Protocol (AJP) is a historical name, as AJP10 and AJP11 were the protocols that the
now-obsolete JServ Connector implemented. The current version of AJP is AJP13, and is implemented by
the JK and JK2 Connectors.

AJP13 uses a binary format for transmitting data between the Web server and Tomcat. The earlier ver-
sions of AJP (AJP10 and AJP11) used a text-based data format. The communication between the Web
server and the Servlet container is over a network socket, and the same connection is reused for multiple
requests and responses. The connection is made persistent for better performance. However, once a con-
nection has been assigned to a particular request, it is not assigned to any other request until the request-
handling cycle is complete.

Web browser

HTTP request/response

HTTP request/responseWeb server

Tomcat Servlet request/response

Protocol-specific binary
format (WARP, AJP)

Tomcat servlet
container

Web server
(such as Apache)

Connector module
(such as mod_jk,

mod_webapp)

Connector
(Tomcat side)

231

Web Server Connectors

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 231

The AJP packet format consists of a packet header and the actual payload. The packet header indicates
the payload size. The type of message is in the first byte of the payload. The message could be an HTTP
request/response packet, or even a control command (for example, the Web server asks the Servlet con-
tainer to shut down). The protocol defines binary encoding for the HTTP commands and headers (for
example, the GET command is represented by the byte value 2).

Figure 11-2 shows the AJP packet structure from the Web server side to the Servlet container. Figure 11-3
shows the packet structure from the Servlet container to the Web server.

Figure 11-2: AJP packet structure from the Web server side to the Servlet container.

Figure 11-3: AJP packet structure from the Servlet container to the Web server.

As you can see, the binary data packet from the Web server side starts with the sequence 0x1234. This is
followed by the packet size (two bytes) and then the actual payload data. On the return path, the packets
are prefixed by AB (the ASCII codes for A and B). The protocol then defines the structure for the payload
data (the type of message is in the first byte of the payload, and so on).

Administrators or Web developers do not need to know the AJP protocol and its packet structure. The
specifics of the AJP protocol and packet structure are relevant only to people who are working on (or
curious about) Tomcat internals, or who are interested in implementing a Connector for AJP. Users of
Tomcat should have no reason to implement a Connector.

For further information on the details of AJP, see the documentation that comes with the JK Connector
source code or visit the Web site at http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jk2/
common/AJPv13.html.

WARP Protocol
WARP derives its name from the Star Trek television series. Warp is a measure of speed. Traveling
at “warp speed” means moving faster than the speed of light. Playing on this concept, the intent of the
WARP protocol was to provide a very fast mechanism for communication between the Web server and
the Servlet container.

WARP defines a packet structure for transferring data between the Web server and the Servlet container.
This consists of an 8-bit, packet-type field; a 16-bit, payload-length field (to be dropped in new WARP

Contents

Byte #

A

0

B

1

Data length

2

Actual data payload

4 (length+3)3

Contents

Byte #

0x12

0

0x34

1

Data length

2

Actual data payload

4 (length+3)3

232

Chapter 11

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 232

versions); and then the actual content. All data is transmitted over a network socket (Apache and Tomcat
could be on different machines) and encoded in the network byte order (that is, big-endian style).

The packet could contain request data from the user, such as the HTTP method (GET, POST), a request
URI, a query argument, or a protocol (HTTP/1.0, HTTP/1). It also could be an administrative command
that, for example, could deploy an application. On the response side, the WARP packet could contain the
response to be sent back to the user’s browser, or error information. The packet type distinguishes
between these various types of packets.

The Web server parses the HTTP request that it receives. WARP takes this pre-parsed request and trans-
mits it in a format that is encoded such that the Connector at the receiving end does not have to parse
the data again.

Figure 11-4 shows the WARP packet structure. As you can see, the first byte contains the packet type,
which is followed by the payload data length, and then the actual payload.

Figure 11-4: WARP packet structure.

As in the case of the AJP protocol, the specifics of the WARP protocol and packet structure are relevant
only to people implementing Connectors for WARP, and hence are not discussed here. Tomcat users
have no reason to implement a Connector for these protocols. For more information on the protocol, see
the WARP documentation that comes with the webapp Connector source code.

Choosing a Connector
Choosing a Connector was very confusing in earlier versions of Tomcat. In Tomcat 5.x, sticking to JK2
implifies the task. The use of the other major Connector (webapp) is deprecated. For historical interest
(or for those examining such deployments), the following sections introduce all Tomcat Connectors.

JServ
Apache JServ (http://java.apache.org/jserv/) was a Servlet engine that implemented the JavaSoft
Servlet API, version 2.0 (the current version of the API is 2.4). JServ is now in maintenance mode, and
has been superseded by Tomcat. JServ did not have an HTTP stack, and so it came with a Connector
(mod_jserv) that used Apache (versions 1.2 and 1.3) for this. The mod_jserv module also works as a
Connector for Tomcat 3.x and earlier versions, though the JK Connector should be used for all new
installations.

Contents

Byte #

Packet type

0

Data length

1 2

Actual data payload

3 (length+3)

233

Web Server Connectors

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 233

Following are some sample mod_jserv directives from Apache’s httpd.conf configuration file:

LoadModule jserv_module libexec/mod_jserv.so
AddModule mod_jserv.c
...
ApJServMount /examples ajpv12://tomcat_host_name:8007/examples

mod_jserv defined the AJP protocol that specified the packet format for communication between the
Apache and Tomcat ends of the Connector. mod_jserv implemented versions AJP11 and AJP12 of this
protocol. This protocol lives on in the JK and JK2 Connectors.

JK
The JK Connector is a cleaned-up version of the JServ Connector, and has a refactored code base. It
implements the same protocol (AJP) that JServ did. The versions that it supports include AJP11, AJP12,
and AJP13.

JK adds support for many more Web servers than JServ supported, including Apache 1.3 and 2.x,
Netscape, Domino, AOLServer, and IIS. On the Servlet side, it supports Tomcat 3.x, 4.x, and JServ. It
also supports redirection of incoming requests, and thus can be used to achieve load-balanced request
sessions.

The JK Connector renders mod_jserv obsolete. It offers a less complex configuration and better support
for SSL. (For example, mod_jserv couldn’t reliably differentiate between HTTP and HTTPS requests.) If
you are looking for a stable Connector that supports a large(r) number of Web servers and Tomcat ver-
sions, mod_jk is the Connector for you.

webapp
The webapp Connector implements the WARP protocol for connecting Tomcat and Apache. This proto-
col has built-in support for auto-deployment and Web-application configuration.

webapp uses the Apache Portable Runtime (APR) library for operating-system portability, so it can only
be used with Apache 1.3 and 2.0. It is limited also by the versions of Tomcat it supports (currently only
Tomcat 4.x).

Furthermore, it is limited in the features it supports. The current version of webapp does not support
load balancing and fault-tolerance, and has known problems in its Windows support.

webapp implements the WARP protocol, which was designed with performance as a major considera-
tion. However, it is an experimental Connector, and has a number of known bugs. Its use has been
deprecated, so this Connector is not discussed in this book.

JK2
JK2 is the next generation for the JK Connector and implements the AJP13 protocol. It supports all the
Web servers that mod_jk does (Apache 1.3/2.0, Domino, Netscape, AOLServer, and IIS). It also supports
the Tomcat 3.x, 4.x, and 5.x Servlet containers.

234

Chapter 11

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 234

The JK2 Connector improves on the JK Connector in many ways, including the following:

❑ Developed with Apache 2.0 in mind, it works with Apache 1.3 as well

❑ It is better suited than JK for multi-threaded Web servers such as IIS and iPlanet

❑ It is more modular than JK

❑ It supports fast UNIX sockets

❑ It can be extended to support other communication channels

❑ It is better suited for JNI

❑ It offers support for monitoring

Tomcat 4.1 and 5.x ship with a JK2 Connector called Coyote jk2. Coyote is a new architecture/API
for the Java code that talks to the Connectors. Tomcat 4.1 and 5.x have a Coyote HTTP/1.1 Connector
(discussed in Chapter 10) in addition to the Coyote jk2 Connector.

JK2 supersedes the JK Connector in Tomcat versions 4.x and 5.x.

Summary
This chapter on Web server connectors contained the following main points:

❑ Performance, security, stability, configurability, and legacy support are some of the reasons for
configuring a Web server as the front end for Tomcat.

❑ The two protocols for these Connectors are AJP and WARP. WARP is currently not supported
for Tomcat 5.

❑ Tomcat’s Connectors have a variety of implementations and associated feature sets.

Chapter 12 discusses the JK2 Connector in the context of Tomcat and the Apache server.

235

Web Server Connectors

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 235

b 559028 Ch11.qxd 4/22/04 3:55 PM Page 236

Tomcat and Apache Server

A typical scenario in production environments is to use Tomcat along with a Web server. In this
scenario, the Web server is used as a front end to Tomcat. The Web server serves all static content
and Tomcat serves all dynamic content. Tomcat does have its own built-in HTTP server, but there
are some practical advantages (as discussed in Chapter 11) to using Tomcat with a Web server
front end. A number of Web servers can be used as the front end for Tomcat (including Apache,
IIS, and Netscape). This chapter describes the process of connecting the Apache Web server as a
front end to Tomcat.

Tomcat can be integrated with Apache using the JK2 Connector. This chapter explains how to
install and configure this Connector. The JK2 Connector, like its predecessor, the JK Connector,
uses the Apache JServ Protocol (AJP) for communication between Tomcat and the Apache Web
server.

The following topics are covered in this chapter:

❑ The AJP (Apache JServ Protocol) and the JK2 Connector (mod_jk2 module)

❑ The configuration of Tomcat with Apache

❑ Configuring SSL

❑ Load balancing multiple Tomcat instances with Apache

The configuration described in this chapter has been tested using Tomcat 5.0.19, Apache 2.0.43,
and mod-jk2-2.0.43 with Sun J2SDK-1.4.2. It is assumed that Apache is installed, configured, and
running on the system. The JK2 Connector can also work with Apache 1.3.x and Apache 2.x. It is
recommended to use Apache 2 because JK2 performs better with it.

Apache binaries are available for download at the following URL:

http://www.apache.org/dist/httpd/binaries/

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 237

The complete Apache documentation is available at the following URL:

http://httpd.apache.org/docs-2.0/

Introducing the JK2 Connector
The integration between the Apache Web server and Tomcat is made possible by an Apache module
(mod_jk2) on the Apache end, a Java-based Connector implementation on the Tomcat end, and a proto-
col for passing the data passed between the two (AJP). The mod_jk2 is the JK2 Connector implementa-
tion for integrating Tomcat with the Apache Web server.

The mod_ jk2 Apache module
Figure 12-1 shows how mod_jk2 works with Tomcat and Apache. All requests first come to Apache,
which (with the help of mod_jk2) redirects all requests for any JSP or Servlet component to Tomcat.
There may be one or more running instances of Tomcat for serving these client requests. The redirector
usually comes as a DLL or shared object module (.dll for Windows and .so file for Unix or Linux)
that plugs into the Web server. Tomcat processes the requests and generates the appropriate response.
Finally, Tomcat sends this response back to the client via the mod_jk2 module.

Figure 12-1: The mod_jk2 Apache module.

The Apache JServ Protocol (AJP)
AJP is a packet-oriented, TCP/IP-based protocol. It provides a communication channel between Apache
and the running instances of Tomcat. There are various versions of the AJP protocol (AJP1.0, AJP1.1,

Request/Response
for static content
(HTML/JPEG, etc.)

Request/Response
for dynamic content
(JSP/Servlet)

Apache Web
Server

mod_jk2 One or more
Tomcat

instances

238

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 238

AJP1.2, and AJP1.3), as described briefly in Chapter 11. Tomcat 5 supports AJP1.3, which is the well-
tested version. Some of its major features include the following:

❑ Improved performance

❑ Better support for SSL, encryption, and client certificates

One of the ways in which AJP enhances performance is by making the Web server reuse already open
TCP-level connections with Tomcat. This saves the overhead of opening new socket connections for each
request. This concept is similar to that of a connection pool. In the request-response cycle, when a connec-
tion is assigned to a particular request, it will not be reused until that request-response cycle is completed.

Coyote JK2 Connector
Tomcat provides a Connector implementation for the AJP 1.3 protocol as a Java class in the Tomcat dis-
tribution. Tomcat’s server.xml configuration file contains the following entry for the Connector:

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 --><Connector port=”8009”
enableLookups=”false” redirectPort=”8443” debug=”0” Protocol=”AJP/1.3”/>

This JK2 Connector implementation provides several additional features not included with the older JK
Connector it replaces, including the following:

❑ Support for the JNI mode of running Tomcat

❑ Better separation between the protocol and physical layers

❑ Better monitoring support using JMX

Understanding Tomcat Workers
Before going ahead with the configuration of the JK2 Connector, you must understand the concept of
the worker. A worker represents a running instance of Tomcat. This worker serves the requests for all the
dynamic components. The requests may come from the Apache Web server or directly from a client. In
most cases, there is only a single Tomcat process or instance. However, sometimes multiple workers must
be running to implement load balancing or site partitioning (mainly required for sites with heavy traffic).
This topic is discussed in the section “Tomcat Load Balancing with Apache,” later in this chapter.

Each worker is identified by a unique host name or a unique combination of IP address and port number.
The host refers to the machine name on which the given Tomcat instance is running, and the port refers
to the port on which that Tomcat instance is listening for any incoming requests.

Plug-In versus In-Process
Worker implementation in Tomcat with Apache can be achieved in two ways:

❑ Using Tomcat as a plug-in for the Apache Web Server — The most common implementation of Tomcat
with Apache is using the Tomcat process as a plug-in to the running Web server process. In this
case, mod_jk2 is required as a redirector component. When Apache is configured with this plug-
in, it can look up different Tomcat workers and forward requests accordingly.

239

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 239

❑ Using Tomcat as an in-process worker — This is a special type of worker implementation. Here, the
Web server starts Java in its own process and executes Tomcat. Tomcat shares the same memory
address space as that of the server process. This is a special type of deployment that provides an
advantage in terms of request processing speed and better use of resources.

Multiple Tomcat Workers
There are a number of situations in which you may need to use multiple workers, including the following:

❑ When you want different Web application contexts to be served by different Tomcat workers.
This setup will provide a development environment in which all the developers share the same
Web server but have a dedicated Tomcat worker.

❑ When you want different virtual hosts served by different Tomcat processes to provide a clear
separation between sites belonging to different entities.

❑ When you want to facilitate load balancing. You can run multiple Tomcat workers, each on a
machine of its own (or maybe on the same machine), and distribute the requests between them.

Types of Workers
With many different types of workers, each defined Tomcat worker must be assigned a type. Tomcat 5
with the mod_jk2 Connector supports the following types of workers:

❑ ajp13— This type of worker represents a running Tomcat instance. There are various possible
attributes for this worker. The main attributes include tomcatId (which represents the identity
of the Tomcat instance), channel (which indicates the communication channel associated with
this worker), and max_connections (which is used to specify the maximum number of connec-
tions). By default, the maximum number of connections is unlimited. The default port for AJP
1.3 is 8009.

❑ lb— This type of worker is used for load balancing. In a load-balancing scenario, the worker
doesn’t actually process any requests. Rather, it handles the communication between a Web
server and other defined Tomcat workers of type ajp13. The worker supports round-robin load
balancing with a certain level of fault tolerance. One of the main properties for this worker is
worker, which indicates the name of the worker to be used as a load balancer. A number of
attributes are provided by the lb worker. Some of the attributes are noWorkerMsg, noWorkerCode,
timeout, and so on, which are explained later in this chapter.

❑ status— This is a special type of worker that is used to show useful information about how the
load among the various Tomcat workers is distributed. To use it, add a URI component assigned
to this worker. Its use is explained in the section “Tomcat Load Balancing with Apache,” later in
this chapter. The jkstatus Web page (again, described later) normally displays some very vital
information, including the available number and names of workers, the associated lb_factor,
and JVM routes. It also indicates the number of requests served by a specific worker and any
context mappings served. If any worker goes into an error state, this can be easily detected from
this page.

❑ jni— Used in-process, this worker handles the forwarding of requests to in-process Tomcat
workers using JNI. In the in-process mode, the Tomcat Web container and the Web server share
the same memory address space. They communicate via interprocess communication. This

240

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 240

worker holds the details of the Tomcat class to start up, and which parameters to pass. There
are two predefined jni workers: onStartup and onShutdown. These are executed during the
startup and shutdown phase of the Connector, respectively. Both must exist in the configuration
in order to be able to start and shut down Tomcat.

Worker configuration is covered later in this chapter in the section “Configuring Tomcat Workers .”

Connecting Tomcat with Apache
Connecting Tomcat with Apache involves the following steps:

1. Install the Apache mod_jk2 module.

2. Configure the AJP 1.3 Connector in server.xml.

3. Configure Tomcat workers (using the workers2.properties file).

4. Add directives to load the mod_jk2 module (httpd.conf).

5. Configure the jk2.properties file.

During this process, both Tomcat and Apache’s configuration files are modified. The modified files are
as follows:

❑ server.xml— This is Tomcat’s main configuration file, located in <CATALINA_HOME>/conf.
This is the file in which the AJP Connector is configured.

❑ workers2.properties— This file provides information about all available Tomcat instances
(that is, the workers) for Apache. This file is kept under <APACHE2_HOME>/conf.

❑ httpd.conf— This is Apache’s main configuration file and is located under
<APACHE2_HOME>/conf. You add directives to load the mod_jk2 module to this file.

❑ jk2.properties— This file specifies the communication channel details needed for connecting
Tomcat with Apache. This file is located under <CATALINA_HOME>/conf.

Installing the Apache mod_jk2 Module
The Jakarta Project manages a separate subproject for Tomcat Connectors. A rich repository of various
combinations exists for JK2 Connectors on many platforms. Both the source and binaries are available
for download. You can get the latest binary version of the mod_jk2 Connector module from the follow-
ing URL:

http://jakarta.apache.org/site/binindex.cgi

Although the binaries of mod_jk2 for Apache versions 1.3.x and 2.x are available, you should use
Apache 2.0, because JK2 performs better, taking advantage of the new features of Apache 2.

For Windows, download mod_jk2-2.0.43.dll and copy it to the modules directory of the Apache
Web server. For Unix and variant platforms, download mod_jk2-2.0.43.so and copy the module file
to the <APACHE2_HOME>/libexec directory.

241

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 241

For each version of the Apache Web server, a separate version of the mod_jk2 module is available.
Therefore, if you are using a version other than 2.0.43, select the corresponding version of mod_jk2 for
download.

Building mod_jk2 on Windows
Use the following steps to build mod_jk2 on the Windows platform:

1. Download the source of the latest Apache 2 Web server from the following URL:

http://httpd.apache.org/download.cgi

Unpack the distribution into any convenient directory, such as D:\Apps\Apache2.

2. Download the latest Connector source from the following URL:

http://jakarta.apache.org/site/sourceindex.cgi

Unpack it to a convenient directory, such as D:\Apps\Tomcat5-connectors-src.

3. Set %APACHE2_HOME% for the Apache source distribution (for example, D:\Apps\Apache2).

4. Set %JAVA_HOME% for the J2SE installation (for example, D:\Apps\J2SDK-1.4.2).

5. With Microsoft Visual C++, open the DSP file in D:\Apps\Tomcat-connectors-src\jk\
native\server\apache2\mod_jk2.dsp.

6. Using the build option, build the mod_jk2.dll.

7. Copy mod_jk2.dll to the modules directory of the binary Apache installation.

Building mod_jk2 on Linux/Unix
Get the source code for Tomcat 5 and the JK2 Connectors from the following URL:

http://jakarta.apache.org/site/sourceindex.cgi

It is a good idea to download the source for a stable version of mod_jk2, such as 2.0.2.

Now get Apache Ant (preferably version 1.5.4) from the following URL:

http://ant.apache.org

Follow these steps to build the module:

1. Make a copy of the sample build.properties file from the Jakarta Tomcat Connector source
(for your customized requirements). Edit the file and provide appropriate paths for Tomcat and
Apache (that is, tomcat5.home and apache2.home).

2. Run Ant from the top-level Tomcat Connectors directory. To build mod_jk2 for Linux, you may
need to put Linux headers into the include directory of the J2SDK distribution.

3. Copy the mod_jk2.so module into the Apache modules directory.

Refer to the Jakarta Tomcat Connectors source documentation for any minor variations in the aforemen-
tioned steps.

242

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 242

Configuring the AJP 1.3 Connector in server.xml
The default server.xml file already has a configuration entry for the AJP 1.3 Connector, but it may be
commented out. Uncomment this tag if commented. This is what you should see:

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->
<Connector port=”8009”

enableLookups=”false” redirectPort=”8443” debug=”0”
protocol=”AJP/1.3” />

These lines represent an AJP Connector that will use AJP version 1.3 and listen on AJP’s default port
(8009). The port attribute is configurable, and is the port on which Tomcat will listen for AJP requests.
The other configurable attributes for this Connector are as follows:

❑ enableLookups— If set to true, calls to request.getRemoteHost() will perform DNS lookup
to return the actual host name of the remote client. Setting this to false will skip the DNS
lookup and return the IP address as a string (thereby improving performance). By default,
DNS lookups are disabled.

❑ redirectPort— If a request is received for which a matching <security-constraint>
requires SSL transport, Tomcat will automatically redirect the request to the port number
specified here.

❑ scheme— Set this attribute to the name of the protocol you want to have returned by calls
to request.getScheme(). For example, you would set this attribute to https for an SSL
Connector. The default value is http.

❑ secure— If set to true, calls to request.isSecure() will return true where the Connector is
SSL-enabled. The default value is false.

For Tomcat 5, the class org.apache.coyote.tomcat5.CoyoteConnector is the standard implementa-
tion of the AJP Connector, which supports AJP protocol version 1.3. This implementation supports the
following additional attributes:

❑ debug— This attribute specifies the debugging level for the log messages generated by the
Connector component, with higher numbers generating more detailed output. If not specified,
this attribute is set to zero (0).

❑ protocol— This attribute value must be AJP/1.3 in order to use the JK2 handler.

Configuring Tomcat Workers
Each running Tomcat instance is represented as a single worker. In order for Apache to communicate with
Tomcat, it must know the host name and port of the available Tomcat instances. Using this information,
Apache can route the dynamic requests to one of the available Tomcat workers. The information about the
Tomcat workers is provided to Apache through the <APACHE2_HOME>/conf /workers2.properties
configuration file.

Format of the workers2.properties File
The workers2.properties file uses a simple format to provide information about Tomcat workers. In
this file, each component is represented by a name, its type, and associated attributes. For each attribute

243

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 243

of the component, some default values are supported. Typically, each component in the workers2.
properties file has a type and a local name, separated by a semicolon. Below this information, the
associated attributes of that component are listed. The attribute name is a simple string, with no dots or
special characters. The value is a string without quotation marks.

Normally, the entries in the file follow this format:

[TYPE:NAME]
ATTRIBUTE=VALUE

For backward compatibility, the following format is also supported:

TYPE:NAME.ATTRIBUTE=VALUE

Note that the square brackets in the first example are a part of the syntax. For example, [channel.
socket:localhost:8009] will create a socket communication channel with host as localhost and
port 8009.

Steps for Configuring the workers2.properties File
As already mentioned, the workers2.properties file provides information about the Tomcat workers
available to Apache. For connecting Tomcat with Apache, the ajp13 worker should be configured. In
addition to the ajp13 worker, some other components must be specified. These include the Logger, con-
figuration settings, the communication channel, and the URI mappings. The URI mappings are used by
Apache to dispatch requests to various Tomcat workers. All of these components and their associated
configuration options are discussed individually in the next section.

Setting up a Logger
The JK2-based Connectors provide a default Logger. For Apache2, a logger.apache2 file is available,
which logs messages in the error.log file of the Apache Web server. For Windows, the default Logger
is logger.win32. This is used by IIS, and logs messages to the Windows Application Event Log. In
addition to the default Logger supported by the JK2 Connectors, an explicit log file location can also be
provided using the logger.file attribute. Set the logging level for this default Logger to INFO. Other
supported logging levels are EMERG, ERROR, and DEBUG. The followingconfiguration shows the log file-
name and debug level being set:

Set a Logger
[logger.apache2]
file=<APACHE2_HOME>\logs\error.log
level=INFO
debug=1

Configuration Settings
In addition to the Logger, another important component of the workers2.properties file are the
config settings specified by the config directive. These settings provide detailed information about the

244

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 244

configuration setup to Apache, including the location of the workers2.properties file and the debug-
ging level of the config component. In the actual configuration, use the exact location of <APACHE2_HOME>:

config settings
[config]
file=<APACHE2_HOME>\conf\workers2.properties
level=INFO
debug=1

Setting up a TCP Socket Communication Channel
Tomcat 5 and JK2-based Connectors support four different types of communication channels for Tomcat
to talk to Apache. The most commonly used standard is the TCP socket-based communication channel.
The other possible options include a Unix channel (on a Unix system, of course), APR, and JNI commu-
nication channels.

A TCP socket channel is declared by providing details about the host name and port on which the
Tomcat instance is running. The typical format for declaring a communication channel is channel.
socket:HOST:PORT. Here, HOST and PORT specify where a Tomcat worker listens for AJP requests.

The TomcatId attribute indicates the identity of the Tomcat worker that will use this communication
channel. The default value is localhost:port.

The following configuration shows a sample channel setup. Additional attributes not shown here
include lb_factor, group, and route. These attributes are used in load balancing configurations and
are discussed later in this chapter.

communication channel settings for our “myTomcat”
[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=myTomcat

On Unix systems, the other type of communication channel supported is channel.un. This uses Unix
sockets. Typically, Unix sockets are faster than TCP/IP sockets. A sample entry for this type of communi-
cation channel will look something like the following:

Example UNIX domain socket/named pipe
[channel.un:/usr/local/tomcat/work/jk2.socket]

The Shared Memory (SHM) File
When Tomcat is connected with a Web server such as Apache, the processes of Tomcat and Apache must
share some information. A Shared Memory (SHM) file needs to be specified to share the information.
Typically, this file is located in the conf directory of the Apache Web server. The maximum size for this
file can be configured, as can be seen in the following configuration:

Shared Memory file settings
[shm]
file=<APACHE2_HOME>/conf/jk2.shm
size=100000

245

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 245

Setting Up an AJP Worker
An important step in setting up an AJP worker is to provide an ajp13 type worker using TCP socket-
based communication. A sample worker will look something like the following:

Declare a Tomcat worker
[ajp13:localhost:8009]
channel=channel.socket:myTomcat

The Tomcat ID used here (myTomcat) must match that defined earlier while setting up the communica-
tion channel.

URI Mappings
Using the AJP Connector, Apache dispatches the incoming requests for JSP or a Servlet to one of the avail-
able Tomcat workers. For a proper request-dispatching mechanism, Apache needs some rules. These
rules are provided in the form of URI mappings in the workers2.properties file. The URI mappings
specify a pattern that is used to match requests to workers. This pattern includes a host name and an
associated port. The combination can be an exact host name and a nondefault port number, or any host
name and a specific port number. A wildcard can be part of the URL to be matched. An additional attribute
called info can be used to provide information about this pattern-matching. Typically, a Tomcat context
is mapped along with some specific file types, such as JSP or Servlet:

URI mappings for the tomcat worker
All the incoming requests for any JSPs will be served.
Map the “jsp-examples” web application context to the Web server uri space
[uri:/jsp-examples/*.jsp]
info= Mapping for jsp-examples context of tomcat

The Sample workers2.properties File
Now that you have examined all the configuration details to be put in the workers2.properties file,
it’s time to look at a sample one:

settings for Logger of type Apache2
[logger.apache2]
file=”D:\Apps\Apache2\logs\error.log”
level=INFO
debug=1

Provide the basic config needed
[config]
file=D:/Apps/Apache2/conf/workers2.properties
debug=0

Define a socket communication channel
[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=myTomcat

Shared Memory file settings
[shm]
file=D:/Apps/Apache2/conf/jk2.shm

246

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 246

size=1000000

define a tomcat worker which will use the communication channel defined
in the previous step
[ajp13:localhost:8009]
channel=channel.socket:myTomcat

Map the Tomcat jsp-examples webapp to the Web server uri space
[uri:/jsp-examples/*]
info=mapping the jsp-examples context of Tomcat

Adding Directives to Load the jk2 Module (httpd.conf)
The mod_jk2 module must be loaded as an Apache module. Edit the httpd.conf file by adding an
entry as shown here in the LoadModules section.

For Windows, use the following:

For Windows include the actual mod_jk2 DLL path in double quotes
if the path contains any white spaces.
LoadModule jk2_module modules\mod_jk2-2.0.43.dll

For Unix/Linux, use the following:

LoadModule jk2_module modules/mod_jk2-2.0.43.so

Configuring the jk2.properties File
The JK2 Connector needs a communication channel and shared memory file for connecting Tomcat
with the Apache Web server. This information is specified in the jk2.properties file. A sample jk2.
properties file is provided under the <CATALINA_HOME>\conf directory in the standard Tomcat dis-
tribution. In most cases, the default settings provided in the jk2.properties work, and no additional
tuning needs to be done.

The commonly used channel is channelSocket. Its configurable attributes are as follows:

❑ address— The machine on which Tomcat is running

❑ port— The port on which Tomcat listens. This defaults to 8009.

❑ maxThreads— The maximum number of threads the setup should allow at a given time

❑ serverTimeout— Specifies the timeout interval

The following example illustrates these attributes:

Set the default port for the channelSocket
channelSocket.address=localhost
channelSocket.port=8009
channelSocket.serverTimeout=600
channelSocket.maxThreads=50

247

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 247

A sample jk2.properties file is shown here:

Sample jk2.properties file
channelSocket.address=localhost
channelSocket.port=8009
shm.file=D:/Apps/Apache2/conf/jk2.shm

On Unix platforms, in addition to the channelSocket, an additional available channel option is
channelUnix.

Testing the Final Setup
Now that the configuration is complete, it must be tested. Before testing this setup, restart Tomcat and
then restart Apache. This ensures that the configuration changes made for Tomcat and Apache have
been read.

To test the setup, point your browser to the following URL and browse to sample JSPs bundled with
Tomcat:

http://localhost/jsp-examples/

Note that you are browsing to http://localhost/ (the host/port on which Apache is listening) and
not http://localhost:8080/ (Tomcat’s host/port). If everything was configured properly, the Web
page shown in Figure 12-2 should be displayed.

Now try executing one of the JSPs. Point your browser to the following URL:

http://localhost/jsp-examples/jsp/dates/date.jsp

This should display the Web page shown in Figure 12-3.

This test confirms that requests for JSPs are being redirected by Apache to Tomcat correctly. After testing
the deployment from a local machine, test the installation from any other machine across the network.

248

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 248

Figure 12-2: Proper configuration should result in this JSP Samples page.

249

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 249

Figure 12-3: Another test of executing a JSP.

Configuring SSL
SSL provides a secure communication channel between the browser and the Web server. Chapter 10
explored how SSL is set up for the HTTP Connector. When Apache is used with Tomcat, you can use SSL
at either the Apache end or the Tomcat end.

The preferred option is to enable SSL at the Apache end because of the better SSL support in Apache. In
addition the SSL support, the Apache level can also be used by other deployed applications on the same
server.

This section discusses both options.

Configuring SSL in Tomcat
Chapter 15 discusses this configuration in detail. In brief, it involves the following steps:

250

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 250

1. Download and install an SSL implementation.

2. Create a certificate keystore and add a self-signed certificate to it.

3. Purchase a certificate from a certificate authority such as VeriSign, Thawte, or Trustcenter.
The self-signed certificate created here is used to generate a certificate-signing request.

4. Configure Tomcat for SSL.

Configuring SSL in Apache
Apache can be enabled with SSL using the mod_ssl Apache module. This section provides an overview
of the major steps involved in configuring Apache 2 with SSL on Windows. A similar setup will work on
Unix/Linux by changing the appropriate system-specific paths.

On Windows, ensure that no other Web servers (for example, IIS) are running on the server using port 80.

As mentioned in the introduction of this chapter, it is assumed that Apache is configured and running on
the server. The versions and installation locations should be as follows:

❑ Apache version 2.0.43

❑ APACHE2_HOME is D:\Apps\Apache2

❑ WINDOWS_HOME is C:\winnt

Configuring the httpd.conf File
The first step is to get Apache to listen for SSL requests. This is done by adding another Listen directive
in the Apache main configuration file (httpd.conf). You will find a line containing Listen directives in
the httpd.conf file. This line indicates that the Apache Web server will listen to requests on port 80 (the
default HTTP port):

Listen 80

Add another line below this line, to make Apache listen on the SSL port as well. The default SSL port is
443. A sample entry is shown here:

Listen 80
Listen 443

Ensure that the serverName directive is properly configured in httpd.conf. A valid server name is
required because this is used while generating the server certificate:

serverName myserver.com

Now it’s time to test whether Apache can listen on the SSL port 443. Restart the Apache server and
browse to the following URL:

http://myserver.com:443

If the configuration is correct, Apache’s home page should be displayed.

251

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 251

Building Apache with SSL Support
An SSL-enabled Apache server can be either built from source or downloaded in a binary version.
Several Web sites (such as the one shown here) maintain binary versions of Apache. For the Apache
version referred to in this chapter, i.e., 2.0.43, download the SSL-enabled binary (Apache_2.0.43-
OpenSSL_0.9.6g-Win32.zip) from the following location:

http://tor.ath.cx/~hunter/apache/

Unzip the downloaded binary file at an appropriate location. This location will be referred to in the rest
of this discussion as APACHE2_SSL_HOME. In our example, we will use APACHE2_SSL_HOME at D:\Apps\
Apache_2.0.43-OpenSSL_0.9.6g-Win32.

Note that we have two separate locations: APACHE2_HOME and APACHE2_SSL_HOME. Though the
server certificate will be generated using APACHE2_SSL_HOME, the final setup and SSL configuration
will be done in APACHE2_HOME only. There will not be any changes in the Tomcat configuration because
Tomcat will be communicating with APACHE2_HOME as before.

Copying Files to a Windows Installation
Copy the files ssleay32.dll and libeay32.dll from APACHE2_SSL_HOME\bin directory to
C:\winnt\system32 directory.

Configuration File for Generating a Certificate
A configuration file is required for generating the server certificate. A sample configuration file is
presented here. Save the following contents in a file named myconfig.file at APACHE2_SSL_HOME
\bin\myconfig.file:

RANDFILE = $ENV::HOME/.rnd

[req]
default_bits = 1024
default_keyfile = keyfile.pem
attributes = req_attributes
distinguished_name = Wiley
prompt = no
output_password = mypassword

[Wiley]
C = US
ST = NJ
L = Hoboken
O = Wiley
OU = Wrox Press
CN = myserver.com
emailAddress = mail@myserver.com

[req_attributes]
challengePassword = mypassword

252

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 252

Generating a Test Certificate
This section describes the steps required to generate a test certificate. Typically, in a production environ-
ment, a commercial-grade certificate from a Certificate Authority (CA) is used. Following are the main
steps involved:

1. Create a certificate signing request

2. Remove the passphrase from the private key

3. Purchase a certificate from a CA or create a self signed certificate

4. Install the certificate

Create a certificate signing request
The command for creating a certificate signing request is shown as follows:

cd D:\Apps\Apache_2.0.43-OpenSSL_0.9.6g-Win32\bin
openssl req -new -out server.csr –config myconfig.file

Using the configuration from the myconfig.file, this step creates a certificate signing request
(server.csr) and a private key (keyfile.pem). When asked for “Common Name” (for example,
your Web site’s domain name), give the exact domain name of your Web server (for example, www.
myserver.com).

Remove the passphrase from the private key
This is an optional step that should be performed for security reasons (explained in the following text):

openssl rsa -in keyfile.pem -out server.key

It removes the passphrase from the private key. Provide the same password as mentioned in the
myconfig.file. The server.key should be readable only by the Apache server and the administrator.
It is highly recommended to delete the .rnd file, because it contains the entropy information for creating
the key and could be used for cryptographic attacks against your private key.

Create a self signed certificate
In a production environment, the certificate signing request file generated (server.csr) is sent to a
Certificate Authority and a certificate purchased. For test deployments, you can generate a self
signed certificate. The following command shows this being done:

openssl x509 -in server.csr -out server.crt -req -signkey server.key -days 365

The –days option specifies the number of days after which the certificate will expire.

Install the certificate
On Windows, create a directory named ssl under the APACHE2_HOME\conf directory, and move the
server.key and server.crt files into this directory.

253

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 253

Linux users must create two directories under APACHE2_HOME/conf—ssl.key and ssl.crt. Move
server.crt into ssl.crt and move server.key into ssl.key.

Setting Up mod_ssl in Apache
Copy all the executable files from APACHE2_SSL_HOME\bin to the APACHE2_HOME\bin directory. This
action will prompt for a confirmation of the overwriting of a few files. Choose to overwrite all files.

Similarly copy all the shared modules (*.so) from APACHE2_SSL_HOME\modules to the APACHE2_ HOME\
modules directory. This action also will prompt for overwriting of a few files. Opt for overwriting all
the files.

While performing the preceding step, don’t delete the mod_jk2 module!

Now, copy the SSL configuration file APACHE2_SSL_HOME\conf\ssl.conf to the APACHE2_ HOME\
conf\ directory. This file is included in the httpd.conf.

Finally, add the following lines in the httpd.conf file located at APACHE2_ HOME\conf, so that Apache
can use the mod_ssl extension:

LoadModule ssl_module modules/mod_ssl.so

Refer www.modssl.org for more details
SSLMutex sem
SSLRandomSeed startup builtin
SSLSessionCache none
ErrorLog logs/ssl.log
You can change the log level later
LogLevel info

<VirtualHost www.myserver.com:443>
SSLEngine On
SSLCertificateFile conf/ssl/server.crt
SSLCertificateKeyFile conf/ssl/server.key
</VirtualHost>

Testing the SSL-Enabled Apache-Tomcat Setup
To test the SSL setup, the virtual host declared in the ssl.conf file plays a key role. A DocumentRoot
different from the main configuration can be used for this SSL virtual host. This host will take care of all
the requests coming for port 443. For simplicity, in the configuration used in this chapter, the virtual host
uses the same DocumentRoot as that of the main configuration.

First, restart Tomcat and then restart Apache. To test the SSL-enabled Apache-Tomcat setup, try the
following URL:

https://myserver/jsp-examples/dates/date.jsp

This should execute the date example bundled with the Tomcat distribution. In case of any errors, kindly
refer to the ssl.log. In addition to this, an appropriate log level can be set in the configuration files
httpd.conf and ssl.conf.

254

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 254

If you use SSL at the Apache end only, the connection between Apache and Tomcat may still be unse-
cured. This may be of concern in deployments where Apache runs on a server in the DMZ (demilita-
rized zone), and Tomcat is behind an internal firewall. One way of addressing this is by using an SSH
(Secure Shell) tunnel to encrypt the AJP data passing between Apache and Tomcat. The details of set-
ting up an SSH tunnel are not covered here, but if you do set up such a tunnel, you should remember to
change the host/port values in Apache’s workers2.properties file to point to the tunnel, instead of
directly to the Tomcat server.

Tomcat Load Balancing with Apache

255

Tomcat and Apache Server

In this chapter, only a basic implementation of load balancing is discussed. Chapter
19 describes a more sophisticated environment, with support for persistent sessions
with in-memory session replication.

Enterprise Web application must be fast, scalable, and reliable, and offer fail-safe behavior. For high-
traffic Web sites, it is a good idea to route the requests coming from Apache to multiple Tomcat instances,
instead of just one. The mod_jk2 module supports load balancing with seamless sessions. It uses
a simple round-robin scheduling algorithm. For each Tomcat worker, a weight can be assigned in the
workers2.properties file, which specifies how the request load is distributed between the workers.

The concept of a seamless session is also known as session affinity or a sticky session. When a client
requests any dynamic resource for the first time, the load balancer will route this request to any of the
available Tomcat instances. Any subsequent requests from the same browser session should be routed to
the same Tomcat Web container to keep the same user session. If the maximum number of connections
for a Tomcat worker is reached, then mod_jk2 waits for it until it is free. This behavior is known as a
seamless session. The client experiences no break in application functionality, because the associated
client session is kept intact.

The mod_jk2 module inherently supports load balancing. The Apache Web server needs some configu-
ration and multiple Tomcat instances to enable load balancing. The next section describes in detail how
to set up a load balancer. The example setup consists of one Apache server and three Tomcat instances
(workers) running on a single machine, though they could very well be distributed across different
machines.

The steps involved in setting up Tomcat load balancing are as follows:

1. Change CATALINA_HOME in the Tomcat startup files to point to different locations for each of the
Tomcat instances.

2. Set different AJP Connector ports for the instances.

3. Set different server ports.

4. Disable the Coyote HTTP/1.1 Connector.

5. Set the jvmRoute in the Standalone Engine.

6. Comment out the Catalina Engine.

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 255

7. Configure the Tomcat worker in jk2.properties.

8. Configure the Tomcat worker in workers2.properties.

These steps are covered in detail in the following sections. The three Tomcat workers used for load bal-
ancing are referred to as Tomcat5A, Tomcat5B, and Tomcat5C. All of them are on the same machine as
Apache. Because multiple Tomcat workers are running on the same machine, they will use different
ports for listening to AJP requests. Had these instances been running on different physical machines,
they could have used the same port.

Before configuring Tomcat workers for Apache, make sure you stop all running instances of Apache and
Tomcat. Once the configuration is complete, first start all Tomcat instances one by one and then start
the Apache Web server.

Changing CATALINA_HOME in the Tomcat Startup Files
The basic requirement for all the Tomcat instances participating in this load-balanced framework is that
all of them should be available simultaneously. Each instance needs a separate CATALINA_HOME variable
at run-time. A different CATALINA_HOME variable can be provided for each of the Tomcat workers by
editing the startup.bat (startup.sh on Unix/Linux) script file. Modify the startup.bat file for
Tomcat5A as shown here:

set CATALINA_HOME=D:\Apps\Tomcat5A

For Tomcat5B, use this:

set CATALINA_HOME=D:\Apps\Tomcat5B

For Tomcat5C, use this:

set CATALINA_HOME=D:\Apps\Tomcat5C

The CATALINA_HOME environment variable should not be set in a load-balancing environment
when you have more than one Tomcat instance running on the same machine. This is because each
Tomcat worker needs its own CATALINA_HOME, as shown in the previous configuration.

This step is not required if you run each Tomcat worker on a different machine.

Setting Different AJP Connector Ports
Because all the Tomcat workers (Tomcat5A, Tomcat5B, and Tomcat5C) are running on the same machine,
it is required that each of them listen on a different port to avoid port conflicts. By default, the AJP 1.3
Connector listens on port 8009, which is preconfigured in Tomcat. Use port 8010 for Tomcat5B, and port
8011 for Tomcat5C.

To configure the AJP Connector for a Tomcat instance, edit the server.xml file and set the AJP port for
each of them as mentioned earlier. Edit the information for the <Connector> tag in this file with appro-
priate values for the current Tomcat instance:

256

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 256

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->
<Connector port=”8009” enableLookups=”false” redirectPort=”8443” debug=”0”

protocol=”AJP/1.3” />

Modify the AJP Connector port for each Tomcat worker as shown here:

❑ For Tomcat5A: 8009

❑ For Tomcat5B: 8010

❑ For Tomcat5C: 8011

This step is not required if you run each Tomcat worker on a different machine.

Setting Different Server Ports
Edit server.xml and set each Tomcat worker’s server port. Locate and modify the following entry for
each Tomcat worker:

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>

For each Tomcat worker, set the port as follows:

❑ For Tomcat5A: 8005

❑ For Tomcat5B: 8006

❑ For Tomcat5C: 8007

This step is not required if you run each Tomcat worker on a different machine.

Disabling the Coyote HTTP/1.1 Connector
Because all the Tomcat instances will be running in conjunction with the load-balancer worker, it’s possi-
ble that someone could directly access any of the available workers via the Coyote/HTTP Connector,
bypassing the load-balancer path. To avoid this, comment out the HTTP Connector configuration of all
the Tomcat instances in the server.xml file as shown here:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080
<Connector port=”8080”

maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” redirectPort=”8443” acceptCount=”100”
debug=”0” connectionTimeout=”20000”
disableUploadTimeout=”true” />
-->

Setting the jvmRoute in the Standalone Engine
An important step for load balancing is specifying the jvmRoute. Each Tomcat worker has an Engine
directive in the server.xml file. The Engine is a top-level container in the Catalina hierarchy and repre-
sents the entire Catalina Servlet engine. This Engine directive has an attribute called jvmRoute that acts

257

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 257

as an identifier for that particular Tomcat worker. Typically, a unique string is provided as the value for
this attribute. This string must be unique across all the available Tomcat instances participating in the
load-balancing environment.

Add a unique jvmRoute attribute to each Tomcat worker’s server.xml file as described here. This
unique jvmRoute ID will be used in the workers2.properties file for identifying each Tomcat worker.
Ensure that the strings used are unique for each Tomcat worker. For the configuration discussed here,
use the following entries:

For Tomcat5A on the localhost machine, the entry will be as follows:

<!-- You should set jvmRoute to support load-balancing via JK/JK2 ie : -->
<Engine name=”Standalone” defaultHost=”localhost” debug=”0”
jvmRoute=”Tomcat5A”>

For Tomcat5B on the localhost machine, the entry would look as follows:

<!-- You should set jvmRoute to support load-balancing via JK/JK2 ie : -->
<Engine name=”Standalone” defaultHost=”localhost” debug=”0”
jvmRoute=”Tomcat5B”>

For Tomcat5C on the localhost machine, the entry would look like this:

<!-- You should set jvmRoute to support load-balancing via JK/JK2 ie : -->
<Engine name=”Standalone” defaultHost=”localhost” debug=”0”
jvmRoute=”Tomcat5C”>

Commenting Out the Catalina Engine
After adding the Engine directive as shown earlier, you are left with two entries for the Engine directive
in your server.xml file(s). The first is the Standalone Engine and the second is the Catalina Engine.
You need to comment out the Catalina Engine directive for each of the Tomcat workers, as shown here:

<!-- Define the top level container in our container hierarchy
<Engine name=”Catalina” defaultHost=”localhost” debug=”0”>

-->

Tomcat Worker Configuration in jk2.properties
This section explains how to specify the properties of the Tomcat workers in the jk2.properties file.
A separate AJP listener must be specified for each Tomcat worker. The following listings show how this
is done.

For Tomcat5A, the jk2.properties file settings will be as follows:

Sample jk2.properties file for Tomcat5A
channelSocket.address=localhost
channelSocket.port=8009
shm.file=D:/Apps/Apache2/conf/jk2.shm

258

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 258

For Tomcat5B, the jk2.properties file settings will be as follows:

Sample jk2.properties file for Tomcat5B
channelSocket.address=localhost
channelSocket.port=8010
shm.file=D:/Apps/Apache2/conf/jk2.shm

For Tomcat5C, the jk2.properties file settings will be as follows:

Sample jk2.properties file for Tomcat5C
channelSocket.address=localhost
channelSocket.port=8011
shm.file=D:/Apps/Apache2/conf/jk2.shm

Tomcat Worker Configuration in workers2.properties
This section discusses how to set up the workers2.properties file for load balancing.

Settings for Tomcat Workers
For setting up the load-balanced environment, the <APACHE2_HOME>/conf /workers2.properties
configuration file must be suitably configured.

Some of the settings (shown here) are the same as those discussed earlier in the chapter:

Usually commented out on production environments
[logger.apache2]
file=”D:\Apps\Apache2\logs\error.log”
level=ERROR

Provide the basic config needed
[config]
file=D:/Apps/Apache2/conf/workers2.properties
debug=1

Provide the location of shm file on the Apache web server
[shm]
file=D:/Apps/Apache2/conf/jk2.shm
size=1000000

Now, define a socket communication channel for the first Tomcat instance (Tomcat5A). Some additional
load-balancing-related attributes must be configured here.

These include an attribute called group, which informs the mod_jk2 Connector that a particular Tomcat
instance is a part of a certain group. For the setup discussed here, the load-balanced group name is
balanced. Next, set the tomcatId attribute. This is used to identify which Tomcat instance is using
a particular communication channel. In addition to this, an attribute called lb_factor indicates the
load-balanced factor of the corresponding Tomcat instance.

The lb_factor indicates the relative weight of the associated Tomcat worker with respect to others for
dispatching requests. The greater the lb_factor value, the less priority is given to that Tomcat worker.

259

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 259

Typically, the lb_factor is set by taking into account how powerful the hardware is on which the corre-
sponding Tomcat instance is running. The last attribute used is route. The value for this attribute has to
be exactly the same as the value of the jvmRoute attribute of the Engine directive. For more information,
refer the section “Setting the jvmRoute in the Standalone Engine,” earlier in this chapter. The settings for
the lb_factor are shown as follows:

Socket communication channel for Tomcat5A
[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=Tomcat5A
group=balanced
lb_factor=1
route=Tomcat5A

Now, set up an ajp13 type Tomcat worker using the communication channel declared previously:

Tomcat5A worker
[ajp13:localhost:8009]
channel=channel.socket:Tomcat5A

Here are the settings for Tomcat5B:

Tomcat5B
[channel.socket:localhost:8010]
host=localhost
port=8010
tomcatId=Tomcat5B
group=balanced
lb_factor=1
route=Tomcat5B

Tomcat5B worker
[ajp13:localhost:8010]
channel=channel.socket:Tomcat5B

Here are the settings for Tomcat5C:

Tomcat5C
[channel.socket:localhost:8011]
host=localhost
port=8011
tomcatId=Tomcat5C
group=balanced
lb_factor=1
route=Tomcat5C

Tomcat5B worker
[ajp13:localhost:8011]
channel=channel.socket:Tomcat5C

260

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 260

Settings for the Load-Balancing Worker
After all the Tomcat instances have been configured for load balancing, it is time to configure the load-
balancing worker (lb) in the workers2.properties file. The load-balancing worker is responsible for
the management of several request-processing workers. By itself, the load-balancing worker does not
process any requests; it just hands over the requests to the available Tomcat workers. Apache uses the
load-balancing worker to dispatch all the requests for dynamic content. In turn, the load-balancing
worker will route these requests to available Tomcat workers.

A load-balanced worker handles the following tasks:

❑ Instantiating the workers in the Web server

❑ Using the workers’ load-balancing factor (lb_factor) to perform weighted round-robin load
balancing. A lower lb_factor indicates a more powerful machine that can handle more
requests than other Tomcat instances in the same load-balancing group.

❑ Keeping requests belonging to the same session executing on the same Tomcat worker (that is,
providing seamless sessions)

❑ Identifying failed Tomcat workers, suspending requests to them, and falling back to other work-
ers managed by the load-balanced worker. It also periodically looks up the availability of the
failed Tomcat workers, as specified by the recovery attribute.

The overall result is that workers managed by the same load-balanced worker are load-balanced (based
on their lb_factor and current user session) and covered by a fallback mechanism so that the death of
a single Tomcat process does not bring down the entire deployment.

Declare the load-balanced worker and specify the worker group to which it belongs:

Declare a Load balanced worker group named ‘balanced’
[lb:balanced]

Various attributes can be used with this load-balancing worker. The following sections discuss each of
them in detail.

worker
This attribute states the different workers participating in the load-balancing setup. For each worker par-
ticipating in the load-balancing environment, a separate entry is needed. For the configuration discussed
here, the entries will be as follows:

Add three tomcat workers in this Load balanced worker group named ‘balanced’
worker=ajp13:localhost:8009
worker=ajp13:localhost:8010
worker=ajp13:localhost:8011

timeout
A timeout can happen when one or more of the Tomcat workers to which the load-balanced worker is
communicating are down or cannot serve the request for some reason. The default value is 0, which is

261

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 261

disabled. This attribute is very useful for sites with a large number of hits. The timeout value should be
set to the maximum application call time, but not less than 1 second. An example is shown here:

timeout=90

attempts
This is the number of attempts that the load-balanced worker will try on each worker before giving up.
The default value is 3:

attempts=2

recovery
This attribute indicates the amount of time a load-balanced worker will wait before checking to see
whether a worker came out of the error state. By default, the value is 60 seconds, but you can modify
it as desired:

recovery=30

stickySession
This attribute decides if seamless sessions are being used. By default, it is true (that is, 1). If needed, it
can be set to 0, which will disable the feature:

stickySession=1

noWorkerMsg
This indicates what message is to be displayed if there are no workers available to process the current
request:

noWorkersMsg=Server Busy please retry after some time.

noWorkerCode
The noWorkerCode attribute indicates the HTTP status code to be returned if no workers are available to
process the current request. The default is Service Unavailable (that is, 503):

noWorkerCodeMsg=503

Finally the load-balanced worker will have settings like the following:

Load balanced worker
[lb:balanced]
worker=ajp13:localhost:8009
worker=ajp13:localhost:8010
worker=ajp13:localhost:8011
timeout=30
attempts=2
recovery=90
stickySession=1
noWorkersMsg=Server Busy please retry after some time.
noWorkerCodeMsg=503

262

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 262

URI mappings
Now configure the load-balanced worker to handle the requests for the context jsp-examples. This is
simply done by putting the URI mappings in the workers2.properties file as shown here. This will
make mod_jk2 forward any requests that match these patterns to the load-balanced worker:

URI mapping
[uri:/jsp-examples/index.jsp]
info=Mappings for the Tomcat context jsp-examples
context=/jsp-examples
group=balanced

Adding the jkstatus worker
As discussed earlier, the jkstatus worker provides valuable information about the status of each
Tomcat worker in the setup, and provides the associated performance statistics. Here is the configura-
tion for the jkstatus worker:

Define a status worker to test the run-time request behavior of all workers
[status:]

Status URI mapping
[uri:/jkstatus/*]
group=status

Sample workers2.properties File
Now you will define a workers2.properties file for the load balancing. Here, a single load-balanced
worker is defined. This load-balanced worker will in turn use the three separate Tomcat workers
(Tomcat5A, Tomcat5B, and Tomcat5C). The load-balanced worker will be the single entry point for any
requests delegated by Apache, and will handle the other workers:

Usually commented out on production environments
[logger.apache2]
file=”D:\Apps\Apache2\logs\error.log”
level=ERROR

Provide the basic config needed
[config]
file=D:/Apps/Apache2/conf/workers2.properties
debug=1

Provide the location of shm file on the Apache web server
[shm]
file=D:/Apps/Apache2/conf/jk2.shm
size=1000000

Tomcat5A
[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=Tomcat5A
group=balanced
lb_factor=1

263

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 263

route=Tomcat5A

Tomcat5A worker
[ajp13:localhost:8009]
channel=channel.socket:Tomcat5A

Tomcat5B
[channel.socket:localhost:8010]
host=localhost
port=8010
tomcatId=Tomcat5B
group=balanced
lb_factor=1
route=Tomcat5B

Tomcat5B worker
[ajp13:localhost:8010]
channel=channel.socket:Tomcat5B

Tomcat5C
[channel.socket:localhost:8011]
host=localhost
port=8011
tomcatId=Tomcat5C
group=balanced
lb_factor=1
route=Tomcat5C

Tomcat5C worker
[ajp13:localhost:8011]
channel=channel.socket:Tomcat5C

Load balanced worker
[lb:balanced]
worker=ajp13:localhost:8009
worker=ajp13:localhost:8010
worker=ajp13:localhost:8011
timeout=30
attempts=2
recovery=90
stickySession=1
noWorkersMsg=Server Busy please retry after some time.
noWorkerCodeMsg=503

URI mapping
[uri:/jsp-examples/index.jsp]
info=Mappings for the Tomcat context jsp-examples
context=/jsp-examples
group=balanced

Define a status worker to test the run-time request behavior to the all workers
[status:]

Status URI mapping
[uri:/jkstatus/*]
group=status

264

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 264

The balanced worker is of type lb. It will use a weighted, round-robin algorithm for load balancing and
will support seamless sessions as discussed earlier. If a worker dies, the balanced worker will check its
state over the configured time intervals of recovery. Until it is back online, all work is redirected to the
other available workers.

Testing the Load Balancer
This section explains how to test the load-balancing setup that was configured in the previous sections.
To do this, create three similar JSPs for each of the Tomcat workers (using the same filename) and place
them into the jsp-examples directory of each Tomcat worker. Create a file index.jsp with the follow-
ing contents:

<%@ page language=”java” %>
<html>

<body>
<h1>Index Page Served By Tomcat5A</h1>
<table align=”centre” border=”1”>

<tr>
<td>Session ID</td>
<td><%= session.getId() %></td>

</tr>
<tr>

<td>Created on</td>
<td><%= session.getCreationTime() %></td>

</tr>
</table>

</body>
</html>

Make the following change to the index.jsp file of these copied versions (to identify that the corre-
sponding Tomcat instance has processed the request).

For Tomcat5A, change the following line in the index.jsp file as follows:

<h1>Index Page Served By Tomcat5A</h1>

For Tomcat5B, change this line as follows:

<h1>Index Page Served By Tomcat5B</h1>

For Tomcat5C, change the line as follows:

<h1>Index Page Served By Tomcat5C</h1>

Make sure that all the Tomcat instances (Tomcat5A, Tomcat5B, and Tomcat5C) are up and running
properly.

You are now ready to test load balancing. Make sure Apache is serving the static pages. This can be
tested by visiting the following URL:

http://localhost/

265

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 265

Apache will return the index.htm page. Now, visit the following URL to confirm that Apache is serving
dynamic requests:

http://localhost/jsp-examples/index.jsp

The request can be served by any of the three Tomcat instances. If Tomcat5A has served the index JSP,
then the response would be something like the one shown in Figure 12-4. Depending on which Tomcat
worker gets the request, the index.jsp page will be served.

Figure 12-4: Testing the load-balancing behavior.

Testing Sticky Sessions
To test whether the same Tomcat worker maintains the session, make a note of the session ID for each
request. In this case, the corresponding Tomcat worker name is appended to the session ID. In Figure 12-4,
Tomcat5A is the unique string appended to the session ID. This confirms that Tomcat5A has served the
request. The Tomcat worker name is determined by the jvmRoute attribute, which is set in the server.
xml file. Whether the same Tomcat worker (which has served the first request) maintains a session can
be confirmed by refreshing the browser window repeatedly. You can confirm that the session ID always
remains the same for a given Tomcat instance. Hence, the session information remains intact.

266

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 266

If more browser instances are opened, then, for each of them, the request will be served by one of the
Tomcat instances based on the lb_factor. Refreshing each browser window will confirm that the sticky
sessions are supported by other Tomcat instances as well.

If you notice that load balancing with sticky session support is not working properly, then check
whether you have properly (1) configured the jvmRoute attribute of the Standalone Engine directive
in server.xml and (2) commented out the Catalina Engine directive in all the server.xml files of
the Tomcat workers.

Testing Round-Robin Behavior
The mod_jk2 module implements a round-robin algorithm. To test this, open a few browser windows
and visit the following page:

http://localhost/jsp-examples/index.jsp

You will notice that with different requests from different browsers, different Tomcat workers will serve
the request.

The run-time behavior of the Tomcat workers can be tested using the jkstatus Web page. The jkstatus
page keeps track of the status of each worker and maintains a record of the traffic to each Tomcat worker.
Apart from this, a lot of other useful information about the performance of each worker can be gathered.
To view the status, visit the following URL (see Figure 12-5):

http://localhost/jkstatus/

Now, taking this to the next level, check whether Tomcat workers will serve the incoming requests in a
round-robin fashion. Keep the browser windows open and you will notice that all three Tomcat workers
do serve the incoming requests in a round-robin fashion. This means that if the first request is served by
Tomcat5A, Tomcat5B will serve the second, and Tomcat5C will serve the third. Tomcat5A will again
serve the fourth request. This is shown in the following table.

Tomcat5A Tomcat5B Tomcat5C

1 2 3

4 5 6

7 8 9

- - -

267

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 267

Figure 12-5: The jkstatus Web page.

Now, stop the Tomcat5B worker and try the same thing. This time, Apache uses the round-robin rule for
the remaining two Tomcat workers. The following table reflects the modified request processing.

Tomcat5A Tomcat5B Tomcat5C

1 X 2

3 X 4

5 X 6

- - -

What happens if Tomcat5B is started again? Does the load balancer realize that Tomcat5B is again avail-
able? Moreover, when will the load balancer start using it? The answer is that the load balancer will start
using Tomcat5B as soon as it finds that the server is up. It periodically checks the status of the worker,
and will start using it as soon as it is made available. This lookup period is equal to the value set for the

268

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 268

recovery attribute of the load-balanced worker. The default value is 60 seconds. This can be cross-
checked by starting Tomcat5B again and continuing the testing cycle. The response will be something
like the following:

Tomcat5A Tomcat5B Tomcat5C

1 X 2

3 X 4

5 6 7

8 9 10

- - -

Testing with Different Load Factors
In some deployment scenarios, the hardware configurations of all the machines may not be the same. In
addition, there is a good chance that even though the hardware configurations are the same, the machines
may be serving different online content. Therefore, every machine may not be in a position to contribute
exactly the same resources as the others in the final load-balancing setup. This can be handled by setting
an appropriate load factor (lb_factor) for each of them. The run-time load balancer will distribute the
request load appropriately.

To carry out the test, change the lb_factor settings in the worker2.properties file. Modify the lb
factor entries shown in the workers2.properties file.

For Tomcat5B, use this:

Tomcat5B
[channel.socket:localhost:8009]
host=localhost
port=8010
tomcatId=Tomcat5B
group=balanced
lb_factor=2
route=Tomcat5B

For Tomcat5C, use this:

Tomcat5C
[channel.socket:localhost:8011]
host=localhost
port=8011
tomcatId=Tomcat5C
group=balanced
lb_factor=2
route=Tomcat5C

269

Tomcat and Apache Server

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 269

Now, restart all three Tomcat workers and then restart Apache. Perform the same test you used to check
the load balancing. Browse to the following URL a few times and notice the behavior:

http://localhost/jsp-examples/index.jsp

You will notice in this case that the behavior has changed. This is because the lb_factor is causing
mod_jk2 to distribute the request load proportionally, as shown in the following table.

Tomcat5A Tomcat5B Tomcat5C

1 X X

2 X X

X 3 X

X X 4

5 X X

6 X X

X 7 X

X X 8

- - -

Summary
This chapter presented details about the JK2 Connector and configuration for connecting Tomcat with
Apache. The topics covered included the following:

❑ An overview of the JK2 Connector

❑ Getting and building mod_jk2

❑ Configuration of mod_jk2 and the Connector for connecting Tomcat with Apache

❑ The different types of Tomcat workers

❑ Tomcat Load balancing, and testing load-balancing configurations

Chapter 13 discusses connecting Tomcat with an IIS front end.

270

Chapter 12

b 559028 Ch12.qxd 4/22/04 3:59 PM Page 270

Tomcat and IIS

Chapter 12 discussed how Apache could be used as a front end to Tomcat. This chapter details the
use of Internet Information Services (IIS) with Tomcat. IIS is a popular Web server for Web sites
hosted on Microsoft platforms, and is used for deploying server-side solutions developed in ASP,
C#, and other Microsoft technologies. The advantage of using IIS is that it allows service providers
to support heterogeneous server-side solutions (for example, both ASPs and JSPs) on the same
platform.

The Jakarta project provides an Internet Services Application Programming Interface (ISAPI) filter
for connecting IIS and Tomcat. ISAPI filters are components or plug-ins for third-party products to
communicate with IIS. This chapter covers installation, configuration, and tuning of the ISAPI fil-
ter to connect Tomcat with IIS, including the following topics:

❑ Role of the ISAPI filter

❑ Configuration of Tomcat

❑ Settings, installation, and configuration of the ISAPI filter for IIS

❑ Testing and setup

❑ Troubleshooting tips

The configuration described in this chapter has been tested using Tomcat 5.0.19, Microsoft IIS 5.0,
ISAPI filter (isapi_redirector2.dll) version 2.0.1, and Sun J2SDK 1.4.0 on Microsoft Windows
2000 Professional and Server editions. For the configuration discussed in this chapter, it is assumed
that Tomcat and IIS are already installed, configured, and running on the system. The following
locations are used in this chapter for configuration-related discussions:

❑ JAVA_HOME—D:\Apps\j2sdk1.4.0

❑ CATALINA_HOME—D:\Apps\Tomcat5

❑ IIS Document Root—c:\Inetpub\wwwroot

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 271

Role of the ISAPI Filter
The integration of Tomcat with a Web server is done with the help of two components: a Web server-
specific component (the ISAPI filter) and a Java-based Connector implementation. These two compo-
nents communicate with each other using the Apache JServ Protocol (AJP).

The ISAPI (isapi_redirector2.dll) filter is implemented as a Dynamic Link Library (DLL) and
extends the functionality of IIS. In this case, it is used by IIS to serve requests for JSP and Servlets. IIS
redirects all requests for JSP or Servlets to Tomcat using this filter. Tomcat then handles these requests
and sends the response back to the client via IIS. Figure 13-1 shows how IIS communicates with Tomcat
using the ISAPI filter. There can be one or more instances of Tomcat to serve the client requests.

Figure 13-1: The ISAPI filter.

Connecting Tomcat with IIS
Following are the steps involved in configuring Tomcat to work with IIS:

1. Testing Tomcat and IIS installations

2. Configuring the Connector in Tomcat’s server.xml file

3. Installing the ISAPI filter

4. Updating the Windows registry for the ISAPI filter

5. Configuring Tomcat workers (workers2.properties file)

6. Configuring the jk2.properties file

7. Creating a virtual directory under IIS

8. Adding the ISAPI filter to IIS

Request/Response
for static content
(HTML/JPEG, etc.) Internet Information

Services (IIS)

ISAPI Filter
AJP One or more

Tomcat
instances

Request/Response
for dynamic content
(JSP/Servlet)

272

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 272

Testing Tomcat and IIS Installations
Before starting the actual configuration, you should test the installations of Tomcat and IIS. By default,
Tomcat listens on port 8080 and IIS on port 80. This can be confirmed by accessing the corresponding
home pages.

Start IIS by selecting the following in the Windows menus: Start ➪ Settings ➪ Control Panel ➪
Administrative Tools ➪ Internet Services Manager. Double-clicking the Internet Services Manager will
open the IIS administration console. In the left pane of the console, expand the top-level server node.
Right-click the default Web site and start the server. Once the server has been started, browse over to
the IIS default home page at the following URL (see Figure 13-2):

http://localhost

Figure 13-2: The default IIS Web page.

273

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 273

Next, confirm that Tomcat is properly configured. If it is not already running, start Tomcat and browse to
the Tomcat home page at the following URL:

http://localhost:8080/

This should display the default Tomcat home page.

Configuring the Connector in Tomcat’s server.xml file
Tomcat’s server.xml file contains the configuration entry for the AJP Connector, as shown here.
Uncomment the following lines if they have been commented out:

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->
<Connector protocol=”AJP/1.3”

port=”8009”
enableLookups=”false”
redirectPort=”8443”
debug=”0” />

These lines represent an AJP Connector that will use AJP version 1.3 and will listen on port 8009. This lis-
tening port is configurable. The other configurable parameters of this Connector are as follows:

❑ enableLookups— If set to true, calls to request.getRemoteHost() will perform DNS
lookup to return the actual host name of the remote client. Setting this to false will skip the
DNS lookup and return the IP address as a string (thereby improving performance). By default,
DNS lookups are disabled.

❑ redirectPort— If this Connector is supporting non-SSL requests, and a request is received for
which a matching <security-constraint> requires SSL transport, Tomcat will automatically
redirect the request to the port number specified here.

❑ scheme— Set this attribute to the name of the protocol you wish to have returned by calls to
request.getScheme(). For example, you would set this attribute to https for an SSL
Connector. The default value is http.

❑ secure— If set to true, calls to request.isSecure() will return true where the Connector is
SSL enabled. The default value is false.

❑ debug— This specifies the debugging detail level of log messages generated by this component,
with higher numbers creating more detailed output. If not specified, this attribute is set to zero (0).

❑ protocol— This attribute value must be AJP/1.3 to use the JK2 handler.

Installing the ISAPI Filter
The binaries of the ISAPI filter can be downloaded from the Jakarta Project Web site. The sources are also
available. A separate version of the ISAPI filter DLL is available for each version of the Windows operat-
ing system. For Windows 2000, the isapi_redirector2.dll version is 2.0.1. For Windows XP, use
isapi_redirector2.dll version 2.0.2.

274

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 274

For the configuration discussed in this chapter (Windows 2000), the isapi_redirector2.dll version
2.0.1 can be downloaded from the following URL:

http://archive.apache.org/dist/jakarta/tomcat-connectors/jk2/v2.0.1/bin/win32/

The 2.0.2 version for Windows XP can be downloaded from the same location by selecting the version
2.0.2 in the jk2 directory.

After downloading, copy the ISAPI filter (isapi_redirector2.dll) into a directory under the Tomcat
installation directory (for example <CATALINA_HOME>\bin\win32\i386). You must create this direc-
tory structure, because it is not a part of the standard distribution of Tomcat.

Write down the path where you copied the ISAPI filter. This same path must be specified while creating
the virtual directory under IIS. The virtual directory path helps IIS locate the ISAPI filter. The step of
creating a virtual directory is discussed later in this chapter.

Updating the Windows Registry for the ISAPI Filter
Windows uses the registry system to store configuration information about any system component. IIS
also uses the Windows registry as a reference for getting information about its extensions. The ISAPI fil-
ter settings also need to be stored in the Windows registry. This can be done either manually or by run-
ning a registry script. It is always a good practice to create the registry manually. Creating a registry by
running the script is also discussed later in this chapter.

It is highly recommended that you make a backup of the current registry before proceeding further. This
will enable you to restore the original configuration if anything goes wrong.

Editing the Registry Manually
To update the Windows registry manually, select Start ➪ Run from the Windows menu. Type the com-
mand regedit in the command box and click OK, as shown in Figure 13-3.

Figure 13-3: Invoking regedit.

The execution of the regedit command opens the Windows registry. The registry is a hierarchical
collection of keys. The left pane shows the registry entries as a tree. The right pane shows associated
subkeys for a selected key in the left panel. A typical Windows registry is shown in Figure 13-4.

275

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 275

Figure 13-4: The Windows Registry Editor window.

To add the required new keys in the Windows registry, first locate the HKEY_LOCAL_MACHINE >
Software branch in the left pane.

If any of the keys mentioned in this discussion already exists in your system’s registry, then you can use
the same. Note that the keys Apache Group and Apache Software Foundation are not the same.

Now, create a new key called Apache Software Foundation under Software by right-clicking and select-
ing New ➪ Key. Under this, create another key named Jakarta ISAPI Redirector. Finally, create
another key named 2.0 under Jakarta ISAPI Redirector.

Once this is done, you are ready to add the configuration parameters for the ISAPI filter. All parameters are
of the type string. Right-click on branch 2.0 and add the first string parameter named serverRoot
with the value of the Tomcat installation directory (CATALINA_HOME). For the configuration presented in
this chapter, this would be D:\Apps\Tomcat5.

Add the second string parameter named extensionUri. This should point to the location of the ISAPI
filter with respect to the IIS Web server context root. In later steps, a virtual directory named jakarta
will be created under which the ISAPI filter is placed. For the present, specify the string as /jakarta/
isapi_redirector2.dll.

276

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 276

Add a third string parameter named workersFile. This entry should point to the location of the
workers2.proprties file (such as D:\Apps\Tomcat5\conf\workers2.properties). The workers2.
properties file is used by the ISAPI filter to retrieve information about available Tomcat workers, and
is discussed in detail later in this chapter.

Finally, add a fourth string value named logLevel. This parameter configures the logging level of the
ISAPI filter. Any option of DEBUG, INFO, or ERROR can be specified here. Start with INFO as the log level;
you can change it later if a different log level is required.

Editing the Registry via a Script
The Windows registry can also be updated at one pass by running a script. To update the registry using
a script, create a script file as shown here and save it as iis_redirect2.reg. You may need to change
some parameters in the script (such as the Tomcat install directory).

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Apache Software Foundation\Jakarta Isapi
Redirector\2.0]
“serverRoot”=”D:\\Apps\\Tomcat5”
“extensionUri”=”/jakarta/isapi_redirector2.dll”
“logLevel”=”INFO”
“workersFile”=”D:\\Apps\\Tomcat5\\conf\\workers2.properties”

The script file should be edited in a plaintext editor such as Notepad. Note that the double quotation
marks used in the script file should be the double quotation marks used in a plain ASCII text file.
Double quotation marks used in a special word editor (such as Microsoft Word) will introduce problems
in the execution of the script.

Modify the contents of the script as per your local settings and save it on the disk. Run the script for updat-
ing the windows registry by double-clicking the script file. This will pop up a message box. Select Yes and
proceed. On execution, the script will create the entries in the Windows registry. Cross-check whether the
registry is correctly updated or not. Look at the generated entries under HKEY_LOCAL_MACHINE\
SOFTWARE\Apache Software Foundation\Jakarta Isapi Redirector\2.0.

Configuring Tomcat Workers (workers2.properties)
A worker represents a Tomcat instance that serves up JSP or Servlet requests to IIS. The ISAPI filter
needs a properties file providing information about all Tomcat workers available. This file is the
workers2.properties file. This configuration file also provides URI mappings to the ISAPI filter.
These URI mappings are used for request dispatching by IIS. The other information contained in the
workers2.properties file includes host name, port number, and load-balancing information for all
the available Tomcat workers.

The standard Tomcat distribution doesn’t have a sample workers2.properties file. It must be added
explicitly in the setup. Typically, this file is placed under <CATALINA_HOME>\conf. For the syntax and
other details of workers2.properties file, refer to Chapter 12.

277

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 277

Following are the step-by-step details for setting up a workers2.properties file to be connected to
Tomcat with IIS. You will first create an empty workers2.properties file and then start adding all the
needed components one by one as explained in the following sections.

Setting Up the Logger
A Logger will be the first component in the workers2.properties file. The ISAPI filter provides a
default Logger for IIS called logger.win32. It logs messages to the Windows native application log. It
can be viewed by selecting Start ➪ Settings ➪ Control Panel ➪ Administrative Tools ➪ Event Viewer.
The available logging levels are INFO, EMERG, ERROR, and DEBUG.

The following lines show the Logger declaration in the workers2.properties file:

Setup the windows application logging for the ISAPI filter
[logger.win32]
level=INFO

If the logging level configured in the workers2.properties file is DEBUG and the level set in the
Windows registry is INFO, then messages with both the DEBUG and INFO logging levels will bet logged
in the Windows application log.

Setting Up a Communication Channel
For the AJP communication between Tomcat and IIS, a TCP/IP-based socket communication channel
must be set up in the workers2.properties file. The typical format for declaring a TCP/IP-based
channel is channel.socket:HOST:PORT, where HOST represents the server on which a Tomcat instance
is running, and PORT indicates the listening port of Tomcat for AJP communication. Typically, just the
addition of the line [channel.socket:localhost:8009] serves the purpose; other parameters with
default values may also work. A commonly used entry for declaring a communication channel looks like
the following:

communication channel settings
[channel.socket:localhost:8009]
host=localhost
port=8009

Setting Up a Shared Memory File
A Shared Memory (SHM) file must be set up in the workers2.properties file. This file is required
for reconfiguration and status with multiprocess servers. Typically, the SHM file is located under
<CATALINA_HOME>\work. The information about the location and maximum size of the SHM file is
configured in the workers2.properties file, as shown here:

SHared Memory file settings
[shm]
file=D:/Apps/Tomcat5/conf/jk2.shm
size=100000

278

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 278

Setting Up an AJP Worker
Each Tomcat worker must be represented in the workers2.properties file. Each of these workers uses a
communication channel. The next step shows how a TCP/IP-based communication channel is configured.
The Tomcat worker declared in the following code is of type ajp13 and will use the TCP-based communi-
cation channel, localhost:8009:

Declare a Tomcat worker and assign it the above declared communication channel.
[ajp13:localhost:8009]
channel=channel.socket: localhost:8009

Setting Up URI Mappings
The ISAPI filter refers to URI mappings in the workers2.properties file for dispatching requests to
Tomcat. URI mappings consist of some combination of Web application names and file types. Typically,
the entry includes a host name and its associated port. Wildcards can also be used in various forms. For
example, the pattern for the default server name will be [uri:*]. Similarly, [uri:*:port] can be used
when matching any host to a specific port:

URI mappings for jsp-examples web application context
Requests for any web component(indicated by the wild card *) are dispatched to
Tomcat.
[uri:/jsp-examples/*]
info= Mapping for jsp-examples context of tomcat

Sample workers2.properties File
After following all the previously mentioned steps, a sample workers2.properties file is presented,
as shown here. You may need to modify it to reflect your local settings. Once the file is ready, copy it to
<CATALINA_HOME>\conf.

Sample workers2.properties file

Setup the windows application logging for the ISAPI filter
[logger.win32]
level=INFO

Provide the location of shm file
[shm]
file=D:/Apps/Tomcat5/conf/jk2.shm
size=1000000

Define a socket communication channel
[channel.socket:localhost:8009]
host=localhost
port=8009

Define a tomcat worker by providing the communication channel
[ajp13:localhost:8009]
channel=channel.socket:localhost:8009

279

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 279

URI Mapping for jsp-examples context of Tomcat
This setting will forward all incoming requests for any JSP pages to Tomcat
[uri:/jsp-examples/*.jsp]
info= Mapping for jsp-examples context of tomcat

Configuring the jk2.properties File
The Connector needs a properties file that provides details about the communication channel and SHM
file used for the communication between Tomcat and IIS. This information is provided in the jk2.
properties file. The standard Tomcat distribution provides a sample jk2.properties file under
<CATALINA_HOME>\conf. In most cases, the default settings provided in the jk2.properties file serve
the purpose. However, in a production environment, you may need to customize these settings.

The SHM file entry specifies the location of the shared memory file, which is used for reconfiguration
and status information with multiprocess servers. It also lists a TCP-based communication channel.
Following is a sample entry:

Sample jk2.properties file
channelSocket.address=localhost
channelSocket.port=8009
shm.file=D:/Apps/Tomcat5/conf/jk2.shm

In case the setup doesn’t work with localhost, specify the actual server name.

Save the edited jk2.properties file under <CATALINA_HOME>\conf.

Creating a Virtual Directory Under IIS
IIS needs to locate the ISAPI filter as a server extension. Adding a virtual directory under IIS and loading
the ISAPI filter addresses this requirement.

The first part of this process is to add a virtual directory. The IIS manager provides a wizard for this
task. In Windows, select Start ➪ Settings ➪Control Panel ➪ Administrative Tools ➪ Internet Services
Manager. Open the Internet Services Manager by double-clicking it. The left panel displays the compo-
nents of the server. Upon expanding the main server node, the subnodes Default Web Site,
Administration Web Site, and Default SMTP Virtual Server are displayed.

Add a virtual directory by right-clicking the Default Web Site node and select New ➪ Virtual Directory,
as shown in Figure 13-5.

280

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 280

Figure 13-5: Starting the Virtual Directory Creation wizard.

This will start the wizard, as shown in Figure 13-6.

After clicking the Next button, the next screen will request an alias name for the virtual directory. Enter
jakarta as the alias name. This is the same name that was specified earlier in the Windows registry in the
extensionUri parameter. Take care to ensure that both the Windows registry and virtual directory alias
are the same.

After you click Next, the wizard will ask for the actual location for the virtual directory. Click the
Browse button to specify the directory in which the ISAPI filter is located. For the configuration dis-
cussed in this chapter, it is D:\Apps\Tomcat5\bin\win32\i386. Again, confirm that this was the
location to which the ISAPI filter was copied (see the section, “Installing the ISAPI Filter,” earlier in this
chapter).

281

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 281

Figure 13-6: The first window of the Virtual Directory Creation wizard.

In the next screen, select the permissions that you want to provide for accessing the directory. Select
options Read, Run Scripts, Execute(such as ISAPI applications or CGI), and Browse.

The Browse option enables directory browsing for the virtual directory. The Browse option can be
disabled later, after the setup is tested.

Complete the final step of the wizard. On completion, the default Web site (named jakarta) will be
displayed as a sub-branch.

After creating the virtual directory, recheck all the values specified. To do this, right-click the virtual
directory and select Properties. A screen with all the details will be displayed, as shown in
Figure 13-7.

282

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 282

Figure 13-7: Checking the virtual directory settings.

Adding the ISAPI Filter to IIS
The next part of the configuration is to load the ISAPI filter as an extension to the IIS main Web service.
In Windows, select Start ➪ Settings ➪ Control Panel ➪ Administrative Tools ➪ Internet Services
Manager. Open the Internet Services Manager by double-clicking it. The left panel displays the server’s
component tree.

Now, right-click the Default Web Site node and select Properties. This will open the Default Web Site
properties dialog box. Click the ISAPI Filters tab and click the Add button to add a new ISAPI filter.

Another dialog box will appear, requesting the filename and the location of the executable of the ISAPI
filter to be added, as shown in Figure 13-8. Provide the ISAPI filter filename of jakarta, and provide
the executable location of D:\Apps\Tomcat5\bin\win32\i386\isapi_redirector2.dll. These
were the same values that you configured earlier.

283

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 283

Figure 13-8: Adding the ISAPI filter to IIS.

Click OK to add the ISAPI filter named jakarta. This will add an entry in the ISAPI filter list. At this
stage, the filter is not yet usable by IIS. This unavailability is indicated by the missing upward-pointing
green status arrow for this filter in the ISAPI filter list.

IIS is stopped and started by right-clicking the Default Web Site node located in the left pane of the
Internet Services Manager. After restarting the Default Web Site of IIS, again check the list of ISAPI fil-
ters. This time the jakarta filter will be displayed with an upward-pointing green status arrow, as
shown in Figure 13-9.

The ISAPI filter can also be configured at the Main Server instead of the Default Web Site. If the setup
is not working after setting up the ISAPI filter for the Default Web Site, try setting up the ISAPI filter
at the Main Server.

The newly added jakarta ISAPI filter is now loaded. The IIS Web server can use this filter as a server
extension and apply it to all the incoming requests. This completes the configuration needed to connect
Tomcat with IIS.

284

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 284

Figure 13-9: Successful installation of the ISAPI filter.

In case of failure, check the Windows registry entries and verify the isapi_redirector2.dll path that
was specified while adding the ISAPI filter.

Testing the Final Setup
After successfully completing the previous steps, you are now ready to test connectivity between Tomcat
and IIS.

One way to do this is to execute the example JSPs bundled with the Tomcat distribution. You had
earlier mapped the jsp-examples context in the workers2.properties file. Now copy the complete
jsp-examples directory from Tomcat’s webapps folder to the IIS document root:

❑ Source: JSP samples directory (for example, D:\Apps\Tomcat5\webapps\jsp-examples)

❑ Destination: IIS document root (for example, C:\inetpub\wwwroot)

285

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 285

Once all the files are copied to the IIS document root, delete only the JSP files from the destination
C:\inetpub\wwwroot\jsp-examples. This ensures that Tomcat serves the dynamic content, and IIS
serves the static content (such as HTML and images used by the example JSPs). Now, restart Tomcat and
then restart the IIS Web server.

Note that only the JSP files are to be deleted from the IIS document root. This can be done by searching
for *.jsp files and deleting them.

Executing any of the sample examples under the jsp-examples context will test the final setup. Point
your browser to the following location:

http://localhost/jsp-examples/dates/date.jsp

This should execute the date.jsp page, as shown in Figure 13-10.

If you get a 404 Error while accessing the test URL (http://localhost/jsp-examples/dates/date.jsp),
then try using the actual server name instead of localhost.

This confirms successful connectivity between Tomcat and IIS. In this configuration, Tomcat serves up only
the dynamic content, and IIS serves up all the static content (images, HTML pages, CSS files, and so on).

Figure 13-10: Testing the setup reveals a successful JSP execution.

286

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 286

Troubleshooting Tips
The procedure described in this chapter for configuring Tomcat with IIS is a bit tricky. Sometimes even
when you think you followed the steps properly, the setup does not work. This section discusses some
common pitfalls and provides debugging tips to help resolve any configuration-related issues.

If all the configuration steps were followed, but you still experience problems with IIS rendering JSPs,
use the following guidelines to troubleshoot the most common problems:

❑ Check whether the IIS Web server is running. This can be tested by visiting the IIS home page.
You should get the default IIS home page at http://localhost, which is shown in Figure 13-
2. If the use of localhost as server name doesn’t work, then try using the actual server name
or IP address.

❑ Confirm that the ISAPI filter is properly installed. In the left pane of the Internet Services
Manager, right-click the Default Web Site node and select the Properties option. Click the ISAPI
Filters tab. In the list of ISAPI filters, check if the status column for the jakarta filter has a
green upward-pointing arrow. If you do not see the green arrow, then there may be a problem
with the installation of the ISAPI filter. Check the Windows registry entries and verify the
isapi_redirector2.dll path that was specified while adding the ISAPI filter.

❑ Verify that the virtual directory (jakarta) is defined properly in IIS. If something is wrong with
it, IIS will indicate this by flagging it with a red symbol. In addition, verify that the name of this
virtual directory matches the name specified in the registry (in the example setup, the name
jakarta was used).

❑ Visit the Windows system application log used by the ISAPI filter. You can configure the logging
level of this log to DEBUG in the workers2.properties file under the component logger.win32,
as shown here:

Provide the logging level
[logger.win32]
level=DEBUG

If there are any configuration errors, then isapi_redirector2.dll will log them in the
Windows system application log.

❑ Check the IIS log file. By default, the IIS server log is located at C:\Winnt\system32\LogFiles\
W3SVC1\. This path can also be checked in the IIS Default Web Site Properties dialog box. A differ-
ent log file is generated every day. The following code shows some typical entries in the log file
that indicate successful access of the ISAPI filter:

#Software: Microsoft Internet Information Services 5.0
#Version: 1.0
#Date: 2003-11-20 15:29:18
#Fields: time c-ip cs-method cs-uri-stem sc-status
15:29:18 127.0.0.1 GET /jakarta/isapi_redirector2.dll 200
15:29:20 127.0.0.1 GET /jakarta/isapi_redirector2.dll 200
15:29:20 127.0.0.1 GET /jakarta/isapi_redirector2.dll 200

The log entries show the time, client IP address, HTTP method, URL requested, and HTTP sta-
tus code for the request. If similar entries do not exist in the IIS log file, then the ISAPI redirector
is not being called by IIS. The value 200 is an HTTP status code that indicates that the resource
was found.

287

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 287

A status code of 400, 404, or 500 indicates an error in the ISAPI filter installation or configura-
tion (as shown here):

15:29:18 127.0.0.1 GET /jsp-examples/dates/date.jsp _400

❑ Make sure Tomcat is running and that the AJP13 Connector is listening on the correct port. By
default, the listening port is 8009 and is defined in the server.xml file of Tomcat. It’s a good
idea to open a DOS prompt and run the command netstat. This will list all the active ports on
the system.

❑ Verify the ISAPI Windows registry settings. Cross-check whether they are correct as per your
local installation paths.

❑ Verify the contents of the workers2.properties file. Refer to the sample workers2.properties
file. The most common mistake is not properly declaring the ajp worker and communication
channel.

At least one Tomcat worker should be available to IIS for dispatching the requests. If no Tomcat
workers are available to IIS, then an error message (shown in Figure 13-11) is displayed.
Typically, such an error is reported when the configured Tomcat workers are not running. To
resolve this problem, ensure that the Tomcat workers are properly configured and running.

Figure 13-11: Error message indicating that no Tomcat worker is available.

288

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 288

Performance Tuning
The configuration discussed in this chapter is for out-of-the-box settings for Tomcat and IIS. Web sites
serving a lot of traffic need optimum utilization of resources. IIS provides some additional options to
tune the ISAPI filter configurations. The following sections describe some of these optimization options.

Web Site Hits per Day
IIS can be configured for the expected number of hits on the Web site. This option is available in the
Performance tab on the Default Web Site Properties dialog box. Figure 13-12 shows the details of this
option. It is a good idea to set the expected number of hits per day to be slightly higher than what is
expected. However, if this value is set too high, excess server memory will be allocated, which will
degrade performance.

Figure 13-12: Tuning IIS for expected Web traffic.

289

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 289

Keep Alive and TCP Connection Timeout
The default IIS configuration has HTTP keep-alive enabled. HTTP is a stateless protocol, and each
HTTP request from a client to the Web server causes a connection to be established, serviced, and then
closed. If the Web server were to set up and close TCP connections for each HTTP request, this would
cause serious performance issues. When the HTTP keep-alive attribute is enabled, the Web server
keeps the TCP connection open for a specified period of time to optimize performance for back-to-back
HTTP requests between a client and the Web server.

In addition to this parameter, a TCP connection timeout parameter can be set. This is the amount of time
that idle TCP connections will be left open. Figure 13-13 shows these parameters being configured.

Figure 13-13: Tuning IIS with options for Keep-Alive and Connection Timeout.

290

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 290

Tuning the AJP Connector
Another optimization you can perform is configuring the number of request-processing threads in the
Tomcat worker. The AJP13 Connector defined in the server.xml file enables you to set the minimum
and maximum number of threads, as shown here:

<Connector className=” org.apache.ajp.tomcat4.Ajp13Connector”
port=” 8009”
minProcessors=”5”
maxProcessors=”75”
acceptCount=”10”
debug=” 0” />

The <Connector> tag has attributes such as minProcessors, maxProcessors, and acceptCount,
which can be tuned for performance. A general rule of thumb is to set the number of maxProcessors
to the maximum number of concurrent users expected per Tomcat worker. Set minProcessors to the
average number of concurrent users expected per Tomcat worker. The acceptCount attribute controls
the number of threads initialized at startup. If these values are too high, then the operating system suf-
fers the overhead required for allocating memory and CPU for these threads. If these values are set too
low, then user requests will be queued or not serviced at all.

Load-Balanced AJP Workers
In addition to the AJP worker, a load-balanced worker consisting of multiple ajp13 workers can be
defined. Chapter 12 describes the details for setting up a load-balanced environment. The concepts
discussed in Chapter 12 are specified for Apache and Tomcat, but are applicable regardless of the Web
server used. More advanced load balancing configurations are covered in Chapter 19.

Using SSL
Secure Socket Layers (SSL) provides a secure communication channel between the browser and the Web
server. Chapter 10 discusses how SSL is set up for the HTTP Connector. When IIS is used with Tomcat,
you can use SSL at either the IIS end or the Tomcat end. Using SSL with IIS is often preferred, as other
Web pages and deployed applications (for example, ASP applications) on the same server can use it, too.

❑ Configuring SSL in Tomcat — This configuration is explained in detail in Chapter 15. In brief, it
involves the following steps:

1. Download and install an SSL implementation.

2. Create a certificate keystore and add a self-signed certificate to it.

3. Purchase a certificate from a certificate authority (such as VeriSign, Thawte, or
Trustcenter). The self-signed certificate created the preceding step is used to generate
a certificate-signing request.

4. Configure Tomcat for SSL.

❑ Configuring SSL in IIS — Refer to the documentation provided with your IIS installation for details.

291

Tomcat and IIS

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 291

Summary
This chapter presented details about using IIS as a Web front end to Tomcat. To conclude this chapter,
let’s review some of the key points that have been discussed:

❑ Setup of the ISAPI filter for IIS, which enables it to communicate with Tomcat

❑ Some useful troubleshooting tips to help administrators deal with any configuration issues

❑ Performance-tuning tips

Chapter 14 covers JDBC connectivity in Tomcat.

292

Chapter 13

b 559028 Ch13.qxd 4/22/04 3:59 PM Page 292

JDBC Connectivity

Most Web applications process data, and that data is often stored in a database. The most popular
database management systems are based on relational concepts, and are appropriately called rela-
tional database management systems (or RDBMSs).

All popular databases (including Oracle, MySQL, SQL Server, Sybase, Interbase, PostgreSQL, and
DB2) are relational databases. Tomcat administrators must be well versed in RDBMSs. In addition,
an understanding of the nature of interactions between an RDBMS and Tomcat is required in order
to better anticipate the requirements that may arise.

This chapter addresses the following topics:

❑ Java Database Connectivity (JDBC), which is Java’s database connectivity API

❑ JDBC version evolution

❑ JDBC driver types and advantages

❑ Importance of connection pooling

❑ Interactions between RDBMS and Tomcat

❑ JNDI-based JDBC configurations

❑ Standard configuration for a JDBC data source

❑ Alternative JDBC configurations that may be required

❑ Configuring alternative JDBC access

This chapter also covers a variety of situations that may arise when configuring Tomcat to work
with relational databases. The examples within the discussion feature hands-on configuration.
Special emphasis is placed on the recommended or preferred way of interacting with databases.

b 559028 Ch14.qxd 4/22/04 3:58 PM Page 293

By the end of this chapter, you will be comfortable with the integration of RDBMSs with Tomcat, and will
be able to handle the most common requests for configuring RDBMSs to work with the Tomcat server.

JDBC Basics
JDBC is a programming interface for accessing RDBMSs. Its operation is based on the transmission and
execution of Structured Query Language (SQL) on the database server. SQL is a text-based query lan-
guage for performing operations with data stored in a relational database. In fact, JDBC is based on a
Call-Level Interface (CLI) to an engine that processes SQL statements. More specifically, JDBC uses the
X/Open SQL CLI (X/Open is an international standards organization) conforming to the SQL92 lan-
guage syntax standard. Figure 14-1 illustrates how SQL CLI, and, therefore, JDBC, operates underneath
the hood.

Figure 14-1: JDBC operation model.

In Figure 14-1, the JDBC engine submits SQL query statements to the remote SQL processing engine
(part of the RDBMS, it typically handles multiple simultaneous connections via a connection manager),
and the SQL processing engine returns the result of the query in a set of data called a result set. A result
set is typically zero or more rows of data. Think of result sets as temporarily created tables.

Therefore, JDBC operations are designed to do the following:

❑ Take the JDBC API calls and transform them into an SQL query

❑ Submit that query to the SQL processing engine on the RDBMS

Java
Applications

Java API calls

JDBC API

translated or pass-through
command line SQL

returned results or
status code

JDBC Library

JDBC
Driver

Data Tables

SQL CLI
Processor

RDBMS

294

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:58 PM Page 294

❑ Retrieve the result set that is returned from the query and transform it into a Java-accessible
data structure

Not all statements return a result set. If a search is not successful, the returned result set will be empty
(called a NULL result set). In addition, the SQL language includes statements that are used to create
tables, update data, delete rows, and so on; these statements do not return any result sets either.

In JDBC programming, developers typically perform the following steps:

1. Obtain a connection to the remote database server (in JDBC 1.x, it is necessary to instantiate a
database driver prior to obtaining a connection)

2. Create and prepare an SQL statement for execution (or call a stored procedure in the RDBMS)

3. Execute the SQL statement

4. Obtain the returned result set (if any) and work on it

5. Disconnect from the remote database

Administrators are most interested in facilitating the first step — obtaining a connection to the desired
database.

Establishing and Terminating Connections to RDBMSs
Other than providing a unified way of accessing, modifying, and manipulating data in RDBMSs, JDBC
also provides a unified way of connecting to RDBMSs from different vendors. While normal native con-
nections to Oracle will be very different from connections to MySQL (which will be different from work-
ing with Microsoft’s SQL server), connecting to any of these RDBMSs can be accomplished using the
same JDBC API calls.

Evolving JDBC Versions
In the early days of JDBC, most Java developers were coding to the JDBC 1 standard. Under this stan-
dard, all of the code needed to establish a connection to an RDBMS (as well as the code to disconnect
from the RDBMS) was written by the developers. In fact, even the code to select and activate a JDBC
driver was coded by the developers.

While simple and straightforward to code, this approach created a problem; in some cases where the
driver used was hard-coded by the developers, the code to obtain a connection only worked with
RDBMSs from a specific vendor.

With the arrival of JDBC 2, this restriction was relaxed. JDBC 2 introduced the concept of a data source.
This is an indirect way of specifying the JDBC driver to be used for making the connection. Developers
can now obtain a connection from the data source in their code, enabling the same JDBC code to work
with drivers from any vendor. Meanwhile, an administrator can switch database vendor support by sim-
ply configuring a different data source, and no code changes are needed. The selection and configuration
of data sources shifted from the developer to the administrator.

295

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:58 PM Page 295

As Web applications became more complex, the demand for high-performance concurrent access to
database connections increased. The code that developers write to maintain and share database connec-
tions becomes highly complex and error-prone. Because this code is utilitarian, and can be used by all
applications, it is another area that JDBC 2 attempts to improve on (see “Database Connection Pooling,”
covered in detail later in this chapter).

While JDBC 2’s introduction of data source and connection pooling support opens up new possibilities
for RDBMS developers, it falls short of specifying standard ways in which these features should (or
must) be used. As a result, many of the architectural issues are left for the JDBC driver writers to solve,
and code can quickly become vendor-specific again (this time, depending on the JDBC driver vendor).

Furthermore, the rapid maturation of J2EE has consolidated its overall architecture. There is growing
momentum to adopt the same resource adapter model to the Enterprise Information System (EIS)
throughout the J2EE stack. Architecturally, JDBC connections are connections to external/legacy sys-
tems, which are considered part of the EIS. In the J2EE architecture, these connections should be man-
aged through a well-defined connector architecture. This is the subject matter of J2EE Connector
Architecture (JCA). For more information, see the following URL:

http://java.sun.com/j2ee/connector/

In this architecture, J2EE software components access EIS resources via resource adapters with a com-
mon set of well-defined interfaces. These interfaces enforce well-defined contracts (between application
server and resource adapter) in connection management, transaction management, and security. The
evolution of the JDBC standard is migrating to this new JCA architecture as it becomes better defined.

The first step toward this migration is to detach any direct coupling between the application logic and
the specific EIS resource that it needs. This can be accomplished by an intermediary indirect lookup
mechanism. JNDI is a Java-based industry standard that can serve this purpose. JDBC 3 is the first
version to be designed with this migration in mind.

In fact, JDBC 3 is the first specification that clearly spells out the different architectures that JDBC can
operate in — including two-tier and three-tier models. The three-tier model corresponds to the applica-
tion server model and the model of operation favored by J2EE applications.

The JDBC specification also attempts to accommodate JDBC 1 and 2 drivers and model of operations,
while formalizing JNDI as the preferred way for applications to obtain a data source. It also formalizes
connection pooling as a value-added service of the application server or Servlet container.

Regardless of the JDBC version, the JDBC driver still must translate the unified JDBC commands into
native commands to connect to the different servers. JDBC drivers have evolved significantly over the
past few years and most of them today are high-performance Type IV drivers (explained in the next sec-
tion). However, some legacy systems still exist that support only the older Type I to Type III drivers. It is
a good idea to gain some familiarity with different types of JDBC drivers that may be around.

JDBC Driver Types
There are four different types of JDBC drivers: Type I to Type IV. In general, the higher driver types rep-
resent an improvement on architecture and performance, as described in the following paragraphs:

296

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:58 PM Page 296

❑ Type I — These drivers are the most primitive JDBC drivers, as they are essentially data access
adapters. They adapt another data access mechanism (such as ODBC) to JDBC. These drivers com-
pletely rely on the other data access mechanism to work and as such create double the administra-
tive and maintenance headaches. These drivers are also typically hardware/OS-specific (because
of the data access mechanism that they depend on), making them completely nonportable.

❑ Type II — These drivers are partially written in Java and partially written in native data access
languages (typically C or C++). The non-Java portion of these drivers limits the portability of
the final code and platform-migration possibilities. The administrative and maintenance burden
of Type I still exists.

❑ Type III — These drivers are pure Java drivers on the client side, which gives them the portabil-
ity benefit of Java. However, they rely on a middleware engine running externally to operate.
The client code communicates with the middleware engine, and the engine talks to the different
types of databases. The administration and maintenance burden is somewhat reduced, but far
from eliminated.

❑ Type IV — These drivers are 100 percent Java and talk directly to the network protocols supported
by the RDBMSs. This results in the highest performance connection and the most portable appli-
cation code. Administration and maintenance is greatly simplified (only the driver needs to be
updated).

Fortunately, most modern day JDBC drivers are of the Type IV variety. All the major RDBMSs available
today (MySQL, Oracle, DB2, and MS SQL Server) have Type IV JDBC drivers available, either through
the database vendors themselves or via a third-party driver vendor.

Database Connection Pooling
When a Web application accesses a remote RDBMS, it may do so through a JDBC connection. Typically,
a physical JDBC connection is established between the client application and the RDBMS server via a
TCP/IP connection. Establishing such a connection is CPU-, memory,- and time-intensive. It involves
multiple layers of software, and the transmission and receipt of network data. A typical physical
database connection may take several seconds to establish. Contrast this with the “cost” of doing a
simple database query, which typically takes milliseconds to complete. It is obvious why it would be
wise to decrease the number of connects and disconnects between queries.

Modern Web applications consist of JSPs and Servlets that may need data from a database on every
HTTP request (for example, a Servlet that prints the current employees from a specific department, or an
electronic auction system that enables you to see all your current open bids). On a well-loaded server,
the time it takes to establish, disconnect, and reestablish actual connections (physical connections) can
substantially slow down Web-application performance.

To create high-performance and scalable Web applications, JDBC driver vendors and application servers
are incorporating database connection pooling into their products.

Connection pooling reduces expensive session establishment times (connects, disconnects, and re-connects)
by creating a pool of physical connections when the system starts up. When an application requires a con-
nection, one of these physical connections is provided. Normally, when an application finishes using a con-
nection, it is disconnected. However, in the case of a logical connection, the associated physical connection
is merely returned to the pool and awaits the next application request. Figure 14-2 illustrates database con-
nection pooling.

297

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 297

Figure 14-2: JDBC connection pooling.

A pool manager creates the initial physical connections, manages the distribution of the physical connec-
tions to the Web applications in the form of a logical connection, returns any closed logical connection to
the pool, and handles any exception or error that may arise — potentially disconnecting the physical con-
nection or recovering from error conditions. Note that closing a logical connection does not actually close
any physical connection, but merely returns the connection back to the pool. This pool manager function-
ality may be provided by one of the following three sources:

❑ An application server such as Tomcat 5

❑ A third-party pool manager software vendor

❑ The JDBC driver vendor

When configuring Web applications to run on Tomcat 5, the preferred and recommended pool manager
to use is one that is supplied with the Tomcat server.

Tomcat and the JDBC Evolution
Application developers and system designers using Tomcat 5 and 4 have a wide choice of JDBC support
mechanisms from which to choose. Tomcat 5 and 4 servers provide JDBC 3 support while offering full
backward compatibility to JDBC 2 (as well as JDBC 1). The remainder of this chapter examines the

2. receive logical
 connection

1. request
 connection

3. close logical
 connection

physical database
connections in pool

database connections
pool manager

Web
Application

RDBMS

4. physical connection
 (returned to the pool)

298

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 298

recommended mechanism to access JDBC resources while working with Tomcat, and explores one alter-
native access mechanism.

The major new JDBC features that are part of Tomcat 5 include the following:

❑ Application server-managed database connection pools — Tomcat 5 uses Jakarta Commons Database
Connection Pooling (DBCP) to provide container-managed connection pooling. This also
enables flexible configuration for the pooling mechanism (see the section “Resource and
ResourceParams,” later in this chapter). JDBC 3 is the first specification that defines standard
configuration parameters for pooling (such as maxStatements, initialPoolSize,
minPoolSize, maxPoolSize, maxIdleTime, and propertyCycle), making the mechanism
more configurable in a standards-compliant manner.

❑ Using the JNDI-API to look up data sources within an application server — Tomcat 5 emulates JNDI
for Web applications running under it. This is a portable and configurable way of obtaining data
sources for JDBC operations without hard-coding the driver and associated properties. It makes
the selection of the JDBC driver and RDBMS instance a deferred deployment-time decision.
JDBC 3 specifies JNDI as the preferred method for applications to locate a data source.

❑ Ease of migration to the connector architecture — Tomcat 5’s decoupled architecture for access to
JDBC data sources (through JNDI lookup) is a first step in the migration toward the JCA
connector-based architecture.

JNDI Emulation and Pooling in Tomcat 5
Tomcat provides valuable services for hosted Web applications that use JDBC connections. More specifi-
cally, Tomcat enables running Web applications to do the following:

❑ Access JDBC data sources using standard JNDI lookup

❑ Use connection pooling value-added service

The role of a Web-tier container as an intermediary between client Web applications and an RDBMS is
defined by the set of J2EE specifications — most recently in the Servlet 2.4 specifications and the JDBC 3
specifications (both are can be located at http://jcp.org/aboutJava/communityprocess/final/
jsr154/ and http://java.sun.com/products/jdbc/download.html#corespec30, respectively).
The value-added service that Tomcat provides is compliant with these specifications, and is documented
as a three-tier architecture (see Figure 14-3).

Figure 14-3 shows how JDBC drivers are configured with Tomcat as JNDI resources. These resources are
made available during Web application run-time via standard JNDI lookups. The following steps are
depicted in the diagram:

1. A Web application obtains a JNDI InitialContext from Tomcat; it then performs a lookup on
the resource (JDBC data source) by name.

2. Tomcat handles the JNDI lookup by consulting the configuration files (server.xml and
web.xml) to determine which JDBC driver to use for obtaining a data source. Tomcat can also
use Database Connection Pooling (DBCP) to pool the connections made; the connections
obtained from Tomcat are logical connections.

299

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 299

Figure 14-3: JNDI lookup of a JDBC data source in Tomcat 5.

Even though no true JNDI-compatible directory services are involved, the Tomcat container emulates
the action of a JNDI provider. This enables code that is written with JNDI as the JDBC data source
lookup mechanism to work within the Tomcat container (and other Servlet 2.4–-compliant application
servers).

As you can see in Figure 14-3, Tomcat 5 does more than merely provide JNDI emulation. It can also pro-
vide database connection pooling. Tomcat 5 uses another Apache Jakarta project, called the Commons
DBCP (Database Connection Pooling), for its built-in pool manager functionality.

Preferred Configuration: JNDI Resources
Using JNDI resources in Tomcat to configure JDBC data sources is the recommended way to provide
Web applications with access to JDBC connections. While other methods are possible (and at least one
alternative is discussed later in this chapter), this approach will result in code that is portable to other
Web containers over the long term.

Following are the steps that must be followed to configure JNDI resource for a JDBC data source:

1. Add <Resource> and <ResourceParams> tags in the <Context> element of the Web applica-
tion, or in a <DefaultContext> sub-element of the <Host> element to configure the JNDI
resource.

Jakarta Commons
DBCP pool
manager

JNDI Resource
Definitions in

server.xml

referenced JDBC data source

Tomcat 5
Container

1. lookup via JNDI

2. receive pooled
 data source

JNDI
Emulation

Web
Application

300

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 300

2. Ensure that a <resource-ref> element is defined, corresponding to the <Resource> from
above, in the web.xml file of the Web application using the JDBC resource (note that the
web.xml file is typically maintained by the application developer).

3. Use JNDI calls in the application code to look up the JDBC data source.

The following sections provide more detail on how to perform each of these steps.

Resource and ResourceParams tags
The <Resource> tag is used to specify the JNDI resource that represents a JDBC data source, and the
<ResourceParams> tag is used to configure the associated data source factory. Here is a typical
<Resource> element found in the server.xml configuration file:

<Resource name=”jdbc/WroxTC5” auth=”Container”
type=”javax.sql.DataSource”/>

This resource statement essentially says the following:

❑ Create a JNDI resource that is accessible from the context (logical name) java:comp/env/
jdbc/WroxTC5 by the Web application. The java:comp/env/ portion of the context is added
on for all Tomcat-managed contexts. The Web application can use this context to look up the
data source. The type of resource that will be returned during this lookup is a javax.sql.
DataSource. It also specifies that the container should authenticate against the RDBMS on
behalf of the Web application.

You may want to check Chapter 8 for a detailed examination of the attributes allowed in the
<Resource> element. A <ResourceParams> element is associated with the <Resource> element.
The <ResourceParams> element (also covered in Chapter 8), is used to parameterize the associ-
ated resource. For example, you may have the following <ResourceParams> for the previously
defined <Resource> element (note that this is where the example become database-specific):

<ResourceParams name=”jdbc/WroxTC5”>
<parameter>

<name>driverClassName</name>

<value>com.mysql.jdbc.Driver</value>
</parameter>
<parameter>

<name>url</name>
<value>jdbc:mysql://localhost/wroxtomcat</value>

</parameter>
<parameter>

<name>username</name>
<value>empro</value>

</parameter>
<parameter>

<name>password</name>
<value>empass</value>

</parameter>
<parameter>

301

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 301

<name>maxActive</name>
<value>20</value>

</parameter>
<parameter>

<name>maxIdle</name>
<value>30000</value>

</parameter>
<parameter>

<name>maxWait</name>
<value>100</value>

</parameter>
</ResourceParams>

Note that the name attribute of the <ResourceParams> element must match the <Resource> element
that it is configuring. The actual name and value of the parameters depends on the data-source connec-
tion factory that is used. The settings here assume that you are configuring Tomcat’s default DataSource
factory (called the DBCP factory).

Data-Source Factory
A data-source factory is a Java class that assigns data sources. In some sense, this class manufactures
data sources (hence the “factory” name). In actual operations, however, it may simply supply a cus-
tomized data source class that will work with (as well as hand out) pooled data sources.

Working with Other RDBMS
Tomcat’s default DBCP factory will work with JDBC drivers for any RDBMSs. For example, here is the
setting for accessing an Oracle database:

<ResourceParams name=”jdbc/WroxTC5”>
<parameter>

<name>driverClassName</name>
<value>oracle.jdbc.driver.OracleDriver</value>

</parameter>
<parameter>

<name>url</name>
<value>jdbc:oracle:thin:@xpserver:1521:ORCL</value>

</parameter>
<parameter>

<name>username</name>
<value>empro</value>

</parameter>
<parameter>

<name>password</name>

<value>empass</value>
</parameter>
<parameter>

<name>maxActive</name>
<value>20</value>

</parameter>

302

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 302

<parameter>
<name>maxIdle</name>
<value>30000</value>

</parameter>
<parameter>

<name>maxWait</name>
<value>100</value>

</parameter>
</ResourceParams>

DBCP — Jakarta Commons Pooling Support
To return a JDBC data source to the application, Tomcat 5 uses a data source factory to create the data
source. Tomcat 5 and recent versions of Tomcat 4 use the Jakarta Commons DBCP (by default) to supply
a data source factory and implement connection pooling.

Very old versions of Tomcat 4 (4.0.4 to 4.1.3), however, use the third-party licensed Tyrex data-source
factory. Although it is relatively easy to override the default data-source factory, the procedure is not
well-documented. For example, to make the older Tomcat 4 use the DBCP mechanism, you must add the
following <parameter> element in the <ResourceParams>:

<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

You might consider using DBCP pooling even if you must use very old Tomcat 4 versions, as it is the
default (and pool manager of choice for the Tomcat distribution) for all new Tomcat 5 and 4 releases. It
is very well supported and enhancements are added regularly.

Transactions and Distributed Transactions Support
RDBMSs offer varying levels of support for transactions. A transaction can be viewed as a unit of work
that is composed of multiple operations, but can only be committed (all operations complete success-
fully) or rolled back (no operation completed). For example, MySQL 4 supports transactional access by
default via the use of InnoDB tables.

When a transaction involves work that crosses multiple physical RDBMSs, it is called a distributed
transaction. One standard that enables RDBMSs (and other products supporting transactions, such as
Message Queue Servers) from different vendors to participate in the same distributed transaction is
called XA.

In the XA operation model, an external transaction manager coordinates a two-phase-commit protocol
between multiple resource managers (RDBMSs in this case). The two-phase-commit protocol ensures
that the pieces of work, scattered across multiple physical RDBMSs, are either all completed or all
rolled back.

JDBC 3 and 2 both accommodate data sources that support XA operations. Administrators who work
with XA data sources and data-source factories should consult the vendor’s documentation for proper
parameterization and ensure that they work with Tomcat.

303

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 303

Hands-On JNDI Resource Configuration
Now it is time to put theory into practice. The actual example presented here configures a DBCP data
source, through Tomcat 5’s JNDI resources support, with a Type IV JDBC driver. A JSP will be created
that accesses the data in an actual RDBMS and displays it within a table on a generated HTML page.
This example uses a popular, widely available RDBMS: MySQL.

Installation and configuration of the MySQL database is beyond the scope of this chapter. The discussion
in this chapter assumes that you have MySQL already configured and tested, and that you have an
account with privileges to create tables and add records to create the test database. The latest version
of MySQL is available for download from the following URL:

www.mysql.com

The Type IV JDBC driver that we will use is the Connector/J, supplied by the MySQL vendor, which
can be downloaded from the following URL:

www.mysql.com/products/connector-j/index.html

The latest version available as of this writing is 3.0.9, and is the version on which this example is based.

Note that you must unzip the driver JAR file from the download and use the mysql-connctor-java-
X.X.XX-stable-bin.jar file within it. In our example, place this file under $CATALINA_HOME/
common/lib. The example here is tested with MySQL Connector/J version 3.0.9, the latest stable version
available as of this writing. However, any newer version should work identically.

Creating the MySQL Test Database
To prepare for the example, you must create the MySQL database that will be used by the JSP. The
employee database contains a number of employees from different branches of a company and details
about those employees. Assuming you have a MySQL user account that can create table privileges on a
database called wroxtomcat, you can create the three tables.

If you have database system administrator privileges on MySQL, access can be granted via the mysql
command line:

mysql> GRANT ALL ON wroxtomcat.* TO
-> ‘mike’@’localhost’ IDENTIFIED BY ‘abc123’;

Follow this with a flush of the MySQL cache. This ensures that the change is immediately valid:

mysqladmin --uXXXX --pYYYY flush-privileges

Use your MySQL administrator credentials for XXXX and YYYY. This enables the user mike to connect
from localhost and create tables in the wroxtomcat database. The user mike must log on using the
password abc123.

304

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 304

To make things easy, here is a makedb.sql script to create all the required tables:

CREATE DATABASE IF NOT EXISTS wroxtomcat;

USE wroxtomcat;

CREATE TABLE employee (
employeeid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
phone VARCHAR(15) NOT NULL,
department VARCHAR(15) NOT NULL,
password VARCHAR(15) NOT NULL,
PRIMARY KEY (employeeid)

);

CREATE TABLE vacation (
employeeid VARCHAR(10) NOT NULL,
fiscal INT(3) NOT NULL,
approved CHAR(1) NOT NULL,
PRIMARY KEY (employeeid, fiscal)

);

CREATE TABLE dept (
department VARCHAR(15) NOT NULL,
address VARCHAR(30) NOT NULL,
zipcode VARCHAR(6) NOT NULL,
PRIMARY KEY (department)

);

Use makedb.sql to create the database, as follows:

$ mysql < makedb.sql

Next, load the tables with the data that will be used. This is performed via the SQL script loaddb.sql,
which contains the following:

USE wroxtomcat;

INSERT INTO dept (department, address, zipcode) VALUES (‘Engineering’, ‘33
Mexicali Road’, ‘25763’);
INSERT INTO dept (department, address, zipcode) VALUES (‘Sales’, ‘15 Navel
Circle’, ‘98322’);
INSERT INTO dept (department, address, zipcode) VALUES (‘Administration’, ‘1
Lawless Court’, ‘66699’);
INSERT INTO employee (employeeid, name, phone, department, password) VALUES (‘2901’,
‘Joe’, ‘333-3331’, ‘Engineering’, ‘junior’);
INSERT INTO employee (employeeid, name, phone, department, password) VALUES (‘2202’,
‘Matt’, ‘434-3333’, ‘Engineering’, ‘perlguru’);
INSERT INTO employee (employeeid, name, phone, department, password) VALUES (‘3021’,
‘Jane’, ‘231-0001’, ‘Sales’, ‘milseller’);

305

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 305

INSERT INTO employee (employeeid, name, phone, department, password) VALUES (‘0001’,
‘Bill’, ‘343-0012’, ‘Administration’, ‘gatorshaq’);

INSERT INTO employee (employeeid, name, phone, department, password) VALUES (‘0015’,
‘Steve’, ‘342-2212’, ‘Administration’, ‘billion’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘0001’, ‘1’, ‘Y’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘0001’, ‘2’, ‘Y’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘0001’, ‘3’, ‘Y’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘0001’, ‘4’, ‘Y’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘2901’, ‘12’, ‘N’);
INSERT INTO vacation (employeeid, fiscal, approved) VALUES (‘2202’, ‘51’, ‘N’);

This script simply fills the table with the data. Run the script from the mysql console using the following
command:

$ mysql < loaddb.sql

Now that the tables are created and you have populated them with data, you must create a user account
that the developers will use to access the data within the database. Because the JSP functionality requires
only read access to the data, creating a read-only user account for developer access is a good secure prac-
tice. This ensures that data cannot be accidentally or maliciously modified or altered.

Setting Up the Read-Only User
If you do not have database system administrator privileges, you will need to seek help. You need the
user setup shown in the following table.

User Property Value

Username empro

Password empass

Access SELECT privilege only on the wroxtomcat database (that is,
use the following command on the mysql console: GRANT
SELECT ON wroxtomcat.* TO ‘empro’@’localhost’
IDENTIFIED BY ‘empass’;)

This creates a user who has read-only access to the wroxtomcat tables, which the developer will be
using to access the data in the table.

Adding the JDBC JNDI Resource to the Default Context
Finally, to configure the JNDI resource for the data source, follow the three-step approach outlined
earlier and described in the following sections.

Step 1 — <Resource> and <ResourceParam>
The first step is to make the JNDI data source accessible to all the Web applications running on this host.
By adding the resource definition in the <DefaultContext> section, all the Web applications can gain
access to this resource.

306

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 306

In the $CATALINA_HOME/conf/server.xml configuration file, within the scope of the localhost
<Host> component, add the following <DefaultContext> element:

<DefaultContext>
<Resource name=”jdbc/WroxTC5” auth=”Container”

type=”javax.sql.DataSource”/>
<ResourceParams name=”jdbc/WroxTC5”>

<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<parameter>

<name>url</name>
<value>jdbc:mysql://localhost/wroxtomcat</value>

</parameter>
<parameter>

<name>username</name>
<value>empro</value>

</parameter>
<parameter>

<name>password</name>
<value>empass</value></parameter>

<parameter>
<name>maxActive</name>
<value>20</value></parameter>

<parameter>
<name>maxIdle</name>
<value>30000</value></parameter>

<parameter>
<name>maxWait</name>
<value>100</value>

</parameter>
</ResourceParams>

</DefaultContext>

The url parameter is often named driverName in old documentation for legacy reasons (older version
name), and can still be specified using the old name. For all new work, use url.

This configuration will work fine with Tomcat 5 or 4, as they both use DBCP connection pooling.

Two optional parameters (removeAbandoned and removeAbandonedTimout) help with the recycling of
database connections, even for those that may not be released properly because of faulty developer cod-
ing. When the number of available connections in the pool runs low, the DBCP pool management code
will recycle connections based on an elapsed idle timeout. For example, the following additional param-
eters will cause the DBCP pool management code to recycle all JDBC connections that are idled for more
than 15 minutes:

<parameter>
<name>removeAbandoned</name>
<value>true</value>

</parameter>
<parameter>

<name>removeAbandonedTimeout</name>
<value>15</value>

</parameter>

307

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 307

If you are running an older Tomcat release that uses the Tyrex (licensed) data-source factory by default
(Tomcat 4.0.4 or later up to 4.1.3), you will need to add the following parameter to the <ResourceParams>
element:

<ResourceParams name=”jdbc/WroxTC5”>
<parameter>

<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>
...

In addition, because Tomcat 5 includes the required Jakarta Commons libraries by default, you will find
the DBCP and dependent libraries in the $CATALINA_HOME/common/lib directory. These binaries
include the following:

❑ commons-dbcp-1.1.jar

❑ commons-collection.jar

❑ commons-pool-1.1.jar

Tomcat 4 also already uses the DBCP library code by default since the release of Tomcat 4.1.3. If you are
using versions prior to 4.1.3, you will need to download the aforementioned JAR files from the Jakarta
Commons site at the following URL and copy them into the directory manually:

http://jakarta.apache.org/commons/index.html

Step 2 — Add the <resource-ref/> entries to web.xml
Instead of creating a new Web application, an easy way to add a test JSP is by adding it to an existing
example application from Tomcat. To do this, change directory to $CATALINA_HOME/webapps/
jsp-examples/WEB-INF and edit the web.xml file (this is the deployment descriptor of the
jsp-examples Web application). Add the following highlighted code to web.xml (note that it should
be added immediately after the last <env-entry> element in the file):

...
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
<resource-ref>

<res-ref-name>jdbc/WroxTC5</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

This <resource-ref> entry makes the jdbc/WroxTC5 context, via JNDI APIs, available within the
jsp-examples Web application.

308

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 308

Step 3 — Use JNDI to look up a data source
Finally, it is time to write the code that will look up the data source and start querying the database. The fol-
lowing JSP, JDBCTest.jsp, will do exactly this. Put it into a $CATALINA_HOME/webapps/jsp-examples/
wroxjdbc directory (create this directory yourself). Pay special attention to the way JNDI is used to obtain
the data source (code highlighted).

<html>
<head>

<%@ page errorPage=”errorpg.jsp”
import=”java.sql.*,

javax.sql.*,
java.io.*,
javax.naming.InitialContext,
javax.naming.Context” %>

</head>
<body>

<h1>JDBC JNDI Resource Test</h1>

<%
InitialContext initCtx = new InitialContext();
DataSource ds = (DataSource)

initCtx.lookup(“java:comp/env/jdbc/WroxTC5”);

Connection conn = ds.getConnection();

Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery(“select * from employee;”);
%>
<table width=’600’ border=’1’>

<tr>
<th align=’left’>Employee ID</th>
<th align=’left’>Name</th>
<th align=’left’>Department</th>

</tr>
<%
while (rset.next()) {
%>

<tr><td> <%= rset.getString(1) %></td>
<td> <%= rset.getString(2) %></td>
<td> <%= rset.getString(4) %></td>

</tr>
<% }
rset.close();
stmt.close();
conn.close();
initCtx.close();
%>

</table>
</body>

</html>

309

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 309

The JNDI code highlighted here first obtains the InitialContext from Tomcat. It then uses this
context to look up the JNDI resource that we have configured. Note that all Tomcat JNDI resources are
found relative to java:comp/env/. Once the data source is obtained through JNDI, it is used to create a
connection (actually pooled through DBCP). The JSP then performs a SELECT * on the employee table,
and prints out all the rows that are retrieved. Finally, it creates an HTML table containing all the table
rows.

Any exception caught during execution of this JSP is redirected to a very simple error-handling page
called the errorpg.jsp file. This file is specified via the errorPage attribute of the @page directive.
Here is the content of errorpg.jsp:

<html>
<body>

<%@ page isErrorPage=”true” %>
<h1> An error has occurred </h1>
<%= exception.getMessage() %>

</body>
</html>

This page will simply display a message indicating the exception caught.

Testing the JNDI Resource Configuration
At this point, the JNDI resources are prepared, the database tables are populated, the <resource-ref>
to the deployment descriptor has been added, and a JSP that will use JNDI to obtain a JDBC data source
has been created. It is time to give the new JSP code a test.

Start Tomcat 5 and then, from a browser, attempt to reach the following URL:

http://localhost:8080/jsp-examples/wroxjdbc/JDBCTest.jsp

This will compile and execute the JSP code. If everything is configured correctly and working, your
browser display should be similar to what is shown in Figure 14-4.

The Web page shown in Figure 14-4 is the result of a JDBC query to the MySQL database data, via a
connection obtained from the JNDI lookup.

You may face exceptions such as the server denying access to the data source, or some server connection
failures, which are caused by the MySQL user account not having enough privileges.

310

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 310

Figure 14-4: Display of MySQL RDBMS data in a JSP.

Alternative JDBC Configuration
In Tomcat 5, the JNDI API is the preferred and recommended way to pass a JDBC data source to your
Web applications. It is currently the best-supported mechanism to access JDBC data sources.

However, in production, you might encounter situations in which you have to consider alternative
means of JDBC data source or connection access.

Typically, there is no reason why newly developed database access code slated for Web application
deployment should not use the preferred JNDI mechanism for data access. However, because JDBC 1
was a widely used and highly functional API long before the arrival of JDBC 2 and JDBC 3, a large
legacy base of working JDBC code remains unaware of data sources and connection pooling.

311

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 311

There may be circumstances in which you must integrate legacy code, and the source code is either not
available or cannot be changed. Typically, legacy JDBC 1 code has both the JDBC driver and the URL of
the database hard-coded. Thankfully, JDBC 2 and JDBC 3 continue to maintain backward compatibility
with JDBC 1. This means that legacy code can continue to run, even in Tomcat 5 servers.

Another potential reason for deviating from the recommended configuration is the deployment of an
alternative connection pool manager. This could happen, for example, with a shared hosting ISP using a
commercial product that does not support the Jakarta Commons DBCP pooling. In addition, developers
sometimes disagree about the merits of one pool manager implementation over another.

Alternative Connection Pool Managers
Up until Tomcat 4.1.x, connection-pooling implementation on Tomcat servers has evolved in a roll-your-
own manner. Because Tomcat did not provide default support, anyone who needed the functionality
(which included anyone who deployed any large- or medium-scale Web application) had to write their
own code, or find a third-party solution to the problem.

As a result, it is quite likely that some legacy projects on Tomcat are using an alternative connection-
pooling manager, with its own requirements for data-source configuration.

The following section examines one such pool manager, and shows how its configuration and access
differ from the preferred method. The alternate pool manager is PoolMan (Pool Manager). It is an open-
source project that is hosted on Source Forge at the following URL:

http://sourceforge.net/projects/poolman/

About PoolMan
Since well before the introduction of DBCP, the open-source PoolMan has provided flexible object pool-
ing for developers. PoolMan provides a generic pooling mechanism for Java language objects, with spe-
cialized focus on JDBC connections. PoolMan 2.0 (the latest version available as of this writing) provides
the following features:

❑ Flexible pool configuration across server instance, Web application, or other boundaries

❑ Support for multiple pools operating concurrently

❑ Timeout-based automatic connection recovery (this feature has been recently implemented in
DBCP)

❑ API-based programmatic access to all pools and pooled resources

❑ Managed cached SQL queries

❑ JMX-based run-time management

❑ Support for JDBC 2 and 3 style drivers, and provision of multiple ways to integrate with
applications or servers

Some of the these features may be attractive to developers, and may indeed be the reason why PoolMan
is deployed in specific production scenarios.

312

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 312

Deploying PoolMan
The PoolMan binary is packaged as a single JAR file, called poolman.jar. The placement of this
library will depend on your specific pool-management strategy. For example, if you were to pool JDBC
connections on a per-Web-application basis, the poolman.jar file should be placed under the
WEB-INF/lib directory of your Web application. The following example assumes that you will be using
PoolMan to manage server-wide pool(s) of JDBC connections. In this case, poolman.jar must be copied
into the %CATALINA_HOME%/common/lib directory.

When using JDK 1.4 with Tomcat 5, simply copying poolman.jar to common/lib is sufficient. This is
because XML parser support and JDBC 2+ libraries are standard with JDK 1.4. If you are using JDK 1.3,
however, you must add the dependent libraries manually. These libraries are included with the PoolMan
code download and include the following:

❑ xerces.jar

❑ jta.jar

❑ jdbc2_0-stdext.jar

PoolMan supports its own XML-based configuration file. The configuration of the JDBC driver,
Connector/J for MySQL in this case, must be performed within PoolMan’s configuration file.

PoolMan’s XML Configuration File
It is of utmost importance for PoolMan to find its configuration file (called poolman.xml). Otherwise,
you may encounter strange run-time errors. To locate the poolman.xml configuration file, PoolMan
looks at the system classpath (essentially, the CLASSPATH environment when the JVM is started). The
best way to ensure that the poolman.xml file will be loaded is as follows:

1. Create a c:\home\poolman directory in which to place the poolman.xml file.

2. Include the path c:\home\poolman in the %CATALINA_HOME%\bin\setclasspath.bat
(or setclasspath.sh for Linux/Unix) file.

In this case, the addition of the path into setclasspath.bat is used:

...
rem Set standard CLASSPATH
rem Note that there are no quotes as we do not want to introduce random
rem quotes into the CLASSPATH
set CLASSPATH=%JAVA_HOME%\lib\tools.jar;c:\home\poolman
rem Set standard command for invoking Java.
...

The choice of one pool management strategy over another is highly dependent on
the application, the system configuration, the data-access pattern, and subjective
designer/developer preferences.

313

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 313

The content of the poolman.xml file provides instructions for PoolMan to access the MySQL database.
The configuration parameters are similar to those of DBCP. The following is a listing of the
poolman.xml configuration used:

<?xml version=”1.0” encoding=”UTF-8”?>
<poolman>

<management-mode>local</management-mode>
<datasource>

<dbname>wroxtomcat</dbname>
<jndiName>mysqlsrc</jndiName>
<driver>com.mysql.jdbc.Driver</driver>
<url>jdbc:mysql://localhost/wroxtomcat</url>
<username>empro</username>
<password>empass</password>
<minimumSize>0</minimumSize>
<maximumSize>10</maximumSize>
<connectionTimeout>600</connectionTimeout>
<userTimeout>12</userTimeout>
</datasource>

</poolman>

The following table provides a brief description of the elements in this configuration file. For a more
detailed description of the elements and allowed values, consult the PoolMan documentation.

Configuration Element Description

poolman Must be the outermost element (XML document element) of
the XML configuration file

management-mode Can be local or jmx. Local mode is started without JMX
support.

datasource Describes a pool of JDBC connections. Each <datsource>
element describes one pool of JDBC connections.

dbname The name for the pool of JDBC connections

jndiname The name used in the JNDI lookup context to locate the pool of
JDBC connections

driver The Java language class name of the JDBC driver to use

url The URL passed to the driver to access the RDBMS for connec-
tions in this pool

username The login name for accessing the RDBMS

password The password for accessing the RDBMS

minimumSize The smallest number of connections in the pool

maximumSize The maximum number of connections allowed in the pool

connectionTimeout The number of seconds to hold a connection in the pool before
closing it. A value of 600 is for 10 minutes.

314

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 314

Configuration Element Description

userTimeout The number of seconds before a JDBC connection claimed by a
user is placed back into the pool. This is used to reclaim user
connections in case user code forgets to give them back. Here,
12 seconds is more than adequate for the short queries that you
perform.

Note that the userTimeout parameter in PoolMan is directly analogous to the new removeAbandonTimeout
parameter in Tomcat 5’s DBCP pool manager.

Obtaining JDBC Connections Without JNDI Lookup
PoolMan has a rich heritage that includes support of connection pooling back in the days of JDBC 1,
before JDBC 2 became popular. In those times, it was necessary to hard-code the JDBC driver instantia-
tion and connection establishment right into the JSP. To illustrate how different such an approach may
look, this first example uses the JDBC 1 method to obtain the JDBC connection. The JSP that you create
is placed in the %CATALINA_HOME%/webapps/jsp-examples/wroxjdbc directory. The file is called
JDBCTestPM.jsp. The code is listed here, with the hard-coded JDBC portion highlighted:

<html>
<head>

<%@ page errorPage=”errorpg.jsp”
import=”java.sql.*,

javax.sql.*,
java.io.*” %>

</head>
<body>

<h1>JDBC JNDI Resource Test</h1>
<%!

public void jspInit() {
try {

Class.forName(“com.codestudio.sql.PoolMan”).newInstance();
// Use the Connection to create Statements and do JDBC work

} catch (Exception ex) {
// JSP init() cannot throw any exception

ex.printStackTrace();
}

}
%>

By overriding jspInit(), the PoolMan driver class is loaded the first time JDBCTestPM.jsp is exe-
cuted. The following highlighted code shows how to use the JDBC DriverManager class to get a JDBC
connection from PoolMan. This is the way JDBC connections were obtained with JDBC 1, before the
arrival of the JDBC 2 data source:

315

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 315

<%
Connection conn = DriverManager.getConnection(“jdbc:poolman://wroxtomcat”);
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery(“select * from employee;”);
%>
<table width=’600’ border=’1’>

<tr>

<th align=’left’>Employee ID</th>
<th align=’left’>Name</th>
<th align=’left’>Department</th>

</tr>

<%
while (rset.next()) {
%>

<tr><td> <%= rset.getString(1) %></td>
<td> <%= rset.getString(2) %></td>
<td> <%= rset.getString(4) %></td>

</tr>
<% }
if (stmt != null)

stmt.close();

conn.close();
%>

</table>
</body>

</html>

The highlighted explicit call to conn.close() ensures that the connection is returned to the pool. Note
that once the connection to the database is obtained, the code is almost identical to that of JDBCTest.jsp.
However, the necessity to hard-code the driver class loading makes the code specific to the PoolMan con-
nection manager. While this is backwardly compatible with JDBC 1, and supported by Tomcat 5, it is not a
recommended practice.

Testing PoolMan with a Legacy Hard-coded Driver
To test the JDBC 1 method of obtaining JDBC connections using PoolMan, start Tomcat 5 and try to
access the JSP via the following URL:

http://localhost:8080/jsp-examples/wroxjdbc/JDBCTestPM.jsp

The screen that you see should display data from the employee table, similar to what is shown in Figure
14-5. This is identical to the result from JDBCTest.jsp, where the default DBCP pooling was used.

The first time the preceding URL is accessed, Tomcat 5 will compile the JSP and call jspInit(), loading
the PoolMan class. The DriverManager URL lookup will then obtain the JDBC connection from
PoolMan. Your browser should display the employee table, similar to what is shown in Figure 14-5.

316

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 316

Figure 14-5: JSP-generated output from PoolMan-based JDBC tests.

Obtaining a Connection with JNDI Mapping
The PoolMan 2.0 open-source project provides JNDI support when locating a JDBC data source.
However, because of PoolMan’s vintage (the last update was in 2001), Tomcat 5–styled JNDI emulation
is not directly supported.

All that is needed for compatibility with Tomcat 5, however, is an object factory class to hand out the
required data source. This class (called com.wrox.protc5.pmfact.PoolManFactory) is provided
within the poolfact.jar file included with the code distribution (code/ch14 directory). You can use
this class to replace Tomcat’s DBCP pool manager with PoolMan as an alternative. This will enable you
to maintain JNDI-based access, keeping the application code highly portable. To use this class, copy it
to the %CATALINA_HOME%/common/lib directory.

To enable the access of PoolMan through Tomcat 5’s JNDI, it is necessary to edit the conf/server.xml
file . Within the <DefaultContext> of the host named localhost, add the following resource and
parameter declaration for the jdbc/wroxtomcat context:

317

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 317

<Resource name=”jdbc/wroxtomcat” auth=”Container”
type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/wroxtomcat”>
<parameter>

<name>factory</name>
<value>com.wrox.protc5.pmfact.PoolManFactory</value>

</parameter>
</ResourceParams>

The factory parameter overrides the default factory of org.apache.commons.dbcp.
BasicDataSourceFactory. Instead, it is using our version (in com.wrox.protc5.pmfact.
PoolManFactory), which will create PoolMan-managed data sources.

To place a test JSP into the jsp-examples Web application, you must edit the deployment descriptor
(web.xml) and add a reference <resource-ref> to the preceding resource:

<resource-ref>
<res-ref-name>jdbc/wroxtomcat</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

These configuration steps are identical to what was necessary when DBCP was used earlier in the setup
of JDBCTest.jsp. In general, this would be the way to configure any alternative pooling mechanism
that is compatible with Tomcat 5’s JNDI emulation.

Last but not least, a test JSP file must be created that makes use of the jdbc/wroxtomcat JNDI resource.
To create this JSP file, it is only necessary to make a very small change to JDBCTest.jsp. The change
required is highlighted in the following snippet, and the completed file is placed into the wroxjdbc
subdirectory of the jsp-examples Web application. The new JSP is called JDBCTestPJ.jsp.

<html>
<head>

<%@ page errorPage=”errorpg.jsp”
import=”java.sql.*,

javax.sql.*,
java.io.*,
javax.naming.InitialContext,
javax.naming.Context” %>

</head>
<body>

<h1>JDBC JNDI Resource Test</h1>
<%
InitialContext initCtx = new InitialContext();
DataSource ds = (DataSource)

initCtx.lookup(“java:comp/env/jdbc/wroxtomcat”);
Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery(“select * from employee;”);
...

318

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 318

Note that the code of JDBCTest.jsp and JDBCTestPJ.jsp is essentially identical. This demonstrates
the advantage of decoupling the application code from the RDBMS accessed via JNDI. The same code
can be used with connection pooling mechanisms from different vendors without change; only the
configuration must be modified.

The name of the JNDI resource is jdbc/wroxtomcat. Our custom com.wrox.protc5.pmfact.
PoolManFactory code uses the part after jdbc/ to find the pool to be used. In this case, wroxtomcat
matches a configured <dbname> element (see poolman.xml).

Testing PoolMan with JNDI-Compatible Lookup
To test PoolMan’s JNDI-compatible operation mode, shut down Tomcat 5 and restart it. This restart is
not strictly necessary. However, restarting Tomcat will ensure that you begin with a clean slate, as the
previous example loaded PoolMan. Next, try to access the JSP via the following URL:

http://localhost:8080/jsp-examples/wroxjdbc/JDBCTestPJ.jsp

The output from this example is again similar to what is shown in Figure 14-5.

Note that the output is indistinguishable from that of JDBCTest.jsp or JDBCTestPM.jsp, although
they each use distinctively different means to access and manage the JDBC connection used.

As of this writing, the PoolMan 2.x project has been dormant on Source Forge for more than two years.
In fact, some developers have started to fork the code base to add new functionality and fix bugs. While
the coding and design is well ahead of its time with respect to application for Tomcat, it does bring up
the issue of ongoing support for anyone who may decide to adopt this pool manager.

Deploying Third-Party Pools
Having explored the issues surrounding the integration of third-party pool managers, carefully consider
the consequences of doing so before proceeding.

Following are two main points that must be considered:

❑ Support — How well is the third-party pool manager supported? If there is any future incompat-
ibility with Tomcat, who will resolve it and how soon?

❑ Code portability — Must one sacrifice configuration flexibility when using the pool manager? Is it
necessary to hard-code driver and data source information?

Because DBCP is an Apache Commons project, it is used by many Apache Jakarta projects. As such, it is
likely to evolve and stabilize rapidly with contributions from the Jakarta community. Third-party con-
nection pool managers are unlikely to enjoy the same level of contribution and support.

In addition, because it is an essential and integral part of Tomcat 5, DBCP technology will track Tomcat
evolution and will always be tested for compatibility with every new Tomcat release.

Even if a production scenario forces the deployment of a non-standard pool manager, it is wise to con-
sider a gradual migration to standard DBCP. This is especially true if Tomcat 5 deployment is important.

319

JDBC Connectivity

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 319

Summary
This chapter explored JDBC connectivity in the context of Tomcat 5. The most obvious interaction is the
need for Web applications to connect to relational database sources.

To conclude this chapter, let’s review some of the key points that have been discussed:

❑ Java supports the accessing of RDBMSs in the form of JDBC. The evolution of JDBC versions
was examined, including coverage of each type of JDBC driver that is available.

❑ With the latest Servlet 2.4 and JDBC 3.0 standards, the recommended way of providing a JDBC
data source to Web applications involves the configuration of JNDI resources in the Tomcat
configuration file. In addition, Tomcat 5 provides a value-added database connection pooling
service. This pooling service draws on the code from the Jakarta Commons DBCP project.

❑ Using the latest MySQL and its Connector/J driver, JNDI resources can be configured for a
custom JSP that accesses RDBMS tables to generate a dynamic HTML page.

❑ Database connection pooling is required functionality for any serious Web application, but stan-
dard connection pooling on Tomcat is a relatively recent phenomenon. As a result, many current
third-party solutions are not standards-compliant. As administrators, it is important to realize
the existence of such alternatives. In fact, many legacy systems today still deploy them, and
some shared hosting ISPs require the use of them.

❑ A third-party pool manager called PoolMan can be deployed with Tomcat 5. This pool manager
replaces the built-in DBCP-based connection pool. PoolMan can use a legacy JDBC 1 mechanism
for providing pooled JDBC connection access to a Web application. As a result, the Web applica-
tion coding becomes specific to the pool manager, despite the fact that most of the application
code can be reused. This raises serious questions about the actual value of such a third-party
pool manager. However, it is possible to make this pool manager “Tomcat 5 JNDI-compatible”
using a custom adapter/factory class. By using the custom factory, the Web application coding
remains portable, and independent of the pool manager mechanism used. This example illus-
trates that the flexible JNDI-based data source distribution is not limited to Tomcat 5’s built-in
DBCP based pool manager, but can be leveraged by any third-party pool manager as well.

Chapter 15 examines Tomcat security.

320

Chapter 14

b 559028 Ch14.qxd 4/22/04 3:59 PM Page 320

Tomcat Security

Perhaps no topic in the computing industry receives more emphasis than security, and for good
reason. As network computing enters the twenty-first century, it is more clear than ever that the
Internet is not a safe place. Attacks can be simple pranks (such as defacing a Web site), or take
much more serious forms, such as industrial espionage, sabotage, or the theft of consumer infor-
mation. System administrators must take many steps to secure network-exposed systems and
services (such as Tomcat) against such aggressions.

This chapter describes several steps you can take to secure Tomcat against intrusions:

❑ Securing Tomcat against common attacks

❑ Running Tomcat with an unprivileged user account

❑ Locking down the file system

❑ Limiting access to Web applications with authentication Realms

❑ Encrypting communications between Tomcat and application clients with SSL

The discussion of these security issues is not entirely platform-agnostic. However, this chapter
does not attempt to provide platform-specific instructions for all operating systems. Where appro-
priate, specific instructions are provided for Windows 2000/XP and Linux operating systems.
Despite some pockets of platform-specificity, the principles shared in this chapter are applicable
to any secure operating system.

Securing the Tomcat Installation
By default, Tomcat ships with several Web applications installed and ready to run, including the
following:

❑ ROOT— Contains the simple default welcome page

❑ tomcat-docs— Tomcat documentation

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 321

❑ jsp-examples and servlets-examples— Simple examples of JSPs and Servlets demonstrat-
ing Tomcat’s standards compliance

❑ admin and manager— Two powerful Web applications to make administering Tomcat more
convenient

Some of these applications present a security risk. The following sections examine the risks posed by
each application and, where necessary, offer solutions to reduce or eliminate those risks.

ROOT and tomcat-docs
The ROOT and tomcat-docs applications present a very minimal risk. Many users will define a new
root Web application; in these situations, ROOT will be effectively removed. Otherwise, ROOT should be
deleted. It is implemented as a JSP so a potential exploit could exist. The risk is remote, but because the
ROOT application provides no useful functionality, no benefit is obtained by keeping it around.

tomcat-docs contains no JSPs or Servlets, and its content is freely available in many other locations on
the Web. It poses no known security risks.

Admin and Manager
Of the default applications, admin and manager present the greatest security risks by virtue of their
powerful functionality. If Tomcat is installed by extracting files from an archive, these two applications
are effectively disabled; no account has access to use them. For maximum security, system administra-
tors can leave these applications disabled, or even delete them completely by removing their directories:

$CATALINA/server/webapps/admin
$CATALINA/server/webapps/manager

Note, however, that users who have installed Tomcat via the Windows installation program are prompted
to create an account that has access to these applications. In this situation, the applications are not effec-
tively disabled by default, and the steps listed below are especially important.

These applications are very useful, and they are not inherently insecure. Deleting them is certainly not a
requirement for securing a Tomcat installation. Two simple steps can be taken to reduce the chances that
these applications will be exploited.

First, choose a non-obvious account name and a secure password. Chapter 5 and Chapter 7 discuss
how to configure these applications; be sure to use a user name other than “tomcat,” “root,” “admin,” or
the like. In addition, choose passwords with a combination of mixed case letters, numbers, and punctua-
tion characters.

Second, change the default context of these applications (that is, the URL used to access these applica-
tions) by editing the following two files:

$CATALINA/conf/Catalina/localhost/admin.xml
$CATALINA/conf/Catalina/localhost/manager.xml

322

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 322

The context can be changed to any value. The following code listing shows two lines from admin.xml
that reconfigure the admin application from its default context of /admin to the new value of
/mytomcatadminapp:

<Context path=”/mytomcatadminapp” docBase=”../server/webapps/admin”
debug=”0” privileged=”true”>

After making this change, the admin application would be accessible at the following URL:

http://localhost:8080/mytomcatadminapp

A similar change to manager.xml can also be made. By changing the context path, it will be much more
difficult for malicious hackers to mount brute force attacks against these applications.

Further Security
Changing the context and choosing a good user name and password are two effective, simple ways to
increase the security of the management applications. However, you can take some additional steps
to lock them down even further, including the following:

❑ Change the application’s authentication mechanism from BASIC to a more secure type. See the
section “Authentication and Realms,” later in this chapter for more details on this approach.

❑ Only allow specific client addresses (hosts) to access these applications. This is covered in the
section “Host Restriction,” later in this chapter.

jsp-examples and servlets-examples
While neither of these applications presents any known security risks (other than providing obvious tar-
gets for Denial of Service attacks), it’s a good idea to delete them. They provide no useful functionality,
and the possibility exists that attackers can exploit them. They are located as follows:

$CATALINA/webapps/jsp-examples
$CATALINA/webapps/servlets-examples

Deleting these applications is as simple as erasing these directories recursively.

Changing the SHUTDOWN Command
By default, the Tomcat SHUTDOWN command works by connecting to a special Tomcat socket on port 8005
and sending the following character sequence:

SHUTDOWN

Tomcat provides no authentication mechanism to restrict clients from connecting to Tomcat, sending
these characters, and shutting down Tomcat. You can try it yourself by using telnet.

323

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 323

The easiest way to prevent unauthorized use of this functionality is by blocking port 8005 with a fire-
wall. If this is not possible for whatever reason, system administrators should change both the port and
the SHUTDOWN character sequence. This can be done by editing the following line of the
$CATALINA/conf/server.xml file:

<Server port=”8006” shutdown=”putdown” debug=”0”>

In this example, the port has been changed to 8006 and the character sequence to putdown.

Running Tomcat with a Special Account
Despite the best efforts of Tomcat’s authors, application developers, and system administrators, there is
a chance that Tomcat can be exploited. Thus, it is prudent to consider mechanisms that prevent the
amount of damage that an attacker could incur by gaining control of Tomcat.

Perhaps the most effective damage-control mechanism is running Tomcat under its own account, an
account with only those privileges necessary to run Tomcat and nothing more. If this strategy is used,
hackers who gain control of Tomcat are presented with few ways to wreak havoc.

The following sections describe the process of running Tomcat with its own account.

Creating a Tomcat User
The first step in the process is to create an account for running Tomcat. For simplicity, this account will
referred to as tomcat in the remainder of this section.

Be sure to configure the tomcat account with the environment variables required to run Tomcat —
notably, the JAVA_HOME and CATALINA_HOME variables.

Windows Tip
To ensure that unintentional privileges are not extended to the account, the tomcat account should be
removed from all groups. When creating a user from the Users and Passwords control panel (called User
Accounts in Windows XP), Windows automatically adds tomcat to at least one group. The Computer
Management utility must be used to remove the tomcat account from all groups. System administrators
may want to consider creating a special “Restricted Services” group for the tomcat account (more on
this strategy will follow in subsequent paragraphs). Note also that the tomcat account should be given a
password that never expires, which can be accomplished with the same Computer Management utility.

Linux Tip
Create both a tomcat user and a tomcat group. This is the default behavior of the useradd command.
By assigning tomcat to its own new group, system administrators ensure that privileges are not unin-
tentionally granted to the account.

Running Tomcat with the Tomcat User
After creating the tomcat account, the operating system must be configured to use the account when
launching Tomcat.

324

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 324

Configuring Windows
If Tomcat is configured to run as a service (see Chapter 3 for details), the Services utility can be used to select
a user account for use when launching Tomcat. The Services utility can be found in the Administrative Tools
folder, which in turn is located in the Control Panel folder.

To change the account, double-click on the Tomcat service and select the Log On tab. That tab provides
the capability for the service to “log on as” a specific account. Enter the tomcat account and its pass-
word in the appropriate locations. The service should then be restarted for the new setting to take effect.

If Tomcat is not configured to run as a service, the Windows runas utility can be used to run Tomcat as
the tomcat user. The syntax of this utility is shown here:

runas /user:tomcat c:\tomcat\bin\startup.bat

Configuring Linux
There’s no one way to configure a Linux system to start up Tomcat with its own user account. The basic
idea is to launch Tomcat using a syntax similar to the following in whatever startup scheme is used:

/bin/su tomcat $CATALINA_HOME/bin/startup.sh

A typical configuration might use a script such as the following in /etc/init.d (or wherever init
scripts are stored):

#!/bin/bash
RETVAL=$?
export JAVA_HOME=/usr/java/jdk
export CATALINA_HOME=/usr/local/java/jakarta-tomcat

case “$1” in
start)

if [-f $CATALINA_HOME/bin/startup.sh];
then

echo $”Starting Tomcat”
/bin/su tomcat $CATALINA_HOME/bin/startup.sh

fi
;;

stop)
if [-f $CATALINA_HOME/bin/shutdown.sh];

then
echo $”Stopping Tomcat”
/bin/su tomcat $CATALINA_HOME/bin/shutdown.sh

fi
;;

*)
echo $”Usage: $0 {start|stop}”
exit 1
;;

esac

exit $RETVAL

325

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 325

The script in /etc/init.d can then be configured to load on startup by creating links to it in the
desired run-level directories or by using a graphical configuration client, depending on the distribution
of Linux used.

Securing the File System
Configuring Tomcat to run with its own user account is only useful if the account is sufficiently impo-
tent, to prevent havoc from being wreaked. Effectively, this means reducing the scope of the account’s
file system permissions to the minimum set required to perform the job.

Windows File System
Windows has two different types of file systems: FAT32 and NTFS. FAT32 is inherently insecure and not
capable of being “locked down.” It is, however, an excellent choice for system administrators if instabil-
ity, limitations, and inefficiency are considered virtuous. NTFS, conversely, has all the necessary features
for restricting the tomcat user’s capabilities.

The type of file system being used can be determined by viewing the properties of the hard drive parti-
tion in question in the My Computer window. Windows supports upgrading FAT32 partitions to NTFS.
Note, however, that once a partition has been changed to NTFS, it cannot revert back to FAT32.

Access Control Lists
NTFS security is built around the concept of access control lists (ACLs). Every resource in the file sys-
tem (that is, files and directories) has an ACL that is associated with it. The ACL contains a list of users
and groups and the operations that the users/groups are permitted to perform. The set of allowed oper-
ations for a user or group is that entity’s permissions.

By default, Windows allows all users to access any resource in the file system, with the exception of
sensitive areas, such as the Windows directory itself and the profile resources of other users. For the
purposes of securing a Tomcat installation, these permissions are too liberal.

The instructions in this section are intentionally minimal, because this book is not intended for use as a
Windows administration guide.

Restricting Permissions
To accomplish the stated goal of reducing tomcat’s permissions to the minimum required, all default
permissions granted to the account must be revoked. To do this, the tomcat account must be explicitly
denied access to every resource in the file system, and then selectively granted access to the necessary
resources.

Use the following steps to revoke tomcat’s permissions:

1. Right-click on the first drive partition in the My Computer window.

2. Select the Properties context menu item.

3. Select the Security tab.

326

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 326

4. Click on the Add... button.

5. Select the tomcat account.

6. Click every Deny checkbox.

7. Click the Advanced... button.

8. Select the “Reset permissions on all child objects and enable propagation of inheritable
permissions” checkbox.

9. Click OK.

10. Wait while Windows modifies every ACL in the partition’s file system.

11. Repeat these steps with all partitions.

Granting Permissions
To do its job, the tomcat account must have permission to read and execute the JRE files. Thus, the next
step in the process is to grant these permissions to the tomcat account. This is accomplished by a similar
process to the one discussed previously. To start, select the directory containing the JRE used to run
Tomcat, and view the Security properties of the directory. The tomcat account should be present in the
list of groups and users. Removing the tomcat account with the Remove button is sufficient to grant
access to run Tomcat. Propagating this change to all child objects is also necessary using the same pro-
cess discussed previously.

For maximum security, the Everyone group should be removed from the JRE directory’s ACL, and the
tomcat user should be added to it, and given only the following permissions: “Read & Execute, List
Folder Contents, and Read. However, this necessitates explicitly granting these permissions to every
user who needs to use Java, which can become tedious. This illustrates the utility of creating a series of
groups that has access to certain areas of the file system. For example, users who need access to Java
can be given membership in the Java Users group. Users who need the capability to manipulate the con-
tents of the Java directory can be given membership in a group called Java Developers. The extra time
required to configure such a setup can be well worth the added security and scalability as more users
are added.

The tomcat account also needs access to the tomcat directory. These permissions can be granted with
the same procedure used to grant access to the Java directory. For maximum security, only grant read
access to the following directories:

$CATALINA/bin
$CATALINA/common
$CATALINA/server
$CATALINA/shared
$CATALINA/webapps

Note that $CATALINA/conf must have write permissions to function if Tomcat’s default UserDatabase
implementation is used for user authentication. In addition, note that making the $CATALINA/webapps
directory read-only can cause problems if Web applications modify files in their directories, or if the
Tomcat manager application is used to deploy new Web applications.

327

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 327

Linux File System
Securing the Linux file system requires two steps: granting the tomcat account read and execute per-
missions on the JRE directory (recursively), and granting it read, write, and execute permissions on the
Tomcat directory. There are numerous ways to effectively grant these permissions. Following is one
strategy:

❑ Recursively set the “other” permissions on the JRE directory to read and execute with the chmod
command:

chmod -R o=rx *

❑ Recursively set the owner of the Tomcat directory to the tomcat account:

chown -R tomcat:tomcat *

For additional security, the owner, group, and other permissions for the following Tomcat directories can
be set to read-only:

$CATALINA/bin
$CATALINA/common
$CATALINA/server
$CATALINA/shared
$CATALINA/webapps

Note that $CATALINA/conf must have write permissions to function if Tomcat’s default UserDatabase
implementation is used for user authentication. In addition, note that making the $CATALINA/webapps
directory read-only can cause problems if Web applications modify files in their directories, or if the
Tomcat manager application is used to deploy new Web applications.

Securing the Java Vir tual Machine
Configuring the file system for maximum security is an important part of securing a Tomcat installation.
Java’s Security Manager architecture exposes an entirely different level of configurability. With the
Security Manager, Java applications can be restricted from accessing features of the Java language and
platform in a remarkably fine-grained manner.

This security architecture is turned off by default, but it can be turned on at any time. In this section, the
Security Manager architecture is reviewed in general terms, followed by a discussion of how this archi-
tecture specifically applies to Tomcat.

Overview of the Security Manager
As with the file system, the Security Manager architecture is based on the concept of permissions.
Once the Security Manager is turned on (using a command-line switch that will be discussed shortly),
applications must have explicit permission to perform certain security-sensitive tasks (such as creating
a custom class loader or opening a network socket).

To make effective use of the Security Manager architecture, it is therefore necessary to know how to
grant permissions to applications and to understand the set of possible permissions.

328

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 328

Granting Permissions to Applications
Policy files are the mechanism used by the Security Manager to grant permissions to applications. Policy
files are simple text files composed of individual actions that applications are allowed to perform.

A policy file is composed of grant entries, which look like the following:

// first grant entry
grant {

permission java.lang.RuntimePermission “stopThread”;
}

// second grant entry
grant codeBase “file:${java.home}/lib/ext/*” {

permission java.security.AllPermission;
};

The first grant entry in this example demonstrates the simplicity of the syntax. It grants all applications
the capability to access the deprecated Thread.stop() method.

The second grant entry illustrates that code in specific locations can also be granted permissions. This
is, of course, useful for extending permissions to certain trusted code while denying permissions to
all other code. In this case, all code in the $JAVA_HOME/lib/ext directory is granted all permissions,
which effectively disables the Security Manager architecture for that code.

Grant Entry Syntax
Each grant entry must be composed of the following syntax:

grant codeBase “URL” {
// this is a comment
permission permission_class_name “target_name”, “action”;
...

};

Note that comments in policy files must begin with // on each line. As shown in the first grant entry
earlier, the codeBase attribute is optional. codeBase specifies a URL to which all the permissions
should apply. The syntax is shown in the following table.

codeBase Example Description

file:/C:/myapp/ Indicates that code in the directory c:\myapp will be assigned
the permissions in the grant block. Note that the slash (/) indi-
cates that only class files in the directory will receive the permis-
sions, not any JAR files or subdirectories.

http://java.sun.com/* All code from the specified URL will be granted the permissions.
In this case, the “/*” at the end of the URL indicates that all class
files and JAR files will be assigned the permissions, but not any
subdirectories.

file:/funstuff/- All code in the /funstuff directory will be granted the permis-
sions. The slash (/-) indicates that all class files and JAR files in the
directory and its subdirectories will be assigned the permissions.

329

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 329

Within the grant block, one or more permissions can be assigned. Each permission consists of a permis-
sion class name and, in some cases, an additional target that identifies a specific permission within the
permission class. Some permission targets can additionally take parameters, called actions. Following
are some examples of permissions:

grant {
// allows applications to listen on all ports
permission java.net.SocketPermission “localhost”, “listen”;

// allows applications to read the “java.version” property
permission java.util.PropertyPermission “java.version”, “read”;

}

Available Permissions
Permissions are defined by special classes that ultimately inherit from the abstract class java.security.
Permission. Most permission classes define special targets that represent a security permission that can
be turned on and off.

For example, the java.lang.RuntimePermission class defines the targets shown in the following
table. (Note that this is not a complete list.)

Target Name Description

createClassLoader Allows an application to create a custom class loader

exitVM Allows an application to exit the JVM via the
System.exit() method

As of Java 1.4, there are 19 different permission classes offering control over various permissions. The
following table shows a partial list of these classes to demonstrate the breadth of what is possible with
permissions. This list is not an exhaustive listing of all possible permission targets. The complete list of
permission classes and their targets can be viewed at the following URL:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Permission Class Description

java.security.AllPermission By granting this permission, all other permis-
sions are also granted. Granting this permission
is the same as disabling the Security Manager
for the affected code.

java.security.SecurityPermission Allows programmatic access to various security
features of the Java language

330

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 330

Permission Class Description

java.security.UnresolvedPermission This permission class is not defined in policy files.
Rather, it is used as a placeholder when a policy
file makes reference to a user-defined permission
class that had not been loaded at the time of pro-
cessing the policy file. This permission is only rel-
evant to those interacting with the Security
Manager system programmatically at run-time.

java.awt.AWTPermission Controls various AWT permissions

java.io.FilePermission Restricts read, write, execute, and delete access
to files in specified paths

java.io.SerializablePermission Allows serialization permissions

java.lang.reflect.ReflectPermission Allows applications to circumvent the public
and private mechanism’s access checks and
reflectively access any method

java.lang.RuntimePermission Allows access to key run-time features, (such as
creating class loaders, exiting the VM, and reas-
signing STDIN, STDOUT, and STDERR)

java.net.NetPermission Allows various network permissions

java.net.SocketPermission Allows incoming socket connections, outgoing
connections, listening on ports, and resolving
host names. These permissions can be defined
for specific host names and port combinations.

java.sql.SQLPermission While this may sound intriguing, it only controls
a single permission: setting the JDBC log output
writer. This file is considered sensitive because it
may contain user names and passwords.

java.util.PropertyPermission Controls whether properties can be read from or
written to

java.util.logging.LoggingPermission Allows the capability to configure the logging
system

javax.net.ssl.SSLPermission Allows the capability to access SSL-related net-
work functionality

javax.security.auth.AuthPermission Controls authentication permissions

javax.security.auth. and Controls various security permissions
PrivateCredentialPermission

javax.security.auth.kerberos. Controls various security permissions related to
and DelegationPermission the Kerberos protocol

javax.security.auth.kerberos. Controls various security permissions related to
and ServicePermission the Kerberos protocol

javax.sound.sampled.AudioPermission Controls access to the sound system

331

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 331

Enabling the Security Manager System
The Security Manager system is enabled by passing the -Djava.security.manager parameter to the
Java Virtual Machine at startup, in the following manner:

$ java –Djava.security.manager MyClass

By default, Java looks for the file $JAVA_HOME/lib/security/java.policy to determine what
permissions to grant when the Security Manager is turned on.

For more information on enabling the Security Manager and using custom policy files, see the
following URL:

http://java.sun.com/j2se/1.4/docs/guide/security/PolicyFiles.html

Advanced Security Manager Topics
There are additional Security Manager topics that are simply beyond the scope of this chapter. For exam-
ple, it is possible to subclass the default Java Security Manager implementation to provide for custom
permission classes. It is further possible to define grant blocks in policy files based on code signatures.
For information on these and other advanced topics, check out the following URL:

http://java.sun.com/j2se/1.4/docs/guide/security/

Using the Security Manager with Tomcat
Now that the basics of the Security Manager system have been covered, their use with Tomcat will be
explained.

Enabling Tomcat’s Security Manager
The preferred way to start Tomcat with the Security Manager enabled on Linux systems is as follows:

$ $CATALINA_HOME/bin/catalina.sh start –security

On Windows systems, the command is quite similar:

> %CATALINA_HOME%\bin\catalina start –security

Tomcat’s Policy File
Tomcat uses the $CATALINA_HOME/conf/catalina.policy file to determine its own permissions and
those of its Web applications.

What follows is the file as of Tomcat 5. Note that it is divided into three sections: system code permis-
sions, Catalina code permissions, and Web application code permissions.

System Code Permissions
Tomcat’s policy file grants all permissions to the javac tool, which is used to compile JSPs into Servlets,
and grants all permissions to any Java standard extensions. Four grant lines are used instead of two to
deal with multiple path possibilities. Note that administrators may need to add additional grants to

332

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 332

this section if the JRE used to run Tomcat uses different paths for its standard extensions (such as Mac
OS X) and Tomcat Web applications are using JARs or classes in those paths.

// ========== SYSTEM CODE PERMISSIONS ===

// These permissions apply to javac
grant codeBase “file:${java.home}/lib/-” {

permission java.security.AllPermission;
};

// These permissions apply to all shared system extensions
grant codeBase “file:${java.home}/jre/lib/ext/-” {

permission java.security.AllPermission;
};

// These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre
grant codeBase “file:${java.home}/../lib/-” {

permission java.security.AllPermission;
};

// These permissions apply to all shared system extensions when
// ${java.home} points at $JAVA_HOME/jre
grant codeBase “file:${java.home}/lib/ext/-” {

permission java.security.AllPermission;
};

Catalina Code Permissions
Note that Catalina grants all permissions to the following:

❑ Tomcat’s startup classes ($CATALINA/bin/bootstrap.jar and $CATALINA/bin/commons-
launcher.jar)

❑ The common class loader files ($CATALINA/common/lib and $CATALINA/common/classes)

❑ The server class loader files ($CATALINA/server/lib and $CATALINA/server/classes)

// ========== CATALINA CODE PERMISSIONS =======================================

// These permissions apply to the launcher code
grant codeBase “file:${catalina.home}/bin/commons-launcher.jar” {

permission java.security.AllPermission;
};

// These permissions apply to the server startup code
grant codeBase “file:${catalina.home}/bin/bootstrap.jar” {

permission java.security.AllPermission;
};

// These permissions apply to the servlet API classes
// and those that are shared across all class loaders
// located in the “common” directory
grant codeBase “file:${catalina.home}/common/-” {

permission java.security.AllPermission;

333

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 333

};

// These permissions apply to the container’s core code, plus any additional
// libraries installed in the “server” directory
grant codeBase “file:${catalina.home}/server/-” {

permission java.security.AllPermission;
};

Web Application Permissions
Tomcat allows read access to various system properties and other miscellaneous permissions as
commented here:

// ========== WEB APPLICATION PERMISSIONS =====================================

// These permissions are granted by default to all web applications
// In addition, a web application will be given a read FilePermission
// and JndiPermission for all files and directories in its document root.
grant {

// Required for JNDI lookup of named JDBC DataSource’s and
// javamail named MimePart DataSource used to send mail
permission java.util.PropertyPermission “java.home”, “read”;
permission java.util.PropertyPermission “java.naming.*”, “read”;
permission java.util.PropertyPermission “javax.sql.*”, “read”;

// OS Specific properties to allow read access
permission java.util.PropertyPermission “os.name”, “read”;
permission java.util.PropertyPermission “os.version”, “read”;
permission java.util.PropertyPermission “os.arch”, “read”;
permission java.util.PropertyPermission “file.separator”, “read”;
permission java.util.PropertyPermission “path.separator”, “read”;
permission java.util.PropertyPermission “line.separator”, “read”;

// JVM properties to allow read access
permission java.util.PropertyPermission “java.version”, “read”;
permission java.util.PropertyPermission “java.vendor”, “read”;
permission java.util.PropertyPermission “java.vendor.url”, “read”;
permission java.util.PropertyPermission “java.class.version”, “read”;
permission java.util.PropertyPermission “java.specification.version”, “read”;
permission java.util.PropertyPermission “java.specification.vendor”, “read”;
permission java.util.PropertyPermission “java.specification.name”, “read”;

permission java.util.PropertyPermission “java.vm.specification.version”, “read”;
permission java.util.PropertyPermission “java.vm.specification.vendor”, “read”;
permission java.util.PropertyPermission “java.vm.specification.name”, “read”;
permission java.util.PropertyPermission “java.vm.version”, “read”;
permission java.util.PropertyPermission “java.vm.vendor”, “read”;
permission java.util.PropertyPermission “java.vm.name”, “read”;

// Required for OpenJMX
permission java.lang.RuntimePermission “getAttribute”;

// Allow read of JAXP compliant XML parser debug

334

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 334

permission java.util.PropertyPermission “jaxp.debug”, “read”;

// Precompiled JSPs need access to this package.
permission java.lang.RuntimePermission

“accessClassInPackage.org.apache.jasper.runtime”;
permission java.lang.RuntimePermission

“accessClassInPackage.org.apache.jasper.runtime.*”;
};

Note that system administrators are not only free to modify Tomcat’s policy file, they are encouraged to
do so. Once the Security Manager has been enabled, it’s likely that changes to it will be required in order
for certain aspects of deployed Web applications to function.

Recommended Security Manager Practices
Now that the process of enabling the Security Manager with Tomcat has been described, as well as the
location of Tomcat’s policy file, recommended practices for granting permissions to applications can be
discussed.

Using the Security Manager
If the Security Manager is not used with Tomcat, any JSP or class file is free to perform any action it
desires. This includes opening unauthorized connections to other network hosts, destroying the file
system, or abnormally terminating Tomcat itself by issuing the System.exit() command.

Clearly, to maintain a secure Tomcat installation, the Security Manager should be enabled, and fine-
grained permissions should be set.

Understanding Application Requirements
If Tomcat’s default policy file is enabled, Web applications are likely to find themselves unable to per-
form certain required functions. Consider the following tasks that are unauthorized with Tomcat’s
default policy configuration:

❑ Creating a class loader

❑ Accessing a database via a socket (for example, the MySQL JDBC driver trying to establish a
connection with a MySQL database)

❑ Sending an e-mail via the JavaMail API

❑ Reading or writing to files outside of the Web application’s directory

There are a myriad of permissions that an application may require. System administrators must commu-
nicate with the application developers to understand which permissions the Web applications will
require.

Examples for enabling some of the common permissions listed here are reviewed in the next section. To
learn about other permissions, review the Java Security documentation links provided earlier in this
chapter.

335

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 335

Enabling Creation of a Class Loader
The following example shows how to give a specific Web application, yourWebApp, the capability to
create a class loader:

grant codeBase “file:${catalina.home}/webapps/yourWebApp/WEB-INF/-” {
permission java.lang.RuntimePermission “createClassLoader”;

};

Enabling JDBC Drivers to Open Socket Connections to Databases
The following example shows how to allow all Web applications access to a specific database running on
the host db.server.com on port 54321:

grant codeBase “file:${catalina.home}/webapps/-” {
permission java.net.SocketPermission “db.server.com:54321”, “connect”;

};

Note that the preceding example allows all code in all of your Web applications to connect to
db.server.com:54321. If this is too much of a security risk, the JDBC driver can be explicitly granted
permission individually:

grant codeBase “file:${catalina.home}/webapps/webAppName/WEB-INF/lib/JDBC.jar” {
permission java.net.SocketPermission “db.server.com:54321”, “connect”;

};

Sending E-Mail with JavaMail
Sending e-mail requires that a Web application have access to port 25 on an SMTP server. The following
example shows how to grant this permission to all classes in a Web application:

grant codeBase “file:${catalina.home}/webapps/myWebApp/WEB-INF/classes/-” {
permission java.net.SocketPermission “mail.server.com:25”, “connect”;

};

Reading or Writing to Files Outside of the Web Application’s Directory
Earlier in this chapter, the topic of securing the file system was discussed. If the file system has been
properly secured, the following grant can be used to give Web applications full access to the file system
(and thus rely on the operating system to enforce permissions):

grant {
java.io.FilePermission “<<ALL FILES>>”, “read,write,execute,delete”;

};

While it may be tempting to use the Java Security Model in place of securing the file system via operat-
ing system permissions, such a tactic would be unwise. Relying on the operating system provides an
important extra layer of security in the event that the Java Virtual Machine itself becomes compromised
and exploited. Additionally, in many configurations, it is likely that Tomcat is not the only exploitable
network service on the server — another good reason to utilize the operating system’s security model,
as Tomcat’s security settings would not apply to the other services.

336

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 336

In addition, note that by default, all Java applications do have read access to the directory in which they
are located, including its subdirectories.

Securing Web Applications
The previous sections have been concerned with securing the Tomcat installation and the Java Virtual
Machine. In this section, techniques for securing individual Web applications are considered. These
techniques fall under the following categories:

❑ Authentication and Realms

❑ Encryption

❑ Host Restriction

Note that these techniques can also be applied to Tomcat’s built-in applications, as mentioned earlier in
the section “Admin and Manager.”

Authentication and Realms
Authentication is the process of determining and validating the identity of an application’s client. The
Servlet specification provides an integration with the Java Authentication and Authorization Service
(JAAS) API. This enables Web applications to authenticate their users in a standard way that is portable
across different Servlet containers.

Some Java developers have been known to eschew open standards in favor of their own. It is entirely
possible (and indeed somewhat common) for Servlet developers to authenticate users via some home-
grown mechanism, rather than via the JAAS/Servlet standard mechanism discussed subsequently in
this section. System administrators should be aware that in such circumstances, this section will be of
little utility.

Authentication Mechanisms
Serlvet-based applications have four standards-based authentication mechanisms from which to choose:

❑ BASIC

❑ DIGEST

❑ Form

❑ HTTPS Client Certificate

A brief description of these mechanisms follows. Later in this chapter, their use is demonstrated.

337

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 337

BASIC
As its name implies, the BASIC authentication mechanism is simplistic. The browser sends base64-
encoded credentials to the server, which then decodes them and uses them to authenticate the user.
This mechanism has two somewhat serious problems:

❑ Base64 encoding is not secure. Base64 is intended as a means of encoding binary data as ASCII
data for transmission via protocols that lack support for binary data. It is not a type of secure
encryption mechanism. In the case of the BASIC authentication mechanism, base64 is better
than sending credentials in plaintext, but not much better.

❑ Browsers cache credentials after authentication. Once a user authenticates, there is no way for
the user to log out other than exiting the browser. This disadvantage also applies to the other
browser-managed authentication mechanisms, such as Digest and HTTPS Client Certificate.

Nevertheless, despite its insecurity, BASIC remains a good option for a simple level of security designed
to keep out the “mindless hordes.” When administrators really don’t care if the protected resource is
compromised, BASIC is not a bad mechanism to use.

DIGEST
DIGEST is a step up from BASIC. Another browser-based mechanism, DIGEST is very similar to BASIC
with the exception that the password is transmitted in a secure fashion. The browser performs a digest
on the password (a digest is a one-way hash, as explained shortly) and transmits the digest to the server.
The server then digests the password to which the browser-provided password digest will be compared,
and if the two match, the authentication is successful.

DIGEST is reasonably secure, but it too suffers from two flaws:

❑ In Tomcat, the original password must be stored somewhere in plaintext. This is especially unfor-
tunate when the password is stored in a file, as it can then be easily viewed by anyone with
access to the file. (A workaround is possible using file permissions to secure access to the file.)

❑ It has the same cached credential problem that BASIC has. (See the preceding section, “BASIC,”
for details.)

A digest, also called a hash, is used to provide proof that a set of data hasn’t been nefariously (or unin-
tentionally) altered.

A hashing algorithm takes some data as input and from it creates a unique fingerprint (which is usually
16 or 20 bytes long). This is a one-way process, meaning that the digest cannot be undigested to discover
the original data. Because each fingerprint is unique, the digest of the original data can be compared
with a digest of a second set of data. If the digests match, then the second set of data is proved to be
identical to the original digest of data. If two sets of data are purported to be identical, they are con-
firmed as such.

This process can be applied to passwords by digesting the password and storing its digest in a file or
database. Thus, even if the stored password digest is compromised, an attacker cannot “undigest” the
password the hash represents, and it is thus unusable. To determine whether a user has entered the same
password, the user’s password is digested and compared with the digest value on file. If they match, it
is the same password.

338

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 338

Java supports two digest algorithms:

❑ MD5 — This algorithm is used in several password-storage mechanisms, including many Unix
systems. MD5 produces a 16-byte message digest.

❑ SHA — This algorithm is more secure than MD5 as it uses a 20-byte message digest.

Form
In form-based authentication, the browser does not knowingly cooperate in the authentication process.
Instead, the Web application creates an HTML form wherein the form name and user name and pass-
word fields all have special names. These fields can then be intercepted by the Servlet container, which
uses the data to provide authentication.

Because an HTML form can be transmitted over an encrypted connection (HTTPS), form-based authenti-
cation can be made reasonably secure. It does suffer from at least one disadvantage, however:

❑ Reliance on user names/passwords as credentials. While the form-based mechanism can trans-
mit credentials after they have been encrypted with HTTPS, the authentication mechanism is
still reliant on passwords, which can be defeated either by brute force or by social engineering.

HTTPS Client Certificate
When a browser establishes a secure connection with a server, the browser is sent a public key certificate
from the server. This certificate enables the browser to authenticate the server. That is, it enables the
browser to know the true identity of the server as certified (signed) by a trusted third party (such as
VeriSign). This authentication mechanism enables the browser to be certain of the identity of the server,
so that sensitive transactions such as e-commerce can be conducted. Note, however, that this process is
asymmetric; the server does not receive a certificate from the client.

The HTTPS client certificate mechanism upgrades this process to be symmetrical. With this mechanism,
the Web browser transmits a public key certificate to the server, which can then use the certificate to
authenticate the client. Both parties, therefore, are authenticated with each other. Note, however, that
most server-based applications rely on simpler mechanisms to authenticate their clients (such as an
HTML form-based mechanism).

The HTTPS client certificate mechanism is, of course, quite secure. If the public key architecture upon
which HTTPS client authentication is based were defeated, the very basis of secure e-commerce would
fall with it. Beyond this apocalyptic scenario, however, are some potential weaknesses:

❑ Key length — The most important factor in the security of public key encryption is the length of
the key used to encrypt the messages. As computing evolves and computing power increases,
ever larger keys will be needed to maintain security against brute force hack attempts.
Administrators should stay informed about public key architecture issues and upgrade the
keys used should this become necessary in the future.

❑ Theft — The fundamental assumption of public key authentication is that the corresponding pri-
vate key is only available to the trusted party. Should the private key be stolen, the authentica-
tion would be compromised.

339

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 339

While quite secure, the HTTPS client certificate mechanism is rarely used outside of business-to-business
applications because of the complexity of the process one must go through to obtain a certificate.

Configuring Authentication
In order for a Web application to use one of the authentication mechanisms just described, it must be
configured to do so inside its deployment descriptor (web.xml file). This is accomplished by adding
<security-constraint> and <login-config> elements to the <web-app> element. These elements
are discussed in Chapter 6. An example of their use is shown here:

<web-app ...>
<security-constraint>

<web-resource-collection>
<web-resource-name>Entire Application</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>user</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<realm-name>My Application</realm-name>
<form-login-config>

<form-login-page>/login.jsp</form-login-page>
<form-error-page>/notAuthenticated.jsp</form-error-page>

</form-login-config>
</login-config>

</web-app>

In this code excerpt, the <security-constraint> element is used to define a portion of the application
that is restricted to users belonging to a specific role. The <url-pattern> element uses URL pattern
matching to determine the protected portion of the application (in this case, the entire application), and
the <role-name> element is used to restrict that portion of the application to authenticated users who
belong to the “user” role. For more information on roles, see the section “Users and Roles,” later in this
chapter.

The <login-config> element is used to specify how users authenticate with the Web application.
<auth-method> determines which of the authentication mechanisms described here is used. Possible
values include BASIC, DIGEST, FORM, and CLIENT-CERT. Because we’ve chosen FORM, the <form-login-
config> element must be nested in the <login-config> element. <form-login-config> identifies
which page in the Web application is used to authenticate the user (/login.jsp) and which page is dis-
played when authentication fails (/notAuthenticated.jsp). No page is configured to be displayed
when authentication succeeds. Instead, the user is presented with the URL that triggered the authentica-
tion in the first place.

340

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 340

Authentication Form
In the preceding example, the URL /login.jsp is used to specify the login form. While any valid
HTML page containing an HTML form may be used, the HTML form used to send the credentials to the
server must be configured in three specific ways:

❑ The value of its <form> element’s action attribute must be “j_security_check”.

❑ The user name must be sent in a field named “j_username”.

❑ The password must be sent in a field named “j_password”.

Following is an example of a conforming form:

<html>
<head><title>Please Log In</title>
<body>

<form method=”POST” action=”j_security_check”>
<table>

<tr>
<th>Username:</th>
<td><input type=”text” name=”j_username”></td>

</tr>
<tr>

<th>Password:</th>
<td><input type=”password” name=”j_password”></td>

</tr>
<tr>

<td><input type=”submit” value=”Log In”></td>
<td><input type=”reset”></td>

</tr>
</table>

</form>
</body>

</html>

The error page can contain any HTML that conveys to the user the fact that the authentication attempt
failed.

Security Realms
The authentication mechanism descriptions detailed how the credentials used for the authentication
process (for example, user name and password) are obtained. However, for authentication to take place,
Tomcat must also have access to the real credentials against which those sent from the browser must be
compared. This section describes where Tomcat stores the actual credentials on the server and how it
obtains them.

Realms are the standard mechanism used for storing the credentials used by Tomcat to authenticate the
client. Tomcat’s Realm mechanism is an implementation of the Realm support mandated in the Servlet
specification.

341

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 341

A Realm is a standard programming interface defined in Tomcat for accessing a user’s user name, pass-
word, and roles. Tomcat 5’s built-in default authentication implementations (including the login mecha-
nisms for the admin and manager utilities and the Single Sign-on Valve) depend on Realms to
authenticate the user.

Users and Roles
The Web application security model is built around the concept of users and roles. Users are assigned to
a role, which determines the resources that the user is allowed to access. For example, a Web application
can declare that the resource “/admin” can only be accessed by users belonging to the “admin” role.
Then, a Realm can be configured to consider the users “alice” and “bob” as belonging to the “admin”
role. Thus, when “alice” and “bob” authenticate, they will be allowed access to “/admin.”

The advantage of roles is that they enable the Web application to be configured independently of the
permissions of the users who access the application. Using the preceding example, the deployment
descriptor of the application only needs to specify that an “admin” role is required, and is not concerned
with the identities of the users who are allowed access.

The actual mapping of users to roles can be specified at deployment time — and can be changed dynami-
cally without having to change the application code. This clean separation of the authentication code
from the actual method of authentication is the main advantage of Realms. This separation allows for
many different ways of creating Realms. The following four built-in Realm implementations can be
deployed with Tomcat 5:

❑ File-based, in-memory Realms

❑ JDBC Realms

❑ JNDI-based Realms

❑ JAAS-based Realms

In addition to these built-in Realms, it is also possible for developers to create custom Realms — supplying
the authentication data via arbitrary custom means.

The following sections provide detailed coverage of each of the built-in Tomcat 5 Realm implementations.
Where applicable, a basic deployment configuration is first described to familiarize you with the particu-
lar Realm implementation, followed by the presentation of a more secured method of deployment.

File-Based Realm: UserDatabase
A file-based Realm maintains its authentication data in flat files. These files can be edited using a normal
text editor. The data is kept in human-readable format (such as XML). The primary built-in file-based
Realm implementation for Tomcat 5 is called UserDatabase.

UserDatabase is Tomcat 5’s greatly enhanced implementation of a MemoryRealm (note that UserDatabase
has actually been available since Tomcat 4.1). A MemoryRealm reads authentication data from a specified
XML file for use by Tomcat 5 during startup. A MemoryRealm is a read-only Realm; no update is possible.
UserDatabase is a Realm implementation that still reads authentication data from an XML file, but is
improved in many aspects:

❑ It is no longer a read-only Realm. The data in the Realm can be programmatically changed during
the lifetime of the engine. This enables various possibilities for building administrative utilities.

342

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 342

❑ UserDatabase is persistent. That is, upon modification and shutdown, the UserDatabase can
also persist any changes back to its associated XML (tomcat-users.xml) data file.

❑ The admin utility supports the graphical editing of authentication data within a UserDatabase
Realm.

The intention of UserDatabase goes beyond simply serving as a refined version of a memory Realm. It is
an integral part of Tomcat 5’s authentication and programmatic security support.

Configuring UserDatabase
In the default server.xml (in the Tomcat 5 server distribution), the UserDatabase Realm is already con-
figured. The UserDatabase is typically configured in the <GlobalNamingResources> element as a JNDI
Resource. Here is a typical configuration:

<Resource name=”UserDatabase” auth=”Container”
type=”org.apache.catalina.UserDatabase”
description=”memory based user database”/>

<ResourceParams name=”UserDatabase”>
<parameter>

<name>factory</name>
<value>org.apache.catalina.users.MemoryUserDatabaseFactory</value>

</parameter>
<parameter>

<name>pathname</name>
<value>conf/tomcat-users.xml</value>

</parameter>
</ResourceParams>

This will make the UserDatabase accessible from application via JNDI lookup, relative to the java:comp/
env naming context. Furthermore, it also provides an easy reference in a later scope. For example, you
can use the UserDatabase as a Realm at the <Engine> container level by adding the following <Realm>
definition:

<Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
debug=”0” resourceName=”UserDatabase”/>

In fact, this is precisely the content of the default Tomcat 5 server.xml file. This means that both the
manager application and the admin application actually rely on UserDatabase as the Realm for
authentication.

To see how UserDatabase is a modifiable, updateable Realm, use the admin application to add a
user/password entry. Start up Tomcat, and then start the admin application via the following URL:

http://localhost:8080/admin/

Log on using the user ID and password that you have chosen for the admin role (as described in the
section “Admin and Manager,” earlier in this chapter).

Now, click the Users item in the tree view on the left. You should see a view similar to what is shown in
Figure 15-1.

343

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 343

Figure 15-1: Using the admin application to test the UserDatabase Realm.

Next, select Create New User from the Available Actions list in the User Actions menu in the right pane.
Fill it in as shown in Figure 15-2 (the password is joe):

Figure 15-2: Adding a new user via the UserDatabase Realm.

344

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 344

Click the Save button. Note that all the user, password, and role information shown in admin are
accessed through the configured UserDatabase. Now, after clicking Save, and without shutting down
Tomcat, go to the tomcat-users.xml file and confirm that the following entry has been added:

<user username=”joe” password=”joe” fullName=”Joe Smoe”
roles=”admin,manager,role1”/>

The Save command caused the UserDatabase implementation to save the changes made to the database
to the XML-persistent representation on disk.

In the approach detailed here, the user name and password used for authentication are stored on the
server in plaintext. The next section describes how to secure a file-based Realm.

Securing a File-Based UserDatabase Realm
A UserDatabase Realm can be configured in a more secure manner than previously illustrated. While
UserDatabase can be made reasonably secure, the ideal solution for secure authentication is to use an
alternative Realm (JDBC, JNDI, or JAAS), which is discussed shortly.

The UserDatabase Realm stores passwords in cleartext in the tomcat-users.xml file. This is not very
secure Therefore, a way must be found to store these passwords in a less readable format. There are four
steps to configuring UserDatabase in a secure fashion:

1. Select the password digest algorithm.

2. Create a digested password.

3. Add the digested password to the Realm.

4. Test the digested password.

Selecting the digest algorithm
The choice of digest algorithm is limited to those supported by the java.security.MessageDigest class
(SHA or MD5). To choose one, the digest attribute of the <Realm> element in the $CATALINA/conf/
server.xml file must be set. In this example, SHA will be used:

<Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
debug=”0” resourceName=”UserDatabase” digest=”sha” />

When a user enters a password at the authentication stage, Tomcat will digest it with the algorithm
specified here and then compare it with the value stored in the authentication file.

Creating a digested password
A digested version of the password must now be created. Tomcat comes with a script (digest.sh on
Linux; digest.bat on Windows) located in $CATALINA/bin that calculates digests. The algorithm to
use (SHA in this case) and the string to digest (tomcat, which is our password) must be specified as
parameters:

$ $CATALINA_HOME/bin/digest -a sha tomcat
tomcat:536c0b339345616c1b33caf454454d8b8a190d6c

345

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 345

The output (highlighted in bold) is the string entered, followed by a colon and the SHA hash needed.

Note that as of this writing, Tomcat 4.1 and Tomcat 5 contain a bug that prevents the successful execu-
tion of the digest utility. The bug is caused by missing JMX class files in the CLASSPATH variable when
the digest utility is executed. The following error message is symptomatic of this problem:

Tool: Exception creating instance of org.apache.catalina.realm.RealmBase
java.lang.NoClassDefFoundError: javax/management/MBeanRegistration

On Windows systems, the bug can be fixed by the following method:

❑ Change the following line in $CATALINA/bin/tools-wrapper.bat

set CLASSPATH=%CLASSPATH%;%CATALINA_HOME%\bin\bootstrap.jar

to the following (all on one line):

set CLASSPATH=%CLASSPATH%;%CATALINA_HOME%\bin\bootstrap.jar;
%CATALINA_HOME%\common\lib\jmx.jar

❑ Tomcat 4.1 users should change the previous line to the following:

set CLASSPATH=%CLASSPATH%;%CATALINA_HOME%\bin\bootstrap.jar; %CATALINA_HOME%\
server\lib\mx4j-jmx.jar

On Linux systems, this can be accomplished by a similar process:

❑ Change the following line in $CATALINA/bin/tools-wrapper.sh

CLASSPATH=”$CLASSPATH”:”$CATALINA_HOME”/bin/bootstrap.jar

to the following (all on one line):

CLASSPATH=”$CLASSPATH”:”$CATALINA_HOME”/bin/bootstrap.jar: “$CATALINA_HOME”/
common/lib/jmx.jar

❑ Tomcat 4.1 users should change the line to the following:

CLASSPATH=”$CLASSPATH”:”$CATALINA_HOME”/bin/bootstrap.jar: “$CATALINA_HOME”/
server/lib/mx4j-jmx.jar

Adding the digested password to the UserDatabase Realm
The final step is to add the digested password to the UserDatabase Realm for the Tomcat installation.
This is accomplished by copying the digested output of the preceding step and adding it as the pass-
word attribute of a user in tomcat-users.xml:

<?xml version=”1.0”?>
<tomcat-users>

<role rolename=”admin”/>
<user username=”maharaja”

password=”536c0b339345616c1b33caf454454d8b8a190d6c”
roles=”admin”/>

</tomcat-users>

346

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 346

Here, a user named maharaja with the role of admin has been added. This role allows the user to access
the example application (as well as the admin application that ships with Tomcat).

Testing the digested password
The digested password can be tested by accessing the example Web application. Browse to the following
URL:

http://localhost:8080/secure/

A login page should be presented. Enter maharaja as the User name and tomcat as the password and
click the Log In button. If all goes well, access to the application will be granted.

File-based Realms (such as UserDatabase) are easy to configure and do not depend on external resources
to operate. However, they are rather limited because all authentication and authorization data must
reside in a file. When the size of the data is large, file-based Realms can become inefficient to manage.
The security of file-based Realms is also rather limited. By using an external relational database for
authentication data, JDBC-based Realms overcome these limitations. The next section explores the
administration of JDBC Realms.

JDBC Realms
A JDBC Realm is a Realm implementation that uses tables maintained in a relational database (such as
MySQL or Oracle). Authentication and authorization data reside in an external database, potentially an
existing one containing user data. Unlike file-based Realms, JDBC Realms enable the flexible addition,
updating, modification, and deletion of authentication data and user/role mappings. Because data in an
RDBMS is maintained dynamically, any changes that are made to the content of the authentication data
are immediately reflected in the Realm. In addition to the these advantages, sophisticated maintenance
and administration tools can be readily created using JDBC to access and maintain the tables within
the Realm.

Mapping columns to the required view
The JDBC Realm implementation in Tomcat 5 has a particular view of how the tables in the Realm must
be maintained. Fortunately, the configurable parameters of Realms enable you to map to any existing
schema containing the same data.

More specifically, the JDBC Realm implementation expects the following tables — in a standard normal-
ized relation.

Table Name Description

users Contains user name and password information

user_roles Contains user-to-roles mapping information

The users table is expected to contain the following two columns as a minimum. It has user_name as
the primary key (indexed).

347

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 347

Column Type Length

user_name varchar not null 15

user_pass varchar not null 15

The user_roles table is expected to contain the following two columns as a minimum.

Column Type Length

user_name varchar not null 15

role_name varchar not null 15

Note that the datatype can be any type that results in a character string, and longer length fields will be
accommodated.

The compound primary key in this table is {user_name, role_name}. This means that a single user
can have multiple roles. The user_name column in both the users and user_roles tables can be rela-
tionally joined during regular queries.

For maximum flexibility, the mentioned table names and column names are not imposed on the underly-
ing table. Instead, they are mapped during Tomcat run-time to the underlying table. The mapping is
specified in the configuration of the Realm element.

The JDBC Realm implementation, contained in the org.apache.catalina.realm.JDBCRealm class,
will assume this configuration while using a JDBC driver to access the data in the Realm.

Realm definitions must be configured in a Realm element within the scope of any container component.
Specifically, the JDBC Realm implementation may be configured with the attributes shown in the follow-
ing table.

Attribute Description Required?

className The Java programming language class that Yes
implements the JDBC Realm. This should be the
implementation provided by Tomcat —
org.apache.catalina.realm.JDBCRealm.

connectionName The JDBC connection user name to be used Yes

connectionPassword The JDBC connection password to be used Yes

connectionURL The JDBC connection URL used to access the Yes
database instance

debug Controls the level of debugging information No
that is printed to the log file

348

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 348

Attribute Description Required?

digest Specifies the digest algorithm used when No
the Container Managed Security uses the
digest method of authentication. Takes a value
that specifies the digest algorithm, such as
SHA, MD2, MD5, and so on. (For a complete list
of current values, consult the Javadoc java.
security.MessageDigest class.)

driverName Name of the JDBC driver, a Java programming Yes
language class name

userTable The actual name of the table in the database that Yes
matches the Users table in the required view

userNameCol The actual column name of the column in both Yes
the userTable and userRoleTable that
matches the user column in the required view

userCredCol The name of the column in the userTable Yes
that matches the password column in the
required view

userRoleTable The actual name of the table in the database that Yes
matches the user_roles table in the required view

roleNameCol The name of the column in the userRoleTable Yes
that matches the role_name column in the
required view

The combination of the attributes userTable, userNameCol, userCredCol, userRoleTable, and
roleNameCol enables you to map the existing database table and columns containing authentication
and role information to the view required by the Realm.

Configuring JDBC Realms with digested passwords
To gain some experience in configuring JDBC Realms, an external MySQL database server will act as the
example relational database system. MySQL is free and is available on Linux and Windows; download a
copy at www.mysql.com. The installation of MySQL is not covered in this chapter.

Setting up MySQL tables
For JDBC authentication, Tomcat requires a database with at least two tables: users and user_roles.
The database is named authority. Here’s the SQL to create the database:

CREATE DATABASE IF NOT EXISTS authority;

USE authority;

CREATE TABLE users (
user_name VARCHAR(15) NOT NULL PRIMARY KEY,
user_pass VARCHAR(32) NOT NULL

);

349

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 349

CREATE TABLE user_roles (
user_name VARCHAR(15) PRIMARY KEY NOT NULL REFERENCES users(user_name),
role_name VARCHAR(10) NOT NULL

);

This code can be entered into MySQL interactively through its console, or run as a script:

$ mysql < authority.sql

After creating the database and tables, users and roles must be added. To make the installation secure,
the passwords of the users stored in the authority table will be digested. Most databases provide
functions for digesting information, and MySQL is no exception. The MD5() function will be used in this
case. Here’s the SQL to add an admin user:

INSERT INTO users (user_name, user_pass) VALUES (‘maharaja’, MD5(‘tomcat’));

The JDBC Realm has an attribute called digest that is used to specify the digest algorithm to use on the
password entered at the authentication stage.

Finally, the role database table must be populated. Here, the admin role is added, as it will grant access
to the example application:

INSERT INTO user_roles (user_name, role_name) VALUES (‘maharaja’, ‘admin’);

Adding a Tomcat user to MySQL
Tomcat must be given a user name and password in $CATALINA_HOME/conf/server.xml that can be
used to connect to the database in a JDBC Realm. Therefore, this user must be in the mysql.user table.
The best way to create a new user is to use the GRANT command.

The GRANT command creates a user in the mysql.user table. MySQL uses this table to determine access
privileges to its databases. It is important to restrict access to this table, because unlimited access would
allow anyone to change the access rights to every database on the server.

The passwords should not be stored in cleartext, so it is fortunate that MySQL encrypts them automati-
cally with GRANT. The following example creates a user called tomcat who will be accessing the
database from the local machine with the password tomcat:

mysql> GRANT SELECT ON authority.*
-> TO ‘tomcat’@’localhost’ IDENTIFIED BY ‘tomcat’;

mysql> FLUSH PRIVILEGES;

Here, tomcat is given SELECT privileges on all tables in the authority database. This access is suffi-
cient for authentication, but real-world applications may well need more access. The IDENTIFIED BY
clause specifies the user’s password. MySQL automatically obfuscates this value and inserts it into the
user table as shown here:

mysql> SELECT Host, User, Password, Select_priv FROM mysql.user;
+---------------+----------+------------------+-------------+
| Host | User | Password | Select_priv |
+---------------+----------+------------------+-------------+
| localhost | tomcat | 22e3be3e311d37ea | N |
+---------------+----------+------------------+-------------+

350

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 350

(Note that there will be a few other records besides the one shown. They don’t concern us here.) Older
versions of MySQL might not hide the password automatically. In these cases, the following command is
needed in place of the earlier command:

mysql> GRANT SELECT ON authority.*
-> TO ‘tomcat’@’localhost’ IDENTIFIED BY PASSWORD(‘tomcat’);

mysql> FLUSH PRIVILEGES;

Remember the FLUSH PRIVILEGES line; MySQL won’t update its privileges tables without being explic-
itly told to do so.

The SET command can be used to change the password of a user without having to create it afresh:

SET PASSWORD FOR ‘tomcat’@’localhost’ = PASSWORD(‘new_password’);

To confirm that the tomcat user has indeed been given the appropriate privileges on authority, the
following query can be used (note the authority database in the Db column):

mysql> SELECT Host, Db, User, Select_priv FROM mysql.db;
+---------------+-----------+--------+-------------+
| Host | Db | User | Select_priv |
+---------------+-----------+---- ---+---- --------+
| localhost | authority | tomcat | Y |
+---------------+-----------+--------+-------------+

Here, the Y in the Select_priv column indicates that the user in the User column (tomcat) has SELECT
privileges on the table in the Db column (authority).

A user’s privileges can be cancelled with the REVOKE command, as shown here:

mysql> REVOKE SELECT ON authority.* FROM ‘tomcat’@’localhost’;
mysql> FLUSH PRIVILEGES;

Now that a user for Tomcat has been created, the appropriate Tomcat Realm can be configured.

Defining the MySQL-based JDBC Realm
To define the JDBC Realm, the default UserDatabase Realm must be disabled. To do so, comment out
the following lines in the server.xml file:

<!--
<Realm className=”org.apache.catalina.realm.UserDatabaseRealm”

debug=”0” resourceName=”UserDatabase”/>
-->

Next, define a JDBC Realm, mapping the tables and columns from the authority database:

<Realm className=”org.apache.catalina.realm.JDBCRealm” debug=”99”
driverName=”com.mysql.jdbc.Driver “
connectionURL=”jdbc:mysql://localhost/authority”
connectionName=”tomcat” connectionPassword=”tomcat”
userTable=”users” userNameCol=”user_name” userCredCol=”user_pass”
userRoleTable=”user_roles” roleNameCol=”role_name”
digest=”md5”/>

351

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 351

The connectionURL points to the database that contains the authentication details, which is accessed
using the credentials supplied in the connectionName and connectionPassword attributes. The lines
beginning with userTable and userRoleTable specify which tables in the database you should be
using to look up the user and role for authentication purposes. The digest attribute is the algorithm
that Tomcat uses to digest the password entered by the user (in this case, MD5). As mentioned earlier,
this attribute can be one of the two digest algorithms supported by java.security.MessageDigest
(SHA or MD5).

Tomcat may already have a MySQL JDBC Realm very similar to the one shown here in server.xml but
commented out.

The mm.mysql JDBC driver must be installed in Tomcat for this Realm to function. This process is
detailed in Chapter 14.

Testing the JDBC Realm
To see the Realm in action, start Tomcat and connect to the example Web application via the following URL:

http://localhost:8080/secure/

You should be presented with the login screen, as shown in Figure 15-3. Enter maharaja in the Username
field and tomcat in the Password field.

Figure 15-3: Login screen.

Using the JDBC Realm, authentication is now performed against MySQL instead of against the
tomcat-users.xml file (that is, the UserDatabase file-based Realm). By replacing the JDBC driver and
changing the table/column mappings in the Realm configuration, other databases (for example, Oracle)
with completely different schemata can be used. As long as the user name, password, and role data are
stored somewhere in the database, Tomcat can use this for authentication.

As demonstrated so far, changing the authentication method is easy and requires no code changes to the
Web application. Custom login and authentication error forms have also been demonstrated. Some
methods for making the authentication process a lot more secure have also been explained.

In some production scenarios, the user authentication and authorization information may not be avail-
able in a JDBC-accessible manner. The information may already be stored in directory services and/or

352

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 352

external authentication and authorization systems. In some of these cases, configuring a JNDI Realm can
enable Tomcat 5 to interoperate with the external systems. The next section describes JNDI Realms.

JNDI Realms
The Java Naming and Directory Interface (JNDI) is a standard Java API that provides applications with a
unified interface to several different naming and directory services (such as SUN’s NIS, Microsoft’s ADS
or NT Domains, and Novell’s Netware Directory Service).

The JNDI architecture has two components: an API that is used by client-side applications to access the
naming/directory services, and a Service Provider Interface (SPI), which allows vendors to develop cus-
tom Providers for their naming/directory servers. These Providers enable different directory servers to
be “plugged in” in a manner transparent to the client application.

Lightweight Directory Access Protocol (LDAP) is one such directory protocol. OpenLDAP (www.openldap.
org) and Netscape Directory Server (http://enterprise.netscape.com/products/identsvcs/
directory.html) are two popular implementations of LDAP.

Further information on JNDI can be found at the following URL:

http://java.sun.com/products/jndi/docs.html

Similar to JDBC Realms, JNDI Realms enable you to use existing data in a directory service for a Realm.
To use a JNDI Realm, you must be able to successfully map the various configuration attributes to an
existing directory schema. This again is similar to the JDBC table and column name mapping. To better
understand how this mapping works, the following table describes the configuration attributes that are
available with a JNDI Realm.

Attribute Description Required?

className Java programming class name of the JNDI Yes
Realm implementation. Must be set to
org.apache.catalina.realm.JNDIRealm.

connectionName The user name used to authenticate against the Yes
directory service via JNDI

connectionPassword The password used to authenticate against the Yes
directory service via JNDI

connectionURL The URL used to locate the directory service Yes
using JNDI

contextFactory Configures the Java programming language No
class used to create a context for the JNDI
connection. The default LDAP-based factory is
sufficient in all noncustom cases.

Table continued on following page

353

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 353

Attribute Description Required?

debug Controls the level of debugging messages that No
will be logged

digest Specifies the digest algorithm used to store a No
password. By default, passwords are store as
plaintext.

userPassword Maps the name of the directory attribute from Yes
the user element that contains the password
information

userPattern Specifies an LDAP pattern for searching the Yes
directory for selecting user entry. Use the {0}
as a placeholder for the distinguished name.

roleName Maps the name of the directory attribute that Yes
contains the role name

roleSearch Specifies an LDAP pattern for searching the Yes
directory for selecting roles entry. Use the {0}
as a placeholder for the distinguished name, or
{1} as a placeholder for the user name.

roleBase Specifies the base element for role searches. No
The default is the top-level element.

roleSubtree The default is false. If set to true, a subtree No
search will be conducted for the role.

The configurable attributes reveal that the user name must map to individual elements at the top-level
directory context. Each group of users assigned to the same role must also map to the individual element
at the top-level directory context.

Configuring the JNDI Realm
A JNDI Realm stores data in an LDAP directory server (such as Netscape Directory Server, OpenLDAP,
and so on) and accesses it using a JNDI Provider.

This configuration example uses OpenLDAP as the directory server. OpenLDAP can be downloaded
from www.openldap.org/software/download/ and is available in open source under the OpenLDAP
Public License (www.openldap.org/software/release/license.html).

Coverage of OpenLDAP is beyond the scope of this chapter. You can find information on LDAP at the
following Web sites:

❑ OpenLDAP: A quick start guide

www.openldap.org/doc/admin/quickstart.html

354

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 354

❑ OpenLDAP 2.1 Administrator’s Guide

www.openldap.org/doc/admin/

Configuring a JNDI Realm is more complex than configuring UserDatabase or JDBC Realms. The config-
uration involves a five-step process, as described in the following sections.

Installing the JNDI Driver
Place the JNDI driver JAR file in the $CATALINA_HOME/server/lib directory (if you do not need it
visible to Web applications) or the $CATALINA_HOME/common/lib directory. The JNDI driver JAR file is
typically named ldap.jar and can be downloaded from http://java.sun.com/products/jndi/.

Creating the LDAP Schema
After installing the JNDI driver, you create the LDAP schema for storing the user and role data. This step
is different for each directory server: Refer to your LDAP server documentation for further information.

Before creating the schema, there are some design issues to be considered. Connections to the directory
server can be made either anonymously or by using the user name and password specified in the
Realm configuration by the connectionName and connectionPassword properties (see the section
“Configuring the Realm,” later in this discussion). An anonymous connection is sufficient in most cases.

Authentication of a user by a directory server can be done in two “modes”: bind mode and comparison
mode:

❑ Bind mode — In bind mode, user authentication is done by “binding” to the directory server
using the distinguished name (DN) of the user and the password presented by the user. If the
bind succeeds, the user is considered authenticated.

Thus, in bind mode, the directory server does the actual authentication. The directory server
saves a digested version of the user’s password, and it converts the user’s password to its
digested version before comparing it. Therefore, the digest attribute in the Realm configura-
tion in server.xml is ignored. However, this means that the password is transmitted as clear-
text from Tomcat to the directory server. This is not the same as transmitting the password from
the user’s browser to the Tomcat end. Here, mechanisms such as HTTP Digest or even HTTPS
may be used. Several LDAP servers support SSL connections, so this can be used to protect the
transmission of passwords as cleartext.

❑ Comparison mode — In comparison mode, the Realm retrieves the password from the directory
and does the comparison of the passwords itself. To enable comparison mode, you must specify
the userPassword attribute of the Realm directive to the directory attribute that contains the
user’s password.

Bind mode is more secure, because in comparison mode the configuration enables the Realm to read the
user’s password.

Another disadvantage of comparison mode is that the Realm implementation must handle password
digests (in case the directory server stored the digested version of the password) and all the variations of
the digest algorithms.

355

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 355

There are two approaches to storing roles in the JNDI directory:

❑ Explicit directory entries — Roles can be represented as explicit directory entries. In this case, the
roleBase, roleSubtree, roleSearch, and roleName attributes in the Realm directive are used.
These are discussed in more detail in the section “Configuring the Realm,” later in this chapter.

❑ Attributes of the user entry — Alternatively, roles can also be represented as attributes in the
user’s LDAP directory entry. In this case, the userRoleName attribute (discussed later) in the
Realm configuration should be set appropriately.

Populating the Directory
Now you are ready to populate the LDAP directory with the users for the admin and manager roles.
This is required to use the admin and manager Web applications.

The following shows sample entries for the admin and manager roles, and a user (user1) who is listed in
both roles:

Top-level entry
dn: dc=companyname,dc=com
objectClass: dcObject
dc:companyname

Entry to contain people
The searches for users are based on this entry.
dn: ou=people,dc=companyname,dc=com
objectClass: organizationalUnit
ou: people

User entry for role ‘admin’ and ‘manager’
dn: uid=user1,ou=people,dc=companyname,dc=com
objectClass: inetOrgPerson
uid: user1
sn: user1
cn: super user1
mail: root@companyname.com
userPassword: secret

Entry to contain LDAP groups
The searches for roles are based on this entry.
dn: ou=groups,dc=companyname,dc=com
objectClass: organizationalUnit
ou: groups

Entry for the “manager” role
dn: cn=manager,ou=groups,dc=companyname,dc=com
objectClass: groupOfUniqueNames
cn: manager
uniqueMember: uid=user1,ou=people,dc=companyname,dc=com

Entry for the “admin” role
dn: cn=admin,ou=groups,dc=companyname,dc=com
objectClass: groupOfUniqueNames
cn: admin
uniqueMember: uid=user1,ou=people,dc=companyname,dc=com

356

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 356

The previous data is in LDIF format, and it can be uploaded into OpenLDAP using the ldapadd tool:

$ ldapadd -f tomcat.ldif -x -D “cn=LDAPRootuser,dc=companyname,dc=com” -w password

In this example, tomcat.ldif is the file that contains the data about the roles and users in LDIF format.
The value passed via the –D flag is that of the distinguished name used to bind to the directory server.
This is the DN of a super-user who has the right to update the LDAP directory, and it authenticates itself
via a password (the –w option). This super-user was configured in the rootdn directive in slapd.conf.
The following is a sample entry:

database ldbm
suffix dc=”companyname”,dc=”com”
rootdn “cn=LDAPRootUser,dc=companyname,dc=com”
rootpw password

Creating a user to access the directory
Next, create an OpenLDAP user who has read access to the data published in the LDAP directory. The
default OpenLDAP configuration gives read access to all users (except the super-user, who has write
access too). This is a security risk, especially if the passwords are being stored as cleartext. The following
code is a sample from the OpenLDAP configuration file, which indicates restricted access to the
userPassword attribute (the name of the attribute, in this configuration, that contains the Realm user
password):

access to attr=userPassword
by dn=”cn=tomcatuser,dc=companyname,dc=com” read
by * none

Configuring the Realm
The Realm directive varies depending on how users bind to the LDAP directory. The following sample con-
figuration is for an LDAP server running on the same machine (hence the localhost in the connectionURL),
and has users logging in using a user ID (see the userPattern attribute specifying this):

<Realm className=”org.apache.catalina.realm.JNDIRealm”
connectionURL=”ldap://localhost:389”
userPattern=”uid={0},ou=people,dc=companyname,dc=com”
roleBase=”ou=groups,dc=companyname,dc=com”
roleName=”cn”
roleSearch=”(uniqueMember={0})”

/>

Finally, restart Tomcat 5 in order to make it re-read the Realm configuration.

Adding Roles and Users
You can add a role or a user using the ldapadd command as discussed earlier in the section “Populating
the Directory.”

Other LDAP implementations (such as Netscape Directory Server) have GUI-based interfaces that make
this simpler.

357

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 357

Removing a Role or a User
The ldapremove command is used to remove a user or role from the LDAP database:

$ ldapremove “uid=user1,ou=people,dc=companyname,dc=com” -x -D
“cn=LDAPRootuser,dc= companyname,dc=com” -w password

Here “uid=user1,ou=people,dc=companyname,dc=com” is the distinguished name of the user being
deleted. The same command works for removing a role. You just specify the DN of the role to be deleted.

As before, the value passed via the –D flag is that of the distinguished name used to bind to the directory
server. This is the DN of a super-user who has rights to update the LDAP directory, and it authenticates
itself via a password (the –w option).

The latest addition to Tomcat 5’s built-in Realm support is the JAAS Realm. With the integration of JAAS
into the JDK platform starting with JDK 1.4, this Realm implementation is likely to become more rele-
vant and important in the near future. The next section shows how to work with a JAAS Realm.

JAAS Realm
The JAAS Realm uses the Java Authentication and Authorization Service (JAAS) to authenticate a user
and provide access control.

JAAS enables the use of Pluggable Authentication Modules (PAM). With PAMs, the authentication tech-
nology is abstracted out, and thus the back-end authentication technology can be rendered transparent
to the application making the request.

Following is some of the basic terminology relevant to JAAS Realms. This is not a tutorial on JAAS, and
further information, including Javadocs and downloads, can be found at the following URL:

http://java.sun.com/products/jaas/

❑ Subject — The Subject (javax.security.auth.Subject class) is the identity that you wish to
authenticate

❑ Principal — The Principal (java.security.Principal) represents the interaction of a Subject
with an authenticating authority

❑ LoginContext — This is a Java class that acts as a session with the authentication Provider. It also
loads the Provider class after reading its configuration file.

❑ Provider — This is a class that implements the javax.security.auth.spi.LoginModule
interface, and contains the code for the actual authentication strategy.

JAAS is packaged along with JDK 1.4, although an optional download is available for JDK 1.3 from the
following URL:

http://java.sun.com/products/jaas/

358

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 358

Configuration of a JAAS Realm
Configuring JAAS Realms is a five-step process:

1. Perform the setup required for the actual authentication technology.

2. Write or obtain a Provider for the authentication technology.

3. Configure the Provider.

4. Make changes to the Java security policy (if required).

5. Configure the Realm directive.

Performing the setup required for the actual authentication technology

JAAS provides an API interface to the authentication technology. You first need to perform setup steps,
if required, for this. For example, if you were using JNDI at the back end, you would need to install and
configure a JNDI directory server.

Writing or obtaining a Provider for the authentication technology

The Provider (discussed earlier) is a Java class that implements the javax.security.auth.spi.
LoginModule interface. A Provider must implement the methods of this interface — namely, those
shown in the following table.

Method Description

initialize Initializes the LoginModule

abort Aborts the authentication process

commit Commits the authentication process

login Authenticates a Subject

logout Logs out a Subject

The Provider would also make use of a Principal class (an implementation of the java.security.
Principal interface) that represents users and roles in this particular implementation. For example,
JAAS comes with implementations for Windows NT users and domains (com.sun.security.auth.
NTUserPrincipal and com.sun.security.auth.NTDomainPrincipal).

JAAS also provides some Provider implementations as a part of the jaasmod.jar JAR file. These
include a JNDI Provider (com.sun.security.auth.module.JndiLoginModule), an NT Login
Provider (com.sun.security.auth.module.NTLoginModule), and a Solaris Login Provider
(com.sun.security.auth.module.SolarisLoginModule).

In some cases, third-party vendors also provide Providers for their products.

359

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 359

Configuring the Provider

You must add configuration statements for the Provider in a configuration file. For some Providers (such
as the Solaris and NT Login Providers), this is a very simple setup. The following code is a sample of the
JAAS Provider configuration for Solaris’ Login Provider:

SolarisLogin {
com.sun.security.auth.module.SolarisLoginModule required;

};

Other Providers (such as the JNDI Provider) have a more complex setup (see following sample). In
general, the configuration attributes are Provider-specific:

JNDILogin {
com.sun.security.auth.module.JndiLoginModule required
user.provider.url=”ldap://localhost:389/ou=People,dc=companyname,dc=com”
group.provider.url=”ldap://localhost:389/ou=Group,dc=companyname,dc=com”;

};

The configuration for the Provider is passed to the JRE through the java.security.auth.login.
config environment parameter.

Making changes to the Java security policy (if required)

The JAAS authentication Provider class is a trusted part of the system, and hence requires special access
permissions. The following code is a sample Java policy file that shows the kind of permissions required:

//trust the Provider
grant codeBase “file:./provider/” {

permission java.security.AllPermission;
};

//trust JAAS
grant codeBase “file:/path/to/jaas.jar” {

permission java.security.AllPermission;
};

//these permissions are needed by the client
grant codeBase “file:./client/” {

permission javax.security.auth.AuthPermission
“createLoginContext”;

permission
javax.security.auth.AuthPermission “doAs”;

permission java.util.PropertyPermission
“user.home”, “read”;

};

This policy file is passed to the JRE through the java.security.policy environment parameter.

In addition, JAAS has a format for specifying access rights for authenticated users. In the following
example, the user user1 has read permissions in the user.home directory:

360

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 360

grant Principal com.sun.security.auth.NTUserPrincipal “user1” {
permission java.util.PropertyPermission

“user.home”, “read”;
};

This policy file is passed to the JRE through the java.security.auth.policy environment parameter.
From JDK 1.4 onward, you don’t need a separate policy file for this, and you can combine it with the
previous security policy file.

Configuring the Realm directive

The following table describes the configuration attributes for the JAAS Realm element.

Attribute name Description Required

className This is the classname of the java class that Mandatory
implements JAAS Realms. This must be
org.apache.Catalina.realm.JAASRealm.

debug The debug level. A missing or ‘0’ (zero) valued
debug level turns off debugging.

The log file to which log messages are sent is Optional
specified in a Logger directive.

appName The application name passed to the JAAS Mandatory
LoginContext, which uses it to select the set of
relevant LoginModules. This name should match
the name of the enclosing block in the JAAS
Provider configuration.

roleClassNames Comma-delimited list of javax.security. Mandatory
Principal classes that represent security roles

userClassNames Comma-delimited list of javax.security. Mandatory
Principal classes that represent individual users

A sample configuration directive from server.xml is shown here:

<Realm className=”org.apache.catalina.realm.JAASRealm”
appName=”Tomcat”
roleClassNames=”com.wrox.APrincipalImpl”
userClassNames=”com.wrox.AnotherPrincipalImpl”/>

Tomcat must be restarted in order for the Realm configuration changes to take effect.

Adding or deleting users and roles
Adding or removing users and roles in a JAAS Realm is specific to the back-end technology being used
for authentication. For example, if NT Realms are used, adding a user would be equivalent to creating a
new NT login account.

361

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 361

Single Sign-on
If two or more Web applications deployed in Tomcat are configured to use authentication, the user will
be prompted to authenticate, even if the same user uses the same credentials for both applications.

Fortunately, a special Tomcat mechanism enables users to only log in once in such scenarios: the Single
Sign-on Valve. For detailed information on using this Valve, see Chapter 8.

In the next section, you will examine SSL, which adds another level of security to the sample application
in this chapter by preventing prying eyes from looking at data in transit.

Encryption with SSL
Secure Sockets Layer (SSL) is a protocol that enables secure communication between clients and servers
in a network environment. Originally developed by Netscape, it has since been adopted as an Internet
standard. SSL enables the encryption of traffic between the client and the server, and also provides an
authentication mechanism. (This was briefly described earlier in this chapter in the discussion about
the HTTP client certificate).

The security protocols on which SSL is based are public key encryption and symmetric key encryption.
In public key encryption, a pair of encryption keys are used to encode a message: one is a publicly avail-
able key, and the other is a private key that is not disclosed to anyone else. Clients who want to send a
message to an application that has a known public key need to encrypt it with that key. Only the corre-
sponding private key can then decrypt the message, and thus the transmission is secure. Symmetric key
encryption, conversely, uses the same (secret) key for both encryption and decryption. This algorithm,
however, needs a reliable way to exchange the secret key between the two end points in the transmission.

When a client opens an SSL connection with a server, an SSL handshake is performed. The procedure
for an SSL handshake is as follows:

1. The server sends its digital certificate to the client. This contains the public key of the server,
information about the server, the authority that issued the certificate to the server, and the
validity of the certificate.

2. The client then authenticates the server based on the validity of the certificate and the trustwor-
thiness of the authority that issued the certificate. Certificates issued by well-known and trusted
Certificate Authorities (CAs), such as VeriSign and Thawte, are recognized by most Web
browsers. If the certificate cannot be validated, the user is warned and can choose to either
accept the certificate or deny it.

3. A session key is then generated and exchanged over the connection. At this point, the connec-
tion is secured by the public key encryption mechanism, and so the exchange is secure. The ses-
sion key is a symmetric key and is used for the duration of the session to encrypt all subsequent
data transmissions.

The server configuration may also require the client to present its own authentication. Later in this chap-
ter, you will see how the clientAuth Tomcat attribute is used to enable this feature. In this situation,
another step is introduced in the SSL handshake. Such a requirement is not common, and is used only
in some business-to-business application environments.

362

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 362

The HTTPS (HTTP over SSL) protocol, as the name suggests, uses SSL as a layer on top of HTTP. Transport
Layer Security (TLS) is the IETF (Internet Engineering Task Force) version of the SSL protocol. It is defined
by RFC 2246 (www.ietf.org/rfc/rfc2246.txt), and is intended to eventually supersede SSL.

Adding support for SSL or TLS in Tomcat is a four-step process:

1. An SSL implementation must be downloaded and installed.

2. A certificate keystore must be created, to which a self-signed certificate is added.

3. A certificate must be obtained from a third-party CA such as VeriSign (www.verisign.com/),
Thawte (www.thawte.com/), or Trustcenter.de (www.trustcenter.de/). The self-signed
certificate created above is used to generate a certificate-signing request.

If Tomcat is being used in a test/development environment, this step can be skipped. In produc-
tion environments, a CA-signed certificate may be desirable so that users will be willing to accept
the certificate.

4. Tomcat must be configured for SSL.

JSSE
Java Secure Socket Implementation (JSSE) is Sun’s implementation of the SSL and TLS protocols. JSSE
is available free, but is not open source. For more information on JSSE, please see the following URL:

http://java.sun.com/products/jsse/

Installing JSSE
JSSE is bundled with Java starting with JDK 1.4.0. Users of earlier JDK versions will need to install it
manually (note that JDK 1.2 or newer is required).

JSSE can be downloaded from http://java.sun.com/products/jsse/. The three JSSE JAR files
(jsse.jar, jnet.jar, and jcert.jar) can be either installed in the JDK for use by all applications, or
placed in an application-specific location. To make JSSE available to all applications, copy all three JAR
files to the JDK Standard Extensions directory, which is located at $JAVA_HOME/jre/lib/ext.

Preparing the Certificate Keystore
JSSE uses a keystore for the storage and retrieval of certificates. The keystore is simply a file. The
commands for preparing a certificate keystore are as follows:

On Windows:

> %JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

On Linux:

$ $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

The –genkey option specifies that a key pair (private key and public key) must be created. This key pair
is enclosed in a self-signed certificate. The -keyalg option specifies the algorithm (which in this case is
RSA) to be used for the key pair. All keystore entries are accessed via unique aliases using the -alias
option. Here, the alias is specified as tomcat.

363

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 363

The keytool command will ask for a password. The password can be set to the value Tomcat expects by
default (changeit) or some other value. If the password is something other than the default, Tomcat’s
keystorePass attribute will need to be changed, as shown later.

The default name for the keystore file is .keystore and it is stored in the user’s home directory. This
directory will vary depending on the operating system. On Linux, the keystore file would need to
be in /home/[username]. On Windows 2000/XP, the keystore file would be in C:\Documents and
Settings\[username]. An alternative keystore filename can be specified using the -keystore option.
The password can also be specified on the command line with the -keypass option. Both of these meth-
ods are shown here:

$ $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA –keypass somepass
–keystore /path/to/keystorefile

Figure 15-4 shows the keytool command being run.

Figure 15-4: Creating the certificate keystore.

Notice the Common Name (CN) field that has been entered as “wrox.com.” This must be of the format
“www.domainname.com,” “hostname.domainname.com,” or just “domainname.com.” This name is
embedded in the certificate. The CN should be the fully qualified host name for the machine on which
Tomcat is deployed. If not, users will get a warning message in their Web browser when they try to
access a secure page from Tomcat.

If this is a test/development environment, or a CA-issued certificate is not desired, the SSL setup is
completed and now Tomcat-related setup changes must be performed.

The steps for obtaining a CA-signed certificate are covered in the next section.

Installing a Certificate from a Certificate Authority
To obtain a certificate from a CA, first a local certificate must be created using the keytool command:

$ keytool -genkey -alias tomcat -keyalg RSA

364

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 364

Next, this certificate is used to create a Certificate Signing Request (CSR):

$ keytool -certreq -keyalg RSA -alias tomcat -file certreq.csr

The keytool option (-certreq) creates a CSR file called certreq.csr that can be submitted to the CA
to get a certificate. Figure 15-5 shows an example of this process.

Figure 15-5: Generating the Certificate Signing Request.

Obtaining a certificate requires payment to the CA for the authentication services. However, some CAs offer
test certificates at no cost, although they are usually valid only for a limited time. To submit the CSR, visit
VeriSign (www.verisign.com), Thawte (www.thawte.com), or Trustcenter.de (www.trustcenter.de).

After you have the certificate from the CA, you must get the Chain Certificate (also called the Root
Certificate) from the CA. For VeriSign, this can be downloaded from the following site:

www.verisign.com/support/install/intermediate.html

The Chain Certificate is a self-signed certificate from the CA that contains its well-known public key. You
can view the contents of a certificate using the –printcert option:

$ keytool -printcert -file /path/to/certificate

This is good practice before importing a third-party certificate into the keystore. You then import the
Chain Certificate into the keystore:

$ keytool -import -alias root -trustcacerts -file
<filename_of_the_chain_certificate>

Here, the <filename_of_the_chain_certificate> contains the Chain Certificate that you got from
the CA.

Finally, you import the new certificate:

$ keytool -import -alias tomcat -trustcacerts -file <your_certificate_filename>

In the next section, you will examine Tomcat-related setup changes.

365

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 365

Protecting Resources with SSL
Resources can be protected with SSL just as they can be protected with authentication constraints. The
<user-data-constraint> sub-element of <security-constraint> in web.xml is used to specify the
guaranteed integrity of the data flowing between the client and the server for this resource. There are
three levels of integrity: NONE, INTEGRAL, and CONFIDENTIAL.

NONE means there is no guarantee that the data has not been intercepted and tampered with, while
INTEGRAL guarantees the integrity of the data (meaning that the data has not been interfered with). The
strongest guarantee is CONFIDENTIAL, which guarantees that a third-party has not intercepted the data.
If you specify INTEGRAL or CONFIDENTIAL, the server will use SSL for all requests to this resource by
redirecting the client to the SSL port of the server. The redirection port is configured in the
redirectPort attribute of the HTTP Connector.

For the secure application introduced earlier, the CONFIDENTIAL level will be used. This is accom-
plished by adding the following element to the <security-constraint> in the example web.xml file:

<security-constraint>
...
<user-data-constraint>

<description>
Constrain the user data transport for the whole application

</description>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

This will force all requests for the secure Web application to use HTTPS, even if the original came in
over HTTP. This is the only setup required in web.xml. The next section considers changes to
server.xml.

Tomcat Setup
The setup procedure for Tomcat is straightforward, but different for Tomcat 4.1 and Tomcat 5. Both ver-
sions come with a handy HTTP Connector already set up for SSL, so it will only need to be modified.

Tomcat 4.1
Locate the following <Connector> element in server.xml:

<!--
<Connector className=”org.apache.coyote.tomcat4.CoyoteConnector”

port=”8443” minProcessors=”5” maxProcessors=”75”
enableLookups=”true”
acceptCount=”10” debug=”0” scheme=”https” secure=”true”
useURIValidationHack=”false”>

<Factory className=”org.apache.coyote.tomcat4.CoyoteServerSocketFactory”
clientAuth=”false” protocol=”TLS” />

</Connector>
-->

To use this Connector, the <!—— and ——> comment tags must be removed from around the
<Connector> element. Next, the SSL-related settings are configured within the <Factory> element. If a
nondefault password was used for the keystore (that is, any password but “changeit”), that password
must be added here (shown in bold):

366

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 366

<Factory className=”org.apache.coyote.tomcat4.CoyoteServerSocketFactory”
clientAuth=”false” protocol=”TLS”
keystorePass=”tomcat” />

Tomcat 5
Locate the following <Connector> element in server.xml:

<!--
<Connector port=”8443”

maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”
clientAuth=”false” sslProtocol=”TLS” />

-->

To use this Connector, the <!— and —> comment tags must be removed from around the <Connector>
element. Next, if a nondefault password was used for the keystore (that is, any password but “changeit”),
the keystorePass attribute must be added to the <Connector> element containing the keystore pass-
word, as shown in the following example (in bold):

<Connector port=”8443”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” disableUploadTimeout=”true”
acceptCount=”100” debug=”0” scheme=”https” secure=”true”
clientAuth=”false” sslProtocol=”TLS” keystorePass=”tomcat” />

To test this feature, start Tomcat and request the following URL:

http://localhost/secure/

If a CA-signed certificate was not used, the browser will display a warning about the certificate (note
that this warning may vary depending on your browser), as shown in Figure 15-6.

Figure 15-6: Warning about a certificate not signed by a Certificate Authority.

367

Tomcat Security

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 367

Host Restriction
The last security mechanism to be considered in this chapter is perhaps one of the most effective and
least complex: host restriction.

Rather than allow any user from any location in the entire Internet to use a Web application, system
administrations may configure Tomcat to only accept HTTP requests from either a specific IP address
or a range of IP addresses. Requests from any other source will simply be ignored.

Tomcat restricts the hosts allowed to access an application through the use of the Request Filter Valve.
For details, see Chapter 8.

Summary
This chapter has covered a broad range of techniques for securing Tomcat itself and Tomcat-hosted
applications. To conclude this chapter, let’s review some of its key points:

❑ Unnecessary default Tomcat applications that may pose potential security risks should be
disabled.

❑ The default Tomcat security-related settings should be changed as these could be used to attack
the Web site.

❑ Tomcat should be run under a Tomcat-specific account with limited permissions.

❑ The Java Security Manager can be used to limit the operations that Web applications may perform.

❑ Web applications can be secured by using standard mechanisms for authentication and access
control.

❑ SSL can be used to secure important data communication between the Web server and the
browser.

❑ Access to Web applications can be restricted to certain IP addresses or range of IP addresses.

Chapter 16 discusses shared hosting using Tomcat.

368

Chapter 15

b 559028 Ch15.qxd 4/22/04 3:58 PM Page 368

Shared Tomcat Hosting

With the introduction of the Tomcat JSP/Servlet container by the Apache Software Foundation,
hosting providers around the world have started providing world-class Servlet/JSP support to their
customers. Typically, these hosting services are based on shared hosting in which hundreds of sites
can be running on a single computer. The hosting services allow for the sharing of resources such as
the Web server, the database server, the mail server, and various other services. Thus, all the services
that are typically used in this scenario must have built-in support for shared hosting.

The following shared hosting topics are covered in this chapter:

❑ An introduction to virtual hosting terminology

❑ Virtual hosting using Apache HTTPd and Tomcat

❑ Setting up Tomcat to work behind Apache HTTPd using mod_jk2

❑ Options for tuning Tomcat resource usage in a hosting situation

This chapter examines how Tomcat lends itself for use in a shared hosting scenario. The first con-
cept to be covered is virtual hosting that helps Web servers (such as Apache) to work. This is fun-
damental because Tomcat interacts with Web servers quite intimately. The development cycles of
Tomcat 4 and now Tomcat 5 has enabled the integration of Tomcat and Apache to progress to a
mature stage of development.

During the evolution of Tomcat and Apache, many incompatible versions of the integration soft-
ware were developed. This meant that upgrading Tomcat from version 3 to version 4 would
require significant changes to the integration configuration. Fortunately for everyone using the
well-integrated Apache HTTPd server and Tomcat, the configuration of Tomcat 4 and Tomcat 5
with Apache using mod_jk2 are identical.

Apache 2.0.43, Tomcat 5, and mod_jk2 are used for all of the examples in this chapter.

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 369

Vir tual Hosting
In this chapter, a Web site refers to the contents of a distinct Fully Qualified Domain Name (FQDN),
which is served by a Web server. Strictly, a FQDN consists of two parts: a host name and a domain name.
For example, the FQDN www.wrox.com consists of the host name www and the domain name wrox.com.
The domain name wrox.com has other hosts such as customer and xmail, whose FQDNs would be
customer.wrox.com and xmail.wrox.com. However, because the distinction between an FQDN and
a domain name is not relevant in this discussion, the terms are used interchangeably.

As of November 2003, nearly 45 million Web sites were contacted by Netcraft (source: http://news.
netcraft.com/archives/web_server_survey.html) as part of their monthly Web server survey.
This shows the enormous number of Web servers that provide their services on the Internet. A standard
Web server in a default configuration only allows one domain to be served from the machine. For a host
provider to serve hundreds of domains from its location would mean setting up hundreds of computers
for serving all the Web sites. Certainly, this is not a scalable solution.

In addition, IP addresses are an increasingly scarce resource. A Web-hosting provider gets a limited
number of IP addresses from its connectivity providers for hosting. Using one IP address for every Web
host would quickly eat up all the allocated IP addresses. To overcome these limitations, virtual hosting
is used to make optimal use of all our available resources (be it services, IP addresses, or other comput-
ing resources).

The first topic to examine is the Apache Web server and how it implements Web virtual hosting in two
ways:

❑ IP-based virtual hosting — Based on multihoming hosts (that is, machines with multiple network
interface cards (NICs), each with distinct IP addresses), every domain to be served is allocated
one IP address. The Web server listens to each of these network interfaces, and serves resources
from the relevant domain based on the IP address from which the request arrived.

❑ Name-based virtual hosting — The Web server listens on the IP addresses configured on the host,
and serves resources from the relevant Web site, based on the HTTP request headers from the
Web client.

IP-Based Virtual Hosting
In IP-based virtual hosting, a machine is configured to have a number of IP addresses equal to the num-
ber of hosts it will serve. Therefore, a machine that is to host 10 Web sites would need 10 IP addresses con-
figured. These additional IP addresses may be configured either by adding physical network interfaces
(NICs) to the machine, or, as is more common, by adding aliased network interfaces to the computer.

Normally, when an NIC is added to a machine, it is configured with a single IP address, which is used by
various services. However, it is possible to configure the same NIC with more than one IP address. Adding
these additional IP addresses involves using operating-system-specific commands for first creating a vir-
tual interface and then configuring it with a virtual IP address. This process normally involves using a
physical NIC and adding virtual interfaces on top of it, a process also commonly known as aliasing.

370

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 370

For example, on Linux, using the ifconfig command adds a virtual interface and configures the NIC
with an IP address at the same time. If an Ethernet interface named eth0 has already been configured, it is
simple to add an aliased interface called eth0:1 (in Linux, virtual Ethernet interfaces are named with the
syntax <physical-interface-name>:<virtual-interface-index>), using the following command:

$ ifconfig eth0:1 <virtual-IP> netmask <virtual-IP-netmask>

Implementing IP-Based Virtual Hosting in Apache
Adding IP-based virtual hosts in Apache is trivial. Merely add a <VirtualHost> block to Apache’s
httpd.conf file for each corresponding Web site, and a few associated parameters. Let’s look at a
sample configuration:

<VirtualHost 192.168.1.200>
ServerName www.somedomain.com
DocumentRoot /home/websites/www.somedomain.com/web
ServerAdmin support@somedomain.com
ErrorLog /home/sites/www.somedomain.com/log/error
TransferLog /home/sites/www.somedomain.com/log/access

</VirtualHost>

<VirtualHost 192.168.1.201>
ServerName www.otherdomain.com
DocumentRoot /home/websites/www.otherdomain.com/web
ServerAdmin support@otherdomain.com
ErrorLog /home/websites/www.otherdomain.com/log/error
TransferLog /home/websites/www.otherdomain.com/log/access

</VirtualHost>

Here, two IP-based virtual hosts, www.somedomain.com and www.otherdomain.com, were configured
to run on the IP addresses 192.168.1.200 and 192.168.1.201, respectively.

Each of the virtual hosts is defined in a <VirtualHost> section:

❑ The ServerName directive sets the domain name to be served by this virtual host.

❑ The DocumentRoot directive points to the base directory to be used for serving pages for this
domain.

❑ The ServerAdmin directive lists the e-mail address of the Web server administration personnel.

❑ TransferLog and ErrorLog point to the log files to be used for Web site access and Web site
error messages, respectively.

The two IP addresses used in the <VirtualHost> directives should belong to network interfaces for the
machine on which Apache would be running. You may have noticed that each of the Web sites has its
own document root and its own log files for access and error logging. Various other directives can be
placed in these virtual host definitions to enable further customization. Omitting these other directives
would cause the virtual host to inherit any values from the global settings in the configuration file.

371

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 371

Avoiding Common Mistakes
Some common mistakes to avoid include the following:

❑ Apache, in its default configuration, starts up and listens on all the configured network inter-
faces on the machine. If, for some reason, Apache is configured to listen on only a restricted
number of IP addresses on the machine (using the Listen directive), it is important to ensure
that Apache is listening on all the IP addresses of the various IP-based virtual hosts in order for
all of them to work.

❑ Using any random combination of IP addresses and Web host names will not always work as
expected. This is commonly done by configuring the client machine to use a Domain Name
Service (DNS) server. The Web client would query this DNS server for the IP address of the
given host name, and then use the IP address returned by the DNS server to connect to the
Web server. Similarly, the Web server would expect requests for the host name at the IP address
specified in the corresponding NameVirtualHost directive.

Needless to say, if the IP address given in the NameVirtualHost directive doesn’t match the
one returned by the DNS server for the host name, the Web client and the server won’t be able
to talk to each other.

❑ The FQDN of the Web site can be used in place of the IP address in the <VirtualHost>
directive. In this case, there should not be any problems in the DNS resolution of the host names
in the machine. This is because when Apache starts up, it resolves each of the FQDNs in its
<VirtualHost> directives to their IP addresses before offering the Web service. Problems in
resolving these addresses (for example, when a DNS server cannot be reached in time) during
startup can cause Apache to abort prematurely.

Name-Based Virtual Hosting
While IP-based virtual hosts help maximize the use of resources, they are still not feasible in places
where hundreds of domains must be hosted on the same machine. Obtaining one IP address for each
host or configuring many network interfaces on the same machine becomes a logistical nightmare. In
these cases, name-based virtual hosting is used.

Name-based virtual hosting depends solely on an extension of the HTTP 1.0 protocol. In an HTTP 1.0
protocol, a Web client or a browser merely had to make a TCP connection to port 80 of a Web server and
request a document using a relative location identifier in order for the Web resource to be fetched. For
example, to access the document http://www.somedomain.com/help.txt, the browser could look
up the IP address of www.somedomain.com, make a TCP connection to port 80 of the IP address, and get
the complete resource just by using the HTTP GET command, as shown here:

$ telnet 192.168.1.200 80

Trying 192.168.1.200...
Connected to 192.168.1.200.
Escape character is ‘^]’.
GET /help.txt HTTP/1.0

372

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 372

Following is the response returned by the Apache HTTPd server:

HTTP/1.1 200 OK
Date: Fri, 21 Nov 2003 05:35:29 GMT
Server: Apache/1.3.26 (Unix) mod_watch/3.12 PHP/4.3.3
Last-Modified: Tue, 23 Jul 2002 02:37:16 GMT
ETag: ‘77e2ef-199-3d3cc15c’
Accept-Ranges: bytes
Content-Length: 409
Connection: close
Content-Type: text/plain

[... rest of the contents of help.txt]

However, this enables only one Web site to be accessed per IP address; otherwise, it would be impossible
to discover the host for which the request was intended.

To tackle this problem, the Host: header, as introduced in HTTP 1.1, is used to determine the Web site
from which the resource is requested. With this new header, the HTTP headers exchanged between an
HTTP/1.1-compliant Web client and a server would look like the following from the client:

GET /help.txt HTTP/1.0
Host: www.somedomain.com

The response from the server would look as follows:

HTTP/1.1 200 OK
Date: Fri, 21 Nov 2003 05:36:45 GMT
Server: Apache/1.3.26 (Unix) mod_watch/3.12 PHP/4.3.3
Last-Modified: Tue, 23 Jul 2002 02:37:16 GMT
ETag: ‘77e2ef-199-3d3cc15c’
Accept-Ranges: bytes
Content-Length: 409
Connection: close
Content-Type: text/plain

[... rest of the contents of help.txt]

The additional Host: header in the client request helps the Web server distinguish between all the
domains that share the same IP address.

Implementing Name-Based Virtual Hosting in Apache
Implementing name-based virtual hosting in Apache is not very different from implementing IP-based
virtual hosting. It only requires the addition of the NameVirtualHost directive. This directive config-
ures the IP address on which the Apache server will receive HTTP requests for the name-based virtual
hosts. Documents should be subsequently fetched depending on the value of this parameter and the
related virtual host definition specified later in the configuration.

373

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 373

A sample Apache name-based configuration would look like the following:

NameVirtualHost 192.168.1.200

<VirtualHost 192.168.1.200>
ServerName www.somedomain.com
DocumentRoot /home/websites/www.somedomain.com/web
ServerAdmin support@somedomain.com
ErrorLog /home/websites/www.somedomain.com/log/error
TransferLog /home/websites/www.somedomain.com/log/access

</VirtualHost>

<VirtualHost 192.168.1.200>
ServerName www.otherdomain.com

DocumentRoot /home/websites/www.otherdomain.com/web
ServerAdmin support@otherdomain.com
ErrorLog /home/websites/www.otherdomain.com/log/error
TransferLog /home/websites/www.otherdomain.com/log/access

</VirtualHost>

In this configuration, two Web sites, www.somedomain.com and www.otherdomain.com, are being
hosted on the same IP address: 192.168.1.200. After a request comes to the IP address, Apache uses
the Host: parameter and the ServerName parameter of each of the virtual host definitions to determine
the definition to which this request should be sent. The only configuration that must be specified in
order to use name-based virtual hosting is to set up DNS settings for each of the FQDN to be hosted so
that the client can resolve the IP addresses correctly. Compare this to IP-based virtual hosting, whereby
each of the IP addresses also had to be configured on the network interfaces of the machine.

Avoiding Common Mistakes
Some common mistakes to avoid in name-based virtual hosting include the following:

❑ If a Web request has been made to an IP address listed in the NameVirtualHost and the appli-
cable virtual host could not be determined, Apache sends the request to the first virtual host
block in the Apache configuration for that IP address. The request is not sent to the default
document root of the whole server. Therefore, the first <VirtualHost> section for every
NameVirtualHost IP address should be a domain where unresolved Web requests could also
be handled.

❑ Because SSL connections are not on HTTP, headers such as Host: cannot be extracted in
advance. Therefore, it is not possible to have multiple SSL servers running on the same IP
address. For this reason, each SSL-enabled Web site must be configured on a unique IP address.

❑ Older Web clients and many Web access software libraries still use the old HTTP 1.0 protocol.
Because they don’t send the Host: header to the Web server, name-based virtual hosting would
not work properly with them. However, these incompatible clients are incredibly rare. It is
unlikely that excluding them from a list of supported clients would cause a significant problem.
Prominent browsers such as Netscape 2.0+, IE 3.0+, and Lynx 1995+ all support the Host:
header.

374

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 374

Vir tual Hosting with Tomcat
The preceding section explained how to configure Apache to support virtual hosts. This section contains
the main focus of this chapter: virtual host support in Tomcat. Before reading further, it is important to
consider what would be expected from Tomcat in a shared hosting environment.

Tomcat could work either in a standalone mode (in which it includes support for both an HTTP server
and the JSP/Servlet container) or in a cooperative manner (with a Web server such as Apache). For
more information about this topic, Chapter 12 provides details on setting up Tomcat with Apache in
various ways.

Expecting Tomcat to provide virtual hosting support would mean the following: Given that two or more
Web hosts are served from the same machine, when a request comes for a particular resource on one of
these hosts, Tomcat should be able to successfully identify the host for which the request had been
received, and fetch the required resource from the host document base.

For Tomcat working in a standalone mode, the request in question can target static pages, as well as JSP
and Servlets. When working along with another Web server such as Apache, the Web server itself han-
dles the virtual hosts and the processing of subsequent static pages. Therefore, the only thing that must
be determined is whether Tomcat could handle the Servlets and JSPs while distinguishing the various
hosts involved.

Of course, the Apache Web server can be used to perform additional tasks such as load balancing and
clustering. These configuration options are not generally considered for virtual hosting, and are dis-
cussed separately in Chapter 12 and Chapter 19.

Because of the extreme similarity of the configuration between Tomcat 4.1 and Tomcat 5 using the JK2
Connectors, the version of Tomcat covered in this section is Tomcat version 5.0 — the upcoming version
of Tomcat implementing Servlet 2.4 and JSP 2.0 specifications.

Example Configuration
For the purpose of assigning IP addresses to private networks, the Internet Assigned Numbers Authority
(IANA) has assigned three blocks of IP addresses, as specified in the specification document RFC 1918
(http://www.rfc-editor.org/rfc/rfc1918.txt). Following are these IP address blocks:

❑ 10.0.0.0 – 10.255.255.255

❑ 172.16.0.0 –172.31.255.255

❑ 192.168.0.0 –192.168.255.255

The following discussion examines how to configure Tomcat to serve two virtual hosts: europa.dom and
callisto.dom.

These virtual hosts will be running on the same machine with the common IP address 10.0.0.1 as an
example of name-based virtual hosting. Our private network uses the IP range block 10.0.0.0-10.0.
0.255 (that is, every IP address in our network is of the form 10.xxx.xxx.xxx, with the exclusion of
10.0.0.0 and 10.0.0.255, which have special meaning in networks). Every IP address in our network
is also allocated a host name in the domain named .dom.

375

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 375

As is likely in a production scenario, both these domains would be hosted on a directory outside the
Tomcat base directory. The hosting scheme that is to be used is as follows.

Each of the domains would have its own document area in /home/websites/<domain-name>. Web
applications or WAR files would be deployed in a subdirectory named webapps. Static HTML pages
and scripts, if required, can be kept separate from the Web applications, and would be deployed in a
subdirectory named web.

As an example for the domain europa.dom, a Web application called shop would be deployed under
/home/websites/europa.dom/webapps/shop. Alternatively, the shop.war Web application archive
could be deployed under /home/websites/europa.dom/webapps/. If Apache is required to serve
static pages and scripts, they must be deployed using /home/websites/europa.dom/web/ as the doc-
ument root. If Tomcat is to be used to serve static pages in a default context, an additional default Web
application called ROOT is to be deployed as /home/websites/europa.dom/webapps/ROOT/, and all
static content is to be served from this directory itself.

The Web applications should be kept separate from the static pages because in many cases of a shared
hosting scenario, the hosting requirement of the clients would include Tomcat support as an additional
feature to their regular Web needs. For most of the clients’ static site content, the separate Web directory
would suffice, and Apache would handle them without any problems. For clients who want to add Web
applications, it is a simple matter to drop their WAR files in the webapps/ directory without mixing
them up with the static content.

For performance reasons, Tomcat is often configured to extract a WAR file to a directory with a similar
name. For a Web administrator, the WAR directories would create confusion with those directories
created for serving static content. Thus, keeping these two entities (static files and Web applications)
separate aids in keeping the directory structure clean and more maintainable, as shown here:

/home/websites/
europa.dom/

web/
webapps/

callisto.dom/
web/
webapps/

For the purposes of providing a simple test example, create a sample JSP file, appropriately named
test.jsp, in the document base of the default context Web application of each of these domains. For
example, the file /home/websites/europa.dom/webapps/ROOT/test.jsp should contain the
following simple code:

<html>
<head>

<title>Welcome to Europa!</title>
</head>
<body>

<%
out.println(‘You are currently viewing the contents of ‘

+’the Europa web server’);
%>

</body>
</html>

376

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 376

Create a similar file as /home/websites/callisto.dom/webapps/ROOT/test.jsp. Remember to
change the names for the callisto.dom domain.

Note that the more flexible request.getServerName() method has not been used. This is because if
the virtual host setting is not configured correctly, Tomcat (which provides the server environment to the
JSP file) would send incorrect host information to the internal JSP handler. The resulting server name
displayed on our browsers could be confusing while debugging the configuration for virtual hosting.

Another alternative to this would be to just write the server name in HTML. The JSP as it stands is
incredibly simple and unlikely to cause problems, but it is a JSP, and you want to ensure that the config-
uration is able to serve JSP (and hence Servlets) properly. Incorrectly setting up a virtual hosting scenario
could, for example, cause the external Web server itself to serve the JSP file. Because it cannot interpret
the JSP source, it would display the unparsed contents of the JSP file itself.

Feel free to change these setup details, such as modifying the contents of the JSP or including additional
Web application contexts to suit the server hosting policy required.

Introduction to Vir tual Hosting with Tomcat
The task of configuring virtual host support in Tomcat consists of two steps — adding virtual host sup-
porting Web application definitions, which is sufficient if Tomcat is being run as a standalone server,
and adding suitable directives in the Apache configuration file ($APACHE_HOME/conf/httpd.conf), if
Tomcat is being run as an external Servlet engine. Let’s look first at the scenario in which Tomcat is used
as a standalone server, serving static pages as well as JSPs and Servlets.

Tomcat Components
Figure 16-1 illustrates the relationship between the various components of Tomcat when Tomcat is being
used as a standalone server.

In this case, the Web client directly sends the HTTP request to the Tomcat process listening at port 8080.
The HTTP Connector handles the Web client interaction. Tomcat then takes a look at the Host: header
present in the HTTP request. If one is present, it tries to look up a virtual host with a name matching the
one requested. If such a virtual host is found, the context parameter of the virtual host is taken and
merged with the context parameters of the default configuration, and the file served accordingly. The
resultant output is sent back to the Web client using the HTTP Connector again.

If no context with the given virtual host is found, Tomcat tries to match the context path to the contexts
that do not belong to any virtual hosts. If one is found, that context is used to send back the results. If no
such context is found, either the default (with the empty context path) context is used to send back the
result (in which case, the context path is matched to a physical directory or filename) or an HTTP 404
error is generated and sent back to the client.

377

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 377

Figure 16-1: Tomcat handling request for a virtual host.

Tomcat 5 as a Standalone Server
Adding a virtual host is as simple as adding additional <Engine> entries in server.xml. Once these
additions have been done, you simply restart Tomcat to use the virtual host definitions.

The default sample server.xml file of the Tomcat 5 build contains two services — one for the stand-
alone server and one for the server that cooperates with an Apache Web server using the JK2 protocol.
You can remove the definition for the second service and reuse that of the first service. Most of the fol-
lowing configuration already exists in the default server.xml file.

The top-level <Service> element for the standalone server would look like the following:

<Server port=’8005’ shutdown=’SHUTDOWN’ debug=’0’>
<Service name=’Catalina’>

</Service>
</Server>

The rest of the configuration would be placed inside this <Service> container element. The next step is
to add the Connectors to be used for this service. Because this is a standalone server, the only Connector
required to be configured is the HTTP/1.1 Connector, to enable communication with the outside world.

Web client

... other contexts

VHost n

VHost 2

VHost 1

Contexts

Request

Response

HTTP connection handler

The Tomcat process

378

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 378

Add the following Connector definition inside the <Service> element:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector port=’8080’

maxThreads=’150’ minSpareThreads=’25’ maxSpareThreads=’75’
enableLookups=’false’ redirectPort=’8443’ acceptCount=’100’
debug=’0’ connectionTimeout=’20000’
disableUploadTimeout=’true’ />

This will configure Tomcat to listen to port 8080 for incoming Web requests.

Now add the <Engine> element to the <Service> element by adding the following lines just after the
<Connector> element and inside the <Service> element:

<Engine name=’Catalina’ defaultHost=’europa.dom’ debug=’0’>

</Engine>

This specifies an Engine for the service that processes incoming requests from the Connectors. After any
request is received by the Connector and passed on to the Engine, the Engine examines the HTTP head-
ers (especially the Host: tag) to determine which of the virtual host definitions that it handles should
receive the request. If none of the virtual hosts seems to match the request headers, the Engine passes
on the request to a default host. The name of the default virtual host is specified in the attribute
defaultHost. The value of this attribute must match a <Host> definition in the Engine.

The configuration of the defaultHost property in the Engine element specifies that any Web requests
that are not matched directly by the configured host elements should be served by the virtual host defi-
nition for europa.dom.

Adding the virtual host definition of europa.dom to the Engine is completed by including the following
content inside the <Engine> element:

<Host name=’europa.dom’ debug=’0’
appBase=’/home/websites/europa.dom/webapps’
autoDeploy=’true’
unpackWARs=’true’>

</Host>

This defines a virtual host entry for europa.dom in Tomcat. Logging functionality can be added to this
virtual host by placing the following content within the <Host> element:

<Valve className=’org.apache.catalina.valves.AccessLogValve’
directory=’/home/websites/europa.dom/logs’
prefix=’europa_access.’
suffix=’.log’
pattern=’common’/>

<Logger className=’org.apache.catalina.logger.FileLogger’
directory=’/home/websites/europa.dom/logs’
prefix=’europa_catalina.’
suffix=’.log’
timestamp=’true’/>

379

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 379

This defines two logging services for this virtual host. Chapter 5 discusses the <Logger> element.

Finally, the configuration is completed by adding the contexts to serve for this virtual host, inside the
<Host> element:

<Context path=’’ docBase=’ROOT’ debug=’0’/>
<Context path=’/shop’ docBase=’shop’ debug=’0’ />

This has added two contexts here. The first one is the default context with an empty context path. This
context has to be either defined explicitly or provided automatically by Tomcat (that is, without explicitly
defining it in server.xml) if there is a Web application called ROOT in the appBase of the virtual host.

One important new convenience provided by Tomcat 4 and 5 is that it creates automatic contexts if they
exist in the appBase, even if you haven’t defined them in the host definition. To provide this functional-
ity, Tomcat looks at directories inside the appBase directory. If these directories follow the Web applica-
tion structure (specifically, if they contain a WEB-INF/web.xml file in them), Tomcat automatically
provides contexts with context paths equal to the name of the directory under appBase.

Remember that the default parameters for these contexts are picked up from $CATALINA_HOME/conf/
web.xml.

However, if there is a need to override some global parameters to these contexts, that configuration is
required within the <Context></Context> elements. Examples would include logging for this context
in a separate file, context parameters, resource definitions, and so on.

This completes the virtual host definition for europa.dom. For the virtual host callisto.dom, add
another virtual host entry similar to that of europa.dom:

Save this file as $CATALINA_HOME/conf/server.xml and restart the Tomcat service.

Now, check the test JSP file in the europa.dom virtual host using the following URL, as shown in Figure
16-2.

http://europa.dom:8080/test.jsp

Figure 16-2: test.jsp executing in the Europa virtual host.

Do the same for callisto.dom by using the following URL, as shown in Figure 16-3.

http://callisto.dom:8080/test.jsp

380

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 380

Figure 16-3: test.jsp executing in the Callisto virtual host.

Finally, perform a quick check to determine whether the default host setting of the <Engine> element is
working properly. For this, use a host name other than the ones specified explicitly as <Host> defini-
tions. The easiest way to do this is to try accessing the Tomcat server using the IP address 10.0.0.1 and
view the results, as shown in Figure 16-4.

Figure 16-4: test.jsp executing in the Europa virtual host, using the IP address.

As shown in Figure 16-4, Tomcat serves the contents of the europa.dom virtual host, as defined in the
default virtual host entry of the Engine. Now that Tomcat 5.0 is working as a standalone server for
the virtual hosts, the next section provides instructions for creating the configuration to work with the
Apache HTTPd.

Tomcat 5 with Apache
When Tomcat is used as an out-of-process Servlet container along with Apache, two sets of configuration
must be done: one in Tomcat and the other in Apache.

For Tomcat, the configuration shown in the preceding section remains more or less the same. The only
difference is that you can disable the HTTP Connector in the server.xml configuration file because it is
not being used.

To disable the HTTP Connector, either comment out or remove the following section in server.xml:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector port=’8080’

maxThreads=’150’ minSpareThreads=’25’ maxSpareThreads=’75’
enableLookups=’false’ redirectPort=’8443’ acceptCount=’100’
debug=’0’ connectionTimeout=’20000’
disableUploadTimeout=’true’ />

At Apache’s end, as shown in the previous chapters, an adapter for Tomcat must be used. Here, we will
use the mod_jk2 adapter using the AJP 1.3 protocol for communicating with Tomcat. The AJP protocol is
covered in Chapter 11, and mod_jk2 is covered in Chapter 12.

Figure 16-5 shows a diagrammatic representation of how the components are related. The differences
between Figure 16-1 and Figure 16-5 reflect the different information pathways.

381

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 381

Figure 16-5: Apache and Tomcat serving HTTP requests.

Here, Apache receives the HTTP request from the client. It then looks up the appropriate virtual host
entry using the Host: parameter in the request. In the virtual host entry, mod_jk2 is configured to for-
ward all appropriate Servlet and JSP requests to the appropriate worker. The worker would use the AJP
1.3 protocol, or a JNI interface could be used to communicate with a Tomcat process started within the
Apache adapter.

While it is possible for all the types of workers to be simultaneously used, it is more common to use a
single kind of worker throughout the installation. If the worker is an ajp13, it opens a TCP-based AJP
1.3 protocol connection to the Tomcat server, which receives the request via its AJP 1.3 Connector.
Tomcat then examines the request to determine whether any of its virtual host definitions match the
request. This is similar to the matching process in the standalone Tomcat server. The Servlet response is
then sent back through the AJP 1.3 Connector to the mod_jk2 module. This, in turn, instructs Apache to
send the reply back to the Web client.

Configuring Apache
Assuming that mod_jk2 has been appropriately set up in Apache to communicate with Tomcat as
explained in Chapter 12, we now take a look at adding virtual host support to this configuration.

As explained in the section “Apache Name-Based Virtual Hosting,” earlier in this chapter, for every vir-
tual host definition you need to add a <VirtualHost> section in Apache (in fact, the Tomcat <Host>
configuration definition is very similar to this concept). Now, along with the rest of the virtual host con-
tents, we add some directives to connect certain resources to Tomcat.

You have two distinct ways available to configure the mapping of the requests within Apache. The
first is to use the <Location> directive as shown next. This method doesn’t require any changes to the
workers2.properties file and will pass all requests ending in jsp to Tomcat.

Web
client

HTTP request
Request handler

The Apache process The Tomcat process

Virtual host module

mod_jk module

ajp12 worker

AJP 1.2 protocol
(port 8007)

AJP 1.3 protocol
(port 8009)

ajp13 worker

ajp12 handler

ajp13 handler

JNP worker(*)

HTTP response

... other contexts

VHost n

VHost 2

VHost 1
Contexts

382

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 382

Modify the httpd.conf <VirtualHost> elements as follows:

NameVirtualHost *
<VirtualHost *>

ServerName europa.dom
DocumentRoot /home/websites/europa.dom/web

<Location ‘/*.jsp’ >
JkUriSet worker ajp13:localhost:8009

</Location>

</VirtualHost>

<VirtualHost *>
ServerName callisto.dom
DocumentRoot /home/websites/callisto.dom/web

<Location ‘/*.jsp’ >
JkUriSet worker ajp13:localhost:8009

</Location>

</VirtualHost>

The workers2.properties file consists of the following:

[logger.file:0]
level=DEBUG
file=/usr/local/tomcat5/logs/apache_jk2.log
debug=1

[shm:]
info=Shared memory file. Required for multiprocess servers
file=/usr/local/tomcat5/work/jk2.shm
size=1000000

[channel.socket:localhost:8009]
info=Forwarding over socket connection to localhost tomcat instance
host=localhost
port=8009
tomcatId=TC5

[ajp13:localhost:8009]
info=AJP13 worker, connects to tomcat instance using AJP 1.3 protocol
channel=channel.socket: TC5

When compared to the Apache virtual host directives shown at the beginning of this chapter, the only
major difference is the new <Location> and JkUriSet directives. These directives are an alternative to
providing the [uri:/*.jsp] directives in the workers2.properties file.

Restart the Apache HTTPd server and access the following previously used test URL:

http://europa.dom/test.jsp

383

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 383

However, this time, instead of sending the request to port 8080 of the Tomcat Web server, use the stan-
dard HTTP port 80 on which Apache should be listening. Notice how the page is rendered correctly.

The second method is to use the workers2.properties to control the URI mapping. In this case, the
configuration files look as follows:

NameVirtualHost *
<VirtualHost *>

ServerName europa.dom
DocumentRoot /home/websites/europa.dom/web

</VirtualHost>

<VirtualHost *>
ServerName callisto.dom
DocumentRoot /home/websites/callisto.dom/web

</VirtualHost>

and

[logger.file:0]
level=DEBUG
file=/usr/local/tomcat5/logs/apache_jk2.log
debug=1

[shm:]
info=Shared memory file. Required for multiprocess servers
file=/usr/local/tomcat5/work/jk2.shm
size=1000000

[channel.socket:localhost:8009]
info=Forwarding over socket connection to localhost tomcat instance
host=localhost
port=8009
tomcatId=TC5

[ajp13:localhost:8009]
info=AJP13 worker, connects to tomcat instance using AJP 1.3 protocol
channel=channel.socket: TC5

[uri:europa.dom/*.jsp]
worker=ajp13:localhost:8009

[uri:callisto.dom/*.jsp]
worker=ajp13:localhost:8009

The advantage of using the first configuration option is that the entire configuration is made in one
place. Unfortunately, the disadvantage is that it does not offer sufficiently fine-grained control over the
mapping to the Tomcat server. Because there is only one Tomcat and Apache server, all the requests are
passed over the same AJP Connector; then a <VirtualHost> configuration with a <Location> element
in the httpd.conf will be mapped and a different <VirtualHost> will be successfully displayed, even
though this is not what is expected. This behavior is definitely to be avoided., and therefore, it is recom-
mended that the second configuration method be used.

384

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 384

After adding these directives to the Apache httpd.conf file, restart Apache and access the following
previously used test URL:

http://europa.dom/test.jsp

However, this time, instead of sending the request to port 8080 of the Tomcat Web server, use the stan-
dard HTTP port 80 on which Apache should be listening.

By now, you might be wondering about all the other files that are part of our Web applications. What if
Servlets, or HTML pages and images, are part of the deployed Web applications? Trying to access any of
those will result in an Error 404: Not found.

The easiest way to test this error behavior is to copy the $CATALINA_HOME/webapps/servlets-examples
directory to /home/websites/europa.dom/webapps. This will result in the following directory structure:

/home/websites/
europa.dom/

web/
webapps/

ROOT/
servlets-examples/

Browse to the following URL and notice how this results in an error:

http://europa.dom/servlets-examples/

Clearly, there must be a better way to map the requests to Tomcat that doesn’t rely on matching the file-
name suffixes.

The next section describes the resolution to this dilemma.

Request Sharing Between Tomcat and Apache
The Apache server only sends requests to Tomcat when it matches the URI specified in the workers2.
properties file. Therefore, while there is a defined mapping for the JSPs, there is not a mapping for any
of the Web-application contexts.

What is happening is that mod_jk2 is not listening for requests on the servlets-examples context, and
those requests are being handled by Apache itself. Because the document root of Apache is different
from that of the Tomcat contexts, Apache doesn’t find the file and returns an error. Even if the document
root of Apache and the servlets-examples context are the same, it still wouldn’t solve the problem,
because Apache doesn’t understand JSP — Tomcat does. Therefore, Apache would end up displaying the
contents of the JSP file instead of parsing and interpreting it as required.

What you need is a way to pass the requests made to the context to Tomcat. Fortunately, Tomcat enables
you to do this with a small addition to workers2.properties. Modify the uri for the context so the
configuration is as follows:

[uri:europa.dom/*]
worker=ajp13:localhost:8009

[uri:callisto.dom/*.jsp]
worker=ajp13:localhost:8009

385

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 385

Pay careful attention to the differences between the files, and note that the URI extension for europa.dom
has been changed from *.jsp to *.

With this configuration in place, the expected contents of http://europa.dom/servlets-examples/
should be displayed.

However, is this current configuration what is desired? To see why this might not be the best configura-
tion, put a sample HTML file in the <VirtualHost> document root (/home/websites/europa.
dom/web) and try to access it through the browser. This will result in an HTTP 404 error, and careful
scrutiny of the error message that appears indicates that Tomcat, not Apache, is generating the error
this time.

What is happening now is that Tomcat has taken over all the references of the root URL, including static
files, but this is not what is wanted. Tomcat is needed to handle only Servlets and JSPs.

Unfortunately there is no easy solution for this. With the JK2 configuration, there is no way to easily sep-
arate the Servlets and JSPs. The best solution is to map to non-ROOT contexts on the Tomcat server. An
example using the servlets-examples context is to modify the workers2.properties file as follows:

[uri:europa.dom/servlets-examples/*]
worker=ajp13:localhost:8009

[uri:callisto.dom/*.jsp]
worker=ajp13:localhost:8009

Now, instead of blindly sending all root references to Tomcat, mod_jk2 is sending much more specific URLs.

Upon restarting the Apache server, try to access the test JSP file. The results should confirm that it works.
Now try to access the file that you created earlier in the static HTML document root (for example, in
/home/websites/europa.dom/web) and try to access it. This time it works.

However, it is important to note an important constraint while deploying Tomcat in this configuration.
If Tomcat has a default context in the Web application, you must have the DocumentRoot of the
<VirtualHost> directive point to the docbase of the default context. Otherwise, default context docu-
ments would simply not be accessible.

Fine-Tuning Shared Hosting
The previous sections have provided examples for standard configuration of shared hosting with
Tomcat. However, every host provider has several other specific requirements for providing Tomcat-
based services to multiple clients. This section provides two common configuration enhancements
for Tomcat:

❑ Creating separate JVMs for each virtual host

❑ Setting memory resource limits for each Tomcat JVM

386

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 386

Creating Separate JVMs for Each Virtual Host
The entire preceding configuration focused on how multiple hosts could be served from the same
Tomcat process. While this would suffice for many providers, others would rightly raise the issue of
security between the virtual hosts.

Because all the virtual hosts lie in the same request-processing Engine, trusted contexts in these virtual
hosts (which can access Tomcat internal objects, load/unload other webapps, and so on, such as the
default manager Web application) would have access to the common Tomcat internal classes and can
hence encroach on each other’s territory.

This would be a logistical nightmare. One possible solution would be to set up one <Engine> per virtual
host in the same server.xml file. Because each <Service> container element in the file could have only
one child <Engine> element, this would mean adding one service per virtual host, with the accompany-
ing Engine. However, because every Service has its own set of Connectors, this would also mean setting
up different Connectors listening on different ports for each Engine. Therefore, each virtual host in the
Apache configuration would have to forward to a different worker.

While this removes the problem of sharing information between the virtual hosts, it still causes a bit of
discomfort when one considers how a relaxed security policy in Tomcat can give one domain enough
privileges to bring down the whole Tomcat process.

The more secure (albeit more resource-intensive) solution to such possible security problems is to have
one Tomcat process per virtual host. Luckily, Tomcat has support for running multiple Tomcat processes
using the same Tomcat binary installation.

Tomcat depends on two environment variables to find its internal classes. These variables are used to
find the configuration-specific files, and are named $CATALINA_HOME and $CATALINA_BASE:

❑ $CATALINA_HOME is needed for any Tomcat build to function properly. Tomcat uses this variable
to find the location of internal classes and libraries.

❑ $CATALINA_BASE is used by Tomcat to find the location of the configuration-specific files and
directories, such as configuration files, the scratch directory in which JSPs are compiled, log
files, and the various Web applications. In case $CATALINA_BASE is not set, it defaults to the
value of $CATALINA_HOME.

Therefore, to have separate Tomcat processes, all that is required is to set the value of $CATALINA_BASE
to a different area of the disk for each virtual host, with its own server.xml file. This server.xml file
would have only one virtual host definition, different Connector port numbers, and different directories
for logs, scratch areas, and so on.

This setup requires the duplication of the directory trees that are specific to each implementation. While
disk space is relatively cheap, this does introduce additional system administration overhead. Later in
this chapter, some simple scripts are provided to illustrate how Tomcat server instances can be more
easily managed.

As an example, for the two virtual domains that we would be serving, we can store their respective con-
figurations in two different directories under /home/websites/<domain-name>/catalina. Therefore,

387

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 387

$CATALINA_HOME could be equal to /usr/local/tomcat/build. For europa.dom, $CATALINA_BASE
could be /home/websites/europa.dom/catalina, and for callisto.dom, $CATALINA_BASE could
be set to /home/websites/callisto.dom/catalina.

The server.xml file of europa.dom located at /home/websites/callisto.dom/catalina/conf/
server.xml should then be modified as follows:

❑ Change the attribute port of the <Server> root element that is used to shut down the Tomcat
process. We’ll keep it at 8105.

❑ Change the AJP Connector port to 8109.

❑ Ensure that only the virtual host definition of europa.dom is present, and that the default host
of the <Engine> is set to this domain.

The relevant sections of the europa.dom server.xml file should end up looking like the following:

<Server port=’8105’ shutdown=’SHUTDOWN’ debug=’0’>
<Service name=’Catalina’>

<Connector port=’8109’
enableLookups=’false’ redirectPort=’8443’ debug=’0’
protocol=’AJP/1.3’ />

<Engine name=’Catalina’ defaultHost=’europa.dom’ debug=’0’>

<Host name=’europa.dom’ debug=’0’
appBase=’/home/websites/europa.dom/webapps’
autoDeploy=’true’
unpackWARs=’true’>

<Valve className=’org.apache.catalina.valves.AccessLogValve’
directory=’/home/websites/europa.dom/logs’
prefix=’europa_access.’
suffix=’.log’
pattern=’common’ />

<Logger className=’org.apache.catalina.logger.FileLogger’
directory=’/home/websites/europa.dom/logs’
prefix=’europa_catalina.’
suffix=’.log’
timestamp=’true’/>

<Context path=’’ docBase=’ROOT’ debug=’0’ />
</Host>

</Engine>
</Service>

</Server>

388

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 388

For the server.xml file of callisto.dom located at /home/websites/callisto.dom/catalina/
conf/server.xml, the changes should be as follows:

❑ Change the <Server> port to 8205.

❑ Change the AJP Connector port to 8209.

❑ Ensure that only the virtual host definition of callisto.dom is present, and that the default
host of the <Engine> element is set to this domain.

The relevant sections of the callisto.dom server.xml file should end up looking like the following:

<Server port=’8205’ shutdown=’SHUTDOWN’ debug=’0’>
<Service name=’Catalina’>

<Connector port=’8209’
enableLookups=’false’ redirectPort=’8443’ debug=’0’
protocol=’AJP/1.3’ />

<Engine name=’Catalina’ defaultHost=’callisto.dom’ debug=’0’>

<Host name=’callisto.dom’ debug=’0’
appBase=’/home/websites/callisto.dom/webapps’
autoDeploy=’true’
unpackWARs=’true’>

<Valve className=’org.apache.catalina.valves.AccessLogValve’
directory=’/home/websites/callisto.dom/logs’
prefix=’callisto_access.’
suffix=’.log’
pattern=’common’ />

<Logger className=’org.apache.catalina.logger.FileLogger’
directory=’/home/websites/callisto.dom/logs’
prefix=’callisto_catalina.’
suffix=’.log’
timestamp=’true’/>

</Host>

</Engine>
</Service>

</Server>

With the addition of the extra Tomcat instance, the Apache configuration needs updating. However, in
this case, we are running two different Tomcat instances, each with an AJP 1.3 worker listening on a
unique port. Therefore, we need to inform our Apache Connector, using the workers2.properties file,
that we would be connecting to two different workers running on different ports.

389

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 389

The AJP worker properties file is changed to look like the following. This example simply reflects the
addition of the new worker with the modified ports, and the configuration changes to send the requests
to the appropriate worker. While making these changes, make sure that the ports specified for the work-
ers match the ports specified in the workers2.properties file for the correct hosts:

[uri:europa.dom/*]
worker=ajp13:europa.dom:8109

[uri:callisto.dom/*]
worker=ajp13:callisto.dom:8209

[channel.socket:europa.dom:8109]
host=europa.dom
port=8109
tomcatId=europa.dom

[channel.socket:callisto.dom:8209]
host=callisto.dom
port=8209
tomcatId=callisto.dom

[ajp13:europa.dom:8109]
channel=channel.socket: europa.dom

[ajp13:callisto.dom:8209]
channel=channel.socket: callisto.dom

For example, the Tomcat instance serving the europa.dom domain has its AJP1.3 Connector listening on
port 8109. Therefore, the ajp13:europa.dom port is set to 8109.

The Apache workers2.properties file is now changed to reflect the new worker names. Notice how
the names have changed from localhost to the domain name of the servers that are serviced by the
Connectors.

All that is required now is to start the two instances of Tomcat with the $CATALINA_BASE set to the
catalina subdirectory of the domains. To aid in the system administration task, write a shell script to
start all the Tomcat instances as required. Create the following shell script with the name
start_sites.sh in $CATALINA_HOME and make it executable:

#!/bin/bash

SITE_ROOT=’/home/websites’
SITES=`ls ${SITE_ROOT}`

for x in ${SITES}
do

CATALINA_BASE=’${SITE_ROOT}/${x}/catalina’
echo ‘Starting server: ${x} . Using CATALINA_BASE=${CATALINA_BASE}’

export CATALINA_BASE
${CATALINA_HOME}/bin/startup.sh

done

390

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 390

Similarly, create a shell script for shutting down all the servers. This shell script is created with the name
shut_sites.sh in $CATALINA_HOME and should also be made executable:

#!/bin/bash

SITE_ROOT=’/home/websites’
SITES=`ls ${SITE_ROOT}`

for x in ${SITES}
do

CATALINA_BASE=’${SITE_ROOT}/${x}/catalina’
echo ‘Shutting server: ${x} . Using CATALINA_BASE=${CATALINA_BASE}’

export CATALINA_BASE
${CATALINA_HOME}/bin/shutdown.sh

done

Now, stop all the instances of Apache and Tomcat in the system. Start the Tomcat instances using the
start_sites.sh script and follow it by starting the Apache daemon.

These startup and shutdown scripts could now be used in a system initialization script such as the
rc init scripts kept in /etc/init.d on Linux systems.

This section has provided the necessary configuration to have independent Tomcat processes for each of
the virtual sites.

Setting Memory Limits on the Tomcat JVM
Whether all the virtual hosts are running under the same Tomcat process or separate Tomcat processes
are allocated for each of them, there is still the risk of a resource problem.

The problem is that a Java VM at startup allocates a fixed amount of memory for dynamic allocation.
With several JVMs running, this number might be either too high (choking the virtual hosts that need
more memory, or too low (causing sub-optimal performance for the various hosts).

Depending on the number and the type of virtual hosts running on the one machine, it is likely that a
hosting environment will want to optimize these settings. This setting of memory (more specifically,
heap memory that is used while allocating all dynamic data structures) is done by setting a command-
line parameter for the Java executable when the Tomcat process is started.

The options that can be set are as follows:

❑ Initial Java heap size — using parameter -Xms

❑ Maximum Java heap size — using parameter -Xmx

❑ Java thread stack size — using parameter -Xss

For example, to set an initial heap size of 20MB (or 20 × 1024 × 1024 = 20971520), the value to be passed
to the JVM as a parameter is -Xms20971520 (or the more succinct -Xms20m).

391

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 391

Factors Determining Memory Requirements
The nature of the applications being run on the JVM determines the optimum heap sizes. Heavy multi-
threaded servers such as Tomcat that have a tendency to frequently allocate/de-allocate objects are quite
sensitive to heap size because a lot of memory can be held up at times, waiting to be garbage-collected.
Increasing the heap size in such scenarios can help a lot.

Conversely, very large heap sizes should be avoided by keeping -Xmx low. If other apps overload the
machine, the heap could start using the swap space (that is, space allocated on the hard disk as an exten-
sion of RAM, when all the memory in RAM has been used up). This is also known as virtual memory. It
reduces the performance of the system significantly. While a reasonable amount of swap usage is com-
mon for production servers, serious cases of continuous swapping, commonly known as thrashing,
could slow the machine to a crawl.

The JVM normally starts with as little memory as possible, as specified in -Xms, and then slowly
increases memory needs as required by the application, to the limit specified in -Xmx. If there is enough
memory, it is possible to set -Xms to the same value as -Xmx. This could result in a faster startup time for
the Java application. Always keep -Xms to a reasonable size to make applications more responsive.

The default value for -Xms and -Xmx (which differs from platform to platform) is normally too small for
server applications. In addition, the heap resizing from -Xms to -Xmx, happening slowly over time,
causes the server to slowly pick up performance. To reduce this startup latency, set both these limits to
the same value. However, if memory needs are minimal, this configuration will lose the advantage of the
JVM automatically choosing the optimum heap size (between -Xms and -Xmx) for the Tomcat server.

When adding processors to a Symmetric MultiProcessing (SMP) machine, be sure to increase memory,
because unlike memory allocations, which can be parallelized over the SMP, garbage collection cannot
be. Therefore, it could soon become the bottleneck in the application.

Heavy, database-oriented applications consume a lot of memory because of result sets, temporary tables
resulting from JOIN statements, and so on.

Ultimately, optimum heap sizes can only be determined by examining specific parameters such as the
following:

❑ How many Tomcat instances will be running?

❑ What kind of traffic is expected by the site?

❑ Does the Web application use a lot of data transactions involving heavily filled up databases?

❑ How much RAM is available to be installed in the machine?

❑ How many processors does the machine have?

Setting Memory Limits in Tomcat
The parameters for setting the memory that is passed to the JVM can be set in the environment variable
JAVA_OPTS. For easy system administration, the simplest option is to modify the multiple-Tomcat-
process starting script created earlier to send these options to the JVM, so that each of the virtual
hosts is restricted to these limits.

392

Chapter 16

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 392

The modified script would look like the following. Here, the configuration parameters set the minimum
and maximum heap limits of each Tomcat instance to 20MB and 50MB, respectively:

#!/bin/bash

JVM_OPTIONS=’-Xms20m -Xmx50m’
SITE_ROOT=’/home/websites’
SITES=`ls ${SITE_ROOT}`

for x in ${SITES}
do

CATALINA_BASE=’${SITE_ROOT}/${x}/catalina’
echo ‘Starting server: ${x} . Using CATALINA_BASE=${CATALINA_BASE}’

export CATALINA_BASE
JAVA_OPTS=’${JVM_OPTIONS}’
export JAVA_OPTS
${CATALINA_HOME}/bin/startup.sh

done

It is important to modify the values in JVM_OPTIONS as appropriate for the specific hosting requirements.

Summary
This chapter covered various topics related to using Tomcat-based sites in a shared hosting scenario.
Following are some of the key points discussed:

❑ Apache’s HTTP server supports IP as well as name-based virtual hosting.

❑ Tomcat can be set up for virtual hosting both in its standalone configuration as well as with an
Apache HTTP server front-end.

❑ Running separate JVMs for each virtual host is a recommended security practice, although it is
resource intensive.

❑ Controlling resource usage is important in a shared environment, and hence parameters such as
initial/maximum heap size and thread stack size can be configured for each virtual host.

This chapter specifically discussed the configuration of Tomcat for a shared hosting scenario. More infor-
mation on configuration of Apache HTTPd and Tomcat for load balancing can be found in Chapter 12.

Chapter 17 discusses server load testing.

393

Shared Tomcat Hosting

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 393

b 559028 Ch16.qxd 4/22/04 3:58 PM Page 394

Server Load Testing

So far in this book, the topics of installing, configuring, and securing a distributed Tomcat environ-
ment have been examined. After expending the effort needed to install, configure, and tweak an
installation, it is indeed a sad moment for a system administrator to see it all subverted because
the application server buckles under a production load. Therefore, it is vital that administrators
verify the performance characteristics of their Web applications before they are deployed for pro-
duction use.

Server load testing is a commonly used technique for measuring the performance of a Web appli-
cation. Server load testing is the process of simulating client requests so that a server can experience
large amounts of activity in a controlled environment. If the performance of the application fails to
live up to its requirements, steps can, and should, be taken to correct the situation.

This chapter illustrates the process of server load testing and describes some general optimization
techniques. By the end of the chapter, you will

❑ Understand the importance of load testing

❑ Know how to load test with the Jakarta JMeter framework and interpret the results

❑ Learn some basic strategies for optimizing Tomcat’s performance

The Importance of Load Testing
The goal of load testing is to determine both the performance and scalability of a Web application.
Scalability is the ability of a system to handle an increased load without a severe degradation of
performance. Thus, the notion of scalability is related to (but distinct from) that of performance.

To illustrate this point, consider two fictional Web sites: Widget World and Foo Bar. Suppose that
when one or two Web clients request pages from Widget World or from Foo Bar simultaneously,

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 395

they receive them in an average of 250 milliseconds (ms). Thus, the two sites can be said to perform fairly
well. However, when 20 Web clients request pages from the two sites, Foo Bar’s performance degrades to
an average of 1,800 ms per request, while Widget World continues to serve up pages at an average rate
of 250 ms per request. Widget World, therefore, is considered scalable (that is, it can handle scaled up
loads gracefully), whereas Foo Bar is not.

The concept of scalability goes beyond designing a Web application to handle as many users as possible.
Software, no matter how well written, cannot defy the laws of physics. There is a point at which even the
best Web application will fail to scale up to ever-increasing demands because of the hardware limitations
of the physical server upon which it runs. Therefore, scalability also reflects the capability of a Web appli-
cation to maintain an acceptable level of performance when new hardware resources are added to it. Many
Web applications fail to scale because they were never designed to function across multiple servers, or
they fail to take advantage of all the hardware resources available to them.

Without load testing, administrators cannot know how scalable a Web application is, so they cannot
accurately predict if a Web application will be able to perform adequately to service its anticipated load
levels. Furthermore, load testing can tell an administrator at what point the application will fail, which is
important information to know as the popularity of a Web application increases. Thus, it is very impor-
tant to load test Web applications before placing them in production.

Load Testing with JMeter
Unless an administrator has a large number of people with Web browsers and a lot of spare time, special
software is required to load test a Web application by simulating a heavy load.

There are numerous such load testing applications available, including open source software and com-
mercial packages (some affordable, some extremely expensive), and some people even choose (usually
erroneously) to write their own load tester. In this chapter, one of the sister projects of Tomcat, Apache
Jakarta JMeter, is used as the load testing solution. JMeter is one of the finer solutions available. It is even
capable of load testing FTP, JDBC data sources, and Java objects! This chapter’s discussion focuses on
load testing HTTP servers and applications.

The following sections describe how to install and use JMeter.

Installing and Running JMeter
As of this writing, JMeter’s home page is located at http://jakarta.apache.org/jmeter/, from
which the latest JMeter distribution can be downloaded as either a GZIP or ZIP archive. To install
JMeter, simply extract the contents of the archive into its own directory. Launching JMeter is accom-
plished by entering the bin directory of JMeter and running either jmeter.bat (on Windows) or the
jmeter shell script (on Linux or Unix).

The following sections demonstrate the use of JMeter. You may want to install JMeter at this point to
try it out as specific features are explained. All of the examples and figures in this chapter are from
JMeter 1.9.1.

396

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 396

Making and Understanding Test Plans with JMeter
Upon launching JMeter, you will see JMeter’s Swing interface, as shown in Figure 17-1.

Figure 17-1: The JMeter interface.

JMeter’s user interface consists of a tree in the left-hand pane, representing those items and actions that
you have added, and a right-hand pane that provides configuration forms and output windows for
items added to the left-hand pane.

At the heart of any JMeter session is the test plan, which is a list of actions that JMeter will perform. The
test plan is a top-level node in the test tree. Elements are added to the test plan by right-clicking on its
node and selecting Add from the pop-up menu.

The second icon on the first screen, the workbench, is a container for test elements that are not yet part
of a test plan. The workbench is a great place for experimenting with configurations and moving them
back and forth between test plans.

The simplest possible test plan for testing an HTTP server will be demonstrated before the discussion
moves into more advanced options in the sections to come. The first element in every test plan is a
thread group. A thread group is a collection of elements, and each thread group has its own set of Java
threads and a separate configuration.

By right-clicking the Test Plan node in the left-hand pane and selecting Add, the thread group item can
be selected. After adding the thread group, its icon can be selected in the left-hand pane to expose the
thread group configuration pane (see Figure 17-2). For now, the configuration options will be left at their
default values, but the available options will be explained.

397

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 397

Figure 17-2: Adding a thread group.

The following configuration options are available:

❑ Name — The name doesn’t need to be changed in a simple test plan, but when multiple thread
groups are used, the name can come in handy to distinguish the groups.

❑ Number of Threads — This indicates the number of threads the group will spawn to carry out its
assigned work. Each thread is basically equivalent to an additional simultaneous user perform-
ing the tasks assigned to the group.

❑ Ramp-Up Period (in seconds) — JMeter will start the group with one thread and add threads
evenly over the course of the specified period until the value specified in Number of Threads
has been reached.

❑ Loop Count — This specifies how many times the thread group will execute the elements of its
assigned workload. The default is Forever, which means the elements of the test plan will be
executed by the thread group until it is told to stop.

❑ Scheduler — This option enables the thread group to be configured to start and stop at a specific
date/time.

Now that a thread group has been added, it’s time to actually start doing something with it. Right-click
the Thread Group icon to produces a pop-up menu, select Sampler, and then select HTTP Request, as
shown in Figure 17-3.

Clicking on the freshly added HTTP Request icon exposes its configuration panel to the right. This is a
much busier screen than the thread group configuration (see Figure 17-4).

398

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 398

Figure 17-3: Adding an HTTP Request.

Figure 17-4: HTTP Request configuration panel.

399

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 399

Several options are available on this screen, many of which are quite obvious. Following are explana-
tions of some of the less intuitive options:

❑ Protocol — HTTP or HTTPS should be entered here.

❑ Method — Indicates whether the test should send a GET or a POST request, which depends on
what the requested page is expecting.

❑ Path — This is the Universal Resource Identifier (URI) of the page you are going to test. Note that
GET-style parameters (for example, index.html?name=ben) should not be included on this line.

❑ Follow Redirects — Web servers can return a special redirect HTTP response that instructs Web
clients to request an additional URL (as opposed to HTML or some other type of response con-
tent). Web browsers typically follow these redirects in a process that is transparent to the user.
This option should usually be checked.

❑ Use KeepAlive — Most Web servers and browsers support “keep-alive” connections. This type of
connection is not immediately closed when a browser receives a response from the server. It is
kept open for a server-configurable, short amount of time in anticipation of an additional request
from the same browser. Selecting this option eliminates socket-opening latency from the load
testing process, which is almost always a good idea.

❑ Parameters — Here’s the correct place to specify GET/POST parameters. The Encode? column
indicates whether the name and value should have the HTTP encoding rules applied to them.
For example, characters such as the ampersand (&) or spaces need to be encoded. The Include
Equals? column is for those rare situations in which the application is not expecting an equals
character (=) between the name and value.

❑ Filename — Some Web applications accept file uploads via HTTP POST. This field is for specify-
ing which file should be uploaded with the request.

❑ Parameter Name — The file will be uploaded as a key-value pair. Use this field to specify the
name of the key that the Web application will use to reference the file in the request.

❑ MIME Type — This is the type of the file you are uploading. For example, an HTML file would
have a MIME type text/html, and an Adobe Acrobat file would be application/pdf.

❑ Retrieve All Images and Java Applets — Of course, Web browsers must request images and all other
content referenced in an HTML page (such as CSS pages, etc.) separately from the initial HTML
page request. This option specifies whether JMeter parses the HTML and requests such resources.

Assuming Tomcat is installed on the same machine from which you are running JMeter, the server name
can be set to localhost, the port to 8080 (the default HTTP Connector port for Tomcat), and the path
to /. If JMeter were to be run on a different physical machine from the server, the server name would
simply need to be set to the appropriate host or IP of the server to be load tested. All other parameters
can remain unchanged for now. The completed configuration for this section should look like what is
shown in Figure 17-4.

With the preceding configuration steps taken, JMeter can now be instructed to start pounding a Web
application with requests for its index page. The test can be started by selecting Start from JMeter’s Run
menu. However, the example isn’t very practical so far, as there’s no way to capture or view the results
of the test. A few more options should be examined before running this first test.

400

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 400

JMeter was designed to internally separate the execution of a test plan from the collection and analysis of
the test plan’s results. For those who are interested, this is accomplished internally by use of the Observer
or, as it is sometimes called, the Event Listener design pattern. This is reflected in the JMeter UI by its use
of the listener terminology. Controllers are responsible for performing actions, and listeners are respon-
sible for reacting to those actions. Thus, to access to the results of a test plan, one of the JMeter listeners
must be used.

To complete this simple test plan, you need to add a listener. This is accomplished by right-clicking the
Thread Group icon, selecting Add, and then Listener. From the several built-in listeners, select the View
Results Tree option.

Selecting the View Results Tree icon in the left-hand pane will expose its output window on the right.
There is no configuration required for this listener. When running a test with a View Results Tree listener,
you can watch each response as it is received from the server. As items are selected in the tree component
of the right-hand pane, the response from the server can be viewed in the Response Data section in the
bottom part of that pane.

Before starting the test, the current JMeter configuration can be saved. Right-click the Test Plan icon in
the left-hand pane and choose Save As from the pop-up menu.

This first test is now ready to be run. Tests are begun by selecting Start from the Run menu on the menu
bar. Click the View Results Tree element before running the test. After the test is started, the Root node
in the right pane’s tree changes to a folder icon as test results start to trickle in. The node can be double-
clicked to open it, revealing the individual test results contained within. Selecting any of the results will
change the bottom pane to show the data received in the response, as well as the load time (in milli-
seconds), the HTTP response code, and the HTTP response message.

Figure 17-5 shows the completed test plan with the View Results Tree listener activated.

Since we didn’t define a duration scope for the thread group, JMeter will continue making requests until
either the JMeter application is closed or Stop is chosen from the Run menu on the menu bar.

JMeter Features
Manually clicking through each result in the View Results Tree window isn’t an effective way to analyze
the load testing data that JMeter provides. Moreover, the simplistic mechanism used in the preceding
example to generate a load is somewhat limiting. Fortunately, JMeter provides many more features to
aid in capturing and analyzing load data. Following are some of the other major feature types in JMeter
that will help:

❑ Timer

❑ Listener

❑ Logic controller

❑ Sampler

❑ Config element

The following sections examine the HTTP-related highlights of these feature groups.

401

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 401

Figure 17-5: Viewing the results of a test.

Timer
In the sample test presented in the previous example, JMeter spawned one thread and started making
requests as fast as it and the server being tested could keep up. In real-world cases, it might not make
sense to so relentlessly pound a server with a constant onslaught of requests. Only in exceptional cases
will a server be faced with a large number of simultaneous requests with no delay in between them.

To spare the server the full brunt of this load (and to make the load more representative of the real world),
a timer can be added to the thread group. This will introduce some intelligent logic, which regulates the
frequency and speed of each thread’s requests. Four types of timers are currently included with JMeter:
two random timers and two constant timers.

The constant timers are the constant timer and the constant throughput timer. The constant timer inserts
a configurable and constant delay between each request issued by each thread in the group. The delay
interval is specified in milliseconds; the default value is 300. The constant throughput timer, conversely,
enables users to avoid the millisecond arithmetic and tell JMeter how many requests per minute each
thread in the group should make. The default value is 60 requests (called samples) per minute.

402

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 402

The two random timers are the uniform random timer and the Gaussian random timer. These timers
both simulate real-world traffic more accurately by inserting randomly calculated delays between the
requests for each thread. The uniform random timer appends a truly random delay to a configurable
constant delay, while the Gaussian random timer uses a statistical calculation to generate a pseudo-
random delay. Each random timer takes a configurable constant time to which its random calculation
will be appended.

To add a timer, right-click a thread group, select Timer from the Add menu, and choose the desired timer.
Timers added to a thread group will affect the entire thread group to which they are added, but will not
affect peer thread groups. Adding multiple timers to a thread group will have an additive effect on the
delay between requests.

Listener
As discussed previously, listeners are JMeter’s way of monitoring and reacting to the results of the
requests it sends. The previous example used the View Results Tree listener to show the data returned
from the server, as well as the response time, the HTTP response code, and the HTTP response message.
As shown previously, a listener is added by right-clicking on a thread group and selecting the desired
listener from the Listener submenu under the Add menu.

The listener only listens to activity from the thread group to which it is added. For example, given two
thread groups in a test plan, thread group A and thread group B, a listener added to thread group B will
be oblivious to anything that happens in the scope of thread group A. The following table shows the
listeners currently provided by default with JMeter.

Listener Description

Assertion Results Views the output of the Assertion elements of a thread group

Graph Full Results A cumulative graph of the response times of each request made

Graph Results A simple graph view, plotting individual data points, mean response
time, and standard deviation of response time for all requests in its
parent thread group

Simple Data Writer Writes the URLs sampled and their associated response times to a file
for further analysis or posterity

View Results in Table Provides a real-time view of test results organized into a table

View Results Tree Provides a real-time view of test results organized into a tree

Aggregate Report Displays aggregate information about each resource requested, such as
the number of requests, the average response time, and so on

Spline Visualizer A graph view of all data points made during a test plan run. The results
are shown as an interpolated curve.

403

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 403

Each listener can be grouped into one of the following categories:

❑ Visualization listeners

❑ Data listeners

❑ Other listeners

Visualization Listeners
Graph Full Results, Graph Results, and Spline Visualizer all create graphical, real-time depictions of
the test results. Graph Results (shown in Figure 17-6) is the simplest and most popular of these, plotting
average response time in blue, standard deviation in red, median in purple, throughput in green, and
each individual data point in black. In the graph shown, the median and throughput graphs are hidden;
the other values are not shown in color in this book, but the standard deviation is the upper line, the
average response time is the lower line, and the data points are the dots.

Figure 17-6: Example of a Graph Results listener.

More information about how to make sense of this data is explained in the section “Interpreting Test
Results,” later in this chapter.

404

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 404

Data Listeners
Simple Data Writer, View Results in Table, and View Results Tree capturing the raw data, response time,
and return codes retrieved from the server. Simple Data Writer is somewhat redundant, as all of the
other listener tools enable the raw data to be saved to a file. However, if no other listener is used, it can
be useful to use Simple Data Writer by itself to record the data. Having the raw data is an important tool,
because it enables users to keep their data for posterity, as well as to potentially import the data into
other tools for more detailed analysis.

When data is written to a file, using Simple Data Writer or the Write All Data to a File option of any of
the listeners, it is created in an XML format using a simple ad hoc XML grammar (that is, the names and
organization of the elements and attributes in the XML file are undefined in any normative XML schema
such as a DTD or W3C XML Schema document). A sample of the data is shown here:

<testResults>
<sampleResult timeStamp=”1072187462821” dataType=”text”

threadName=”Thread Group1-1” label=”HTTP Request”
time=”731” responseMessage=”OK” responseCode=”200”
success=”true”/>

<sampleResult timeStamp=”1072187465264” dataType=”text”
threadName=”Thread Group1-1” label=”HTTP Request”
time=”10” responseMessage=”OK” responseCode=”200”
success=”true”/>

</testResults>

The XML format is fairly intuitive. timeStamp is measured as the number of milliseconds since January 1,
1970, and time is the number of milliseconds before the response was received.

Aggregate Report, another data listener (see Figure 17-7), does more than display raw data. It organizes
the raw data by requested URL, and provides a summary of all the data points involving that URL. It is
a useful and concise way to track performance, striking a balance between the graphical visualizations
and the other raw data listeners.

Figure 17-7: Aggregate Report makes the results of a test easy to interpret.

405

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 405

Assertion Results
Assertion Results enables users to view the results of Assertion elements that have been added to sam-
plers. Both assertion and assertion results are discussed in the section “Sampler,” later in this chapter.

Logic Controller
A Logic Controller’s primary purpose is to manage the execution flow of a test plan. It is a container
for other executable test plan elements. Logic Controllers that are added to a thread group (or even as a
subnode of another Logic Controller) will be treated by their parent execution context as a single node
to be executed. Elements added beneath logic controller nodes will be executed according to the rules of
the specific Logic Controller to which they are added.

Like thread groups, Logic Controllers create a separate visibility space for listeners, timers, and other
elements that are context-specific. Logic Controllers can be thought of as the closest approximation
JMeter test plans have to the while, for, and function constructs of typical programming languages.

The following sections discuss the built-in Logic Controllers that currently ship with JMeter:

❑ Interleave Controller

❑ Simple Controller

❑ Loop Controller

❑ Module Controller

❑ Once Only Controller

❑ Random Controller

❑ Throughput Controller

❑ Recording Controller

Interleave Controller
The Interleave Controller will execute one of its sub-elements each time its parent container loops. It
executes them in the order in which they are listed in the configuration tree. For example, if a user were
to create an Interleave Controller with four elements under a thread group set to loop 14 times, JMeter
would execute the entire set of Interleave Controller sub-elements three times, and would then execute
only the first two sub-elements a fourth time (4 + 4 + 4 + 2 = 14).

Interleave Controllers are good for testing a sequential process in which each request depends on the
successful completion of the previous request. An obvious example is an online shopping application,
whereby a user searches for an item, adds it to a shopping cart, enters credit card details, and finalizes
the order.

Simple Controller
With Simple Controller, each sub-element is executed each time the thread group loops. The Simple
Controller can be used to logically organize test elements in much the same way as folders are used on a
file system to logically separate their contents. If a site were to be load tested with a nontrivial amount of
functionality, it would make sense to use Simple Controller elements to separate the tested functionality

406

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 406

into related modules to keep the test plan more maintainable. This enhances the maintainability of the
test plan in the same way that dividing large software projects into modules and functions enhances
maintainability of the software.

Loop Controller
The Loop Controller will loop through all of its sub-elements as many times as specified in the Loop
Controller’s configuration panel. Therefore, any elements under the Loop Controller will execute the
specified number of times, multiplied by the number of times the parent thread is set to loop. If a Loop
Controller were configured to loop four times under a thread group that loops four times, each sub-
element of the loop controller would be executed 16 times.

Module Controller
The Module Controller enables users to insert elements of the test plan from entirely different locations into
the context of the module controller. In other words, the Module Controller can be thought of as a way
to execute a method (or function or subroutine, depending on your preferred lexicon). Module Controllers
can be particularly useful for applying to testing all of those reuse principles that programmers espouse.
The Module Controller can also be used to radically design a test without physically moving testing ele-
ments around. Figure 17-8 shows the Module Controller.

Figure 17-8: Configuring a Module Controller.

Once Only Controller
Not surprisingly, the Once Only Controller executes its child elements only once during the run of a
load test. This controller can be used to execute an initial login, to create an application entity on which
other tests depend (for example, creating an order in a sales application so you can manipulate it with
other requests), or to perform any other operation that needs to happen only once.

Random Controller
The Random Controller works just like the Interleave Controller, with one exception. Whereas the
Interleave Controller executes one item from its list in sequential order, the Random Controller picks
an item in its collection of sub-elements at random each time it is executed.

407

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 407

Throughput Controller
The Throughput Controller provides another mechanism to testing creators for throttling the number of
requests sent. The Throughput Controller will only send a subset of the requests sent to it on to its sub-
elements. This subset can be defined in terms of total executions or percent executions. For example, the
Throughput Controller can be configured to send only 50 percent of its requested executions on to its
sub-elements, or it can be configured to only send the first ten requests on to its sub-elements. Thus, the
Throughput Controller could be configured to emulate the Once Only Controller mentioned previously.

The Throughput Controller can be configured to limit all of the threads in a group collectively, or it can
be set to limit them individually. This is controlled by selecting the Per User checkbox. When it is on,
each thread in the group is individually subject to the throughput control. Otherwise, the controls apply
to the group.

Recording Controller
The Recording Controller is used much differently from the other controllers. The Recording Controller
is used by the HTTP Proxy Server feature of JMeter. The HTTP Proxy Server enables JMeter to record
requests made by a Web browser and incorporate them as part of a test plan. The HTTP Proxy Server
uses the Recording Controller to save the data it receives.

Sampler
As mentioned in our first JMeter example, samplers generate requests to be sent to a server. Following
are the six types of built-in samplers:

❑ FTP Request

❑ HTTP Request

❑ SOAP/XML-RPC Request

❑ Java Request

❑ JDBC Request

❑ LDAP Request

As shown, JMeter can be used to load test more than just Web servers. A variety of test plans can be cre-
ated by using some of these sampler types. While all of these sampler types are interesting, this chapter
focuses on the HTTP Request sampler. The basic parameters of HTTP requests were previously discussed.
This section addresses some of the advanced configuration options of the HTTP Request sampler.

Config Elements
Config Elements enable various configurable attributes to be applied globally to a series of samplers. In
the case of HTTP requests, four different Config Elements can be used:

❑ HTTP Header Manager

❑ HTTP Authorization Manager

❑ HTTP Cookie Manager

❑ HTTP Request Defaults

408

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 408

While Config Elements are normally added to thread groups or other containers for samplers, they can
also be added to individual samplers to override global values.

HTTP Header Manager
In some cases, application testing will require specific HTTP headers to be set in order to get a valid reflec-
tion of true application performance. For example, if an application performs different actions depending
on the browser type making the request, it is necessary to set the User-Agent header when making test
requests. The HTTP Header Manager is used to explicitly set header keys and values to be sent as part
of each request. If added as a node under an HTTP Request element, the custom headers will only be sent
for the request under which they are added. These headers will be sent with every request in the same
branch if they are set at the thread group level.

Configuring the HTTP Header Manager is simple and very similar to configuring the Name/Value
parameters in an HTTP Request element.

HTTP Authorization Manager
The HTTP Authorization Manager handles requests that require HTTP authentication. Like the HTTP
Header Managers, they can be added either directly underneath an HTTP Request element or to an entire
branch of a tree. Their configuration parameters are simple, accepting a base URL from which they will
attempt to send authentication credentials, plus the obligatory user name and password.

HTTP Cookie Manager
Many modern Web applications use cookies in some manner. In these cases, an HTTP Cookie Manager
element will need to be added to the test plan. Like HTTP authorization managers and HTTP Header
Managers, HTTP Cookie Managers can accept a hard-coded list of cookies that should be sent for every
request. In this way, a test sampler can emulate a browser that has previously visited a site. Additionally,
HTTP Cookie Managers can mimic a browser’s ability to receive, store, and resend cookies. Therefore,
for example, if a cookie is dynamically assigned to each visitor, the HTTP Cookie Manager will receive it
and resend it with every appropriate subsequent request.

HTTP Cookie Managers can be added either to a thread group or directly to an HTTP Request element,
depending on the scope of their intended influence.

Note that the HTTP Cookie Manager stores cookies on a per-thread (also called per-user in JMeter) basis.
That is, given a thread group of ten threads, if each thread receives a different cookie for the same base
URL, each thread will continue to resend that unique cookie. However, when cookies are added manually
to the Cookie Manager, all threads will resend that cookie. Future versions of JMeter may correct this
limitation.

HTTP Request Defaults
HTTP Request Defaults provides a convenient mechanism for using common values among unique HTTP
request samplers. The basic request parameters (such as protocol, host, port, path, and name/value
parameters) can be specified in one location to be shared among the samplers.

409

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 409

Assertions
Even if an application is responding lightning fast, there is no cause for celebration if its output is invalid.
An assertion provides a way to validate the actual data returned as a result of each request so that users
can be sure that the server is both responsive and reliable. Assertions are created as sub-elements of sam-
plers (such as the HTTP Request sampler). An assertion is a declaration of some truth that should be
verified.

For example, you could create an assertion that posits that the response from a server should contain
the word Hello. When this assertion exists, the response of the HTTP request to which it is added will
be checked for the existence of Hello, and will throw an assertion failure if the string is not present.

Using the following simple HTML file, we’ll see how an assertion is used to validate it:

<html>
<body>

Hello, World!
</body>

</html>

Given that the preceding HTML has already deployed to an accessible HTTP server, the first step is to add
an HTTP Request sampler into a test plan. After creating the HTTP Request sampler, it can be selected
and right-clicked. From the context menu, choose Assertions ➪ Response Assertion from the Add menu.
Clicking the new Response Assertion icon will display a panel like the one shown in Figure 17-9.

Figure 17-9: The Response Assertion configuration screen.

410

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 410

In Figure 17-9, the text “Hello, world” has already been added to the assertion. This is accomplished by
clicking the Add button and writing the text into the entry area that appears. In this example, the Contains
option has been selected. This indicates that the assertion will verify that the response from the HTTP
request contains the pattern “Hello, world.” When the Matches option is selected, the entire response
must match the pattern.

Now that an assertion has been added, an Assertion Results listener (mentioned previously) will need
to be added to view the successes and failures of the assertion. The Assertion Results listener should be
added to the parent thread group of the HTTP Request sampler. Assertion Results listeners require no
configuration. They will display all assertion results for any assertion in their thread group. If the asser-
tion passes, it will print the string identifying the resource request (in this case, the URL). If there is a
failure, it will print an indented failure message directly below the resource identifier, stating the pattern
match that failed.

The Response Assertion can be used to verify that a response URL or body contains some pattern of text.
Three other assertion types exist:

❑ Duration Assertion — Verifies that a response occurs within a specified time period

❑ Size Assertion — Checks the size of the response, in bytes, and verifies that it is equal to, not equal
to, greater than, less than, greater than or equal to, or less than or equal to a specified value

❑ XML Assertion — Ensures that the response is well-formed XML. It does not check validity
against a Document Type Definition (DTD) or other schema type.

These assertions can be added to a test plan and configured in the same manner as the Response
Assertion.

HTTP Proxy Server
Creating HTTP Request elements can get tedious. JMeter provides an HTTP Proxy Server that enables it
to monitor browser activity and auto-generate HTTP Request elements based on the requests made from
the Web browser. As depicted in Figure 17-10, the proxy works by intercepting all requests that are made
during the browsing session, converting them into JMeter HTTP Request elements, and passing the
request on to the destination Web server.

Figure 17-10: The JMeter Proxy Server sits in between a browser and a Web site.

Browser
Inputs

Browser

HTTP
Request

Thread Group
HTTP Request
HTTP Request
HTTP Request
HTTP Request

HTTP
RequestMeter

Proxy Server Web Site

411

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 411

Generating a large number of HTTP Request elements for a test plan is as simple as reconfiguring a
browser’s HTTP proxy setting and clicking through the features that should be load tested.

To start using the HTTP Proxy Server, it must be added to the JMeter WorkBench. This is done by right-
clicking the WorkBench icon and selecting Add ➪ Non-Test Elements ➪ HTTP Proxy Server. The proxy’s
configuration screen is shown in Figure 17-11.

Figure 17-11: Configuration screen of the HTTP Proxy Server.

Note the default port number of 8080.

In the Patterns to Include and Patterns to Exclude text boxes, regular expressions can optionally be
added that match the URLs for which HTTP Request elements will be generated. All browser traffic will
be proxied through the HTTP Proxy element. However, if any patterns are listed here, only requests that
match an include pattern or are not excluded by a pattern will be converted into HTTP Request elements.

If Tomcat is running on the same machine as JMeter and is using its default port of
8080, the proxy’s default port will conflict. On such machines, JMeter’s proxy port
will need to be changed to an unused port on the system.

412

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 412

The following instructions will aid in configuring browsers to use a proxy server:

❑ Internet Explorer 5+ — Select the Tools ➪ Internet Options pull-down menu. Now select the
Connections ➪ Settings button for the appropriate network connection (that is, dial-up versus
LAN). Select Use a proxy server. In the Address field, type localhost (or the host name of the
computer running the JMeter HTTP proxy — it need not be the local machine), and in the Port
field, type the port chosen for the JMeter proxy.

❑ Netscape 6/Mozilla — Bring up the preferences dialog box by choosing Edit ➪ Preferences.
Expand the Advanced tree element in the left-hand pane. Select Proxies ➪ Manual Proxy
Configuration. Type localhost in the HTTP Proxy field, and the proxy port setup in JMeter in
the Port field. Note that any HTTPS requests will need to be entered in the SSL Proxy field.

After configuring the proxy server, it must be started by clicking the Start button. From this point on,
all requests made by the browser will be captured by JMeter and converted into HTTP Request items in
WorkBench. These items can then be dragged into the test plan.

Distributed Load Testing
JMeter has the capability to coordinate multiple JMeter instances distributed across a network, instructing
them to perform the same load test. To enable this functionality, one or more JMeter instances starts in
server mode. Server mode enables a JMeter client (that is, the normal JMeter GUI interface) to attach to
the JMeter instance in server mode and control it. The JMeter client’s listeners receive the data generated
by the JMeter server mode instances. There are two potential use cases for this capability:

❑ Scalability — For various reasons, a single JMeter instance might not be enough to generate a
load heavy enough to bring a Web application to its knees. In these rare circumstances, JMeter’s
distributed capability can be used to generate a truly massive barrage of requests. This capabil-
ity could also be used to coordinate a massive distributed denial of service (DDoS) attack, which
highlights a good point: Don’t ever load test a Web site that you don’t control!

❑ Server Proximity — As an extreme example, imagine trying to load test a server in the Eastern
United States while sitting in India. It would be difficult to have any acceptable degree of
confidence in the tests, as network latency and packet loss would play such a critical role in
the process. In a case such as this, it’s possible to install a JMeter server somewhere physically
close to the server being tested, and then use that server to perform the tests remotely.

Figure 17-12 illustrates the method by which JMeter interacts remotely between a JMeter client, a JMeter
server, and a Web server:

Figure 17-12: One JMeter client can control multiple JMeter servers.

RMI

HTTP
JMeter
Servers

JMeter
Client Web Server

413

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 413

The following is a step-by-step guide to setting up and running tests using the JMeter server:

1. Install the standard JMeter distribution on the intended JMeter server machine(s).

2. For each JMeter instance to be controlled, start the JMeter server process by entering JMeter’s
bin/ directory and executing either jmeter-server.bat or the jmeter-server shell script,
depending on your host operating system.

3. On the client machine, edit the jmeter.properties file (located in the bin directory of
JMeter’s installation directory).

4. Uncomment and change the remote_hosts property to include a comma-separated list of the
JMeter server machines. These can be either DNS-resolvable host names or IP addresses.

5. Start the JMeter client by running jmeter.bat or the jmeter shell script.

6. Load or create a new test plan.

7. Two new options will be present in the Run menu: Remote Start and Remote Stop. In each of
these options, any servers listed in the remote_hosts property will be available for stopping
and starting.

8. Proceed with the JMeter GUI as usual.

Interpreting Test Results
Generating reams of raw data is one thing; knowing what the data means is quite another. There are two
basic ways to analyze the resulting data:

❑ Set performance goals and test them.

❑ Establish the scalability limitations.

Setting Goals and Testing Them
A particularly effective way to create a Web application is to establish up front the performance goals for
the system. These goals might include one or more of the following metrics:

❑ What’s the average amount of time a user should wait for a request to be fulfilled?

❑ What’s the longest amount of time a user should be made to wait?

❑ How many concurrent requests should be supported before errors occur?

Once such goals are established, it is a simple matter to determine if the tested Web application lives up
to them. Both the Aggregate Report and the Graph Results listeners are perfectly adequate for such an
analysis.

As an example, consider the following scenario: A simple Web site must support five concurrent users,
where concurrent is defined as users making requests no more than a second apart. Each user should
receive a response in an average of 250 milliseconds, although outlying delays up to 3 seconds are
acceptable.

414

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 414

To continue the scenario, suppose a load test were created that measured the application using the criteria
established in the goals. Figure 17-13 shows the Aggregate Report created by the test plan.

Figure 17-13: The example scenario’s Aggregate Report screen.

Using the Aggregrate Report’s presentation of the data, it is clear that the Web application did not meet
its goals. The average delay was 2,508 milliseconds (ms), roughly ten times the goal. The outlying delay
was 4,927 ms, or almost 5 seconds! However, on a positive note, no requests resulted in an error from the
Web application. Nonetheless, because the shortest response time was 551 ms, not one user ever received
a single response within the desired parameters.

The Graph Results listener can provide additional valuable information (such as the true distribution of
the responses), as shown in Figure 17-14.

Figure 17-14: Graph Results output for the example scenario.

415

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 415

Note that all the graphs except Data have been disabled. This makes the graph easier to interpret in black
and white. The dots on the graph indicate each individual sample, and how long the response took in
milliseconds. Higher dots represent longer delays. Thus, the graph provides greater granularity regarding
the application’s performance. You can clearly see that the application’s performance wasn’t consistent
at all!

A separate statistic, the deviation, confirms this observation. Deviation (commonly called the standard
deviation) is a measure of how widely values in a sample are dispersed from the average value. A higher
standard deviation indicates more variance in response time.

The graph also provides a new statistic: the median. If all the response times were placed in a sorted list,
the median is the number in the middle. The median is similar to the average, which is the number pro-
duced when the total amount of time for each response is added together and divided by the number of
samples.

The throughput number provided in the graph is the same value as the “rate” in the Aggregate Report.
However, it is given at a different scale (minutes instead of seconds).

Establishing Scalability Limitations
Sometimes, goals aren’t important, and the only real motivating factor is determining the point at which
a Web application breaks. This methodology is also much more fun than simply verifying goals. Bringing
a Web application to its knees is a hidden desire of many system administrators.

Here, JMeter comes in very handy, especially with its distributed testing capabilities. It is important to
remember, however, that even these stress tests should be configured in such a way that they are repre-
sentative of real-world scenarios. It is not very useful to know that if 10,000 users made concurrent
requests for the same URL every 10 ms that the tested Web application fails. Such a scenario is unlikely
to occur in the real world. It is more helpful to know that if 500 simultaneous users follow 1 of 10 realis-
tic sequences of requests (averaging a 3-second delay between each request), the Web application will
generate errors for 4 percent of the responses.

When performing such stress tests, the Aggregate Report can handily show the error rate, and it can be
configured to log all errors that occur, for further analysis.

Further Analysis
JMeter can, of course, save all of its performance data for analysis by other tools. While at this time there
are no (well-known) performance analysis tools designed specifically with JMeter in mind, popular pro-
grams such as Microsoft Excel can import JMeter data and generate all sorts of handy reports and graphs. By
default, JMeter records output in XML, but it can be configured to use CSV (comma-separated values) by
changing the jmeter.save.saveservice.output_format property in jmeter.properties to CSV.

Optimization Techniques
As the famous computer science guru Donald Knuth has said, “Premature optimization is the root of all
evil.” In other words, it’s very difficult for even the most talented of individuals to know what a complex
Web application’s performance bottleneck will be in the real world. It’s rather unwise to start twisting
knobs and tweaking settings until the performance results have come in.

416

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 416

However, what should happen when the test is run and the performance is subpar? What can an admin-
istrator do to increase performance? While many performance problems can be solved by having the
application developers optimize their code, there are some things an administrator can do to increase
performance.

Some of the simplest optimizations are hardware-related: adding memory, increasing CPU power, faster
hard drives, and so on. Some of the most complex optimizations involve operating system tweaks, all of
which are very specific to the operating system involved. Obviously, these optimizations deserve their
own references and are beyond the scope of this book.

Java and Tomcat-related optimizations, however, are right up our alley.

Java Optimizations
The JVM has received quite a few “dials and knobs” in recent years that enable administrators to tweak
its settings. The techniques described here are specific to Sun Microsystem’s own JVM implementations,
and are subject to removal in future versions of their JVMs. Most, however, have been around since Java
1.3 and are probably here to stay for many years.

Considering the Server VM
Surprisingly few system administrators realize that the JVM actually contains two different virtual
machines inside the binary that’s executed to start up Java applications: the client VM and the server
VM. Each of these two VMs is optimized according to the needs of client and server applications. The
client VM’s top priority is reducing startup time and minimizing the latency produced when the garbage
collector reclaims memory. The server VM trades these priorities for an emphasis on greater scalability
for server-type applications.

By default, Java uses the client VM. The server VM can be selected by passing the -server command-
line option to the Java VM on startup. Administrators should experiment with this setting to increase
their application’s performance. Never assume that the server VM will be faster, however. Test the appli-
cation with JMeter!

Optimizing Memory Allocation
The JVM will not take more memory from the operating system than it has been given permission to
consume. This limit is configurable via command-line switches to the JVM. These two switches are
shown in the following table.

Argument Description

-Xms<size> The initial heap size for the JVM

-Xmx<size> The maximum heap size for the JVM

If these parameters are not explicitly set, the JVM will use its defaults. The defaults are dependent on the
version of the JVM in use, but are generally inappropriately small for production use. The heap is the
area of memory in which the JVM allocates new Java objects; the vast majority of the JVM’s memory
usage is its heap.

417

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 417

Initial heap size specifies the amount of operating system RAM to allocate to the Java heap at the time
the JVM starts up. Generally, this setting is not important. However, in a memory-intensive application
operating under a heavy load, initial heap size can be significant. If the JVM starts up with a very small
heap size and is quickly pounded by many requests that require many object instantiations, the JVM
must repeatedly increase its allocation until it reaches a sufficiently large size for the heap. For this rea-
son, some administrators set the -Xms and -Xmx arguments to the same values. Others prefer to have the
JVM scale up to its maximum heap size only when necessary.

The maximum heap size specifies the upper limit of RAM that the JVM will allocate to the heap. In a
data-intensive application with long-lived objects, memory usage may quickly build up. If the memory
required to run an application exceeds the maximum heap size configured, the JVM will fail with a
java.lang.OutOfMemory error. It is a good idea to set the maximum heap size to the largest possible
value.

Choosing a Different Vendor’s JVM
Sun isn’t the only company producing Java virtual machines. Several other vendors (such as IBM and
BEA) also produce JVMs compatible with the Sun Java specification. The performance characteristics of
these JVMs is rarely better or worse than their competitors. Rather, they are typically better at some tasks,
but worse at others. The best course of action is to test an application with different JVMs.

Tomcat Optimizations
Tomcat has several settings that can affect its performance. Adjusting these settings is often the easiest
way to achieve enhanced performance.

Combining Tomcat with Another Web Server
One of the best ways to increase an application’s performance is to remove the burden of serving static
resources from Tomcat by mating it with an HTTP server (such as Apache or IIS). This process is dis-
cussed in Chapter 12 and Chapter 13.

Connector Settings
Tomcat’s server.xml file contains a Connector element for each port on which Tomcat listens. The
performance-related attributes shown in the following table can be modified on the Connector element.

Parameter Description

maxThreads Tomcat uses a thread to handle each request that it receives. This
value determines the maximum number of threads that Tomcat
can create to service requests.

acceptCount When all of its threads are being used, Tomcat can queue incom-
ing connections until a thread is available. This setting controls the
number of connections that can be queued. Note that when this
queue fills up, errors will be sent to the clients.

418

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 418

Parameter Description

connectionTimeout Clients have a certain amount of time to send a request after a
socket connection has been established with Tomcat. This value
controls the number of milliseconds a client has to send a request
before the connection is closed.

minSpareThreads The number of threads Tomcat will initially create to service
requests

maxSpareThreads Tomcat will close socket threads when they are no longer neces-
sary once the amount of open threads exceeds this number.

The preceding attributes are those that are likely to provide the largest performance return on investment
when tweaking Tomcat settings. However, check the Tomcat documentation of the version being used to
spot additional attributes that may have an impact.

Exploring Alternatives to JMeter
Though this chapter’s discussion focused on JMeter for load testing, numerous other tools are available,
both in the public domain and as commercial products. Two of the market leaders are Segue’s Silk
Performer and Mercury Interactive’s Load Runner. Both offer very advanced scripting features, thus
providing end users with great flexibility in specifying load test behaviors. With this flexibility comes
the price of increased complexity, but both companies offer comprehensive documentation as well as
training programs for their products.

The open source world also has more to offer in terms of load testing tools. From the up-and-coming
OpenLoad (http://openload.sourceforge.net) to the more mature Grinder (http://grinder.
sourceforge.net), numerous options are available. A great resource for finding the latest in open
source load testing tools is the FreshMeat open source software archive site (www.freshmeat.net),
which includes a category specifically for these kinds of tools under Topic :: Software Development ::
Testing :: Traffic Generation.

Additionally, many other testing resources are available on the Web. A great place to look for an
ever-evolving list of sites is the Open Directory Software Testing list (www.dmoz.org/Computers/
Programming/Software_Testing/), which is a directory of sites that focus on testing topics.

Summary
Load testing is an important but often overlooked activity of the system administrator. It can help
administrators make initial architectural decisions as well as validate decisions made previously. This
chapter examined the following topics:

419

Server Load Testing

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 419

❑ Scalability (a system’s capability to handle increased load without experiencing degraded per-
formance or reliability) is driven by many factors. In a Tomcat installation, some of those factors
are server hardware, software configuration, and deployment architecture.

❑ JMeter is a full-featured, open source load tester, which is part of the Jakarta project. Various
JMeter load testing techniques were explored.

Chapter 18 explores Tomcat’s support for JMX.

420

Chapter 17

b 559028 Ch17.qxd 4/22/04 3:57 PM Page 420

JMX Support

The updated architecture of Tomcat 5 improved the performance and modularity of the previous
version. The refactoring of formerly mingled code into distinct components, and the subsequent
pipelining of components for request processing, helped make Tomcat 5 one of the most flexible
versions ever. Simultaneously, the J2EE 1.4 specification has evolved to include manageability as a
requirement for compliance with the standard. Being the reference Web-tier server implementa-
tion, Tomcat 5 naturally must conform to the specification. To this end, Tomcat 5 has integrated
support for Java Management Extensions (JMX), the management standard for Java services. This
chapter discusses the following topics:

❑ JMX and manageability requirements

❑ Introduction to JMX

❑ JMX internals

❑ Configuring Tomcat 5 for JMX operations

❑ Utilizing the JMX support of Tomcat 5

A hands-on example shows you how JMX can be used to obtain live run-time information directly
from the components that comprise the Tomcat 5 server.

Administrators should be familiar with JMX and its implications because all future administrative
and management tools for the Tomcat servers will be based on JMX.

The Requirement to Be Manageable
The original intent of Tomcat was to provide a workable reference implementation of the Servlet
and JSP specifications. Because of its reliability, however, Tomcat has been increasingly adopted
for production purposes. Features formerly offered only as enhancements by commercial vendors

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 421

are making their way into the Tomcat wish list. Near the top among the list of requirements is a well-
defined means of configuring, administrating, monitoring, and managing a large group of servers or
server clusters.

Because of the increasing demand from today’s Web applications and Web services, many Tomcat
deployments span multiple servers. To provide for the scalability, availability, and throughput demands,
many production environments involve multiple physical servers.

Added to this trend is the increasing popularity of shared hosting for JSPs, Servlets, and Web applica-
tions. Shared hosting provides a cost-effective way to deploy Web applications for consumption over the
Internet. In a typical hosting center, an individual physical server machine may have many independent
JVMs concurrently running Tomcat. Often, a single instance of Tomcat may provide service for tens of
virtual hosts. Until the arrival of JMX, managing these Tomcat and virtual host instances across a net-
work of servers was an administrator’s nightmare. Ad hoc solutions often require painstaking custom
coding, are operating-system dependent, and are difficult to maintain. Figure 18-1 illustrates this man-
agement problem with Tomcat servers.

Figure 18-1: Management of a bank of Tomcat servers is problematic.

In Figure 18-1, management involves ad hoc maintenance and editing of individual configuration files at
each of the physical servers. Operating system-specific scripts are used to automate certain frequently
repeated operations. These scripts are difficult to maintain and must be changed for servers with differ-
ent operating systems.

Tomcat 5’s JMX support can eliminate this situation. Management, monitoring, and administrative
tools created using Java can access and control Tomcat servers (and components within them, such as

machine
Management Console

3 machines, 6 Tomcat instances,
15 virtual hosts, and more than

100 Web applications to manage!

LEGEND

Tomcat instance

server.xml

virtual host

Assuming average 10
Web applications per

virtual host

422

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 422

virtual hosts) across a network with ease. All the benefits of the Java language (including write-once
run-anywhere behavior and easy code maintainability) can be leveraged in all these new management
solutions. Figure 18-2 illustrates the JMX solution to Tomcat server management.

Figure 18-2: JMX solution to the Tomcat management problem.

In Figure 18-2, Tomcat 5 is JMX-ready. Tomcat exposes a set of Java-based objects for external manage-
ment. This set of objects involves all configurable aspects of Tomcat, and provides run-time control for
operational tuning/tweaking and run-time statistics for monitoring. JMX enables these objects to be
accessed by local or remote management agents. Optional distributed services and value-added agent
logic may further consolidate and intelligently aggregate the exposed information, providing users with
a simplified view of the management application.

This is a definite improvement over the ad hoc management alternative. The following section examines
exactly what JMX offers.

All About JMX
JMX is the subject matter of JSR-3, a specification developed over several years by an industry-wide net-
work management experts group that is part of the Java Community Process (JCP). Major vendors of
network management systems have active representation in this group and have ensured a balance of

JMX Management Application

Tomcat exposes manageable
objects (shaded area)

management and monitoring
of a large network of

Tomcat instances

optional
value-added

service
management

and
distributed
services

423

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 423

coverage. The main goal of this group was to develop a set of well-defined and related specifications
that together describe an architecture for the management of manageable entities (devices, software
services, and so on) over a network using the Java programming language. The deliverables from this
exercise include the following:

❑ A set of specifications with a detailed architectural framework, including detailed descriptions
of required components and their operations

❑ A functional reference implementation, with associated documentation

❑ A compatibility test suite to test compliance with the specification

While the subject of network management or enterprise management is certainly not new, a Java-specific
standard is. Until JMX, most network management systems (sometimes called enterprise-management
systems) are proprietary in nature. They are typically designed using specific operating system and pro-
gramming language combinations. This leads to a proliferation of different versions of the same soft-
ware base, maintained for different platforms.

The entities managed by a network management system have traditionally been hardware devices.
Because of this origin, the de facto standard that makes devices generically manageable over a network
is called Simple Network Management Protocol (SNMP). The protocol was originally defined for hard-
ware devices, and is very restrictive when applied to modern software services that must be managed
(such as Tomcat 5 servers). Because of the turbulent evolution of the network management industry,
many proprietary extensions in addition to the SNMP protocol were introduced for vendor-specific
device/management system combinations.

With the benefit of hindsight, JMX was designed to be flexible and adaptive from the start. Leveraging
the benefits of the Java platform, the JMX specification is designed to facilitate the development of man-
ageable entities and management systems without cornering vendors into restrictive implementations.
At the same time, it must also be capable of co-existing and interoperating with the extensive body of
already existing SNMP-based (or proprietary) managed systems in an evolutionary manner.

The JMX Architecture
Distilling decades of accumulated experience, the designers involved in JSR-3 made sure that the result
is flexible and adaptable to both existing and future manageability needs. The architecture of JMX is lay-
ered as well as modular. The layers are well defined, yet loosely coupled. Existing networking and Java
standards are used wherever applicable. As a result, the components of each layer can be built without
prior intimate knowledge of the others. Being well defined and standards-based ensures that any spe-
cific implementation of one layer will directly work with an implementation of another.

Each layer within the JMX cake is called a level. The three levels in the JMX architecture are as follows:

❑ Instrumentation

❑ Agent

❑ Distributed Services

Figure 18-3 shows a high-level view of the levels and components involved in a JMX-based system. The
next section explores these levels.

424

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 424

Figure 18-3: JMX architecture.

The complete JMX picture involves many different related standard specifications (JSRs). In fact, each
JMX level is defined in its own specification, created by a different group of experts. Taken altogether,
there are quite a few JMX-related JSR specifications, and this number can grow as the different levels
become more fully defined. Currently, the two most important specifications to Tomcat administrators
are the following:

❑ Java Management Extension Instrumentation and Agent Specification 1.2

❑ Java Remote API Specification 1.0

This chapter summarizes the important aspects of JMX that are relevant to Tomcat administration. You
should consult the specifications for other details.

Now let’s take a look at the components and interactions within each of the JMX levels.

yet to be defined

To and from distributed services,
management applications, browsers, etc.

Connectors and Protocol Adapters

aggregates MBeans

MBean
Server

DISTRIBUTED SERVICES LEVEL

AGENT LEVEL

INSTRUMENTATION LEVEL

customized
value-added
agent logic
(optional)

Java-based MBeans

To and from managed device, software services, applications, etc.

Agent Services

425

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 425

Instrumentation Level
Within the instrumentation level, resources and objects that can be managed and/or monitored are enu-
merated. The act of defining what can be managed/monitored is called instrumentation. For example, the
set of Web applications running in a Tomcat 5 server may be a candidate for JMX management, and thus
can be instrumented at the instrumentation level. This entails the creation of Managed Beans (MBeans).

MBeans are Java components that live within the instrumentation level. They present a well-defined
Java interface for the resources being managed. The resources, in this case, can be a hardware device, a
software service, an application, or another entity (such as Web applications in a Tomcat 5 server).
Instrumentation can be added to any existing resource simply by creating an MBean for the resource
and hosting it on a network-connected Java VM. Typically, this is in the same physical box as the
resource being managed. Figure 18-4 shows the high-level anatomy of an MBean.

Figure 18-4: A Managed Bean (MBean).

Conceptually, MBeans are similar to JavaBeans, and expose attributes (such as properties that can be get
and set), operations (such as methods that can be invoked), and notification events (distributed over the
network, in this case) that can be caught by other levels. MBeans are oblivious to the agent that may be
managing them, enabling instrumented resources to be managed by any JMX-compliant system.

Attributes (get/set)

Exposed interface for Agents

To and from
actual managed

resource
(device, service, etc.)

Managed Bean
(MBean)

Operations (invoke)

Notifications

426

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 426

Agent Level
At the agent level, the MBeans exposed by the instrumentation level are aggregated by the agent logic and
present as manageable entities to higher-level distributed services and/or management applications.
Most agents simply provide the same interface exposed by the MBeans for management. However, the
interface exposed to higher levels need not be the same as those exposed by the individual aggregated
MBeans. For example, an intelligent agent may expose a single attribute called GlobalMaxThreads that
will update attributes of thread pool management MBeans across all the Tomcat 5 server instances that the
agent is aggregating.

Another major purpose of the agent level is to decouple the interdependency between the management
applications and the resources being managed. This decoupling enables instrumentation to be added
independently (by coding MBeans), without being concerned about how the MBeans will be ultimately
used. For example, hundreds of MBeans have been created and are available within any running
Tomcat 5 server today. However, JMX management applications that make clever use of these MBeans
are yet to be created.

The agent level can mediate and facilitate multiple concurrent accesses to the set of aggregated MBeans.
It can also convert to and from different access protocols, enabling access from different management
applications/services. Other value-added features at the agent level may include monitoring, data
filtering, data reduction, intelligent consolidation, and so on.

Figure 18-3 shows the components that reside in the agent level, including the following:

❑ MBean Server — Aggregates MBeans; receives run-time registration of MBeans and makes them
available for external management via connectors and protocol adapters.

❑ Connectors and protocol adapters — Provide external access to the MBeans and services aggregated
by the MBean Server.

❑ Agent Services — A mandatory standard set of services that are available to a developer creating
MBeans or agent logic.

The following sections describe each of these components in more detail.

The MBean Server
The MBean Server is a component in the agent level that aggregates the MBeans being exposed by the
agent. A managed device or service needs to register the MBeans that it wants to expose with the MBean
Server before it can be accessed by higher-level management applications. This registration happens at
run-time (when a JMX-managed box is booted, at the startup of the Tomcat 5 server, and so on).

Management applications can only access MBean attributes, operations, or events through the manage-
ment interface provided by the MBean Server. The access is not direct, as most higher-level management
applications are external to the process/physical box of the server/device being managed. Instead, it is
performed through the assistance of connectors and protocol adapters (described in the next section).

Note that many agent-level services are typically also implemented as MBeans. In these cases, they must
also be registered with the MBean Server.

427

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 427

Connectors and Protocol Adapters
Management applications can access managed resources only through the MBeans Server component at
the agent level. However, the MBean Server component has no direct means of communicating with
external applications. Instead, the MBean Server relies on available connectors and protocol adapters to
interface with external management applications, as shown in Figure 18-5.

Figure 18-5: Connectors and protocol adapters.

Connectors typically utilize standard remote-access mechanisms (RMI, CORBA, Java Socket, and so on)
to directly expose the interface of the agent remotely. Protocol adapters provide access to the agent by
mapping JMX requests to and from specific protocols. For example, an HTTP protocol adapter may
enable users to directly access the agent using a simple browser.

HTTP
Protocol
Adapter

To and from
Web browser

To and from
SNMP

management
agent or

application

MBean Server

SNMP
Protocol
Adapter

Protocol Adapters and Connectors

RMI
Connector

Client

Management
application or

distributed service

Management
application or

distributed service

Management
application or

distributed service

RMI
Connector

Server

CORBA
Connector

Client

CORBA
Connector

Server

Generic
Connector

Client

Generic
Connector

Server

428

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 428

The JMX agent logic within Tomcat 5 supports both an HTTP protocol adapter in the form of the man-
ager application’s JMX proxy (more details about this later in this chapter), and an RMI Connector for
remote JMX access. Figure 18-6 shows the connector and protocol adapter support within Tomcat 5.

Figure 18-6: Tomcat 5 agent implementation.

Agent Services
JMX specifies a set of mandatory services that every compliant agent implementation must provide.
These services include the following:

❑ A dynamic class loading service for loading management applets (mlets)

❑ A monitoring service to monitor changes in specified MBean attributes

❑ A timer service for periodic or one-shot timing

❑ A relation service for enforcing relationships between MBeans

To and from
Web browser

Tomcat's MBean Server
(from JMX 1.2 RI or MX4J)

Inside Tomcat 5's JVM

Manager application
JMX Proxy
(an HTTP
Protocol
Adapter)

RMI Connector
from JMX 1.2 RI

or MX4J

JMX access client
(queryj mx utility)

RMI
Connector

Client

RMI
Connector

Server

429

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 429

Agent services are used mainly by developers to implement customized agent logic and/or manage-
ment applications. Tomcat administrators need not be concerned with their programmatic features.
However, an awareness of their existence may facilitate useful discussions with development and
network management staff.

Distributed Services Level
The distributed services level is the topmost level in the JMX architectural diagram (see Figure 18-3).
This level includes applications and services that access the functionality provided by the agent level.

This level specifies standard high-level management interfaces for the creation of management applica-
tions. These interfaces and their associated components enable management applications (or other services
applications) to interact with the agent level. The specification for the distributed services level is still a
work in progress and has not yet been finalized. No further public information is currently available.

JMX Remote API
While connectors and protocol adapters can be seen as agent level components, specifications for them
are not part of JMX Instrumentation and Agent 1.2 specification. Instead, different connectors and
adapters are covered under different specifications. Specifically, JSR-160 (the JMX Remote API specifica-
tion) covers the details for a set of connectors that can be used to remotely access the agent level.

Originally, it was called JMX Remoting, and was destined to be included with a new release of the base
JMX. However, the experts group decided to factor out elements that enable remote access to the agent
layer and place them in its own specification. This enabled the earlier release of the base specification.

Before working with Tomcat 5’s JMX agent, you should have an understanding of how developers
typically create MBeans. This is necessary because the terminology introduced is a prerequisite for the
Tomcat 5 MBeans examined later in this chapter.

An Anthology of MBeans
MBeans are software modules that expose the capabilities of a hardware device, a software service, or a
software component. In JMX literature and technical discussions, you will see references to different
types of MBeans, including the following:

❑ Standard MBean

❑ Dynamic MBean

❑ Model MBean

❑ Open MBean

It is not necessary for administrators to fully understand their differences. They all appear the same to
management software that may work with them. Developers, however, will be very intimate with their
differences. The following sections provide a brief explanation of each.

430

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 430

Standard MBeans
In standard MBeans, the features (attributes, operations, and notifications) that are exposed for manage-
ment are fixed and cannot change (without a software or firmware change). Standard MBeans are typi-
cally the easiest to code for developers.

Dynamic MBeans
In dynamic MBeans, the features that are exposed for management are determined at run-time. Therefore,
the exposed features can change over time.

Model MBeans
Because of the flexible nature of dynamic MBeans, they are quite difficult and tedious to code. Model
MBeans are a type of dynamic MBean used by developers to expedite the creation of their own
dynamic MBeans. For example, Tomcat 5 makes extensive use of the model MBean support provided
by the Apache Jakarta Commons (modeler) project.

Open MBeans
Open MBeans are a type of dynamic MBean. The unique quality of open MBeans is their capability to
be managed by any compliant management software. This is because the exposed features of an open
MBean are guaranteed to be compliant with a universally manageable set of data types. Management
software can then explore the set of exposed features at run-time to use the MBean. Open MBeans are a
new feature of JMX 1.2, and are not required for compliance with previous JMX versions.

With all the basic technicalities out of the way, it’s now time to take a look at the manageable elements
exposed by Tomcat 5 through JMX MBeans.

JMX Manageable Elements in Tomcat 5
Almost all configurable elements of Tomcat 5 will become JMX-manageable in the near future. As devel-
opers build new attributes into the Tomcat 5 architectural components, they will create the correspond-
ing MBean to expose these attributes for external management and monitoring.

In addition, the Tomcat 5 server creates some MBeans at run-time (see Chapter 8) to make dynamic
run-time-only objects manageable. For example, elements in a UserDatabase (such as Users, Roles, and
Groups) are created at run-time. When a Web application is deployed or re-deployed, Tomcat 5 will also
create a manageable object for the context that supports the application.

Much of this support is still work in progress with Tomcat 5 (to be solidified in later releases). The fol-
lowing list describes MBean-exposed objects in Tomcat 5 and the attributes that are accessible via JMX:

❑ Manageable Tomcat 5 Architectural Components — These include Service, Server, Engine,
Connector, and Host.

❑ Manageable Nested Components — These include Realm, Logger, Valve, and Manager

431

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 431

❑ Manageable Run-Time Data Objects — These include UserDatabase, User, and Role.

❑ Manageable Resource Objects — These include NamingResources, Environment, Resource,
ResourceLink, application-related objects, WebModule, internal Tomcat objects,
RequestProcessor, Cache, and ThreadPool.

Included with the following discussion of these items are step-by-step instructions for accessing these
manageable components via either of the following means:

❑ The JMX proxy of the manager application (this is, architecturally, an HTTP protocol adapter)

❑ The RMI connector

The listing can be used as your reference guide to probe around the manageable components of Tomcat 5.

If you cannot wait to start probing around your own Tomcat 5 instance using JMX, skip right ahead to
the section “Accessing Tomcat 5’s JMX Support via the Manager Proxy,” later in this chapter and consult
the MBean list as necessary for reference.

Manageable Tomcat 5 Architectural Components
The first set of manageable objects are the components that we are familiar with when working with the
server.xml file or the admin application. This section describes their accessible attributes, together
with the data type expected for the attribute and whether the attribute is read-only (RO) or read/write
(R/W).

If you need a refresher on any of the manageable components and/or their configurable attributes, you
may want to revisit Chapter 5 and Chapter 8.

Service
Note that the modelerType attribute exists on every manageable component. This is because Tomcat 5
uses library code from The Apache Jakarta Project’s Commons Modeler to simplify its own implementa-
tion of JMX. MBeans created using Apache’s Commons Modeler typically expose this modelerType
attribute.

In the following table, the column labeled Read/Write indicates whether an attribute can be changed
(R/W) or cannot be changed (RO — Read-Only) via JMX control.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

debug R/W int

managedResource R/W java.lang.Object

name R/W java.lang.String

connectorNames RO (Read Only) javax.management.ObjectName[]

container RO javax.management.ObjectName

432

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 432

Server
Because JMX MBeans expose both configuration and run-time attributes, many new attributes provide a
run-time relationship between the components. For example, the serviceNames attribute provides an
array of services that is associated with the Server component, as shown in the following table.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

debug R/W int

managedResource R/W java.lang.Object

port R/W int

shutdown R/W java.lang.String

serviceNames R/W javax.management.ObjectName[]

Engine
In the following table, it is interesting to note that at run-time, the Engine maintains a list of configured
Valve components. This list can be accessed via JMX using the valveObjectNames attribute.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

debug R/W int

defaultHost R/W java.lang.String

managedResource R/W java.lang.Object

name R/W java.lang.String

baseDir R/W java.lang.String

jvmRoute R/W java.lang.String

valveObjectNames RO javax.management.ObjectName[]

Connector
As shown in the following table, each connector configured has its own run-time MBean. Some
connectors (for example, JK Connectors) may have additional run-time MBeans that are accessible
via JMX.

433

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 433

Attribute Name Read/Write Type

modelerType R/W java.lang.String

acceptCount R/W int

address R/W java.lang.String

algorithm R/W java.lang.String

bufferSize R/W int

className RO java.lang.String

clientAuth R/W boolean

ciphers R/W java.lang.String

compression R/W java.lang.String

connectionLinger R/W int

connectionTimeout R/W int

connectionUploadTimeout R/W int

debug R/W int

disableUploadTimeout R/W boolean

enableLookups R/W boolean

keystoreFile R/W java.lang.String

keystorePass R/W java.lang.String

keystoreType R/W java.lang.String

keyAlias R/W java.lang.String

maxKeepAliveRequests R/W int

maxProcessors R/W int

minProcessors R/W int

maxSpareThreads R/W int

maxThreads R/W int

minSpareThreads R/W int

minProcessors R/W int

port R/W int

protocol R/W java.lang.String

protocolHandlerClassName RO java.lang.String

proxyName R/W java.lang.String

proxyPort R/W int

434

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 434

Attribute Name Read/Write Type

redirectPort R/W int

scheme R/W java.lang.String

secret WO java.lang.String

secure R/W boolean

sslProtocol R/W java.lang.String

sslProtocols R/W java.lang.String

tcpNoDelay R/W boolean

tomcatAuthentication R/W boolean

URIEncoding R/W java.lang.String

xpoweredBy R/W boolean

Host
As shown in the following table, each configured virtual host in the Engine exposes its own JMX-accessible
MBean.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

appBase R/W java.lang.String

autoDeploy R/W boolean

debug R/W int

deployOnStartup R/W boolean

deployXML R/W boolean

managedResource R/W java.lang.Object

name R/W java.lang.String

unpackWARs R/W boolean

xmlNamespaceAware R/W boolean

xmlValidation R/W boolean

children R/W javax.management.ObjectName[]

aliases R/W java.lang.String[]

valveNames R/W java.lang.String[]

valveObjectNames R/W javax.management.ObjectName[]

435

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 435

Manageable Nested Components
Following is the set of noncontainer nested components that are exposed on Tomcat 5 via JMX. Chapter
8 provides a detailed description of most of their attributes. The existence and number of these elements
depend on the current configuration (that is, server.xml settings).

Realm
The components in the following table correspond to a configured <Realm> element.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

className RO java.lang.String

debug R/W int

resourceName R/W java.lang.String

Logger
The components in the following table correspond to a configured <Logger> element.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

className RO java.lang.String

debug R/W int

directory R/W java.lang.String

prefix R/W java.lang.String

suffix R/W java.lang.String

timestamp R/W boolean

verbosity R/W int

Valve
The components in the following table correspond to a configured <Valve> element.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

className RO java.lang.String

debug R/W int

436

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 436

Manager
The components in the following table correspond to a configured <Manager> element, representing a
session manager implementation (that is, a Persistent Session Manager).

Attribute Name Read/Write Type

modelerType R/W java.lang.String

algorithm R/W java.lang.String

randomFile R/W java.lang.String

className RO java.lang.String

debug R/W int

distributable R/W boolean

entropy R/W java.lang.String

managedResource R/W java.lang.Object

maxActiveSessions R/W int

maxInactiveInterval R/W int

name RO java.lang.String

pathname R/W java.lang.String

activeSessions RO int

sessionCounter R/W int

maxActive R/W int

rejectedSessions R/W int

expiredSessions R/W int

processingTime R/W long

duplicates R/W int

Manageable Run-Time Data Objects
Chapter 8’s overview of lifecycle listeners revealed that Tomcat 5 uses lifecycle listeners to create
MBeans for run-time objects. For example, the UserDatabase that is used by Tomcat for authentication
and authorization (if it is configured to use a UserDatabase Realm) can be accessed via these JMX
MBeans. The listeners also create MBeans for each user, role, and group within the database.

The following tables list the attributes that are available with these run-time data objects.

437

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 437

UserDatabase
In the following table, note that UserDatabase contains attributes that contain users, groups, and roles
information. This information is managed in memory by the UserDatabase Realm.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

encoding R/W java.lang.String

groups RO java.lang.String[]

pathname R/W java.lang.String

roles RO java.lang.String[]

users RO java.lang.String[]

User
In the following table, note the wide-open availability of a password for the user via this MBean. This
underscores the need for careful security considerations before enabling JMX access on production
systems.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

fullName R/W java.lang.String

groups R/W java.lang.String[]

password R/W java.lang.String

roles RO java.lang.String[]

username R/W java.lang.String

Role
The following table lists the attributes available with the Role object.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

description R/W java.lang.String

rolename R/W java.lang.String

438

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 438

Manageable Resource Object
Any global resources, Web-application resources, or environments that are configured for JNDI access
within the configuration files become manageable through an MBean instance.

NamingResources
As shown in the following table, this object maintains a live list of all the defined JNDI-accessible global
naming resources.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

environments RO java.lang.String[]

resources RO java.lang.String[]

resourceLinks RO java.lang.String[]

Environment
As shown in the following table, any global <Environment> definition has an associated Environment
MBean.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

className RO java.lang.String

description R/W java.lang.String

name R/W java.lang.String

override R/W boolean

type R/W java.lang.String

value R/W java.lang.String

Resource
As shown in the following table, any global <Resource> definition will cause the creation of an associ-
ated MBean instance with the following attributes.

439

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 439

Attribute Name Read/Write Type

modelerType R/W java.lang.String

auth R/W java.lang.String

description R/W java.lang.String

name R/W java.lang.String

scope R/W java.lang.String

type R/W java.lang.String

ResourceLink
A <resource-link> definition creates an associated ResourceLink MBean instance with the following
attributes.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

global R/W java.lang.String

name R/W java.lang.String

type R/W java.lang.String

Exposed Application-Related Objects
Several internal Tomcat 5 objects correspond to J2EE-defined run-time objects. They are accessible via
JMX and are described in the following sections.

WebModule
A WebModule is a deployable unit. Tomcat 5 keeps track of currently deployed modules internally, and
the information can be accessed via the MBeans shown in the following table. A WebModule MBean
roughly corresponds to the combination of a single context descriptor and a deployment descriptor.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

allowLinking R/W boolean

cacheMaxSize R/W int

cacheTTL R/W int

cachingAllowed R/W boolean

caseSensitive R/W boolean

440

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 440

Attribute Name Read/Write Type

children R/W javax.management.ObjectName[]

cookies R/W boolean

compilerClasspath R/W java.lang.String

crossContext R/W boolean

debug R/W int

defaultWebXml R/W java.lang.String

delegate R/W boolean

deploymentDescriptor R/W java.lang.String

docBase R/W java.lang.String

engineName R/W java.lang.String

environments RO java.lang.String[]

eventProvider R/W boolean

javaVMs R/W java.lang.String[]

loader R/W org.apache.catalina.Loader

logger R/W org.apache.catalina.Logger

managedResource R/W java.lang.Object

manager R/W org.apache.catalina.Manager

managerChecksFrequency R/W int

mappingObject R/W java.lang.Object

objectName R/W java.lang.String

override R/W boolean

parentClassLoader R/W java.lang.ClassLoader

path R/W java.lang.String

privileged R/W boolean

reloadable R/W boolean

resourceNames RO java.lang.String[]

server R/W java.lang.String

servlets RO java.lang.String[]

startupTime R/W long

state R/W int

Table continued on following page

441

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 441

Attribute Name Read/Write Type

stateManageable R/W boolean

statisticsProvider R/W boolean

staticResources RO javax.naming.directory.
DirContext[]

swallowOutput R/W boolean

tldScanTime R/W long

useNaming R/W boolean

valveObjectNames RO javax.management.ObjectName[]

welcomeFiles RO java.lang.String[]

workDir R/W java.lang.String

Servlet
As shown in the following table, each activated Servlet also has its own MBean, which provides valuable
information on the Web application and Servlet granularity.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

engineName RO java.lang.String

eventProvider R/W boolean

objectName R/W java.lang.String

stateManageable R/W boolean

statisticsProvider R/W boolean

processingTime RO long

maxTime RO long

requestCount RO int

errorCount RO int

loadTime RO long

classLoadTime RO int

Exposed Internal Tomcat Objects
A few core internal Tomcat objects have MBeans exposed. The following sections describe several of the
more interesting ones.

442

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 442

RequestProcessor
Each virtual host implements its own request processor. The following table shows how MBeans expose
some interesting information. Information such as request count and error count may be relevant to
administrators when troubleshooting.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

virtualHost RO java.lang.String

bytesSent R/W long

method RO java.lang.String

remoteAddr RO java.lang.String

requestBytesSent RO long

contentLength RO int

bytesReceived R/W long

requestProcessingTime RO long

globalProcessor R/W org.apache.coyote.
RequestGroupInfo

protocol RO java.lang.String

currentQueryString RO java.lang.String

maxRequestUri R/W java.lang.String

requestBytesReceived RO long

serverPort RO int

stage R/W int

requestCount R/W int

maxTime R/W long

processingTime R/W long

currentUri RO java.lang.String

errorCount R/W int

Cache
As shown in the following table, the object cache and thread pool objects exposed through JMX can pro-
vide administrators with valuable information for tuning the performance of a Tomcat system or cluster.

443

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 443

Attribute Name Read/Write Type

modelerType R/W java.lang.String

accessCount RO long

cacheMaxSize R/W int

hitsCount RO long

maxAllocateIterations R/W int

spareNotFoundEntries R/W int

cacheSize RO int

desiredEntryAccessRatio R/W long

ThreadPool
The following table shows attributes associated with the ThreadPool object.

Attribute Name Read/Write Type

modelerType R/W java.lang.String

name R/W java.lang.String

minSpareThreads R/W int

currentThreadsBusy RO int

daemon R/W boolean

threadStatus RO java.lang.String[]

sequence RO int

currentThreadCount RO int

maxSpareThreads R/W int

maxThreads R/W int

threadParam RO java.lang.String[]

Accessing Tomcat 5’s JMX Support
via the Manager Proxy

The manager application (featured in Chapter 7) has a JMX proxy that can be used to interact with
Tomcat’s agent level directly. The proxy enables the monitoring of Tomcat components through the
exposed MBeans. It also enables you to read the value of an MBean attribute, or change/set the value
of writeable MBean attributes. Figure 18-7 illustrates the operation of the JMX proxy.

444

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 444

Figure 18-7: The manager application’s JMX proxy.

In Figure 18-7, notice that the manager application provides an HTML-based interface to the JMX
MBean server, acting as an HTTP protocol adapter for the agent. The manager application adds essential
value in this scenario. It provides querying capabilities and will authenticate the user before granting
access to the JMX proxy.

Architecturally, because the manager JMX proxy actually runs within the same JVM as the Tomcat
server, it can be viewed as a part of Tomcat’s agent level implementation. As mentioned previously, it
acts as an HTTP protocol adapter.

Working with the JMX Proxy
The URL for accessing the JMX proxy using a browser is as follows:

http://<host>:<port>/manager/jmxproxy/<operation details>

If Tomcat is running locally with the default configuration, the URL is as follows:

http://localhost:8080/manager/jmxproxy/<operation details>

MBeans exposed by Tomcat 5

JMX Proxy

users access manager application via Web browser

Tomcat 5 (Catalina)

Tomcat 5 MBean Server

manager
(Web application)

445

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 445

No stylized HTML Web pages or tables are displayed by this proxy. However, it is capable of performing
the following operations against the Tomcat 5 agent (MBean Server) implementation:

❑ Query for MBeans and current attribute values

❑ Set MBean attribute values

WARNING: Modifying the value of a Tomcat internal MBean during production operation can potentially
cause problems that may result in an application and/or system crash. Use this feature at your own risk

The general form for a query operation using the JMX proxy is as follows:

?qry=<query details>

For example, you can get a complete listing of all the available MBeans using the following wildcard
query:

http://localhost:8080/manager/jmxproxy/?qry=*:*jmxproxy

The result will be similar to what is shown in Figure 18-8.

Figure 18-8: Listing of all the MBeans in Tomcat 5.

446

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 446

As another example, you can get a listing of all the connector MBeans using the following query:

http://<host>:<port>/manager/jmxproxy/?qry=*:type=Connector,*

The result will be similar to what is shown in Figure 18-9.

Figure 18-9: Listing of all Connector MBeans.

Modifying MBean Attributes
Another operation you can perform with the JMX proxy is to change the attribute of an MBean. The gen-
eral syntax for this operation is as follows:

http://<host>:<port>/manager/jmxproxy/?set=<full MBean name>&att=<attribute
name>&val=<value to change to>

For example, the following procedure can be used during performance tuning to change the maximum
number of threads managed by Tomcat 5’s thread pool in real time. You first need to query for the full
MBean name of the exposed thread pool, as shown in the following example:

http://<host>:<port>/manager/jmxproxy/?qry=*:type=ThreadPool,*

The output of the query will be similar to what is shown in Figure 18-10.

447

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 447

Figure 18-10: Querying for Tomcat 5’s ThreadPool MBean name.

The current value of the maxThreads attribute is 150. It will be changed to 200.

Now, the full name of the MBean is visible from the query output as follows:

Catalina:type=ThreadPool,name=http8080

Next, by consulting the Tomcat 5 MBeans description listing in this chapter, you can determine that the
maxThreads attribute is a writeable property.

Finally, the URL for the set operation is as follows (type the entire URL on one line):

http://<host>:<port>/manager/jmxproxy/?set= Catalina:type=ThreadPool,name=http8080
&att=maxThreads&val=200

Upon successful operation, the output is similar to what is shown in Figure 18-11. If you try to modify a
read-only attribute, you will receive a message reporting an “attribute not found” exception.

448

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 448

Figure 18-11: Increasing the maxThreads attribute of Tomcat 5’s ThreadPool object.

If you perform another query for the ThreadPool information, you will see the change as shown in
Figure 18-12.

The capability to peek into Tomcat internals during run-time and tweak the running server is an
extremely attractive feature. Tomcat 5’s support for JMX is essential in carrying out these tasks.

The JMX proxy accesses the MBean Server within the same JVM. Typical network-management scenar-
ios call for the management application to run on an external JVM, and often on another machine over
the network. Chapter 7 explains how to perform management tasks in an external JVM running Ant.
The next section examines a method of accessing the Tomcat 5 agent remotely over a network.

449

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 449

Figure 18-12: Verifying the new value of the maxThreads attribute.

Accessing Tomcat JMX Support Remotely
via the RMI Connector

Most of Tomcat’s JMX support has been implemented using an open source implementation of JMX
called MX4J because the specification for the JMX Remote API was not finalized until October 2003,
well into the final beta cycle of the initial Tomcat 5 release. You can download the latest release of MX4J
at the following URL:

http://mx4j.sourceforge.net/

MX4J contains an implementation of an RMI connector that can be used to remotely access the MBeans
exposed by Tomcat 5’s agent level implementation. The following sections provide a step-by-step guide
to configuring Tomcat 5 for remote JMX access, including the installation of the MX4J library.

450

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 450

Including JMX Support in server.xml
The first task is to check the conf/server.xml configuration file to ensure that both the
ServerLifecycleListener and GlobalResourcesLifecyleListener are configured (that is, not
commented out):

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
<Listener className=”org.apache.catalina.mbeans.ServerLifecycleListener”

debug=”0” />
<Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener”

debug=”0”/>

Patching an Undocumented Attribute
Next, you must add an undocumented attribute (called adaptor) to the ServerLifecycleListener
element. This tells Tomcat to start the MX4J RMI connector upon startup. The required modification is
highlighted here:

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
<Listener className=”org.apache.catalina.mbeans.ServerLifecycleListener”

debug=”0” adaptor=”jrmp” />
<Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener”

debug=”0”/>

This indicates to Tomcat the protocol to be used for the RMI Connector. In this case, it is the proprietary
RMI-native jrmp protocol. The other allowed protocol is iiop, and it is compatible with distributed ser-
vices or management applications based on the Common Object Request Broker Architecture (CORBA),
which is a distributed network standard. A discussion of CORBA is beyond the scope of this book.

Replacing Reference Implementation JMX with MX4J
Because the RMI adapter is part of MX4J, you must replace the included reference JMX implementation
with MX4J. Look into the common/lib directory and delete the following library files:

❑ jmx.jar

❑ jmx-remote.jar

❑ jmx-remote-tools.jar

Copy to the common/lib directory the following library files from the MX4J distribution:

❑ mx4j-jmx.jar

❑ mx4j-tools.jar

Starting Tomcat with JMX Remoting Enabled
The previous steps conclude the setup for the Tomcat 5 JMX agent. You can now start Tomcat 5 and
attempt to access the JMX agent from another JVM, or even a remote machine. The next section demon-
strates how to do this with a utility called queryjmx.

451

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 451

Peeking into Tomcat 5 with the queryjmx Utility
The code distribution of this book includes the queryjmx utility. This is a simple custom-coded utility
program that can be used to access remote JMX agents using MX4J’s RMI connector. The utility has been
tested against MX4J version 1.1.1 (which is the latest available as of this writing).

The usage of queryjmx utility is straightforward. The command syntax is as follows:

queryjmx <JMX component type>

For example, if you want to view all the connectors, you would use the following:

queryjmx Connector

Alternatively, for all the roles defined in the UserDatabase, use the following:

queryjmx Role

You will find the query.class binary executable and a queryjmx.bat batch file that start the com-
mand. Edit the queryjmx.bat file to ensure that the classpaths are set to a location in which you can
find the MX4J libraries. For example, the following edit of the queryjmx.bat file shows that the
libraries are located under c:\mx4j:

java -classpath c:\mx4j\lib\mx4j-tools.jar;c:\mx4j\lib\mx4j-jmx.jar;. Queryjmx %1

On a *nix system, you can edit and use the queryjmx.sh file, which contains the following:

java –classpath /usr/local/lib/mx4j-tools.jar:/usr/local/lib/mx4j-jmx.jar:.
Queryjmx $1

Setting Up the JNDI Initial Context
The queryjmx utility uses JNDI to locate the RMI registry in which the Tomcat’s JMX connector server
can be located. It is necessary to set up the JNDI run-time to use the RMI registry context factory. This
involves setting up two Java system properties. The easiest way to accomplish this is to include a
jndi.properties file within a directory in the classpath of the queryjmx. Because ., or current
directory, is part of the classpath, the following jndi.properties file in the same directory as the
executable will do the trick:

java.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory
java.naming.provider.url=rmi://localhost:1099

This assumes that you are running the queryjmx utility on the same host as Tomcat 5 (localhost). If
the Tomcat 5 instance is located on a remote machine, simply change the java.name.provider.url
system property to reflect the remote host’s address.

Remote Tomcat Probing with queryjmx
Now you can try the queryjmx utility. The following is typical output from the utility. The query is for
the Connector:

452

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 452

C:\Tomcat5>queryjmx Connector

MbeanCount: 2

Name: Catalina:type=Connector,port=8080
modelerType: org.apache.catalina.mbeans.ConnectorMBean
acceptCount: 100
bufferSize: 2048
className: org.apache.coyote.tomcat5.CoyoteConnector
clientAuth: false
compression: off
connectionLinger: -1
connectionTimeout: 20000
connectionUploadTimeout: 300000
debug: 0
disableUploadTimeout: true
enableLookups: false
maxKeepAliveRequests: 100
maxProcessors: 20
minProcessors: 5
maxSpareThreads: 75
maxThreads: 150
minSpareThreads: 25
minProcessors: 5
port: 8080
protocol: HTTP/1.1
protocolHandlerClassName: org.apache.coyote.http11.Http11Protocol
proxyPort: 0
redirectPort: 8443
scheme: http
secure: false
tcpNoDelay: true
tomcatAuthentication: true
xpoweredBy: false

Name: Catalina:type=Connector,port=8009
modelerType: org.apache.catalina.mbeans.ConnectorMBean
acceptCount: 10
bufferSize: 2048
className: org.apache.coyote.tomcat5.CoyoteConnector
clientAuth: false
compression: off
connectionLinger: -1
connectionTimeout: 60000
connectionUploadTimeout: 300000
debug: 0
disableUploadTimeout: false
enableLookups: false
maxKeepAliveRequests: 100
maxProcessors: 20
minProcessors: 5
minProcessors: 5
port: 8009

453

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 453

protocol: AJP/1.3
protocolHandlerClassName: org.apache.jk.server.JkCoyoteHandler
proxyPort: 0
redirectPort: 8443
scheme: http
secure: false
tcpNoDelay: true
tomcatAuthentication: true
xpoweredBy: false

Using this queryjmx utility, it is possible to monitor remote Tomcat servers in real time, as long as the
remote JMX Connector support is configured.

Security Concerns
JMX access needs to be enabled explicitly in the Tomcat 5 distribution, and so administrators running
default Tomcat installations do not have to worry about its security risks.

Enabling remote JMX access in the current Tomcat version leaves the running Tomcat server wide open
to external elements. This is indeed one of the intentions of a JMX implementation. This is the primary
reason why we had to use an undocumented attribute and external MX4J binaries to enable remote JMX
access.

Developers or expert administrators familiar with MX4J can configure Secure Socket Layer (SSL) connec-
tions and user authentication if they need remote JMX capabilities in a production environment. It is also
possible to configure mutually exclusive hardware-based subnetworks for server management.

In due time, with subsequent Tomcat releases, finer-grained access control and security measures will
likely be implemented to enable safe and secure remote JMX access.

Summary
To conclude this chapter, let’s review some of its key points:

❑ JMX is a standard for the management of hardware devices, software services, and other man-
ageable entities. The JMX architecture has three levels and each level is componentized. Each
level is decoupled from the others.

❑ The bottom level is instrumentation, and it requires that manageable devices and/or services
expose their manageable attributes, operations, and events via a set of MBeans.

❑ The top level is distributed services. It involves management applications or higher-level agent
functionality and is not well defined at this time.

❑ The middle level is called the agent level. This level aggregates the MBeans from devices and
services, and provides a set of services, customized value-added logic, and external/remote
access to managed elements.

454

Chapter 18

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 454

❑ Tomcat 5 is fully JMX-compliant. It is also fully instrumented. This means that all of its configu-
ration, internal, and run-time components have MBeans associated with them, enabling these
components to be accessed through a JMX agent.

❑ The manager application in Tomcat provides a JMX proxy that can be used to access these
Tomcat MBeans. The proxy provides a Web interface for querying the MBean Server, reading
and writing MBean attribute values.

❑ Whereas the manager JMX proxy acted as an HTTP protocol adapter, replacing the JMX imple-
mentation with open source MX4J provides a fully functional RMI Connector for Tomcat 5. This
RMI Connector enables external Tomcat 5 management across a network. Using a custom-coded
queryjmx utility, it is possible to query the Tomcat 5 server remotely for its managed compo-
nents. All attributes of the managed component can be accessed remotely using the queryjmx
utility.

❑ One major benefit of Tomcat’s JMX support is exemplified by the queryjmx utility, which enables
the capability to consolidate the monitoring and management of Tomcat servers via remote JMX
access. Ultimately, this occasions the management, administration, and monitoring of a large
number of Tomcat servers — a requirement that has not been satisfied by Tomcat previously.

In Tomcat 5, one beneficial side effect of componentization and the exposure of internal components via
JMX is the capability to configure, start, and operate Tomcat from within an external program or script
file (external to the JVM running Tomcat). This is known as the embedded mode of operation for
Tomcat. Chapter 20 has extensive coverage of this new mode of Tomcat server operation.

Before looking at this new mode of Tomcat server operation, however, let’s take a look at Chapter 19,
which explores clustering with Tomcat 5.

455

JMX Support

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 455

b 559028 Ch18.qxd 4/22/04 3:58 PM Page 456

Tomcat 5 Clustering

The Tomcat server has grown up, from a reference implementation of a Servlet container for
demonstrating and testing new APIs to a robust and high-performance Web-tier server. Increasingly,
Tomcat is being used in production scenarios to handle real-world Web applications. It is a prime
example of a prototype becoming the product. In a sense, the designers and architects realized that
their mission changed direction, and redesigned the Tomcat product for high-stress production
deployments.

Tomcat 5 is further along the evolutionary path of improved performance. Real-world deployments
place many tough demands on the Tomcat server. Many of these requirements were not important
to the Tomcat development team when it was a mere reference implementation. Two such areas
are support for horizontal scalability (the ability to handle increasing user requests by utilizing
a group of physical machines) and high availability (the ability to survive hardware or software
failures and maintain a high percentage of application uptime). In other words, what happens when
there are so many users that Tomcat servers start to crash, and how can you ensure that no user
loses data? These are real-world problems, and Tomcat 5 attempts to solve them by providing
built-in support for clustering. Clustering, in this context, refers to running multiple instances of
the Tomcat server so that it appears to users as a single server.

This chapter covers the many facets of Tomcat 5 clustering, including the following:

❑ Basic principles of clustering

❑ How Tomcat implements clustering

❑ Internal software components that implement Tomcat clustering

❑ Technologies that underlie Tomcat clustering

❑ Various alternative configurations

Last but not least, the chapter will give you hands-on experience with configuring and experi-
menting with this new and exciting feature of Tomcat. You will be working with three different
clustered configurations along the way. As an epilogue, the chapter offers some practical sugges-
tions about clustering that may affect your decision to deploy the technology.

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 457

Clustering Benefits
Clustering in Tomcat 5 enables a set of Tomcat instances on a LAN (called a cluster) to appear to incoming
users as a single server. This enables the distribution of work among the servers, called load balancing.
Chapter 12 covers a load-balancing configuration with the Coyote AJP Connector and mod_jk2. Figure 19-1
illustrates the load-balancing concept.

Figure 19-1: Load balancing with Tomcat 5.

In Figure 19-1, if an increasing stream of incoming requests were sent to the tomcat1 server, at some
point the server will overload and crash by running out of resources. By deploying a load-balanced
cluster, however, more requests can be handled.

Scalability and Clustering
Using the load-balanced configuration shown in Figure 19-1, incoming requests are distributed over the
tomcat1, tomcat2, and tomcat3 servers. This means that each server is only handling a portion of the
incoming requests. If the load-balancing distributor and algorithm are efficient, the system as a whole
can handle significantly more requests before overloading.

Scalability refers to the capability to provide service for an increasing number of users. Formerly, scaling
an application to more users required an upgrade to expensive, multiple CPU systems and corresponding
memory expansion. This approach is often called scaling up. The way that clustering is handled in
Tomcat 5 leverages inexpensive high-speed LAN interconnections to share the computing resources of

increasing load of incoming request

Coyote AJP

mod_jk2

overloaded
Tomcat
server

load-balanced
cluster

increasing load of incoming request

without load balancing

tomcat1

Apache

with load balancing

Coyote AJP

tomcat2

Coyote AJP

tomcat3

Coyote AJP

tomcat1

mod_jk2

Apache

458

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 458

multiple server machines. This approach is called scaling out or horizontal scaling. It provides an obvi-
ous cost advantage, as a server farm of low-cost commodity hardware is less expensive than a single
multiple-CPU server.

Load balancing can solve the scalability problem by enabling the cluster to handle significantly more
simultaneous requests than a single nonclustered server. Tomcat servers can support horizontal scaling
through the use of the Coyote AJP Connector and the mod_jk2 plug-in with the Apache Web server.

The Need for High Availability
Another difficult real-world problem that can be solved via horizontally scaled clustering is the high
availability (HA) issue. The challenge here is avoiding situations in which server software/hardware
crashes and becomes unavailable.

In a regular system, all requests being processed by the server are lost, and all users must wait until the
server restarts properly before starting their work from the beginning. For example, if the users are online
shoppers in a Web store, they will lose the contents of their shopping carts and any data that they may
have entered during the checkout process when the server crashed.

This is clearly an unacceptable set of consequences for serious real-world applications. What is desired
is a system capable of continuing to handle incoming requests, making a single server crash completely
transparent to the end user. The crash and recovery of any individual hardware system should not affect
the user experience with the hosted application. Systems with the capability to survive server crashes
typically exhibit very high uptime or availability. These systems are called high-availability (HA) systems.

Tomcat 5 clusters can be used to implement an HA solution. In this scenario, the following occurs:

1. A request that is destined for the crashed server is redirected to another functioning server in
the cluster.

2. The original incoming request is processed by the functioning server.

3. The Tomcat server that failed is logically removed from the cluster, so no further requests will
be forwarded to it.

4. When and if the crashed Tomcat server recovers, it is logically added back into the cluster, and
once again used to handle incoming requests.

The key to enabling this scenario is to realize that any state information maintained by the application in
the crashed server (typically, carried in the session) must be somehow made available to the functioning
server.

Tomcat 5 provides a workable solution to both the scalability and the HA problem. As such, Tomcat 5
has made major inroads in establishing itself as a serious and robust contender for enterprise-level
production deployment.

To better understand how Tomcat 5 achieves scalability and HA, a few words on some basic clustering
concepts are appropriate.

459

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 459

Clustering Basics
Several basic system design patterns are found in clustered systems (a specific applied instance of the
general-distributed computing problem). This section briefly describes two. The preceding discussion
in this chapter and Chapter 12 cover a third: the load-balancing front-end pattern.

Master-Backup Topological Pattern
Figure 19-2 illustrates the master-backup topological pattern. In this pattern, two (or more) machines are
identically configured in hardware and OS, and they both host the same software. Interconnection exists
between the machines (for example, over a LAN). One machine is designated as the master server and
processes incoming requests. The rest of the machines are backup servers. The health of the master
server is monitored constantly, either by the backup servers or by an independent hardware/software
component. Whenever the master server crashes, one of the backup servers is made the master and
request processing continues as if no crash has occurred. This is the basis of most HA implementations.

Figure 19-2: The master-backup topological pattern.

Fail-Over Behavioral Pattern
Figure 19-3 illustrates the fail-over behavioral pattern. Fail-over occurs when a server crashes in a master-
backup system. It refers to the way and means by which the master server is taken over by the former
backup server. While in a hardware implementation, this may involve sophisticated switching and com-
munications link isolation; in a software scenario, a state transfer and synchronization mechanism must
be in place.

In other words, simply having identically configured hardware, OS, and software applications (as in the
master-backup pattern) is not enough to guarantee a logically transparent fail-over.

The backup server taking over the duties of the master server must know “what the master server is up
to,” and continue from where it left off. This requires the sharing of dynamic state information.

request processing
on MASTER only

Local Area Network

MASTER
Server

BACKUP
Server1

BACKUP
Server2

460

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 460

Figure 19-3: The fail-over behavioral pattern.

Of course, when the master server has crashed, it is too late to query it for information about what it was
doing. In all likelihood, the crashed master server is not in any condition to respond.

Therefore, almost all fail-over solutions rely on maintaining and sharing state information between the
master and backup servers before any crashes occur. Keeping this information current is the only way to
ensure that the backup server can take over from where the master server left off during a fail-over.

This state sharing is much tougher to implement than it sounds. State information on a system refers to
any changes to the system. On a hardware level, this could mean any memory or register write. Imagine
having to let all servers in a cluster know about every register and memory write on the master system!

Thankfully, in a J2EE-compliant Servlet/JSP container, a well-accepted convention for tracking state
information within Web applications is available. It involves the use of server-side sessions. Tomcat 5’s
cluster implementation takes advantage of this to provide fail-over capability.

Now it’s time to see how Tomcat 5 incorporates the load-balancing, master-backup, and fail-over patterns
in its clustering implementation to provide scalable, HA features for end users.

Tomcat 5 Clustering Model
This section explores the specific clustering implementation supported by Tomcat 5. Based on the discus-
sion thus far, the implementation can be divided into two layers and various components. Figure 19-4
illustrates this.

request
processing

fail-over
from MASTER
to BACKUP

Local Area Network

CRASHED!

MASTER
Server

new MASTER
Server

(formerly BACKUP
Server 1)

BACKUP
Server2

461

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 461

Figure 19-4: Tomcat 5 clustering-implementation architectural model.

The two layers that enable clustering are the load-balancing front-end and the state-sharing/
synchronization back-end. In particular, Tomcat’s load-balancing front-end distributes incoming
requests to the Tomcat instances, while the back-end is concerned with ensuring that shared session
data is available to the different instances.

Load Balancing
There are many options for implementing the load-balancing front-end. What you should choose
depends on your specific application. These alternatives include (but are not restricted to) the following:

❑ Round-robin DNS, whereby a domain name resolution results in a set of IP addresses

❑ A hardware-based load balancer

❑ A software-based load balancer (including balance, a popular open-source TCP-based load
balancer. See the following URL:

http://sourceforge.net/projects/balance/

❑ Apache mod_jk as load balancer

❑ Apache mod_jk2 as load balancer

❑ The balancer Web application included with Tomcat 5 for rule-based, application-level load
balancing

(many choices of technology)

incoming
requests

LOAD BALANCING
Front-End

(many choices of technology)

STATE/SESSIONS SHARING
Back-End

Tomcat Server Instances

462

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 462

A discussion and detailed comparison of all of these options is beyond the scope of this book. However,
the last two options are covered in this chapter because they are the most popular and least expensive
options with Tomcat 5 deployments.

mod_ jk2 Load Balancing and Sticky Sessions
The mod_jk2 load balancer distributes incoming requests in a round-robin manner among the available
Tomcat workers, but will also respect a load factor that you can specify. In addition, the mod_jk2 load
balancer supports sticky sessions.

Understanding Sticky Sessions
When sticky sessions (or session affinity) is enabled on mod_jk2, it ensures that all incoming requests
with the same session are routed to the same Tomcat 5 worker. Figure 19-5 illustrates this concept.

Figure 19-5: mod_jk2 load balancing with session affinity.

In Figure 19-5, incoming request A is routed to tomcat1 because session X is created and maintained
on the tomcat1 instance. Meanwhile, request B is routed to tomcat3 because session Y is created and

request A
session X

request B
session Y

request C
no session

mod_jk2

Apache

Coyote AJP

tomcat2

Coyote AJP

tomcat3

Coyote AJP

session Ysession X

tomcat1

463

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 463

maintained on the tomcat3 instance. Request C has no session, so it is routed to the next server in the
round-robin distribution, which is tomcat2.

This is a highly functional clustering configuration that is relatively easy to configure, and it can be used
to scale a Web application across a cluster of Tomcat 5 servers.

The only disadvantage of this configuration is that sessions are Tomcat instance-specific. If a Tomcat
instance is lost, all its sessions are lost.

For example, in Figure 19-5, if the tomcat1 instance crashes, session X is lost forever. Request A will not
be handled by the system, and the user will lose the session (and whatever was being done at the time
the failure occurred). However, if there is some way to help the clustered Tomcat instances to share ses-
sion information, then one of the other Tomcat instances still up and running can take over and service
incoming requests with sessions created by the crashed server.

Session Sharing
As with the load-balancing front-end, you have numerous session-sharing back-ends from which to
choose. Each provides a different level of functionality, as well as implementation complexity.

Session sharing is the secret behind most implementations of an application server fail-over mechanism.
It ensures transparent transfer of the sessions that were being handled by the crashed server.

In the following discussion, it is assumed that the mod_jk2 load balancing front-end is used. This is the
most popular production configuration for clustered Tomcat 5 instances. The available session-sharing
configuration options include the following:

❑ Sticky sessions with no session sharing

❑ Sticky sessions with a Persistent Session Manager and a shared file store

❑ Sticky sessions with a Persistent Session Manager and a JDBC store to RDBMS

❑ In-memory session replication

Sticky Sessions with No Clustered Session Sharing
This is the scenario that was tested in Chapter 12, when mod_jk2 and an AJP Connector were used to
round-robin requests amongst a cluster of Tomcat 5 server instances. In this scenario, the mod_jk2 lb
(load balance) worker ensures that requests destined for the same session are always handled by the
same Tomcat worker instance. The session ID is encoded with the route name of the server instance that
created it, assisting in the routing of the request.

While this setup may sound contrived, it is extremely practical and pragmatic in many production
scenarios. The advantages of this simple clustering setup include the following:

❑ Application scalability through round-robin load balancing (new sessions are always created
on the next worker in the round-robin queue)

❑ Simplicity in setup and maintenance (the mod_jk2 lb worker will detect crashed servers and
reinstate recovered ones)

❑ No additional configuration or resource overhead (as no session sharing is occurring)

464

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 464

The major disadvantage is the lack of HA features. A crashed server means lost sessions.

In situations where server crashes are rare occurrences, and when session losses during these rare occa-
sions are acceptable, this should be the clustering solution deployed.

Sticky Sessions with a Persistent Session Manager
and a Shared File Store

Tomcat 5 is packaged with a Persistent Session Manager component that can be configured into any
application context. Chapter 8 covers the configuration of this component. The main purpose of persistent
session management is to provide continuity to sessions when a server shuts down and is restarted.
Because the sessions are persisted to either the disk or an RDBMS, they can have a life cycle that is longer
than the server’s. In addition, because sessions can be configured to be “swapped out to the store” after
a specified idle time, the Persistent Session Manager also provides a form of protection against system
crashes (that is, any persistent session can be recovered when the system restarts after a crash).

Note that the Persistent Session Manager in Tomcat 5 is designed with no consideration for clustering.
It deals only with the life cycle and session of one single Tomcat instance. However, by sharing the store
between multiple Tomcat 5 server instances (via either a shared file system or an RDBMS), a certain level
of session sharing can be accomplished.

Figure 19-6 illustrates the Persistent Session Manager with a shared file store. In this case, all the Tomcat
server instances use the same directory to store their sessions. This directory is accessible from all the servers
via the OS’s shared file mechanism (NFS, SMB, and so on). Now, any sessions created by any Tomcat
instance will eventually be visible to the other instances. Any modifications made by any instance will
also be eventually visible to the other instances. It is important to reiterate the importance of the word
eventually here, because the Persistent Session Manager does not guarantee exactly when a session will
be persisted to the store (either after creation or modification). Until a session (or a change in the session)
is persisted to the store, that information is not available to the other instances.

Figure 19-6: Tomcat 5’s Persistent Session Manager with a shared file store.

persistent
session
manager

Tomcat 5 instance

persistent
session
manager

Tomcat 5 instance

shared file system

persistent
session
manager

Tomcat 5 instance

persisting sessions and accessing sessionspersisting sessions and accessing sessionspersisting sessions and accessing sessions

465

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 465

At this point, you may be wondering what good is a clustering system that eventually shares its session
information?

There is actually a very good and pragmatic answer. It is slightly better than the sticky session with no
session sharing solution previously discussed.

In clustering situations where server crashes happen very infrequently, using this scheme can further
minimize the loss of sessions during the moment of system crash and fail-over. This is because any per-
sisted session at fail-over time can be immediately handled by any one of the remaining servers in the
cluster.

Note that sticky sessions must still be configured in the mod_jk2 Connector with this scheme. This means
that most of the time, a session will be serviced throughout its lifetime by the same Tomcat instance. The
only exception occurs when the original server crashed during the session’s lifetime. Sticky sessions also
increase the probability that the session will be persisted to the store, because the longer the session lingers
around, the greater is the probability of it being persisted.

The advantages of this session-sharing scheme include the following:

❑ Application scalability through round-robin load balancing (new sessions are always created on
the next worker in the round-robin queue)

❑ Relatively easy setup and maintenance. The mod_jk2 lb (load balance) worker will detect
crashed servers and reinstate recovered ones.

❑ It provides a measure of HA in most situations because any persisted session is shared and can
be handled by another server in the cluster.

The disadvantages of this session-sharing scheme include the following:

❑ Some sessions may still be lost during fail-over.

❑ Access traffic on the network supporting the shared file system can be heavy in a highly loaded
server cluster.

Sticky Sessions with a Persistent Session Manager
and a JDBC-Based Store

Note in Figure 19-6 that there is no conceptual difference between this session-sharing scheme and the
previous one. In fact, they both use the same Persistent Session Manager component. In this case, JDBC
is used to persist session information onto an RDBMS. The set of benefits and weaknesses remains iden-
tical to the previous scheme.

The only additional benefit of going to a JDBC-based scheme is the potential performance improvement
on systems persisting a large number of sessions. If the applications running on the cluster are using the
same RDBMS as the Persistent Session Manager, however, this slight performance edge may disappear
(because of increased contention).

In-Memory Session Replication
Unlike the other two session-sharing schemes, this session-sharing mechanism is not built on top of a
shared persistent storage. With in-memory session replication, session information is maintained in syn-
chronization within the memory, across all the clustered server instances.

466

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 466

Because all server instances share the same session information, this mechanism has the potential to
provide the full benefits associated with clustering. Figure 19-7 illustrates how this is accomplished.

Figure 19-7: Tomcat 5 in-memory session replication.

In Figure 19-7, the Tomcat 5 server instances running in the cluster form a communications group (or
peer group, as they are all equal in stature). Group membership is maintained by the clustering imple-
mentation. If a server crashes, it is automatically removed from the group. A recovered server is auto-
matically made a member of the group again.

Any session-creation and modification activities on any of the Tomcat 5 instances are sent to all the
instances within the communications group. The receiving members then update their own session
image in memory to reflect the change. In this way, sessions and changes are replicated immediately —
in memory, and within the group.

The main benefits of this approach are as follows:

❑ Full round-robin load balancing without sticky sessions enables an even distribution of requests
(subject to prefigured lb factor on the mod_jk Connector). Any server can handle any request.

❑ With full HA support, any server can crash and fail-over with no session loss.

The second benefit is the major benefit delivered by the in-memory session replication scheme. The
other schemes examined thus far cannot deliver this benefit.

However, with the benefit comes substantial cost. Here are the items of concern for this approach:

❑ The traffic on the interconnection (usually a LAN) can quickly become very heavy because all
changes to all sessions are sent to all members of the group.

in-memory replication
implementation

Tomcat 5 Instance

Local Area Network

in-memory replication
implementation

Tomcat 5 Instance

in-memory replication
implementation

Tomcat 5 Instance

replicated session informationreplicated session information

communications group membershipcommunications group membership

replicated session information

communications group membership

467

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 467

❑ Sessions are not persistent. This means that this model assumes that the overall system operates
continuously (sometimes called twenty-four-seven or nonstop operation). All sessions are lost
if the entire cluster is shut down. This is not the case with persistent session management

❑ Configuration, tuning, and maintenance can be quite complex.

The remaining sections in this chapter cover each of the clustering mechanisms in more depth, and
provide hands-on configuration with working examples.

Working with Tomcat 5 Clustering
As discussed earlier, Tomcat 5 clustering implementation depends on a load-balancing front-end and a
session-sharing back-end. The load balancing front-end may implement sticky sessions (using Apache
mod_jk or mod_jk2 Connectors), which ensure that the same clustered Tomcat 5 instance will always
handle the same session. Taking a peek underneath the hood will reveal why this is very important in
several of the clustering configurations.

Session Management in Tomcat 5
Sessions are created and managed by the Tomcat 5 container during application execution, and are made
available to JSP and Servlets via the application context. In a single server instance, Tomcat 5 sessions are
objects (which can contain and reference other objects) that are kept on behalf of a client.

Because the HTTP protocol is stateless, there is no simple way to maintain application state using the
protocol alone. For example, consider a shopping cart application. Each product page accessed by a user
comes into the server as a separate and distinct HTTP request. There is no way for the server to match
up independent incoming requests that represent an application flow.

However, most Web applications need to maintain state information associated with a user (for example,
the items in the user’s shopping cart). A server-side session is the main mechanism used to maintain state.
It works as follows:

1. The server writes a cookie to the user’s browser instance. The cookie contains a token to retrieve
the server-side session (data structure).

2. The cookie is supplied by the browser instance every time it accesses a page on the site.

3. The server reads the token in the cookie to extract the corresponding session.

An analogy to a session is the coat check tag that one may obtain prior to entering a theatre or concert. In
this case, the cookie is the tag (smaller and simpler to carry) and the session is the coat (larger, but impor-
tant data that is kept on the server side). You, the client, hold the tag and return the tag for the coat, which
the establishment holds on your behalf. The browser client holds the cookie, and returns the cookie each
time in a connection to the server. Using the cookie, the server is able to locate the session on which the
browser client is working.

For browsers that do not support cookies, it is possible to use URL rewrite to achieve a similar effect. In
URL rewrite, any URL that is being supplied by the application is decorated with the session ID being
used. This enables the Web application to extract the session ID from the incoming URL during run-time.

468

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 468

The Role of Cookies and Modern Browsers
All popular modern-day browsers (Internet Explorer, Opera, Netscape, Mozilla, etc.) support the use
of cookies. Cookies are managed on the browser’s host PC, and indexed by the Web site’s host name.
In addition, all modern-day browsers support multiple concurrent connections to the same server. For
example, you can start as many instances of Internet Explorer as you want (subject to machine resource
constraints) and have them all connect to the following URL:

www.wrox.com/

Each instance you start manages its own client-side session. This is not to be confused with server-side
sessions. In essence, when you start multiple instances of a browser pointing to the same server, it appears
to the server as if different users are accessing it (each instance manages its own copy of a cookie from
the server). In other words, each client-side browser instance will have its own independent, associated
server-side session.

Note that if a load-balancing mechanism redirects an incoming request to a different host, the cookie
supplied will be different (because cookies are indexed by host names) and the session information will
not be maintained.

Configuring a Tomcat 5 Cluster
This section describes the configuration of an actual Tomcat 5 cluster. The cluster consists of three
independent Tomcat 5 instances, and makes use of the following:

❑ mod_jk2 load-balancing front-end (without sticky session)

❑ In-memory session replication back-end

This configuration is very similar to the one featured in the AJP Connector load-balancing example
presented in Chapter 12. The main difference is in the use of multiple %CATALINA_BASE% settings
($CATALINA_BASE on Unix/Linux) for each Tomcat instance, and the cluster naming of the server
instances.

Ideally, the following configuration experiments should be performed on an actual cluster of physical
machines running Tomcat 5 on a network. However, not everyone has access to such extensive hard-
ware. To provide all readers with a hands-on configuration experience, the example utilizes multiple
instances of Tomcat 5 running on the same machine.

Setting Up Multiple Tomcat Instances on One Machine
To enable multiple instances of Tomcat 5 to run on the same physical machine, each instance must have
at least the following:

❑ Its own configuration directory

❑ Its own webapps directory

❑ Its own temp directory

❑ TCP ports (for the Coyote AJP Connector) that do not conflict with other instances

❑ Optionally, other private TCP or JDBC resources, depending on the back-end session-sharing
mechanism being deployed

469

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 469

Three batch files, called start1.bat, start2.bat, and start3.bat, respectively, are created and
placed into the %CATALINA_HOME%/bin directory.

These batch files set the CATALINA_BASE environment variable and then call the startup.bat Tomcat
startup script. Tomcat 5 will check for the existence of the CATALINA_BASE environment variable and
use it to locate the base directory for startup. Each of the start1.bat, start2.bat, and start3.bat
files sets the CATALINA_BASE variable to a different directory, allowing for variation in configuration.
For example, start1.bat contains the following:

set CATALINA_BASE=c:\cluster\machine1
call startup

This tells Tomcat 5 to look for configuration information and Web application in the c:\cluster\
machine1 directory. Figure 19-8 shows the directory hierarchy that we will use in the subsequent cluster
testing.

Figure 19-8: Directory tree of the in-memory replication example.

Note in Figure 19-8 that each machine1, machine2, and machine3 directory houses the configuration files
for the respective Tomcat 5 instances to be started.

cluster

machine1

machine2

machine3

machine4

same subdirectories as machine1

for persistent session manager

for Apache shared memory file

same subdirectories as machine1

temporary work directory for this instance

logs for this instance

server.xml and other conf files for this instance

Web applications to run on this instance

apache

shareddir

webapps

conf

logs

work

470

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 470

Shutting Down the Tomcat Cluster
Similar to the startn.bat files, there exists three stopn.bat files for shutting down the individual
server instances. These batch files set the CATALINA_BASE environment variable and then call the shut-
down script for the server. For example, following is the content of stop3.bat:

set CATALINA_BASE=c:\cluster\machine3
call shutdown

Configuring Minimal Web Applications
Only the jsp-examples application will be loaded for each of the three machine instances. In general,
when setting up a cluster, you should try to minimize the number of applications loaded. This is because
considerable overhead is associated with each clustered application (session management, network traf-
fic, and so on). The webapps subdirectory on clustered machines should be thoroughly clean, except for
the clustered Web applications.

Disabling the HTTP Connectors
The default server.xml file included with the Tomcat 5 distribution sets up two Connectors. One is an
HTTP 1.1 Connector listening on port 8080, and the other one is an AJP 1.3 Connector listening on port
8009. You must first comment out the HTTP Connector if you are using the standard server.xml file.
This ensures that the three instances will not fight for the 8080 port during startup:

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
...
<Service name=”Catalina”>
<!--

<Connector port=”8080”
maxThreads=”150” minSpareThreads=”25” maxSpareThreads=”75”
enableLookups=”false” redirectPort=”8443” acceptCount=”100”
debug=”0” connectionTimeout=”20000”
disableUploadTimeout=”true” />

-->
<Connector port=”8009”

enableLookups=”false” redirectPort=”8443” debug=”0”
protocol=”AJP/1.3” />

...

Note that if you use the code distribution provided with this book, the HTTP Connectors are already
removed from the server.xml files.

Configuring AJP TCP Ports for Clustered Tomcat Instances
In order for the three Tomcat 5 instances to coexist peacefully on a single physical machine, it is necessary
to give the AJP Connectors different TCP ports on which to listen. By default, the server is listening on
port 8005 for shutdown, and the AJP Coyote Connector listens on 8009. The relevant lines in server.xml
that must be customized for each instance are highlighted here:

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
<GlobalNamingResources>

<Resource name=”UserDatabase” auth=”Container”
type=”org.apache.catalina.UserDatabase”

description=”User database that can be updated and saved”>

471

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 471

</Resource>
<ResourceParams name=”UserDatabase”>

<parameter>
<name>factory</name>
<value>org.apache.catalina.users.MemoryUserDatabaseFactory</value>

</parameter>
<parameter>

<name>pathname</name>
<value>conf/tomcat-users.xml</value>

</parameter>
</ResourceParams>

</GlobalNamingResources>

<Service name=”Catalina”>
<Connector port=”8009” protocol=”AJP/1.3”/>
...

The following table shows what you need to configure in each instance.

TCP Ports (shutdown,
Instance Name File to Modify AJP Connector)

machine1 \cluster\machine1\conf\server.xml 8005, 8009

machine2 \cluster\machine2\conf\server.xml 8105, 8109

machine3 \cluster\machine3\conf\server.xml 8205, 8209

The settings chosen here ensure that there will be no conflict starting the three Tomcat 5 instances simul-
taneously on the same physical machine. If you are actually setting up the test across three physical
machines on the network, they can all use the setting of machine1 in the table.

Servlet 2.4’s Distributable Attribute for Web Applications
Instead of creating a Web application from scratch, this experiment will take advantage of the existing
jsp-examples Web application. To indicate to the Servlet container (Tomcat 5) that this application can
be clustered, a Servlet 2.4 standard <distributable> element is placed into the application’s deploy-
ment descriptor: the web.xml file. The following code shows the placement of the <distributable>
element. If you remove this element, the session maintained by this application across the three Tomcat 5
instances will not be shared:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd”
version=”2.4”>
<description>

JSP 2.0 Examples.
</description>
<display-name>JSP 2.0 Examples</display-name>
<distributable/>

<!-- Define servlet-mapped and path-mapped example filters -->

472

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 472

<filter>
<filter-name>Servlet Mapped Filter</filter-name>
<filter-class>filters.ExampleFilter</filter-class>

...

This element must be manually added to the web.xml file in all three instances:

❑ \cluster\machine1\webapps\jsp-examples\WEB-INF\web.xml

❑ \cluster\machine2\webapps\jsp-examples\WEB-INF\web.xml

❑ \cluster\machine3\webapps\jsp-examples\WEB-INF\web.xml

If you are configuring three physical machines, make sure that the web.xml file on each machine has the
<distributable/> element added.

Configuration Consistency
The three clustered instances of Tomcat 5 should be identically configured. This is a wise practice, in
general, to reduce potential problems arising from dissimilar configuration. Typically, if the application
or system requires machines with different hardware/software configurations, they are maintained in
separate clusters (or in a nonclustered configuration).

Common Front End: Load Balancing via Apache mod_ jk2
The load-balancing front end consists of an Apache server with mod_jk2 installed. The following is only
a brief recap of the configuration procedure. See Chapter 12 for a detailed step-by-step explanation of
this configuration.

Apache Server Configuration
Make sure you are using matching versions of the Apache server and mod_jk2.dll (or mod_jk2.so).
Many problems may arise from version mismatch. The examples in this chapter are tested with Apache
2.0.43 and mod_jk.dll for Apache 2.0.43.

On the Apache server side, you must make sure the mod_jk.dll is loaded at startup. This can be done
by adding the following line to the conf/http.conf file.

LoadModule jk2_module modules/mod_jk2.dll

This line should immediately follow all the LoadModule directives in the file. Note that the downloaded
mod_jk2 library needs to be renamed to mod_jk2.dll. It should be placed in the modules directory of
the Apache server.

mod_ jk2 Configuration
When the mod_jk2 plug-in starts up, it will look for a workers2.properties file. The following
workers2.properties file should be placed into the conf subdirectory of the Apache server:

[logger.apache2]
file=”c:\cluster\apache\error.log”
level=INFO

473

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 473

debug=1

[config]
file=conf/workers2.properties
debug=0

[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=machine1
group=balanced
lb_factor=1

[ajp13:localhost:8009]
channel=channel.socket:machine1

[channel.socket:localhost:8109]
host=localhost
port=8109
tomcatId=machine2
group=balanced
lb_factor=1

[ajp13:localhost:8109]
channel=channel.socket:machine2

[channel.socket:localhost:8209]
host=localhost
port=8209
tomcatId=machine3
group=balanced
lb_factor=1

[ajp13:localhost:8209]
channel=channel.socket:machine3

[lb:balanced]
worker=ajp13:localhost:8009
worker=ajp13:localhost:8109
worker=ajp13:localhost:8209
timeout=90
attempts=3
recovery=30
StickySession=0
noWorkersMsg=Server Busy please retry later
noWorkerCodeMsg=503

[shm]
file=c:\cluster\apache\jk2.shm
size=1000000

[uri:/jsp-examples/*]
info=mapping the jsp-examples context of Tomcat
context=/jsp-examples
group=balanced

474

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 474

For a detailed explanation of the configuration directives, refer to Chapter 12. Note that unlike the
Chapter 12 load-balancing example, the StickySession property for the load balancer is set to 0, or
disabled. You may need to adjust some of the file paths in this configuration, depending on where you
have placed the cluster directory.

Preparation for Using Different Session-Sharing Back-Ends
This completes the basic common setup for the upcoming cluster examples. Each of the session-sharing
back-ends that will be configured requires very specific configuration and customization, and each is
covered individually. More specifically, the following example shows how to configure the following
back-ends:

❑ In-memory replication

❑ The Persistent Session Manager, using a shared-file system

❑ The Persistent Session Manager, using JDBC-to-MySQL RDBMSs

The following section covers the configuration of the in-memory replication mechanism.

Back-End 1: In-Memory Replication Configuration
Two components need to be configured to enable in-memory configuration with Tomcat 5. Figure 19-9
depicts the position and function of the two components.

Figure 19-9: Tomcat components for In-memory session replication.

replication valve (filter)

Sessions

to other nodes in the cluster

TOMCAT 5

replication <cluster>

475

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 475

In Figure 19-9, a new <Cluster> component is responsible for the actual session replication. This includes
the sending of new session information to the group, incorporating new incoming session information
locally, and management of group membership. Another component, a replication Valve, is used to reduce
the potential session replication traffic by ruling out (filtering) certain requests from session replication.

Operation of the Default Tomcat 5 SimpleTcpCluster
The default implementation of in-memory replication for Tomcat 5 is called SimpleTcpCluster. It is
the only one available as of this writing.

This implementation uses a very simple multicast-based “ping” or heartbeat to determine membership.
Any node that is up and running must multicast heartbeat ping messages at a minimum regular interval
(see Figure 19-10). Nodes within the same cluster listen to and broadcast at the same multicast address
and port. Nodes that do not send their heartbeat ping within the required interval are considered dead
and are removed from the cluster (until they start multicasting the heartbeat again). The membership
service simply listens at this port to determine the current set of nodes in the cluster.

Figure 19-10: Operational model of Tomcat 5 SimpleTcpCluster implementation.

Session replication requests and session updates are sent between member nodes in the cluster using
TCP connections directly, in an end-to-end connection. This means that a node sending replication data
will make a direct TCP connection to each and every member node in the cluster when replicating a
session.

Because of the amount of network traffic generated, this simple implementation is useful only for clus-
ters with a small membership size. More efficient implementation is scheduled to follow in later
Tomcat 5 releases.

in-memory replication implementation

send multicast "heartbeat" regularly

membership
service

(multicast)

TOMCAT 5

replication
manager

(TCP connection)

send session data to other nodes

listen to replication requests

listen to "heartbeat" to determine
cluster membership

476

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 476

Cluster Session Manager Configuration with the <Cluster> Element
The first component is a new <Cluster> component. This component should be nested inside an
enclosing <Host> element. Including this component in a <Host> will essentially enable session replica-
tion for all applications in the host. The standard manager component used to manage sessions in
Tomcat will be replaced with a session replication-enabled manager. Here is the configuration for our
<Cluster> element:

<Cluster className=”org.apache.catalina.cluster.tcp.SimpleTcpCluster”
name=”wroxtomcat5”
debug=”10”
serviceclass=”org.apache.catalina.cluster.mcast.McastService”
mcastAddr=”228.0.0.4”
mcastPort=”45564”
mcastFrequency=”500”
mcastDropTime=”3000”
tcpThreadCount=”2”
tcpListenAddress=”auto”
tcpListenPort=”4001”
tcpSelectorTimeout=”100”
printToScreen=”false”
expireSessionsOnShutdown=”false”
useDirtyFlag=”true”
replicationMode=”synchronous”

/>

Note that the highlighted line is the TCP port on which the clustered session manager will listen for
incoming session update information. Because all three of the Tomcat instances are running on the same
physical machines, the port must be different for machine1, machine2, and machine3. The following
table shows the port assignments that you need to use. Make sure you configure them properly in the
corresponding server.xml file.

Instance Name tcpListenPort

machine1 4001

machine2 4002

machine3 4003

The following table shows the attributes available for the <Cluster> element.

Attribute Name Description Default

className The implementation Java class for the cluster
manager. Currently, only org.apache.catalina.
cluster.tcp.SimpleTcpCluster is available.

name A name for the cluster. The same name should be
used on all instances.

Table continued on following page

477

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 477

Attribute Name Description Default

serviceClass The implementation Java class for the cluster’s
membership service. Currently, only org.apache.
catalina.cluster.mcast.McastService
is available.

debug Specifies the debug level 0

mcastAddr The multicast address to use for the cluster.
Should be the same on all instances. Can be used
to form multiple clusters on the same LAN.

mcastPort The multicast port to use for the cluster. It should
be the same on all instances, and it can be used to
form multiple clusters on the same LAN.

mcastFrequency The interval (in milliseconds) between heartbeat
multicast pings

mcastDropTime The maximum interval, in milliseconds, between
heartbeats before a node is considered dead

tcpThreadCount The number of TCP threads used to handle 2
incoming replication requests. This should be
set to the number of nodes in the group.

tcpListenAddress The address to listen to for incoming replication
requests — either “auto” or an IP address. “Auto”
means the local adapter address will be used. An
IP address can be specified for nodes with multiple
Ethernet cards.

tcpListenPort The port to listen to for incoming replication 1234
requests

tcpSelectorTimeout The maximum number of milliseconds to wait
for a socket select() call. Used to bypass an
NIO library bug. Setting to 100 is recommended.

printToScreen Set this to true if you want to see output from false
the manager on the console.

expireSessionsOnShutdown Indicates if sessions should be expired upon false
shutdown of the node. Set to false except for
debugging.

useDirtyFlag This flag indicates if the session should be false
replicated with each incoming request. When
the flag is false, the session will be replicated
with every incoming request associated with a
session. If true, session replication will occur
only if setAttribute() or removeAttribute()
has been called. Session replication is also affected
by the replication Valve. See the next section in this
chapter for more information.

478

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 478

Attribute Name Description Default

replicationMode Either synchronous or asynchronous. In
synchronous mode, the same thread is used
for request processing and replication. In
asynchronous mode, a thread is associated
with each node in the cluster and the request
processing thread queues the replication work
for these threads to process. In most cases,
synchronous replication mode is adequate.

The configuration included with the Tomcat 5 default server.xml file is adequate for most in-memory
replication scenarios. You can simply uncomment the configuration to use it.

A Replication <Valve> Element
The second component essential for in-memory replication is a replication <Valve> element. This element
acts as a filter. The filter reduces the actual session replication network traffic by determining if the cur-
rent session needs to be replicated at the end of the request processing cycle. A useDirtyFlag attribute
can be set to false in the <Cluster> element, indicating the need to replicate session information with
every request. Otherwise, when the flag is true, a session is only replicated when it is first created, or
when setAttribute() or removeAttribute() is called. In any case, the filter attribute of the replication
Valve may be used to override and stop session replication for specific matching requests. For example,
the replication <Valve> element in our server.xml file is configured as follows:

<Valve className=”org.apache.catalina.cluster.tcp.ReplicationValve”
filter=”.*\.gif;.*\.js;.*\.jpg;.*\.htm;.*\.html;.*\.txt;”/>

The filter setting here filters out any requests for static pages, graphic pages, or JavaScript pages. These
pages do not modify the session values. Without this filtered set, session replication will occur for these
static requests if the useDirtyFlag is set to false. The following table shows the attributes of the repli-
cation Valve.

Attribute Description

className The Valve’s implementation class. It must be org.apache.Catalina.
cluster.tcp.ReplicationValve.

filter A semicolon-delimited list of URL patterns for requests that are to be
filtered out (i.e., excluded for session replication)

Setting Up the Test JSP for Tomcat Session Replication
The JSP that will be used in the testing is named sesstest.jsp. The listing is as follows:

<%@page language=”java” %>
<html>
<body>
<h1>Session serviced by machine1</h1>
<table aligh=”center” border=”1”>

479

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 479

<tr>
<td>

Session ID</td>
<td><%= session.getId() %></td>
<% session.setAttribute(“abc”,”abc”); %>
</tr>
<tr>
<td>

Created on</td>
<td><%= session.getCreationTime() %></td>

</tr>
</table>
</body>
</html>

Note that this is very similar to the JSP used in Chapter 12. It simply gets the session ID and date and
displays them. The setAttribute() method is also called explicitly to cause a change in the session,
triggering the replication mechanism to be tested. When accessing this JSP across server instances, a
matching session ID indicates that a session has migrated/replicated from server to server in the cluster.
In addition, each server has a JSP that will display the heading in a different color. The following code
examples show the single-line difference for each copy of sesstest.jsp.

For machine1, the line would be

<h1>Session serviced by machine1</h1>

For machine2, the line would be

<h1>Session serviced by machine2</h1>

For machine3, the line would be

<h1>Session serviced by machine3</h1>

The sesstest.jsp is placed into the %CATALINA_BASE%/webapps/jsp-examples directory of each
of the tomcat instances in the cluster. For example, the sesstest.jsp for machine1 is placed into the
\cluster\machine1\webapps\jsp-examples directory. This enables simple access to the test JSP
without the need to configure another Web application.

Testing Tomcat 5’s In-Memory Session Replication Cluster
To test the in-memory session replication cluster, perform the following steps:

1. In the server.xml files of the three instances, ensure that the <Cluster> and the replication
<Valve> elements are uncommented, and that the <Manager> element (for later examples) is
commented out. In addition, ensure that the <Context> element is commented out, as this
is only used for the Persistent Session Manager example later.

2. Start up the three configured Tomcat 5 instances, with the batch files in the %CATALINA_HOME%/
bin directory (start1, start2, and start3); be sure to wait sufficient time until one fully starts up
before starting another. (The replication manager takes a little longer than normal to start up.)

480

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 480

3. Start up the Apache server with the mod_jk2 module.

4. Start an instance of a browser and point it to the following URL:

http://localhost/jsp-examples/

Initially, your display should be similar to what is shown in Figure 19-11. This indicates that machine1 is
servicing your incoming request, and a session is created with the ID as displayed.

Figure 19-11: Establishing a session on machine1 in the cluster.

Observing Load Balancing for Requests with Same Session
Now, click the Reload button. Note that machine2 is servicing your request. Only round-robin request
dispatch is observed because mod_jk2 is configured with sticky sessions disabled. However, pay special
attention to the session ID (see Figure 19-12). This is the same session ID as observed on machine1! The
in-memory session replication mechanism has sent the session information to machine2.

481

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 481

Figure 19-12: Load-balanced session serviced by machine2.

Click the Reload button again. Now, machine3 is servicing your incoming request, and again the same
session appears. It is clear from this experiment that HA behavior has been achieved with in-memory
replication. Any of the machines in the cluster has the capability to service any incoming request and
continue the session(s) established. This enables transparent fail-over behavior.

You should try opening more browser instances and accessing the same URL. Each of the browser
instances should have its own unique session ID, and will be serviced in a round-robin fashion by the
three Tomcat instances in the cluster.

Observing HA Fail-Over
To see fail-over at work, note both the machine that is servicing your request and the session ID. Now,
go to the console of that Tomcat instance and terminate it (press Ctrl+C or close the console window).
This represents a sudden failure. Wait a little while (30 seconds or so) and then click Reload. Notice that
your session is now handled by one of the remaining servers, with no change in the session ID.

If you have the means to observe network traffic over the LAN (that is, a hardware Ethernet monitor),
you should see significant traffic even with this simple example. Devising a load test (as described in
Chapter 17) will enable you to determine if the typical incoming request rate will be adequately served
by this clustering back-end.

This completes the exploration of memory session replication. Next, an alternative back-end using a
Persistent Session Manager will be covered.

482

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 482

Back-End 2: Persistent Session Manager with a File Store
This section describes the configuration for a Persistent Session Manager. This Persistent Session Manager
will use a shared directory to store its persistent session.

To configure the cluster to work with a Persistent Session Manager, first comment out the <Cluster>
and replication <Valve> elements in each of the server.xml files. This will disable the in-memory
replication mechanism.

Configuring the <Manager> Element
Next, modify the server.xml file of each of the clustered nodes to add the following context and session
manager definition at the end of the existing <Host> element. If you are using the code distribution, the
following element is already in place:

...
<Context docBase=”jsp-examples” path=”/jsp-examples”>

<Manager className=”org.apache.catalina.session.PersistentManager” >
<Store className=”org.apache.catalina.session.FileStore”
directory=”c:\\cluster\\shareddir” />

</Manager>
</Context>
</Host>

You can change the c:\cluster\shareddir directory to any other directory that you are using to
store shared session information. Just make sure that you change the directory attribute of the <Valve>
element.

Unlike the previous example, note that the context for the jsp-examples Web application is explicitly
specified here (instead of letting Tomcat 5 create a default one for us). This is because the Persistent
Session Manager must be configured in the form of a nested <Manager> element. The <Manager> ele-
ment can only reside within a <Context> element to persist the sessions created within that particular
Web application. See Chapter 8 for more details on the specific allowed attributes for the <Manager>
element.

The <Store> Nested Element
The only allowed sub-element of a <Manager> element is a <Store> element. Only two different stores
are available with Tomcat 5: One uses a shared file directory to store the sessions, and the other one uses
an RDBMS through JDBC to store the sessions. In this case, the Tomcat instance is configured with the
shared file system store.

Note that the exact mechanism to share the specified directory is system- and installation-specific. In this
case, the shared directory is actually the same physical directory because all the Tomcat instances executed
reside on the same physical machine. In production systems, where each Tomcat instance runs on a dif-
ferent physical machine in the cluster, the directory may be shared by operating system–specific means
(NFS on Solaris, SMB on Win32 servers, and so on).

483

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 483

Adding Sticky Session Support with the mod_jk2 Load Balancer
Recall from earlier discussions in this chapter that a Persistent Session Manager back-ended cluster
should typically be deployed with sticky session support. In situations where server crashes are rela-
tively rare, this configuration will minimize the number of sessions that may be lost during a fail-over.

Because the last configuration disabled sticky session support, it must be re-enabled. This involves an
update to the worker2.properties file. Make sure you add or change the lines highlighted:

...
[channel.socket:localhost:8009]
host=localhost
port=8009
tomcatId=machine1
group=balanced
lb_factor=1
route=tc1

[ajp13:localhost:8009]
channel=channel.socket:machine1

[channel.socket:localhost:8109]
host=localhost
port=8109
tomcatId=machine2
group=balanced
lb_factor=1
route=tc2

[ajp13:localhost:8109]
channel=channel.socket:machine2

[channel.socket:localhost:8209]
host=localhost
port=8209
tomcatId=machine3
group=balanced
lb_factor=1
route=tc3

[ajp13:localhost:8209]
channel=channel.socket:machine3

[lb:balanced]
worker=ajp13:localhost:8009
worker=ajp13:localhost:8109
worker=ajp13:localhost:8209
timeout=90
attempts=3
recovery=30
StickySession=1
noWorkersMsg=Server Busy please retry later
noWorkerCodeMsg=503
...

484

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 484

Next, it is necessary to modify the server.xml files of the instances to label the jvmRoute attribute of
the corresponding <Engine> element.

On machine1, add the following jvmRoute:

<Engine name=”Catalina” defaultHost=”localhost” debug=”0” jvmRoute=”tc1”>

On machine2, add the following jvmRoute:

<Engine name=”Catalina” defaultHost=”localhost” debug=”0” jvmRoute=”tc2” >

On machine3, add the following jvmRoute:

<Engine name=”Catalina” defaultHost=”localhost” debug=”0” jvmRoute=”tc3” >

This completes the configuration for the Persistent Session Manager with a file-based store. Of course,
you should make sure that the shared directory specified in the <Store> element of the server.xml file
indeed exists and is accessible.

Testing a Shared File System–Based Persistent Session Cluster
To test and see the level of HA provided by this solution, first start the three Tomcat instances using the
start1, start2, and start3 batch files in the %CATALINA_HOME%/bin directory. Next, start the Apache server.

Start a browser instance and try accessing the following URL:

http://localhost/jsp-examples/sesstest.jsp

You should see machine1 servicing your request, and the session ID displayed. Write down this session
ID. Click reload a few times, and notice that machine1 continues to service your request and that the
session ID remains identical. This is sticky session working as desired.

Open another browser instance and access the same URL. This time, machine2 will service the request
(thanks to round-robin load balancing). If you reload the page, machine2 will continue to service the
request, again sticky session is working as configured.

Observing an Orderly Fail-Over
To observe HA at work, try to simulate a fault by machine1. Go to the %CATALINA_HOME%/bin directory
and execute the following batch file:

C:\> stop1

This will shut down the machine1 instance. Because the machine1 instance is no longer running, if you
click reload on the browser serviced by machine1, it will be round-robin load-balanced to machine3
(machine2 serviced an earlier request from another browser instance). Note that even though machine3
is now handling the request, the session ID stays the same. In other words, the application has success-
fully failed over from machine1 to machine3, and in a manner transparent to the user.

485

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 485

The main reason why this works is because an orderly shutdown was performed. During the orderly
shutdown, all of the sessions in the Persistent Session Manager were persisted to the store (shared
directory). This may be useful in many situations. For example, a server can be taken out of service for
maintenance and upgrades without affecting the ongoing cluster operation. In some cases, it may also
be possible for a fault-detection mechanism to detect a problem and perform an orderly shutdown
(hardware-uninterruptible power backup sources often offer this feature).

The picture is slightly different, however, when the server instance shutdown is not orderly.

Observing a Sudden Fail-Over
The key limitation to remember when working with a Persistent Session Manager shared-store back-end
is that any sessions or changes not persisted at crash time are lost.

To observe this limitation, start a new browser instance and point it to the following URL:

http://localhost/jsp-examples/sesstest.jsp

Note the session ID. (Don’t use any old browser instance, because an older session may already be
persisted.)

Also note the Tomcat instance that is servicing this request/session. Now, go to the console running the
Tomcat instance and press Ctrl+C or close the window.

This simulates a sudden system crash shortly after the session is created. Next, click your browser’s
Reload button. Note that a new instance is now servicing the request, but the session ID you observe
may be either of the following:

❑ The same session ID — In this case, the fail-over was successful because the session was persisted
before the crash.

❑ A brand-new session ID — In this case, the session was lost during fail-over because it was not
persisted before the crash.

If you repeat this test a few times, you are likely to see both behaviors. It is possible to tweak the attributes
of a Persistent Session Manager or the store to alter the time between session creation or modification
and session persistence. However, the Persistent Session Manager is not designed with sharing sessions
across clustered machines in mind, and it does not provide a hard guarantee for the time window between
creation/update and persistence.

Despite the small potential of lost sessions, this level of HA support (which improved over the scenario
with no session sharing at all) can be adequate for many real-world deployments. Its simplicity of con-
figuration and inexpensive implementation are two advantages that should not be overlooked.

The next section takes a look at an alternative store mechanism for the Persistent Session Manager.

486

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 486

Back-End 3: Persistent Session Manager with a JDBC Store
Instead of sharing a directory between the Tomcat instances, it is also possible to write all shared session
information into an RDBMS through JDBC. This is done through the same Persistent Session Manager,
but using a JDBC <Store> element instead of a shared file system–based <Store> element.

A few scenarios in which you may want to use the JDBC store instead of a shared file-system store
include the following:

❑ When a shared file system is not available to all the physical machines in the cluster, but a
common JDBC connection is

❑ When the JDBC connection and RDBMS offer higher performance or provide the robustness
guarantee that you may need

❑ When the JDBC connection to the shared RDBMS is made through a separate physical hardware
connection (another LAN, firewire, proprietary communication link, and so on) that is less
prone to failure (that is, it may be redundantly implemented through an RDBMS-level cluster)

❑ When the shared file system access traffic is over the same LAN that is handling the routed
mod_jk requests, and the JDBC connection is made over a separate LAN or communications link

❑ When normal operations of the cluster involve a large number of sessions that may be swapped
out at any moment in time

In this example, a MySQL RDBMS table will be used to store session information and enable a cluster of
Tomcat servers to share session information via the Persistent Session Manager, through JDBC.

All the front-end configurations and server.xml modifications made in the previous example will con-
tinue to work. All that you need to do is replace the previous shared file system–based <Store> with the
JDBC-based <Store> sub-element within each of the <Manager> elements:

<Store className=”org.apache.catalina.session.JDBCStore”
connectionURL=”jdbc:mysql://localhost/wroxtomcat?user=empro&password=empass”

driverName=”com.mysql.jdbc.Driver”
sessionIdCol=”session_id”
sessionValidCol=”valid_session”
sessionMaxInactiveCol=”max_inactive”
sessionLastAccessedCol=”last_access”
sessionTable = “tomcat_sessions”
sessionAppCol = “app_context”
sessionDataCol = “session_data”

/>

Note that the JDBC <Store> element implementation is missing the usual user and password attributes
required for a JDBC connection (this is an oversight that may be corrected in later versions). This forces
you to add the user and password information as part of the connectionURL. Because the syntax of the
URL requires the ampersand (&), it must be escaped within this XML-based configuration file as &.

The creation of the corresponding MySQL table called tomcat_sessions is shown later. The following
table describes the attributes supported by the JDBC <Store> element.

487

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 487

Attribute Name Description Default

className The JDBC Store implementation, which
must be org.apache.catalina.
session.JDBCStore

connectionURL The JDBC URL used to connect to the
database instance. Note that user and
password must also be part of the URL,
as there are no corresponding user or
password attributes.

driverName The Java language class name for the
JDBC driver to use

sessionTable The name of the RDBMS table that is used tomcat$sessions
to tomcat$sessions store session
information

sessionIdCol The name of the database table column Id
that contains the session ID information.
This column should be the primary key
of the table because it is the key used for
lookup most frequently.

sessionValidCol The name of a database table column that Valid
contains a flag indicating if the associated
session (row) is still valid

sessionMaxInactiveCol The name of the database table column Maxinactive
used to persist the value of the
MaxInactiveInterval property for the
session

sessionLastAccessedCol The name of the database table column lastaccess
used to persist the value of the
lastAccessedTime property for the session

sessionAppCol The name of the database table column app
used to persist the Engine, Host, and
Context information for the session

sessionDataCol The name of the database table column data
used to persist the actual session data
(serialized session attributes)

Make sure you have copied MySQL Connector/J into the common lib directory; otherwise, the
Persistent Session Manager may fail silently. If you have the examples shown in Chapter 14 working,
you are all set.

To create the tomcat_sessions table, the following SQL script can be used. This script is found in the
mksesstbl.sql file within the code distribution:

488

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 488

USE wroxtomcat;

drop table if exists tomcat_sessions;

create table tomcat_sessions (
session_id varchar(100) not null primary key,
valid_session char(1) not null,
max_inactive int not null,
last_access bigint not null,
app_context varchar(255),
session_data mediumblob,
KEY kapp_context(app_context)

);

An additional complication can arise during configuration when multiple instances of Tomcat run on
the same physical machine. This is because the combination of host name and user is not unique during
RDBMS access. Therefore, it is necessary to create three different users for machine1, machine2, and
machine3 access, respectively. The following MySQL commands will create these additional users (pro-
vided you have the necessary administrator privilege on the MySQL server):

GRANT SELECT,INSERT,UPDATE,DELETE ON wroxtomcat.tomcat_sessions TO
‘empro’@’localhost’ IDENTIFIED BY ‘empass’;

GRANT SELECT,INSERT,UPDATE,DELETE ON wroxtomcat.tomcat_sessions TO
‘empro1’@’localhost’ IDENTIFIED BY ‘empass’;

GRANT SELECT,INSERT,UPDATE,DELETE ON wroxtomcat.tomcat_sessions TO
‘empro2’@’localhost’ IDENTIFIED BY ‘empass’;

These commands will create the users and passwords shown in the following table for concurrent access
of the tomcat_sessions table.

Tomcat Instance User Password

machine1 empro empass

machine2 empro1 empass

machine3 empro2 empass

If you examine the actual mksesstbl.sql file in the code distribution, you will also see the SQL grant
statements for creating the empro, empro1, and empro2 JDBC access accounts. This will save you from
entering the commands manually.

The following command line will execute the SQL script (assuming that you have a create table privilege
on the database):

$ mysql < mksesstbl.sql
$ mysqladmin –u???? –p????? flush-privileges

489

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 489

The second statement is needed to flush the privileges cache and make the grant statements effective
immediately.

After the table is created and the JDBC-based <Store> element has been added to the server.xml file
of each clustered Tomcat instance, you are ready to test the JDBC-based Persistence Session Manager
back-end.

Testing a Tomcat Cluster with JDBC Persistent Session
Manager Back-End

The steps for testing the Tomcat cluster with a JDBC Persistent Session Manager back-end are exactly the
same as those for the shared file system Persistent Session Manager. See the instructions for the preced-
ing example for more details. There should be no observable difference between the behaviors of the two
examples. A JDBC-based back-end provides a robust store mechanism, and is a potentially higher perfor-
mance mechanism when numerous sessions need to be persisted/shared.

An Application-Level Load Balancing
Alternative (Balancer)

One new load-balancing alternative, recently made available with the Tomcat 5 distribution, is an example
Tomcat 5 Web application called balancer. It is located in the %CATALINA_HOME%/webapps/balancer
directory.

Unlike the mod_jk solution, which uses an internal Tomcat server component (Manager), the balancer
works on the application level. The balancer is actually a Tomcat filter (Servlets 2.3 specifications-
compliant) that will perform load balancing by redirecting incoming requests using a rules-based
engine. Figure 19-13 illustrates the action of the balancer.

The balancer uses a distinctly different means to balance the load: It redirects the incoming URL. The
balancer performs the following steps:

1. Incoming URL requests are directed to the balancer Web application according to the URL pat-
tern specified in the deployment descriptor’s (web.xml) <filter-mapping> definition.

2. The balancer then examines the intercepted incoming URL and applies its chain of rules to it.
The rules are configured in the rules.xml file.

3. When a rule is matched against a URL, the associated redirect URL is sent back to the browser.

4. The browser now attempts to access the new URL.

Note the following two main points:

❑ Each redirection requires an extra round-trip as the browser receives the redirection and con-
nects to the new URL.

❑ This scheme is effective only for an initial request redirect, unless there exists a rule for dynami-
cally generating the redirect URL (based on portion of the original incoming URL).

490

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 490

The second point is important because in the current version of the balancer application (Tomcat 5.0.16
as of this writing), the balancer cannot redirect to a dynamically created URL.

Figure 19-13: Operation of the balancer application.

Load Balancing with the balancer Filter
The typical use for balancer is to redirect initial incoming requests to a set of specialized servers that
perform specific functionality. The rules-based engine adds additional value in that the exact server to
which a request is directed can potentially change with dynamic system conditions. This can be achieved
with custom Java rule coding.

For example, balancer can be used to forward any image processing request to a set of image process-
ing servers, while sending accounting requests to accounting servers. You can use any arbitrary complex
logic for load balancing too, such as a condition specifying that if it is outside of business hours and the
accounting servers’ average load is below 50 percent, then any overload of imaging processing requests
should be sent to the accounting server.

Again, note that balancer is best used for the initial request redirect. This means that once the request
is redirected, the client will continue to work with the same redirected server (e.g., continue to work with
the same image processing server in the earlier example). Sessions are then created and maintained on
the same server, with overall behavior similar to the mod_jk sticky sessions scenario.

Some benefits of performing balancing on the application level using balancer include the following:

❑ Portability — Filters are not container-specific and can be deployed in other Servlet 2.3-compliant
(and later) containers in addition to (or instead of) Tomcat.

1. user request redirected
to balancer

3. balancer redirects URL
to worker 2

4. browser accesses
worker 2's URL

2. balancer consults rules chain

browser

Tomcat 5
with balancer

running

Tomcat 5
worker 1

Tomcat 5
worker 2

balancer
rules

491

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 491

❑ Easy configurability and testing — Changes to the load-balancing logic can be made and redeployed
without shutting down the host container.

❑ Flexibility — The rules-based load balancing and rule-chain handling provide unlimited
algorithmic possibilities.

The main drawbacks to balancing on the application level are as follows:

❑ Efficiency — Redirection at the application level requires an additional round-trip for every
incoming request because the browser receives a redirection response and has to send another
request.

❑ Loading — It is necessary to quarantine the balancer application on its own physical server
(or at least its own JVM/Tomcat instance) on a heavily loaded site, as its loading may affect
the operation of other Web applications.

In any case, when running Tomcat 5 in standalone mode (without Apache or other Web servers), the
balancer is a viable clustering front end that is easy to configure, maintain, and modify. The next
section describes the configuration and deployment of balancer in detail.

IMPORTANT: The balancer makes use of Jakarta commons digester and beanutils libraries.
These libraries are not included with the default Tomcat 5 distribution. Make sure you download them
from http://jakarta.apache.org/site/binindex.cgi, and place them in %CATALINA_HOME%/common/
lib before proceeding. This example has been tested with commons digester 1.5 and beanutils 1.6.1.

Working with the balancer Filter
It is a good idea to configure the balancer to run on its own Tomcat instance. A new instance directory
under the \cluster directory, called machine4, is created just for this purpose. It will simulate a fourth
independent machine in our cluster.

Reconfiguring Tomcat Instances for Standalone Mode of Operations
Next, it is necessary to reconfigure the machine1, machine2, machine3, and machine4 server.xml file
for standalone operation. This basically means that the Coyote HTTP Connector will be configured
instead of the AJP Connector.

In each of the server.xml files, comment out the AJP Connector and add the following highlighted line:

...
<Service name=”Catalina”>
<!-- <Connector port=”8009” protocol=”AJP/1.3”/>
-->
<Connector port=”8080” />

<Engine name=”Catalina” defaultHost=”localhost” debug=”0” >
...

The port number used in this line must be changed for each instance. Because all the instances are run-
ning on the same physical machine, it is necessary to ensure that each instance uses a different TCP port.
The example configuration uses the assignments shown in the following table.

492

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 492

Machine Name Port Number

machine1 8080

machine2 8180

machine3 8280

machine4 8090

In addition, the new instance, machine4, needs a unique shutdown TCP port. This example uses port
8405. In machine4’s server.xml file, make sure that the first configuration line is as follows:

<Server port=”8405” shutdown=”SHUTDOWN” debug=”0”>

Finally, configure the shared file–based Persistent Session Manager back-end for experimentation. Make
sure that the machine1, machine2, and machine3 server.xml files have the following statements toward
the end:

<Context docBase=”jsp-examples” path=”/jsp-examples”>
<Manager className=”org.apache.catalina.session.PersistentManager” >

<Store className=”org.apache.catalina.session.FileStore”
directory=”c:\\cluster\\shareddir” />

</Manager>
</Context>

In addition, make sure that machine4’s server.xml file has this segment removed. The balancer server
instance does not need session sharing.

This completes the reconfiguration of the Tomcat instances for standalone mode of operation. The Tomcat
instances will now serve both dynamic and static content.

Configuring the balancer Filter
The following configuration is related only to the balancer filter, and therefore should be performed
only on the machine4 instance.

The balancer filter is a standard Servlet 2.3/2.4–compliant filter. As such, it is configured in the Web
application through the deployment descriptor (web.xml). Make sure the \cluster\machine4\webapps\
balancer\WEB-INF\web.xml file contains the following lines:

<filter>
<filter-name>BalancerFilter</filter-name>
<filter-class>org.apache.webapp.balancer.BalancerFilter</filter-class>
<init-param>

<param-name>configUrl</param-name>
<param-value>/WEB-INF/config/rules.xml</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>BalancerFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
...

493

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 493

The /* url pattern ensures that all incoming URLs for the balancer application will pass through the
filter. This means that any URL starting with http://localhost:8090/balancer/.... will be passed
to this filter regardless of the exact URL.

Configuring the balancer Filter Rule Chain
In the web.xml configuration, the file WEB-INF/config/rules.xml is used to set balancer’s filtering
rules. The following is what the rules.xml file contains:

<?xml version=”1.0” encoding=”UTF-8”?>
<rules>

<rule className=”org.apache.webapp.balancer.rules.URLStringMatchRule”
targetString=”NewUser”
redirectUrl=”http://localhost:8080/jsp-examples/sesstest.jsp” />

<rule className=”org.apache.webapp.balancer.rules.RequestParameterRule”
paramName=”req”
paramValue=”3”
redirectUrl=”http://localhost:8180/jsp-examples/sesstest.jsp” />

<rule className=”org.apache.webapp.balancer.rules.AcceptEverythingRule”
redirectUrl=”http://localhost:8280/jsp-examples/sesstest.jsp” />

</rules>

All rules are specified inside the <rules> XML element. Each rule must have a className attribute that
specifies the Java class containing the rule logic to use.

The preceding rules basically state the following:

❑ If the URL has the string NewUser in it, let machine1 service the request (at port 8080).

❑ If the URL has a parameter called req with a value of 3, then let machine2 service the request.

❑ Otherwise, let machine3 service the request.

Developers may create their own custom rules. However, the balancer application comes with several
prefabricated rules. Note that all of the prefabricated rules shown in the following table reside in the
org.apache.webapp.balancer.rules package. Additional custom rules by developers may reside in
any Java package.

Rule className Description

AcceptEverythingRule Matches anything, and is used for the last entry in the rule chain

CharacterEncodingRule Has an encoding attribute that specifies the character encoding
of the incoming request to match

RemoteAddressRule Has a remote address attribute that specifies the request’s
remote address to match

RequestAttributeRule Has attributeName and attributeValue attributes that spec-
ify the request attribute and value to match

494

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 494

RequestHeaderRule Has headerName and headerValue attributes that specify the
request header and value to match

RequestParameterRule Has paramName and paramValue attributes that specify the
request parameter and value to match

SessionAttributeRule Has attributeName and attributeValue attributes that spec-
ify the session attribute and value to match

URLStringMatch Has a targetString attribute that specifies a substring to
match against the incoming request’s URL

UserRoleRule Has a role attribute that indicates the role of the user needed
for a match. This is verified against the user database.

You can specify as many rules as you want in the <rules> element of the rule.xml file. The rules form
a chain, with the rules first appearing in the file at the top of the chain. The rules matching is attempted
from the top of the chain to the bottom of the chain, and the first matching entry causes the redirection
of the incoming request to the associated redirect URL.

Testing the balancer Filter
To test the balancer filter, start up the server instances and the balancer. This can be accomplished
using the start1, start2, start3, and start4 batch files in %CATALINA_HOME%/bin directory. Note
that start4.bat and stop4.bat are similar in content to the other batch files and are used to start up
the balancer instance.

Now, start a browser instance and then point it to the following URL:

http://localhost:8090/balancer/NewUser

You should observe that machine1 has serviced this request, as the balancer filter matches the first rule
and redirected the request to machine1.

Wait about a minute, and then try the following URL in the same browser instance:

http://localhost:8090/balancer/abc?req=3

This time, machine2 services the instance because balancer has matched the second rule and redirects
the request to machine2. If you are lucky, the back-end persistent session sharing would have kicked in,
and you will see the same session ID as the one serviced by machine1.

Finally, try the following URL on the same browser instance:

http://localhost:8090/balancer/anything

Because the first two rules do not match, the final “catch all” rule is used and the request is redirected to
machine3. Again, if the back-end has persisted the session, you will see the same session ID as the one
serviced by machine1 and machine2 previously.

495

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 495

Note that in this example, the Reload button was not used. This is because the URL has been changed by
the balancer, and reloading will access the same redirected URL and will not pass through the balancer
filter again. This is the reason why the balancer filter is primarily good for one single initial redirection
when the user first accesses the cluster.

Redirection and the Cookie Problem
You need to be careful when using the balancer filter for more than load balancing during the initial
redirection. In production, the load-balanced Tomcat instances are typically running on independent
machines, not on the same machine (using different ports). This means that the target-redirected URL
will contain a different host name or IP address. Because cookies on a browser are indexed according to
the host name or IP address, existing cookies will not follow the indirection. This means, unfortunately,
that session information (which depends on cookies, as discussed earlier in this chapter) will also not be
preserved if the request is redirected to a different host.

Hardware-Assisted Request Distribution with Common NAT
One solution to the preceding problem (if you need to solve it) is to use some inexpensive hardware
assistance. Internet sharing devices, sometimes called Network Address Translation (NAT), are commonly
available from manufacturers such as LinkSys, SMC, and Dlink, among others. These devices can be used
to route incoming requests destined for one IP, but at different ports, to different IPs on an internal LAN.
Figure 19-14 illustrates this configuration.

Figure 19-14: Using a NAT for request distribution.

machine1
192.168.0.3

machine1
192.168.0.7

port 8090
forwards to

192.168.0.7

port 8095
forwards to

192.168.0.10

port 8080
forwards to

192.168.0.3

Access from Internet appears as a
single host with a single IP

NAT
IP:220.12.33.111

machine1
192.168.0.10

496

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 496

Because all the incoming requests now contain the same host name or IP (only differ on ports), the
cookies associated with the host will be preserved, and sessions will continue to work across the redi-
rected hosts.

The Complexity of Clustering
While the setup and configuration of Tomcat 5 clustering can be a daunting task, the capability to obtain
tangible benefits from a clustered configuration is the most complex. Several misconceptions (sometimes
called urban legends) prevail:

❑ Performance of a Web application will increase with clusters.

❑ Response time to the user will improve (decrease) with clusters.

❑ Clustering is the most inexpensive way to solve performance and response-time problems
observed with Web applications.

Clustering and Performance
The word “performance” means different things to different people. Often, it is not politically correct or
survival savvy to correct marketing gurus or system architects on this point, but to state a general “per-
formance improvement” objective without specific metrics is akin to saying that computers will solve all
our problems.

Many aspects of what is perceived as performance improvement by the end user cannot be achieved by
a clustering solution. The scenario that most naturally lends itself to a clustering solution, and the one
that will clearly benefit from such a configuration, derives from the following:

❑ A Web application running on a single Tomcat instance on one physical machine handles all
incoming requests with no problem during normal incoming load volume.

❑ The machine starts to slow down or fail under heavy incoming traffic volume.

❑ Most important, analysis of the failure/slowdown reveals that the bottleneck is in CPU satura-
tion while processing Tomcat Servlets/JSPs.

It is of utmost importance to reiterate the last point.

Until an observed performance slowdown caused by incoming load on a single machine can be isolated
to the single factor of CPU saturation due to Tomcat hosted application processing, the benefits of a
Tomcat 5 clustering configuration cannot be ascertained.

For example, no amount of expensive hardware or sophisticated configuration spent on Tomcat cluster-
ing will solve system bottleneck problems that pertain to faulty nonscalable application logic, network
bandwidth saturation, RDBMS access, and so on.

Obviously, a million other variations of real-world situations that do not quite fit this scenario are possi-
ble, and your success with applying Tomcat clustering to the problem will vary accordingly.

497

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 497

Clustering and Response Time
In general, the addition of clustering may actually increase observed individual response time, rather
than reduce it, especially when contrasted with a lightly loaded single-server solution. This is because
of the overhead involved in front-end load balancing (which, in the balancer case illustrated earlier,
involves an additional TCP round-trip per redirected request) and session replication. Therefore, one
cannot guarantee a user that he or she will observe improved response time when using a clustered
solution (versus a single-server solution).

The single-performance metric that should improve with a properly configured and applied Tomcat 5
cluster is system throughput (measured in requests processed per time unit) under maximum load. This
means that the clustered system as a whole should handle more requests without failing. This is the basic
premise of horizontal scalability (scaling out).

Solving Performance Problems with Clustering
It should be clear by this point that clustering should not be used as “magic dust” to solve performance
problems. Throwing more hardware at the problem may not make it go away. Instead, a proper analysis
of the system, including isolation of the bottleneck element, must be performed before applying clustering
as a solution. In many cases, the analysis will reveal other factors that cannot benefit from a clustering
solution.

When a system performance bottleneck can be isolated to the saturation of computing resources related to
Tomcat 5 application processing, horizontal scaling can be achieved via a Tomcat 5 clustering configuration.

Of course, if you have other nonperformance-related system design goals that can benefit from dis-
tributed replicated logic (such as high availability for certain Web applications), clustering may still
provide benefits.

Summary
This chapter on clustering contained the following key points:

❑ Widespread production deployments of Tomcat servers have motivated the Tomcat develop-
ment team to refactor the server for performance and give serious consideration to real-world
deployment issues, including scalability and high availability.

❑ Originally exclusive to proprietary hardware solutions, scalable and highly available clusters
can now be achieved inexpensively using Tomcat 5 servers running on PCs, and commodity
networking hardware.

❑ Tomcat 5 is the first version of the Tomcat server to support clustering right out of the box.
As such, most of the supported mechanisms are work in progress, and are likely to gain in
popularity with the improvement of features in future releases.

❑ A clustering Web-tier server solution consists of a load-balancing front end and a state/session
sharing back-end, with the cluster of Tomcat 5 servers sandwiched in between.

498

Chapter 19

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 498

❑ You have many options for a load balancing front-end solution, but the Apache server with the
mod_jk2 Connector is the technology of choice for production use because of the popularity
and performance of Apache. This solution supports a round-robin distributor that respects the
specified load factor, and also supports sticky sessions.

❑ For the session-sharing back-end technology, Tomcat 5 comes with support for group communi-
cations based on the memory-session replication mechanism. When enabled, multicast packets
are used to maintain cluster membership, while TCP connections are made between servers to
share session information. This configuration enables any server in the cluster to service any
session, providing a highly available clustering solution. However, this solution should be
deployed with care because of its escalating network bandwidth requirement as cluster size and
session replication traffic increase.

❑ The Persistent Session Manager built into Tomcat can also be used for a form of session sharing.
Either a file-based store or a JDBC store can be configured. Once a shared file system or RDBMS
is configured, any persisted session will become available to all the server instances. When con-
figured together with a front end that supports sticky sessions, this solution can be a very effec-
tive high-availability solution that minimizes lost sessions during a fail-over.

❑ Tomcat 5 also includes an application-level load-balancing front-end mechanism called the
balancer Web application. The balancer uses rules-based URL rewriting to redirect incoming
requests. This is best used in a standalone mode configuration (that is, without an Apache front
end), and is very effective for initial incoming request redirection. Its routing decisions can be
made with the help of custom-coded rules, optionally taking into account dynamic system
information (server loads and time of day, and so on).

In summary, Tomcat 5 provides the administrator with a rich toolbox of components and mechanisms
at various layers of the server architecture, to design and build functional server clusters. These cluster
mechanisms can fulfill most scalability and/or high availability requirements in today’s production
environments.

Chapter 20 discusses embedded Tomcat.

499

Tomcat 5 Clustering

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 499

b 559028 Ch19.qxd 4/22/04 3:58 PM Page 500

Embedded Tomcat

Ever since the initial availability of the Tomcat server, some developers have wanted or needed to
create applications that have full control over the server’s life cycle and internal operation. When
the entire Tomcat server is contained within a custom application, it is said to be operating in
embedded mode. While provisions were made for embedding Tomcat into applications in past
releases (as far back as Tomcat 3.x), these older provisions were rather ad hoc and problem-prone
because the earliest versions of Tomcat did not account for the embedded mode of operation.
Tomcat 5 changes this landscape completely. Embedded operation is an explicitly supported mode,
and future Tomcat 5 designs will evolve to satisfy the emerging requirements from embedded users.

This chapter explores the embedded mode of Tomcat 5 in the following areas:

❑ Why embedding Tomcat may be important for many projects

❑ How JMX-based scripting enables Tomcat’s embedded operation

❑ The architectural elements that make Tomcat embeddable

❑ The various JMX-based mechanisms used to access Tomcat components from an external
program

❑ How to create and administer an embedded Tomcat server installation

Actual hands-on examples are provided for you to experiment with configuring embedded
Tomcat instances.

By the end of this chapter, you should have a comprehensive understanding of why you might use
embedded mode and how to operate Tomcat in embedded mode. You will be able to facilitate the
creation of (or participate in the configuration/administration/management of) applications and
systems that operate embedded Tomcat instances.

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 501

Importance of Embedded Tomcat in Modern
System Design

Tomcat 5 is a container for JSPs and Servlets. JSPs and Servlets are componentized building blocks for
Web applications or services. These components (along with custom Java classes and other Web resources)
are managed and processed by the Tomcat container. The componentized nature of the applications
makes them easy to construct, deploy, and maintain.

One specific scenario for such a use of Tomcat involves Web applications that are deployed and unde-
ployed dynamically on one or more general-purpose Tomcat containers. In some situations, however,
the application running within the Tomcat server may not need to change, or the need to change may be
highly infrequent.

One example might be the use of Tomcat to create a Web interface for the configuration of a piece of
hardware equipment. Because the hardware equipment will not change, the need to modify the configu-
ration application logic will be infrequent. Another example might be the display and management of a
standalone (non-networked) interactive catalog from a CD-ROM. The items and prices in the catalog are
fixed once the CD-ROM is printed.

In these situations, the application that is running under Tomcat may be considered to be an embedded
application. While it is certainly possible to start the generalized standalone Tomcat server for running
such an application, it makes more design sense to minimize the memory footprint and CPU utilization
by running “just enough” Tomcat to support the application. Embedded Tomcat 5 provides this flexibil-
ity to run “just enough” Tomcat.

Figure 20-1 illustrates a custom hardware scenario that may require embedded Tomcat.

Figure 20-1: Embedded Tomcat 5 providing custom network facade for device/service.

In Figure 20-1, notice that a componentized Web application actually resides within the Tomcat container.
This Web application provides the user with control over the device/service, as well as live status infor-
mation. The Servlets and JSPs communicate directly with the internal logic. The Tomcat container, in
turn, is embedded as part of the device or service.

control
and

status

User
control

via
browser

or
custom

client software

TCP/IP Network

HTTP
or other
Tomcat

Connector-
supported
protocols

Embedded
Tomcat 5

Hardware Device or Software Service

Custom
webapp

Core
Functionality

Control
and

status

502

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 502

Typical Embedded Application Scenarios
Traditionally, most embedded applications are created from scratch as a monolithic code module, poten-
tially utilizing some proprietary or third-party software libraries. Applications that require Web-based
networking are especially difficult to create because of the complexity of HTTP protocol handling and
HTML generation. By embedding the Tomcat server, application creation is simplified, as all of this com-
plexity is handled by Tomcat.

To device/service designers and developers, the appealing benefits of embedding a Tomcat server
within an application include the following:

❑ Rapid development time and a shorter project cycle

❑ Large developer pool with training on Java, Servlets, and JSP

❑ Wide availability of supporting tools for Servlet and JSP coding and testing

❑ Ease of coding, testing, and maintaining application logic

❑ Getting an HTTP server and Web interface for “free”

Some typical scenarios in which embedding Tomcat in an application may make sense include the
following:

❑ Providing a Web interface front end for a complex hardware and/or software system

❑ Creating a standalone “turnkey network appliance” box that hosts a Web-based application
(sometimes called network black-boxes or network appliances)

❑ Creating a complex customized server in which serving HTML pages and/or Servlets and/or
JSP is a part of the required application logic

❑ Creating a standalone, fat-client version of an existing Web application, whereby the application
code is already available and tested

❑ Providing common operation/management code that can be scripted across multiple operating
systems and hardware platforms

Note that you must abide by the Apache Software License (see the LICENSE file in the top-level direc-
tory of the Tomcat Embedded Distribution) if your software product is being delivered with Tomcat 5
inside. This license is quite liberal, but must be followed carefully. In a production or vendor shop, this
will typically be the responsibility of the marketing, productization, and legal staff.

The Role of the Administrator with Embedded Tomcat
Most embedded Tomcat applications originally start life as standalone Web applications. In fact, applica-
tions that are ultimately targeted for embedded operations may be initially developed, tested, and tuned
in a standalone Tomcat server. Because of this, the service of a competent Tomcat server administrator is
indispensable during this prototyping stage.

With the ultimate goal of embedding the server, a Tomcat administrator can experiment with server
loading and application tuning to determine the best configuration for the server and application. The
role of the administrator may be to recommend a configuration that optimizes the use of resources in
the final delivery system. The configuration details from this exercise can then be used by the developers
to operate the embedded server. Figure 20-2 illustrates this workflow.

503

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 503

Figure 20-2: Possible role of Tomcat administrator in embedded development.

Note that it is possible to deploy administrative Tomcat applications such as the manager application
(see Chapter 7) within an embedded server instance. By configuring the manager application with
embedded Tomcat, administrators may use the familiar tool for the operation, troubleshooting, and
maintenance of the embedded application/system. It may be necessary to create multiple configuration
profiles, for instance one for normal operation that is optimized for resource utilization, another one for
troubleshooting, and yet another one for JMX support, and so on. The troubleshooting instance would
be the one that would start the manager application. A hands-on section later in this chapter will reveal
how to provide multiple configuration profiles for embedded Tomcat systems.

supply application
for configuration

testing and tuning,
integrate feedback

Create configuration

Test Configuration

NO

NO

YES

YES

develop
application

integrate
configuration

other product development
tasks

 recommend
configuration

supply application
for configuration

testing and tuning,
integrate feedback

Modify

Tests OK?

Tune Configuration Modify

Performance
OK?

Tomcat Administrator Developers

504

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 504

Overview of Embedded Mode in Tomcat
Following are the two most common ways to work with embedded Tomcat:

1. Using explicit Java coding to call the helper methods of the
org.apache.catalina.startup.Embedded class to configure and start the server

2. Using Ant scripts to start up and configure the server via JMX

The focus in this chapter is on the second method of working with embedded Tomcat. This scripting
method is more relevant to Tomcat administrators because it involves only the creation of script files,
and does not require custom coding in Java. The main enabler for this method is JMX. Tomcat 5’s inte-
grated JMX support provides a way for external scripts and applications to access the internals of Tomcat.
This access includes the capability to configure, start, and stop internal Tomcat components.

Chapter 18 revealed that all configurable Tomcat architectural components have associated MBeans.
The MBeans expose attributes that can be read and/or modified. They also expose operations that can be
invoked. This corresponds to the instrumentation level in the JMX architecture. Putting it another way,
Tomcat 5 is fully JMX-enabled for remote control.

According to the JMX specification, management applications do not communicate directly with MBeans.
Instead, communications are facilitated through the agent layer in JMX. The most notable component in
the agent layer is the component that loads and starts MBeans. This component is called the MBean
Server.

The MBean Server and Object Bus
The main function of the MBean Server is to load and start MBeans. The loading of MBeans is not
restricted to the local file system, but generalized to an arbitrary URL. This enables the possibility for
remotely loading MBeans.

The way that the individual MBeans (software components) plug into the MBean server is similar to the
way that hardware cards plug into the hardware bus of a PC machine. Often, a software module of this
nature is called an object bus.

The specification for MBean Server functionality is rather generic, and not restricted only to beans that
represent JMX instrumentation. Because of this, the MBean Server is often used as a flexible object bus
for loading agent-layer logic. In fact, the reference JMX implementation uses the MBean Server to load
several agent services. By coding agent-layer logic (such as agent services) in the form of MBeans, it is
possible to use the MBean Server to manage the life cycle and operation of the individual agent services.
This technique is not restricted to agent-layer services only; custom embedded application logic can also
benefit from being loaded by the MBean Server. Figure 20-3 illustrates the use of the MBean Server to
load custom application logic.

The dotted-line modules in Figure 20-3 are modular custom application logic (or services) that are coded
to the MBean standard and can be loaded and controlled via the standard JMX MBean management
protocol.

505

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 505

Figure 20-3: JMX agent-level MBean Server as a generic minimal object bus.

The JMX 1.2 specification explicitly states that the MBean Server is not designed to be a general-purpose
object bus. This is largely because certain standard services (such as naming and directory services) must
exist for a generalized object bus implementation. However, the basic features that an MBean Server pro-
vides are adequate to implement a minimal object bus for many application scenarios.

Internal Versus External Control
When the Tomcat 5 server is launched (either by the launcher application or the startup batch file), the
following happens internally:

1. Catalina startup code reads the server.xml file using an XML parser.

2. The nested nature of Tomcat configuration syntax causes the XML parser to process the sub-
elements most deeply nested before those in the outer nesting levels (inside-out parsing).

3. A Tomcat 5 internal component is created for every component encountered in the XML config-
uration file during the inside-out parsing. Configuration is also performed on the component by
setting its attributes (for example, setting a port number attribute for a service component).

4. A container component is started after all of its nested elements are created and configured.

All of the preceding steps are preformed by Java code internal to Tomcat. However, it is entirely possible
to use either a customized Java application or a Java-based scripting engine to perform the exact same
sequence of operations.

Apache Ant as a Scripting Engine
Apache Ant (see Appendix C) is a tool that can be used as a scripting engine. In this case, an Ant build
file can be created to customize the instance(s) of Tomcat being started.

As a scripting engine, the following features of Ant are utilized:

❑ Dependency checking

❑ Custom task definitions

JMX Agent Level MBean Server

Tomcat 5
Connector

MBean

Tomcat 5
Engine
MBean

Tomcat 5
Host

MBean

Tomcat 5
Context
MBean

Custom
Application

Module

Dynamically
Loaded

Application
Service

Custom
Application

Module

506

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 506

Other features of Ant (such as built-in tasks to compile and process Java programs) are less important here.

Tomcat 5’s integral JMX support enables the external script-driven configuration and operation of inter-
nal components. Earlier versions of Tomcat cannot support such scripting access because of the lack of
JMX support, as well as the lack of internal componentization. Tomcat 5 eases both of these limitations,
and future releases will further improve on such support.

Even though it is possible to use Ant as the scripting engine, Ant knows nothing about Tomcat. There
still must be some “glue” code that can plug into Ant and work with the JMX elements in Tomcat 5.
Thankfully, another Jakarta project called Jakarta Commons provides just such a solution.

In Chapter 7, Ant scripts are used to access the manager application functionality, including querying
and setting JMX attributes via the jmxproxy. However, these Ant tasks require an already running
Tomcat 5 instance, and cannot be used for configuring and starting embedded Tomcat.

The Apache Jakarta Commons Modeler
In the interest of code reuse, the bulk of the repetitious code that is used in Tomcat 5 to support JMX
is packaged as an external library. In fact, this library is kept separate from the main Tomcat develop-
ment project. It is part of the Apache Jakarta Commons Open Source project tree. Specifically, this reusable
portion of code is called the Jakarta Commons Modeler, or Modeler for short. The Jakarta Commons
Modeler provides Tomcat 5, or any other Java application, with model MBean JMX support. This model
MBean support substantially simplifies the coding of MBeans by eliminating the need for often tedious
coding (see Chapter 18). The Modeler project and associated information can be located at the follow-
ing URL:

http://jakarta.apache.org/commons/modeler.html

There is no need to download any Modeler binaries, as Tomcat 5 already includes them.

The Modeler makes the coding of MBeans simple because it can access metadata describing the MBeans
and then assist in generating code that handles the attributes and operations of the MBeans. All of this
can happen during run-time, without requiring the generation and compilation of static code. This cer-
tainly is a capability that can benefit many other applications that need to support JMX, and it is the core
reason why the Modeler is stored as a separate reusable library.

The metadata describing an MBean is called an MBean descriptor. This is basically an XML file that
describes the attributes and operations available for an MBean. These MBean descriptors must be regis-
tered with the Modeler’s registry before the MBean’s information can be accessed programmatically.
Another very important component of the Modeler is a set of custom JMX Ant tasks. These custom tasks
enable an Ant script to gain control of a Tomcat 5 component through the JMX agent.

Custom JMX Ant Tasks in the Commons Modeler
The set of custom Ant tasks in the Modeler can be used to load MBean descriptors into the Modeler’s
registry, to load MBeans into Tomcat’s MBean Server, to set the attributes of an MBean, and to invoke an
operation of an MBean.

507

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 507

The code for these custom Ant tasks are located in the org.apache.commons.modeler.ant package. The
following table provides a description of the custom tasks relevant to Tomcat 5 embedded operations.
Many of these tasks have aliased (multiple) names. The preferred name is shown in italics in this case.

Task Alias(es) Task Class Description

MLET

mbean MLETTask Loads a specified MBean into the MBean
Server. It can also be used to load a specified
MLET, a piece of logic or service inside a load-
able MBean.

jmx-attribute

attribute JmxSet Sets an MBean attribute value

Jmx-operation JmxInvoke Invokes an MBean operation

mbeans-descriptors RegistryTask Loads an MBean descriptor into the registry
of the MBean Server

jmx-service

service ServiceTask Runs a service consisting of MBeans

The definitions of these tasks are kept in a properties file. This file is located at org/apache/commons/
modeler/ant/ant.properties if you examine the Modeler’s source code. The properties file for
Modeler version 1.1, the latest available as of this writing, is reproduced here:

modeler=org.apache.commons.modeler.ant.ModelerTask
MLET=org.apache.commons.modeler.ant.MLETTask
mbean=org.apache.commons.modeler.ant.MLETTask
jmx-attribute=org.apache.commons.modeler.ant.JmxSet
jmx-operation=org.apache.commons.modeler.ant.JmxInvoke
mbeans-descriptors=org.apache.commons.modeler.ant.RegistryTask

jmx-service=org.apache.commons.modeler.ant.ServiceTask
service=org.apache.commons.modeler.ant.ServiceTask

old names, to be removed
jmxSet=org.apache.commons.modeler.ant.JmxSet
jmx=org.apache.commons.modeler.ant.JmxInvoke
modelerRegistry=org.apache.commons.modeler.ant.RegistryTask

The next section examines each of the frequently used Ant tasks and the subelements that they can
contain.

<jmx-service> Task
This custom Ant task processes its body elements to create a service. Typically, the body consists of a set
of code modules that are loaded as MBeans. The init and start operations of the body elements are
invoked to start the service. This element has a single attribute (shown in the following table) that is
sometimes necessary to set.

508

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 508

Attribute Name Description

action If the name of the operation to start the body elements running is not
init followed by start, then specify the operation name here.

A <jmx-service> task can contain any number of <mbean> subelements. Each <mbean> element speci-
fies an MBean (code module) that must be loaded to create the service.

<mbean> Subelement
This subelement loads an MBean, or custom code module, into the MBean Server. The following table
shows the available attributes.

Attribute Name Description

name Run-time name given to the MBean. It may be used to locate the
MBean via the MBean Server.

code Java code binary class of the MBean

codebase Specifies a URL to load the MBean and/or support libraries

modeler A Boolean value indicating whether this is a model bean.

An <mbean> element can have any number of <attribute> subelements. These subelements are used
to set the values of attributes for the MBean during run-time.

<attribute> Subelement
The <attribute> subelement is used to set the value of an MBean attribute. The MBean whose
attribute is being set must be previously loaded into the MBean Server via the <mbean> task. Currently,
only MBean attribute values of string data type can be set via this element. The following table shows
the attributes of this subelement.

Attribute Name Description

name Name of the MBean attribute to set

value The string value to set

<modelerRegistry> or <mbean-descriptor> Task
This custom Ant task loads the metadata describing an MBean into the Modeler’s registry. This is an
internal function of Tomcat utilizing the Jakarta Commons Modeler. Using this metadata information,
the Modeler is capable of creating model MBeans at run-time to support JMX operations for Tomcat’s
internal components. The following table shows the attribute for these tasks.

509

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 509

Attribute Name Description

resource Specifies an XML in the current classpath that contains MBean
descriptor information to load into the Modeler’s registry

<jmx-operation> Task
This custom Ant task is used when invoking an operation on an MBean. The following table shows the
attributes for this task.

Attribute Name Description

objectName The name of the MBean instance to perform the operation

operation The operation to execute

Ant Script Operational Flow
Ant scripts for an embedded Tomcat server typically contain Ant targets that are <jmx-service> task(s).
Each <jmx-service> element will have one or more <mbean> elements within it. Each <mbean> element
may in turn have zero or more <attribute> elements.

What actually happens when an Ant script is executed is governed by two external factors:

❑ The way that Ant works with nested XML elements and custom tasks

❑ The logic inside the Ant custom tasks provided by the Jakarta Commons Modeler

The details of these factors are outside the scope of this chapter. However, the combined result can be
readily comprehended. The following procedure describes the JMX objects that are created and manipu-
lated when the script is executed.

First, the script cycles through each <mbean> element within the <jmx-service> element in order, and
performs the following actions:

1. Locates the MBean server

2. Creates the MBean and registers it with the MBean Server, using the attributes of the <mbean>
XML element

3. Sets each of the MBean’s attributes (nested <attribute> XML elements) in the order specified

Second, the script goes through the entire list of recently created MBeans again, but this time it performs
the following single action:

❑ Invokes the MBean’s init and start operations (unless the action attribute is specified in
the <jmx-service> XML element, in which case the operation corresponding to the action is
executed)

510

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 510

Embedded Tomcat 5 is designed to be started from JMX when this sequence event is executed. Note the
following two important aspects about the aforementioned two-pass flow:

❑ The first pass instantiates the MBean (and associated Tomcat 5 component), and then sets the
attributes.

❑ The second pass starts up the hierarchy of Tomcat 5 components.

This procedure is essentially what happens when Tomcat bootstrap code processes the server.xml
configuration file. From a conceptual perspective, Figure 20-4 reveals that the Ant script essentially
represents a flexible replacement for Tomcat 5 startup code.

Figure 20-4: Replacing Tomcat control logic with custom code or Ant scripts.

In Figure 20-4, Scenario 1 depicts the normal start-up sequence of the non-embedded version of Tomcat.
In this case, internal bootstrap Tomcat code reads the server.xml file, creates the configured Tomcat
components, and starts up the server. In Scenario 2, custom Java code created by embedded developers
replaces the internal Tomcat control code, and uses the org.apache.catalina.startup.Embedded
helper class to access the embedded Tomcat server. In Scenario 3, instead of writing custom Java code,
Ant is used to process a script that can replace the custom code to start up and control the embedded
Tomcat server through JMX. Administrators will most likely deal with Scenario 3, and may be called
upon to create these Ant scripts. The next section examines such an Ant script.

Full Tomcat Server

TCS
component

TCS
component
.MBean

TCS
component
.MBean

TCS
component
.MBean

TCS
component
.MBean

TCS
component
.MBean

TCS
component
.MBean

TCS
component

TCS
component

1.

2.

3.

Internal
Tomcat
Code

custom
developed
external
Tomcat
code

Ant

Ant Scripting

Ant
Script

JMX

custom
Ant

Tasks

Custom Java Code

JMX

Embedded Tomcat

Embedded Tomcat

511

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 511

Using an Ant Script to Start Up a Minimal
Embedded Server

It’s now time to reveal how to create Ant scripts that can be used to start up embedded Tomcat. min.xml
is a script that will start up a single Engine with a single Connector and Host.

Downloading and Installing Embedded Tomcat
To try out any of the following scripts, you must download the embedded distribution of Tomcat 5. Do
not use the regular Tomcat 5 distribution. The embedded Tomcat 5 distribution can be downloaded from
the following URL:

http://jakarta.apache.org/site/binindex.cgi

Select the 5.x.x_Embed.zip download. To install, unzip this archive into your installation directory.
You should see the familiar Tomcat directory hierarchy.

Figure 20-5 illustrates the default directory hierarchy of the embedded Tomcat 5 distribution, which is
quite similar to that of the non-embedded version of Tomcat 5.

Note the following differences in this hierarchy:

❑ Under the conf directory, there is no server.xml file.

❑ A single lib directory holds all JAR libraries. Library code used in an embedded environment
typically does not change within the lifetime of the product.

❑ The Ant script file to start the server is in the top-level directory, not in a bin subdirectory.

In fact, many of the directories used by the Tomcat 5 components are configurable via the component’s
attributes (see Chapter 8 for configuration details). The location of these directories can be further cus-
tomized by developers creating their own embedded Tomcat applications.

If you look into the webapps subdirectory, you will see that only the manager application is included
with this distribution. You can start up the embedded Tomcat instance with only manager running, and
then use it to deploy any new application. If you need any other application (for example, the admin
utility or the servlet-examples Web application) running at startup, you will need to copy them into
the webapps directory from a regular non-embedded Tomcat 5 distribution.

For this example, the servlets-examples Web application will be started by the Ant script. This means
that the application must be pre-installed. You need to copy the servlet-examples subdirectory from
a regular installation of Tomcat 5 to the webapps\servlet-examples subdirectory of the embedded
Tomcat installation.

The min.xml Minimal Embedded Startup Script
You can find the following min.xml script (an Ant project build file) in the book’s code distribution
under the ch20/code subdirectory (download the code samples for this book from www.wrox.com).
Note its similarity to a server.xml file. Important sections in the script have been annotated with
boldface numbers so that they can be referred to later.

512

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 512

Figure 20-5: Default Directory Hierarchy of Embedded Tomcat 5 Distribution.

<project name=”min-tc5” default=”start” basedir=”.”>
<property file=”${user.home}/build.properties”/>
<property file=”build.properties”/>

<property name=”tomcat.home” location=”.” />
<property name=”tomcat.webapps” location=”${tomcat.home}/webapps” />

<path id=”tomcatCP-extra” />

<target name=”init” unless=”init.done”>
<path id=”tomcatCP” >

<path refid=”tomcatCP-extra”/>

top-level install directory

Web applications to run on this server

no server.xml, but potentially deployment and context descriptions

privileged webapps such as manager and admin

all required JARs

persisted sessions, and other work files

webapps

conf

server

lib

work

Custom Ant Script

513

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 513

<fileset dir=”${tomcat.home}/lib” includes=”*.jar”/>
<pathelement path=”${tomcat.home}/conf”/>

</path>
<taskdef resource=”org/apache/commons/modeler/ant/ant.properties”

classpathref=”tomcatCP” />
<property name=”init.done” value=”true”/>

</target>
<property name=”domain” value=”Tomcat-Min-Standalone” />
<property name=”jsr77Domain” value=” Tomcat-Min-Standalone” />

<target name=”run” depends=”init”>
<modelerRegistry resource=”org/apache/catalina/mbeans/mbeans-descriptors.xml”

/>
<modelerRegistry resource=”org/apache/catalina/loader/mbeans-descriptors.xml”

/>
<mkdir dir=”${tomcat.home}/work/${domain}/” />

<jmx-service>
(1) <mbean name=”${domain}:type=Server”

code=”org.apache.catalina.core.StandardServer”
modeler=”true”>

<attribute name=”port” value=”9005”/>
</mbean>

(2) <mbean name=”${domain}:type=Service”
code=”org.apache.catalina.core.StandardService”

modeler=”true”>
<attribute name=”name” value=”Tomcat-Min-Standalone”/>

</mbean>
(3),(4) <mbean name=”${domain}:type=Engine”

code=”org.apache.catalina.core.StandardEngine”
modeler=”true”>

<attribute name=”name” value=”Tomcat-Min-Standalone”/>
<attribute name=”defaultHost” value=”localhost”/>
<attribute name=”baseDir” value=”${tomcat.home}”/>

</mbean>

(5) <mbean name=”${domain}:type=Realm”
code=”org.apache.catalina.realm.MemoryRealm” modeler=”true”>

<attribute name=”pathname”
value=”${tomcat.home}/conf/tomcat-users.xml” />

</mbean>

(6) <mbean name=”${domain}:type=Connector,port=9080”
code=”org.apache.coyote.tomcat5.CoyoteConnector”
modeler=”true”>
<attribute name=”port” value=”9080” />

</mbean>
(7) <mbean

name=”${jsr77Domain}:j2eeType=WebModule,name=//localhost/,J2EEApplication=none,J2EE
Server=none”

code=”org.apache.catalina.core.StandardContext” modeler=”true”>
<attribute name=”docBase” value=”${tomcat.webapps}/ROOT” />
<attribute name=”privileged” value=”true” />
<attribute name=”engineName” value=”${domain}” />

514

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 514

</mbean>
(7) <mbean name=”${jsr77Domain}:j2eeType=WebModule,name=//localhost/servlets-

examples,J2EEApplication=none,J2EEServer=none”
code=”org.apache.catalina.core.StandardContext” modeler=”true”>

<attribute name=”docBase” value=”${tomcat.webapps}/servlets-examples” />
<attribute name=”privileged” value=”true” />
<attribute name=”engineName” value=”${domain}” />

</mbean>
</jmx-service>
<echo message=”Tomcat5 running”/>

</target>

<target name=”await” depends=”init”
description=”Wait for tomcat stop. Call this target after run”>

<jmx objectName=”${domain}:type=Server”
operation=”await” />

<sleep hours=”1”/>
</target>

<target name=”start”
depends=”init,run,await”
description=”Start tomcat, wait for stop message”/>

</project>

To better understand how the script works, compare it against an equivalent server.xml file. You can
find the source to such a server.xml file in the code distribution, also under the ch20/code subdirec-
tory. The file is listed here. For ease of comparison, the equivalent sections that are compared are clearly
numbered within the two listings.

(1) <Server port=”9005”>

(2) <Service name=”Tomcat-Min-Standalone”>
(6) <Connector port=”9080”/>

(3) <Engine name=”Tomcat-Min-Standalone” defaultHost=”localhost” debug=”0”>
(4) <Host name=”localhost” appBase=”webapps”

unpackWARs=”true” autoDeploy=”true”>

(5) <Realm className=”org.apache.catalina.realm.MemoryRealm” />

(7) <Context path=”” docBase=”ROOT” debug=”0”/>
</Host>

</Engine>

</Service>

</Server>

The following table provides a section-by-section comparison of the min.xml Ant script and the equiva-
lent server.xml file.

515

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 515

Section Description

1 A service component is created here. The only attribute specified for this compo-
nent is a port number. Note that in the JMX script, we set the attribute of the com-
ponent using an <attribute> nested element. The attributes of the <mbean>
XML element (such as code and modeler) are used to create the MBean that
represents the underlying component.

2 A server component is created with the name “Tomcat-Min-Standalone.”

3, 4 An Engine component is created here. Note that when using JMX, it is necessary
to create the Engine before any Connector. In the server.xml case, the Connec-
tor can be created before the Engine. In addition, in JMX, a Host is automatically
created by default. The JMX attributes defaultHost and baseDir are used to
specify the name of the Host created and to set its base directory. In server.xml,
the Host and its attributes are specified explicitly.

5 A Realm nested component is created here. There is no difference between the
JMX version and the server.xml version.

6 An HTTP Connector at port 9080 is created here. In the JMX case, it is necessary
to create the Engine instance before the Connector instance.

7 The root context is created here. Note that in the JMX case, every application con-
text must be created explicitly and manually. This provides finer-grained control
over what needs to be started in the embedded application. If Tomcat had been
started using the server.xml file, the creation of context descriptors and deploy-
ment of web applications in the webapps directory would have happened
automatically.

It is worthwhile to review the main differences between the standard Tomcat 5 server.xml file and the
Ant script using embedded Tomcat 5:

❑ The Connector is created after the Engine in the script.

❑ With the script, there is no need to create the default Host because it is created by the Engine by
default.

❑ Each application context must be created explicitly in the script.

❑ With the script, an await target is used to ensure that the Ant script thread does not terminate
upon completion (otherwise, it will also take down the Tomcat server).

It is evident from this comparison that any tested server.xml configuration may be translated to a
corresponding Ant script. This provides a way to test embedded Tomcat 5 configurations first on the
non-embedded server, and then migrate them to the embedded one.

516

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 516

Some embedded applications may only need to start up the Tomcat 5 server and a single Web application.
Others may use the extended capabilities of Ant to start up other custom code modules. It is also possi-
ble for software developers to write their own application logic as MBeans and use the JMX capabilities
to load these modules into the MBean Server. Finally, some applications may bypass Ant altogether and
directly control the server (via either JMX or the org.apache.catalina.startup.Embedded
class, as mentioned previously). In all these cases, Ant-based scripting can still be used to test and
experiment with configuration alternatives. Therefore, a basic understanding of its operation is vital to
any Tomcat 5 administrator or developer.

Now that you have some familiarity with the Ant script, it is an opportune time to test the embedded
Tomcat 5 server.

Testing the Embedded Tomcat Server
The following section’s hands-on experimentation will start up a minimal embedded server using JMX
through an Ant script.

Starting Up a Minimal Server
Copy the min.xml file from the code distribution to the top-level directory of the embedded server
installation. You can find this file under the ch20/code directory of the distribution. This file will be
used in place of the default build.xml file that is supplied with the Tomcat 5 embedded distribution.

To start up the minimal server, issue the following command:

ant –f min.xml

It is assumed, of course, that you have Ant 1.5.2 or later installed and working.

At this point, Ant uses the Jakarta Commons Modeler’s JMX Ant tasks to access the JMX support of
Tomcat 5 and start up the server. The output on your console should be similar to what is shown in
Figure 20-6.

Accessing Embedded Tomcat 5
You can now try the embedded server by starting a browser and pointing it to the following URL:

http://localhost:9080/

The browser should display the Tomcat introduction (static HTML) page at the root context (shown in
Figure 20-7), just as a non-embedded server would.

517

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 517

Figure 20-6: Starting a minimal embedded Tomcat 5 distribution with an Ant JMX script.

To access the other Web application that has been started via JMX, connect to the following URL:

http://localhost:9080/servlets-examples/

The browser should display the servlets-examples main page, as shown in Figure 20-8.

Verify that this embedded server instance is indeed full-featured by trying some of the Servlet examples.
In general, you will find that the embedded server instance performs identically to the non-embedded
version. In fact, the exact same Tomcat 5 code is executing.

518

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 518

Figure 20-7: Tomcat 5’s home page, displayed at the root context and loaded via the Ant script.

Shutting Down the Embedded Server
No readily available custom Ant task can be used to shut down the embedded server instance. In
production-embedded scenarios, shutdown can be custom programmed.

It is possible, in this case, to do it manually. Press Ctrl+C in the command console where the Ant script is
running. This will terminate the thread running the Ant await target, resulting in the shutdown of the
server.

Adding the manager Web Application
To facilitate testing, deployment, and/or management, you may consider enabling the manager Web
application for the embedded server. This section shows you how this can be done quite simply, build-
ing on the Ant scripting technique (and the min.xml file) demonstrated thus far.

519

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 519

Figure 20-8: The servlets-examples Web application loaded via a JMX context MBean.

The necessary steps are as follows:

1. Modify the tomcat-users.xml file to enable the manager role for authentication.

2. Add the <mbean> element to create a context for the manager application.

The following sections describe both of these steps.

Adding the Manager Role for Authentication
In the conf directory of the embedded server, modify the tomcat-users.xml file as shown in the fol-
lowing code. This will add the manager role to the tomcat user, with the password tomcat. In produc-
tion, you may want to use another user and password.

<tomcat-users>
<user name=”tomcat” password=”tomcat” roles=”manager,tomcat” />
...
</tomcat-users>

520

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 520

Adding an <mbean> Element to the manager Context
To modify the minimal server startup Ant script to also start the manager application, the following
highlighted modification must be made to the min.xml file:

<jmx-service>
...

<mbean name=”${jsr77Domain}:j2eeType=WebModule,name=//localhost/servlets-
examples,J2EEApplication=none,J2EEServer=none”

code=”org.apache.catalina.core.StandardContext” modeler=”true”>
<attribute name=”docBase” value=”${tomcat.webapps}/servlets-examples” />
<attribute name=”privileged” value=”true” />
<attribute name=”engineName” value=”${domain}” />

</mbean>

<mbean name=”${jsr77Domain}:j2eeType=WebModule,name=//localhost/
manager,J2EEApplication=none,J2EEServer=none”

code=”org.apache.catalina.core.StandardContext” modeler=”true”>
<attribute name=”docBase”

value=”${tomcat.webapps}/../server/webapps/manager” />
<attribute name=”engineName” value=”${domain}” />
<attribute name=”privileged” value=”true” />

</mbean>
</jmx-service>

A modified Ant script called minmgr.xml. is included in the source distribution, under the ch20/code
directory Copy this to your top-level directory of the embedded Tomcat server.

Using the manager Application on the Embedded Server
Now you can start the embedded server again, with the following command line:

ant –f minmgr.xml

Start a browser and point it to the following URL:

http://localhost:9080/manager/html

After authentication (use user tomcat and password tomcat), this will show the HTML interface of the
manager application, as shown in Figure 20-9. You can now use the manager application to manage and
monitor the server, deploy new Web applications, and so on.

521

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 521

Figure 20-9: Tomcat’s manager application, operating on the embedded server.

Summary
This chapter on embedded Tomcat included the following key points:

❑ Tomcat 5 formally supports embedded mode of operation. Using Tomcat in embedded mode,
application developers can embed the functionality of a simple Web server, a Servlet, and a JSP
container within their own applications or products. Servlet and JSP support provides develop-
ers with a modular and reusable way of constructing their application logic. Tomcat 5’s inherent
support for the HTTP protocol also makes it an attractive candidate for any application that
requires a Web-based user interface.

❑ Tomcat 5’s componentization and support for JMX are to enable the use of embedded mode
operation. The coding of Tomcat 5 takes advantage of the Jakarta Commons Modeler library.
This library contains a set of custom Ant tasks that can be used by Ant to access JMX elements.
By scripting these custom Ant tasks, it is possible to gain control over Tomcat 5’s internal
components.

522

Chapter 20

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 522

❑ During embedded mode operations, Tomcat 5 is not started up by internal coding that parses
a server.xml configuration file. Instead, customized code can access Tomcat 5 to configure
components and start the server. One way to do this easily is to use Ant scripts that start Tomcat
via JMX.

❑ The examples in this chapter illustrate how to create Ant scripts to start and operate Tomcat 5. A
section-by-section comparison associated server.xml configuration elements to Ant elements
that do the same thing. This provides a straightforward way to translate any server.xml file
into its equivalent Tomcat startup Ant script.

❑ Using a minimal Ant script, a minimal Tomcat 5 instance was started up to serve the servlets-
examples application. Testing revealed that full functionality of the server was indeed available.
The script was then modified to also start up the manager Web application. Enabling this appli-
cation provided a familiar means to monitor and manage the embedded server instance.

The capability to embed Tomcat in a custom application opens up a whole new world of possibilities for
networked solutions developers, and brand-new opportunities for seasoned Tomcat administrators.

523

Embedded Tomcat

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 523

b 559028 Ch20.qxd 4/22/04 3:58 PM Page 524

Log4J

It is common to track data changes at various stages during the software development life cycle of
an application. In a large application, it is sometimes difficult for developers and administrators to
detect where a problem has occurred. Developers often get this information by adding statements
using System.out.println() inside application code. This way, they can analyze the data and
trace the root of the problem. This mechanism of outputting data values at run-time is called
logging.

In addition to the data values, also needed is information about application state changes, and an
execution context. Hard-coding trace messages using System.out.println() in the application
code is not a good practice because it affects application performance and code readability.

Adding log statements is the only viable option for analyzing the execution of a long-running Web
application. This approach, however, often affects efficiency, flexibility, and performance overhead.
Log4J is a powerful logging API that addresses all these issues. It enables the logging of information
in a more efficient and elegant way, and in a variety of formats.

This appendix discusses Log4J and its functionality. It also explains how to use Log4J effectively in
your applications. Following are the main topics covered:

❑ Introduction to Log4J

❑ Components of Log4J

❑ Setting up and working with Log4J

❑ Logging in various formats

c 559028 AppA.qxd 4/22/04 3:57 PM Page 525

Introduction to Log4J
Log4J is an open-source Java framework for logging that you can download from the following URL:

http://logging.apache.org/log4j

This framework (developed by Ceki Gulcu, N. Asokan, and Michael Steiner) is currently a part of the
logging services project of the Apache Software Foundation (ASF).

Log4J is designed as a pluggable component that can be used inside applications. It can be configured
easily to log messages at run-time without greatly affecting the performance of the application. It also
provides control over the kind of information that is to be logged, without changing the application code.
It makes use of a simple configuration file. Changing this file controls the logging behavior of Log4J.

Java ships with its own Logging API since JDK 1.4. HoweverLog4J is a more mature and proven
logging mechanism, and the more widely used one. More information on the Java Logging API can
be found at http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html.

Components of Log4J
Log4J uses a modular design that enables you to change the behavior of the application by modifying
the Log4J configuration file. It contains the following components, which are used to log information
about application state:

❑ Loggers

❑ Appenders

❑ Levels

❑ Layouts

The following sections briefly describe each of these components.

Loggers
Loggers are the main component of Log4J, and they control the scope of logging. Log4J components can
be configured to log one or more messages associated with an application, as well as log messages for a
specific scope (for example, the package or class).

An Appender must be assigned to a Logger (Appenders are discussed in the next section). The
Appender controls the defined logging target (for example, a log file). Different kinds of Appenders can
be assigned to the same Logger or to different Loggers. This means that different parts of an application
can have different log destinations.

The following example shows what a Logger entry looks like in the Log4j configuration file:

Define a Logger named ‘WroxLogger’. Assign the Level DEBUG to it. Assign an
Appender ‘WroxAppender’ to this Logger
log4j.WroxLogger = DEBUG, WroxAppender

526

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 526

Appenders
This Log4J component manages the logging of information to an actual location (for example, the console,
a log file, etc.). The various kinds of log destinations are discussed later in this appendix. Every logging
environment should have an Appender assigned. It is also possible to set different logging destinations
for different parts of the application code. A Layout is assigned to each Appender. This Layout determines
the actual formatting of the logged messages. Each Appender logs the message at the specified destination
using the assigned Layout.

Log4J provides different kinds of Appenders. Every Appender is implemented by a class in the Log4J
API. For example, ConsoleAppender logs information to the console, FileAppender logs information
to a file, and SMTPAppender logs information to an SMTP server.

In the following example, the information is logged to the console:

Set the type for ‘WroxAppender’ as ConsoleAppender (writes to system console).
log4j.appender.WroxAppender = org.apache.log4j.ConsoleAppender

Log4J is also capable of sending log messages to multiple destinations simultaneously (such as logging
the same information to a file and the console).

Levels
Log4J uses various levels of logging. These are predefined priority values that can be used during log-
ging. A log level refers to a particular priority of logging. Log4j can be configured to log messages at the
following five different levels:

❑ DEBUG — This level logs debugging messages. These messages are not logged in a production
scenario.

❑ INFO — This level is used to track the progress of a running application.

❑ WARN — This level is used to log potentially harmful messages. The application, however,
continues to run.

❑ ERROR — This level is used to log application error messages. These are logged when there are
serious errors in applications.

❑ FATAL — This level is used to log messages that lead to an application crash.

Each level is represented by a constant defined in the Priority class provided by the Log4J API. Log4J
also provides the flexibility to extend these levels.

An earlier implementation of Log4J used the Priority class instead of the Level class. Both of these
are used in a similar manner, but the class Level extends the class Priority.

Following are the priority levels in ascending order:

DEBUG < INFO < WARN < ERROR < FATAL

527

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 527

In addition to these levels, there are two special levels:

❑ OFF — This is the highest priority, where all logging is disabled.

❑ ALL — This is the lowest priority, where messages at all levels are logged.

Layouts
Layouts control the formatting of information. Log4J can be configured to arrange the logged information
in a concise and comprehensive manner. This way, the information that is logged is easy to read, thus
making it usable and easier to interpret. Log4J provides various classes that manage this, and these are
discussed later in this appendix. The SimpleLayout Layout logs messages in the simplest possible form.

Every Layout component is associated with an Appender. Once the Appender sends the information
to be logged to the specified destination, the Layout takes care of formatting these log messages in the
required format. The Layout provides details such as date and time, name of the Java class, thread sta-
tus, level, and so on.

Following is a sample entry of Layout from the Log4J configuration file:

A Log4J Appender ‘WroxAppender’ is defined as shown in the Appenders section.
SimpleLayout is assigned to WroxAppender.
log4j.appender.WroxAppender.layout = org.apache.log4j.SimpleLayout

A Sample Log4J Configuration File
Following is a sample Log4J configuration file. In this case, the wroxAppender (an Appender) is
assigned to the WroxLogger (a Logger) with logging Level DEBUG. The wroxAppender is then set to
ConsoleAppender to use the console as the destination. The Layout used for logging information is
SimpleLayout:

Define a Logger component ‘WroxLogger’
Set Level as DEBUG and assign the Appender ‘WroxAppender’ to the ‘WroxLogger’
log4j.WroxLogger = DEBUG, WroxAppender

Set the type for ‘WroxAppender’ as ConsoleAppender (writes to system console)
log4j.appender.WroxAppender = org.apache.log4j.ConsoleAppender

Set the Layout as SimpleLayout for ‘WroxAppender’
log4j.appender.WroxAppender.layout = org.apache.log4j.SimpleLayout

Setting Up Log4J
This section describes how to set up Log4J for the actual development environment. First, download a
stable release of Log4J from the following URL:

http://logging.apache.org/log4j/docs/download.html

528

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 528

All examples discussed in this chapter are tested with Log4J version 1.2.8, J2SDK 1.4.1, Apache Jakarta
Tomcat 5.0.16 on a MS Windows 2000 server. These examples will work on other operating systems
(such as Linux) with appropriate path changes.

Extract the downloaded file into a convenient directory on your local machine (for example, D:\
Apps\Log4J). This directory is denoted by <Log4J_HOME> in the remainder of this discussion.

Setting CLASSPATH
It is assumed that the environment variables PATH and CLASSPATH for Java are properly set. The classes
of Log4J can be made available to the application by simply including the log4j.jar file in the
CLASSPATH. This file is located under the distribution directory at <Log4J_HOME>\dist\lib.

To include the JAR file in the Tomcat Web application classpath, copy the file to the <CATALINA_HOME>\
common\lib directory. The server will automatically include any classes from this location (usually in
the form of a JAR) into the CLASSPATH at run-time. For other applications, you can put the log4j.jar
file in the CLASSPATH or <JAVA_HOME>\jre\lib\ext directory. The configuration discussed in this
chapter uses the following locations:

❑ Log4J_HOME — D:\Apps\Log4J

❑ CATALINA_HOME — D:\Apps\Tomcat5

Working with Log4J
Log4J can be configured in the following ways:

❑ Using a simple properties file

❑ Programmatically

❑ Using an XML configuration file

Using a Simple Properties File
The simplest way to configure a Logger is by using a Java properties file typically referred to as a Log
Configuration File (LCF). It specifies all the configuration details. The entries are simple name-value
pairs, and the pound symbol (#) is used to comment out a line.

The usual name for the configuration file is log4j.properties. The location of this file is important
for the initialization of the application. By default, Log4J will look for the configuration file in the same
directory as that of the application.

529

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 529

The following discussion shows how to build a sample log configuration file (WroxSampleLog.
properties). You should first set up a Logger named WroxSimpleLogger. Assign an Appender
named wroxSimpleAppender to this Logger. In addition, the logging level should be DEBUG:

log4j.logger.WroxSimpleLogger= DEBUG, wroxSimpleAppender

Once the Logger is in place, configure the Appender. Use the FileAppender to log all messages to a file.
It is also needed to provide the name of the log file in this configuration:

log4j.appender.wroxSimpleAppender=org.apache.log4j.FileAppender
log4j.appender.wroxSimpleAppender.File= wroxSimpleLog.log

Finally, set the desired Layout for the logging. This example uses SimpleLayout:

log4j.appender.wroxSimpleAppender.layout=org.apache.log4j.SimpleLayout

Following is the complete sample log configuration file:

log4j.logger.WroxSimpleLogger = DEBUG, wroxSimpleAppender
log4j.appender.wroxSimpleAppender = org.apache.log4j.FileAppender
log4j.appender.wroxSimpleAppender.File = c:\wroxSimpleLog.log
log4j.appender.wroxSimpleAppender.layout = org.apache.log4j.SimpleLayout

The configuration file must be specified to the PropertyConfigurator, which enables it to read the
configuration. In the application code, a simple statement such as the following does this:

PropertyConfigurator.configure(“WroxSampleLog.properties”);

Once the configuration is loaded, each class that requires logging capability within the application must
have a reference to the Logger object. Because the Logger uses a package naming convention, it is com-
mon among developers to use the class name as the Logger, although this is not mandatory. In any case,
a package style of Logger naming serves well. To use Log4J in the application, the property file is loaded
by using a PropertyConfigurator. This is shown in the following line:

import org.apache.log4j.PropertyConfigurator;
PropertyConfigurator.configure(“path_to_file/WroxSampleLog.properties”);

Using Log4J Programmatically
Log4J can also be configured programmatically. In the application code, a new Logger object is created,
and is configured in much the same way as the configuration file. The main steps for using Log4J pro-
grammatically are as follows:

1. Create a Logger object. Typically, the package hierarchy — including the class name — is used:

Logger WroxTestLogger = Logger.getLogger(“wroxLogging.WroxLoggingTest”);

2. Once the Logger is in place, set the logging level to the Logger object:

WroxTestLogger.setLevel(Level.DEBUG);

530

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 530

3. Create an instance of the Layout to be used:

SimpleLayout WroxSimpleLayout = new SimpleLayout();

4. Create an instance of the Appender to be used and use the Layout object:

FileAppender WroxFileAppender =
new FileAppender(WroxSimpleLayout,”WroxSampleLog.log”);

5. Finally, add this Appender object to the Logger object:

WroxTestLogger.addAppender(WroxFileAppender);

The following completed sample Java class shows a Logger being created and configured to log messages:

package wroxLogging;

import org.apache.log4j.Logger;
import org.apache.log4j.Level;
import org.apache.log4j.SimpleLayout;
import org.apache.log4j.FileAppender;
import java.io.IOException;

public class WroxLoggingTest {
public static void main(String[] args) {

//Create an instance of Logger
Logger WroxTestLogger = Logger.getLogger(“wroxLogging.WroxLoggingTest”);

//Set the Logging Level
WroxTestLogger.setLevel(Level.DEBUG);

try {
SimpleLayout WroxSimpleLayout = new SimpleLayout();

//Assign a SimpleLayout to the FileAppender
FileAppender WroxFileAppender=

new FileAppender(WroxSimpleLayout,”WroxSampleLog.log”);

//Finally Assign the fileAppender to the Logger
WroxTestLogger.addAppender(WroxFileAppender);

//Now try to Log few messages at different ‘Levels’
WroxTestLogger.debug(“Sample Message : DEBUG”);
WroxTestLogger.info(“Sample Message : INFO”);
WroxTestLogger.warn(“Sample Message : WARN”);
WroxTestLogger.error(“Sample Message : ERROR”);
WroxTestLogger.fatal(“Sample Message : FATAL”);

} catch(IOException e) {
WroxTestLogger.warn(“An IOException was thrown”, e);

}
}

}

Note that each of the logging methods (such as debug(), warn(), and so on) shown here have an over-
loaded version available that accepts the Throwable object. Typically, such methods add the trace log to
the same log file.

531

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 531

Using an XML Configuration File
The Log4J configuration file can also be in XML format. The way it works is very similar to the proper-
ties file. The only difference is that the Log4J class loading the configuration file — the XML file — is
loaded using DOMConfigurator, instead of PropertyConfigurator.

The file begins with a standard XML declaration and the DTD declaration. This ensures that the XML
configuration file conforms to the syntax of Log4J:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE log4j:configuration SYSTEM “log4j.dtd”>

The root element in the XML file is <log4j:configuration>. The log4j portion is the namespace
used for the configuration file. The root element <log4j:configuration> wraps the entire configura-
tion. It has two main sub-elements, appender and logger.

<log4j:configuration>

The main attributes of the appender element are name and class. It also takes parameters such as the
Layout as sub-elements. Here is how a sample entry looks:

<appender name=”wroxFileAppender” class=”org.apache.log4j.FileAppender”>
<param name=”File” value=”log4j.log”/>
<layout class=”org.apache.log4j.SimpleLayout”/>

</appender>

The next important element is <logger>. It also has attributes and a few sub-elements. The main
attribute is name. The parameter it takes is the associated appender element. A typical entry looks like
the following:

<logger name=”wroxLogging.WroxSimpleLogger”>
<level value=”debug”/>
<appender-ref ref=”wroxFileAppender” />

</logger>

Here is the complete sample configuration file WroxSampleConfig.xml for Log4J in XML format:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE log4j:configuration SYSTEM “log4j.dtd”>
<log4j:configuration>

<appender name=”wroxFileAppender” class=”org.apache.log4j.FileAppender”>
<param name=”File” value=”log4j.log”/>
<layout class=”org.apache.log4j.SimpleLayout”/>

</appender>
<logger name=”wroxLogging.WroxSimpleLogger”>

<level value=”debug”/>
<appender-ref ref=” wroxFileAppender” />

</logger>
</log4j:configuration>

532

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 532

Once the configuration is provided in the XML file, the DOMConfigurator can be used to load these set-
tings. The DOMConfigurator looks for the XML configuration file in the same directory as that of the
application. DOMConfigurator can also use a specific system path or URL:

public static void main(String[] args) {
// Load the configuration through the DOMConfigurator and provide in the XML file
DOMConfigurator.configure(“WroxSampleConfig.xml”);
Logger WroxLogger = Logger.getLogger(“wroxLogging.WroxSimpleLogger”);

// Now try to log few messages at different Levels
WroxLogger.debug(“Sample Message : DEBUG”);
WroxLogger.info(“Sample Message : INFO”);
WroxLogger.warn(“Sample Message : WARN”);
WroxLogger.error(“Sample Message : ERROR”);
WroxLogger.fatal(“Sample Message : FATAL”);

}

Behavior of Loggers and Appenders
Loggers in Log4J follow a hierarchical model. This enables you to maintain a parent-child relationship
between Loggers. Therefore, a well-defined hierarchy of such Loggers can be set up. It will provide
fine-grained control during actual logging, and thus exploit the feature of inheritance. A simple imple-
mentation of a Logger hierarchy can contain a child Logger that can inherit the features provided by its
ancestor. Therefore, if a Logger doesn’t have any of its configuration parameters specified explicitly, it
will inherit these values from its parent. As in the case of inheritance, the properties of a parent Logger
can be overridden by its child.

The logging level can also be set at the application-code level. The logging level can be set using a Log4J
API method from the class Category as shown here. This method accepts the logging level constant as a
parameter.

myLogger.setLevel((Level) Level.DEBUG);

Log4J also provides the option to check whether a particular logging level is active or not, as shown here:

if(myLogger.isDebugEnabled()) {
myLogger.debug(“This is debug value for temp : “ + temp);

}

Appenders are additive by nature. Therefore, by default, a Logger inherits all the Appenders from its
ancestors. If an Appender is added to a Logger and it writes to the same underlying stream (console, file,
and so on) as some other Appender, the same log message will appear twice. In addition, if two Loggers
in a hierarchy are configured to use the same Appender name, Log4J will write twice to that Appender.
Using the method Logger.setAdditivity(false) on a Logger, this behavior can be disabled. This
way, log messages will only be sent to the Appenders specifically configured for that Logger.

533

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 533

Log4J Examples
This section presents various code samples to demonstrate Log4J capabilities. Note that each sample
contains some specific settings that provide details about the exact locations of files referred to in the
discussion. Modify the file paths as per your local settings.

Logging from a Java Class
This sample code presents a simple Java class that uses the Log4J API for logging. It also uses a properties
file for configuring Log4J. The actual code for the class and the contents of the properties file are provided.
After placing the files as specified in the settings, just compile the Java code. Invoking the class from the
command prompt will log the sample messages. This can be verified by looking at the contents of the
log file.

Ensure that the Log4J JAR file has been either included in the CLASSPATH or put under the
<JAVA_HOME>\jre\lib\ext directory.

Settings
The following table shows the required settings for this example.

File Location

Java class location D:\Apps\Test\wroxLogging\WroxTestLog4J.java

Properties file location D:\Apps\Test\SampleLog.properties

Log file location D:\Apps\Test\WroxSampleLog.log

SampleLog.properties — Log Configuration File
The following code represents the log configuration file:

Define a Logger named SampleLogTest
log4j.logger.wroxLogging.SampleLogTest = WARN, WroxTestFile, WroxTestConsole

Define a second logger that is a child to wroxLogging.SampleLogTest
log4j.logger.wroxLogging.SampleLogTest.SampleSubLogTest

Define an Appender named WroxTestFile, which is set to be a FileAppender
log4j.appender.WroxTestFile = org.apache.log4j.FileAppender
log4j.appender.WroxTestFile.file = D:/Apps/Tomcat5/logs/WroxSampleLog.log

Define an Appender named WroxTestConsole, which is set to be a ConsoleAppender
log4j.appender.WroxTestConsole = org.apache.log4j.ConsoleAppender

Assign a Layout to both Appenders
log4j.appender.WroxTestConsole.layout = org.apache.log4j.SimpleLayout
log4j.appender.WroxTestFile.layout = org.apache.log4j.SimpleLayout

534

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 534

WroxTestLog4J Java Class
The following code is the complete source of the Java class used for this example:

package wroxLogging;

import org.apache.log4j.Logger;
import org.apache.log4j.Level;
import org.apache.log4j.PropertyConfigurator;

public class WroxTestLog4J {
// Create an instance of Logger “wroxLogging.SampleLogTest” and it’s subtype
static Logger WroxLogger = Logger.getLogger(“wroxLogging.SampleLogTest”);
static Logger WroxSubLogger =

Logger.getLogger(“wroxLogging.SampleLogTest.SampleSubLogTest”);

public static void main(String[] args) {

// Load the properties using the PropertyConfigurator
PropertyConfigurator.configure(“SampleLog.properties”);

// Logging using different Log Levels – WroxLogger in Action
WroxLogger.debug(“Wrox Logging in progress by : “ + WroxLogger.getName());
WroxLogger.info(“Wrox Logging in progress by : “ + WroxLogger.getName());
WroxLogger.warn(“Wrox Logging in progress by : “ + WroxLogger.getName());
WroxLogger.error(“Wrox Logging in progress by : “ + WroxLogger.getName());
WroxLogger.fatal(“Wrox Logging in progress by : “ + WroxLogger.getName());

// Logging using different Log Levels – wroxSubLogger in Action
WroxSubLogger.debug(“Wrox Logging in progress by : “ + WroxSubLogger.getName());
WroxSubLogger.info(“Wrox Logging in progress by : “ + WroxSubLogger.getName());
WroxSubLogger.warn(“Wrox Logging in progress by : “ + WroxSubLogger.getName());
WroxSubLogger.error(“Wrox Logging in progress by : “ + WroxSubLogger.getName());
WroxSubLogger.fatal(“Wrox Logging in progress by : “ + WroxSubLogger.getName());

}
}

Log Output
All the logged messages will appear on the console as well as in the log file. The contents of the file will
look like the following:

WARN -- Wrox Logging in progress by : wroxLogging.SampleLogTest
ERROR -- Wrox Logging in progress by : wroxLogging.SampleLogTest
FATAL -- Wrox Logging in progress by : wroxLogging.SampleLogTest
WARN -- Wrox Logging in progress by : wroxLogging.SampleLogTest.SampleSubLogTest
ERROR -- Wrox Logging in progress by : wroxLogging.SampleLogTest.SampleSubLogTest
FATAL -- Wrox Logging in progress by : wroxLogging.SampleLogTest.SampleSubLogTest

Logging from a Web Application
Typically, in Web applications, the Log4J configuration is done in an initialization Servlet. This way, the
properties are read at the time the application is started. The <load-on-startup> tag in the web.xml

535

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 535

file should be set to 1. This ensures that the initialization Servlet is invoked at the time of Web application
startup. You also need to copy the log4j.jar file to the WEB-INF\lib directory of the Web application.

Once the Log4J is configured, any JSP or Servlet within that Web application can use Log4J features, as
demonstrated next. The example provided here shows a JSP using Log4J for logging. Set up the environ-
ment as stated in the settings and compile the initialization Servlet, and then restart the Tomcat Web con-
tainer for the Servlet to be reloaded.

Settings
The following table shows the required settings for this example.

File Location

Servlet location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
classes\wroxLogging\WroxLogServlet.java

Properties file location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
WroxLogging.properties

Log4J JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
lib\log4j.jar

JSP location D:\Apps\Tomcat5\webapps\jsp-examples\WroxLogPage.jsp

Log file location D:\Apps\Tomcat5\logs\WroxLog.log

WroxLogServlet — Initialization Servlet
Here is the complete source code of the initialization Servlet:

package wroxLogging;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import org.apache.log4j.PropertyConfigurator;

public class WroxLogServlet extends HttpServlet {
public void init()
throws ServletException {

// Get Fully Qualified Path to Properties File
String config = getServletContext().getRealPath(“/”) +

getInitParameter(“setup”);
System.out.println(“LoggingServlet Initialized using file :” + config);
// Initialize Properties for All Servlets
PropertyConfigurator.configure(config);

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
response.setContentType(“text/html”);

536

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 536

out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>LoggingServlet</title>”);
out.println(“</head>”);
out.println(“<body>”);
out.println(“<p>Called GET method of the Servlet.</p>”);
out.println(“</body>”);
out.println(“</html>”);
out.close();

}

public void destroy() {
}

}

Deployment Descriptor Settings
Following are the web.xml settings:

<servlet>
<servlet-name>WroxLogServlet</servlet-name>
<servlet-class>wroxLogging.WroxLogServlet</servlet-class>
<init-param>

<param-name>setup</param-name>
<param-value>WEB-INF\WroxLogging.properties</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

WroxLogging.properties — Log Configuration File
The Log4J configuration log file is as follows:

Define a Logger “wroxLoggoing.WroxLogTest”
log4j.logger.wroxLogging.WroxLogTest=INFO,WroxTestFile

Define a file Appender of type RollingFileAppender
log4j.appender.WroxTestFile = org.apache.log4j.FileAppender
log4j.appender.WroxTestFile.file = D:/Apps/Tomcat5/logs/WroxLog.log

Assign a Layout to the Appender
log4j.appender.WroxTestFile.layout = org.apache.log4j.SimpleLayout

WroxLogPage.jsp — Sample JSP for Testing
The JSP uses the Logger (wroxLogging.WroxLogTest) initialized in the initialization Servlet. The
following code demonstrates how the Logger can be used for logging in any Web component:

<%@ page language=”java” import=”org.apache.log4j.Logger” %>
<%

out.println(“Testing Log4J”);
Logger logger = Logger.getLogger(“wroxLogging.WroxLogTest”);
logger.info(“Testing Logging!”);

%>

537

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 537

Log File Output
When the JSP is invoked, it logs messages to the log file (WroxLog.log) as shown in the following
example:

INFO -- Testing Logging!

A Closer Look at Logging Options
The log configuration file stores all the Log4J options that control what information should be logged,
and how it should be logged. The following sections provide details about various logging options.

Meta Level Options
The meta level offers full control over the logging behavior of the application. The logging can be disabled
for all declared Loggers for a specific level. For the sample case shown, any log message that has a level
equal to or lower than the one specified will not be logged:

log4j.disable=INFO

In the most basic and simplest format, the Application Root Logger can be used. In this case, all messages
with the default level (DEBUG) or higher will be logged:

log4j.appRootLogger= LogDestination1

Logging to the Console
There may be an application requirement to log all the messages to the console. In addition, the messages
may need to mention the output stream explicitly and control the flushing behavior. The ConsoleAppender
supports all these features. The following sample shows a ConsoleAppender with all these options:

Declare a Logger ‘WroxLogger’ and assign the Appender ‘wroxAppender’ to it.
log4j.logger.wroxLogging.WroxLogger = DEBUG, wroxAppender

Set the type for wroxAppender as ConsoleAppender
log4j.appender.wroxAppender = org.apache.log4j.ConsoleAppender

Mention the Level, where each message with equal or above Level gets logged
log4j.appender.WroxDest1.Threshold=WARN

The behavior for the rendering on the console can be controlled, by deciding
when to flush the contents on the console as shown below
log4j.appender.WroxDest1.ImmediateFlush=true

Specify that which stream to be used, standard or error
log4j.appender.WroxDest1.Target=System.out

538

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 538

Logging to a File
The most familiar log destination is a file. Various options are available, which are supported by the
FileAppender. The name and location of the log file can be configured. The following sample shows a
FileAppender with these options:

Declare a Logger ‘WroxLogger’ and assign the Appender ‘wroxAppender’ to it.
log4j.logger.wroxLogging.WroxLogger = DEBUG, wroxAppender

Use a FileAppender
log4j.appender.wroxAppender = org.apache.log4j.FileAppender

Provide the name and location of the log file
log4j.appender.wroxAppender.File = MyLogs.log

Rendering option and flush attribute can be provided
log4j.appender.wroxAppender.ImmediateFlush=true
Mention the Level, where each message with equal or above Level gets logged
log4j.appender.wroxAppender.Threshold=INFO

Whether to append to existing contents or overwrite
log4j.appender.wroxAppender.Append=false

Log File Rolling
This important option prevents large amounts of log messages from collecting in the log files over time.
The RollingFileAppender provides various options to control the rolling of log files. Here is a sample
configuration for RollingFileAppender:

Declare a Logger ‘WroxLogger’ and assign the Appender ‘wroxAppender’ to it.
log4j.logger.wroxLogging.WroxLogger = DEBUG, wroxAppender

Set the Appender
log4j.appender.wroxAppender = org.apache.log4j.RollingFileAppender

Provide the Level of Level.
log4j.appender.wroxAppender.Threshold=INFO

Provide the log file name.
log4j.appender.wroxAppender.File= MyLogs.log

An attribute which decides whether to append or overwrite
log4j.appender.wroxAppender.Append=false

Set the Maximum log file size
log4j.appender.wroxAppender.MaxFileSize=100KB

Mention the number of backup files.
backup files = MaxBackupIndex * MaxFileSize.
log4j.appender.wroxAppender.MaxBackupIndex=4

539

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 539

Logging in Different Formats
This section explains how to configure Log4J to log information in a variety of formats. This includes
options such as logging in HTML format, logging to an SMTP server, logging to the Windows System
log, and so on.

Using HTML Format
Log4J provides an option to log all messages in HTML format. This is the most popular format when the
logs are generated for Web applications. This format improves the overall presentation and readability
of log files. A sample of logging output is shown in Figure A-1.

Figure A-1: Sample logging output.

Settings
The following table shows the required settings for this example.

540

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 540

File Location

Properties file location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
HTMLLog.properties

JSP location D:\Apps\Tomcat5\webapps\jsp-examples\HTMLLayout.jsp

Log4J JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
log4j.jar

Log file location D:\Apps\Tomcat5\logs\WroxSampleLog.html

HTMLLog.properties File — Log Configuration File
The following is the log configuration file:

Declare a Logger ‘WroxLogger’
log4j.logger.wroxLogging.WroxLogger = DEBUG , wroxAppender

Set the type of ‘wroxAppender’ as FileAppender
log4j.appender.wroxAppender = org.apache.log4j.FileAppender
log4j.appender.wroxAppender.File = D:/Apps/Tomcat5/logs/WroxSampleLog.html
log4j.appender.wroxAppender.Append = false

Set HTMLLayout to the ‘wroxAppender’
log4j.appender.wroxAppender.layout = org.apache.log4j.HTMLLayout
log4j.appender.wroxAppender.layout.LocationInfo = true
log4j.appender.wroxAppender.layout.Title = WroxLog

HTMLLayout.jsp — Sample JSP for Testing
The following is the sample JSP for testing:

<%@ page language=”java” import=”org.apache.log4j.*” %>
<h2>HTML Logging Using Log4J</h2>
<%

Logger logger = Logger.getLogger(“wroxLogging.WroxLogger”);
PropertyConfigurator.configure(getServletContext().getRealPath(“/”) +

“WEB-INF\\HTMLLog.properties”);

logger.debug(“DEBUG -- logging message !”);
logger.info(“INFO -- logging message !”);
logger.warn(“WARN -- logging message !”);
logger.error(“ERROR -- logging message !”);
logger.fatal(“FATAL -- logging message !”);
out.println(“Logging Tested !”);

%>

Log Output
The output generated is shown in Figure A-2.

541

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 541

Figure A-2: Log output.

Logging to Multiple Destinations
This section explains how to log messages to multiple destinations. In this example, messages are logged
at two separate targets: the system console and a daily rolling log file.

Settings
The following table shows the required settings for this example.

File Location

Properties file location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
MultiDest.properties

JSP location D:\Apps\Tomcat5\webapps\jsp-examples\MultiDestLog.jsp

Log4J JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
log4j.jar

Log file location D:\Apps\Tomcat5\logs\DailyRollingFile.log

542

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 542

MultiDest.properties — Log Configuration File
The following is the log configuration file:

WroxMultipleDest.properties
log4j.logger.wroxLogging.WroxLogger = DEBUG, WroxDest1, WroxDest2

WroxDest1 is a ConsoleAppender
log4j.appender.WroxDest1 = org.apache.log4j.ConsoleAppender
log4j.appender.WroxDest1.layout = org.apache.log4j.PatternLayout
log4j.appender.WroxDest1.layout.ConversionPattern = %-5p (%F:%L)[%t] -- %m%n

WroxDest2 is a DailyRollingFileAppender
log4j.appender.WroxDest2=org.apache.log4j.DailyRollingFileAppender
log4j.appender.WroxDest2.file=D:/Apps/Tomcat5/logs/DailyRollingFile.log
log4j.appender.WroxDest2.datePattern=’.’yyyy-MM-dd
log4j.appender.WroxDest2.append=true
log4j.appender.WroxDest2.layout=org.apache.log4j.PatternLayout
log4j.appender.WroxDest2.layout.ConversionPattern=%-5p %d{ISO8601} [%t] -- %m%n

MultiDestLog.jsp — Sample JSP for Testing
The following code represents the sample JSP for testing:

<%@ page language=”java” import=”org.apache.log4j.*” %>
<h2>Logging At Multiple Destinations Using Log4J</h2>
<%

Logger logger = Logger.getLogger(“wroxLogging.WroxLogger”);
PropertyConfigurator.configure(getServletContext().getRealPath(“/”) +

“WEB-INF\\MultiDest.properties”);

logger.debug(“DEBUG -- logging message !”);
logger.info(“INFO -- logging message !”);
logger.warn(“WARN -- logging message !”);
logger.error(“ERROR -- logging message !”);
logger.fatal(“FATAL -- logging message !”);

out.println(“Logging Tested !”);
%>

Log File Contents
The following output is generated in the file DailyRollingFile.log:

DEBUG 2003-10-10 20:29:54,831 [http8080-Processor25] -- DEBUG -- logging message !
INFO 2003-10-10 20:29:54,841 [http8080-Processor25] -- INFO -- logging message !
WARN 2003-10-10 20:29:54,841 [http8080-Processor25] -- WARN -- logging message !
ERROR 2003-10-10 20:29:54,841 [http8080-Processor25] -- ERROR -- logging message !
FATAL 2003-10-10 20:29:54,841 [http8080-Processor25] -- FATAL -- logging message !

The output is displayed on the console.

543

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 543

Logging to SMTP Server — E-mail Log Messages
A very powerful feature of Log4J is its capability to send critical messages as e-mail. This makes it possible
for administrators to get critical messages as alerts. For example, FATAL level messages can be sent to an
SMTP server, which can get the immediate attention of the server administrator. Although it might look
complicated, the Log4J implementation hides the complexities from the developer. This makes it easy to
deploy this solution, as demonstrated in the following configuration files and sample JSP. Use the settings
as stated in the following table and deploy the JSP in the Web container. On invoking the JSP, messages
will be logged and sent as e-mail.

Settings
The following table shows the required settings for this example.

File Location

Properties file location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
SMTPLog.properties

JSP location D:\Apps\Tomcat5\webapps\jsp-examples\SMTPLog.jsp

Log4J JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
log4j.jar

JavaMail JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
mail.jar

Java Activation JAR D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
activation.jar

SMTP server address smtp.xyz.com

In addition to the Log4J distribution, you will also need the JavaMail API and Java Activation Framework
JAR files. Copy the mail.jar file from the Java Mail 1.2 distribution and activation.jar from the
Java Activation Framework 1.0.2 to the D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\lib\
directory. This is needed in order for the JavaMail functionality to work. These JAR files are used by
Log4J internally to send e-mail.

SMTPLog.properties — Log Configuration File
The following code shows the log configuration file:

WroxSMTPLog.properties
log4j.logger.wroxLogging.WroxLogger = DEBUG, SMTPDest

APPENDERS
log4j.appender.SMTPDest = org.apache.log4j.net.SMTPAppender
log4j.appender.SMTPDest.To = abc@xyz.com
log4j.appender.SMTPDest.SMTPHost = smtp.xyz.com
log4j.appender.SMTPDest.Subject = There is an Application ERROR !!!
log4j.appender.SMTPDest.From = abc@xyz.com

544

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 544

log4j.appender.SMTPDest.BufferSize = 1

Set the Layout
log4j.appender.SMTPDest.layout=org.apache.log4j.PatternLayout
log4j.appender.SMTPDest.layout.ConversionPattern=%d %-5p [%t] %c{2} -- %m%n

SMTPLog.jsp — Sample JSP for Testing
Following is the sample JSP code for testing:

<%@ page language=”java” import=”org.apache.log4j.*” %>
<h2>SMTP Logging Using Log4J</h2>
<%

Logger logger = Logger.getLogger(“wroxLogging.WroxLogger”);
PropertyConfigurator.configure(getServletContext().getRealPath(“/”) +

“WEB-INF\\SMTPLog.properties”);

logger.debug(“DEBUG -- logging message !”);
logger.info(“INFO -- logging message !”);
logger.warn(“WARN -- logging message !”);
logger.error(“ERROR -- logging message !”);
logger.fatal(“FATAL -- logging message !”);
out.println(“SMTP Logging Tested !”);

%>

SMTP Message Contents
The log messages are sent as e-mail. The following lines show typical contents of the generated e-mail:

2003-08-03 12:35:27,569 ERROR [http8080-Processor25] wroxLogging.WroxLogger --
ERROR -- logging message !
2003-08-03 12:35:29,912 FATAL [http8080-Processor25] wroxLogging.WroxLogger –
FATAL -- logging message !

Logging to Native System Logs — NT Event Log
Some administrators prefer to integrate the application log and system log for convenience and mainte-
nance. Log4J can use the native system log (such as the syslog on Linux/Unix and the Windows Application
log on Windows).

Logging to the Linux/Unix syslog, though not shown here, can be done by using the SyslogAppender
(org.apache.log4j.net.SyslogAppender) instead of the NTEventLogAppender in the Log4J
configuration.

A communication channel with the native operating system is required for this. For Windows, the Log4J
distribution provides a Dynamic Link Library (DLL), NTEventLogAppender.dll, to enable logging to
the Event log.

Using the NTEventLogAppender DLL
The first step is registering this DLL. The NTEventLogAppender DLL is located under the <LOG4J_HOME>\
src\java\org\apache\log4j\nt directory.

545

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 545

Copy the NTEventLogAppender.dll file into the system32 directory under the Windows installation
directory. For the discussion presented here, it is assumed that the system32 folder is located at c:\
winnt\system32. After copying the DLL file, execute the following command to register the DLL (the
command can be executed by selecting Run from the Start menu):

regsvr32 c:\winnt\system32\NTEventLogAppender.dll

The DLL registration step is shown in Figure A-3.

Figure A-3: Registering the DLL.

Settings
The following table shows the required settings for this example.

File Location

Properties file location D:\Apps\Tomcat5\webapps\jsp-examples\WEB-INF\
NTLog.properties

JSP location D:\Apps\Tomcat5\webapps\jsp-examples\NTLog.jsp

DLL Location C:\WINNT\system32\NTEventLogAppender.dll

NTLog.properties — Log Configuration File
The following code shows the log configuration file:

NT System Event Logger
log4j.logger.wroxLogging.WroxNTLogger=debug , WroxNTLogTester

appender
log4j.appender.WroxNTLogTester.Threshold=FATAL
log4j.appender.WroxNTLogTester=org.apache.log4j.nt.NTEventLogAppender

Layout
log4j.appender.WroxNTLogTester.layout=org.apache.log4j.HTMLLayout
log4j.appender.WroxNTLogTester.layout=org.apache.log4j.PatternLayout
log4j.appender.WroxNTLogTester.layout.ConversionPattern=%d %5p [%c] %x -- %m%n

NTLog.jsp — Sample JSP for Testing
Following is the sample JSP code for testing:

546

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 546

<%@ page language=”java” import=”org.apache.log4j.*” %>
<h2>NT System Logging Using Log4J</h2>
<%

Logger logger = Logger.getLogger(“wroxLogging.WroxNTLogger”);
PropertyConfigurator.configure(getServletContext().getRealPath(“/”) +

“WEB-INF\\NTLog.properties”);

logger.debug(“DEBUG -- logging message !”);
logger.info(“INFO -- logging message !”);
logger.warn(“WARN -- logging message !”);
logger.error(“ERROR -- logging message !”);
logger.fatal(“FATAL -- logging message !”);

out.println(“NT System Logging Tested !”);
%>

After registering the DLL, the sample JSP can be invoked through the browser. This will log the messages
to the Windows native Application log. Once this is done, the entries generated in the Windows system
Application log can be reviewed through the Event Viewer. You can use it by selecting Start ➪ Control
Panel ➪ Administrative Tools ➪ Event Viewer. All the messages logged through the sample JSP can be
found under the Application log, as shown in Figure A-4.

Figure A-4: The Windows Event Viewer.

547

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 547

When you click any one entry from the Application log, all the details for that entry are displayed. This
includes the application name and the actual log message, with a date and time stamp, as shown in
Figure A-5.

Figure A-5: Log message details.

Using PatternLayout
Log4J enables the customized formatting of log messages using the PatternLayout. This provides an
option to log messages with detailed information. It is a preferred option used with the rolling file
Appender. The following code snippet shows how to use the PatternLayout in the configuration file:

Use the ‘PatternLayout’ as the layout
log4j.appender.wroxAppender.layout = org.apache.log4j.PatternLayout

548

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 548

Format Modifiers
Specifying the format of log messages is done via format modifiers. Following are some of the most com-
monly used format modifiers:

❑ %m — The actual log message

❑ %n — New line

❑ %c — Logger name

❑ %t — Current thread

❑ %p — Log level for the message (DEBUG/INFO/WARN/ERROR/FATAL)

❑ %r — Time (in milliseconds) since the code was executed

The default format modifier is %m%n. If the data item requires fewer characters, it is padded with space(s)
on either the left or the right until the minimum width is reached. If the data item is larger than the mini-
mum field width, the field is expanded to accommodate the data. In addition, a period followed by a
positive integer to specify the maximum field width is also valid. The following lines show some samples
of the commonly used combinations with PatternLayout:

log4j.appender.wroxAppender.layout.ConversionPattern = %-5p: %m%n
log4j.appender.WroxDest7.layout.ConversionPattern=[%d{yyyy-mm-dd hh:mm},%6.6r]%-
5p[%t]%x(%F:%L) -- %m%n

Format modifiers can be used between the percentage symbol and the conversion character to change
the minimum field width, the maximum field width, and text justification within a field. Use the minus
sign (–) to left-justify within a field. By default, it is right-justified (pad on left). Use a positive integer to
specify the minimum field width.

Performance Tips
Adding Log4J statements to your code does impact performance. However, the performance can be
improved by first determining whether a particular logging level is enabled or not. This saves the over-
head of constructing the parameters of a logging method:

if (WroxLogger.isDebugEnabled()) {
WroxLogger.debug(“Logged the process ID : “ + id);

}

When configured with the SimpleLayout (or a pattern using only %p, %m, or %n), tests have shown that
logging via Log4J has the same performance characteristics as the equivalent System.out.println()
statement.

The Apache Log4J developer teams provide performance figures for Log4J on its Web site. For example,
on an AMD Duron clocked at 800 MHz and running the JDK 1.3.1, it took about 5 nanoseconds to deter-
mine if a logging statement should be logged or not. Actual logging was quite fast too, ranging from 21
microseconds using SimpleLayout to 37 microseconds using TTCCLayout.

549

Log4J

c 559028 AppA.qxd 4/22/04 3:57 PM Page 549

Summary
This appendix explained how to log messages in applications by using Log4J. To conclude this
appendix, let’s review some of the key points that have been discussed:

❑ The major Log4J components are Logger, Appender, Level, and Layout.

❑ Configuring Log4J can be done using Log4J configuration files, programmatically and also via
XML configuration files.

❑ Log4J can log to various destinations, such as the console, log files as well as to system loggers
(for example, Unix/Linux syslog, NT Event Logger).

❑ Logging can be done in various formats and with custom log message patterns.

❑ When a simple output format is used, and a log message is sent to the console, Log4J’s perfor-
mance overhead is comparable to that of equivalent System.out.println() statements.

The appendix also discussed various examples, including code samples and configuration files. These
illustrative examples showed the capability of Log4J to log messages to a file, the system console, the
native system log, and in various formats, including HTML.

Appendix B outlines support for Tomcat in popular Java IDEs.

550

Appendix A

c 559028 AppA.qxd 4/22/04 3:57 PM Page 550

Tomcat and IDEs

As a general rule, programmers hate tedium. If a process can be automated, it should be. Web
application deployment certainly fits into that category. While the popular Apache Ant tool excels
at automating tasks such as Web application deployment, many Integrated Development
Environments (IDEs) can top that: integration with Tomcat itself.

This appendix outlines the Tomcat support built into the following Java development tools:

❑ Intellij IDEA (www.intellij.com)

❑ Eclipse (www.eclipse.org)

❑ NetBeans/Sun Java Studio (www.netbeans.org)

❑ JBuilder (www.borland.com/jbuilder)

Remote Debugging
Starting with the JDK 1.3, the Java Virtual Machine (JVM) gained the capability to pass debugging
information to external applications and receive debugging commands from them. The data can be
transferred via either a network socket or shared memory on a local machine. Tomcat fully supports
remote debugging (when used on a capable JVM). IDEs that support remote debugging can thus
attach to a Tomcat instance remotely to step through Java code.

All the IDEs in this appendix support remote debugging, and thus all of the IDEs support step-
through debugging of class files in a Tomcat Web application. While the instructions for attaching
an IDE to a remote JVM are specific to each IDE, the instructions for configuring Tomcat to support
remote debugging are generic. These configuration instructions are provided here; you can find
each of the IDE-specific instructions later in the appendix.

To launch Tomcat in debug mode, use one of the following commands.

c 559028 AppB.qxd 4/22/04 3:57 PM Page 551

For Windows, use this command:

%CATALINA_HOME%\bin\catalina jpda start

For Linux, use this command:

$CATALINA_HOME/bin/catalina jpda start

Tomcat defaults to using the shared memory transport and a shared memory address of jdbconn. These
settings are optimal for attaching to a Tomcat process on a local machine. If Tomcat resides on a separate
server from the machine hosting the IDE, the transport should be changed to a socket and the port value
set to 5050 (which is the remote debugging default, but not the Tomcat default). To change these values,
set the following environment variables:

JPDA_TRANSPORT=dt_socket
JPDA_ADDRESS=5050

Notice that all of the IDE instructions in this appendix assume that Tomcat’s default remote debugging
settings are used.

IntelliJ IDEA 4.0
As of this writing, IntelliJ IDEA 4.0 has not been released, and its Tomcat integration was not finalized
or functioning. As a result, this appendix cannot provide instructions for integrating Tomcat 5.0 with
IntelliJ IDEA 4.0, but it does provide instructions for remote debugging with IDEA, which was quite
stable in the pre-release version of IDEA 4.0 we used.

Remote Debugging with IDEA
With remote debugging, Tomcat is launched with remote debugging support turned on. Then, IDEA
attaches to Tomcat and allows for stepping through class files.

See the section “Remote Debugging” at the beginning of this appendix for instructions on launching
Tomcat in remote debug mode. Once Tomcat has been launched in debug mode, IDEA can be attached
to it with the following steps:

1. Select Run from the Run pull-down menu.

2. Select the Remote tab.

3. Click the Plus button (Add New Configuration button).

4. Select the shared memory transport.

5. Enter jdbconn as the shared memory address.

After following these steps, clicking on Debug will attach IDEA to Tomcat. Breakpoints set in class files
used by the Web application will now function.

552

Appendix B

c 559028 AppB.qxd 4/22/04 3:57 PM Page 552

Eclipse 3.0
Eclipse doesn’t include Tomcat support out of the box. Instead, it relies on third parties to fill the void
with plug-ins — and fill the void they have! Numerous Tomcat plug-ins are available for Eclipse. The most
popular, the open-source Sysdeo plug-in, is discussed in the following section.

Sysdeo Tomcat Plug-in
The Sysdeo plug-in can be downloaded from sysdeo.com; as of this writing, the following URL worked:

www.sysdeo.com/eclipse/tomcatPlugin.html

Sysdeo supports Tomcat versions 3.3 through 5.x. Installing Sysdeo is straightforward:

1. Unzip the package to ECLIPSE_HOME\plugins.

2. Launch Eclipse.

3. Select Window from the pull-down menu, followed by Preferences.

4. Select the Tomcat node.

5. Select the desired version of Tomcat from the Tomcat Version box.

6. Enter the Tomcat home and base directories in the appropriate text fields (these values should
be the same). The configuration file text field will auto-fill itself.

7. Press OK.

Upon completion of these steps, a new type of project can be created: a Tomcat Project. Use the following
steps to create a Tomcat Project:

1. Select the File pull-down menu, followed by Project.

2. Select the Java node on the left and the Tomcat Project item on the right. Select Next.

3. Give the project a name and select Next.

4. Select Finish.

For simplicity, you can add to the project a special Tomcat menu containing links for starting, restarting,
and stopping Tomcat. Usually, this menu will appear after installing the Sysdeo plug-in. If it does not,
follow these steps to add this menu:

1. Select the Window pull-down menu, followed by Customize Perspective.

2. Click the Commands tab.

3. Check the Tomcat checkbox on the left, and select OK.

A new Tomcat pull-down menu with the aforementioned functions will appear while in this view.

553

Tomcat and IDEs

c 559028 AppB.qxd 4/22/04 3:57 PM Page 553

Running and Debugging
After installing the Sysdeo plug-in via the steps outlined earlier, Eclipse will fully support running
Tomcat, and debugging will be enabled when breakpoints are set in the Eclipse project.

Remote Debugging
Eclipse does not support the remote debugging shared-memory transport. Consequently, the first step
in configuring Eclipse to attach to a Tomcat JVM is setting the environment variables to use the socket
transport, as described in the “Remote Debugging” section at the beginning of this appendix.

Following that exercise, a remote debugging profile must be configured in Eclipse. This is accomplished
by the following steps:

1. Select the Run pull-down menu, followed by Debug.

2. Double-click on the Remote Java Application node.

3. Select the appropriate project in the Project field.

4. Change the Port field to 5050.

5. Press the Debug button.

Eclipse will attach to the remote instance of Tomcat.

NetBeans 3.6
NetBeans 3.6 was in beta as of this writing; consequently, some of the details in this section may differ
from the version you use. NetBeans 3.6 provides full support for Tomcat 5.0.

Embedded Tomcat
NetBeans includes an embedded version of Tomcat as part of its standard installation. This embedded
version has been tightly integrated with NetBeans, and makes Web development a snap! Users of
NetBeans simply click the Execute button when developing a Web Module (NetBeans term for a Web
application) and the embedded version of Tomcat launches. Debugging of JSPs is enabled by default;
just set breakpoints and run the application in the NetBeans debugger.

NetBeans also has an integrated HTTP monitor for viewing the requests and responses flying across the
wire, as well as all kinds of other information derived from the HTTP requests/responses. Very cool!

External Tomcat
NetBeans also supports integration with external instances of Tomcat. To configure an external instance
of Tomcat 5.0, first create a new Web Module project. Next, follow these steps:

554

Appendix B

c 559028 AppB.qxd 4/22/04 3:57 PM Page 554

1. View the Runtime edit pane, either by selecting the Editing tab followed by the Runtime tab, or
by selecting Runtime from the View pull-down menu.

2. Expand the Server Registry tree node.

3. Right-click on the Tomcat 5 Servers tree node and select Add New Server... from the context
menu.

4. Enter the Tomcat home directory (the CATALINA_HOME directory) in the Install Directory text
field.

5. Leave the Base dir text field blank.

6. Enter a user name and password that has access to the manager role (see Chapter 7 for details
on enabling access to the manager role).

After completion of these steps, a new node will appear in the Runtime tree under the Tomcat 5 Servers
node. The title of this node will be the host name and port number on which the Tomcat installation is
configured to listen. In order to use this new server, it should be set as the default Tomcat instance. This
is accomplished by right-clicking on the new Tomcat node and selecting Set as DefaultContext from the
context menu.

The integration is finished! Now, Tomcat can be controlled by right-clicking on the child node of the
newly created Tomcat node.

Remote Debugging
When all else fails, NetBeans can remotely attach to the Tomcat VM to support debugging classes. After
starting Tomcat in debug mode using the instructions at the beginning of this appendix, follow these
steps to attach to Tomcat with NetBeans:

1. Select the Debug pull-down menu, the Start Session menu item, and the Attach menu item.

2. Choose JPDA as the Debugger, SharedMemoryAttach as the Connector, and enter jdbconn as
the Name.

3. Click OK.

After completing these steps, NetBeans will be attached to the Tomcat JVM; breakpoints and other
debug features will be active.

JBuilder X
JBuilder improves on NetBeans by including not one, but three versions of Tomcat embedded in their
product: Tomcat 3.3.1, Tomcat 4.0.6, and Tomcat 4.1.27. JBuilder X supports class and JSP debugging
with all three versions, although some file copying is necessary to enable JSP debugging in Tomcat 4.1.
JBuilder X does not support Tomcat 5, nor is there currently a timeline for when Tomcat 5 support will
be available. (Attempts to successfully coax JBuilder into working with Tomcat 5 by the authors failed.)

555

Tomcat and IDEs

c 559028 AppB.qxd 4/22/04 3:57 PM Page 555

Embedded Tomcat
To enable use of the embedded Tomcat versions, a Web Module project must be created. This is accom-
plished by following these steps:

1. Create a new Project in JBuilder X (select File ➪ New Project... from the pull-down menu
and accept the default settings).

2. Select the File pull-down menu, followed by New.

3. Select the Web node on the left, the Web Module icon on the right, and click OK.

4. Select Create Empty Web Module and click Next.

5. Enter webapp (or any desired value without spaces) in the Name and Directory fields, and
click Next.

6. Click Finish.

After completing these steps, the project must be configured to use the appropriate Tomcat server. This
can be achieved by the following steps:

1. Right-click the project icon in the Project window and select Properties from the context menu.

2. Select the Server node from the list on the left.

3. Select the desired Tomcat server from the Single server for all services in project
combo box.

To launch Tomcat, right-click on either a Servlet/JSP in the project and select Web Run or Web Debug.

HTTP Monitor
Also like NetBeans, JBuilder X includes a handy HTTP monitoring tool called TCP Monitor that is acces-
sible at any time from the Tools pull-down menu. The tool itself is an embedded version of the HTTP
monitoring tool included with the Apache Axis project. In fact, JBuilder X didn’t make this tool any
easier to use than the original, which didn’t win any “intuitive user interface” awards.

JSP Debugging with Tomcat 4.1
JSP debugging is not available by default for Tomcat 4.1. However, it can be enabled by copying the
files jasper-compiler.jar and jasper-runtime.jar from the CATALINA_HOME\lib directory of a
Tomcat 4.0.x installation into the CATALINA_HOME\common\lib directory of a Tomcat 4.1.x installation.

Remote Debugging
Just as with NetBeans, remote debugging can be used in JBuilder X to debug classes in any Tomcat ver-
sion, including Tomcat 5. To configure JBuilder X for remote debugging, follow these steps:

1. Select the Run pull-down menu, followed by Configurations.

2. Select the New... button.

3. Select the Remote node, which is a child of the Debug node.

556

Appendix B

c 559028 AppB.qxd 4/22/04 3:57 PM Page 556

4. Check the Enable Remote Debugging checkbox.

5. Select the Attach radio button.

6. Select dt_shmem as the transport type and enter jdbconn as the transport address.

7. Give the configuration a name in the Name text field, and select OK to save the configuration.

8. Press the down arrow on the Debug Project button, and select the name entered in step 7.

You must launch Tomcat in debug mode (see the section “Remote Debugging,” at the beginning of this
appendix) in order to attach to it from JBuilder X or any other IDE.

Summary
This appendix covered the following items:

❑ Remote debugging overview

❑ Remote debugging with IntelliJ IDEA 4.0

❑ Tomcat integration and remote debugging with Eclipse 3.0, NetBeans 3.6, and JBuilder X

Appendix C provides a tutorial introduction to Apache Ant.

557

Tomcat and IDEs

c 559028 AppB.qxd 4/22/04 3:57 PM Page 557

c 559028 AppB.qxd 4/22/04 3:57 PM Page 558

Apache Ant

Ant is quickly becoming the de facto standard for creating cross-platform build files for Java appli-
cations. One important feature that has led to its popularity is the capability it offers developers to
extend Ant via custom tasks. In Chapter 7, “Web Application Administration,” you learned how
Tomcat’s custom Ant tasks can be used to deploy and undeploy Web applications without the need
to restart Tomcat. This means that not only can you build the Web application using the Ant build
script, you can also go a step further by installing, removing, or reloading the application while
running Tomcat.

This appendix provides a brief introduction to the features of Ant. It covers the following:

❑ A short tutorial introduction to Ant

❑ A sample Web application and its associated Ant build script, which is used to compile
the application and get it ready for deployment to a Tomcat instance

❑ How the results of the build processes can be e-mailed back to developers

❑ References to additional information about Ant

Installing Ant
Ant started off as a subproject under the Jakarta project. Since then, its increasing popularity
earned it a promotion — it’s now a top-level project under Apache, and can be downloaded from
http://ant.apache.org. This appendix uses the stable release currently available (Ant 1.5.4).
This is the last release from the 1.5 code base, and the next new release (Ant 1.6) is currently in beta.

c 559028 AppC.qxd 4/22/04 3:57 PM Page 559

Installing Ant is simple:

1. Download Ant from www.apache.org/dist/ant/ and unzip it in a directory of choice. For
the remainder of the appendix, $ANT_HOME is used as the environment variable that points
to the installation directory of Ant.

2. Add $ANT_HOME/bin to your system PATH.

Ant is often used to perform additional tasks, other than building Java code. Typically, this requires
copying JAR files for these custom tasks into $ANT_HOME/lib.

For example, when Ant is to be used to manage Web applications, you would need to copy the
catalina-ant.jar file that contains Tomcat’s Ant tasks from the $CATALINA_HOME/server/
lib directory to $ANT_HOME/lib.

Introduction to Ant
As a system administrator, you have likely been exposed to a lot of build tools (make, jam, and so on), so
why is another build tool required?

Ant is built around the following central ideas:

❑ Implement the tool using Java, and use XML to store the build information. This results in a
platform-independent build tool.

❑ Enable extensibility of the tool. Developers can extend Ant by writing Java classes, and thus
develop custom tasks. One example of this is Tomcat’s management tasks, mentioned earlier.
Another example of this kind of integration is the capability to run jUnit test cases from Ant
build scripts, using the optional <junit> task.

The first thing most people miss when moving from make to Ant is the expressiveness of make. Make-
like tools are based on the underlying shell, and while that enables a lot of expressiveness and compact
build scripts, such tools are nonportable. However, if you absolutely need to execute a shell command,
Ant does offer a way out. Ant’s <exec> task allows for this for the cost of the portability of build scripts.

As mentioned earlier, Ant uses an XML file to store build information. This file contains the list of tasks
to be performed. The general structure of an Ant build file is as follows:

Project
|_
+--Property
|
+--Path
|
+--Task Definition
|
+--Target

|
+--Property

560

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 560

|
+--Path
|
+--Task

A project consists of a number of properties, targets, paths, and task definitions. Properties at the project
level are name-value pairs that are available throughout the project and to each target.

A target consists of a series of tasks. A target can define its own set of properties, which override the
global project properties. A target can depend on other targets, which means that all targets that it
depends upon will execute first, before running the tasks associated with it. Ant comes with several
built-in tasks that can be called. Some of the built-in tasks include creating directories, copying files,
compiling Java source files, and so on.

You can also define path elements at both the Project level and Target level. A path is used to include or
exclude certain files and directories. For example, you can construct a path element to contain the direc-
tories and/or JAR files that comprise the classpath.

Let’s take a look at a simple Ant file (mybuild.xml). This build file creates a directory and then copies a
file to that directory.

First, the <project> element must be specified:

<project name=”MyAntProject” basedir=”.” default=”copyfile”>

The name attribute in the <project> element is set to the name of the project (MyAntProject, in this
case). The basedir attribute indicates the root directory, which will be used as a reference for all the
tasks present in this project. The default attribute indicates the target that will be executed by default if
none are specified while running Ant.

Next, the properties for the project are defined:

<property name=”dir.name” value=”${basedir}/mydir”/>
<property name=”file.name” value=”file1.txt”/>

Here, two global properties are defined: dir.name and file.name. The dir.name property specifies
the name of the directory to be created, and file.name is the file to be copied.

After this, the targets to be performed are specified. In this project, these include creating a directory
(mydir) and copying the file (file1.txt) into the newly created directory:

<target name=”makedirectory” description=”Create directory mydir”>
<mkdir dir=”${dir.name}”/>

</target>

<target name=”copyfile” depends=”makedirectory” description=”Copy files”>
<copy file=”${file.name}” todir=”${dir.name}”/>

</target>

</project>

561

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 561

In these two targets, makedirectory and copyfile, note that the target copyfile is dependent on
makedirectory. Therefore, even if you specify the copyfile target, Ant will make sure that all the
dependencies are run first, and makedirectory will be executed irrespective of the situation.

The target makediretory creates the directory. Note how the directory name is referenced via the
${dir.name} property. The built-in tasks <mkdir> and <copy> are used to perform the functions
of making a directory and copying the file. The syntax of the Ant command is as follows:

ant –buildfile <filename> <target-name>

If the buildfile option is not used, Ant will look for a file named build.xml in the directory from
which the Ant command was issued. If the target name is not specified, Ant will look for the default
target to execute as specified by the default attribute of the root <project> element.

The following example shows the Ant command being run with the mybuild.xml build file:

$ ant –buildfile mybuild.xml

Buildfile: mybuild.xml

makedirectory:
[mkdir] Created dir: /home/tomcat/AppendixC/mydir

copyfile:
[copy] Copying 1 file to /home/tomcat/AppendixC/mydir

BUILD SUCCESSFUL
Total time: 1 second

Ant Tasks
A summary of Ant’s core tasks is listed in the following table.

Task Name Description

ant Run Ant on a build file. This task can be used to build
subprojects.

antcall Call another target within the same build file.

antstructure Generate a Document Type Definition (DTD) for Ant build files.

apply Execute a system command. This task has an optional os
parameter that specifies the operating system on which the
command should be run.

available Set a property if a resource (for example, file, directory, class,
JVM system resource) is available at run-time.

basename Determine the basename of a specified file. Also see dirname.

562

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 562

Task Name Description

buildnumber This is used to track build numbers.

bunzip2 Unzip a file using the BZip2 algorithm.

bzip2 Compress a file using the BZip2 algorithm.

checksum Generate checksum for a file.

chmod Change permissions of file(s).

concat Concatenate a file or series of files to a file or console.

condition Set a property if a condition is true.

copy Copy a file or set of files to a new location.

cvs Handle CVS modules.

cvschangelog Generate a CVS Changelog in XML format.

cvspass Add entries to the CVS .cvspass file (same effect as doing a
cvs login).

cvstagdiff Generate a diff between two CVS tags (or dates).

delete Delete a file, a set of files, or a directory.

dependset Manage arbitrary dependencies between files.

dirname Determine the directory path of a specified file.

ear An extension of the jar task for handling Enterprise ARchive
(EAR) files.

echo Echo a message to a logger or a listener (the default is to echo to
the console).

exec Execute an OS-specific system command.

fail Exit the current Ant build.

filter Set up a token filter. These filters are used by file copying tasks.

fixcrlf Adjust a text file for local OS conventions.

genkey Generate a key in a keystore.

get Get a file from a URL.

gunzip Uncompress a file using the Gzip protocol.

gzip Compress a file using the Gzip protocol.

input Prompt for input from the user.

jar Create a JAR file.

java Execute a Java class within the same virtual machine.

Table continued on following page

563

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 563

Task Name Description

javac Compile a Java source tree.

javadoc Run javadoc to create project documentation.

loadfile Load a text file into a property.

loadproperties Load Ant properties from a file.

mail Send e-mail.

manifest Create a manifest file (used in JAR files).

mkdir Create a directory.

move Move a file, a set of files, or a directory to a new location.

parallel Execute a set of tasks in parallel. Each task executes in its own
thread.

patch Apply a “diff” file patch to the original file.

pathconvert Used for converting representations of a path from one form to
another.

property Set a property.

record Listener to the current build process that records the output to
a file.

replace Replace a string with another string in a text file.

rmic Run the rmic compiler.

sequential Specify a set of tasks to be run in sequence. Typically used for
grouping inside a nested parallel task.

signjar Sign a JAR or ZIP file using the signjar command.

sleep “Sleep” for a specified amount of time.

sql Execute an SQL statement via JDBC.

style Process a set of documents using XSLT.

tar Create a tar archive.

taskdef Add a task definition for new (optional) tasks.

tempfile Set a property to the name of a temporary file.

touch Change the modification time of a file.

tstamp Set the timestamp-related properties in the build file.

typedef Specify a new type definition for the project.

unjar/untar/unwar/unzip Extract a JAR/TAR/WAR or ZIP file.

uptodate Set a property if a target file (or set of files) is more current than
a source file (or set of files).

564

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 564

Task Name Description

waitfor Block until a certain condition is true. Often used in conjunc-
tion with the Parallel task.

war An extension of the JAR task for handling WAR files.

xmlproperty Load properties from an XML file.

xslt Process a set of documents using XML Stylesheet Language
Transformations (XSLT).

zip Create a ZIP file.

Other than these core tasks, Ant can perform a number of optional tasks. More details on these core
and optional tasks can be obtained from the Ant manual at http://ant.apache.org/manual/
index.html.

Having only built-in tasks would have severely limited the applicability of Ant to diverse project
requirements. Therefore, Ant also enables you to create your own user-defined tasks. These tasks can be
used like any other ordinary task in your target, but with one difference: You need to add a task defini-
tion (<taskdef>) for the user-defined task, specifying the mapping from the task name to the Java class
that implements this optional task. Once you have referenced a task definition element, you can use it as
you would any other ordinary task in your target. Using custom tasks also requires that you copy the
JAR files containing the implementation for these custom tasks into $ANT_HOME/lib.

You saw examples of this earlier in the book when Tomcat’s Ant tasks were used in Chapter 7. A part of
this Ant script example is reproduced as follows:

<!-- Specify the mapping between the task name and the java class
implementing the task -->

<taskdef name=”deploy”
classname=”org.apache.catalina.ant.DeployTask”/>

...
<!-- Use the task just as a core Ant task is used -->
<target name=”deploy” description=”Deploy web application”

depends=”build”>
<deploy url=”${url}” username=”${username}” password=”${password}”

path=”${path}” war=”file:${build}/hello.war”/>
</target>

If you have a large number of such tasks, you can also put the task name and class mapping in a proper-
ties file and specify the file in the resource attribute of the <taskdef> task. An example of this was
shown in Chapter 20 (reproduced here):

<taskdef resource=”org/apache/commons/modeler/ant/ant.properties”
classpathref=”tomcatCP” />

The properties file should follow the Java property file syntax, with each mapping specified on a separate
line (taskname=fully.qualified.java.classname, and so on).

565

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 565

The Ant Build Process
This section demonstrates how to build a sample Web application with Ant. The steps include compiling
the files and creating the appropriate directory structure for the WAR file to get the application ready for
deployment.

A sample development-time directory structure for a Web application project may look like the follow-
ing example:

/home/tomcat/AppendixC
|
|------ build.xml
|
|------ build/
|
|------ dist/
|
|------ src/
| |
| +---com/
| foobar/
| |
+------ web/ +---- LoginServlet.java

|
|--login.jsp
|--error.jsp
|--images/
| |
| +------ logo.gif
|
+--- WEB-INF/

|
+----- web.xml
|
+----- lib/

This directory structure consists of the following:

❑ The main build file (build.xml)

❑ A directory (src) containing all the Java source files of the Web application (for example, all the
Servlet classes)

❑ A directory (web) containing the HTML and JSP files. It also contains any other resource
directories — for example, images. Finally, it contains the WEB-INF directory with the deployment
descriptor (web.xml). Chapter 6 discusses the deployment descriptor for the Web application in
detail. The WEB-INF directory also has a lib directory that contains any third-party JAR files.

❑ A directory (build) in which the compiled Java classes would be built, and the expanded WAR
structure created

❑ Finally, a directory (dist) in which the WAR file is generated from the build directory

566

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 566

The build.xml build file is shown here (the default target is the compile target):

<!-- Ant build file for Sample Web Application -->
<project name=”myWebapp” default=”compile” basedir=”.”>

The following section initializes the global properties that are used throughout the build file. Note that
you might have to change some of these properties to suit your environment. For example, the
catalina.home property should point to the root directory of your Tomcat installation:

<property name=”catalina.home”
value=”/usr/tomcat/jakarta-tomcat-5.0.15”/>

<property name=”app.name” value=”myWebapp”/>
<property name=”app.path” value=”/${app.name}”/>
<property name=”src.home” value=”${basedir}/src”/>
<property name=”web.home” value=”${basedir}/web”/>
<property name=”docs.home” value=”${basedir}/docs”/>
<property name=”build.home” value=”${basedir}/build”/>
<property name=”dist.home” value=”${basedir}/dist”/>
<property name=”war.file” value=”${dist.home}/${app.name}.war”/>

In this build file, the properties are included in the file itself for the sake of simplicity. A good program-
ming practice is to move them to a separate properties file that contains the name-value property pairs.
This enables you to use the same build script for different deployment environments. The property file
can then be specified via a command-line option:

ant –buildfile <filename> <target-name> -propertyfile <propertyfilename>

The clean target deletes the build and dist directories and all subdirectories within them. This target
is useful if you want to clean all the files generated by a build:

<!-- ====== Clean Target ====== -->
<target name=”clean”

description=”Deletes the build and dist directories”>
<delete dir=”${build.home}”/>
<delete dir=”${dist.home}”/>

</target>

The prepare target creates the expanded WAR directory structure and copies the static Web files from
web and its subdirectories:

<!-- ====== Prepare Target ====== -->

<target name=”prepare”>
<mkdir dir=”${build.home}”/>
<mkdir dir=”${build.home}/images”/>
<mkdir dir=”${build.home}/WEB-INF”/>
<mkdir dir=”${build.home}/WEB-INF/classes”/>

<!-- Copy static content of this web application -->
<copy todir=”${build.home}”>

<fileset dir=”${web.home}”/>
</copy>

</target>

567

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 567

The compile target compiles all the Java source files present in the src directory. The destination direc-
tory for the class files is ./build/WEB-INF/classes:

<!-- ====== Compilation ====== -->
<target name=”compile” depends=”prepare”>

<javac srcdir=”${src.home}”
destdir=”${build.home}/WEB-INF/classes”
debug=”true”
deprecation=”true”>

<classpath>
<fileset dir=”${web.home}/WEB-INF/lib”>

<include name=”*.jar”/>
</fileset>

<pathelement location=”${catalina.home}/common/classes”/>
<fileset dir=”${catalina.home}/common/endorsed”>

<include name=”*.jar”/>
</fileset>

<fileset dir=”${catalina.home}/common/lib”>
<include name=”*.jar”/>

</fileset>

<pathelement location=”${catalina.home}/shared/classes”/>

<fileset dir=”${catalina.home}/shared/lib”>
<include name=”*.jar”/>

</fileset>

</classpath>
</javac>

<!-- Copy application resources -->
<copy todir=”${build.home}/WEB-INF/classes”>

<fileset dir=”${src.home}” excludes=”**/*.java”/>
</copy>
<copy todir=”${build.home}/WEB-INF/lib”>

<fileset dir=”${web.home}/WEB-INF/lib”/>
</copy>

</target>

The dist target creates a WAR file from the expanded WAR directory structure present in the build
directory:

<!-- ====== Dist Target ====== -->

<target name=”dist” depends=”compile”
description=”Create WAR file”>

<!-- Create WAR file -->
<mkdir dir=”${dist.home}”/>
<jar jarfile=”${war.file}” basedir=”${build.home}”/>

</target>

568

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 568

The all target runs all the targets. Ant will run each target once in the order specified in the depends
attribute for this target:

<!-- ====== All Target ====== -->

<target name=”all”
depends=”clean, prepare, compile, dist”
description=”Builds the web application and war file”/>

</project>

Let’s run the different targets now to ensure that our environment is set up to run Ant correctly.

❑ clean— Open the console window and go to the /home/tomcat/AppendixC directory and
run the clean target as shown here. Note that if you run the clean target after running the
compile or dist targets, the build and dist directories will be cleared in the clean target:

$ant clean
Buildfile: build.xml

clean:
[delete] Deleting directory /home/tomcat/AppendixC/build
[delete] Deleting directory /home/tomcat/AppendixC/dist

BUILD SUCCESSFUL
Total time: 2 seconds

❑ dist— The dist target is responsible for generating the WAR file. Because this target depends
on the compile target, by running it you ensure that not only will the files be compiled and
copied into an expanded WAR directory structure, but that the WAR file is also generated:

$ ant dist
Buildfile: build.xml

prepare:
[mkdir] Created dir: /home/tomcat/AppendixC/build
[mkdir] Created dir: /home/tomcat/AppendixC/build/images
[mkdir] Created dir: /home/tomcat/AppendixC/build/WEB-INF
[mkdir] Created dir: /home/tomcat/AppendixC/build/WEB-INF/classes
[mkdir] Created dir: /home/tomcat/AppendixC/build/WEB-INF/lib
[copy] Copying 4 files to /usr/tomcat/AppendixC/build
[copy] Copied 1 empty directory to /usr/tomcat/AppendixC/build

compile:
[javac] Compiling 1 source file to /home/tomcat/AppendixC/build/WEB-INF/classes

dist:
[mkdir] Created dir: /home/tomcat/AppendixC/dist

[jar] Building jar: /home/tomcat/AppendixC/dist/myWebapp.war

BUILD SUCCESSFUL
Total time: 5 seconds

569

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 569

Now that you have the expanded WAR directory structure for the Web application as well as the .war
file, you are ready to deploy it. This Web application can be deployed in a number of ways:

❑ Copy the WAR file to the $CATALINA_HOME/webapps directory.

❑ Create a context for the Web application by making a directory within $CATALINA_HOME/
webapps— for example, $CATALINA_HOME/webapps/myWebapp— and copy the expanded
WAR directory structure in the build directory to $CATALINA_HOME/webapps/myWebapp.

❑ Use the manager Web application GUI to deploy the application.

❑ Use the Ant interface to the manager application.

The last two methods are covered in detail in Chapter 7.

Ant Build Status (E-mail Notifications)
Developers often need to know the status of a build. If the Ant build script is run manually, the results
can be e-mailed by the person running the build process. In big projects, or those with distributed devel-
opment, it is common to have builds fired off automatically. This section describes how e-mail notifica-
tions of build status can be generated and automatically e-mailed.

Ant enables you to monitor the status of a build using listeners and loggers. The listeners are
components that enable the monitoring of Ant events, such as the start and end of a task, a target, or a
build. The loggers extend the functionality of listeners and are responsible for logging information
about a build.

A logger class can be associated with a build process using Ant’s –logger command-line option:

ant –logger <loggername>

Here <loggername> is the fully qualified class name of the logger class.

Similarly, a listener classes can be associated with the build process using the –listener command-
line option:

ant –listener <listenername>

Ant 1.5 provides a built-in class called MailLogger (org.apache.tools.ant.listener.MailLogger)
that can be used to e-mail results of the build process. This logger can be associated with a build pro-
cess using the following command:

ant –logger org.apache.tools.ant.listener.MailLogger

When the build file finishes executing, the logger class sends an e-mail about the build’s status. The
behavior of the logger can be controlled via several properties, as described in the following table.

570

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 570

Property Name Description

MailLogger.mailhost The outgoing SMTP mail server that is used to send the
e-mail. This property is mandatory.

MailLogger.from The e-mail address of the account from which the e-mail is
sent. This property is mandatory.

MailLogger.failure.notify This Boolean property indicates whether an e-mail notifi-
cation must be sent in case the build fails. This property is
optional and is enabled by default.

MailLogger.success.notify This Boolean property indicates whether an e-mail notifi-
cation must be sent in case the build succeeds. If you are
interested in sending an e-mail message only when there is
a failure, you can set this property value to false. This
property is optional and has a default value of true.

MailLogger.failure.subject The subject of the e-mail in case the build fails. This prop-
erty is optional and its default value is Build Failure.

MailLogger.failure.to The e-mail address to which the build results must be sent
in case of a failure. You can send the results to multiple
e-mail addresses by separating them with commas. This
property is only needed if you need to send an e-mail in
case of a failure.

MailLogger.success.subject The subject of the e-mail in case the build succeeds. This
property is optional and its default value is Build
Success.

MailLogger.success.to The e-mail address to which the build results must be sent
in case of success. You can send the results to multiple
e-mail addresses by separating them with commas. This
property is mandatory only if you need to send an e-mail
if the build is successful.

Following is a sample properties file (MailLogger.properties):

MailLogger.mailhost=<your-smtp-servername>
MailLogger.from=<youraccount@someserver.com>

MailLogger.failure.subject=BUILD FAILURE : My Intranet Application
MailLogger.failure.to=<youraccount@someserver.com>

MailLogger.success.subject=BUILD SUCCESSFUL : My Intranet Application
MailLogger.success.to=<youraccount@someserver.com>

The property file is specified on the command line via the -propertyfile attribute:

> ant dist –logger org.apache.tools.ant.listener.MailLogger –propertyfile
MailLogger.properties

571

Apache Ant

c 559028 AppC.qxd 4/22/04 3:57 PM Page 571

In addition to the MailLogger, the other Loggers and Listeners available are as follows:

❑ DefaultLogger (org.apache.tools.ant.DefaultLogger)

This is the default Ant logger, and prints build-related messages to the console.

❑ NoBannerLogger (org.apache.tools.ant.NoBannerLogger)

This logger functions similarly to the DefaultLogger, only it doesn’t output messages for targets
that don’t perform any action.

❑ AnsiColorLogger (org.apache.tools.ant.listener.AnsiColorLogger)

This logs the same messages that the DefaultLogger does, but in color.

❑ Log4jListener (org.apache.tools.ant.listener.Log4jListener)

This is a listener that passes events to Log4J.

❑ XMLLogger (org.apache.tools.ant.XmlLogger).

This logs messages in an XML format to a log file specified by the –logfile command-line
option.

Developers can also write their own loggers/listeners by implementing the org.apache.tools.
antBuildListener Java interface.

Summary
This appendix provided a tutorial introduction to Apache Ant. In addition to the simple examples covered
here, Ant can be used to construct very elaborate build environments, and to perform tasks that include
the following:

❑ Compiling source code

❑ Running test cases (when coupled with jUnit and Ant’s jUnit-specific tasks)

❑ Building installable packages

❑ Deploying applications (for example, using Tomcat’s Ant tasks to deploy a Web application)

❑ E-mailing the status of the test cases or the build to developers

Further information on Apache Ant (including a list of Ant tasks) is available at: http://ant.
apache.org/manual/index.html

572

Appendix C

c 559028 AppC.qxd 4/22/04 3:57 PM Page 572

In
de

x

Index

SYMBOLS
$ (dollar sign) in $CATALINA_HOME/conf directory,

58–59, 130
! (exclamation mark) for protecting manager URLs

(!/), 134–135
/ (slash)

in context path for manager application, 134, 157
for protecting manager URLs (!/), 134–135

A
Access Log Valve, 163–166
ACLs (access control lists), 326
Active Server Pages (ASPs), 18–19
admin configurator application
admin role for, 54–55
advantages for configuration, 53–54
behind-the-scenes work of, 54
bootstrapping, 87
creating new users, 56, 58
enabling access to, 54–57
manager application versus, 88
security, 55, 322–323
Tomcat architectural model and, 57
typical screen, 53
URL for accessing, 55

admin role
admin configurator access and, 54–55
assigning to a user, 55
defining, 55
embedded mode in Tomcat and, 503–504
passwords, 55, 131, 322

administrator login for Tomcat on Windows, 34

admin.xml configuration file, 322–323
agent level (JMX), 427–430
Aggregate Report listener (JMeter), 403, 405
AJP (Apache JServ Protocol)

as Coyote Connector alternative, 47
implemented by JK and JK2 Connectors, 231, 234
overview, 238–239
for Web server Connectors, 231–232, 233–234

AJP 1.3 Connector
configuring for Apache, 243
configuring for IIS, 274
for load balancing with Apache, 256–257
performance tuning, 291
ports for clustering, 471–472

ajp13 worker
for load balancing with IIS, 291
overview, 240
for Tomcat with Apache, 246
for Tomcat with IIS, 278

Ajp13Connector class, 230
aliases, 50, 370–371. See also virtual hosting
all target (Ant), 569
Ant tool

as ASF project, 3
build process, 566–570
building a sample Web application, 566–570
build.xml file, 567
core tasks (table), 562–565
custom tasks in Modeler, 507–510
development-time directory structure, 566
downloading, 559
e-mail notification of build status, 570–572
further information, 565

d 559028 Index.qxd 4/22/04 3:57 PM Page 573

Ant tool (continued)
global properties, 561, 567
installing, 560
managing Web applications, 154–157
overview, 560–562
scripts for embedded Tomcat

features, 506–507
Jakarta Commons Modeler and, 507–510
minimal embedded server startup, 512–517, 521
operational flow, 510–511

targets, 155–157, 567–569
user-defined tasks, 565

Apache Crimson XML parser, 208
Apache JServ Connectors, 233–234
Apache JServ Protocol (AJP), 47, 231–232, 233–234,

238–239
Apache License, 5–6
Apache project, 2
Apache Server

building with SSL support, 252
combining Tomcat with, 418
configuring for load balancing, 472–473
configuring SSL, 251–254
connecting Tomcat with

configuring the AJP 1.3 Connector, 243
configuring the httpd.conf file, 247
configuring the jk2.properties file, 247–248
configuring Tomcat workers, 243–247
files modified, 241
installing the mod_jk2 module, 241–242
steps involved, 241
testing the setup, 248–250

documentation, 238
downloading binaries, 237
JK2 Connector for, 237, 238–239
mod_ssl setup, 254
testing the load balancer, 265–270
testing the SSL-enabled setup, 254–255
Tomcat load balancing with, 255–265
virtual hosting

approaches, 370
IP-based implementation, 371–372
name-based implementation, 373–374
with Tomcat 5, 381–386

Apache Software Foundation (ASF), 3, 12
Apache Web site, 3
APIs (application programming interfaces)

defined, 7
Java APIs, 7–8

J2EE APIs, 8–9
J2SE APIs, 9

Appender components (Log4J)
behavior, 533
configuring Log4J programmatically, 531
overview, 527
XML configuration file, 532

“Application already exists at path” error, 157
application server configuration (server.xml file)

Connector component, 66–68
Engine component, 68–70
Host component, 72–76
Logger component, 70–71
Realm component, 72

application servers
J2EE, 9–10
standalone mode versus, 65–66
Tomcat and, 10
Tomcat configuration, 66–76

architecture. See also architecture (Tomcat)
JMX, 424–430
Model 1, 19, 20
Model 2 (MVC), 25–26
Web application, 24–25

architecture (Tomcat). See also specific components
admin configurator and, 57
Connectors, 47
context, 49–50
Engine, 48
Host, 49
key points, 50
Loggers, 49
other classes, 50
overview, 45–46
Realm, 48
revised for Tomcat 4, 45
Server, 47
Services, 47–50
Tomcat 5 and, 46
top-level components, 46
Valves, 48–49
Web server Connector, 230–233

ASF (Apache Software Foundation), 3, 12
ASP.NET (Microsoft), 18
ASPs (Active Server Pages), 18–19
Assertion Results listener (JMeter), 403, 406
assertions (JMeter), 410–411
<attribute> subelement (Modeler), 509
<auth-constraint> element (web.xml file), 108, 167

574

Ant tool

d 559028 Index.qxd 4/22/04 3:57 PM Page 574

authentication. See also specific Realms
for admin configurator application, 323
BASIC, 338
bind mode versus comparison mode, 355
browser-based, 338–339
configuring for Web applications, 340–341
DIGEST, 338–339
embedded Tomcat, 520
form-based, 339
HTTP Authorization Manager (JMeter), 409
HTTPS client certificate, 339–340
for manager application, 158, 323
multiple sign-on without the Single Sign-on Valve,

166–169
Servlet engine security realms and, 48
Single Sign-on Valve for, 163, 166, 169, 362
standards-based mechanisms, 337
tomcat-users.xml file and, 59, 77

B
backup servers for clustering, 460
balancer filter

advantages and disadvantages, 491–492
configuring, 493–494
cookies and, 496
hardware-assisted request distribution, 496–497
load balancing with, 491–492
mod_jk2 Apache module versus, 490
overview, 490–491
redirection by, 490–491, 496
rules, 494–495
standalone mode for, 492–493
testing, 495–496

base64 encoding, 338
BASIC authentication, 338
bin directory, 41
bind mode authentication, 355
bootstrap class loader, 195–197
browsers

browser-based authentication, 338–339
cookie role in, 469
HTTP Proxy Server (JMeter) configuration, 413

bugs
digest utility, 346
reload command (manager), 142
remove command (manager), 146

build status (Ant), 570–572
build target (Ant), 155, 156, 157, 569
build.xml file (Ant), 154–157, 567

C
CA (certificate authority), 364–365
caching

Cache object, 443–444
of classes by class loaders, 199
JMX manageability, 443–444

callisto.dom virtual host example
directory structure, 376, 377, 385, 387–388
httpd.conf file, 383, 384
IP addresses, 375
JSP file, 380–381
server.xml file, 380, 389
Tomcat 5 configuration, 379–381
workers2.properties file, 384, 385–386, 390

“Cannot resolve user database reference” error, 158
Catalina class loader, 204
Catalina Servlet engine, 48–49, 85
catalina-ant.jar file, 154, 156
CATALINA_BASE environment variable

for configuration directory, 52–53
finding internal classes, 387–388, 390–391

catalina.bat file (Windows), 37–38
CATALINA_HOME environment variable

for configuration directory, 52–53
finding internal classes, 387–388, 390–391
in startup files, 256
for Tomcat installation, 34

$CATALINA_HOME/conf directory, 58–59, 130
catalina.policy file

Catalina code permissions, 333–334
for fine-grained access control, 84–87
overview, 59
Security Manager and, 332
SSI security issues, 222–223
system code permissions, 332–333
Web application permissions, 85–87, 334–335

catalina.properties file, 59, 87
certificate authority (CA), 364–365
Certificate Signing Request (CSR), 365
certificates

configuration file for generation, 252
generating a test certificate, 253–254
JSSE, 363–365
for resource protection, 366–367

CGI (Common Gateway Interface)
default Servlet definition, 79–80
enabling support for, 215–216
overview, 14
Servlet for support, 220
Servlet mappings, 82

575

CGI (Common Gateway Interface)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 575

cgi Servlet in default web.xml file, 79–80
Chain Certificate, 365
class loaders

bootstrap class loader, 195–196
Catalina class loader, 204
class caching, 199
common class loader, 203–204
core class restriction, 201
creating a custom class loader, 199–200
delegation model, 197–198, 201, 205–206
dynamic class reloading, 206
enabling creation using Security Manager, 336
Endorsed Standards Override Mechanism and, 198,

203, 208
extension class loader, 196
further information, 200
importance of, 193
lazy loading (on demand), 199
namespace separation for, 199, 201–202
overview, 194–198, 209
packages split among, 207
parent and child classes and, 199
platform-independence and, 194
role of, 194
security issues, 200
SecurityManager class for, 202
shared class loader, 204
singleton classes and, 207–208
standard J2EE class loaders, 194–196
system class loader, 196, 203
Tomcat class loaders, 202–206
troubleshooting, 206–208
Web application class loader, 205–206
XML parsers and, 208

classes. See also specific classes
caching by class loaders, 199
core class restriction for class loaders, 201
directories for core Java classes, 195–196
Java permission classes, 330–331
logging from a Java class (Log4J), 534–535
singleton, class loaders and, 207–208

classes directory, 94
CLASSPATH environment variable

Log4J, 529
standard extension mechanism versus, 196
system class loader and, 196, 197

clean target (Ant), 567, 569
<Cluster> element (server.xml file), 477–479
clustering

application-level load balancing, 490–497

back end configuration
in-memory replication, 466–468, 475–482
Persistent Session Manager with file store, 465–466,

482–486
Persistent Session Manager with JDBC store, 466,

487–490
testing, 490

basics, 460–461
benefits of, 457, 458–459
configuring a Tomcat 5 cluster, 469–473
cookies and modern browsers, 469
fail-over behavioral pattern, 460–461, 482
front end

configuring, 473–475
options for load-balancing implementation, 462–464

high availability and, 457, 459
load balancing

options for implementing, 462
sticky sessions overview, 463–464
via Apache mod_jk2, 463, 473–475

master-backup topological pattern, 460
multiple Tomcat instances on one machine, 469–470
overview, 498–499
performance and, 497–498
response time and, 498
scalability and, 457, 458–459
session management in Tomcat 5, 468
session sharing, 464–468
shutting down the Tomcat cluster, 471
Tomcat 5 model, 461–468

common class loader, 203–204
common directory, 42
Common Gateway Interface. See CGI
common log file format, 163
Commons, defined, 5
communications paths for Web server Connectors,

230–231
comparison mode authentication, 355
compile target (Ant), 156, 568, 569
compiling SendMailServlet, 185–186
conf directory, 42
Config Elements (JMeter), 408–409
config settings for workers2.properties file,

244–245
configuring. See also configuring Tomcat; configuring

Web applications
AJP 1.3 Connector, 243
balancer filter, 493–495
Coyote HTTP/1.1 Connector (Tomcat 4.1), 213–215
HTTP/1.1 Connector (Tomcat 4.0), 212

576

cgi Servlet in default web.xml file

d 559028 Index.qxd 4/22/04 3:57 PM Page 576

JAAS Realm, 359–361
JavaMail sessions, 184–187
JDBC DataSource, 182–184
JDBC, for legacy code integration, 311–312
JDBC, JNDI-based, 301–311
jk2.properties file, 247–248, 280
JMeter thread groups, 398–400
JNDI Realms, 354–355, 357
lifecycle listeners, 187–191
Log4J, 529–533
manager application, 132–133
Persistent Session Manager, 173–175
Request Dumper Valve, 172
Request Filter Valve, 171–172
resources via JNDI, 179–182
Single Sign-on Valve, 169
Tomcat 4.x Connector for SSL, 215–216
UserDatabase Realm, 343–345
Web application authentication, 340–341
workers for Tomcat with Apache, 243–247
workers for Tomcat with IIS, 277–280

configuring Tomcat. See also admin configurator
application; specific configuration files

application server configuration, 66–76
authentication and the tomcat-users.xml file, 77
bootstrap configuration, 51–52
catalina.policy file, 84–87
catalina.properties file, 87
for CGI support, 220–221
clustering, 469–473
configuration components, 45–50
default deployment descriptor, 77–81
directory for configuration files, 52, 54
files in $CATALINA_HOME/conf directory, 58–59
future of, 87–88
management versus configuration, 88
server configuration via default server.xml, 60–66
server.xml, context descriptors, and web.xml

collaboration, 81–84
for SSI support, 222–223
for SSL

Tomcat 4.1, 215–216
Tomcat 5, 219–220

startup problems and, 87–88
typical configuration, 46
Web application context definitions, 76–77

configuring Web applications. See also web.xml file
classes directory, 94
directory structure, 91–92
lib directory, 95
META-INF directory, 95–96

public resources, 92–94
ROOT application, 92
tlds directory, 94–95
URL mappings, 93–94
WEB-INF directory, 94–95

connection pooling, 297–298, 300, 312–319
Connector API, 9
<Connector> element (server.xml file)

for AJP 1.3 Connector, 243, 274
application server configuration, 66–68
application server versus standalone mode and, 65–66
for clustering, 471–472
Coyote HTTP/1.1 configuration

Tomcat 4.1, 213–216
Tomcat 5, 216–220

HTTP/1.1 configuration (Tomcat 4.0), 212
JMX-manageable attributes, 433–435
for load balancing with Apache, 256–257
optimization, 418–419
for SSL protection of resources, 366–367
for SSL support, 215–216, 219–220
standard connectors, 67–68
as subelement of <Service> element, 65
for Tomcat behind a proxy server, 224
for virtual hosting, 379
for virtual hosting (disabling HTTP Connector), 381

Connector interface, 212, 213, 230
Connectors. See also HTTP Connectors; Web server

Connectors; specific Connectors
application server configuration, 66–68
application server versus standalone mode and, 65–66
in default server.xml file, 65–66
HTTP versus Web server, 211
interface, 212, 213, 230
JMX manageability, 433–435
for MBean Server, 428
Tomcat 4 architecture, 47
Tomcat default (Coyote), 47, 211

console, logging to (Log4J), 538
constant throughput timer (JMeter), 402
constant timer (JMeter), 402
containers (Tomcat), 46, 48–49. See also specific kinds
context components, 49–50, 76–77
context descriptor. See <Context> element

(server.xml file)
<Context> element (manager.xml file), 132, 159
<Context> element (server.xml file)

for balancer filter and standalone mode, 493
defining, 76–77
described, 76
JNDI resource configuration, 179–182

577

<Context> element (server.xml file)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 577

<Context> element (server.xml file) (continued)
for Persistent Session Manager, 174–175
reloadable attribute, 142–143
for virtual hosting, 380

context path
in CGI program URLs, 14, 139
deploy command (manager), 136
error messages, 157–158
in manager application parameters, 134
unique for Web applications, 135, 138, 157

<context-param> element (web.xml file), 101, 112
context.xml file, installing Web applications via, 142
Controller component of MVC architecture, 25
Controllers (JMeter), 401
cookies
balancer filter and, 496
HTTP Cookie Manager (JMeter), 409
role in modern browsers, 469
Servlet container use of, 15–16
for tracking state information, 468
user’s session token, 15

core classes (Java), 195–196, 201
Coyote Connectors

backward compatibility, 211
for CGI support, 220–221
HTTP/1.1 Connector

disabling for load balancing with Apache, 257
Tomcat 4.1, 212–216
Tomcat 5, 216–220

JK2 Connector, 235, 239
for SSI support, 222–223
for SSL, 215–216, 219–220
support unified in, 68
as Tomcat default, 47, 211

CoyoteConnector class
org.apache.coyote.tomcat4 package, 213
org.apache.coyote.tomcat5 package, 212

CoyoteServerSocketFactory class, 215
CSR (Certificate Signing Request), 365

D
data listeners (JMeter), 405
database connection pooling, 297–298, 300, 312–319
DataSource factory (JDBC), 182–184, 302
debug attribute of Connectors, performance and, 224,

225
debugging. See also remote debugging

JSPs, 556
Request Dumper Valve for, 49, 163, 172

default context, virtual hosting and, 376, 380, 386
default home page (Tomcat), 38
<DefaultContext> element (server.xml file)

described, 69, 76
JNDI resource configuration, 179–182
JNDI-based JDBC configuration, 301–303, 306–308

delegation model for class loaders
overview, 197–198
security and, 201
Tomcat class loaders and, 205–206

deleting or removing
default lifecycle listeners, 190–191
JAAS Realm users and roles, 361
JNDI Realm users and roles, 358
jsp-examples Web application, 323
ROOT Web application, 322
servlets-examples Web application, 323
Web applications permanently (Tomcat 5), 147–148
Web applications temporarily (Tomcat 4), 146–147
Web applications using Web interface, 152

deploy command (manager). See deploying Web
applications

deploying Web applications
installing versus, 136
from a local path (Tomcat 5), 140–141
manually, 130
redeploying, 142
remotely (Tomcat 5), 139–140
in Tomcat 4, 136–137
in Tomcat 5, 139–141
using manager Web interface, 153

deployment descriptors. See web.xml file
DeployTask class, 154–155
<description> element (web.xml file), 100, 112
destroy() method for Servlets, 15
DIGEST authentication, 338–339. See also User-

Database Realm
digest.bat or digest.sh utility, 345–346
directories

Ant development-time directory structure, 566
for configuration files, 52, 54
for core Java classes, 195–196
for deploying Web applications manually, 130
installing Web applications from, 140
META-INF directory, 95–96
standard extension, 196
tomcat account permissions, 327, 328
Tomcat installation directory, 34, 39, 41–43
for virtual hosting with Tomcat, 376
virtual, under IIS, 280–283, 287

578

<Context> element (server.xml file)

d 559028 Index.qxd 4/22/04 3:57 PM Page 578

for WAR files, 376
Web application structure, 91–92
WEB-INF directory, 94–95

directory services, JNDI and, 176–177
displaying or listing

deployed Web applications, 135
JNDI resources available, 143–144
OS and JVM properties, 144–145
security roles available, 144
session statistics, 148
Tomcat internals using JMX proxy Servlet, 149–150
Tomcat server status, 151

<display-name> element (web.xml file), 100, 112
dist target (Ant), 568, 569
<distributable> element (web.xml file), 100, 113,

472–473
distributed load testing (JMeter), 413–414
distributed services level (JMX), 430
distributed transactions, 303
distribution of Tomcat, 5–6, 160
DN (distinguished name), 355
DNS (Domain Name Service), 372, 374
“Document base does not exist...” error, 158
Document Type Definition (DTD), 99
doEndTag() method (JSP), 22
dollar sign ($) in $CATALINA_HOME/conf directory,

58–59, 130
domain names, fully qualified (FQDN), 370, 372
DOMConfigurator for Log4J, 532, 533
doStartTag() method (JSP), 22
downloading. See also Internet resources

Ant tool, 559
Apache binaries, 237
embedded Tomcat, 512
isapi_redirector.dll file, 275
JavaBeans Activation Framework libraries, 185
JavaMail libraries, 185
JSSE, 363
JVM, 29, 31
Log4J, 528–529
mod_jk2 Apache module binaries, 241
MX4J (open source JMX), 450
MySQL, 304, 349
OpenLDAP, 354
PoolMan, 312
Tomcat, 33, 40

DTD (Document Type Definition), 99
dynamic class reloading, 206
dynamic MBeans, 431
dynamic Web content, 11

E
Eclipse IDE, 553–554
EJB (Enterprise JavaBeans), 8
<ejb-local-ref> element (web.xml file), 113
<ejb-ref> element (web.xml file), 113
e-mail log messages (Log4J), 544–545
e-mail notification of build status (Ant), 570–572
embedded mode in Tomcat

accessing embedded Tomcat, 517–519
administrator role with, 503–504
Ant scripts

features, 506–507
Jakarta Commons Modeler and, 507–510
minimal embedded server startup, 512–517, 521
operational flow, 510–511

application scenarios, 503
approaches, 505
defined, 501
downloading embedded Tomcat, 512
hardware scenario requiring, 502
importance in system design, 502–504
installing embedded Tomcat, 512
internal versus external control, 506
Jakarta Commons Modeler, 507–510
JBuilder IDE and, 556
manager application with, 519–522
manager role for authentication, 520
MBean Server role, 505–506
minimal embedded server startup, 512–517
NetBeans IDE and, 554
overview, 505–507, 522–523
shutting down the embedded server, 519
testing the embedded server, 517–519

enableLookups attribute of Connectors, performance
and, 225, 226

encapsulation by JSP tag libraries, 22
“Encountered exception” error, 157
Endorsed Standards Override Mechanism, 198, 203,

208
Engine component

application server configuration, 68–70
JMX manageability, 433
for load balancing with Apache, 257–258
overview, 48

<Engine> element (server.xml file)
Access Log Valve configuration, 164
application server configuration, 68–70
attributes, 68–69
JMX-manageable attributes, 433

579

<Engine> element (server.xml file)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 579

<Engine> element (server.xml file) (continued)
jvmRoute attribute, 257–258, 267
for load balancing with Apache, 257–258, 267
subelements, 69–70
for virtual hosting, 379

Enterprise JavaBeans (EJB), 8
<env-entry> element (web.xml file), 109–110, 114
<Environment> element (server.xml file),

179–180, 439
Environment object, 439
environment variables. See also specific variables

for class paths, 196, 197
for configuration directory, 52–53
finding internal classes, 387–388, 390–391
for JVM installation, 30–31
for JVM memory limits, 392–393
in startup files, 256
for Tomcat installation, 34

error messages. See also troubleshooting
HTTP 404 error, 377, 385, 386
manager application, 157–158
“port number is in use,” 43

<error-page> element (web.xml file), 105–106, 114
/etc/profile, running tomcat.sh from (Linux), 32
europa.dom virtual host example

directory structure, 376, 385, 387–388
httpd.conf file, 383, 384
IP addresses, 375
JSP file, 380
server.xml file, 377–380, 388–389
Tomcat 5 configuration, 379–381
workers2.properties file, 384, 385–386, 390

Event Listener design pattern (JMeter), 401
exclamation mark (!) for protecting manager URLs

(!/), 134–135
extension class loader, 196–197
external Tomcat

embedded Tomcat and, 506
NetBeans IDE and, 554–555

F
fail-over behavioral pattern

fail-over defined, 460
in-memory session replication and, 482
overview, 460–461
Persistent Session Manager with file store and,

485–486
sudden fail-over, 486
tracking state information, 461

FAT32 file system (Windows), 326
file system security, 326–327, 328, 336–337
files, logging to (Log4J), 539
<filter> element (web.xml file), 101–102, 115,

493–494
<filter-mapping> element (web.xml file), 115–116
filters
balancer, for load balancing, 490–497
Remote Address Filter, 170
Remote Host Filter, 170
Request Filter Valve, 163, 170–172
Servlet, as alternative to Valves, 49

form-based authentication, 339
FQDN (Fully Qualified Domain Name), 370, 372

G
Gaussian random timer (JMeter), 403
GET command (HTTP), 372–373
global resource name and type (JNDI), 143
<GlobalNamingResources> element (server.xml

file), 63
GlobalResourcesLifecycle class, 188
GNU Project, 6–7
GPL (General Public License), 6–7
GRANT command (MySQL), 350
grant entry (Security Manager)

granting permissions to applications, 329
permissions available, 330–331
syntax, 329–330

Graph Full Results listener (JMeter), 403, 404
Graph Results listener (JMeter), 403, 404
Grinder load tester, 419
gzip files, installing JVM from, 31–32

H
HA (high-availability) systems. See also fail-over

behavioral pattern
clustering and, 457, 459
high availability defined, 457
in-memory session replication and, 482
Persistent Session Manager with file store and,

485–486
hash algorithms (DIGEST), 338–339
heap size

JVM performance and, 225, 226
optimizing Java memory allocation, 417–418
virtual hosting and, 391–393

hello.jsp example, 128–129

580

<Engine> element (server.xml file)

d 559028 Index.qxd 4/22/04 3:57 PM Page 580

history of Apache, 2
horizontal scalability, 457, 459
Host component. See also virtual hosting

application server configuration, 72–76
JMX manageability, 435
nested Logger in virtual host, 76
overview, 49

<Host> element (server.xml file)
application server configuration, 72–76
attributes, 74–75
described, 69
JMX-manageable attributes, 435
for manager application, 159
for standalone server, 380
subelements, 75–76
for virtual hosting, 379

Host: header (HTTP), virtual hosting and, 373, 374,
377, 379

host restriction, 368
hostname parameter
deploy command (manager), 136
manager application syntax, 134

HTML format for Log4J, 540–542
HTMLManagerServlet class, 151
HTTP Authorization Manager (JMeter), 409
HTTP Connectors

application server configuration, 66, 67, 68
for CGI support, 220–221
Coyote as Tomcat default, 47, 211
Coyote Connector, 47, 68
Coyote HTTP/1.1 (Tomcat 4.1)

adapters for earlier Tomcat versions, 212
configuring, 213–215
SSL configuration, 215–216

Coyote HTTP/1.1 (Tomcat 5)
configuring, 216–219
disabling for load balancing with Apache, 257
SSL configuration, 216–219

described, 67
disabling for clustering, 471
disabling for virtual hosting, 381
HTTP/1.1

application server configuration, 66, 67
Coyote Connector versus, 212
Tomcat 4.0, 212
for virtual hosting, 378–379

overview, 47, 212
performance tuning, 224–226
port specification for, 212
for running Tomcat behind a proxy server, 223–224

for SSI support, 222–223
for SSL support, 215–216, 219–220
support unified in Coyote Connector, 68
Web server Connectors versus, 211

HTTP Cookie Manager (JMeter), 409
HTTP 404 error, virtual hosting and, 377, 385, 386
HTTP Header Manager (JMeter), 409
HTTP monitor (JBuilder), 556
HTTP protocol, name-based virtual hosting and,

372–373, 374
HTTP Proxy Server (JMeter), 411–413
HTTP Request Defaults (JMeter), 409
HTTP requests with JMeter, 398–400
HTTP requests with manager application

browser or scripts for, 129
deploy command, 136–137, 139–142
format for, 134–135
install command, 136, 137–139
list command, 135
protecting URLs with !/, 134–135
querying internals using JMX proxy Servlet, 149–150
reload command, 142–143
remove command, 146–147
resources command, 143–144
roles command, 144
serverinfo command, 144–145
sessions command, 148
setting internals using JMX proxy Servlet, 150
start command, 146
stop command, 145
undeploy command, 147–148

HTTP servers, combining Tomcat with, 418
HttpConnector class, 212
httpd.conf file
<Listen> directive, 372
mod_jk2 Apache module directives, 247
SSL directives for Apache, 251
<VirtualHost> section, 371, 372, 373–374,

382–383
HTTPS client certificate authentication, 339–340

I
IANA (Internet Assigned Numbers Authority), 375
<icon> element (web.xml file), 100, 116
IDEA (IntelliJ), 552
IDEs (Integrated Development Environments)

Eclipse, 553–554
IntelliJ IDEA, 552
JBuilder, 555–557

581

IDEs (Integrated Development Environments)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 581

IDEs (Integrated Development Environments) (continued)
NetBeans, 554–555
remote debugging support, 551–552
Web sites, 551

IE. See Internet Explorer
IIS (Internet Information Server)

combining Tomcat with, for performance, 418
connecting Tomcat with

adding the ISAPI filter to IIS, 283–285
configuring the AJP 1.3 Connector, 274
configuring the jk2.properties file, 280
configuring Tomcat workers, 277–280
creating a virtual directory, 280–283
installing the ISAPI filter, 274–275
steps involved, 272
testing the setup, 285–286
testing Tomcat and IIS installations, 273–274
updating the Registry, 275–277

default Web page, 273
keep-alive option, 290
log file, 287–288
market share, 2
performance tuning, 289–291
SSL with, 291
starting the server, 273
timeout, 290
troubleshooting, 287–288
Web site hits per day, 289

iis_redirect2.reg script, 277
index.htm or .html or .jsp file

for testing the Apache load balancer, 265–266
Web application example, 128
welcome page handling, 83–84, 93

inheritance of logging behavior, 49
init() method for Servlets, 14
init target (Ant), 155
in-memory session replication

advantages and disadvantages, 467–468
<Cluster> element (server.xml file), 477–479
HA fail-over, 482
load balancing for requests with same session,

481–482
overview, 466–467
SimpleTcpCluster implementation, 476
test JSP for, 479–480
testing, 480–481
Tomcat components for, 475–476
<Valve> element (server.xml file), 479

in-process workers versus plug-in workers, 239–240

install command (manager). See also deploying
Web applications

config_url option (Tomcat 4.1), 139
deploy command versus, 136
general format, 138
installing an application in Tomcat 4, 137–139
in Tomcat 4.0 versus 4.1, 137–138, 139
Tomcat 5 and, 139
war_url option (Tomcat 4.1), 139

installing
Ant tool, 560
certificate from a CA, 364–365
embedded Tomcat, 512
ISAPI filter, 274–275
JavaBeans Activation Framework libraries, 185
JavaMail libraries, 185
JMeter, 396
JNDI driver, 355
JSSE, 363
JVM on Linux, 31–33
JVM on Windows, 29–31
mod_jk2 Apache module, 241–242
testing the Tomcat installation on Windows, 34–39
Tomcat on Linux, 40–41
Tomcat on Windows using Windows Installer, 33–34,

131
Tomcat on Windows using ZIP file, 39–40
troubleshooting Tomcat installation, 43–44
Web applications in Tomcat 4, 136, 137–139
Web applications in Tomcat 5, 139–142

instrumentation level (JMX), 426
Integrated Development Environments. See IDEs
IntelliJ IDEA, 552
interfaces

Connector, 212, 213, 230
JNDI as, 176
manager application, 129
Swing (JMeter), 397

Interleave Controller (JMeter), 406
internals (Tomcat)

finding internal classes, 387–388, 390–391
querying using JMX proxy Servlet, 149–150
querying using queryjmx utility, 451–454
setting using JMX proxy Servlet, 150

Internet Assigned Numbers Authority (IANA), 375
Internet Explorer (IE)

cookies and, 469
HTTP Proxy Server (JMeter) configuration, 413

Internet Information Server. See IIS

582

IDEs (Integrated Development Environments)

d 559028 Index.qxd 4/22/04 3:57 PM Page 582

Internet resources. See also downloading
Ant tool information, 565
Apache documentation, 238
Apache site, 3
CGI information, 14
class loader information, 200
common log file format, 163
history of Apache, 2
IANA RFC 1918 (private networks), 375
IDE sites, 551
IDEs, 551
JAAS Realm information, 358
Java permission classes information, 330
jkstatus Web page, 240, 267–268
JNDI information, 353
JSSE information, 363
J2EE and J2SE platforms, 7
J2EE licensees, 10
license information, 7
Netscape Directory Server site, 353
open source load testers, 419
OpenLDAP information, 353, 354–355
OSI site, 7
PoolMan site, 312
Security Manager information, 332
Tomcat default home page, 38
Tomcat documentation, 1
Tomcat support network, 44
Tomcat troubleshooting information, 43
user lists (Tomcat), 44

Internet Services Application Programming Interface fil-
ter. See ISAPI filter

“Invalid context path specified” error, 157
invoker Servlet, 78
IP addresses for private networks, 375
IP-based virtual hosting

aliasing in, 370–371
avoiding common mistakes, 372
defined, 370
implementing in Apache, 371
multihoming hosts and, 370
overview, 370–371

ISAPI (Internet Services Application Programming Inter-
face) filter

adding to IIS, 283–285
confirming installation, 287
described, 271
installing, 274–275
logging, 287

role of, 272
updating the Windows Registry for, 275–277

isapi_redirector.dll file, 274–275

J
JAAS (Java Authentication and Authorization Service)

Realm
adding or deleting users and roles, 361
changing the Java security policy, 360–361
configuring the Provider, 360
configuring the Realm directive, 361
described, 72
further information, 358
obtaining a Provider, 359
overview, 358
setup for authentication technology, 359
steps for configuring, 359
terminology, 358

Jakarta Commons Modeler, 507–510
Jakarta project. See also ISAPI filter; JMeter load test-

ing software
ISAPI filter provided by, 271
JMeter project, 396
subprojects, 3, 4–5
Tomcat project, 4

Jakarta Web site, 33
Java API for XML Processing (JAXP), 198, 203, 208
Java Authentication and Authorization Service (JAAS)

Realm. See JAAS Realm
Java Community Process (JCP), 423
Java compiler permissions, 84–85
Java Database Connectivity. See JDBC
Java Management Extensions. See JMX
Java Message Service (JMS), 8
Java Naming and Directory Interface. See JNDI
Java permission classes, 330–331
Java Secure Socket Implementation (JSSE), 363–365
Java Servlets. See Servlets
Java Transaction API (JTA), 9
Java 2 Enterprise Edition platform. See J2EE platform
Java 2 Standard Edition (J2SE) platform, 7, 9
Java Virtual Machine. See JVM
Java Web site, 29, 31
JavaBeans Activation Framework libraries, 185
javac command, 31, 32
JAVA_HOME environment variable, 30
java.lang.ClassLoader class, 200
java.lang.RuntimePermission class, 330

583

java.lang.RuntimePermission class

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 583

JavaMail
context descriptor for, 184–185
described, 9, 178
downloading and installing, 185
libraries for, 185
overview, 184
Security Manager and, 336
sending e-mail, 186–187
sendmail.jsp, 186
SendMailServlet, 185–186
session configuration, 184–187
web.xml file for, 185

JAVA_OPTS environment variable, 392–393
JavaServer Pages. See JSPs
JAXP (Java API for XML Processing), 198, 203, 208
JAX-RPC, 9
JBoss application server, 10
JBuilder IDE, 555–557
JCP (Java Community Process), 423
JDBC (Java Database Connectivity)

alternative configuration for legacy code, 311–312
alternative connection pool managers, 312–319
basics, 294–299
connection pooling, 297–298
connections to RDBMSs, 295
DataSource factory, 182–184, 302
deploying third-party pools, 319
described, 178
driver types, 296–297
JNDI-based configuration

MySQL example, 304–310
<Resource> element (server.xml file), 301–302
<ResourceParams> element (server.xml file),

301–303
steps involved, 300–301
testing the configuration, 310–311

with MySQL, 301–302, 304–310
operation model, 294–295
with Oracle, 302–303
Persistent Session Manager with JDBC store, 466,

487–490
PoolMan pool manager with, 312–319
Realm component, 72, 347–353
security realm, 347–353
steps in programming, 295
Tomcat support for, 182
Tomcat versions and, 298–299
transactions and distributed transaction support, 303
versions, 295–296

JDBC Realms
adding tomcat user to MySQL, 350–351
configuring with digested passwords, 349
mapping columns to the required view, 347–349
MySQL-based, defining, 351–352
overview, 72, 347
testing, 352–353

JDBCTest.jsp JNDI lookup example, 309–310
JK Connectors for Web servers, 234
jkstatus worker, 240, 263, 267–268
JK2 Connectors. See also AJP

for Apache Server, 237, 238–239
application server configuration, 67–68
Coyote Connector, 235, 239
described, 67
jk2.properties file configuration, 247–248
mod_jk2 Apache module, 238, 241–242, 247
for Web servers, 234–235

jk2.properties file
for load balancing with Apache, 258–259
for Tomcat with Apache, 247–248
for Tomcat with IIS, 280

JMeter load testing software. See also specific features
alternative products, 419
assertions, 410–411
Config Elements, 408–409
configuration options, 398
Controllers, 401
data validation using assertions, 410–411
defined, 5
for distributed load testing, 413–414
establishing scalability limitations, 416
Event Listener design pattern, 401
further analysis, 416
HTTP Proxy Server, 411–413
HTTP requests, 398–400
installing, 396
interpreting test results, 414–416
list of features, 401
Listener feature, 403–406
Logic Controller feature, 406–408
Observer, 401
overview, 396
running tests, 400–401
Sampler feature, 408
setting goals and testing them, 414–416
starting, 396
test plans, 397–401, 406–407
thread groups, 397–398

584

JavaMail

d 559028 Index.qxd 4/22/04 3:57 PM Page 584

Timer feature, 402–403
viewing test results, 401, 402

jmeter shell script, 396
jmeter.bat file, 396
JMS (Java Message Service), 8
JMX (Java Management Extensions)

accessing via manager proxy
examples, 446–447
JNDI initial context setup, 452
modifying MBean attributes, 447–450
operation of the JMX proxy, 444–445
query operation general form, 446
remote probing with queryjmx, 452–454
remotely, via RMI Connector, 450–452
URLs for accessing, 445

architecture
agent level, 427–430
distributed services level, 430
instrumentation level, 426
overview, 424–425

described, 9
embedded mode in Tomcat and, 505–506
JSR-3 specification, 423–424
J2EE manageability requirement, 421–423
manageable elements in Tomcat 5

architectural components, 432–435
nested components, 436–437
overview, 431–432
resource objects, 439–444
run-time data objects, 437–438

MBean Server component, 427–428
MBeans types, 430–431
MX4J (open source JMX), 450–451
proxy Servlet, 149–150, 189
Remote API, 430
security issues, 454

JMX proxy. See also manager application
examples, 446–447
JNDI initial context setup, 452
modifying MBean attributes, 447–450
operation of the JMX proxy, 444–445
query operation general form, 446
remote probing with queryjmx, 452–454
remotely, via RMI Connector, 450–452
URLs for accessing, 445

<jmx-operation> task (Modeler), 510
<jmx-service> task (Modeler), 508–509
JNDI (Java Naming and Directory Interface)

configuring resources via, 179–182
data source lookup using, 309–310

defined, 176
directory services unified by, 176–177
emulation in Tomcat 5, 299–300
further information, 353
global resource name and type, 143
information obtained through, 176
JavaMail session configuration, 184–187
JDBC DataSource configuration, 182–184
JNDI-based JDBC configuration, 301–311
LDAP driver and, 176
listing resources available, 143–144
overview, 176–177
PoolMan pool manager with, 317–319
Realm component, 72, 353–357
security realm, 353–358
Tomcat support for, 177–178
typical Tomcat JNDI resources, 178

JNDI Realms
adding roles and users, 357
configuration attributes available, 353–354
configuring, 354–355, 357
creating the LDAP schema, 355–356
creating user access to the directory, 357
described, 72
further information, 353
installing JNDI driver, 355
populating the LDAP directory, 356–357
removing a role or user, 358
storing roles in the JNDI directory, 356

jni worker, 240–241
JServ Connectors, 231–234
JSP containers in Web containers, 20–21
JSP tag libraries (extensions), 21–24, 94–95
<jsp-config> element (web.xml file), 116–117
jsp-examples Web application, 322, 323
JSPs (JavaServer Pages)

ASPs versus, 18–19
compilation into Servlet classes, 19
debugging, 556
example page using Struts, 22–24
hello.jsp example, 128–129
for in-memory session replication, 479–480
limitations for large projects, 19–20
Model 1 architecture, 19, 20
Model 2 (MVC) architecture, 25–26
page assembly, 20, 21
Servlets versus, 19
tag libraries, 21–24
Tomcat as Servlet container for, 1, 502
troubleshooting IIS rendering, 287–288

585

JSPs (JavaServer Pages)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 585

JspServlet in default web.xml file, 78–79
JSR-3 specification, 423–424
JSSE (Java Secure Socket Implementation), 363–365
JTA (Java Transaction API), 9
J2EE (Java 2 Enterprise Edition) platform

APIs, 8–9
application servers, 9–10
Endorsed Standards Override Mechanism, 198, 203,

208
J2EE-compliant defined, 10
J2SE as foundation for, 7
licensees list online, 10
manageability requirement, 421–423
obtaining, 7
overview, 7–9
standard class loaders, 194–196
vendor neutrality and, 10

J2SE (Java 2 Standard Edition) platform, 7, 9
JVM (Java Virtual Machine). See also Security Manager

alternatives to Sun, 418
API services, 7
bootstrap class loader in, 195–196
delegation model for class loaders and, 197–198
downloading, 29
installing on Linux, 31–33
installing on Windows, 29–31
limited to one Server instance, 47
listing properties, 144–145
memory limits for virtual hosting, 391–393
memory settings and HTTP Connector performance,

225, 226
security, 328–337
separate, for virtual hosts, 387–391
server VM optimization, 417

K
keep-alive option (HTTP), 290
keytool command, 363–365
Knuth, Donald (computer guru), 416

L
Layout components (Log4J), 527, 531
lazy loading (on demand), 199
lb worker, 240, 261–263
LDAP (Lightweight Directory Access Protocol), 176,

353, 355–357
ldapadd tool, 357
ldapremove command, 358
Level components (Log4J), 527–528

LGPL (Lesser General Public License), 7
lib directory, 95, 96
libraries

for JavaMail sessions, 185
JSP tag libraries, 21–24, 94–95
lib directory for, 95

licensing for Tomcat, 5–7
lifecycle listeners

defined, 187
displaying MBeans using JMX proxy Servlet, 189
lifecycle events sent by Tomcat components, 187
<Listener> element configuration, 187–188
removing default listeners, 190–191
Tomcat 5 configuration, 188–191

Lightweight Directory Access Protocol (LDAP), 176,
353, 355–357

Linux
building mod_jk2 Apache module on, 242
digest utility bug fix, 346
file system security, 328
installing JVM from RPM, 32–33
installing JVM from tar/gzip files, 31–32
installing Tomcat on, 40–41
JSSE certificate keystore preparation, 363
running JMeter, 396
starting Tomcat in debugging mode, 552
tomcat account for, 324, 325–326
virtual interface configuration, 371

list command (manager), 135
list target (Ant), 156
<Listen> directive (httpd.conf file), 372
<Listener> element (server.xml file)

attributes, 188
described, 63, 70
for lifecycle listener configuration, 187–188

<listener> element (web.xml file), 102, 118
Listener feature (JMeter)

Assertion Results listener, 406
data listeners, 405
overview, 403
types of listeners (table), 403
visualization listeners, 404

listeners
Ant tool, 572
defined, 50
lifecycle, 187–191

listing. See displaying or listing
load balancing. See also lb worker

with Apache
CATALINA_HOME environment variable for, 256
disabling the Coyote HTTP/1.1 Connector, 257

586

JspServlet in default web.xml file

d 559028 Index.qxd 4/22/04 3:57 PM Page 586

Engine component configuration, 257–258
jk2.properties file configuration, 258–259
need for, 255
setting AJP Connector ports, 256
steps involved, 255–256
worker configuration, 258–265
workers2.properties file configuration, 263–265

balancer filter for application-level, 490–497
for clustering front end, 473–475
with IIS, 291
for requests with same session, 481–482
testing the Apache load balancer

with different load factors, 269–270
index.jsp file for, 265–266
for round-robin behavior, 267–269
for sticky sessions, 266–267

Load Runner software (Mercury Interactive), 419
load testing. See also JMeter load testing software

alternatives to JMeter, 419
defined, 395
establishing scalability limitations, 416
importance of, 395–396
interpreting test results, 414–416
optimization techniques, 416–419
overview, 419–420
setting goals and testing them, 414–416

<locale-encoding-mapping-list> element
(web.xml file), 118

log file rolling (Log4J), 539
Log4J logging API

Appenders, 527, 533
CLASSPATH environment variable, 529
components, 526–528
configuration file example, 528
configuring

programmatically, 530–531
using simple properties file, 529–530
using XML configuration file, 532–533

defined, 5, 525
downloading, 528–529
format modifiers, 549
Layouts, 528
levels, 527–528
Loggers, 526, 533
logging

to the console, 538
to a file, 539
HTML format for, 540–542
from a Java class, 534–535

log file rolling, 539
meta level options, 538
to multiple destinations, 542–543
to native system logs, 545–548
to NT event log, 545–548
to SMTP server, 544–545
from a Web application, 535–538

overview, 526, 550
PatternLayout formatting, 548–549
performance tips, 549

Logger components (Log4J)
behavior, 533
configuring Log4J programmatically, 530, 531
overview, 526
XML configuration file, 532

Logger components (Tomcat)
Access Log Valves versus, 163
application server configuration, 70–71
Coyote HTTP/1.1 Connector and, 213–214, 217
JMX manageability, 436
nested in virtual host, 76
overview, 49
standalone server configuration, 379–380
for workers2.properties file, 244, 278

<Logger> element (server.xml file)
application server configuration, 70–71
attributes, 71
described, 70, 76
JMX-manageable attributes, 436
standard implementations, 71
for virtual hosting, 379–380

Loggers (Ant), 570–572
logging. See also Log4J logging API

Access Log Valve, 163–166
IIS, 287–288
ISAPI filter, 287
virtual host, 379–380

Logic Controller feature (JMeter), 406–408
logical mapping for Servlet access, 17, 80–82
login form for authentication, 340–341
<login-config> element (web.xml file)

authentication and, 340
for manager role, 133
for multiple sign-on, 167
Servlet 2.3-style, 108–109
Servlet 2.4-style, 118–119

LoginContext (JAAS Realm), 358
logs directory, 42
Loop Controller (JMeter), 407

587

Loop Controller (JMeter)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 587

M
mail sessions. See JavaMail
MailLogger class (Ant), 570–571
MailLogger.properties file, 571
manageability requirement (J2EE), 421–423
Managed Beans. See MBeans
management tools. See admin configurator application;

manager application
manager application. See also JMX proxy

Ant-based interface, 154–157
configuring, 132–133
deploy command, 136–137, 139–142
with embedded Tomcat, 519–522
enabling access to, 130–131
error messages, 157–158
format for commands, 134–135
install command, 136, 137–139
installing versus deploying applications, 136
list command, 135
querying internals using JMX proxy Servlet, 149–150
reload command, 142–143, 152
remove command, 146–147, 152
resources command, 143–144
roles command, 144
sample Web application, 128–129
security considerations, 158–159, 322–323
serverinfo command, 144–145
sessions command, 148
setting internals using JMX proxy Servlet, 150
start command, 146, 152
stop command, 145, 152
tasks performed by, 129–130
undeploy command, 147–148
ways of interacting with, 129
Web interface, 150–153
web.xml file for, 132–133

<Manager> element (Persistent Session Manager),
173–174

<Manager> element (server.xml file)
JMX-manageable attributes, 437
for Persistent Session Manager with file store, 483
for Persistent Session Manager with JDBC store, 487

manager role
adding to embedded Tomcat, 520
passwords, 130, 131, 157, 159, 322
security considerations, 132–133, 158–159
tomcat-users.xml file entries, 130

ManagerServlet class, 151

manager.xml configuration file, 132, 322–323
MANIFEST.MF file, 95–96
master server for clustering, 460
master-backup topological pattern, 460
maxKeepAliveRequest attribute of Connectors,

performance and, 225
MBean Server component, 427–428, 505–506
<mbean> subelement (Modeler), 509
<mbean-descriptor> task (Modeler), 509–510
MBeans (Managed Beans)

connectors, 428
defined, 430
displaying using JMX proxy Servlet, 189
exposed objects in Tomcat 5

architectural components, 432–435
nested components, 436–437
overview, 431–432
resource objects, 439–444
run-time data objects, 437–438

JMX agent level and, 427–430
JMX instrumentation level and, 426
MBean Server component, 427–428, 505–506
modifying attributes with JMX proxy, 447–450
overview, 426
protocol adapters, 428–429
types of, 430–431

McCool, Rob (Web server developer), 2
MD5 algorithm, 339, 345
memory

HTTP Connector performance and, 225, 226
in-memory session replication, 466–468, 475–482
optimizing Java allocation, 417–418
virtual hosting and, 391–393

MemoryRealm, 72, 342–343
Mercury Interactive’s Load Runner software, 419
<message-destination> element (web.xml file),

119
<message-destination-ref> element (web.xml

file), 119–120
meta level logging options (Log4J), 538
META-INF directory, 95–96
Microsoft Active Server Pages (ASPs), 18–29
Microsoft ASP.NET, 18
Microsoft Internet Information Server. See IIS
Microsoft Windows. See Windows
migration, Servlet container issues for, 16
<mime-mapping> element (web.xml file), 82–83,

104, 120

588

mail sessions

d 559028 Index.qxd 4/22/04 3:57 PM Page 588

min.xml minimal embedded startup script (Ant),
512–517, 521

Model component of MVC architecture, 25
model MBeans, 431
Model View Controller (MVC) architecture, 25–26
Modeler. See Jakarta Commons Modeler
<modelerRegistry> task (Modeler), 509–510
mod_jk2 Apache module

Apache Server versions and, 242
balancer filter versus, 490
building on Linux/Unix, 242
building on Windows, 242
for clustering load-balancing front end, 463, 473–475
downloading binaries, 241
httpd.conf file directives, 247
load balancing supported by, 255
load factor, 463
overview, 238
round-robin behavior, 267–269
shared hosting compatibility and, 369
sticky sessions enabled by, 463–464
for sticky sessions with no session sharing, 464
for sticky sessions with shared file store, 466,

484–485
virtual hosting and, 369, 381–382, 385, 386

mod_ssl extension, setting up in Apache, 254
Module Controller (JMeter), 407
Mozilla browser

cookies and, 469
HTTP Proxy Server (JMeter) configuration, 413

multihoming hosts, 370. See also IP-based virtual
hosting

multiple destinations, logging to (Log4J), 542–544
multiple Tomcat instances on one machine, 469–470
MVC (Model View Controller) architecture, 25–26
MX4J (open source JMX), 450–451
myconfig.file certificate generation file, 252
MySQL

adding JDBC JNDI resource to default context,
306–310

adding tomcat user, 350–351
defining a JDBC Realm based on, 351–352
downloading, 304, 349
JNDI-based JDBC configuration, 301–302
read-only user setup, 306
table setup for JDBC authentication, 349–350
test database creation, 304–306
transactions and distributed transaction support, 303

N
name-based virtual hosting

avoiding common mistakes, 374–375
defined, 370
implementing in Apache, 373–374
overview, 372–373

namespaces, unique for class loaders, 199, 201–202
NamingResources object, 439
NAT (Network Address Translation), 496–497
National Center for Supercomputer Applications

(NCSA), 2
nested components

JMX manageability, 436–437
Logger in virtual host, 76
Tomcat 4 architecture, 46
Valves as, 162

NetBeans IDE, 554–555
Netscape Directory Server LDAP implementation, 353
Netscape 6/Mozilla browser

cookies and, 469
HTTP Proxy Server (JMeter) configuration, 413

Network Address Translation (NAT), 496–497
NICs (network interface cards), aliasing and, 370–371
“No context exists for path” error, 158
“No context path specified” error, 158
“No global JNDI resources” error, 158
“No user database is available” error, 158
NT event log, logging to (Log4J), 545–548
NT Service component, 34, 36–37
NTFS file system (Windows), 326

O
Observer (JMeter), 401
Once Only Controller (JMeter), 407
open MBeans, 431
Open Source Initiative (OSI), 7
open source JMX (MX4J), 450–451
open source load testers, 419
OpenLDAP protocol, 353, 354–355
OpenLoad load tester, 419
optimization

after load testing, 416–419
Java optimizations, 417–418
premature, ills of, 416
Tomcat optimizations, 418–419

Oracle, JNDI-based JDBC configuration for, 302–303
org.apache.catalina package, Connector

interface, 212, 213, 230

589

org.apache.catalina package, Connector interface

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 589

org.apache.catalina.ant package, DeployTask
class, 154–155

org.apache.catalina.connector.warp package,
WarpConnector class, 230

org.apache.catalina.http package,
HttpConnector class, 212

org.apache.catalina.mbeans package
GlobalResourcesLifecycle class, 188
ServerLifecycle class, 188

org.apache.catalina.servlets package
HTMLManagerServlet class, 151
ManagerServlet class, 151

org.apache.coyote.tomcat5 package,
CoyoteConnector class, 213

org.apache.coyote.tomcat4 package
Ajp13Connector class, 230
CoyoteConnector class, 213
CoyoteServerSocketFactory class, 215

OS properties, listing, 144–145
OSI (Open Source Initiative) database, 7

P
packages

restriction by catalina.properties file, 87
split among class loaders, 207

packet structure for protocols, 232–233
passwords
admin role, 55, 131, 322
in Ant scripts, 157
changing for MySQL users, 351
digested (JDBC Realms), 349
digested (UserDatabase Realm), 345–347
manager role, 130, 131, 157, 159, 322
multiple sign-on without the Single Sign-on Valve,

168–169
Single Sign-on Valve and, 166

PATH environment variable (Windows), 30–31
PatternLayout formatting (Log4J), 548–549
performance tuning

clustering and performance, 497–498
for HTTP Connectors, 224–226
for IIS with Tomcat, 289–291
for Log4J, 549
virtual memory use, 391–393

permissions. See also ACLs; Security Manager
in catalina.policy file, 84–87, 332–335
Java permission classes, 330–331
for tomcat account, 326–327, 328

Persistent Session Manager
configuring, 173–175
with file store, 465–466, 482–486
with JDBC store, 466, 487–490
need for persistent sessions, 172–173

pluggable APIs, 8
plug-in workers versus in-process workers, 239–240
pool manager (JDBC), 298
PoolMan pool manager

deploying, 313
downloading, 312
obtaining JDBC connections with JNDI mapping,

317–319
obtaining JDBC connections without JNDI lookup,

315–316
overview, 312
testing with a legacy driver, 316–317
testing with JNDI-compatible lookup, 319
XML configuration file, 313–315

poolman.xml configuration file, 313–315
portnumber parameter
deploy command (manager), 136
manager application syntax, 134

ports
for AJP 1.3 Connector, 243, 274, 288, 471–472
for clustering, 471–472
conflicts with HTTP Proxy Server (JMeter), 412
for Connectors, unique numbers for, 47
for load balancing with Apache, 256–257
“port number is in use” error, 43
for SHUTDOWN command, 324
specifying for HTTP Connectors, 212
SSL, 215, 220
for Tomcat on Linux, 40–41
for Tomcat on Windows, 34, 39
for virtual hosting, 379

prepare target (Ant), 567
primordial (bootstrap) class loader, 195–197
Principal (JAAS Realm), 358
privileges (MySQL), 350, 351
<project> element (Ant build files), 561
<property> element (Ant build files), 561
PropertyConfigurator for Log4J, 532
protocol adapters for MBean Server, 428–429
protocols. See also specific protocols

name in URLs, 14
Web server Connector, 231–233

Provider (JAAS Realm), 358, 359–360

590

org.apache.catalina.ant package, DeployTask class

d 559028 Index.qxd 4/22/04 3:57 PM Page 590

proxy servers. See also JMX proxy
JMeter HTTP Proxy Server, 411–413
running Tomcat behind, 223–224
Tomcat access blocked by, 44

proxy Servlet (JMX)
displaying MBeans using, 189
querying Tomcat internals using, 149–150
setting Tomcat internals using, 150

public resources, accessing, 92–93
PUT command (HTTP), 137

Q
query string in URLs, 14
querying Tomcat internals using JMX proxy Servlet,

148
queryjmx utility, 451–454
quick reference (table) (web.xml file), 110–111

R
Random Controller (JMeter), 407
random timers (JMeter), 403
RDBMSs (relational database management systems),

293. See also JDBC; MySQL
Realm component. See also specific Realms

application server configuration, 72
JAAS Realm, 358–361
JDBC Realms, 347–353
JMX manageability, 436
JNDI Realms, 353–358
for manager application, 130, 158–159
overview, 48, 341–342
security realm users and roles, 342
standard types of Realms, 72
UserDatabase Realm, 72, 130, 342–347

<Realm> element (server.xml file)
application server configuration, 72
described, 70, 76
for JAAS Realm, 361
for JDBC Realm, 348–349, 351–352
JMX-manageable attributes, 436
for JNDI Realms, 357

Recording Controller (JMeter), 408
recovery options (Windows), 36–37
redirection by balancer filter, 490–491, 496
regedit command (Windows), 275
Registry (Windows), updating for the ISAPI filter,

275–277

regular expressions with JMeter load testing software,
412

relational database management systems (RDBMSs),
293. See also JDBC; MySQL

reload command (manager), 142–143, 152
“Reload not supported on WAR...” error, 158
Remote Address Filter, 170
Remote API (JMX), 430
remote debugging

with Eclipse, 554
IDE support for, 551
with IntelliJ IDEA, 551–552
with JBuilder, 556–557
with NetBeans, 555
starting Tomcat in debugging mode, 551–552

Remote Host Filter, 170
remotely deploying Web applications, 139–140
remove command (manager), 146–147, 152
removing. See deleting or removing
request distribution, hardware-assisted with NAT,

496–497
Request Dumper Valve, 49, 163, 172
request dumping, defined, 49
Request Filter Valve, 163, 170–172
request processors, 443
request sharing in Tomcat/Apache virtual hosting,

385–386
request.getServerName() function, 214, 223, 377
request.getServerPort() function, 214, 223
<Resource> element (server.xml file)

attributes, 180–181
described, 179, 180–181
JavaMail session configuration, 184
JDBC DataSource configuration, 182–183
JMX-manageable attributes, 439–440
JNDI-based JDBC configuration, 301–302, 306–307

Resource object, 439–440
<resource-env-ref> element (web.xml file),

106–107, 120
<ResourceLink> element
manager.xml file, 132, 143, 144, 158
server.xml file, 179, 181–182, 440

ResourceLink object, 440
<ResourceParams> element (server.xml file)

attributes, 181
described, 179, 181
JavaMail session configuration, 184
JDBC DataSource configuration, 183
JNDI-based JDBC configuration, 301–303, 306–308

591

<ResourceParams> element (server.xml file)

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 591

<resource-ref> element (web.xml file)
JavaMail session configuration, 185
JDBC DataSource configuration, 184
JNDI-based JDBC configuration, 308
Servlet 2.3-style, 106–107
Servlet 2.4-style, 120–121

resources command (manager), 143–144
response time, clustering and, 498
reusability, MVC architecture and, 26
Role object, 438
roles command (manager), 144
Root Certificate, 365
ROOT Web application, 92, 321, 322
round-robin behavior

for load balancing with sticky sessions, 463–464
testing the Apache load balancer, 267–269

RPMs, installing JVM from, 32–33
rules.xml file for balancer filter, 494–495

S
Sampler feature (JMeter), 408
scalability. See also load testing

clustering and, 457, 458–459
defined, 395, 420
distributed load testing and, 413
establishing limitations, 416
horizontal, 457
performance versus, 395
types of, 458–459

scaling out, 459
scaling up, 458
seamless sessions. See sticky sessions
Secure Sockets Layer. See SSL
security. See also authentication; passwords;

SSL (Secure Sockets Layer)
for admin configurator, 55, 322–323
applications shipped with Tomcat and, 321–323
for class loaders, 200–202
file system, 326–328
invoker Servlet and, 78
JMX issues, 454
JVM, 328–337
listing available roles, 144
manager application considerations, 158–159,

322–323
manager role constraints, 132–133
running Tomcat with a special account, 324–326
Servlet container provisions, 16
SHUTDOWN command and, 323–324

virtual hosting and, 387
Web application

authentication and Realms, 337–362
encryption with SSL, 362–367
host restriction, 368

Security Manager
Catalina code permissions (Tomcat), 333–334
dangers from not using, 335
enabling class loader creation, 336
enabling for Tomcat, 332
enabling the Security Manager system, 332
explicit permission required by, 328
file system security, 336–337
further information, 330, 332
grant entry syntax, 329–330
granting permissions to applications, 329
JavaMail and, 336
overview, 328–332
permissions available, 330–331
recommended practices, 335–337
system code permissions (Tomcat), 332–333
Tomcat policy file, 332–335
using with Tomcat, 332–335
Web application permissions (Tomcat), 334–335
Web application requirements, 335

security realms. See Realm component; specific Realms
<security-constraint> element (web.xml file)

authentication and, 340
for manager role, 133
for multiple sign-on, 167
Servlet 2.3-style, 107–108
Servlet 2.4-style, 121
for SSL protection of resources, 366

SecurityManager class, 202
<security-role> element (web.xml file), 109, 122,

133
Segue’s Silk Performer load testing software, 419
sendmail.jsp, 186
SendMailServlet, compiling and configuring,

185–186
Server component, 47, 62–63, 433
server directory, 42
<Server> element (server.xml file)

attributes, 63
for balancer filter and standalone mode, 493
JMX-manageable attributes, 433
for load balancing with Apache, 257
overview, 62
subelements, 63

server load testing. See load testing

592

<resource-ref> element (web.xml file)

d 559028 Index.qxd 4/22/04 3:57 PM Page 592

server proximity, distributed load testing and, 413
serverinfo command (manager), 144–145
ServerLifecycle class, 188
server-minimal.xml file, 59
server-noexamples.xml.config file, 59
server-side includes (SSI), 79, 82, 222–223
server-side sessions. See sessions; sticky sessions
server.xml file. See also specific elements

for CGI support, 220–221
for clustering, 471–472
components nested in default configuration, 61
Connector port specification, 212
Coyote HTTP/1.1 Connector configuration

Tomcat 4.1, 213–215
Tomcat 5, 216–219

default configuration listing, 61
default server configuration stored in, 60
deploying Web applications manually, 130
described, 52
for in-memory session replication, 477–479
for JAAS Realm, 361
for JDBC Realm, 348–349, 351–352
for JNDI Realms, 357
for JNDI-based JDBC configuration, 301–303, 306–308
for load balancing with Apache, 256–258, 267
manager application configuration, 132
for MX4J (open source JMX), 451
optimization, 418–419
overview, 58–59
for Persistent Session Manager with file store, 483
for Persistent Session Manager with JDBC store,

487–488
for running Tomcat behind a proxy server, 223–224
for separate JVMs, 388–389
for SSI support, 222–223
for SSL protection of resources, 366–367
for standalone server, 378–380, 491–492
Tomcat 5 versus earlier versions, 60
for Tomcat with Apache, 243
for Tomcat with IIS, 275

server.xml.[date suffix] file, 59
Service component, 47–50, 64–65, 432
<Service> element (server.xml file)

attributes, 65
JMX-manageable attributes, 432
overview, 64
as subelement of <Server> element, 63
subelements, 65
for virtual hosting, 378

<service-ref> element (web.xml file), 122–123

Servlet containers
cookie use by, 15–16
defined, 15
migration issues, 16
overview, 15–16
Tomcat as, 1, 16, 502
in Web containers, 20–21

<servlet> element (web.xml file)
for CGI support, 220–221
JMX-manageable attributes, 442
overview, 77–80
Servlet 2.3-style, 102–103
Servlet 2.4-style, 123–124
for SSI support, 222–223

<servlet-mapping> element (web.xml file)
for CGI support, 220–221
overview, 80–82
Servlet 2.3-style, 93–94
Servlet 2.4-style, 124
for SSI support, 222–223

Servlets. See also specific Servlets
accessing, 16–18
for CGI support, 220
default definitions in web.xml file, 77–80
defined, 14
destruction, 15
initialization, 14
JMX manageability, 442
JSP compilation into Servlet classes, 19
JSPs versus, 19
limitations, 17–18
logical mapping, 17, 80–82
mappings in default web.xml file, 80–82
overview, 14–15
Tomcat as container for, 1, 16, 502

servlets-examples Web application, 174–175,
322, 323

session affinity. See sticky sessions
session sharing

in-memory replication, 466–468, 475–482
with JDBC-based store, 466, 487–490
overview, 464
with shared file store, 465–466, 482–486

<session-config> element (web.xml file), 82,
103, 124

sessions. See also Persistent Session Manager; sticky
sessions

displaying statistics for Web applications, 148
JavaMail, configuring, 184–187
management in Tomcat 5, 468

593

sessions

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 593

sessions (continued)
session sharing, 464–468
timeout configuration, 82
for tracking state information, 461, 468

sessions command (manager), 148
SET command (MySQL), 351
setting Tomcat internals using JMX proxy Servlet, 150
SHA algorithm, 339, 345
shared class loader, 204
shared directory, 42
shared hosting. See also virtual hosting

expectations for Tomcat, 375
fine-tuning, 386–393
JMX and, 422–423
standalone versus cooperative mode and, 375
Tomcat versions and, 369

SHM (Shared Memory) file for workers2.properties
file, 245, 278

shut_sites.sh script, 391
shutting down or stopping
SHUTDOWN command security issues, 323–324
shutting down embedded server, 519
shutting down the Tomcat cluster, 471
Web applications, 145, 152

sign-on. See also authentication
multiple, without the Single Sign-on Valve, 166–169
Single Sign-on Valve for, 163, 166, 169

Silk Performer load testing software (Segue), 419
Simple Controller (JMeter), 406–407
Simple Data Writer listener (JMeter), 403, 405
Simple Network Management Protocol (SNMP), 424
SimpleTcpCluster implementation, 476
Single Sign-on Valve

for authentication, 163, 166, 169, 362
configuring, 169
described, 163
multiple sign-on without, 166–169
overview, 166
Tomcat 4 architecture, 49

singleton classes, class loaders and, 207–208
slash (/)

in context path for manager application, 134, 157
for protecting manager URLs (!/), 134–135

SMTP Server, logging to (Log4J), 544–545
SNMP (Simple Network Management Protocol), 424
socketBuffer attribute of Connectors, performance

and, 225
Spline Visualizer listener (JMeter), 403, 404
SSI (server-side includes)

default Servlet definition, 79
enabling support for, 222–223

security issues, 222
Servlet mappings, 82

ssi Servlet in default web.xml file, 79
SSL (Secure Sockets Layer)

configuration file for certificate generation, 252
configuring for Tomcat with Apache, 250–254
configuring for Tomcat with IIS, 291
configuring Tomcat 4.x Connector for, 215–216
configuring Tomcat 5.x Connector for, 219–220
Connector, 47
encryption with, 362–367
generating a test certificate, 253–254
JSSE implementation, 363–365
name-based virtual hosting and, 374
port for, 215, 220
for resource protection, 366–367
testing the Apache-Tomcat setup, 254–255

stack size, virtual hosting and, 391
standalone mode

application server mode versus, 65–66
for balancer filter, 492–493
components in standalone server, 377–378
Connectors and, 65–66
cooperative mode versus, 375
Tomcat 5 as standalone server, 378–381
virtual hosting and, 375, 377–381

standard MBeans, 431
start command (manager), 146, 152
starting

IIS server, 273
JMeter, 396
minimal embedded server, 517
stopped Web applications, 146, 152
Tomcat as a service on Windows, 35–36
Tomcat in debugging mode, 551–552
Tomcat manually on Windows, 35
Tomcat with JMX Remoting enabled, 451
troubleshooting Tomcat, 43–44

start_sites.sh script, 390
startup command (Windows), 35
startup.bat file (Windows), 37–38
static Web content, 11
status command (manager), 151
sticky sessions. See also Persistent Session Manager

defined, 255
mod_jk2 Apache module and, 463–464
with no session sharing, 464–465
overview, 463–464
with Persistent Session Manager

JDBC-based store, 466, 487–490
shared file store, 465–466, 482–486

testing Apache load balancer for, 266–267

594

sessions

d 559028 Index.qxd 4/22/04 3:57 PM Page 594

stop command (manager), 145, 152
stopping. See shutting down or stopping
<Store> element (server.xml file), 174, 483,

487–488
Struts Framework, 5, 22–24, 25–26
Subject (JAAS Realm), 358
support network (Tomcat), 44
Swing interface (JMeter), 397
Sysdeo Tomcat plug-in, 553–554
system class loader, 196–197, 203
system design, embedded mode in Tomcat and,

502–504
system logs, logging to (Log4J), 545–548

T
tag libraries (JSP), 21–24, 94–95
<taglib> element (web.xml file), 106
<target> element (Ant build files), 561
targets (Ant), 155–157, 567–569
tar/gzip files, installing JVM from, 31–32
TCP socket communication channel for

workers2.properties file, 245, 278
tcpNoDelay attribute of Connectors, performance

and, 224, 225
test plans (JMeter), 397–401, 406–407
thrashing, 392
thread groups (JMeter), 397–400
thread pooling

for HTTP Connector performance, 225, 226
JMX manageability, 444, 447–450

ThreadPool object, 444
Throughput Controller (JMeter), 408
timeout, 82, 290
Timer feature (JMeter), 402–403
tlds directory, 94–95
tomcat account

adding tomcat user to MySQL, 350–351
configuring, 325–326
creating, 324
file system security, 326–328
for Linux, 324, 325–326, 328
running Tomcat with, 324–326
for Windows, 324, 325, 326–327

tomcat-docs Web application, 321, 322
tomcat-sessions table, 488–490
tomcat.sh file (Linux), 32
tomcat-users.xml file

authentication and, 59, 77
enabling manager application access, 130–131

manager application configuration, 132
overview, 59

top-level components, 46, 47–50. See also specific
components

troubleshooting. See also error messages
class loaders, 206–208
IIS rendering JSPs, 287–288
IP-based virtual hosting, 372
manager application errors, 157–158
name-based virtual hosting, 374–375
online resources for, 43
Tomcat installation, 43–44
Tomcat support network, 44

Type I to Type IV JDBC drivers, 296–297

U
undeploy command (manager), 147–148
uniform random timer (JMeter), 403
Unix. See Linux
updatability, MVC architecture and, 26
URI mappings for workers2.properties file, 246,

279
<url-pattern> element (web.xml file), 81, 167, 168
URLs. See also downloading; HTTP requests with

manager application; Internet resources
for admin configurator, 55
for CGI programs, 14
for manager JMX proxy access, 445
overview, 14
parsing in Tomcat 5, 81–82
protecting manager URLs (!/), 134–135
for ROOT Web application, 92
for Servlet access, 16–17
Servlet mappings, 80–82, 93–94
for Web application example, 129
Web application mappings, 93–94

user accounts, 324–326
user lists (Tomcat), 44
user names
admin role, 55, 131, 322
manager role, 130, 131, 322

User object, 438
UserDatabase object, 438
UserDatabase Realm

adding the digested password, 346–347
configuring, 343–345
creating a digested password, 345–346
described, 72
as a file-based Realm, 342

595

UserDatabase Realm

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 595

UserDatabase Realm (continued)
JMX manageability, 438
for manager application, 130
MemoryRealm versus, 342–343
selecting the digest algorithm, 345
steps for securing, 345
testing the digested password, 347

<user-data-constraint> element (web.xml file),
108

user_roles table (JDBC Realm), 347, 348
users, creating with admin configurator, 56, 58
user’s session token, 15
users table (JDBC Realm), 347–348

V
validating load testing data using assertions, 410–411
<Valve> element (server.xml file)

Access Log Valve configuration, 163, 166
described, 70
for in-memory session replication, 479
Single Sign-on Valve configuration, 169
for virtual hosting, 379

Valves. See also specific types
Access Log Valve, 163–166
functionality from, 162
JMX manageability, 436
for manager application, 159
as nested components, 162
overview, 48–49, 162
Request Dumper Valve, 49, 163, 172
Request Filter Valve, 163, 170–172
Single Sign-on Valve, 49, 163, 166–169
standard, 162–163
in Tomcat 5 architecture, 162

vendor neutrality for application servers, 10
View component of MVC architecture, 25
View Results in Table listener (JMeter), 403, 405
View Results Tree listener (JMeter), 403, 405
viewing. See displaying or listing
virtual directories under IIS, 280–283, 287
Virtual Directory Creation wizard (Windows), 280–282
virtual hosting. See also shared hosting

application server configuration, 72–76
approaches, 370
basic concept, 73
directory structure, 376, 377, 385, 387–388
fine-tuning, 386–393
IP-based, 370–372
JMX and, 422–423

memory problems with multiple JVMs, 391–393
name-based, 370, 372–374
nested Logger in virtual host, 76
request sharing between Tomcat and Apache, 385–386
security issues, 387
separate JVMs for hosts, 387–391
with Tomcat

components in standalone server, 377–378
directory structure, 376
example configuration, 375–377
IP addresses, 375
standalone versus cooperative mode and, 375
Tomcat 5 as standalone server, 378–381
Tomcat 5 with Apache, 381–386

Tomcat 4 architecture, 49
in Tomcat 5, 73
Tomcat versions and, 369
Web site defined for, 370

virtual memory, performance and, 391–393
<VirtualHost> section (httpd.conf file)

for IP-based virtual hosting, 371, 372
for name-based virtual hosting, 373–374
for Tomcat with Apache, 382–383

visualization listeners (JMeter), 404

W
WAR files

creating using Ant dist target, 568, 569
deploying Web applications from, 136–137, 140–141
deploying Web applications manually, 130
directories for, 376
installing Web applications from, 137–138, 140
manager deploy command and, 136, 137, 140
manager install command and, 137, 138
MANIFEST.MF file creation and, 96

WARP protocol, 232–233, 234
WarpConnector class, 230
Web applications. See also admin configurator

application; configuring Web applications;
manager application

Ant tool for managing, 154–157
architecture, 24–25
building with Ant, 566–570
class loaders, 205–206
configuring minimal applications, 471
context definitions, 76–77
context path unique for, 135, 138, 157
default deployment descriptor (web.xml), 77–81

596

UserDatabase Realm

d 559028 Index.qxd 4/22/04 3:57 PM Page 596

deploying
installing versus, 136
from a local path (Tomcat 5), 140–141
manually, 130
redeploying, 142
remotely (Tomcat 5), 139–140
in Tomcat 4, 136–137
in Tomcat 5, 139
using manager Web interface, 153

directory structure, 91–92
displaying Tomcat server status, 151
examples, 34, 128–129
installing

deploying versus, 136
in Tomcat 4, 136, 137–139
in Tomcat 5, 139–142

listing
deployed applications, 135
JNDI resources available, 142–143
OS and JVM properties, 144–145
security roles available, 144

logging from (Log4J), 535–538
optimization techniques, 416–419
permissions in catalina.policy file, 85–87,

334–335
redeploying, 142
reloading, 142–143, 152
removing

permanently (Tomcat 5), 147–148
temporarily (Tomcat 4), 146–147
Web interface for, 152

ROOT application, 92, 321, 322
security

authentication and Realms, 337–362
encryption with SSL, 362–367
file system security, 336–337
host restriction, 368
Single Sign-on Valve, 362
users and roles, 342

session statistics, 148
shipped with Tomcat, 321–323
starting a stopped application, 146, 152
stopping, 145, 152
tomcat-docs application, 321, 322
undeploying, 147–148
Web interface for managing, 151–152

Web containers, 20–21
Web interface (manager)

Applications table, 152
deploying Web applications, 153

displaying Tomcat server status, 151
managing Web applications, 151–152
overview, 150–151

Web server Connectors. See also specific Connectors
AJP protocol, 231–232
Apache JServ Connectors, 233–234
architecture, 230–233
choosing a Connector, 233–235
communications paths, 230–231
configuring the AJP 1.3 Connector, 243
HTTP Connectors versus, 211
JK Connectors, 234
JK2 Connectors, 67–68, 234–235, 237, 238–239
reasons for using a Web server, 229–230
WARP protocol, 232–233
webapp Connectors, 234

Web servers. See also Apache Server; IIS; virtual
hosting

combining Tomcat with, 418
JK Connector support for, 234
Netcraft survey of, 370
Tomcat integration with, 11

Web sites. See downloading; Internet resources
webapp Connectors, 234
<web-app> element (web.xml file), 99, 110, 340,

472–473
webapps directory, 42
Web-based configurator. See admin configurator

application
Web-based manager. See manager application
WEB-INF directory, 94–95
WebModule object, 440–442
<web-resource-collection> element (web.xml

file), 108
web.xml file. See also specific elements

for authentication, 340
for balancer filter, 493–494
CGI mappings, 82
for clustering, 472–473
default file versus Web application file, 77
default Servlet definitions, 77–80
described, 52
JavaMail session configuration, 185
JDBC DataSource configuration, 184
JNDI-based JDBC configuration, 308
for manager application, 132–133
mime mappings, 82–83
for multiple sign-on, 167–168
overview, 59, 77
Servlet 2.3- versus 2.4-style, 96–97

597

web.xml file

In
de

x

d 559028 Index.qxd 4/22/04 3:57 PM Page 597

web.xml file (continued)
Servlet 2.3-style

DTD declaration, 99
elements, 99–110
generalized form, 97
order of elements, 97
quick reference (table), 98
XML header, 99

Servlet 2.4-style
elements, 112–124
order of elements, 110
quick reference (table), 110–111

Servlet mappings, 80–82, 93–94
session timeout configuration, 82
SSI mappings, 82
for SSL protection of resources, 366
in WEB-INF directory, 94
welcome page handling, 83–84

welcome page handling, 83–84, 93
<welcome-file-list> element (web.xml file),

104–105, 124
Windows (Microsoft). See also IIS (Internet Information

Server)
building mod_jk2 Apache module on, 242
copying SSL files for Apache to, 252
digest utility bug fix, 346
file system security, 326–327
installing JVM on, 29–31
installing Tomcat using Windows Installer, 33–34, 131
installing Tomcat using ZIP file, 39–40
JSSE certificate keystore preparation, 363
running JMeter, 396
starting Tomcat in debugging mode, 552
testing the Tomcat installation, 34–39

tomcat account for, 324, 325
updating the Registry for the ISAPI filter, 275–277

work directory, 43
workers (Tomcat instances). See also specific types

configuring for Tomcat with Apache, 243–247
configuring for Tomcat with IIS, 277–280
defined, 239
for load balancing with Apache, 258–265
multiple, 240
plug-in versus in-process, 239–240
ports for load balancing with Apache, 257
types of, 240–241
in virtual hosting example, 382

workers2.properties file
configuring for Tomcat with Apache, 244–246
configuring for Tomcat with IIS, 277–280, 288
examples, 246–247, 263–265, 279–280
format, 243–244
lb worker configuration, 261–263
for load balancing with Apache, 259–265
for virtual hosting with Tomcat, 383, 384, 385–386,

390
W3C (World Wide Web Consortium) Web site, 14

X
XA transaction operation model, 303
Xerces XML parser, 3, 208
XML header in web.xml file, 99
XML parsers, 208. See also JAXP; specific parsers
-Xms and -Xmx settings. See heap size

Z
ZIP files, installing Tomcat from, 39–40

598

web.xml file

d 559028 Index.qxd 4/22/04 3:57 PM Page 598

	Professional Apache Tomcat 5
	Cover

	Contents
	Acknowledgments
	Introduction
	Chapter 1: Apache and Jakarta Tomcat
	Humble Beginnings: The Apache Project
	The Apache Software Foundation
	The Jakarta Project
	Tomcat
	Other Jakarta Subprojects

	Distributing Tomcat
	Comparison with Other Licenses
	GPL
	LGPL
	Other Licenses

	The Big Picture: J2EE
	Java APIs
	The J2EE APIs
	J2EE Application Servers
	"Agree on Standards, Compete on Implementation"
	Tomcat and Application Servers

	Tomcat and Web Servers
	Summary

	Chapter 2: JSP and Servlets
	First Came CGI
	Then Servlets Were Born
	Servlet Containers
	Accessing Servlets

	And on to JSPs . . .
	JSP Tag Libraries
	Web Application Architecture
	Java Site Architecture
	Summary

	Chapter 3: Tomcat Installation
	Installing the Java Virtual Machine
	Installing the Sun JVM on Windows

	Installing Tomcat
	Tomcat Windows Installer
	Finishing the Installation
	Setting Environment Variables
	Testing the Installation
	Installing Tomcat on Windows Using the ZIP File
	Installing Tomcat on Linux

	The Tomcat Installation Directory
	The bin Directory
	The shared Directory
	The common Directory
	The conf Directory
	The logs Directory
	The server Directory
	The webapps Directory
	The work Directory

	Troubleshooting and Tips
	The Port Number Is in Use
	Running Multiple Instances
	A Proxy Is Blocking Access

	Summary

	Chapter 4: Tomcat Architecture
	An Overview of Tomcat Architecture
	The Server
	The Service
	The Remaining Classes in the Tomcat Architecture

	Summary

	Chapter 5: Basic Tomcat Configuration
	Tomcat 5 Configuration Essentials
	Tomcat 5 Web-Based Configurator
	Enabling Access to Configurator

	Files in $CATALINA_HOME/conf
	Basic Server Configuration
	Server Configuration via the Default server.xml
	Operating Tomcat in Application Server Configuration
	Web Application Context Definitions
	Authentication and the tomcat-users.xml File
	The Default Deployment Descriptor ¨C web.xml
	How server.xml, Context Descriptors, and web.xml Work Together
	Fine-Grained Access Control: catalina.policy
	catalina.properties: Finer-Grained Control over Access Checks
	Configurator Bootstrapping and the Future of Tomcat Configuration
	A Final Word on Differentiating Between Configuration and Management

	Summary

	Chapter 6: Web Application Configuration
	The Contents of a Web Application
	Public Resources
	The WEB-INF Directory
	The META-INF Directory

	The Deployment Descriptor (web.xml)
	Servlet 2.3-Style Deployment Descriptor
	Servlet 2.4-Style Deployment Descriptor

	Summary

	Chapter 7: Web Application Administration
	Sample Web Application
	Tomcat Manager Application
	Enabling Access to the Manager Application
	Manager Application Configuration

	Tomcat Manager: Using HTTP Requests
	List Deployed Applications
	Installing/Deploying Applications in Tomcat 4.x
	Deploying a New Application
	Installing a New Application
	Installing/Deploying Applications in Tomcat 5.x
	Deploying a New Application Remotely
	Reloading an Existing Application
	Listing Available JNDI Resources
	Listing Available Security Roles
	Listing OS and JVM Properties
	Stopping an Existing Application
	Starting a Stopped Application
	Removing an Installed Application (Tomcat 4.x Only)
	Undeploying a Web Application
	Displaying Session Statistics
	Querying Tomcat Internals Using the JMX Proxy Servlet
	Setting Tomcat Internals Using the JMX Proxy Servlet

	Tomcat Manager: Web Interface
	Displaying Tomcat Server Status
	Managing Web Applications
	Deploying a Web Application

	Tomcat Manager: Managing Applications with Ant
	Possible Errors
	Security Considerations
	Tomcat Deployer
	Summary

	Chapter 8: Advanced Tomcat Features
	Valves-Interception Tomcat-Style
	Standard Valves
	Access Log Implementation
	Scope of Log Files
	Testing the Access Log Valve

	Single Sign-On Implementation
	Multiple Sign-On Without the Single Sign-On Valve
	Configuring a Single Sign-On Valve

	Restricting Access via a Request Filter
	Remote Address Filter
	Remote Host Filter
	Configuring Request Filter Valves
	Request Dumper Valve

	Persistent Sessions
	The Need for Persistent Sessions
	Configuring a Persistent Session Manager

	JNDI Resource Configuration
	What Is JNDI?
	Tomcat and JNDI
	Typical Tomcat JNDI Resources
	Configuring Resources via JNDI
	Configuring a JDBC DataSource
	Configuring Mail Sessions

	Configuring Lifecycle Listeners
	Lifecycle Events Sent by Tomcat Components
	The <Listener> Element
	Tomcat 5 Lifecycle Listeners Configuration

	Summary

	Chapter 9: Class Loaders
	Class Loader Overview
	Standard J2SE Class Loaders
	More on Class Loader Behavior
	Creating a Custom Class Loader

	Security and Class Loaders
	Class Loader Delegation
	Core Class Restriction
	Separate Class Loader Namespaces
	Security Manager

	Tomcat and Class Loaders
	System Class Loader
	Common Class Loader
	Catalina Class Loader
	Shared Class Loader
	Web Application Class Loader

	Dynamic Class Reloading
	Common Class Loader Pitfalls
	Packages Split Among Different Class Loaders
	Singletons
	XML Parsers

	Summary

	Chapter 10: HTTP Connectors
	HTTP Connectors
	Tomcat 4.0: HTTP/1.1 Connector
	Tomcat 4.1: Coyote HTTP/1.1 Connector
	Tomcat 5.x: Coyote HTTP/1.1 Connector

	Configuring Tomcat for CGI Support
	Configuring Tomcat for SSI Support
	Running Tomcat Behind a Proxy Server
	Performance Tuning
	Summary

	Chapter 11: Web Server Connectors
	Reasons for Using a Web Server
	Connector Architecture
	Communication Paths
	Connector Protocols

	Choosing a Connector
	JServ
	JK
	webapp
	JK2

	Summary

	Chapter 12: Tomcat and Apache Server
	Introducing the JK2 Connector
	The mod_ jk2 Apache module
	The Apache JServ Protocol (AJP)
	Coyote JK2 Connector

	Understanding Tomcat Workers
	Plug-In versus In-Process
	Multiple Tomcat Workers
	Types of Workers

	Connecting Tomcat with Apache
	Installing the Apache mod_ jk2 Module
	Configuring the AJP 1.3 Connector in server.xml
	Configuring Tomcat Workers
	Adding Directives to Load the jk2 Module (httpd.conf)
	Configuring the jk2.properties File
	Testing the Final Setup

	Configuring SSL
	Configuring SSL in Tomcat
	Configuring SSL in Apache
	Testing the SSL-Enabled Apache-Tomcat Setup

	Tomcat Load Balancing with Apache
	Changing CATALINA_HOME in the Tomcat Startup Files
	Setting Different AJP Connector Ports
	Setting Different Server Ports
	Disabling the Coyote HTTP/1.1 Connector
	Setting the jvmRoute in the Standalone Engine
	Commenting Out the Catalina Engine
	Tomcat Worker Configuration in jk2.properties
	Tomcat Worker Configuration in workers2.properties
	Sample workers2.properties File

	Testing the Load Balancer
	Testing Sticky Sessions
	Testing Round-Robin Behavior
	Testing with Different Load Factors

	Summary

	Chapter 13: Tomcat and IIS
	Role of the ISAPI Filter
	Connecting Tomcat with IIS
	Testing Tomcat and IIS Installations
	Configuring the Connector in Tomcat's server.xml file
	Installing the ISAPI Filter
	Updating the Windows Registry for the ISAPI Filter
	Configuring Tomcat Workers (workers2.properties)
	Configuring the jk2.properties File
	Creating a Virtual Directory Under IIS
	Adding the ISAPI Filter to IIS
	Testing the Final Setup

	Troubleshooting Tips
	Performance Tuning
	Web Site Hits per Day
	Keep Alive and TCP Connection Timeout
	Tuning the AJP Connector
	Load-Balanced AJP Workers

	Using SSL
	Summary

	Chapter 14: JDBC Connectivity
	JDBC Basics
	Establishing and Terminating Connections to RDBMSs
	Evolving JDBC Versions
	JDBC Driver Types
	Database Connection Pooling
	Tomcat and the JDBC Evolution

	JNDI Emulation and Pooling in Tomcat 5
	Preferred Configuration: JNDI Resources
	Resource and ResourceParams tags
	Hands-On JNDI Resource Configuration
	Testing the JNDI Resource Configuration

	Alternative JDBC Configuration
	Alternative Connection Pool Managers
	About PoolMan
	Deploying PoolMan
	PoolMan's XML Configuration File
	Obtaining JDBC Connections Without JNDI Lookup
	Testing PoolMan with a Legacy Hard-coded Driver
	Obtaining a Connection with JNDI Mapping
	Testing PoolMan with JNDI-Compatible Lookup
	Deploying Third-Party Pools

	Summary

	Chapter 15: Tomcat Security
	Securing the Tomcat Installation
	ROOT and tomcat-docs
	Admin and Manager
	Further Security
	jsp-examples and servlets-examples
	Changing the SHUTDOWN Command

	Running Tomcat with a Special Account
	Creating a Tomcat User
	Running Tomcat with the Tomcat User

	Securing the File System
	Windows File System
	Linux File System

	Securing the Java Virtual Machine
	Overview of the Security Manager
	Using the Security Manager with Tomcat
	Recommended Security Manager Practices

	Securing Web Applications
	Authentication and Realms
	Authentication Mechanisms
	Configuring Authentication
	Security Realms

	Encryption with SSL
	JSSE
	Protecting Resources with SSL

	Host Restriction
	Summary

	Chapter 16: Shared Tomcat Hosting
	Virtual Hosting
	IP-Based Virtual Hosting
	Name-Based Virtual Hosting

	Virtual Hosting with Tomcat
	Example Configuration

	Introduction to Virtual Hosting with Tomcat
	Tomcat Components
	Tomcat 5 as a Standalone Server
	Tomcat 5 with Apache

	Fine-Tuning Shared Hosting
	Creating Separate JVMs for Each Virtual Host
	Setting Memory Limits on the Tomcat JVM

	Summary

	Chapter 17: Server Load Testing
	The Importance of Load Testing
	Load Testing with JMeter
	Installing and Running JMeter
	Making and Understanding Test Plans with JMeter
	JMeter Features
	Distributed Load Testing

	Interpreting Test Results
	Setting Goals and Testing Them
	Establishing Scalability Limitations
	Further Analysis

	Optimization Techniques
	Java Optimizations
	Tomcat Optimizations

	Exploring Alternatives to JMeter
	Summary

	Chapter 18: JMX Support
	The Requirement to Be Manageable
	All About JMX
	The JMX Architecture
	Instrumentation Level
	Agent Level
	Distributed Services Level

	JMX Remote API
	An Anthology of MBeans
	Standard MBeans
	Dynamic MBeans
	Model MBeans
	Open MBeans

	JMX Manageable Elements in Tomcat 5
	Manageable Tomcat 5 Architectural Components
	Manageable Nested Components
	Manageable Run-Time Data Objects
	Manageable Resource Object

	Accessing Tomcat 5's JMX Support via the Manager Proxy
	Working with the JMX Proxy
	Modifying MBean Attributes
	Accessing Tomcat JMX Support Remotely via the RMI Connector
	Setting Up the JNDI Initial Context
	Remote Tomcat Probing with queryjmx

	Security Concerns
	Summary

	Chapter 19: Tomcat 5 Clustering
	Clustering Benefits
	Scalability and Clustering
	The Need for High Availability

	Clustering Basics
	Master-Backup Topological Pattern
	Fail-Over Behavioral Pattern

	Tomcat 5 Clustering Model
	Load Balancing
	Session Sharing

	Working with Tomcat 5 Clustering
	Session Management in Tomcat 5
	The Role of Cookies and Modern Browsers
	Configuring a Tomcat 5 Cluster
	Common Front End: Load Balancing via Apache mod_ jk2
	Back-End 1: In-Memory Replication Configuration
	Back-End 2: Persistent Session Manager with a File Store
	Back-End 3: Persistent Session Manager with a JDBC Store
	Testing a Tomcat Cluster with JDBC Persistent Session Manager Back-End

	An Application-Level Load Balancing Alternative (Balancer)
	Load Balancing with the balancer Filter
	Working with the balancer Filter
	Testing the balancer Filter
	Redirection and the Cookie Problem
	Hardware-Assisted Request Distribution with Common NAT

	The Complexity of Clustering
	Clustering and Performance
	Clustering and Response Time
	Solving Performance Problems with Clustering

	Summary

	Chapter 20: Embedded Tomcat
	Importance of Embedded Tomcat in Modern System Design
	Typical Embedded Application Scenarios
	The Role of the Administrator with Embedded Tomcat

	Overview of Embedded Mode in Tomcat
	The MBean Server and Object Bus
	Internal Versus External Control
	Apache Ant as a Scripting Engine

	The Apache Jakarta Commons Modeler
	Custom JMX Ant Tasks in the Commons Modeler
	<jmx-service> Task
	<mbean> Subelement
	<attribute> Subelement
	<modelerRegistry > or <mbean-descriptor> Task
	<jmx-operation> Task

	Ant Script Operational Flow
	Using an Ant Script to Start Up a Minimal Embedded Server
	Downloading and Installing Embedded Tomcat
	The min.xml Minimal Embedded Startup Script
	Testing the Embedded Tomcat Server
	Starting Up a Minimal Server
	Accessing Embedded Tomcat 5
	Shutting Down the Embedded Server
	Adding the manager Web Application
	Adding the Manager Role for Authentication
	Adding an <mbean> Element to the manager Context
	Using the manager Application on the Embedded Server

	Summary

	Appendix A: Log4J
	Appendix B: Tomcat and IDEs
	Appendix C: Apache Ant
	Index
	Team DDU

