
Book Review: Inside
Windows Server 2003

NOV
2003Distributed Computing

“Lite” Web Services
for Office Apps

Creating Binary
Behaviors for IE
with .NET

Design and Write
Serviced Components

Porting Your
C++ Code to .NET

Managing Strings
in Controls

Safer Node Browsing
with IXMLDOM

Inserter Function
Objects for Windows
Controls

www.windevnet.com

Volume 2 / No. 11

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0313/

http://redirect.wdj.com/scripts/redirect.pl?http://connect.borland.com/borcon03

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdm/cdrom/

WWW.windevnet.COM NOVEMBER 2003 windows::developer NETWORK | 3

C O N T E N T S

COMING NEXT MONTH:
.NET DEVELOPMENT

windows::developer NETWORK VOL 2 • NO. 11

NOV
2003

PUBLISHER EDITOR IN CHIEF
Kerry Gates John Dorsey

E D I TO R I A L
MANAGING EDITOR Amy Stephens
CONTRIBUTING EDITORS Dino Esposito, George Frazier,
Richard Grimes, Petter Hesselberg, Paula Tomlinson,
Victor R. Volkman
EDITORIAL ADVISORY BOARD Mark Baker, Dino Esposito,
George Frazier, Richard Grimes, Petter Hesselberg,
Mark Nelson, Mark Russinovich, Paula Tomlinson,
Victor R. Volkman
ASSOCIATE EDITOR Della Song
ART DIRECTOR Beatriz Américo
WEBMASTER Joe Lucca
SEND READER MAIL TO: wdletter@cmp.com
SUBSCRIPTION INQUIRIES: wdnetwork@halldata.com

A D V E RT I S I N G A N D M A R K E T I N G
DIRECTOR OF SALES David Timmons
REGIONAL MANAGER, EAST
Jon Hampson 603-924-8500 jhampson@cmp.com

REGIONAL MANAGER, CENTRAL/SOUTHEAST
Ed Day 785-838-7547 eday@cmp.com

REGIONAL MANAGER, WEST
Michele Hurabiell 415-947-6199 mhurabiell@cmp.com

ACCOUNT MANAGER, ALL REGIONS
Julie Thibault 603-924-8400 jthibault@cmp.com

PRODUCTION COORDINATOR
Michael Penne mpenne@cmp.com

DIRECTOR OF MARKETING Karen Tom

C I RC U L AT I O N
SENIOR CIRCULATION MANAGER Cherilyn Olmsted
ASSISTANT CIRCULATION MANAGER Gwen Olson
SUBSCRIPTIONS: Annual renewable print subscriptions to Windows Developer
Network are $34.99 U.S., $45 Canada and Mexico, $65 elsewhere. Payments
must be made in U.S. dollars. Make checks payable to Windows Developer
Network.
CUSTOMER SERVICE: For subscription orders and questions, contact
lawrencecs@cmp.com.
ADVERTISING: For rate cards or other information on placing advertising in
Windows Developer Network, contact the advertising department at
785-838-7500, or write Windows Developer Network, 4601 West 6th Street,
Suite B, Lawrence, KS 66049 USA.
Entire contents Copyright © 2003 CMP Media LLC, except where otherwise
noted. No portion of this publication june be reproduced, stored, or transmitted
in any form, including computer retrieval, without written permission from the
publisher. All Rights Reserved. Quantity reprints of selected articles june be
ordered. By-lined articles express the opinion of the author and are not necessar-
ily the opinion of the publisher. Printed in the United States of America.
NOTE: Windows is a registered trademark of Microsoft Corporation and is used
in the title of Windows Developer Network by CMP Media LLC under license
from owner. Windows Developer Network is an independent publication not affili-
ated with Microsoft Corporation. Microsoft Corporation is not responsible in any
way for the editorial policy or other contents of the publication.
Windows Developer Network (ISSN 1543-6462) is published monthly by
CMP Media LLC, 600 Harrison St., San Francisco, CA 94107 USA, 415-947-
6000.

C M P M E D I A L L C
CORPORATE
PRESIDENT AND CEO Gary Marshall
EXECUTIVE VICE PRESIDENT AND CFO John Day
EXECUTIVE VICE PRESIDENT AND COO Steve Weitzner
EXECUTIVE V.P., CORPORATE SALES AND MARKETING Jeff Patterson
CHIEF INFORMATION OFFICER Mike Mikos
SENIOR V.P., OPERATIONS Bill Amstutz
SENIOR V.P., HUMAN RESOURCES Leah Landro
VICE PRESIDENT AND GENERAL COUNSEL Sandra Grayson
MARKET GROUPS
PRESIDENT, TECHNOLOGY SOLUTIONS Robert Faletra
PRESIDENT, HEALTHCARE MEDIA Vicki Masseria
V.P., GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
V.P., GROUP PUBLISHER INFORMATIONWEEK MEDIA NETWORK Michael Friedenberg
V.P., GROUP PUBLISHER ELECTRONICS Paul Miller
V.P., GROUP PUBLISHER NETWORK COMPUTING MEDIA NETWORK Fritz Nelson
V.P., GROUP PUBLISHER SOFTWARE DEVELOPMENT MEDIA Peter Westerman
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Shannon Aronson
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Michael Zane
CORPORATE DIRECTOR, PUBLISHING SERVICES Marie Myers

| Download code > windevnet.com/wdn/code/ |

6 Data Transfer, COM Enums, and Windows Controls
MATTHEW WILSON Transferring information from COM enumerators to windows con-
trols can be complex. Two methods are presented here: a C-API written in C, which sacri-
fices run-time efficiency for succinct client code and run-time flexibility, and a method
using STL sequences and function objects, which is more elegant and also likely to be
more efficient.

14 Connect Office Apps to .NET with “Lite” Web Services
LUTHER MILLER It’s possible to communicate between .NET and older versions of
Office with a “lite” web service by using ASP.NET. Luther takes advantage of a class in
MSXML called “XMLHTTPRequest,” which handles all of the plumbing to make an HTTP
request and receive an XML response.

22 Create Binary Behaviors for IE with .NET
SCOBIE P. SMITH Internet Explorer’s Binary Behaviors allow you to customize display
and behavior of HTML elements. With .NET and COM Interop, developers can imple-
ment binary behaviors with just a few simple interfaces.

COLUMNS
28 Tech Tips GEORGE FRAZIER
PopulateHelper: A Templated Solution for
Managing Strings in Controls SHEHRZAD QURESHI
Safer Node Browsing With Microsoft’s XML
DOM MATTHEW WILSON
Beware Null ListViewSubItems in .NET
MATTHEW WILSON
Inserter Function Objects for Windows Controls
MATTHEW WILSON

INSIDE .NET

31 Design and Write Serviced
.NET Components
DINO ESPOSITO In .NET, a serviced component
is a managed class that can be hosted in a COM+
application in order to consume COM+ services.
Dino provides some programming guidelines for
the authoring of a serviced component in the
.NET Framework.

VISUAL C++.NET EXPERT

34 Porting Your C++ Code to .NET
RICHARD GRIMES If you’re moving to .NET and
still want to access legacy libraries, do you provide
a wrapper around the native code or do you port
the entire library to managed code? Making the
right choice can impact usability and performance.

37 Books in Brief
VICTOR VOLKMAN A well-written and compre-
hensive book, Inside Windows Server 2003 looks
at many of the new features of Win2K3. This is a
useful resource for admins who are upgrading
from Windows 2000 or as a study guide for those
prepping for the Windows Server 2003 exam.

5 From the Editor
38 Advertiser Index
39 New Products
40 Developers’ Marketplace

FEATURES

DEPARTMENTS

VISIT US ONLINE: www.windevnet.com

PDF EXTRAS
Download the PDF version of this month’s
issue to access bonus features. This content
includes:

• Sidebar and additional Listing for “Data
Transfer, COM Enums, and Windows
Controls”

• Additional Listings for “Connect Office
Apps to .NET with “Lite” Web Services”

http://windevnet.com/wdn/code/

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0314/

DISTRIBUTED COMPUTING HAS BEEN big news of late, but unfortunately for the wrong
reasons—throughout August and September, security attacks designed to exploit the
Windows DCOM RPC interface were often front-page headlines. The outbreak of the
latest W32.Blaster worm was followed closely by the W32.soBig.F worm, which flooded
inboxes with so much e-mail that thousands of people simply abandoned them and
changed e-mail addresses. As a result of these and similar attacks, August set a record as
“the worst month for digital damage,” according to mi2g (http://mi2g.com/), a digital risk
management firm. mi2g estimates the monthly bill for the combined economic impact of
all computer security attacks worldwide to be $32.8 billion.

The W32.Blaster hit unpatched Windows 2000 and Windows XP machines hardest.
Unpatched Windows NT and Windows 2003 Server machines were infected, too, but the
worm couldn’t replicate on those systems. The Windows ME and Win 9x platforms
weren’t affected by Blaster. (Ironically, the Microsoft web site pages that detail the
vulnerabilities of Windows’ latest versions also strongly encourage users of Win 9x OSes
to upgrade.)

Although Microsoft posted security warnings and systems patches for both Blaster and
soBig before widespread infections occurred, a sufficient number of machines remained
unpatched. According to security experts, soBig exploited a handful of unpatched
Windows 2000 machines running on broadband cable modems whose owners were
unaware of the harm caused by their machines. This scenario has Microsoft
contemplating default system updates. But automatic system patching has problems, too.
Not all machines are unpatched due to inattentive owners—some system administrators
are unable to update without causing conflicts with earlier OS fixes or hobbling
incompatible, mission-critical software. Catch-22.

Whether the OS updates are distributed automatically or not, the process will always be
reactionary, compensating for new exploits of existing systems. Usually, experts interested
in improving security find security holes, and fixes can be created before an attack is
released in the wild. But the lag time between discovery of a hole and its widespread
exploitation may not always be weeks or even days. It’s always possible that the bad guys
could find the weakness first. And aside the multibillion-dollar estimated cost, the trouble
caused in August rated as not more than a major nuisance. A truly malicious attack that
cascades through entire networks could have far-reaching economic repercussions. My
advice: Keep that copy of Windows ME booted up on your boneyard PC.

If you’d like to learn more about the state of security in Windows development, check
out our special issue on Windows Security. This is a collection of articles from some of
CMP Media’s top technology publications, including Dr. Dobb’s Journal, MSDN Magazine,
C/C++ User’s Journal, and, of course, Windows Developer Network. The special issue is
available at http://www.windevnet.com/wdn/webextra/2003/0314/.

John Dorsey
Editor in Chief
wdeditor@cmp.com

: :

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 5

E D I TORF R O M T H E

Although Microsoft posted security warnings and systems
patches for both Blaster and soBig before widespread
infections occurred, a sufficient number of machines
remained unpatched

http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com

THESE DAYS, SOFTWARE ENGINEERING involves a lot of flexibility. We
have different programming paradigms, component object models, co-
operating languages, even different binary standards. Many Windows-
based developers would probably say that component software develop-
ment began with COM. Others might say DLLs (and exported functions).
A few might even say Windows controls. In a way, they’re all right.

One of the challenges of working within even modern frameworks
is the cost of development and maintenance time (not to mention
run time) in handling all this flexibility. Several years ago, in order
to obviate these costs, I wrote a C-API for data exchange between
COM enumerators (instances implementing one or more of the
IEnumXXXX family of interfaces) and Windows controls. I’ve updated
part of that API to present here.

C++ development has recently (and wisely) swung towards the
STL model of compile-time development. Whilst STL is no real
help in binary interoperability, it is extremely useful for the imple-
mentation of binary interoperable components (and for pretty much
every other kind of C++ software development that you can think
of). STL has become extremely popular because it supports reuse (in
a lightweight manner—not more hefty hierarchies), maintainabil-
ity, and very importantly, efficiency (or at least it does when used
correctly). I’ve embraced STL in a big way: I have created the STL-
Soft project (http://stlsoft.org/) over the last couple of years in or-
der to apply STL techniques to a broad range of technologies and
operating systems (including Win32, UNIX, ATL, MFC, COM,
WTL, XML, and .NET) in a robust and efficient manner. Two of
the STLSoft subprojects, COMSTL (http://comstl.org/) and Win-
STL (http://winstl.org/), contain components for manipulating COM
objects and windows controls. I will show how collaboration be-
tween these components can provide an interesting alternative to
the data exchange C-API.

C-API in C
Let’s first look at the C-API. C++ aficionados might well wonder why
anyone would bother writing a COM API in C. There are two an-
swers. First, I like to write in C sometimes because it keeps the true
understanding of the mechanics of COM to the fore in the brain.
(Anyone who thinks that one can just use frameworks and never get
into the guts has not written any real COM programs.) The second
is that, when creating software that may be reused (in source form as
well as binary), it is a good idea not to disenfranchise those develop-
ers who still prefer to exist in the C world. (Also, C affords you the
opportunity to change the contents of the vtable at run time. It’s very
useful when you need it, but to be used very sparingly, and is not for
the faint hearted.)

These observations notwithstanding, I acknowledge the masochism
required to create such an API in C, and in your reading the code
presented here. I would suggest that you persevere, mainly for the il-
lumination previously alluded to.

Listing 1 shows the API flags, typedefs, structures, and function dec-
larations. Skipping over what looks like a rather complex set of struc-
tures for the moment, we see there are two functions. The second one
of these, ListExchange_PutItems(), has a manageable three argu-
ments. They represent the window handle of the control, the enu-
merator interface, and flags, respectively. Hence, to populate, say, a
list box with the contents of an IEnumVARIANT, one would call:

ListExchange_PutItems(hwndListBox, penVar,
SYLXF_RESETCONTENT);

The SYLXF_RESETCONTENT flag causes the list control to be emptied
prior to populating with the enumerator contents. Hence, you can
populate a list control with the contents of several enumerators, thus:

ListExchange_PutItems(hwndComboBox,
penVar1, SYLXF_RESETCONTENT);

ListExchange_PutItems(hwndComboBox,
penOleStr, 0);

ListExchange_PutItems(hwndComboBox,
penBSTR, 0);

That seems nice and straightforward. But how does it work? Natu-
rally, the answer relates to the structures and the other function. In
fact, if we look at Listing 2, we can see that ListExchange_PutItems()
is actually implemented in terms of ListExchange_PutItems_Base().
Arrays of EnumeratorHandler structures and ControlHandler struc-
tures are defined and passed to ListExchange_PutItems_Base(). These
structures describe the COM enumerators and windows controls that
will be understood by the API. You can see that List-
Exchange_PutItems() understands the IEnumString, IEnumBSTR,
IEnumVARIANT, IEnumGUID, and IEnumUnknown interfaces and the list-
box, combo-box, list-view, and (multiline) edit controls that, for most
requirements, more than suffices. (Note that there are two IEnumBSTR

Two strategies using C and STL for data exchange

from COM enumerators to Windows controls

Data Transfer, COM Enums,
and Windows Controls

MATTHEW WILSON

MATTHEW WILSON is a software development consultant for Syne-
sis Software, specializing in robustness and performance in C, C++, C#,
and Java. Matthew is the author of the STLSoft libraries, and the forth-
coming book Imperfect C++ (to be published by Addison-Wesley, 2004).
He can be contacted via matthew @synesis.com.au or at http://
stlsoft.org/.

6 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

and IEnumGUID interfaces handled. This is be-
cause this API was defined and used with those
Synesis-defined interfaces before the Microsoft
interfaces of the same name were released;
hence the need to support both. However, this
dual support causes no problems since the in-
terfaces are identically defined.)

The handlers are reasonably straightforward.
The control handler contains the window class
(an identifying type that all windows will pro-
vide via the GetClassName() API function),
and functions to add an item and to reset the
contents. The enumerator handler contains
the Interface Identifier (IID) and functions to

reset the enumerator, acquire an item’s value
(which it does via calling the Next() interface
method), and to release an item’s value. Be-
cause the functions operate with the
Enum2WndItem item union and have an opaque
handle (void*) for the value type (both de-
fined in Listing 1), the API can be expanded
to handle any enumerated value type simply
by appropriately defining matching handler
functions.

You may call ListExchange_PutItems() and
use the predefined handlers, or set up your own
handler arrays and directly call ListEx-
change_PutItems_Base(), which is where all

the action happens (see Listing 3). The first
few lines validate the arguments, followed by
the first task of identifying the type of the win-
dow. The function iterates through the array
looking for a matching control handler. If it
fails to find one, then no further processing is
done and the function returns a fail code (and
writes to the thread’s error object). Next is the
test for the enumerator. If no enumerator is
specified, then the control is simply emptied.
It’s not exactly orthogonal programming, but
I just found it a real convenience (see Listing
6) to be able to clear the contents of any list
control, no matter what its type, so this feature

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 7

W I L S O N

/* ///
* ...
*
* Extract from MOCtlFns.h
*
* Copyright (C) 1998-2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Public License:
* http://www.synesis.com.au/licenses/ssspl.html)
*
* ...
* // */

/* Flags */

#define SYLXF_RESETCONTENT (0x00000001) /* Empties control first */

/* Typedefs */

typedef union _Enum2WndItem
{

LPOLESTR olestr; /* OLE string */
BSTR bstr; /* COM BSTR */
VARIANT var; /* COM VARIANT type */
GUID guid; /* GUID */
LPUNKNOWN punk; /* Object */
LPDISPATCH pdisp; /* Automation object */
void *pv; /* any other type */

} Enum2WndItem;
__SyPtrType1(Enum2WndItem)

typedef HRESULT (*PFnEnum_Reset)(LPVOID itf);

typedef HRESULT (*PFnEnum_NextItem)(LPVOID itf,
LPEnum2WndItem item,
LPVOID *pvalue);

typedef void (*PFnEnum_ClearItem)(LPVOID itf,
LPEnum2WndItem item,
LPVOID value);

typedef struct _EnumeratorHandler
{

REFIID iid;
PFnEnum_Reset pfnReset;
PFnEnum_NextItem pfnNextItem;
PFnEnum_ClearItem pfnClearItem;

} EnumeratorHandler;

typedef HRESULT (*PFnCtrl_PutItem)(HWND hwndCtrl,
LPVOID str,
UInt32 flags,
UInt32 param);

typedef void (*PFnCtrl_Reset)(HWND hwndCtrl);

typedef struct _ControlHandler
{

char const *className;
PFnCtrl_PutItem pfnPutItem;
PFnCtrl_Reset pfnReset;

} ControlHandler;

/* Functions */

SInt32 ListExchange_PutItems_Base(HWND hwndList,
LPUNKNOWN punkEnumItems,
UInt32 flags,
UInt32 param,
EnumeratorHandler const *enumerators,
UInt32 cEnumerators,
ControlHandler const *controls,
UInt32 cControls);

SInt32 ListExchange_PutItems(HWND hwndList,
LPUNKNOWN punkEnumItems,
UInt32 flags);

Listing 1 Definitions of the ListExchange structures and functions

/* ///
* ...
*
* Extract from MOCtlFns.c
*
* Copyright (C) 1998-2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Public License:
* http://www.synesis.com.au/licenses/ssspl.html)
*
* ...
* // */

SInt32 ListExchange_PutItems(HWND hwndList,
LPUNKNOWN punkEnumItems,
UInt32 flags)

{
static const IID IID_IEnumBSTR_Synesis = { . . . };
static const IID IID_IEnumBSTR_MS = { . . . };
static const IID IID_IEnumGUID_Synesis = { . . . };
static const IID IID_IEnumGUID_MS = { . . . };

static const EnumeratorHandler enumerators[] =
{

{ &IID_IEnumString, EnumXXXX_Reset
, EnumString_NextItem, EnumString_ClearItem }

, { &IID_IEnumBSTR_Synesis, EnumXXXX_Reset
, EnumBSTR_NextItem, EnumBSTR_ClearItem }

, { &IID_IEnumBSTR_MS, EnumXXXX_Reset
, EnumBSTR_NextItem, EnumBSTR_ClearItem }

, { &IID_IEnumVARIANT, EnumXXXX_Reset
, EnumVARIANT_NextItem, EnumVARIANT_ClearItem }

, { &IID_IEnumGUID_Synesis, EnumXXXX_Reset
, EnumGUID_NextItem, EnumGUID_ClearItem }

, { &IID_IEnumGUID_MS, EnumXXXX_Reset
, EnumGUID_NextItem, EnumGUID_ClearItem }

, { &IID_IEnumUnknown, EnumXXXX_Reset
, EnumUnknown_NextItem, EnumUnknown_ClearItem }

};
static const ControlHandler controls[] =
{

{ "LISTBOX", ListBox_PutItem, ListBox_Reset }
, { "COMBOBOX", ComboBox_PutItem, ComboBox_Reset }
, { "SysListView32", ListView_PutItem, ListView_Reset }
, { "EDIT", Edit_PutItem, Edit_Reset }

};

return ListExchange_PutItems_Base(hwndList, punkEnumItems,
flags, 0, enumerators, NUM_ELEMENTS(enumerators),
controls, NUM_ELEMENTS(controls));

}

Listing 2 Implemenation of ListExchange_PutItems()

8 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

creep was let by. If an enumerator is specified,
then it is tested against the enumerator han-
dler information. If recognized, the control is
cleared when requested—note that this is not
done earlier since a failure in a specified enu-
merator would change the list without popu-
lating it, and it is not generally a good idea to
have a failing API effect changes if it can be
avoided—and then the enumeration is con-
ducted.

Enumeration begins with resetting the enu-
meration point. The enumerator handler’s pfn-
Reset function is passed the enumerator in-

terface pointer, which calls the IEnumXxxx::
Reset() method on the interface. Since all
IEnumXxxx enumerator interfaces have the
same general definition, and identical Reset()
and Skip() method definitions, we can sim-
ply define one handler, EnumXXXX_Reset(), to
be used for all interfaces, as can be seen in List-
ing 4; available online (the choice to cast to
IEnumString is arbitrary). Inside the loop, the
enumerator’s Next() method is called within
the enumerator handler’s pfnNextItem func-
tion, passing in the instances of Enum2WndItem
and LPVOID. If the function call returns S_OK,

then the value is passed to the control han-
dler’s pfnPutItem function, and is thus added
to the control. The value is then cleared (with
pfnClearItem), so that any allocation in the
enumerator handler’s pfnNextItem function
can be released. If the value returned from
Next() is S_FALSE, then there are no more
items available (and the return code is changed
to S_OK before breaking out of the loop be-
cause S_FALSE is not meaningful to callers of
the API). Any error return codes will cause
the loop to terminate and will be passed back
to the caller.

W I L S O N

/* ///
* ...
*
* Extract from MOCtlFns.c
*
* Copyright (C) 1998-2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Public License:
* http://www.synesis.com.au/licenses/ssspl.html)
*
* ...
* // */

SInt32 ListExchange_PutItems_Base(
HWND hwndList,
LPUNKNOWN punkEnumItems,
UInt32 flags,
UInt32 param,
EnumeratorHandler const *enumerators,
UInt32 cEnumerators,
ControlHandler const *controls,
UInt32 cControls)

{
HRESULT hr;

_ASSERTE(IsWindow(hwndList));

if(!(flags & SYLXF_RESETCONTENT) &&
(NULL == punkEnumItems ||

NULL == enumerators ||
0 == cEnumerators))

{
hr = E_INVALIDARG;

}
else if(!IsWindow(hwndList) ||

0 == cControls ||
NULL == controls)

{
hr = E_INVALIDARG;

}
else
{

LPUNKNOWN punkEnum = NULL;
UInt32 i;

/* Find the window class */
for(hr = E_FAIL, i = 0; FAILED(hr) && i < cControls; ++i)
{

if(IsWindowClass(hwndList, controls[i].className))
{

hr = S_OK;
break;

}
}

if(FAILED(hr))
{

ErrorInfo_SetDescW(L"Window not of recognised class");

hr = E_INVALIDARG;
}
else
{

ControlHandler const *control = &controls[i];

if(NULL == punkEnumItems)
{

/* Only want to clear the window */

_ASSERTE((flags & SYLXF_RESETCONTENT) == SYLXF_RESETCONTENT);

control->pfnReset(hwndList);

}
else
{

/* Find the interface */
for(hr = E_NOINTERFACE, i = 0; i < cEnumerators; ++i)
{

#ifdef __cplusplus
hr = punkEnumItems->QueryInterface(

#else
hr = punkEnumItems->lpVtbl->QueryInterface(punkEnumItems,

#endif /* __cplusplus */
enumerators[i].iid,
(LPPVoid)(&punkEnum));

if(SUCCEEDED(hr))
{

break;
}

}

if(FAILED(hr))
{

ErrorInfo_SetDescW(L"Enumerator not of recognised type");

hr = E_INVALIDARG;
}
else
{

EnumeratorHandler const *enumerator = &enumerators[i];

/* Erase the existing content */
if((flags & SYLXF_RESETCONTENT) == SYLXF_RESETCONTENT)
{

control->pfnReset(hwndList);
}

/* Now enumerate over the sequence, inserting as we go. */
for(hr = S_OK, enumerator->pfnReset(punkEnum); SUCCEEDED(hr);)
{

Enum2WndItem item;
LPVOID value;

hr = enumerator->pfnNextItem(punkEnum, &item, &value);

if(hr == S_OK)
{

/* Add to the control ... */
hr = control->pfnPutItem(hwndList, value, flags);

/* ... and release any resources from enumerator */
enumerator->pfnClearItem(punkEnum, &item, value);

}
else if(hr == S_FALSE)
{

hr = S_OK;
break;

}
}

#ifdef __cplusplus
punkEnum->Release();

#else
punkEnum->lpVtbl->Release(punkEnum);

#endif /* __cplusplus */
}

}
}

}

return hr;
}

Listing 3 Implemenation of ListExchange_PutItems_Base()

http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com

10 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

Note that the enumeration loop retrieves and
inserts one item at a time. This is necessary be-
cause items from an arbitrary enumerator could
be of any size. While it is certainly possible to
cater for retrieving multiple items at a time, it
would complicate the implementation of the
handlers to a degree that I determined would
not be warranted. (The efficiencies gained from
reduced round-trips to COM enumerators are
associated with marshalling across apart-
ment/process/machine, and most enumerators
from which one would wish to retrieve will
likely be in the calling apartment. If not,
marshal-by-value is also commonly used.) Also,
all of the standard window handlers cause each
string item to be added after the previous one,
which covers most cases, but may not be what
you want.

That’s the main function. What remains is
to see how the handlers are implemented.
Listing 4 (available online) shows a selection
of the enumerator handlers, and Listing 5
shows some of the control handlers. I won’t

go into too much detail as I’ve already dis-
cussed their required semantics. There are,
however, a few points of interest that I’ll
briefly discuss.

First, the standard controls have to do con-
versions of the text to ANSI if the windows
are not Unicode (determined by the calls to
IsWindowUnicode()); there is no need to do
this for the list view because, like all the Com-
mon Controls, it can work with both ANSI
and Unicode messages. Second, the edit con-
trol handler works by moving the selection to
the end of the contents, pasting the value text,
repeating the selection, and pasting CR-LF.
This is done in two parts to remove the need
to concatenate the value and CR-LF, but it is
conceivably open to race conditions (you’d
have to write an atomic version if this was a
possibility in your application). The rest of the
implementations are fairly obvious, except the
IEnumUnknown handler, which is discussed in
the sidebar titled “DISPID_VALUE” (avail-
able online).

C-API in STL
ListExchange_PutItems() is a good solution
for handling a variety of cases, whether for easy
prototyping where one may wish to change list
control types, or for production code that needs
to handle multiple enumerator interfaces. How-
ever, using it constrains you to the enumera-
tor and control types understood by the pro-
vided handlers, which may not cover your
particular needs, or requires you to define your
own, which is a fair amount of effort.

It is also a bit difficult to modify the items as
they go into the list controls. This would re-
quire using special enumerator and control han-
dler functions to change the value. The API
does cater for that—by defining the value type
to be void * and not LPCOLESTR, and by pro-
viding a user-supplied parameter into ListEx-
change_PutItems_Base() that is passed
through to the control handler’s pfnPutItem—
but it’s not a trivial effort to use it in this way.

The C-API was written a long time before
STL became popular, and there are now

W I L S O N

/* ///
* ...
*
* Extract from MOCtlFns.c
*
* Copyright (C) 1998-2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Public License:
* http://www.synesis.com.au/licenses/ssspl.html)
*
* ...
* // */

/* Listbox */

HRESULT ListBox_PutItem(HWND hwnd, LPVOID value, UInt32 flags, UInt32 param)
{

HRESULT hr;

if(IsWindowUnicode(hwnd))
{

hr = (ListBox_AddString(hwnd, (LPCOLESTR)value) < 0)
? E_FAIL : S_OK;

}
else
{

. . . // Do conversion to ANSI and add
}

return hr;
}

void ListBox_Reset(HWND hwnd)
{

ListBox_ResetContent(hwnd);
}

/* Combobox */

HRESULT ComboBox_PutItem(HWND hwnd, LPVOID value, UInt32 flags, UInt32 param)
{

HRESULT hr;

if(IsWindowUnicode(hwnd))
{

hr = (ComboBox_AddString(hwnd, (LPCOLESTR)value) < 0)
? E_FAIL : S_OK;

}
else
{

. . . // Do conversion to ANSI and add
}

return hr;
}

void ComboBox_Reset(HWND hwnd)

{
ComboBox_ResetContent(hwnd);

}

/* Listview */

HRESULT ListView_PutItem(HWND hwnd, LPVOID value, UInt32 flags, UInt32 param)
{

LV_ITEMW item;

item.mask = LVIF_TEXT;
item.iItem = ListView_GetItemCount(hwnd); /* add to end */
item.iSubItem = 0;
item.pszText = (LPWSTR)value;

return (int)SendMessage(hwnd, LVM_INSERTITEMW, 0, (LPARAM)&item) < 0
? E_FAIL : S_OK;

}

void ListView_Reset(HWND hwnd)
{

ListView_DeleteAllItems(hwnd);
}

/* Edit */

HRESULT Edit_PutItem(HWND hwnd, LPVOID value, UInt32 flags, UInt32 param)
{

HRESULT hr;

SendMessage(hwnd, EM_SETSEL, (WPARAM)-1, (LPARAM)-1);

if(IsWindowUnicode(hwnd))
{

hr = SendMessage(hwnd, EM_REPLACESEL, 0, (LPARAM)(LPCOLESTR)value)
? S_OK : E_FAIL;

if(SUCCEEDED(hr))
{

SendMessage(hwnd, EM_SETSEL, (WPARAM)-1, (LPARAM)-1);
hr = SendMessage(hwnd, EM_REPLACESEL, 0, (LPARAM)L"\r\n")

? S_OK : E_FAIL;
}

}
else
{

. . . // Do conversion to ANSI and add
}

return hr;
}

void Edit_Reset(HWND hwnd)
{

SetWindowText(hwnd, "");
}

Listing 5 Implementation of control handlers

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 11

alternatives if you prefer to be in the STL
world entirely. Perhaps you only need to pop-
ulate one kind of control and from one kind
of enumeration interface, or you want to mod-
ify the contents of the retrieved items with
adaptor functionals (function objects). Two
STLSoft subprojects, COMSTL and WinSTL,
provide components that, when used in con-
cert, provide a very simple solution. If you
have an IEnumString enumerator and you
want to populate a list-box, the following code
will do that:

LPENUMSTRING penStr = . . .
// An IEnumString instance
HWND hwndListBox = . . .
// and a window to put it in

// Declare an enumerator sequence for
//IEnumString
comstl::enum_simple_sequence< IEnumString

, LPOLESTR
, comstl::LPOLESTR_policy
, LPCOLESTR
, comstl::input_cloning_policy<IEnumString>
, 5 // Next() five at a time
> strings(penStr, true);

// borrows the reference

std::for_each(strings.begin(), strings.end(),

winstl::listbox_back_inserter(hwndListBox));

Alternatively, if you have IEnumVARIANT and
you want it to go into a combo box in reverse
order:

comstl::enum_simple_sequence< IEnumVARIANT
, VARIANT
, comstl::VARIANT_policy
, VARIANT const
,

comstl::input_cloning_policy<IEnumVARIANT>
, 10 // Next() 10 at a time
> strings(penVar, false);

// eats the reference

std::for_each(strings.begin(), strings.end(),
winstl::combobox_front_insert

er(hwndComboBox));

(It looks like a lot of code, but almost all of it
is the parameterization of the enumerator se-
quence template. In real code, these are usu-
ally typedef’d.) As well as not needing to com-
pile and link in the C-API, this has some other
advantages. The sixth parameter to the tem-
plate is a number, which specifies the number
of items to acquire in each call to the enu-
merator’s Next() method. Where this is im-
portant (e.g., when marshalling between apart-
ments or between hosts), it allows you to
increase efficiency by reducing round-trips by
parameterizing the template appropriately.

You could also provide modification of the
items before they go into the list control by ap-
plying an adaptor function (e.g., to set to up-
percase) to the control inserter functional, as in:

template <typename F>
struct upper_adaptor;
template <typename F>
upper_adaptor<F> make_upper_adaptor(F);

for_each(strings.begin(), strings.end(),

make_upper_adaptor(combobox_front_inserter(hwnd
ComboBox)));

Test client
Included in the online archive is the test pro-
gram, shown in Figure 1. The dialog allows you

W I L S O N

static HWND MOCtlFns_Test_GetListWindow(HWND hwnd)
{

HWND hwndTab = ::GetDlgItem(hwnd, IDC_TAB);
int iCurSel = TabCtrl_GetCurSel(hwndTab);
int idList = Tab_GetItemData(hwndTab, iCurSel);
HWND hwndList = ::GetDlgItem(hwnd, idList);

_ASSERTE(idList != 0);
_ASSERTE(hwndList != 0);

return hwndList;
}

static void MOCtlFns_Test_OnClear(HWND hwnd)
{

HWND hwndList = MOCtlFns_Test_GetListWindow(hwnd);

ListExchange_PutItems(hwndList, NULL, SYLXF_RESETCONTENT);
}

static void MOCtlFns_Test_OnPut(HWND hwnd)

{
LPUNKNOWN penItems;
HRESULT hr = MOCtlFns_Test_GetEnumerator(hwnd,

IID_IUnknown,
reinterpret_cast<void**>(&penItems));

HWND hwndList = MOCtlFns_Test_GetListWindow(hwnd);

if(SUCCEEDED(hr))
{

UInt32 flags = IsDlgButtonChecked(hwnd, IDC_CLEAR_EXISTING)
? SYLXF_RESETCONTENT
: 0;

/* Simply pass the window, enumerator (as IUnknown) and
* flags to the function.
*/

ListExchange_PutItems(hwndList, penItems, flags);

penItems->Release();
}

}

Listing 6 Use of ListExchange_PutItems() in test program

Figure 1 Enumerator test program

12 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

to select one of five enumerator types (each of
which are filled with sample data when they’re
created) and to select one of four list windows.
Listing 6 shows some functions from the test
program. MOCtlFns_Test_GetListWindow() is
a helper function that retrieves the ID of the
list control that is associated with a tab control
item, and returns the corresponding window
handle. It is used by MOCtlFns_Test_OnClear(),
which demonstrates the use of ListEx-
change_PutItems() to clear out any list con-
trol, and by MOCtlFns_Test_OnPut(), which
demonstrates the list population. MOCtl-
Fns_Test_OnPut() obtains the appropriate
COM enumerator from another function in the
test program, MOCtlFns_Test_GetEnumerator(),
which synthesizes an enumerator of the appro-
priate type (as determined by the “Source” ra-
dio group). In real code, you’d have received
the enumerator from a source and would like-
ly obtain the control from GetDlgItem(), so
your code would be very succinct.

Listing 7 shows a solution based around the
COMSTL enum_simple_sequence<> sequence
class and the WinSTL control (standard and
common) inserter functionals. Clearly, there
is a lot of code to write, but this is just the
demonstration program. In real-world scenar-
ios, you’d use the C-API if you need this lev-
el of complexity, and the COMSTL/WinSTL
components if you didn’t.

Iterator concepts and
IEnumXXXX::Clone()
A full description of the iterator concept is
given at http://sgi.com/tech/stl/Iterators.html,
and an in-depth treatment of the issues in-
volved in writing iterators and sequences is
given in my March 2003 WDN article (see
References), so I’ll try and be very brief here.
An input iterator is something from which
one may acquire its value only once. When
copied, the ownership of the “range” is passed
to the copy, making subsequent retrieval from

the original invalid. A forward iterator is some-
thing from which one may take a copy and
retrieve meaningful results from both copies.

COM programmers will recognize that the
COM enumerator model describes a forward
iterator semantic, by the Clone() method pro-
vided by all IEnumXxxx enumerator interfaces,
which is defined to return a copy of the source
enumerator that is at the same point in its
enumeration as the source. However, it is le-
gal for the Clone() method to fail, so were we
to implement enum_simple_sequence’s iter-
ators as forward iterators, that could lead to
trouble when it did so. Conversely, most enu-
merators succeed a call to Clone(), so were
we to implement the iterators as input itera-
tors, we would be restricting functionality in
a large number of cases where that would not
be necessary. Hence, the COMSTL enum_sim-
ple_sequence<> template takes a cloning pol-
icy so that users can select the desired itera-
tor concept support based upon their needs.

W I L S O N

using comstl::enum_simple_sequence;
using comstl::input_cloning_policy;
using comstl::LPOLESTR_policy;
using comstl::BSTR_policy;
using winstl::listbox_back_inserter;
using winstl::combobox_back_inserter;
using winstl::listview_back_inserter;

static void MOCtlFns_Test_Put(HWND hwnd)
{

LPUNKNOWN punk;
HRESULT hr = MOCtlFns_Test_GetEnumerator(hwnd,

IID_IUnknown,
reinterpret_cast<void**>(&punk));

HWND hwndList = MOCtlFns_Test_GetListWindow(hwnd);

if(SUCCEEDED(hr))
{

HWND hwndTab = ::GetDlgItem(hwnd, IDC_TAB);
int iCurSel = TabCtrl_GetCurSel(hwndTab);
int idList = Tab_GetItemData(hwndTab, iCurSel);

if(::IsDlgButtonChecked(hwnd, IDC_STRING))
{

LPENUMSTRING penum;

hr = punk->QueryInterface(IID_IEnumString,
reinterpret_cast<void**>(&penum));

if(SUCCEEDED(hr))
{

typedef enum_simple_sequence
< IEnumString
, LPOLESTR
, LPOLESTR_policy
, LPCOLESTR
, input_cloning_policy<IEnumString>
, 5
> enum_sequence_t;

// Declare the sequence (and eat the reference)
enum_sequence_t values(penum, false);

switch(idList)
{

case IDC_LISTBOX:
std::for_each(values.begin(), values.end(),

listbox_back_inserter(hwndList));
ListBox_ResetContent(hwndList);
break;

case IDC_COMBOBOX:
std::for_each(values.begin(), values.end(),

combobox_back_inserter(hwndList));
ComboBox_ResetContent(hwndList);
break;

case IDC_LISTVIEW:

std::for_each(values.begin(), values.end(),
listview_back_inserter(hwndList));

ListView_DeleteAllItems(hwndList);
break;

}
}

}
else if(::IsDlgButtonChecked(hwnd, IDC_BSTR))
{

LPENUMBSTR penum;

hr = punk->QueryInterface(IID_IEnumBSTR,
reinterpret_cast<void**>(&penum));

if(SUCCEEDED(hr))
{

typedef enum_simple_sequence
< IEnumBSTR
, BSTR
, BSTR_policy
, BSTR const
, input_cloning_policy<IEnumBSTR>
, 5
> enum_sequence_t;

// Declare the sequence (and eat the reference)
enum_sequence_t values(penum, false);

switch(idList)
{

case IDC_LISTBOX:
std::for_each(values.begin(), values.end(),

listbox_back_inserter(hwndList));
ListBox_ResetContent(hwndList);
break;

case IDC_COMBOBOX:
std::for_each(values.begin(), values.end(),

combobox_back_inserter(hwndList));
ComboBox_ResetContent(hwndList);
break;

case IDC_LISTVIEW:
std::for_each(values.begin(), values.end(),

listview_back_inserter(hwndList));
ListView_DeleteAllItems(hwndList);
break;

}
}

}
else
{

. . . // etc. etc.
}

punk->Release();
}

}

Listing 7
Permutations of enum_simple_sequence<> and functionals in test program

W I L S O N

COMSTL provides several cloning policies,
including:

• input_cloning_policy<> assumes Input It-
erator semantics, and transfers ownership of
the enumerator from the source iterator to
the destination iterator.

• forward_cloning_policy<> assumes For-
ward Iterator semantics, and calls Clone()
on the source iterator’s enumerator to ob-
tain one for the destination iterator. If this
fails, the destination iterator is set to null,
and the destination range [begin, end) is
empty.

In our code, we have used the input_clon-
ing_policy<> since in all cases, we only need
one byte at the cherry of the enumerator ranges.

Summary
This article has examined the common but
programmatically complex situation of trans-
ferring information from COM enumerators
to windows controls. In a sense, we’ve looked
at the two ends of the spectrum of moderni-
ty in our two methods. The old way, a C-API
written in C, sacrifices some run-time effi-
ciency for succinct client code and flexibili-
ty in the things that it can handle at run time.
It has the slight disadvantage that it must

work with one enumerated item at a time. It
has a nice by-product that the list control can
be cleared by a single function call without
needing to worry about the window class. This
is a piece of flexibility that can only be
achieved at run time, since all windows are
identified at compile time by their HWND only,
and are distinguished by their window class
that is obtained by a function call (Get-
ClassName()).

The new way, using STL sequences and
function objects, is more appealing to those
(of us) who revel in intellectual elegance. It’s
also likely to be more efficient, since there
are no run-time checks carried out on enu-
merator and list-control types, and it can re-
trieve multiple items in each call to
IEnumXxxx::Next(). As is the case with
generic (template) programming, you do have
polymorphism, but it is compile time (i.e., in
the type resolution and template parameter-
ization). If this suits your needs, this is great.
If you need to deal with multiple potential
interfaces at run time, then you should stick
with the C-API.

As with all things in software engineer-
ing, there is no absolute best approach. Each
of these two approaches reflects an optimal
solution to a particular set of circumstances.
In one set of circumstances, you would use

one; in a different set, the other. It’s just a
case of filling your bag of tricks with enough
tricks.

Finally, you may be wondering whether I
was going to discuss data exchange in the oth-
er direction? Well I’m sure it won’t surprise
you to learn that I’ve got both C-API and
STL techniques for doing this, but that’s an-
other (longer) article.

References
Generic Programming and the STL, Matt
Austern, Addison-Wesley, 1998.

STLSoft is an open-source organization
applying STL techniques to a variety of
technologies and operating systems. It is
located at http://stlsoft.org/. COMSTL and
WinSTL are subprojects, and are located at
http://comstl.org/ and http://winstl.org/,
respectively.

“Adapting Win32 Enumeration APIs to
STL Iterator Concepts,” Matthew Wilson,
Windows Developer Magazine, March 2003.

“Inserter Function Objects for Windows
Controls,” Matthew Wilson, Windows
Developer Network, November 2003. w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 13

http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com

MANY OF US WOULD like to be able to take
advantage of web services and access .NET
data from Microsoft Office applications such
as Excel using VBA. Imagine your users open-
ing an Excel spreadsheet and connecting it to
your ASP.NET application in order to view
data in a rich environment with equations and
charts, and even being able to upload data, as
in Figure 1. You could create web services us-
ing the Office XP Web Services Toolkit 2.0,
but then you will need a deployment package
that includes Microsoft XML (MSXML) and
Microsoft SOAP (MSSOAP). At times we
can’t require client installations because, for
one reason or another, the workstations and
laptops that will be running office applications
are out of our control. Although Office 2003
will provide even greater support for interact-
ing with .NET and web services, it may be a
while before many of our clients are upgrad-
ed. Luckily, it is possible to use existing tech-
nology to communicate between .NET and
versions of Office products from the 2000, XP,
and 2003 family. It might even work with Of-
fice 97, although I haven’t tried it.

Before I get into the details, I should men-
tion Visual Studio Tools for Office (VSTO).
If you perform a complete install of Office 2003
on a machine where the .NET Framework 1.1
is installed, then the Office 2003 Interop as-
semblies will also be installed into the Global
Assembly Cache. You may then download and
install VSTO. The tools will allow you to use
Visual Studio .NET 2003 along with C# or
VB.NET to write code behind Word 2003 and
Excel 2003 documents. You create, run, and
debug these projects from VS.NET as you

would any other .NET project, and you have
the Excel and Word object models available
as you would in VBA. Your code behind com-
piles into a DLL that can either reside locally
with the Excel or Word document, or be placed
in a location such as a network share or web
site where the document will look for it (as
well as updates to it). VSTO gives you all of
the benefits of using .NET—the security of
managed code, ADO.NET, XML, no-touch
deployment, a feature-rich IDE, etc.—and al-
lows you to use it to program Word and Excel
documents, which also has new built-in func-
tionality for working with XML data. Read
more at http://msdn.microsoft.com/vstudio
/office/officetools.aspx.

With VSTO, you can easily call web serv-
ices just as you would from any other C# or
VB.NET application, and you can write your
entire Word or Excel (2003) application with-
out using VBA at all. You don’t need to do the
extra plumbing in .NET and VBA that I will
show you how to do in this article—so if your
user base will soon have Office 2003, then you
should be looking at VSTO. But if you still
need to support several versions of Office, this
technique is for you.

In this article, I will show you step-by-step
how to create a “lite” web service by using
ASP.NET, and how to call it from VBA. I will
take advantage of a class in MSXML called
“XMLHTTPRequest.” Aptly named, this class
handles all of the plumbing to make an HTTP
request and receive an XML response. Fortu-
nately, MSXML began shipping with Internet
Explorer version 4.01 so, unlike MSSOAP, we
can assume our clients already have MSXML
installed. To package the data up into XML
format, I will create a disconnected ADO
Recordset on the fly. The Recordset’s Save
method has an option to persist the Record-
set in its own XML format. ADO can be used
from both VBA and .NET (via COM Interop),
but since many of us are already working with
ADO.NET, I will show you how to convert

DataSets to and from Recordsets. This article
assumes that you have access to Visual Studio
.NET 2002 or 2003, a SQL Server with the
pubs database, and Excel. The listings are writ-
ten in C# and VBA, and are available for
download.

Convert a DataTable to a
Recordset
Let’s assume that you already have some code
that uses ADO.NET and returns important
data in the format of a DataSet. It could sim-
ply be querying data from a database or an
XML file, or it could be the result of some com-
plex business logic. But you can’t access
ADO.NET objects in VBA, so we need to con-
vert the data into a format that we can easily
work with in VBA—Recordsets. A DataSet
may actually contain several DataTables, so
we will convert a DataSet to a collection of
Recordsets. To get started, launch Visual Stu-
dio .NET and create a new C# ASP.NET web
project called “LiteWebServicesCS.” Remove
WebForm1.aspx—you won’t need it. Then add
a new code file to the project called “ADO-
Utility.cs.” You will also need to add a refer-
ence to adodb (under the .NET tab) to the
project’s references. This is a .NET COM-In-
terop assembly that lets us work with ADO. It
is not installed with the .NET Framework, but
it comes with Visual Studio .NET, so you’ll
need to deploy it when you deploy your
ASP.NET application.

As you can see in Listing 1, ConvertData-
TableToRecordset is a static method that takes
a DataTable as a parameter and returns a
Recordset. This is done by creating a new in-
stance of a Recordset. You may only be famil-
iar with receiving Recordsets as output from
ADO. In this case, I am making use of an ADO

LUTHER MILLER is a software architect at
Softagon Corp. in San Francisco. He is an
MCSD for .NET and, when he is not hiking
or watching Futurama, creates solutions for
the financial industry using .NET, SQL Serv-
er, and Office. Questions/comments are wel-
comed at luther@anandus.com.

14 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

L U T H E R M I L L E R

Connect Office Apps to .NET with
“Lite” Web Services

By skipping the web services toolkit and client setups,

you won’t leave legacy Office users behind

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 15

feature that allows the creation of disconnected
Recordsets from scratch. The next step is to
loop through the columns in the DataTable
and create corresponding fields in the Record-
set. This is done by looking up the .NET data
type and retrieving an equivalent ADO data
type and maximum size. Finally, I loop through
the Rows collection in the DataTable, retrieve
the values for each row, and add them to the
Recordset. You might have noticed that I do
some special processing for decimal data types
when I create the Recordset’s fields—you will
need this code if you use the decimal data type,
otherwise you might lose precision. I also do
special processing for globally unique identi-
fiers (GUIDs); otherwise ADO will not rec-
ognize them as such.

Listing 2 contains the lookup method to
determine the proper ADO data type and
size for a given .NET type. The ADO.NET
Column object’s DataType property returns a
System.Type object, which is passed into
GetADOType. I chose to create a two-dimen-
sional object array to hold the lookup data.
I use the C# typeof keyword to get an in-
stance of the correct object; typeof(Sys-
tem.Boolean) creates a System.Type object
corresponding to System.Boolean, for ex-
ample. I loop through the array looking for
the specified type, and then return the equiv-
alent ADO data type and maximum length
as output parameters. I went through the
available ADO data types and included each
one that could easily be converted, and this
will cover all but the rarest situations. There
is an exhaustive list in the ADO API Refer-
ence at http://msdn.microsoft.com/library/
en-us/ado270/htm/mdaenumdm.asp.

Persist Recordsets as XML
The Recordset’s Save method can be used to
persist the Recordset in its very own XML for-
mat. Likewise, the Open method of the Record-
set will recreate the Recordset from that per-

sisted XML. The XML itself is not very useful
to us, but just by being XML, it can easily be
manipulated. At this point, my goal is to cre-
ate a method to return the Recordset’s XML
as a string, but the Save method saves it to a

M I L L E R

// Converts the specified DataTable into an ADO Recordset.
static public ADODB.Recordset ConvertDataTableToRecordset(DataTable table)
{

// Create a new (disconnected) Recordset
ADODB.Recordset recordset = new ADODB.Recordset();

// Create an array for the names of the colums to use
// later with the AddNew method of the Recordset.
object [] fieldList = new object[table.Columns.Count];

// Loop through all of the columns in the DataTable
// and define each as a new field in the Recordset;
// also add the name to the fieldList array.
for (int i=0; i < table.Columns.Count; i++)
{

// get the field name, or create one if necessary
string fieldName = table.Columns[i].ColumnName;
if (fieldName == null || fieldName.Length == 0)

fieldName = string.Format("Column{0}", i);
fieldList[i] = fieldName;

// Lookup the field's equivalent ADO type and maximum size
ADODB.DataTypeEnum adoType;
int adoSize;
GetADOType(table.Columns[i].DataType, out adoType, out adoSize);

// add the field to the ADO Recordset
recordset.Fields.Append(fieldName, adoType, adoSize,

ADODB.FieldAttributeEnum.adFldIsNullable, null);

// These generic values appear to work well with any size
// decimal/numeric; setting them for other types does not
// cause harm, but they are necessary for decimals.

recordset.Fields[i].Precision = 0;
recordset.Fields[i].NumericScale = 25; //the maximum

} //for

// Now that the fields are defined, open the Recordset so we may
// add the data. Notice that because C# does not work like VB with
// optional parameters, we use the special Missing object which
// is defined in System.Reflection.
recordset.Open(Missing.Value, Missing.Value,

ADODB.CursorTypeEnum.adOpenUnspecified,
ADODB.LockTypeEnum.adLockUnspecified, -1);

for (int i=0; i < table.Rows.Count; i++)
{

// get the current record's values into an array
object [] values = table.Rows[i].ItemArray;

// ADO does not recognize GUID, or unique identifiers,
// unless they are wrapped in curly braces, we check for
// any occurences of them here and convert them to a
// string in the format "{00000000-0000-0000-0000-000000000000}"
for (int j=0; j < values.Length; j++)

if (values[j] is System.Guid)
values[j] = '{' + values[i].ToString() + '}';

// add the current record to the ADO Recordset
recordset.AddNew(fieldList, values);

}

// Done - Recordset complete!
return recordset;

}

Listing 1 ConvertDataTableToRecordset

Figure 1 Accessing Data in Excel with a “Lite” Web Service

file, or, starting with ADO 2.5, to an ADO Stream object. A few short
lines of code perform this task easily in the ConvertRecordset-
ToXmlText method (see Listing 3).

Recalling that a DataSet contains a collection of DataTables, we
need a way to turn several Recordsets into one XML document that
can be returned to the client. The System.Xml namespace allows us
to manipulate XML in a variety of ways, and now we can reap the
benefits of having our Recordset in XML format. Since XML is hier-
archical, I create a new XML document with an element called “re-
sults” to represent multiple Recordsets. I then loop through the tables
in the DataSet and add each one’s Recordset XML as a child of the
results element. Since the Recordset’s XML is an XML document in
its own right, I use the ImportNode method to bring a Recordset as a
child element into the new document. The ConvertDataSetToXml-
Document method appears in Listing 4.

Creating a Lite Web Service with IHttpHandler
Now that we have a way to represent our data in XML format, we
need a way to make it available to our client applications. We can
build our service as an Http Handler and let ASP.NET take care of
the rest. I call this a lite web service because it only has a few of the
characteristics of a real web service: It uses XML and HTTP, but does
not use SOAP or conform to any other standards. An ASPX page, or
web form, is really just a specialized Http Handler. To build an Http
Handler, start out by opening the Class View window, right-clicking
on the project, and selecting Add Class. In the wizard, set the class
name to GetAuthors and then select the Inheritance tab. Set the cur-
rent namespace to System.Web and then add IHttpHandler, followed
by Finish. In the class view, find GetAuthors in the class hierarchy,
open Bases and Interfaces, right-click IHttpHandler, and select Add
/ Implement Interface. This will automatically create the properties
and methods of the interface, so all you will need to do is fill in the
code. Of course, you could have done all of this from scratch, with-
out using the tools in the Class View, but it is useful to know about
the Implement Interface command.

The ProcessRequest method is all that we really need to deal with.
I deleted the constructor that the wizard created, and I didn’t touch
the code that returns True for IsReusable, because I will implement
the class such that a given instance could be invoked multiple times.
The only parameter to ProcessRequest is an HttpContext object.
The HttpContext object exposes everything we will need including
the Request and Response objects. This means that we can look at
query parameters, get and set cookies, and so on, just as with a Web
Form. In fact, all we really need to do is write our XML to the re-
sponse stream.

I added a method to the GetAuthors class called GetAuthorsData,
which returns a DataSet containing the results of “select * from authors”
from the database. The data access code looks for the connection string
to be defined in the Web.Config file, so add it now just below the <con-
figuration> tag. It should look something like Listing 5. The Process-
Request method simply retrieves the data, calls ConvertDataSetToXml-
Document, and then writes the documents XML as the response. I also
set the response’s Content-Type header to “text/xml,” and I set the
CacheControl property to “no-cache” since I don’t want clients to cache
the results. The complete GetAuthors class is in Listing 6.

16 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

M I L L E R

// This function accepts a Recordset and converts to an XML string.
static public string ConvertRecordsetToXmlText(ADODB.Recordset recordset)
{

ADODB.Stream stream = new ADODB.Stream();

stream.Open(Missing.Value, ADODB.ConnectModeEnum.adModeUnknown,
ADODB.StreamOpenOptionsEnum.adOpenStreamUnspecified, null, null);

recordset.Save(stream, ADODB.PersistFormatEnum.adPersistXML);
stream.Position = 0;

return stream.ReadText(-1);
}

Listing 3 ConvertRecordsetToXmlText

// Creates an XML document from a DataSet containing multiple Recordsets.
static public XmlDocument ConvertDataSetToXmlDocument(DataSet dataSet)
{

// create a new XML document to hold more than one Resultset
XmlDocument xmlDoc = new XmlDocument();
// create a "results" element to contain the Recordsets
XmlElement xmlResults = xmlDoc.CreateElement("results");
xmlDoc.AppendChild(xmlResults);

// loop through all the tables in the DataSet
foreach (DataTable dataTable in dataSet.Tables)
{

// Convert the Recordset's XML into an XML Document
XmlDocument currentRecordsetDocument = new XmlDocument();
currentRecordsetDocument.LoadXml(

ConvertRecordsetToXmlText(ConvertDataTableToRecordset(dataTable))
);

// Append the Recordset's XML document as a child node
xmlResults.AppendChild(xmlDoc.ImportNode(

currentRecordsetDocument.DocumentElement, true));
}

// Done! Return the new XML document representing the DataSet
return xmlDoc;

}

Listing 4 ConvertDataSetToXmlDocument

<appSettings>
<add key="ConnStr" value=
"integrated security=sspi;initial catalog=pubs;data source=localhost;" />

</appSettings>

Listing 5 Connection string definition

// Based on the .NET data type, return the appropriate ADO data type and
// size to be used when defining the Recordset.
static public void GetADOType(Type dotNetType,

out ADODB.DataTypeEnum adoType, out int adoSize)
{

adoType = DataTypeEnum.adEmpty;
adoSize = -1;

object [][] lookup = new object [][]
{

new object [] {typeof(System.Boolean), DataTypeEnum.adBoolean, -1},
new object [] {typeof(System.Byte), DataTypeEnum.adUnsignedTinyInt, -1},
new object [] {typeof(System.Byte[]), DataTypeEnum.adBinary, 32767},
new object [] {typeof(System.DateTime), DataTypeEnum.adDate, -1},
new object [] {typeof(System.Decimal), DataTypeEnum.adDecimal, -1},
new object [] {typeof(System.Double), DataTypeEnum.adDouble, -1},
new object [] {typeof(System.Guid), DataTypeEnum.adGUID, -1},
new object [] {typeof(System.Int16), DataTypeEnum.adSmallInt, -1},
new object [] {typeof(System.Int32), DataTypeEnum.adInteger, -1},
new object [] {typeof(System.Int64), DataTypeEnum.adBigInt, -1},

new object [] {typeof(System.SByte), DataTypeEnum.adTinyInt, -1},
new object [] {typeof(System.Single), DataTypeEnum.adSingle, -1},
new object [] {typeof(System.String), DataTypeEnum.adVarWChar, 32767},
new object [] {typeof(System.UInt16),

DataTypeEnum.adUnsignedSmallInt, -1},
new object [] {typeof(System.UInt32), DataTypeEnum.adUnsignedInt, -1},
new object [] {typeof(System.UInt64), DataTypeEnum.adUnsignedBigInt, -1},

};

// find the .NET type in the lookup array and retrieve the
// corresponding ADO Type and Size.
foreach (object [] type in lookup)

if (dotNetType == (Type) type[0])
{

adoType = (DataTypeEnum) type[1];
adoSize = (int) type[2];
break;

}
}

Listing 2 GetADOType

M I L L E R

There is one last step before our service can
be accessed. We need to map a specific URL to
our Http Handler. This is done in the Web.Con-
fig file by adding an entry to the <httpHan-
dlers> section, which you may need to add un-
der <system.web>. We need to tell ASP.NET
what type of HTTP “verbs” we will handle
(GET, POST, etc.), what “path” to look for in
the URL, and the Http Handler “type” (class)
that will handle the request. See Listing 7 for
my mapping of GetAuthors. Note that I used
“asmx” as the extension in the path. I also could
have used “aspx,” since both are mapped to
ASP.NET in IIS when .NET is installed. Choos-
ing another extension may require additional
configuration in IIS in order to get things work-
ing. The verb of “*” means that it will handle
all types of requests. See “Registering Http Han-
dlers” in the .NET Framework documentation
for more information.

At this point, you should be able to build
your solution and do a quick test. Don’t try to
run it from Visual Studio because there is no
startup page in your project. However, after
you have built it, open up Internet Explorer
and enter “http://localhost/LiteWebServicesCS/
GetAuthors.asmx” into the address bar (change
the “LiteWebServicesCS” part if your web proj-
ect is configured differently). You should see
the raw XML returned by the GetAuthors Http
Handler. If you do want to run your service
from Visual Studio—and you will want to in
order to set breakpoints and debug it—then
you can simply add a blank HTML page to the
project and set it as the startup page.

Creating the VBA Client
Now that the lite web service is in place, the
next step is to write the client code in VBA

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 17

// Returns a Recordset listing authors.
public class GetAuthors : System.Web.IHttpHandler
{

protected DataSet GetAuthorsData()
{

SqlConnection conn = new SqlConnection(
ConfigurationSettings.AppSettings["connStr"]

);
SqlDataAdapter adap = new SqlDataAdapter(

"select * from authors",
conn);

DataSet dataSet = new DataSet();
adap.Fill(dataSet);
return dataSet;

}

#region Implementation of IHttpHandler
public void ProcessRequest(System.Web.HttpContext

context)
{

DataSet dataSet = GetAuthorsData();
XmlDocument xmlDoc =

ADOUtility.ConvertDataSetToXmlDocument(
dataSet);

context.Response.ContentType = "text/xml";
context.Response.CacheControl = "no-cache";
context.Response.Write(xmlDoc.OuterXml);

}

public bool IsReusable { get { return true; } }
#endregion
}

Listing 6 GetAuthors class

http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts

to access it. I will use Excel as a client, so open Excel and draw a new
Command Button somewhere on the sheet. You might need to select
the Control Toolbox by right-clicking the toolbar first. Double-click
the Command Button to create the CommandButton1_Click event
code in VBA, but don’t add any code to it yet. Instead, add references
to the VBA project for MSXML and ADO, since we will be using
those objects. Go to Tools/References and check both “Microsoft Ac-
tiveX Data Objects 2.5 Library” (or later) and “Microsoft XML, ver-
sion 2.0” (or later).

Next, create a function called InvokeLiteWebService, as in List-
ing 8. This method takes three parameters: the URL of the lite web
service, an optional request, and an optional verb. The request is a
variant containing data that should be sent to the service being in-
voked. So far, I have only discussed receiving data from the service—
we can send data, too, as I will show you later in this article. The third
parameter is the verb to be used for the HTTP request. For retrieving
data, “GET” is fine. If we are going to send request data as well, then
“POST” should be used.

To invoke the service, I create an instance of MSXML.XMLHTTPRe-
quest. I use the Open method of this object, passing in the verb and
the URL. I also specify that I want the call to be synchronous. In the
Open method you may optionally specify a username and password,
which could be used in conjunction with IIS and/or ASP.NET secu-
rity. Next, I check to see if request data has been passed into Invoke-
LiteWebService that I need to send to the service. If not, I invoke the
Send method of the XMLHTTPRequest without any parameters. If there
is a request, then I first set the Content-Type header for the request,
and then I call the Send method, passing the data to be posted.

The Send method invokes the service and receives the response. I’m
expecting an XML response, but trial and error has taught me that if
something goes wrong on the server side (such as an exception being
thrown), then I might end up with an HTML response with an error
message, so I check the response text to see if it starts with an <html>
tag, and I raise an error if it does. If not, then everything went well and
I retrieve the response as an XML document and return it. XML-
HTTPRequest takes care of converting the XML text to an XML doc-
ument for us. Note that either ASP.NET or IIS might return an HTML
page if something goes wrong. You could write code to handle ASP.NET
errors and package the error into the XML response with the record-
sets, and look for it in the VBA code. You could also try and parse the
text of the HTML response, using MSHTML for example, to show a
text message to the user. I’ll leave this as an exercise for the reader.

Converting the XML Back Into Recordsets
The ConvertXmlDocumentToRecordsetsCollection function in List-
ing 9 will reverse engineer the XML document. On the server, I added
each Recordset’s XML as a child node of the document I created.
Now, I loop through the child nodes and call a function to convert
the XML from each node into a single Recordset, and add each
Recordset to a Collection. The code to convert a single Recordset’s
XML back to a Recordset, in Listing 10, writes the XML text to an

18 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

M I L L E R

<httpHandlers>
<add verb="*" path="GetAuthors.asmx"

type="LiteWebServicesCS.GetAuthors, LiteWebServicesCS" />
</httpHandlers>

Listing 7 GetAuthors mapping

' This function is specifically designed to make a request to a
' "Lite" web service implemented via an ASP.NET IHttpHandler.
' The Url parameter should include all query strings etc., e.g.:
' http://server/MyLiteWSProject/MyService1.asmx?p1=val1&p2=val2
Public Function InvokeLiteWebService(_

ByVal vsUrl As String, _
Optional ByVal vvRequest As Variant, _
Optional ByVal vsVerb As String = "GET" _

) As MSXML.DOMDocument

Dim loXmlHttpRequest As New MSXML.XMLHTTPRequest
Dim loXmlDocument As MSXML.DOMDocument

'Connect to the ASP.NET URL and send the request
loXmlHttpRequest.Open vsVerb, vsUrl, varAsync:=False
If IsMissing(vvRequest) Then

loXmlHttpRequest.send
Else

loXmlHttpRequest.setRequestHeader "Content-Type", _
"application/x-www-form-urlencoded"

loXmlHttpRequest.send vvRequest
End If

'Check for an <html> response - that would indicate an error
'probably occured in ASP.NET and an HTML page was returned with
'an error message.
If 0 = StrComp("<html>", Mid$(loXmlHttpRequest.responseText, 1, 6), _
vbTextCompare) Then

'Note, this could be enhanced to save the HTML to a file and
' open in a browser, or to parse out the text to display nicely...
Err.Raise vbObjectError + 1000, vsUrl, "An error occurred." _

& vbCrLf & loXmlHttpRequest.responseText
End If

'Retrieve the response (an XML document object) and return it
Set loXmlDocument = loXmlHttpRequest.responseXML
Set InvokeLiteWebService = loXmlDocument

End Function

Listing 8 InvokeLiteWebService

' Converts the XML document that was created on the server
' into a collection of Recordsets, representing a DataSet.
Public Function ConvertXmlDocumentToRecordsetsCollection(_

ByVal voXmlDocument As MSXML.DOMDocument _
) As Collection

Dim loRecordsetNodes As MSXML.IXMLDOMNodeList
Dim loRecordsetNode As MSXML.IXMLDOMNode
Dim loRecordsets As Collection

Set loRecordsets = New Collection

'loop through recordset nodes
Set loRecordsetNodes = voXmlDocument.documentElement.childNodes
For Each loRecordsetNode In loRecordsetNodes

'loop through recordset nodes
loRecordsets.Add ConvertXmlToRecordset(loRecordsetNode.XML)

Next loRecordsetNode

'return the collection of (disconnected) Recordsets
Set ConvertXmlDocumentToRecordsetsCollection = loRecordsets

End Function

Listing 9
ConvertXmlDocumentToRecordsetsCollection

' Converts the XML for a single Recordset back into a
' Recordset.
Public Function ConvertXmlToRecordset(ByVal vsXml As String) As ADODB.Recordset

Dim loRecordset As New ADODB.Recordset
Dim loStream As New ADODB.Stream

loStream.Open
loStream.WriteText vsXml
loStream.Position = 0
loRecordset.Open Source:=loStream, Options:=ADODB.CommandTypeEnum.adCmdFile

Set ConvertXmlToRecordset = loRecordset
End Function

Listing 10 Converting Recordset’s XML ' Loads the results of GetAuthors into the first sheet
Private Sub CommandButton1_Click()

Dim loRecordsets As Collection
Dim lsUrl As String

lsUrl = "http://localhost/LiteWebServicesCS/GetAuthors.asmx"

'get the authors
Set loRecordsets = ConvertXmlDocumentToRecordsetsCollection(_

InvokeLiteWebService(lsUrl))

'copy the authors Recordset into the Excel sheet
Sheet1.Range("A1").CopyFromRecordset loRecordsets(1)

End Sub

Listing 11 Copying the data into Excel

ADO Stream object and then uses the Recordset’s Open method to
load the data from the stream—the opposite of how the XML was
first created on the server.

Now we can write the code for the click event of the Command
Button. I call the InvokeLiteWebService function and pass the re-
sults to ConvertXmlDocumentToRecordsetsCollection. The GetAu-
thors service only returns one result set, so the collection will only
contain one Recordset. I use the CopyFromRecordset method of the
Excel Range object to copy the data into Sheet1; see Listing 11. Go
back into Sheet1 in Excel, and click the command button (make sure
you are no longer in design mode by toggling the toolbar button, if
necessary). The data from the pubs table is loaded into Sheet1.

Sending Data to the Server
At this point, we have a back-to-front solution for exposing the data
from a .NET application as a lite web service that can be called from

a VBA application. Now, I’ll show you two ways to send data from a
VBA application to a lite web service. The first is by simply adding a
query string to the service’s URL. The second is by sending an XML
document representing multiple Recordsets—the same format that
we are receiving data in.

I may want to create a lite web service to return titles for a given
author, for example. This is a good case for using a query string to send
data to the server. By simply putting the author’s ID into the query
string, the service can return the titles that correspond to that author.
Since some characters in a query string need to be URL-encoded, I
created a simple function in VBA to do URL encoding (see Listing
12). The basic idea is to append something like “?au_id=486-29-1786”
to the URL. Test this out by adding another command button to the
Excel sheet and adding the same code to the event as with the first
command button, but this time append the query parameter to spec-
ify an author, as in Listing 13. Copy the GetAuthors handler in the
ASP.NET application to create GetTitles. Don’t forget to add an-
other entry to the Web.Config file for GetTitles. Add some code to
the GetTitles handler to retrieve the author ID and then use it in
the SQL query, as in Listing 14.

Passing query parameters and accessing them from a lite web serv-
ice is an easy way to send a couple of scalar parameters to the service.

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 19

M I L L E R

' Encode parameter name or value that will go into the query string of the
URL.

Public Function UrlEncode(ByVal vsVal) As String
Const lsOK_CHARS$ = _

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_@.*"
Dim llIdx As Long
Dim lsChar As String
llIdx = 1
Do

lsChar = Mid$(vsVal, llIdx, 1)
'is the current character is a space, change it to a "+"
If lsChar = " " Then

Mid$(vsVal, llIdx, 1) = "+"
'is the current character OK, or does it need to be encoded?
ElseIf InStr(1, lsOK_CHARS, lsChar) <= 0 Then

vsVal = Mid$(vsVal, 1, llIdx - 1) & _
"%" & Right$("0" + Hex(Asc(lsChar)), 2) & Mid$(vsVal, llIdx +

1)
llIdx = llIdx + 2

End If
llIdx = llIdx + 1

Loop While (llIdx <= Len(vsVal))

UrlEncode = vsVal
End Function

Listing 12 UrlEncode

' Retreive titles for a specific author. You'd make this a function
' that takes the Author ID as a parameter and returns the data.
Private Sub CommandButton2_Click()

Dim loRecordsets As Collection
Dim lsUrl As String

lsUrl = "http://localhost/LiteWebServicesCS/GetTitles.asmx" _
& "?" & UrlEncode("au_id") & "=" & UrlEncode("486-29-1786")

'get the titles
Set loRecordsets = ConvertXmlDocumentToRecordsetsCollection(_

InvokeLiteWebService(lsUrl))

'copy the titles Recordset into the Excel sheet
Sheet1.Range("A26").CopyFromRecordset loRecordsets(1)

End Sub

Listing 13 Retrieving Titles by Author

// Returns a Recordset listing authors.
public class GetTitles : System.Web.IHttpHandler
{

protected DataSet GetTitlesData(string authorId)
{

SqlConnection conn = new SqlConnection(
ConfigurationSettings.AppSettings["connStr"]);

SqlCommand cmd = new SqlCommand(
@"select t.*

from pubs..titles t
inner join pubs..titleauthor ta

on t.title_id = ta.title_id
where ta.au_id = @AuthorId",

conn);
cmd.Parameters.Add("@AuthorId", SqlDbType.VarChar);
cmd.Parameters["@AuthorId"].Value = authorId;
SqlDataAdapter adap = new SqlDataAdapter(cmd);
DataSet dataSet = new DataSet();
adap.Fill(dataSet);

return dataSet;
}

#region Implementation of IHttpHandler
public void ProcessRequest(System.Web.HttpContext context)
{

string authorId = context.Request.QueryString["au_id"];
DataSet dataSet = GetTitlesData(authorId);
XmlDocument xmlDoc =

ADOUtility.ConvertDataSetToXmlDocument(dataSet);
context.Response.ContentType = "text/xml";
context.Response.CacheControl = "no-cache";
context.Response.Write(xmlDoc.OuterXml);

}

public bool IsReusable { get { return true; } }
#endregion

}

Listing 14 GetTitles class

' Create a Recordset with title_ids and quantities from Sheet2.
Public Function CreateOrderRecordsets() As Collection

Dim loRecordsets As Collection
Dim loRecordset As New ADODB.Recordset
Dim lvArray As Variant
Dim llRecCtr As Long

Set loRecordsets = New Collection

loRecordset.Fields.Append "title_id", ADODB.DataTypeEnum.adVarChar, 50, _
Attrib:=adFldIsNullable

loRecordset.Fields.Append "order_qty", ADODB.DataTypeEnum.adInteger, _
Attrib:=adFldIsNullable

loRecordset.Open

lvArray = Sheet2.Range("A1", "B2")

For llRecCtr = 1 To UBound(lvArray, 1)
loRecordset.AddNew
loRecordset.Fields("title_id").Value = lvArray(llRecCtr, 1)
loRecordset.Fields("order_qty").Value = lvArray(llRecCtr, 2)

Next llRecCtr

loRecordsets.Add loRecordset
Set CreateOrderRecordsets = loRecordsets

End Function

Listing 15 CreateOrderRecordsets

However, you may need to create a service to which you can upload
more data. The GetAuthors and GetTitles examples that we have
discussed already both return data. This isn’t a requirement, though.
You could create a service to accept nothing and return data (as in
GetAuthors), to accept data and return nothing, or to accept data and
return data. In any case, I use the same model to upload data from the
VBA code as I do to return it from the .NET service. This is done by
putting the data to be uploaded into a collection of one or more
Recordsets, converting that into an XML document (this time with
VBA code), and posting it to the service. The service then converts
the XML document to a DataSet, making it ready for your .NET code
to work with. The process is really the same as the code that we have
already covered, except that this time the code to create the XML
document is in VBA, and the code to convert from it is in .NET.

Creating a Recordset in VBA code is similar to the .NET code. List-
ing 15 shows how you might create a Recordset from some data in an

Excel spreadsheet. Notice that I specify the data type for each field in
the Recordset. In the .NET method ConvertDataTableToRecordset,
I also find the corresponding data type for each Recordset field. In
both cases, the Recordset is strongly typed—that is, you will only be
able to put values into the records that match the defined types. There
is a special data type in ADO called “adVariant.” We could simply de-
fine each field as an adVariant data type, avoiding the additional code
to set each field’s type, or convert to or from .NET data types. This
would allow us to create a Recordset easily from any range of data in
Excel, as in Listing 16. Inspection of the Recordset’s XML shows that
ADO apparently persists variant data as strings. Listing 17 (available
online) shows the code to convert a collection of Recordsets into an
XML document. Listing 18 (available online) shows how this data
could then be sent to the server. Notice that I pass the XML docu-
ment object itself as the request. The Send method of XMLHTTPRequest
will post the XML document as the HTTP request.

// Converts our XML document with multiple Recordsets into a DataSet.
static public DataSet ConvertXmlDocumentToDataSet(

XmlDocument xmlRecordsetsDoc)
{

DataSet dataSet = new DataSet();

foreach(XmlNode recordsetNode in xmlRecordsetsDoc.ChildNodes)
{

DataTable dataTable = new DataTable();
ADODB.Recordset recordset =

ConvertXmlTextToRecordset(recordsetNode.OuterXml);

// Instead of converting the Recordset manually, we can take
// advantage of a built in method of the OleDbDataAdapter
// which will convert a Recordset into a DataTable.
new System.Data.OleDb.OleDbDataAdapter().Fill(

dataTable, (object) recordset);
dataSet.Tables.Add(dataTable);

}

return dataSet;
}

Listing 21 ConvertXmlDocumentToDataSet

20 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

M I L L E R

' Convert a two dimensional array into a Recordset - you could pass Range.Value
' for the array, allowing a Recordset to easily be created from any range of
' data. The Recordset will not be stronly typed, however.
Private Function CreateRecordsetFrom2DArray(ByVal vvArray)

Dim llColCtr As Long
Dim llRecCtr As Long
Dim loRecordset As New ADODB.Recordset
Dim lvColumns() As Variant
Dim lvData() As Variant
ReDim lvColumns(LBound(vvArray, 2) To UBound(vvArray, 2))
ReDim lvData(LBound(vvArray, 2) To UBound(vvArray, 2))

For llColCtr = LBound(vvArray, 2) To UBound(vvArray, 2)
loRecordset.Fields.Append "Column" & llColCtr, _

ADODB.DataTypeEnum.adVariant, Attrib:=adFldIsNullable
lvColumns(llColCtr) = llColCtr - LBound(vvArray, 2)

Next llColCtr

loRecordset.Open

For llRecCtr = LBound(vvArray, 1) To UBound(vvArray, 1)
For llColCtr = LBound(vvArray, 2) To UBound(vvArray, 2)

lvData(llColCtr) = vvArray(llRecCtr, llColCtr)
Next llColCtr
loRecordset.AddNew lvColumns, lvData

Next llRecCtr

Set CreateRecordsetFrom2DArray = loRecordset
End Function

Listing 16 CreateRecordsetFrom2DArray

// Receive a the Orders data
public class PlaceOrder : System.Web.IHttpHandler
{

#region Implementation of IHttpHandler
public void ProcessRequest(System.Web.HttpContext context)
{

XmlDocument xmlDocRecordsets = new XmlDocument();
xmlDocRecordsets.Load(new XmlTextReader(context.Request.InputStream));

DataSet orderDataSet =

ADOUtility.ConvertXmlDocumentToDataSet(xmlDocRecordsets);

// process the orders DataSet here
// ...
// optionally, write a new response document to send back

}

public bool IsReusable { get { return true; } }
#endregion

}

Listing 19 Receiving the order

// Converts ADO's XML back into a Reocrdset.
static public ADODB.Recordset ConvertXmlTextToRecordset(string xmlText)
{

ADODB.Stream stream = new ADODB.StreamClass();
stream.Open(Missing.Value, ADODB.ConnectModeEnum.adModeUnknown,

ADODB.StreamOpenOptionsEnum.adOpenStreamUnspecified,
"", "");

stream.WriteText(xmlText,
ADODB.StreamWriteEnum.adWriteChar);

stream.Position = 0;

ADODB.Recordset recordset = new ADODB.RecordsetClass();
recordset.Open(stream, Missing.Value,

ADODB.CursorTypeEnum.adOpenUnspecified,
ADODB.LockTypeEnum.adLockUnspecified, -1);

return recordset;
}

Listing 20 ConvertXmlTextToRecordset

M I L L E R

Receiving the Posted Data
The service needs to parse the HTTP request
back into an XML document. Listing 19 shows
how this is done by passing the HttpContext’s
Request object’s InputStream into an Xml-
Reader, which is used to load an XmlDocument.
Listing 20 shows how to convert the XML back
into a Recordset, and Listing 21 shows how to
convert the Recordsets into a DataSet. The
main point to note in Listing 21, Con-
vertXmlDocumentToDataSet, is that I take ad-
vantage of the OleDbDataAdapter’s Fill
method. An overload of the OleDbData-
Adapter’s Fill method actually takes an ADO
Recordset and fills a DataTable from it, so I
didn’t need to write code to do a manual con-
version. Once the data is in a DataSet, it is
ready to be used by your .NET functionality.
This completes the circle of communications
between .NET and a VBA application—any
data that you can express as a DataSet or
Recordsets can be passed to the lite web serv-
ices and/or received from them.

Security & Deployment
Because lite web services are hosted by IIS
and ASP.NET, you can take advantage of
your existing security infrastructure. You can
set up IIS to use SSL and then make the re-
quest URL use HTTPS instead of HTTP. You
can also use authentication—recall that the
Open method of XMLHTTPRequest optionally
takes a user and password. Even integrated
windows authentication will work—if the
IIS site and Web.Config files are configured
for it, leave out the user and password in the
Open method. The credentials of the user who
is logged on to the workstation will be used
for the call, or the user will be prompted by
Internet Explorer to provide credentials. But
in either case, you can make use of integrat-
ed windows authentication without any ex-
tra coding.

One note on deployment—there is an is-
sue with deploying the ADO Interop assem-
bly adodb.dll. The “Copy Local” option for
deploying web server applications copies a par-
ticular assembly locally with the rest of the
web application. The other option is to copy
that assembly to the GAC (global assembly
cache). If you have multiple ASP.NET web
applications installed on the same machine,
then adodb.dll must be installed in the GAC.
You will get errors if more than one site tries
to use local copies. See the KB article 321688
for more information (although it doesn’t
specifically address this issue, it discusses de-
ploying adodb.dll).

Conclusion
In this article, I’ve shown how to convert
data from ADO.NET into a form that can
be used easily from VBA applications, and
how to create lite web services to provide an

interface between your Office VBA applica-
tions and your .NET functionality. You won’t
have to worry about providing the users with
a potentially problematic setup program be-
cause this works with DLLs that are already
installed on their machines. I successfully im-
plemented this architecture in a hedge fund
application that included a complex Excel
spreadsheet for reporting purposes. The rest
of the application was written in C# and
ASP.NET, and I wanted the Excel compo-
nent to access services in the .NET applica-
tion, without any knowledge of the underly-
ing database. I was able to use lite web

services to easily create a secure way for the
Excel application to communicate with the
business layer in .NET. With lite web serv-
ices, you now have the power to connect your
Office applications to your .NET develop-
ment efforts. w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 21

http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com

STARTING WITH VERSION 5.0, Internet Explorer
(IE) has provided an ability to customize the
way HTML elements behave and display. In
fact, it is possible to define completely custom
elements with their own unique rendering be-
havior. For example, if you desire 2D drawings
or 3D graphics in your HTML page, writing
your own binary behavior gives you the power
of GDI+ or DirectX for controlling the render-
ing of your elements. IE exposes its own device
context and lets you draw directly on it.

IE exposes this capability through a set of
COM interfaces, and developers of binary be-
havior have become familiar with such inter-
faces as IElementBehavior and IHTMLPainter
for hooking up their behavior objects to IE.
With the advent of .NET and COM Interop,
it is now possible to implement binary behav-
ior entirely in .NET—and with much greater
ease. .NET reduces development hassle par-
ticularly through the transparency of COM In-
terop, which reduces the number of interfaces
that a developer must explicitly implement.
(Event handling is made especially intuitive.)
Compared with the ATL-based sample in the
Platform SDK, writing a .NET binary behav-
ior is a snap.

In the new world of .NET web development,
why would anyone feel compelled to write IE
binary behaviors? There are at least two rea-
sons. First, there is legacy code. In a typical ex-
ample, an HTML application is already de-
ployed, but then requires 2D drawings. Second,
HTML is not going away, and IE provides a
powerful and easy-to-use rendering engine. IE
(MSHTML) may continue to be hosted in oth-
er applications, especially if element render-

ing is easily customizable through binary be-
haviors. .NET has so simplified the writing of
binary behaviors that we may actually see an
increased use of this IE feature.

The Interfaces
In terms of COM, there are two components
involved in writing a binary behavior: the be-
havior’s class factory and the element behav-
ior itself. The factory involves implementing
two interfaces: IElementBehaviorFactory and
IElementNamespaceFactory. IElementBe-
haviorFactory provides the FindBehavior()
method, which hands IE an instantiation of
the element behavior. IElementNamespace-
Factory allows the factory to introduce new
element names into the namespace of your
HTML page through the create() method.
That makes only two methods to implement
for the factory.

The behavior component must also imple-
ment just two interfaces: IElementBehavior
and IHTMLPainter. IElementBehavior has
three methods to implement, providing the ba-
sic functionality of a binary behavior (without
rendering): Init(), Detach(), and Notify().
Init() is called during initialization of the be-
havior object and is generally used to cache ref-
erences back to interfaces implemented by IE
(such as IElementBehaviorSite). The method
Notify() is called when the element is ready
for use (i.e., when the document is loaded). At
this point, a reference to the element can be
obtained, event-handling can be attached, and
rendering can be triggered.

The second essential interface, IHTML-
Painter, controls element rendering through
four methods, though only these two are sig-
nificant: GetPainterInfo() and Draw(). Get-
PainterInfo() allows the behavior to speci-
fy how rendering will be performed. This is
where the drawing engine (e.g., GDI+, Direct-
X) is specified, as well as various rendering flags
(e.g., transparency, clipping, or transforma-
tion). The real work of rendering the element’s
behavior is done in Draw(). Draw() is handed

an HDC (device context), which can be used,
for example, by GDI+ to define a Graphics
object for vector drawing. The two remaining
methods, onresize() and HitTestPoint(),
are trivial for most basic rendering behaviors.
onresize() should just invalidate the element’s
region, triggering repainting. HitTestPoint()
is used only if you desire to identify where
specifically in your element an event (e.g.,
mouse click) has occurred—in case some ar-
eas of your element should be distinguished
from others. (You must set the HTMLPAINT-
ER_HITTEST in GetPainterInfo() for this
method to be called.)

So, all in all there are only four interfaces
with five or six methods to implement, most
of which are boiler-plate code. Well, there is
one last interface, which is peripheral to the
functionality of the behavior: IObjectSafe-
ty. The behavior’s class factory should imple-
ment IObjectSafety in order to declare to IE
that this component is safe to run. It has but
two methods, which at most set some flags:
GetInterfaceSafetyOptions() and Set-
InterfaceSafetyOptions(). So much is well
known to writers of binary behaviors.

Defining the Interfaces for .NET
Most of the interfaces we need are available
in the primary interop assembly for MSHTML,
which comes with Visual Studio .NET. Just
add an assembly reference to the Mi-
crosoft.mshtml assembly, and the many COM
interfaces of MSHTML are accessible as .NET
interfaces. At this point, the above factory in-
terfaces, as well as IElementBehavior and
IHTMLPainter, are ready to use.
IObjectSafety, on the other hand, is not

supplied in the PIA and must be manually
included for the sake of your behavior factory.

SCOBIE P. SMITH is a software consultant
for Infinitiv, a research and development firm
providing custom development services and
offering specialties in .NET, linguistic pro-
cessing, and data mining. He is currently com-
pleting a doctorate from Harvard in ancient
Near Eastern languages. Contact Scobie at
devcom@infinitiv.com.

22 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

S C O B I E P . S M I T H

Create Binary Behaviors
for IE with .NET

Binary behaviors are an example of how .NET

makes working with COM easier

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 23

S M I T H

namespace BinBehaviors
{

[
ComVisible(true),

IElementBehaviorSiteOM bsiteOM;
IHTMLPaintSite paintsite;

IHTMLDocument2 document;
IHTMLWindow2 parwindow;

IHTMLElement element;
HTMLElementEvents_Event events;

Point point1, point2;
float penwidth;
Color pencolor;

int xoffset, yoffset;
Bitmap bitmap;

/// <summary>
/// A default constructor (no parameters) is necessary for COM instantiation
/// </summary>
public Line()
{

point1 = new Point(0, 0);
point2= new Point(0, 0);
penwidth = 1;
pencolor = Color.Black;

xoffset = yoffset = (int) this.penwidth + 1;
}

~Line()
{
}

/// <summary>
/// Gets or sets the end points of the line as a single string.
/// </summary>
public string coords
{

get
{

return String.Format("{0} {1} {2} {3}",
point1.X, point1.Y, point2.X, point2.Y);

}
set
{

UpdateCoords(value);
DoLineDraw();

}
}

// IElementBehavior method.
void mshtml2.IElementBehavior.Init(IElementBehaviorSite behavsite)
{

try
{

this.bsite = behavsite;
if (behavsite is IElementBehaviorSiteOM)

this.bsiteOM = (IElementBehaviorSiteOM) behavsite;

if (behavsite is mshtml.IHTMLPaintSite)
this.paintsite = (mshtml.IHTMLPaintSite) behavsite;

}
catch (System.ExecutionEngineException e)
{

MessageBox.Show(e.Message);
}

}

// IElementBehavior method.
void mshtml2.IElementBehavior.Notify(int lEvent, System.IntPtr pVar)
{

try
{

switch ((_BEHAVIOR_EVENT)lEvent)
{

case _BEHAVIOR_EVENT.BEHAVIOREVENT_DOCUMENTREADY:
if (this.bsite == null)

return;

this.element = this.bsite.GetElement(); // Cache the HTML element.
this.document = (IHTMLDocument2) this.element.document;
this.parwindow = (IHTMLWindow2) document.parentWindow;

// Drawing to absolute point locations
// requires absolute position style.

element.style.setAttribute("position", "absolute", 0);

// Hook up event handlers.
if (element is mshtml.HTMLElementEvents_Event)
{

this.events = (HTMLElementEvents_Event) this.element;
events.onpropertychange +=

new mshtml.HTMLElementEvents_onpropertychangeEventHandler(
HTMLElement_OnPropertyChange);

}

// Initial attribute values.

// All HTML attributes come in as strings (or null, if not present).
// "coords" property is ONLY a property, not an attribute.
string x1 = element.getAttribute("x1", 0) as string;
string y1 = element.getAttribute("y1", 0) as string;
string x2 = element.getAttribute("x2", 0) as string;
string y2 = element.getAttribute("y2", 0) as string;

if (x1 != null)
point1.X = Convert.ToInt32(x1);

if (y1 != null)
point1.Y = Convert.ToInt32(y1);

if (x2 != null)
point2.X = Convert.ToInt32(x2);

if (y2 != null)
point2.Y = Convert.ToInt32(y2);

// ARGB must come in hexadecimal form.
string argbstring = element.getAttribute("argb", 0) as string;
if (argbstring != null)

this.pencolor = Color.FromArgb(
(int) Convert.ToUInt32(argbstring, 16));

// Width must be base 10.
string widthstring =

(string) element.getAttribute("width", 0) as string;
if (widthstring != null)
{

this.penwidth = Convert.ToSingle(widthstring);
xoffset = yoffset = (int) this.penwidth + 1;

}

DoLineDraw();

break;

case _BEHAVIOR_EVENT.BEHAVIOREVENT_FIRST:
//MessageBox.Show("event: first");
break;

case _BEHAVIOR_EVENT.BEHAVIOREVENT_LAST:
MessageBox.Show("event: last");
break;

case _BEHAVIOR_EVENT.BEHAVIOREVENT_APPLYSTYLE:
MessageBox.Show("event: apply style");
break;

default:
MessageBox.Show("event: (default)");
break;

}
}
catch (System.ExecutionEngineException e)
{

MessageBox.Show(e.Message);
}

}

// IElementBehavior method.
void mshtml2.IElementBehavior.Detach()
{
}

/// <summary>
/// Handle the element's OnPropertyChange event.
/// Update the drawing to reflect the new property values.
/// </summary>
public void HTMLElement_OnPropertyChange()
{

IHTMLEventObj2 evo = (IHTMLEventObj2) parwindow.@event;

string name = evo.propertyName.ToLower();
object o = element.getAttribute(evo.propertyName, 0);

switch (name)
{

case "x1":
if (o is System.Int32)

Listing 1
Implementing IElementBehavior

24 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

(The behavior object itself does not need this.)
The interface looks like this:

// IObjectSafety interface.
[
ComImport,
Guid(“CB5BDC81-93C1-11CF-8F20-00805F2CD064”),
InterfaceType(

ComInterfaceType.InterfaceIsIUnknown)
]
public interface IObjectSafety
{

int GetInterfaceSafetyOptions(
ref Guid riid,
out int pdwSupportedOptions,
out int pdwEnabledOptions);

int SetInterfaceSafetyOptions(
ref Guid riid,
int dwOptionsSetMaks,
int dwEnabledOptions);

}

Notice that the methods are defined so as to
return their HRESULT, rather than transform-
ing errors into exceptions. As a result, we will
need the PreserveSig attribute on our meth-
ods; for example:

// IObjectSafety method.
[return:MarshalAs(UnmanagedType.Error)]
[PreserveSig]
public int GetInterfaceSafetyOptions(

ref Guid riid,
out int pdwSupportedOptions,
out int pdwEnabledOptions)

{
// INTERFACESAFE_FOR_UNTRUSTED_CALLER
// and _DATA.
pdwSupportedOptions = 0x00000001 | 0x00000002;
pdwEnabledOptions = 0x00000001 | 0x00000002;
return 0; // S_OK.

}

So far, so good. At this point, it would ap-
pear that we have all the interfaces in hand,
but this is not quite so. It turns out that two
interfaces defined in the Microsoft.mshtml
PIA need to be manually adjusted so as to mar-
shal method parameters properly. For some
method parameters, we need to preserve the
COM-based semantics, which might not trans-
late well into the expected .NET type. For ex-
ample, when the semantics of the COM type
are overloaded by using NULL as a meaningful
value, we will have trouble if we marshal this
as an Object reference. This is where the trans-
parency of Interop can be tricky and requires
special attention.

In particular, the IElementBehavior inter-
face is faulty in the Notify() method. The de-
fault signature is:

void Notify(System.Int32 lEvent, ref
System.Object pVar);

The second parameter, though, corresponds
to a pointer to VARIANT and so may be NULL.
When Notify() is called with NULL, an ex-
ception will occur. To adjust for these seman-
tics, the methods must be defined this way:

void Notify(
System.Int32 lEvent,
System.IntPtr pVar);

// Not: System.Object pVar.

This is a classic scenario in which we need to
use IntPtr in order to allow for the original
NULL semantics of the pointer. (See .NET
and COM, by Adam Nathan, Pearson Educa-
tion 2002, p. 264.)

The corrected IElementBehavior interface
is, therefore, as follows:

// Corrected IElementBehavior.
[
ComImport,
Guid(“3050F425-98B5-11CF-BB82-00AA00BDCE0B”),
InterfaceType(

ComInterfaceType.InterfaceIsIUnknown)
]
public interface IElementBehavior
{

void Init(
mshtml.IElementBehaviorSite
pBehaviorSite);

void Notify(
System.Int32 lEvent,
System.IntPtr pVar); // CORRECTED.

void Detach();
}

We need to place this and other corrected
interfaces in a new namespace (such as
mshtml2) in order to distinguish them from
their synonyms in Microsoft.mshtml. Since

S M I T H

point1.X = (int) o;
break;

case "y1":
if (o is System.Int32)

point1.Y = (int) o;
break;

case "x2":
if (o is System.Int32)

point2.X = (int) o;
break;

case "y2":
if (o is System.Int32)

point2.Y = (int) o;
break;

case "coords": // NOT CALLED, because of our coords property (above)
UpdateCoords((string) o); // Object is a string (BSTR).
break;

case "width":
if (o is System.Int32)

penwidth = (int) o;
break;

case "argb":
// ARGB will come as double if too big to fit as Int32.
if (o is System.Double)

pencolor = Color.FromArgb((int) Convert.ToUInt32((double) o));
else if (o is System.Int32)

pencolor = Color.FromArgb((int) o);
break;

default:
break;

}

DoLineDraw();
}

/// <summary>
/// Update the coordinates members (x1, y1, x2, y2)

/// given a string representation.
/// </summary>
/// <param name="coords">String representation of x1, y1, x2, y2.</param>
private void UpdateCoords(string coords)
{

// May have: coords=" x1 ;y1 , x2 y2 ", etc.
string s = coords.Trim();
Regex re = new Regex("\\s*[,;]\\s*|\\s+"); // Separate at: space | punct.

// Order of alts is important.
string[] segs = re.Split(s, 5);
if (segs.Length >= 4)
{

point1.X = Convert.ToInt32(segs[0]);
point1.Y = Convert.ToInt32(segs[1]);
point2.X = Convert.ToInt32(segs[2]);
point2.Y = Convert.ToInt32(segs[3]);
UpdateAttributes();

}
}

/// <summary>
/// Update the HTML attributes to reflect actual property values.
/// </summary>
private void UpdateAttributes()
{

this.element.setAttribute("x1", point1.X.ToString(), 0);
this.element.setAttribute("y1", point1.Y.ToString(), 0);
this.element.setAttribute("x2", point2.X.ToString(), 0);
this.element.setAttribute("y2", point2.Y.ToString(), 0);

}

// .
}

}

Listing 1
Continued

we will be using interfaces from both mshtml and mshtml2 namespaces,
we will need to qualify our interfaces with the new namespace ex-
plicitly.

This correction now affects IElementBehaviorFactory, whose Find-
Behavior() method returns an IElementBehavior. Since we want this
to return a corrected IElementBehavior and not the mshtml.IEle-
mentBehavior, we need to adjust this interface as well (trivially):

// Corrected IElementBehaviorFactory.
[
ComImport,
Guid(“3050F429-98B5-11CF-BB82-00AA00BDCE0B”),
InterfaceType(

ComInterfaceType.InterfaceIsIUnknown)
]
public interface IElementBehaviorFactory
{

// CORRECTED METHOD: Return corrected
// interface.
mshtml2.IElementBehavior

FindBehavior(System.String bstrBehavior,
System.String bstrBehaviorUrl,
mshtml.IElement

BehaviorSitepSite);
}

Finally, we need to make a similar adjustment in the IHTMLPainter
interface. The Draw() method is given to us by mshtml as:

void Draw(mshtml.tagRECT rcBounds,
mshtml.tagRECT rcUpdate,
System.Int32 lDrawFlags,
ref mshtml._RemotableHandle hdc,
System.IntPtr pvDrawObject);

However, the handle to device context (hdc) provided by IE (and as
used in GDI+) is ultimately just a pointer. We use the HDC to create
a Graphics object using the static method Graphics.FromHdc(Sys-
tem.IntPtr hdc). This fact gives away the answer for the correction
to make. We simply need to revise this parameter type to IntPtr. The
newly defined interface now appears thus:

// Corrected IHTMLPainter.
[
ComImport,
Guid(“3050F6A6-98B5-11CF-BB82-00AA00BDCE0B”),
InterfaceType(

ComInterfaceType.InterfaceIsIUnknown)
]
public interface IHTMLPainter
{

// CORRECTED METHOD: Use IntPtr,
// not ref _RemotableHandle hdc.
void Draw(mshtml.tagRECT rcBounds,

mshtml.tagRECT rcUpdate,
System.Int32 lDrawFlags,
System.IntPtr hdc,
System.IntPtr pvDrawObject);

void onresize(mshtml.tagSIZE size);
void GetPainterInfo(

out _HTML_PAINTER_INFO pInfo);
void HitTestPoint(

mshtml.tagPOINT pt,
out System.Int32 pbHit,

out System.Int32 plPartID);
}

As this interface is not referred to in other mshtml interfaces we will
need, this is the last correction we need. We are now ready to imple-
ment.

For all these interfaces that we have just defined, the Guid attrib-
ute provides the COM interface ID (IID) expected for the given in-
terface. That is, these GUIDs are not arbitrary, but are the IIDs used
when IE calls QueryInterface().

Implementing the Behavior
As an example, let us implement a simple line-drawing element,
which uses the vector graphics of GDI+ to draw a line segment be-
tween two points given by left/top pixel locations. Making the line
element a binary behavior means that the drawing takes place when
IE renders the HTML document, giving us control to draw on a trans-
parent background and to preserve z-index ordering. To do this, we
define a Line class that implements our two mshtml2 interfaces, IEle-
mentBehavior and IHTMLPainter. Let us design our line element to
have four attributes (x1, y1, x2, y2) to describe the two end points
of the line. We will also provide a single, string-based property (co-
ords) by which we can specify all four coordinates in one string. For
variety, let us also provide stroke width and stroke color attributes.
Our Line class, therefore, will have to maintain state information for
all these attributes, in addition to caching some housekeeping in-
formation for drawing and communicating with IE. The class starts
out as in Listing 1.

After the element constructor is called, Init() is executed, which
caches the behavior site interface, allowing us to call IE for more in-
formation. At various points during the loading of the HTML docu-
ment, IE calls Notify(), each time with a different lEvent flag. (Ac-
tually, only calls with the FIRST and DOCUMENTREADY event flags occur
in this example.) The crucial call for us is when the document has
been loaded, when lEvent equals BEHAVIOREVENT_DOCUMENTREADY.
At this point we know that the document, element, and parent win-
dows are available, and references to these can be saved for future use.
Now is also the time we can initialize our element with any default
attribute values of our choosing. In our case, we opt to force our line
element to have absolute positioning style, which will save us the
trouble of setting this style in our HTML to enable drawing to ab-
solute pixel locations.

Most importantly, we can now hook up event handlers for all the
events to which we wish our element to respond. For more interac-
tive elements, one might wish to respond to onclick, onmouseen-
ter, or onmouseleave—note the many events offered by HTMLEle-
mentEvents_Event. In our case, we only need onpropertychange,
which will allow us to accept DHTML-based changes to the attrib-
ute values of our line. Since the COM-callable wrapper (CCW) pro-
vides default implementations for IDispatch and IEventSink, we
are saved this hassle and can simply hook up event handlers in the
C# way.

Keep in mind the difference between HTML attributes and object
properties. Element attributes are maintained in the HTML DOM.
When script alters the state of attribute data in the DOM, our un-
derlying object is also informed via the onpropertychange event.
Properties, on the other hand, are maintained directly by the object.
Hence, attributes are available in HTML tags, while properties are
available only in script. In our example, Line captures the initial at-
tribute values (from the HTML tag) in Notify() and further changes
in HTMLElement_OnPropertyChange(). The property coords, how-
ever, is simply implemented as a C# property. (When end points are
modified through the coords property, the new coordinates must be
copied into the x1, y1, x2, and y2 attributes.) COM Interop handles

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 25

S M I T H

26 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

S M I T H

01234567890123456789012345678901234567890123456789012345678901234567890123456789
namespace BinBehaviors
{

[
ComVisible(true),
ClassInterface(ClassInterfaceType.AutoDispatch),
Guid("70F8ECDA-3869-4586-958E-0914547E9984"),
ProgId("BinBehaviors.line")
]
public class Line : mshtml2.IElementBehavior, mshtml2.IHTMLPainter
{

// .

// IHTMLPainter method.
void mshtml2.IHTMLPainter.Draw(tagRECT rcBounds, tagRECT rcUpdate,

int lDrawFlags, System.IntPtr hdc, System.IntPtr
pvDrawObject)

{
if (this.bitmap != null)
{

Graphics g = Graphics.FromHdc(hdc);
g.CompositingMode = CompositingMode.SourceOver;

// Apply any scaling, etc. to the output.
mshtml._HTML_PAINT_DRAW_INFO info;
this.paintsite.GetDrawInfo(

(int) _HTML_PAINT_DRAW_INFO_FLAGS.HTMLPAINT_DRAWINFO_XFORM |
(int) _HTML_PAINT_DRAW_INFO_FLAGS.HTMLPAINT_DRAWINFO_UPDATEREGION,
out info);

Matrix xform = new System.Drawing.Drawing2D.Matrix(
info.xform.eM11, info.xform.eM12,
info.xform.eM21, info.xform.eM22,
info.xform.eDx - rcBounds.left, info.xform.eDy - rcBounds.top);

g.Transform = xform;

// Update clipping region.
Region clip = new Region();
if (info.hrgnUpdate != System.IntPtr.Zero)
{

Region updateclip = Region.FromHrgn(info.hrgnUpdate);
clip.Intersect(updateclip);
clip.Translate(rcBounds.left, rcBounds.top);

}
g.SetClip(clip, CombineMode.Replace);

g.DrawImage(this.bitmap,
rcUpdate.left, rcUpdate.top,
new Rectangle(rcUpdate.left - rcBounds.left,
rcUpdate.top - rcBounds.top, rcUpdate.right - rcUpdate.left,
rcUpdate.bottom - rcUpdate.top),
GraphicsUnit.Pixel);

g.Dispose();
}

}

// IHTMLPainter method.
void mshtml2.IHTMLPainter.onresize(tagSIZE size)
{

DoLineDraw();
}

// IHTMLPainter method.
void mshtml2.IHTMLPainter.GetPainterInfo(out _HTML_PAINTER_INFO pInfo)
{

pInfo.lFlags = (int) (_HTML_PAINTER.HTMLPAINTER_TRANSPARENT |
_HTML_PAINTER.HTMLPAINTER_NOPHYSICALCLIP
| _HTML_PAINTER.HTMLPAINTER_SUPPORTS_XFORM);

// Possibly also: | _HTML_PAINTER.HTMLPAINTER_HITTEST.

pInfo.lZOrder = (int) _HTML_PAINT_ZORDER.HTMLPAINT_ZORDER_REPLACE_ALL;
pInfo.iidDrawObject = Guid.Empty; // No drawing object; using GDI+.
pInfo.rcExpand.left = pInfo.rcExpand.right =
pInfo.rcExpand.top = pInfo.rcExpand.bottom = 0;

}

// IHTMLPainter method.
// Not called unless pInfo.lFlags
// included _HTML_PAINTER.HTMLPAINTER_HITTEST.
void mshtml2.IHTMLPainter.HitTestPoint(

tagPOINT pt, out int pbHit, out int plPartID)
{

pbHit = 0;
plPartID = 0;

}

/// <summary>
/// Prepare bitmap image to be drawn.
/// </summary>

private void Compose()
{

// The element origin is at top left always.
// This bitmap drawing is relative to the origin.
int width = Math.Abs(point2.X - point1.X);
int height = Math.Abs(point2.Y - point1.Y);

// The end points relative to the rectangle enclosing the line:
int x1, y1, x2, y2;
if (point2.X < point1.X)
{

x1 = point1.X - point2.X;
x2 = 0;

}
else
{

x1 = 0;
x2 = point2.X - point1.X;

}
if (point2.Y < point1.Y)
{

y1 = point1.Y - point2.Y;
y2 = 0;

}
else
{

y1 = 0;
y2 = point2.Y - point1.Y;

}

// Element/bitmap is offset left by penwidth to give room
// for line, so line x1, x2 start at +penwidth.
x1 += this.xoffset;
x2 += this.xoffset;

y1 += this.yoffset;
y2 += this.yoffset;

// IMPORTANT: Free the bitmap by force or
// else large bitmaps remain allocated.
// GC permits increasing amounts of
// memory to be left allocated between each
// successive collection, until physical RAM is consumed.
if (this.bitmap != null)

this.bitmap.Dispose();

if (width == 0 && height == 0) // Skip bitmap if zero; invalid size.
return;

// Add room to bitmap to correspond to element size and to avoid clipping.
width += 2*this.xoffset;
height += 2*this.yoffset;

this.bitmap = new Bitmap(width, height, PixelFormat.Format32bppArgb);

Graphics g = Graphics.FromImage(this.bitmap);

g.CompositingMode = CompositingMode.SourceOver;

g.DrawLine(new Pen(pencolor, penwidth), x1, y1, x2, y2);
g.Dispose();

}

/// <summary>
/// Construct the drawing on its bitmap and adjust the containing element.
/// </summary>
private void DoLineDraw()
{

Compose();
UpdateElement();
// Invalidate so entire element must be redrawn.
this.paintsite.InvalidateRegion(IntPtr.Zero);

}

/// <summary>
/// Update element position and dimensions to fit the drawing.
/// </summary>
private void UpdateElement()
{

// Position line element at min of point1 and point2 coords.
this.element.style.left = Math.Min(point1.X, point2.X) - this.xoffset;
this.element.style.top = Math.Min(point1.Y, point2.Y) - this.yoffset;

this.element.style.width =
Math.Abs(point2.X - point1.X) + 2*this.xoffset;

this.element.style.height =
Math.Abs(point2.Y - point1.Y) + 2*this.yoffset;

}

}

}

Listing 2 Implementing IHTMLPainter

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 27

the work of implementing automation (IDis-
patch) through its CCW. This difference pres-
ents a design decision: Which qualities of your
element should be available in the HTML tag,
and which only in script?

Once the element has been notified that the
document is loaded, it is time to initiate draw-
ing by informing IE that the element is in need
of repainting. Calling InvalidateRegion() in
the paint site interface provided by IE will do
just this. (It would also be possible to call In-
validateRect(), but this method expects a
ref to mshtml.tagRECT, which cannot be null.
Yet, we need to pass in NULL to invalidate
the entire element. We could redefine this in-
terface to provide the InvalidateRect() sig-
nature we need, but InvalidateRegion() will
also work.) Hence, we call this method every
time we change the line drawing, in DoLine-
Draw(), as seen in Listing 2. When the ele-
ment region is invalidated, IE will begin to
make calls to Draw() on mshtml2.IHTML-
Painter.

IE will, in fact, call Draw() more than once
in drawing the element, as it paints the ele-
ment rectangle in successive horizontal bands.
For this reason, it is best to prepare an off-
screen bitmap image before element invalida-
tion, so that successive calls to Draw() deal
with an unchanging graphic. When IE calls
Draw(), the drawing requirements dictated by
IE are obtained through GetDrawInfo(), and
any necessary image transformation and clip-
ping can then be applied before rendering with
Graphics.DrawImage().

The interesting work of actually construct-
ing the line segment is done in our Compose()
and UpdateElement() methods. Compose()
creates the bitmap (System.Drawing.Bitmap)
representation of the line, where the end
points are made relative to the bounds of the
bitmap rectangle. UpdateElement() then sets
the element dimensions to suit this bitmap
and locates the element at the correct pixel
location. The element and the bitmap are
made slightly wider (by xoffset) and taller
(by yoffset) than required by the minimum-
size rectangle enclosing the line, because we
must provide sufficient room for the stroke
width of a vertical or horizontal line (right on
the edge).

Of particular importance is the need to free
the bitmap on each draw using the Dispose()
method. Otherwise, the garbage collector per-
mits large, unused bitmaps to accumulate, and
with each garbage collection even larger ac-
cumulations are allowed.

Adding More Behaviors
It is easy to add behaviors in this compo-
nent. First, a behavior class must be defined
that implements mshtml2.IElementBehav-
ior and mshtml2.IHTMLPainter. A new
GUID is given this class to identify it for

COM. Second, the factory class must sup-
ply the element namespace with a tag string
naming the custom element and return a ref-
erence to an instantiation of the behavior.
The tag string (element name) is provided
via IElementNamespaceFactory.create(),
which informs an HTML document how to
refer to the element (in the namespace to
which the factory will be assigned). In or-
der to return the behavior reference, the fac-
tory method FindBehavior() merely con-
structs a behavior of the requested name and
returns its reference. The code sample illus-
trates these steps in its second behavior,
which can draw an ellipse.

Sample HTML Page
Included with the source code is a sample
HTML file, which employs our binary be-
haviors to draw a tethered ellipse around any
chosen paragraph (see Figure 1). The <ob-
ject> element instantiates the binary be-
havior class factory, using the factory’s class
ID as defined in our C# code. The <?import>
tag directs HTML processing to query the
behavior class factory for the implementa-
tion of any element whose name is in the
specified namespace (behaviors). We can
now introduce our custom elements by the
names we specified in C#, provided we pre-

fix them with the namespace designation
(e.g., <behaviors:line>). Two custom ele-
ments are given, drawing a colored ellipse
with a line segment. Each paragraph in the
document responds to its onmouseover event
(when the mouse hovers over the paragraph)
and calls OnMouseOver(). The binary be-
haviors are then invoked to shape the col-
ored ellipse around the given paragraph, with
the colored line segment tethering the el-
lipse to the origin of the client window.

Conclusion
.NET COM Interop takes the headache out
of getting binary behaviors to work in Inter-
net Explorer. Several standard interfaces are
automatically implemented by the default
CCW. Event handling and properties are trans-
parently handled in the normal C# way. Some
interfaces supplied with the MSHTML pri-
mary interop assembly needs manual adjust-
ment, but the guts of the behavior can be im-
plemented easily in C#. Binary behaviors are
another case where .NET makes working with
COM easier. w::d

| Download code > windevnet.com/wdn/code/ |

S M I T H

Figure 1 Colored ellipse generated with binary behaviors

28 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

PopulateHelper: A Templated Solution
for Managing Strings in Control
BY SHEHRZAD QURESHI
squreshi@picoliterinc.com

RECENTLY, I WORKED ON a project where, depending on the sce-
nario, I either had to populate a list-box (CListBox) or a combo-
box (CComboBox) control with a list of strings acquired via a data-
base connection. Of course, I also needed the ability to extract the
string at a given index within the control. I developed a class that,
given an STL vector of strings, would fill a control with these
strings. CListBox and CComboBox are MFC objects that both de-
rive from CWnd, and not a super-class that offers an AddString()
method, for example. Thus, if I wanted to reduce the amount of
methods in my class, the traditional polymorphic manner of col-
lapsing related functionality into a single entity was not available
to me. I could have implemented overloaded forms of my meth-
ods, as shown in Listing 1.

While the code shown in Listing 1 works, this solution simply cries
out for a template-based solution, as shown in Listing 2. Note that in
Visual C++ .NET 2003, template member functions in nontemplate
classes are now fully supported.

This is simple enough and elegant. However, recall that I also want-
ed a means to extract the string given an index into the control. In
reading the MSDN documentation, I was dismayed to learn that, while
PopulateHelper::getData() worked when specialized for a CCom-
boBox control, it would not compile when used with a CListBox. Why,
you ask? The reason involves the call to GetLBText(), which is not
provided in CListBox and, hence, the compilation error; see Listing
3. It’s unclear why Microsoft chose the names GetLBText() for CCom-
boBox and GetText() for CListBox, when the input arguments for
the methods are identical (as one would suspect, given the fact that
the two controls are so similar in functionality).

So now my conundrum was that if I wanted to implement a truly
generic utility class (generic in the sense that it worked across both
CComboBox and CListBox controls), I would have to fall back on C++
overloaded methods for the latter method, due to the fact that Mi-
crosoft’s interfaces were not “orthogonal,” so to speak. Inspired by An-
drei Alexandrescu’s Modern C++ Design (Addison-Wesley, 2001),
where he describes how to architect extremely useful template class-
es or structs he deems “policies” (see Chapter 1), I implemented Pop-
ulateHelper as shown in Listing 4.

Granted, Listing 4 might contain more code than if I had over-
loaded PopulateHelper::getData() on both CComboBox and CList-
Box. However, in the interest of clarity, one could argue that Popu-
lateHelper::fill() should be overloaded as well. Moreover, there
are numerous other instances in MFC and other third-party APIs
where this lack of orthogonality can cause problems. What I’ve shown
here is how policy-driven class design can help steer the developer
around these issues by using the template support of Visual C++ .NET
2003 to its fullest extent.

Safer Node
Browsing with
Microsoft’s XML
DOM
BY MATTHEW WILSON
matthew@synesis.com.au

WHEN WORKING WITH THE
Microsoft XML DOM compo-
nent, I encountered a rather
nasty bug. Basically, when
browsing child nodes—using
the node-list object returned
from IXMLDOMNode::get_

childNodes()—it is sometimes useful to call the IXMLDOMNodeList::re-
set()method in order to ensure that any previous iteration is cancelled,
and that iteration starts from the beginning of the node sequence.

However, when calling this method on a comment node (node-
Name: “#comment”), it crashes somewhere (at address offset of 0x13447)
inside the call to reset(). Other nodes with empty child sequences
do not exhibit the same behavior.

There are a couple of workarounds. You could remember to refrain from
enumerating the child nodes of comment nodes within your application
code, but a much better solution is to make sure you always call the
IXMLDOMNodeList::get_length() method and then only call reset()
when the length is greater than 0. This is, presumably, pretty efficient,
compared to calling, say, IXMLDOMNodeList::get_item() or IXMLDOMNode-
List::get__newEnum() and having to release the objects returned. This
technique can be codified in the following simple free function:

inline void reset_node_list(IXMLDOMNodeList *nodelist)
{

long listLength;

if(SUCCEEDED(nodelist->get_length(&listLength)) &&
listLength > 0)

{
nodelist->reset();

}
}

or within your wrapper class(es). In the child_node_sequence class
in the XMLSTL DOM library (http://xmlstl.org/), I use the technique
in the begin() method when starting a node sequence iteration.

GEORGE FRAZIER is a software engineer in the System Design and
Verification group at Cadence Design Systems Inc. and has been pro-
gramming for Windows since 1991. He can be reached at georgefrazier@
yahoo.com.

Edited by George Frazier T E C H
Please send us your best tricks and hacks—those clever pieces of code to make things
work the way they should! You’ll receive at least $50 for each tip that we print. Send
your submissions to wdletter@cmp.com with the header “Tech Tip submission.”

T I P S

T E C H T I P S

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 29

The XML DOM component I have encountered this bug with is
msxml3.dll, version 8.30.9926.0. It may or may not be present in oth-
er versions, but that is not really the point. In many deployment sce-
narios, you may not wish (or be able) to change the installed version
of the XML DOM component, so you should code defensively and
do the check.

Beware Null ListViewSubItems in .NET
BY MATTHEW WILSON
matthew@synesis.com.au

IN A RECENT .NET application—a simple network monitor using
ICMP—I came across a potentially dangerous artifact of the behav-
ior of the System.Windows.Forms.ListViewItem type. The List-
ViewItem type has a property, SubItems, that provides access to the
subitems (which includes the main item itself) for the item as a col-
lection of type System.Windows.Forms.ListViewItem.ListView-
SubItemCollection. In order to add subitems to an existing item, you
simply call Add() on the collection instance.

In my application, I wanted to be able to change the subitems in
response to various events after the creation of the item. Further, I
wanted to be able to change the order of “address” and “status” subitems
at compile time by using the manifest constants ADDRESS_INDEX
and STATUS_INDEX. This was to enable me to easily change the
column order before the final version of the program.

Understandably, using the index operator of the collection to up-
date a subitem resulted in a System.OutOfRangeException being
thrown if the subitem did not already exist. This is the case even when

you are specifying the “end” index (e.g., index 3 for an array with
three items at 0, 1, and 2).

The solution to this is to create the subitems with appropriate initial
values at the time of the item, and adding them to the collection, as in:

ListViewItem item = m_items.Items.Add(host);

... // sometime later

item.SubItems.Add(“”);
item.SubItems.Add(“”);

... // sometime later

subItems[ADDRESS_INDEX] = new ListViewItem.ListViewSubItem(...);
subItems[STATUS_INDEX] = new ListViewItem.ListViewSubItem(...);

Being a C++ kind of guy, I didn’t like the idea of creating subitems—
in the call to Add(“”)—which were going to be thrown away. So I
tried changing the calls to Add():

class PopulateHelper {

// simple, because the interfaces for adding strings between
// the two controls are orthogonal
template <typename T>
void fill(T &ctrl, std::vector<std::string> &strs) {

ctrl.ResetContent();
for (int ii=0; ii<strs.size(); ++ii)

ctrl.AddString(strs[ii]);
}

// a place-holder
template <typename T>
struct GetTextFromCtrlPolicy {};

// specialization for the CComboBox control
template <>
struct GetTextFromCtrlPolicy<CComboBox> {

static CString GetText(CComboBox &ctrl, int iIndex) {
CString retStr;
ctrl.GetLBText(iIndex, retStr);
return retStr;

}

};

// specialization for the CListBox control
template <>
struct GetTextFromCtrlPolicy<CListBox> {

static CString GetText(CListBox &ctrl, int iIndex) {
CString retStr;
ctrl.GetText(iIndex, retStr);
return retStr;

}
};

// now it doesn't matter if this method is specialized on CComboBox
// or CListBox, the correct call is resolved through the
// GetTextFromCtrlPolicy struct.
template <typename T>
CString getData(T &ctrl, int iIndex) {

CString data;
data = GetTextFromCtrlPolicy<T>::GetText(ctrl, iIndex);
return data;

}

};

Listing 4 Policy-driven design of PopulateHelper

class PopulateHelper {

template <typename T>
void fill(T &ctrl, std::vector<std::string> &strs) {

ctrl.ResetContent();
for (int ii=0; ii<strs.size(); ++ii)

ctrl.AddString(strs[ii]);
}

template <typename T>
CString getData(T &ctrl, int iIndex) {

CString data;
ctrl.GetLBText(iIndex, data); // oops, this won't work!
return data;

}

};

Listing 3 Compilation error with GetLBText()

class PopulateHelper {

template <typename T>
void fill(T &ctrl, std::vector<std::string> &strs) {

ctrl.ResetContent();
for (int ii=0; ii<strs.size(); ++ii)

ctrl.AddString(strs[ii]);
}

};

Listing 2 A template-based version of PopulateHelper
class PopulateHelper {

// one for CComboBox
void fill(CComboBox &ctrl, std::vector<std::string> &strs) {

ctrl.ResetContent();
for (int ii=0; ii<strs.size(); ++ii)

ctrl.AddString(strs[ii]);
}

// body identical to above, just the method signature differs
void fill(CListBox &ctrl, std::vector<std::string> &strs) {

ctrl.ResetContent();
for (int ii=0; ii<strs.size(); ++ii)

ctrl.AddString(strs[ii]);
}

};

Listing 1 First version of the PopulateHelper class

T E C H T I P S

30 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

item.SubItems.Add((ListViewItem.ListViewSubItem)null);
item.SubItems.Add((ListViewItem.ListViewSubItem)null);

This works fine in creating the array (within the enclosing form’s
constructor), but when the form is “Run()”, the program termi-
nates. The exception is, bizarrely, a System.OutOfMemoryException,
though the additional information does give “Error creating win-
dow handle”.

From my point of view, this is an error. The call to Add with null
should throw a meaningful exception—System.NullReferenceEx-
ception—rather than the program dying later in what could, in a
more complex application, seem to be an unrelated manner.

Solution: Don’t use null subitems!

Inserter Function Objects
for Windows Controls
BY MATTHEW WILSON
matthew@synesis.com.au

STL IS RECEIVING EVER-increasing recognition in the C++ develop-
ment community as more STL-compliant software—in the form of
containers, algorithms, adaptors, and function objects—becomes avail-
able for our use.

As part of the WinSTL project (http://winstl.org/), I’ve written
function objects that provide back, front, and indexed insertion for
list and combo boxes.

The listbox_front_inserter is defined in Listing 5. It can be used
with any sequence that contains items that can be converted to
CStrings, as in:

vector<CString> strings(. . .);
HWND hwndListbox = . . .;

. . .

for_each(strings.begin(), strings.end(),
winstl::listbox_front_inserter(hwndListBox));

Each item will be inserted into the beginning of the list.
The listbox_back_inserter, which inserts items at the end of the

list, has the same definition, but for the details of the sent message,
as in:

::SendMessage(m_hwndListbox, LB_ADDSTRING,
static_cast<WPARAM>(-1), reinterpret_cast<LPARAM>(s));

The listbox_add_inserter adds items into the list according to its
sorted position, and uses:

::SendMessage(m_hwndListbox, LB_ADDSTRING,
0, reinterpret_cast<LPARAM>(s));

There are corresponding function objects for working with combo
boxes: combobox_front_inserter, combobox_back_inserter, and
combobox_add_inserter.

Included in the source code archive is a program that demonstrates
all six function objects by adding the items in the PATH environ-
ment variable to the list and combo boxes in front, back, and add
forms. w::d

| Download code > windevnet.com/wdn/code/ |

struct listbox_front_inserter
{
public:

ws_explicit_k listbox_front_inserter(HWND hwndListbox)
: m_hwndListbox(hwndListbox)

{}

#ifdef __STLSOFT_CF_MEMBER_TEMPLATE_FUNCTION
template <ws_typename_param_k T>
void operator ()(T &t)
{

insert(s);
}

#else
void operator ()(ws_char_a_t const *s)
{

insert(s);
}
void operator ()(ws_char_w_t const *s)
{

insert(s);
}

#endif // __STLSOFT_CF_MEMBER_TEMPLATE_FUNCTION

// Implementation
protected:

void insert(ws_char_a_t const *s)
{

::SendMessage(m_hwndListbox, LB_INSERTSTRING,
0, reinterpret_cast<LPARAM>(s));

}
void insert(ws_char_w_t const *s)
{

::SendMessage(m_hwndListbox, LB_INSERTSTRING,
0, reinterpret_cast<LPARAM>(s));

}

protected:
HWND m_hwndListbox;

};

Listing 5
Listbox_front_inserter defined

http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 31

Dino EspositoI N S I D E . N E T

IN THE .NET FRAMEWORK jargon, a serviced com-
ponent is a managed class that can be hosted in a
COM+ application in order to consume COM+
services. A serviced component can be written in
any .NET-compliant language, but needs to inherit
the ServicedComponent class in the System.En-
terpriseServices namespace, either directly or
indirectly.

The binding between the managed class and one
or more COM+ services, such as automatic trans-
actions, just-in-time activation, or asynchronous
message queuing, is configured in a declarative man-
ner. At design-time, you give the class all the
service-related attributes you need and the .NET
Framework enterprise infrastructure guarantees that
instances of that class will be using those services
at run time. Services can be further configured by
calling proper methods on related classes and interfaces. The inter-
action between serviced objects and services suffers from no archi-
tectural limitation. COM+ services can also span over one or more
objects. A typical example of this situation is when a transacted ob-
ject extends the transaction to a fellow object that also supports (or
requires) transactions.

Configuration information that links together services and objects
is stored in the COM+ catalog. Based on that data, the COM+ run-
time environment creates a context for the managed object whose
execution, though, is still controlled by the .NET Common Language
Runtime (CLR). In summary, each environment controls the imple-
mentation and the execution of respective interacting elements—the
serviced object and the COM+ service. The context for the object is
provided by COM+. Let’s review the steps involved with the author-
ing of a serviced class in the .NET Framework.

Creating a Managed COM+ Class
To create a serviced component, you start by defining a class that in-
herits the ServicedComponent class. The inheritance doesn’t have to
be direct; you can also derive your final class from a class, which in
turn inherits ServicedComponent. This scenario is quite common in
all those cases in which the class must inherit from a base business class

where the COM+ integration represents only a sub-
set of the required features. To create a serviced
component, you import the System.Enterprise-
Services namespace and link the corresponding
assembly. The following code snippet declares a class
that can only operate within a transaction:

using System.EnterpriseServices;
[Transaction(TransactionOption.Required)]
public class Account : ServicedComponent
{

[AutoComplete]
public void Refresh()
{

:
}

}

The same assembly can contain one or more serviced components.
You compile the class into an assembly and deploy the serviced com-
ponent either dynamically or manually. Dynamic registration con-
sists of simply copying the assembly to the COM+ application’s di-
rectory. No information is entered in the COM+ catalog at this time.
It is important to notice that dynamic registration doesn’t require
that the assembly is copied to the Global Assembly Cache (GAC).
Actually, managed clients (e.g., ASP.NET and Windows Forms ap-
plications) issue their first call to serviced components when they
are not yet registered with COM+. The first time a client tries to cre-
ate an instance of a serviced component, the .NET CLR extracts the
type library out of the assembly and configures the COM+ catalog.
The COM+ registration step takes place only once for each version
of the assembly. After the registration step is completed, serviced and

Design and Write
Serviced .NET Components

How you plan to use a serviced component will

affect its design

DINO ESPOSITO is Wintellect’s ADO.NET and XML expert and is a
trainer and consultant based in Rome, Italy. He is a contributing edi-
tor to MSDN Magazine, writing the “Cutting Edge” column, and is the
author of several books for Microsoft Press, including Building Web
Solutions with ASP.NET and Applied XML Programming for .NET.
Contact him at dinoe@wintellect.com.

32 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

nonserviced components are completely undis-
tinguishable and managed clients treat them
in the same way.

It is worth noting that on Windows 2000, the
COM+ runtime always loads the newest CLR
that is available on the machine. This means
that if you have installed both the .NET Frame-
work version 1.0 and 1.1, the latter is always
loaded. The behavior is by design. It cannot be
configured, but a workaround is easy to find.
You can create a COM+ configuration file and
use it to lock all applications to a specific ver-
sion of the .NET Framework. The name of the
configuration file is “dllhost.exe.configuration,”
where “dllhost.exe” is the process name for
COM+ applications. Both Windows XP and
Windows Server 2003 let you specify a config-
uration file on a per-application basis.

Manual registration entails using a command-
line tool—regsvcs.exe—to load the assembly,
generate a type library, and register the type li-
brary with the COM+ application. Manual reg-
istration is also possible to achieve program-
matically. You use the RegistrationHelper
class in the System.EnterpriseServices name-
space and invoke the InstallAssemblymethod.

The location of the assemblies containing
serviced components depends on the charac-
teristics of the COM+ application you’re set-
ting up. If you create a server COM+ applica-
tion, the assembly must be copied to the GAC.
You can use a Windows Installer setup to do
the job. The assembly and all of its depend-
ency assemblies must be added to the GAC
before the application is used.

Serviced components destined to a COM+
library can be deployed to the current direc-
tory. In this case, the CLR and the COM+
runtime can resolve any reference. Finally, serv-
iced components invoked by pieces of an
ASP.NET application can be copied in the Bin
directory of the web application.

Essential Programming Guidelines
If you’re going to write a serviced component
that will only be called by other managed
components, then no special consideration
and limitation apply to your coding style. In-
stead, if your serviced component will have
a COM object among its clients, it must ad-
here to a number of limitations. Here are the
main ones.

The managed class must have only a basic,
parameterless constructor. Parameterized con-
structors are not acceptable because there
would be no way for the COM+ runtime to
figure them out in detail and issue a proper
call. Static methods are forbidden for a simi-
lar reason—managed static methods have no
counterpart in COM. All the interfaces that
the serviced component implement must be
defined in the same component, and COM-
specific HRESULT values must be included in
user-defined exceptions.

A serviced component makes use of attrib-
utes to connect to COM+ services as well as
COM+ related facilities provided by the .NET
Framework. For example, a transacted compo-
nent can use the AutoComplete attribute to au-
tomatically vote for the transaction end. The
attribute causes the component to call into
SetComplete if the method call returns nor-
mally. If the method call throws an exception,
then the transaction is aborted using an auto-
matic call to SetAbort. In any case, you don’t
have to insert explicit calls to both methods.

Automatic completion is effective for cod-
ing and component authoring, but it’s not nec-
essarily better for performance. Using auto-
matic, implicit voting might result in a
lengthier operation. To explicitly vote for a
transaction, you can use the ContextUtil class
in the System.EnterpriseServices name-
space. The class exposes the well-known meth-
ods SetComplete and SetAbort, which you
can use to explicitly commit or abort a trans-
action. SetComplete indicates that your com-
ponent agrees to commit the work, whereas
SetAbort indicates that your component has
found a problem and needs to kill the current
transaction.

Notice, though, that the effect of both
SetAbort and SetComplete may be limited.
A transaction is neither committed nor abort-
ed until the root object of the transaction gets
involved. Even if the component votes for
committing the transaction, a single abort
vote from any other participants will cause
the entire transaction to fail. The following
code snippet shows how a serviced compo-
nent can use the SetAbort and SetComplete
methods:

// Critical step for the transaction
If (!DoSomething())
{

// Something went wrong
ContextUtil.SetAbort();

}
else

{
// Everything’s OK
ContextUtil.SetComplete();

}

COM+ Services can be activated at various
levels—assembly, class, and method. For ex-
ample, the aforementioned AutoComplete at-
tribute works on a per-method basis. Other at-
tributes apply to the class definition. Some of
them are: JustInTimeActivation, Object-
Pooling, LoadBalancingSupported, and
Transaction. The ApplicationQueuing at-
tribute works on a per-assembly basis and en-
ables queuing support for the specified assem-
bly. In light of this, the application can read
messages from Message Queuing queues. Oth-
er attributes can be specified at the compo-
nent level, per assembly, and per method. An
example of these attributes is SecurityRole.
You can use the SecurityRole attribute to add
roles to an application and to components.
Applied to the whole assembly, the attribute
guarantees that the role is added to the COM+
catalog. Applied to a single component, the
attribute ensures that the role exists in the ap-
plication configuration.

Strong Names
So far we have repeatedly mentioned the reg-
istration step that each serviced component
needs to accomplish in order to be used by the
COM+ application. However, what does it
mean to register, either dynamically or manu-
ally, a serviced component? The assembly that
contains the serviced component must fulfill
a number of criteria. First and foremost, the
assembly must be strong-named. To sign an as-
sembly with a strong name, you must have a
cryptographic key pair made of a private and
public key. The private key is used to sign the
assembly, whereas the public key is used to read
the signature. The .NET Framework comes
with a command-line utility to generate a pair
of such keys. The command line to use is the
following syntax:

sn.exe –k mypair.snk

The –k switch instructs the tool to generate
a new pair; the file name indicates the name
of the binary file in which the keys will be per-
sisted. Once you have a pair of keys, you can
proceed and sign the assembly in either of two
ways: You can use another command-line
tool—al.exe—or declaratively bind the keys
to the assembly being created.

The al.exe tool (the Assembly Linker tool)
takes the name of the assembly and the keys
and creates an assembly with a strong name.
You can also sign the assembly during compi-
lation by inserting the following line in the as-
semblyinfo.cs (or .vb) file that the Visual Stu-
dio .NET IDE creates for you:

I N S I D E . N E T

On Windows 2000, the
COM+ runtime always loads
the newest CLR that is
available on the machine

I N S I D E . N E T

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 33

[assembly:AssemblyKeyFileAttribute(“mypair.snk”)]

A strongly named file is a file with a unique
name made of the public key, a digital signa-
ture, the assembly’s text name, version num-
ber, and culture information, if any.

Aside from being strong named, the assem-
bly that contains a serviced component must
be registered in the Windows registry. In ad-
dition, type library definitions must be regis-
tered and installed into a specific COM+ ap-
plication.

To successfully perform registration, some
information is needed and includes the fol-
lowing: COM+ application identity, type of
activation required, and a description. The ap-
plication identity is a name or a GUID that
identifies an existing COM+ application. You
can specify the target application of a compo-
nent by using the ApplicationName attribute.

[assembly: ApplicationName(“BankComponent”)]
public class Account : ServicedComponent
{

:
}

The activation type determines whether the
serviced component is created in-process or
hosted in a new process. You use the Appli-

cationActivation attribute to specify the ac-
tivation type:

[assembly: ApplicationName(“BankComponent”)]

The description is optional, but is often help-
ful to discern similar assemblies. Here’s how to
apply the Description attribute:

using System.EnterpriseServices;
[assembly: Description(“BankComponent assem-
bly”)]
public class Account : ServicedComponent
{

:
}

Other Serviced Components
With respect to transactions, along with class-
es, web services and ASP.NET pages can also
be configured as participant objects. An at-
tribute determines the transactional behavior
of the instantiated object. They can support
ongoing transactions, require one, always start
a new transaction, or never participate in trans-
actions.

For ASP.NET pages, the transaction sup-
port is disabled by default and is turned on
by setting the @Page’s Transaction attrib-

ute to any of the following values: Sup-
ported, Required, and RequiredNew. The
Supported attribute indicates that the page
participates in an ongoing transaction, if
any. The Required attribute indicates that
the page always requires a transaction and
a new one is created if there’s no ongoing
transaction. Finally, the RequiredNew at-
tribute instructs the run time to always cre-
ate a new transaction in which the page acts
as the root.

You can also run a Web Service method
within the scope of an automatic transac-
tion. To do so, you set the TransactionOp-
tion property of the [WebMethod] attribute.
The attribute accepts the same values that
are acceptable to an ASP.NET page. In spite
of this, it’s worth noticing that a Web Ser-
vice method can only participate in a trans-
action as the root of a new transaction. This
means that Required and RequiredNew are
the same and the behavior is always that of
creating a new transaction. Likewise, Sup-
ported and None are the same and no trans-
action is ever supported. If a Web Service
method is participating in a transaction and
an exception occurs, ASP.NET automati-
cally aborts the transaction. If no error oc-
curs, the transaction automatically commits.
w::d

http://redirect.wdj.com/scripts/redirect.pl?http://www.dice.com

34 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

I AM NOT A fan of porting code because it produces, well, ported code.
When you design your code, you generally have a target system in mind,
and you use this system when you test your code. Your code is designed
and tested on one system, and when you port it to another system, you
attempt to make the code work in a situation for which it was not de-
signed. However, there are situations when porting is required. .NET is
clearly the future for Microsoft operating systems, but few software hous-
es are likely to want to start afresh with their code: If you have hun-
dreds of thousands of lines of code, it makes sense to try to reuse it. This
is where managed C++ excels: It is designed to allow you to compile
unmanaged code to Microsoft Intermediate Language (MSIL) so that
it runs under the .NET runtime. In this article, I will outline the basic
issues involved in porting your native C++ to .NET.

What Does Porting in .NET Mean?
The first point to make about porting C++ code is that, in general, you
are porting the code and not the data to .NET. What do I mean by this?
When you compile C++ code with the /clr compiler switch, the com-
piler will generate MSIL for the code (there are some exceptions, but
this statement is generally true). This means that all code, whether it
be global functions or class methods, will run under the .NET runtime.
However, if your classes are unmanaged (they are not marked with the
__gc modifier), then instances will be created on the stack or in the
C++ free store. Only instances of .NET types will be created on the
managed heap and managed by the .NET Garbage Collector. Compil-
ing native C++ with /clr is not a solution to fix poorly written C++
code that does not call delete on free store allocated objects!

Porting means giving .NET code access to native C++ routines. If
you only have one managed C++ client to your code, then porting is
unnecessary because such code should be accessed directly and the
managed C++ compiler provides a technology called “It Just Works”
(IJW) to facilitate this. On the other hand, if you want to use those
routines in other .NET languages, or reuse them in several managed
C++ projects, then the code needs to be ported to a managed library.
Here, there are two choices: Do you provide a wrapper around the na-
tive code or do you port the entire library to managed code?

Porting Libraries
Typically, a C++ library is offered in one of three ways: a source library,
for example, a template library; a static library; or a DLL. If you have a
library provided in source form, the entire library can be compiled as
MSIL; however, this will mean that only code within the current as-
sembly will have access to the classes because to export a class out of an
assembly, the class has to be a public .NET class. Furthermore, the method
parameters and public data members of your class may be unmanaged
types and this means that they will not be accessible by .NET code writ-
ten in a language other than managed C++. To address this, you must
provide a wrapper class that provides a managed interface to your class.

If your library is supplied as a static library, then you’ll have to sup-
ply a wrapper class in managed C++ to enable other .NET languages
to access the library. If the static library is class based, then you will
have most of the work done for you because you do not have to iden-
tify the classes—you merely have to provide suitable wrappers.

If the library is DLL based,
then in most cases it will be a
collection of exported C func-
tions. In such cases, you will
have to do some work to iden-
tify the objects involved and
design wrapper classes. In
some cases, there may not be
any objects and you can sim-
ply expose these functions
through static members of
your managed class. In other
cases, the C API will repre-
sent a “flattening” of an ob-
ject API. For example, in last
month’s column, I described
the GDI+ unmanaged API,

which is exported from the gdiplus.dll library using C functions. These
functions use opaque handles to represent the this pointer of the ob-
ject. The managed classes in the System::Drawing namespace are
merely wrappers around this unmanaged library.

The major difference between a source code library and static or DLL
libraries is that most of the code in a source code library will be com-
piled as MSIL and executed by the .NET runtime, whereas most of the
code in a static library or a DLL will be x86 code running outside of the
tentacles of the .NET runtime. This means that the code in a static li-
brary or DLL will be run in the environment where it was designed to
run, so you don’t have the issue of ported code being squeezed into an
environment where it was never intended to run. Note also that Mi-
crosoft says that the thunking calls from the managed to the unman-
aged world used in IJW or Platform Invoke add between 10 to 30 ex-
tra x86 instructions to the JITed code. A source code library may make
many calls to other libraries (like the C Runtime library or the Win32
library), so compiling the entire code to MSIL will add the extra ma-
chine cycles to every unmanaged library call. On the other hand, when
you call a static library, you only have those extra machine cycles when
the static library methods are called from the wrapper class, and not
when the library methods make CRT or Win32 calls.

Common Language Specification
The best library is one that can be used by the largest number of users.
In .NET terms, this means that a library has to be Common Language
Specification (CLS) compliant. The CLS rules of types and names should
apply to all types that are publicly accessible, so your private types can
be noncompliant. A compliant class exposes language features that are
considered the baseline for all languages, so for example, since some lan-
guages cannot handle unsigned integer types, a compliant class should
only use signed integers for method parameters, public fields, and properties.

RICHARD GRIMES is an author and speaker on .NET. His latest book,
Programming with Managed Extensions for Microsoft Visual C++
.NET, updated for Visual C++.NET 2003, is available now from
Microsoft Press. He can be contacted at richard@richardgrimes.com.

Richard Grimes V I S U A L C + + . N E T E X P E RT

Choosing between a wrapper or a full port for your legacy code

Porting Your C++ Code to .NET

http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com

V I S U A L C + + . N E T E X P E RT

36 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

A CLS-compliant library should be declared as such with the assembly
attribute [CLSCompliant(true)]; types and members of types that are
not compliant should also be marked with this attribute but with False
as the constructor parameter. The Tools Developers Guide installed as
part of the .NET SDK provides a list of the CLS rules in the first part of
the Common Language Infrastructure specification, so I won’t go into
details about them here. Instead, I will make a few general comments.

First, different languages have different rules about naming items.
The CLS specification says that items should have unique names ex-
cept when overloading is intended, so a single name cannot be used
for a method and a field and two names must differ by more than just
their case. Second, you can write a compliant class that has members
that are targeted at a specific language (for example, methods that have
unsigned integer parameters targeted at C# or managed C++) as long
as it provides alternative members that are compliant. Providing CLS-
compliant members of your wrapper class will involve extra work, but
in the long run, it will be worthwhile because it will widen the po-
tential market for the library.

Porting C++
If you have an existing C++ class and you want to expose this as a
.NET class, the temptation is simply to write a wrapper class that uses
composition to hold an instance of the native class and provide a
managed implementation of each of the object’s methods that do the
necessary conversions between managed and unmanaged types before
delegating the call to the unmanaged object. Although this approach
is straightforward, there are problems with it because native C++ has
some fundamental differences to managed C++.

Perhaps the most important difference is the lifetime issue: A na-
tive C++ object is explicitly destroyed, which results in a call to the

object’s destructor and frees the memory used by the object. The na-
tive C++ developer knows that, when the object is destroyed, the de-
structor will be called. This is not the case with .NET objects. The
managed C++ compiler generates a method called Finalize, which
calls the code in the C++ classes destructor. The Finalize method
is called by the garbage collector at some time in the future when a
garbage collection occurs. For objects that hold on to scant resources
needed by other code, Finalize is unsatisfactory because clean up
does not occur when the developer determines that it is necessary.
Finalize is protected, which means that the code that creates the

instance does not have direct access to this clean up code, so you can-
not get around this problem by calling it explicitly. The C++ com-
piler provides a public method called __dtor that calls the Finalize
method, and since this method is public, client code can call it di-
rectly, or can call the delete operator on the object reference. Note
that when you call delete on a managed C++ object, the result is
merely to call __dtor: It has no effect on the memory occupied by
the object. VB.NET and C# do not have the delete operator, but
clients written in these languages can call the __dtor method directly.
However, this is not natural to those languages and .NET has an es-
tablished pattern to handle this situation.

If you have a native C++ class that implements a destructor, it means
that the C++ class has resources that should be freed. In many situa-
tions, these resources should be freed as soon as possible, in which case
the managed wrapper class should implement the IDisposable inter-
face to provide a Dispose() method that will free the resource. C# de-
velopers have the using statement that identifies a block of code that
determines the effective lifetime of an object and ensures that IDis-
posable::Dispose() is called after the block of code has completed.

Another issue involves the initialization of objects. In .NET, con-
structors are used solely for initialization when an object is created.
Native C++ is a little more forgiving because it allows you to call con-
structors explicitly within your class. The most common use of this
facility is when you have overloaded constructors that have common
code, in which case one constructor can call another constructor to
use its initialization routine. The managed C++ compiler does not al-
low you to call a constructor like this, and instead you have to gen-
erate a separate private initialization method.

Finally, it is worth pointing out that native C++ code provides a
type of method (or constructor) overloading through parameter de-
fault values: Client code can omit the parameters with default values
to get that value. .NET does not allow default parameters, but it does
allow overloading, so the solution to this problem is to call the most
generic overload and explicitly pass the default values.

Data Marshalling
The public interface to your class must have managed types and prefer-
ably should have CLS-compliant types. The methods of your native C++
code will usually have unmanaged types, so you will need to convert your
managed types into unmanaged types before calling the native code and
convert the results into managed types. I will leave the details of data
marshalling to another article, but in general, your friend here is the Mar-
shal class in System::Runtime::InteropServices. This class provides
static methods to convert unmanaged strings to managed strings and vice
versa, and to allocate and deallocate arbitrary amounts of memory.

Summary
Managed C++ is the only .NET language that allows you to mix man-
aged and unmanaged code, and this facility is provided to allow you
to use existing native C++ code in .NET classes. The C++ compiler
gives you the option of compiling an entire library as managed code,
or to compile the bulk of the code as native x86 so that the code runs
in the environment where it was designed to run. Next month, I will
explain more about the porting process. w::d

http://redirect.wdj.com/scripts/redirect.pl?http://www.intorel.com/sitecomp

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 37

Victor R. VolkmanI N B R I E FB O O K S

AS THE TITLE SUGGESTS, Inside Windows
Server 2003, by William Boswell, is a com-
prehensive look at all the features in Win-
dows Server 2003 and how you might de-
ploy them. Accordingly, it covers the full
gamut of subjects including installation and
upgrades, DNS, Active Directory Services
and Replication, designing and deploying
Windows Server 2003 Domains, security,
group policies, data storage, encryption, re-
mote access, system failures, and more.

In some ways, you could consider Boswell’s Inside Windows Server 2003
a sequel to his previous work Inside Windows 2000. Indeed about 16 of
the 21 chapters have the same titles and many of them have the same
topic lists. New in Inside Windows 2003 are chapters on Public Key In-
frastructure (PKI) and on encryption. Each chapter opens with a bul-
leted section listing all the new features for Windows 2003 Server.

Boswell assumes the reader has a basic knowledge of Windows NT
servers and classic NT domains. Without this background, the strong-
ly motivated with an operating system might get by. The author points
out that this book would not be a good place to start if you are just
learning about networking for the first time, nor is Inside Windows
Server 2003 structured like an exam-cram type of text. However, be-
cause it includes most of the info required for Windows Server 2003
exams, it would be a handy study guide for those on the path. Read-
ers primarily interested in IIS 6.0 would be better served by Microsoft
IIS 6.0 Administrator’s Pocket Consultant, by William R. Stanek (Mi-
crosoft Press, 2003).

The chapters on upgrading domains from NT4 and Windows 2000
were both lucid and relevant. The diagrams are particularly helpful

in visualizing what’s happening in each of these scenarios. The prac-
tical advice on how to prepare for upgrade failure is alone worth the
price of the text. Nightmare scenarios such as the loss of a DNS serv-
er and domain controller are also covered in detail.

As you might expect, Active Directory (AD) is the single largest
topic relevant to Windows Server 2003. This includes distinct chap-
ters on AD services, replication, maintenance, and directory securi-
ty. The author covers new features in security such as permission sets,
the effective permission calculator, and smart card support.

In other areas of Windows Server 2003, such as file systems, it is
sufficient to simply list improvements in performance, security, and
support for newer devices like DVD-RAM. For administrators just
moving from NT4, Boswell provides a bottom-up survey of NTFS in-
ternals from sectors to partitions.

Rather than taking a strictly how-to approach, the author provides
in-depth background information on each subject as a motivation.
After completing the functional descriptions, the text provides
overviews of common operations. For example, in regard to file sys-
tems, this means step-by-step procedures for enabling file compres-
sion, reparse points, defragmentation, and NTFS conversion.

Inside Windows Server 2003 includes an exceptionally good index.
This is a key ingredient in a useful server reference book. It provides
more than 70 pages of entries at the detail of individual command-
line switches, filenames, topics, and procedures. In a book of nearly
1400 pages, such a resource is indeed critical.

I found some of the advice in installation and upgrade chapters to
be inapplicable in modern scenarios. Much of the troubleshooting in-
volves obsolete hardware, such as multimedia cards and ISA busses,
which I haven’t seen on new computers in the past three years. I’m
not sure why you would be spending $600 or more for an operating
system to run on a machine that is worth far less than that.

Of course, I’ve barely scratched the surface of what’s available to
you in William Boswell’s Inside Windows Server 2003. I would recom-
mend this book most strongly to NT4 administrators who are mak-
ing the great leap forward to Windows 2003 Server right now. It will
also make a useful adjunct for those studying to become certified on
this new, industrial-strength operating system. w::d

VICTOR R. VOLKMAN received a B.S. in Computer Science from
Michigan Technological University. He has been a frequent contrib-
utor to Windows Developer Magazine since 1990. He is the author
of C/C++ Treasure Chest, which includes 300 products on CD-ROM.
He can be reached by e-mail at sysop@HAL9K.com or through
http://www.HAL9K.com/.

Inside Windows Server 2003
William Boswell
1376 pages
Addison-Wesley Professional; 2nd edition
$59.99
ISBN: 0735711585
http://www.aw-bc.com/catalog/academic/
product/0,4096,0735711585,00.html/

GET ADDITIONAL INFORMATION ABOUT PRODUCTS
AND SERVICES YOU SEE ADVERTISED FAST!

PHONE: Contact the vendor directly using the information in the advertisement.

WEB: Go to the development tool page on our web site, www.windevnet.com.
From there you can link to the advertisers below.

38 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

www.windevnet.com

ADVERTISER PAGE

Alexsys Corporation 35

BeCubed Software, Inc. 40

Borland 1

Dice 33

dtSearch Corporation 5

Extended Systems C4

FairCom 17

Intorel 36

Iocomp Software 13

Kinook Software Inc. 40

Marx Software Security 40

Melissa Data 40

Programmer's Paradise 9

Sourcegear 21

Tal Technologies Inc. 40

Thb Componentware 40

Windows Developer Network CD-ROM 2

Windows Developer Network Security E-Book 4

ADVERTISER PAGE

Windows Developer Network Special Issue C2

Xoreax Software 30

Zero G Software C3

ADVERTISER INDEX

■ Michele Hurabiell Regional Manager—West

415-947-6199 mhurabiell@cmp.com

■ Ed Day Regional Manager—Central/Southeast

785-838-7547 eday@cmp.com

■ Jon Hampson Regional Manager—East

603-924-8500 jhampson@cmp.com

■ ■ ■ Julie Thibault Account Manager—All Regions

603-924-8400 jthibault@cmp.com

WEST EAST

West

Central/Southeast

East

http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://connect.borland.com/borcon03
http://redirect.wdj.com/scripts/redirect.pl?http://www.dice.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.advantagedatabase.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts
http://redirect.wdj.com/scripts/redirect.pl?http://www.intorel.com/sitecomp
http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.kinook.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.MelissaData.com/windev
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdm/cdrom/
http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0314/
http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0313/
http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.zerog.com

Velocitis Announces Flywheel 7.1
Flywheel is a process-agnostic tool for visualizing, designing, and
refactoring Microsoft Visual C# .NET and Visual Basic .NET source
code, which integrates with Microsoft Visual Studio .NET 2002 and
2003. Flywheel creates UML style visualizations directly from
CSharp or VB.NET source code; there is no separate visualization
model. The source code is the model, and real-time synchroniza-
tion keeps visualizations and source code current. Flywheel Profes-
sional version 7.1 includes user interface enhancements, Visual Stu-
dio .NET integration improvements, and improved documentation.

Velocitis Inc.
325.347.0414
http://www.velocitis.com/

RainCode Updates XMLBooster
RainCode Corp. has added C# to the list of languages supported
by XMLBooster, a product designed to provide more efficient
integration of XML data within applications. XMLBooster stati-
cally generates XML parsers for C, C++, C#, COBOL, Delphi, Java,
or Ada applications. By using native code generation rather than
a generic approach, XMLBooster aims to improve performance
for transaction-based applications. The software also generates
structural documentation and a GUI to edit specific XML files;
the GUI can be incorporated into the final application.

RainCode S.P.R.L.
32.2.522.06.63
http://www.xmlbooster.com/

Datalight Launches Reliance
File System
Datalight has released Reliance, a fault-tolerant file system for
embedded computers. Reliance can act as a standalone file sys-
tem or run in parallel with other file systems. It arranges files
and directories contiguously on the storage media in order to
maintain a high level of performance and diminish the frequen-
cy of running system-defragmenting and check-disk utilities.
The transactional system uses transaction points while updat-
ing and storing data, allowing the file system to hold data safe-
ly in an area of the disk that is not being used by the previous
transaction while updates occur. At each transaction point, the
data is kept intact until the update has been verified.

Datalight Inc.
425.951.8086
http://www.datalight.com/

Desaware Licensing System
.NET Ships
The Desaware Licensing System is a licensing system for .NET
based on cryptographic certificates. Designed for per

server/machine and component licensing, it can be configured
for both moderate and high security scenarios. With 128-bit
cryptographic licensing, the Desaware Licensing System does
not depend on hidden files, registry entries, or background
services. Instead, installation codes are generated on a server
for use during installation of Microsoft .NET Framework-based
applications and components, and during activation, the code
is verified by the server before it issues a licensing certificate
bound to the client machines.

Desaware Inc.
408.377.4770
http://www.desaware.com/

Atalasoft Releases dotImage
Atalasoft has released dotImage for the Microsoft .NET Frame-
work, a new imaging component containing a class library with
hundreds of imaging-related features, as well as WinForm and Mi-
crosoft ASP.NET WebForm components and controls to display,
manipulate, and print images. Built with managed C#, dotImage is
not a COM or ActiveX wrapper and there are no ActiveX depend-
encies. Atalasoft is also working on a WebForm image control for
Microsoft ASP.NET, which will mimic much of the functionality of
the WinForm product in a server-side control.

Atalasoft Inc.
413.572.4443
http://www.atalasoft.com/

QA Systems Delivers QStudio for
Java Pro 2.0
QStudio for Java is a source-code quality assessment tool for
Java development organizations that integrates with JBuilder,
Oracle 9i JDeveloper, Eclipse, WebSphere Studio, and Visual
Age. QStudio for Java Pro 2.0 has two major enhancements: the
ability to check for Enterprise Java Beans compliance and the
ability to analyze incomplete source bases. QStudio for Java Pro
supports over 200 rules by default, some of which can be used
to instantiate new customized rules. QStudio also allows users
to add their own rules (and the rules developed by the PMD
community) using open-source PMD specification capabilities.

QA Systems Inc.
512.637.6100
http://www.qasystems.com/

Seapine Software Announces QA
Wizard 2.1
Seapine Software has made QA Wizard 2.1 available for auto-
mated functional testing of Windows and web applications. En-
hancements to QA Wizard 2.1 include functional load testing
capabilities, international language support, and the ability to
test Microsoft Windows applications. QA Wizard can search

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 39

NEW PRODUCTS
Submit new product announcements to wdletter@cmp.com.

http://www.velocitis.com/
http://www.desaware.com/
http://www.atalasoft.com/
http://www.xmlbooster.com/
http://www.datalight.com/
http://www.qasystems.com/

40 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

COMPRESSION PLUS 5.0

http://www.becubed.com

Compression Plus supports many
other popular archive formats, in
addition to ZIP, including ARC, ARK,
PAK, ARJ, GZ, LBR, TAR, TAZ,
TGZ, Z and ZOO files. You can also
UUENCODE, UUDECODE, decode
a Base64 file, decode a MIME
attachment which uses Base64
encoding and more! Includes 32bit
Self Extractor.

Trial version available on our
website

Formerly from EllTech

and bind to Windows objects, handling many user interface
changes automatically. The software integrates with Seapine’s
Surround SCM and Microsoft’s Visual SourceSafe.

Seapine Software Inc.
513.754.1655
http://www.seapine.com/

dtSearch 6.2 Released
The dtSearch Text Retrieval Engine lets developers add dt-
Search’s text retrieval capabilities to web-based and other appli-
cations. The dtSearch Engine supports SQL, ADO, C++, .NET, Del-
phi, and Java, and the 6.2 release has additional Java, C++ and

.NET (ASP.NET, VB.NET, C++.NET, C#) code samples and exten-
sions to the developer APIs. dtSearch offers over two dozen in-
dexed, unindexed, fielded, and full-text search options, and the
new release also includes forensic search enhancements: Text
segments in large data blocks, such as those recovered through
an “undelete” process, can be automatically parsed. Language
recognition algorithms can detect text in a variety of languages.

dtSearch Corp.
301.263.0731
http://www.dtsearch.com/

NEW PRODUCTS
D

EV
EL

O
PE

RS
’

M
A

RK
ET

PL
A

C
E

http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.kinook.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.MelissaData.com/windev
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://www.seapine.com/
http://www.dtsearch.com/

http://redirect.wdj.com/scripts/redirect.pl?http://www.zerog.com

Advantage Database Server is a robust client/server RDBMS that

provides extreme performance, scalability and reliability. Experience

the rush of developing with a database that provides navigational

and SQL data access. Experience the excitement of deploying a cross-

platform database that works on existing network infrastructures.

Experience the thrill of easily creating triggers, stored procedures

and referential integrity—without a DBA. Experience data management

without the harsh costs of ownership. Experience Advantage,

a solution that can enable your wildest adventures. Download

a free trial version at: www.AdvantageDatabase.com/go/xtremewin

or phone 800-235-7576, ext. 5030

g o i n g t o

x t r e m e s
t o p r o v i d e y o u t h e u l t i m a t e d a t a b a s e e x p e r i e n c e

See us at the Borland Conference, booth #321

Al
l t

ra
de

m
ar

ks
 a

nd
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 a
re

 th
e

pr
op

er
tie

s
of

 th
ei

r
re

sp
ec

tiv
e

ho
ld

er
s.

©
20

03
 E

xt
en

de
d

Sy
st

em
s

http://redirect.wdj.com/scripts/redirect.pl?http://www.advantagedatabase.com

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 43

W I L S O N

/* ///
* ...
*
* Extract from MOCtlFns.c
*
* Copyright (C) 1998-2003, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Public License:
* http://www.synesis.com.au/licenses/ssspl.html)
*
* ...
* // */

/* IEnumXXXX */

HRESULT EnumXXXX_Reset(LPVOID itf)
{

LPENUMSTRING pen = (LPENUMSTRING)itf;

return pen->lpVtbl->Reset(pen);
}

/* IEnumString */

HRESULT EnumString_NextItem(LPVOID itf, LPEnum2WndItem pitem, LPVOID *pvalue)
{

LPENUMSTRING pen = (LPENUMSTRING)itf;
HRESULT hr = pen->lpVtbl->Next(pen, 1, &pitem->olestr, NULL);

if(hr == S_OK)
{

*pvalue = pitem->olestr;
}

return hr;
}

void EnumString_ClearItem(LPVOID pen, LPEnum2WndItem pitem, LPVOID value)
{

CoTaskMemFree(pitem->olestr);
}

/* IEnumBSTR */

HRESULT EnumBSTR_NextItem(LPVOID itf, LPEnum2WndItem pitem, LPVOID *pvalue)
{

LPENUMBSTR pen = (LPENUMBSTR)itf;
HRESULT hr = pen->lpVtbl->Next(pen, 1, &pitem->bstr, NULL);

if(hr == S_OK)
{

*pvalue = pitem->bstr;
}

return hr;
}

void EnumBSTR_ClearItem(LPVOID pen, LPEnum2WndItem pitem, LPVOID value)
{

SysFreeString(pitem->bstr);
}

/* IEnumVARIANT */

HRESULT EnumVARIANT_NextItem(LPVOID itf, LPEnum2WndItem pitem, LPVOID *pvalue)
{

LPENUMVARIANT pen = (LPENUMVARIANT)itf;
HRESULT hr = pen->lpVtbl->Next(pen, 1, &pitem->var, NULL);

if(hr == S_OK)
{

hr = VariantChangeType(&pitem->var, &pitem->var, VARIANT_ALPHABOOL,
VT_BSTR);

if(SUCCEEDED(hr))
{

*pvalue = pitem->var.bstrVal;
}

else
{

VariantClear(&pitem->var);
}

}

return hr;
}

void EnumVARIANT_ClearItem(LPVOID pen, LPEnum2WndItem pitem, LPVOID value)
{

VariantClear(&pitem->var);
}

/* IEnumGUID */

HRESULT EnumGUID_NextItem(LPVOID itf, LPEnum2WndItem pitem, LPVOID *pvalue)
{

LPENUMGUID pen = (LPENUMGUID)itf;
HRESULT hr = pen->lpVtbl->Next(pen, 1, &pitem->guid, NULL);

if(hr == S_OK)
{

hr = StringFromCLSID(&pitem->guid, SyCastRaw(LPOLESTR*, pvalue));
}

return hr;
}

void EnumGUID_ClearItem(LPVOID pen, LPEnum2WndItem pitem, LPVOID value)
{

OleString_Destroy(SyCastRaw(LPOLESTR*, &value));
}

/* IEnumUnknown */

HRESULT EnumUnknown_NextItem(LPVOID itf, LPEnum2WndItem pitem, LPVOID *pvalue)
{

LPENUMUNKNOWN pen = (LPENUMUNKNOWN)itf;
HRESULT hr = pen->lpVtbl->Next(pen, 1, &pitem->punk, NULL);

if(hr == S_OK)
{

/* Use the VariantChangeType() mechanism to get the value property of
* the object.
*/

VARIANT dest;

VariantInit(&dest);

hr = Dispatch_GetProperty(pitem->punk, DISPID_VALUE, &dest);

if(SUCCEEDED(hr))
{

hr = VariantChangeType(&dest, &dest, VARIANT_ALPHABOOL, VT_BSTR);

if(SUCCEEDED(hr))
{

*pvalue = OleString_Dup(dest.bstrVal);
}

VariantClear(&dest);
}

if(NULL != pitem->punk)
{

pitem->punk->lpVtbl->Release(pitem->punk);
}

}

return hr;
}

void EnumUnknown_ClearItem(LPVOID pen, LPEnum2WndItem pitem, LPVOID value)
{

OleString_Destroy(SyCastRaw(LPOLESTR*, &value));
}

Listing 4 Implementation of enumerator handlers

44 | windows::developer NETWORK NOVEMBER 2003 www.windevnet.com

W I L S O N

CONVERTING OLE strings, BSTRs, VARIANTs, and even GUIDs to strings
that may then be inserted into windows controls seems conceptual-
ly pretty straightforward. However, doing so with COM objects (via
IUnknown) doesn’t seem anywhere near as obvious. As you can see
from Listing 4, the value is obtained from a function Dispatch_Get-
Property(). This function lives in a proprietary Synesis library, so I’ve
included the definition here for anyone who wishes to include IEnum-
Unknown handling.

SYFNCOMDECL Dispatch_GetProperty(LPUNKNOWN punk,
DISPID dispid,
LPVARIANT pvarResult)

{
HRESULT hr;

if(NULL == punk ||
NULL == pvarResult)

{
hr = E_POINTER;

}
else
{

LPDISPATCH pdisp;

hr = punk->QueryInterface(IID_IDispatch, (void**)&pdisp);

if(SUCCEEDED(hr))
{

UINT iArgErr = (UINT)~0;
DISPPARAMS params =

{
NULL, NULL, 0, 0

};

hr = pdisp->Invoke(dispid, IID_NULL,
LOCALE_SYSTEM_DEFAULT,
DISPATCH_PROPERTYGET,
¶ms, pvarResult,
NULL, &iArgErr);

pdisp->Release();
}

}

return hr;
}

The function calls IDispatch::Invoke() with DISPATCH_PROPER-
TYGET for the given dispid, and returns the automation return value as
the property’s value. The significant thing is that the DISPID used—
DISPID_VALUE (0)—is a predefined one whose meaning is as the “val-
ue” of the object on which the call is made. For example, an Excel spread-
sheet cell object would return its contents for its value property.

The other thing to note from Listing 4 is the use of VARIANT_AL-
PHABOOL in the call to VariantChangeType() call within the handlers
for IEnumUnknown and IEnumVARIANT. This simply makes the con-
version from Boolean to string result in “True” or “False” rather than
“–1” or “0”, as can be seen in Figure 1.

—M.W.

DISPID_VALUE

www.windevnet.com NOVEMBER 2003 windows::developer NETWORK | 45

M I L L E R

' These two functions show how to create the XML document representing multiple
' recordsets using VBA code. Note that this code will work in VB.NET with lit-
tle
' modification.
Public Function ConvertRecordsetToXml(ByVal voRecordset As ADODB.Recordset _
) As String

Dim loStream As New ADODB.Stream

loStream.Open
voRecordset.Save loStream, adPersistXML
loStream.Position = 0

ConvertRecordsetToXml = loStream.ReadText()
End Function

Public Function ConvertRecordsetsCollectionToXmlDocument(_
ByVal voRecordsets As Collection _

) As MSXML.DOMDocument
Dim loXmlDoc As New MSXML.DOMDocument
Dim loXmlResults As MSXML.IXMLDOMElement
Dim loRecordset As ADODB.Recordset

Set loXmlResults = loXmlDoc.createElement("results")
loXmlDoc.appendChild loXmlResults

For Each loRecordset In voRecordsets
Dim loXmlRecordsetDoc As New MSXML.DOMDocument
loXmlRecordsetDoc.loadXML ConvertRecordsetToXml(loRecordset)
loXmlResults.appendChild loXmlRecordsetDoc.documentElement

Next loRecordset

Set ConvertRecordsetsCollectionToXmlDocument = loXmlDoc
End Function

Listing 17 ConvertRecordsetToXml
' Send orders to the server for processing.
Private Sub CommandButton3_Click()

Dim loRecordsets As Collection
Dim loXmlRequestDocument As MSXML.DOMDocument
Dim loXmlResponseDocument As MSXML.DOMDocument
Dim lsUrl As String

Set loRecordsets = CreateOrderRecordsets()

lsUrl = "http://localhost/LiteWebServicesCS/PlaceOrder.asmx"

'get the order
Set loXmlRequestDocument = ConvertRecordsetsCollectionToXmlDocument(_

loRecordsets)

'upload the order
Set loXmlResponseDocument = _

InvokeLiteWebService(lsUrl, loXmlRequestDocument, "POST")

'do something with the response...
'...

End Sub

Listing 18 Sending the order

	next-toc:
	toc:

