[image: image11.png]E? Microsoft Platform SDK (June 1998 Pre-Release E

n)

[-[OIx]

5 T4 e 2 9 [& g
Al Locwie Povos bt Bk Fowmd Sep Refmh ot Pt o
Contents | ndex earch | u
[objectET ICounter Design|
Type in the word(s) to search for:
Object and Counter Design. A performance. is an entity for which performance
data is available. Performance counters define the type
ist Topics: Display. of data that is available for a
Seleett R application can provide information for multiple
eecllope e performance objects, each with one or more counters.
T == R

unter Design

T~ Search previous results
T Match simitar words
¥ Searchties only

An application can also define objects that have multiple
instances. For example, 3 SCSI application could use a
Singie set of EENIREN dafinitions to define 2 drive

with two counters, such s Bytes Read and Bytes
witten. The performance DLL for the application could
report performance data for each drive controlled by the
application

The Windows NT Performance Monitar can show some
counters as rates, such as Page Faults/sec, as well as a
raw count. This gives context to the users, so they do
not have to compare data from different time intervals
However, you do not have to take this into account when
you design a EEIGIE,. You increment the and let
the monitor application do the work of converting raw
counts to a rate.

The method you us llect the data can be as simple
as incrementing a each time a particular routine
in the application is called, or it can involve time-
consuming calculations. Counters and timers should
increment and never be deared. Counters can wrap, as
Iong as they do not wrap twice between snapshots. Your
application can collect and store data during its narmal
execution, as long as it does not affect the its
performance.

For some types of data, it may be more efficient or

=l

 [image: image2.png]Designed 10

3
14

@

MICFOSOftJ
BackOffice”

Designed for
Microsoft® BackOffice®
Logo Guideline v4.5

Applications for the
Microsoft BackOffice Platform

Effective April 1, 1999

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user. The names of companies, products, people, characters, and/or data mentioned herein are fictitious and are in no way intended to represent any real individual, company, product, or event, unless otherwise noted. Complying with all applicable copyright laws is the responsibility of the user. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Portions of this document specify and accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of final documentation or software. Microsoft assumes no responsibility for any damages that might occur directly or indirectly from these inaccuracies.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 1998-1999 Microsoft Corporation. All rights reserved.

ActiveX, Active Accessibility, Authenticode, BackOffice, Direct3D, DirectDraw, DirectInput, DirectShow, DirectSound, DirectX, IntelliMirror, JScript, Microsoft, Microsoft Press, MS, MS-DOS, MSDN, Outlook, Visual Basic, Visual C++, Windows, the Windows logo, Win32, Win64, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.
Building the Best Solutions

Thank you for your interest in the “Designed for Microsoft BackOffice” logo program. This document contains Version 4.5 of the popular program. We have made a number of changes to the program based on Independent Software Vendor (ISV) input and customer suggestions. The result is a program that maximizes customer benefits for solutions implemented on the BackOffice platform.

More than ever, this unique program is focused on the customer benefit derived from the applications, rather than evaluating the technology itself. It is our hope that by extending the notion of “easy to build, manage, and deploy,” previously associated with BackOffice family of products, we can better incorporate solutions being delivered by recognized ISVs.

The updated “Designed for Microsoft BackOffice” Logo program establishes a framework to unify ISV client/server branding efforts from Microsoft. As new products and technologies come under this simplified program, ISVs will not face varying sets of requirements, duplication in testing, and the costs associated with supporting the multiple branding programs. The new program includes basic “core requirements” which provide a foundation for ISVs and hardware manufacturers to build upon.

In addition to meeting the core requirements, guidelines are now available for ISVs to leverage services and technologies from specific products that are part of BackOffice. For instance, an ISV can take the next step and have their products evaluated for compliance for specialized areas (such as the enterprise or small business) or technologies (such as Office 2000 services or internet information server) which are called Special Interest Groups. It is required that all applications support two or more Special Interest Groups. The end result is a program that will ensure customers have the best possible experience on the BackOffice platform.

The success with the Designed for Microsoft BackOffice Logo is a clear message that branding efforts indeed matter to ISVs and customers. With the new program and requirements, Microsoft recognizes that customers need more from an ISV branding program than simply an evaluation of technology used. Customers continually look to Microsoft’s leadership in working with ISVs to build complete solutions that speak to the core values of quality, consistency, and integration. In speaking to these core values customers can have confidence in products and services provided by companies carrying the Designed for Microsoft BackOffice logo.

If you have any questions or suggestions, please contact us at D4BOinfo@microsoft.com
The Microsoft BackOffice Product Group

Table of Contents

3Building the Best Solutions

61
Technical Requirements at a Glance

61.1
How to Use this Handbook

61.2
How to Comply with the Technical Guidelines

81.3
Core Requirements

132
Phase I Core Requirements

132.1
Win32 Application Programming Interface (API)

142.2
Single Sign-on (Windows Authentication)

162.3
Application runs as a server service or COM+ Application

182.4
Publish Perfmon Counters

222.5
Publish events to the Event Log

243
Phase II Core Requirements

243.1
Provide support for Kerberos Authentication Protocol

263.2
Application administration tools operate as a snap-in to the Microsoft Management Console (MMC)

293.3
Application Instrumentation

343.4
Use Directory Services

394
Phase III Core Requirements

394.1
Installation using Windows Installer and Clean Application Guidelines

465
Application and Technology Specific Requirements

465.1
SNA Server

485.2
SQL Server

505.3
Exchange Server

535.4
Systems Management Server

545.5
Internet Information Server

555.6
Small Business Server

565.7
Terminal Server Edition

575.8
Application Development Tools

575.9
COM+ Component Services

575.10
Asynchronous Message Queueing

595.11
Enterprise Edition Features

60Office 2000 Client Requirements

62“Designed for” Office 2000 Client Compatibility

625.12
Designed for Windows 98/Windows NT Workstation Logo

635.13
User Interface (UI) Design

695.14
Extensibility

725.15
Data Access Integration and Connectivity

73Application Integration Services

745.16
Document Creation or Form Tracking Integration

745.17
Data Analysis & Reporting Components

765.18
Calendaring, Contact, and Journaling

765.19
Project 2000 Integration – Under Construction

786
Recommendations

786.1
Support for Digital Signatures

786.2
Support for the Microsoft Virtual Machine

786.3
Diagnostic Logging

786.4
Support for UNICODE

796.5
Support for Microsoft Windows Foundation Classes

796.6
Java Applications Use ADSI

796.7
Support for Scripting

806.8
Year 2000 Guidelines

816.9
Symbol Files

816.10
Applications should be recoverable

816.11
Test An Application Using Pool Tagging

836.12
Supply baseline data for configuration management

836.13
Operates in a stressed Server environment as a high performance application

866.14
Expose a Scripting Model

876.15
Office 2000 Specific Recommendations

1 Technical Requirements at a Glance

The “Designed for BackOffice” program is a logo for all BackOffice products, which encompasses all Microsoft Windows® 2000 Server applications. By following the requirements and licensing this logo, you are signaling that you care about quality and consistency in the rapidly expanding Windows marketplace and that your customers can have confidence in both your current product and the future direction of your enterprise development.

1.1 How to Use this Handbook

Each requirement is broken down into the following sections:

· A description of the requirement.

· What is necessary for compliance.

· The customer benefit delivered by the requirement.

· [image: image1.png]CAl
o

Microsoft®
Office

=

M|crosoft®
BackOffice”

Where you can find more information about implementing a requirement. We have provided integration with the popular Microsoft Platform SDK. When referring to a section in the SDK, we have italicized it. For example, in the section describing Performance Monitor Counters, you will see one of the articles is called Object and Counter Design. By copying and pasting this title selection into the Platform SDK SEARCH function (with just Search titles only checked) retrieves the article. In addition, this document has also been integrated into the Platform SDK so you can find up to date information about the BackOffice logo program quickly and easily in the SDK as well. The Platform SDK is provided as part of the Microsoft Developer Network (MSDN). For more information, download information or to order the CD, go to http://msdn.microsoft.com/developer/join/.

1.2 How to Comply with the Technical Guidelines

There are both proposed “Requirements” and “Recommendations” in this document. The result should be an application that is optimized for the BackOffice platform to provide maximum performance, availability and manageability of your product in the customer’s environment.

These proposed requirements will be phased in over 3 stages, beginning April 1, 1999, and continuing with the release of Windows 2000 Server and Microsoft BackOffice 5.0. This means that authorized testing centers will begin compliance testing for Phase I requirements starting April 1, 1999. For an up to date list of authorized testing centers, please check our website at http:\\www.microsoft.com\backoffice\designed.

In order to qualify for the Logo and get the maximum benefits, you must meet the following criteria:

· All applications must comply with the Core Baseline Requirements. Exceptions, such as web applications, are noted as such.

[image: image3.png]CAl
o

Microsoft®
Office

=

M|crosoft®
BackOffice”

· In addition, applications must support the requirements for two or more Special Interest Groups. For example, an application could support SMS and Exchange to qualify. The more Groups you comply with, the greater will be your marketing benefits.

· Those applications that also comply with the Office 2000 requirements can optionally display the “Designed for Office and Microsoft BackOffice” Logo, shown at right.

Remember, the more requirements and recommendations an application supports, the greater will be the marketing benefits received.

[image: image9.png]rosoft BackOffice Install Analyzer... P[] 3|

Help
Eiles Found: 0 Directories: 0
New Files: 0 Changed: 0
Deleted: 0
Drives:

Fo Clo Ce e PRy

=

[image: image4.jpg]Designed far
Designed for

B :@EE_
ARG 3

a1, N

P
JOARSZ T3
IENERITNE]

Core Baseline Requirements

Please note that as new products and new technologies are available, we will be adding additional special interest groups.

1.3 Core Requirements

Phase I Server Core Requirements (effective April 1, 1999)

Section
Requirement
Description

2.2
Win32 Application Programming Interface (API)
All major client/server program files (DLLs and EXEs) must be 32-bit.

2.3
Single Sign-On
After workstation logon, there is no forced security revalidation for the application

2.4
Runs as a Windows 2000 Server service or COM+ Application
Application supports a multi-threaded operating environment in a preemptive multi-tasking environment

2.5
Publish Perfmon counters
Publish metrics which identify throughput, resource utilization, and response time

2.7
Publish events to event log
Publish application-specific, diagnostic events related to the five (5) most common environment conditions

Phase II Core Requirements (effective when Windows 2000 is released)

Section
Requirement
Description

3.1
Provide support for Kerberos authentication protocol
Support for public keys as an enhancement to Windows 2000 security; application provides a Kerberos ticket for remote access over public networks and the Internet

3.2
Application administration tools function as snap-ins to the Microsoft Management Console (MMC)
Application administration tools will support a central administration strategy by supporting MMC

3.3
Application instrumentation
Applications/Services will use the Common Information Model (CIM) to provide Windows management information and events through web based enterprise management (WBEM).

3.4
Use Directory Services
Applications must support policy-based management; Active Directory services; and distributed file services.

Phase III Core Requirements (effective when BackOffice 5.0 is released)

Section
Requirement
Description

4.1
Installation using Windows Installer and Clean Application Guidelines
Application follows guidelines for clean application and provides setup using Windows Installer

Special Interest Groups

In addition to the Core Baseline Requirements, your application must comply with two or more of the following application and technology specific requirements. We recommend following the SMS guidelines and at least one other.

Application and Technology Specific Requirements

Section
Requirement
Description

5.1
SNA Server

Support for SNA gateway
Client application must use WOSA APIs or use FMI, or SNA Server client APIs, or SNA Server compatibility APIs for IBM PC Support or Client Access/400.

5.2
SQL Server

Database access using ODBC, OLE DB and/or ADO
Application supports accessing database tables, view, and other database objects using ODBC, OLE DB and/or ADO

Store data in SQL Server tables
Application specific data, such as code tables, are stored in SQL Server tables

Application administration tools function as a snap-in to the Enterprise Manager
Application administration tools will support a central administration strategy by extending the Enterprise Manager MMC

5.3
Exchange Server

A Messaging client application must use MAPI for send and post
Client handles messaging functions by MAPI for send and post

Upgrade Messaging client application from MAPI to CDO.
Application use Collaboration Data Objects (CDO) to provide messaging and collaboration functionality, including discussion, calendaring, mailbox access, and SMTP support

5.4
Systems Management Server

Must be installable using Systems Management Server
Application includes PDF and MIF files and supports unattended install and uninstall

5.5
Internet Information Server

Use Active Server Pages with COM components
Application use component object model to encapsulate business logic; any language can be used that supports COM

Scripts to call server-side components and generate client HTML
Scripts are used to call server-side components and generate HTML for the user interface

Use session “keep alive”
Application uses a session keep alive timer to periodically send packets

Extend IIS MMC if the application requires an administration user interface
Application administration tools will support a central administration strategy by extending the IIS MMC

Application uses IIS for HTTP communication
Applications that require HTTP must work with IIS

5.6
Small Business Server

Server applications which use CALs can not exceed the number SBS CALs
SBS includes 25 user licenses; SBS applications should follow the same rule

Integration with SBS Console as required to simplify application administration
Support a central administration strategy by using a single console

Integration with SBS setup
Client-side code must use the SBS Setup Computer wizard

Section
Requirement
Description

5.7
Terminal Server Edition

Support for thin clients
Applications must install and function properly in Terminal Server mode

5.8
Application Development Tools

Build BackOffice applications
Must be able to create a client or server application that meets the appropriate BackOffice logo requirements.

5.9
 COM+ Component Services

Use COM+ Services
Components must be built and deployed as COM+ Applications.

5.10
Asynchronous Message Queuing

Use Asynchronous Message Queuing in one of two scenarios
An application must use either MSMQ or COM+ queued components where asynchronous communication between components is provided.

5.11
Enterprise Edition Features

Support for Very Large Memory (VLM)
Application can operate on a server with over 2GB RAM

Support for Symmetrical Multiprocessors (SMPs)
Application processing leverages 4 or more processors in a server

Support for Microsoft Cluster Server
Applications must integrate with the clustering wizard so that multiple instances of an application are running

5.12
Office 2000 Client Compatibility

Compliance with “Designed for” Windows logo guidelines for Windows 2000 and Windows 98 Applications
All file system-based applications must successfully meet the requirements for the Designed for Windows logo program.

User interface (UI) design
Standalone client applications should meet standard Office 2000 toolbar styles, main menu bar entries and accelerator keys, dropdown menus and accelerator keys, basic dialogue boxes, and help topic.

Extensibility
Standalone client applications should use COM Add-ins to establish automation calls or links between client application, Office 2000, and Microsoft BackOffice or Windows application service (Internet Information Server or Microsoft Transaction Server).

Data access connectivity
Standalone client applications should include data access connectivity with a Microsoft BackOffice or Windows NTS application service – using ODBC, OLE DB, DCOM, or MAPI – and include Office 2000 component in the final application workflow.

Office 2000 Application Services
Must fulfill one or more.

Document creation or form tracking integration in application workflow
Standalone client applications should support at least one Office 2000 document type or form tracking function in application workflow with BackOffice or Windows NTS application service.

Data analysis and reporting components in application workflow
Standalone client applications should support at least one Office 2000 data analysis or reporting function generated using BackOffice or Windows NTS application data.

Calendaring, contact and journaling integration in application workflow
Standalone client applications should support at least one Microsoft Outlook 2000 calendaring, contact or journaling function in application workflow with BackOffice or Windows NTS application service.

Project scheduling integration in application workflow

Standalone client applications should support using Microsoft Project editor UI, task scheduling engine, database schema along with BackOffice connectivity.

Advanced Recommendations

These functions are not currently required but are strongly recommended. Some may become requirements in future versions of this program.

Section
Recommendation
Description

6.1
Digital signatures
Helps to ensure that only safe code is downloaded from the internet and intranets

6.2
Support for the Microsoft Virtual Machine (VM)
Java(applications should be tested against the Microsoft VM to ensure highest customer satisfaction.

6.3
Diagnostic logging.

Administrators should be able to control the level of logging through a registry key set via policy or user interface. This includes configuration changes, starting/stopping of services, etc

6.4
Support for UNICODE
Converting to Unicode will make your application more portable and enable it to run faster.

6.5
Support for Microsoft Windows Foundation Classes
Applies to Java applications and applets only.

6.6
Java applications use ADSI
ADSI has a Java implementation to make it easy for Java developers to exploit Active Directory services.

6.7
Expose a scripting model
Application provides COM interfaces for programmatic control of application functionality and/or configuration

6.8
Year 2000 Guidelines
Application will not produce errors processing date data in connection with the year change from the 20th to 21st centuries.

6.9
Symbol files
Vendor should provide symbol file(s) available for debug.

6.10
Applications should be recoverable
Server applications must be written so they can be backed up and recovered.

6.11
Test an application using pool tagging
Pool tagging will increase the quality of your application code and help to decrease the possibility that your application will crash the client’s operating system.

6.12
Supply baseline data for configuration management
The application should include a complete list of all the files that the service installs and creates, plus a list of all the registry keys created by its installation and those keys it creates while running.

6.13
Operates in a stressed Windows 2000 Server environment as a high performance application
Applications must meet or surpass customers’ expectations in terms of application quality and robustness. Free performance and tuning tools are provided to identify and correct application inefficiencies.

6.14
Office 2000 specific

Support for worldwide architecture
Standalone client applications should support new worldwide EXE and global interface architecture introduced by Microsoft Office 2000.

Document publishing, annotation, and subscription services
Standalone client applications should support publishing documents or HTML to a FrontPage or WebDAV server; enable navigation and viewing of documents through Windows Name Space Extension (NSE).

Web Management
Standalone client applications should support using Microsoft FrontPage as their main Intranet web management tool for link fixing, reporting, and document object model (DOM) integration with Office 2000 publishing.

2 Phase I Core Requirements

2.1 Win32 Application Programming Interface (API)

All applications must comply with this requirement except as noted below:

· Java applications. The application will be checked to ensure that it runs correctly with the Microsoft Virtual Machine (VM). Support for other VMs is at the discretion of the ISV.

Required

All client and server applications must be compiled as Win32.

Compliance

To ensure that your application and its associated components are all 32-bit, you must run the Microsoft BackOffice Install Analyzer (Analyzer.exe), a Visual Basic application which can be download from Microsoft at http:\\www.microsoft.com\backoffice\designed.

[image: image10.png]CAl
o

Microsoft®
Office

=

M|crosoft®
BackOffice”

The reference function takes a snapshot of the environment before any new software is installed and creates a file to serve as a baseline. Included in the baseline is all file information, including size, version, and directory. In addition, all registry entries are accounted for. Once the baseline is completed, install your software.

Next, use the evaluate function. Evaluate takes a second snapshot and compares this to the baseline. Information reported includes the number of 16-bit and 32-bit DLLs used, root extensions, which components are shared and by how many applications, plus general information related to files (new, new 16-bit, new 32-bit, files changed, deleted, etc.).

Customer Benefit

Win32 applications provide the stability and performance that BackOffice customers expect. The Win32 API provides a unified API on the Windows 2000 and Windows 9x operating systems, providing the advantage of having a single set of source code that can be used on multiple platforms (X86, MIPS®, Alpha, PowerPC).

Implementation Information

· 32-Bit Windows Operating System Interface-Based Client

2.2 Single Sign-on (Windows Authentication)

All applications must comply with this requirement except as noted below:

· Learning based products or ERP/accounting solutions can present the user with the option of turning Windows authentication off.

Required

Single Sign-on allows the client to log on one time to the system and use the Windows security system to authenticate the user for network and application resources.

One objective of the Windows security model is to ensure that the programs that a user runs have no more access to objects than the user does. When a program or process runs on the user's behalf, it is said to be running in the security context of that user. The security context controls what access the subject has to objects or system services. Generally, when a subject calls an object service through a protected subsystem, the subject's token is used within the service to determine who made the call and to decide whether the caller has sufficient access authority to perform the requested action.

Windows allows one process to take on the security attributes of another through a technique called impersonation. For example, a server process typically impersonates a client process to complete a task involving objects to which the server does not normally have access. Impersonation is useful in a distributed computing environment when servers must pass client requests to other server processes or to the operating system. In this case, a server impersonates the client's security context. Other server processes can then handle the request as if it had been made by the original client.

Most communication mechanisms, such as RPCs and named pipes, support the paradigm using the object's security context. Others, such as Windows Sockets, do not support the transference of security. Additional APIs for impersonation were introduced with Windows 2000 version 3.51.

Compliance

To ensure that your application uses Single sign-on, a single logon is required. This means that once the user has logged on, the user is not prompted again for a user name or password as part of your application because Windows is doing all security monitoring. You can provide the user the option with turning this security off, however, in order to receive the Logo and benefits of the “Designed for Microsoft BackOffice” Logo program, your application must successfully pass this security test.

An application must make use of the credential management functions of the SSPI, which enables applications to gain access to the credentials of a principal, or to free such access. This interface does not allow any other access to the credentials. A principal is an entity recognized by the security system. This includes human users as well as autonomous processes. Credentials are data, such as a password or a Kerberos ticket, used by a principal to establish the identity of the principal.

Using the AcquireCredentialsHandle function acquires a handle to the pre-existing logon credentials of a specified principal. The applications can then use the credentials handle with the context management functions to create a security context.

The InitializeSecurityContext function initiates the outbound security context from a credential handle. The function is used to build a security context between the client application and a remote peer (server). InitializeSecurityContext returns a token that the client must pass to the remote peer, which in turn submits it to the local security implementation through the AcceptSecurityContext call.

Connection authentication

In order to comply with the requirements for SSO, an application must make use of the credential management functions of the SSPI, which enables applications to gain access to the credentials of a principal, or to free such access. This interface does not allow any other access to the credentials. A principal is an entity recognized by the security system. This includes human users as well as autonomous processes. Credentials are data, such as a password or a Kerberos ticket, used by a principal to establish the identity of the principal.

Using the AcquireCredentialsHandle function acquires a handle to the pre-existing logon credentials of a specified principal. The applications can then use the credentials handle with the context management functions to create a security context.

The InitializeSecurityContext function initiates the outbound security context from a credential handle. The function is used to build a security context between the client application and a remote peer (server). InitializeSecurityContext returns a token that the client must pass to the remote peer, which in turn submits it to the local security implementation through the AcceptSecurityContext call.

Impersonation

· Clients and Services use integrated security (clients are authenticated and service impersonates client)

· Service Accounts enabled for Kerberos Delegation for services that connect to other downstream services should be used if possible.

Customer Benefit

Single Sign-on is one of the most important attributes of a Windows NT/Windows2000/BackOffice network, and enables the server application to take advantage of Windows security. Some of the benefits include:

· Better security: Integrated Windows authentication uses a cryptographic technique for authenticating users, and does not require the transmission of actual passwords across the network.

· Easier administration: All security is administered from a single console

· Improved user productivity. Users are no longer required to remember by multiple logons, nor are they required to remember multiple passwords in order to access network resources. This is also a benefit to Help desk personnel, who need to field fewer requests for forgotten passwords.

· Intranet ready: Browsers can take advantage of Windows authentication as well using the cryptographic exchange with your Web server, which involves hashing. This requires Microsoft Internet Explorer 2.0 or higher.

Implementation Information

· Microsoft Windows NT Server Resource Kit

· Client Logon Sessions

· Windows NT Challenge/Response Authentication

· Initialization and Authorization Properties for ODBC related questions to this requirement

· Microsoft SQL Server OLE DB Provider for ADO related questions to this requirement

· Security Terminology
· Persisted Data Source Objects shows a function that persists data source initialization properties that define a server, database, and the use of the Windows 2000 Authentication Mode for connection.

2.3 Application runs as a server service or COM+ Application

All applications must comply with this requirement except as noted below:

· Browser-based applications. This means that the controls (ActiveX or Java) can be downloaded and installed dynamically at run time.

Required

Application runs as a Windows 2000 Server Service or COM+ Application to provide easier, central management. The application or service is administered and runs through an application specific account.

Compliance – Server Services

A Windows 2000 Server service is an executable object installed in the registry database and maintained by the service control manager. The services database includes information that determines whether each installed service is started on demand, or started automatically with Windows 2000 Server. In either case, the service starts without user intervention. The database can contain logon and security information for a service so that it can run even though no user is logged on. The database also enables system administrators to customize security requirements for each service and thereby control access to it.

Running as a Windows 2000 Server service allows a server application to impersonate a client while accessing objects and performing actions on behalf of the client. This capability ensures that the server application can act on behalf of a client without running with an inappropriately high privilege level. It also ensures that the server application will not be able to perform actions that would be denied the client directly.

By starting automatically, a server application implemented as a service is guaranteed to be available so long as Windows 2000 Server is running. Moreover, related services can be started easily and, where appropriate, automatically.

Finally, implementing a server application as a service allows the application to be installed and controlled using standard user and Win32® APIs. Such a service can be started and stopped both locally and remotely, providing network administrators an easy and consistent way to control the service across the network.

Your application should appear under the SERVICES icon from CONTROL PANEL. You should be able to start and stop it, as well as have it automatically started during boot.

Creating a Windows Server Service involves the following items:

· Creating a main function which calls StartServiceCtrlDispatcher to connect to the Service Control Manager and start a control dispatcher thread

· Writing the ServiceMain entry point where the control dispatcher thread starts running

· Writing a control handler function for handling service opcodes and reporting back service status

· Install a service using the CreateService function

Customer Benefit

Operating as a Windows 2000 Server service, logo’d applications:

· Help to provide users with a robust and tightly integrated networking environment.

· Give administrators a single seat administration of the enterprise. Administrators can remotely start and stop any Windows 2000 service from any administrative console, without bringing down the server or network.

Implementation Information

· Services describes how to add your application as a server service during installation.

Compliance – COM+ Applications

A COM+ application is a set of one or more in-process components installed in the COM+ Catalog. COM+ applications are started on demand, without user intervention. The catalog can contain logon and security information for an application so that it can run even though no user is logged on. System administrators can also customize security requirements for each application and thereby control access to it.

COM+ applications may be installed and controlled using standard user and Win32® APIs. Applications can be controlled both locally and remotely through the Component Services administrative tool, providing network administrators an easy and consistent way to control the application across the network.

Your application should appear in the COM+ Applications folder for the computer it is installed on in the Component Services administrative tool. It should be configured to run as a server application.

Creating a COM+ application involves the following items:

· Writing one or more in-process components.

· Creating an application in the COM+ catalog, using the Component Services administrative tool or COM+ Administrative interfaces.

· Installing the components into the new application.

· Exporting the application to create a client application proxy and server application file.

Customer Benefit

Operating as a COM+ application, logo’d applications:

· Help to provide users with a robust and tightly integrated networking environment.

· Give administrators a single seat administration of the enterprise. Administrators can remotely start and stop any COM+ application from any administrative console, without bringing down the server or network.

Implementation Information

· Component Services Programmer’s Guide

· See the Microsoft COM+ website for more information on developing COM+ applications: http://www.microsoft.com/com.

2.4 Publish Perfmon Counters

This requirement applies to all applications except as noted below:

· If you have decided to move directly to support WBEM/WMI (see requirement)

· If you have a COM+ Application that publishes COM+ User Events

Required

Performance counters for an application must be made available to the Windows Performance Monitor (Perfmon) and third-party monitoring programs. This includes the following:

1. Each counter must have a detailed description of the counter. A description of the counter must be provided that is understandable by non-technical personnel. Each counter definition must be clear and understandable, and must be documented in the service’s user documentation in an alphabetic table of the counters. Counters exposed must have accurate descriptions for the counter exposed. It is recommended that this documentation also outline threshold descriptions or counters used for data collection when appropriate. For instance, disk usage exceeding 90% might be problematic for some services and therefore they would want to set a threshold on this value. This will be specific to your application.

2. Counters released must be tested for accuracy in both counter data. Perfmon counters released in an application must be tested for accuracy in the reported values by the application developer. Any counter that does not report properly will adversely affect long-term capacity planning when data collection is used on the counter.
Compliance

Performance counters must be added for your application to assist administrators in three key areas:

· Monitoring: performance monitor, baseline and trending, optimization

· Analysis: capacity planning and automated system analysis through data collection

· Interrogation: Real-time troubleshooting and event management

To comply with this requirement, the recommended minimum perfmon counters are (one or more in each category):

1. Error Rate Counters: Error rates give the administrator an indicator of problems within the system. For each queue that is processed (writing a doc to the disk, exporting to the printer, etc) a specific error rate and total should be exposed so that monitor tools can be triggered using these counters. Examples include Write Errors/Sec, Write Errors/Minute, Total Write Errors, etc.

2. Security Violation Counters: In order to monitor the system for security violations, administrators need an accurate count of security violations when the application is used so that alerts can be triggered on them. Like error rates, these counters should be exposed as both a total count over time and average count per a time period.

3. Service State: Although not very relevant for real time graphing, state information is vital to all monitoring software to show that the service is alive and well and, optionally, what the service is currently doing. Counters such as Service Up Time, Start Time, etc. are important for calculating metrics on the service when used with other counters.

4. Queue Activity, Latency and Utilization of Transactions Counters : Total, Minimum, Maximum and average values are used for calculating baselines, response times and other statistics necessary for measuring the performance of any given queue. A queue is any pipe that takes data in one side and ships it out to somewhere else. In order to determine if a queue within a given application is servicing its requests properly, it is important that applications expose counters to determine service levels.

Example counters for queue activity are outlined below. Each counter may not apply to your application but should be considered. Please comply by using two or more counters from each table.

Counter Name
Type
Description

Client_AvgConnectTime
Gauge
The average time in seconds that a client is connected to this queue (Average Service Time)

Client_CurrentNum
Gauge
Each queue will have a number of clients connected to it at any given time. This is the number of clients, which are currently connected and expecting service from the queue.

Client_MaxConnectTime
Gauge
This is the maximum time in seconds that a client has ever been connected in this queue. (Maximum Service Time)

Client_MaxNum
Gauge
This is the maximum number of clients that the queue has ever had connected simultaneously.

Client_TotalServiced
Counter
Each queue will service a number of clients. This counter is the total number of clients that have connected to this queue since the object completed initialization.

Client_Connections/Sec
Rate
This is the number of client connections per second

Client_ConnectError/Sec
Rate
This is the number of client connection errors per second and shows how many clients have problems connecting.

Counter Name
Type
Description

Transaction_MaxWaitTime
Gauge
The number of seconds that the oldest transaction in the queue has been enqueued.

Transaction_NumFailedExecutions
Counter
The total number of transactions that have been dequeued but not successfully executed since the object completed initialization.

Transaction_NumRetries
Counter
The total number of enqueuing retries that have occurred since this object was started.

Transaction_QueueLength
Gauge
The total number of transactions that are currently enqueued. If this value remains constant for an extended period of time, it can be inferred that there is a problem with the processes inside the object that dequeue and execute transactions.

Transaction_WaitTime
Counter
The number of seconds since the most recent transaction was executed. This value is reset each time a new transaction is dequeued and indicates the latency of the transaction.

Counter Name
Type
Description

Queue_ActiveTime
Counter
The total number of seconds the queue has been active. This begins counting when the queue is started and stops when the queue enters the stopped state.

Queue_BytesInPerSec
Rate
The number of bytes that are received in the queue per second. This value is important for determining response times for the queue.

Queue_BytesOutPerSec
Gauge
Number of bytes delivered by the queue per second. This value is important for determining response times for the queue.

Queue_TotalBytesIn
Counter
The total size, in bytes, of all transactions that have enqueued. This is updated whenever a transaction enters the queue.

Queue_TotalBytesOut
Counter
The total size, in bytes, of all transactions that have left the queue. This is updated whenever a transaction leaves the queue.

Queue_TotalWaitTime
Counter
Whenever the queue goes into a WAITING state (queue length=0) then this time is incremented. By taking the queue_activetime - queue_totalwaittime, one can obtain the total execution time. Execution time / queues_activetime gives queue utilization.

To add performance counters to the system, you must create an extended object. Your extended object is called when the Perfmon collects data.

To add performance objects and counters for your application, follow the basic steps in the list below:

· Design the object types and counters for the application.

· Set up the necessary performance monitoring entries in the Registry. This includes the following steps:

1) Create a Performance key in the application's Services node in the Registry. If you don't have such a node you must create one. Create it under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.

2) Create a .INI file containing the names and descriptions of the counter objects and counters.

3) Create an .H file containing the relative offsets at which the counter objects and counters will be installed in the Registry.

4) Use the lodctr utility with the .INI and .H files to install the information in the Registry. Lodctr succeeds only if a Performance key exists in the application's Services node.

· Add Library, Open, Collect, and Close value entries to the application's Services node in the Registry. These entries specify the name of the application's performance DLL, and the names of the DLLs required functions. The Open and Close entries are optional.

· To your application, add functions and data structures for collecting and storing performance data, and a mechanism for communicating the data to the performance DLL.

· Create a performance DLL containing a set of exported functions that provide the link between the application and a performance monitoring application (such as Windows 2000 Performance Monitor).

· Modify the application's OEMSETUP.INF file to automate the Registry.

Customer Benefit

Performance monitoring provides a mechanism for developers to add performance objects and counters for their applications and other software components so that they can provide performance data to Windows Performance Monitor or to customized performance monitoring programs. The benefits to customers include:

· Easier Administration. Network and database administrators can use a single console to monitor and configure applications

· Better Performance. Perfmon counters make it easier to find performance bottlenecks and inefficiencies so an application can be optimized for a specific client environment.

· Reduced Support Costs. The more data available to an administrator the faster and easier potential problems can be resolved.

Implementation Information

· Performance Objects and Counters.

· Object and Counter Design.

· PERF_COUNTER_DEFINITION describes a performance counter. Support for UNICODE is also discussed.

· Adding Counter Names and Descriptions to the Registry

· Performance Counter Bases lists the performance data types for each base type.

· Windows NT Server Performance Monitor Counters describes the Windows 2000 performance objects and their associated performance counters.
· PERFMEN.C contains sample code for creating perfmon counters for application memory objects
· Using EXCTRLST, a utility provided as part of the SDK. It scans the registry to determine which applications, devices, and services have registered extensible performance counter DLLs. These DLLs are listed in the list box of the display along with the corresponding application, driver, or service. The EXCTRLST utility does not test for the existence of the DLLs.

· Using the Performance Monitor

2.5 Publish events to the Event Log

All applications must comply with this requirement, including web and Java applications. While web applications can be cross-platform, ISVs are encouraged to take advantage of specific Windows 2000 4.0 and Windows 2000 advantages on the server, such as the event log.

Required

Server applications publish events to the Windows 2000 Event Log. This requirement is intended to minimize the system administration burden imposed by installation of a BackOffice logo’d application.

Events must be grouped into one of the following three severity levels. Security level is a required field in logging events.
Error. A Windows 2000 service error is a condition that creates a noticeable customer impact, or that causes failure of a critical system component. A Windows 2000 service event error should be logged for any condition that requires operator intervention to correct a condition causing potential or immediate loss of service, or of software failure severe enough to warrant immediate personnel notification. Typically, administrators will be paged when an error condition is triggered.

Your application should publish these minimum error conditions:

· A Windows 2000 error is logged whenever a condition occurs that causes degraded performance, or failure of an SMS Site Server. Failure of a Site Server causes immediate loss of service to clients that need software.

· Repeated RPC time-outs flag a condition that is potentially impacting service. If time-outs persist, and the RPC is not able to complete, an error should be logged. The occurrence of a time-out does not necessarily indicate an error, and hence should be flagged as a warning (see below).

Warning. A warning should be issued to alert operators to conditions that, while not immediately impacting service, indicate potential degradation or loss of NT service. Warning conditions are generally recoverable.

Your application should publish these minimum warning conditions:

· In general, observation of high resource consumption (disk space, memory, swap space) should be flagged with a warning event.

· In the second error example above, repeated time-outs on an RPC resulted in an RPC failure causing an error to be logged. The time-out itself should be flagged with a warning, as this may indicate, for example, a flaky network card.

Informational. These types of events should be issued to alert operators to important state and/or condition changes in the data center. In general, informational events should be low frequency events relative to errors and warnings.

Your application should publish these minimum information conditions:

· A configuration has been changed. Such an event is informational.

· Whenever a service is stopped or restarted, an informational event should be logged.

Compliance

Confirm that your application is using the Windows 2000 event log. You must provide to your Authentication Center a typical error condition(s) that would cause the event to be logged for diagnostic purposes. When publishing events, you should comply with these guidelines:

1. Windows 2000 events should not be used to log debug information. Debug events must be removed prior to shipping version release of service or application. If a service generates certain events purely for the purpose of software debugging, these events need to be viewable by our customers unless the flag is activated. Such a flag must be documented in the user documentation and the help file.

2. Vital information within a Windows 2000 event must be visible in the first 60 characters. Care must be taken to avoid message text necessary to understand the event beyond the first 60 characters. Most event monitoring facilities can only view the first 60 characters on the screen. Data center operators are then required to scroll the event screen to the right in order to see any additional text.

3. Windows 2000 events must be reported judiciously. Care must be taken to avoid situations that will overload event monitoring tools, and the operators responsible for real time event management--such as reporting events in potential infinite code loops. If it is expected that conditions will arise where a loop occurs, with each iteration potentially generating an event, then rather than generate this event at each iteration, a single event should be generated per N seconds, with a count of iterations occurring during that period. Iterations should never generate more than one or two events per minute. If such an event does occur, then a single event should be generated every 30 seconds which states that N occurrences were generated in the past 30 seconds.

4. All events must have a unique event identifier within an event source. MessageId, Severity, and Event Source must be unique and documented. Each service must have a unique event source string. This is especially critical for Windows 2000 services.
5. Event Description must be documented. Plain English description of the message text must be provided, along with definition of intended insertion strings. These must be sorted by Severity as a primary key, and MessageId as a secondary key. No debug information must be present in Windows 2000 Events. Using terms like GETLASTERROR = 2 in a Windows 2000 event means nothing to users.

Remember that the event log is not intended to be used as a trace facility. You should log information about events that can be used to diagnose problems after they have occurred. The OpenEventLog and ReportEvent functions take an optional server name as a parameter so that the operations can be performed on the remote server. OpenEventLog should be used for reading or performing some administrative operation (backup, clear, query) on the log, and RegisterEventSource should be used for writing to logs.

Customer Benefit

· Helps administrators quickly and easily diagnose problems, reducing the administration burden.

· Provides a record of important system activity to help maintain high service levels and provide assistance with capacity planning.

Implementation Information

· Windows NT Server Event Logging describes what the event log is.

· Providing a Diagnostic Logging Option describes how to publish an event for your application to the event log.

· Event logging operation describes the operations necessary for opening, closing, reading and publishing to the event log.

· Windows NT Server Event Log Provider is for applications using WBEM/WMI (see “Application Instrumentation” in the Phase II Requirements section).

· Using the Event Log Provider as an Event Provider
· Using the Event Log Provider as an Instance and Method Provider is specifically for Windows 2000 applications and describe how to store directory events.

3 Phase II Core Requirements

3.1 Provide support for Kerberos Authentication Protocol

All applications must comply with this requirement.

The Kerberos Version 5 protocol is implemented for a variety of systems and is used to provide a single authentication service in a distributed network. Kerberos interoperability provides a common protocol that allows a single (possibly replicated) account database for authenticating users on all enterprise computing platforms to access all services in a heterogeneous environment. Kerberos interoperability is based on the following characteristics:

· A common authentication protocol used to identify the end user or service by the principal name in a network connection.

· The ability to define trust relationships between Kerberos realms and to generate ticket referral requests between realms.

· Implementations that support the Interoperability Requirements defined in RFC 1510 regarding encryption and checksum algorithms, mutual authentication, and other ticket options.

· Support for Kerberos Version 5 security token formats for context establishment and per-message exchange as defined by the IETF Common Authentication Technology working group.

The principal name in a Kerberos ticket is used to authenticate the user's identity while additional authorization information might be managed on the local system for access control. Identity-based authentication provides a high degree of interoperability for systems that support the Kerberos Version 5 protocol, however, it does not support user authorization. The Kerberos protocol provides for transport of authorization data but the contents of this field are considered specific to the application service.

Microsoft's implementation of the Kerberos protocol supports the interoperability characteristics sufficient for identity-based authentication. In addition, Microsoft integrates authorization data in the form of Windows NT group memberships in Kerberos tickets to convey access control information to Windows NT services. The native representation of the authorization data is the Windows NT Security IDs.

Windows NT services have services accounts defined in the Windows NT Directory Service that defines the shared secret used by the KDC to encrypt session tickets. Clients attempting to connect to Windows NT services obtain session tickets to the target server from the KDC in the domain where the service account is defined. The Kerberos security provider supporting a Windows NT service will expect to find authorization data in the session tickets used to build a security access token. The Windows NT service will impersonate the security context of the client, based on the authorization data provided in the session ticket.

Clients that obtain initial Kerberos TGT tickets from KDCs on non-Windows NT-based systems will use the Kerberos referral mechanism to request a session ticket from the KDC in the Windows NT Service domain. The referral ticket is created by interrealm trust relationships between the KDCs. The ticket requests originating from an MIT Kerberos authentication service are not likely to contain authorization data. In the case where session tickets do not contain authorization data, the Kerberos security provider on Windows NT will try to use the principal name in the ticket and create a security access token for a designated user account, or use a default account defined for this purpose. Microsoft is still investigating some of the interoperability issues with different Kerberos configurations and will continue to work to find solutions for Kerberos interoperability.

The DCE Security Services are also layered on the Kerberos protocol. DCE authentication services use RPC representation of Kerberos protocol messages. In addition, DCE uses the authorization data field in Kerberos tickets to convey Privilege Attribute Certificates (PACs) that define user identity and group membership. The DCE PAC is used in a similar manner as Windows NT Security IDs for user authorization and access control. Windows NT services will not be able to translate DCE PACs into Windows NT user and group identifiers. This is not an issue with Kerberos interoperability, but rather an issue of interoperability between DCE and Windows NT access control information. In the future, Microsoft will investigate ways to map DCE authorization to the Windows NT security model.

Required

Applications must support the Kerberos authentication protocol, which has been integrated with both the Windows 2000 and Windows 98 kernels.

Public-key certificates and dynamic passwords are two technology areas that are growing rapidly to meet higher-level security needs in today’s computing environment. Remote access over public networks and Internet access for inter-business communication is driving the evolution of security technology. The Windows security architecture is uniquely positioned to take advantage of these and other technology advances. Windows 2000 Server combines ease-of-use for the user, excellent administration tools, and a solid security infrastructure that supports both the Enterprise and the Internet.

Compliance

Your application must work with the Kerberos authentication protocol.

Customer Benefit

The Kerberos authentication protocol enhances the underlying security features of Windows 2000 Server and provides the following features:

· Faster server authentication performance during initial connection establishment. The application server does not have to connect to the domain controller to authenticate the client. This allows application servers to scale better when handling a large number of client connection requests.

· Mutual authentication. Windows Authentication allows servers to verify the identities of their clients. It does not allow clients to verify a server’s identity, or one server to verify the identity of another. Windows Authentication was designed for a network environment in which servers were assumed to be genuine. The Kerberos protocol makes no such assumption. Parties at both ends of a network connection can know that the party on the other end is who it claims to be.

· Delegation of authentication for multi-tier client/server application architectures. When a client connects to a server, the server impersonates the client on that system. But if the server needs to make a network connection to another backend server to complete the client transaction, the Kerberos protocol allows delegation of authentication for the first server to connect on behalf of the client to another server. The delegation allows the second server to also impersonate the client.

· Simplified trust management. One of the benefits of mutual authentication in the Kerberos protocol is that trust between the security authorities for Windows domains is by default two-way and transitive. Networks with multiple domains no longer require a complex web of explicit, point-to-point trust relationships. Instead, the many domains of a large network can be organized in a tree of transitive, mutual trust. Credentials issued by the security authority for any domain are accepted everywhere in the tree. If the network includes more than one tree, credentials issued by a domain in any tree are accepted throughout the forest.

· Interoperability. Microsoft’s implementation of the Kerberos protocol is based on standards-track specifications recommended to the Internet Engineering Task Force (IETF). As a result, the implementation of the protocol in Windows NT Server lays a foundation for interoperability with other networks where Kerberos v5 is used for authentication.

Implementation Information

· Kerberos is a general overview of the authentication protocol

· Policy-Driven GQOS Components describes the Generic Quality of Service (GQOS) and how Kerberos tickets are used for authentication.

· COM and Security Packages describes the various server/client authentication options available to the developer.

· Writing an Authenticated SSPI Client describes how to use authenticated binding to add Kerberos security to an application

3.2 Application administration tools operate as a snap-in to the Microsoft Management Console (MMC)

ONLY those applications that have administration tools need to follow this requirement. Installation consoles are exempt but application specific tools are not. This can include security, tuning, and general administration tasks.

Required

Application administration tools operate as a snap to the Microsoft Management Console. The Microsoft Management Console (MMC) is a general-purpose management display framework for hosting administration tools, built as MMC Snap-Ins by Microsoft and third parties. The primary goal of the Microsoft Management Console is to support simplified administration and lowered cost of ownership through tool integration, task orientation, support for task delegation, and overall interface simplification. Unlike enterprise consoles, MMC imposes no protocol dependencies or object repositories: these remain the responsibility of each Snap-In.

Compliance

Your administration tool must follow these requirements as a MMC Snap-in:

· Spawn threads for risky or time consuming operations - do not block the MMC thread. If an operation has the potential to fail due to connectivity issues or other external dependencies, then you should test your snap-in to ensure that it does not lock up the console as a result. If you MUST block the MMC thread for your application, such as to add items to the tree, it is permissible for no more than 5 seconds maximum.

· Create an ADM file for policy integration, following the guidelines in the SDK.

· Follow the UI guidelines presented in the SDK.

· Create an MSI package for your snap-in that can be installed in the class store. Ideally, the snap-in should be able to be remotely installed without the services, etc. that could accompany a full product install. This will help with remote administration.

· Publish extension information and a pointer to your website in the Snap-In gallery on www.microsoft.com

· You should extend Microsoft "core" snap-ins when appropriate, such as the Enterprise Manager console on SQL Server 7.0, if your application requires interaction with the database system.
· Extend the computer management and User and Group Snap-Ins with context menu item. The simplest way to integrate your application with MMC is to add a context menu item to launch your standalone management tool to one or both of the core Windows 2000 snap-ins. Beyond this, tighter integration is achieved by writing a namespace extension to one of these snap-ins. The section below shows you how to create a context menu extension

1. Decide which node you need to extend. The computer management root node must not have its namespace extended, but it may have its context menu or property pages extended. The example below assumes you are adding a context menu item to the Computer Management root node. If you want to extend a different node, you must use its GUID in place of the one in the following example.

2. Register your snap-in as described in the MMC section of the Microsoft Platform SDK. In addition, add a value named with your snap-in’s GUID under the following registry key: HKLM/Software/Microsoft/MMC/Nodetypes/{476e6446-aaff-11d0-b944-00c04fd8d5b0}/Extensions/ContextMenu

3. Create a snap-in which implements IExtendContextMenu(). This snap-in will invoke your standalone tool when the context menu is selected. Place the snap-in at the CCM_INSERTIONPOINTID_3RDPARTY_TASK insertion point. See the MMC SDK documentation in the Microsoft Platform SDK for full details on insertion points. You may find it easier to use the Microsoft Visual C++® 6.0 ATL wizard for MMC.

· If you extend the user and group snap-in rather than the computer management snap-in, you will have to find the class GUID for the node you extend. The class GUID is found in the Directory Service section of the Microsoft Platform SDK. Use the Directory Service class registration tool found in this section of the SDK and follow the steps listed earlier in this requirement to replace the Computer Management GUID with the correct one from the Directory Service section.

· Conform to MMC user interface requirements

· If you write a full namespace extension snap-in, follow the guidelines presented in the snap-in author’s guide. These guidelines ensure that snap-ins from different products operate consistently. This guide can be found at http://www.microsoft.com/management/mmc
· To pretest a snap-in:

1. If the snap-in runs in a standalone mode, then load the snap-in in a user-mode Console and ensure the snap-in performs as expected.

2. If the snap-in extends Computer Management, then start the Computer Management console file from the Start menu and verify that your snap-in performs as expected.

3. If the snap-in extends the Users and Groups Snap-In, then start the Users and Groups console file from the Start menu and verify that your snap-in performs as expected.

4. If your snap-in is a context menu extension, then ensure that you do not add separators, that cascading menus are used sparingly and only on the New and Task menus, and that your items appear in the order desired.

Customer Benefit

If you have an administration tool that interacts with one or more BackOffice components, your tool must now work as a Snap-in to MMC. For the end user this is an incredible advantage – it means that no longer will he or she have to learn a dozen different ways of doing something. If a user knows how to use one snap-in it is likely that they will also be able to figure out how to use a different snap-in. This is because of the design and operation standards that are being established for of snap-ins.

Working within the MMC, or within an Internet browser, the administrator can use a series of Snap-Ins to create task-oriented administrative displays customized to provide the appropriate management functions. Snap-Ins can work independently of each other or act to extend functionality of other Snap-Ins. By allowing administrators to create their own views, and removing technology discipline boundaries, it is possible to create appropriate displays of network, systems and user information, providing a single point of management which is integrated, comprehensive and easy to use.

Implementation Information

· Purpose of the Console provides an overview of MMC and its importance to easing administration burdens, improving application performance and stability, and lowering customer costs.
· MMC Reference contains detailed reference information for the API elements that the Microsoft Management Console (MMC) provides.
· Extending Toolbars and Toolbar Buttons for Snap-Ins.

· SNAPIN.CPP contains sample source code for creating and registering a snap-in.
· IrequiredExtensions explains how to enable a snap-in to add some or all of the extension snap-ins registered for your snap-in.

Alternative Using COM+

Create one or more COM components that expose application functionality or configuration information

· All components must be implemented in a Dynamic Linking Library (DLL)

· Each component must expose one or more Automation (i.e. IDispatch-based) or dual interfaces.

The Component Services SDK provides more information on developing COM components.

Create a COM+ application

· Use the Component Services Explorer, a system-provided Microsoft Management Console (MMC) snap-in or the COM+ Administration APIs to register each COM component as part of a single COM+ application.

· Use the Component Services Explorer, a system-provided Microsoft Management Console (MMC) snap-in or the COM+ Administration APIs to export the COM+ application.

· Use the Component Services Explorer, a system-provided Microsoft Management Console (MMC) snap-in or the COM+ Administration APIs to export information required by remote clients to access the COM+ application.

The Component Services SDK provides more information on building and deploying COM+ Applications.

Provide documentation for each COM component.

· Describe the syntax and expected results for every method on every interface intended for use by developers or administrators.

In each case, to pretest correctness:

· Test each method of each interface for both v-table support from languages like Visual Basic or Visual C++ as well as dispatch support from languages like VBScript using Active Server Pages (ASP) or Windows Scripting Host (WSH).

3.3 Application Instrumentation

Required

All management functionality must be exposed through the COM-based Windows Management Instrumentation (WMI) API. This will involve the ISV in creating or using existing schema to model their applications managed objects and events and writing a provider that uses their internal (proprietary) management API to provide management information using Web-Based Enterprise Management (WBEM). The latter supports uniform system and applications management based on the Common Information Model (CIM) adopted by the Desktop Management Task Force (DMTF). As the core of Microsoft's management infrastructure, WMI reduces the maintenance and life cycle cost of managing Windows 2000. WMI achieves this by providing:

· A rich and consistent model of Windows 2000 operation, configuration, and status.

· A COM API that supplies a single point of access to all management information.

· Interoperability with other Windows 2000 management services, which will simplify vendors' efforts to create well-integrated management applications.

· A flexible provider architecture that allows vendors to extend the information model to cover new devices, applications, and other enhancements.

· A powerful event architecture that allows changes in management information to be identified, aggregated, compared to and associated with other management information, and forwarded to local or remote management applications.

· A rich query language to the information model.

· A scriptable API, which enables developers to write management applications by using Visual Basic or Windows Scripting Host (WSH).

WMI provides a unifying access mechanism to both standard and proprietary instrumentation methods, allowing applications to be managed as both as discrete elements and as integrated and inter-related parts of a larger enterprise. By exposing a common access mechanism to all management instrumentation, WMI simplifies the task of developing well-integrated management applications.

COM+ server applications should use COM+ User Events to publish high-volume metrics.

Compliance

The first step towards implementing WMI is to get the Platform Software Developers Kit (SDK) and install the WMI SDK.

This section presents the specific requirements for creating WMI-compliant products. For the purposes of this chapter, the use of the term application means both user mode applications with a desktop graphical user interface and applications written as one or more services.

Provide management data to WMI

Management information presented to an end user in an application must be exposed through WMI according to the following requirements:

· Extend the CIMV2 or another namespace with new classes that represent the management data presented by the application.

· Rules for extending CIMV2 are documented in the WMI SDK

· Where new classes or instances should not be added to CIMV2 (as defined by the SDK documentation), another namespace must be created.

· The WMI SDK documentation also contains schema design guidelines.

· Provide instances for the newly defined classes. This can be done using static instances defined in a Managed Object Format (MOF) file or dynamic instances generated at runtime by a Provider. Implementation guidelines for Providers are documented in the WMI SDK, which includes the Provider Code Generator—a wizard-based tool that enables creation of fully functional instance Providers with minimal development effort.

· Note that if instances are provided through an MOF file, the vendor is responsible for ensuring that the MOF file is compiled during application setup by the WMI MOF compiler. See the WMI SDK guide for details on using the MOF compiler.

· If the application generates events, an event Provider must be implemented. The event Provider sends notifications of events to WMI, which then sends the events to applications listening for those events. The implementation guidelines for event Providers are included in the WMI SDK documentation.

Access management data through WMI

WMI provides access to a wide variety of Windows system management information through the CIMV2 namespace, a Win32 extension of the CIM schema. Using WMI, an application has access to various management objects including Win32, Performance Monitor, Registry, MSI (Windows Installer service), and Event Log data. The requirement for accessing management data is:

· A WMI-compliant application must obtain management data from the objects within the CIMV2 namespace rather than using the native APIs for those objects. The WMI SDK contains details on how to query WMI for management information.

Rules for extending the CIMV2 namespace

When extending the CIMv2 namespace, the vendor must conform to the following requirements. Note that different types of data have different extension rules:

Application Data. This subsection is provided for reference only. The following classes and instances are created automatically when an application is installed using the Windows Installer service. Refer to the ‘Settings Data’ section later in this specification if you are modeling configuration information not created automatically by the MSI Provider. The specific requirements for Application Data (automatically set by the Windows Installer service) are:

· The application must be represented by an instance of Win32_ApplicationService (subclassed from CIM_Service) representing the presence (either advertised or installed) of the application on the system.

· The command line used to execute the application must be represented by an instance of Win32_CommandLineAccess (subclassed from CIM_ServiceAccessPoint).

· The primary components of the application must be represented by instances of Win32_SoftwareElement (subclassed from CIM_SoftwareElement). Some examples of primary components are executables, DLLs, and database files.

· Application installation configuration must be represented by instances of objects subclassed from CIM_Setting. These are associated with the Win32_SoftwareElements that are installed using the Win32_SoftwareElementResource association. Also, installation configuration of the open database connectivity (ODBC) driver is indicated by subclasses of the Win32_SettingCheck association.

· If the application has any configuration information, the information must be visible as a subclass of the CIM_Setting class and must be related to the correct instance of the Win32_ApplicationService (that represents the application on the system). The CIM_Setting instance is associated with the Win32_ApplicationService instance using a subclass of the CIM_ElementSetting association class.

Settings Data

The rules for extending the schema for settings (for example, any settable parameter defined for services, systems, applications or devices) are:

· The setting must be expressed through a subclass of the CIM_Setting class.

· An instance of a subclass of the CIM_ElementSetting association must be defined to establish a relationship between CIM_Setting and the corresponding descendant of CIM_ManagedSystemElement (the service, system, application, or device to which the setting applies).

Statistics Data

The rules for extending the schema for statistics are:

· Any statistics information about a descendant of CIM_ManagedSystemElement must be expressed through a subclass of the CIM_StatisticalInformation class or be included as property data in the object itself. Where the data is closely coupled with the Managed System Element and should be retrieved as native properties of the object, the data is placed as properties of the object itself (for example, packets transmitted or received on an Ethernet adapter). Alternately, where the data may not always be available, is derived from existing data or is not required to manage the object, it should be placed in a subclass of CIM_StatisticalInformation (for example, major, minor, or warning error counts on a device).

· The vendor must define an instance of a subclass of the CIM_Statistics association to establish the relationship between CIM_StatisticalInformation and the corresponding descendant of CIM_ManagedSystemElement.

Device Data

The rules for extending the schema to represent a device are:

· Vendor-specific classes must derive from leaf-most subclasses of CIM_LogicalDevice.

· If the device has configuration information, the information must be visible as a subclass of CIM_Setting and must be related to the correct instance of the CIM_LogicalDevice subclass (that represents the device in the system) using a subclass of the CIM_ElementSetting association class.

· Do not subclass directly from CIM_LogicalDevice (the WMI SDK contains details of the classes that may be subclassed and instantiated).

Computer System Data (typically for OEMs)

The rules for extending the schema to represent a computer system are:

· The vendor must define a direct subclass from Win32_ComputerSystem.

· Do not subclass directly from CIM_UnitaryComputerSystem.

Physical Configuration Data

The rules for extending the schema to represent physical configuration:

· Vendor specific classes must derive from leaf-most subclasses of CIM_PhysicalElement unless Microsoft provides a Win32 schema class for the particular Physical Element. In the latter case, the vendor specific classes must derive from that Win32 class.

Rules for defining vendor-specific namespace requirements

When defining a new namespace the vendor must follow the guidelines documented in the schema tutorial available in the WMI SDK part of the MSDN Platform SDK.

This section provides basic guidelines for pretesting your applications support for WMI. Microsoft is developing testing tools that will help to automate the verification process for compliance to the WMI requirement. These tools are expected to be available in the second half of 1999. Please check http://msdn.microsoft.com/developer/sdk/wbemsdk/ for regularly updated information. In the interim, we recommend using CIM Studio to verify the correctness of the schema design. CIM Studio is included with the WMI SDK. To use CIM Studio for pretesting, make sure that you have:

1. Installed WMI SDK

2. Created the MOF files with the schema extensions

3. Compiled the schema into the repository using mofcomp.exe

4. Connected to root\CIMV2 namespace

5. Located the classes you have added to the namespace (use CTRL+F to invoke the search facility)

To pretest correctness of schema extension for application data:

· Make sure that your application is installed using Microsoft Installer service. This will guarantee correct extension of the CIMV2 namespace for the application data.

· If your application has configuration information, you should pretest your Settings Data

To pretest correctness of schema extension for settings data:

· Make sure that your class is derived from the CIM_Setting class directly or a leaf-most subclass of CIM_Setting.

· Make sure you have defined a subclass of the CIM_ElementSetting association that establishes relationship between CIM_Setting and the descendant of CIM_ManagedSystemElement that you have defined for the service, system, application, or device to which the setting applies.

· Make sure that your provider populates dynamic instances of the classes you have defined.

To pretest correctness of schema extension for statistics data:

· If the statistical data is closely coupled with your Managed Element and should always be retrieved as native properties of the object, make sure that you included the data places as properties of the subclass of CIM_ManagedSystemElement.

· If the statistical data is not always available, is derived from existing data, or is not required to manage the System Element, make sure that you have defined a subclass of CIM_StatisticalInformation.

· Make sure you have defined a subclass of the CIM_Statistics association that establishes a relationship between CIM_StatisticalInformation and the descendant of CIM_ManagedSystemElement for the service, system, application, or device to which the statistics applies.

· Make sure that your provider populates dynamic instances of the classes you have defined.

To pretest correctness of schema extension for device data:

· Make sure you have defined a subclass of a leaf-most descendant of CIM_LogicalDevice.

· Make sure you do not subclass directly from CIM_LogicalDevice.

· If the device has configuration information, you should pretest your Settings Data.

· Make sure that your provider populates dynamic instances of the classes you have defined.

To pretest correctness of schema extension for system data:

· Make sure you have defined a direct subclass of Win32_ComputerSystem.

· Make sure that your provider populates dynamic instances of this class.

To pretest correctness of schema extension for physical configuration data:

· If Microsoft provides a Win32 schema class for the particular Physical Element used, make sure that you have defined a subclass of it.

· If Microsoft does not provide a class for the particular Physical Element used, make sure you have defined a subclass of a leaf-most descendant of CIM_PhysicalElement.

· Make sure that your provider populates dynamic instances of this class. All applications must comply with this requirement. An ISV can be exempt from the Perfmon Counter requirement if they follow the WBEM guidelines instead.

The following requirements are satisfied automatically when the application uses Windows Installer technology to install itself:
· The application must be represented by at least one instance of the Win32_ApplicationService representing the presence (either advertised or installed) of the application on the system.

· The Win32_ApplicationService instance must have an associated instance of CIM_ServiceAccessPoint that can be used to initiate the application. The CIM_ServiceAccessPoint instance must be related by CIM_ServiceAccessBySAP association to the application service instance.

· All of the primary components of the application must be defined as instances of CIM_SoftwareElement.

· If the application has any configuration information, the information must be visible as a subclass of the CIM_Settings class and must be related to an instance of the CIM_Service class (and therefore to the Win32_ApplicationService class by inheritance).

· The application must have at least one ServiceAccessPoint representing the command line necessary to initiate the application or a ServiceAccessPoint defining Start and Stop functions for the application (these are in addition to the StartService and StopService functions defined on CIM_Service).

· The application may provide an instance of the CIM_ApplicationSystem class, and must do so if the application is expected to span more than one server (such as a mail application).

· Appropriate associations must be provided linking the ApplicationService, Setting, ApplicationSystem, ServiceAccessPoint and SoftwareElement class instances.

Compliance

The first step towards implementing WMI is to get the Platform Software Developers Kit (SDK) and install the WMI SDK. You should, at a minimum, do the following:

· The following requirements are satisfied automatically when the application uses Windows Installer technology to install itself:
· The application must be represented by at least one instance of the Win32_ApplicationService representing the presence (either advertised or installed) of the application on the system.

· The Win32_ApplicationService instance must have an associated instance of CIM_ServiceAccessPoint that can be used to initiate the application. The CIM_ServiceAccessPoint instance must be related by CIM_ServiceAccessBySAP association to the application service instance.

· All of the primary components of the application must be defined as instances of CIM_SoftwareElement.

· If the application has any configuration information, the information must be visible as a subclass of the CIM_Settings class and must be related to an instance of the CIM_Service class (and therefor to the Win32_ApplicationService class by inheritance).

· The application must have at least one ServiceAccessPoint representing the command line necessary to initiate the application or a ServiceAccessPoint defining Start and Stop functions for the application (these are in addition to the StartService and StopService functions defined on CIM_Service).

· The application may provide an instance of the CIM_ApplicationSystem class, and must do so if the application is expected to span more than one server (such as a mail application)

· Appropriate associations must be provided linking the ApplicationService, Setting, ApplicationSystem, ServiceAccessPoint and SoftwareElement class instances.

WMI establishes an architecture that supports the management of an enterprise across the Internet.

· Management and managed applications built on broadly-adopted industry standards.

· A logically organized, consistent model of Windows and Windows application operation, configuration, and status.

· A standard means of providing and extending the management instrumentation for computer systems and applications.

· Solutions that manage both local and remote systems and applications transparently through a common, operating system-based management infrastructure. For your customer, WMI offers universal access to management information for enterprises by providing a consistent view of the managed environment. This management uniformity gives them the ability to manage the business processes rather than just individual components.

WMI does not attempt to replace existing management standards such as SNMP, DMI or CMIP or to preclude proprietary or platform specific frameworks such as NDS. In fact WMI complements these initiatives by providing an integration point through which data from all such sources can be accessed. This makes any management applications independent of the many APIs and standards used to instrument each managed entity, allowing correlation of data and events from multiple sources on a local or enterprise basis.

Implementation Information

· Applications Guide describes the various components which make up the WBEM SDK and how to use them to WBEM-enable an application

· WBEM Classes explains in detail the different classes developers can use in an application

· Programming Basics for WBEM Applications
· Using the WBEM SDK provides a good starting point for a developer who needs to install WBEM and get detailed information about WBEM providers and CIMOM API.

· Security and Authentication explains the security model and how it supports such as standards as Kerberos

· Sample Programs contains a description and pointer to same applications using WBEM

· Component Services Programmer’s Guide describes how to implement COM+ User Events.

3.4 Use Directory Services

All applications must comply with this requirement.

ISVs are required to support Active Directory, the Windows 2000 Directory Service. Directory Services publish which services are available to the client and show those services in the directory, locate services from clients through the directory, and extend the directory service with application-specific information.

A directory service is one of the most important components of an extended computer system. Users and administrators frequently do not know the exact name of the objects they are interested in. They may know one of more attributes of the objects and can query the directory to get a list of objects that match the attributes. For example, “find all duplex printers in Building 26.” A directory service allows a user to find any object given one of its attributes.

The Active Directory is the directory service included with Windows 2000 Server. It extends the features of previous Windows-based directory services and adds entirely new features. The Active Directory is secure, distributed, partitioned, and replicated. It is designed to work well in any size installation, from a single server with a few hundred objects to thousands of servers and millions of objects. The Active Directory adds many new features that make it easy to navigate and manage large amounts of information, generating savings for both administrators and end users.

Active Directory will be the cornerstone for building high performance applications for Windows 2000 Server. It will allow instances of an application over a network to work together – as well as allowing different applications to leverage each other.

Service Publication is the act of creating and maintaining information in the Directory Service about one or more instances of a given service. Publishing a service in the directory allows the administrator to move from a machine-centric view of the distributed system to a service-centric view. This is an important shift in the management paradigm. The view of a distributed system as a group of computers running various services is no longer either accurate or desirable. The management model in the distributed system is therefor service-centric rather than machine-centric.

The service publishing model in the directory enables this management paradigm shift. Services publish their existence as objects in the Directory Services. The objects contain binding information that applications and administrative tools use to connect to instances of the service. The application does not need to know about specific computers: the binding information subsumes this information.

Required

Services advertise themselves in the directory

Every service must advertise its availability in the directory by using RpcNs or Winsock APIs. It is also an acceptable solution to directly publish Service Connection Point objects in the directory. Remote procedure call (RPC) Services publish themselves in a namespace through the RPC Name Service (RPC NS) APIs. The RPC NS APIs in Windows 2000 publish the RPC entries in Active Directory. Services create RPC bindings and publish them in the namespace as named RPC Server entries, with attributes including the unique Interface ID, a globally unique identifier (GUID) that is known to clients. Clients can then search for RPC Servers offering the desired interface, import the binding, and connect to the server.

Windows Sockets services can use the Registration and Resolution (RnR) APIs to publish services and look up services so published. RnR publication occurs in two steps. The first step installs a “Service Class” that associated a GUID with a name for the service. The Service Class can hold service-specific configuration information. Services can then publish themselves as instances of the Service Class. Once published, clients can query the DS for instances of a given class using the RnR APIs and select an instance to bind to. When a class is no longer useful, it can be removed.

Clients use Directory Services to locate services.

In Windows NT 4.0 and earlier, a distributed system was a group of computers running various services. To bind to a service, an application needed to know which computers offered the service and how to bind to an instance of that service. In Windows 2000, services publish their existence through objects in Active Directory. The objects contain binding information that applications use to connect to instances of the service. To bind to a service, an application does not need to know about specific computers; the binding information includes this information. An application can query Active Directory for the objects that represent services, called connection point objects, and use the binding information from one of those objects to connect to a service.

Clients and Services use integrated security

Services can execute in one of two security contexts: LocalSystem, or in a Windows 2000 Domain account, referred to as a “Service Account.” The security context under which the service runs affects which access rights the service has on the computer and the network.

A service can run in the context of LocalSystem or a specific service account. The LocalSystem account is a special, predefined local account used that is available only to system processes. On computers running Windows 2000, a service that runs in the context of the LocalSystem account uses the credentials of the computer when accessing resources over the network and has full access to local resources. A service that runs in the context of the LocalSystem account on a Domain Controller has full access to the directory because the domain controller hosts a directory replica and LocalSystem has complete access to local resources. In general, a service should run under a service account on any system, regardless of role, and must run under Service Account on Domain Controllers. Create the service account as part of setup and set up access control lists (ACLs) appropriately to give the rights to the service account.

Important: Do not run under Local System on a Domain Controller. This is too powerful a context to run under, because it gives your service too much access to Active Directory. LocalSystem on a domain controller has complete control of Active Directory. Most security-conscious customers will not accept applications that require this context because of the potential to cause serious damage to directory information. When clients try to access resources through a service, the service should impersonate the client to assure Access Control.

Clients and services mutually authenticate

Mutual Authentication is a security feature in which a client process must prove its identity to a server, and the server must prove its identity to the client, before any application traffic is sent over the client-to-server connection. Support for mutual authentication is provided by the Security Support Provider Interface (SSPI) and is exposed directly through the SSPI APIs and services that layer upon SSPI, including RPC and COM+. Not all security packages available to SSPI support mutual authentication; to obtain mutual authentication the application must request mutual authentication and a security package that supports it.

Services obtain configuration information from Directory Services

Services can publish many kinds of information in the directory, including publishing of service configuration information. Service configuration information is a form of policy. Using centrally-managed configuration information to configure services is a form of policy-based administration.

The goal of policy-based administration is the ability for the Administrator to centrally state a “wish” about the state of their Users/Computer environment once, and then rely on the system to enforce that “wish.” A service may read its persistent configuration information from the directory. The directory is secure and highly available because it is replicated; these are both characteristics that make the directory an attractive replacement for initialization files, the registry, and so on. When storing configuration information there are several issues that must be considered:

· What information to store

· Where to store the information

· How service instances will find the information

· How to manage the information

· Use Windows 2000 Group Policy to create, store, retrieve, and manage service configuration information.

Service configuration information managed through Group Policy

· Service configuration can be managed by defining a group policy object in the Active Directory.

· Define an object class to hold your service configuration information.

· Develop a Group Policy Editor extension snap-in to create and maintain your configuration object.

· Install your schema extension (if needed).

· Install your GPE Extension.

At Service Startup: Call GetGPOList to retrieve the list of policies for the service account in which your service is running. Locate your configuration policies (if any) in the list and apply them.

At Client Startup: No action is required.

Administrator Activity: Use the Group Policy Editor to set policies for user and computer accounts. Use the extension snap-ins for policy-enabled services to configure those services as part of establishing policies.

Service accounts enabled for Kerberos

Delegation is a feature that allows secure multi-tier application support. Delegation is supported by Windows 2000 security through the Kerberos R5 protocol. This is a very powerful capability that enables an entire range of distributed applications. When a client delegates its security identity to a service, the service can assume the client's identity and use that identity at will. This means services enabled for delegation must be controlled, secure, and trusted; otherwise, a rogue service may assume the client's identity and use that identity maliciously. Even though the client makes the choice to delegate or not, it is not reasonable to expect client applications to choose to delegate only when talking to appropriate services. See the Kerberos requirement for more information.

· Support LDAP. While Active Directory uses any protocol, you must support LDAP, which has become a standard for interoperability.

· Store and utilize global data in the Directory Services

· Advertise services in the Directory Service

· For Winsock services, create Service Class and Service Instance

· Utilize the directory for location independence. This includes using the Directory Service to locate the following resources:

· Use the Directory Service to locate resources:

· RPC Clients, lookup server endpoints via RPCNsBindingLookupBegin

· Winsock clients must lookup server endpoints via WASLookupServiceBegin

· DCOM clients must support the Intellimirror application development infrastructure to lookup DCOM servers via COM+ Application Proxies.
· Access the Active Directory for all security information, including security policy and accounts

· Publish key certificates. This is important because public keys are not subject to network password attacks. In addition to being scalable, they also provide “off line” trust. See the Kerberos section of this document for more information.

· Publish administration points via Service Administration Point objects created as children under Computer object for the computer where each instance of the service is installed.
Compliance

Developers must do the following:

· Use Active Directory Components to show the application uses LDAP and LDAP-enabled directory services.

· Store and utilize global data in the Directory Services

· Advertise services in the Directory Service

· For Winsock services, create Service Class and Service Instance

· Utilize the directory for location independence. This includes using the Directory Service to locate the following resources:

· Use the Directory Service to locate resources:

· RPC Clients, lookup server endpoints via RPCNsBindingLookupBegin

· Winsock clients must lookup server endpoints via WASLookupServiceBegin

· DCOM clients must support the Intellimirror application development infrastructure to lookup DCOM servers via COM+ Application Proxies.
· Access the Active Directory for all security information, including security policy and accounts

· Publish key certificates. This is important because public keys are not subject to network password attacks. In addition to being scalable, they also provide “off line” trust. See the Kerberos section of this document for more information.

· Publish administration points via Service Administration Point objects created as children under Computer object for the computer where each instance of the service is installed.

· Use Active Directory Interfaces (ADSI). ADSI abstracts the capabilities of directory services from different network providers to present a single set of directory service interfaces for accessing and managing network resources. Administrators and developers can use ADSI services to enumerate and manage resources in a directory service, no matter which network environment contains the resource. This can be an LDAP-based, NDS-based, or NTDS-based directory; it doesn't matter, as long as a service provider is available for that directory service.

· You can download the ADSI SDK at http://www.microsoft.com/ntserver/guide/adsi.asp
Customer Benefit

By enabling your application to utilize Directory Services, customers using your software on the Windows 2000 Server Platform will have these important benefits:

· There are many other kinds of information that a given service might store in the directory.

· The directory is very flexible and has an extensible schema; therefore, there are few limits. Some information is not suitable for storage in the directory.

· Better security enforcement as defined by administrators to keep information safe from intruders.

· Higher productivity through directory replication which makes networks more stable

· Better performance through application partitioning

· Easier network administration through a single console that ties all directories together

· Simplified management of network devices such as hubs, routers and switches via the directory

Implementation Information

· ADSI Interface Definitions
· ADSI Object Definitions
· Code Overview is a conceptual representation of the blocks of code necessary to implement the ADSI provider component.

· Code Details lists the source code for the ADSI example provider component implementation included with the SDK.

· ADSI WinNT Provider is for applications running on Windows 2000 4.0.

· Accessing a Directory Service shows how to use query functions to display directory information. One example is shown is the free AD browser bundled with the Platforms and ADSI SDK.

· ADSI OLE DB Example shows a simple command-prompt program that uses the OLE DB interfaces to query a directory service.

· Implementation Issues for ADSI Providers.

· Use a Product-Specific DS Object in the Configuration/Services Container explains the preferred way to establish enterprise-wide configuration defaults for applications.

· Interfaces for Active Directory Objects Represented in the Underlying Directory Service describe the interfaces which provide access to data in a namespace that is persistent.

· Working with the Active User Objects (AUO) shows how to work with the directory database data that is accessible through Active Directory Services COM objects.

· ADSI container object provides detailed information about the containment relationship which is defined through an Active Directory object's schema class object. The latter provides on-line run-time definitions of what types of objects can be created within a specific container

· Platform SDK “Component Services, Application Proxy Export”
4 Phase III Core Requirements

4.1 Installation using Windows Installer and Clean Application Guidelines

All applications must comply with this requirement except as noted below:

· Browser-based applications that install dynamically at execution time. This includes ActiveX controls, HTML, DHTML, XML and Java.

Windows Installer and its associated technologies are a new requirement. Developed in response to customer feedback regarding existing install technologies, this setup service is the feature responsible for managing application installations over time for the Zero Administration Windows (ZAW) initiative.

Required

Application must be installed using Windows Installer technology. The application must also follow the minimum guidelines to be classified as a clean application.

The Windows Installer Technology provides the following features:

· Resiliency - applications can be repaired, rolled back, and redundant installation points can be used.

· Group Policy-based management - – applications can be managed in conjunction with Group Policy, allowing administrators additional control over the applications that people can use, and the features that application provide for people using them. By using Group Policy-based management an organization can choose to either assign (everyone will have) or publish (everyone can choose to install) applications for people to use.

· User and machine assignment - Applications can be installed on-demand, or they can be published.

· Lock-down. When applications are assigned to groups of users, it is important to administrators that the organization of the Start menu not be modified by end users. Support costs can be greatly reduced when groups of users have the same Start menu organization. To prevent users from modifying the appearance and contents of their desktop, you can create a locked-down computing environment. The lock-down capability utilizes a LockPermissions table and code in each of the actions that deal with files, folders, and registry entries. Shortcuts and folders can be locked via the LockPermissions table, so authors can include user profile folders in the LockPermissions table, or they can include specific shortcuts.

· Defer Collection of First Run Information - Provides an Application Interface for collecting first run information.

In addition, your application should abide by the following guidelines:

· Avoid reboots during install. Your application install should not prompt the user to reboot unless your are deploying a Windows pack or Service pack as part of your install. There is a common misperception that in order to upgrade a DLL that is in use, the system MUST be rebooted in order for the DLL update to complete. This is not how Windows NT and Windows 2000 work. It is possible to properly update a shared, in-use DLL without needing a reboot.

· If there is a need for a DLL update, which should be determined through proper version check, you can update the in-use DLL in a way that allows existing applications that are using the original DLL to continue to run with the original DLL; new applications started after the update can use the new, updated DLL. To update a DLL in this way:

Use MoveFileEx to rename foo.dll -> foo.dll.delete_on_reboot. DO NOT specify MOVEFILE_COPY_ALLOWED. Make sure the rename is on the same volume. The easiest way to ensure this is to do the rename in the same directory as the original file. So if foo.dll is in c:\program files\freds house of software, your code would look like the following example:

MoveFileEx

("c:\\program files\\freds house of software\\foo.dll","c:\\program files\\freds house of software\\foo.dll.delete_on_reboot",0);

· Copy your new, updated DLL to c:\program files\freds house of software\foo.dll. From this point forward, ALL applications using foo.dll will use your new, updated foo.dll.

· Use MoveFileEx's delay delete feature to schedule a deletion of foo.dll.delete_on_reboot on the next reboot of the system. To do this, your code will look like the following example:

MoveFileEx(

"c:\\program files\\freds house of software\\foo.dll.delete_on_reboot",

NULL,

MOVEFILE_DELAY_UNTIL_REBOOT

);

Applications running prior to the DLL update code sequence will use the original DLL as long as they manually keep it in their address space (for example, if they FreeLibrary("sample.dll"), then a subsequent LoadLibrary("sample.dll") will cause them to get the new, updated DLL). Applications that are launched and DLL loads that are executed after the code sequence will get the new DLL.

Be sure to check that the DLL behavior is acceptable. Be especially observant if the DLL maintains a global state, or communicates with other services and protocols or shared state layouts have changed. For these types of DLLs, a reboot will probably be required to ensure that all users of the DLL are manipulating the same type of state. Of course, if the DLLs are designed for side-by-side execution, this issue will be solved or avoided.

Compliance

To deploy application your application using Windows Installer requires the following:

· The Group Policy Editor MMC Snap-in with the Group Policy Editor (GPE) snap-in and the Application Deployment Editor (ADE) extension are installed

· Uses a Windows Installer Technology setup package (.msi) to install

· Setup package fully supports advertising.

· Uses redistribution packs and service packs as appropriate.

· Does not replace or remove core system files.

· Correctly registers all shared components.

· Provides an administrative mode setup.

· Can be installed as run from network with no local footprint.

· Can be installed locally.

· Correctly installs with basic UI as well as with no UI.

· Installs correctly and runs on a locked-down computer.

· Can be installed on a per user or per machine basis. Applications that use COM+ library or server applications do not need to support per-user installation until this is supported by the operating system.

· Uses Windows Installer Technology tables to register classes instead of requiring components to self-register.

· Supports AutoPlay on CD.

· Installs in the Program Files folder.

· Does not install files into the root of the drive, or into %systemroot%.

· Uninstalls correctly.

· Uses Windows Installer Technology APIs to locate and install features and components at runtime.

· Supports all informational keys (uninstall) in the registry.

· Detects and reacts to platform differences at runtime instead of setup time.

· Provides a migration DLL if required.

· Registers native data types.

· Asks before replacing another application's registration on a data type (.htm, .jpg).

· Does not edit win.ini or system.ini files.

· Stores all user data in the user profile (in the registry under the HKEY_CURRENT_USER (HKCU) and AppData keys).

· Initializes the user profile (HKCU and AppData) on first use, not during setup.

· Roots all Open and Save dialogs in the My Documents folder.

· Reconstructs all per-machine data from the application's setup package.

· Application files are hidden, with the exception of advertised application entry points.

· Uses Shell APIs and environment variables to locate special folders.

· Registers all application paths relative to environment variables (especially %systemdrive%, %systemroot%, and %userprofile%, since these tend to change).

· Fully supports UNC and LFN for all paths.

· Uses Windows 2000's One Stop to synchronize for offline use.

· Normally writes to the following locations: %userProfile%,%usercache%,and %temp%.

· Correctly handles Access Denied errors, and takes steps to avoid them.

· Maintains user settings across application versions.

· Does not save full paths into the user profile (such as on LRU lists); all references are relative to the %userprofile% environment variable.

Install using a Windows Installer package that passes validation testing

Your application must install itself using the Windows Installer service. To do this, your install must be in the form of a Windows Installer package. You must validate that the package is properly constructed by running the Internal Consistency Evaluation tool available in the SDK. This tool is also available at http://msdn.microsoft.com/developer/winlogo/downloads.htm
Leading vendors of install tools are currently working new versions of their tools to enable easy authoring of Windows Installer packages. Contact your tools vendor for more details. You can also create your own Windows Installer package. The SDK provides a detailed example for implementing a Windows Installer package.

Observe rules in componentization

When creating a Windows Installer package, the componentization rules ensure that the removal of one program does not harm any other programs on the system. In addition to safe removals, the Windows Installer service will correctly remove all the resources connected with that program, leaving no orphaned resources behind.

The rules governing the componentization process are:

· A single resource can never be shipped as a member of multiple WICs, even across companies, product versions, and individual products.

· All files in a given WIC must be installed to the same directory. This means files in different directories must be in different WICs.

· All files that are the targets of advertisable shortcuts must be the KeyPath of a WIC. This means there can only be one advertised file for each WIC, although many different shortcuts can point to that single file.

· Component Object Model (COM) servers must be the KeyPath of a WIC. This means there can only be one COM server for each WIC. A single file, which can only be in one WIC, may serve multiple CLSIDs. However, two files serving different CLSIDs must be in separate WICs.

· Extension servers must be the KeyPath of the WIC. This means there can only be one Extension server for each WIC.

Identify shared components

· If the Windows Installer determines that a component is shared, it will automatically handle the incrementing and decrementing of refcounting, and if appropriate, removal of components.

· The Windows Installer service will automatically determine if components are shared with other applications that also use the Windows Installer service.

· For components that are to be shared with applications that don’t use Windows Installer service, you must flag these components in the component table, so the Windows Installer service knows to refcount them. This helps ensure that your application interoperates properly with other applications that do not use the Windows Installer service.

· Install to Program Files by default

By default, your application must install into an appropriate subdirectory where the user’s program files are stored. This folder is represented by the ProgramFilesFolder property in the Windows Installer package. (The ProgramFilesFolder property is essentially a variable that exposes the path to the Program Files folder, and the Windows Installer sets that variable appropriately on all Windows platforms.) On English systems, this folder is often “C:\Program Files”. However, do NOT hardcode that path; it is not universal.

Exception: If you are upgrading a previously installed version, it is acceptable to default to the directory where that version exists, so as to upgrade in place.

Considerations for shared components:

Place shared application files in a known shared location specific to your company. It is recommended to store them in: %common files dir%\<company name>

The common files directory can be accessed using the CommonFilesFolder property. On English systems this usually "C:\Program Files\Common Files\<company name>\”. For more information on using Windows Installer Properties, see the Windows Installer Programmer’s Reference in the Platform SDK.

It is also acceptable to install to a specific directory under your application’s directory, such as ProgramFiles\CompanyName\Shared Files. If at all possible, avoid writing to the system directory. You must document in your Vendor Questionnaire any cases where your software application writes to the system directory.

Support Add/Remove Programs properly

Your application must supply all the information in the following table so that Add/Remove Programs in the Control Panel can obtain information about the application as needed. You can set these values using properties in the Windows Installer package. Setting these properties will automatically write the corresponding values in the registry under

HKEY_LOCAL_MACHINE

 \Software

 \Microsoft

 \Windows

 \CurrentVersion

 \Uninstall

 \{ProductCode}

Minor version of application.

Property
Name of value
Contains

ProductName
DisplayName
Display name of application.

ARPINSTALLLOCATION
InstallLocation
Full path where application is located (folder or .exe).

Manufacturer
Publisher
Publisher/Developer of application.

ProductVersion
VersionMajor
Major version number of application.

ProductVersion
VersionMinor
Minor version of application.

Note: Property names are case-sensitive.

You can also provide additional properties to present in Add/Remove Programs if you like, such as product ID, online support information, and so on. See the platform SDK for full details.

Ensure that the Windows Installer package supports advertising

“Advertisement” is when an application’s files are shown as being available, but are not actually installed. Advertising allows the application to be deployed using software management, where application features are installed “just in time.”

All Windows Installer packages must be advertisable in a manner that operating system entry points, such as shortcut activation and file activation, can trigger install on demand. In order to support advertisement at the operating system level, the following tables in the Windows Installer package must be populated with advertising data: shortcut, class, extension, icon, MIME, progID, TypeLib, and Verb.

It is recommended, though not required, that the application use the Windows Installer API to support install-on-demand of its features from within the application’s user interface (UI). This will ensure that the application can be fully deployed through install-on-demand.

Ensure correct uninstall support

The Windows Installer package must correctly and fully uninstall the application. In a package that follows component rules and uses only native Windows Installer actions to modify the computer, this is capability is provided automatically. However, if your Windows Installer package includes custom actions, you will need to proactively ensure that your application properly uninstalls. Your application must remove the following:

· All non-shared application files and folders

· Registry entries, except for keys that might be shared by other programs

· All shortcuts from the Start menu that the application created during installation

· The uninstaller itself

Tip: If your application creates temporary files that should be removed during uninstallation, create a zero-length (0) file with the same name at installation time. Examples of such files would be .gid files created by Help.

Exception: The following should remain on the hard disk:

· Core files must not be uninstalled. See http://www.veritest.com/ftp/core.htm for the most up-to-date, complete list of Windows core components. The core component list is updated regularly. It is the vendor's responsibility to get the most up-to-date list.

· User data files.

· Resources that other programs might use, such as sharable DLLs, sharable fonts, and sharable registry entries.

· If you are not sure whether removing a DLL might harm other applications, it is better to leave it behind. However, you must explain everything you leave behind when you submit your application for compliance testing. The proper place to do this is in the Vendor Questionnaire.

How to Pretest Applications for Install/Uninstall Requirements

A regularly updated tool is provided for testing Windows Installer service packages. To pretest a Windows Installer package:

· Use the Internal Consistency Evaluation tool to check the validity of the package. This tool will be available at http://msdn.microsoft.com/developer/winlogo/downloads.htm.

· Use Windows 2000 software management tools to assign and publish the applications (per-user and per-machine). Verify all the activation paths work correctly when application is either assigned or published. (For the assigned applications, the activation should trigger an installation).

To pretest correct setup actions:

· Use the Windows 2000 application deployment tools to publish the application.

· Verify the application can be installed from Add/Remove Programs

· Add from the corporate network

· Verify all the activation path: file extension

· COM trigger an installation if application is not already on the machine

· Use the Windows 2000 application deployment tools to user assign the application to a user. Verify after the user logs on the application is correctly advertised and that it appears as if it is fully installed on the machine and all activation paths: shortcuts, file extension, COM trigger an installation.

· Use the Windows 2000 application deployment tools to user assign the application to a machine. Verify after the machine is rebooted the application is fully installed.

· Uninstall the application in the tests above. Verify Windows 2000 software management can silently uninstall the application from the user/machine.

· Install the application for more then one user on a given machine. Verify each user can have its own settings; also verify that uninstalling the application for one user does not affect the other user’s settings.

· Test the install and uninstall of your package under each of these Windows Installer UI modes:

· Full

· Basic (Simple progress and error handling)

· None (completely silent installation, no UI)

You can do active different UI modes by launching your packaging with the /q switch. (Default is mode full. Specify b=basic, n=none.)

To pretest uninstallation:

· Take a snapshot of a computer’s directory tree, install the application, uninstall the application, and take another snapshot.

· Verify the snapshots before the install and after the uninstall are the same, except for user created files that should be left on the machine.

To pretest interoperation with other applications that share components:

To ensure that your application interoperates well with other applications that do not use the Windows Installer that share some of the same components you should test and verify each of the following scenarios:

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Step 1
Install application1
Install application 1
Install application 2
Install application 2

Step 2
Install application 2
Install application 2
Install application 1
Install application 1

Step 3
Uninstall application 1
Uninstall application 2
Uninstall application 2
Uninstall application 1

Step 4
Verify application 2 still works
Verify application 1 still works
Verify application 1 still works
Verify application 2 still works

 Customer Benefits

By upgrading your application setup to follow use Windows Installer, your clients will enjoy:

· Better management of shared resources

· Consistently enforced installation rules

· Easy customization

· Reduced storage requirements by helping users to decide what pieces of an application will be needed now and later

· Lower administration costs because applications can diagnose and repair configuration problems at application runtime

Implementation Information

· Use Windows Installer provides an overview and a pointer to the detailed documentation for Windows Installer.

· Installing and Removing Applications includes guidelines for applications which use Windows Installer.

· Installer Database is primarily for developers who want to write tools that create new installer packages and who therefore need detailed information about the installer's relational database.

· What is a Clean Application?

· http://www.microsoft.com/windows/zaw contains up to date information for creating efficient, easily managed applications

· http://www.microsoft.com/windows/thirdparty/winlogo/ is a pointer to the clean application guidelines which are part of the Windows98/Windows 2000 logo program.

· Platform SDK “Component Services”, “Application Export” and “Application Proxy Export”
5 Application and Technology Specific Requirements

5.1 SNA Server

In order to provide one common set of APIs to port applications from various operating systems to Windows 2000, Windows NT, Windows 95/98 and Windows version 3.X, a Windows SNA specification was created. As a direct result of this work, the Windows APPC, Windows CPI-C and Windows LUA specifications were developed. All of the Windows SNA specifications have provided a set of extensions that allow for asynchronous communication. This section applies only to applications that require access to such legacy systems as IBM mainframes, AS/400s and other systems supported by Microsoft SNA Server.
Required

The client application must use WOSA APIs or use FMI, or SNA Server client APIs, or SNA Server compatibility APIs for IBM PC Support or Client Access/400.

Compliance

To pass testing for SNA Server, you must do the following:

· The client application must use WOSA APIs or use FMI, or SNA Server client APIs, or SNA Server compatibility APIs for IBM PC Support or Client Access/400.

· Install and use ODBC/DRDA drivers if accessing host data

· Use AFTP for file transfer

Customer Benefit

Provides seamless integration of Windows 2000 Server applications and data with legacy applications and data on other platforms, such as MVS and OS/400. This results in:

· Easier access to data

· Faster and less costly application development when integrating legacy systems with BackOffice components and applications.

· Lower administration costs

Implementation Information

· SNA Server contains an overview of what are SNA and SNA Server.

· Developing Microsoft SNA Server Applications provides pointers for developing applications using SNA Server

· SNA Considerations explains SNA information you need to consider when writing LUA applications.
· Writing LUA Applications will help you write LUA application programs for use with Microsoft® SNA Server.

· About Transaction Programs describes how to write TPs and how to configure the systems on which TPs run.

· About The EIS Guide is intended for independent software vendors who are developing their own 3270 emulation client software to work with Microsoft® SNA Server.

· Using COM+ and COMTI is a practical and concise implementation guide that includes a glossary for the CICS-speak challenged individual.
5.1.1 Detailed information about SNA Server

Use SNA Server client APIs (support SNA Server user record)

Vendors who want to create applications that integrate a 3270 emulator with SNA Server should utilize the 3270 Emulator Interfaces Specification. This specification defines the initialization, message passing and termination procedures required for 3270 emulator and SNA Server communication.

See the BackOffice SDK Microsoft SNA Server/3270 Interface Emulator Specification for more information.

Use SNA Server compatibility APIs for IBM® PC Support or Client Access/400

SNA Server 2.11 adds support for the EHNAPPC application programming interface (API) which is the Windows-based APPC API supported by IBM's PC Support and Client Access/400 (CA/400) products. IBM has presented EHNAPPC API to its independent software vendor (ISV) community as the way to write Windows-based applications that integrate with the AS/400®. There are estimated to be more than 60 applications that utilize this API as a way to connect to the AS/400® data and applications. These ISV applications will work unchanged with SNA Server 2.11.

For additional information about the EHNAPPC API, see "IBM AS/400, Client Access/400 for Windows 3.1, API and Technical Reference, Version 3" (SC413531-00).

Use ODBC/DRDA Drivers to access Host Data

Many applications use the Open Database Connectivity (ODBC) programming interface to access local and server-based databases, while distributed databases on IBM hosts are usually managed through the Distributed Relational Database Architecture (DRDA) protocol defined by IBM.

SNA Server version 2.11 includes the StarSQL ODBC/DRDA drivers for Windows-based and Windows 2000-based clients. With these drivers, applications designed to use the ODBC interface and Structured Query Language (SQL) can access databases located on IBM hosts that use the DRDA protocol to manage distributed data, without requiring a host-based database gateway. These drivers allow ODBC-enabled applications (such as Microsoft Excel and Microsoft Access) to query, create, delete, and update tables in the following host databases: DB2® for MVS; SQL/DS™ for VM and VSE; and DB2/400 for OS/400®

Use AFTP for File Transfer

The APPC File Transfer Protocol (AFTP) application programming interface (API) is a set of C routines that provides APPC file transfer capabilities. This API makes file transfer programming easier by allowing you to access routines that will interact with any AFTP server.

APIs are provided for creating or destroying an AFTP connection object, establishing a connection to the AFTP server, querying connection characteristics, transferring files, specifying file transfer characteristics, querying file transfer characteristics, listing files on the AFTP server, listing files on the AFTP client, performing directory manipulation, performing file manipulation, querying system information, generating message strings, and controlling trace information.

5.2 SQL Server

Required

Database applications must support ODBC or OLE DB and/or ADO for accessing tables, views and other database objects.

Compliance

Applications should operate correctly when only the minimum number of database drivers is installed. For example, 32-bit ODBC under CONTROL PANEL should show the necessary ODBC drivers needed for your application.

Customer Benefit

This requirement ensures that BackOffice logo’d database applications use the industry-standard database API (Open Database Connectivity) to access information across networks, which in turn maximizes the connectivity of these applications with a wide range of solutions. In addition, applications must support ODBC or OLE DB and/or ADO.

NOTE: DB-Lib is no longer being enhanced; as such you MUST move any applications using DB-Lib to ODBC or OLE DB and/or ADO by December 31, 1999.

Implementation Information

· Exploring ActiveX Data Objects from an RDO Point of View is an ideal starting point for VB developers familiar with RDO and who are moving to ADO and/or OLE DB.

· Microsoft SQL Server OLE DB Provider is a programmers reference guide for using OLE DB in an application.

· ADO Overview explains how to write an application to access and manipulate data in a database server through an OLE DB provider. ADO’s primary benefits are high speed, ease of use, low memory overhead, and a small disk footprint.
· Programming with ODBC
· Accessing data with ASP explains how to use Active Server Pages with to interact with ODBC compliant databases for Internet or Intranet applications.
· OLE DB for the ODBC Programmer presents an introduction to OLE DB programming using the Microsoft® OLE DB Software Developer’s Kit (SDK).
· Microsoft OLE DB Overview
· Microsoft OLE DB Provider for ODBC describes how to use ADO to connect to any ODBC data source.
· Mapping ADO Methods to OLE DB Interfaces provides tables mapping the methods, properties, and collections of ADO objects to the corresponding OLE DB methods called.
· Overview of Getting and Setting Data discusses how data is transferred between the OLE DB consumer and OLE DB provider.
· Using COM+ and COMTI is a practical and concise implementation guide that includes a glossary for the CICS-speak challenged individual.
Required

Applications must store program data, such as code tables, and/or end-user data in SQL Server tables

Compliance

The application must create any applicable database objects during installation. This can happen immediately or during an unattended setup. No user intervention should be required. Extensions to the Enterprise Manager using a MMC snap-in is also required if there are any administration tools related to the application.

Customer Benefit

· Improves application performance by taking advantage of SQL Server’s architecture

· Easier application management by extending the Enterprise Manager MMC

Required

Applications administration tools must function as a snap-in to the SQL Server Enterprise Manager to support a centralized console.

Implementation Information

· Registering Servers describes how to register a server with Enterprise Manager

Compliance

Developers should follow the guidelines section for MMC (Section 3.3) when creating a snap-in to the Enterprise Manager.

Customer Benefit

· Easier application management by extending the Enterprise Manager MMC

· Supports centralized console with environment customization for improved administration productivity

Implementation Information

· See MMC section

Support OLAP Services

SQL Server 7.0 includes new functionality specifically for OLAP. Tools that include query, reporting and analysis features should support the following core SQL Server 7.0 OLAP Services features:

· Calculated Members

· Server Based Formatting

· Multiple Hierarchies

· What If Analysis

· Member Properties:

· Ragged Dimensions

· Write-Back + automatic data allocation

· User Defined Functions: the tool should support creating and registering OLAP Services user defined functions.

· Advanced MDX Functionality: including support for time series, exception alerting, statistical functions and “Visual Totals”

· Detail Data Retrieval: The tool should support retrieval of detail data that is not included in OLAP Services facts or dimensions from source database in SQL Server 7.0.

· Real-time OLAP

· Supports SQL Server Fast Loading

Support for the IRowsetFastLoad interface is recommended for tools which load large quantities of data into SQL Server and wish to provide full support for SQL Server bulk data loading functionality. Interim support for BCP via ODBC will be considered satisfactory if the logo member commits to support IRowsetFastload in the next release. This ensures that the tool supports the highest performance loading interfaces for SQL Server 7.0.

· Supports Data Transformation Services Package Execution. Tools that provide extraction, transformation and loading (ETL) features should support execution of DTS Packages as part of pre- or post-processing for a data movement operation. This ensures that DTS packages developed by SQL Server 7.0 customers can be leveraged as part of an overall ETL environment that includes third party tools. ETL tools may also wish to develop interfaces that allow DTS packages to invoke transformation or data movement operations processed by the partner’s ETL tool. This type of integration should be accomplished by implementing a DTS custom task that exposes execution of data movement operations in the partner’s ETL environment.

· Supports Data Transformation Services Package Upsizing. Tools that incorporate extraction, transformation and loading (ETL) features should provide the integration with SQL Server 7.0 Data Transformation Services by allowing customers to “upsize” DTS Packages into the tools native design environment for data movement operations. This ensures that DTS packages that were developed by SQL Server 7.0 customers can be extended and leveraged using third party ETL tool environments. Upsizing should be accomplished via shared transformation metadata hosted in the Microsoft Repository using the TFM and DTS information models.

5.3 Exchange Server

Required

A Messaging Application must use MAPI for send and post. This requirement is being phased out and developers should be adding support for Collaboration Data Objects (CDO), which will be required when BackOffice 5.0 is released.

To be classified as a messaging application, your software should fit into one of the following catagories:

· Messaging-aware applications: A messaging-aware application does not require the services of a messaging system, but includes messaging options as an additional feature. For example, a word processing application can add a "Send" command to its File menu, enabling the user to send a document to another user.

· Messaging-enabled applications: A messaging-enabled application requires the services of a messaging system and typically runs on a network or an on-line service. An example of a messaging-enabled application is Microsoft Mail.

· Messaging-based workgroup applications: A more advanced client application is the messaging-based workgroup, or workflow, application. The workgroup application requires full access to a wide range of messaging system services, including storage, addressing, and transport services. These applications are designed to operate over a network without users having to manage the applications' network interaction. Examples of such applications include workflow automation programs and bulletin board services.

Compliance

To send a message you need to consider doing the following:

· Create a MapiMessage structure to contain the message.

· Create one or more MapiRecipDesc structures describing the recipients of the message.

· Create a text string containing the subject.

· Create a text string containing the message text.

· Create an array of MapiFileDesc structures, if necessary, to contain any attachments.

· Submit the message with the MAPISendMail function.

Posting messages and documents to folders (as opposed to sending messages) is a common action performed by client applications. For example, a client application may post information to a public folder so that its associated server application can read the information. To post information, the application uses standard MAPI techniques and follows this sequence shown below.

· Start a MAPI session.

· Open a public information store and obtain an IMAPIFolder interface.

· Open a folder object within the public information store.

· Create a message in the folder object. Upon creation, the message exists in memory.

· Set relevant properties on the message.

· Use SaveChanges to save the message and its properties to disk.

For information pertaining to MAPI see the Win32 SDK Win32 Extensions/Messaging Application Programming Interface (MAPI). For information regarding integration with Microsoft Exchange Server see the BackOffice SDK Microsoft Exchange Server.

Customer Benefit

The Messaging Application Programming Interface (MAPI) is a messaging architecture that enables multiple applications to interact with multiple messaging systems seamlessly across a variety of hardware platforms. The interfaces are used to create and access diverse messaging applications and messaging systems, offering a uniform yet separate environment for development and use and providing true independence for both.

Required

Messaging applications must use Collaboration Data Objects to perform messaging and collaboration functions, including calendar and schedule functions.

Collaboration Data Objects (CDO) are the objects and interfaces designed to be used in both client and server collaborative applications. CDO is designed from the ground up around Internet standard content and protocols as well as Microsoft’s strategic technology such as COM, OLE DB/ADO, and ADSI. CDO is implemented using OLE DB for documents and Internet content types. With CDO there is no underlying MAPI infrastructure. Standard data access APIs define high level “application objects” and schema for specific classes of applications. Third parties can then use these objects and schema easily in their applications and can extend them at will. CDO provides the infrastructure to make application development easy by hiding the content format, storage, and protocol complexity.

There are three versions of CDO:

· CDO 1.2 - included with Exchange Server and Outlook. Provides messaging, discussion, calendaring, and mailbox access.

· CDO 1.2 for Windows 2000 Server - included with NT4 OP1 and NT5. Provides SMTP based send mail functionality without mailserver or mailbox installed.

· CDO 2.0 - included with Windows 2000 Server. Provides rich internet based messaging and mime content creation, send/post over SMTP/NNTP, inbound protocol event processing of SMTP/NNTP messages.

Requirements

1. Use Collaboration Data Objects (any version) and/or MAPI for development of messaging, discussion/news, and calendaring applications.

2. Do not use OLE Scheduling.

3. Do not use Simple MAPI.

Developers can find all the information they need for implementing CDO, with samples, in MSDN under Databases and Messaging.
Compliance

Application should NOT function when CDO and/or MAPI is disabled.

Customer benefits

· Messaging applications are more robust.

· Application functionality is much richer because adding collaboration capabilities is now just a few lines of code, instead of thousands.

· Easier customization through the use of standard collaboration APIs.

· Improves workflow applications.

Implementation Information

· About CD0 2.0

· Using CDO 2.0

· Properties Common to All CDO for NTS Library Objects

· Using CDO Commands with RFC 822 Messages explains how to use CDO to manipulate simple e-mail messages
Overview of CDO

CDO by itself is not a replacement for MAPI. OLE DB/ADO, ADSI, and CDO combined provide a complete replacement. OLE DB is used for all tabular data access, queries, ACLs, etc. CDO provides objects that manipulate rows in the database. It is not an abstraction layer over OLE DB, instead they work hand in hand together. An application will use OLE DB to query private or public folders. The developer can then make simple changes and additions using OLE DB but then will quickly realize that OLE DB alone is insufficient to build most collaborative applications. Complex content creation and handling and application logic requires that more advanced and higher level interfaces be available to develop the application quickly and properly.

This is where CDO comes in. CDO includes the objects and interfaces that encapsulate the complex logic and content in collaborative apps. CDO makes manipulating items in a database easy. CDO is actually implemented using OLE DB for Docs and as such many CDO based applications can be used with different backend databases that are OLE DB for Docs compliant. But just as CDO makes collaboration development and deployment easy, ADSI does the same for the NT directory. With OLE DB for database tables and queries, CDO for collaboration objects, and ADSI for directory objects, this trio of interfaces provides a complete replacement of MAPI. This new architecture aligns collaborative apps with traditional database application development and Internet content and as such collaborative apps can now leverage development tools and analytical/reporting applications and benefit from the momentum these technologies have in the market place.

CDO is designed to be the single object library that replaces all these disparate interfaces. As such it not only replaces MAPI and CDO 1.2 used in Exchange and Outlook, but also Outlook’s object model, CMC, Simple MAPI, ICS (incremental change service), CDO for NTS, and MIME-OLE. For the first time, a single feature complete interface will be available on both the client and server for use by all types of developers and applications. This will enable true three-tier development for traditional client applications as well as server based applications such as Outlook Web Access.

While the core objects implemented in CDO will be messaging/groupware oriented, the underlying general-purpose application infrastructure supports all types of middle tier application business objects that sit on top of OLE DB/ADO. This allows any application developer using an OLE DB data source to build objects to provide the much needed high level COM interfaces. These interfaces make it easy for other developers to write applications while obeying business logic rules and simplifying their code because business logic is encapsulated in the CDO objects themselves. In addition, CDO objects understand the native OLE DB and/or document schemas and as such provide rich support for standard MIME based content such as VCard and ICalendar as well as table based database schemas.

CDO fits into a multi-layered data access model that provides very low level “native” access to stream content for very technical developers writing advanced high performance applications as well as high level objects for less technical developers and power users who want a simple and easy programming interface. Queries, rowset, and table manipulation are performed in a standard way using ADO or OLE DB interfaces. Low level access to MIME and MHTML structured content is possible through IStorage, IStream, and IProperyBagEx interfaces (possibly COM+ equivalents). CDO delivers an extensive set of objects for creating and manipulating simple and complex MIME content.

CDO provides built in support for the development of the following broad classes of collaborative applications –

· Messaging – email, eforms, targeted mailers, mail based replication, virus scanning, event based notification

· News/discussion – unstructured, structured, and hybrid applications

· Scheduling and Calendaring – personal, group, resource mgmt, event schedules, calendar of events, and vacation schedules.

· Contact management – personal, group, tracking

· Task management – personal, group, and tracking

· Document management – personal and group authoring, check-in/check-out, and version control

· Journaling – as implemented in Outlook

· Notes– as implemented in Outlook

By extending CDO, other types of applications can be supported. Common types of applications are workflow solutions, imaging, and unified messaging. Unified messaging includes paging, fax, and voicemail services.

5.4 Systems Management Server

Required

The application must be installable via Systems Management Server and provide the appropriate PDF and MIF files, supporting user interface-less installation, and support an Uninstall option.

Compliance

Providing a Package Definition File. The SMS PDF ensures that compliant applications are tightly integrated with Microsoft SMS. A PDF follows the standard initialization file format. It is an ASCII text file containing keys (the key names are enclosed within square brackets). Key names can be separated by spaces. Each key contains one or more entries, where each entry follows the format: name = value1, value2, ... Values are separated by a comma and at least one space. A PDF has specific keys and entries that are used by the system to set the properties of a package.

Unattended Setup. Unattended or silent installs are an integral part of Zero Administration for Windows (ZAW), an important initiative from Microsoft intended to reduce the overall cost of maintaining Windows networks. Unattended or silent uninstalls obviate the need for user participation in uninstalling applications, which in turn reduces the administration cost of the network.

The program must not require input from the user during the installation, removal, or maintenance of the application. Any information or options required by the Setup program should be supplied by command-line switches to the program, or should be provided in a configuration file that is read by the program at run time. Because multiple packages can be installed by Systems Management Server at one time, no individual package installation should force a restart as part of its installation program. To copy system files that may be in use, Setup programs typically construct a batch file containing operations that must be performed during a restart.

Providing for Uninstall. The setup program should also include a provision to support the removal of the application owned components, clean up environment settings and registry entries. This is to facilitate software upgrades, retirement, recalls, etc.. The setup program ideally would provide a switch or option as part of the setup procedure supporting Uninstall.

Publish an SMS Status and Inventory MIF. The application’s provision of these MIF files helps an administrator using SMS collect data about servers, including information about the primary users of the server and the software that is installed on the machine. Full implementation of SMS makes the installation process automatic, making it easier for customers to keep track of software and monitor licenses.

To report the status of a PCM application installation, a MIF file must be created in the Windows directory. The MIF file should be named appname.MIF, where appname is the name of the application. In fact, the PCM will pick up any file in the Windows directory with an extension of .MIF (and which was created -timestamped-after PCM began the installation) and send it back to Systems Management Server.

Customer Benefit

Applications that support SMS are easier for customers to deploy, manage, upgrade, and inventory.

Implementation Information

· General Steps for Using the SMS API to Manage SMS Objects describes the general steps for reading the properties of existing objects, creating new objects, and deleting objects. These procedures apply to the following types of objects: Sites, Inventoried objects (machines), Packages, Jobs, Machine groups, and Site groups

· How MIF Files are Used to Maintain Inventory in an SMS Database explains how MIF files are used with the SMS database for such functions as computer inventory, events, package locations, job status, and user groups.

· Installing Packages by Using SMS Jobs explains how to distribute packages to target systems, which is required for BackOffice logo’d applications

5.5 Internet Information Server

Required

Internet and intranet applications must execute properly when used with IIS.

Compliance

· Use of session "keep alive". This provides a better user experience by minimizing the time between requests for new pages or new information from the server. In order to detect node failure or network partitioning, "session keep alive" packets are periodically sent in the steady state. A session keep alive packet is discarded by a peer node. A session keep alive timer is maintained for each session. This timer is reset whenever any data is sent to, or received from, the session peer. When the timer expires, a NetBIOS session keep-alive packet is sent on the TCP connection. Sending the keep-alive packet forces data to flow on the TCP connection, thus indirectly causing TCP to detect whether the connection is still active.

· Application uses IIS for HTTP communication with clients.

· Extend the MMC for IIS if the tool requires an administration user interface

· Web applications which use Microsoft Active Server Pages should use COM Components for encapsulating the bulk of business logic, not script. Scripts should only be used to call server-side components and generate HTML for the user interface, not core application processing. The application’s components can be written in any language that supports COM

Recommendations

· Support Transacted Active Server Pages, which allow applications with scripts and components to perform multiple actions, with all actions committed together, or none at all. This is critical for database applications. COM components used in Active Server Pages should be installed in COM+ library or server applications and use COM+ Automatic Transactions appropriately.

Customer Benefit

· Better administration of IIS-enabled application by extending the IIS Management Console using the MMC snap-in requirements.

· Improve internet and intranet application performance.

Implementation Information

· Accessing data with ASP explains how to use Active Server Pages to interact with ODBC compliant databases for Internet or intranet applications.

· IIS Administration describes the substantial configuration flexibility of IIS through a wealth of parameter settings so that you can tailor your installation to best suit your needs.

· New ISAPI features for IIS 4.0 describes the changes made and how they can affect your ISAPI applications and filters are summarized as follows.

· Component Services Programmer’s Guide talks about installing components in COM+ applications and configuring components to use COM+ automatic transactions.

· ADSI Features explains how to use the IIS Admin Objects as namespace providers in support of the ADSI standard for remote administration of directory service namespaces.

5.6 Small Business Server

Required

Application must integrate with SBS Setup Wizard and Administration Console, as well as adhere to SBS licensing requirements.

Compliance

1. If a Server application has Client Access Licenses (CALs), then you must check and use SBS CAL’s rather than NT CAL’s. SBS enforces CAL licensing. This means that customers cannot just “dial-up” the number of CAL’s their server enforces. Instead, they have to buy a product (a “bump” floppy) which increases CALs. The number of CAL’s a server applications uses must match the number of actual simultaneous client connections. Administrator applications should not use a CAL. Likewise, each client in use should only use 1 CAL. This is to help your clients comply with your license agreement. SBS comes with 25 CALs.

We recommend (but do not require) that your application should add a registry key to show that the SBS version (the limited version) of the application is installed. This way setup can tell if the limited or full version of your application is installed. This key should not be used to enforce the limitations - since it’s not a protected key someone could just change the key to get a full version.

2. The application must integrate with the SBS Console as required to simplify application administration

3. If there is client-side code, the application must use the SBS Setup Computer wizard

Customer Benefit

Microsoft® BackOffice® Small Business Server combines members of the BackOffice family — Microsoft Windows 2000® Server operating system, Microsoft Proxy Server, Microsoft Exchange Server, Microsoft Internet Information Server, and Microsoft SQL Server™ — with an easy-to-use graphical interface to provide a total business solution for small companies. When an application supports SBS, the customer:

· Can easily add advanced third-party software to their department computing environment.

· Has easier administration through integration with the SBS console.

Implementation information

· BackOffice® Small Business Server V4.0a Console Customization and Style Guide

5.7 Terminal Server Edition
Required

Application client(s) must install and function properly on Windows NT Server 4.0, Terminal Server Edition and on Windows NT Server 4.0 running in Terminal Service mode. For BackOffice Logo compliance, the three components of the Terminal Server requirement are:

· The 32-bit Windows-based client (and 16-bit client if it exists) must install and remove properly on Terminal Server 4.0 and on Windows NT Server 4.0 running in Terminal Services mode using the "Add/Remove" applet in the control panel or the "Change User" command.

· If the client is already being installed using the Windows Installer, many common Terminal Server installation issues with registry and placement of files will be avoided.

· The application installation must enable application access for all users by default upon installation and support client customization options only through User Profiles.
It is not recommended or required that the server software run on the Terminal Server. However, if you are going to run COM+ applications on a terminal server, those applications must be run in the console session.

Compliance

· Installation and removal completes without error when installed using the Add/Remove applet. If proper installation under a Terminal Server environment cannot be built into the existing setup routine, an application compatibility script for the client must be provided for customers.

· The client must function properly in a multi-user environment for an extended period of time. The primary danger is memory leaks. A memory leak in a client application program running in the traditional client/server Windows NT Server environment will eventually cause trouble. In the Terminal Server environment, that same application can be run multiple times by multiple users, thus rapidly magnifying the effect of a memory leak. To ensure compliance, you must have 15 multiple instances of the client running on Terminal Server simultaneously for the equivalent of 20 user hours performing normal user operations.

· The perceived application performance must not degrade significantly when it is run in a Terminal Server environment as compared to a traditional PC client environment. Make choices at setup or run time based on the operating system to optimize performance. Windows NT Server 4.0 Service Pack 3 and Windows 2000 have a set of product suite APIs for detecting the operating system. If the client is installed on Terminal Server, the product suite registry entry will contain the string "Terminal Server." The application should minimize splash screen usage, animation, video, avoid direct video access, and move user input routines to foreground processes.
· Application performance with the client running a single Terminal Server session on a Pentium class server with a minimum of 32 MB of RAM must approximate performance of the client running on an x86 PC desktop running Windows 95 or Windows 98. Application startup screens or other common user functions must perform comparably. Seldom-used functions can be degraded in performance.

Customer Benefits

· The Terminal Server architecture saves client development costs because it requires customers to run only a single 32-bit client on the Terminal Server. It can then serve up the application up to a wide variety of non 32-bit Windows desktop devices, including DOS, 16-bit Windows, Mac, and UNIX without the need to develop specific clients for those desktop operating systems.

· The client application is installed only once, on the Terminal Server. So when upgrades occur, the administrator only has to upgrade one instance of the client running on the Terminal Server. The desktop devices themselves do not need to be touched.

· All Windows security and tools are the same for Terminal Server. User Profiles can be used to configure a specific desktop or access to certain applications regardless of whether the desktop device is running Windows.

5.8 Application Development Tools

Required

An application development with the BackOffice Logo must generate applications that meet all the requirements of the BackOffice Logo program.

Compliance:

Application developments must provide the following to qualify for the Logo:

· Provide a sample, uncompiled application which demonstrates logo compliance as outline in this document

· Autogenerate PDF and Status MIF Packages for SMS as well as support MSI packages for installation

· Support Automation and COM

· The tools vendor must be an Open Tools Licensee

5.9 COM+ Component Services

Required

Components must be built and deployed as COM+ Applications.

Compliance

COM+ defines a general purpose programming model for building distributed component-based server applications. Developers architect, design and build their application servers as COM+ Components to be hosted in COM+ Applications which in turn leverage the Windows 2000 Component Services run-time (also known as the COM+ Services run-time). This execution environment provides the high scalability, robustness, and integrity traditionally associated only with high-end transaction processing systems by automatically and transparently handling the complexities and details of transaction management, synchronization of shared resources, process and thread management, context management, role-based security, load balancing, et. al.

To meet this requirement, your application server must be built and deployed as a COM+ Application.

Customer Benefit

· Optimized transaction throughput since critical resource management is automatically and transparently managed by the Component Services run-time

· Improved application server stability

· Increased application server availability

· Protection of application data integrity

Implementation Information

· Installing COM+ Applications describes how to install and deploy application servers in the Component Services run-time environment.

5.10 Asynchronous Message Queuing

Required

Support for at least one of two MSMQ scenarios to assure that applications take advantage of advanced message capabilities in Windows 2000 Server.

Microsoft Message Queue Server, also known by its code name Falcon, makes it easy for application programs to communicate with other application programs quickly, reliably, and asynchronously by sending and receiving messages. MSMQ offers a wide range of powerful and innovative features that are tightly integrated with the Windows 9x and Windows 2000 operating system platforms. MSMQ also offers interoperability with other key platforms and applications, such as IBM’s CICS and MQSeries, via products from Level 8 Systems.

Compliance

Applications that require message queuing must comply with one of the following scenarios:

1. Applications that do connectionless communication between components must do so over MSMQ

2. Use COM+ Queued Components

Recommendations

· MSMQ provides perfmon counters that are useful for monitoring MSMQ queue state. The "MSMQ Performance Monitor Counters" help section in the MSMQ Admin Guide provides details.

· Applications should use these to identify performance bottlenecks.

· Support for multi-disk designs (e.g. logger and pagefile on separate disks) and message header optimizations (don't set unnecessary properties when sending a message).
2. COM+ transactions: if MQSendMessage/MQReceiveMessage (or the ActiveX equivalents) are invoked in the context of a current MTS transaction, MSMQ can automatically enlist in that transaction as well.

· Should be used when MSMQ messaging code is part of an MTS component.

3. XA transactions: MSMQ users can explicitly obtain XA transaction objects from an XA dispenser

4. MS DTC transactions: MSMQ users can use the MS DTC transaction dispenser for transaction objects.

· Useful to coordinate transactions that involve resources from different DTC resource managers. Currently, MSMQ and SQL are DTC compliant.

5. MSMQ Internal Transactions: obtained from the internal MSMQ transaction dispenser via MQBeginTransaction.

· Should be used when transactional semantics are needed for a group of related messages when no resources from another manager participate.

· As a special-case, the MQ_SINGLE_MESSAGE option on MQSendMessage can be used to obtain transactional semantics for a single message. These semantics are: exactly-once message delivery and guaranteed (success/failure) delivery notification. In addition, in-order delivery is guaranteed wrt other transactions. Note that this option is equivalent to (pseudo-code):

MQBeginTransaction(&pxact);

MQSendMessage(pmsg, pxact);

pxact->Commit();

· This option is useful when guaranteed exactly-once message delivery is required.
Implementation Information

· Developer information can be found at http://www.microsoft.com/NTServer/Basics/AppServices/MSMQ in the Developer’s Resource Kit.

· What's in MSMQ Guide is the place to get conceptual information about the queues that can be used, the messages that are available, and how queues and messages are defined by properties, in addition to information on other MSMQ services.

· What's in Using MSMQ is a great section presenting a work-flow listing of code examples needed to perform the basic functions provided by MSMQ. Developers will find examples and information about how to complete specific tasks.
· About MSMQ Reference describes the functions, properties, structures, error and warning codes, and ActiveX™ components provided by the Microsoft® Message Queue Server (MSMQ) Software Development Kit (SDK) and the Microsoft® Message Queue Server Mail SDK, which are both part of the Platform SDK.
· The MSMQ Object Model provides detailed information about the MSMQ object model, queue management and administration, and queue lookup.

· How MSMQ Authenticates Messages is the section to review for security information for messages and how to use certificates.
· Using the MSMQ API Functions gives developers all the APIs they will need to write MSMQ-enable applications, including coding examples.
· What's in MSMQ Reference describes the functions, properties, structures, error and warning codes, and ActiveX components of MSMQ.

· Queued Components Concepts provides an overview of COM+ Queued Components. Developers will also find sample applications using Queued Components in the COM+ SDK.

Customer Benefits

· Richer functionality and easier customization by leveraging interprogram messaging.

· Improved data integrity during transaction processing.

· Allows the principles of transaction processing to be easily applied to non-relational sources, such as collaboration and email applications.

5.11 Enterprise Edition Features

Support for Very Large Memory (VLM)
The Enterprise Versions of Windows NT Server, SQL Server and Exchange, allow for RAM support in excess of 2GB. Applications should use the stress test section of this document to check applications in an Enterprise Environment.

The Microsoft In-Memory Database (IMDB) that is part of COM+ uses VLM automatically and transparently if it is available on a correctly configured Compaq Alpha server. Applications that use IMDB on such a server benefit from the VLM support in IMDB.
Support for Symmetrical Multiprocessors (SMPs)

ISVs who meet these criteria should publish scalability numbers to show customers how the application performs with SMPs.

Applications should run in the following environments:

· Uniprocessor or 2-way SMP systems with modest memory (1GB or less)

· 4-way SMP systems with significant memory (2GB)

· 4-way SMP systems with large memory (4GB) and Windows NT Server Enterprise Edition (and SQL Server, Enterprise Edition, or Exchange Server, Enterprise Edition, if relevant)

· 8-way SMP systems with large memory (4GB) and Windows NT Server Enterprise Edition (and SQL Server, Enterprise Edition, or Exchange Server, Enterprise Edition, if relevant)

Required

An application can run on a Microsoft Cluster Server and can continue to execute in the event of a server failure by operating on another server in the cluster.

Clustering is a configuration of a group of independent servers so that they appear on a network as a single machine. This group is managed as a single system, shares a common namespace, and is designed specifically to tolerate component failures and to support the addition or subtraction of components in a way that’s transparent to users.

Microsoft Cluster Server comprises nine essential objects designed to ensure high availability, reliability, and manageability. In a cluster, if a certain resource or set of resources goes down, the system intelligently chooses where and how to run applications in the network. With clustering, you can also use one of two nodes to run certain services while doing maintenance on the other node and then return the maintained node to the cluster without affecting services. In short, clustering provides the high availability of a multiple-node network with the management simplicity of a single address space.

Compliance

· Application must have published installation instructions for clusters.

· To test for support, the application should be installed and then application moved to the other server in the cluster using the Cluster Server Administration Console. It should continue to run.

Customer Benefit

· Improved data integrity, scalability, and management.

Implementation Information

· Introduction to Cluster Server Programming

· Installing the Microsoft Cluster SDK

· Suggested Background Reading:

· To supplement your understanding of how Microsoft® Cluster Server works with applications before you begin programming, read In Search of Clusters by Gregory F. Pfister, ISBN: 0-13-437625-0. In Search of Clusters offers an excellent introduction to clustering technology including a description of the common programming models.

· For an overview of Cluster Server concepts and components, read Cluster Server Concepts and Architecture on the Platform SDK and Cluster SDK. This topic discusses the clustering model employed by Cluster Server and the software components responsible for implementing the model.

· If you will be creating a new resource type, read the Microsoft Cluster Server Administrator's Guide and become well-versed in using Cluster Administrator. The Administrator's Guide describes how administrators expect to interact with new types of resources, thereby helping you to create DLLs that conform to those expectations. Because most administrators will be using Cluster Administrator for this interaction, resource type developers typically write an extension to this application to handle their new resource types. Understanding Cluster Administrator's design is critical to producing a high quality extension.

· If you plan to use the Cluster Automation Server, you should be familiar with Component Object Model (COM) and Automation. See the "COM and ActiveX Object Services" section of the Microsoft Platform SDK for information on these topics.

· If you will be writing applications using COM+, you must be have a strong understanding of how to leverage the automated services of COM+. See the “Building highly available applications using Windows NT Server Clusters and COM+” on the COM+ SDK.

· For more information on IMDB in COM+, see the document: Using IMDB with a COM+ Application in the COM+ SDK.

· The reference sections of the Cluster Server SDK provide syntax and return codes, as well as directions on how and when to use particular functions, methods, structures, properties, and control codes.

Office 2000 Client Requirements

Microsoft® Office is the most widely used desktop application suite in the world today, helping millions of people do their jobs more effectively. In addition, Microsoft Office applications provide a flexible, scalable, and powerful set of components for creating software solutions. Virtually any function that can be performed by an end user with an Office family application—Microsoft Excel, Microsoft Word™, the Microsoft PowerPoint® presentation graphics program, Microsoft Access™, Microsoft Outlook™ desktop information manager, Microsoft Project, or the Microsoft FrontPage® website creation and management tool—can also be accessed programmatically.

Each member of the Office family provides its services through an application object model. These object models are built using the Component Object Model (COM), Microsoft's standard software integration technology. Because they're provided through COM, the Office 2000 services can be accessed either locally or across the network from virtually any language and development tool. COM-based services can also be easily integrated with Windows NT® services and BackOffice® enterprise applications such as the Microsoft SQL Server™, Microsoft Exchange®, Microsoft Site Server™, and Microsoft SNA Server®.

Integrating Office and BackOffice

The new Designed for Microsoft BackOffice Logo program establishes a framework to unify ISV client/server branding efforts from Microsoft, including Office compatible applications. As new products and technologies come under this new simplified program, ISVs will not face varying sets of requirements, duplication in testing, and the costs associated with supporting the multiple branding programs. The new program includes basic “core requirements” which provide a foundation for ISVs and device manufacturers to build upon. In addition to meeting the core requirements, ISVs also have the option to be evaluated for other marketing programs and benefits.

By including Office applications with the “Designed for Microsoft BackOffice” Logo program, customers will get solutions that are based on the most popular productivity tools today – Microsoft Office – which also leverage the power and flexibility of the BackOffice platform.

Product Categories within Microsoft Office 2000 Client Requirements

The functionality of client/server software applications varies substantially among different types of products, so the Microsoft Office 2000 Client Requirements testing requirements must be tailored to each of several broad categories. This reflects the fact that Office customer’s expectations will vary from one type of product to another. For example, if an Office customer is using a document centric product, then they will expect it to include an Open dialog box like the one used in Office, but they won’t expect a mainframe connectivity product to do so. Instead, they’ll expect it to include something along the lines of a “New Mainframe Connection” dialog box. So Office features must be adapted to different product categories, and in some cases, certain Office integration may not apply at all.

Office 2000 Client Logo Products

Office 2000 Client logo products are targeted at standalone products. Because this new program focuses on integration between Office 2000 and BackOffice, many of the application candidates will consist of client/server applications running on Windows NT Server and built on BackOffice products. The standalone client applications, on the other hand, will consist of either file-based or non-file-based products.

Below are examples of file-based and non-file-based products:

File-Based Products. A file-based application is a product that is used primarily to create, edit, and save files whether on the client or server.

A typical user scenario for a file-based standalone application is:

1. Start the application

2. Create a new file (or open an existing one)

3. Edit the file

4. Save the file

5. Exit the application

Non-File-Based Products. A non-file-based application is a product that is not used primarily to create, edit, and save files, even though file-related tasks may be commonly performed. User scenarios differ from one non-file-based product to another, but the following examples illustrate the distinction between file-based and non- file-based products.

A typical user scenario for a non-file-based mainframe connectivity product is:

1. Start the application

2. Establish a mainframe connection, or re-establish a connection that previously existed

3. Exchange data with the mainframe, possibly uploading or downloading files

4. Save information about the connection, so it can be re-created in the future

5. Exit the application

Notice that although files were created, edited, and saved in the preceding scenarios, that is not the primary purpose of a non-file-based application. So determining whether a product is file-based or non-file-based is not as simple as determining whether it supports file operations. On the contrary, non-file-based products are distinguished by the fact that they can be profitably used without creating any files (except possibly for configuration or profile files that help the user control them). In this way they differ fundamentally from a file-based application such as Microsoft Word.

Nevertheless, both file-based and non-file-based products can qualify for the Designed for Microsoft Office and Microsoft BackOffice Logo Program provided they:

1. Develop and pass the Designed for BackOffice Logo testing for a server-side, file-based product.

2. Integrate Office 2000 into the overall workflow processing for that application by writing COM add-in to customize UI or functionality.

3. Integrate an existing standalone file-based or non-file-based product into overall workflow processing.

 “Designed for” Office 2000 Client Compatibility

Client applications should comply with general Office 2000 compatibility features and functionality listed below. Although these requirements will work well with most products, some developers may find that another solution is better suited to their customers’ needs. In that case, please contact D4BOINFO@MICROSOFT.COM for further information.

5.12 Designed for Windows 98/Windows NT Workstation Logo

Required

All file-system based client applications must first pass the “Designed for Windows98 and Windows NT” Workstation logo program.

Compliance

As a general rule, all Office 2000 products must first pass Microsoft Windows logo testing, which is conducted by Veritest in accordance with the requirements developed by Microsoft.

See the “Designed for Microsoft Windows 98 and Windows NT” Logo program documents at http://www.microsoft.com/windows/winlogo/developer/software/nt5page.asp?custarea=bus&site=family&openmenu=&highlighteditem=

Note For additional information about Windows logo testing requirements and procedures, email WINLOGO@MICROSOFT.COM, or contact Veritest as follows:

Windows Logo Administrator

Veritest, Inc.

3420 Ocean Park Blvd., Suite 2030

Santa Monica, CA 90405

310-450-0062 (voice)

310-399-1760 (fax)

Customer Benefits

· Ensures consistent look and feel of user interface, accessibility, and navigation features for a standalone application that operates on the Windows operating system.

· Application is optimized to work with the latest version of Windows and take advantage of Windows fundamentals, install and uninstall, Windows Installer, User Data/Application settings, OnNow/ACPI Settings, and Security.

5.13 User Interface (UI) Design

Required

Standalone client applications should meet the following standard Office 2000 user interface (UI) style elements:

· Standard Toolbar Style

· Main menu bar entries and accelerator keys

· Dropdown menus and accelerator keys

· Basic dialogue boxes

· Help topic

Compliance

5.13.1 Standard Toolbar Style

As a general rule, Office 2000 compatible products must support a standard toolbar, which is substantially similar to Office. Some exceptions exist. Please read the following sections carefully to determine how your product’s standard toolbar will be tested.

Office 2000 will refine the appearance and functionality of its Toolbars (as compared to Office 97), and although Microsoft intends to share this design with other developers someday, it is not practical to do so now. Therefore, Office 2000 compatible products should use a standard Toolbar that is substantially similar to the one used in Office 97, but include new usability enhancements. As illustrated below, this design is divided into three regions. The “Standard Region” contains buttons whose appearance and location are standardized in all Office applications. The “Application Region” has been consolidated and integrated into a “Dropdown” region controlled by set-up or on-demand COM Add-ins. The “Formatting” menu bar contains buttons that vary from one product to another.

[image: image5.png]Feature Style Guide

rosoft Word

TEie £t ow Ivert Famat Tods Table Wndow
RN R =
[SRR ERRNRRRE R -2

information needed to support it coul B9 58 45 BI T L 4 complete Intellimonse ™
SDE will be included in the Office 2 add or Remove putcons - i that will be shipped on the

Normal

- Tmesew Romen =12 = | B Z U ||=

s S

Office 2000 Standard Toolbar

The standard toolbar should be located directly below the main menu bar, and it should be positioned against the left margin of the window frame. The bar should be gray, and its buttons should include tastefully selected colors whenever possible. Its height should be approximately equal to the height of the standard Office toolbar, and its buttons should be about equal in size to their Office counterparts, which are 16 x 16 pixels by default (32 x 32 pixels if the user has selected “large buttons”). The spacing between adjacent buttons and between adjacent groups of buttons should also be generally comparable to the spacing within the Office 2000 standard toolbar. Office 2000 has implemented a “flat-look” to it’s buttons, removing the gray-line separators between each. Precise dimensions and colors are not crucial, but the general appearance of the application’s toolbar must be generally comparable to the Office standard.

In no case may there be a glaring difference that could confuse or irritate users who are familiar with the Office.

Icons, ToolTips, and the Location of Buttons Within the Office 2000 Standard Toolbar

The icons, locations, and ToolTips for standard buttons used on the Office toolbar have been standardized, and Designed for Office 2000 products must conform to this standard.

Application Specific Buttons on the Office 2000 Standard Toolbar

Application specific (i.e., non-standardized) buttons may be placed on the standard toolbar, but they must be located in the Dropdown Application Region illustrated above. The general appearance of application specific buttons must be consistent with the standard toolbar buttons. Tasteful use of color is encouraged, but explanatory text is strongly discouraged. Instead, their icon and ToolTip should identify them satisfactorily.

Size of Buttons on the Office 2000 Standard Toolbar

Designed for Office 2000 toolbar buttons should be about 16 x 16 pixels by default, although minor deviations from this standard are acceptable. Large buttons must also be supported as an option, and developers are encouraged to use the new 32 x 32 pixel Office standard. Doing so means that only one set of toolbar icons must be included, since the standard 16 x 16 icons can be programmatically stretched to 32 x 32. Minor deviations from this standard are acceptable, but the difference must not be so great that it might distract, confuse, or annoy Office users.

5.13.2 Main Menu Bar & Accelerator Keys

As a general rule, Office 97 Compatible products must include a main menu bar and associated accelerator keys that are substantially similar to Office. Some exceptions exist, however, so read Office 97 Compatible Testing Requirements to determine whether this requirement applies to your product. If it does, then read the following sections to determine how your product’s main menu bar will be tested.

Standard Office 2000 Main Menu Entries

As illustrated below, the Designed for Office 2000 main menu bar contains a standard set of entries, whose names, locations, and accelerator keys are standardized. The menu bar also includes a special location for application-specific entries, which vary from one product to another.

[image: image6.png]Feature Style Gui rosoft Word

Ele Edt Vew Insert Fomat Took Table Window Help

D gL =] o- .l - 32

Menu Name: File
Location: The left-most item on the menu bar, as illustrated in Figure 1.

Accelerator Key: ALT+F

Contents: New, Open, Close, Save, Save As, Page Setup, Print Preview, Print, Most Recently Used List, Exit. Testing Status: Mandatory for File-Based Standalone applications. Other applications that include a File menu entry (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Edit
Location: The second entry from the left end of the menu bar, as illustrated in Figure 1.

Accelerator Key: ALT+E

Contents: Undo, Repeat/Redo, Cut, Copy, Paste.

Testing Status: Mandatory for File-Based Standalone applications. Other applications that include an Edit menu entry (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: View
Location: The third entry from the left end of the menu bar, as illustrated in Figure 1. If File or Edit is not supported, then View should be shifted to the left as necessary to fill the bar.

Accelerator Key: ALT+V

Contents: Not required, but products that support View are strongly encouraged to include entries that correspond to the Office menu’s contents.

Testing Status: The View entry is not mandatory, but applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Insert
Location: The fourth entry from the left end of the menu bar, as illustrated in Figure 1. If File, Edit, or View is not supported, then Insert should be shifted to the left as necessary to fill the bar.

Accelerator Key: ALT+I

Contents: None required, but products that support Insert are strongly encouraged to include entries that correspond to the Office menu’s contents.

Testing Status: The Insert entry is not mandatory, but applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Format
Location: The fifth entry from the left end of the menu bar, as illustrated in Figure 1. If File, Edit, View, or Insert is not supported, then Format should be shifted to the left as necessary to fill the bar.

Accelerator Key: ALT+O

Contents: None required, but products that support Format are strongly encouraged to include entries that correspond to the Office menu’s contents.

Testing Status: The Format entry is not mandatory, but applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Tools
Location: The sixth entry from the left end of the menu bar, as illustrated in Figure 1. If File, Edit, View, Insert, or Format is not supported, then Tools should be shifted to the left as necessary to fill the bar.

Accelerator Key: ALT+T

Contents: None required, but products that support Tools are strongly encouraged to include entries that correspond to the Office menu’s contents.

Testing Status: The Tools entry is not mandatory, but applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Window
Location: The second entry from the right end of the menu bar, as illustrated in Figure 1. If Help is not supported, then Window Tools should be shifted to the right as necessary to fill the bar.

Accelerator Key: ALT+W

Contents: None required, but products that support Window are strongly encouraged to include entries that correspond to the Office menu’s contents.

Testing Status: The Window entry is not mandatory, but applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: Help
Location: The right-most entry in the menu bar, as illustrated in Figure 1.

Accelerator Key: ALT+H

Contents: <Application_Name> Help, About <Application_Name>.

Testing Status: The Help entry is mandatory for File-Based and Non-File-Based Standalone applications. Other applications that include it (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Application Specific Entries in the Office 2000 Main Menu Bar

In addition to the standard main menu entries discussed above, most Designed for Office 2000 products will include non-standardized entries, which correspond to the product’s distinctive functionality. These application specific items must be located between Tools and Window on the main menu bar. If Tools or Window are not supported, then the application-specific entries must be located to the left of Help and to the right of all other standard Office 2000 main menu entries.

5.13.3 Dropdown Menus & Accelerator Keys

As a general rule, Designed for Office 2000 products must support certain standard dropdown menu entries and their associated accelerator keys in a manner that is substantially similar to Office 2000. Please read the following sections carefully to determine how your product’s dropdown menus will be tested.

Office 2000 File Dropdown Menu Entries

As illustrated below, the Designed for Office 2000 File Dropdown Menu contains several entries, whose names, locations, and accelerator keys are standardized.

[image: image7.png]Ele Edt ¥iew Insert Format Tools Table Wine

D ew. ctrkn

" & Open, ko
Close

& save ci+s
Save s

[5ave as Web Page.
Versons,

@, web Page Preview

Page Setup
[print Preien
Sea. cisp

Send To 3
Propertiss

L0:DavidsDocs|02K Requirements
2Festure Style Guide

3Di\...{Draft - Proposed DégackOffice
4D:)...{BOL NTS Tech Rarts 5_26_98 spe.

Ext

Menu Name: File->New
Location: See Figure 2.

Accelerator Key: CTRL+N

Purpose: Creates a new file (or comparable application-specific object)

Testing Status: Mandatory for File-Based Standalone applications. For Non-File-Based Standalone applications, a suitably adapted entry is also mandatory. For example, a connectivity product might use either New or New Connection, as the designer thinks best. Note, however, that Microsoft must approve all design adaptations (i.e., “New Connection”) prior to testing. Other applications that include New (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: File->Open
Location: See Figure 2.

Accelerator Key: CTRL+O

Purpose: Opens an existing file (or comparable application specific object)

Testing Status: Mandatory for File-Based Standalone applications. For Non-File-Based Standalone applications, a suitably adapted entry is also mandatory. For example, a connectivity product might use Open or Open Prior Connection to restore a prior connection, as the designer thinks best. Note, however, that Microsoft must approve all design adaptations (i.e., “Open Prior Connection”) prior to testing. Other applications that include Open (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: File->Save
Location: See Figure 2.

Accelerator Key: CTRL+S

Purpose: Save the currently active file (or comparable application-specific object)

Testing Status: Mandatory for File-Based Standalone applications. Other applications that include Save (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Menu Name: File->Print
Location: See Figure 2.

Accelerator Key: CTRL+P

Purpose: Prints the currently active file (or comparable application-specific object)

Testing Status: Mandatory for File-Based Standalone applications. Other applications that include Print (or a substantially comparable entry) must use the standard name, location, and accelerator key.

Appearance of the Office 2000 Dropdown Menu

The dropdown menus should be located directly below the main menu bar; the bar should be gray, and its commands should follow the standard Office 2000 command sequence. Separator bars should be used and follow the Office 2000 sequence. There are also new commands added to Office 2000 that include SaveAs Web Page and Web Page Preview. File-Based standalone applications should consider these where applicable.

Office 2000 also implemented a new indented 3-D look to certain commands that are “extended” commands that become visible when hovering over arrow at the bottom of the initial dropdown.

[image: image8.png]L0:DavidsDocs|02K Requirements
2Festure Style Guide

crien
ctivo

)

cri+p

3Di\...{Draft - Proposed DégackOffice
4D:)...{BOL NTS Tech Rarts 5_26_98 spe.

Ext

Other Dropdown Menus

Although Designed for Office 2000 does not require the use of other standard Office dropdown menu entries, products are strongly encouraged to use them as appropriate. For example, products that include a Format menu entry should consider supporting Format->Font, Format-Paragraph, and other standard Office Format entries as appropriate. At all cost, products should avoid creating new names, locations, and accelerator keys for dropdown menu items that are used within Office. Instead, the Office model should be followed.

5.13.4 Basic Dialog Boxes

Designed for Office 2000 products must support basic dialog boxes that correspond to the Open, Save As, and Print dialogs in Microsoft Office. Office users have come to appreciate the consistency shared by the Office applications’ Open, Save As, and Print dialog boxes. As a result, all File-Based Standalone applications must support comparable dialog boxes. These dialog boxes may be derived from the Windows 98 or Windows NT 5.0 common dialog boxes, or they may be created by any other means. However, they must be substantially similar to either the Office or the Windows standard, and they must comply with all of the guidelines described in The Windows Interface Guidelines for Software Design, which is available from Microsoft Press.

5.13.5 Help Topic

As a general rule, Designed for Office 2000 products must include a Designed for Office Help topic in their Help topic library.

Purpose of the Office 2000 Help Topic

This feature helps users transfer their skills from Office to the Designed for Office 2000 product. The

Help topic contains three standard sections that quickly orient users to the product. Section 1 contains a brief description of the Office Compatible program. Section 2 describes the Office features that the product supports, and it discusses any changes that have been made to the standard Office design. (Note that Microsoft must approve any such changes prior to testing.) Section 3 explains how to use the product together with Microsoft Office.

Accessing the Office 2000 Help Topic

Designed for Office 2000 products may list the Designed for Office 2000 Help topic in the application specific region of their Help dropdown menu. Alternately, a link to the topic should be displayed if the customer searches for “Microsoft” “Office” or “Office Compatible” (or if they look for these keywords within the product’s Help index). In addition, Office Compatible vendors are strongly encouraged to include a “Microsoft Designed for Office 2000” entry within their Help contents, but this is not mandatory.

Customizing the Office 2000 Help Topic

Standalone or client-hosted application custom Help files should have the same look and feel of the Office 2000 Help (this is assuming that a version of Office will be on the client machine)

· Hosted within the MSO Help Pane (with full ability to title, and assistant move-away behavior)

· Custom Help content CHM files should not define any window types

· Answer Wizards files should be created to access all help topics

Text Of The Office 2000 Sample Help Topic

Designed for Office developers should use the following text as a “template” for the Help topic:

Example

Microsoft Office 2000

<Application_Name> is a Microsoft Office 2000 compatible product, which means that many of its basic features (including toolbars, menus, & accelerator keys) are similar to those used by Microsoft Office. If you are already using Office or a Designed for Office 2000 product, then you will see that many tasks can be completed in a similar manner in <Application_Name>. These similarities will make it easier for you to use Designed Office 2000 products together.

Office 2000 Features Supported By <Application_Name>
[Note: In this section of the Office Help Topic, vendors should:

· List the Office features they have included in their product.

· Describe (and possibly illustrate) any changes that have been made while adapting an Office feature to the vendor’s product. For example, if a vendor of a mainframe connectivity product has altered the “New” toolbar button to better represent the act of creating a new mainframe session, then that change should be documented.

· Briefly discuss the method for using key Office features. For example, a vendor might include the following text to explain the similarity between its toolbar and Office’s:

“<Application_Name> contains a toolbar which is similar to the one found in Microsoft Office. You can print a document just by pressing the “Print” button on the standard toolbar, and you can discover each button’s function just by pointing to it with the mouse . This will activate a ToolTip that displays the button’s name. ”

The purpose of this discussion is to help customers understand that the skills they have acquired with Microsoft Office are applicable to the vendor’s product, too, so vendors should include information that helps their customers make this connection.]

· URL links to where the user can get more information or updated software patch downloads.
Using <Application_Name> with Microsoft Office
[Note: Integration among applications is an important benefit sought by many customers, so in this section of the Office Help topic, vendors should explain how to use their product with Microsoft Office. The vendor should describe common scenarios in which customers may use the products together. For example, a vendor of a mainframe connectivity product might include the following statement:

“Data in the terminal emulation window can be transferred to Microsoft Office by: (1) double-clicking it with the mouse, (2) pressing CTRL+C to copy it, and (3) pasting it into Office by switching to any Office application and pressing CTRL+V.”

Vendors should give special emphasis to scenarios in which data can be transferred from their product to Office via cut, copy, and paste operations or via OLE. In addition, vendors should describe other common scenarios in which their customers will use their product together with Microsoft Office. If appropriate, vendors are also welcome to launch online tutorials or other training aids from this section of the Office 2000 Help topic. For example, a tutorial titled “Using <Application_Name> with Microsoft Office 2000” could be launched from here.]

Customer Benefits

· Maximize productivity through consistency with Office 2000 user interface

· Leverage Microsoft usability testing and customer input in achieving good UI design

· Reduced training and migration costs

· Application help files are consistent with Office 2000 format

5.14 Extensibility

Required

Standalone client applications should use COM Add-ins to establish automation calls or links between client application, Office 2000, and Microsoft BackOffice or Windows application service.

The key requirements for implementing a COM Add-in include:

· Operating Requirements

· Implement the IDTExtensibility2 Interface

· Connecting COM Add-in Up to Command Bar Control

· COM Add-in Registration

· COM Add-in Security

In the previous and current versions of Microsoft Word, Microsoft Excel, Microsoft Access, and Microsoft PowerPoint, you can use VBA to create add-ins specific to each of the applications. For example, you can create an add-in for Word that builds a custom report from a selected database, and another add-in for Excel that performs a similar task. You save the Word add-in as a Word template file (*.dot), and the Excel add-in as an Excel add-in file (*.xla). Despite the fact that the two add-ins share some common code, you have to create two separate add-ins in order to add functionality to both applications.

Note: Previous versions of Outlook and FrontPage do not provide any way to create application-specific add-ins by using VBA.

A COM add-in, on the other hand, can share some add-in functionality and code across applications. You can’t necessarily share all the code in a COM add-in between applications. The COM add-in project contains a component for each application in which it will run and is also registered for each application. Usually a COM add-in contains some code that is specific to each application. For example, if you build a COM add-in to create a custom report in Word or Excel from a database, the code that accesses the database and retrieves a set of data can be shared. Once you’ve retrieved the data, you need to work with the Word object model to write the data to Word, and with the Excel object model to write the data to Excel.

The following table lists both types of add-ins and their file extensions.

Add-ins
File extensions
Available to

Word add-ins (application-specific)
.dot, .wll, .wiz
Word only

Excel add-ins (application-specific)
.xla, .xll
Excel only

PowerPoint add-ins (application-specific)
.ppa, .pwz
PowerPoint only

Access add-ins (application-specific)
.mda, .mde
Access only

Exchange Client extensions (application-specific)
.dll
Outlook and Microsoft Exchange clients only

COM add-ins
.dll
Word, Excel, Access, PowerPoint, Outlook, or FrontPage

Note: Prior to Visual Basic 4.0, DLLs could not be created in Visual Basic. Developers used C++ or a comparable language to create DLLs. The .wll and .xll add-in file formats refer to DLLs created in C++ specifically as add-ins for Word and Excel, before these applications included VBA. Likewise, the only add-ins available for the previous version of Microsoft Outlook were Exchange Client extensions, which are DLLs created only in C/C++. Although more recent versions of Word, Excel, and Outlook still support these custom add-ins, you no longer need to create .wll and .xll files or Exchange Client extensions in order to build a sophisticated add-in.
Compliance

5.14.1 Operating Requirements

1.
Since most hosted applications cannot comply with the Windows Logo test requirements, COM add-ins must comply with the following alternate guidelines to participate:

a.
The application must be a 32-bit application.

b.
All UI elements that are present must conform to The Windows Interface Guidelines for Software Design (available from Microsoft Press).

c.
If the application performs file I/O operations, then it must support long file names and the Uniform Naming Convention (UNC’s).

d.
Plug and Play event-awareness is recommended, but not required.

e.
If the application is an OLE server, then it must comply with the Windows 95 OLE Self-Registering Server specification:

(DLL servers must support DllRegisterServer() and DllUnregisterServer()

(EXE servers must support /RegServer and /UnregServer command line switches

(Both DLL & EXE servers must support the "OLESelfRegister" VERSIONINFO string.

2.
If the application inserts buttons on Office’s standard toolbar, they must appear to the right of Office’s buttons within the application-specific region of the bar.

3.
If the application adds entries to Office’s main menu bar, they must appear to the right of Office’s entries within the application-specific region of the bar.

4.
If the application adds entries to Office’s dropdown menus, they must not disrupt the order of the entries which are governed by Office Compatible 97 testing. For example, the application should not insert an entry between Cut and Copy within the Edit menu. As a general rule, entries which relate to new types of objects should be collected within a new menu group (separated from other groups by menu separator bars). For example:

Wrong Menu Modification:

Right Menu Modification:
New...

New...

New Picture...

Open...

Open...

Close...

Open Picture...

Close...

New Picture....

Close Picture...

Open Picture...

Close Picture...

5.
Host-required applications should not confuse Office users by arbitrarily changing the location or appearance of standard toolbar buttons and menu entries. For example, if the application replaces Office’s standard toolbar (or if it unobtrusively replaces the standard Office buttons with its own) - as OLE servers sometimes do - then the new bar or buttons (and new menu entries, too) must appear in their standard Office locations. In other words, an OLE server which supports Cut operations must display a standard Office toolbar Cut button, and it must display the button in its conventional location. Similarly, if an OLE server replaces Office’s “Format” menu entry with one of its own, then the replacement must be in precisely the same relative location as its Office counterpart.

6.
If the application supports Help, then it must include the standard Office Help Topic.

7.
The application must not unnecessarily or disruptively alter the Office user interface, and developers are encouraged to adopt Office features in their own interface whenever possible.

8.
If the host-required application is supplemented by one or more standalone programs which are distributed in the same box, then those programs must either fully comply with the testing requirements for standalone products, or the Designed for Office logo must not be used on the product’s box (or in advertising which suggests that the box’s contents are Office logo’d).

This requirement will be waived for simple utilities (e.g., setup or configuration programs) which cannot be reasonably expected to support a full Office Compatible 97 interface. However, developers must obtain Microsoft’s approval if they wish to exempt such products from testing. To do so, send email to: D4BOLOGO@MICROSOFT.COM.

9.
Some host-required applications can be run in a so-called ‘full window’ mode that gives them total control of the user-interface. For example, some OLE servers which cannot be run in standalone mode can nevertheless be placed in full window mode once their Office host has launched them. In essence, the Office host is substituting for Windows 95 as a platform from which the application is launched. Such products must fully comply with the requirements for standalone products while they are operating in ‘full window’ mode.
5.14.2 Implement the IDTExtensibility2 Library

A COM add-in has events that you can use to run code when the add-in is connected or disconnected, or when the host application has finished starting up or shutting down. In order to use these events, you must implement the IDTExtensibility2 library, which provides a programming interface that you can use in a class module to extend its functionality. When you implement the IDTExtensibility2 library within a class module, the library makes a set of new events available to the module. These are the events that you need to control your COM add-in.

5.14.3 Connecting COM Add-in Up to a Command Bar Control

The Office 2000 COM add-in needs to be integrated with the user interface of the host application in some way so that the user can interact with it. For example, the user interface for your COM add-in very likely includes a form with which the user interacts. One way to integrate your add-in with an application’s user interface is to include code in the OnConnection event procedure that creates a new command bar control (toolbar button or menu item) in the host application. When your add-in is loaded, the user can click the button or menu item to work with the add-in.

5.14.4 COM Add-in Registration

In order to work with an Office 2000 application, an add-in DLL must first be registered, like any other DLL on the computer. The DLL’s class ID is registered beneath the \HKEY_CLASSES_ROOT subtree in the registry.

In order for the add-in to be available to an Office 2000 application, information about the add-in must also be added to the registry.

5.14.5 COM Add-in Security

Standalone and host-based client applications should use the Authenticode application programming interfaces (APIs) and comply with security model when supplying code in solution.

You can specify security settings for Office 2000 applications in the Office 2000 Security dialog box, available by pointing to Macro on the Tools menu and then clicking Security. The Security Level tab includes a check box, Trust all installed add-ins and templates. If this box is selected, Office 2000 applications will load all COM add-ins, application-specific add-ins, and templates in the application data folder without checking to see whether they have valid digital signatures.

Customer Benefits

· More quality solutions that build on Microsoft Office 2000 and BackOffice

· Applications are more flexible using extended Office functionality, providing a richer user experience and higher satisfaction

· More powerful and seamless integration between Office 2000, BackOffice, and custom applications

· Reduced migration and training

5.15 Data Access Integration and Connectivity

Required

Standalone client applications should include data access connectivity with a Microsoft BackOffice or Windows NTS application service – using ODBC, OLE DB, DCOM, or MAPI – and include Office 2000 component in the final application workflow.

Scenarios might include:

· Microsoft Word accessing IBM AS/4000 customer information through Microsoft SNA Server using OLE DB for DB2.

· Microsoft Access replicating SQL sales data through Microsoft SQL Server using ODBC.

· Microsoft Outlook synchronizing vCard contact information from Microsoft Exchange using MAPI.

Compliance

ODBC, OLE DB, DCOM, or MAPI Consumer Support

Standalone client applications should include consumer support for these data access APIs and formats:

1. ODBC Level 2

2. OLE DB for tabular and mutli-dimensional data (OLAP)

3. DCOM

4. MAPI

ODBC, OLE DB, DCOM, or MAPI Provider Support (if applicable)

Client-server applications should meet BackOffice Logo requirements for data access provider support for these data access APIs and formats:

5. DAO/ODBC Level 2

6. ADO/OLE DB for tabular and mutli-dimensional data (OLAP)

7. DCOM

8. MAPI

Integration with Office 2000 & Application Workflow

Integration of BackOffice or Windows application data with the Standalone client application and Microsoft Office 2000 should be made. Data should be displayed in any of these Office 2000 data access containers:

· Excel Spreadsheet and Query Tools

· Word Document

· Outlook/Exchange Folder or .PST file

· PowerPoint Presentation

· Access Database

· Office Web Component

Customer Benefits

· Better access to data to enhance decision-making

· More intuitive to end users

Application Integration Services

Microsoft Office 2000 provides a powerful set of application services for designing and building a variety of software solutions. And because of the integration capabilities offered by COM, virtually everything you can do as an end user can be used in designing and building distributed, multi-tiered solutions.

You can think of a service as a unit of application logic that implements an operation, a function, or a transformation of information. Among other things, a service might enforce business rules, perform calculations and manipulations on data, or expose features for entering, retrieving, viewing or modifying information. Using a service-based approach rooted in components, developers can design and implement systems whose applications interoperate not only through shared data, but also through shared business logic.

Below are the key types of application services that should be considered when designing a solution to received the Designed for Office 2000 logo.

5.16 Document Creation or Form Tracking Integration

Required

Standalone client applications should support at least one Office 2000 document type or form tracking function in application workflow with BackOffice or Windows NTS application service.

Scenarios might include:

· Word document creation generated from COM component or XML data passed from SQL Server.

· Microsoft Access HTML Forms providing data entry screens for interacting with middle-tier MTS COM component querying and updating SQL Server.

· Microsoft Outlook Forms capturing Help Desk request info and routing to an Exchange Public Folder.

Compliance

Integration with Office 2000 & Application Workflow

The Standalone client application must drive, manage, or interact with an Office document creation event or use specific Office document or Outlook forms to capture data and update the BackOffice or Windows NTS application server using two-phase commit.

Data should be displayed in any of these Office 2000 data access containers:

· Excel/HTML Spreadsheets

· Word/HTML Documents

· Outlook/HTML Forms

· PowerPoint/HTML Presentations

· Access Databases/HTML Forms

· Office Web Components (Win32 or ActiveX compatible)

Customer Benefits

· Utilize powerful document creation features of Office applications

· Familiar user interface for working with BackOffice data

· More options for capturing and sending information over traditional systems

· Universal viewing in Web browser using Office Web access features and HTML support

5.17 Data Analysis & Reporting Components

Required

Standalone client applications should support at least one Office 2000 data analysis or reporting function generated using BackOffice or Windows NTS application data.

Scenarios might include:

· Server-side Word document creation generated from COM component or XML data passed from SQL Server and IIS Web server.

· Excel template workbooks that combine PivotTables, PivotCharts, database reports that use the SQL 7.0 OLAP Server.

· Microsoft Access HTML Banded Reports generated from MTS/SQL Server data.

· FrontPage/IIS web publishing reports that are programmatically controlled and published into the Office Web Components.

· The Office spreadsheet component can be used in Web-based applications like Expense-report systems, or on Microsoft Internet Information Servers running Active Server Pages.

Compliance

Implement Office Web Components

Analyze and publish BackOffice or Windows NT application server data into one of the below Office Web Components:

· PivotTable component

· Charting component

· Spreadsheet component

Use the Data Source component to perform the following operations:

· Create a new Office Data Source object and associate it with a database connection

· Add rowsources (tables, views, stored procedures, or SQL statements) to an Office Data Source

· Build flat SQL and hierarchical SHAPE commands to retrieve the data represented by the rowsources from the back-end database and the ADO Shape provider.

· Return standard ADO Recordsets, sometimes linked together in hierarchies, to data-consuming objects on the page, including IE 4's built-in data binding agent, the PivotTable component, or the chart.

· Modify the SHAPE definition in response to user requests to group and aggregate base data.

· Use the services of Microsoft’s decision support engine to support a pivot UI in the PivotTable component. Persist an Office Data Source definition to a file and load from a file.

Server-side Implementation

The Office Web Components can be used in server-side ASP solutions with Microsoft’s Internet Information Server. Developers might want to do this to keep the formulas on which their calculations were based hidden from the user, or to build a solution that runs in any browser. In server-based solutions, since the controls are not active at the client, none of user interface that the controls provide is available to collect input from the user – the command bars, field lists, and input grids aren’t present. It’s the developers responsibility to collect input from the user with standard HTML input controls, then, using these inputs as parameters, manipulate the components on the server via their object models, then ships results back to user via the Active Server’s response.write method.

The ASP scripting (pseudocode) for a server-side spreadsheet-based solution looks like this:

Set ss = CreateObject(owc.spreadsheet) 'Instantiate the spreadsheet component

ss.DataAsHTML = "file://c:\mysheet.htm" 'Load up the file that contains the model

ss.Range("B6").value = response("InputValue") 'The value that came from the user

document.write "The answer is " & ss.Range("A5")

All the Web Components support server-side results sets. The spreadsheet will typically be used to perform a calculation, storing the result in a range. The value of that range is then shipped down to the client as HTML text. Both the chart and the PivotTable components support a .ExportPicture method. In server-side solutions developers can manipulate their object models based on user inputs, perhaps using an input box to select a value on which to filter results, for example, then send results down to the client browser as .gifs. Even though the components don't need to be installed on the client in this scenario, an Office 2000 licence is still required at the client in order to view pages that are generated using the Web Components on the server.

Licensing Requirements

Customers must own an Office 2000 license in order to browse a web page interactively using the Office Web Components. Organizations that own an Enterprise Agreement for Office 2000 who plan to deploy Office 2000 in phases can enable early adopters of Office 2000 to share component-based web pages with users who haven’t yet installed Office 2000. They do this by enabling auto-downloading of the components via Internet Explorer’s built-in component installer.

Implement Other Office Analysis Procedure

Analyze and publish BackOffice or Windows NT application server data into one of the below Office components:

· Office Web Access Views (Outlook, Project)

· Access Data Pages Report

· Word AutoSummarize Analysis

· Outlook Custom Views

Customer Benefits

· Office need not be deployed on each client workstation in order to use some functionality, thus making it easier to implement some solutions.

· Browser applications can have robust performance when performing complex, multi-dimensional analyses.

5.18 Calendaring, Contact, and Journaling

Required

Standalone client applications should support at least one Microsoft Outlook 2000 calendaring, contact or journaling function in application workflow with BackOffice or Windows NTS application service.

Scenarios might include:

· Server-side Word document creation generated from COM component or XML data passed from SQL Server and IIS Web server.

· Excel template workbooks that combine PivotTables, PivotCharts, and database reports that use the SQL 7.0 OLAP Server.

Compliance

Item Synchronization

Extend Outlook messaging through customizable alerts for the following items:

· Calendaring

· Contacts

· Journaling

Implement using Outlook Object Model calls (instead of direct MAPI calls)

UI Design

Implement as a COM Add-in (instead of an Exchange Client Extension) for UI command bars, folder properties, and Options dialog boxes

Customer Benefits

· Integrated environment for increased productivity

· Easier and seamless integration with enterprise contacts, calendars, and telephony/fax devices

· Allows integration of calendaring, contacts, and journaling into custom applications, providing clients with a better way of managing work and process

5.19 Project 2000 Integration – Under Construction

Required

Standalone client applications should support using Microsoft Project editor UI, task scheduling engine, database schema, along with BackOffice connectivity.

Scenarios might include:

· Server-side Word document creation generated from COM component or XML data passed from SQL Server and IIS Web server.

· Excel template workbooks that combine PivotTables, PivotCharts, database reports that use the SQL 7.0 OLAP Server.

Compliance

Data Access

Utilize Microsoft Project 2000 UI for the front-end for a larger, enterprise application.

Programmability

Utilization of the Microsoft Project object model to schedule tasks, create task relationships, and/or allocate resources for the purpose of reusing the data provided to Microsoft Project in an application hosted within Microsoft Project or separate from Microsoft Project.

Storage

Utilize the Microsoft Project database schema as storage for task information, schedule information and/or resource information for a custom application.

Using the Microsoft Project database for storing custom application information enables customers/developers to manipulate the information within Microsoft Project allowing simple task lists to scale without an import.

Customer Benefits

· Automates project workflow to make it easier to create and maintain project workflow data

· Allows for better planning of projects since data is constantly updated, and it can be quickly and easily accessed

6 Recommendations

6.1 Support for Digital Signatures

Digital signatures must be used when a message is distributed in plaintext form, and the recipients should be able to verify that the message has not been tampered with by any unauthorized individual.

Application must provide certificates for authentication during the installation process and recognize digitally signed certificates.

Digital signatures use public-key signature algorithms where the transmitting party private key, used to generate the signature, is sent in an e-mail message. Upon receipt of the message, the recipient uses the distinct public key to validate the signature. Because only the signer&rsquo’s public key (received by the recipient in an earlier e-mail) can be used to validate the signature, the digital signature is proof that the message sender&rsquo’s identity is authentic.

Information for implementing digital signatures is available on the Active and Win32 SDKs.

Digital signatures improve security by reducing the threat of hostile code being inadvertently deployed over a intranet.

6.2 Support for the Microsoft Virtual Machine

Java applications must be tested and run as expected when executed using the Microsoft Virtual Machine (JVM).

Multiple virtual Java machines are now available. As such, it is important that Java applications be certified to run at least on the VM that comes with Windows 2000, Windows NT and Windows 9.x because it is the most widely distributed VM. Support for other VMs that support Java is at the option of the tool vendor

6.3 Diagnostic Logging

Administrators should be able to control the level of logging through a registry key set via policy or user interface. This includes configuration changes, and starting/stopping of services.

6.4 Support for UNICODE

The most popular character standard used by personal computers today is the American National Standards Institute's character set (hereafter simply "ANSI"). The ANSI format is adequate for Western languages but does not fully support European or Asian languages. ANSI's 8-bit coding scheme is capable of representing only 256 unique symbols; it cannot handle the 10,000 symbols that are common in languages such as Cyrillic, Chinese, Korean, and Japanese. Language isn't the only problem with ANSI. The publishing characters, mathematical and technical symbols, punctuation symbols, and fonts that are currently used in computer software have also outgrown the capabilities of 8-bit text.

To overcome these restrictions, several major computer companies formed Unicode Inc., a nonprofit consortium, to define a new standard for international character sets. At the same time, the International Standards Organization (ISO) began developing a standard. Eventually, these standards merged and became Unicode™.

Converting to Unicode will make your application more portable and enable it to run faster. Unicode will also make it easier for you to create and ship international versions of your application. You will no longer have to create a special version of your application to handle the double-byte character set (DBCS). Unicode is the native code set of Windows 2000, but the Win32 subsystem provides both ANSI and Unicode support. Character strings in the system, including object names, paths, and file and directory names, are represented with 16-bit Unicode characters. The Windows 2000 kernel converts any ANSI characters it receives to Unicode strings before manipulating them. The kernel then converts the strings back to ANSI if necessary (that is, if your application is running under an ANSI operating system such as Win32s®) upon exiting the system. If you convert your application to Unicode, the system will not have to perform this conversion, and you will see a performance increase.

With the new header functions, Unicode strings always consist of arrays of 16-bit quantities. Except under very rare circumstances (for example, reading mixed binary/text data into buffers), the compiler's type checking will ensure that Unicode is passed only to functions that expect Unicode. Type checking is one of the biggest advantages of Unicode over DBCS.

Many Microsoft products now support UNICODE, including the next release of SQL Server 7.0.

6.5 Support for Microsoft Windows Foundation Classes

Microsoft created the Windows Foundation Classes (WFC) to lower the bar of entry for developers into the Java environment. WFC is an object-oriented framework that encapsulates, simplifies, and unifies the Win32 and Dynamic HTML programming models. WFC is specifically aimed at developers that want to take full advantage of the spectrum of features essential to capitalize on both Windows and the Internet and therefore create winning solutions while cutting development time.

· Applications that adhere to industry and worldwide standards for networking, data sharing, user interface that allow their software to interact with software from all around the world from any vendor.

· Web server applications that response to HTTP URL requests that in turn do database connectivity. These applications return HTML visible by standards based, broad reaching Web Browsers onto platforms ranging from Windows CE handheld devices to WebTV to the Macintosh to legacy Windows 16bit.

· Specialized business components that transact a specific line of business on high volume servers.

· Client front-ends that take full advantage of the richness of the latest DHTML features that may include rich encapsulations of the most commonly used controls today (trees, calendars, grids, etc).

· Applications that are triggered from server events that create and maintain static Web sites.

· Secure, robust applications that are easy and low cost to create, deploy and administer.

· Highly powered, high performance, complex, feature rich client front-ends that remote DCOM invocation over high-bandwidth protocols to remote specialized objects.

· Applications that have clients that behave just as well when connected as when offline -- reconciling changes made to data upon reconnection.

· Applications that bind to heterogeneous data formats that are found locally and remote.
You get these classes as part of Visual J++ 6.0 or they can be downloaded from http://www.microsoft.com/products.

6.6 Java Applications Use ADSI

A version of ADSI is also available for Java. Java applications can take advantage of ADSI and Directory Services using ADSI.

Support for Scripting

As a software developer, you may want to license Microsoft® JScript™ or Microsoft® Visual Basic® Scripting Edition from Microsoft to use as the scripting language in your own applications. JScript & VBScript are available from Microsoft in two forms: as a ready-to-run (compiled) binary for several platforms, or as source code. Which one should you license? The choice depends on what you intend to do.

Scripting Binaries

VBScript is an upwardly compatible subset of the popular Microsoft® Visual Basic® programming system. The VBScript binary is the right choice for you if you simply want to add a widely known scripting language to your application. JScript & VBScript can be integrated into your application using the Microsoft® ActiveX® Scripting standard. Using the JScript or VBScript binary (rather than source code) gives you several compelling advantages:

· If your application is distributed over the Internet, you don't have to maintain your own copies of JScript or VBScript. Your users can download the JScript & VBScript binaries from the Microsoft Web site (www.microsoft.com).

· The users of your application can download the latest version of JScript & VBScript from the Microsoft Web site at any time, giving them the newest features, improvements in performance, and latest bug fixes, all without any effort on your part.

· You can add your own objects and run-time functions to JScript & VBScript, without having to modify these scripting languages. This allows you to treat JScript & VBScript as "black boxes" of functionality that you don't have to spend time learning or debugging.

· Applications using the JScript & VBScript binaries all share a single copy of the DLL in memory. This means that the working set of your application is smaller since it is sharing JScript & VBScript with other applications, such as Microsoft® Internet Explorer 3.0.

· You can integrate the JScript & VBScript binary into your application using ActiveX Scripting, an open standard that can be used by any scripting language. By doing the work to integrate the JScript & VBScript binary, you're doing the work to integrate any language for which an ActiveX Scripting engine is available. The result is that you're not tied to a particular scripting language, and your users can choose which scripting language to use.

· Licensing the JScript & VBScript binary for use in your application is very easy — simply acknowledge Microsoft in the About box of your application. There is no charge for this license.

All these benefits make using the JScript & VBScript binaries the easiest and most economical way to add a scripting language to your application.

The JScript or Visual Basic Scripting Edition source code is the right choice for you if you want to port JScript or VBScript to a platform that is not yet supported by these scripting languages. You should only consider licensing the JScript or VBScript source code if you want to run your application on a platform that is not already supported by these languages. JScript and VBScript are currently available or under development for these platforms:

· Microsoft® Windows 95/98

· Microsoft® Windows 3.1

· Microsoft® Windows NT for Intel-based computers

· Microsoft® Windows NT for DEC Alpha-based computers

· Macintosh

If you would like to port JScript or VBScript to another platform, you can license the source code from Microsoft. The licensing requirements are more involved than those for the JScript or VBScript binaries, and require you to sign an agreement with Microsoft.

6.7 Year 2000 Guidelines

A Year 2000 Compliant product from Microsoft will not produce errors processing date data in connection with the year change from December 31, 1999 to January 1, 2000 when used with accurate date data in accordance with its documentation and the recommendations and exceptions set forth in the Microsoft Year 2000 Product Guide, provided all other products (e.g., other software, firmware and hardware) used with it properly exchange date data with the Microsoft product. A Year 2000 Compliant product from Microsoft will recognize the Year 2000 as a leap year.
To evaluate software for Year 2000 issues, the following test criteria will be used to validate the date handling capabilities of the product. The results of the testing process must be submitted to Microsoft as part of the BackOffice Logo Program and may (*?*) be posted to Microsoft’s Year 2000 Product Guide.

· The product stores and calculates dates consistent with a 4-digit format throughout its operational range.

· If the product allows the user to enter a 2-digit short cut for the year, the product recognizes the year consistent with a 4-digit format.

· The product will correctly execute leap year calculations.

· The product does not use special values for dates within its operational range for data.
· The product will function into the 21st century, through the end of year 2035.
Note: all references to "dates" refer to using either 4 digits or 2 digits for the YEAR portion of the date.

This testing criteria does not constitute a warranty or certification expressed or implied, of any kind.

6.8 Symbol Files

Symbol files will help to debug any problems that your application might cause at a client’s site.

6.9 Applications should be recoverable

Server applications must be written so they can be backed up and recovered. This recommendation is intended to ensure that the application data can be backed up while the application is running. This allows administrators to perform daily backup operations while the service is active without effecting the users of that service.

To comply with this recommendation, ensure that your application does not continually lock its data files and that external applications can read the data files. Data files that are critical for the service should be outlined in the user documentation.

6.10 Test An Application Using Pool Tagging

Pool tagging helps to track down and eliminate pool corruption problems. Pool tagging will increase the quality of your application code and help to decrease the possibility that your application will crash the client’s operating system. The benefit to the customer is an application that is more stable

By using pool tagging, the allocation of certain kernel pool blocks will be placed in a special pool. Essentially, a non-accessible page mapping follows the virtual address given to every block allocated in this pool. This means that any read or write past the end of the requested pool allocation will be caught instantly. Additionally, when the pool block is freed, the virtual address will be made invalid and reused in an LRU fashion in order to catch corrupters that modify their pool blocks AFTER they free them. In both cases, the typical failure will be bugcheck 0x50 (PAGE_FAULT_IN_NONPAGED_AREA) or bugcheck 0xA (IRQL_NOT_LESS_OR_EQUAL).

Enabling the pool tracking code for a specific size range

There is a special key in registry that controls the pool tracking code. If it is not defined (normal case) the pool tracking code will automatically pick sizes for you, rotating through them as the system runs in order to randomly catch various pool corruptors.

If you want to track a specific block size range you have to follow the steps below:

· Define value PoolTag with type REG_DWORD for the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\MemoryManagement

The decimal value used should be one of the following:

40
for pool blocks in range (0..32] bytes

72
for pool blocks in range (32..64] bytes

104
for pool blocks in range (64..96] bytes

for pool blocks in range (96..128] bytes

…

· Reboot

· Launch stress or any other stress suite which is part of your application testing.

Enabling the pool tracking code for specific tags

If you want to track a specific component, then do the following:

· Define value PoolTag with type REG_DWORD for the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\MemoryManagement

The decimal value used should be the one representing the tag used by the component for allocation (e.g. ‘VadS’, ‘Mm’). You can use also a regular expression –like tag. For instance to track all tags that start with ‘G’ you can use ‘G*’. If you use just ‘*’ this will track ALL tags. It is not advisable to do this since the pool tracking code uses a lot of pages

· Reboot

· Launch stress or any other stress suite

You can generally set the PoolTag flag in the registry to the size of the tag string of the allocation you think is the corruptor. This will cause memory management to allocate these blocks in the special pool. So take a look at the header prior to the one you think is corrupted and that might be the one that’s overwriting past the end of their allocation and corrupting yours. Then set the PoolTag registry flag on it and rerun your tests.

Enabling the pool tracking code for a specific component

This section explains how you can verify that the component that you are testing does not have overflow problems. This will catch the situation in which your component is the causing the corruption. It will also work when your component is the victim of someone else’s corruption.

The pool tracker can track allocations either by size or by tag string. Enabling the tracker to use block sizes instead of block tags is the method to use when you do not know which component contains the corruptor. If you know the tag you suspect of corruption (or are attempting to validate that it has no corruption), then you would specify the tag string instead of the size to the tracker.

Pool tracking behavior is controlled by the value of two system variables: MmSpecialPoolTag and MmSpecialPoolTagRotate. If MmSpecialPoolTag is zero, then pool tracking is completely disabled.

Microsoft developed pool tracking as part of our Windows NT Server development, so let’s consider an example based on this. We want to test a component called Xx for pool corruption problems. By inspecting the code or talking with the developers we find out that all pool allocations done by this component have a tag starting with Xx. This is a golden rule obeyed by all Microsoft Windows developers. The prefix might have one, two or three letters but there is always one (e.g. ‘G’ – GDI, ‘Fat’ – Fat, ‘Cd’ – Cdfs, etc.). To make all that allocations go into the special pool we have to perform the following steps:

1. Install a Windows Server build to test

2. Attach a kernel debugger

3. Break into debugger and make sure you have the right symbols Issue Kd command: dd MmSpecialPoolTag L1

4. Modify the value of the variable to ‘Xx*’ with:

· eb MmSpecialPoolTag

· ‘X’ <CR>

· ‘x’ <CR>

· ‘*’ <CR>

· <CR>
The sequence above will change the first three bytes of the variable to ‘Xx*’.

Modify the value of the variable MmSpecialPoolTagRotate to be zero -- MmSpecialPoolTagRotate 0

You can hit ‘g’ now and all allocations with a tag starting with ‘Xx’ will go into the special pool. But remember this only affects allocations from this point onwards. Normally you would do this in the registry so you know that EVERY allocation will be made this way – because if you do this from the kernel debugger, then the allocations prior to you changing the value have not been put in special pool and they may be the allocations that cause the corruption you are looking for. Doing this via the registry ensures that EVERY allocation of the specified type will come from the special pool and be track (provided there is enough memory and virtual address space to hold them all – if there is not enough of both of these at the time of a pool allocation, then the pool allocation will come from normal pool).

If you want to make sure that special pool allocations really happen you can set a breakpoint on MmAllocateSpecialPool. This function will be hit if and only if the current allocation goes into the special pool. Note. If you really want to be thorough, you can set the tag to ‘*’. This will perform all allocations in the special pool. However it eats up a lot of memory and virtual address space.

Typical failures

If some kernel component writes beyond the limit of the block allocated, a memory fault will occur. The typical bugcheck is 0x50 (PAGE_FAULT_IN_NONPAGED_AREA) or 0xA (IRQL_NOT_LESS_OR_EQUAL) and the top of the stack will look like below.

ntkrnlmp!RtlpBreakWithStatusInstruction

ntkrnlmp!KeBugCheckEx+0x1f6

ntkrnlmp!MmAccessFault+0x328

ntkrnlmp!KiTrap0E+0xba

Module!Function

The person that owns “Module” should be contacted because there is a high probability he/she went beyond the block limit.
6.11 Supply baseline data for configuration management
In order to monitor services for configuration changes an administrator requires a baseline set of data for comparison. The user documentation supplied with your application should include a complete list of all the files that the service installs and creates, plus a list of all the registry keys created by its installation and those keys it creates while running. Using the information that is documented and any command line tools provided, an administrator should be able to simulate the setup program using a batch file. This method, of course, should not be supported but enough information should be provided so that the administrator can perform this. This is needed in many cases for automated roll outs of the application and it is used by monitoring tools that watch for illegal changes in the service configuration.

6.12 Operates in a stressed Server environment as a high performance application

All applications must be comply with this requirement except as noted below:

· If you have your own stressing testing critera, you can submit how you tested. If this is a custom built package that you think might be useful to other ISVs, please forward a description to D4BOinfo@Microsoft.com.

· Web applications which do most (75% or more) of their processing on the client rather than the server.

Required

Your application must be stress tested using THREE or more of the following tools. You must submit the stress numbers/report with your application for certification to your Authorized BackOffice Testing Center.

Compliance

Tools used for stress testing application is determined by the Designed for BackOffice logo team and subject to change based on customer experience and feedback. Stress tests will encompass environments where disk, I/O, network, memory, etc each are maximized. Select three or more of the following tools and submit the output from your application as proof that you have run them. Other stress tools that you find useful should be submitted to D4B4Info@microsoft.com with the subject line “Stress testing tool.”

When testing your application, you should use a typical application configuration that would be found at a client’s site. You should also make sure that your application components will not conflict with common system products, which are often are the cause of low level instability of BackOffice-based systems. These categories include the following:

· Backup – Command Driven, schedule driven, or file system driven

· Hierarchical Storage – NTS standard or add-on

· Anti-Virus – command driven, scheduled driven, or active monitoring

· Remote Control – ‘in the box’ and 3rd party

· Remote Monitoring - SNMP, proprietary, etc

· Systems Management Tools – System Manager, Insight Manager, etc

· Disk Defrag – quota or other disk level utilities

· Eventing – alert and other notification utilities

· Performance Monitoring Tools – Diskperf and/or Pstat

· File System Drivers and filters

Specific 3rd party products used to test this configuration in these categories will be determined by the Designed for BackOffice logo team and subject to change based on customer experience and feedback. Any failures in a submitted product that are either designed into the product or are determined to be acceptable must be documented in the product’s readme file or other customer accessible location.

Application Stress Testing Programs

NetBench is a free, portable benchmark program that measures how well a file server handles file I/O requests from as many as four different client types: DOS, 32-bit Windows, 16-bit Windows, and/or Mac® OS systems. It is available from Ziff-Davis at http://www.zdnet.com/zdbop/netbench/netbench.html. According to ZDNet, “The clients pelt the server with requests for network file operations. Each client tallies how many bytes of data it moves to and from the server and how long the process takes. The client uses this information to calculate its throughput for that test mix. NetBench adds all the client throughputs together to produce the overall throughput for a server.”

ServerBench is a free tool to measure the performance of application servers in a client/server environment. The ServerBench test environment includes the server you're testing, its PC clients, and a PC designated as the controller (you execute and monitor test suites from the controller). The clients and the controller must run either Windows 95 or Windows 2000. . It is available from Ziff-Davis at http://www.zdnet.com/zdbop/svrbench/svrbench.html.

Application Performance Programs

Call Attributed Profiler (CAP) is provided free as part of the Win32 SDK. CAP allows you to profile function calls within an application. You use it to see how much time is spent in each function and in the functions called by that function. You can also use it to see how much time is spent in the function itself, ignoring the functions that it calls. This gives a complete picture of how time is spent when the application is running. CAP uses an elapsed time clock to measure time in functions. This has both benefits and liabilities. The benefit is that you see where time is spent during disk or LAN activity. The disadvantage is that if your thread is preempted and a computation-intensive thread is run, it will appear as though the preempted function used the whole amount of time. Therefore, it is important to control the environment when using CAP.

CAP supports the following measurement methods:

· Measuring calls from within an .EXE

· Measuring calls from within a .DLL

· Measuring calls from an .EXE to all of its DLLs

· Measuring calls from a .DLL to all of its DLLs

· Measuring all calls to a specified DLL

· Any combination of the preceding measurement methods

CAP creates a call tree of all the functions called in the module being profiled. By default, CAP collects data only on functions compiled with a Microsoft C/C++ compiler or a compatible product from another vendor. You compile the source module with the -Gh compiler option, and a special call is inserted by the compiler at the start of every function. This invokes a measurement module called CAP.DLL.

Working Set Tuner (WST) is provided free as part of the Win32 SDK. The working set of a program is a collection of those pages in its virtual address space that have been recently referenced. It includes both shared and private data. The shared data includes pages that contain all instructions your application executes, including those in your DLLs and the system DLLs. As the working set size increases, memory demand increases.

WST can help you reduce the amount of space your program takes in RAM. You should tune your application's working set even if you are satisfied with its performance. Your program will coexist with other running applications, so it's a good idea to save space. The Windows 2000 code itself has been tuned with WST. Even if you are not concerned about the RAM your applications takes away from other applications, you probably care about the time it takes to load your own program into RAM from disk. WST can help with that too.

WST can improve the speed of your program in another way. It can reduce the space your application requires in the processor cache and the translation buffer (another processor cache used for page translation). Not only will your application code execute faster but it will interfere less with the code in Windows 2000.

Since WST decreases the working set size, it decreases memory demand. You can choose to set the process working set minimum and maximum using SetProcessWorkingSetSize() and/or lock pages into memory with VirtualLock(). These APIs should be used with care. Suppose you have a 16-megabyte system and you set your minimum to four megabytes. In effect, this takes away four megabytes from the system. Other applications may be unable to get their minimum working set. You or other applications may be unable to create processes or threads or perform other operations that require non-paged pool. This can have an extremely negative impact on the overall system. Reducing memory consumption is always a beneficial goal. If you call SetProcessWorkingSetSize(0xffffffff, 0xffffffff), this tells the system that your working set can be released. This does not change the current sizing of the working set, it just allows the memory to be used by other applications. It is a good idea to do this when your application goes into a wait state. When you call SetProcessWorkingSet(0, 0), your working set is reset to the default values. In addition, if you call VirtualUnlock() on a range that was not locked, it is used as a hint that those pages can be removed from the working set.

You can also use Virtual Address Dump (VADUMP) in conjunction with WST. VADUMP creates a listing that contains information about the memory usage of a specified process. The following is the command-line syntax for VADUMP: vadump -p pid, where -p pid is the process identifier of the process whose address space is to be listed, in decimal.

The listed produced by VADUMP includes the following:

· Each address, along with its size, state, protection, and type.

· Total committed memory for the image.

· Total committed memory for the .EXE file.

· Total committed memory for each .DLL file, including system .DLL files.

· Total mapped committed memory.

· Total private committed memory.

· Total reserved memory.

· Information about the working set.

· Information about paged and nonpaged pool usage.

The Microsoft 32-Bit Source Profiler is a powerful analysis tool for examining the run-time behavior of your programs. It is included as part of Microsoft Visual C++ and Microsoft Visual Studio. You can use information generated by the profiler to identify which sections of code work efficiently and which need to be examined more carefully. Detailed information to use the Profiler is provided from Microsoft.

VTune is available from Intel (http://developer.intel.com/design/perftool/VTUNE). Designed to tune your applications that run on Intel platforms, VTune also supports Java application tuning as well.

Oink was developed by Microsoft for its own product development and is now available free of charge on the Win32 SDK. It Scans Win16 Win32 and VxD files for suspicious problems. The utility scans for hundreds of known problems generated by bugs in compilers linkers etc., including problems with debug information, bound checking and workset problems.

Customer Benefit

By following the guidelines outlined here, you will provide your clients with improved performance and better application stability.

Implementation Information

· Call Attributed Profiler

· Using CAP

· Collecting CAP Data

· CapView: A Visual Form of CAP

· Using the Working Set Tuner

· Preparing your Application describes the prep steps necessary to use WST
· How the Working Set Tuner Works

· Collecting WST Data

· Tuning the Working Set of your Application

· Analyzing WST Data explains how to use WSTUNE to analyze an applications code pages

6.13 Expose a Scripting Model

Required

All applications should provide a COM-based scripting model, which will allow system administrators and integrators to access the functionality of the application or its configuration information programmatically. The scripting model must be accessible from the Windows Scripting Host and Active Server Pages.

Compliance

· Applications must provide one or more COM components that expose the functionality of the application or its configuration information.

· Components must expose Automation (i.e. IDispatch-based) interfaces or dual interfaces.

· Applications must provide programmer’s documentation describing how to use the scripting model.

Customer Benefits

By providing a scripting model, you enable your customers to:

· Automate routine configuration and administration tasks

· Develop customized user interfaces

Implementation Information

· Platform SDK, COM and ActiveX Object Services, Automation describes Automation and how to implement COM components that expose Automation interfaces in C or C++.

· “The Basics of Programming Model Design”, Dave Stearns, MSDN Library describes how to define the scripting model.

· “Building COM Components That Take Full Advantage of Visual Basic and Scripting”, Ivo Salmre, MSDN Library describes how to define scripting models, with special emphasis on access from Visual Basic and scripting languages.

· Visual Basic Component Tools Guide, Creating ActiveX Components describes how to implement COM components that expose Automation interfaces using Visual Basic.

6.14 Office 2000 Specific Recommendations

These functions are not required but are strongly recommended. These will most likely become requirements in future revisions of this program.

6.14.1 Worldwide Features

Required

Standalone client applications should support new worldwide EXE and global interface architecture introduced by Microsoft Office 2000.

Compliance

· Extend Office 9 worldwide support features: worldwide code through COM add-in, Unicode, global UI, global Help topic

· Worldwide code. Add-in should run in Office9 via COM interface, and function unchanged on at least one OS from the "Western European", "Other European", Asian", and "BiDi" categories. For example, the add-in should work on US, German (WE), Greek (Other Euro), Japanese (FE), and Arabic (BiDi) OSes, with Office configured to run on those OSs.

· COM Add-in should accept user data in Unicode if applicable, but at minimum the add-in should support input, display, and handling of the language of the system it is running on and English, without requiring any code change.

· Global UI. Use the Multilanguage support built into the COM interface to supply UI in the language of Office UI.

· Global Help. Add-in should display its help in the Help language specified by Office.

Customer Benefits

· Applications are consistent across different languages

6.14.2 Document Publishing, Annotation, and Subscription

Required

Standalone client applications should support publishing documents or HTML to a FrontPage or WebDAV server; enable navigation and viewing of documents through Windows Name Space Extension (NSE).

Compliance

· Extend Office Server Extension (OSE) object model through COM add-ins.

· File write and caching should comply with WinInet for file integrity; pplications or proxies which do any caching of their own should not supersede WinInet.

· All write requests need to pass to the server, and need to be guaranteed to be veridical to the server (so any files served from the cache are guaranteed to be identical to the source file on the server).

· Export ODMA provider and DAV support through COM add-ins; passed URLs must be supported by file system support.

· APP must recognize and be able to process URL's as a valid file location (can't assume that file dialogs or pickers will return UNC paths).

Customer Benefits

· Any custom file-management dialogs need to be moniker-savvy.

· Allows for offline replication of data to support mobile users.

· Allows for embedding of links to web information for easy navigation.

6.14.3 Web Management

Required

Standalone client applications should support using Microsoft FrontPage as their main Intranet web management tool for link fixing, reporting, and document object model (DOM) integration with Office 2000 publishing.

Compliance

Extend management activities through FrontPage web object model or IE document object model (DOM); automate web report output to email, .doc, or VBA-enabled app; web publishing via VBA; automate page creation, page assignment and permissions from MDB database format.

6.14.3.1 Implement activities using at least one of

· Web object model

· Document Object model

6.14.3.2 Automate from FrontPage

· Reporting (via mail, generation of web pages, Word documents or other VBA enabled application)

· Web publishing process

6.14.3.3 Automate to FrontPage

· Web site and page generation from other applications

· other examples : Web management from data stored in Access (page assignments, permissions)

Customer Benefits

· Streamlines the maintenance of web pages to ensure accuracy of information over the web or Intranet.

Standard Region

Formatting Region

Comply with Core + Two Special Interest Groups

Dropdown Application Region

1
Designed for Microsoft BackOffice_

