

Protecting your software and
business revenue is simply a matter
of choosing the right solution.
HASP4® gives you tougher, more reliable
software protection than any hardware
key on the market. With HASP4, you get:

■ Hardware-based string encryption—
the strongest way to secure your software.

■ A true cross-platform solution:
1 key for 1 source code for Windows®,
Mac OS®and Linux®.

■ 99.97% hardware success**in the field,
backed by ISO 9001:2000 certification.

■ A time-based licensing solution with
a real-time internal clock—ideal for
controlled beta testing, subscription,
rental, pay-per-use or any time-based
need.

■ The widest range of licensing, module
and networking models available.

■ 24/7 hassle-free remote license upgrades
and advanced HASP reporting tools.

Plus, HASP4 is so easy to use, you’ll
wonder why you didn’t choose it before.

Open your eyes to real anti-piracy
protection. Call 1-800-562-2543 or visit
HASP.com to request your FREE personal

HASP4 Developer’s Kit today.

PROFESSIONAL SOFTWARE PROTECTION

*

* Business Software Alliance Global Software Piracy Study, June 2003. ** Aladdin Knowledge Systems actual hardware key statistics: 1985-2002

©
2003 A

laddin Know
ledge System

s, Ltd. H
A

SP is a tradem
ark of A

laddin Know
ledge System

s,Ltd.

North America: 1-800-562-2543, 847-818-3800 or HASP.us@eAladdin.com International: +972-3-636-2222 or HASP.il@eAladdin.com
Germany: HASP.de@eAladdin.com UK: HASP.uk@eAladdin.com France: HASP.fr@eAladdin.com Benelux: HASP.nl@eAladdin.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.ealaddin.com/

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 1

3 Testing for Software Security
HERBERT H. THOMPSON AND JAMES A. WHITTAKER

8 Defend Your Code with Top Ten Security Tips Every Developer
Must Know
MICHAEL HOWARD AND KEITH BROWN

13 Implementing an SSL/TLS-Enabled
Client/Server on Windows Using
GSS API
ALEN TALIBOV

19 Win32 Security in Managed C++
MATTHEW WILSON

26 Analyzing the Mescaline
Worm
JASON COOMBS

27 Backdoors Can Damage Trust
JASON COOMBS

FEATURES

PUBLISHER EDITOR IN CHIEF
Kerry Gates John Dorsey

E D I TO R I A L
MANAGING EDITOR Amy Stephens
CONTRIBUTING EDITORS Dino Esposito, George Frazier,
Richard Grimes, Petter Hesselberg, Paula Tomlinson,
Victor R. Volkman
EDITORIAL ADVISORY BOARD Mark Baker, Dino Esposito,
George Frazier, Richard Grimes, Petter Hesselberg,
Mark Nelson, Mark Russinovich, Paula Tomlinson,
Victor R. Volkman
ASSOCIATE EDITOR Della Song
ART DIRECTOR Beatriz Américo
WEBMASTER Joe Lucca
SEND READER MAIL TO: wdletter@cmp.com
SUBSCRIPTION INQUIRIES: wdnetwork@halldata.com

A D V E RT I S I N G A N D M A R K E T I N G
DIRECTOR OF SALES David Timmons
REGIONAL MANAGER, EAST
Jon Hampson 603-924-8500 jhampson@cmp.com

REGIONAL MANAGER, CENTRAL/SOUTHEAST
Ed Day 785-838-7547 eday@cmp.com

REGIONAL MANAGER, WEST
Michele Hurabiell 415-947-6199 mhurabiell@cmp.com

ACCOUNT MANAGER, ALL REGIONS
Julie Thibault 603-924-8400 jthibault@cmp.com

PRODUCTION COORDINATOR
Michael Penne mpenne@cmp.com

DIRECTOR OF MARKETING Karen Tom

C I RC U L AT I O N
SENIOR CIRCULATION MANAGER Cherilyn Olmsted
ASSISTANT CIRCULATION MANAGER Gwen Olson
SUBSCRIPTIONS: Annual renewable print subscriptions to Windows Developer
Network are $34.99 U.S., $45 Canada and Mexico, $64 elsewhere. Payments
must be made in U.S. dollars. Make checks payable to Windows Developer
Network.
CUSTOMER SERVICE: For subscription orders and address changes, contact
Windows Developer Network, P.O. Box 2092, Skokie, IL 60076 USA. Telephone
800-365-1425 or 847-763-9640; fax 847-763-9606; e-mail
wdnetwork@halldata.com. For information on reprints and permissions contact
Karen Jacobs at 800-682-4972 ext. 7030.
ADVERTISING: For rate cards or other information on placing advertising in
Windows Developer Network, contact the advertising department at
785-838-7500, or write Windows Developer Network, 4601 West 6th Street,
Suite B, Lawrence, KS 66049 USA.
Entire contents Copyright © 2003 CMP Media LLC, except where otherwise
noted. No portion of this publication june be reproduced, stored, or transmitted
in any form, including computer retrieval, without written permission from the
publisher. All Rights Reserved. Quantity reprints of selected articles june be
ordered. By-lined articles express the opinion of the author and are not necessar-
ily the opinion of the publisher. Printed in the United States of America.
NOTE: Windows is a registered trademark of Microsoft Corporation and is used
in the title of Windows Developer Network by CMP Media LLC under license
from owner. Windows Developer Network is an independent publication not affili-
ated with Microsoft Corporation. Microsoft Corporation is not responsible in any
way for the editorial policy or other contents of the publication.
Windows Developer Network (ISSN 1543-6454) is published monthly by
CMP Media LLC, 600 Harrison St., San Francisco, CA 94107 USA, 415-947-
6000. Canadian publication registered for GST as CMP Media LLC, GST No.
R13288078, Customer No. 2116057, Agreement No. 40011901.

C M P M E D I A L L C
CORPORATE
PRESIDENT AND CEO Gary Marshall
EXECUTIVE VICE PRESIDENT AND CFO John Day
EXECUTIVE VICE PRESIDENT AND COO Steve Weitzner
EXECUTIVE V.P., CORPORATE SALES AND MARKETING Jeff Patterson
CHIEF INFORMATION OFFICER Mike Mikos
SENIOR V.P., OPERATIONS Bill Amstutz
SENIOR V.P., HUMAN RESOURCES Leah Landro
VICE PRESIDENT AND GENERAL COUNSEL Sandra Grayson
MARKET GROUPS
PRESIDENT, TECHNOLOGY SOLUTIONS Robert Faletra
PRESIDENT, HEALTHCARE MEDIA Vicki Masseria
V.P., GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
V.P., GROUP PUBLISHER INFORMATIONWEEK MEDIA NETWORK Michael Friedenberg
V.P., GROUP PUBLISHER ELECTRONICS Paul Miller
V.P., GROUP PUBLISHER NETWORK COMPUTING MEDIA NETWORK Fritz Nelson
V.P., GROUP PUBLISHER SOFTWARE DEVELOPMENT MEDIA Peter Westerman
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Shannon Aronson
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Michael Zane
CORPORATE DIRECTOR, PUBLISHING SERVICES Marie Myers

| Download code > windevnet.com/wdn/code/ |

ONL INE EXTRAS
Download these sample chapters from Wiley
Publishing Inc.:

• Practical Cryptography, by Niels Ferguson and
Bruce Schneier, Wiley Publishing Inc., 2003
Chapter 11 "Primes" and Chapter 12 "Diffie-
Hellman"

• Hiding in Plain Site, by Eric Cole, Wiley
Publishing Inc., 2003
Chapter 6 "Nuts and Bolts of Steganography"

windows::developer NETWORK WINDOWS SECURITYwindows::developer NETWORK WINDOWS SECURITY

C O N T E N T S

: :E D I T O RF R O M T H E

SECURITY BREACHES IN WINDOWS have made major headlines in the past few
months. While the recent strains of the Blaster and soBig e-mail worms may have been
new, the message for sys admins and developers is an old one: Any networked system
has the potential for being compromised. To help you stay on top of the state of
security in Windows development, we’ve collected articles from some of CMP Media’s
top technology publications:

“Testing for Software Security,” from Dr. Dobb’s Journal, describes several test-case
attacks you can use to uncover unexpected vulnerabiliaties. It also presents a runtime
fault-injection DLL that you can use to monitor calls to files, memory, or the registry.

From MSDN Magazine, “Defend Your Code with Top Ten Security Tips Every
Developer Must Know” gives you the short list of pitfalls for C++, ASP.NET, IIS, SQL
Server, and more.

“Implementing an SSL/TLS-Enabled Client/Server on Windows Using GSS API,”
from C/C++ User’s Journal uses Microsoft’s Security Support Provider Interface API to
build an HTTP server with SSL/TLS capabilities.

From Windows Developer Network, “Win32 Security in Managed C++,” provides
techniques for simplifying coding with the Win32 security APIs. It also presents an
AccessToken class in Managed C++ and a Security Explorer app for monitoring privileges.

We’re also providing two samples of the Windevnet Security Newsletter, “Analyzing
the Mescaline Worm” and “Backdoors Can Damage Trust.” To stay up to date on
Windows security, subscribe to the Windevnet Security Newsletter at
http://windevnet.com/newsletters/

John Dorsey
Editor in Chief
wdeditor@cmp.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/books/samples/

http://redirect.wdj.com/scripts/redirect.pl?http://www.wiley.com/

SECURITY BUGS ARE DIFFERENT from other
types of faults in software. Traditional nonse-
curity bugs are usually specification violations;
the software was supposed to do something
that it didn’t do. Security bugs, however, typ-
ically manifest themselves as additional be-
havior—something extra the software does
that was not originally intended. This can make
security-related vulnerabilities particularly hard
to find because they are often masked by soft-
ware doing what it was supposed to.

Traditional testing techniques, therefore, are
not well equipped to find these kinds of bugs.
Why? For one thing, testers are trained to look
for missing or incorrect output; they see only the
correct behavior and neglect to look for other
side-effect behaviors that may not be desirable.

For instance, the circle on the left in Figure
1 represents the specification—what the soft-
ware is supposed to do. The circle on the right
represents the true functionality of the appli-
cation—what the software actually does. De-
velopers and testers are painfully aware that
these circles never completely overlap. The
area on the left represents either incorrect be-

havior (the software was supposed to do A but
did B instead) or missing behavior (the soft-
ware was supposed to do A and B but did only
A). Traditional software testing is well equipped
to detect these types of bugs. Security bugs,
however, do not fit well into this model. They
tend to manifest as side effects; for instance,
the software was supposed to do A, and it did,
but in the course of doing A, it does B as well.
Imagine a media player that flawlessly plays any
form of digital audio or video, but manages to
do so by writing the files out to unencrypted
temporary storage. This is a side effect that soft-
ware pirates would be happy to exploit.

It is important that as you verify function-
ality, you also monitor for side effects and their
impact on the security of your application. The
problem is that these side effects can be sub-
tle and hidden from view. They could mani-
fest as file writes or registry entries, or even
more obscurely as a few extra network pack-
ets that contain unencrypted, supposedly se-
cure data.

Luckily, there are both commercially and
freely available tools—such as Mutek’s App-
Sight (http://www.identify.com/products/
appsightsuite.html) and Holodeck Lite (http://
se.fit.edu/holodeck/), respectively—that let
you monitor these hidden actions. Another
option is to write your own customized mon-
itoring solution such as injecting a custom DLL
into the running application’s process space.

Creating a Plan of Attack
Software takes input from many different
sources. Users, operating-system kernels, oth-

er applications, and filesystems all supply in-
put to applications. You have control over
these interfaces, and by carefully orchestrat-
ing attacks through them, you can uncover
many vulnerabilities in the software. Figure
2 is a simple model of software and its inter-
action with the environment. This model
gives you a way to conceptualize these inter-
actions. The four principal classes of input in
Figure 2 are:

• Human interface (UI). Implemented as a
set of APIs that get input from the key-
board, mouse, and other devices. Security
concerns from this interface include unau-
thorized access, privilege escalation, and
sabotage.

• Filesystem. Provides data stored in either
binary or text format. Often, the filesys-
tem is trusted to store information such as
passwords and sensitive data. You must be
able to test the way in which this data is
stored, retrieved, encrypted, and managed
for security.

• API. Operating systems, libraries, and
other applications supply inputs and data
in the return values of API calls. Most
applications rely heavily on other software
and operating-system resources to perform
their required functions. Thus, your appli-
cation is only as secure as the other soft-
ware it uses and how well equipped it is at
handling bad data through these inter-
faces.

• Operating-system kernel. Provides memo-
ry, file pointers, and services such as time

HERBERT THOMPSON is Director of Security
Technology for System Integrity LLC (http://
www.sisecure.com). JAMES WHITTAKER is a
professor of computer science at the Florida
Institute of Technology. Herbert and James are
coauthors of How to Break Software Security
(Addison-Wesley). They can be contacted at
hught@sisecure.com and jw@cs.fit.edu, respec-
tively. This article was first published in Dr.
Dobb’s Journal, November 2002.

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 3

H E R B E R T H . T H O M P S O N / J A M E S A . W H I T T A K E R

Testing for Software Security
Rethinking security bugs

and date functions. Any information that an application uses
must pass through memory at one time or another. Information
that passes through memory in an encrypted form is generally
safe, but if it is decrypted and stored even momentarily in mem-
ory, then it is at risk of being read by hackers. Encryption keys,
CD keys, passwords, and other sensitive information must even-
tually be used in an unencrypted form and its exposure in mem-
ory needs to be protected. Another concern with respect to the
operating system is stress testing for low memory and other faulty
operating conditions that may cause an application to crash. An
application’s tolerance to environmental stress can prevent
denial of service and also situations in which the application may
crash before it completes some important task (like encrypting
passwords). Once an application crashes, it can no longer be
responsible for the state of stored data. If that data is sensitive,
then security may be compromised.

At first glance, it seems as if you could organize a plan of attack by
looking at each method of input delivery individually, and then bom-
bard that interface with input. For security bugs, though, most re-
vealing attacks require you to apply inputs through multiple inter-
faces. With this in mind, we scoured bug databases, incident reports,
advisories, and the like, identifying two broad categories of attacks
that can be used to expose vulnerabilities—dependency attacks and
design-and-implementation attacks.

Attacking Dependencies
Applications rely heavily on their environment to work properly. They
depend on the OS to provide resources such as memory and disk space,
the filesystem to read and write data, the registry to store and retrieve
information, and on and on. These resources all provide input to the
software—not as overtly as human users do, but input nonetheless.

Like any input, if the software receives a value outside of its expect-
ed range, it can fail.

When failures in the environment occur, error-handling code in
the software (if it exists) gets called. Error handlers tend to be the
weak point of an application in terms of security. One reason for this
is that failures in the software’s environment that exercise these code
paths are difficult to produce in a test lab situation. Consequently,
tests that involve disk errors, memory failures, and network problems
are usually only superficially explored. It is during these periods that
the software is at its most vulnerable and where carefully conceived
security measures break down. If such situations are ignored and oth-
er tests pass, we are left with a dangerous illusion of security. Servers
do run out of disk space, network connectivity is sometimes inter-
mittent, and file permissions can be improperly set. Such conditions
cannot be ignored as part of an overall testing strategy. What’s need-
ed is a way to integrate these failures into your tests so that you can
evaluate their impact on the security of the product itself and its stored
data.

Creating environmental failure scenarios can be difficult, usually
requiring you to tamper with the application code to simulate specif-
ic failing responses from the operating system or some other resource.
This approach isn’t very feasible in the real world, however, because
of the amount of time, effort, and expertise it takes to simulate just
one failure in the environment. Even if you did decide to use this ap-
proach, the problem is determining where in the code the applica-
tion uses these resources and how to make the appropriate changes
to simulate a real failure in the environment.

One alternative approach is run-time fault injection: Simulating
errors to the application in a black-box fashion at run time. This ap-
proach is nonintrusive and lets you test production binaries, not just
contrived versions of your applications that have return values hard
coded. There are several ways to do this; in the example presented

4 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

T H O M P S O N / W H I T T A K E R

#include "stdafx.h"
#include <windows.h>
typedef HMODULE (WINAPI *loadlibrary_t) (LPCWSTR, HANDLE, DWORD);
loadlibrary_t real_LoadLibraryExW;
DWORD dwAddr;
/* Our imposter function for the real LoadLibraryExW. All it does is check
if the incoming filename is msrating.dll and either returns NULL and
sets an appropriate error, or lets the call go through to our saved header
instructions of the real function which then jump to the real function
in the appropriate location.
*/
HMODULE WINAPI imposter_LoadLibraryExW(LPCWSTR lpFileName,

HANDLE hFile, DWORD dwFlags)
{

if (!_wcsicmp(lpFileName, L"msrating.dll"))
{

SetLastError(ERROR_FILE_NOT_FOUND);
return NULL;

}
else
{

return real_LoadLibraryExW(lpFileName, hFile, dwFlags);
}

}
BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,

LPVOID lpReserved
)

{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:

// Allocate memory for copying the first few instructions of the target
// function. Since the granularity on VirtuallAlloc is a page, might as
// well allocate 4096 bytes
real_LoadLibraryExW = (loadlibrary_t) VirtualAlloc(NULL, 4096,

MEM_COMMIT,PAGE_EXECUTE_READWRITE);
// Copy first two instructions of LoadLibraryExW (which we know add up
// to 7 bytes - we need 5 for our jump).
memcpy((void *) real_LoadLibraryExW, (void *)LoadLibraryExW, 7);

// Writes a jump instruction out right after the copied instructions.
// The jump is a relative near jump to the 8th byte of LoadLibraryExW.

PBYTE pbCode = (PBYTE) real_LoadLibraryExW + 7;

// Write opcode for jump near and move (write) pointer forward
*(pbCode++) = 0xe9;

// Write out address of where to jump to using a double word pointer.
// That way, compiler takes care to put it in big endian convention.
PDWORD pvdwAddr = (PDWORD) pbCode;

// Write out address - the +3 = -4 +7 (for the offset into the function)
*pvdwAddr = (DWORD) LoadLibraryExW - (DWORD) pbCode + 3;

// Move (write) pointer forward the length of the address.
pbCode+=4;
DWORD dwOld, dwTemp;

// Set the page with LoadLibraryExW to writeable
VirtualProtect((LPVOID) LoadLibraryExW, 4096,

PAGE_EXECUTE_READWRITE, &dwOld);
// Write out the jump
pbCode = (PBYTE) LoadLibraryExW;

// Write opcode for jump near to the beginning to LoadLibraryExW
*((PBYTE) LoadLibraryExW) = 0xe9;

// Compiler gymnastics to move forward by *1* byte and not 4 to get
// the exact address where to write the target address for the jump to.
pvdwAddr = (PDWORD) (pbCode + 1);
dwAddr = (DWORD) pvdwAddr;

// Write the address
*pvdwAddr = (DWORD) imposter_LoadLibraryExW - (DWORD) LoadLibraryExW - 5;

// Set the old protection back. This is very important for some Win32
// functions. They refuse to work with writeable protection enabled.
VirtualProtect((LPVOID) LoadLibraryExW, 4096, dwOld, &dwTemp);

break;
}

return TRUE;
}

Listing 1

here, we overwrite the first few bytes of the ac-
tual function to be called in the process space
and insert a JMP statement to our fault injec-
tion code in its place. There are other meth-
ods that can be used as well, such as modify-
ing the import address tables; a technique for
which we have found Jeffrey Richter’s Pro-
gramming Applications for Microsoft Windows,
Fourth Edition (Microsoft Press, 1999) to be
an excellent reference.

Using these techniques, you can redirect a
particular system call to your own impostor func-
tion. One passive use for this is to simply log
events. This can be informative for the securi-
ty tester because it lets you watch the applica-
tion for file, memory, and registry activity.

At this point, you are in control of the ap-
plication and can either forward a system re-
quest to the actual OS function or deny the
request by returning any error message you
choose. This technique is illustrated in the first
attack.

Block access to libraries. Applications rely on
external software libraries to get work done.
Operating-system libraries and third-party DLLs

are critical for the application to function prop-
erly. As testers and developers, it is your re-
sponsibility to ensure that failures here do not
compromise the security of your application.
By denying a library to load, you have deprived
the application of some functionality it ex-
pected to use. If the application does not re-
act to this failure by displaying an error mes-
sage, this may be a sign that appropriate checks
are not in place and that the software may be
unaware that this code did not load. If the li-
brary in question provides security service, then
all bets are off.

You can deny a library to load in Windows
by intercepting the LoadLibraryExW function.
For instance, consider a publicized bug with
Internet Explorer’s Content Advisor feature
(see “Exposing Software Security Using Run-
time Fault Injection” in Proceedings of the
ICSE Workshop on Software Quality, 2002). If
you turn the feature on, all web sites that don’t
have a RASCi rating are blocked by default.
(The Recreational Software Advisory Coun-
cil, RASCi, rating is assigned to a web site
based on its content. This rating system was
replaced in 1999, however, with the Internet

Content Rating Association, ICRA, rating sys-
tem.) Listing 1 is the C++ source code of a
DLL you can inject into the application to
hook the function LoadLibraryExW for Win-
dows XP. Our DLL overwrites the first few bytes
of this function in the process space of the ap-
plication under test. These bytes are replaced
with a JMP statement to the memory address
of our imposter function, imposter_Load-
LibraryExW.

The problem with IE’s Content Advisor is
that if IE fails to load the library msrating.dll,
users can surf the Web unrestricted. Our im-
poster function checks to see whether the li-
brary that the application is attempting to load
is msrating.dll; if so, it blocks the library from
being loaded by returning NULL (indicating
failure) to the application.

You can uncover clues to library dependen-
cies such as this by changing the code in the
imposter function, either to alert you when a
specific call is made or log all such calls and
their parameters to a file. It then takes a little
detective work to determine which services
the library is providing to the application and
when they are used. With a few modifications
to the imposter function, you can then deter-
mine what would happen if that functionali-
ty were to be denied. Listing 2 is the source of
the executable used to inject our DLL into the
target application’s process space.

In addition to LoadLibraryExW, this code
can easily be modified to intercept other sys-
tem calls and monitor and/or selectively deny
them at run time. We have developed a free-
ware tool called “Holodeck Lite” (available
electronically at http://se.fit.edu/holodeck/.),
using techniques similar to those in Listing
One, to help you easily monitor and obstruct
common system calls.
Manipulate registry values (Windows spe-
cific). The problem with the registry is trust.
When developers read information from the

T H O M P S O N / W H I T T A K E R

#include "stdafx.h"
#include <windows.h>

/* This program uses one of the simplest injection techniques out there. It
utilizes the fact that parameters and calling convention for LoadLibrary are
the same as the thread function that is suplied to CreateThread/
CreateRemoteThread. It uses that API to call LoadLibrary in the target
process and load the desired DLL.
*/
int main(int argc, char* argv[])
{

DWORD dwTemp;
LPVOID pvDllName;

if (argc < 3)
{

printf("Usage: inject commandline dllname.dll\n");
return 0;

}

// Setup the required structures and start the process
PROCESS_INFORMATION pi = {0};
STARTUPINFO si = {0}; si.cb = sizeof(si);
if (!CreateProcess(NULL, argv[1], NULL, NULL, false, NULL,

NULL, NULL, &si, &pi))
goto error;

// Allocate memory for the name of the DLL to be loaded
if (!(pvDllName = VirtualAllocEx(pi.hProcess, NULL, strlen(argv[2]),

MEM_COMMIT, PAGE_EXECUTE_READWRITE)))
goto error;

// Write out the name of the target DLL
if (!WriteProcessMemory(pi.hProcess, pvDllName, argv[2],

strlen(argv[2]), &dwTemp))
goto error;

// Technically this will execute LoadLibrary in the target process with
// name of the DLL as the first parameter. This relies on the fact that
// that kernel32.dll will NOT be relocated. Assuming that it won't be, then
// then address of LoadLibraryA in the target process is the same as ours
if (!CreateRemoteThread(pi.hProcess, NULL, NULL, (LPTHREAD_START_ROUTINE)
LoadLibraryA, pvDllName, NULL, &dwTemp))

goto error;
return 0;

error:
if (pi.hProcess)

TerminateProcess(pi.hProcess, 0);
printf("Error in injection!\n");
return -1;

}

Listing 2

Traditional
Faults

Actual
Software
Functionality

Intended
Functionality

Unintended,
Undocumented,
or Unknown
Functionality

Figure 1 Intended versus
implemented software behavior

Operating System

Kernel

Application Under TestAPI UI

Filesystem

Figure 2 A look at software's users

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 5

registry, they trust that the values are accurate and haven’t been tam-
pered with maliciously. This is especially true if their code wrote those
values to the registry in the first place. One of the most extreme vul-
nerabilities is when sensitive data, such as passwords, is stored un-
protected in the registry.

More complex information can cause problems too. Take, for ex-
ample, “try and buy” software, where users have either limited func-
tionality or a time limit in which to try the software, or both. In these
cases, the application can then be unlocked if it is purchased or reg-
istered. In many cases, the check an application makes to see if users
have purchased it or not is to read a registry key at startup. We’ve
found that in some of the best cases, this key is protected with weak
encryption; in some of the worst, it’s a simple text value: 1 purchased;
0 trial.
Force the application to use corrupt/protected files and file names.
A large application may read from, and write to, hundreds of files in
the process of carrying out its tasks. It’s the tester’s job to make sure
that applications can handle bad data gracefully, without exposing
sensitive information or allowing unsafe behavior.

This attack is carried out by taking a file that the application uses
and changing it in some way the software may not have anticipated.
For a file that contains a series of numerical data that the software
reads, for instance, you may want to use a text editor and include let-
ters and special characters. If successful, this attack usually results in
denial of service either by crashing the application or by bringing
down the entire system. More creative changes may force the appli-
cation to expose data during a crash that users would not normally
have access to.
Force the application to operate in low-memory/diskspace/network
availability conditions. Depriving applications of these resources lets
testers understand how robust their application is under stress. The
decision of which faults to try and when can only be determined on
a case-by-case basis. A general rule of thumb, though, is to block a re-
source when an application seems most in need of it. For memory, this
may be during some intense computation the application is doing. For
disk errors, look for file writes/reads by the application, then start
pounding it with faults. These faults can be simulated relatively eas-
ily by modifying the code in Listing One to intercept other system
functions, such as CreateFile.

Attacking Design and Implementation
It’s difficult to identify all the subtle security implications of choices
made during the design phase. Looking at a 200-page specification
and asking “Is it secure?” will be met with blank looks, even by the
most experienced developers. Even if the design is secure, the choic-
es made by the development team during implementation can have
a major impact on the security of the product. Here we present some
attacks that have been effective at exposing these types of bugs.

Force all error messages. This attack serves two purposes. The first
is to see how robust the application is by trying values that should re-
sult in error messages and see how many are handled properly, im-
properly, or not at all. The second is to make sure that error messages
do not reveal unintended information to a would-be intruder; for ex-
ample, during authentication, having one error message that appears
when an incorrect user name is entered and having a different error
appear when a valid user name is entered but with an incorrect pass-
word. At this point, the attacker then knows that they have a correct
user name, which means there is now only one string value to at-
tack—the password.
Seek out unprotected test APIs. Complex, large-scale applications
are often difficult to test effectively by relying on the APIs extended
for normal users alone. Sometimes there are multiple builds a day,
each of which has to go through some suite of verification tests. To

meet this demand, many applications include hooks that are used by
custom test harnesses. These hooks and corresponding test APIs of-
ten bypass normal security checks done by the application for the sake
of ease of use and efficiency. They are added for testers by developers
with the intention of removing them before the software is released.
The problem, though, is that these test APIs become so integrated
into the code and the testing process that when the time comes for
the software to be released, managers are reluctant to remove them
for fear of destabilizing the code. It is critical to find these hooks and
ensure that if they were to make it out into the field, they could not
be used to open up vulnerabilities in the application.

Overflow input buffers. The first thing that comes to many peoples’
minds when they hear the term “software security” is the dreaded
buffer overflow. For this reason, it is important to test an application’s
ability to handle long strings in input fields. This attack is especially
effective when long strings are entered into fields that have an as-
sumed, but often not enforced, length such as ZIP codes and state
names.

API calls have been notorious for unconstrained inputs. As opposed
to a GUI where you can filter inputs as they are entered, API pa-
rameters must be dealt with internally and checks must be done to
ensure that values are appropriate before they are used. The most vul-
nerable APIs tend to be those that are seldom used or support legacy
functionality.
Connect to all ports. Sometimes applications open custom ports on
machines to connect with remote servers. Reasons for this vary from
creating maintenance channels to automatic updates or possibly as a
relic from test automation. There are many documented cases (see
http://www.ntbugtraq.com/) where these ports are left open and un-
secured. It is important that the same scrutiny that’s been given to
the communications through the standard ports (Telnet, ftp, and so
on) be given to these application-specific ports and the data that flows
through them.

Conclusion
Software security testing must go beyond traditional testing if we ever
hope to release secure code with confidence. In this article, we have
discussed a fault model that describes a paradigm shift from traditional
bugs to security vulnerabilities, and outlined some of the attacks testers
can use to better expose vulnerabilities before release. These attacks
are only part of a complete security-testing methodology. Research
into security vulnerabilities, their symptoms, and habits has only just
begun.

Acknowledgments
Thanks to Rahul Chaturvedi for providing code excerpts from
Holodeck and to Attila Ondi, Ibrahim El-Far, and Scott Chase for
their input on this article. w::d

| Download code > windevnet.com/wdn/code/ |

6 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

T H O M P S O N / W H I T T A K E R

One alternative approach is
runtime fault injection

Protecting your software and
business revenue is simply a matter
of choosing the right solution.
HASP4® gives you tougher, more reliable
software protection than any hardware
key on the market. With HASP4, you get:

■ Hardware-based string encryption—
the strongest way to secure your software.

■ A true cross-platform solution:
1 key for 1 source code for Windows®,
Mac OS®and Linux®.

■ 99.97% hardware success**in the field,
backed by ISO 9001:2000 certification.

■ A time-based licensing solution with
a real-time internal clock—ideal for
controlled beta testing, subscription,
rental, pay-per-use or any time-based
need.

■ The widest range of licensing, module
and networking models available.

■ 24/7 hassle-free remote license upgrades
and advanced HASP reporting tools.

Plus, HASP4 is so easy to use, you’ll
wonder why you didn’t choose it before.

Open your eyes to real anti-piracy
protection. Call 1-800-562-2543 or visit
HASP.com to request your FREE personal

HASP4 Developer’s Kit today.

PROFESSIONAL SOFTWARE PROTECTION

*

* Business Software Alliance Global Software Piracy Study, June 2003. ** Aladdin Knowledge Systems actual hardware key statistics: 1985-2002

©
2003 A

laddin Know
ledge System

s, Ltd. H
A

SP is a tradem
ark of A

laddin Know
ledge System

s,Ltd.

North America: 1-800-562-2543, 847-818-3800 or HASP.us@eAladdin.com International: +972-3-636-2222 or HASP.il@eAladdin.com
Germany: HASP.de@eAladdin.com UK: HASP.uk@eAladdin.com France: HASP.fr@eAladdin.com Benelux: HASP.nl@eAladdin.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.ealaddin.com/

8 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

M I C H A E L H O W A R D / K E I T H B R O W N

SECURITY IS A MULTIDIMENSIONAL issue. Se-
curity risks can come from anywhere. You could
write bad error handling code or be too gen-
erous with permissions. You could forget what
services are running on your server. You could
accept all user input. And the list goes on. To
give you a head start on protecting your ma-
chines, your network, and your code, here are
10 tips to follow for a safer network strategy.

1. Trust User Input at Your Own
Peril
Even if you don’t read the rest of this article,
remember one thing, “don’t trust user input.”

If you always assume that data is well formed
and good, then your troubles are about to be-
gin. Most security vulnerabilities revolve
around the attacker providing malformed data
to the server machine.

Trusting that input is well formed can lead
to buffer overruns, cross-site scripting attacks,
SQL injection attacks, and more.

Let’s look at each of these potential attacks
in more detail.

2. Protect Against Buffer
Overruns
A buffer overrun occurs when the data pro-
vided by the attacker is bigger than what the
application expects, and overflows into in-
ternal memory space. Buffer overruns are pri-
marily a C/C++ issue. They’re a menace, but
generally easy to fix. We’ve seen only two
buffer overruns which were not obvious and
were hard to fix. The developer did not an-
ticipate externally provided data that was larg-
er than the internal buffer. The overflow caus-
es corruption of other data structures in
memory, and this corruption can often lead
to the attacker running malicious code. There
are also buffer underflows and buffer overruns
caused by array indexing mistakes, but they
are less common.

Take a look at the following C++ code
snippet:

void DoSomething(char *cBuffSrc, DWORD
cbBuffSrc) {

char cBuffDest[32];
memcpy(cBuffDest,cBuffSrc,cbBuffSrc);

}

What’s wrong with it? Actually, there’s noth-
ing wrong with this code if cBuffSrc and cb-
BuffSrc come from a trusted source, such as
code that did not trust the data and so vali-
dated it to be well formed and of the correct
size. However, if the data comes from an un-
trusted source and has not been validated, then
the attacker (the untrusted source) could eas-
ily make cBuffSrc larger than cBuffDest, and
also set cbBuffSrc to be larger than cBuffDest.
When memcpy copies the data into cBuffDest,
the return address from DoSomething is clob-
bered because cBuffDest is next to the return
address on the function’s stack frame, and the
attacker makes the code perform malicious op-
erations.

The way to fix this is to distrust user input
and not to believe any data held in cBuffSrc
and cbBuffSrc:

void DoSomething(char *cBuffSrc, DWORD
cbBuffSrc) {

const DWORD cbBuffDest = 32;
char cBuffDest[cbBuffDest];

#ifdef _DEBUG
memset(cBuffDest, 0x33, cbBuffSrc);

#endif
memcpy(cBuffDest, cBuffSrc, min(cbBuffDest,

cbBuffSrc));
}

This function exhibits three properties of a well-
written function which mitigates buffer over-
runs. First, it requires the caller to provide the
length of the buffer. Of course, you should not
blindly trust this value! Next, in a debug build,
the code will probe the buffer to check that it

MICHAEL HOWARD is a Security Program
Manager in the Secure Windows Initiative
group at Microsoft. He is the coauthor of
Writing Secure Code and the author of De-
sign Secure Web-based Applications for Mi-
crosoft Windows 2000, both published by
Microsoft Press. KEITH BROWN works at De-
velopMentor researching, writing, teaching,
and promoting an awareness of security
among programmers. Keith authored Pro-
gramming Windows Security (Addison-
Wesley, 2000) and coauthored Effective
COM. He is currently working on a .NET se-
curity book. Contact him at http://www
.develop.com/kbrown. This article first ap-
peared in the September 2002 issue of MSDN
Magazine.

Top Ten Security Tips

Defend your code with top ten security tips

every developer must know

This article assumes you’re familiar with C++,
C#, and SQL

Level of Difficulty: 1 2 3

is indeed large enough to hold the source buffer, and if not, it will prob-
ably cause an access violation and throw the code into a debugger. It’s
surprising how many bugs you can find when doing this. Last, and most
important, the call to memcpy is defensive; it copies no more data than
the destination buffer can hold.

During the Windows® Security Push at Microsoft, we created a list
of safe string handling functions for C programmers. You can check
them out at Strsafe.h: Safer String Handling in C, http://msdn
.microsoft.com/library/en-us/dnsecure/html/strsafe.asp.

3. Prevent Cross-site Scripting
Cross-site scripting vulnerabilities are Web-specific issues and can
compromise a client’s data through a flaw in a single Web page. Imag-
ine the following ASP.NET code fragment:

<script language=c#>
Response.Write(“Hello, “ +Request.QueryString(“name”));

</script>

How many of you have seen code like this? You may be surprised
to learn it’s buggy! Normally, a user would access this code using a
URL that looks like this:

http://explorationair.com/welcome.aspx?name=Michael

The C# code assumes that the data is always well formed and con-
tains nothing more than a name. Attackers, however, abuse this code
and provide script and HTML as the name. If you typed the follow-
ing URL:

http://northwindtraders.com/welcome.aspx?name=<script>alert(‘hi!
</script>

you’d get a Web page that displays a dialog box, saying “hi!” “So
what?” you say. Imagine that the attacker convinces a user to click
on a link like this, but the querystring contains some really nasty
script and HTML to get your cookie and post it to a site that the at-
tacker owns; the attacker now has your private cookie information
or worse.

There are two ways to avoid this. The first is not to trust the
input and be strict about what comprises a user’s name. For ex-
ample, you could use regular expressions to check that the name
contains only a common subset of characters and is not too big.
The following C# code snippet shows the way that you can ac-
complish this:

Regex r = new Regex(@”^[\w]{1,40}$”);

if (r.Match(strName).Success) {
// Cool! The string is ok

} else {
// Not cool! Invalid string

}

This code uses a regular expression to verify that a string contains be-
tween 1 and 40 alphanumeric characters and nothing else. This is the
only safe way to determine whether a value is correct.

You cannot squeak HTML or script through this regular expression!
Don’t use a regular expression to look for invalid characters and reject
the request if such characters are found because there is always a case
that will slip by you.

The second defense is to HTML-encode all input when it is used
as output. This will reduce dangerous HTML tags to more secure es-
cape characters. You can escape any strings that might be a problem

in ASP.NET with HttpServerUtility.HtmlEncode, or in ASP with
Server.HTMLEncode.

4. Don’t Require sa Permissions
The last kind of input trust attack we want to discuss is SQL injec-
tion. Many developers write code that takes input and uses that in-
put to build SQL queries to communicate with a back-end data store,
such as Microsoft® SQL Server™ or Oracle.

Take a look at the following code snippet:

void DoQuery(string Id) {
SqlConnection sql=new SqlConnection(@”data source=localhost;” +

“user id=sa;password=password;”);
sql.Open();
sqlstring= “SELECT hasshipped” +

“ FROM shipping WHERE id=’” + Id + “‘“;
SqlCommand cmd = new SqlCommand(sqlstring,sql);

•••

This code is seriously flawed for three reasons. First, the connec-
tion is made from the Web Service to SQL Server as the system ad-
ministrator account, sa. You’ll see why this is bad, shortly. Second,
notice the clever use of “password” as the password for the sa ac-
count!

However, the real cause for concern is the string concatenation that
builds the SQL statement. If a user enters an ID of 1001, then you get
the following SQL statement, which is perfectly valid and well formed.

SELECT hasshipped FROM shipping WHERE id = ‘1001’

However, attackers are more creative than this. They would enter an
ID of “‘1001’ DROP table shipping —”, which would execute the fol-
lowing query:

SELECT hasshipped FROM
shipping WHERE id = ‘1001’
DROP table shipping — ‘;

changes the way the query works. Not only does the code attempt
to determine if something has shipped or not, it goes on to drop (delete)
the shipping table! The—operator is a comment operator in SQL and
it makes it easier for an attacker to build a valid, yet dangerous, series
of SQL statements!

At this point you’re probably wondering how any user could delete
a table in the SQL Server database. Surely only admins can do a task
like that. You’re right. But here you’re connecting to the database as
sa, and sa can do anything it wants to do on a SQL Server database.
You should never connect as sa from any application to SQL Server;
rather, you should either use Windows Integrated authentication, if
appropriate, or connect as a predefined account with appropriately
restricted rights.

Fixing the SQL injection issue is easy. Using SQL stored proce-
dures and parameters, the following code shows how to build a
query like this—and how to use a regular expression to make sure
that the input is valid because our business dictates that a ship-
ping ID can only be numeric and between four and ten digits in
length:

Regex r = new Regex(@”^\d{4,10}$”);
if (!r.Match(Id).Success)

throw new Exception(“Invalid ID”);

SqlConnection sqlConn= new SqlConnection(strConn);
string str=”sp_HasShipped”;

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 9

H O W A R D / B R O W N

SqlCommand cmd = new SqlCommand(str,sqlConn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(“@ID”,Id);

Buffer overruns, cross-site scripting, and SQL injection attacks are
all examples of trusting input. All these attacks can be mitigated by
believing that all input is evil, until proven otherwise.

5. Watch that Crypto Code!
Now let’s look at something near and dear to our hearts. I would say
that more than 30 percent of the security code we review contains se-
curity mistakes. Probably the most common mistake is homegrown
encryption code, which is typically quite fragile and easy to break.
Never create your own encryption code; you won’t get it right. Don’t
think that just because you’ve created your own cryptographic algo-
rithm people won’t figure it out. Attackers have access to debuggers,
and they have both the time and the knowledge to determine exact-
ly how these systems work—and often break them in a matter of hours.
Rather, you should use the CryptoAPI for Win32® applications, and
the System.Security.Cryptography namespace has a wealth of well-
written and well-tested cryptographic algorithms.

6. Reduce Your Attack Profile
If a feature is not required by 90 percent of clients, then it should
not be installed by default. Internet Information Services (IIS) 6.0
follows this plan of installation, and you can read about it in Wayne
Berry’s article, “Innovations in Internet Information Services Let
You Tightly Guard Secure Data and Server Processes,” in the No-
vember 2002 issue of MSDN Magazine. The idea behind this in-
stallation approach is that where services that you don’t use are run-
ning, you don’t pay attention to them and they can be exploited. If

the feature is installed by default, then it should operate under the
principle of least privilege. In other words, do not require the app
to run with administrative rights if they are not required. Follow this
advice as well.

7. Employ the Principle of Least Privilege
The operating system and the common language runtime (CLR) have
a security policy for several reasons. Many people think that the main
reason the security policy exists is to prevent users from intentional-
ly doing bad things: accessing files they shouldn’t be allowed to see,
reconfiguring the network to suit their needs, and other dastardly
deeds. While it’s certainly true that insider attacks are common and
need to be guarded against, there’s another reason for keeping this se-
curity policy tight. The security policy is there to put walls around
code so that intentional or (just as frequently) unintentional actions
by users don’t wreak havoc on the network. For instance, an attach-
ment downloaded via e-mail and executed on Alice’s machine is re-
stricted to only accessing resources that Alice can access. If the at-
tachment contains a Trojan horse, a good security policy will limit
the damage it can do.

When you design, build, and deploy server applications, you can-
not assume that every request will come from a legitimate user. If a
bad guy manages to send you a malformed request that (heaven for-
bid) causes your code to behave badly, you want every possible wall
around your application to limit the damage. Our point is that the
reason your company has a security policy isn’t just because it does-
n’t trust you or your code. It’s also there to protect against well-in-
tentioned code that’s been exploited by outsiders.

The principle of least privilege says that any given privilege should
be granted to the least amount of code necessary, for the least amount
of time necessary. In other words, at any given time, try to erect as
many walls around your code as possible. When something bad hap-
pens—as Murphy’s Law guarantees it will—you’ll be glad these walls
were in place. So here are some concrete ideas for running code with
the least privilege possible.

Choose a security context for your server code that grants access
only to the resources it needs to get its work done. If certain parts of
your code require significantly higher privileges, consider factoring
the code out and running just that code with the higher privileges.
To safely separate code that runs with different operating system cre-
dentials, your best bet is to run this code in a separate process that
runs in a more privileged security context. This means you’ll need in-
terprocess communication such as COM or Microsoft .NET remot-
ing, and you’ll need to design the interface to that code to keep round-
trips to a minimum.

If you’re using the .NET Framework when factoring your code into
assemblies, consider the required level of privilege of each piece of
code. You may find it easy to isolate code that requires high privilege
into separate assemblies that can be granted more permissions, al-
lowing the majority of your assemblies to run with fewer privileges,
thus adding more walls around your code. An easy way to restrict the
privileges on a particular assembly is via assembly-level permission re-
quests, as shown in Figure 1. Figure 2 shows how to create the XML
files used by these permission requests. If you do this, don’t forget that
you’re limiting not only the permissions of your own assembly, but
those of any assemblies you call, due to the Code Access Security
(CAS) stack walk.

Many people build their applications so that new components can
be plugged in after their product has been tested and shipped. It’s very
difficult to secure these types of applications because there’s no way
you can test every possible code path for bugs and security holes. If
your application is managed, however, there’s a nifty feature provid-
ed by the CLR that you can use to lock down these extensibility points.
By declaring a permission object or a permission set and calling Per-

10 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

H O W A R D / B R O W N

using System;
using System.Security.Permissions;

// declare the minimum permissions that this assembly requires to
// even be loaded
[assembly: PermissionSetAttribute(

SecurityAction.RequestMinimum,
File="min_perm.xml")]

// optional permissions are permissions that you don't always need in
// order to be functional but that some of your features may rely upon
[assembly: PermissionSetAttribute(

SecurityAction.RequestOptional,
File="opt_perm.xml")]

// by specifying the permissions you need, the runtime knows not to grant
// you any other permissions, even new ones that are defined after your
// code ships

Figure 1 Assembly Permission Requests

using System;
using System.Security;
using System.Security.Permissions;

class App {
static void Main(string[] args) {

// serializing a permission set
IPermission a = new EnvironmentPermission(

EnvironmentPermissionAccess.Read,
"MyEnvironmentVar");

IPermission b = new FileDialogPermission(
FileDialogPermissionAccess.Open);

PermissionSet ps = new PermissionSet(
PermissionState.None);

ps.AddPermission(a);
ps.AddPermission(b);
Console.WriteLine(ps.ToXml());

}
}

Figure 2
Serializing Permission Requests

mitOnly or Deny, you add a marker on your stack that chokes down
the permissions granted to any code you call. By doing this before call-
ing to some plug-in, you can restrict what the plug-in can do. For in-
stance, a plug-in that’s supposed to do amortization calculations should-
n’t need any access to the file system. This is just another example of
least privilege, where you can protect yourself ahead of time. Be sure
to document these restrictions and be aware that highly privileged
plug-ins will be able to get around these restrictions with the Assert
statement.

8. Pay Attention to Failure Modes
Admit it. You hate writing error handling code just as much as the
next guy. There are so many ways a piece of code can fail; it’s just de-
pressing thinking about it. Most programmers, ourselves included, would
much rather focus on the normal path of execution. That’s where the
real work gets done. Let’s get that error handling done as quickly and
painlessly as possible and move on to the next line of real code.

Sadly, this is not a safe frame of mind. We need to pay much clos-
er attention to failure modes in code. These bits of code are often
written with little attention to detail and often go completely untest-
ed. When was the last time you made absolutely sure you stepped your
debugger through every single line of code in a function, including
every single one of those little error handlers?

Untested code often leads to security vulnerabilities. There are
three things you can do to help alleviate this problem. First of all,
pay just as much attention to those little error handlers as you do
your normal code. Think about the state of the system when your
error-handling code is executing. Are you leaving the system in
a valid and secure state? Second, once you write a function, step
your debugger through it several times, ensuring that you hit every
error handler. Note that even this technique may not uncover
subtle timing errors. You may need to pass bad arguments to your
function or adjust the state of the system in some way that caus-
es your error handlers to execute. By taking the time to step
through the code, you are slowing yourself down long enough to
take at least a second look at the code and the state of the sys-
tem at the time it runs. We’ve discovered many flaws in our pro-
gramming logic by carefully stepping through code in a debugger;
it’s a proven technique. Use it. Finally, make sure your test suites
force your functions to fail. Try to have test suites that exercise
every line of code in your function. These can help you discover
regression, especially if you automate your tests and run them af-
ter every build.

There’s one more very important thing to say about failure modes.
Be sure that if your code fails, it leaves the system in the most secure
state possible. Here’s some bad code:

bool accessGranted = true; // optimistic!
try {

// see if we have access to c:\test.txt
new FileStream(@”c:\test.txt”,

FileMode.Open,
FileAccess.Read).Close();

}
catch (SecurityException x) {

// access denied
accessGranted = false;

}
catch (...) {

// something else happened
}

Let’s say that as far as the CLR is concerned, we’re granted access
to the file. In this case, a SecurityException won’t be thrown. But

what if, for instance, the discretionary access control list (DACL) on
the file doesn’t grant us access? In this case, a different type of ex-
ception will be thrown. But due to our optimistic assumption in the
first line of code, we’ll never know this.

A better way to write this code is to be pessimistic:

bool accessGranted = false; // pessimistic!
try {

// see if we have access to c:\test.txt
new FileStream(@”c:\test.txt”,

FileMode.Open,
FileAccess.Read).Close();

// if we’re still here, we’re good!
accessGranted = true;

}
catch (...) {}

This is much more robust, because no matter how we fail, we’ll fall
back to the most secure mode.

9. Impersonation is Fragile
When writing server applications, you’ll often find yourself using,
directly or indirectly, a convenient feature of Windows called im-
personation. Impersonation allows each thread in a process to run
in a distinct security context, typically the client’s security context.
For instance, when the file system redirector receives a request for
a file via the network, it authenticates the remote client, checks to
see that the client’s request doesn’t violate the DACL on the share,
then attaches the client’s token to the thread handling the request,
thus impersonating the client. This thread can then access the lo-
cal file system on the server using the security context of the client.
This is convenient since the local file system is already secure; it
will do an access check that considers the type of access being re-
quested, the DACL on the file, and the impersonation token on the
thread. If the access check fails, the local file system reports this to
the file system redirector, who then can send a fault back to the re-
mote client. This is incredibly convenient for the file system redi-
rector because it simply passes the buck to the local file system and
lets the local file system do its own access checking, just as if the
client was local.

This is all well and good for simple gateways like the file system
redirector. However, impersonation is often used in other, more com-
plex applications. Take a Web application for instance. If you’re writ-
ing a classic unmanaged ASP application, ISAPI extension, or an
ASP.NET application which specifies

<identity impersonate=’true’>

in its Web.config file, you are running in an environment with two dif-
ferent security contexts: you have a process token and a thread token,
and generally speaking, the thread token will be used for access checks
(see Figure 3). Say you are writing an ISAPI application that runs in-
side the Web server process. Your thread token is likely IUSR_MA-
CHINE, given that most requests are unauthenticated. But your process
token is SYSTEM! Say your code is compromised by a bad guy via a
buffer overflow exploit. Do you think the bad guy will be content with
running as IUSR_MACHINE? No way. It’s very likely that his attack
code will call RevertToSelf to remove the impersonation token, hop-
ing to elevate his privilege level. In this case, he’ll succeed quite nice-
ly. Another thing he can do is call CreateProcess. The token for that
new process will be copied not from the impersonation token, but from
the process token, so the new process runs as SYSTEM.

What’s the solution to this little problem? Well, besides making
sure you don’t have any buffer overflows to begin with, remember

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 11

H O W A R D / B R O W N

the principle of least privilege. If your code doesn’t need the god-
like privileges afforded to SYSTEM, don’t configure your Web ap-
plication to run inside the Web server process. If you simply con-
figure your Web application to run with medium or high isolation,
your process token will be IWAM_MACHINE. You’ll have virtu-
ally no privileges at all, and this sort of attack won’t be nearly as ef-
fective. Note that in IIS 6.0, which will be a component of Win-
dows .NET Server, no user-written code runs as SYSTEM by default.
This is based on the realization that developers do make mistakes,
and any assistance the Web server can provide to reduce the privi-
leges given to code is a good thing, just in case there is a security
bug in the code.

Here’s another gotcha that COM programmers can run into.
COM has a nasty tendency to play games with threads. If you make
a call to an in-process COM server whose threading model doesn’t
match that of the calling thread, COM will execute the call on a
different thread. COM will not propagate the impersonation token
on the caller’s thread, so the result is that the call will execute in
the security context of the process, not of the calling thread. What
a Surprise!

Here’s another scenario where impersonation can bite you. Say
you have a server that accepts requests via named pipes, DCOM, or
RPC. You authenticate your clients and impersonate them, open-
ing kernel objects on their behalf while impersonating. Let’s say you
forget to close one of these objects (for instance, a file) when the
client disconnects. When the next client comes along, you au-
thenticate and impersonate that client, and guess what? You can
still access the file that was “leaked” from the previous client, even
if the new client isn’t granted access to the file. For performance
reasons, the kernel only performs access checks on objects when you
first open them. Even if your security context changes later on be-
cause you’re impersonating somebody else, you will still be able to
access this file.

Each of the scenarios we’ve mentioned so far is a reminder that im-
personation is a convenience for server developers, and it’s a fragile
convenience at that. Pay close attention to your code when you’re
running with an impersonation token.

10. Write Apps that Non-admins Can Actually Use
This really is a corollary of the principal of least privilege. If pro-
grammers continue to produce code that doesn’t run well on Win-
dows unless the user is an administrator, how the heck can we ever
expect to shake free of the stigma of targeting an “insecure” system?

Windows has a very robust set of security features, but if users are
forced to run as administrators to get anything done, they aren’t get-
ting much benefit from these features.

How can you help? Well first of all, eat your own dogfood. Quit
running as an administrator yourself. You will learn very quickly the
pain of using programs that were not designed with security in mind.
The other day, I (Keith) installed some software provided by the mak-
er of my handheld device that was designed to synchronize data be-
tween my desktop and the device. So just as I usually do, I logged off
my normal user account, logged back in using the built-in adminis-
trator account, installed the software, then logged back to my normal
account and tried to run the software. Well, the application prompt-
ly popped up a dialog saying it could not access some data file it need-
ed, then proceeded to blow up with an access violation. Folks, this
was a piece of software from a major vendor in the handheld space.
There is no excuse for this!

After running FILEMON from http://sysinternals.com, I quickly
discovered that the application was trying to open up a data file for
write access that it had installed in the same directory as its executa-
bles. When applications are installed into the Program Files directo-
ry like they should be, they should never, ever, try to write data to
that directory. There’s a reason that Program Files has a restricted ac-
cess control policy. We don’t want users writing to those directories
because that could easily allow one user to leave a Trojan horse be-
hind for another user to execute. In fact, this stipulation is part of the
basic logo requirements for Windows XP (see http://www.microsoft
.com/winlogo/default.mspx).

We hear way too many programmers give excuses for why they
choose to run as administrators when developing code. If we all keep
ignoring the problem, it’s only going to get worse. Folks, it doesn’t
take admin privileges to edit a text file. It doesn’t take admin privi-
leges to compile or debug a program that you started. When you need
admin privileges, run individual programs with elevated privileges us-
ing the RunAs feature of the operating system (see the November
2001 Security Briefs column). If you are writing tools for developers
to use, you have an extra responsibility to the community. We need
to stop this vicious circle of folks writing code that only administra-
tors can run, and the only way it’s going to happen is if we do it at
the grassroots level.

Check out Keith’s Web site for more info on how developers can
easily run as non-admins at http://www.develop.com/kbrown. Also be
sure to pick up a copy of Michael’s book, Writing Secure Code (Mi-
crosoft Press, 2001), which has tips on how to write apps that run well
in a nonadmin environment.

Related Articles
SQL Server Security Modes, http://msdn.microsoft.com/library/
en-us/vsentpro/html/veconsqlserversecuritymodes.asp

Avoiding Buffer Overruns, http://msdn.microsoft.com/library/
en-us/security/Security/avoiding_buffer_overruns.aspw::d

 Microsoft Corporation. All Rights Reserved.

| Download code > windevnet.com/wdn/code/ |

12 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

H O W A R D / B R O W N

IUSR_MACHINE

ASPNET

ASPNET_WP.EXE

Thread

Figure 3 Checking

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/books/samples/

IN RECENT YEARS, WITH the advent of the In-
ternet, secure network communication has be-
come increasingly important and is now pres-
ent in almost every aspect of the network data
exchange. One of the most widely used pro-
tocols in that area is Secure Sockets Layer
(SSL)[1], which is being gradually replaced by
its successor—Transport Layer Security
(TLS)[2]. Even though these protocols were
specifically designed for the World Wide Web,
their utilization is not limited to just the Web
traffic — virtually any type of data sent through
any type of network can be secured. Having
said that, there are protection goals that de-
fine what the secure data means in each case.
SSL and TLS provide confidentiality (the data
is kept secret from the third party that is not
involved in the data exchange), message in-
tegrity (the message received is the message
sent), and endpoint authentication (one of the
communication endpoints or both are verifi-
ably known). If you are working on a project
that requires implementation of secure com-
munication channel and that channel must
provide the above-mentioned types of data
protection, selecting SSL or TLS gives the ad-
vantage of a well-documented and well-test-
ed, broadly accepted, and robust protocol.

Fortunately for Windows developers, Mi-
crosoft has provided a version of Generic Se-
curity Service Application Program Interface
(GSS-API) [10]— called Security Support
Provider Interface (SSPI) [5]. SSPI greatly sim-

plifies the daunting task of digging into SSL
internals. Using SSPI slashes the development
time threefold since the API effectively shields
you from needing to know the details about
SSL [3]. All that is left is implementing the
underlying transport functionality that sup-
plies the data and the logic to wrap calls to
SSPI. And best of all, needed C-libraries and
header files are part of the Platform SDK that
can be freely downloaded from the Microsoft
web site. This article describes how to imple-
ment an SSL/TLS client/server system using
SSPI. The material in this article requires the
reader’s familiarity with cryptography, SSL/TLS
specifications, and X.509 security certificates.

SSPI is a set of generic functions that can
be used to access a specific security provider.
Providers are either installed as part of the op-
erating system (NTLM, Kerberos) or added
later (Microsoft RSA SChannel provider, Mi-
crosoft Exchange provider, etc.) by installing
other software. In this article, I will be work-
ing with the RSA SChannel provider [5] to
implement the SSL/TLS functionality.

SChannel is the Microsoft implementation
of the GSS API that wraps the SSL/TLS pro-
tocol. In the following paragraphs I’ll try to ex-
plain in detail how to use SChannel and how
it works, but first I’d like to stress a few points
about advantages of utilizing SChannel:

Doing so will free the developer from im-
plementing every aspect of the SSL protocol:
the gory details are shielded from the devel-
oper by the SSPI.

No extra setup is required to run the final
application: SChannel is an integral part of
the operating system (slight “tweaking” is need-
ed for Win9x family but who runs servers on
these systems anyway?). See the next para-
graph for the system requirements.

SChannel calls follow GSS API standards.
There are, of course, some alternatives—

OpenSSL for example. This package is a com-
plete and thorough implementation of the pro-
tocol and for someone all too familiar with
UNIX is undoubtedly the best choice. The
package originally targeted the UNIX com-
munity and to compile it relies on the Perl run-
time, so some learning curve is required for
Windows developers who never worked with
UNIX-type systems.

On Windows ME/2000/XP platforms,
SChannel is installed and configured by de-
fault and does not need additional tuning. For
Windows 95/98 OSs a few extra setting up steps
are required to ensure that the application you
are developing will run smoothly. First, W2K
Active Directory client must be installed. The
client, dsclient.exe, can be found on the
Windows 2000 server CD in the
Clients\Win9x directory. After the client is
installed, a registry entry must be added to the
following key HKLM\System\CurrentCon-
trolSet\ Control\SecurityProviders\ Se-
curityProviders. Simply append the string:

, schannel.dll

to the existing REG_SZ value. Windows NT
machines will require at least Option Pack 4.0.

Provided freely with the article is a project
demonstrating implementation of a HTTP serv-
er with SSL/TLS capabilities. This server uti-
lizes SSPI wrapper classes—CSslProvider,
CSslCredentials, CSslTransport, and
CSspiLib. Listings 1, 2, and 3 respectively, show
partial definition and implementation files for
the first three classes. The design goal here was
to simplify access to the functionality provid-
ed by SChannel. Implementing the handshake
or the data exchange phase of the secure pro-
tocol with the SSPI can be tedious because of
the number of error codes returned and the in-
terpretation of input/output buffer types used.

Implementing an SSL/TLS-Enabled
Client/Server on Windows Using
GSS API

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 13

A L E N T A L I B O V

ALEN TALIBOV holds an M.S. in electrical
engineering from Marine Technical Uni-
versity in St.Petersburg, Russia. He cur-
rently works as a software consultant in
the metropolitan Boston area. He can be
reached atalen@nebutech.com. This arti-
cle was first published in C/C++ Users
Journal, August 2003.

Easy, secure communications for Windows

By utilizing the wrappers, your application elim-
inates the need to keep track of the data flow
inside the secure channel, thus you can con-
centrate on providing the plain or encrypted
data. In contrast to the SSPI functions, the
wrapper classes have two types of return codes—
success (S_OK) and failure. This greatly simpli-
fies the decision-making process if any type of
error occurs; receiving a failure code should
lead to the socket closure, or whatever the trans-
port you are using to receive or send the data.

To deliver the secure context and the en-
crypted or plain data to the SChannel, I’m pro-
viding the CSslTransport class. This class can
only be obtained through a call to the CSsl-
Provider’s function ObtainTransport, which
ensures that the transport object during its con-
struction receives a reference to the CSslCre-
dentials object. The latter in turn provides
security credentials during the negotiation
phase of the SSL protocol. The sequence of
getting the wrappers to do the work required
is as follows:

1. Your application calls CSspiLib::Load()
to prepare the PSecurityFunctionTable
(see the topic below).

2. Next, the application calls one of the over-
loaded Init() functions of CSslProvider
to obtain security credentials, used later in
the negotiation phase.

3. Once the credentials are obtained, any num-
ber of the CSslTransport instances can be
spawned by calling the ObtainTransport()
function. When the application is done us-
ing the transport object, it should call its
Destroy() method (see the CAsyncXfer-
Socket class for details).

4. Shutting down the application will require
calling CSslProvider’s Destroy() function
to release the credentials obtained earlier.

5. The last step is releasing the hold on the
SSPI DLL by calling CSspiLib::Unload().

In the case of the demo HTTP server, a de-
scendant of the MFC’s CAsyncSocket class safe-
guards the transport object. The SSL transport
class fires events to control the inbound and
outbound data flow. There are three types of
events—Inbound Data Available, Outbound
Data Available, and Disconnect. See the CA-
syncXferSocket class for implementation de-
tails and for an example how this class utilizes
the new unified event model provided in Vi-
sual C++ v7.0. Because of the aforementioned
events, to compile and run the project, you’ll
need Visual C++ v7.0, which is available as
part of the VS.NET suite. If you don’t have the
new compiler, you’ll have to modify the code
to provide old-fashion callback notification
functions similar to these three events fired by
the CSslTransport object. Note also that the
wrapper classes are independent of the MFC
and can be plugged into any environment.

SChannel at Work
Before describing in detail the functionality
wrapped by the classes mentioned above, I
would encourage those readers who are novices
to the topic to study the SSL/TLS specifica-
tions. Recently a lot of good books on the is-
sue have appeared on the bookstore shelves.
If you are serious about developing an SSL-
aware application, a book would be a good in-
vestment [8], [9].

The first step in taking advantage of the
SChannel functionality is loading the SSPI
dynamic link library (DLL) and setting up a
special table, PSecurityFunctionTable, with
valid SSPI function pointers. The DLL’s name
differs depending on the operating system.

Windows NT systems have security.dll, ex-
posing the SSPI functionality; all other Mi-
crosoft systems use secur32.dll.

You can download the function table by call-
ing a little nifty procedure, which the SSPI
DLL exports as InitSecurityInterface. The
export is available in two flavors: ANSI and
UNICODE, with the letters A and W at the
end, respectively, identifying the flavor. To sim-
plify, you may consider using a SECURITY_EN-
TRYPOINT string defined in sspi.h, which will
map to the correct entry point name in either
ANSI or UNICODE environments. The
CSspiLib class, provided in the supplemental
code accompanying this article, wraps DLL
initialization and function calls to SChannel
using a set of static functions with the same
names and parameters that are defined by the
SSPI. This class takes care of loading the cor-
rect DLL and initializing the function table.

Before SChannel can assist in creating a se-
cure channel, it must tag us with the Windows-
type handle: its credentials. This handle is then
passed around to other functions, so SChan-
nel knows who is requesting the service and
thus does not get confused in servicing multi-
ple users. The handle will also be associated
with any special attributes that the principal
initiating a session possesses, an X.509 certifi-
cate for instance. (Microsoft prefers to use the
term ‘principal’ to identify the entity on be-
half of which calls to SChannel functions are
made. I’ll be using the same term.) For ob-
taining the handle SSPI provides the function
named AcquireCredentialsHandle(). A lot
of references to structures, function, and error
codes mentioned in this article can be found
in [5] under the SChannel section.

Multiple overrides of the CSslProvider
Init() function in the sample code provide

14 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

T A L I B O V

// other code not shown

// definition

class CSslProvider
{
public:

CSslProvider(void);
~CSslProvider(void);

private:
CSslCredentials m_sslCredentials;
CNbtCriticalSection m_critSec;

public:
// Intialization functions that must be
// called prior to calling ObtainTransport()
HRESULT Init(BOOL bAsServer, LPCTSTR strPrincipal,

LPCTSTR strStore, BOOL bMutualAuth);
HRESULT Init(BOOL bAsServer, LPCTSTR strPrincipal,

HCERTSTORE hStore, BOOL bMutualAuth);
HRESULT Init();
void Destroy();
HRESULT Attach(CredHandle hCredentials, BOOL bAsServer,

BOOL bMutualAuth);
HRESULT Detach();

HRESULT ObtainTransport(CSslTransport*& pSslTransport);

... // other code not shown
};

... // other code not shown

// implementation

HRESULT CSslProvider::ObtainTransport(
CSslTransport*& pSslTransport)

{
m_critSec.Lock();

HRESULT hr = S_OK;
pSslTransport = NULL;

// Make sure we obtained the credentials prior to this call
if (m_sslCredentials.HasCredHandle())
{

pSslTransport = new CSslTransport(m_sslCredentials);
if (pSslTransport == NULL)

hr = E_OUTOFMEMORY;
}
else

hr = SEC_E_NO_CREDENTIALS;

m_critSec.Unlock();
if (FAILED(hr))

TRACE1("Failed to obtain transport. Error: 0x%08X.<\\>n", hr);

return hr;
}

Listing 1 CSslProvider class

shortcuts to the function that acquires
SChannel credentials. There, I’m simplify-
ing the call to AcquireCredentialsHan-
dle() with fewer parameters (see Listing 1
for details), which is sufficient enough for
most of the cases. If the application you are
developing requires a special treatment,
you’ll need to acquire the credentials your-
self and then supply them in one of the
Init() overrides.

The original AcquireCredentialsHandle()
takes a lot of parameters (remember that this

is a generic function, which is used by other
types of security providers) but to initialize
SChannel credentials only four of the param-
eters are relevant. Although “the fifth ele-
ment,” ptsExpiry, can optionally be used,
SChannel always returns zero in it. I won’t be
wasting the reader’s time describing each pa-
rameter except for one: the SCHANNEL_CRED
structure. This is a rather important fellow
through whom SChannel receives everything
it needs to know about the principal, so let’s
scrutinize it.

SCHANNEL_CRED Structure and
X.509 Certificates
When acquiring credentials for a server-side
application, or for a client that is expected to
present its credentials later in the SSL hand-
shake, one very important member of the
SCHANNEL_CRED structure should be looked at:
paCred—a pointer to an array of CERT_CON-
TEXT structures (cCreds—the number of struc-
tures in the array). The CERT_CONTEXT struc-
ture contains an X.509 certificate [4] and the
matching context in the form of a HCERTSTORE

T A L I B O V

// other code not shown

// definition

class CSslCredentials
{

friend class CSslProvider;

protected:
CSslCredentials();
~CSslCredentials();

public:
HRESULT Obtain(BOOL bAsServer, LPCTSTR strPrincipal,

LPCTSTR strStore, BOOL bMutualAuth = FALSE,
DWORD dwProtoFlags = 0);

HRESULT Obtain(BOOL bAsServer, LPCTSTR strPrincipal,
HCERTSTORE hStore, BOOL bMutualAuth = FALSE,
DWORD dwProtoFlags = 0);

HRESULT Obtain(DWORD dwProtoFlags = 0);

HRESULT Attach(CredHandle hCredentials, BOOL bAsServer,
BOOL bMutualAuth = FALSE, DWORD dwProtoFlags = 0);

HRESULT Detach();

BOOL IsServer() {return m_bServer;}
BOOL MutualAuthRequired() {return m_bMutualAuth;}
DWORD GetProtoFlags() {return m_dwProtoFlags;}

BOOL HasCredHandle()
{

return SecIsValidHandle(&m_hCredentials);
}

PCredHandle GetHandle()
{

return (HasCredHandle() ? &m_hCredentials : NULL);
}

void CleanUp();

private:
HRESULT OpenSysStore(LPCTSTR strStore, HCERTSTORE& hStore);
HRESULT FindCertificate(HCERTSTORE hStore,

LPCTSTR strPrincipal, PCCERT_CONTEXT& certContext);
HRESULT ObtainImpl(PCCERT_CONTEXT certContext,

BOOL bAsServer, BOOL bMutualAuth, DWORD dwProtoFlags);

private:
CredHandle m_hCredentials;
BOOL m_bServer;
BOOL m_bMutualAuth;
DWORD m_dwProtoFlags;
HCERTSTORE m_hStore;

};

... // other code not shown

// implementation

HRESULT CSslCredentials::ObtainImpl(PCCERT_CONTEXT certContext,
BOOL bAsServer,
BOOL bMutualAuth,
DWORD dwProtoFlags)

{
// Build Schannel credentials structure.
SCHANNEL_CRED credSchannel = {0};
credSchannel.dwVersion = SCHANNEL_CRED_VERSION;
credSchannel.grbitEnabledProtocols = dwProtoFlags;

if (certContext != NULL)
{

credSchannel.cCreds = 1;
credSchannel.paCred = &certContext;

}

// Create SSL credentials.
TimeStamp tsExpires;
HRESULT hr = CSspiLib::AcquireCredentialsHandle(

NULL,
UNISP_NAME,
(bAsServer ?

SECPKG_CRED_INBOUND :
SECPKG_CRED_OUTBOUND),

NULL,
&credSchannel,
NULL,
NULL,
&m_hCredentials,
&tsExpires);

// See, if we have succeeded
if (SUCCEEDED(hr))
{

m_bServer = bAsServer;
if (m_bServer)

m_bMutualAuth = bMutualAuth;
m_dwProtoFlags = dwProtoFlags;

}
else

TRACE(_T("Line: %d. Error: 0x%08X<\\>n"), __LINE__, hr);

return hr;
}

... // other code not shown

HRESULT CSslCredentials::OpenSysStore(LPCTSTR strStore,
HCERTSTORE& hStore)

{
CT2CA storeName(strStore);
m_hStore = ::CertOpenSystemStore(0, storeName);
if (m_hStore == NULL)
{

DWORD dwErrCode = ::GetLastError();
return HRESULT_FROM_WIN32(dwErrCode);

}

return S_OK;
}

HRESULT CSslCredentials::FindCertificate(
HCERTSTORE hStore,
LPCTSTR strPrincipal,
PCCERT_CONTEXT& certContext)

{
USES_CONVERSION;
CT2CA hostName(strPrincipal);
ASSERT(m_hStore != NULL);
certContext = ::CertFindCertificateInStore(

m_hStore,
X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
0,
CERT_FIND_SUBJECT_STR_A,
hostName,
NULL);

if (certContext == NULL)
{

DWORD dwErrCode = ::GetLastError();
return HRESULT_FROM_WIN32(dwErrCode);

}

return S_OK;
}

Listing 2 CSslCredentials class

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 15

16 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

T A L I B O V

// other code not shown

// definition

[event_source(native)]
class CSslTransport
{

friend class CSslProvider;

private:
CSslTransport(CSslCredentials& sslCred);
~CSslTransport() {};

private: /*member variables*/

... // other code not shown
CSslCredentials& m_sslCred;

// SChannel parameters
SecHandle m_hContext;
SecPkgContext_StreamSizes m_streamSizes;

private: /*member functions*/

// Actual data handling routines
HRESULT ProcessPlainData();
HRESULT ProcessCryptData();

HRESULT ProcessExpiredContext(CNbtByteContainer& byteCont);
HRESULT ProcessRenegotiate(CNbtByteContainer& byteCont);
void ProcessDisconnect(CNbtByteContainer& byteCont);

// SChannel helpers
void ReleaseContext() {

if (HasContext()) {
CSspiLib::DeleteSecurityContext(&m_hContext);
SecInvalidateHandle(&m_hContext);

}
}
inline BOOL HasContext()
{

return SecIsValidHandle(&m_hContext);
}
HRESULT NegotiateAsSrvr(CNbtByteContainer& byteCont);
HRESULT NegotiateAsClnt(CNbtByteContainer& byteCont);
HRESULT DecryptData(CNbtByteContainer& byteCont);
HRESULT EncryptDataOnce(PBYTE pDataIn, int iDataSizeIn,

const SecPkgContext_StreamSizes &spcStreamSizes,
CNbtByteContainer& byteCont);

HRESULT EncryptData(CNbtByteContainer& byteCont);
HRESULT SetSSLStreamSizes();

inline void Lock() {m_critSec.Lock();}
inline void Unlock() {m_critSec.Unlock();}

// Events handling routines
void FireOutboundDataAvail(CNbtByteContainer& byteCont);
void FireInboundDataAvail(CNbtByteContainer& byteCont);
void FireDisconnect(CNbtByteContainer& byteCont);

// NOTE: native events (VC++7.0 only). If you're using VC6,
// modify the code to use a callback routine
__event void EventOutboundDataAvail(

ULONG ulSize, BYTE* pbData);
__event void EventInboundDataAvail(

ULONG ulSize, BYTE* pbData);
__event void EventDisconnect(

ULONG ulSize, BYTE* pbData);

public: /*member functions*/

// Data feeding routines
HRESULT FeedPlainData(ULONG ulSize, BYTE* pbData);
HRESULT FeedCryptData(ULONG ulSize, BYTE* pbData);
HRESULT RequestDisconnect();

void Destroy() {delete this;}

};

... // other code not shown

// implementation

HRESULT CSslTransport::NegotiateAsSrvr(
CNbtByteContainer& byteCont)

{
ASSERT(!m_bShuttingDown);
ASSERT(m_sslCred.HasCredHandle());

DWORD dwSspiInFlags =
ASC_REQ_SEQUENCE_DETECT |

ASC_REQ_REPLAY_DETECT |

ASC_REQ_CONFIDENTIALITY |
ASC_REQ_EXTENDED_ERROR |
ASC_REQ_ALLOCATE_MEMORY |
ASC_REQ_STREAM;

if (m_sslCred.MutualAuthRequired())
dwSspiInFlags |= ASC_REQ_MUTUAL_AUTH;

// Set Output Buffers for AcceptSecurityContext call
SecBuffer dataOut[1];
SecBufferDesc dataOutDesc;
dataOutDesc.cBuffers = 1;
dataOutDesc.pBuffers = dataOut;
dataOutDesc.ulVersion = SECBUFFER_VERSION;

SECURITY_STATUS scRet = SEC_I_CONTINUE_NEEDED;
while (

(scRet == SEC_I_CONTINUE_NEEDED) ||
(scRet == SEC_E_INCOMPLETE_MESSAGE))

{
SecBuffer dataIn[2];
dataIn[0].pvBuffer = m_dataCrypt.GetData();
dataIn[0].cbBuffer =

(unsigned long) m_dataCrypt.GetCount();
dataIn[0].BufferType = SECBUFFER_TOKEN;

dataIn[1].pvBuffer = NULL;
dataIn[1].cbBuffer = 0;
dataIn[1].BufferType = SECBUFFER_EMPTY;

SecBufferDesc dataInDesc;
dataInDesc.cBuffers = 2;
dataInDesc.pBuffers = dataIn;
dataInDesc.ulVersion = SECBUFFER_VERSION;

dataOut[0].pvBuffer = NULL;
dataOut[0].cbBuffer = 0;
dataOut[0].BufferType = SECBUFFER_TOKEN;

// Generate SSL handshake data
TimeStamp tsExpire;
DWORD dwSspiOutFlags = 0;
scRet = CSspiLib::AcceptSecurityContext(

m_sslCred.GetHandle(),
(HasContext() ? &m_hContext : NULL),
&dataInDesc,
dwSspiInFlags,
SECURITY_NATIVE_DREP,
(HasContext() ? NULL : &m_hContext),
&dataOutDesc,
&dwSspiOutFlags,
&tsExpire);

... // other code not shown

if ((scRet == SEC_E_OK) ||
(scRet == SEC_I_CONTINUE_NEEDED) ||
((FAILED(scRet) &&
((dwSspiOutFlags & ISC_RET_EXTENDED_ERROR) != 0))))

{
... // other code not shown
if ((dataOut[0].cbBuffer != 0) &&

(dataOut[0].pvBuffer != NULL))
{

byteCont.Append((const BYTE*)
dataOut[0].pvBuffer, dataOut[0].cbBuffer);

CSspiLib::FreeContextBuffer(dataOut[0].pvBuffer);
dataOut[0].pvBuffer = NULL;
dataOut[0].cbBuffer = 0;

// Done handshaking ?
if (scRet == SEC_E_OK)
{

scRet = SetSSLStreamSizes();
if (FAILED(scRet))
{

goto OnError;
}

if (dataIn[1].BufferType == SECBUFFER_EXTRA)
{

m_dataCrypt.RemoveAt(0, m_dataCrypt.GetCount() -
dataIn[1].cbBuffer);

return scRet;
}

}
// Protocol Error?
else if (FAILED(scRet) &&

((dwSspiOutFlags & ISC_RET_EXTENDED_ERROR) != 0))
{

return scRet;
}

Listing 3 CsslTransport class

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 17

T A L I B O V

m_dataCrypt.RemoveAll();
return S_OK;

}

if ((scRet != SEC_E_INCOMPLETE_MESSAGE))
{

if (dataIn[1].BufferType == SECBUFFER_EXTRA)
{

m_dataCrypt.RemoveAt(0, m_dataCrypt.GetCount() -
dataIn[1].cbBuffer);

if (scRet == SEC_E_OK)
{

scRet = SetSSLStreamSizes();
if (FAILED(scRet))
{

goto OnError;
}

return scRet;
}

}
else if (scRet == SEC_I_CONTINUE_NEEDED)
{

m_dataCrypt.RemoveAll();
return S_OK;

}
}

... // other code not shown

}
else
{

if (scRet == SEC_E_INCOMPLETE_MESSAGE)
return SEC_E_INCOMPLETE_MESSAGE;

goto OnError;
}

}

scRet = SetSSLStreamSizes();
if (FAILED(scRet))
{

goto OnError;
}

m_dataCrypt.RemoveAll();
return S_OK;

OnError:
m_dataCrypt.RemoveAll();
return (HRESULT) scRet;

}

... // other code not shown

HRESULT CSslTransport::DecryptData(CNbtByteContainer& byteCont)
{

... // other code not shown

const MaxBuffers = 4;
SecBufferDesc dataInDesc;
SecBuffer dataIn[MaxBuffers];
memset(dataIn, 0, sizeof(dataIn));

dataIn[0].pvBuffer = m_dataCrypt.GetData();
dataIn[0].cbBuffer = (ULONG) m_dataCrypt.GetCount();
dataIn[0].BufferType = SECBUFFER_DATA;

dataInDesc.ulVersion = SECBUFFER_VERSION;
dataInDesc.cBuffers = MaxBuffers;
dataInDesc.pBuffers = dataIn;

while (TRUE)
{

BOOL bExtra = FALSE;
HRESULT scRet = CSspiLib::DecryptMessage(

&m_hContext, &dataInDesc, 0, NULL);
switch (scRet)
{
case SEC_E_OK:

try
{

for (int i = 0; i <\<> MaxBuffers; i++)
{

switch (dataIn[i].BufferType)
{
case SECBUFFER_DATA:

byteCont.Append((const BYTE*) dataIn[i].pvBuffer,
dataIn[i].cbBuffer);

break;

case SECBUFFER_EXTRA:
bExtra = TRUE;

m_dataCrypt.RemoveAt(0, m_dataCrypt.GetCount() -
dataIn[i].cbBuffer);

memset(dataIn, 0, sizeof(dataIn));
dataIn[0].pvBuffer = m_dataCrypt.GetData();
dataIn[0].cbBuffer = m_dataCrypt.GetCount();
dataIn[0].BufferType = SECBUFFER_DATA;
break;

default:
continue;

}
}

}
catch(...)
{

return E_OUTOFMEMORY;
}

if (!bExtra)
{

m_dataCrypt.RemoveAll();
return S_OK;

}

break;

case SEC_I_RENEGOTIATE:
return ProcessRenegotiate(byteCont);

case SEC_I_CONTEXT_EXPIRED:
return ProcessExpiredContext(byteCont);

default:
return (HRESULT) scRet;

}
}

return S_OK;
}

HRESULT CSslTransport::EncryptData(CNbtByteContainer& byteCont)
{

... // other code not shown

HRESULT hr = S_OK;
int iDataSize, iNoOfChunks, iLastChunkSize, i;
if (m_streamSizes.cbMaximumMessage == 0)
{

return SEC_E_INTERNAL_ERROR;
}

byteCont.RemoveAll();
iDataSize = m_dataPlain.GetCount();
iNoOfChunks = iDataSize / m_streamSizes.cbMaximumMessage;
iLastChunkSize = iDataSize % m_streamSizes.cbMaximumMessage;
CNbtByteContainer contTemp;
for (i = 0; i <\<> iNoOfChunks; i++)
{

hr = EncryptDataOnce(
(PBYTE) (m_dataPlain.GetData() +

i * m_streamSizes.cbMaximumMessage),
m_streamSizes.cbMaximumMessage,
m_streamSizes,
contTemp);

if (FAILED(hr))
break;

byteCont.Append(contTemp);
}

if (SUCCEEDED(hr) && (iLastChunkSize <\>> 0))
hr = EncryptDataOnce(

(PBYTE) (m_dataPlain.GetData() +
i * m_streamSizes.cbMaximumMessage),

iLastChunkSize,
m_streamSizes,
contTemp);

m_dataPlain.RemoveAll();
if (FAILED(hr))
{

byteCont.RemoveAll();
if (hr == SEC_E_CONTEXT_EXPIRED)
{

hr = ProcessExpiredContext(byteCont);
}

}
else

byteCont.Append(contTemp);

return hr;
}

Listing 3 Continued

handle. Typically, an application will have one set of the CERT_CON-
TEXT structures. If it’s not enough, multiple certificate contexts can
be loaded and specified.

A CERT_CONTEXT structure is obtained in the number of ways. In
the accompanying sample application I’m extracting the certificate
from the system’s certificate store using the CSecCertificate wrap-
per class and its function—GetCertificate(). If you decide to go the
same route, you’ll need to open the store with CertOpenSystemStore()
and look up the certificate by the principal’s name with CertFind-
CertificateInStore(). By default Windows maintains four stores—
MY, CA (Certification Authority), ROOT, and SPC (Software Publisher

Certificates). You can examine them by going to the Internet Explorer
properties dialog and clicking on the Content tab and then the Cer-
tificates button. Also by default, when you request a certificate from
a Certification Authority (CA) that is based on Microsoft Certificate
Server, Windows will add it to one of the system stores. Of course,
there are ways to change that behavior. For example, you can create
your own certificate store (look at certificate-related functions in [5])
and import the certificates. The store can be an internal file, or a reg-
istry blob, or what have you. If the software you are developing is for
the in-house utilization only, then the best way to avoid higher costs
associated with valid certificates issued by CA Root Authorities such
as VeriSign is to install an in-house certificate server and establish
your company’s own Certification Authority. Certificate servers are
beyond the scope of this article but you can easily install them on
WinNT/2000/XP server platforms. For WinNT machines they can be
downloaded and installed as part of the NT Option Pack, for 2000
and XP they are part of the system installation package. At the read-
er’s disposal I provide a test certificate in the form of a PKCS#12 [6]
file, which contains the certificate and the matching private key. To
import the certificate and the key, simply double-click on the file and
follow the wizard’s directions. Be aware that the certificate has been
issued and signed by Nebula Technologies CA, which is not part of
the root certificate store on your machine. You’ll have to suffer with
an annoying dialog revealing that the certificate’s path cannot be ver-
ified, although, this will suffice for testing purposes.

Finding the certificate in the system store will work if you already have
a certificate and it was successfully imported into the store. Once the cer-
tificate is found your application may try to verify it before putting it to
use. A more generic version, CertOpenStore(), can open a store that
has been previously serialized into an external file. Or, it can open a
PKCS#7 [7] file containing X.509 certificate chain. Another way is to man-
ually create a certificate context from an existing X.509 certificate and
add it to the previously opened store, thus obtaining both the certificate
and the store context. The functions to look at are CertCreateCer-
tificateContext() and CertAddCertificateContextToStore(). In all
the above cases of acquiring the certificate, it’s implied that the private

key that corresponds to the certificate’s public key exists in the security
provider repository. Otherwise, your application will not be able to ne-
gotiate SSL read/write keys and calls to AcceptSecurityContext() or Ini-
tializeSecurityContext() will fail.

SSL Handshake and Data Exchange
Once AcquireCredentialsHandle() function successfully returns the
handle, the next step in getting SChannel to do its work is to call Ac-
ceptSecurityContext() or InitializeSecurityContext() to per-
form the SSL handshake for us. The first function processes hand-
shake messages as a server and the second one as a client. After that,
EncryptMessage() and DecryptMessage() are used for just what their
names impl —encrypting and decrypting messages. Feel free to look
up these functions [5] and the meaning of their input/output param-
eters and return codes (which are plenty, by the way). In the supple-
mental code, CSslTransport class wraps these important functions.
I sprinkled a lot of comments there in an attempt to explain what’s
behind all these SEC_E_INCOMPLETE_MESSAGE and SECBUFFER_EXTRA
constants that inform the caller about the actions taken by SChan-
nel or actions that the caller has to take on its part when the func-
tions return.

Conclusion
I’m barely touching the tip of the iceberg of what’s involved in creat-
ing a robust and responsive SSL-enabled client or server system, espe-
cially the server. If you anticipate a heavy load on that system, you
should consider some optimization techniques. Eric Rescorla’s book [8]
outlines most of the problems related to SSL and TLS performance.
The ability to support the maximum number of clients is of paramount
importance for the server that anticipates heavy traffic. If you are us-
ing WinSock as the data supplier for the application, consider loading
WinSock 2 and utilizing its bandwidth throttling capability [11].

To get a sense of how SChannel handles the data, try playing with
the supplemental code available online. The supplemental code pro-
vides a good and verbose diagnostic feature. Good luck.

References
[1] Freier, A.O., Karlton, P., and Kocher, P.C., “The SSL Protocol
Version 3.0.” November 1996. This is the last published draft of
SSLv3, which never materialized as an RFC but became the de fac-
to standard. http://home.netscape.com/eng/ssl3/draft302.txt
[2] Dierks, T., Allen, C., “The TLS Protocol Version 1.0,” RFC 2246.
January 1999.
[3] ITU-T, “OSI networking and system aspects—Abstract Syntax
Notation One (ASN.1),” ITU-T Recommendation X.690, Decem-
ber 1997.
[4] ITU-T, “Directory,” ITU-T Recommendation X.509, August 1997.
[5] Microsoft, “MSDN Help.” April 2002.
[6] RSA Laboratories, “Password Based Encryption Standard,” PKCS
#12. June 1999.
[7] RSA Laboratories, “Cryptographic Message Syntax Version 1.5,”
PKCS #7. November 1993.
[8] Rescorla, E., SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.
[9] Thomas, S., SSL and TLS Essentials. John Wiley & Sons, Inc., 1999.
[10] Linn, J., “Generic Security Service Application Program Inter-
face (GSS-API),” RFC 1508. September 1993.
[11] Hua W., “Winsock 2: QoS API Fine-Tunes Networked App
Throughput and Reliability.” MSDN Magazine, Microsoft, April 2001.
w::d

| Download code > windevnet.com/wdn/code/ |

18 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

T A L I B O V

Windows NT systems have security.dll
exposing the SSPI functionality; all other
Microsoft systems use secur32.dll

ALTHOUGH .NET PROVIDES ITS own security
model (in the System::Security namespace)
for CLR security, it doesn’t address the lurk-
ing behemoth that is the Win32 security sub-
system. For those who have programmed with
Win32 security, you’ll know that while it’s con-
ceptually straightforward, it’s a real bear to pro-
gram. For example, when writing a program
that requires certain rights or privileges to work,
it can often be a very intensive process to de-
termine what privileges one has, or what rights
are required.

In this article, I’ll demonstrate how this
coding headache can be simplified as I de-
velop a .NET library, in Managed C++, that
encapsulates the programming details in a
simple object model. Along the way, we’ll
have a quick refresher on Win32 security,
demonstrate some techniques for simplifying
coding with the Win32 security APIs, and
learn some of the restrictions and gotchas of
Managed C++.

The article will be based on the first version
of the .NET Win32 Security component I’m
developing, and will describe the implemen-
tation of the AccessToken class and support-
ing types. It will also show how this object
model can be utilized in a UI client, Security
Explorer, written in C#.

Win32 Security
Model Whistlestop
Win32 security is a big topic, which would re-
quire many articles to do it justice. (For those
who want to learn more, I recommend Nik
Okuntseff ’s book Windows NT Security as a
good place to start.) I’m going to restrict my-
self in this article to a discussion of access to-
kens. An access token is created for each user
when the user logs on, and persists for the du-
ration of that user’s session. Every process that
the user executes receives a copy of that ac-
cess token, which is then used by the security
subsystem to determine what operations the
process (i.e., the user) is allowed to perform.

An access token contains, among other
things, the following items:

• The user’s security identifier (SID). A SID
is a variable-length binary structure that is
used to uniquely identify entities (users and
groups).

• A list of SIDs indicating the groups to which
the user belongs.

• A default owner SID. This is assigned as
the owning entity to objects that the user
creates.

• A list of privileges. Note that some privi-
leges must be enabled in order for them to
be used.

• A default discretionary access control list
(DACL). This is a list of permissions, known
as access control entries (ACEs), that will

be used when the user supplies a null SECU-
RITY_DESCRIPTOR during system object cre-
ation (e.g., the fourth parameter in Create-
File()).

The creation and manipulation of some of
these structures can be very cumbersome in-
deed. For example, an access control list (ACL)
consists of a header—the Win32 structure

ACL—followed by a variable number of ac-
cess control entries (ACEs). Each ACE is a
variable-length structure consisting of a head-
er—ACCESS_ALLOWED_ACE, ACCESS_DENIED_
ACE, or SYSTEM_AUDIT_ACE—all of which are
(thankfully) the same size, and comprised of
an ACE_HEADER structure, an ACCESS_MASK, and
a SID (which is the variable length part). And
that’s just an ACL. A security descriptor, which
is the security information applied to system
objects (e.g., files, registry keys, processes, etc.)
is comprised of two SIDs (owner and group)
and two ACLs (permissions list and auditing
list), all of which are variable length, and may
or may not be comprised within the same mem-
ory block as the security descriptor or refer-
enced via pointers. Scary, huh?

AccessToken
The SynSoft::Security::AccessToken class
is defined, in Managed C++, as shown in List-
ing 1. The first thing you’ll note is that it de-
rives from the interface System::IDisposable.
This interface marks the class as implement-
ing the Dispose pattern, which means that the
class can be used in a C# using expression
(providing Resource Acquisition Is Initialization,
albeit user-requested rather than class-
mandated) and also is amenable to generalized
closure: One simply dynamically casts (using
dynamic_cast in C++ or as in C#) to IDis-
posable, then calls Dispose() on a (nonnull)
resultant reference. AccessToken, like any class
that owns/manages a native resource (in this
case the access token) provides this facility so
that well-behaved clients can cause it to re-
linquish its resources in a timely fashion, rather
than waiting for garbage collection. Further-
more, it is my practice to provide a Close()
method whenever implementing IDisposable,
which performs the same task as Dispose().
You’ll see this in other classes in this library.

Win32 Security in Managed C++

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 19

M A T T H E W W I L S O N

MATTHEW WILSON is a software develop-
ment consultant for Synesis Software, spe-
cializing in robustness and performance in
C, C++, C#, and Java. Matthew is the author
of the STLSoft libraries, and the forthcom-
ing book Imperfect C++ (to be published by
Addison-Wesley, 2004). He can be contact-
ed via matthew @synesis.com.au or at
http://stlsoft.org/. This article was first
published in Windows Developer Network,
September 2003.

M A T T H E W W I L S O N

Defining the AccessToken class in MC++ and

trying it out in a Security Explorer app

Next, it is clear that one cannot construct an instance of an Ac-
cessToken. This makes sense, since we cannot create an access token
in Win32 land—we can only open one via the Win32 functions Open-
ProcessToken() and OpenThreadToken(). AccessToken has two cor-
responding static methods that do exactly the same job, and then re-
turn an AccessToken instance representing the (successfully opened)
token. So we can open a token and we can close/dispose of it. Now
what we’re interested in are its attributes.

The current version of this library contains read-only components.
(Create/edit functionality is planned in a future release; visit http://
synsoft.org/dotnet.html to obtain updates.) We can access, as .NET

properties, the user and primary group, the groups, the privileges, the
default DACL, and a variety of other attributes associated with an ac-
cess token. The types returned (e.g., SID, GroupList, PrivilegeList)
are also classes in the same namespace (and assembly). Most of these
classes are also required to implement the IDisposable pattern; this
is one of the hassles of .NET’s not supporting C++’s deterministic de-
structors. Consider the GroupList class (Listing 2). This class does not
contain any unmanaged resources. In fact, its only member is an Ar-
rayList. However, because the list is populated with Group instances
in the GroupList constructor, GroupList must implement the IDis-
posable interface, and in its Dispose() method must iterate through

20 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

W I L S O N

namespace SynSoft
{

namespace Security
{

/// Represents a security AccessToken
public __gc class AccessToken

: public IDisposable
{
private:

typedef void *HANDLE;

private:
/// Create an instance managing the given security handle
AccessToken(HANDLE hToken);
/// Finaliser
~AccessToken();

// IDisposable
public:

/// Provides facility for
void Close();
void Dispose();

// Creation
public:

/// Open the access token for the current process
static AccessToken *OpenProcessToken();
/// Open the access token for the current thread
static AccessToken *OpenThreadToken();

// Attributes
public:

/// The token's user account
__property SID *get_User();
/// The groups accounts associated with the access token
__property GroupList *get_Groups();
/// Privileges
__property PrivilegeList *get_Privileges();
/// The security identifier of the owner
__property SID *get_Owner();
/// The primary groups of any objects created with the access token
__property SID *get_PrimaryGroup();

/// Default DACL
__property ACL *get_DefaultDACL();
/// Source
__property TokenSource *get_Source();
/// Type
__property TokenType get_Type();
/// Impersonation Level
__property TokenImpersonationLevel get_ImpersonationLevel();
/// Statistics
__property TokenStatistics *get_Statistics();
/// Restricted SIDs
__property GroupList *get_RestrictedSIDs();
/// Session Id
__property Int32 get_SessionId();
/// Sandbox Inert
__property bool get_SandboxInert();

// Standard members
public:

// Returns a string representation of the AccessToken
String *ToString();

// Implementation
private:

GroupList *_get_groups(TOKEN_INFORMATION_CLASS tic);

// Members
private:

HANDLE m_hToken;
SID *m_user;
GroupList *m_groups;
PrivilegeList *m_privileges;
SID *m_owner;
SID *m_primaryGroup;
ACL *m_defaultDACL;
TokenSource *m_source;
TokenStatistics *m_statistics;
GroupList *m_restrictedSIDs;

};
}

}

Listing 1 The AccessToken class declaration

namespace SynSoft
{

namespace Security
{

// GroupList.h

/// Represents a list of groups
public __gc class GroupList
: public IEnumerable
, public IDisposable

{
public:

GroupList(int cGroups, SID_AND_ATTRIBUTES *groups);

// IDisposable
public:

void Close();
void Dispose();

// IEnumerable
public:

IEnumerator *GetEnumerator();

// Members
private:

ArrayList *m_groups;
};

// GroupList.cpp

GroupList::GroupList(int cGroups, SID_AND_ATTRIBUTES *groups)
: m_groups(new ArrayList(cGroups))

{
for(int i = 0; i < cGroups; ++i)
{

m_groups->Add(new Group(new SID(groups[i].Sid), groups[i].Attributes));
}

}

void GroupList::Close()
{

if(0 != m_groups)
{

dispose_contents(m_groups);
m_groups->Clear();

m_groups = 0;
}

}
}

}

Listing 2 The GroupList class

the list—ArrayList does not implement IDisposable—and call Dis-
pose() on each contained object (in this case, Group instance). This
stuff is tedious, and also carries a bit of a catch. Sometimes a class will
implement IDisposable but will make its Dispose() method non-
public; this is known as Explicit Interface Member Implementation. Hence,
you need to cast the contained elements to IDisposable before at-
tempting to call Dispose(). Because this is a common scenario, I’ve
used the .netSTL (.netSTL is a subproject of STLSoft; http://dotnet-
stl.org/) algorithm dispose_contents<>() (shown in Listing 3, with
its supporting function dispose_set_null<>()).

The picture doesn’t end there, alas. Group also does not contain
any unmanaged resources, but it has an instance of class SID, which
does—a Win32 SID blob, in fact (see Listing 4). Thus, we had to add

Dispose() (and Close()) functionality to at least two other types
because a composed type requires it. Of course, you may think why
bother, the Win32 SID is only a blob of memory (albeit from the na-
tive rather than the managed heap)? Well, as a rule, I don’t feel com-
fortable having any unmanaged resources hanging around for an in-
definite time, and one might ponder the case where the resource is
not a block of memory but a file handle. This is a fundamental prob-
lem of garbage-collected systems; sure, they handle memory fine (of-
ten better than deterministically managed systems), but what about
all the other resource types (files, pipes, and heaven-forefend, syn-
chronization objects!)?

Having had my C++-biased rant, let’s see what’s good about this li-
brary. Looking into the implementation of many of the property accessor

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 21

W I L S O N

/* ///
* ...
*
* Extract from dotnetstl_dispose_functions.h
*
* Copyright (C) 2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Source License:
* http://www.synesis.com.au/licenses/ssssl.html)
*
* ...
* // */

namespace dotnetstl
{

/// Disposes the managed type, and resets the pointer
template <ds_typename_param_k T>
inline void dispose_set_null(T *&pt)
{

if(0 != pt)
{

System::IDisposable *disposable = pt;

disposable->Dispose();
pt = 0;

}
}

/// Disposes all the items in a container
template <ds_typename_param_k C>
inline void dispose_contents(C *pc)
{

for(int i = 0, count = pc->get_Count(); i < count; ++i)
{
System::IDisposable *o = dynamic_cast<System::IDisposable*>(pc->get_Item(i));

dispose_set_null(o);
}

}

} // namespace dotnetstl

Listing 3 IDisposable helper functions from .netSTL

namespace SynSoft
{

namespace Security
{

// SID.h

public __gc class SID
: public IDisposable

{
public:

SID(void *psid);
~SID();

// IDisposable
public:

void Close();
void Dispose();

// Properties
public:

// Returns a string representation of the SID
String *ToString();

// The type of the SID
__property SidType get_Type();
// The name of the user associated with the SID
__property String *get_UserName();
// The name of the domain associated with the SID
__property String *get_DomainName();

// Members
private:

void *m_psid;
SidType m_type;
String *m_userName;
String *m_domainName;
String *m_stringForm;

};

// SID.cpp

SID::SID(void *psid)
: m_psid(Sec_SidDup(psid))
, m_type(SidType::Unknown)
, m_userName(0)

, m_domainName(0)
, m_stringForm(0)

{
// Now we get the user and domain names

if(0 == psid)
{

throw new SecurityException(E_INVALIDARG, "NULL SID");
}
else if(!::IsValidSid(psid))
{

throw new SecurityException(::GetLastError(), "Invalid SID");
}
else
{

. . .
}

}

SID::~SID()
{

if(0 != m_psid)
{

Sec_Free(m_psid);
}

}

void SID::Close()
{

if(0 != m_psid)
{

Sec_Free(m_psid);
m_psid = 0;

}
}

void SID::Dispose()
{

Close();
}

. . .
}

}

Listing 4 Extracts from SID.h & SID.cpp

methods of AccessToken (Listing 5), we can see one nice feature. Since
all managed types must be held by pointer, the implementation dilemma
common in object models—do I use composition to reduce memory usage
and increase execution speed, or use pimpl to reduce memory usage and
increase execution and compilation speed?—is moot. We have to use
pointers, and it’s often best to choose lazy evaluation. This may or may
not be the “best” thing from a pure programming perspective, but it sim-
plifies the design, coding, and maintenance of modules, so it has a lot
going for it. A side effect is that it will help to ameliorate the dangling
unmanaged resource issue; in cases where they are not used, they’re not
created, and so not dangling.

So how do we get information out of an access token? GetToken-
Information(), of course. This very powerful function is prototyped
as follows:

BOOL WINAPI GetTokenInformation (
HANDLE TokenHandle,
TOKEN_INFORMATION_CLASS TokenInfClass,
LPVOID TokenInformation,
DWORD TokenInfLength,
PDWORD ReturnLength);

You pass a token handle, the type of information you want (a mem-
ber of the TOKEN_INFORMATION_CLASS enumeration), a destination
buffer and its length (in bytes), and an address to receive the num-
ber of bytes of information retrieved. Seems straightforward, but like
most Win32 Security API functions, it can be tricky. Some of the
access token information is of a fixed size, and so one simply passes
the appropriate parameters, as can be seen in the implementation of
AccessToken::get_Type(). In most cases, however, the information
is of variable length, so one must call GetTokenInformation() as de-
scribed in the sidebar titled “Surviving the Win32 Security API.”
This approach is repetitive and error-prone—what if there is an ex-
ception thrown between the allocation and deallocation of the re-
source? A lot of careful boilerplate is required (see Access-
Token::_get_groups() in Listing 5; this implementation is chosen
because both TokenGroups and TokenRestrictedSids return infor-
mation in a TOKEN_GROUPS structure). Mercifully, there is a simple
and elegant solution in the form of the WinSTL (another STLSoft
subproject; http://winstl.org/) component token_information<> (see
Listing 6). You parameterize the template using the appropriate TO-
KEN_INFORMATION_CLASS enumeration member, and the traits mech-
anism automatically deduces the correct data structure type and

22 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

W I L S O N

SID *AccessToken::get_User()
{

if(0 == m_user)
{

token_information<TokenUser> user(m_hToken);

if(!user)
{

throw new SecurityException(::GetLastError());
}
else
{

m_user = new SID(user->User.Sid);
}

}

return m_user;
}

GroupList *AccessToken::get_Groups()
{

if(0 == m_groups)
{

m_groups = _get_groups(TokenGroups);
}

return m_groups;
}

GroupList *AccessToken::get_RestrictedSIDs()
{

if(0 == m_restrictedSIDs)
{

m_restrictedSIDs = _get_groups(TokenRestrictedSids);
}

return m_restrictedSIDs;
}

PrivilegeList *AccessToken::get_Privileges()
{

if(0 == m_privileges)
{

winstl::token_information<TokenPrivileges> privileges(m_hToken);

if(!privileges)
{

throw new SecurityException(::GetLastError());
}
else
{

m_privileges = new PrivilegeList(privileges->PrivilegeCount,
privileges->Privileges);

}

return m_privileges;
}

return m_privileges;
}

TokenType AccessToken::get_Type()
{

TOKEN_TYPE tt;
DWORD chRequired;

if(!::GetTokenInformation(m_hToken, ::TokenType,
&tt, sizeof(tt), &chRequired))

{
throw new SecurityException(::GetLastError(),

"Could not elicit type from token");
}

return TokenType(tt);
}

GroupList *AccessToken::_get_groups(TOKEN_INFORMATION_CLASS tic)
{

GroupList *grouplist;
DWORD cbRequired;
DWORD dwErr;

stlsoft_assert(tic == TokenGroups || tic == TokenRestrictedSids);

::GetTokenInformation(m_hToken, tic, NULL, 0, &cbRequired);
dwErr = ::GetLastError();

if(ERROR_INSUFFICIENT_BUFFER != dwErr)
{

throw new SecurityException(dwErr);
}
else
{

TOKEN_GROUPS *groups = static_cast<TOKEN_GROUPS*>(Sec_Alloc(cbRequired));

if(!::GetTokenInformation(m_hToken, tic, groups, cbRequired, &cbRequired))
{

throw new SecurityException(::GetLastError());
}
else
{

try
{

grouplist = new GroupList(groups->GroupCount, groups->Groups);
}
catch(Exception *x)
{

Sec_Free(groups);

throw x;
}

}
}

return grouplist;
}

Listing 5 Extract from AccessToken.cpp

instantiates a class that wraps the allocation, acting as a smart point-
er for the requisite type. The get_User() and get_Privileges()
methods in Listing 5 demonstrate how much this simplifies matters.
(Note that the template is flexible in allowing you to specify an ex-
ception policy. The default is stlsoft::null_exception, which does
not throw, in which case the implementation ensures that Get-
LastError() will reflect the failing condition, rather than being over-
written during deallocation of the memory buffer.)

The difficulty of processing the information returned depends on
the type of information retrieved. Retrieving SECURITY_IMPERSON-
ATION_LEVEL, which is an enumeration (as is TOKEN_TYPE), is very
simple. Just retrieve it and convert it to the appropriate managed
enumeration type. Note: It’s convenient, but somewhat unsafe, that
Managed C++ lets you cast, in the form of a conversion construc-
tor, from a C-type to a managed enumeration type; see AccessTo-
ken::get_Type(). Although I’ve borrowed the values for the man-
aged enumerations TokenType, TokenImpersonationLevel, and
SidType from their native equivalents, and am confident I’ve
transcribed them correctly, what if I got it wrong?)

For some variable sized entities, it is also reasonably easy to process
the retrieved information. Retrieving groups or privileges returns

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 23

W I L S O N

/* ///
* ...
*
* Extract from winstl_token_information.h
*
* Copyright (C) 2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Source License:
* http://www.synesis.com.au/licenses/ssssl.html)
*
* ...
* // */

namespace winstl
{

template <TOKEN_INFORMATION_CLASS C>
struct token_information_traits;

template <>
struct token_information_traits<TokenUser>
{

typedef TOKEN_USER data_type;
};

... // More specialisations of token_information_traits

template< TOKEN_INFORMATION_CLASS C
, ws_typename_param_k X = stlsoft::null_exception
, ws_typename_param_k D = token_information_traits<C>::data_type
, ws_typename_param_k A = processheap_allocator<ss_byte_t>
>

class token_information
{
public:

typedef token_information<C, X, D, A> class_type;
typedef token_information_traits<C> traits_type;
typedef X exception_thrower_type;
typedef D data_type;
typedef A allocator_type;

// Construction
public:

/// Constructs an instance from the given access token
ws_explicit_k token_information(HANDLE hToken)

: m_data(0)
{

DWORD cbRequired;
DWORD dwError;

::GetTokenInformation(hToken, C, NULL, 0, &cbRequired);
dwError = ::GetLastError();
if(ERROR_INSUFFICIENT_BUFFER != dwError)
{

// Report error
exception_thrower_type()(dwError);

}
else
{

data_type *data = (data_type*)allocator_type().allocate(cbRequired);

if(NULL == data)
{

// Report error
exception_thrower_type()(ERROR_NOT_ENOUGH_MEMORY);

// Set the last error, in case the client code is not
// using exception reporting
::SetLastError(ERROR_NOT_ENOUGH_MEMORY);

}
else
{

if(!::GetTokenInformation(hToken, C, data, cbRequired, &cbRequired))
{

// Scope the last error, in case the client code is not
// using exception reporting
dwError = ::GetLastError();

allocator_type().deallocate((ss_byte_t*)data);

// Report error
::SetLastError(dwError);
exception_thrower_type()(dwError);

}
else
{

// Success
m_data = data;

::SetLastError(ERROR_SUCCESS);
}

}
}

}
~token_information()
{

allocator_type().deallocate((ss_byte_t*)m_data);
}

// Conversion
public:

operator data_type *();
operator data_type const *() const;

data_type *operator ->();
data_type const *operator ->() const;

ws_bool_t operator !() const;

/// Members
private:

data_type *m_data;

/// Not to be implemented
private:

token_information(token_information const &);
token_information &operator =(token_information const &);

};

} // namespace winstl

Listing 6 WinSTL's token_information helper template

IF THERE are two things you should remember above all others
when working with the Win32 Security API, they are:

1. Nearly everything is variable length. Not only does this mean you
should make no assumptions about being able to iterate through com-
posite/collection types in an integral fashion, but you should also nev-
er assume that things are of a predeterminable size.

2. The common paradigm is Size-Allocate-Retrieve, as we saw with
GetTokenInformation(). You call a function with a null desti-
nation pointer and give an initial size of 0. It will return into your
size parameter the required size (and set the last error to ER-
ROR_INSUFFICIENT_BUFFER). You allocate an appropriately sized
buffer and call again, and the function will fill your buffer with
the desired information.

—M.W.

Surviving the
Win32 Security API

counted arrays of SID_AND_ATTRIBUTES and LUID_AND_ATTRIBUTES,
respectively, so one need simply walk the array, as in the GroupList
constructor (Listing 2).

Access Control Lists and Entries
The retrieval of the default DACL from an access token is an al-
together more complex matter. As well as retrieving a variable
length structure, the items within the structure are polymorphic
(can be one of the three ACE types), and are themselves of vari-
able length. Nasty.

The answer comes from a combination of another useful class from
WinSTL—the acl_sequence<> template (not shown; available from
http://winstl.org/downloads.html)—and a hacky assumption. Since
all the ACE structures have the same essential structure (which can’t
be a coincidence—I bet the designers of the Win32 Security API de-
cided in this one small way to give themselves a break), we can treat
them as sharing a pseudotype (wherein ACE_HEADER) to treat them

all equally. Listing 7 shows the solution in the ACL constructor. acl_se-
quence<> takes care of defining the range [begin, end), and ensuring
the appropriate pointer-arithmetic when moving from one ACE to
the next. Inside the loop, we switch on the header type, and then
call the appropriate ACE constructor. AccessAllowedACE, Access-
DeniedACE, and SystemAuditACE share a common base class, ACE,
which handles the retrieval of the ACE structure contents into the
class in a generalized (based on their common layouts) fashion. As I
said, it’s a hack, but since it would be impossible to change the sizes
of the extant ACE types without breaking every Win32 program out
there that uses security, I think we can say it is an informed hack and
sleep soundly.

Security Explorer
That’s pretty much all the ugly stuff in the library; the rest is very straight-
forward and I’ll leave it to you to download the archive and look through
it. Let’s see how we can use it. The Security Explorer program is shown

24 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

W I L S O N

// from ACL.h

namespace SynSoft
{

namespace Security
{

public __gc class ACL
: public IEnumerable
, public IDisposable

{
public:

ACL(PACL pacl);

// IDisposable
public:

void Close();
void Dispose();

// IEnumerable
public:

IEnumerator* GetEnumerator();

// Properties
public:

__property Int32 get_Count();

String *ToString();

// Members
private:

UInt32 m_revision;
ArrayList *m_aces;

};
}

}

// GroupList.cpp

ACL::ACL(PACL pacl)
: m_aces(new ArrayList(pacl->AceCount))
, m_revision(pacl->AclRevision)

{
using winstl::acl_sequence;

acl_sequence aces(pacl);
acl_sequence::const_iterator begin = aces.begin();
acl_sequence::const_iterator end = aces.end();

for(; begin != end; ++begin)
{

PACE_HEADER header = *begin;

switch(header->AceType)
{

case ACCESS_ALLOWED_ACE_TYPE:
m_aces->Add(new AccessAllowedACE(header));
break;

case ACCESS_DENIED_ACE_TYPE:
m_aces->Add(new AccessDeniedACE(header));
break;

case SYSTEM_AUDIT_ACE_TYPE:
m_aces->Add(new SystemAuditACE(header));
break;

}
}

}

Listing 7 Enumerating an ACL

CONVERTING FROM a C-string to a managed string is nice and
straightforward, as System::String contains appropriate con-
structors. However, going the other way is a bit of a pain (and it
is not particularly well publicized in the documentation). You need
to call the StringToHGlobalUni() or StringToHGlobalAnsi()
methods of System::Runtime::InteropServices::Marshal type
to allocate it, followed by ToPointer() on the IntPtr instance
returned by them. When you’re done with the string, don’t forget
to release it by calling Marshal’s FreeHGlobal() method:

wchar_t *pwszUserName =
(wchar_t*)(Marshal::StringToHGlobalUni(userName).ToPointer());
size_t si;
PSID psid = Sec_AllocSidFromUserNameW(pwszUserName, &si);

Marshal::FreeHGlobal(pwszUserName);

Another thing worth mentioning is that just because you’re in
Managed C++, there’s no reason why you must eschew all of your
useful C/C++ libraries. Specifically, it’s surprising how C++ afi-
cionados forget the incredible utility of sprintf() and start flail-
ing around with ToString() and Concat(). Consider the follow-
ing possible implementations of LUID::ToString() (an

LUID—Locally Unique ID—is used to uniquely identify a privilege,
like an ATOM does for strings):

String *LUID::ToString()
{

return String::Concat(HighPart.ToString(),
“-”,
LowPart.ToString());

}

String *LUID::ToString()
{

wchar_t sz[31];

wsprintfW(sz, L”%d-%u”, HighPart, LowPart);

return new String(sz);
}

The first one might have fewer lines, but which one do you think
will be faster (and have fewer allocations)?

—M.W.

Strings in Managed C++

in Figure 1. As you can see, it has a standard
tree/list format, where the tree contains com-
posite or collection entities, and the list con-
tains the values or attributes. This first version
allows exploration of the process access token.
The root-most node, when selected, displays
the user, owner, primary group, and the like,
and then the five subnodes show the contents
of each of their collections.

The Security Explorer works by opening the
access token for the process, by calling Ac-
cessToken::OpenProcessToken. It stores this
along with an identifying type in an instance
of a NodeItem type, which is then stored as the
Tag value (LPARAM in Win32 API parlance) of
the tree node. The collection properties (Groups,
Privileges, etc.) are similarly stored in subn-
odes. When the user clicks on a node, the han-

dler loads the stored object (and its type), and
processes it according to the type. It’s not par-
ticularly elegant—a more professional solution
would be to use polymorphic display-handler
classes—but it serves to exercise the security
object model. I’m already finding this useful,
since it’s far and away the quickest mechanism
I have to tell me what privileges I have, and
whether they’re enabled, on a given system.

Summary
This article has given a very brief introduction
to the Win32 security subsystem, discussing in
some detail the contents of access tokens and
how to read them. Hopefully, this has whet-
ted your appetite and shown you that, in com-
bination with suitable helper code, manipu-
lating the security API is not as scary as you

might have thought. We all avoid it like the
plague as a rule, but when you need to secure
your application objects, you have no choice
but to dive in. Now, perhaps, you’ll have a bit
of background info to help.

We’ve also discussed some of the implica-
tions of development in Managed C++, and
highlighted some of the issues you encounter
with this new language. Finally, I hope the point
is not lost that we’ve tamed a daunting C API
by applying some very modern C++ (STL)
techniques. Over this, we’ve layered a Man-
aged C++ object model, which was then used
in a C# application. How’s that for integration?

Notes & References
Applied .NET Framework Programming. Jeffrey
Richter, Microsoft Press, 2002.

Windows NT Security. Nik Okuntseff,
R & D Books, 1997.

STLSoft is an open-source organization ap-
plying STL techniques to a variety of tech-
nologies and operating systems. It is located at
http://stlsoft.org/. WinSTL and .netSTL are
subprojects, and are located at http://winstl.org/
and http://dotnetstl.org/, respectively.

SynSoft is the nonprofit imprint of my com-
pany, Synesis Software, and is located at
http://synsoft.org/. It provides D, .NET, Java,
Perl, and Python code/components free for use
without royalty.w::d

| Download code > windevnet.com/wdn/code/ |

W I L S O N

Figure 1 Security Explorer Interface

WHILE MANAGED C++ is, for the most part, easy to use (proba-
bly easier than pure C++ itself), it buys this by making some sacri-
fices. There are, therefore, some really annoying facets of the lan-
guage:

Managed C++ has no friends. This might seem a minor thing, es-
pecially since use of the friend keyword is so rarely useful/justi-
fied in pure C++. However, there are other restrictions of managed
C++ that conspire with the lack of friendship to create a real wart.
Take the SID class. Its constructor (which takes void*) is visible,
since we have to be able to make SID instances from within the
ACE, AccessToken, and GroupList classes. We most certainly do
not want any code outside of this library to ever call that con-
structor. However, if I make the constructor private, the other class-
es cannot see it. If I try to make them friends, I’m given a C3809
and told to go away. I even tried placing the address of a private
static creator method in a public function pointer within a static
(class) constructor, but this was disallowed because it violated ac-
cessibility to managed types from unmanaged types. Unless Man-
aged C++ supports the Assembly or Family and Assembly accessi-
bilities—which it does not, as far as I can discover—then we’re stuck
with situations such as that with SID(void*). What’s a J# client go-
ing to make of that?!

I mentioned in the main text that we can conversion-construct
managed enumeration instances from native types, which is very
open to abuse. Given that, it is strange that, even in managed C++,

we cannot define constructors for value types. The LUID type,
which is defined as:

public __value struct LUID
{
public:

String *ToString();

public:
void Assign(::LUID const &rhs)
{

this->LowPart = rhs.LowPart;
this->HighPart = rhs.HighPart;

}

public:
UInt32 LowPart;
Int32 HighPart;

};

has to use the Assign method because we cannot define a con-
structor to instantiate it from the Win32 LUID structure. I presume
there’s a good reason, but it’s annoying nonetheless.

—M.W.

Managed C++ Hasn’t Got Any Friends!

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 25

A WORM IS ABOUT to destroy the Internet.
Again. For the second time this year. The worm
has been given a name in advance this time,
like tropical storms that are sure to develop
each season before a few become hurricanes.
The name of this worm shall be Mescaline
(http://securityfocus.com/columnists/1741). It
will target the now well-known vulnerabilities
in Distributed Component Object Model
(DCOM) that can be invoked remotely by way
of Remote Procedure Call (RPC), as described
in Microsoft Security Bulletin MS03-026
(http://www.microsoft.com/technet/securi-
ty/bulletin/MS03-026.asp) and demonstrated
by a variety of sample code and scanning util-
ities; see Resources.

Beating Mescaline before it strikes is now a
matter of patching Windows boxes and pro-
tecting vulnerable TCP/IP ports. The vulner-
able DCOM code can be reached in many
ways, both locally and remotely, such as
through ports 135 (RPC), 139 (NetBIOS), and
445 (SMB) that are exposed by default on
Windows boxes. Other TCP/IP ports also ex-
pose an interface to DCOM in configurations
where services like RPC over HTTP (port 593)
are available or in the case of nearly any cus-
tom code that uses DCOM for interprocess
communication. Just as we would prepare our
homes and businesses to weather a coming
storm, first by building a secure foundation,
sturdy frame, and reliable roof, and next by
covering breakable glass and other unpre-
ventable vulnerabilities with plywood until the
storm passes, we all must stop whatever else
we're doing and hurry to patch, protect, and
repair our Windows boxes. While doing so, we
should figure out how to prevent our work from
causing this type of problem again so future
storms remain small and the Internet weath-
er bureau won't have to make a regular prac-
tice of naming things in advance.

Note that the line of code that enables
Mescaline isn’t in DCOM, rather, it’s in the
network communications portion of RPC. The
defective line of code causes RPC to bind TCP
port 135 on the address of the default inter-

face (0.0.0.0), which is also known as "all unas-
signed" or "INADDR_ANY." This binding is
done instead of explicit bindings to each ad-
dress supported by the box. This conserves
memory, improves performance, and ensures
that hardware configuration changes such as
adding or removing network adapters that re-
sult in readdressing, or in the case of DHCP a
preplanned dynamic addressing, don't result
in network services that lose track of the cur-
rent address to which they must bind in order
to receive data over the network. A TCP/IP
stack is also memory and performance sensi-
tive, and conventional wisdom says that you
err on the side of the small footprint when
building a general-purpose network service like
RPC that might need to communicate on
many, if not all, network interfaces present on
a box. As is often the case, this conventional
wisdom is just plain wrong when you consid-
er its security impact.

A Windows box should not expose features
that may allow remote execution of code, ei-
ther intentionally or because of bugs, unless
the Windows box is actively controlled, mon-
itored, protected, and patched by its rightful
owner. Mescaline would be virtually impossi-
ble today, despite the DCOM buffer overflow
bug, if Microsoft had chosen not to force Win-
dows to expose ports 135, 139, and 445 as lis-
tening TCP/IP endpoints. Microsoft made it
extremely difficult, and in some cases impos-
sible, to disable system components like RPC
that bind these ports. Our software should only
expose features we actually use when it binds
to network endpoints.

In order to use typical enterprise software
packages under Windows, you must leave the
default Windows services active, including
components that expose remote services, even
though you may never use these features re-
motely. They are often called locally as a mech-
anism for interprocess communication (IPC).
The fact that RPC can be used instead of the
Local Procedure Call (LPC) interface for IPC
results in programmers building software that
uses RPC when it should use LPC. They get
away with it because it works.

No registry settings or other configuration
options can force RPC to stop binding to the
default interface. This is apparently by design.
Unsupported registry hacks are possible that
remove all network interfaces while preserv-
ing some aspects of network functionality, or

that simply bind the majority of services to the
loopback adapter where they can only be ad-
dressed locally (IIS Security and Programming
Countermeasures, Ch. 4: Platform Security,
http://www.forensics.org/jasonc/iisforensics.zip).
A supported registry setting was introduced in
a Windows 2000 service pack, however, that
will compel Windows to stop binding port 445
entirely. The registry entry is a DWORD of 0
(disable) or 1 (enable) located at the follow-
ing key/value:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001
\Services\NetBT\Parameters
\ SMBDeviceEnabled

Disabling DCOM using dcomcnfg.exe helps
to protect against remote exploits of the MS03-
026 DCOM RPC vulnerability, but consider-
ing the extent to which Windows aggressive-
ly compels the presence of this type of system
service, there are most likely other ways for it
to be called, at least locally. MS03-026 is pre-
cisely the type of bug that is prone to return if
service packs or hotfixes are reapplied in the
future. As programmers, we must take a mo-
ment to appreciate the technical and business
process failures that led to this vulnerability.
A postmortem review of other people's com-
piled code isn't nearly as helpful to our col-
lective knowledge of information security as
is a detailed review of the vulnerable source
code. Vendors of compiled code whose soft-
ware is found to contain security flaws should
publish a thorough forensic analysis of the
source code that produced the vulnerability.
Full disclosure both educates other program-
mers and reassures customers that the full ex-
tent of the vulnerability has been assessed ac-
curately. Without full disclosure, and without
access to the source code, we have no reason
to trust the patched code any more than we
trusted the original. And we can't disable its
features.

Resources
http://www.securiteam.com/exploits/5CP0N0K
AKK.html

http://www.iss.net/support/product_utilities/
ms03-026rpc.php

http://www.eeye.com/html/Research/Tools/
RPCDCOM.html

http://www.lsd-pl.net/files/get?WINDOWS/
win32_dcom w::d

Analyzing the Mescaline Worm

26 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

J A S O N C O O M B S

JASON COOMBS works as a forensic ana-
lyst and expert witness in court cases
involving digital evidence. Information
security and network programming are his
areas of special expertise. He can be
reached at jasonc@science.org.

The Mescaline worm can be stopped with the right system patches, but stopping similar worms

in the future requires a deeper look at the default settings that make these attacks possible

INFORMATION SECURITY VULNERABILITIES
that result in backdoors to trusted systems are
serious threats even when those systems don't
store sensitive data. A trusted system holds the
potential for harmful transgressions against
both local users, who trust that their commands
will be executed in a consistent, predictable
manner, and remote users of other systems who
presume that a trusted system is well behaved
because it is under the control of trustworthy
people and software.

A backdoor introduces far-reaching uncer-
tainty both in terms of actual damage that may
be caused when exploited, and in terms of in-
tangible damage to trust. There is simply no
way to know how many times the backdoor
was exploited in the past, or to know precise-
ly who created the backdoor and who knew
about it and when.

Some backdoors are easy to find by reading
source code because they are intentional. A
branch of logic that explicitly bypasses securi-
ty checks or improperly grants elevated privi-
leges isn't hard to spot. These obvious back-
doors can be easily prevented with good
quality-assurance methods including a source-
code review and proper system design docu-
mentation. We must also be willing to presume
that our coworkers or employees are not trust-
worthy and may intentionally plant backdoors,
which can be an uncomfortable test of mutu-
al respect and trust itself.

The real problem, technically, is that unin-
tentional backdoors caused by exploitable bugs,
like unchecked buffer lengths inside input pars-
ing routines, can result in buffer overflow con-
ditions that are indistinguishable from inten-
tional backdoors. It is safe to assume that most
backdoors are written unwittingly, by pro-
grammers who aren't trying to get fired, pros-
ecuted, or lynched by an angry mob.

A subtle bug in just the right place will re-
sult in a secret backdoor that can survive in
a codebase for years even as QA and securi-
ty audit duties pass from person to person or
company to company. Explicit, obvious back-
doors coded as extraneous branches of logic

not anticipated during systems analysis
shouldn't survive long enough to pass QA
testing and end up deployed to production
boxes, but they can and do in the real world.
Backdoors that are obvious when source code
is analyzed are particularly easy for program-
mers to add to software when the program-
mers themselves are also the QA engineers
and security auditors.

Though you may never have conducted se-
curity audits of source code written by other
people, you can imagine how easy it would be
to overlook a single bug written on purpose
and concealed using some clever coding tech-
nique. You may also be able to code and con-
ceal such bugs yourself, in just a few minutes,
that you would probably overlook if not for
the fact that you designed them.

Perfect source code is only a contributing
factor to secure software, it doesn't directly re-
sult in a security-hardened, trustworthy soft-
ware product. After ensuring that source code
is security-hardened to perfection, you must
complete the highly vulnerable process of com-
piling, linking, copying, and distributing exe-
cutable binaries each time you wish to turn
source code into software. Bugs or intention-
al malfeasance at any step in this process could
add a backdoor to the compiled code with a
change to just a single bit.

When the following example code is com-
piled properly and then executed, it displays
two 12-byte ASCII greetings: "Hello World!"
and "Hello Buffer". This code results in soft-
ware that is free of backdoors only if the com-
piler and linker work as expected and the bi-
nary executable file is not tampered with prior
to its use. The length of input bytes is care-
fully limited by the code to prevent a buffer
overflow from occurring, unless a vulnerabili-
ty is intentionally introduced using a binary
image editor (see HexEdit from http://www
.expertcomsoft.com).

#include "stdafx.h"
#include <string.h>
#include <windows.h>

void func(char *inbuf, int buflen);

int main(int argc, char* argv[]) {
char * hellow = "Hello World!";
func(hellow,strlen(hellow));
char * hellobof = "Hello Buffer Overflow!";
func(hellobof,strlen(hellobof));
return 0;

}

void func(char *inbuf, int inbuflen) {
char malbuf[13]; // sized + 1 for null
if(inbuflen >= 13) {
inbuflen = 12; // max input buffer array

index
}
malbuf[inbuflen] = NULL; // string terminator
CopyMemory(malbuf,inbuf,inbuflen);
printf(malbuf);
printf("\n");
return;

}

The hard-coded buffer array index of 12 (0C)
must be set correctly during the function call
at run time whenever the input length bounds
check branch is traversed. Otherwise, a stack
buffer overflow may occur when too many bytes
are supplied by the caller. If you look at the
machine code instructions produced by the
compiler for this function call, you can see that
a change to a single higher-order bit in the val-
ue stored to inbuflen would allow excessive
input data to be stored beyond the bounds of
the input buffer.

The compiler preallocates memory of a fixed
length within the stack frame that is set up at
run time for each call to the function. The pro-
grammer, aware of the potential for a stack
buffer overflow in this circumstance if the
source code does not include an explicit check
on the input data length compared to the in-
put buffer size, restricts the buffer copy to the
potentially smaller fixed length hard-coded in
the source. Software built from this source code
should now be “safe” in terms of being free
from backdoors. Until a single bit is changed

Backdoors Can Damage Trust

www.windevnet.com WINDOWS SECURITY windows::developer NETWORK | 27

J A S O N C O O M B S

Some backdoor security holes are unintentional bugs, but any backdoor should be analyzed

with the view that the defect may have been purposeful

in the resulting machine code that introduces
a mismatch between the size of the stack buffer
used to receive the copy of the input buffer
bytes and the length-checking bounds pro-
tection added by the programmer to prevent
buffer overflows.

A single bit modification to the machine
code results in a buffer overflow vulnerability
that is likely to be exploitable as a backdoor if
code like this appears in a program that ex-
poses any sort of interprocess request process-
ing feature. In the machine code tampering
shown below, the hard-coded maximum array
index value of 12 (0C) is replaced with 28
(1C) and the program, when executed, dis-
plays the full "Hello Buffer Overflow!" greet-
ing before it crashes due to the damage caused
to the current stack frame by the overflow.

Original machine code in hex:

00401040: 8B 4C 24 08 83 EC 10 83 F9 0D 7C 05
B9 0C 00 00

00401050: 00 C6 44 0C 00 00 56 8B 74 24 18 8B
C1 57 8D 7C

Modified machine code in hex:

00401040: 8B 4C 24 08 83 EC 10 83 F9 0D 7C 05
B9 1C 00 00

00401050: 00 C6 44 0C 00 00 56 8B 74 24 18 8B
C1 57 8D 7C

Vulnerabilities are like hidden features just
waiting to be called upon by a knowledgeable
power user. Microsoft's .NET Framework, Java's
Virtual Machine, and other type-safe byte-
code-based run-time environments are designed
to minimize the risk of hidden features in soft-
ware. By producing Microsoft Intermediate
Language (MSIL) instead of native machine
code, Microsoft .NET compilers attempt to
create byte code that is usable at run time just
like software, but that can't compromise or cir-
cumvent the security policy of its host—even
if the byte code is tampered with by an at-
tacker.

The following C# programs show a network
service that attempts to expose a buffer over-
flow style backdoor on purpose, and an exploit
program that attempts to overflow the receive
buffer as would be necessary to take advantage
of the hidden backdoor feature. Attempt to
modify the MSIL byte code produced by the
C# compiler in order to introduce the same
type of buffer overflow vulnerability as illus-
trated previously. You'll find that the most you
can do, without discovering an exploitable
bug/backdoor in the .NET runtime itself, is
cause valid changes to the program's MSIL
code or break the program completely. There
is no immediate potential to add an exploitable
backdoor with a change to a single bit as there
is when working directly with native machine-
code compilations.

using System;
using System.Net.Sockets;
using System.Text;

namespace csharpbackdoor {
class backdoorclass {
[STAThread]
static void Main(string[] args) {
byte[] malicious;
int bytes;
bool loop = true;
TcpClient tcp;
NetworkStream net;
TcpListener listen;
listen = new TcpListener(4444);
listen.Start();
while(loop) { try {
tcp = listen.AcceptTcpClient();
net = tcp.GetStream();
malicious = new byte[133];
bytes = net.Read(malicious, 0, 133);
System.Console.WriteLine(Encoding.ASCII.

GetString(malicious));
tcp.Close(); }
catch (Exception readerror) {

System.Console.WriteLine(readerror.Message);
loop = false; }}}}

}

Note hex 85 occurs in two places in the
MSIL that results from compiling csharp-
backdoor—this corresponds to decimal 133,
and the second occurrence would be your tar-
get with your binary editor if you wanted to try
to force the Read() function to overflow the
fixed-length 133-byte buffer malicious. You
can use dumpbin.exe /all to take a look at
the MSIL yourself and observe the following:

RAW DATA #1
00402080: 0A 13 04 20 85 00 00 00 8D 13 00 00
01 0A 11 04
00402090: 06 16 20 85 00 00 00 6F 13 00 00 0A
0B 28 14 00

Modify the MSIL all you want. Any change
to the second value (85 00 00 00) that caus-
es it to exceed the first value (85 00 00 00)
will result in a runtime exception rather than
an overflow. Change both values to the same
larger or smaller number and you will grow or
shrink the receive buffer but otherwise the
program will still operate. Use the exploit-
backdoor program to attempt to stuff more
bytes into the receive buffer than it is sized to
hold. Tweak the MSIL for the backdoor pro-
gram using HexEdit and then try the exploit
again. Repeat until C# and .NET give you
that warm fuzzy feeling of security compla-
cency.

using System;
using System.Net.Sockets;

using System.Text;

namespace exploitbackdoor {
class backdoorexploit {
[STAThread]
static void Main(string[] args) {
String s = String.Empty;
if(args.Length > 0) {
s = s.PadRight(int.Parse(args[0]),'A');

}
else {
s = s.PadRight(2048,'A');

}
byte[] overflow = new byte[s.Length];
int bytes = 0;
System.Console.WriteLine("Sending: " + s);
bytes = Encoding.ASCII.GetBytes

(s,0,s.Length,overflow,0);
TcpClient tcp = new TcpClient();
try {
tcp.Connect("localhost", 4444);
NetworkStream networkStream =

tcp.GetStream();
networkStream.Write(overflow, 0,

overflow.Length);
tcp.Close(); }

catch (Exception writeerror) {
System.Console.WriteLine(writeerror.Message);

}}}}

The .NET Framework verifies at run time
that the receive buffer is large enough to hold
the data that the call to the Read() function
will attempt to place there. Because the pro-
gram is compiled to MSIL, a change to the
byte code is not supposed to cause any securi-
ty problem. We can only hope that .NET has
no hidden features that could provide back-
door functionality.

We don't know for certain that there is a
security flaw in Microsoft's DCOM source
code that resulted in the vulnerability de-
scribed in MS03-026 (Q823980) and ex-
ploited by the MS Blaster worm. The
RPC/DCOM backdoor might have been
caused by intentional modifications to the bi-
nary after compilation. If the flaw existed in
the compiled software product but did not
exist in its underlying source code, then a
software patch is inadequate to restore trust.
It’s essential to disclose the cause of the flaw.
Mending broken trust is only possible with
answers to questions that we wouldn't nor-
mally bother to ask.

If a source-code cause can be found in a
situation such as MS03-026, proper inci-
dent response would be to presume the back-
door was planted on purpose and investi-
gate for evidence that would support this
hypothesis. More than any other type of se-
curity vulnerability in software, one that re-
sults in a backdoor should be analyzed with
the view that the defect may have been pur-
poseful. w::d

28 | windows::developer NETWORK WINDOWS SECURITY www.windevnet.com

C O O M B S

