Windows Operating System Internals

CRK Description

Windows Operating Systems Internals

Curriculum Resource Kit (CRK)

Description

By David A. Solomon,

Mark E. Russinovich,

with Andreas Polze

Basic Information

The Windows Operating Systems Internals Curriculum Resource Kit (“CRK”) is a pool of material and resources that explains operating systems (OS) concepts based on the Microsoft Windows XP and Windows Server 2003 operating system family, structured following the ACM/IEEE Operating System Body of Knowledge (“BOK”) as defined in Computing Curriculum 2001 project by the Joint IEEE and ACM Task Force (“CC2001”).

The CRK is based on the book Windows Internals, 4th edition (Microsoft Press, 2004) by Mark Russinovich and David Solomon. The experiments, lab descriptions, quizzes, and assignments, which are an integral part of the course materials, have been tested over the last five years in context of an Operating Systems Architecture class taught by Andreas Polze at Humboldt University of Berlin and Hasso-Plattner-Institute at University Potsdam, Germany.

Principal Structuring of the Learning Materials

This initial version of the Windows Operating Systems Internals CRK materials consist of Units OS1, OS2, OS3, OS4, OS5, and OS7 from the BOK. A future version of the CRK may provide the remaining units from the BOK as well as the three supplementary units covering additional topics outside the scope of the BOK (see outline below).
For each of the units, there are basic and advanced modules. The units are scaleable to multiple academic levels and can be used by faculty staff in whole or in part for teaching OS courses in academic institutions.

The basic modules provide materials to incorporate into a complete undergraduate level OS course of one semester in length. This covers the Windows operating system specific topics in the core and elective units at minimum (or basic) level of coverage of BOK as defined in CC2001.

The advanced modules provide materials to incorporate into an advanced (undergraduate or graduate) level OS course of one semester in length. The module covers the Windows operating system specific topics in the core and elective units of CC2001 (extended level of coverage).

A lecturer may choose to use the basic course materials in order to augment an existing (undergraduate) OS course with information regarding the Windows operating system family. However, by combining the basic and advanced sections of the materials supplied herein, a potential lecturer may give a fully featured one semester (undergraduate) operating system course. Another option would be the usage of the advanced sections only in order to give a special (graduate) lecture or seminar on operating system internals and a comparison of architectural and design decisions and their impact for a number of different operating systems.

Packaging of the Course materials

The CRK course materials include:

Instructor materials:

· Hard and soft copies of CRK description (this document).

· Hard and soft copies of classroom materials (i.e. lecture slides, notes and supporting materials) for each unit. The following icons are used on some slides:

· [image: image1.jpg]

 - lab/exercise

· [image: image2.jpg]

 - informational slide

· Laboratory exercises, homework assignments and academic testing materials (quizzes).

· Windows Internals 4th edition Microsoft Press book (“Book”).

Student materials:

Any material that should be delivered to student by professor (i.e. lab assignments, lab set up and descriptions, tools use instructions) are part of the Instructor’s material. Students should have access to the book Windows Internals 4th edition since it is the basis for the course content.

Solutions to the homework assignments and academic testing materials are included with the CRK Instructor Supplement, which is accessible to qualified faculty members only.

As an aid in preparing the deliver the material, a video is available by the course authors presenting a complete Windows Operating Internals class. For more information, see http://www.solsem.com/videos.html.

CRK Outline

ACM BOK OS1-OS12

1. Overview of Operating Systems – (Core) OS1

1.1. Windows Operating System Internals Course Overview (Core)

1.2. The Evolution of Operating Systems (Core)

1.3. Windows Operating System Family – Concepts & Tools (Core)

2. Operating System Principles – (Core) OS2

2.1. Structuring of the Windows Operating System (Core)

2.2. Windows Core System Mechanisms (Core)

2.3. Windows on Windows - OS Personalities (Core)

2.4. The Windows API – Naming Conventions, Types (Core)

2.5. OS Principles labs, quizzes, and assignments

3. Concurrency – (Core) OS3

3.1. Critical Sections, Semaphores and Monitors (Core)

3.2. Windows Trap Dispatching, Interrupts, Synchronization (Core)

3.3. Advanced Windows Synchronization (Core/Advanced)

3.4. Windows APIs for Synchronization and Inter-Process Communication (Core/Advanced)

3.5. Concurrency labs, quizzes, and assignments

4. Scheduling and Dispatch – (Core) OS4

4.1. The Concept of Processes and Threads (Core)

4.2. Windows Processes and Threads (Core)

4.3. Windows Process and Thread Internals (Core/Advanced)

4.4. Windows Thread Scheduling (Core)

4.5. Advanced Windows Thread Scheduling (Core/Advanced)

4.6. Scheduling and Dispatch labs, quizzes, and assignments

5. Memory Management – (Core) OS5

5.1. Memory Management for Multiprogramming (Core)

5.2. Windows Memory Management Fundamentals (Core)

5.3. Virtual Address Translation (Core)

5.4. Physical Memory Management (Core/Advanced)

5.5. Memory Management labs, quizzes, and assignments

6. Device Management - The Input/Output System – (Elective) OS6

6.1. Principles of I/O Systems (Elective)

6.2. The Windows I/O System Components (Elective)

6.3. Windows I/O Processing (Elective/Advanced)
6.4. Device Management labs, quizzes, and assignments
7. Protection and Security – (Elective) OS7
7.1. The Security Problem (Elective)

7.2. Windows Security Components and Concepts (Elective)

7.3. Windows Security Descriptors (Elective/Advanced)

7.4. Security labs, quizzes, and assignments

8. File System – (Elective) OS8

8.1. Background: Unix File Systems (Elective)

8.2. The Windows File System (NTFS) (Elective)

8.3. Encrypting File System Security in Windows OS (Elective/Advanced)

8.4. NTFS – Recovery Support (Elective/Advanced)

8.5. Windows File and Directory Management (Elective)

8.6. File System labs, quizzes, and assignments

9. Real-time and Embedded Systems – (Elective) OS9

9.1. Introduction and Vocabulary (Elective)

9.2. Real-Time Systems with Windows (Elective)

9.3. Embedded Systems with Windows XP Embedded (Elective)

10. Fault-tolerance (Elective) OS10

11. System Performance Evaluation and Troubleshooting (Elective) OS11

12. Scripting (Elective) OS12

SUPPLEMENTARY UNITS

A. Windows Networking – (Supplementary/Advanced)

 1. Networking Components in Windows OS (Supplementary/Advanced)

2. Windows Socket Programming (Supplementary/Advanced)

3. Microsoft-specific extensions to Sockets and other Networking APIs (Supplementary/Advanced)

 4. Networking labs, quizzes, and assignments

B. Comparing the Linux and Windows Kernels (Supplementary/Advanced)

C. Windows – Unix Interoperability (Supplementary/Advanced)

1. File and Command Interoperability (Supplementary/Advanced)

2. Programming (Supplementary/Advanced)

Detailed Outline And Module Descriptions

The remainder of the document describes the detailed structuring of the materials and contains references to the book Windows Internals 4th edition where appropriate.
1. Introduction and Overview – (Core) OS1

(basic: 1 hour, basic+advanced: 2 hours)
1.1. Windows Operating Systems Internals Course Overview (Core)

The “Operating Systems Internals Course” focuses on general-purpose operating systems technology and discusses techniques and approaches taken by the Microsoft Windows operating system family. Those techniques are compared to solutions found in Linux/UNIX systems.

1.2. The Evolution of Operating Systems (Core)

An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware. The purpose of an operating system is to provide an environment in which a user can execute programs. The primary goal is thus to make the computer system convenient to use. A secondary goal is to use the computer hardware in an efficient manner.

A computer system can be divided roughly into four components: the hardware, the operating system, the applications programs, and the users. The hardware – the central processing unit (CPU), memory, and input/output (I/O) devices – provides the basic computing resources. The application programs – such as compilers, database systems, games, and business programs – define the ways in which these resources are used to solve the computing problems of the users. There may be many different users and many different application programs. The operating system controls and coordinates the use of hardware among the various applications programs for the various users.

1.3. Windows Operating System Family – Concepts & Tools (Core)

Here we introduce key operating system concepts found in Windows XP/WS 2003, such as the Windows API, processes, threads, virtual memory, kernel mode and user mode, objects, handles, and security.

The Windows (formerly known as Win32) application programming interface (API) is the primary programming interface to the Microsoft Windows operating system family, including Windows NT/2000/XP/2003, Windows 95/98/ME, and Windows CE. Each operating system implements a different subset of the Windows API. For the most part, the Windows NT-based operating systems implement a superset of all Windows API implementations. Although Windows NT was designed to support multiple programming interfaces, Windows is the primary, or preferred programming interface to the operating system. Windows has this position because, of the three environment subsystems (Windows, POSIX, and OS/2), it provides the greatest access to the underlying Windows system services.

The specifics of which services are implemented on which platform are included in the reference documentation for the Windows API. This documentation is available at http://msdn.microsoft.com and on the MSDN Library CD-ROMs (MSDN stands for Microsoft Developer Network). Special academic pricing is available for MSDN subscriptions as part of the MSDN Academic Alliance (MSDNAA)—see http://msdn.microsoft.com/academic for more information.

Book: pp.1-3 (Windows OS Versions)

2. Operating System Principles – (Core) OS2

(basic: 2-3 hours, basic+advanced: 4-5 hours, homework assignment)
2.1. Structuring of the Windows Operating System (Core)

This section describes the overall architecture of the Windows OS and the key kernel components. Also reviewed are Windows’ fundamental design attributes, such as preemptive multitasking, symmetric multiprocessing, support for multiple hardware architectures (32-bit and 64-bit), security, integrated networking, etc.

Windows is similar to most UNIX systems in that it is a monolithic operating system in the sense that the bulk of the operating system and device driver code shares the same kernel-mode protected memory space. We discuss the separation between user-mode and kernel-mode and explain, which components of the Windows operating system form the Windows kernel, what interfaces they implement, and how those interfaces can be accessed from user-mode.

Book: pp.36-50 (Operating System Model, Architecture Overview)

2.2. Windows Core System Mechanisms (Core)

 Microsoft Windows provides several base mechanisms that kernel-mode components such as the executive, the kernel, and device drivers use. This Section gives an architectural overview, discusses the program execution environment and explains basic system services:
· Architecture Overview

· Program Execution Environment

· Kernel Mode Architectur

· System Threads

· System Processes / Services

· System Processes / Services

Book: pp. 124 ff. (Object Manager), pp. 166 ff. (System Worker Threads)

2.3. Windows on Windows – OS Personalities (Core)

The beginnings of Windows NT started in October 1988 with a set of goals to produce a portable system that addressed OS/2 compatibility, security, POSIX, multiprocessing, integrated networking, and reliability. With the advent and huge success of Windows 3.0, the system goals were soon changed to natively address Windows compatibility directly and move OS/2 compatibility to a subsystem. At the same time, emulation mechanisms (NTVDM) have been implemented to allow for running 16-bit DOS applications on Windows. With the introduction of 64-bit Windows, a new emulation layer called Wow64 has been developed, this time allowing for execution of 32-bit Windows programs on 64-bit Windows.

Book: pp. 178-182 (Wow64)

2.4. The Windows API – Naming Conventions, Types (Core)

This section discusses some characteristics developers face when programming against the Windows API. The Windows programming style is contrasted with practices common in the UNIX environment. The richness of the Windows API presents some challenges to those programmers who try to write portable programs, which work in both worlds.

Examples presented within these course modules focus on character-based applications (Windows Console Apps) only. The reader is encouraged to view these examples as foundation for the assignments presented in the accompanying lab manual.

Book: pp.3-4 (Windows API)

2.5. OS Principles labs, quizzes, and assignments

This section encourages the reader to explore the design space for structuring an operating system. Furthermore, the reader is asked to investigate tradeoffs related with the various OS structuring schemes (monolithic vs. layered vs. microkernel).

3. Concurrency – (Core) OS3

(basic: 2-3 hours, basic+advanced: 4-5 hours, homework assignment)
3.1. Concurrency, Critical Sections, Semaphores and Monitors (Core)

With its notions of processes, threads, fibers, and jobs, Windows supports multiprogramming and distributed processing. Mutual exclusion and synchronization are the two aspects of concurrency control that are most fundamental to operating system design.

Mutual exclusion denotes the ability of multiple units of concurrent execution (processes or threads) to share code, data, or resources in such a way that only one unit has access to the shared object at a time. Synchronization denotes the ability of multiple units of concurrent execution to coordinate their activities by exchange of information. Critical sections, semaphores, monitors, and message passing (interprocess communication through pipes, mailslots, shared memory, or window messages) are the most important concepts to support concurrency.

3.2. Windows Trap Dispatching, Interrupts, Synchronization (Core)

Windows provides several base mechanisms, that kernel-mode components such as the executive, the kernel, and device drivers use. Among them are the following system mechanisms:

· Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous procedure calls (APCs), exception dispatching, and system service dispatching

· Synchronization, including spinlocks, kernel dispatcher objects, and implementation of waits

· System worker threads

· Local procedure calls (LPCs)

Interrupts and exceptions are operating system conditions that divert the processor to code outside the normal flow of control. Either hardware or software can detect them. The term trap refers to a processor’s mechanism for capturing an executing thread when an exception or an interrupt occurs and transferring control to a fixed location in the operating system. In Windows, the processor transfers control to a trap handler, a function specific to a particular interrupt or exception.

The kernel distinguishes between interrupts and exceptions in the following way. An interrupt is an asynchronous event (one that can occur at any time) that is unrelated to what the processor is executing. Interrupts are generated primarily by I/O devices, processor clocks, or timers, and they can be enabled (turned on) or disabled (turned off). An exception, in contrast, is a synchronous condition that results from the execution of a particular instruction. Running a program a second time with the same data under the same conditions can reproduce exceptions.

Book: pp.85-174 (Trap Dispatching, Object Manager, Synchronization)

3.3. Advanced Windows Synchronization

This Section covers Deferred and Asynchronous Procedure Calls (DPCs and APCs), Interrupt Request Levels (IRQLs) and their role in CPU time accounting, as well as wait queues and dispatcher objects.

DPCs provide the operating system with the capability to generate an interrupt and execute a system function in kernel mode. The kernel uses DPCs to process timer expiration (and release threads waiting for the timers) and to reschedule the processor after a thread’s quantum expires. Device drivers use DPCs to complete I/O requests. To provide timely service for hardware interrupts, Windows—with the cooperation of device drivers—attempts to keep the IRQL below device IRQL levels. One way that this goal is achieved is for device driver ISRs to perform the minimal work necessary to acknowledge their device, save volatile interrupt state, and defer data transfer or other less time-critical interrupt processing activity for execution in a DPC at DPC/dispatch IRQL.

Book: pp. 104 ff.

3.4. Windows APIs for Inter-process Communication and Synchronization (Core/Advanced)

Using the Windows memory management APIs, multiple processes can share memory by mapping their virtual address spaces to the same file. This works nicely for processes running on the same machine.

However, the Windows API provides additional constructs for interprocess communication (IPC) between processes. Two primary Windows mechanisms for IPC are the anonymous pipe and the named pipe, both of which can be accessed with the familiar ReadFile() and WriteFile() functions. As such, they are well suited for redirecting the output of one program to the input of another, as is commonly done between UNIX programs.

Windows mailslots are another networked IPC mechanism which implements one-to-many message broadcasting. Within a distributed client/server application, mailslots can be used to implement a naming service by periodically broadcasting the names of those named pipes which are access points to the server process.

Book: pp.804-810 (Named Pipes and Mailslots)

3.5. Concurrency labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows mechanisms for concurrency control through the various labs, among them:

· Using kernel debugger to view the interrupt dispatch table

· Viewing configuration of programmable interrupt controller (PIC/APIC)

· Viewing the interrupt request level (IRQL) on Windows

· Monitoring Interrupt and DPC activity

· Viewing System Service Activity

· Exploring the Object Manager

· Viewing Global Queued Spinlocks

· Looking at Wait Queues

4. Scheduling and Dispatch – (Core) OS4

(basic: 2-3 hours, basic+advanced: 5-6 hours, homework assignment)
4.1. The Concept of Processes and Threads (Core)

A process can be thought of as a program in execution. To accomplish its task, a process will need certain resources – such as CPU time, memory, files, and I/O devices. These resources are allocated to the process by the operating system, either when the process is created or while it is executing.

Windows, as many modern operating systems, provides features for a process to contain multiple threads of control. A thread is the basic unit of CPU utilization. It comprises a thread identifier, a program counter, a register set and a stack. It shares with other threads in the same process its code section, data section, and resources, such as file handles, ports, and network endpoints.

The operating system is responsible for creation and deletion of user and system processes and threads, for the scheduling of threads, and the provisioning of mechanisms for concurrency control and communication.

This section explains the notions of a process and a thread and gives an overview over scheduling criteria and approaches.

4.2. Windows Processes and Threads (Core)

Although programs and processes appear similar on the surface, they are fundamentally different. A program is a static sequence of instructions, whereas a process is a set of resources reserved for the thread(s) that execute the program.

This section focuses on the process and thread concept as implemented in the Windows operating system. At the highest level of abstraction, a Windows OS process comprises the following:

· An executable program which defined initial code and data.

· A private virtual address space, which is a set of virtual memory addresses that the process can use.

· System resources, such as semaphores, communication ports, and files, that the operating system allocates to the process when threads open them during the program‘s execution.

· A unique identifier called a process ID (internally called client ID)

· At least one thread of execution.

A thread is the entity within a process that Windows schedules for execution. Without it, the process’s program can’t run.

This Section also discusses the Windows API to process and thread management. The most central function within this context is CreateProcess(), which creates a process with a single thread, and CreateThread() which creates an additional thread within a process. Because a process requires code, it is necessary to specify the name of an executable program file as part of the CreateProcess() call. It is common to speak of parent and child processes and the Windows kernel maintains these relationships, however, they are not exposed through the Windows API.

Book: pp.6-7 (Processes, Threads, and Jobs), pp.298, 322 (API)

4.3. Windows Process and Thread Internals (Core/Advanced)

This Section focuses on data structures, system functions, and performance counters maintained and exported by the kernel in order to implement the Windows concept of processes and threads. We discuss process creation in some detail – the support of a variety of operating system personalities with corresponding executable formats is one of the characteristics of the Windows OS process concept.

Each Windows process is represented by an executive process (EPROCESS) block. Besides containing many attributes relating to a process, an EPROCESS block contains and points to a number of other related data structures. For example, each process has one or more threads represented by executive thread (ETHREAD) blocks. The EPROCESS block and its related data structures exist in system space, with the exception of the process environment block (PEB) and thread environment block (TEB), which exist in the process address space (because it contains information that is accessed by user-mode code).

Book: pp.289-322 (Process & Thread Internals), pp.369-373 (Job Object), pp.109-119 (Exception Dispatching)

4.4. Windows Thread Scheduling (Core)

The objective of multiprogramming is to have some process (or thread) running at all times, to maximize CPU utilization. For a uniprocessor system, there will never be more than one running process (or thread). If there are more processes (threads), the rest will have to wait until the CPU is free and can be rescheduled.

Scheduling is a fundamental operating system function. Almost all computer resources are scheduled before use. The CPU is, of course, one of the primary computer resources. Thus, its scheduling is central to operating system design.

Windows uses a priority-elevation scheme to CPU scheduling. This section explains the single-processor scheduling algorithm.

Book: pp.325-347 (Thread Scheduling)

4.5. Advanced Windows Thread Scheduling (Core/Advanced)

This section explains advanced scheduling details such as time slice expiration, how waiting threads are represented, and other priority elevations (boosts) applied to threads. It also covers details with respect to multiprocessor support in Windows scheduling.

In this section, we describe the specific algorithms used to choose which threads run where and when, and examine the additional information Windows maintains to track thread and processor state on multiprocessor systems and the two new types of multiprocessor systems supported by Windows (hyperthreaded and NUMA).

Book: pp.348-369 (Idle Thread, Priority Boosts, MP scheduling)

4.6. Scheduling and Dispatch labs, quizzes, and assignments

Besides self-study and testing materials, this section provides in-depth insight in the Windows mechanisms for managing processes and threads through the various labs, among them:

· Viewing ready threads

· Examining and specifying process and thread priorities

· Monitor thread scheduling state changes

· Watching foreground priority boosts and decays

· Viewing the Job object

· Examining EPROCESS and ETHREAD blocks

5. Memory Management – (Core) OS5

(basic: 2-3 hours, basic+advanced: 4-5 hours, homework assignment)
5.1. Memory Management for Multiprogramming (Core)

The main purpose of a computer system is to execute programs. These programs, together with the data they access, must be in main memory (at least partially) during execution.

To improve both the utilization of the CPU and the speed of its response to its users, the computer must keep several processes in memory. There are many different memory-management schemes. These schemes reflect various approaches to memory management, and the effectiveness of the different algorithms depends on the particular situation. Selection of a memory-management scheme for a specific system depends on many factors, especially on the hardware design of the system. Each algorithm requires its own hardware support.

Since main memory is usually too small to accommodate all data and programs permanently, the computer system must provide secondary storage to back up main memory. Most modern computer systems use disk as the primary on-line storage medium for information.
5.2. Windows Memory Management Fundamentals (Core)

 The Windows OS implements a virtual memory management scheme, fulfilling two main tasks:

Translating, or mapping, a process‘s virtual address space into physical memory so that when a thread running in the context of that process reads or writes to the virtual address space, the correct physical address is referenced.

Paging some of the contents of memory to disk when it becomes overcommitted – that is, when running threads or system code try to use more physical memory than is currently available – and bringing the contents back into physical memory when needed.

Book: pp.375-422 (Memory Manager, Memory Pools, Address Space Layouts)

5.3. Virtual Address Translation (Core)

The memory manager provides a set of system services to allocate and free virtual memory, share memory between processes, map files into memory, flush virtual pages to disk, retrieve information about a range of virtual pages, change the protection of virtual pages, and lock the virtual pages into memory.

Like other Windows OS executive services, the memory management services allow their caller to supply a process handle, indicating the particular process whose virtual memory is to be manipulated. For example, if a process creates a child process, by default it has the right to manipulate the child process‘s virtual memory. This feature is used by subsystems to manage the memory of their client processes.

This Section discusses how Windows structures the virtual address space and maps these address spaces to real physical pages. User applications and system code reference virtual addresses. This section starts with a detailed description of 32-bit x86 address translation, followed by a brief description of the differences on the 64-bit IA-64 and x64 platform.

We briefly discuss the Windows API mechanisms to manage a program‘s dynamic memory segments such as page granularity functions as well as heap functions. Windows also provides memory-mapped files to associate a process‘s address space directly with a file. The operating system manages all data movement between the file and memory, and the programmer never needs to deal with ReadFile(), WriteFile(), SetFilePointer(), and the other file I/O functions. With memory-mapped files, the program can maintain dynamic data structures conveniently in permanent files. Furthermore, memory-based algorithms can process file data.

Book: pp.382-399, pp. 413-438
 (Address Translation, Service the Memory Manager provides)

5.4. Physical Memory Management (Core/Advanced)

The Windows memory manager uses a demand-paging algorithm with clustering to load pages into memory. When a thread receives a page fault, the memory manager loads into memory the faulted page plus a small number of pages preceding and/or following it. This strategy attempts to minimize the number of paging I/Os a thread will incur. Because programs, especially large ones, tend to execute in small regions of their address space at any given time, loading clusters of virtual pages reduces the number of disk reads.

When a thread receives a page fault, the memory manager must also determine where in physical memory to put the virtual page. The set of rules it uses to determine the best position is called a placement policy. Windows considers the size of CPU memory caches when choosing page frames to minimize unnecessary thrashing of the cache. If physical memory is full when a page fault occurs, a replacement policy is used to determine which virtual page must be removed from memory to make room for the new page.

Common replacement policies include least recently used (LRU) and first in, first out (FIFO). The LRU algorithm (also known as the clock algorithm, as implemented in most versions of UNIX) requires the virtual memory system to track when a page in memory is used. When a new page frame is required, the page that hasn’t been used for the greatest amount of time is removed from the working set. The FIFO algorithm is somewhat simpler; it removes the page that has been in physical memory for the greatest amount of time, regardless of how often it’s been used.

Book: pp.382-400 (Page Fault Handling, Working Sets)

5.5. Memory Management labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows mechanisms for managing memory through the various labs, among them:

· Viewing system memory information

· Accounting for physical memory use

· Viewing memory mapped files

· Determining maximum pool sizes

· Examining the page directory and page directory entries (PDEs)

· Translating logical to physical addresses

· Viewing page file usage

· Viewing process working set sizes

· Viewing page fault behavior

6. Device Management - The Input/Output System – (Elective) OS6

(basic: 1 hours, basic+advanced: 2 hours)
6.1. Principles of I/O Systems (Elective)

A general-purpose computer system consists of a CPU and a number of device controllers that are connected through a common bus. Each device controller is in charge of a specific type of device. Depending on the controller, there may be more than one device attached to it. For instance the SCSI (Small Computer Systems Interface) controller can have as many as seven devices attached to it.

A device controller maintains some local buffer storage and a set of special-purpose registers. The controller is responsible for moving data between the peripheral device(s) it controls and its local buffer storage. The size of the local buffer within the device controller varies from one controller to another, depending on the particular device being controlled.

6.2. The Windows I/O System Components (Elective)

The Windows I/O system consists of several executive components that together manage hardware devices and provide interfaces to hardware devices for applications and the system. Internally, the Windows I/O system operates asynchronously to achieve high performance and provides both, synchronous and asynchronous I/O capabilities to user-mode applications.

Device drivers interface the Windows I/O system with the actual hardware. To integrate with the I/O manager and other I/O system components, a device driver must conform to implementation guidelines specific to the type of device it manages and the role it plays in managing the device. In this section, we look at the types of device drivers Windows supports as well as the internal structure of a device driver.

Book: pp.537-560 (I/O System Components, Device Drivers), pp.590-613 (PnP Manager, Power Manager)

6.3. Windows I/O Processing (Elective/Advanced)

Most I/O operations don’t involve all the components of the I/O system. A typical I/O request starts with an application executing an I/O-related function (for example, reading data from a device) that is processed by the I/O manager, one or more device drivers, and the HAL.

The I/O system is packet driven. Most I/O requests are represented by an I/O request packet (IRP), which travels from one I/O system component to another. The design allows an individual application thread to manage multiple I/O requests concurrently. An IRP is a data structure that contains information completely describing an I/O request. The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the IRP to the correct driver and disposing of the packet when the I/O operation is complete. In contrast, a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP back to the I/O manager, either for completion or to be passed on to another driver for further processing. Based on the IRP concept, we describe the asynchronous processing within the Windows I/O system in detail.

Book: pp.561-589 (I/O processing)

6.4. Device Management labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows I/O system through the various labs, among them:

· Viewing the loaded driver list

· Displaying driver and device objects

· Viewing device handles

· Looking at driver dispatch routines

· Looking at a thread’s outstanding I/O request packets (IRPs)

· Examining IRPs

· Viewing detailed devnode information in device manager
7. Protection and Security – (Elective) OS7

(basic: 1-2 hours, basic+advanced: 3 hours, homework assignment)
7.1. The Security Problem (Elective)

Protection of a computer‘s resources is strictly an internal problem: How does an operating system provide controlled access to programs and data stored in a computer system?

Security, on the other hand, requires not only an adequate protection system, but also consideration of the external environment within which the system operates. Internal protection is not useful if the operator‘s console is exposed to unauthorized personnel, of if files (stored, for example, on tapes and disks) can simply be removed from the computer system and taken to a system with no protection. These security problems are essentially management, not operating-system problems.

The information stored in the system (both data and code), as well as the physical resources of the computer system, need to be protected from unauthorized access, malicious destruction or alteration, and accidental introduction of inconsistency. We first examine the ways in which information may be misused or intentionally made inconsistent. We then discuss the mechanisms present in Windows to guard against this occurrence.

Book: pp.485-488 (Security)

7.2. Windows Security Components and Concepts (Elective)

What features are required at the C2 level and have been implemented within Windows OS? Some of the most important features include:

· Discretionary Access Control - The ability of every user on the system to decide what access other users should have to their data

· Object Reuse - A guarantee that one user can't recover information belonging to another user when it's no longer in use. For example, a C2 evaluated operating system must ensure that a file deleted by one user can't be recovered by another

· Accountability - The ability for the system to uniquely identify every user on the system.

· Auditing - The ability for the system to record what users took which actions.

To achieve a C2 evaluation, Windows NT had to meet all of the C2 feature requirements. However, it actually exceeds C2 requirements in some areas. For example, Windows NT provides a trusted path - a way to ensure that you are communicating directly with the operating system when providing information like logon passwords - which is not a requirement for C2, but is a requirement for a higher security level, B2.

Book: pp.488-530 (Security System Components, Protecting Objects, Account Rights and Privileges, Auditing, Logon)

7.3. Windows Security Descriptors (Elective/Advanced)

Nearly any object created with a Create() system call has a security attributes parameter. Therefore, programs can secure files, processes, threads, events, semaphores, named pipes, and so on. The first step is to include a SECURITY_ATTRIBUTES structure in the Create() call. The important element in the SECURITY_ATTRIBUTES structure is the pointer to a security descriptor, which describes who owns the object and which users are allowed or denied various rights.

An individual process is identified by its access token, which specifies the owning user and group membership. When a process attempts to access an object, the Windows OS kernel can determine the process‘s identity using the token and then can decide from the information in the security descriptor whether or not the process has the required rights to access the objects.

Book: pp.497 (Tokens) and pp.506-516 (Security Descriptors and Access Control)

7.4. Security labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows security mechanisms through the various labs, among them:

· Looking inside the registry at HKLM\SAM and HKLM\Security

· Viewing Access Tokens

· Looking at restricted tokens

· Viewing a security descriptor

· Seeing a privilege get enabled

· Listing active logon sessions
8. File System – (Elective) OS8

(basic: 2-3 hours, basic+advanced: 5-6 hours, homework assignment)
8.1. Background: Unix File Systems (Elective)

The file system is the most visible aspect of an operating system. It provides the mechanisms for on-line storage of and access to data and programs belonging to the operating system and all the users of the computer system. The files system consists of two distinct parts: a collection of files, each storing related data, and a directory structure, which organizes and provides information about al the files in the system.

Some files systems have a third part, partitions, which are used to separate physically or logically large collections of directories.

Here, we discuss general approaches common to many different file systems. However, we discuss some implementation details on the basis of a UNIX files system (where many interesting concepts were implemented first).

Book: pp.689-694 (File System Formats)

8.2. The Windows File System (NTFS) (Elective)

From the start, the Windows NT File System (NTFS) was designed to include features required of an enterprise-class file system and meet the requirements to implement POSIX 1003.1. To minimize data loss in the face of an unexpected system outage or crash, a file system must ensure that the integrity of the file system‘s metadata be guaranteed at all times, and to protect sensitive data from unauthorized access, a file system must have an integrated security model.

Book: pp.717-758 (NTFS Design Goals, FS Driver, On-Disk Structure)

8.3. Encrypting File System Security in Windows OS (Elective/Advanced)

EFS security relies on Windows OS cryptography support, which Microsoft introduced in Windows NT 4.0. The first time a file is encrypted, EFS assigns the account of the user performing the encryption a private/public key pair for use in file encryption. User can encrypt files via Windows Explorer or via a command-line utility named cipher. Windows automatically encrypts files that reside in directories that are designated as encrypted directories.

When a file is encrypted, EFS generates a random number for the file that EFS calls the file‘s file encryption key (FEK). EFS uses the FEK to encrypt the file‘s contents with a stronger variant of the Data Encryption Standard (DES) algorithm such as DESX. EFS stores the file‘s FEK with the file but encrypts the FEK with the user‘s EFS public key by using the RSA public-key based encryption algorithm. After EFS completes these steps, the file is secure.

Book: pp.775-784 (Encrypting File System Security)

8.4. NTFS – Recovery Support (Elective/Advanced)

NTFS recovery support ensures that if a power failure or a system failure occurs, no file system operations (transactions) will be left incomplete and the structure of the disk volume will remain intact without the need to run a disk repair utility.

NTFS uses a transaction-processing scheme to implement recoverability. This strategy ensures a full disk recovery that is also extremely fast (on the order of seconds) even for the largest disks. NTFS limits its recovery procedures to file system data to ensure that at the very least the user will never lose a volume because of a corrupted file system; however, unless an application takes specific action (such as flushing cached files to disk), NTFS does not guarantee user data to be fully updated if a crash occurs.

Transaction-based protection of user data is available in most of the database products available for Windows 2000. The decision not to implement user data recovery in the file system represents a trade-off between a fully fault tolerant file system and one that provides optimum performance for all file operations.

Book: pp.758-774 (NTFS Recovery Support)

8.5. Windows File and Directory Management (Elective)

The most obvious way an application accesses files is by calling Windows I/O functions such as CreateFile(), ReadFile(), and WriteFile(). An application opens a file with CreateFile() and then reads, writes, or deletes the file by passing the handle returned from CreateFile() to other Windows functions. The CreateFile() function, which is implemented in the Kernel32.dll Windows client-side DLL, invokes the native function NtCreateFile(), forming a complete root-relative pathname for the path that the application passed to it (processing “.” and “..” symbols in the pathname) and prepending the path with “\??” (for example, \??\C:\Daryl\Todo.txt).

Besides describing the Windows API functions for file and directory management, this section describes the Microsoft-specific extensions to the standard C library file functions in order to support drive names as required by the underlying Windows file naming.

8.6. File System labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows file system through the various labs, among them:
· Viewing the list of registered file systems

· Viewing file system activity on an idle system

· Looking at NTFS streams

· Creating a junction (symbolic link)

· Viewing on-disk structures: the master file table (MFT)

· Viewing NTFS information

· Viewing encrypting file system (EFS) information

9. Real-time and Embedded Systems – (Elective) OS9

(basic: 1 hours, basic+advanced: 2 hours)
9.1. Introduction and Vocabulary (Elective)

High-performance embedded applications must often manage time-critical responses. Examples include manufacturing process controls, high-speed data acquisition devices, telecommunications switching equipment, medical monitoring equipment, aircraft "fly-by-wire" controls, and weapons delivery, space navigation and guidance, laboratory experiment control, automobile engine control, and robotics systems.

Validating such an application means examining not only its computational accuracy, but also the timeliness of its results. The application must deliver its responses within specified time parameters in real-time.

It is important to distinguish between a fast operating system and an RTOS. Speed, although useful for meeting the overall requirements, does not by itself meet the requirements for an RTOS. The Internet newsgroup comp.realtime lists some requirements that an operating system must meet to be considered an RTOS:

· The OS (operating system) must be multithreaded and preemptive.

· The OS must support thread priority.

· A system of priority inheritance must exist.

The OS must support predictable thread synchronization mechanisms.

9.2. Real-Time Systems with Windows (Elective)

Although many types of embedded systems (for example, printers and automotive computers) have real-time requirements, Windows XP Embedded doesn’t have real-time characteristics. It is simply a version of Windows XP that makes it possible, to produce small-footprint versions of Windows XP suitable for running on devices with limited resources.

Because Windows XP doesn’t prioritize device IRQs in any controllable way and user-level applications execute only when a processor’s IRQL is at passive level, Windows isn’t always suitable as a real-time operating system. The system’s devices and device drivers—not Windows—ultimately determine the worst-case delay.

In contrast, Windows CE offers some real-time capabilities. In particular, Windows CE is providing:

•
 Guaranteed upper bounds on high-priority thread scheduling—only for the highest-priority thread among all the scheduled threads.

•
 Guaranteed upper bound on delay in scheduling high-priority interrupt service routines (ISRs). The kernel has a few places where pre-emption is turned off for a short, bounded time.

•
 Fine control over the scheduler and how it schedules threads.

This section will briefly describe the Windows CE approach to real time and scheduling and compare it with Windows XP.

9.3. Embedded Systems with Windows XP Embedded (Elective)

Windows XP Embedded is the embedded operating system that delivers the power of Windows in componentized form to allow developers to rapidly build reliable and advanced embedded devices. Based on the same binaries as Windows XP Professional, Windows XP Embedded contains over 10,000 individual feature components so developers can choose and achieve optimum functionality while managing or reducing footprint in a customized device image. Popular device categories for building operating systems using Windows XP Embedded include retail point-of-sale terminals, thin clients and advanced set-top boxes.

Windows XP Embedded delivers reliability, security, and performance features and enhancements. The operating system software also provides the latest multimedia and Web browsing capabilities and contains extensive device support. In addition, Windows XP Embedded incorporates embedded-enabling capabilities, such as support for multiple boot, storage, deployment and management technologies.

10. Fault-tolerance (Elective) OS10

(basic: 1 hour, basic+advanced: 2 hours)
In this Section we discuss the fault-tolerance and availability mechanisms found in Windows Server 2003. On the file-system side, in addition to proper disk management and antivirus protection, Windows Server 2003 provides Distributed File System (DFS), Volume Shadow Copy (VSC), and Remote Storage technologies.

Related to system-level fault tolerance, Windows Server 2003 includes the Microsoft Cluster Service (MSCS) and Network Load Balancing (NLB) technologies to provide redundancy and failover capabilities.

Book: pp. 622-654 (Volume Management), pp.841-844 (DFS and Network Load Balancing)

11. System Performance Evaluation and Troubleshooting (Elective) OS11

(basic: 1 hour, basic+advanced: 2-3 hours)
This section presents approaches to solving problems that can occur during the Windows startup process as a result of hard disk corruption, file corruption, missing files, and third party driver bugs. First, we describe three Windows boot-problem recovery modes: last known good, safe mode, and the Recovery Console. Then we present common boot problems, their causes, and approaches to solving them. The solutions refer to last known good, safe mode, the Recovery Console, and other tools that ship with Windows.

Book: pp.25-34 (Performance Tool, Support Tools, Resource Kits), pp. 845-870 (Crash Dump Analysis, Error Reporting)

12. Scripting (Elective) OS12

(basic: 1 hour, basic+advanced: 2 hours, homework assignment)
This section discusses the scripting mechanisms (Windows Scripting Host, VBScript, Windows Management Instrumentation Scripting, Services for Unix, etc) available in Windows and uses a number of case study scenarios to compare those with UNIX scripting.

Furthermore, the reader is encouraged to familiarize himself with the Windows way of accessing and administering OS functionality through GUI-based tools. However, those used to the command line style of programming and administration commonly found in other environments will find (nearly) all the typical tools at four different places:

· Windows XP/2000 CD \Support\Tools

· Windows Resource Kits

· Windows Services for UNIX and the Interix subsystem (with a complete POSIX subsystem and an enormous amount of GNU tools compiled for the Windows 2000 platform).
Book: pp.237-249 (Windows Management Instrumentation)
SUPPLEMENTARY UNITS
A. Windows Networking – (Supplementary/Advanced)

(basic+advanced: 3-4 hours, homework assignment)
A.1. Windows Networking Architecture (Supplementary/Advanced)

Microsoft Windows OS was designed with networking in mind, and it includes broad networking support that is integrated with the I/O system and the Windows API. The four basic types of networking software are services, APIs, protocols and network adapter device drivers, and each is layered on the next to from a network stack. Windows OS has well-defined interfaces for each layers, so in addition to using the wide variety of different APIs, protocols, and adapter device drivers that ship with Windows OS, third parties can extend the operating system‘s networking capabilities by developing their own.

Book: pp. 787-789 (Windows Networking Architecture)

A.2. Windows Socket Programming (Supplementary/Advanced)

Windows Sockets (winsock) is Microsoft‘s implementation of BSD (Berkeley Software Distribution) Sockets, a programming API that became standard by which UNIX systems have communicated over the Internet since the 1980s. Support for sockets on Windows 2000/XP makes the task of porting UNIX networking applications to Windows OS relatively straightforward.

Winsock includes most of the functionality of BSD sockets but also includes Microsoft-specific enhancements, which continue to evolve. Winsock supports reliable-connection oriented communication as well as unreliable-connectionless communication.

Windows 2000/XP provides Winsock 2.2.

Book: pp. 791-797 (Windows Sockets)

A.3. Microsoft-specific extensions to Sockets and other Networking APIs (Advanced)

Windows implements multiple networking APIs to provide support for legacy applications and compatibility with industry standards. In this section, we will briefly look at the networking APIs and describe how applications use them. It is important to keep in mind that the decision about which API an application uses depends on characteristics of the API, such as which protocols the API can layer over, whether the API supports reliable or bidirectional communication, and the API’s portability to other Windows platforms the application might run on. We will discuss the following networking APIs:

· Windows Sockets (Winsock)

· Remote procedure call (RPC)

· Web access APIs

· Namedpipes and mailslots

· NetBIOS

A powerful feature from a Windows programming point of view is that the Winsock API is integrated with Windows messages. A Winsock application can take advantage of this feature to perform asynchronous socket operations and receive notification of an operation‘s completion via a standard Windows message or through execution of a callback function. This capability simplifies the design of a Windows application because the application doesn't need to be multithreaded or manage synchronization objects to both perform network I/O and respond to user input ore requests from the window manager to update the application windows. The names of message-based versions of BSD-style Winsock functions usually begin with the prefix WSA.

Winsock is an extensible API on Windows because third parties can add a transport service provider that interfaces Winsock with other protocols as well as a namespace service provider to augment Winsock‘s name-resolution facilities. Service providers plug into Winsock using the Winsock service provider interface (SPI) and are used by Winsock to implement socket functions for the address types that the provider indicates it implements.

Book: pp. 791-838 (APIs, Multiple Redirector, Protocol Drivers, NDIS)

A.4 Networking labs, quizzes, and assignments

Besides self-study and testing materials, this Section provides in-depth insight in the Windows networking mechanisms through the various labs, among them:
· Looking at winsock service providers

· Looking at TCP/IP’s device object

· Watching transport driver interface (TDI) activity

· Listing the loaded network driver specification (NDIS) miniports

· Using network manager to capture network packets

B. Comparing the Linux and Windows Kernels (Supplementary/Advanced)

(basic+advanced: 1-2 hours)
The Linux operating system is being developed as an open source project and builds on experiences made with many existing commercial operating systems. It is particularly interesting to contrast architectural design decisions made by the designers of the Windows operating system family with those made by the Linux community. This module compares and contrasts the Linux 2.6 kernel with Windows XP and Windows Server 2003 in areas such as kernel design, process and thread model, scheduling, memory management, I/O, and security.

C. Windows – UNIX Interoperability – (Supplementary/Advanced)

(basic+advanced: 2 hours)
C.1 File and Command Interoperability (Supplementary/Advanced)

There are two main aspects regarding interoperability among different operating systems. The first aspect considers interoperability from a user‘s perspective. Most interesting is the question whether different operating systems can share resources, such as files, printers, or tape drives. Here, we will focus on CIFS (the common internet file system) and NFS (network file system) implementations available on Windows OS and UNIX platforms.

The second aspect is developer-centric. Here the most important question is about portability: what does it take to port one application from one OS (UNIX) to another (Windows OS) or vice versa. Compatibility libraries are a classical solution to porting applications from one OS to another. In case of Windows and POSIX (UNIX), there are two possibilities:

A Windows compatibility library can be hosted on UNIX or a POSIX compatibility library can be hosted on top of the Windows subsystem. Several commercial products and open source projects do just this. Although Microsoft‘s Visual C++ development environment includes a limited compatibility library, we are focusing here on alternative approaches.

Book: pp.696 (Remote File System Drivers)

C.2 Programming (Supplementary/Advanced)

Microsoft provides a full POSIX subsystem for Windows OS under the product name Interix. Interix replaces the original POSIX subsystem on Windows 2000. It provides full network support for POSIX application and allows for interoperability between POSIX and Windows subsystems (CreateProcess()). The Interix subsystems is bundled with Windows implementations of many essential UNIX tools (including X11R5 clients).

Interix has been developed under the name OpenNT by a company called Softway, whish has been acquired by Microsoft in Fall 1999. Softway described its mission as follows:

“Run UNIX applications and scripts on Windows NT” means that one recompiles the source code of any programs as a native NT binary that behaves correctly (as if it was UNIX). This is not a binary emulation product.

Book: pp.60-61 (POSIX Subsystem)

June 15, 2005

© 2005 David A. Solomon and Mark Russinovich

1

