
Drawing on GDI+

From Native C++

OCT
2003Internet Programming

Extending ASP.NET

Apps using

HttpHandlers

Licensing in .NET

Creating

Custom Columns

for the WinForms

DataGrid Control

Shared Data Segments

Preventing

Class Derivation in

Visual C++ .NET

Still More

Do/While Macros

www.windevnet.com

Volume 2 / No. 10

http://redirect.wdj.com/scripts/redirect.pl?http://www.DevConnections.com

http://redirect.wdj.com/scripts/redirect.pl?http://syndication.sdmediagroup.com

• Improve your knowledge of the latest
technologies

• Discuss your technical questions with the
world's top experts

• Obtain practical examples on the conference CD
• Broaden your horizon about future Microsoft

Technologies and strengthen your personal
market value

• Network with experts and other participants

Why you should attend

Francesco Balena
Jason Clark
Peter DeBetta
Dino Esposito
Tim Ewald
Eric Meijer
Adam Nathan

Steven Pratchner
Jeff Prosise
Brent Rector
Jeffrey Richter
John Robbins
etc

Speakers at WinSummit

• Professional developers who
• want to have an in-depth understanding of

the mechanisms and the use of the .NET and
web technologies

• know the difference of learning from real
experts

• like to consolidate their knowledge through
personal contact with their favourite experts

• fear marketing sessions but enjoys in-depth
technical content

• are facing all aspects of modern Windows
and web application development

• wish to understand and use the best HOW-
TOs to ensure the performance and
scalability of their applications

• want to have answers for their questions
about the smartest use of Microsoft’s
technologies using C#, Visual Basic, Visual
C++ with Visual Studio.NET

• Consultants who wish to improve their
understanding of Microsoft technologies

• UNIX/Linux developers who want to catch up
with Microsoft technologies

Who should attend

For sponsor opportunities
please contact info@edpp.ch
or call +41 1 881 44 96

Improve your knowledge of

the latest technologies

Conference Centre Davos, Switzerland
September 29 to October 3, 2003

Over 80 Sessions and Full-Day-Seminars
World's leading Windows speakers
Technical chairman Jeffrey Richter

First Name

Last/Family Name

Job Title

Department

Campany Name

Street Address

Town/City

Postal Code

Province/Country

Phone

Fax

E-Mail

owned by:

Keep yourself informed
Yes, I would like to attend WinSummit 2003
Please send me more information about WinSummit

If you have any questions or suggestions, don’t hesitate to
contact us: www.winsummit.com, Fax +41 1 881 44 95,
Tel. +41 1 881 44 96

www.winsummit.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.winsummit.com

WWW.windevnet.COM JUNE 2003 windows::developer NETWORK | 3

COMING NEXT MONTH:
DISTRIBUTED COMPUTING

FEATURES

windows::developer NETWORK VOL 2 • NO. 10

PUBLISHER EDITOR IN CHIEF
Kerry Gates John Dorsey

E D I TO R I A L
MANAGING EDITOR Amy Stephens
CONTRIBUTING EDITORS Dino Esposito, George Frazier,
Richard Grimes, Petter Hesselberg, Paula Tomlinson,
Victor R. Volkman
EDITORIAL ADVISORY BOARD Mark Baker, Dino Esposito,
George Frazier, Richard Grimes, Petter Hesselberg,
Mark Nelson, Mark Russinovich, Paula Tomlinson,
Victor R. Volkman
ASSOCIATE EDITOR Della Song
ART DIRECTOR Beatriz Américo
WEBMASTER Joe Lucca
SEND READER MAIL TO: wdletter@cmp.com
SUBSCRIPTION INQUIRIES: wdnetwork@halldata.com

A D V E RT I S I N G A N D M A R K E T I N G
DIRECTOR OF SALES David Timmons
REGIONAL MANAGER, EAST
Jon Hampson 603-924-8500 jhampson@cmp.com

REGIONAL MANAGER, CENTRAL/SOUTHEAST
Ed Day 785-838-7547 eday@cmp.com

REGIONAL MANAGER, WEST
Michele Hurabiell 415-947-6199 mhurabiell@cmp.com

ACCOUNT MANAGER, ALL REGIONS
Julie Thibault 603-924-8400 jthibault@cmp.com

PRODUCTION COORDINATOR
Michael Penne mpenne@cmp.com

DIRECTOR OF MARKETING Karen Tom

C I RC U L AT I O N
SENIOR CIRCULATION MANAGER Cherilyn Olmsted
ASSISTANT CIRCULATION MANAGER Gwen Olson
SUBSCRIPTIONS: Annual renewable print subscriptions to Windows Developer
Network are $34.99 U.S., $45 Canada and Mexico, $65 elsewhere. Payments
must be made in U.S. dollars. Make checks payable to Windows Developer
Network.
CUSTOMER SERVICE: For subscription orders and questions, contact
lawrencecs@cmp.com.
ADVERTISING: For rate cards or other information on placing advertising in
Windows Developer Network, contact the advertising department at
785-838-7500, or write Windows Developer Network, 4601 West 6th Street,
Suite B, Lawrence, KS 66049 USA.
Entire contents Copyright © 2003 CMP Media LLC, except where otherwise
noted. No portion of this publication june be reproduced, stored, or transmitted
in any form, including computer retrieval, without written permission from the
publisher. All Rights Reserved. Quantity reprints of selected articles june be
ordered. By-lined articles express the opinion of the author and are not necessar-
ily the opinion of the publisher. Printed in the United States of America.
NOTE: Windows is a registered trademark of Microsoft Corporation and is used
in the title of Windows Developer Network by CMP Media LLC under license
from owner. Windows Developer Network is an independent publication not affili-
ated with Microsoft Corporation. Microsoft Corporation is not responsible in any
way for the editorial policy or other contents of the publication.
Windows Developer Network (ISSN 1543-6462) is published monthly by
CMP Media LLC, 600 Harrison St., San Francisco, CA 94107 USA, 415-947-
6000.

C M P M E D I A L L C
CORPORATE
PRESIDENT AND CEO Gary Marshall
EXECUTIVE VICE PRESIDENT AND CFO John Day
EXECUTIVE VICE PRESIDENT AND COO Steve Weitzner
EXECUTIVE V.P., CORPORATE SALES AND MARKETING Jeff Patterson
CHIEF INFORMATION OFFICER Mike Mikos
SENIOR V.P., OPERATIONS Bill Amstutz
SENIOR V.P., HUMAN RESOURCES Leah Landro
VICE PRESIDENT AND GENERAL COUNSEL Sandra Grayson
MARKET GROUPS
PRESIDENT, TECHNOLOGY SOLUTIONS Robert Faletra
PRESIDENT, HEALTHCARE MEDIA Vicki Masseria
V.P., GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
V.P., GROUP PUBLISHER INFORMATIONWEEK MEDIA NETWORK Michael Friedenberg
V.P., GROUP PUBLISHER ELECTRONICS Paul Miller
V.P., GROUP PUBLISHER NETWORK COMPUTING MEDIA NETWORK Fritz Nelson
V.P., GROUP PUBLISHER SOFTWARE DEVELOPMENT MEDIA Peter Westerman
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Shannon Aronson
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Michael Zane
CORPORATE DIRECTOR, PUBLISHING SERVICES Marie Myers

| Download code > windevnet.com/wdn/code/ |

6 URL Canonicalization Testing
MICHAEL J. HUNTER URLs can be encoded in many different ways, and if you don’t
process them correctly, you could introduce a security breach. In this article, we’ll look at
some common exploits, like path navigation injection, and then use a test-case generator
that creates each form of encoding for a specific URL so that requests can be safely
processed.

18 Extend ASP.NET Apps Using HttpHandlers
RANDY HOLLOWAY HttpHandlers dispatch certain HTTP requests to user-defined code
for special handling. This article will look at the HTTP pipeline and explore the function-
ality of HttpHandlers to build web apps outside ASP.NET’s page-driven model.

22 Licensing in .NET
MYK WILLIS The Microsoft.NET licensing model works well for the kind of redistrib-
utable components that developers buy and redistribute as a part of an application. In
this article, we'll enable licensing support for a simple redistributable component, and
see how Visual Studio .NET automates much of the licensing process for components.

COLUMNS
28 Tech Tips GEORGE FRAZIER
When Shared Data Segments Aren’t Shared
LARRY HAMILTON
Preventing Class Derivation in Visual C++ .NET
EHSAN AKHGARI
Do/Wile Macros Souped Up and Revisited
(First Movement) CINDY ROSS
Do/While Macros Souped Up and Revisited
(Second Movement) PETTER HESSELBERG

INSIDE .NET

31 Create Custom Columns for
the WinForms DataGrid Control
DINO ESPOSITO WinForm’s DataGrid control is
powerful, but its default display doesn’t provide
much utility. You can replace it with a third-party
control, of course, but Dino demonstrates how
you can use the DataGrid’s customization layer to
add features like hyperlinked URLs yourself.

VISUAL C++.NET EXPERT

35 Drawing on GDI+ From
Native C++
RICHARD GRIMES GDI+ is a native code library,
so all of its facilities are available to non.NET
apps. The GDI+ C++ wrapper classes offer a simpli-
fied way to access GDI+ functions from unman-
aged code.

5 From the Editor
38 Advertiser Index
39 New Products
40 Developers’ Marketplace

DEPARTMENTS

VISIT US ONLINE: www.windevnet.com

PDF EXTRA
Spying on .NET Applications
DMITRI LEMAN When developing .NET
GUI apps with the Windows Forms
library, you may need to see a hierarchy
of .NET objects, examine their proper-
ties, and monitor events. Here’s a .NET
spy tool that injects an agent into the
address space of another .NET applica-
tion to provide the ability to examine
not just windows and messages, but also
.NET objects and events.

C O N T E N T S OCT
2003

http://windevnet.com/wdn/code/

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0313/

THE CONVERGENCE OF TELEPHONY and traditional desktop-based computer systems is
an important market for just about every major software tool vendor. Automatic Speech
Recognition (ASR) and Text-To-Speech (TTS) technologies have been available on
desktop systems for several years, and both have steadily improved to make speech
technology more than just a curiosity. Accessing data through Vocal User interfaces
(VUIs) has the potential to grow into a $4 billion market over the next four years.

Microsoft is addressing that convergence with several server and client technologies. It
has also entered into some key partnerships with companies already established in speech
technologies including Intel, Intervoice, and SpeechWorks (now part of ScanSoft). This
summer, Microsoft released the Microsoft Speech Server (MSS) beta 1, and the third beta
of its Speech Application Software Development Kit (SASDK). More information about
MSS is available at http://www.microsoft.com/speech/. Microsoft has designed its platform
for a variety of different scenarios: Telephony-only apps, voice-enabled browser-based
apps, and multimodal apps spanning both phone and web.

The telephony scenario is a voice-only system typically used for call centers, directory
listings, or voice mail. In this set up, the MSS platform is integrated with an Intel
Dialogic card in the server that ties into the company PBX. Intervoice is building the
driver to talk to the Intel card. The browser-based scenario involves speech-enabling web
apps so that users can opt to use voice commands on client devices such as handhelds, or
any device with a minimal input interface. Applications in either scenario employ Speech
Application Language Tags (SALT) to convert voice commands to text-based requests.
Microsoft is one of the founders of the SALT Forum (http://www.saltforum.org/) that is
promoting this standard. Other speech-enabling standards predate the SALT spec, most
notably VoiceXML (http://www.voicexml.org/), which is backed by AT&T, IBM, Nuance,
and others. The two standards overlap somewhat, but SALT was designed from its
inception to work in either pure telephony apps or in multimodal web apps.

Regardless of which companies are backing these standards, some software developers
may be reluctant to devote resources to new speech-enabling initiatives. One of the
design goals of Microsoft’s SASDK is to make it easier to voice-enable existing apps
without requiring major rewrites. Microsoft has also launched the Speech Partners
Program, which will provide members with marketing support and guidance in designing
speech-based apps.

For now, you can’t yet have the company phones answered by Microsoft Sam or other
TTS characters—the release date for MSS has not been set. But when it’s finally ready,
MSS will enter a competitive field of speech-enabling tools from companies including
Intervoice, Nuance, ScanSoft, and Envox. This summer Envox released Envox 5 Studio,
a platform for developing and deploying speech apps. Envox supports the VoiceXML
standard, but it has also joined Microsoft’s SPP and has pledged its support for the SALT
spec. Despite the competitive environment, most of the speech technology vendors are
advocating open APIs and adopting open standards such as Speech Recognition
Grammar Specification (SRGS) and Speech Synthesis Markup Language (SSML).

Speech technologies will take center stage at the upcoming SpeechTEK 2003
conference in New York (http://www.speechtek.com/). Microsoft will also be talking
about the integration of speech technologies at this year’s PDC (http://msdn.microsoft
.com/events/pdc/). The lineup of PDC talks include “Building Applications with
Advanced Input in ‘Longhorn’: Inking, Speech, and Beyond” and “Speech-Enabling
ASP.NET Applications with the New Microsoft Speech Server.” Are you developing
speech technologies currently, or are just talking about it? Either way, I’d like to hear
what your experiences have been. Send me a note to wdeditor@cmp.com.

John Dorsey
Editor in Chief
wdeditor@cmp.com

: :

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 5

E D I TORF R O M T H E

http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com

IF YOU HAVE FILLED out web-based forms whose data was passed onto
the web server via the URL, you have probably seen sequences of
UTF-8 encoded characters such as “%20”. The “%nn” encoding is
simply the ASCII value of a character converted to hexadecimal and
prepended with a percent sign.

If you’re writing code that takes a URL as a parameter, the URL
may really be a file, and the file’s extension may be used to determine
what you should do with it (e.g., .asp files are handled differently than
.txt files). If the name has been encoded—thus making the filename
MyBigFile%2etxt—you won’t be able to determine what to do. This
typically results in one of two actions: Either an error is returned, or
the file will be passed on through the system (after all, it’s not an ex-
ecutable, right?). Annoying the user is generally bad, but even worse:
If some function down the call chain (or an API the function calls)
does decode the filename, you may find yourself running malicious
executables.

As you likely know, a web site domain or server name is really just
a textual alias for the sequence of four numbers separated by decimal
points that make up the IP address (commonly called a “dotted quad”).
What you might not know is that the sequence can also be repre-
sented in six other forms, and each of these forms can be in decimal,
octal, hex, or any combination thereof. These different forms all re-
solve down to the same machine, so these variations may seem harm-
less. Once again, if you are deciding what privileges to allow a request
based on a dotted-quad IP address and you encounter an IP address
without any dots, you might treat it as a domain name. Older versions
of Internet Explorer were designed so that if a domain name did not
contain any dots, it was assumed to be on an intranet and thus was
given higher privileges. This insecure behavior has since been cor-
rected (see References).

These are both examples of a larger problem wherein URLs can be
mangled in many different ways—decanonicalized forms, if you will.
In this article, I will explain many of the most common ways to munge
a URL and present a test case generator that creates each form for a
specific URL. After I finish scaring you, I will show how to obviate
most of these problems. Converting a URL to its canonical form is
actually fairly easy to do. It requires much more than simply con-
verting all “%20” sequences to space characters, however, and most
people don’t get it right the first time.

User Authentication
One of the simplest ways to mangle a URL is to add user-authentication
information. If access to a web page is restricted via a username and
password, that login information can be passed as part of the URL:
http://username:password@<URL>, where everything between the
protocol and the ‘@’ compose the login data. If access is not restrict-
ed, login information can still be provided but will be ignored. “Ig-
nored” often translates to “do whatever you like,” and such is the case
here. So, “http://www.windevnet.com@www.hackme.com” appears to
be taking you to the Windows Developer web site but, in fact, is load-
ing data from hackme.com. To make matters worse, the ‘@’ can be
encoded, giving you “http://www.windevnet.com%40www.hackme
.com,” making the URL appear even more like the Windows Devel-
oper web page.

The test case generator creates a few user authentication variations
of the base URL by inserting “username:password@”, “blahblah@”,
and “www.evil.com%2fYou%2fAre%2fSo%2fHacked.htm@” between
the URL’s protocol and the URL’s path (the forward slash has to be
encoded for this to work when subpaths are included). It also partially
and fully encodes the ‘@’ to the requested level using the specified en-
coder; I’ll cover encoders and encoding levels later.

Navigation Injection
The next simplest—conceptually, at least—method for mangling URLs
is navigation injection. The ‘.’ and ‘..’ characters are typically used
to pull in images and other supporting files (e.g., <img href=“..\..\im-
ages\spacer.html”/>), and this pathname navigation works just as well
in URLs: http://www.evil.com/../../../webserver/data/passwords.txt. If
your web server doesn’t guard against this, a hacker can easily gain
access to private data or run commands on your web server:
http://www.evil.com/../../../windows/system32/cmd.exe /c format c:.
Similarly, if you are using the URL path to determine access privi-
leges, an attacker (or simply an employee curious what the CEO’s
salary is) can gain access to data she should not have. While the need

A test-case generator for decoding URLs

URL Canonicalization
Testing

MICHAEL J. HUNTER

MICHAEL J. HUNTER is a lead developer at Humbug Reality where he
works on whatever catches his interest. Michael’s alter ego is a tester
at a major software company who has so much fun finding bugs he
doesn’t mind funding Michael’s flights of fancy.

6 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 7

to conjure up the correct relative path to ac-
cess specific folders may seem to lessen this
threat, in reality, many administrators install
web servers to their default location. Attack-
ers can install web servers just as easily as we
can, so it is not very hard for them to deter-
mine the exact path to use.

An infinite number of path injection cases
are possible, but one of the goals of the test-
case generator is to only generate valid cases.

Thus, it restricts itself to inserting “this fold-
er” navigation as well as “parent folder” nav-
igation when the URL path contains multi-
ple levels. CNavigationInjector (Listing 1)
takes a path and passes it through a CUrl (a
helper object that knows how to split a path
or URL into its protocol, domain, and path)
to isolate the path, then uses SelectInjec-
tionPoint to decide where to insert the path
navigation.

SelectInjectionPoint first identifies the
location of each path separator, then picks one
as follows:

• If three or more separators were found, have
SelectRandomIndex (a thin wrapper around
Boost’s random number generator; see Ref-
erences) pick any after the first. (I explicit-
ly ignore the first index to ensure valid par-
ent path navigation.)

H U N T E R

// from header:
// std::vector<std::wstring> paths;
// const std::wstring pathSeparatorCharacters;

CNavigationInjector::CNavigationInjector(std::wstring path)
: pathSeparatorCharacters(L"/\\")
{
// We should have been given just the path, but we'll run it through a Url
// just to be sure.
CUrl url(path);
if (0 < url.Path().length())

{
unsigned long injectionPoint(SelectInjectionPoint(url.Path()));
InjectNavigationAtPoint(url.Path(), injectionPoint);
}

}
void CNavigationInjector::InjectNavigationAtPoint(std::wstring path

, unsigned long injectionPoint)
{
InjectForwardSlashDot(path, injectionPoint);
InjectForwardSlashDotDot(path, injectionPoint);
}

void CNavigationInjector::InjectForwardSlashDot(std::wstring path
, unsigned long injectionPoint)
{
paths.push_back(path.insert(injectionPoint + 1, L"./"));
}

void CNavigationInjector::InjectForwardSlashDotDot(std::wstring path
, unsigned long injectionPoint)
{
std::wstring parentFolder(GetParentFolder(path, injectionPoint));
if (0 < parentFolder.length())

{
paths.push_back(path.insert(injectionPoint + 1, L"../"
+ parentFolder));

}
}

unsigned long CNavigationInjector::SelectInjectionPoint(std::wstring path) const
{
// Count the number of path separator characters in the path.
InjectionPointList possibilities;
std::wstring::size_type location(0);
while (std::wstring::npos !=

(location = path.find_first_of(pathSeparatorCharacters, location)))
{
possibilities.push_back(location);

++location;
}

// Pick one of the locations as the injection point. We only pick a
// random point if there are more than two path separators found (and
// don't consider the first location as a possibility) to ensure we can
// construct a valid path when ".." is injected.
if (2 < possibilities.size())

{
unsigned long index(SelectRandomIndex(2, possibilities.size()));
unsigned long position(possibilities[index - 1]);
return position;
}

else if (2 == possibilities.size())
{
//---
// If we found two path separators the first one should be the root
// and the second one should be trailing the top-level folder; it's
// this end location we want to modify.
return possibilities[1];
}

else
{
//---
// There are either zero or one path separators found; the first should
// be the root, so we return position zero either way.
return 0;
}

}

std::wstring CNavigationInjector::GetParentFolder(std::wstring path
, unsigned long childPathStartPoint) const
{
std::wstring::size_type parentPathStartPoint(path.find_last_of(

pathSeparatorCharacters, (childPathStartPoint - 1)));
if (std::wstring::npos != parentPathStartPoint)

{
return path.substr(parentPathStartPoint + 1

, (childPathStartPoint - parentPathStartPoint));
}

else
{
return L"";
}

}

Listing 1 CNavigationInjector

std::wstring CConverters::NumberToStringAsBase(unsigned long value
, unsigned long base, unsigned long minimumWidth, wchar_t fillCharacter)
{
std::wstring baseNValue;
try

{
std::wstringstream interpreter;
if (!(interpreter << std::setbase(base))

|| !(interpreter << std::setw(minimumWidth))
|| !(interpreter << std::setfill(fillCharacter))
|| !(interpreter << value)
|| !(interpreter >> baseNValue)
|| !(interpreter >> std::ws).eof())
{
return L"";
}

}
catch (...)

{
return L"";
}

return baseNValue;
}

unsigned long CConverters::StringAsBaseToNumber(std::wstring value
, unsigned long base)

{
if (0 == value.length())

{
return 0;
}

unsigned long numericValue;
try

{
std::wstringstream interpreter;
if (!(interpreter << std::setbase(base))

|| !(interpreter << value)
|| !(interpreter >> numericValue)
|| !(interpreter >> std::ws).eof())
{
return 0;
}

}
catch (...)

{
return 0;
}

return numericValue;
}

Listing 2 String-to-number conversion

8 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

• If exactly two separators are found, pick the
second (again to ensure valid parent path
navigation).

• Otherwise, pick the zero’th index, causing
the navigation to be injected at the root. (No
parent path navigation will be injected.)

Once we have the injection point, it’s a sim-
ple matter for InjectForwardSlashDot to in-
sert the “this folder” navigation. InjectFor-
wardSlashDotDot has it slightly more
complicated as it can only do so if a parent
folder exists before the injection point. Get-
ParentFolder determines whether this is so
by searching the path backwards from the in-
jection point for another path separator; if one
is found, the two locations define the parent
folder, which is used to generate the “..\par-
ent_folder” string that is inserted.

If you download and peruse the full code,
you’ll note that both forward and backward
slash-path navigation variants are generated.
Web browsers generally support both, so both
need to be tested.

IP Address Encoding
Now we start getting into the truly interesting
problems. Although they tend to require com-

plicated mathematics, they also tend to be em-
inently computable, so we can let the test-case
generator do all the nasty calculations, and we
can concentrate on correctly handling the cas-
es. I touched upon the first of these earlier. The
most common form of an IP address is the fa-
miliar dotted decimal quad: www.windev-
net.com translates to 66.35.216.85, for exam-
ple. As the name implies, these numbers are
in base 10. As is often the case when working
with computers, though, the numbers can just
as easily be given in base 8 (octal) or base 16
(hexadecimal, or hex). All that’s required is
prepending a ‘0’ for octal or a ‘0x’ for hex.

C++ makes converting between strings and
numbers or converting a number between bases
super easy. Decisions you’ve chewed over in
the past—such as trying to guess the largest
number you’ll need to handle so you can size
the buffer big enough to handle all possible
values but not so big you’re just wasting space—
are completely eliminated when you take ad-
vantage of the stringstream class. In most
cases, you can simply use Boost’s lexical_cast,
but as it doesn’t provide a way to specify the
base of a number, I borrowed its technique to
roll my own converter. NumberToStringAs-
Base (see Listing 2) uses the std::string-

stream object—a member of the stream I/O
family that happens to use a string as its back-
ing store—to read in a number and extract its
string form. Not only does stringstream take
care of the datatype conversion, but it also al-
lows you to specify which base to use.
StringAsBaseToNumber does the reverse: It
converts a stringized number in a given base
to the equivalent number.

Not only can the quads be encoded in dif-
ferent bases, but additional digits can be
prepended to the octal and hex forms. Each
quad is really an 8-bit value, but IP-processing
functions often accept larger numbers and sim-
ply ignore the extra bits. To use Windows De-
veloper’s address again, 66.35.216.85 could also
be written as 66.35.216.3157. Thus, not only
do we need to generate variations where the
various parts of the IP address are encoded as
hex and octal, we need to generate variations
containing random data prepended to each
quad. Given our string-to-number converters
and the SelectRandomIndex helper, this be-
comes as easy as generating a series of random
numbers; see Listing 3.

Finally, two or more of the quads can be col-
lapsed to a single value. An IP address is really a
single number split into pieces to make it easier

H U N T E R

std::wstring CIPEncoder::GenerateRandomDecimalDigits(
unsigned long maximumNumberOfDigits) const
{
return L"";
}

std::wstring CIPEncoder::GenerateRandomHexDigits(
unsigned long maximumNumberOfDigits) const
{
std::wstring returnValue(L"");

if (0 < maximumNumberOfDigits)
{
unsigned long digitsToGenerate(

SelectRandomIndex(0, maximumNumberOfDigits));
for (unsigned long currentDigit = 0; currentDigit < digitsToGenerate;

++currentDigit)
{
returnValue += CConverters::NumberToStringAsBase(

SelectRandomIndex(0, 15), 16);
returnValue += CConverters::NumberToStringAsBase(

SelectRandomIndex(0, 15), 16);
}

}

return returnValue;
}

std::wstring CIPEncoder::GenerateRandomOctalDigits(
unsigned long maximumNumberOfDigits) const
{
std::wstring returnValue(L"");

if (0 < maximumNumberOfDigits)
{
unsigned long digitsToGenerate(

SelectRandomIndex(0, maximumNumberOfDigits));
for (unsigned long currentDigit = 0; currentDigit < digitsToGenerate;

++currentDigit)
{
returnValue += CConverters::NumberToStringAsBase(

SelectRandomIndex(0, 7), 8);
}

}

return returnValue;
}

Listing 3 Generating a series of random numbers

std::wstring CIPEncoder::CollapseQuads(std::wstring quadOne
, std::wstring quadTwo) const
{
return CollapseQuads(quadOne, quadTwo, L"", L"");
}

std::wstring CIPEncoder::CollapseQuads(std::wstring quadOne
, std::wstring quadTwo, std::wstring quadThree) const
{
return CollapseQuads(quadOne, quadTwo, quadThree, L"");
}

std::wstring CIPEncoder::CollapseQuads(std::wstring quadOne
, std::wstring quadTwo, std::wstring quadThree, std::wstring quadFour) const
{
// An empty string converts to a single 0, but to make the math work
// correctly we need two-digit hex values. Thus we prepend the missing
// 0 if the conversion gives an odd number of digits.
quadOne = CConverters::DecimalToHex(quadOne);
if (1 == (quadOne.length() % 2))

{

quadOne = L"0" + quadOne;
}

quadTwo = CConverters::DecimalToHex(quadTwo);
if (1 == (quadTwo.length() % 2))

{
quadTwo = L"0" + quadTwo;
}

quadThree = CConverters::DecimalToHex(quadThree);
if (1 == (quadThree.length() % 2))

{
quadThree = L"0" + quadThree;
}

quadFour = CConverters::DecimalToHex(quadFour);
if (1 == (quadFour.length() % 2))

{
quadFour = L"0" + quadFour;
}

return CConverters::HexToDecimal(quadOne + quadTwo + quadThree + quadFour);
}

Listing 4 Collapsing IP quads

© 2003 Intel Corporation Intel, the Intel logo, Pentium, Itanium, Intel Xeon and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others.

YOU SAVE UP TO $272! Paradise # Retail Discount

Intel® Thread Checker 1.0 for Windows
(includes VTune™ Performance Analyzer) I23 0A3A $1,198.00 $925.99

Intel® VTune™ Performance Analyzer v7.0 I23 0A2N $699.00 $599.99

Download a Free Trial at:
programmersparadise.com/intel/wdj

To order or request additional
information call:
800-423-9990

Email: intel@programmers.com

03CT010F

Introducing a Powerful New Debugging Tool
for Threaded Applications

Intel® Thread Checker 1.0 for Windows*
Intel® Thread Checker 1.0 for Windows* helps you debug
Win32* and OpenMP* threaded applications. The Intel®

Thread Checker uses an advanced error detection engine
to find bugs that might otherwise go undetected in your QA
process. Quickly find threading bugs that would take days
or weeks to find using traditional tools and methods!

If you work with threaded code, you should download a
free trial. When you purchase Intel® Thread Checker you
also receive the Intel® VTune™ Performance Analyzer.

Error
Classification

Identifies
6 levels of
threading

issues from
errors and

warnings to
informative
comments

Diagnostics View
Lists specific
information on
each error—
race conditions,
stalled threads,
deadlocks and
more…

▲
▲

Source Code View
Clicking in diagnostics
view takes you directly
to the specific source
code line.

▲

“Using Intel Thread Checker we
discovered two elusive bugs on
the very first day...”

—Farzin Shakib
President ACUSIM Software, Inc.

NEW!

Intel® VTune™
Performance Analyzer 7.0
The award-winning VTune™ Performance Analyzer
helps you improve your application performance by
enabling you to locate and remove bottlenecks in
your code. Features like the Intel Tuning Assistant
give detailed guidence on tuning your code.

http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com

10 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

to work with. Four small numbers are easier both
on a human level (people usually find many small
values easier to work with than a single large val-
ue—would you rather read off 66.35.216.85 or

1109645397 when recording a user’s IP address?)
and on a technical level (for example, a subnet
mask of 0.0.255.0 lets you easily separate every
IP address from 66.35.0.0 to 66.35.255.255).

Collapsing two, three, or all four of the quads
is valid (when all four are collapsed, the IP
address is called “dotless”). Many web sites will
give you a somewhat involved formula for

H U N T E R

// from header:
// typedef std::wstring QuadS;
// const std::wstring quadSeparator(L".");
// const std::wstring hexPrefix(L"0x");
// const std::wstring octalPrefix(L"0");

void CIPEncoder::GenerateEncodings(QuadS quadOne, QuadS quadTwo
, QuadS quadThree, QuadS quadFour
, unsigned long charactersToPrepend, std::wstring dotEncoding)
{
// Raw IP.
AddAddress(GenerateRandomDecimalDigits(charactersToPrepend) + quadOne

+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadTwo
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadThree
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadFour);

// Encode as hex.
AddAddress(hexPrefix + GenerateRandomHexDigits(charactersToPrepend)

+ CConverters::DecimalToHex(quadOne)
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadTwo
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadThree
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadFour);

// Collapse the quads.
AddAddress(GenerateRandomDecimalDigits(charactersToPrepend)

+ CollapseQuads(quadOne, quadTwo)
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadThree
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadFour);

AddAddress(GenerateRandomDecimalDigits(charactersToPrepend)

+ CollapseQuads(quadOne, quadTwo, quadThree, quadFour));

// Collapse the quads and encode as hex.
AddAddress(hexPrefix + GenerateRandomHexDigits(charactersToPrepend)

+ CConverters::DecimalToHex(CollapseQuads(quadOne, quadTwo))
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadThree
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadFour);

// Encode the dots.
AddAddress(GenerateRandomDecimalDigits(charactersToPrepend) + quadOne

+ dotEncoding
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadTwo
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadThree
+ quadSeparator
+ GenerateRandomDecimalDigits(charactersToPrepend) + quadFour);

// QUAD_CONVERTED QUAD_SYSTEM QUAD_COLLAPSED EXTRA_CHARS DOTS_ENCODED
// None Decimal None None None
AddAddress(quadOne + quadSeparator + quadTwo + quadSeparator + quadThree

+ quadSeparator + quadFour);
// None Decimal None P2 Second
AddAddress(quadOne + quadSeparator

+ GenerateRandomDecimalDigits(charactersToPrepend) + quadTwo
+ dotEncoding + quadThree + quadSeparator + quadFour);

// Some Decimal P3+P4 P1 First
AddAddress(hexPrefix + GenerateRandomHexDigits(charactersToPrepend)

+ CConverters::DecimalToHex(quadOne)
+ dotEncoding + quadTwo
+ octalPrefix + GenerateRandomOctalDigits(charactersToPrepend)

+ CConverters::DecimalToOctal(CollapseQuads(quadThree, quadFour)));
// All Octal All None Third
AddAddress(octalPrefix + CConverters::DecimalToOctal(

CollapseQuads(quadOne, quadTwo, quadThree, quadFour)));
}

Listing 5 A stripped-down version of GenerateEncodings

// from the header:
// const unsigned long utfPrimaryLeadByte_0;
// const unsigned long utfPrimaryLeadByte_1110;
// const unsigned long utfPrimaryLeadByte_11110;
// const unsigned long utfSecondaryLeadByte;
// unsigned long overlongUtfExtraBytesToAdd; <== constructor parameter

std::wstring CUtf8Encoder::ConvertToUtf8(wchar_t characterToEncode) const
{
typedef const unsigned long Byte;
const std::wstring prefix(L"%");

std::vector<std::wstring> encodings;

const unsigned long codepoint(
static_cast<const unsigned long>(characterToEncode));

if (codepoint <= 0x7F)
{
Byte byteOne(utfPrimaryLeadByte_0 | codepoint);
encodings.push_back

(
prefix + CConverters::NumberToStringAsBase(byteOne, 16, 2)
);

}
if (codepoint <= 0x7FF)

{
Byte byteOne(utfSecondaryLeadByte | GetRightBits(codepoint, 1, 6));
Byte byteTwo(utfPrimaryLeadByte_1110 | GetRightBits(codepoint, 7, 5));
encodings.push_back

(
prefix + CConverters::NumberToStringAsBase(byteTwo, 16, 2)

+ prefix + CConverters::NumberToStringAsBase(byteOne, 16, 2)
);

}
if (codepoint <= 0xFFFF)

{
Byte byteOne(utfSecondaryLeadByte | GetRightBits(codepoint, 1, 6));
Byte byteTwo(utfSecondaryLeadByte | GetRightBits(codepoint, 7, 6));
Byte byteThree(utfPrimaryLeadByte_11110

| GetRightBits(codepoint, 13, 4));
encodings.push_back

(
prefix + CConverters::NumberToStringAsBase(byteThree, 16, 2)

+ prefix + CConverters::NumberToStringAsBase(byteTwo, 16, 2)
+ prefix + CConverters::NumberToStringAsBase(byteOne, 16, 2)
);

}
// And so on and so forth through the rest of the character ranges.
}

if (overlongUtfExtraBytesToAdd < encodings.size())
{
return encodings[overlongUtfExtraBytesToAdd];
}

else
{
return encodings[encodings.size() - 1];
}

}
unsigned long CUtf8Encoder::GetRightBits(unsigned long value

, unsigned long indexOfFirstBit, unsigned long numberOfBitsToGet) const
{
// Pull out the specified number of bits, starting the specified number of
// of bits from the right-hand side. For example, given
// "0110 1011 0001 1101", GetRightBits(3, 6) will return "0000 0111".
return RotateBitsRight(value, indexOfFirstBit - 1)

& GetRightAlignedMaskBits(numberOfBitsToGet);
}

unsigned long CUtf8Encoder::GetRightAlignedMaskBits(
unsigned long numberOfBitsToMask) const
{
// Generate a solid right-aligned bit mask of the specified size.
return RotateBitsRight(0xFFFFFFFF, (32 - numberOfBitsToMask));
}

unsigned long CUtf8Encoder::RotateBitsRight(unsigned long value
, unsigned long numberOfBitsToRotate) const
{
// Rotates all bits in the specified value the specified number of digits
// right, dropping the rightmost bits.
return value >> numberOfBitsToRotate;
}

Listing 6 ConvertToUtf8

Paradise #
F01 0131

$850.99
www.programmersparadise.com/faircom

c-tree Plus®

by FairCom
With unparalleled performance and sophistication,
c-tree Plus gives developers absolute control over
their data management needs. Commercial
developers use c-tree Plus for a wide variety of
embedded, vertical market, and enterprise-wide
database applications. Use any one or a combina-
tion of our flexible APIs including low-level and
ISAM C APIs, simplified C and C++ database
APIs, SQL, ODBC, or JDBC. c-tree Plus can be used
to develop single-user and multi-user non-server
applications or client-side application for FairCom’s
robust database server—the c-tree Server. Windows
to Mac to Unix all in one package.

NEW!
SQL

Support!

Your best source for software
development tools!

®

www.programmersparadise.com/intel

Intel C++
for Windows
Paradise #
I23 0A10

$308.99

RoboHelp Office
The Industry Standard in Help Authoring
Create professional Help systems for desktop
and Web-based applications, including .NET.

• Create all popular Help formats
• Create standard and advanced

Help-specific features
• Work in WYSIWYG or true code
• Easily create context-sensitive Help
• Generate printed documentation
• Winner of 55 industry awards

* Price after mfr’s mail-in rebate. New
US/Can licenses only. Expires 10/31/03.

Paradise #
E75 0311

$859.99*
www.programmersparadise.com/ehelp

Programmer’s Paradise #1
Best-Selling Help Authoring
Tool for 7 Years Running!

Download a demo today. Enterprise Edition
Paradise #
T79 0214
$1,495.99

Professional Edition
Paradise #
T79 0215
$729.99

TX Text Control ActiveX 10.0
by The Imaging Source
Add RTF, DOC, HTML, CSS and
PDF Support to Your Application
TX Text Control is royalty-free, robust and powerful
word processing software in reusable component form.
The new Enterprise/XML version features a rich set of properties for the
manipulation of XML and CSS. Developers can now offer end-users the
ability to separate their textual content from their formatting rules.

www.programmersparadise.com/theimagingsource

NEW
.NET

VERSION!

Intel® C++ and Fortran Compilers
by Intel
Increase the Performance
of Your Application with
Intel’s High-Performance Compilers
Intel’s expertise in processors shows in this latest release
of its flagship compiler product-line: Version 7 of its
C++ and Fortran Compilers for Windows and Linux.
Intel Compilers deliver outstanding performance on
Pentium® 4 and Intel® Xeon® processors, and the
64-bit Itanium and Itanium 2 processors and take
advantage of Multi-processor systems and
Hyper-Threading technology.

8 0 0 - 4 4 5 - 7 8 9 9 • p r o g r a m m e r s p a r a d i s e . c o m

DevTrack 5.5
Powerful Defect and
Project Tracking
by TechExcel
DevTrack, the market-leading defect
and project tracking solution, compre-
hensively manages and automates
your software development processes.
DevTrack 5.5 features sophisticated
workflow and process automation,
seamless source code control integration
with VSS, Perforce and ClearCase,
robust searching, and built-in reports
and analysis. Intuitive administration
and integration reduces the cost of
deployment and maintenance.

Paradise #
T34 0199

$482.99

Paradise #
S69 0U67

$556.99

programmersparadise.com/techexcel

XMLSPY 2004
by Altova
XMLSPY 2004 is the industry standard XML
Development Environment for designing, editing
and debugging enterprise-class applications.
Now including:

• Visual Studio® .NET Integration
• XML-to-XML Mapping
• XML Differencing

XMLSPY 2004 is the ultimate productivity
enhancer for J2EE, .NET and database developers.

www.programmersparadise.com/altova

Paradise Picks

Paradise #
S3R 0147

$117.99

PR-Tracker™ v5.1
by Softwise Company
Affordable scalable enterprise level bug
tracking system featuring classification,
assignment, sorting, searching, reporting,
access control, user permissions, attachments
and email notification. Integrates with
PR-Tracker Web Client (included) and
ProblemReport.asp (included for your
betatest or customer support interface).
Supports Access and SQL Server.

Download Today!

www.programmersparadise.com/softwise

Sun™ ONE Studio 5,
Standard Edition
by Sun Microsystems
Sun ONE Studio 5, Standard Edition
is an integrated development environment
(IDE) for Java technology. Based on the
modular, open source NetBeans Tools
Platform, this IDE is ideal for building
and deploying Web services across
multiple hardware and software platforms,
including Windows, Windows NT, Linux,
and the Solaris Operating Environment.

Version
7.0

NEW!

www.programmersparadise.com/sunone

LEADTOOLS
Document Imaging
by LEAD Technologies
Document imaging including annotations,
specialized bitonal (b/w) image display
and processing like scale-to-gray and
favor-black, performance and memory
optimizations for bitonal images, image
clean-up like hole-punch, line and staple
removal, high-speed scanning.

www.programmersparadise.com/lead

GUARANTEED BEST PRICES*
Should you see one of these products listed at a lower price in another ad in this magazine,
CALL US! We’ll beat the price, and still offer our same quality service and support!

*Terms of the offer:
• Offer good through Oct. 31, 2003
• Applicable to pricing on current

versions of software listed
• Oct. issue prices only

• Offer does not apply towards
obvious errors in competitors’ ads

• Subject to same terms
and conditions

Prices subject to change. Not responsible for typographical errors.

Paradise #
L05 048V
$1,639.99

Paradise #
S0Z 041C

$223.99†

SourceOffSite Classic
by SourceGear Corp.
Access SourceSafe™

over the Internet
Visual SourceSafe collaboration tool
for distributed teams.
• IDE integration
• Over 10 times faster than RAS
• Efficient—uses data compression
• Secure—up to 128-bit data encryption
• Familiar—the look and feel of VSS
• Cross-Platform—Windows and UNIX.

† Classic edition plus Media, 1 user.
www.programmersparadise.com/sourcegear

New
Version!
3.5.3

Enterprise Edition
Paradise #
I0D 017T
$965.99

Professional Edition
Paradise #
I0D 017U
$389.99

http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com

12 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

determining the collapsed value. “How to Ob-
scure Any URL” (http://www.pc-help.org/
obscure.htm) explains it particularly well, but
I find it much simpler to simply convert each
quad to its hexadecimal form, squish the four
hex values together, then convert the result-
ing hex value to the required base. Thus
66.35.216.85 becomes 42.23.D8.55, which be-
comes 4223D855, which becomes the
1109643597 I previously referenced.

Once again, our string-to-number convert-
ers make short work of this task; see Listing 4.
The closest to complicated this comes is re-
membering to prepend a 0 to single-digit val-
ues to make the math work correctly.

The CIPEncoder class brings all this to-
gether. The constructor does the grunt work
of converting the domain name to an IP ad-
dress and splitting the address into its con-
stituent quads, then it has GenerateEncod-
ings (Listing 5 is a stripped-down version)
generate a set of encodings using the pro-
vided encoder. GenerateEncodings converts

each quad to hex and octal, then it gener-
ates each collapsed combination and also
converts them to hex and octal. Finally a
series of mix-and-match cases are generat-
ed where one or more quads are converted
to a different base while one or more (pos-
sibly different) quads are collapsed; I used
multiwise combinatorics to minimize the
number of these cases while still ensuring
fairly complete coverage across the myriad
of possibilities. And, of course, every case
has random digits prepended to one or more
of the quads.

UTF-8 Character Encodings
Now we’re finally ready to talk about character
encodings. In the introduction, I mentioned the
UTF-8 encoding; this is the most common but
UTF-16, UTF-32, and Unicode encodings also
exist. Almost any character in a URL can be en-
coded: the slashes in the protocol, the dots in the
IP address, the dots or any other character in the
domain name, and any character in the path (in-

cluding path separators). Further, encodings can
themselves be encoded, so “file.txt” can become
“file%2Etxt”, which can become “file%252Etxt”
or “file%25%32%65txt”; a further pass could take
it on to “file%25252Etxt” or “file%25%32%6525-
%32%65txt”. And, of course, any character can
be encoded in each pass—not just a character
that was encoded in the previous pass—so a sin-
gle URL could contain characters that aren’t en-
coded at all, characters that have been encoded
once or twice, and characters that have been en-
coded 10 or more times.

As long as you’re dealing with ASCII val-
ues, UTF-8 encoding is simple: Simply prepend
a ‘%’ to the hexadecimal numerical value of
the character. Thus, a period, which has an
ASCII value of 46, or 0x2E, is encoded as
“%2E”. Once you expand out into the wide
world of Unicode, however, the math starts
getting a little hairy. UTF-8 is a variable-width
encoding that specifies the number of subse-
quent bytes that go with the lead byte by us-
ing special sequences of lead bits in the lead
byte, a special “I’m a supporting byte” bit se-
quence in subsequent bytes, and spreading the
bits composing the character’s value across the
remaining bits in each byte.

Even with examples and assistance from a
colleague, Lawrence Landauer, it took me
awhile to understand how this works. Let’s start
simple: A period is 0x2E, which is 101110 in
binary. Looking through Table 1 for the char-
acter range that contains our character, we see
that it falls into the very first range, so we re-
place the ‘x’s in the Encoded Bytes cell with
the binary representation of our character. This
gives us 00101110, which converts back to hex
as 0x2E. We already knew that would be the
answer, but it gives us confidence our tech-
nique is correct. Now we can follow the exact
same process for any other value: convert the
value to binary, find the character range con-
taining the value, replace the ‘x’s in the En-
coded Bytes cell with the binary value, then
convert back to hex. Thus, we can convert the
Lira sign to UTF-8 like so:

1. Look up the character’s value. (If you have
access to Windows, charmap.exe is very help-
ful in this regard. If you have Microsoft Of-
fice, you’ll also want to install the Arial Uni-
code MS font by checking the Office Shared
Features | International Support | Uni-
versal Font option.) The Lira sign is 0x20A4.

2. Convert the value to binary. (Again, if you have
access to Windows, calc.exe helps out here.)
The Lira sign in binary is 10000010100100.

3. Look through Table 1 and find the charac-
ter range containing the value, then move
across and find the byte encoding. 0x20A4
falls between 0x800 and 0xFFFF, so we use
1110xxxx 10xxxxxx 10xxxxxx.

4. Moving right-to-left both in the byte-
encoding template and in the binary value,

H U N T E R

#ifndef CStringEncoder_h
#define CStringEncoder_h

#include <assert.h>
#include <string>
#include <vector>
#include "IEncoder.h"

typedef std::vector<std::wstring> EncodingsBag;

class CStringEncoder
{
private:
EncodingsBag encodings;

public:
CStringEncoder(std::wstring stringToEncode, unsigned long level

, IEncoder & encoder);
public:
virtual ~CStringEncoder();

public:
//---
// Valid indices are zero through Count - 1.
unsigned long Count() const;
std::wstring Item(unsigned long index) const;

private:
void AddEncoding(std::wstring encodingToAdd);
bool DontAlreadyHaveEncoding(std::wstring encodingToAdd) const;

void CreateEntireStringFullEncodings(std::wstring stringToEncode
, unsigned long level, IEncoder & encoder);

void CreateEntireStringRandomEncodings(std::wstring stringToEncode
, unsigned long level, IEncoder & encoder);

void CreateSingleCharacterEncodings(std::wstring stringToEncode
, unsigned long level, IEncoder & encoder);

};
#endif // CStringEncoder_h

Listing 7 CStringEncoder header

Character Range Encoded Bytes

0x00000000ñ0x0000007F 0xxxxxxx
0x00000080ñ0x000007FF 110xxxxx 10xxxxxx
0x00000800ñ0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
0x00010000ñ0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0x00200000ñ0x03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
0x04000000ñ0x7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx, 10xxxxxx

Table 1 UTF-8 Character Mappings

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 13

replace each ‘x’ in the template with the
corresponding bit from the binary value.
Replace any remaining ‘x’s with 0. This gives
us 11100010 10000010 10100100.

5. Convert the binary value to hex. This gives
us 0xE2 0x82 0xA4.

If my explanation isn’t helping, the book
Writing Secure Code has a readable explana-
tion of all this (see References); or if you’re a
glutton for punishment, RFC 2279 (http://

www.ietf.org/rfc/rfc2279.txt) is the official def-
inition.

We programmers are never one to leave a good
thing alone. While the UTF-8 makes it quite
clear you should always use the shortest possi-
ble representation to encode a character, you are
free to use a longer (known as “overlong”) en-
coding as well. If we repeat the Lira example,
but use the immediately following template
(11110xxx 10xxxxxx 10xxxxxx 10xxxxxx), we’ll
end up with a result of 0xF0 0x82 0x82 0xA4.

Lest you think you won’t run into this in the
wild, Microsoft Security Bulletin MS00-057 de-
scribes a bug in Microsoft Internet Information
Server exploitable via overlong UTF-8 (which
the bulletin coyly calls “a particular type of mal-
formed URL”) that allowed an attacker to by-
pass security and use path navigation injection
to pass commands to the command shell.

As it happens, the test-case generator will cre-
ate UTF-8 and overlong UTF-8 cases for you via
the CUtf8Encoder class. ConvertToUtf8 (see

H U N T E R

#include "stdafx.h"
#include "StringEncoder.h"

#include <algorithm>

#include "CharacterEncoder.h"

CStringEncoder::CStringEncoder(std::wstring stringToEncode, unsigned long level
, IEncoder & encoder)
{
CreateSingleCharacterEncodings(stringToEncode, level, encoder);
CreateEntireStringFullEncodings(stringToEncode, level, encoder);
CreateEntireStringRandomEncodings(stringToEncode, level, encoder);
}

CStringEncoder::~CStringEncoder()
{
}

unsigned long CStringEncoder::Count() const
{
return encodings.size();
}

std::wstring CStringEncoder::Item(unsigned long index) const
{
return encodings[index - 1];
}

void CStringEncoder::AddEncoding(std::wstring encodingToAdd)
{
if (DontAlreadyHaveEncoding(encodingToAdd))

{
encodings.push_back(encodingToAdd);
}

}
bool CStringEncoder::DontAlreadyHaveEncoding(std::wstring encodingToAdd) const

{
return (encodings.end() == std::find(encodings.begin(), encodings.end()

, encodingToAdd));
}

void CStringEncoder::CreateEntireStringFullEncodings(
std::wstring stringToEncode, unsigned long level, IEncoder & encoder)
{
// We shouldn't ever get an empty string, but if we do we just won't
// encode it.
if (0 == stringToEncode.length())

{
AddEncoding(stringToEncode);
return;
}

for (unsigned long currentLevel = 0; currentLevel <= level; ++currentLevel)
{
std::wstring encoding(L"");

// Replace every character in the string with its full encoding.
for (std::wstring::size_type currentCharacter = 0;

currentCharacter < stringToEncode.length(); ++currentCharacter)
{
CCharacterEncoder characterEncoder(stringToEncode[currentCharacter]

, currentLevel, encoder);
encoding += characterEncoder.FullEncoding(currentLevel);
}

AddEncoding(encoding);
}

}

void CStringEncoder::CreateEntireStringRandomEncodings(
std::wstring stringToEncode, unsigned long level, IEncoder & encoder)
{
// We shouldn't ever get an empty string, but if we do we just won't
// encode it.

if (0 == stringToEncode.length())
{
AddEncoding(stringToEncode);
return;
}

for (unsigned long currentLevel = 0; currentLevel <= level; ++currentLevel)
{
std::wstring encoding(L"");

// Replace every character in the string with either its
// full or partial encoding.
for (std::wstring::size_type currentCharacter = 0;

currentCharacter < stringToEncode.length(); ++currentCharacter)
{
CCharacterEncoder characterEncoder(stringToEncode[currentCharacter]

, currentLevel, encoder);
// Decide which character encoding level to use. If we're on
// level 0 we can skip this step.
unsigned long levelToUse(0);
if (0 < currentLevel)

{
levelToUse = SelectRandomIndex(0, currentLevel);
}

if (UseFullEncoding())
{
encoding += characterEncoder.FullEncoding(levelToUse);
}

else
{
encoding += characterEncoder.PartialEncoding(levelToUse);
}

}

AddEncoding(encoding);
}

}
void CStringEncoder::CreateSingleCharacterEncodings(std::wstring stringToEncode

, unsigned long level, IEncoder & encoder)
{
// We shouldn't ever get a null string, but if we do we just won't
// encode it.
if (0 == stringToEncode.length())

{
AddEncoding(stringToEncode);
return;
}

// Decide which character to replace. If the string is only one
// character long we can skip this step.
unsigned long indexToReplace(0);
if (1 < stringToEncode.length())

{
indexToReplace = SelectRandomIndex(0, stringToEncode.length() - 1);
}

CCharacterEncoder characterEncoder(stringToEncode[indexToReplace], level
, encoder);

// Add a version of the base string with the chosen character replaced
// with its partial and full encoding at each level.
for (unsigned long currentLevel = 0; currentLevel <= level; ++currentLevel)

{
std::wstring partialEncoding(stringToEncode);
partialEncoding.replace(indexToReplace, 1

, characterEncoder.PartialEncoding(currentLevel));
AddEncoding(partialEncoding);

std::wstring fullEncoding(stringToEncode);
fullEncoding.replace(indexToReplace, 1

, characterEncoder.FullEncoding(currentLevel));
AddEncoding(fullEncoding);
}

}

Listing 8 CStringEncoder body

H U N T E R

Listing 6) goes through the same steps we did to convert a character’s val-
ue to UTF-8. After finding the first character range into which the char-
acter fits, it spreads the character’s value’s bits across the empty bits of the
template, then converts each byte to its equivalent string-ized hex val-
ue. It doesn’t stop there, however, but goes on to create all valid overlong
encodings as well. CUtf8Encoder’s constructor allows you to specify whether
to generate overlong UTF-8 and how overlong to go; ConvertToUtf8
uses this to determine which of the generated encodings to return.

Unicode Character Encodings
The Unicode (UCS-2 Unicode, to be specific) encoding is much sim-
pler than the UTF-8 encoding: Simply convert the character’s hexa-
decimal Unicode value to a four character string, then prepend “%u”.
Thus a period would be “%u002E”, and the Lira sign would be
“%u20A4”.

You’re not out of the woods just yet, however. The lower and up-
per ASCII characters also have full-width variants that live in the
0xFF00 through 0xFFEF range. A full-width character is just anoth-
er Unicode character, however, so the full-width period would be
“%uFF0E”. The CUnicodeMapper class (download the full code) pop-
ulates a vector with the standard-to-full-width mapping for each char-
acter; its GetCharacterFromMap function takes a character (which
can be either standard or full width) and returns the matching stan-
dard or full-width character. (UTF-8 can also encode full-width Uni-
code characters.)

Using the Encoders
We’ve already covered user authentication, path navigation injection,
and the specifics of how the UTF-8 and Unicode encoding schemes
work, but I’ve mentioned only obliquely how the encoding schemes
are applied to the URL and what the encoding level means in this
context. Recall that not only can a plain character be encoded, but
that the encoded form can itself be encoded, ad infinitum. The CCha-
racterEncoder class uses a specific encoder (i.e., null—which does
nothing, Unicode, or UTF-8) to encode a single character. If given a
nonzero encoding level, it also encodes the character multiple times
as specified. (No upper limit is imposed, but as just a level of three or
four will generate many hundreds of test cases, you generally won’t
want to go too high.) Two variants are stored at each encoding lev-
el: a partial encoding, where only one character in the string is en-
coded; and a full encoding, where every character in the string is en-
coded. Thus, encoding a backslash using the UTF-8 encoder might
generate the encodings in Table 2.
CStringEncoder (Listing 7 is its header; Listing 8 is its body) builds

on CCharacterEncoder and is typical of how all of the encoders work.
Arguments to the constructor include the string to encode, the en-
coding level, and the encoder to use. CreateSingleCharacterEn-
codings picks a random index into the string to encode, generates
encodings for the character at that index, then creates a version of
the original string where the source character is replaced with the
generated full and partial encodings of the character. CreateEntire-
StringFullEncodings, on the other hand, encodes every character

14 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

#import "CommonTestCases.dll" rename_namespace("TestCases")

void UseEncodings()
{
TestCases::IFactoryPtr factory;
factory.CreateInstance("CommonTestCases.Factory");
if (NULL == factory)

{
return;
}

TestCases::IUrlCanonicalizationTestCasesPtr testCases(
factory->UrlCanonicalizationTestValues());

if (NULL == factory)
{
return;
}

testCases->EncodeUrl(L"http://www.windevnet.com/wdn/current", 3
, VARIANT_FALSE, 1, 1, TestCases::EncodingUtf8);

for (unsigned long currentUrl = 1; currentUrl <= testCases->Count;
++currentUrl)

{
// do something with testCases->Item[currentUrl].bstrVal;
}

return true;
}

Listing 9 Generating and using the test cases

WHILE NOT really a URL canonicalization issue, another area most
applications fail to handle correctly is illegal filenames. Most file-
handling APIs allow COM1 and other system-reserved names to be
treated identically to a normal file. This is nifty when you need to
do so but is a tailor-made security hole when you don’t: Since there
won’t be any data at that port to read, the API you call will patiently
wait for some data to appear, which means your app is now effec-
tively hung. Rather than remembering all 23 reserved names, use
CommonTestCases.IllegalFilenameTestCases. Not only do you get
a list of the reserved names, but you get several of their variants as
well: leading and trailing spaces, and upper, lower, and mixed case.
However, going through these cases is not enough: You also need
to append “.ext” and “.ext.ext” (replacing “ext” with whatever the
appropriate extension is for your application), as all these variants
are illegal as well.

—M.J.H.

Handling Illegal Filenames

http://redirect.wdj.com/scripts/redirect.pl?http://www.charlesriver.com

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 15

in the string at every level. This will quickly
generate extremely long strings, so you can test
for buffer overruns at the same time you’re test-
ing URL handling. Finally, CreateEntire-
StringRandomEncodings also encodes every
character in the string, but rather than always
using the encoding for the current level, it ran-
domly selects an encoding level. Thus, the re-
sulting strings will contain unencoded char-
acters, singly encoded characters, doubly
encoded characters, and so on.

Generating the Test Cases
Listing 9 shows how to generate and use the test
cases. The action starts with EncodeUrl. En-
codeUrl saves off the source URL, the encod-
ing level (more on that in a moment), whether

it should generate normal or full-width Unicode,
whether it should generate overlong UTF-8 and
if so how overlong to go, and the maximum num-
ber of characters to prepend to IP addresses. Then
it calls EncodeUrlUsingEncoder once for each
encoder (null, Unicode, and UTF-8). En-
codeUrlUsingEncoder (Listing 10) wraps all the
different encodings and URL manglings we have
discussed, mixes in a few more, then spits out
anywhere from one to hundreds of test cases.

The first thing EncodeUrlUsingEncoder does
is add the raw URL to the collection of test
cases, passing it through a CUrl to ensure it is
fully canonicalized. If an encoding level of zero
was specified, nothing else happens.

If the requested encoding level was one or
higher, the raw URL will be run once through

UrlEscape to encode any “dangerous” char-
acters. MSDN defines “dangerous” as “those
characters that may be altered during trans-
port across the Internet, [which] include the
(<, >, ", #, {, }, |, \, ^, ~, [,], and ') charac-
ters” (see References). This is the most com-
mon form of altered URLs you will encounter.

Requesting an encoding level of two or high-
er will get you all the encodings we’ve talked
about: User authentication will be inserted,
path navigation will be injected, and the IP
address will be encoded and collapsed. In ad-
dition, various special characters (e.g., dots in
the domain name and IP address, dots and
slashes in the path), random characters in the
domain name and path, the entire domain
name, and the entire path will be encoded.

H U N T E R

void CUrlCanonicalizationTestCases::EncodeUrlUsingEncoder(IEncoder & encoder)
{
//---
// All levels get the (fully canonicalized) source URL.
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain(), sourceUrl->Path());

//---
// Levels 1 or higher get the URL with "unsafe" (as defined by UrlEscape)
// characters encoded.
if (1 <= encodingLevel)

{
AddUrl(sourceUrl->Protocol()

, EscapeUnsafeCharacters(sourceUrl->Domain())
, EscapeUnsafeCharacters(sourceUrl->Path()));

}

//---
// Levels 2 or higher get the URL with these various additions encoded to
// the specified level. HOWEVER, the encoders don't have the concept of
// "escape unsafe characters" (our level 1) -- they just strictly encode
// whatever character/string is given them -- so we must reduce the
// encoding level we give them by one.
if (2 <= encodingLevel)

{
long encodersEncodingLevel(encodingLevel - 1);

//---
// Authentication data prepended to the source URL, '@' encodings.
CCharacterEncoder atEncoder(L'@', encodersEncodingLevel, encoder);
for (unsigned long level = 0; level <= encodersEncodingLevel; ++level)

{
AddUrl(sourceUrl->Protocol()

, L"username:password" + atEncoder.PartialEncoding(level)
+ sourceUrl->Domain()

, sourceUrl->Path());
AddUrl(sourceUrl->Protocol()

, L"blahblah" + atEncoder.PartialEncoding(level)
+ sourceUrl->Domain()

, sourceUrl->Path());
AddUrl(sourceUrl->Protocol()

, L"www.evil.com/You/Are/So/Hacked.htm"
+ atEncoder.PartialEncoding(level) + sourceUrl->Domain()

, sourceUrl->Path());
AddUrl(sourceUrl->Protocol()

, L"username:password" + atEncoder.FullEncoding(level)
+ sourceUrl->Domain()

, sourceUrl->Path());
AddUrl(sourceUrl->Protocol()

, L"blahblah" + atEncoder.FullEncoding(level)
+ sourceUrl->Domain()

, sourceUrl->Path());
AddUrl(sourceUrl->Protocol()

, L"www.evil.com/You/Are/So/Hacked.htm"
+ atEncoder.FullEncoding(level) + sourceUrl->Domain()

, sourceUrl->Path());
}

//---
// Domain's IP address variants.
CIPEncoder ipEncoder(sourceUrl->Domain()

, maxCharactersPrependedToIPAddresses, encodersEncodingLevel
, encoder);

for (unsigned long ipEncoding = 1;
ipEncoding <= ipEncoder.Count(); ++ipEncoding)
{

AddUrl(sourceUrl->Protocol(), ipEncoder.Item(ipEncoding)
, sourceUrl->Path());

}

//---
// Domain name encodings.
CStringEncoder domainEncoder(sourceUrl->Domain()

, encodersEncodingLevel, encoder);
for (unsigned long domainEncoding = 1;

domainEncoding <= domainEncoder.Count(); ++domainEncoding)
{
AddUrl(sourceUrl->Protocol(), domainEncoder.Item(domainEncoding)

, sourceUrl->Path());
}

//---
// Dots and slashes in the path encodings.
CPathEncoder dotEncoder(L'.', sourceUrl->Path(), encodersEncodingLevel

, encoder);
for (unsigned long dotEncoding = 1; dotEncoding <= dotEncoder.Count();

++dotEncoding)
{
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain()

, dotEncoder.Item(dotEncoding));
}

CPathEncoder slashEncoder(L'/', sourceUrl->Path()
, encodersEncodingLevel, encoder);

for (unsigned long slashEncoding = 1;
slashEncoding <= slashEncoder.Count(); ++slashEncoding)
{
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain()

, slashEncoder.Item(slashEncoding));
}

CPathEncoder backslashEncoder(L'\\', sourceUrl->Path()
, encodersEncodingLevel, encoder);

for (unsigned long backslashEncoding = 1;
backslashEncoding <= backslashEncoder.Count(); ++backslashEncoding)
{
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain()

, backslashEncoder.Item(backslashEncoding));
}

//---
// Partial and full path encodings.
CStringEncoder pathEncoder(sourceUrl->Path(), encodersEncodingLevel

, encoder);
for (unsigned long pathEncoding = 1;

pathEncoding <= pathEncoder.Count(); ++pathEncoding)
{
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain()

, pathEncoder.Item(pathEncoding));
}

//---
// Inject path navigation.
CNavigationInjector navigationInjector(sourceUrl->Path());
for (unsigned long injectedPath = 1;

injectedPath <= navigationInjector.Count(); ++injectedPath)
{
AddUrl(sourceUrl->Protocol(), sourceUrl->Domain()

, navigationInjector.Item(injectedPath));
}

}
}

Listing 10 EncodeUrlUsingEncoder

16 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

Verifying URL Handling Failures
If you’ve jumped ahead of the rest of the
class and tried these test cases on Internet
Explorer (I generally use IE as a litmus test
for whether a particular URL variant is
valid), you’ve probably found that some of
them don’t work. Does this mean the en-
coding is incorrect? No, it just means IE
doesn’t handle that particular URL. Some
of the time this is intended behavior; IE5
and later don’t support dotless IP address-
es, for example. Other times it’s unclear why
it doesn’t work (I’ve found neither Internet
Explorer nor any of the Win32 canonical-
ization APIs like Unicode-encoded URLs,
for example). Regardless, the result is you
have to pick through a large number of test
cases and identify the ones that don’t
work—and you have to do so on every com-
bination of OS and Internet Explorer ver-
sion you intend to support. To make that

task easier, I’ve included UrlVerifier in
the online source code.
UrlVerifier does two things: It generates

a set of test cases by passing its command-line
arguments on to UrlCanonicalization-
TestCases, then it determines whether each
test case is valid (see the sidebar entitled “Test
Cases Everywhere” for an explanation of why
I wrapped EncodeUrlUsingEncoder in Url-
CanonicalizationTestCases rather than us-
ing it directly). To do so, it first repeatedly
passes the URL through a canonicalizing func-
tion until it stops changing. (The most com-
mon URL canonicalization mistake is to only
do one pass through the canonicalization
function.) Hopefully, I’ve convinced you that
rolling your own such function would be
rather complicated; in fact, there’s no reason
to do so as Windows provides not one, not
two, but three separate canonicalizing APIs:
InternetCanonicalizeUrl, UrlCanonical-

ize, and UrlUnescape API functions. Each
one takes slightly different options and works
in a slightly different manner, but as UrlVer-
ifier’s output show, UrlUnencode seems to
do the best job.

After canonicalizing each URL using each
of the canonicalization functions, UrlVeri-
fier attempts to download the presumably
decoded file using URLDownloadToCacheFile.
The results of each operation are written to
a log file (see Table 3 for a portion of the out-
put from running UrlVerifier on http://www
.windevnet.com/wdm/default.html) from
which you can easily determine which cases
Windows thinks are valid and, thus, which
cases your application should handle. How-
ever, if you use different APIs than UrlVer-
ifier, be sure to run your own tests with
those APIs rather than taking UrlVerifier’s
word on which variations should work. And
if you’re rolling your own URL support, be
especially vigilant when deciding which cas-
es to handle.

Summary
There are many different ways to mangle a
URL, but the solution to handling all of these
is to run every URL through Internet-
CanonicalizeUrl over and over until it stops
changing—and to do so the moment you’re
handed the URL, before you’ve made any de-
cisions about the URL or taken any action
based on it. The Internet can be a wild and
wooly place, but with the help of a few sim-
ple API calls, you can effectively tame it.
The sidebar “Handling Illegal Filenames”

H U N T E R

 Raw URL UrlUnescape Decoded UrlUnescape Downloaded

http://www.windevnet.com/wdn/current/ http://www.windevnet.com/wdn/current/ TRUE
http://username:password@www.windevnet.com/wdn/ http://username:password@www.windevnet.com/ TRUE
 current/ wdn/current/
http://blahblah@www.windevnet.com/wdn/current/ http://blahblah@www.windevnet.com/wdn/current/ TRUE
http://www.evil.com/You/Are/So/Hacked.htm@ http://www.evil.com/You/Are/So/Hacked.htm@www FALSE
 www.windevnet.com/wdn/current/ .windevnet.com/wdn/current/
http://66.35.216.85/wdn/current/ http://66.35.216.85/wdn/current/ TRUE
http://0x42.35.216.85/wdn/current/ http://0x42.35.216.85/wdn/current/ TRUE
http://16931.216.85/wdn/current/ http://16931.216.85/wdn/current/ FALSE
http://www.windevnet.com/wdn/current/./ http://www.windevnet.com/wdn/current/./ TRUE
http://www.windevnet.com/wdn/current/../current/ http://www.windevnet.com/wdn/current/../current/ TRUE
http://username:password%u0040www.windevnet.com/ http://username:password%u0040www.windevnet FALSE
 wdn/current/ .com/wdn/current/
http://username:password%40www.windevnet.com/wdn/ http://username:password@www.windevnet.com/ TRUE
 current/ wdn/current/
http://www.win%64evnet.com/wdn/current/ http://www.windevnet.com/wdn/current/ TRUE
http://www.win%2564evnet.com/wdn/current/ http://www.windevnet.com/wdn/current/ TRUE
http://www.win%25%36%34evnet.com/wdn/current/ http://www.windevnet.com/wdn/current/ TRUE
http://%77%77%77%2e%77%69%6e%64%65%76%6e% http://www.windevnet.com/wdn/current/ TRUE
 65%74%2e%63%6f%6d/wdn/current/
http://www.windevnet.com/wd%%36e/current/ http://www.windevnet.com/wdn/current/ TRUE
http://www.windevnet.com%2f%77%64%6e%2f%63%75% http://www.windevnet.com/wdn/current/ TRUE
 72%72%65%6e%74%2f
http://www.windevnet.com%2f%25%37%37%64%6e%% http://www.windevnet.com/wdn/current/ TRUE
 32f%25%36%33%2575%%372%72e%6e%7%34/

Table 3
Sample output from UrlVerifier

Level Encoding Type Result

 0 Partial \
 Full \

 1 Partial %20
 Full %20

 2 Partial %2520(encoding the % in the level 1 encoding)
 Full %25%32%30 (encoding the %, 2, and 0)
 3 Partial %252520 (encoding the % in the level 2 partial encoding)
 Full %25%32%35%25%33%32%25%33%30 (encoding each

 character in the level 2 full encoding)

Table 2
Encoding a backslash

H U N T E R

discusses another test case generator I’ve pro-
vided to help tame another area rife with pit-
falls: illegal filenames.

Acknowledgment
Thanks much to Lawrence Landauer, whose
patient explanation of how UTF-8 works and
assistance with the UTF-8 encoding algorithm
was invaluable!

References
Microsoft Security Bulletin MS98-016.

http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/
ms98-016.asp.

Microsoft Security Bulletin MS01-051.
http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/
ms01-051.asp.

Boost Random Number Library.
http://www.boost.org/libs/random/index.html.

Boost Header lexical_cast.
http://www.boost.org/libs/conversion/lexical
_cast.htm.

“How to Obscure Any URL.”
http://www.pc-help.org/obscure.htm.

Writing Secure Code, pp. 323–324, Michael
Howard and David LeBlanc. Microsoft Cor-
poration, 2002.

RFC 2279.
http://www.ietf.org/rfc/rfc2279.txt.

Microsoft Security Bulletin MS00-057.
http://www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/bulletin/
ms00-057.asp. w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 17

IF YOU’VE done any amount of API testing,
you’ve probably built up a list of standard
values you use for various datatypes. I al-
ways run through the minimum and maxi-
mum value, negative one, zero, and positive
one anytime I have a numeric value, for ex-
ample, and for strings I go through the ASCII
characters and a couple really long strings.
These values don’t change very often, so it
may seem that hard-coding them everywhere
is not so bad. I’ve found they change often
enough (generally because I’m adding addi-
tional values), however, that updating all
those hard-coded values is a big time sink.

My solution is to encapsulate these val-
ues in a collection I can iterate through in
my tests. When I add a new value, I only
need to add it to one place and then it’s au-
tomatically picked up by all my tests. This
makes it dead simple for others to use the
test cases in their tests as well.

—M.J.H.

Test Cases Everywhere

http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts

THE MAJORITY OF DEVELOPERS using ASP.NET
think of the web development framework as a
page-oriented model, where an application con-
sists of a series of pages that users interact with
to store and retrieve information and to initi-
ate processes on the server. Many developers
build these applications with little regard for
the inner workings of the ASP.NET processing
model and the supporting infrastructure. In fact,
there is extensive support in ASP.NET's HTTP
pipeline based on a set of classes and interfaces
that abstract the HTTP protocol, enabling de-
velopers to use the ASP.NET infrastructure to
harness the power of the underlying protocols
to build powerful web-based applications. This
same infrastructure provides the functionality
that is used for ASP.NET development and web
services in the .NET Framework. HttpHandlers
are used by ASP.NET to dispatch HTTP re-
quests to user-defined code, and can be used to
develop web applications without the use of
.aspx files and the typical code-behind model
for ASP.NET development, enabling develop-
ers to build and extend web-based applications
outside of the page-oriented development mod-
el. This article will look at the HTTP pipeline
and explore the functionality of HttpHandlers.

The HTTP pipeline support in ASP.NET in-
cludes important classes and interfaces such as
HttpContext, classes that implement IHttp-
Module, and classes that implement IHttpHan-
dler. The HttpContext class represents the
current HTTP request. The classes imple-
menting IHttpModule support the pre- and
post-processing of HTTP requests, supporting
the filtering and modifications of request and
response messages in the HTTP pipeline. The
IHttpHandler interface supports the imple-
mentation of classes that can service HTTP re-

quests and provide response output. An exam-
ple of a class derived from IHttpHandler is the
Page class of the System.Web.UI namespace.
For a typical ASP.NET application developed
using Visual Studio .NET, the classes created
in the code-behind model for your ASP.NET
application are derived from the Page class it-
self, as shown in the following lines of code:

public class WebForm1 : System.Web.UI.Page
{

private void Page_Load(object sender,
System.EventArgs e)

{
// Put user code to initialize the page here

}
...

}

This code is automatically generated by Vi-
sual Studio .NET for any new ASP.NET proj-
ect. As you can see, the WebForm1 class is de-
rived from the Page class. WebForm1 is the
code-behind class for the WebForm1.aspx file
generated by the IDE. The WebForm1.aspx
file includes the following Page directive:

<%@ Page language=“c#”
Codebehind=“WebForm1.aspx.cs”
AutoEventWireup=“false”
Inherits=“WebApplication1.WebForm1” %>

This Page directive defines a number of
attributes for the ASP.NET web form appli-
cation, including the code-behind class that
the application is to inherit from. In this ex-
ample, the Inherits attribute of the direc-
tive refers to the WebForm1 class, which is
derived from the Page class. When devel-
oping a web forms application using ASP
.NET, the “under the hood” processing en-
sures that the forms application corresponds
to a class library that is derived from the
Page class, which implements IHttpHandler.
In essence, all ASP.NET applications are
driven by an underlying implementation of
an HttpHandler.

The default configuration for an ASP.NET
application is defined by the machine.config
file for the .NET Framework installation, and
includes the mappings of some standard han-
dlers to certain file extensions. The following
entry can be found under the <httpHandlers>
element of the machine.config file:

<add verb=“*”path=“*.aspx”
type=“System.Web.UI.PageHandlerFactory” />

The file entry in machine.config maps the
.aspx file extension to the PageHandlerFac-
tory class, which is an HTTP handler facto-
ry class that can compile the source code ref-
erenced in an .aspx file into a class derived
from the Page class in System.Web.UI. Since
the Page class implements the IHttpHandler
interface, the instance of the object that is
instantiated by the page request can be
processed in ASP.NET's HTTP pipeline. This
configuration is also used to support the map-
ping of other extensions, such as the .asmx
extension used for ASP.NET web services.
Many other file extensions are mapped to var-
ious handlers by default at the machine con-
figuration level.

HttpHandler Architecture
Along with the support for standard handlers
in ASP.NET, there is functionality to build and
extend applications using custom handlers. To
build a custom handler class it must be derived
from the IHttpHandler interface, as shown by
the following lines of code:

interface IHttpHandler
{

void ProcessRequest(HttpContext ctx);
bool IsReuseable { get; }

}

RANDY HOLLOWAY is the founder of Win-
formation Systems, a technology consult-
ing and training initiative specializing in the
development of enterprise systems in the
Windows environment and web services
technologies. Contact Randy at articles@
winformationsystems.com.

18 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

R A N D Y H O L L O W A Y

Extend ASP.NET Apps Using
HttpHandlers

Create custom handlers to perform advanced

request processing functions for your web-based

applications

The ProcessRequestmethod is called to process the current request and
provide a response. The IsReuseable property defines whether or not the
handler can be used by more than one request simultaneously. The follow-
ing code demonstrates the implementation of a sample of a handler class:

public class MyHandler : IHttpHandler
{

public void ProcessRequest(HttpContext ctx)
{

ctx.Response.Write(“Response from MyHandler.”);
}
public bool IsReusable
{

get { return true; }
}

}

To map an incoming request to a handler, the Web.config file for
the application’s virtual directory can be used to configure handlers
for that application. For the sampler handler class just mentioned, the
Web.config file would be modified to include the following section:

<configuration>
<system.web>
<httpHandlers>
<add verb=“GET” path=“*.handler”

type=“Handlers.MyHandler, Handlers”/>
</httpHandlers>

</system.web>
</configuration>

This configuration file addition adds the support for an HttpHan-
dler supporting a GET request with the extension .handler. This re-
quest will then be processed by Handlers.MyHandler, located in the
Handlers assembly. For this custom handler to work, there are a cou-

ple of deployment and configuration details to cover. First, the as-
sembly containing the handler class must be located in the bin sub-
directory of the virtual directory for the web application, or it must
be installed in the GAC for the ASP.NET worker process to be able
to locate it. Second, for a handler to be invoked for a particular file
extension, that extension must also be mapped to the aspnet_is-
api.dll in the IIS application mappings settings, as shown in Figure
1. The extension must be mapped to an executable or library file as
shown in Figure 2. The application mapping can also be set up to
validate the existence of the file requested for the extension. For
the sample URL http://localhost/VDIR/my.handler, the request would
be handled by the MyHandler class. The path attribute of the add el-
ement under <httpHandlers> can have a value assigned at the ex-
tension level, as shown by the path=“*.handler” value, or it can be
mapped a specific path such as path=“my.handler”.

Building Custom HttpHandlers
For many web applications, such as those focused on dynamic deliv-
ery of content from disparate data sources like relational databases,
XML files, and serialized object stores, the development and mainte-
nance of a traditional page-oriented web site can be tedious and time

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 19

H O L L O W A Y

Figure 1 Configure the application’s virtual directory
to map the extension in IIS to the aspnet_isapi.dll

Figure 2 The extension mapping for an IIS application
is made to a specific executable and can be limited to
specific verbs

Figure 3 A custom Page class implementation provides
all of the functionality of the ASP.NET web forms model
without requiring you to use code-behind development

20 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

consuming. With the HttpHandler architec-
ture and HTTP pipeline support of ASP.NET,
you can build a flexible application while avoid-
ing traditional page-oriented web development.

To demonstrate the power of the HttpHan-
dler architecture, I'll walk through the devel-
opment of a simple handler application that
processes requests that are mapped to specific
files and are processed by custom handler class-
es. The first handler will be mapped to the .xml
file extension, and will process the file name
of the requested URL, load the corresponding
XML document into a DataGrid, and render
the HTML output of the DataGrid to the Re-
sponse instance. The code for the .xml exten-
sion handler is shown in Listing 1. When this
handler is executed, the RenderControlmethod
of the DataGrid populates the HtmlTextWriter
object with its HTML output. The String-
Writer instance passed to the HtmlTextWriter’s
constructor is then passed to the Response’s
Write method, writing the output back to the
browser. To test the handler, deploy it follow-
ing the process previously outlined and use the
following Vendors.xml file to test the process:

<Vendors>
<Vendor>

<VendorID>1</VendorID>
<Name>Acme Corporation</Name>
<Telephone>314-555-1212</Telephone>

</Vendor>
<Vendor>

<VendorID>2</VendorID>
<Name>Smith and Company</Name>
<Telephone>212-555-1212</Telephone>

</Vendor>
</Vendors>

Using the XmlHandler class from Listing 1,
you can write this output in the form of an
HTML table back to the browser, displaying
the contents of the XML file in a grid form.

With HttpHandlers, there are some other in-
teresting ways that you can handle the request
and process the output to a requesting client. By
modifying the XmlHandler class previously
demonstrated, you can process requests for the

XML files on your server and provide the output
as Excel. In this example, the .xls extension used
for Excel files will be mapped to the new han-
dler class. You can then use a URL to request a
file that’s in XML form on the web server, such
as http://localhost/ContentHandler/Vendor.xml,
but replace the .xml file extension with .xls. This
type of request filtering and processing is ideally
performed using an HttpModule, but to simplify
this example, the logic to modify the file exten-
sion will be included in our HttpHandler. The
following lines of code show the modified
ProcessRequest function from the class:

public void ProcessRequest(HttpContext ctx)

{
...

//Manipulate Request.PhysicalPath
//string value to replace file extension

fileRequested = fileRequested.Replace
(“.xls”, “.xml”);

...

//Set ContentType for HttpResponse
ctx.Response.ContentType =

“application/vnd.ms-excel”;

//Provide response output using the
//StringWriter instance utilized by
//the HtmlTextWriter constructor
ctx.Response.Write(sw.ToString());

ctx.Response.End();
}

The modified function replaces the file ex-
tension in the string that maps the path of the
requested file on the server, and then the XML
file is processed just as it was in the previous
XmlHandler example. The file is processed by
the handler, loaded into a DataGrid, and ren-
dered to HTML. But prior to writing the re-
sponse output to the browser, the ContentType
property of the Response instance is changed
to Excel. This causes the browser to detect the

Excel content type and then prompts the user
to save the output to an Excel file or to view
the output using Excel within the browser.

Rendering Pages Dynamically
While the two handler classes previously
demonstrated support of the processing and
output of XML data to the browser without
the use of .aspx pages, the output has been dif-
ferent than what you would see on most web
sites, since the output hasn’t been in a tradi-
tional web page form. When a request is
processed for the Vendors XML file using the
XmlHandler from the previous example and
the source from your browser is viewed, you
see the following output:

<table cellspacing=“0” rules=“all” border=“1”
id style=“border-

collapse:collapse;”>
<tr>

<td>VendorID</td><td>Name</td><td>Telephone</td
>

</tr><tr>
<td>1</td><td>Acme

Corporation</td><td>314-555-1212</td>
</tr><tr>

<td>2</td><td>Smith and
Company</td><td>212-555-1212</td>

</tr>
</table>

Note that the source is raw HTML for the
table formatted by the DataGrid and does not
conform to HTML standards for a web page.
This is not suitable for building a web appli-
cation that provides the user with a good vi-
sual experience or extends functionality be-
yond the delivery of static content. That's
where the Page class from the System.Web.UI
namespace becomes very useful. By creating
an instance of the Page class, you can build a
web page output with controls, page format-
ting, and other dynamic elements all from with-
in a server-side assembly. This Page object can
then be rendered to a client browser using
HttpHandlers, eliminating the need for .aspx
files. The code in Listing 2 demonstrates the
use of the Page class. The SimplePage class
overrides the Render method and builds on
the previous examples by processing an XML
file into a DataGrid. The Page class can be im-
plemented in an HttpHandler as demonstrat-
ed by the following code:

public void ProcessRequest(HttpContext ctx)
{

string fileRequested =
ctx.Request.PhysicalPath.ToString();

//Manipulate Request.PhysicalPath
string

// value to replace file extension

H O L L O W A Y

public class XmlHandler : IHttpHandler
{

public void ProcessRequest(HttpContext ctx)
{

string fileRequested =
ctx.Request.PhysicalPath.ToString();

//Create instance of the HtmlTextWriter to
// be populated by DataGrid's HTML output
StringWriter sw = new StringWriter();
HtmlTextWriter htmlTW = new

HtmlTextWriter(sw);

//Create DataSet and read in XML file
DataSet ds = new DataSet("XML");
ds.ReadXml(fileRequested);

//Create DataGrid and bind to DataSet
DataGrid outputGrid = new DataGrid();

outputGrid.DataSource = ds;
outputGrid.DataBind();

//Render DataGrid output to HTML
outputGrid.RenderControl(htmlTW);

//Provide response output using the
// StringWriter instance utilized by the
// HtmlTextWriter constructor
ctx.Response.Write(sw.ToString());

ctx.Response.End();
}

public bool IsReusable
{

get { return true; }
}

}

Listing 1 XML Handler Class

H O L L O W A Y

fileRequested =
fileRequested.Replace(“.page”,
“.xml”);

//Create instance of the
// HtmlTextWriter to be populated by
// DataGrid's HTML output
StringWriter sw = new StringWriter();
HtmlTextWriter htmlTW = new

HtmlTextWriter(sw);

SimplePage myPage = new
SimplePage(fileRequested);

//Render HTML for page object
myPage.RenderControl(htmlTW);

//Provide response output using the
// StringWriter instance utilized by
// the HtmlTextWriter constructor
ctx.Response.Write(sw.ToString());

}

Using the RenderControl method of the
custom Page class, the output of the page can
be written to the Response instance. By map-
ping the .page extension to a new handler, you
can extend the previous example to process
the XML content and provide the output in a
web page format, as shown in Figure 3. Al-
though this example is very simple, by deriv-

ing from the Page class you can build a Page
output that takes advantage of the extensive
support for controls, page formatting using CSS
classes, and other programmatic HTML ren-
dering features.

By using the extensive customization sup-
port in the HTTP pipeline for ASP.NET, in-
cluding the support for HttpHandlers, devel-
opers can build web-based applications
without using the traditional page-oriented
model for web site development. Developers
can leverage System.Web.UI.Page class im-
plementations and the extensive ASP.NET
customization features so that feature-rich ap-

plications can be designed and deployed with-
out relying on the ASP.NET code-behind
model that’s supported by Visual Studio .NET.
These features allow developers to better build
and deploy web-based applications without
the fragility of hand coding and tweaking
HTML, while also providing a framework to
easily manage the processing of dynamic con-
tent from a variety of sources in your web ap-
plications. w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 21

public class SimplePage : System.Web.UI.Page
{

private const string htmlStart =
"<html><head><title>Site Title for page
output</title></head><body
bgColor='#868db9'>";

private const string htmlEnd =
"</body></html>";

private string fileRequested;

// SimplePage constructor
public SimplePage(string RequestUrl)
{

fileRequested = RequestUrl;
}

// Overridden Render method.
protected override void

Render(HtmlTextWriter htmlTW)
{

//Create DataSet and read in XML file
DataSet ds = new DataSet("XML");
ds.ReadXml(fileRequested);

//Create DataGrid and bind to DataSet
DataGrid outputGrid = new DataGrid();
outputGrid.DataSource = ds;
outputGrid.DataBind();

// Render the HTML.
htmlTW.Write(htmlStart);

//Render DataGrid output to HTML
outputGrid.RenderControl(htmlTW);

// Render the HTML.
htmlTW.Write(htmlEnd);

// Render the page contents.
base.Render(htmlTW);

}
}

Listing 2 The SimplePage class

http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com

THE MICROSOFT .NET FRAMEWORK defines
a licensing model that allows developers to
prevent the use of their classes unless a valid
license can be granted. This licensing model
is particularly well suited to redistributable
components, which are typically sold to de-
velopers and subsequently redistributed as a
part of the licensed developer’s application.
Noncomponent classes can easily take advan-
tage of the infrastructure as well.

In this article, we’ll enable licensing support
for a simple redistributable component. We’ll
investigate the .NET Framework components
involved in licensing, and see how Visual Stu-
dio .NET automates much of the licensing
process for components. Finally, we’ll write
code enabling custom license key validation,
as well as support for evaluation licenses.

Licensing a Component
Using the .NET licensing model, building a
component that requires a valid license key to
be present before it can be used is straightfor-
ward. You simply add a licensing-specific at-
tribute to your class definition, and add a call
to a license validation method from your class
constructor.

Listing 1 shows the definition of perhaps the
simplest licensed component you can have.
The constructor makes a call to LicenseMan-
ager.Validate, which asks the licensing
framework to request a valid license for the
class. The down-and-dirty work of finding and
validating a license key, and subsequently grant-
ing a license, is done by a component called a
“license provider.” Microsoft supplies a simple

license provider, LicFileLicenseProvider,
which we associate with the component in this
example using the [LicenseProvider] at-
tribute on the class. We’ll look at what’s in-
volved with creating custom license providers
shortly.

If the license validation is successful, Vali-
date simply returns and allows the component
to be created and used normally. If, however,
a license cannot be granted, Validate raises a
LicenseException exception, preventing the
component from being used.

If you build the component given in Listing
1 and then attempt to add it to a host appli-
cation (by referencing its assembly, adding it
to the Visual Studio Toolbox, and dropping it
onto the design surface), you’ll get the mes-
sage box shown in Figure 1. As the authors of
the licensed component, this is the behavior
that we want: Our class requires that a license
be granted before it is used, but we haven’t yet
provided any evidence that one should be
granted. Technically, what has happened is
that LicFileLicenseProvider could not find
a valid license key for our component, so a Li-
censeException was raised inside the License-
Manager.Validate method.

License providers such as LicFileLi-
censeProvider grant licenses only when a
valid license key can be located. A license
key is a string, and may be a serial number,
an installation code, or any other string rec-
ognized by the license provider. Locating a
license key is the responsibility of the license
provider, and it may do so in whatever man-
ner it chooses. In the case of LicFileLi-
censeProvider, a simple text file is expect-
ed to exist for each licensed class, containing
nothing but the license key string. The text
file needs to have the name <classname>.lic
and be located in the same directory as the
licensed class’s assembly (<classname> is the

namespace-qualified name of the licensed
class). Other license providers could obtain
license keys from the registry, a web service
method, or however else they might choose.

Validating a license key is the license
provider’s primary responsibility. LicFileLi-
censeProvider isn’t very sophisticated when
it comes to this: A valid license key is simply
a string of the form “<classname> is a licensed
component.” We’ll see how to override this
validation logic soon.

Listing 2 shows the license key (.lic) file for
SimpleLicensedComponent, which contains
just one line:

SimpleLicensedComponent is a licensed
component.

Placing this file in the directory containing
our simple component’s assembly allows it to
be used normally, just as if it weren’t licensed.
The host application does not need to do any-
thing special to create the licensed class—the
licensing framework handles it all automati-
cally. (Note that during development of a li-
censed component, you’ll want to have the .lic
file for your component in your project’s
obj\Debug directory, since that is where the
component’s assembly lives. Place another copy
in the obj\Release directory if you’re testing
release builds of the component as well.)

When the host application is compiled and
distributed to another computer, the license
key file is not copied along with the compo-
nent’s assembly. You might expect that this
would result in a licensing error when the ap-
plication attempts to create the component at
run time. Instead, the component is created

MYK WILLIS is President of Wanderlust Soft-
ware LLC, publisher of the licX Licensing
Component for .NET. He can be reached
through the company web site at http://
www.wanderlust-software.com/.

22 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

M Y K W I L L I S

Licensing in .NET

Building a custom license provider for a simple

redistributable component

W I L L I S

successfully. The .NET licensing framework,
the license provider, Visual Studio .NET, and
a utility called the “license compiler” all work
together during the build process to “remem-
ber” that a license had been granted for the
component at design time.

The License Compiler
The .NET Framework SDK ships with a util-
ity called the “license compiler” (lc.exe), which
simplifies the distribution of applications that
use licensed classes. The license compiler em-
beds the required license keys into a host ap-
plication’s assembly so that they can be found
on whatever machine the host application is
run. This obviates the need to distribute li-
cense key files with the application.

The license compiler is invoked after a host
application has been built. It is provided with
the name of the host application’s assembly, and
a list of the licensed classes that the application
uses. The license compiler creates an instance
of each of these licensed classes and, in coop-
eration with the classes’ license providers, ex-
tracts a run-time license key from each.

The license keys obtained by the license
compiler are written to a binary file named
<assembly>.licenses, where <assembly> is
the name of the host application assembly.
This .licenses file is then embedded as a re-

source in the host application’s assembly us-
ing the services of the .NET assembly link-
er (al.exe).

It turns out that the plumbing necessary to
allow the license compiler access to the license
keys is quite involved. Suffice it to say that the
license provider is required to call a special
method exposed by the license compiler when
invoked at design time. LicFileLicense-
Provider handles this automatically when it
(or a class derived from it) is used. Later we’ll
see an example that needs to deal with this di-
rectly.

If you use Visual Studio .NET, you typical-
ly don’t need to interact directly with the li-
cense compiler. That’s because Visual Studio
automatically tracks the use of licensed com-
ponents and invokes the license compiler seam-
lessly during the build process. You can see this
by adding a licensed component to your proj-

ect by dragging it to the designer surface. Vi-
sual Studio adds the name of the component
class to a file named “licenses.licx” in the host
application’s project directory (enable the
“Show All Files” option in the Solution Ex-
plorer to see licenses.licx listed). The classes
listed in licenses.licx are passed to the license
compiler during the build.

Note that if you create an instance of a li-
censed class without using the Visual Studio
designer (i.e., if the licensed class is not a com-
ponent, or it is otherwise created nonvisual-
ly), you’ll need to manually add that class name
to the licenses.licx file. If you’re not using Vi-
sual Studio .NET for development, you’ll need
to maintain your own licenses.licx file and in-
voke lc.exe manually as part of your build
process. See the .NET Framework SDK doc-
umentation in this case for more detailed in-
formation on using the license compiler.

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 23

Figure 1
Error when trying to use a licensed class without a valid license key

http://redirect.wdj.com/scripts/redirect.pl?http://www.amyuni.com

W I L L I S

Deriving New License Providers
LicFileLicenseProvider is not a very sophisticated license provider,
but it is the only one supplied by the .NET Framework. Fortunate-
ly, it’s easy to derive a new class from LicFileLicenseProvider that
overrides the default license key validation logic. It’s also possible to
write a license provider from scratch, which allows for considerable
flexibility in implementing sophisticated licensing schemes.

When deriving a new license provider from LicFileLicense-
Provider, you must override both the IsKeyValid and GetKey meth-

ods. IsKeyValid is called to validate a license key string that the base
class has located. GetKey is called at design time to get the license key
string that will be remembered for validation at run time. Listing 3
shows the definition of DerivedLicenseProvider, which demon-
strates overriding these methods.

In DerivedLicenseProvider, we’ve replaced the base class’s im-
plementation of IsKeyValid with logic that expects a license string
to be composed of two parts: the licensed class’s full name and the
hash code of a secret string appended to the full name. While far
from secure, this scheme makes valid license keys a little less obvious

24 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

using System;
using System.ComponentModel;
using System.Windows.Forms;

[LicenseProvider(typeof(LicFileLicenseProvider))]
public class SimpleLicensedComponent : Component
{

public SimpleLicensedComponent()
{

LicenseManager.Validate(typeof(SimpleLicensedComponent));
}

}

Listing 1
A simple licensed component

SimpleLicensedComponent is a licensed component.

Listing 2
License key file for use with LicFileLicenseProvider

using System;
using System.ComponentModel;

public class DerivedLicenseProvider : LicFileLicenseProvider
{

protected override bool IsKeyValid(string key, System.Type type)
{

return key.Equals(GetValidLicenseKey(type));
}

protected override string GetKey(System.Type type)
{

return GetValidLicenseKey(type);
}

private string GetValidLicenseKey(Type type)
{

int hashCode = (type.FullName + "Secret").GetHashCode();
return String.Format("{0}:{1,8:X}", type.FullName, hashCode);

}
}

Listing 3
A simple license provider derived from
LicFileLicenseProvider

http://redirect.wdj.com/scripts/redirect.pl?http://www.dice.com

from the outside. GetValidLicenseKey contains the code to gener-
ate a valid license key for a class of a given type.

When deriving from LicFileLicenseProvider, overriding GetKey
is the method by which you provide (at design time) the license key
that will be remembered for use at run time.

You might wonder why it’s necessary to implement GetKey. After
all, the base class is the one that found the license key in the first
place, so can’t it just remember it itself? The reason seems to be that
while in most cases design-time and run-time license keys will be
the same, it’s not a strict requirement. You might want to imple-
ment GetKey such that the remembered license key contains not
just a serial number for your component, but also information about
the licensed user, version information from the development ma-
chine, or something else. Because the license key string is remem-
bered as a resource embedded in the host application’s assembly, in-
specting an application that uses your component could reveal the
identity of the licensee.

In any case, you must override GetKey when deriving from Lic-
FileLicenseProvider. Otherwise, the default base class implemen-
tation will return “xyz is a licensed component,” which will probably
not be recognized as valid by your custom validation logic.

After building our derived provider, we can test it by changing the
[LicenseProvider] attribute on our SimpleLicensedComponent:

[LicenseProvider(
typeof(DerivedLicenseProvider))]

public class SimpleLicensedComponent ...

Because license providers run at design time in the context of Vi-
sual Studio, debugging is a little awkward. To do it, load a solution
containing your license provider, a component licensed with it, and
a host application (i.e., a Windows Forms application) for your com-
ponent in Visual Studio. Next, open a second instance of Visual Stu-
dio and debug the first by using Tools | Debug Processes… from the
main menu. You should now be able to set breakpoints at convenient
places in your license provider (i.e., at IsKeyValid), which should be
triggered when you drag the licensed component onto the design sur-
face of the test host application.

Note that Visual Studio will need to be able to find the license
provider’s assembly at design time. You’ll save yourself a lot of hassles
if you include a custom license provider in the same assembly as the
class(es) it licenses.

Creating a License Provider from Scratch
Sometimes deriving from LicFileLicenseProvider isn’t adequate for
implementing the licensing scheme you want to use. For example, if
you want to use a registry value to hold your component’s license key
instead of a license file, you’re out of luck with LicFileLicense-
Provider. Implementing your own license provider from scratch isn’t
terribly difficult, but you do have to deal with several issues that we’ve
so far avoided by using LicFileLicenseProvider.

A custom license provider must derive from the abstract Sys-
tem.ComponentModel.LicenseProvider class. This class defines just
a single method, GetLicense, which needs to be implemented by the
derived class. GetLicense is given information about the class for
which a license is being requested and the context of the call, and re-
sponds by granting a license to the caller.
GetLicense has the following signature:

License GetLicense(
LicenseContext context, Type type,
object instance, bool allowExceptions
)

The type and instance parameters refer to the object for which a li-
cense is being requested. They are the parameters passed to License-
Manager.Validate by the licensed object itself. allowExceptions
specifies whether the routine should raise an exception when a fail-
ure to grant a license occurs (as opposed to just returning NULL).

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 25

W I L L I S

using System;
using System.ComponentModel;

public abstract class CustomLicenseProvider : LicenseProvider
{

public override License GetLicense(LicenseContext context, Type type,
object instance, bool allowExceptions)

{
// Step 1: locate the license key
string licenseKey = null;
switch (context.UsageMode)
{

case LicenseUsageMode.Designtime:
licenseKey = GetDesignTimeLicenseKey(type);
context.SetSavedLicenseKey(type, licenseKey);
break;

case LicenseUsageMode.Runtime:
licenseKey = context.GetSavedLicenseKey(type, null);
break;

}
if (licenseKey == null)
{

if (allowExceptions) throw new LicenseException(type, instance,
"No appropriate license key was locat-

ed.");
else return null;

}

// Step 2: validate the license key
bool isValid = IsLicenseKeyValid(type, licenseKey);
if (!isValid)
{

if (allowExceptions) throw new LicenseException(type, instance,
"License key is not valid.");

else return null;
}

// Step 3: grant a license
License license = CreateLicense(type, licenseKey);
if (license == null)
{

if (allowExceptions) throw new LicenseException(type, instance,
"license could not be created.");

else return null;
}

return license;
}

protected abstract string GetDesignTimeLicenseKey(Type type);
protected abstract bool IsLicenseKeyValid(Type type, string licenseKey);
protected abstract License CreateLicense(Type type, string licenseKey);

}

Listing 4 A better base class for implementing a custom license provider

Locating a license key is the
responsibility of the license provider,
and it may do so in whatever manner
it chooses

The context parameter is more complicated. It refers to a License-
Context object that provides information about whether the class is
being created at design time or at run time, and provides utility meth-
ods that can be used by the provider.

The return value is of type System.ComponentModel.License, which
is the abstract class from which all licenses must be derived. A min-
imal implementation of a License class must provide a Dispose method
and a read-only LicenseKey property, but other properties and meth-
ods can often be useful. We’ll see this in a moment.

Listing 4 shows a base class for a custom license provider that breaks
down the implementation of GetLicense into three steps. First, a li-
cense key is located. Second, the found license key is validated. Fi-
nally, a License object is created and returned to the caller. GetLi-
cense in CustomLicenseProvider coordinates these three steps, each
of which is implemented by one of the virtual methods GetDesign-
TimeLicenseKey, IsLicenseKeyValid, and CreateLicense.
CustomLicenseProvider is implemented as an abstract base class

in order to deal with the intricacies of design time versus run time,
raising exceptions when appropriate and so forth, without dictating
the policy for locating, validating, and granting licenses. It thus serves
as a more convenient base class than LicenseProvider, and a more
flexible one than LicFileLicenseProvider.

The first part of CustomLicenseProvider.GetLicense deals with
locating a license key. At design time, a license key should be re-
trieved from a file, registry key, or other source on the development
machine as implemented by GetDesignTimeLicenseKey. The license
key obtained by this method at design time is saved away for run-
time use by the SetSavedLicenseKey method of the context pa-
rameter.

At design time, the context parameter refers to an object supplied
by Visual Studio .NET. This object implements SetSavedLicenseKey
in such a way as to facilitate the creation of the licenses.licx file and

the <assembly>.licenses file that is eventually added as an assembly
resource. The context object has a private System.Collections
.Hashtable containing all of the licenses that have been saved with
SetSavedLicenseKey, and it is simply by serializing this hash table to
disk that the <assembly>.licenses file is created.

When GetLicense is called at run time, the context parameter is
supplied by the .NET run time. Instead of using GetDesignTimeLi-
censeKey to find the license key on the development machine, our
custom license provider uses context.GetSavedLicenseKey. Get-
SavedLicenseKey retrieves the license key from the hash table that
the run-time context had previously deserialized from the assembly
resource. Note that the second parameter to GetSavedLicenseKey is
NULL to specify that the entry assembly (that is, the assembly used
to start the application) should be used; it appears that specifying an-
other assembly for this parameter is not supported.

Despite the underlying complexity of license key serialization, Cus-
tomLicenseProvider implements its share of the work with just a few
lines of code. Using the UsageMode property of the LicenseContext
to indicate whether we are being invoked at design time or run time,
the license key is retrieved from the appropriate location:

switch (context.UsageMode)
{
case LicenseUsageMode.Designtime:

licenseKey =
GetDesignTimeLicenseKey(type);

context.SetSavedLicenseKey(
type, licenseKey);

break;
case LicenseUsageMode.Runtime:

licenseKey =
context.GetSavedLicenseKey(
type, null);

break;
}

26 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

W I L L I S

using System;
using System.ComponentModel;

public class CustomLicense : License
{

string licenseKey;
bool isEvaluation;

public override void Dispose() {}

public override string LicenseKey
{ get { return licenseKey; } }

public bool IsEvaluation
{ get { return isEvaluation; } }

public CustomLicense(string licenseKey, bool isEvaluation)
{

this.licenseKey = licenseKey;
this.isEvaluation = isEvaluation;

}
}

Listing 5 A license object derived from
System.ComponentModel.License

using System;
using System.ComponentModel;
using Microsoft.Win32;

public class EvaluationLicenseProvider : CustomLicenseProvider
{

protected override string GetDesignTimeLicenseKey(Type type)
{

RegistryKey regKey = Registry.LocalMachine.OpenSubKey(
"Software\\WdmLicensing\\" + type.FullName);

if (regKey == null)
{

return null;
}
return regKey.GetValue("LicenseKey").ToString();

}

protected override bool IsLicenseKeyValid(Type type, string licenseKey)
{

return (licenseKey.Equals(GetValidLicenseKey(type)) ||
licenseKey.Equals("Evaluation"));

}

private string GetValidLicenseKey(Type type)
{

int hashCode = (type.FullName + "Secret").GetHashCode();
return String.Format("{0}:{1,8:X}", type.FullName, hashCode);

}

protected override License CreateLicense(Type type, string licenseKey)
{

return new CustomLicense(licenseKey, licenseKey.Equals("Evaluation"));
}

}

Listing 6 A license provider with support for
evaluation license keys

You’ll save yourself a lot of hassles if you
include a custom license provider in the
same assembly as the class(es) it licenses

W I L L I S

The second step of GetLicense is validation of the license key. This
is done using IsLicenseKeyValid, which serves essentially the same
purpose as the IsKeyValid method of LicFileLicenseProvider.

The third and final step of GetLicense is the actual granting of a li-
cense. When we derived from LicFileLicenseProvider, the License
object representing the granted license was created by the base class,
and we didn’t have to deal with it. Here, we must rely on the Cre-
ateLicense method to create an appropriate license object given a
class type and license key.

Note that at each error path in GetLicense, the allowExceptions
parameter is consulted to determine whether the routine should re-
turn NULL or raise a LicenseException. While I’ve never seen a sit-
uation where allowExceptions is False, the documentation indicates
that exceptions should not be raised if it is. Regardless, returning
NULL results in the license manager raising a LicenseException.

Enabling Evaluation Support
Let’s take the base class for the custom license provider shown in List-
ing 4 and derive a new provider that has support for evaluation li-
cense keys. Evaluation license keys allow a class to be used, but may
degrade its functionality in some way to encourage the purchasing of
a normal license for the class.

There are three methods we need to override when we derive from
CustomLicenseProvider. For this new provider, I’ve implemented
GetDesignTimeLicenseKey to consult a registry value based on the
name of the type being licensed. IsLicenseKeyValid uses the same
simple hash function as our implementation of IsKeyValid in the
provider we derived from LicFileLicenseProvider, except that a
string Evaluation will be considered valid as well.

To implement CreateLicense, we need to create an appropriate li-
cense class to represent a granted license. Listing 5 shows the class
that we use with our evaluation license provider. The base class re-
quires that we implement the read-only LicenseKey property and the
Dispose method, while the IsEvaluation property is new. IsEval-
uation is set to True when the located license key string is Evalua-
tion. Listing 6 shows the complete evaluation license provider.

In order for a licensed class to behave differently based on whether
a normal or evaluation license has been granted, it needs some way
to get at the License object returned from GetLicense. This is done

using an overload of LicenseManager.Validate. If you pass both the
class type and an object instance (this) to Validate, you’ll get back
the same License object that was returned from GetLicense.

Listing 7 shows a simple component licensed with our evaluation li-
cense provider. TryAndBuyComponent uses the IsEvaluation property of
the CustomLicense returned from LicenseManager.Validate to show
an “evaluation mode” label when an evaluation license key has been used.
Another component might disable some of its functionality or otherwise
change its behavior in this case. Because License derives from IDispos-
able, TryAndBuyComponent calls Dispose when it is done using it.

Using this same technique, you could allow the full version of your
commercial component to be widely distributed, packaged with an
evaluation license to degrade its functionality in some way. When a
developer tries the evaluation version of your component and decides
to purchase it, you simply give them a nonevaluation license key that
eliminates the evaluation restrictions. In this way, you don’t need to
maintain multiple distribution packages for your product.

A more sophisticated licensing scheme that allows for individual
features to be enabled or disabled based on the license key used could
be built. By adding properties to the License object used, the license
provider can effectively tell the licensed component which features
should be allowed.

Conclusion
Licensing classes in .NET has significant support from the Framework
and Visual Studio. While the out-of-the-box licensing support is rather
restrictive, it is extensible enough to allow for considerable flexibili-
ty in implementing sophisticated licensing schemes. w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 27

using System;
using System.ComponentModel;
using System.Windows.Forms;

[LicenseProvider(typeof(EvaluationLicenseProvider))]
public class TryAndBuyComponent : UserControl
{

private Label evaluationLabel;

private void InitializeComponent()
{

this.evaluationLabel = new System.Windows.Forms.Label();
this.evaluationLabel.Text = "Evaluation Mode";
this.Controls.Add(this.evaluationLabel);

}

public TryAndBuyComponent()
{

CustomLicense license;

InitializeComponent();

license = (CustomLicense) LicenseManager.Validate(
typeof(TryAndBuyComponent), this);

if (license.IsEvaluation) evaluationLabel.Visible = true;
else evaluationLabel.Visible = false;

license.Dispose();
}

}

Listing 7 A component that displays a visible message
when used in evaluation mode

http://redirect.wdj.com/scripts/redirect.pl?http://www.tall-tree.com

28 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

When Shared Data Segments
Aren’t Shared
BY LARRY HAMILTON
l.hamilton@the-lhsoftware.com

THERE ARE SEVERAL WAYS to share data between instances of DLLs.
One of the methods is to use Shared Data segments that are set up
in the .def file for the DLL. This method is much easier than going
through all the work that memory-mapped files require. There is,
however, a potentially time-consuming surprise in store for you if you
do not understand one caveat about the shared memory segments.

Shared data segments are only shared between copies of a DLL
loaded from the same location in the filesystem. This can be quite
surprising when trying to debug a DLL with shared data segments in
a system with many programs using the DLL. It is not uncommon to
have the DLL loaded by parts of the system from its normal location
and to also have the DLL loaded from the Debug directory in the proj-
ect location. This results in two copies of the shared data segments.

To demonstrate this problem, I have written a very simple DLL that
supports reading and writing a simple integer number between mul-
tiple applications. The DLL simply defines three access functions and
a shared data segment with an integer. The application (included in
this month’s code archive) shows where the DLL is loaded from and
allows the user to read and write integer values. The projects to build
the DLL and application have a “Custom Build Step” that copies the
target to both the bin and bin2 directories.

By running two copies of TheApp.exe from the bin directory, you
can see that writing a value in one instance of the application will
cause that value to be read in the other instance, just as would be
expected.

Now without closing either of these instances, go to the bin2 di-
rectory and start an instance of TheApp.exe from there. Notice that
when doing a read from this instance, you do not get the value writ-
ten by the instances run from bin. As an additional step, you could
run another instance of TheApp.exe from bin2 and see that the in-
stances run from the same directory use the same shared memory.

Preventing Class Derivation in
Visual C++ .NET
BY EHSAN AKHGARI
Ehsan@BeginThread.com

HERE IS A TIP for preventing derivation from a class in C++. Suppose
you have a class B, and you don’t want any class to derive from this
class. C++, unlike other languages such as Java, doesn’t have any
built-in support for this task, but this can be done using virtual in-
heritance. You should create and use a Lock class as this example
shows:

class Lock {
Lock() {}
friend class B;

};

class B : private virtual Lock
{
public:

B() {}
};

class D : public B
{
public:

D() {}
};

int main()
{

B b;
D d;

return 0;
}

B is a friend of Lock, so B::B() has access to Lock::Lock() and can
initialize the virtual base class. On the other hand, D is not a friend of
B, so D::D() can’t initialize the virtual base class due to its inability to
call Lock::Lock(). Thus, attempting to compile the aforementioned
program will lead to an error. Microsoft Visual C++ .NET 2003 pro-
duces the following error messages when compiling this application:

h:\Projects\VC++.NET\test\test\test\test.cpp(17)
: error C2248: ‘Lock::Lock’ : cannot access
private member declared in class ‘Lock’

h:\Projects\VC++.NET\test\test\test\test.cpp(3)
: see

declaration of ‘Lock::Lock’
h:\Projects\VC++.NET\test\test\test\test.cpp(2)

: see
declaration of ‘Lock’
h:\Projects\VC++.NET\test\test\test\test.cpp(22)

: error C2248:
‘Lock::Lock’ : cannot access private member

declared in class ‘Lock’
h:\Projects\VC++.NET\test\test\test\test.cpp(3)

GEORGE FRAZIER is a software engineer in the System Design and
Verification group at Cadence Design Systems Inc. and has been pro-
gramming for Windows since 1991. He can be reached at georgefrazier@
yahoo.com.

Edited by George Frazier T E C H
Please send us your best tricks and hacks—those clever pieces of code to make things
work the way they should! You’ll receive at least $50 for each tip that we print. Send
your submissions to wdletter@cmp.com with the header “Tech Tip submission.”

T I P S

T E C H T I P S

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 29

: see
declaration of ‘Lock::Lock’
h:\Projects\VC++.NET\test\test\test\test.cpp(2)

: see
declaration of ‘Lock’

Do/While Macros Souped Up and
Revisited (First Movement)
BY CINDY ROSS
rossc@us.ibm.com

IN THE JUNE 2003 issue, John Szakmeister suggested that the macro
wrapper (previously presented by Raja Venkataraman) could be im-
proved by removing the do/while construct. But the original version
with the do/while construct is better, as it can be used in any con-
text where a C statement can be used.

For example, using the macro from the previous article, this code
compiles fine:

#define MY_ASSERT_ONE(x) do { \ if (!(x)) { \
_asm int 3 \

} \
} while (0)

main()
{

if (1)

MY_ASSERT_ONE(1);
else

return 1;
}

but we get a syntax error if we omit the do/while construct:

#define MY_ASSERT_ONE(x) { \ if (!(x)) { \
_asm int 3 \

} \
}

main()
{

if (1)
MY_ASSERT_ONE(1);

else
return 1;

}

Do/While Macros Souped Up and
Revisited (Second Movement)
BY PETTER HESSELBERG
petter.hesselberg@accenture.com

REGARDING JOHN SZAKMEISTER’S JUNE 2003 Tech Tip (“A Better
Macro Wrapper for Visual C++”), which was a response to Raja
Venkataraman’s February 2003 Tech Tip (“do/while Macros for C++”).

http://redirect.wdj.com/scripts/redirect.pl?http://www.wibu.com

T E C H T I P S

30 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

Venkataraman’s original Tech Tip starts by showing the problems
associated with a simplistic ASSERT implementation such as this:

#define MY_ASSERT_ONE(x) if (!(x)) { \
_asm int 3 \

}

Using the aforementioned definition, the following code generates
an “illegal else without matching if” compiler error:

if (x)
MY_ASSERT_ONE(y);

else
MY_ASSERT_ONE(z);

This is fixable in two ways: Either remove the semicolons (a strange-
looking and error-prone solution) or insert braces (which is a good
practice in any case):

if (x) { MY_ASSERT_ONE(y);
} else {

MY_ASSERT_ONE(z);
}

Venkataraman then goes on to show the MFC/ATL solution, in
which a semantically NULL do/while loop makes the semicolon re-
quired rather than forbidden:

#define MY_ASSERT_TWO(x) do { \
if (!(x)) { \

_asm int 3 \
} while (0)

This code is, in any case, wrong because it has two opening braces
but only one closing brace. The correct version looks like this:

#define MY_ASSERT_TWO(x) do { \
if (!(x)) { \

_asm int 3 \
} } while (0)

Szakmeister’s Tech Tip update then “improves” on Venkataraman’s
by going back to the original version. He does not discuss the semi-
colon problem, except to note that his version is “harmful if not used
correctly”—this makes you wonder if he actually read all of the orig-
inal Tech Tip.

The standard header file, assert.h, has a different solution:

#define assert(exp) \ (void)((exp) || \
(_assert(#exp, __FILE__, __LINE__), 0))

This approach doesn’t help if you insist on using an inline assem-
bler, though; there’s no way of making an assembly statement part of
an expression. The closest you get is something like this:

int failedAssert(void) { __asm int 3
return 0;

}

#define MY_ASSERT_THREE(x) \
(void)((x) || failedAssert())

This works well enough—except that the interrupt occurs in
failedAssert() rather than at its point of call, and you have to go

manually one step up the call stack in the debugger. But inline as-
sembly is not a necessity in Windows programming; there’s Debug-
Break() to the rescue:

#define MY_ASSERT_FOUR(x) \
(void)((x) || DebugBreak())

But oops—DebugBreak() is a void function, and you can’t have
void as an operand to the || operator. Let’s try the ternary condi-
tional operator instead:

#define MY_ASSERT_FIVE(x) \
((x) ? (void) 0 : DebugBreak())

The trick to safe macro programming in C/C++ is to avoid the out-
er braces—you need an expression rather than a statement. Consid-
er the comma operator, also called the “sequential-evaluation opera-
tor,” which lets you evaluate two or more expressions in a context
where only one expression is allowed. This allows cool macros like
the following, good for trashing a pointer you’ve just released (the
purpose being to root out dangling pointer errors):

#define reset_pointer(p) \
(memset(&(p), 0xacACacAC, sizeof(p)

), \
assert(4 == sizeof(p)))

This is pretty cool, but can be confusing—the comma operator is
easily confused with the comma that separates function or macro ar-
guments; it is emphatically not the same thing. The following exam-
ple shows how you might call a function with three parameters; the
value of the second parameter passed is 3; the value of b after the func-
tion call is 1:

myFunction(a, (b = 1, b + 2), c);

If you absolutely must have inline assembly, I suspect that the
do/while technique really is the safest approach—in spite of its clunk-
iness.

Editor’s note: I hope our reader’s have enjoyed this ongoing debate about
do/while macros (and I’m sure we’ll get the big e-mail gong if not). Ku-
dos to Raja Venkataraman, who started the thread, and to everyone who
vigorously threw in their opinion. Have an opinion of your own about
any of our tips? Please send them to me at georgefrazier@yahoo.com.
w::d

| Download code > windevnet.com/wdn/code/ |

If you absolutely must have
inline assembly, I suspect that the
do/while technique really is the safest
approach—in spite of its clunkiness

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 31

Dino EspositoI N S I D E . N E T

THE WINDOWS FORMS DATAGRID control is a rich
user-interface component that can be effectively
used to enhance the quality of data-bound forms
in .NET desktop applications. The control features
many capabilities including .NET-style data bind-
ing, column binding, plenty of visual settings, au-
tomatic navigation, in-place editing, and hierar-
chical display. It is not perfect, though. In particular,
it doesn’t provide great support for data types more
complex than numbers and strings. For example,
dates can only be rendered as strings and a URL
stored in a data source is nothing more than a string.
Is there a way to improve the rendering for certain
types of data? A helpful suggestion on how to pro-
ceed comes from the Web counterpart of the con-
trol—the ASP.NET DataGrid control.

The ASP.NET DataGrid supports several types
of columns including data-bound, button hyperlink, and templated
columns. The Windows Forms grid control supplies only two types
of columns—textbox and boolean columns. The default type of col-
umn is the textbox column. The text associated with the cell is ren-
dered as the text of an optionally readonly textbox control. If the cell
contains a boolean value, it is rendered through a checkbox. This is
what the control can do for you. If it is not enough, you can only ex-
tend it with custom columns.

Why You Need Custom Columns
Suppose you have a database of articles with columns like title, au-
thor ID, and the URL to the online article. Unless you take steps to
alter it, the DataGrid would show its contents as in Figure 1. There
are a few problems with that grid. First off, the author ID is displayed
as a number whereas the name would have been more appropriate
and clearer for the end user. Second, the URL is static text and is not
clickable. Third, if the user wished to modify the name of the article’s
author, wouldn’t it be nice if you could serve a list of the available op-
tions? In short, all these options are not applicable with built-in
columns; a couple of ad hoc columns will do the job.

A custom column is a class that derives from DataGridColumnStyle.
The base class doesn’t implement all the functions required by the

grid, so when you start creating a new column class,
be prepared to implement a few abstract methods.
In addition, a few methods should be convenient-
ly overridden for a better result. Let’s review the
overall pattern.

Logically speaking, a DataGrid column is a col-
lection of cells—that is, independent objects rep-
resenting a block of the column data. Such a high-
level description clashes with the actual
implementation of the grid in which the whole
content is simply drawn to the underlying window
canvas using GDI+ calls. All in all, this is not much
different from what happens in Win32 program-
ming in which you need to manually paint the win-
dow’s background. The only difference is that the
tools available for the job are of a slightly higher
level. For performance reasons, the DataGrid main-

tains, at most, one instance of a control per column. The lifetime of
this control and, more importantly, its type depend on the charac-
teristics and the implementation of the column class.

When the user clicks on a column cell, the class pops up the hid-
den control and sizes it to fit into the cell bounds. You can choose to
create a brand new instance of the control whenever the user clicks
(single-call pattern), or can you go for a singleton approach: create
the control once and reuse for the duration of the application. De-
pending on your choice, the number of active controls at a time ranges
from 0 (single-call approach, no cell selected) to the number of the
displayed columns.

There are particular types of control behind each type of column.
The DataGridTextBoxColumn class is built around an instance of a
textbox control. Instead, a checkbox control is the bread and butter of
the DataGridBoolColumn class. When you build your own column

Create Custom Columns for the
WinForms DataGrid Control

DataGrid Control is a powerful component, but

you need to customize to get the most out of it

DINO ESPOSITO is Wintellect’s ADO.NET and XML expert and is a
trainer and consultant based in Rome, Italy. He is a contributing edi-
tor to MSDN Magazine, writing the “Cutting Edge” column, and is the
author of several books for Microsoft Press, including Building Web
Solutions with ASP.NET and Applied XML Programming for .NET.
Contact him at dinoe@wintellect.com.

32 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

classes, you can choose the control that best
suits your expectations. For example, if you want

to architect a column optimized for date values,
the DateTimePicker control sounds like the

perfect choice. Incidentally, the MSDN docu-
mentation just contains a sample grid column
for dates based on the date-picker control.

The life of a DataGrid column is spent
switching between two states—read and edit.
When one of the cells is selected (there’s al-
ways one selected cell in a selected row), the
column enters edit mode, and the underlying
control gets displayed within the boundaries
reserved to the cell on the screen. The con-
trol should supply any UI elements that can
be used to edit the current value. The column
is also responsible for committing changes. The
column doesn’t have to physically store the
new value but must pass it to a built-in method
for actual storage. The data is stored in the
bound data source object care of the Data-
Grid’s internal framework.

When the user clicks outside the cell, or
completes the update procedure, the edit mode
is reset, the control is hidden, and the content
of the cell is rendered through normal paint-
ing. Let’s see how all this turns to code with a
concrete example—a hyperlink column.

Create a Hyperlink Column
The class I’m going to create is called Data-
GridLinkColumn and inherits from the stan-
dard base class—DataGridColumnStyle. The
class constructor is quite simple and limited to
initializing the control behind:

public DataGridLinkColumn() : base() {
Initialize();

}
private void Initialize() {

_llControl = new LinkLabel();
_toolTip = new ToolTip();
_llControl.Visible = false;
_inEdit = false;
_inAbort = false;

}

The DataGridLinkColumn is expected to ren-
der a database-stored URL string as a clickable
hyperlink. In the .NET Framework, there’s just
one control that serves that purpose—the
LinkLabel control. The LinkLabel control is
a special type of label that allows you to de-
fine sensitive areas and associate them with
custom information—typically, but not nec-
essarily, a URL. The control renders any link
area with blue underlined text, thus mimick-
ing a web hyperlink. However, when one clicks
on any hyperlinked areas, an event is fired to
the application but no URL navigation takes
place by default. This is an important point to
keep in mind.

As the previous code snippet suggests, the
LinkLabel control provides no specific support
for tooltips—another thing that was easy to
obtain with web hyperlinks. If you want to add
tooltip support to the URL displayed through
the grid, a second control—a TooltTip

I N S I D E . N E T

Figure 1 Without custom columns, the DataGrid control is not very useful

 Method Abstract Description

Abort Yes Initiates a request to interrupt an
 edit procedure.

Commit Yes Initiates a request to complete an
 editing procedure.

ConcedeFocus No Notifies a column that it must release
 the focus to the control it is hosting.

Edit Yes Prepares the cell for editing a value.
GetMinimumHeight Yes Returns the minimum height for a cell.
GetPreferredHeight Yes Returns the height used for automatically

 resizing columns.
GetPreferredSize Yes Returns the preferred size of the cell

 given text to display.
Paint Yes Paints the cells of a column.
SetDataGridInColumn No Does special processing when the column

 is added to the DataGrid control.

Table 1 DataGridColumnStyle overridable methods

protected override void Edit(CurrencyManager source, int rowNum, Rectangle bounds,
bool isReadOnly, string instantText, bool cellIsVisible)

{
if (_inEdit)

return;

// The Link column is NOT editable but when in edit mode switches
// to hyperlink mode
if (cellIsVisible && !_inAbort)
{

ChangeEditMode(true);
_llControl.SetBounds(bounds.X, bounds.Y, bounds.Width, bounds.Height);
_llControl.Text = GetDisplayText(source, rowNum);

// Define the link area (1 covering the whole string)
_llControl.Links.Clear();
string url = (string) GetColumnValueAtRow(source, rowNum);
_llControl.Links.Add(0, _llControl.Text.Length, url);
_toolTip.SetToolTip(_llControl, url);
_llControl.LinkClicked +=new

LinkLabelLinkClickedEventHandler(_llControl_LinkClicked);
}
else
{

ChangeEditMode(false);
_inAbort = false;

}

return;
}

Listing 1 The Edit method

I N S I D E . N E T

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 33

control—must be instantiated. The LinkLa-
bel control is created and marked as hidden.

Table 1 lists the DataGridColumnStyle
methods that you might want to override to
implement a real-world custom column. The
base class DataGridColumnStyle is marked ab-
stract and so are some of its methods. It goes
without saying that you have to override all
abstract methods, otherwise a compile error
will catch you. In addition, to all the neces-
sary overrides, a couple of other methods that

have a concrete implementation in the base
class should be overridden too—ConcedeFo-
cus and SetDataGridInColumn.

The Edit method is invoked when the user
clicks to select (and edit) a particular cell. The
LinkLabel control is configured to work and
bound to the URL and the text for the cell.
The column class also defines three custom
properties aimed at defining the binding mech-
anism between the column and the grid’s data
source. The properties are Text, DisplayMem-
ber, and NavigateUrlField.

The former two regard the text of the hy-
perlink; the latter is about the URL to jump to.
If you set the Text property, then all the cells
of the column will display the same text; oth-
erwise, the values in the DisplayMember field
are used. Likewise, the values in the Naviga-
teUrlField are used to link the cells on a per-
row basis. Listing 1 shows the source code of
the Edit method. The ChangeEditMode helper
function sets internal flags that determine the
modality of the column. The LinkLabel con-
trol is resized to fit into the room of the select-
ed cell. It is also assigned text depending on the
Text and DisplayMember values.

The Links collection of the LinkLabel con-
trol tracks the sensitive areas of the control.
A sensitive area is given by a range of charac-
ters in the bound text. A link area is a pair of
integers indicating the start position and the
width of a clickable substring. The following
sample code defines a single link area that spans
over the length of the text:

Figure 2 The sample application in action

If you want to architect a
column optimized for date
values, the DateTimePicker
control sounds like the
perfect choice

http://redirect.wdj.com/scripts/redirect.pl?http://www.gimpel.com

I N S I D E . N E T

34 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

_llControl.Links.Add(0, _llControl.Text.Length, url);

The third argument—the URL—is not used to navigate upon
clicking. That value, instead, is passed on to the event handler that
will take care of the click event on the LinkLabel control.

void _llControl_LinkClicked(object sender,
LinkLabelLinkClickedEventArgs e)
{

string target = e.Link.LinkData as string;
if (target != null)

Process.Start(target);
}

When the LinkClicked event fires, the event handler gets a data
structure that contains a Link field. The LinkData property of the
field stores the URL (or any other information) that was associat-
ed with the area. To complete the demonstration and launch the
browser, you call the static Start method on the Process class.
The Process class is defined in the System.Diagnostics name-
space.

If the Edit method is at the heart of the column class, the Com-
mit method represents another critical point because it is where
any changed value is validated and stored into the data source.
Since the DataGridLinkColumn class doesn’t show editable values,
the implementation of Commit is minimal. (See the companion
source of this article and the MSDN documentation for more in-
formation.)

Painting the Cell
What happens when a cell is not selected for editing? As mentioned,
the underlying control is hidden and the default, read-only, text is
painted on the window background. The DataGridColumnStyle class
defines three overloads for the method Paint. One of these overloads
holds a concrete implementation; two of them are abstract and must
be overridden in any derived class.

The Paint method must accomplish one key thing: drawing the
text for the cell using the current visual settings such as font and col-
ors. In particular, you have to determine the background and the fore-
ground brushes according to the grid’s style for items, alternating
items, and selected items. In addition, you must select the grid’s font
to avoid any graphical discrepancy.

The Paint method is also the only way you have to implement
more ambitious forms of customization over a DataGrid control. For
example, if you want to draw cells with negative values in red (or code
any similar, data-driven logic) you can do that only by overriding the
Paint method.

Putting It All Together
Figure 2 shows the sample application in action. At first, the cells in
the URL column display as normal text. As soon as you click to se-
lect the cell, the text morphs into a LinkLabel control, and by click-
ing, you jump to the desired URL. How can you bind a custom col-
umn to a DataGrid control?

If you want to have total control over the columns displayed, you
have to define a table style. Listing 2 shows how to do that. Each col-
umn is represented by a column object added to the GridColumn-
Styles collection of the DataGridTableStyle object. The grid table
style object is the skin used to build the grid’s user interface. The grid
can have multiple skins if needed.

Summary
Creating custom columns for a Windows Forms DataGrid control is
a necessity if you’re going to use it in real-world applications. Al-
though powerful, the default version of the control is rarely optimal
for a realistic end-user application. So far, resorting to a third-party
grid was a foregone conclusion. While that still remains an effective
option, the customization layer of the built-in DataGrid control can
help you roll your own customization and increase your expertise.
On the down side, experimentation takes time. What’s certain is that
the DataGrid control is a component more powerful than any oth-
er we had in the past bundled with Visual Basic. Evaluating its cost-
effectiveness in the economy of a particular project, though, is com-
pletely up to you. w::d

| Download code > windevnet.com/wdn/code/ |

private void ConfigureGrid()
{

// Define the table style
DataGridTableStyle skin = new DataGridTableStyle();
skin.MappingName = "Titles";

// #1 -- Title column
DataGridLinkColumn columnTitle = new DataGridLinkColumn();
columnTitle.MappingName = "URL";
columnTitle.HeaderText = "Title";
columnTitle.NavigateField = "URL";
columnTitle.DisplayMember = "title";
columnTitle.Width = 190;
skin.GridColumnStyles.Add(columnTitle);

// Add the table style info (must occur HERE)
grid.TableStyles.Add(skin);

}

Listing 2 Defining the columns to bind to the
DataGrid

http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 35

ONE OF THE BIG selling points of .NET is the new graphics library called
GDI+. Reading through all of the articles and books written about
GDI+, you get the impression that it is a feature only available to .NET
developers, but this, in fact, is far from the truth. The GDI+ library is
implemented as a native DLL and the classes in .NET are merely a
wrapper around this native code. The GDI+ DLL is provided as part of
Windows XP, but it is also installed with the .NET redistributable. This
native code is provided through exported DLL functions, and the Plat-
form SDK provides a thin wrapper class library that gives a friendlier
face to these functions. In this article, I will describe these wrapper class-
es and explain how you can write rich graphics with native C++.

Getting Started
The GDI+ library is contained in a DLL called “GdiPlus.dll,” and it’s
provided with XP as part of the operating system. Normally, a system li-
brary is located in the %systemroot%\System32 folder because Load-
Library automatically searches this folder for system libraries, and this is
the case when you install the .NET framework on Windows 2000. How-
ever, this universal dumping ground approach has caused all kinds of
problems in the past, particularly when more than one version of a li-
brary is available. XP has native support for multiple versions of libraries
through side-by-side installation and manifest files. XP calls such shared
libraries “assemblies,” but make no mistake—these are not .NET as-
semblies, they do not contain .NET code; instead, they are native code
DLLs that are located and loaded using an extended version of the Win-
dows DLL loader. A manifest file is an XML file that contains version-
ing information about the library, and an application can also have a
manifest file to indicate the version of the libraries that it expects.

When a side-by-side shared library is installed on XP, Windows In-
staller will store the library in a folder in the side-by-side assembly
cache: %systemroot%\WinSxS. The subfolder is named according
to the version of the library, so different versions of the same library
are available on the machine. For example, my XP machine has serv-
ice pack 1 installed, which included a new version of GdiPlus.dll, so
there are two versions of this DLL with the following file versions as
seen through the properties dialog in Windows Explorer:

5.1.3097.0 (xpclient.010817-1148)
5.1.3101.0 (xpsp1.020828-1920)

The first file is GDI+ Version 1.0.0.0, the second file is GDI+ Ver-
sion 1.0.10.0.

When XP loads an application, it examines the manifest file pro-
vided with the application to determine the version of GDI+ that the
application requires. If the manifest or the version information is not
available, XP will load the latest version of the library from the side-
by-side assembly cache.

Headers and Libraries
As with all Windows libraries, you can access the GDI+ facilities
through exported functions. If you run DUMPBIN /EXPORTS on
this library, you will see over 600 functions with names that start with

Gdip. The GDI+ library is ob-
ject oriented and it contains
various “classes” for things like
fonts, bitmaps, and brushes.
However, DLLs are not class
based; instead, functions are
exported as C functions, so
each method of each GDI+
“class” is exported as a stand-
alone C function. Of course, a
class method is applied to a
particular instance of the class
and has access to the instance
through a this pointer. This
is simulated with the export-
ed functions through the first
parameter, which is an opaque

pointer to a data structure of the particular object type. The defini-
tions of these functions can be found in the GdiPlusFlat.h header file
in the Platform SDK and the data structures are defined in GdiPlus-
GpStubs.h. The import library is called GdiPlus.lib.

For example, the functions associated with solid brushes are:

GpStatus WINGDIPAPI GdipCreateSolidFill
(ARGB color, GpSolidFill **brush);

GpStatus WINGDIPAPI GdipSetSolidFillColor
(GpSolidFill *brush, ARGB color);

GpStatus WINGDIPAPI GdipGetSolidFillColor
(GpSolidFill *brush, ARGB *color);

GpStatus WINGDIPAPI GdipCloneBrush
(GpBrush *brush, GpBrush **cloneBrush);

GpStatus WINGDIPAPI GdipDeleteBrush
(GpBrush *brush);

GpStatus WINGDIPAPI GdipGetBrushType
(GpBrush *brush, GpBrushType *type);

The first function can be considered the constructor, which will
create a brush with a particular alphaRGB color. This function re-
turns an instance of GpSolidFill, which is passed as the first param-
eter to the other solid fill brush functions. The last three functions in
this list can be used with any of the GDI+ brush types and GdipDelete-
Brush can be considered the destructor of brushes, and is used to clean
up the resources used by the brush. If you look up GpBrush and Gp-
SolidFill in GdiPlusGpStubs.h you’ll see these definitions:

class GpBrush {};
class GpSolidFill : public GpBrush {};

RICHARD GRIMES is an author and speaker on .NET. His latest book,
Programming with Managed Extensions for Microsoft Visual C++
.NET, updated for Visual C++.NET 2003, is available now from
Microsoft Press. He can be contacted at richard@richardgrimes.com.

Richard Grimes V I S U A L C + + . N E T E X P E RT

GDI+ isn’t just for .NET apps

Drawing on GDI+ From Native C++

V I S U A L C + + . N E T E X P E RT

36 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

These classes have no members, which re-
inforces the fact that when they are used as
parameters to the Gdip functions, they are
opaque parameters and do not refer to any data
that you can use.

Although you can call these GDI+ export-
ed functions in your application code, the flat
API is a pain to use, and you do not have the
advantages of object-oriented encapsulation.
To address this issue, Microsoft has provided
C++ thin wrapper classes that give access to
these GDI+ objects through C++ objects. In
total, there are 30 header files describing these
classes with one master header file, GdiPlus.h,
that includes them all. The GdiPlusFlat.h head-
er file is included in GdiPlus.h in a namespace
called “DllExports” to isolate the flat API.

A Basic GDI+ Application
GDI+ does not change the basic windowing fa-
cilities of Windows, it just gives you a richer set
of APIs to draw in an existing window. So, an
application that uses GDI+ must create a win-
dow (and register a class for the window) and
implement a message pump to dispatch messages
meant for the window to a custom windows pro-
cedure. This is how a Windows application has
always been implemented, and there is no change

with GDI+. But, the GDI+ library must be ini-
tialized before you can use it, and it must be shut
down before your process finishes—this is per-
formed by the functions GdiplusStartup and
GdiplusShutdown, respectively.

Listing 1 shows the basic code for initializ-
ing the GDI+ library; the initialization occurs
before the message pump starts. GdiplusStart-
up is passed a GdiplusStartupObject to indi-
cate the version of the library and to allow you
to provide a callback function for debug builds.
You can also indicate in this parameter if you
would prefer to replace the GDI+ background
thread with your own thread, in which case
the final parameter is used to return hook and
unhook functions to setup and shutdown this
thread. Once GDI+ has initialized, you will be
returned a token in the first parameter that is
passed to GdiplusShutdown after the message
pump has completed and all GDI+ objects
have been released.

Once you have initialized the library, you
can use the GDI+ objects in your paint han-
dlers. The process is straightforward and is con-
siderably helped by the wrapper classes that
perform clean up of the wrapped GDI+ object
in the destructor so that you can allow vari-
ables to go out of scope to clean up resources.
The workhorse of GDI+ is the Graphics class,
which should be familiar to .NET developers.
An instance of this class is created by passing
a device context handle to the constructor, or
a pointer to an Image object if you want to
draw to an offscreen buffer. The Graphics class
has all of the methods that you need to draw
lines, curves, strings, bitmaps, and shapes.

Solid shapes are drawn using a Brush object,
and lines are drawn using Pen objects; pens
and solid brushes are constructed from a Col-
or object that gives both the RGB value of the
color and an Alpha value that determines the
transparency of the color. Listing 2 shows ex-
ample code to draw a gray string in the center
of a window’s client area. The DrawString
method takes a Font object and a Brush ob-
ject to indicate how the text should be drawn.
I have used the version of DrawString that
takes a bounding rectangle as a parameter, so

I also have to pass a StringFormat object to
indicate how the string will be drawn inside
this rectangle: In this case, the string should
be centered vertically and horizontally.

GDI+ offers many features that are not part
of GDI. I have already mentioned that colors
have an Alpha value, which means that you
can blend colors by drawing two colors at the
same position. Another way to do this is with
a gradient brush, where you supply two colors
and two points and GDI+ will blend from one
color to the other along the line defined by
the points. GDI+ also has native support for
cardinal splines, and support for multiple im-
age formats such as JPEG, GIF, and TIFF.

Coordinate Systems
GDI+ uses three coordinate systems to ration-
alize the GDI coordinate system, which are called
world, page, and device. The units that you pass
to the Graphicsmethods are world units, which
can have any scale and any origin. These units
are converted to page units, which always have
their origin at the top left-hand corner of the
client area, but can be scaled to real-world units
like inches or millimeters. Finally, page units are
converted to device units, which are pixels. You
have control over these units through transforms.
Page units are set through Graphics::Set-
PageUnit(). For example, to use inches you call:

Graphics graphics(hdc);
graphics.SetPageUnit(UnitInch);

If you draw a line straight after these state-
ments, each unit will be an inch and the origin
will be the top left-hand corner. Further, the x-
coordinate increases from left to right and the
y-coordinate increases from top to bottom. Since
your windows will only be a few inches wide or
high, it means that most of the coordinates that
you will use will be fractions of an inch. This is
why rectangles, points, and sizes are represent-
ed with classes that have floating-point num-
bers. However, the width of the pen that is used
will also be in inches, and the default width will
be one unit, which will give you a wide pen! It
makes more sense to use smaller units. To do

case WM_PAINT:
{

PAINTSTRUCT ps;
HDC hdc = BeginPaint(hwnd, &ps);

RECT rect;
GetClientRect(hwnd, &rect);

Graphics graphics(hdc);
// Use a gray brush
SolidBrush brush(Color(255, 128, 128, 128));

LPCWSTR str = L"Windows Developer Magazine";
int len = wcslen(str);

// Calculate the font size to fill the window width,
// assume average width is less than height of font
int pixelsPerChar = (rect.right-rect.left)/len;

FontFamily fontFamily(L"Arial");
Font font(&fontFamily, pixelsPerChar,

FontStyleRegular, UnitPixel);

RectF client(rect.left, rect.top,
rect.right, rect.bottom);

// Indicate that we want the string in the
// center of the window
StringFormat format;
format.SetAlignment(StringAlignmentCenter);
format.SetLineAlignment(StringAlignmentCenter);

// Draw the string
graphics.DrawString(str, -1, &font, client, &format, &brush);
EndPaint(hwnd, &ps);

}

Listing 2 Sample code to print a string in the center of the window

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE,
LPSTR, int iCmdShow)

{
GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken;
GdiplusStartup(&gdiplusToken,

&gdiplusStartupInput, NULL);
// User method to register a windows class
RegisterMyClass(hInstance);
// User method to create a window of that class
HWND hWnd = CreateMyWindow(hInstance);
ShowWindow(hWnd, iCmdShow);
UpdateWindow(hWnd);

MSG msg;
while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

GdiplusShutdown(gdiplusToken);
return msg.wParam;

}

Listing 1 Basic entry point for an
application that uses GDI+

V C X

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 37

this you can pass a scaling factor to Graph-
ics::SetPageScale(), and to indicate that
each unit is 100th of an inch you can call:

graphics.SetPageScale(0.01f);

If you want to shift the origin or change the
direction of the axes, you have to apply a world
transform, which will convert the world units
(in the format you prefer) to page units. World
transforms can be applied in one of two ways:
through calling the various Transform meth-
ods on the Graphics class or by creating a Ma-
trix object. To mirror along the x-axis and to
get the y-coordinates to increase from bottom
to top, the y-coordinate should be scaled by –1:

graphics.ScaleTransform(1.0f, -1.0f,
MatrixOrderAppend);

Moving the origin is just as simple: Call the
TranslateTransform method with suitable val-
ues to move the origin from the top left-hand
corner to the new location. However, you have
to take into account the other transforms that
might be applied. So if we assume that the page
transforms outlined earlier will be performed on
the coordinates, we need to scale the location
of the new origin. Listing 3 shows how to place
the origin in the center of the window assum-
ing the transforms shown already. First, this code
gets the width of the client area in device units
and divides by two to get the center of the win-
dow in device units. This is then scaled to world
units by dividing by the page scale and by the
screen resolution in pixels per inch. The y trans-
form is calculated in a similar way.

Wrap Up
GDI+ brings you great new graphic features:
graphics transforms, cardinal splines, alpha
blending and gradient brushes, and support for
creating and rendering multiple image formats.
All of these facilities are available to non.NET
code because GDI+ itself is a native code li-
brary. The GDI+ C++ wrapper classes offer a
simplified way to access the GDI+ functions
making unmanaged graphics code simple and
straightforward to write. w::d

| Download code > windevnet.com/wdn/code/ |

RECT rect;
GetClientRect(hwnd, &rect);
float xOrigin = 0.5f * (rect.right - rect.left)/

(graphics.GetDpiX() * graphics.GetPageScale());
float yOrigin = 0.5f * (rect.bottom - rect.top)/

(graphics.GetDpiY() * graphics.GetPageScale());
graphics.TranslateTransform(

xOrigin, yOrigin, MatrixOrderAppend);
// Draw a 1 inch box with a gradient pen
LinearGradientBrush grad(

PointF(-50.0f, 0.0f), PointF(50.0f, 0.0f),
Color(255, 255, 0, 0), Color(255, 0, 0, 255));

// 1 inch square, centered on the origin
graphics.FillRectangle(&grad, -50, -50, 100, 100);

Listing 3 GDI+ code to shift the
origin to the center of the window

http://redirect.wdj.com/scripts/redirect.pl?http://www.dinkumware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com

GET ADDITIONAL INFORMATION ABOUT PRODUCTS
AND SERVICES YOU SEE ADVERTISED FAST!

PHONE: Contact the vendor directly using the information in the advertisement.

WEB: Go to the development tool page on our web site, www.windevnet.com.
From there you can link to the advertisers below.

38 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

www.windevnet.com

ADVERTISER PAGE

Alexsys Corporation C3

Amyuni Technologies 23

BeCubed Software, Inc. 40

Borland C4

Charles River Media 14

CMP Developer Network

Syndication Services 1

Dice 24

Dinkumware Ltd. 37

dtSearch Corporation 5

FairCom 17

Gimpel Software 33

Iocomp Software 37

Marx Software Security 40

Melissa Data 40

Programmer's Paradise 9

Programmer's Paradise 11

Sourcegear 21

Tal Technologies Inc. 40

Tall Tree Software 27

Tech Conferences C1

ADVERTISER PAGE

Thb Componentware 40

Wibu-Systems 29

Windows Developer Network 4

WinSummit 2003 2

Xoreax Software 34

ADVERTISER INDEX

■ Michele Hurabiell Regional Manager—West

415-947-6199 mhurabiell@cmp.com

■ Ed Day Regional Manager—Central/Southeast

785-838-7547 eday@cmp.com

■ Jon Hampson Regional Manager—East

603-924-8500 jhampson@cmp.com

■ ■ ■ Julie Thibault Account Manager—All Regions

603-924-8400 jthibault@cmp.com

WEST EAST

West

Central/Southeast

East

http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.amyuni.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://connect.borland.com/borcon03
http://redirect.wdj.com/scripts/redirect.pl?http://www.charlesriver.com
http://redirect.wdj.com/scripts/redirect.pl?http://syndication.sdmediagroup.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dice.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dinkumware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts
http://redirect.wdj.com/scripts/redirect.pl?http://www.gimpel.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.MelissaData.com/windev
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.tall-tree.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.DevConnections.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.wibu.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/webextra/2003/0313/
http://redirect.wdj.com/scripts/redirect.pl?http://www.winsummit.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com

Trolltech Announces Qt Script for
Applications
Trolltech has made Qt applications scriptable with the release
of Qt Script for Applications (QSA). Written to the Qt API, QSA
takes static Qt/C++ applications and makes them dynamic. The
QSA toolkit include: the QSA SDK, which allows Qt developers
to make their applications scriptable; Qt Script, a multiplatform
interpreted scripting language based on the ECMAScript stan-
dard; QSA Workbench, a lightweight scripting environment in-
cluding code formatting, syntax highlighting, code completion,
and stack-trace output; and the Input Dialog Framework, a
high-level GUI API that allows scripters to write dialogs.

Trolltech
650.813.1676
www.trolltech.com

Universe Online Releases
WebControls 2.0
Universe Online has announced WebControls 2.0, a suite of
JavaScript web-based controls for all popular browsers and ASP, JSP,
ASP.NET, and J2EE platforms. The WebControls 2.0 framework uses
an object-oriented approach to application development. The
Control suite includes menu, toolbar, treeview, panel, and button
controls. Features include flexible menu and toolbar item layouts,
collapsible or expandable menu and toolbar items, use of format-
ted HTML and embedded forms with any item, absolute and rela-
tive positioning, custom images with rollovers, and server-side
helpers for ASP.NET, Java, and ASP environments. WebControls 2.0
ranges in price from $99.00–$249.00, depending on configuration.

Universe Online Inc.
248.681.1274
www.uolweb.com

TMG Development Ships
ASP.NET Localizer
TMG Development’s ASP.NET Localizer toolkit aims to provide all
the design and run-time support necessary for producing an in-
ternationalized web site using ASP.NET. Using ASP.NET Localizer, a
designer types the localized strings and image source locations
into the Visual Studio designer, and Localizer generates a new
.resx file for that language, with all the property changes written
to this new file. The developer can switch backwards and for-
wards between languages using Localizer, and the design surface
is kept up to date with the current language selection. When the
web application is run, Localizer checks the current locale and
generates the web form using resources for that locale.

Localizer 1.0 requires Microsoft Visual Studio .NET, and the
Microsoft .NET runtime version 1 or above. An individual license
for Localizer costs $199.99.

TMG Development Ltd
www.winformreports.co.uk

Compuware Delivers DriverStudio 3.0
The DriverStudio suite of tools is designed to help device-
driver developers write, debug, test, and tune driver code that
meets the standards for Windows Hardware Quality Labs
(WHQL) driver certification. DriverStudio 3.0 now integrates
with Microsoft Visual Studio .NET as well as with Visual Studio
6. Support has been added for USB 2.0 and AVStream drivers,
Connection Oriented NDIS drivers, and wireless IEEE 802.11b
drivers. Additionally, the IEEE1394 (Firewire) and PLX9056
chipset support has been improved. DriverStudio 3.0 is current-
ly shipping at a U.S. price of $2499.

Compuware
313.227.7300
www.compuware.com

BitShape Launches BitShape iEdit 2.0
BitShape has released BitShape iEdit 2.0, a multifunctional text
editor for web programmers and web designers. BitShape iEdit
has a fully customizable editor, supports tag insertion from the
toolbar, and works directly with PHP/Apache servers. The pro-
gram also supports bookmarks inside the code. The results of
any changes in the code are immediately shown in the pro-
gram’s Internal view window. Other features include templates,
text processing and formatting, syntax coloring, different en-
coding options, smart pasting and indentation, a clipboard
viewer, WinXP/Win2K style menus, and support for plug-ins.
BitShape iEdit is 2 MB in size and costs under $30.00.

BitShape
www.bitshape.com

Emurasoft Updates EmEditor
EmEditor is a text editor for Windows that fully supports Uni-
code. The editor features an assortment of plug-ins for specific
needs, while maintaining a small and fast core program. EmEdi-
tor’s features include clickable URLs, search and replace, and
keyboard, toolbar, and menu customization. Syntax highlighting
is supported for many programming languages. EmEditor is
compatible with Windows XP and shares the Windows XP look
and feel. A single user license costs $30.00.

Emurasoft Inc.
425.882.9988
www.emeditor.com

Microsoft Unveils Java Language
Conversion Assistant 2.0
Built on ArtinSoft migration technology, the Java Language Con-
version Assistant (JLCA) automates the process of migrating lan-
guage syntax and library calls from existing Java language source
code into Visual C# .NET. With Version 2.0 of the JLCA, developers
can convert JSPs and servlet applications to ASP.NET. Microsoft

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 39

NEW PRODUCTS
Submit new product announcements to wdletter@cmp.com.

http://www.trolltech.com
http://www.uolweb.com
http://www.winformreports.co.uk
http://www.compuware.com
http://www.bitshape.com
http://www.emeditor.com

40 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

COMPRESSION PLUS 5.0

http://www.becubed.com

Compression Plus supports many
other popular archive formats, in
addition to ZIP, including ARC, ARK,
PAK, ARJ, GZ, LBR, TAR, TAZ,
TGZ, Z and ZOO files. You can also
UUENCODE, UUDECODE, decode
a Base64 file, decode a MIME
attachment which uses Base64
encoding and more! Includes 32bit
Self Extractor.

Trial version available on our
website

Formerly from EllTech

has also published a JSP to ASP.NET conversion guide, which fea-
tures a step-by-step code conversion of the http://www
.codenotes.com/ web site. The guide supports the documented
migration with videos, white papers, sample code, and additional
resources. The JCLA 2.0 is available on the MSDN web site at
http://msdn.microsoft.com/vstudio/downloads/tools/jlca/.

Microsoft Corporation
425.882.8080
www.microsoft.com

Desktop Software Offers XL Report
Builder v2.0

XL Report Builder from Desktop Software allows users to
build reports with user-defined parameters from any ODBC
database, in Microsoft Excel format. Macros or built-in Visual
Basic can be used, and reports can be built singly or in
books. Reports can use several sources in different formats; it
is possible to generate a single report using MS SQL and Ac-
cess. A command-line interface is provided as well as the
GUI. SQL queries are supported for data set creation, and
stored procedures can be called. XL Report Builder v2.0
costs $99.00.

Desktop Software Ltd
www.dswsoft.com

NEW PRODUCTS
D

EV
EL

O
PE

RS
’

M
A

RK
ET

PL
A

C
E

http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.MelissaData.com/windev
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
http://www.microsoft.com
http://www.dswsoft.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com

http://redirect.wdj.com/scripts/redirect.pl?http://connect.borland.com/borcon03

THE .NET FRAMEWORK HAS an ambitious goal
of providing a completely new environment
for Windows programming. The .NET library
provides a complete replacement for most of
the Win32 API, but there are few Win32 API
features that have no corresponding classes in
the .NET library. Most of these API routines
can be accessed by a .NET program using Plat-
form Invoke. One of the most important
Win32 features, which cannot be easily ac-
cessed from a .NET application, is Windows
hook support. Dino Esposito provides a partial
solution for this problem in “Windows Hooks
in the .NET Framework”(MSDN Magazine,
October 2002 [1]), but his approach covered
only local (thread) hooks, which are running
in the same process as the .NET application.

The question of how to implement global
hooks in .NET persists. This interest is under-
standable: For many years, global hooks were
used to implement such powerful applications
as Spy++, automated testing, accessibility tools,
and popup stoppers. Lack of global hook sup-
port in .NET explains why Spy++ was not up-
dated in Visual Studio.NET, unlike most oth-
er tools and utilities. Spy++ is the primary
debugging tool for Windows UI programming
because it provides a dynamic view of windows
and messages, something a debugger cannot do.
Unfortunately, Spy++ became almost useless
for .NET programmers. It can only display win-
dows and messages—not .NET objects and
events. When developing .NET GUI applica-
tions using the Windows Forms library, I felt a
need to see a hierarchy of .NET objects, ex-
amine their properties, and monitor events.

That’s why I developed a technique of in-
jecting a .NET object into the address space
of another .NET application, which allows me
to bring Spy into the new age. In this article,
I will explain how I used global hooks, the
CLR hosting interface, the .NET remoting in-
terface, and reflection to achieve my goal.
Sources for a simple .NET spy are available for
download from the Windows Developer web site
as well as from my web site (http://www
.forwardlab.com/). This simple spy displays a
list of running .NET applications on a com-
puter, and allows me to select one, inject an
agent into it, display a tree of Windows Forms
controls in that application, and watch the
flow of events. I also developed a more sophis-
ticated DotNetSpy application, which allows
me to examine and modify properties on ob-
jects, execute methods, and select events to
watch. It is also available from my web site. Us-
ing the presented technique and sources, it
should be easy to develop powerful new .NET
tools for debugging, automated testing, system
monitoring, and so on.

Design
After studying the problem, I divided it into
four parts. The first is how a .NET application
(spy) can inject code (agent) into another ap-
plication space (target). The second is how the
agent can attach to an existing instance of the
.NET Runtime working inside the target. The
third is how to examine .NET objects and
monitor events in the target. And the fourth
is how to communicate information back to
the spy.

While looking for answers for the first ques-
tion, I studied several techniques, such as the
CLR Debugging API, the .NET remoting API,
and Windows hooks. The debugging API is
very powerful and will meet my needs. It al-

lows, among other things, enumerating run-
ning processes, attaching to a process or start-
ing a new one, and injecting a code into the
debuggee and executing it. For more informa-
tion about the debugging API see, “Common
Language Runtime Debug Overview,” an ar-
ticle on CLR Debugging in MSDN Magazine
[2]. I decided not to use the debugging API
primarily because it will not allow spying on
an application while running under Visual Stu-
dio debugger (since two debuggers cannot be
attached to the same application simultane-
ously). I used the debugging API only to enu-
merate the running .NET processes.

.NET remoting is the official way of “ac-
cessing objects in other application domains.”
At first I was fooled by this title and hoped
that it would solve all my problems. A quick
study of .NET documentation revealed that
remoting is based on the client-server model,
which requires both applications to run ob-
jects that are designed to communicate with
each other. This, obviously, will not meet my
goal of injecting an agent into any .NET ap-
plication without raising its suspicion.

Finally, I decided to use a Windows hook to
inject the agent. A limitation of the hook ap-
proach is its inability to target applications
without windows, such as Windows services.
This is not a problem for the spy, which is de-
signed to work with GUI applications. If there
is a need to target nonGUI applications, oth-
er means of cross-application penetration can
be used, such as the CreateRemoteThread API
The hook approach requires writing a native
(unmanaged) Win32 DLL, then calling this
DLL from a .NET application using Platform
Invoke. The local hook solution described in
[1] did not require a native DLL because a
.NET delegate was passed as a callback to the
CallNextHookEx routine. Since the local hook

DMITRI LEMAN is a consultant in Silicon
Valley specializing in .NET and Java devel-
opment. He can be reached at DmitriL@
Forwardlab.com.

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 43

D M I T R I L E M A N

Spying on .NET Applications

Using global hooks, the CLR hosting interface,

and the .NET remoting interface to monitor the

flow of events in your .NET apps

callback is called on the same thread, the delegate remains valid and
accessible. This, obviously, is not possible in my case since I want the
callback to be called in the target application space. Therefore, I should
either use a global hook (associated with all threads on the system)
or a hook associated with the thread, which owns a window in the
target application. The second question is the most challenging—
how can Win32 code peek inside a .NET Runtime environment and
inject a .NET agent into it? One approach is to use the CLR Debug-
ging API, but we already discarded it.

The second technique is to use the CLR hosting interface. The key
routine of this interface is CorBindToRuntimeEx. As the name of this
function suggests, it does exactly what I need: It lets Win32 code bind

to the CLR environment. Unfortunately, the documentation says that
hosts use this API to load CLR into a process but does not mention
that it can also be used to attach to an already running CLR. There-
fore, I will have to use this routine in an undocumented way. There
is a danger that in future versions, Microsoft may patch this loophole
and break my spy. Then I will have to find a more tricky way to achieve
my goal. But in .NET Versions 1.0 and 1.1, CorBindToRuntimeEx
works perfectly. It provides access to the IcorRuntimeHost interface,
which lets hosts start and stop CLR, enumerate domains running in
the process, and create and configure new domains. The hook code
will enumerate existing domains (represented by the _AppDomain in-
terface), then call the CreateInstanceFrom method on each domain
to create an instance of the agent .NET class inside that domain. For
a more traditional use of CLR hosting, see [3]. This completes the
most complex part of the spy design. At this point, the agent object
is instantiated inside the target application and is ready to take it un-
der control.

To explore the structure of objects in the target application, the
agent will use methods of the System.Windows.Forms.Control class.
This is the base class for other classes in the System.Windows.Forms
assembly, which have corresponding Win32 windows. The .NET
Framework maintains a hierarchy of Control-based objects, which
mostly corresponds to the hierarchy of windows. Therefore, to let the
spy display a windows hierarchy, the agent should find the top-level
control in the target application and then recursively enumerate its
children. The agent will use the Control.FromHandle static method
to get a Control object corresponding to the window handle passed
by the spy. Then the Control.TopLevelControl property will give
the main control and the Control.Controls collection will provide
access to children. The agent will also bind handlers to several events
in each Control object, such as Click, GotFocus, KeyDown, Mouse-
Down, and others. These handler routines (located in the agent) will
report events to the main spy for printing. A more sophisticated spy
should allow the user to monitor selected events on selected controls,
but the simple spy included with this article will monitor a fixed se-
lection of events on all discovered controls.

Spy should also display properties of objects. This can be done by
direct reading properties of the Control object, such as Width, Height,
and so on. Alternatively, the agent can use the .NET reflection API
to examine all fields and properties (including private) of the Con-
trol object. Here lies the biggest advantage of .NET Spy over old
Spy++. Over the last decade, many new controls were introduced
such as tree, list view, and so on, but Spy++ was frozen, displaying
only the coordinates, style, and a few other properties of a window.
Like a Visual Studio debugger, .NET Spy can display all fields and
properties of whatever class the target application uses to implement
a window.

The final question is: How can the agent communicate the col-
lected information back to headquarters? Here .NET remoting fits
nicely. When designing a communication using a remoting API, it is
necessary to assign the roles of client and server, determine the acti-
vation mode, choose a channel type, and decide what classes have to
be transported, how to transport them (by value or by reference), and
how to share metadata. In the case of Spy, I decided to make the main
Spy application play the role of a server and make the server object
a singleton. One or many agents may be simultaneously active in dif-
ferent target applications. An agent should instantiate a client class,
which should connect to the server and get a reference to the remote
server object using the System.Activator.GetObject method. Then
the client should call a method on a server and pass a reference to it-
self. The server should maintain a collection of all currently running
clients (agents). This should allow the spy and the agent to call meth-
ods on each other to pass requests, get results, and monitor events.
When the target is terminated normally, the destructor of the client
should be called and the client should remove its registration from
the server. Both client and server classes should belong to the same
assembly packaged as a DLL. A path to this DLL should be passed to
the _AppDomain.CreateInstanceFrom routine discussed earlier.

The .NET remoting interface provides a choice of two channels:
HTTPChannel and TCPChannel. HTTPChannel uses HTTP pro-
tocol and SOAP format (by default) to transport method calls and
objects. HTTPChannel is the best for communication across the In-
ternet and through firewalls. Since Spy and agents run on the same
computer, TCPChannel is the best choice because it has less over-
head. Each client and the server should register an instance of
TCPChannel with two important properties: port and name. Most
.NET samples use a fixed port number, but it may cause conflicts with
other applications. Therefore, I decided to pass port number 0 to have
the system automatically assign an unused port. Then the server should
call GetUrlsForUri to get the URL (which includes an automatical-
ly assigned port) and the client should use that URL to connect to
the server. Spy will use the HookDLL to pass the URL to the agent.

The final issue to decide is which objects should be exchanged be-
tween the agent and the spy. Some objects are remotable while oth-
ers are nonremotable. Nonremotable objects cannot be represented
in another application domain. Remotable objects can be marshaled
either by reference or by value. The objects marshaled by reference
are represented in another domain by proxies. A client calls the proxy,
which transfers calls to the original object. All modifications made
by the client to the state of the object stays with the object. Objects
marshaled by value are copied and recreated in the remote domain.
All calls and property changes made by the client to these objects
only affect the copy and are never propagated to the original object.
As I already explained, the server and the agent should exchange ref-
erences to be able to call each other. This means that both the client
and server should be marshaled by reference. This is achieved by de-
riving these classes from System.MarshalByRefObject. Finally, the
agent will use several small classes to pass collected information to
the server. These classes should be marshaled by value, which is done
by marking them with the [Serializable] attribute. I considered

44 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

L E M A N

Some objects are remotable;
others aren’t. Nonremotable objects can’t
be represented in another app domain.
Remotable objects can be either
marshaled by reference or by value

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 45

passing Control and other objects from the
target application to the spy by reference to
let the spy examine them using reflection. This
worked for standard .NET classes, but an ex-
ception was thrown if an object from the ap-
plication’s private assembly was passed. This
means that unless the spy loads all private as-
semblies of all target applications, it should not
directly touch references to their objects.
Therefore, the agent should dump all proper-
ties and fields of these objects to a string and
pass them to the spy as a string. Now the whole
picture of the spy design is clear and shown in
Figure 1.

Implementation
As Figure 1 shows, there are three components
in Spy: Spy.exe, InjectLib.dll, and Hook.dll.
The first two are .NET-managed components
and will be written in the C# language. Hook.dll
is an ordinal Win32 DLL and will be written
in C++. Visual Studio.NET can manage these
different types of projects in the same solution
(workspace). Therefore, I first created a blank
solution called “SimpleSpy,” then added a new
Visual C# project using the Windows Appli-
cations template and named it “SpyGUI.” Af-
ter that, I added another Visual C# project us-
ing the Class Library template and named it
“InjectLib.” Then I added a new Visual C++
project using the Win32 project template,
named it “HookDLL,” and selected option
“DLL” in the Win32 Application Wizard.

Next, I wrote the Windows hook imple-
mentation in the file HookDLL.cpp. It exports
a single function, InjectSpyAgent, with four
arguments: target window handle, path to In-
jectLib assembly DLL, agent object name, and
server URL. This function copies arguments
to a shared memory area, sets the CallWnd-
Proc hook for the target window’s thread, sends
a message to that window, and removes the
hook. The CallWndProc hook routine calls the
Bind routine (shown in Listing 1), which does
the actual injection. It is important to avoid
accidental loading of the .NET Framework
into applications that don’t use it. Therefore,
HookDLL should not statically link to CLR
libraries and should not call LoadLibrary on
any of them. Instead, Bind calls GetModule-
Handle(“mscoree”). “mscoree” is the DLL
that exports the CorBindToRuntimeEx method,
which gives access to the main CLR hosting
interface ICorRuntimeHost. Then it calls the
EnumDomains method on this interface and
enumerates domains using the NextDomain
method. Each domain is represented by inter-
face AppDomain, which is a native representa-
tion of managed interface System._AppDomain.
This interface has (among others) several over-
loaded CreateInstance methods. The native
version of the interface has these methods
numbered (because the C language does not
support overloading). The Bind routine calls

the CreateInstanceFrom_3 method to in-
stantiate the agent in the domain. In order to
use these interfaces, HookDLL.cpp has the line
#import “mscorlib.tlb”, which includes a na-
tive definition of many .NET interfaces (in-
cluding _AppDomain). I also included headers
“mscoree.h” for the CLR hosting interface def-
initions and “corhdr.h” for various other .NET
definitions. I added the function EnumProcess-
es to the HookDLL to enumerate .NET
processes using the IcorPublishProcessEnum
interface from the .NET debugging interface.

To implement the second component, named
“InjectLib,” I renamed “Class1.cs” (created by
Visual Studio) to “InjectLib.cs.” This source
file will contain the namespace InjectLib with
a few classes: SpyServer, AgentClient, Mem-
berDescr, and ClassDescr. SpyServer (shown
in Figure 1) is a singleton performing the role
of a .NET remoting server. It is instantiated by
the Spy GUI and is used to communicate with
AgentClient. AgentClient is instantiated in-
side the target application(s) by the HookDLL.
As explained in the design section, SpyServ-
er and AgentClient extend MarshalByRefOb-
ject, allowing them to exchange remote ref-
erences with each other. Two small classes,
ClassDescr and MemberDescr, are used to pass
information from the agent to the server. These
classes are marked by a [Serializable] attribute
to be marshaled by value. All their members
must be serializable as well. I only used mem-
bers of type String and ArrayList. At the be-
ginning of InjectLib.cs there are several using
statements that permit use of classes in Win-
dows Forms, remoting, diagnostics, collections,
and reflection namespaces without prepending
full names to all classes. To compile success-
fully, the project should have references to as-
semblies containing all used namespaces. Some

references were added automatically when the
project was created, but I needed to add refer-
ences to System.Windows.Forms and Sys-
tem.Runtime.Remoting manually using the
Project|Add Reference dialog.

At first, Spy GUI calls the static Initmethod
in the SpyServer class. This method creates
and registers an instance of the TCPChannel class
using ChannelServices.RegisterChannel()
and an instance of WellKnownServiceTypeEn-
try with RemotingConfiguration.Register-
WellKnownServiceType(). This well-known
service type entry creates an association of a
URI (I use string SimpleSpy) to the class (Spy-
Server) and the activation pattern (singleton).
Then I pass the URI SimpleSpy to GetUrls-
ForUri on the channel to get the URL such as
“tcp://localhost:1031/SimpleSpy.” 1031 is an au-
tomatically assigned port, and SimpleSpy is the
URI associated with the SpyServer class. Now
any other process on the same computer may
get access to the single instance of SpyServer
inside the Spy GUI by calling Activator.Get-
Object(typeof(SpyServer), URL). The Spy-
Server.Init method has a few lines dealing
with the incompatibilities between .NET Run-
time 1.0 and 1.1. To strengthen security, Run-
time 1.1 does not allow passing object references
through remoting channels unless the Type-
FilterLevel property of the serialization
provider is set to TypeFilterLevel.Full. This
breaks programs written for 1.0 SDK. Programs
written for 1.1 will not work under Runtime 1.0
because property TypeFilterLevel does not ex-
ist in 1.0. To let the spy work under both run
times, I decided to use reflection GetProper-
ty() and SetValue() methods. I also wrote the
PrintRemotingConfiguration method, which
prints all registered client and service type en-
tries to help in debugging.

L E M A N

Spy process

Spy Exe

init InjectLib DLL

get information

connect

hook

HookDLL

instantiate

Domain

Domain

Target process

Target process

Target objects

InjectLib
namespace

ObjectView

ProcessView

SpyServer
AgentClient

Figure 1 The .NET Spy components include Spy.exe, InjectLib.dll, and
Hook.dll

Spy GUI needs a reference to the instance of SpyServer, but it
cannot simply call new SpyServer() because the remoting framework
will create another instance later, which will violate the singleton
design. Therefore, the Spy GUI calls AgentClient.Connect()—the
same method that will be called by the AgentClient constructor in-
side the target application. Like SpyServer.Init, AgentClient.Con-
nect also instantiates and registers TCPChannel and then calls Ac-
tivator.GetObject with the server’s URL to get a reference to
SpyServer. Since Spy GUI calls Activator.GetObject in the same
domain that the server is registered, a direct reference is returned.
When other applications call the same Activator.GetObject, they
will get a reference to a proxy representing SpyServer.
SpyServer has a RegisterAgent method, which is called from the

constructor of AgentClient—and UnregisterAgent—from the Agent-
Client.Dispose. These methods add and remove agents to/from the
hash table m_Agents. Another method, GetAgent(), is called by the

Spy GUI to find an agent in m_Agents for the given process ID. Cur-
rently, the simple spy is limited to one agent per process and cannot
differentiate between domains. The ReportEvent() method is called
by agents to report an intercepted event in the target. Finally, the
AgentClient.Dispose() method disconnects all agents, so target ap-
plications will not hang after the Spy GUI terminates.

Besides the Dispose and Connectmethods already mentioned, Agent-
Client has GetRelatedWindows and GetWindowPropsmethods. They are
called by SpyServer when the GUI needs to retrieve the window tree
and properties of individual window. AppendWindow is an internal method
that is called recursively to generate the window tree. Another internal
method, AddEventHandlers, adds handlers to several events on a given
window. Then there are several event handler routines, such as Mouse-
MoveEventHandler. All of them format event arguments into a string and
call ReportEvent, which forwards the call to SpyServer.ReportEvent.
This concludes the implementation of the InjectLib component.

46 | windows::developer NETWORK OCTOBER 2003 www.windevnet.com

L E M A N

//Bind routine works in the address space of the target process.
//It uses CLR hosting interfaces to inject an agent into the CLR environment.
enum HookErrors Bind()
{

TRACE("Bind()\n");
ICorRuntimeHost *l_pHost = NULL;
HCORENUM l_hEnum = NULL;
IUnknown * l_pUnknown = NULL;
mscorlib::_AppDomain * l_pDomain = NULL;
enum HookErrors l_eError = eNoErrors;
try
{

LPWSTR l_pszVersion = NULL;
HINSTANCE l_hMscoree = GetModuleHandle("mscoree");
if(l_hMscoree == NULL)
{

TRACE("GetModuleHandle(mscoree) returned NULL\n");
return eNoClrRuntime;

}
T_CorBindToRuntimeEx * l_pCorBindToRuntimeEx = (T_CorBindToRuntimeEx *)

GetProcAddress(l_hMscoree, "CorBindToRuntimeEx");
if(l_pCorBindToRuntimeEx == NULL)
{

TRACE("GetProcAddress(CorBindToRuntimeEx) returned NULL\n");
return eCannotGetAddrCorBindToRuntimeEx;

}
HRESULT l_hResult = l_pCorBindToRuntimeEx(l_pszVersion,

NULL,
NULL,
CLSID_CorRuntimeHost,
IID_ICorRuntimeHost,
(void **)&l_pHost);

if(FAILED(l_hResult) || !l_pHost)
{

TRACE("CorBindToRuntimeEx() failed. Result %d\n", l_hResult);
return eCannotGetRuntimeHost;

}
l_hResult = l_pHost->EnumDomains(&l_hEnum);
if (SUCCEEDED(l_hResult))
{

while(SUCCEEDED(l_hResult =
l_pHost->NextDomain(l_hEnum, &l_pUnknown)) && l_pUnknown)

{//l_pUnknown is System.AppDomain interface
l_pUnknown->QueryInterface(__uuidof(mscorlib::_AppDomain),

(void**)&l_pDomain);

if(l_pDomain)
{

_bstr_t l_Path(g_szAssemblyPath);
_bstr_t l_Name(g_szAgentClass);

SAFEARRAY * l_pArray;
SAFEARRAYBOUND l_Bounds[1];
l_Bounds[0].lLbound = 0;
l_Bounds[0].cElements = 1;
l_pArray = SafeArrayCreate(VT_VARIANT, 1, l_Bounds);
if(l_pArray == NULL)
{

TRACE("SafeArrayCreate failed\n");
l_eError = eSafeArrayFailure;

}
else
{

long l_Index;
_variant_t l_Element(g_szServerURL);
l_Index = 0;

l_hResult = SafeArrayPutElement
(l_pArray, &l_Index, &l_Element);

if(FAILED(l_hResult))
{

TRACE("SafeArrayPutElement failed. Result %d\n",
l_hResult);

l_eError = eSafeArrayFailure;
}
else
{

TRACE("Before CreateInstanceFrom_3\n");
mscorlib::_ObjectHandlePtr l_Handle =

l_pDomain->CreateInstanceFrom_3(l_Path,
l_Name,
VARIANT_TRUE,
mscorlib::BindingFlags_Default,
NULL/*Binder*/,
l_pArray, NULL/*culture*/,
NULL/*activationAttributes*/,
NULL/*securityAttributes*/);

TRACE("CreateInstanceFrom_3 ret %x\n", l_Handle);
l_eError = l_Handle?

eNoErrors : eCreateInstanceFailed;
}
SafeArrayDestroy(l_pArray);

}
l_pDomain->Release();
l_pDomain = NULL;

}//if(l_pDomain)
l_pUnknown->Release();
l_pUnknown = NULL;

}//while enum
l_pHost->CloseEnum(l_hEnum);
l_hEnum = NULL;

}//if (SUCCEEDED(l_hResult))
else
{

TRACE("EnumDomains() failed. Result %d\n", l_hResult);
l_eError = eEnumDomainsFailed;

}
}
catch(...)
{

TRACE("Exception in Bind()\n");
l_eError = eException;

}
try
{

if(l_pHost)
{

if(l_pDomain)
l_pDomain->Release();

if(l_pUnknown)
l_pUnknown->Release();

if(l_hEnum)
l_pHost->CloseEnum(l_hEnum);

l_pHost->Release();
}

}
catch(...)
{
}
TRACE("Bind() returns %d\n", l_eError);
return l_eError;

}//Bind

Listing 1 The Bind routine

The next step is to implement the Spy GUI. This will be a very
simple GUI with two windows classes. The first class (ProcessesView)
will be a form with a list view and three buttons: Close, Hook, and
Refresh. The list view will be populated with running processes on
the computer. The second class (ObjectView) will also be a form with
a label and tree view. This view will be used to display a window’s hi-
erarchy and properties for a selected window. Events observed in the
target application will simply be printed to the console along with de-
bug information. I used the Visual Studio form designer to define the
GUI layout, modify properties, and assign button-click handlers.

Next, I wrote the routine RefreshProcList, which calls Sys-
tem.Diagnostics.Process.GetProcesses() to get an array of all
processes on the current computer. Unfortunately, I didn’t find any
way from the managed code to determine whether a process has a
.NET environment. Therefore, I added a call to the EnumProcesses
function in HookDLL to enumerate .NET processes. Then I added
code to add .NET processes to the list view. The RefreshProcList
routine is called from constructor and from click handled for the Re-
fresh button. It appears that the Process object returned from Get-
Processes() does not hold any resources and, therefore, calling Dis-
pose() is not necessary. Then I added the InitServer method to
perform SpyServer initialization. This routine is executed on a sep-
arate thread started by the constructor of ProcessesView. A handler
for the Hook button first gets a selected list view item and a Process
object associated with it. Then it calls the InjectSpyAgent method
from HookDLL, SpyServer.GetAgent to get a remote reference to
the agent in the target process. After that it calls GetRelatedWindows
on this agent and, finally, passes the returned window tree to a new
ObjectView window object. To compile the call to the unmanaged
InjectSpyAgent function, it is necessary to write a prototype at the
beginning of the ProcessesView class. I also assigned OnOb-
jectViewAction as a handler for the ActionEvent in the ObjectView.
This method (called when the user double clicks on a window in the
tree) calls AgentClient.GetWindowProps and creates another instance
of ObjectView to display the properties of the selected window. Ob-
jectView implementation is simple. It has two overloaded SetInfo
methods to populate the tree view with either window tree or object
properties.

Debugging
Spy has code running in different processes— some code is managed,
some native. The operation of installing a hook, injecting an agent,
and establishing a connection was the most difficult to troubleshoot.
It may have been possible to use a combination of Win32 and man-
aged code debuggers, but I decided to use simple print statements to
the console. I wrote a simple test application, which contains a sin-
gle form with many different controls. I converted the Spy GUI and
Test applications from Windows Application to Console Application
using the Output Type property on the projects. Then I wrote a batch
file, TestRun.bat, which uses the “start /b” command to launch Test.exe
and SpyGUI.exe from the same console. I injected a lot of Con-
sole.Out.WriteLine calls into most managed methods in the spy and
printf in HookDLL. I also ensured that all exceptions are caught and
printed.

Security
At first glance, the technique presented here is a security breach be-
cause it injects an agent into an unsuspecting application and takes it
under control (calling methods, modifying fields, and so on). Closer
examination shows that the spy does not present a higher risk than
any other Win32 application. Any Win32 application can install hooks,
create remote threads, and use Win32 and .NET debugging APIs to
break into other applications (some limitations may be imposed by NT
security). The .NET environment has more sophisticated security,

which allows the customization of access to specific resources. By de-
fault, code originating from the local computer receives the Full Trust
permission set, which gives it access to all resources. The spy always
operates on the local computer because Windows hooks cannot be in-
stalled remotely. Therefore, by default, the AgentClient can access ob-
jects, fields, and properties (including private) in the target applica-
tions. There are ways to customize .NET security policy on different
levels (enterprise, computer, user, and domain). Therefore, it is possi-
ble to ban a specific assembly (for example, SpyGUI or InjectLib) from
accessing certain resources (for example, unmanaged code). But it is

not feasible to explicitly specify all assemblies, which may use the in-
jection technique. It is also possible to programmatically customize
.NET security. For example, attributes may be added to an assembly,
class, or a member to restrict access. While testing the spy, I found that
the ShowParams property in the System.Windows.Forms.Control class
has an attribute that bans access by anybody except for the Sys-
tem.Windows.Forms assembly. When AgentClient tried to retrieve
this property, an exception was thrown. The current version of the
simple spy displays this exception instead of the property value (don’t
be surprised to see a security exception on the console while running
the spy). Therefore, my conclusion is that the spy plays by Win32 and
.NET security rules and does not pose an additional security risk. Of
course, downloading unknown applications from the Internet and run-
ning them locally is very dangerous.

Conclusion
The injection technique presented here uses a combination of a Win-
dows global hook, .NET CLR hosting, remoting, and reflection to
build a key to unlock the door to the .NET Runtime environment. It
can be used to build a .NET version of Spy++ and automated testing
tools. It will be interesting to see what other new tools and applica-
tions can be developed using the injection. Unfortunately, a danger
remains that the CorBindToRuntimeEx function will be modified in
the future versions of .NET to close the existing backdoor. Until that
happens, we have a good opportunity to debug and test our .NET ap-
plications using .NET Spy and other new tools.

References
1. “Windows Hooks in the .NET Framework,” Dino Esposito. MSDN

Magazine, October 2002.
2. “CLR Debugging: Improve Your Understanding of .NET Internals

by Building a Debugger for Managed Code,” Mike Pellegrino. MSDN
Magazine, November 2002.

3. “Implement a Custom Common Language Runtime Host for Your
Managed App,” Steven Pratschner. MSDN Magazine, March 2001.
w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com OCTOBER 2003 windows::developer NETWORK | 47

L E M A N

Like a Visual Studio debugger, .NET Spy can
display all fields and properties of
whatever class the target app uses to
implement a window

	NextTOC:
	nxtTOC:
	TOC:

