
Book Review: Practical C++
Programming

AUG
2003Utilities

Generate Better
Docs with Doxygen

Map SQL Data to
Class Properties

Multiple Inheritance
in VC++ 7.0

Access IDL ref Types
as C++ References

Install a USB
Filter Driver

Access Old
List-View Headers

Avoid the MIDL
Semantic Analysis Bug

www.windevnet.com

Volume 2 / No. 8

http://redirect.wdj.com/scripts/redirect.pl?http://www.nsoftware.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.qualcomm.com/brew/wdm

http://redirect.wdj.com/scripts/redirect.pl?http://www.sdexpo.com

WWW.windevnet.COM AUGUST 2003 windows::developer NETWORK | 3

C O N T E N T S

8 Remote Reboot Shell Extension
MATTHEW WILSON If you work on multiple machines in a distributed environment,
shutting down or rebooting remote machines can be a hassle. Rather than logging on to
pcAnywhere or deploying the sneaker net, it would be nice to handle this task with a
simple mouse click. Here is a shell extension that provides shutdown/reboot of a remote
host via an Explorer shortcut. This article will describe the main technical aspects of this
utility—the Remote Reboot context menu handler shell extension—and highlight some
issues one must consider when creating such shell extensions using ATL, STL, and WTL.

22 Better Docs with Doxygen
MARTIN KEESEN Whether working on a new project or reverse engineering existing
source code, Doxygen is a free tool that can easily generate high-quality documentation.
And its add-on extensions let you integrate it right into the Visual Studio IDE, generate
code diagrams, and more.

COLUMNS
BUG++ OF THE MONTH

28 Multiple Inheritance
JEFF CLAAR Support for managed classes in
Visual C++ 7.0 leads to some unexpected, yet
convenient, multiple-inheritance behavior. Also,
Jeff bids a fond farewell in his final “Bug++ of the
Month” column.

31 Tech Tips GEORGE FRAZIER
Installing a USB Filter Driver
ALAN MACINNES
Accessing IDL ref Types as C++ References
MATTHEW WILSON
Accessing Old List-View Headers
MATTHEW WILSON
Avoiding the MIDL Semantic Analysis Bug
MATTHEW WILSON

INSIDE .NET

34 Mapping SQL Data to Class
Properties
DINO ESPOSITO The XmlSerializer class
includes deserialization events that you can use
whenever the input stream contains an XML docu-
ment that doesn’t match the schema of the object
being deserialized. You can use it to map SQL
Server data directly to class instances. This month,
we’ll show how to execute a query that returns
XML data and map the various nodes to fields of a
predefined class.

37 Books in Brief
VICTOR VOLKMAN Practical C++ Programming is
a thorough introduction to the basics of C++, with
lots of pragmatic advice. Although it puts little
emphasis on objects, it’s a good fit for anyone
with a working knowledge of any programming
who wants to get started quickly on C++.

4 From the Editor
38 Advertiser Index
39 New Products
40 Developers’ Marketplace

COMING NEXT MONTH:
SECURITY

FEATURES

developer VOL 2 • NO. 8

DEPARTMENTS

VISIT US ONLINE: www.windevnet.com

AUG
2003

PUBLISHER EDITOR IN CHIEF
Kerry Gates John Dorsey

E D I TO R I A L
MANAGING EDITOR Amy Stephens
CONTRIBUTING EDITORS Jeff Claar, Dino Esposito,
George Frazier, Richard Grimes, Petter Hesselberg,
Paula Tomlinson, Victor R. Volkman
EDITORIAL ADVISORY BOARD Mark Baker, Jeff Claar,
Dino Esposito, George Frazier, Richard Grimes,
Petter Hesselberg, Mark Nelson, Mark Russinovich,
Paula Tomlinson, Victor R. Volkman
ASSOCIATE EDITOR Della Song
ART DIRECTOR Beatriz Américo
WEBMASTER Joe Lucca
SEND READER MAIL TO: wdletter@cmp.com
SUBSCRIPTION INQUIRIES: wdnetwork@halldata.com

A D V E RT I S I N G A N D M A R K E T I N G
DIRECTOR OF SALES David Timmons
REGIONAL MANAGER, EAST
Jon Hampson 603-924-8500 jhampson@cmp.com

REGIONAL MANAGER, CENTRAL/SOUTHEAST
Ed Day 785-838-7547 eday@cmp.com

REGIONAL MANAGER, WEST
Michele Hurabiell 415-947-6199 mhurabiell@cmp.com

ACCOUNT MANAGER, ALL REGIONS
Julie Thibault 603-924-8400 jthibault@cmp.com

PRODUCTION COORDINATOR
Michael Penne mpenne@cmp.com

DIRECTOR OF MARKETING Karen Tom

C I RC U L AT I O N
SENIOR CIRCULATION MANAGER Cherilyn Olmsted
ASSISTANT CIRCULATION MANAGER Gwen Olson
SUBSCRIPTIONS: Annual renewable print subscriptions to Windows Developer
Network are $34.99 U.S., $45 Canada and Mexico, $65 elsewhere. Payments
must be made in U.S. dollars. Make checks payable to Windows Developer
Network.
CUSTOMER SERVICE: For subscription orders and questions, contact
lawrencecs@cmp.com.
ADVERTISING: For rate cards or other information on placing advertising in
Windows Developer Network, contact the advertising department at
785-841-1631, or write Windows Developer Network, 1601 W. 23rd St.,
Suite 200, Lawrence, KS 66046-2700 USA.
Entire contents Copyright © 2003 CMP Media LLC, except where otherwise
noted. No portion of this publication june be reproduced, stored, or transmitted
in any form, including computer retrieval, without written permission from the
publisher. All Rights Reserved. Quantity reprints of selected articles june be
ordered. By-lined articles express the opinion of the author and are not necessar-
ily the opinion of the publisher. Printed in the United States of America.
NOTE: Windows is a registered trademark of Microsoft Corporation and is used
in the title of Windows Developer Network by CMP Media LLC under license
from owner. Windows Developer Network is an independent publication not affili-
ated with Microsoft Corporation. Microsoft Corporation is not responsible in any
way for the editorial policy or other contents of the publication.
Windows Developer Network (ISSN 1543-6462) is published monthly by
CMP Media LLC, 600 Harrison St., San Francisco, CA 94107 USA, 415-947-
6000.

C M P M E D I A L L C
CORPORATE
PRESIDENT AND CEO Gary Marshall
EXECUTIVE VICE PRESIDENT AND CFO John Day
EXECUTIVE VICE PRESIDENT AND COO Steve Weitzner
EXECUTIVE V.P., CORPORATE SALES AND MARKETING Jeff Patterson
CHIEF INFORMATION OFFICER Mike Mikos
SENIOR V.P., OPERATIONS William Amstutz
SENIOR V.P., H.R. AND COMMUNICATIONS Leah Landro
VICE PRESIDENT AND GENERAL COUNSEL Sandra Grayson
MARKET
PRESIDENT, GROUP PUBLISHER TECHNOLOGY SOLUTIONS Robert Faletra
PRESIDENT, GROUP PUBLISHER HEALTHCARE MEDIA Vicki Masseria
V.P., GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
V.P., GROUP PUBLISHER INFORMATION TECHNOLOGY Michael Friedenberg
V.P., GROUP PUBLISHER ELECTRONICS Paul Miller
V.P., GROUP PUBLISHER NETWORK TECHNOLOGY Fritz Nelson
V.P., GROUP PUBLISHER SOFTWARE DEVELOPMENT MEDIA Peter Westerman
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Shannon Aronson
CORPORATE DIRECTOR, AUDIENCE DEVELOPMENT Michael Zane

| Download code > windevnet.com/wdn/code/ |

PDF EXTRAS

Download the PDF version of this month’s
issue to access bonus features. This content
includes:

• Additional listings and figures for
“Remote Reboot Shell Extension” plus a
sidebar on WTL & ATL

windows::developer NETWORK

http://windevenet.com/wdn/code/

BORLAND HAS BEEN CONTINUING its efforts to be the Switzerland of development tools.
This summer it released several new products promoting both the .NET Framework as well
as Java 2 Enterprise Edition. In June, Borland was on hand at TechEd in Dallas demonstrat-
ing its new C# Builder IDE (formerly codenamed “SideWinder”). John Kaster, Borland’s Se-
nior Developer Relations Manager, gave two talks on building database apps with C#
Builder and SQL Server. C# Builder will be bundled with developer licenses for SQL Server
as well as Borland’s own InterBase and IBM’s DB2. The IDE’s interface should be familiar to
anyone who has used C++ Builder.

In the week after TechEd, the Borland team was in San Francisco at JavaOne
promoting Janeva, its new bridging technology for connecting .NET front ends to
CORBA apps and J2EE-based servers. Janeva incorporates into C# Builder or VS.NET to
let developers generate C# stubs and assemblies. Janeva translates between the .NET data
types and Java data types. No modifications are needed on the server side, and Janeva-
enabled client apps do not require a JVM to access the J2EE server.

Boz Elloy, Vice President and General Manager of Enterprise Solutions, discussed the
genesis of Janeva at a JavaOne roundtable discussion on Java and .NET interop. “We’re
seeing a lot of demands from all the J2EE customers that still might get a significant
investment in their back-end systems. And what I want to do is to leverage the strength
of Microsoft .NET with the high fidelity UI client.”

Of course, web services are designed to accomplish this kind of cross- platform interop,
but if the server components do not provide a web service interface, they would need to
be modified to do so. Janeva provides a solution that requires no modification to the
back-end components.

In addition, security strategies are still evolving for web services, and the overhead of
converting data to and from plain text is also a concern in large-scale J2EE systems.
According to Elloy, the transfer of data in a Janeva-based solution would be considerably
faster.

Janeva is free for developers to download and develop with, but licensing fees are
required for deployed apps. For more information, see http://www.borland.com/janeva/.

Borland’s support to the .NET Framework will continue to grow, too—it has been
providing previews of Delphi for .NET to its Delphi 7 users, and Delphi for .NET will
probably be timed to launch at the next BorCon in November.

John Dorsey

Editor in Chief

wdeditor@cmp.com

: :

4 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

ED I TORF R O M T H E

http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/cdrom/

You’ve got a 12-month development project.

Introducing Microsoft Windows Server 2003. Do more with less.

Microsoft® Windows® Server 2003 and the new Visual Studio® .NET 2003 provide you with the most productive
application platform for building, deploying, and managing connected applications. Everything from design through
deployment is now more effi cient. Because the .NET Framework is tightly integrated into both products, you’re freed
from writing plumbing code so you can focus on delivering real business value. You also get simpler and faster
deployment (thanks to the elimination of DLL version confl icts). Try this new application platform for yourself at
msdn.microsoft.com/windowsserver2003/tryit Software for the Agile Business.

The Middleware Company compared the .NET Pet Shop Web application on Windows Server 2003 to the performance and
scalability of a comparable, optimized J2EE TM application. The .NET connected application on Windows Server 2003 is more
than 250% faster, 76% less expensive based on price/performance, and required 11,000 fewer lines of code.

© 2003 Microsoft Corporation. All rights reserved. Microsoft, Visual Studio, and Windows are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. The names of actual companies and products mentioned herein may
be the trademarks of their respective owners.

http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/windowsserver2003/tryit

You have three months to do it.

http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/windowsserver2003/tryit

AS SOMEONE WITH MORE machines than monitors, I use an active
keyboard/screen/mouse switcher. I’m also known to roam about the
home with my laptop when the ambient noise from the kids exceeds
a tolerable threshold, plugging into the various ports I’ve had installed.
Whether you work in similar conditions or operate in a large distrib-
uted office, it can be a bit of a pain when you need to shutdown or
reboot another machine. Rather than having to switch to an active
monitor, or log on to pcAnywhere, or walk across the office, wouldn’t
a simple mouse click be nicer? (Of course, physiologists would say that
a walk across the office is exactly what is needed to forestall our droop-
ing statures, but that’s another issue.)

A few years ago, I wrote a control panel applet that allows one to
reboot/shutdown remote hosts, and that served its purpose nicely.
However, since I am a big fan of shell extensions—and provide a num-
ber of them for free at http://shellext.com/—I thought it might be nice
to write one that provides shutdown/reboot of a remote host via an
Explorer shortcut. This article will describe the main technical as-
pects of the solution—the Remote Reboot context menu handler shell
extension—and highlight some issues one must consider when cre-
ating such shell extensions. The implementation is largely ATL, with
various STLSoft (my project for bringing STL to the masses, located
at http://stlsoft.org/) and WTL (see the online sidebar “WTL & ATL”)
components thrown in for good measure. The finished component is
available for free along with the other Synesis Software Shell Exten-
sions (from http://shellext.com/) from Version 1.5.1 onwards.

Rebooting a Remote Host
Rebooting a network server is pretty straightforward. You call the
Win32 function InitiateSystemShutdown(), passing the host name,
a timeout, and specifying whether to reboot rather than shutdown,
and whether to force application closure. You also pass a message string
that will be displayed on the remote host during the period between
the start of the shutdown and the machine actually shutting down,
as can be seen in Figure 1.

There are two issues we must face when using this function. First,
InitiateSystemShutdown() is only supported on NT-family (NT4,
2000, XP) systems; on 95-family (95, 98, Me) systems it simply re-
turns a failure code. Second, you must have appropriate permissions
to affect the shutdown. Specifically, you need the
SE_REMOTE_SHUTDOWN_NAME privilege on any remote hosts
that you wish to close. If you don’t have this, then the Remote Re-
boot shell extension is not going to work for you; it will report an Ac-

cess Denied message box. Since the rights and privileges associated with
your logon identity are written into your user token at log on, and do
not change during the course of your user session, any changes made
on your behalf by the system administrators will require you to log off.
(In such circumstances it’ll probably be less hassle to walk over to the
machine and reboot it manually.) For those who administer their own
systems, the remote shutdown right is set by adding the requisite
user/group to the “Force shutdown from a remote system” right as shown
in Figure 2, which shows an NT 4 server dialog.

Context Menu Handler
Shell Extensions
Context menu handler shell extensions, like all active shell exten-
sions, are in-process COM servers that implement certain interfaces
and provide, upon registration, certain registry entries. When the user
right-clicks on one or more items within Explorer, on the desktop, or
within standard File dialogs (GetOpenFileName(), GetSaveFile-
Name()), the registry entries for the particular file type(s) are con-
sulted and the appropriate context menu handler shell extensions
loaded and initialized. For example, when right-clicking on the file
“kernel32.dll,” the registry will be searched for at least the keys
HKEY_CLASSES_ROOT\dllfile\shellex\ContextMenuHandlers
and HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers.
If either of these keys exist, and have subkeys, the GUIDs in the de-
fault values of the subkeys represent the CLSIDs of the context menu
handlers to be loaded and activated.

For network server shortcuts, the requisite key is NetServer, so your
context menu handler must install under HKEY_CLASSES_
ROOT\NetServer\shellex\ContextMenuHandlers. At this point it
is worth noting that we are talking about right-clicking on shortcuts
to network servers. The extension here does not operate on the items
within “Network Neighborhood”/“My Network Places,” which I pre-
sume is another kind of shell extension—a namespace extension.
(And that’s another story…)

Shutdown or reboot a remote host via an

Explorer shortcut

Remote Reboot Shell
Extension

MATTHEW WILSON

MATTHEW WILSON holds a degree in Information Technology and a
Ph.D. in Electrical Engineering, and is a software-development consultant
for Synesis Software. Matthew's work interests are in writing bulletproof
real-time, GUI, and software-analysis software in C, C++, C#, and Java. He
has been working with C++ for over 10 years, and is currently bringing STL-
Soft.org and its offshoots into the public domain. Matthew can be con-
tacted via matthew@synesis.com.au or at http://stlsoft.org/.

8 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

© 2003 Intel Corporation Intel, the Intel logo, Pentium, Itanium, Intel Xeon and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others.

YOU SAVE UP TO $272! Paradise # Retail Discount

Intel® Thread Checker 1.0 for Windows
(includes VTune™ Performance Analyzer) I23 0A3A $1,198.00 $925.99

Intel® VTune™ Performance Analyzer v7.0 I23 0A2N $699.00 $539.99

Download a Free Trial at:
programmersparadise.com/intel/wdj

To order or request additional
information call:
800-423-9990

Email: intel@programmers.com

03CT08F

Introducing a Powerful New Debugging Tool
for Threaded Applications

Intel® Thread Checker 1.0 for Windows*
Intel® Thread Checker 1.0 for Windows* helps you debug
Win32* and OpenMP* threaded applications. The Intel®

Thread Checker uses an advanced error detection engine
to find bugs that might otherwise go undetected in your QA
process. Quickly find threading bugs that would take days
or weeks to find using traditional tools and methods!

If you work with threaded code, you should download a
free trial. When you purchase Intel® Thread Checker you
also receive the Intel® VTune™ Performance Analyzer.

Error
Classification

Identifies
6 levels of
threading

issues from
errors and

warnings to
informative
comments

Diagnostics View
Lists specific
information on
each error—
race conditions,
stalled threads,
deadlocks and
more…

▲

▲
Source Code View
Clicking in diagnostics
view takes you directly
to the specific source
code line.

▲

“Using Intel Thread Checker we
discovered two elusive bugs on
the very first day...”

—Farzin Shakib
President ACUSIM Software, Inc.

NEW!

Intel® VTune™
Performance Analyzer 7.0
The award-winning VTune™ Performance Analyzer
helps you improve your application performance by
enabling you to locate and remove bottlenecks in
your code. Features like the Intel Tuning Assistant
give detailed guidence on tuning your code.

http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com

10 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

W I L S O N

Figure 1
Shutdown notification dialog

Figure 2
Enabling
SE_REMOTE_SHUTDOWN_NAME

Figure 3
Remote reboot context menu
items

interface IShellExtInit
: public IUnknown

{
STDMETHOD(Initialize)(LPCITEMIDLIST pidlFolder,

LPDATAOBJECT lpdobj,
HKEY hkeyProgID) = 0;

};

interface IContextMenu
: public IUnknown

{
STDMETHOD(QueryContextMenu)(HMENU hmenu,

UINT indexMenu,
UINT idCmdFirst,
UINT idCmdLast,
UINT uFlags) = 0;

STDMETHOD(InvokeCommand)(LPCMINVOKECOMMANDINFO lpici) = 0;
STDMETHOD(GetCommandString)(UINT idCmd,

UINT uType,
UINT * pwReserved,
LPSTR pszName,
UINT cchMax) = 0;

};

Listing 1
Context menu handler shell extension

STDMETHODIMP CRemoteReboot::Initialize(LPCITEMIDLIST /* pidlFolder */,
LPDATAOBJECT lpdobj,
HKEY /* hkeyProgID*/)

{
HRESULT hr;

if(!system_version::winnt())
{

// Can only use remote shutdown functions from NT family machines.
hr = E_FAIL;

}
else
{

SynesisAtl::DumpFormats(lpdobj);

// Determine whether there is a single selection

HWND hwndFocus = ::GetFocus();
int cSelections = ListView_GetSelectedCount(hwndFocus);

if(cSelections != 1)
{

hr = E_FAIL;
}
else
{

// Retrieve the file-name
FORMATETC fe;
STGMEDIUM sm;

fe.cfFormat = ::RegisterClipboardFormat(TEXT("Shell IDList Array"));
fe.ptd = NULL;
fe.dwAspect = DVASPECT_CONTENT;
fe.lindex = -1;
fe.tymed = TYMED_HGLOBAL;

hr = lpdobj->GetData(&fe, &sm);

if(SUCCEEDED(hr))
{

// CF_IDLIST handling
#define HIDA_GetPIDLFolder(pida) (LPCITEMIDLIST)(((LPBYTE)pida)+(pida)->aoffset[0])
#define HIDA_GetPIDLItem(pida, i) (LPCITEMIDLIST)(((LPBYTE)pida)+(pida)->aoffset[i + 1])

LPIDA pida = (LPIDA)sm.hGlobal;
LPCITEMIDLIST pidlFolder = HIDA_GetPIDLFolder(pida);
UINT cItems = pida->cidl;
LPCITEMIDLIST pidlItem0 = HIDA_GetPIDLItem(pida, 0);

IShellFolder *pdesktop;

hr = ::SHGetDesktopFolder(&pdesktop);

if(SUCCEEDED(hr))
{

struct
: public NETRESOURCE

{
BYTE bytes[1024];

} nr;

ZeroMemory(&nr, sizeof(nr));

Listing 5 Implementing IShellExt::Initialize()

Paradise #
F01 0131

$850.99

Paradise #
DB1 013R

$197.99

www.programmersparadise.com/faircom

c-tree Plus®

by FairCom
With unparalleled performance and sophistication,
c-tree Plus gives developers absolute control over
their data management needs. Commercial
developers use c-tree Plus for a wide variety of
embedded, vertical market, and enterprise-wide
database applications. Use any one or a combina-
tion of our flexible APIs including low-level and
ISAM C APIs, simplified C and C++ database
APIs, SQL, ODBC, or JDBC. c-tree Plus can be used
to develop single-user and multi-user non-server
applications or client-side application for FairCom’s
robust database server—the c-tree Server. Windows
to Mac to Unix all in one package.

NEW!
SQL

Support!

Your best source for software
development tools!

®

www.programmersparadise.com/intel

Intel C++
for Windows
Paradise #
I23 0A10

$308.99

RoboHelp Office
The Industry Standard in Help Authoring
Create professional Help systems for desktop
and Web-based applications, including .NET.

• Create all popular Help formats
• Create standard and advanced

Help-specific features
• Work in WYSIWYG or true code
• Easily create context-sensitive Help
• Generate printed documentation
• Winner of 55 industry awards

* Price after manufacturer’s mail-in rebate.
Limited time offer; expires 8/31/03.

Paradise #
E75 0311

$959.99*
www.programmersparadise.com/ehelp

Programmer’s Paradise #1
Best-Selling Help Authoring
Tool for 7 Years Running!

Download a demo today. Enterprise Edition
Paradise #
T79 0214
$1,495.99

Professional Edition
Paradise #
T79 0215
$729.99

TX Text Control ActiveX 10.0
by The Imaging Source
Add RTF, DOC, HTML, CSS and
PDF Support to Your Application
TX Text Control is royalty-free, robust and powerful
word processing software in reusable component form.
The new Enterprise/XML version features a rich set of properties for the
manipulation of XML and CSS. Developers can now offer end-users the
ability to separate their textual content from their formatting rules.

www.programmersparadise.com/theimagingsource

NEW
.NET

VERSION!

Intel® C++ and Fortran Compilers
by Intel
Increase the Performance
of Your Application with
Intel’s High-Performance Compilers
Intel’s expertise in processors shows in this latest release
of its flagship compiler product-line: Version 7 of its
C++ and Fortran Compilers for Windows and Linux.
Intel Compilers deliver outstanding performance on
Pentium® 4 and Intel® Xeon® processors, and the
64-bit Itanium and Itanium 2 processors and take
advantage of Multi-processor systems and
Hyper-Threading technology.

8 0 0 - 4 4 5 - 7 8 9 9 • p r o g r a m m e r s p a r a d i s e . c o m
www.programmersparadise.com/datadirect

DataDirect Connect for .NET
by DataDirect Technologies
Use the right .NET data provider now and avoid
reprogramming later. With DataDirect Connect
for .NET Developer’s License you’ll get secure,
high-performance data connectivity to Oracle,
Sybase, DB2 and SQL Server. Our providers are
100% managed code, running entirely within
the .NET CLR for better performance and fewer
security risks.

DevTrack 5.5
Powerful Defect and
Project Tracking
by TechExcel
DevTrack, the market-leading defect
and project tracking solution, compre-
hensively manages and automates
your software development processes.
DevTrack 5.5 features sophisticated
workflow and process automation,
seamless source code control integration
with VSS, Perforce and ClearCase,
QA test plan management, robust
searching, and built-in reports and
analysis. Intuitive administration
and integration reduces the cost of
deployment and maintenance.

Paradise #
T34 0199

$482.99

Paradise #
S69 0U58

$2,890.99

programmersparadise.com/techexcel

xmlspy® 5
by Altova
xmlspy® 5 is the industry standard XML
Development Environment for designing, editing
and debugging enterprise-class applications
involving XML, XML Schema, XSL/ XSLT, SOAP,
WSDL and Web Services technologies. It is the
ultimate productivity enhancer for J2EE, .NET
and database developers.

www.programmersparadise.com/altova

Paradise Picks

Paradise #
S3R 0147

$117.99

Enterprise Edition
Paradise #
I0D 0166
$965.99

Professional Edition
Paradise #
I0D 0160
$389.99

PR-Tracker™ v5.1
by Softwise Company
Affordable scalable enterprise level bug
tracking system featuring classification,
assignment, sorting, searching, reporting,
access control, user permissions, attachments
and email notification. Integrates with
PR-Tracker Web Client (included) and
ProblemReport.asp (included for your
betatest or customer support interface).
Supports Access and SQL Server.

Download Today!

www.programmersparadise.com/softwise

Sun™ ONE Studio 7
Enterprise Edition Solaris
by Sun Microsystems
Sun™ ONE Studio 7, Enterprise Edition
for Solaris is a productive environment
for developing reliable, scalable,
high-performance applications in the
C, C++, Fortran, and Java languages
for the Solaris Operating Environment.
Sun ONE Studio 7, Enterprise Edition for
Solaris software is a bundle that includes
the Sun ONE Studio 7, Compiler
Collection and the Sun ONE Studio 4,
Enterprise Edition for Java products.

Version
7.0

www.programmersparadise.com/sunone

LEADTOOLS
Document Imaging
by LEAD Technologies
Document imaging including annotations,
specialized bitonal (b/w) image display
and processing like scale-to-gray and
favor-black, performance and memory
optimizations for bitonal images, image
clean-up like hole-punch, line and staple
removal, high-speed scanning.

www.programmersparadise.com/lead

GUARANTEED BEST PRICES*
Should you see one of these products listed at a lower price in another ad in this magazine,
CALL US! We’ll beat the price, and still offer our same quality service and support!

*Terms of the offer:
• Offer good through August 31, 2003
• Applicable to pricing on current

versions of software listed
• August issue prices only

• Offer does not apply towards
obvious errors in competitors’ ads

• Subject to same terms
and conditions

Prices subject to change. Not responsible for typographical errors.

Paradise #
L05 048V
$1,639.99

http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com

W I L S O N

A context menu handler will, at minimum,
support the interfaces IContextMenu and
IShellExtInit. (There are additional inter-
faces IContextMenu2 and IContextMenu3 that
help with custom drawing of the menu items.)
The definitions of these interfaces (from
ShlObj.h) are shown in Listing 1.

IShellExtInit::Initialize()
IShellExtInit::Initialize() is imple-
mented by various shell extension types: prop-
erty sheet handlers, drag-and-drop handlers,
and context menu handlers, which are what
we’ll be talking about here.

Upon initialization, the shell extension is
passed data from the shell via the IDataOb-
ject instance passed as the second parameter
in IShellExtInit::Initialize(). Most of
the shell extensions I’ve previously written
have operated on filesystem types such that
the shell provided data formats (in the
IDataObject instance) that included the clip-
board format CF_HDROP, which denotes a
drop handle (HDROP), along with the shell-
specific formats of Shell IDList Array, File-
Name, and FileNameW. The latter three are
custom clipboard formats registered by the shell
with the Win32 function RegisterClip-
boardFormat(). To use them you should call
RegisterClipboardFormat() yourself, which
will return a UINT representing the system-
wide ID of the format. If it is not already reg-
istered, your call will register it (though this is
unlikely since the shell itself registers them at
startup).

Since working with a drop handle is very
straightforward, this has been my preferred
approach until now. A drop handle is an
opaque handle that represents a system-man-
aged set of paths. It is retrieved from an
IDataObject instance using code such as that
shown in Listing 2 (available online), which
shows the implementation of a helper func-
tion I use for this purpose. (It resides in a C
file, but is written to be compatible with C++
compilation if included into a C++ project
file.) The function populates a FORMATETC
structure describing the type of data required
(CF_HDROP) and how it is to be received
(TYMED_HGLOBAL), and passes a STG-
MEDIUM structure in which the data will be
written.

Once you have a drop handle, you can ac-
cess the paths it represents by calling Drag-
QueryFile(), which places a specific path ac-
cording to a given index into a caller-supplied
buffer, or returns the number of files for the
sentinel index value 0xFFFFFFFF. Once you’ve
finished with the handle, you must call
DragFinish() to release the resources.

For those who are comfortable with STL, the
use of the handle can be simplified by using Win-
STL’s basic_drophandle_sequence class, as shown
in Listing 3 (available online). (WinSTL is the

12 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

IShellFolder *pFolder;

hr = pdesktop->BindToObject(pidlFolder, NULL,
IID_IShellFolder, (void**)&pFolder);

if(SUCCEEDED(hr))
{

hr = ::SHGetDataFromIDList(pFolder, pidlItem0,
SHGDFIL_NETRESOURCE, &nr, sizeof(nr));

if(SUCCEEDED(hr))
{

LPCTSTR host = nr.lpRemoteName;

// Elide the \\ prefix
if(host[0] == '\\' &&

host[1] == '\\')
{

host += 2;
}

lstrcpyn(m_szHost, host, stlsoft_num_elements(m_szHost));
}

pFolder->Release();
}

pdesktop->Release();
}

ReleaseStgMedium(&sm);
}

ATLTRACE(_T("CRemoteReboot::Initialize() %s: [%s]\n"),
SUCCEEDED(hr) ? _T("succeeded") : _T("failed"),
m_szHost);

}
}

return hr;
}

Listing 5 Continued

http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com

W I L S O N

Win32-related subproject of STLSoft, located
at http://winstl.org/.)

Unfortunately, the CF_HDROP format is not
provided for all filesystem types. The NetServ-
er type, which is what we need to use for net-
work servers, does not come with CF_HDROP.
The MSDN documentation provides very lit-
tle help on this (try a search for “+NetServer
+shell”), so I resorted to some practical meas-
ures. IDataObject instances are able to report
all their accessible formats in a COM enumer-
ator implementing IEnumFORMATETC, which is
retrieved via the EnumFormatEtc() method.
Hence, I used a helper function DumpFormats()
(Listing 4, available online) to trace all the for-
mats for the data object. As you can see, the
function uses a COMSTL template, enum_sim-
ple_sequence, which provides a parameterized
mapping from a COM enumerator (something
implementing one of the IEnumXXXX interfaces)
to an STL-compliant sequence providing Input
or Forward Iterator semantics. (COMSTL is the
STLSoft subproject pertaining to COM, locat-
ed at http://comstl.org/.) Combining this with
the trace_FORMATETC function object pro-
vides a neat and simple mechanism of tracing
the supported clipboard formats for our IDataOb-
ject instance.

Once I plugged this in, I was able to deter-
mine that the NetServer shell type provides
the registered clipboard formats Shell IDList
Array, FileName, FileNameW, and Net Re-
source. (Table 1 shows the various formats sup-
ported for the different types.)

Since the STGMEDIUM structure contains
the union member lpszFileName (of type
LPOLESTR), I decided to have a go at re-
trieving the filename as a (Unicode) string,
rather than worry about the other formats. This
worked well, but there are two (and a bit) prob-
lems. First, it transpires that the operating sys-
tem on which I was working, XP, is the only
one of the NT family that provides the File-
Name and FileNameW formats for NetServ-
er types; as soon as I went to test on NT 4 or
2000, the shell extension silently failed to do
anything. I think that such inconsistencies are
quite inappropriate, but that’s the world of shell
extensions: There’s a great deal of variation
over the various Win32 incarnations. (The
partial problem is that FileNameW is only pro-
vided on NT-family systems, albeit that’s ir-
relevant for this shell extension, as we’ve seen
that remote shutdowns can only be done from
NT family machines.) The more serious prob-
lem is that FileNameW returns only a single
filename, so if we had multiple selections only
one would appear.

So FileNameW not being appropriate, and
Net Resource documented to also return only
a single path name, I decided to bite the bul-
let and deal with the Shell IDList Array for-
mat. Alas, it turns out that for NetServer types,
even this format returns only one item.

When you have more than one server short-
cut selected, it is the one with the caret whose
name is passed through, whether that is in
Shell IDList Array, Net Resource, or File-
NameW formats. I guess this makes sense as
far as it goes, and in this case is not contra-
dictory; I would not want to write the exten-
sion to be able to shutdown multiple machines
simultaneously as it is a very serious thing to
be doing on one machine, never mind sever-
al at a time. However, it is conceivable that
one may write extensions to do many useful
(and benign) operations with network servers,
in which case this restriction would be oner-
ous. Moreover, despite not wanting to remotely
reboot multiple machines, we still have a prob-
lem, as we do not want the reboot context
menu items to appear when multiple machines
are selected since we have no control over (and
the user would have no idea as to) which of

the selected machines would be operated on.
Nasty.

I was able to find nothing in the shell ex-
tension documentation to help out here, so
my somewhat hacked solution is to call Get-
Focus(), which retrieves the window in the
current thread that has the focus. Since the
shell extensions are in-process COM servers,
they operate within the shell process (Explor-
er.exe) and of course, the window that has the
focus is the one in which the selections have
been made and right-clicked. Whether in one
of Explorer’s SDI tree-list windows or the desk-
top itself, the window concerned is a list view
(“SysListView32”), so my solution is to send
the focused window the LVM_GETSELECT-
EDCOUNT message. If the result is greater
than one, then there are multiple items se-
lected. If the result is 0, then the window is
not a list view and the user is probably using

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 13

Format Files Directories Network Server

CF_HDROP yes yes no
Shell IDList Array yes yes yes
FileName yes yes XP-only
FileNameW yes yes XP-only
Net Resource no no yes

Table 1 Clipboard formats for shell types

http://redirect.wdj.com/scripts/redirect.pl?http://www.windowscontrols.com

14 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

W I L S O N

/* ///
*
* ...
*
* Extract from wtlstl_simple_context_menu_handler.h
*
* www: http://www.synesis.com.au/wtlstl
* http://www.wtlstl.org/
*
* Copyright (C) 2002, Synesis Software Pty Ltd.
* (Licensed under the Synesis Software Standard Source License:
* http://www.synesis.com.au/licenses/ssssl.html)
*
* ...
*
* // */

...

template <ss_typename_param_k C>
struct SimpleContextMenuItem_
{

typedef void (C::*PFN)();

UINT idsMenuItem;
UINT idsCommandString;
PFN pfn;

};

#define BEGIN_SIMPLE_CONTEXT_MENU_MAP() \
private: \

typedef wtlstl::SimpleContextMenuItem_)<class_type> \
ContextMenuItem; \

public: /* Alas must be public, but at least ContextMenuItem isn't */ \
static ContextMenuItem const *WINAPI \

_GetContextMenuEntries(size_t *psize = NULL) \
{ \

static ContextMenuItem const _entries[] = \
{ \

#define SIMPLE_CONTEXT_MENU_ENTRY(idsm, idscs, pfn) \
{ idsm, idscs, pfn },

#define END_SIMPLE_CONTEXT_MENU_MAP() \
{ 0, 0, NULL } \

}; \
if(NULL != psize) \
{ \

*psize = stlsoft_num_elements(_entries) - 1; \
} \
return _entries; \

}

template <ss_typename_param_k C>
class SimpleContextMenuHandler

: public IContextMenu
{
protected:

typedef C boltee_type;
typedef SimpleContextMenuHandler<C> context_menu_handler_type;

private:
typedef SimpleContextMenuItem_<C> ContextMenuItem;

// IContextMenu
private:

STDMETHOD(QueryContextMenu)(HMENU hmenu, UINT indexMenu,
UINT idCmdFirst, UINT idCmdLast, UINT uFlags)

{
HRESULT hr;

if(uFlags & CMF_DEFAULTONLY)
{

hr = S_OK;
}
else
{

size_t cItems;
ContextMenuItem const *items =

boltee_type::_GetContextMenuEntries(&cItems);

// Ensure we have enough room for all the menu items we want to present
if(idCmdLast < idCmdFirst + cItems + 1)
{

hr = E_FAIL;
}
else
{

int index;

// For each item, load the string and add to the menu.

for(hr = S_OK, index = 0; index < cItems; ++index)
{

TCHAR szMenuItem[256];
ContextMenuItem const &item = items[index];

if(0 == ::LoadString(_Module.GetResourceInstance(),
item.idsMenuItem,
szMenuItem,
stlsoft_num_elements(szMenuItem)) ||

!::InsertMenu(hmenu,
indexMenu++,
MF_STRING | MF_BYPOSITION,
idCmdFirst++,
szMenuItem))

{
hr = HRESULT_FROM_WIN32(::GetLastError());

break;
}
else
{

ATLTRACE(_T("Menu item: %d => %d, %d\n"),
index, item.idsMenuItem, item.idsCommandString);

}
}

if(!FAILED(hr))
{

// Note: return S_OK + # of items
hr = MAKE_HRESULT(SEVERITY_SUCCESS, FACILITY_NULL, index);

}
}

}

return hr;
}

STDMETHOD(InvokeCommand)(LPCMINVOKECOMMANDINFO lpici)
{

HRESULT hr;

if(HIWORD(lpici->lpVerb) == 0)
{

UINT cmdOffset = LOWORD(lpici->lpVerb);
size_t cItems;
ContextMenuItem const *items =

boltee_type::_GetContextMenuEntries(&cItems);

if(cmdOffset < cItems)
{

// Run the handler for the item
(static_cast<boltee_type*>(this)->*items[cmdOffset].pfn)();

hr = S_OK;
}
else
{

_ASSERTE(!"Unexpected menu item invoked");
hr = E_UNEXPECTED;

}
}
else
{

// No need to support string based command.
hr = E_INVALIDARG;

}

return hr;
}

STDMETHOD(GetCommandString)(UINT cmdOffset, UINT uType,
UINT *pwReserved, LPSTR pszName, UINT cchMax)

{
HRESULT hr;

if(pszName != NULL)
{

*pszName = 0;
}

typedef int (WINAPI *PfnLoadString)(HINSTANCE , UINT , LPVOID , int);

PfnLoadString fns[2] =
{

(PfnLoadString)LoadStringA
, (PfnLoadString)LoadStringW

};

switch(uType)
{

default:
_ASSERTE(!"Unrecognised GetCommandString() type");

Listing 6 WTLSTL’s SimpleContextMenuHandler<>

W I L S O N

a custom shell process, within which we’re not
going to be able to operate anyway. In either
case, the E_FAIL code is returned from
IShellExt::Initialize() and the shell will
not then proceed to call the methods of ICon-
textMenu and the menu items are not shown.
Only when the selection count is one does the
initialization proceed.

The remainder of the method (Listing 5)
shows how to extract the path information
from the Shell IDList Array format, which pro-
vides a memory block in the hGlobal member
of the STGMEDIUM structure containing a
CIDA structure, which is defined as

typedef struct _IDA {
UINT cidl;
UINT aoffset[1];

} CIDA, * LPIDA;

This innocent-looking structure definition
belies a complex and troublesome nature. It is
actually used to represent a contiguous layout
of ITEMIDLISTs. aoffset is an array, of di-
mension 1 + cidl, of offsets into the block
where the ITEMIDLISTs reside. The CIDA
always contains an entry for the parent folder
of the items concerned, so cidl represents only
the number of child items. The parent ITEM-
IDLIST is located immediately aoffset[0]
bytes from the start of the block. Each child
item n is located at aoffset[1 + n] bytes from
the start of the block. All this mind-numbing
stuff can be more easily handled by using the
macros HIDA_GetPIDLFolder() and HIDA_Get-
PIDLItem() suggested in the MSDN help (they
do not appear in headers, hence their inclu-
sion in the implementation file). Since we are
dealing with only one child item, we just re-
trieve the parent folder and item 0.

When writing shell extensions (or other code
that operates with shell structures), obtaining
the filesystem path from ITEMIDLISTs is as sim-
ple as calling SHGetPathFromIDList(); passing
in a pointer to the list and a pointer to a char-
acter buffer (of sufficient size to handle any valid
path). Unfortunately, obtaining the information
about a network server is not as simple. We need
to call SHGetDataFromIDList() on the item’s
ITEMIDLIST and request a NETRESOURCE
structure, but that function also requires the par-
ent folder (as an IShellFolder instance) of the
given item against which to bind the data. In
order to get an IShellFolder instance from an
ITEMIDLIST, we need to call IShellOb-
ject::BindToObject(). But what do we call it
on? The answer is the IShellObject that rep-
resents the root of the desktop namespace; in
other words, the desktop folder itself, which we
obtain from SHGetDesktopFolder(). (All these
interfaces follow COM rules in that they must
be released when finished with.)

Once we have the folder object we can now
call SHGetDataFromIDList(), passing the

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 15

http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts

16 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

folder, the item we want to resolve, the format
we require (SHGDFIL_NETRESOURCE),
and the buffer to receive the information. More
contiguous memory complexities here, so we
derive from the NETRESOURCE structure
and thereby add the required 1024 bytes. (You’ll
note the interesting trick of deriving an anony-

mous structure from a named one—it looks
weird but works fine on most compilers, even
the very canny Metrowerks CodeWarrior, but
it still may not be standards compliant.)

The final step is to test for, and then remove,
the double backslash from the server name.
This is for cosmetic purposes really, since most

network functions work well with server names
that are double-backslash prefixed just as well
as those that are not. Then we save the name
in the m_szHost member, and return.

IContextMenu::Query-
ContextMenu()
After successful initialization, the shell will
then ask the shell extension for its menu
items. This is done by a call to IContext-
Menu::QueryContextMenu(). The shell pass-
es in the following information: the menu han-
dle, the index of the insertion point in the menu,
a range of command identifiers, and flags.

If the flags specify the value CMF_DE-
FAULTONLY, then the method simply returns,
since we do not affect the default menu item in
this context menu handler. Otherwise, we step
through our list of items and insert them into
the menu. For each insertion, we use the cur-
rent index point and the current command iden-
tifier, each of which is then incremented. Hence,
on a third item, we’ll be inserting at index in-
dexMenu + 2with ID idCmdFirst + 2. In terms
of identifying commands, context menu han-
dler shell extensions work on an indexed basis.
Thus, when the shell later calls back because
the user has either selected or clicked on an item
from this shell extension, it passes the index of
the item, not the command ID. Furthermore, it
passes an index that is relative to the absolute
index (indexMenu) that it passed in the call to
QueryContextMenu(). So, when the user clicks
on our third item, we will get a call back to say
that item 2 has been clicked. This is actually the
simplest and easiest way to do it, although at first
it seems a little strange (and I recall my first shell
extension failing to work at all as first I’d re-
membered the menu ID, and then later the ab-
solute index, before I finally got it correct).

For simple context menu handlers, I use
the WTLSTL template class SimpleContext-
MenuHandler and its associated macros, shown
in Listing 6. (WTLSTL is another subproject

W I L S O N

case GCS_VERBA:
case GCS_VERBW:

// Verbs are not supported currently
hr = E_NOTIMPL;
break;

case GCS_VALIDATEA:
case GCS_VALIDATEW:

_ASSERTE(!"GCS_VALIDATE never expected by menu handlers");
hr = E_UNEXPECTED;
break;

case GCS_HELPTEXTA:
case GCS_HELPTEXTW:

{
size_t cItems;
ContextMenuItem const *items =

boltee_type::_GetContextMenuEntries(&cItems);

if(cmdOffset < cItems)
{

ContextMenuItem const &item = items[cmdOffset];

if(fns[(uType & GCS_UNICODE) != 0](_Module.GetResourceInstance(),
item.idsCommandString,
pszName,
cchMax) > 0)

{
ATLTRACE(_T("Menu item: %d => %d, %d\n"),

cmdOffset, item.idsMenuItem, item.idsCommandString);

hr = S_OK;
}
else
{

hr = E_INVALIDARG;
}

}
else
{

hr = E_UNEXPECTED;
}

}
break;

}

return hr;
}

};

. . .

Listing 6 Continued

class ATL_NO_VTABLE CRemoteReboot
: public CComObjectRootEx<CComSingleThreadModel>
, public CComCoClass<CRemoteReboot, &CLSID_RemoteReboot>
, public IShellExtInit
, public SimpleContextMenuHandler<CRemoteReboot>

{
typedef CRemoteReboot class_type;

/// Construction
public:

CRemoteReboot()
{

m_szHost[0] = 0;
}

DECLARE_REGISTRY_RESOURCEID(IDR_REMOTEREBOOT)

BEGIN_SIMPLE_CONTEXT_MENU_MAP()
SIMPLE_CONTEXT_MENU_ENTRY(IDS_SHUTDOWN_SVR, IDS_SHUTDOWN_SVR_CMD,

OnShutdownServer)
SIMPLE_CONTEXT_MENU_ENTRY(IDM_REBOOT_SVR, IDS_REBOOT_SVR_CMD,

OnRebootServer)
SIMPLE_CONTEXT_MENU_ENTRY(IDM_REBOOT, IDS_REBOOT_CMD, OnReboot)

END_SIMPLE_CONTEXT_MENU_MAP()

BEGIN_COM_MAP(CRemoteReboot)
COM_INTERFACE_ENTRY_IID(IID_IShellExtInit, IShellExtInit)
COM_INTERFACE_ENTRY_IID(IID_IContextMenu, IContextMenu)

END_COM_MAP()

// IShellExtInit
private:

STDMETHOD(Initialize)(LPCITEMIDLIST pidlFolder,
LPDATAOBJECT lpdobj,
HKEY hkeyProgID);

// Implementation
private:

// Map handlers
void OnShutdownServer();
void OnRebootServer();
void OnReboot();

// Helpers
void ShutdownServer(bool bReboot, bool bForce, LPCTSTR pszMessage);

// Members
private:

TCHAR m_szHost[1 + _MAX_PATH];
};

Listing 7 Using SimpleContextMenuHandler<>

W I L S O N

of STLSoft, located at http://wtlstl.org/, per-
taining to WTL—see the online sidebar “WTL
& ATL.”) The SIMPLE_CONTEXT_MENU_
ENTRY() macros associate two string resource
identifiers (one for the menu item, one for the
help string) with a handler method, as shown
in the class definition for the Remote Reboot
handler in Listing 7. This makes it easy to in-
ternationalize the menu and help strings, and
also provides a simple and neat framework
within which one can focus on operations
rather than infrastructure.

IContextMenu::GetCommand-
String()
When the user moves the mouse over a menu
item that was inserted by your context menu
handler, the shell will call you back via the
IContextMenu::GetCommandString() method
to get a help string to display (in the status bar
of the Explorer window). As mentioned ear-
lier, the given index (the cmdOffset parame-
ter) corresponds to the position in our list of
SIMPLE_CONTEXT_MENU_MAP() entries.
The implementation is very straightforward:
Index the item and load the string.

There is, however, a small complication. The
method is declared with the parameter psz-
Name being of type LPSTR, but in order to sup-
port Unicode systems as well as ANSI, we must

cast it to LPWSTR. Even though this shell ex-
tension will work only on Unicode systems, as
a general rule I like to support both, and Sim-
pleContextMenuHandler does so by calling ei-
ther LoadStringA() or LoadStringW() de-
pending on whether GCS_HELPTEXTA or
GCS_HELPTEXTW is the command type
passed to the method. Of the other command
types, GCS_VALIDATEA/W are not sent to
context menu handlers, so we can ignore them,
and this context menu handler does not sup-
port verbs, so we can ignore them also.

IContextMenu::InvokeCommand()
This is the method where everything happens
but, thanks to our index entry scheme, it is the
simplest. If the high word of the lpVerb mem-
ber of the CMINVOKECOMMANDINFO
structure passed to the method is 0, then the low
word is the index of the command. We validate
the index and then call the appropriate method.

CRemoteReboot
So we’ve covered the basics of context menu
handler shell extensions. We’ve seen how CRe-
moteReboot’s IShellExtInit::Initialize()
method dealt with getting the data from the
shell, and also how the WTLSTL SimpleCon-
textMenuHandler class can simplify the func-
tionality of IContextMenu for us. Now it’s time

to focus on the specifics of Remote Reboot it-
self. This simply involves the implementation
of the three handler methods, as shown in List-
ing 8 (available online), which handle the
three menu items shown in Figure 3.
OnRebootServer() and OnShutdownServ-

er() both call the helper method Shut-
downServer(), which is where all the action
happens, passing True and False, respectively,
to stipulate whether to reboot or just to shut-
down. The second parameter of Shutdown-
Server() is a Boolean stipulating whether to
forcibly terminate the hosts. Both handlers call
the WinSTL function IsKeyPressedAsync-
(VK_SHIFT), which means that the user can
hold the shift key down when selecting the
menu item rather than having to open the Re-
mote Reboot dialog (see Figure 4, available
online) in order to effect a forced termination.
Forcing reboot/shutdown simply means that if
an application on the remote host does not
shutdown cleanly (i.e., because it has a dialog
open), then it will be terminated. Whether
you are forcing or not, any users on the remote
host are likely to lose their work, so don’t think
about using this tool maliciously in your office
unless you are looking for a swift change of
scenery!
ShutdownServer() is pretty straightforward.

It loads the timeout and message values for the

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 17

http://redirect.wdj.com/scripts/redirect.pl?http://www.ReportingEngines.com/products/activex/

18 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

reboot/shutdown operation from the registry.
If they are not yet present, then it uses de-
fault values. Then it calls the Win32 func-
tion InitiateSystemShutdown(), which com-
mands the given host (m_szHost, elicited in
the IShellExtInit::Initialize() method)
to shutdown/reboot according to the given
parameters. (Actually, InitiateSystem-
Shutdown() is erroneously prototyped to take
pointers to nonconst characters for the host-
name and message strings, so what is called
throughout the implementation is an inline
overload, defined in stdafx.h, that takes con-
st parameters.)

If the shutdown call fails, then GetLastEr-
ror() is called, and the message text is
sprintf()-ed into a dialog with the Mes-
sageBox_printf() function (which I described
in a “Tech Tip” in the May 2003 issue), as
shown in Figure 5 (available online).

If the function succeeds, then the pending
dialog (see Figure 6, available online) is shown.
It operates with a timer, and provides the
progress of the timeout period as a countdown
and an abort button to allow the shutdown/re-
boot to be cancelled. It is worth noting that it
is appropriate (not to say necessary) to create

a modal dialog here, because Explorer creates
a new (user interface) thread within which to
run any activated shell extensions.

The final handler, OnReboot(), invokes the
CRebootDialog, as seen in Figure 5 (available
online). There’s no space here to discuss its im-
plementation in detail. It’s pretty standard fare
for ATL dialogs although I do make use of var-
ious STLSoft and WTL control classes to sim-
plify the manipulation of the dialog controls,
the other dialogs, and the context-sensitive help
(see the online sidebar “WTL & ATL”).

Registering Shell Extensions
In order to be recognized and invoked by the
shell, shell extensions must be registered. Reg-
istration of the Remote Reboot shell exten-
sion is effected via an ATL registry script,
shown in Listing 9.

As for any in-proc COM server, there is an
entry under HKEY_CLASSES_ROOT\
CLSID, providing the InprocServer32 sub-
key, and the associated threading model. How-
ever, there are two other keys. Under HKEY_
CLASSES_ROOT\NetServer\shellex\Con-
textMenuHandlers there is an entry provid-
ing the CLSID of the shell extension. It is

this entry that allows the shell to determine
that this shell extension is provided for net-
work servers.

Shell extensions can be installed on Win-
dows 95-family systems at any user’s discretion,
but installing on NT-family systems requires
that you have rights to write to the registry.
Furthermore, on these systems, the adminis-
trator can restrict the launch of shell exten-
sions to those on the approved list, which re-
side in:

HKEY_LOCAL_MACHINE
Software

Microsoft
Windows

CurrentVersion
Shell Extensions

Approved

All of the Synesis Software Shell Exten-
sions include entries for the Approved sec-
tion (which are benignly ignored on 95-fam-
ily systems), since I want them to be available
on secure systems. Registering on NT-fami-
ly requires sufficient rights to be able to write
to HKEY_LOCAL_MACHINE, so it may
require installation by the machine’s admin-
istrator.

Debugging Shell Extensions
So we’ve looked at how to shutdown remote
systems, learned about how context menu han-
dler shell extensions interact with the shell,
how simple ones can be implemented, and how
to register them. The only thing that remains
is how to debug them.

Since shell extensions are in-process COM
servers, they have to be debugged within a host
process. Unless you have written a fully func-
tional custom test harness (which I doubt), the
host process will be Explorer itself. If you’re us-
ing Visual C++, you need to set c:\winnt\ex-
plorer.exe (or whatever the equivalent path is
on your system) to be the “Executable for de-
bug session.” That’s only half the picture, how-
ever, since Explorer is very likely already run-
ning. Running another instance of Explorer
causes the first process to open up another win-
dow, and the second process to terminate qui-
etly. (Only on systems experiencing some kind
of problem are you likely to see more than one
instance of the process running, and in such
cases you’re going to be crashing pretty soon
anyway.)

We need to be able to start explorer.exe in
the debugging session on a system where Ex-
plorer is not running. The answer to this is to
kill the existing one. A crude method is to
run up task manager and kill explorer.exe, but
this can leave the system in an unstable state.
The sophisticated way of doing it is to invoke
the system shutdown dialog—either via Ctrl-
Alt-Del, Shutdown or from Start, Shutdown—

W I L S O N

HKCR
{

NoRemove CLSID
{

ForceRemove {00537963-0000-0008-0004-00c0dfe64a64} = s 'Remote Reboot Context Menu Handler'
{

InprocServer32 = s '%MODULE%'
{

val ThreadingModel = s 'Apartment'
}

}
}

NoRemove NetServer
{

NoRemove shellex
{

NoRemove ContextMenuHandlers
{

ForceRemove 'Remote Reboot Context Menu Handler' = s '{00537963-0000-0008-0004-00c0dfe64a64}'
{
}

}
}

}
}

HKLM
{

SOFTWARE
{

Microsoft
{

Windows
{

CurrentVersion
{

'Shell Extensions'
{

Approved
{

val {00537963-0000-0008-0004-00c0dfe64a64} = s 'Remote Reboot Context Menu Handler'
}

}
}

}
}

}
}

Listing 9 Registry entries

W I L S O N

and then holding down Ctrl-Alt-Shift (left-hand
keys) and clicking on the Cancel button. (You
can also hit the Esc key rather than clicking on
Cancel, but on my laptop this invokes system
hibernation, which is somewhat inconvenient.)

As well as persuading Explorer to close itself
down gracefully, this sequence tells the system
not to try and restart the shell, which it other-
wise may do. There are varying degrees of com-
pliance, of course: XP never subsequently restarts
Explorer without being asked, 2000 does it in-
frequently, and NT4 does it a lot.

So now that we’ve gotten rid of the shell, we
can start debugging. Once the process is up,
you can then right-click on the appropriate
shell item and you’ll hit any breakpoints you’ve
set up. I usually have one on the entry of
IShellExtInit::Initialize() and on the
handler-specific interface methods, in this case
the three methods of IContextMenu. You can
then debug as you would any other DLL/COM
component.

For context menu handlers, breaking with-
in IShellExtInit::Initialize() and ICon-
textMenu::QueryContextMenu() will move
the focus to the debugger, so the menu will ac-
tually be cancelled—don’t be misled by this
into thinking that your shell extension is not
working. Once you’re satisfied that everything
is OK with these two methods, it’s best to dis-
able the breakpoints therein, so that you can
get on with the GetCommandString() and In-
vokeCommand() methods. One last tip: When
debugging within GetCommandString() you
can get the shell, indeed the whole system, in
a weird state whereby your debugger can be
hung. This is no doubt due to Windows’ fun-
damental menu-handling logic—I’ve experi-
enced similar behavior when debugging oth-
er menu functionality—but worry not. On
NT-family systems you only need to hit Ctrl-
Alt-Del and then hit cancel, and it all gets
nicely cleared up (most of the time).

Don’t forget to change the path for Explor-
er if you’re testing on multiple boots on the
same system. I can assure you that NT4’s Ex-
plorer.exe will not execute on 2000, XP, and
so on, and you may experience a few panicked
moments, imagining you’ve trashed your sys-
tem or the shell extension, before you realize
your oversight.

The advice I’ve given about debugging has
been all NT-family based. Alas, it is too many
years since I did any debugging of any kind on
95-family operating systems, and I cannot re-
member whether I ever did shell extension de-
bugging on them. I suspect I probably made
do with OutputDebugString_printf()-style de-
bugging on them. I’m not sure how many shell
extension developers will be disenfranchised by
this lack of advice, but judging from the hit-
counts on http://shellext.com/, it is clear that
the vast majority (>90 percent) of shell exten-
sion users are running NT-family machines.

Conclusion
I hope you’ve learned a little about shell exten-
sions in general, and a lot about context menu
handlers in particular. I also hope that I’ve
sparked your interest in WTL and STLSoft
(COMSTL, WinSTL, WTLSTL, and all the
other little STLs), and I invite you to try both
out, especially when developing small lightweight
components. There’s a lot more mileage in C++
as the primary development language for the
Win32 platform than some quarters would have
us believe, and there are still powerful and ef-
fort-reducing libraries being created that will
support its position for a long time to come.

Acknowledgments
I’d like to thank Scott Patterson (http://www
.gameframework.com/) for providing his usu-
al constructive criticism while recovering from
a nasty bout of the flu: above and beyond! I’d
also like to thank the many users of the Syne-
sis Software Shell Extensions for all your kind
words, offers to buy, useful bug reports, and in-
triguing feature requests over the last couple
of years. And, yes, they’re going to continue
to be free. Honest! w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 19

http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com

Visual Studio .NET can help you with (nearly) every part of your job. Your Web applications just got faster. ASP.NET, the

Web application environment in Visual Studio® .NET, offers dramatically improved performance over classic ASP. Here’s how:

1 Compiled Page Execution ASP.NET pages are compiled once and cached in memory instead of being interpreted each time

the page is requested. 2 Rich Output Caching ASP.NET’s caching features quickly retrieve database queries, full pages (or parts

of pages), and objects from memory for improved app performance. 3 Crash Protection Web applications can’t be fast if they’re

*Connect time fees may apply. The Nile Application Benchmark is a Doculabs/Ziff Davis e-commerce benchmark that represents a complete, end-to-end, e-commerce application with realistic, heavy user loads placed
on the system. See msdn.microsoft.com/vstudio/tryit for complete details. © 2003 Microsoft Corporation. All rights reserved. Microsoft, the .NET logo, Visual Studio, the Visual Studio logo, and Windows are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

It can make
your Web apps three

times faster.

http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/vstudio/tryit

down. Duh. So ASP.NET automatically detects and recovers from errors like deadlocks so

your application is always available. And now the newly released Visual Studio .NET 2003 is

here for building and deploying even faster and more stable applications. Try it now: log on

to a fully featured, free* online hosted session and get

more information at msdn.microsoft.com/vstudio/tryit

It can’t tell you
whether this is meatloaf

or lasagna.

_...
_
_
_
_
_
_
_
_

ASP ASP.NET

4000
3500
3000
2500
2000
1500
1000

500
0

.

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

..

.

.

pages per
second

NILE BENCHMARK
8-CPU PEAK THROUGHOUT

http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/vstudio/tryit

ASK A SOFTWARE ENGINEER about source doc-
umentation and you are likely to hear one or
more of the following observations: sources of
other developers are poorly documented; it
takes too much time to document my own
sources; or source documentation is never up
to date. And let’s be honest, documenting
sources tends to be a lousy job, especially when
it has to be done afterwards.

Doxygen is a popular solution to this prob-
lem. With Doxygen, you can generate docu-
mentation based on the source files themselves.
It works for sources written in several languages:
C, C++, C#, Java, JavaScript, Visual Basic,
Delphi, and PHP.

Doxygen is a freeware tool developed by the
Dutchman Dimitri van Heesch. It started as a
Linux-based tool but has been ported to Win-
dows. Moreover, other developers have creat-
ed Windows-based extensions to Doxygen to
integrate it with existing development tools,
including DoxBar and GraphViz, which I’ll
discuss in this article.

One of the big advantages of Doxygen is its
ability to make the documentation consistent
with the source in one step. You have the op-
tion of generating the documentation in
HTML or RTF format, thus serving both on-
line and offline documentation purposes. In
addition, numerous formatting options are pro-
vided.

In fact, there is only one disadvantage: Soft-
ware engineers are losing their arguments
against delivering thorough, high-quality source
documentation!

Installing the Tools
The first thing to do is to get your copy of the
latest version of Doxygen and accompanying
tools from http://www.doxygen.org/. You have
to pick the binary distribution for Windows
95/98/Me/NT/2000/XP. This is a self-installing
archive including the HTML and compressed
HTML versions of the manual and the GUI
front end.

I also advise you to separately download the
documentation in either PDF or compressed
HTML format. Unlike many other freeware
tools, the documentation of Doxygen is su-
perb. Of course, this is not surprising for a doc-
umentation tool! In this article, I’ll assume you
install Doxygen in its default location: Pro-
gram Files\doxygen.

If you are using Visual C++, you should
download DoxBar from http://sourceforge.net/
projects/doxbar. DoxBar is an add-in to use
Doxygen from within Microsoft’s Visual C++
integrated development environment. Use it
to run Doxygen on a selected project and to
search in Doxygen-generated documentation.
The ZIP file you download contains two files,
which you should extract into directory Pro-
gram Files\doxygen\bin. Next, open the file,
doxbar.chm, that you just extracted. This com-
pressed HTML file contains detailed instruc-
tions on how to install DoxBar in combina-
tion with the Visual C++ IDE.

Also interesting to download is the file VC-
Macros4Doxygen.zip, which contains a set of
macros for the Visual C++ IDE. Extract the

file DoxygenMacros.dsm into Program
Files\Microsoft Visual Studio\Common\MS-
Dev98\Macros to speed up your source docu-
mentation activities.

The last item to download is the graphic
support system GraphViz, which Doxygen uses
to produce graphics. You should pick the Wise
Install Package from http://www.research.att
.com/sw/tools/graphviz/download.html. After
you have run this installer, it is easy to extend
the PATH environment variable to include
Program Files\ATT\Graphviz\bin.

Configuring Doxygen
Doxygen uses a file called “Doxyfile” to store
its configuration. I advise you to let Doxy-
gen generate this file the first time. You can
do this by executing the file Program Files\
Doxygen\bin\doxygen.exe from the DOS
command prompt while providing command
line option -g. Use the generated file Doxy-
file as a template and copy it to your project’s
directory.

Of course, you can edit this file by opening it
in a text editor, but this is a tedious job to do.
Here is where DoxBar comes in. When you click
on the DoxBar Edit button, don’t be over-
whelmed by what appears next (see Figure 1).

Indeed the popup window you see now con-
tains many options. Luckily, if you leave your
mouse on an entry zone, you will get a tool tip
message explaining the indicated option. This
feature guides you surprisingly fast through a
wealth of configuration options.

MARTIN KEESEN is a consultant for Tech-
nical Software Engineering with LogicaCMG
in The Netherlands. His main working areas
are the medical, telecom, and traffic control
industries, with a focus on embedded soft-
ware. He can be contacted at martin.keesen@
logicacmg.com.

22 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

M A R T I N K E E S E N

Better Docs with Doxygen

Document generation for C, C++, C#, Java, VB,

Delphi, and more

K E E S E N

Doxbar derives the contents of the tool tip messages from the com-
ments in the file Doxyfile. This file directly controls even the pres-
ence of the tabs. For example, to remove the man page output tab,
you simply remove all the lines related to man pages options.

You cannot remove the Doxbar-specific tab. This tab lets you choose
how DoxBar explores the project collection in the current workspace.
Selecting the active project and its dependencies requires that the
workspace file (.dsw) and the active project file (.dsp) have the same
name. DoxBar issues a warning if this is not the case.

Please note that the changes DoxBar makes are stored in the pro-
ject’s Doxyfile in the project’s directory, not in the default template.

Your First Project
Even without specific tags to elaborate the generated source docu-
mentation, Doxygen extracts basic information from the files in your
project. This information includes a file list, dependency graphs, and
inheritance plus collaboration diagrams.

If you generate the HTML version of this information, you have
online access to it and can directly see the changes to it when you al-
ter an option.

Now use your web browser to navigate through the menu tree in-
cluded in the HTML output (see Figure 2).

Experiment with the settings to see how they influence the output
created. The settings for EXTRACT_ALL (general options), HAVE_
DOT (Dot tool), HTML_STYLESHEET (HTML output), and
SOURCE_BROWSER (source browsing) are especially worth ex-
perimenting with.

While generating source documentation, you will notice that Doxy-
gen reports undocumented items via the Doxygen output pane in the

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 23

Figure 1 The DoxBar add-on provides a GUI for
Doxygen’s many features

Even without specific tags to elaborate the
generated source documentation, Doxygen
extracts basic information from the files in
your project

http://redirect.wdj.com/scripts/redirect.pl?http://www.wibu.com

K E E S E N

IDE. Note that this is only true if EX-
TRAC_ALL is off and WARN_IF_UN-
DOCUMENTED is turned on.

Reverse Engineering
Doxygen is very useful in case you have to re-
verse engineer large quantities of code. One
of the goodies of Doxygen is that the HTML
output uses syntax highlighting to ease navi-
gation through the code fragments included
in the documentation. The graphs also give
fast insight into the code structure; for exam-
ple, the include nesting and structs in Figure
3. Therefore, without even changing anything

in the source code, you are able to better un-
derstand it by applying Doxygen.

Creating Even Better
Source Documentation
Adding extra tags to the source code allows
Doxygen to greatly increase the usability of
the generated docs. Doxygen uses comments
that follow certain conventions to build more
detailed and structured documentation. Refer
to the manual for an extensive list of all the
possible tags. Inserting the required tags is a
piece of cake if you use the macros mentioned
earlier. You can insert file, attribute, single, or

multiline headers with these macros.
Modifying your comments is one of the eas-

iest changes. By changing all applicable /* into
/** in C source reveals a lot of extra informa-
tion included in the documentation. Note that
comments in the source precede the item to
be documented in Figure 4.

Depending on the position of the source, the
text of the comment appears in one of the fol-
lowing summaries: files, namespaces, classes,
structs, unions, templates, variables, functions,
typedefs, enums, or defines.

In a function header you can explicitly de-
scribe the function’s goal, use of the parameters,

24 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

Figure 2
Navigating the menu tree

MySource.c

deliverable resource

activity

MyOtherHeader.h

stdio.h

MyHeader.h

DELIVERABLE_T RESOURCE_T

ACTIVITY_T

PROJECT

Figure 3
Generated graphs clearly show code

Source (in file MyHeader.h):

/** Identifiers for all states an activity can be in */
typedef enum
{
 INITIAL, /* Initial state */
 /** Idle, no activity */
 IDLE,
 ONGOING /* Work in progress */
} STATE_T;

Doxygen Output:

enum STATE_T

Enumeration values:
Identifiers for all states an activity can be in

IDLE Idle, no activity

Definition at line 12 of file MyHeader.h

00013 {
00014 INITIAL, /* Initial state */
00016 IDLE,
00017 ONGOING /* Work in progress */
00018 } STATE_T;

Figure 4 Modifying your C comments allows Doxygen to generate more info in the docs

Doxygen Output:

RESULT_T MyFunc(char* work_string,
 int max_length
)

Source (in file MySource.c):

/** Do some parsing on a given string
 * @param work_string Pointer to string of characters
 * @param max_length Maximum number of characters to evaluate
 * @return OK if string is parsed correctly, else NOK
 */
RESULT_T MyFunc(char* work_string, int max_length)
{
}

Do some parsing on a given string

Parameters:
 work_string Pointer to string of characters
 max_length Maximum number of characters to evaluate

Returns:
 OK if string is parsed correctly, else NOK

Definition at line 26 of file MySource.c

Figure 5 Parsing parameter comments

K E E S E N

and the return values to be expected, as in Fig-
ure 5.

You can also achieve some nice things by
applying HTML tags in the comments, as in
Figure 6. Use this feature with care because
the HTML has to be syntactically correct.

Well-Written Manuals
A big disadvantage of most freeware software
is the lack of a good manual to work with. This
is where Doxygen clearly stands out by pro-
viding a very well-written set of manuals. The
set consists of a User Manual, a Reference
Manual, and a Developers Manual.

The User Manual deals with the installation
of the tool followed by a brief instruction on
how to produce your first results fast. Next fol-
lows the different options to document your
source with lists, diagrams, formulas, and link-
ing with external documentation files.

The Reference Manual contains a de-
scription of all available features of Doxygen.
In addition, the different output formats are
described here. As already stated, Doxygen
can be configured to create documentation
in almost any thinkable layout. You can find
all options to achieve this in the Reference
Manual.

Last but not least is the Developers Manu-
al. This text explains the internal structure of

the program and gives good insight into how
the program does its thing.

Extending Doxygen
Distribution of Doxygen sources and binaries
are under the terms of the GNU General Pub-
lic License. Therefore, anyone can extend the
capabilities of Doxygen. On the Doxygen web
site, you can find a wish list so long that it
would be impossible for the author, Dimitri

van Heesch, to implement all of it on his own.
That is why he invites others to help him to
achieve these goals in the near future.

After you have read the Developers Manu-
al, it will not be difficult to estimate your pos-
sible contribution and to decide to join the de-
velopment crew! w::d

| Download code > windevnet.com/wdn/code/ |

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 25

Source (in file MySource.c):

/** @file MySource.c
 Modification history:
 <table>
 <tr>
 <th>Author
 <th>Date
 <th>Description
 <tr>
 <td>Hank Acker
 <td>05-02-2003
 <td>Creation
 <tr>
 <td>William Right
 <td>10-02-2003
 <td>Comments added
 </table> */

Doxygen Output:

Detailed Description

Modification history:

Author

Comments added

Creation

Description

10-02-2003

05-02-2003

Date

William Right

Hank Acker

Figure 6 HTML-tagged comments

http://redirect.wdj.com/scripts/redirect.pl?http://www.tall-tree.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.DevConnections.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.DevConnections.com

28 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

O F T H E M O N T HJeff Claar B U G + +

ONE OF THE FEATURES of C++ that, in my opin-
ion, has “come into its own” over the last couple
of years is multiple inheritance. MI has gotten a
(somewhat justifiably) bad reputation as leading to
far too many complications for the problems that
it attempts to solve. You only need to get to the
dreaded “diamond” hierarchy once to understand
what problems can arise:

class Base {};
class Intermediate1 : public Base {}
class Intermediate2 : public Base {}
class Derived : public Intermediate1, public

Intermediate2 {}

This hierarchy is so named because if you draw a
diagram of the inheritance tree, it forms a diamond.
Much has been written about the perils of such a class structure, so I
won’t go into it here. The kind of problems and complexity that arise,
however, is one of the reasons that many people tend to shy away from
multiple inheritance.

With the advent of COM and other interface-based programming
methods, MI really started to shine. As you probably know, using COM
in C++ involves defining interfaces, which are implemented as ab-
stract base classes that contain only pure virtual functions and no data.
For example:

class Interface1 : public IUnknown
{
public:

virtual HRESULT Foo() = 0;
};

class Interface2 : public IUnknown
{
public:

virtual HRESULT Bar() = 0;
};

class Implementation : public Interface1,
public Interface2

{
public:

HRESULT Foo()
{ /* Foo implementation */ }

HRESULT Bar()
{ /* Bar implementation */ }

};

For COM, I’d also have to implement QueryIn-
terface, AddRef, and Release, but I’ll leave that
out for now. The great thing about a model like
this is that it completely separates the interface to
the object from the implementation of that object.
If I get a pointer to Interface1, I can call the Foo
function, but I have absolutely no idea how it is
implemented. All I know is that this object has a
Foo implementation. This avoids building unnec-
essary dependencies on the implementation, which
happen inadvertently all too often.

All this is great, but complications can still arise.
In particular, suppose InterfaceA and InterfaceB

both define the same function (I’ll leave out IUnknown for simplicity;
the same problem exists):

class InterfaceA
{

virtual void Draw();
};

class InterfaceB
{

virtual void Draw();
};

class MyImplementation : public InterfaceA
public InterfaceB

{
public:

// How do I overload InterfaceA::Draw
// or InterfaceB::Draw?

};

If I want to provide a new implementation of the Draw function,
what do I do? How can I specify which Draw I want to implement? As
C++ stands now, I can’t do it. There is no way to specify that within

Multiple Inheritance

Be careful when using MI in Visual C++ 7.0; plus,

more on overloading main

JEFF CLAAR is a software engineer at Nemesis in Southern California,
writing drivers for consumer and professional audio products. You can
submit your bugs to him at wdletter@cmp.com.

B U G + + O F T H E M O N T H

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 29

the class definition. There is a way, however,
by using some additional classes:

class MyImplA : public InterfaceA
{
public:

virtual void InterfaceADraw() = 0;
void Draw() { InterfaceADraw(); }

};

class MyImplB : public InterfaceB
{
public:

virtual void InterfaceBDraw() = 0;
void Draw() { InterfaceBDraw(); }

};

class MyImplementation : public MyImplA :
public MyImplB

{
public:

void InterfaceADraw() {...}
void InterfaceBDraw() {...}

};

In this case, two additional base classes, MyIm-
plA and MyImplB, are used as a form of indirec-
tion so that, essentially, the two base class Draw
functions are given different names. I can then
reimplement them as I see fit. While it would be
nice to not have to create the two additional base
classes, it’s not too much effort; after all, they only
have to reimplement the functions that have the
same name in the two interface classes.

The “Bug”
If I’m using Visual C++ 7.0, however, it appears
that I don’t have to implement the two base
classes! Daniel Anderson sent in the code shown
in Listing 1. It defines two base classes, similar
to those just mentioned, and implements them
in the derived class using the following syntax:

class Derived
{
...

void Base1::foo() {...}
void Base2::foo() {...}

};

This is completely nonstandard, but VC7
compiles it with no problems, and the re-
sulting program behaves as you would expect.
Each reimplementation is called as expected.
All other compilers I tried it on failed to com-
pile it.

Microsoft’s Response
This appears to be expected behavior by VC7,
but I was curious as to why it was implement-
ed at all. After all, you can use the aforemen-
tioned technique with extra base classes to
achieve the exact same behavior. With that
in mind, I sent the code off to Microsoft for

// Non-standard code that compiles successfully
// under Visual C++ 7.0 with standard options.

#include <iostream>
using namespace std;

class Base1
{

public:
virtual void foo()=0;

};

class Base2
{

public:
virtual void foo()=0;

};

class Derived : public Base1, public Base2
{
public:

// This is a non-standard declaration!
void Base1::foo() { cout << "Base1" << endl; }
void Base2::foo() { cout << "Base2" << endl; }

};

int main(int, char**)
{

Derived der;
Base1* base1 = &der;
Base2* base2 = &der;

base1->foo();
base2->foo();
return 0;

}

Listing 1
VC7’s language extension for
multiple inheritance

http://redirect.wdj.com/scripts/redirect.pl?http://www.gimpel.com

B U G + + O F T H E M O N T H

30 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

comment. Jeff Peil responded with the fol-
lowing:

This is correctly identified as an extension.
This extension was necessary for managed

classes because managed classes can only mul-
tiply implement interfaces and cannot use
multiple inheritance of base classes.

—Jeff Peil

I have to admit a considerable lack of knowl-
edge about using managed classes, but if that’s
the case, then it certainly makes sense for VC7
to implement that feature. And I have to say
it’s certainly a convenient feature to have. It
doesn’t appear to be disabled, however, if I turn
on the “Disable Language Extension” option
in the project settings. If portability is not a
concern, it shouldn’t be a problem, but it
should be kept in mind otherwise.

Overloading main
In a previous column, I talked a little bit about
overloading main. In it, I mentioned that Win-
dows may qualify as a freestanding environment,
and as such it may not require a main function.
However, reader Alan Stokes was quick to point
out that the C++ Standard is pretty clear as to
what qualifies as a freestanding environment,
in a paragraph that I simply missed:

“A freestanding implementation is one in
which execution may take place without the
benefit of an operating system, and has an
implementation-defined set of libraries that
includes certain language-support libraries.”
(Section 1.4)

Well, that makes it pretty clear that a C++
compiler for Windows does not qualify as a
freestanding environment! (And no wisecracks,
please, as to whether or not Windows 9X qual-
ifies as an “operating system”!) It looks like Vi-
sual C++ is truly erroneous when it allows the
program to overload main. I don’t really qual-
ify this as a particularly serious bug, though it
is certainly incorrect.

Upon further thought, it’s pretty clear that
a C++ compiler for Windows must be a host-
ed (nonfreestanding) implementation. If it’s
not, that would mean compilers for UNIX,
Linux, and just about any other operating sys-
tem on the planet would not be hosted either.
I’ll have to be a little more careful reading in
the future!

Farewell
This is the final installment that I’ll be writ-
ing for Bug++. My day job is taking more and
more time, and with an 18-month-old son and
another on the way, I’m finding that I simply

don’t have the time necessary to devote to a
column like this. Someone once said that writ-
ing an article is like running a sprint, and writ-
ing a monthly column is like running a
marathon. After doing this month after month,
I’d have to say that’s a pretty accurate analo-
gy! I’d like to thank John Dorsey for his sup-
port, as well as Amy Stephens for her work in
getting all the parts I submit to her into one
coherent whole. (And not to mention her un-
derstanding when I miss deadlines.) I’d also like
to thank Ron Burk, the former editor of Win-
dows Developer (back when it was WDJ) for giv-
ing me the opportunity to write this column in
the first place. I’d even like to thank Microsoft
(and Borland) for their professional responses,
which were always courteous even though they
were probably sick of hearing from me. Even
when I was mistaken and misidentified a com-
piler bug, they never took the chance to rub it
in! And most of all, I’d like to thank you read-
ers for your submissions and your constructive
criticism. I definitely learned a lot from all of
you, and I appreciate the time you took to write.
I can still be reached at jclaar3@cox.net with
any comments and questions on past columns.
Thanks again, and I hope you found the col-
umn useful! w::d

| Download code > windevnet.com/wdn/code/ |

http://redirect.wdj.com/scripts/redirect.pl?http://www.amyuni.com

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 31

T I P S Edited by George FrazierT E C H
Please send us your best tricks and hacks—those clever pieces of code to make things
work the way they should! You’ll receive at least $50 for each tip that we print. Send
your submissions to wdletter@cmp.com with the header “Tech Tip submission.”

Installing a USB Filter Driver
ALAN MACINNES
alanmacinnes@earthlink.net

INSTALLING A WDM (WINDOWS Driver Model) filter driver for a
USB device requires that just a few lines be added to the .INF file,
which is used to install its primary device driver. In the example .INF
file provided (Listing 1), FILTER.SYS will be installed as an “upper”
filter driver to SESUSB.SYS. Three things need to be accomplished
by these additional lines to the .INF file. First, the filter driver image
itself, FILTER.SYS, must be copied to the %systemroot%\sys-
tem32\drivers folder. Second, an entry must be added to the registry
at HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Ser-
vices to define the filter driver as a service. Finally, a registry value
must be added to the entry within HKEY_LOCAL_MACHINE/SYS-
TEM/CurrentControlSet/Enum/USB for these particular USB Ven-
dor ID and Product ID values. This is to specify that there is an up-
per filter driver that must be loaded into the device driver stack for
this particular device. (This .INF file was tested with FILTER.SYS,
which is the sample USB filter driver provided in the Microsoft DDK).

Accessing IDL ref Types as C++
References
MATTHEW WILSON
matthew@synesis.com.au

THE INTERFACE DEFINITION LANGUAGE can, in common with C,
manipulate function arguments as by-value or by-reference, where by-
reference parameters are expressed in the form of pointers.

When such by-reference parameters cannot be NULL, the param-
eter is marked with the [ref] attribute, as in the IInterface::Non-
NullMethod in Listing 2.

This means that the marshaling code, and the implementing class’s
code, can always rely on a valid nonNULL pointer pss to transmit
and use. However, in C/C++ client code, there is nothing to prevent
a NULL from being passed (with the attendant crash following short-
ly thereafter). (Note that [ref] and another pointer attribute [ptr]
cannot be applied to interface pointers, as they are always assumed to
be [unique], and specifies such leads to the MIDL compiler ignoring
the attribute and giving the MIDL2034 warning. However, the con-
cepts described here may still be applied usefully to interface point-
ers, in so far as providing the convenience of the use of references to
interface-implementing objects.)

In C++, the reference is a very useful syntactic construct that pro-
vides the programmer with the ability to pass-by-reference while still
appearing to be using object instances themselves, as opposed to point-
ers to them. Furthermore, since it is illegal—and in practice usually

takes a deliberate effort—to
pass a NULL reference, it is a
very useful way for program-
mers to express to client pro-
grammers this semantic in
their APIs.

Because reference argu-
ments exhibit the same type
conversion and, where appli-
cable, polymorphic abilities as
do pointers, it would be very
useful to be able to pass refer-
ence parameters to interface
methods that have been de-
fined as being of [ref] type.
This can be achieved with a
simple trick on the part of the

MIDL compiler’s preprocessor commands.
It would be nice when compiling for C++ if the pss and pii2 pa-

rameters to NonNullMethod() would be references, without that caus-
ing an issue to the MIDL compiler. The technique for this is very sim-
ple, and relies on using the MIDL cpp_quote keyword to insert
preprocessor code for the C/C++ compile, not for the MIDL compile,
as in Listing 3.

The use of cpp_quote to insert post-MIDL compile-time preproces-
sor instructions for the C/C++ compiler allows IDL and C/C++ to see
different definitions of types. Because a C++ reference is equivalent to
a pointer (in terms of what happens at the instruction level), the tech-
nique allows one to change the parameter type. It should be noted that
great care must be taken to get the respective definitions correct, and
to make sure they stay in sync as the IDL source evolves, or nasty things
can happen.

Despite this technique having an inherent danger in IDL, it can
help increase the safety of interface-using C++ code. It is clear how
much more convenient this is, as well as its affording an additional
level of type safety by enforcing the use of (C++) references to the
interface’s method’s (IDL) reference parameters. For example, if one
had wished to wrap SOMESTRUCT into a class SomeStruct and had
a class Class2 implementing IOther, the use of the IInterface in-
terface with these types is very simple, as in Listing 4.

The only caveat is that one must ensure that the cpp_quote code
is correct, and current, should the interface method change (though
I am sure none of our good readers would ever change an interface
except prior to its initial release).

GEORGE FRAZIER is a software engineer in the System Design and
Verification group at Cadence Design Systems Inc. and has been pro-
gramming for Windows since 1991. He can be reached at georgefrazier@
yahoo.com.

T E C H T I P S

32 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

Accessing Old List-View Headers
MATTHEW WILSON
matthew@synesis.com.au

THE LIST-VIEW COMMON control, in report mode (window style con-
tains LVS_REPORT), has a header control. This control is accessed
via the LVM_GETHEADER message, or the macro ListView_Get-
Header (which wraps a sending of the LVM_GETHEADER message),
which takes no parameters and simply returns the window handle of
the header control.

Unfortunately, old versions of the common control library (com-
ctl32.lib) do not handle this message, requiring the following func-
tion, ListView_GetHeaderCtrl(), which searches for the child head-
er control if the parent list-view does not recognize the LVM_HEADER
message.

HWND ListView_GetHeaderCtrl(HWND hwnd)
{
#ifndef LVM_GETHEADER
#define LVM_GETHEADER (LVM_FIRST + 31)
#endif

/* Attempt the LVM_GETHEADER message */
HWND hwndChild = (HWND)SendMessage(hwnd,

LVM_GETHEADER, 0, 0L);

if(hwndChild == NULL)
{

/* NULL returned so attempt a search */
HWND hwndFirst;

hwndChild = GetWindow(hwnd, GW_CHILD);
hwndFirst = hwndChild;

do
{

CHAR szCls[200];

if(GetClassNameA(hwndChild,
szCls, sizeof(szCls)) &&

lstrcmpiA(szCls, WC_HEADERA) == 0)

; This .INF file demonstrates how to install a filter driver
; for a USB device.
;
; The lines marked with the comment "Filter driver install"
; identify those lines that were specifically added in order to install
; the upper filter driver onto the "driver stack" for this USB device
;
; If one were to remove these lines, what remains is the original
; .INF file to install just the one driver for the USB device.
;

[Version]
Signature="$WINDOWS NT$"
Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}

[Manufacturer]
%MfgName%=MyDriver

[MyDriver]
%USB\VID_07CC&PID_0003.DeviceDesc%=SESUSB.Dev, USB\VID_07CC&PID_0003

[DestinationDirs]
SESUSB.Files.Ext = 10,System32\Drivers

[SESUSB.Dev.NT]
CopyFiles=SESUSB.Files.Ext

[SESUSB.Files.Ext]
SESUSB.SYS
FILTER.SYS ; "Filter driver install"

[SESUSB.Dev.NT.Services]
Addservice = SESUSB, 0x00000002, SESUSB.AddService
Addservice = FILTER, , SESFILTER.AddService ; "Filter driver install"

[SESUSB.AddService]
DisplayName = %SESUSB.SvcDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %12%\SESUSB.SYS
LoadOrderGroup = Base

[SESFILTER.AddService] ; "Filter driver install"
DisplayName = %SESFILTER.SvcDesc% ; "Filter driver install"
ServiceType = 1 ; "Filter driver install"
StartType = 3 ; "Filter driver install"
ErrorControl = 1 ; "Filter driver install"
ServiceBinary = %12%\FILTER.SYS ; "Filter driver install"
LoadOrderGroup = PnP Filter ; "Filter driver install"

[SESUSB.Dev.NT.HW] ; "Filter driver install"
Addreg=SESFILTER_Filter_Reg ; "Filter driver install"

[SESFILTER_Filter_Reg] ; "Filter driver install"
HKR,,"UpperFilters",0x00010000,"FILTER" ; "Filter driver install"

[Strings]
MfgName="Sample Driver"
USB\VID_07CC&PID_0003.DeviceDesc="Sample USB device"
SESUSB.SvcDesc="SESUSB.SYS Sample USB device driver"
SESFILTER.SvcDesc="FILTER.SYS Upper filter driver" ; "Filter driver install"

Listing 1
USB filter driver example

typedef struct SOMESTRUCT
{

int i;
short s;

} SOMESTRUCT;

interface IOther
{

HRESULT TellSOMESTRUCT([in] int i, [in] short s);
}

interface IInterface
{

HRESULT NonNullMethod([in, ref] SOMESTRUCT *pss,
[in] IOther *pii2);

}

Listing 2
Marking a parameter with [ref]

typedef struct SOMESTRUCT
{

int i;
short s;

} SOMESTRUCT;

cpp_quote("#ifndef __cplusplus")
typedef SOMESTRUCT *SOMESTRUCT_ref_t;
cpp_quote("#else")
cpp_quote("typedef SOMESTRUCT &SOMESTRUCT_ref_t;")
cpp_quote("#endif /* !__cplusplus */")

interface IOther
{

HRESULT TellSOMESTRUCT([in] int i, [in] short s);
}

cpp_quote("#ifndef __cplusplus")
typedef IOther *IOther_ref_t;
cpp_quote("#else")
cpp_quote("typedef IOther &IOther_ref_t;")
cpp_quote("#endif /* !__cplusplus */")

interface IInterface
{

HRESULT NonNullMethod([in, ref] SOMESTRUCT_ref_t pss,
[in] IOther_ref_t pii2);

}

Listing 3
Using the MIDL cpp_quote keyword

T E C H T I P S

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 33

{
/* Found it! */
break;

}

} while((hwndChild =
GetWindow(hwndChild, GW_HWNDNEXT)) != NULL &&

hwndChild != hwndFirst);
}

return hwndChild;
}

The function has been compiled with Visu-
al C++ 2.0, 4.0, 4.2, 5.0, and 6.0, and Borland
C++ 4.52 and 5.5, and tested on Windows 95,
98, NT 4, and Windows 2000.

Avoiding the MIDL
Semantic Analysis Bug
MATTHEW WILSON
matthew@synesis.com.

THE MICROSOFT IDL (MIDL) compiler provides
a number of facilities for defining and manip-
ulating types borrowed from C. One of these,
typedef, is used to create aliases of existing
types (or of previously defined aliases), usual-
ly for clarity/brevity or for flexibility.

One would declare such types in the fol-
lowing way:

typedef ExistingType NewAliasType;

For example, in wtypes.idl the APPID type
alias is typedef’d from the type GUID. (In fact
GUID is also an alias for the actual type struct
_GUID), as in:

typedef GUID APPID;

In C/C++ the ExistingType may be omit-
ted, in which case the type int is assumed. But
if the ExistingType is an identifier that is un-
known to the compiler, then obviously the
compilation will fail at that point.

In MIDL, however, the MIDL compiler ap-
pears to treat typedefs in the same way as pre-
processor symbol definition replacements, since
it is possible to have the following compile
without errors or warnings (where NOT_DE-
FINED is not defined):

typedef NOT_DEFINED XYZ_t;

This may not seem like a problem, since how
often would one define a type in an IDL file
and not use it? Well quite often, when build-
ing a complex system with a hierarchy of in-
terfaces, types and, consequently, IDL files. In
particular, one often defines types in IDL that
are only utilized in C/C++ source code. There-

fore, this issue can be the source of a number
of subtle bugs, causing big headaches when
combined with minimal spelling errors. For ex-
ample:

typedef GULD * const CPGUID;
// Trouble awaits! w::d

| Download code > windevnet.com/wdn/code/ |

// By defining the following classes ...

class SomeStruct
: public SOMESTRUCT

{
// Construction

SomeStruct(int i, short s)
{

this->i = i;
this->s = s;

}

...
};

class Class2
: public IOther

{
...

};

// ... one can write validly, from within C++, the following code.

void funcX(IInterface *pii, Class2 &cls2)
{

...

SomeStruct some(65536, 256);

pii->NonNullMethod(some, cls2);

...
}

Listing 4 Using the IInterface interface

http://redirect.wdj.com/scripts/redirect.pl?http://www.dinkumware.com

34 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

Paul KimmelF R A M E W O R K S

AS DISCUSSED IN LAST month’s column, the XML
serialization process generates an XML represen-
tation of the data stored in a .NET Framework class.
Only the public fields of the class are taken into
account and the whole process aborts if the class
holds circular references with other managed class-
es. The XmlSerializer class is the .NET Frame-
work tool that governs the process. You use this
class to serialize a living instance of a class to a per-
sistence medium and to recreate an object from a
source.

Last month, I briefly hinted at a bunch of events.
You can take advantage of them during the dese-
rialization step whenever the input stream contains
an XML document that doesn’t match the schema
of the object being deserialized. The programmer
can fix things up and programmatically map the
unmatched XML node to a particular combination of fields in the tar-
get object using events such as UnknownNode. This technique is often
used to deserialize across different versions of the class. For example,
Version 1.0 of the application saves a class. Next, Version 2.0 of the
application that manages a slightly different version of the class needs
to deserialize the bytes. Using this approach, the same data can be
easily mapped to new, or simply renamed, fields.

Taken to the limit, the feature also proves useful in a more entic-
ing scenario—mapping SQL Server data directly to class instances.

In this article, I’ll show how to execute a query that returns XML
data and map the various nodes to fields of a predefined class. The
process should not be read simply as the deserialization of an instance
of the same class. More exactly, the technique discussed here repre-
sents a way to map, in total or in part, any XML document stored in
a database to any class usable within a .NET application.

Getting XML Data
From the Database
Let’s prepare a simple query to run against SQL Server that returns
XML data. In the latest version, SQL Server supports the FOR XML
clause in the SQL’s SELECT statement. When used, the clause caus-
es the query processor to pack the result set into an XML document.
It goes without saying that any query, and any other database server,
can be used as long as it returns text that can be processed as well-
formed XML text, or at least as a well-formed XML fragment. (Inci-

dentally, an XML fragment is a well-formed XML
document except that it doesn’t include a unique
root node.)

The following code is at the heart of the exam-
ple. You call into a method of a worker class and
the method executes a SQL XML command. The
data flows into the serializer, and an instance of a
particular class is returned, as shown here:

Employee emp = LoadEmployeeData(empID);

Internally, the LoadEmployeeData method uti-
lizes the ExecuteXmlReader method of ADO.NET’s
SqlCommand class to execute the query and obtain
back XML data. In the .NET Framework, XML data
is normally worked using a reader that is a cursor-
like component, which processes one node at a

time. The peculiarity of the ExecuteXmlReader method is that it re-
turns the XML data from the query stuffed in a ready-to-use instance
of the XML reader class.

// cmd here is a SqlCommand object
XmlSerializer ser = PrepareSerializer();
Employee emp = null;
XmlTextReader reader;
reader = (XmlTextReader) cmd.ExecuteXmlReader();
if(ser.CanDeserialize(reader))

emp = (Employee) ser.Deserialize(reader);
else

Console.WriteLine(“Cannot deserialize”);
reader.Close();

The XML reader is passed to the Deserialize method of the XmlSe-
rializer and its content is processed and creates an instance of the
specified user class. For the whole mechanism to work, some attributes

Mapping SQL Data to Class Properties

Map any XML document stored in a database to

any .NET class

DINO ESPOSITO is Wintellect’s ADO.NET and XML expert and is a
trainer and consultant based in Rome, Italy. He is a contributing edi-
tor to MSDN Magazine, writing the “Cutting Edge” column, and is the
author of several books for Microsoft Press, including Building Web
Solutions with ASP.NET and Applied XML Programming for .NET.
Contact him at dinoe@wintellect.com.

Dino Esposito I N S I D E . N E T

I N S I D E . N E T

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 35

must be set on the serializer class. These attributes play an essential
role to instruct the serializer on how to map nodes in the source XML
to fields in the target class. The configuration attributes are defined
in the PrepareSerializer method.

In general, the attributes of the XML serialization process can be
set in two ways—programmatically through an ad hoc set of classes,
and declaratively by associating attributes with the serializable mem-
bers of the class. For example, the declaration to follow states that the
LastName property must be rendered to XML as a nullable element
named FamilyName.

[XmlElement(Namespace =”urn:dino-e”,
IsNullable=true,
DataType=”string”,
ElementName=”FamilyName”)]

public string LastName;

The same association can be set programmatically by manipulating
the corresponding attribute classes such as XmlElementAttribute.

A special case of XML serialization is when the data to deserialize is
stored in a database. In a similar situation, the document being returned
is not necessarily the result of a previous XML serialization that was op-
erated on in the same output class. In the aforementioned code snip-
pet, you deserialize the output of a query to an Employee class. How-
ever, nothing would guarantee that the contents of the database column
is exactly the XML string generated by the XmlSerializer for an in-
stance of Employee. At the end of the day, XML serialization attributes
allow you to deserialize any XML text, no matter the storage medium,
to any .NET Framework class. More importantly, the mapping takes
place automatically within the XmlSerializer class and doesn’t even
require that you create an instance of target class.

Deserializing From a Database
Let’s examine the details of XML data mapping considering the fol-
lowing class, named Employee.

public class Employee {
public string FirstName;
public string LastName;
public string Position;
public DateTime Hired;

}

You run a SQL query against the Northwind database and make
sure you select the fields listed in the following statement:

SELECT firstname, lastname, title, hiredate
FROM employees
WHERE employeeid=@empID
FOR XML

Since the SELECT statement contains a FOR XML clause, the fi-
nal XML output will be made of a sequence of XML nodes like the
one shown here. You have one of such a node for each record in the
result set.

<employees firstname=“...”
lastname=“...”
title=“...”
hiredate=“...” />

As mentioned, the serializer is used only to deserialize the data com-
ing from SQL Server. No previous serialization was explicitly done.
The deserializer reads the inbound data and infers an ad hoc class

mailto:sales@leadtools.com

36 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

structure; then, it just matches this inferred
structure with the specified type to deserialize
to—the Employees class in this case.

The first piece of information you need to
pass on to the XML serializer is the name of
the class to deserialize to. By default, the seri-
alizer assumes that the name of the target class
is the root of the XML fragment. In this case,
it will be Employees. To change this to Em-
ployee, you must define an XmlRoot attribute
on the Employee class. This can be done ei-
ther declaratively or programmatically. You
could do it declaratively as shown in the code
snippet here:

[XmlRoot(ElementName=employees)]
public class Employee {

:
}

If for some reason you don’t have access to
the source code of the Employee class, then
you can proceed programmatically by creat-
ing an instance of the XmlRootAttribute
class. When you bind attributes program-
matically, you must first create an instance
of the XmlAttributes class, which represents
the whole set of attributes for the XML seri-
alizer.

XmlAttributes changes = new XmlAttributes();
XmlRootAttribute newRoot = new
XmlRootAttribute();
newRoot.ElementName = “employees”;
changes.XmlRoot = newRoot;

The XmlRoot property in XmlAttributes is
set with an instance of the XmlAttributeRoot
class that was previously configured to repre-
sent the requested mapping. However, for the
whole thing to become effective, the changes
must be added to an XmlAttributeOverrides
object, which will then be passed to the type-
specific serializer’s constructor.

XmlAttributeOverrides over = new
XmlAttributeOverrides();

over.Add(typeof(Employee), changes);
XmlSerializer ser = new

XmlSerializer(typeof(Employee), over);

In the original XML source, you have four
fields—lastname, firstname, title, and hire-
date. The last two have a counterpart in the
Employee class with a different name—Po-
sition and Hired. The deserializer, though,
works in a strictly case-sensitive fashion and
considers firstname completely different from
FirstName. For this reason, renaming the
lastname and firstname properties is ab-
solutely necessary.

XmlAttributes changes = new XmlAttributes();
XmlAttributeAttribute fname = new

XmlAttributeAttribute();
fname.AttributeName = “firstname”;
changes.XmlAttribute = fname;
over.Add(typeof(Employee), “FirstName”,

changes);

You should note that a distinct XmlAttrib-
utes object is required for each element you
want to override. The XmlAttributes object
collects all the overrides you want to enter on
a given element. In this case, after creating a
new XmlAttributeAttribute object, you
change the attribute name to that of the source
SQL field and store the resultant object in the
XmlAttribute property of the overriding con-
tainer. A nearly identical piece of code is need-
ed for the other properties of the Employee
class.

It is worth noticing that the root of the XML
source must coincide with the name of the
class. If this is not the case, then the Deseri-
alize method just fails. If you need to apply
some logic during the conversion phase, you
can do it using one of the techniques that I
discussed in last month’s column. In particu-
lar, you might want to hook up one of the de-
serializer’s events to be notified of any unknown
nodes found. Next, you extract any informa-
tion from nodes and process it as needed.

Working with Embedded Data
What happens if the query contains embed-
ded data; for example, the results of an INNER
JOIN? In this case, the FOR XML clause comes
up with data packed as shown here:

<employees>
<firstname>Nancy</firstname>
<lastname>Davolio</lastname>

<orders>
<orderid>1234</orderid>
<orderid>5678</orderid>

</orders>
</employees>

How can you import and map the embed-
ded data rooted in the <orders> node? The
XML serializer class is always notified of any
<orders> elements found along the way
through an UnknownElement event. So to im-
port the contents of the <orders> subtree you
need to write an event handler. For example,
suppose that you want all the orders to popu-
late a collection member (say, Orders) of the
Employee class. The following code illustrates
how to handle the event.

if (e.Element.Name == “orders”)
{

if (emp.Orders == null)
emp.Orders = new ArrayList();
int oID = (int) e.Element.InnerText;
emp.Orders.Add(oID);

}

If the collection is NULL, it is created and
added to all the various orders. The specific
order information is retrieved using the In-
nerText property of the element. The neces-
sary code is slightly different if the order is ex-
pressed as an attribute, as shown here:

<orders orderid=”1234” />

In this case, you rely on the Attributes prop-
erty of the e.Element object:

int oID = (int)
e.Element.Attributes[“orderid”].Value;
emp.Orders.Add(oID);

The Attributes collection property con-
tains all the attributes on the current node.

More About the
XmlSerializer Class
When you run a sample application that uses
the XmlSerializer class in Visual Studio .NET,
you’ll notice that the first time the class is ini-
tialized in the session, it takes a while. The
reason is that the XmlSerializer needs to
compile and then store an ad hoc assembly
that it uses to perform the serialization and de-
serialization of the specified type. When you
instantiate the XML serializer, you indicate a
type. The initialization of the serializer just
consists of the creation of an assembly capa-
ble of processing data of that type.

The XmlSerializer class maintains an in-
ternal table of type/assembly pairs. If there is
no known assembly to handle the type, a new
assembly is promptly generated and cached;
otherwise, the existing assembly is used to se-
rialize and deserialize. A little known thing,
though, is that if you happen to use an XmlSe-
rializer constructor different from the sim-
plest one, the assembly cache is disabled and
the assembly is recreated each time the class
is instantiated.

Type t = typeof(MyClass);
XmlSerializer ser = new XmlSerializer(t);

Of all the constructors available to the seri-
alizer, the one just shown is the only one not
affected by the aforementioned behavior. If
you use another constructor, then be aware of
the fact that the internal assembly cache is dis-
abled.

The XML serializer is a double-edged sword.
On one hand, it lets you serialize and deseri-
alize even complex .NET Framework classes
to and from XML with very few lines of code.
To obtain that, though, the serializer creates
an assembly on the fly. Unless you use a sin-
gle global instance of the serializer on a per-
type basis, you can easily add hundreds of mil-
liseconds of overhead to each call. Watch your
constructor and enjoy serialization! w::d

I N S I D E . N E T

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 37

Victor R. VolkmanI N B R I E FB O O K S

Practical C++ Programming,
2nd Edition

Steve Oualline
574 pages
O’Reilly & Associates
$39.95
ISBN: 0596004192
www.oreilly.com

PRACTICAL C++ PROGRAMMING, 2ND
Edition, by Steve Oualline, updates a clas-
sic O’Reilly tutorial. The author sets out
quite clearly in the preface that it’s de-
signed for people with “no previous pro-
gramming experience.” As a part-time in-
structor who has taught more than 100
college freshman-level students in this cat-
egory, my interest in this book was piqued
immediately. The book surveys the entire
language gamut including control, pre-

processor, file I/O, namespaces, pointers, classes, inheritance, tem-
plates, and STL.

Practical C++ Programming, 2nd Edition weighs in with only a few
more pages than its preceding 1995 edition. A chapter-by-chapter
comparison shows that “Portability Problems” was dropped in favor
of a new chapter on “Standard Template Library.” It also adds a very
brief appendix of Internet-based resources.

The author leads off with a chapter on style issues even before in-
troducing any syntax. This seems like an easy way to inculcate read-
ers into the culture of style. Throughout the book, the author broach-
es various software engineering topics such as structured programming
and modular design after an appropriate background.

The pacing is brisk compared to many academic texts I have ex-
perienced. For example, Oualline covers arrays (single and multidi-
mensional), strings, C-strings, and prefix/postfix operators altogether
in a single brief 25-page chapter. Each chapter poses several questions
that are fully answered at the end. Additionally, appropriate pro-
gramming exercises appear at the end, though solutions to these are
unavailable.

After introducing control structures, a similar pacing covers every-
thing related to functions in one chapter: scope, storage class, name-
spaces, return values, reference/value params, overloading, default args,
recursion, and related topics.

Chapter 17 on debugging and optimization brings forth many com-
mon C++ aphorisms, such as inline and converting array indices
into pointers. On optimization, I tend to agree with Herb Sutter:
“Way too many programmers spend way too many hours trying to
optimize—but sometimes pessimizing, and always complicating code
that doesn’t need it.” (InformIT.com: “Interview with C++ Expert
Herb Sutter,” February 1st, 2002.)

The chapters on STL templates are brief and give you mostly the
basics to get started with them. Oualline admits that treatment of

such areas as partial specialization lies beyond this text. On STL,
short examples on set and map containers point out the general di-
rection. For a complete understanding of STL, you’ll need another
text such as Nicolai Josuttis’s The C++ Standard Library and/or Scott
Meyers’s Effective STL.

I found it unusual that the do/while loop and the ternary operator
were both relegated to the very last chapter, especially since Oualline
concedes that most programming is maintenance. Conversely, some
less frequently used items such as bit members receive more promi-
nent placement than they deserve.

Online reviewers vary widely in opinions of Practical C++ Program-
ming. Novice programmers have proclaimed its excellent readability,
syntax explanations, exercises, and pragmatic guidelines. Experts be-
moan its lack of emphasis on object-oriented programming through its
primary emphasis on procedural techniques. Comparisons to Oualline’s
Practical C Programming, 3rd Edition inevitably follow this line of crit-
icism. Based on my analysis of their respective tables of contents, sev-
eral chapters are nearly identical between the two texts.

Even so, I’ve yet to see any book that effectively combines pro-
gramming for beginners with object-oriented programming. As with
most C++ introductions, Practical C++ Programming begins dis-
cussing objects earnestly around the middle of the book. The au-
thor develops a simple stack class from scratch, improving object
awareness with each iteration. Along the way, lots of useful tips
help the unwary avoid the most common pitfalls, especially for the
default member functions (i.e., copy constructor). Some object fea-
tures, such as friend classes, merely show the usage without enough
information for you to make informed decisions about when not to
use them.

Chapter 27, “Putting it all Together,” provides a complete case-
study of design and implementation of a program to provide simple
source-code metrics. Since most other examples exist simply to illus-
trate a language feature in isolation, this project adds more coherence
to the overall picture.

Source code for the book is online at www.oreilly.com/catalog/cplus2/.
The source archive is quite small but comprehensive. Makefiles for
GNU, Borland, and Microsoft appear for every example, even the
“Hello World” program. The programs compiled without complaint
on VC++ 7.0, though one of the compiler switches is unsupported in
VC++ 6.0. The biggest possible improvement would be to include so-
lutions to the Programming Exercises. Last, O’Reilly faithfully repro-
duces reader-submitted errata lists on its web site. When I submitted
a new errata item, the author reviewed and approved it less than a
week later. Although the index is detailed, I failed to find an entry
for the word “inheritance.”

Practical C++ Programming provides a thorough introduction to the
basics of C++ including lots of pragmatic advice along the way. I would
recommend this book to anyone with a working knowledge of any
prior programming language (such as VB, Perl, or JavaScript) who
wants to get started quickly on C++. w::d

VICTOR R. VOLKMAN received a B.S. in Computer Science from
Michigan Technological University. He has been a frequent contrib-
utor to Windows Developer Magazine since 1990. He is the author
of C/C++ Treasure Chest, which includes 300 products on CD-ROM.
He can be reached by e-mail at sysop@HAL9K.com or through
http://www.HAL9K.com/.

GET ADDITIONAL INFORMATION ABOUT PRODUCTS
AND SERVICES YOU SEE ADVERTISED FAST!

PHONE: Contact the vendor directly using the information in the advertisement.

WEB: Go to the development tool page on our web site, www.windevnet.com.
From there you can link to the advertisers below.

38 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

www.windevnet.com

ADVERTISER PAGE

/n Software C2

Alexsys Corp. C3

Amyuni Technologies 30

BeCubed Software Inc. 40

Dinkumware Ltd. 33

dtSearch Corp. 4

FairCom Corp. 15

Gimpel Software 29

Iocomp Software 12

LEAD Technologies 35

Marx Software Security 40

Microsoft Developer 20–21

Microsoft Windows Server 6–7

Numerical Algorithms Group 40

Programmer’s Paradise 9

Programmer’s Paradise 11

Qualcomm Inc. 1

Reporting Engines 17

Seapine Software C4

Softel vdm Inc. 13

Software Development Conference & Expo 2

Sourcegear 19

Tal Technologies Inc. 40

Tall Tree Software 25

Tech Conferences 26–27

ADVERTISER PAGE

THB Componentware 40

Wibu-Systems 23

Windows Developer CD-ROM 5

Xoreax Software 25

ADVERTISER INDEX

■ Michele Hurabiell Regional Manager—West

415-947-6199 mhurabiell@cmp.com

■ Ed Day Regional Manager—Central/Southeast

785-838-7547 eday@cmp.com

■ Jon Hampson Regional Manager—East

603-924-8500 jhampson@cmp.com

■ ■ ■ Julie Thibault Account Manager—All Regions

603-924-8400 jthibault@cmp.com

WEST EAST

West

Central/Southeast

East

http://redirect.wdj.com/scripts/redirect.pl?http://www.nsoftware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.amyuni.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dinkumware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.dtsearch.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.faircom.com/ep/wdm/cts
http://redirect.wdj.com/scripts/redirect.pl?http://www.gimpel.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.iocomp.com
mailto:sales@leadtools.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/vstudio/tryit
http://redirect.wdj.com/scripts/redirect.pl?http://msdn.microsoft.com/windowsswerver2003/tryit
http://redirect.wdj.com/scripts/redirect.pl?http://www.nag.com/info/wd
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.programmersparadise.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.qualcomm.com/brew/wdm
http://redirect.wdj.com/scripts/redirect.pl?http://www.ReportingEngines.com/products/activex/
http://redirect.wdj.com/scripts/redirect.pl?http://www.seapine.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.windowscontrols.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.sdexpo.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.sourcegear.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.tall-tree.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.DevConnections.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.wibu.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.xoreax.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.windevnet.com/wdn/cdrom/

ThinPrint Announces Free
Software Development Kit
ThinPrint has announced the availability of a free Software Devel-
opment Kit for ThinPrint .print. The new SDK gives developers of
web and mobile applications a way to add a complete print sys-
tem to their environment. ThinPrint .print enables printing over
the Internet and high-quality printing from a browser, from any
device, including Microsoft Windows Powered Pocket PC and Mi-
crosoft Windows Smartphone, which can deliver fully formatted
A4 pages to the next available printer. Existing reports can be
moved to the mobile Internet without any further modifications.
ThinPrint .print SDK is available for download from
http://www.thinprint.com/dev (registration required).

ThinPrint GmbH
866.845.7811
www.thinprint.com

SlickEdit Releases
Visual SlickEdit v8.0
SlickEdit has released Visual SlickEdit v8.0. Version 8.0 offers in-
creased flexibility with directory-based projects, autoupdated
distributed tagging, Secure FTP (SFTP), and Section 508 accessi-
bility for blind and vision-impaired developers. The new three-
way merge user interface in v8.0 complements the existing DIF-
Fzilla file and directory tree differencing engine. Version 8.0
provides Borland JBuilder users with advanced editing, debug-
ging, and building capabilities, including automatic setup of
build and compile commands. Java developers will benefit from
SlickEdit’s native Java debugger with its new Edit and Run capa-
bilities and exceptions toolbar. A number of new GNU C/C++
debugger features are provided, including remote debugging,
suspend support, and a memory toolbar, along with support for
Apache Jakarta Ant for doing builds. And for developers using
the CVS open-source, version-control system, v8.0 provides a
new graphical user interface to perform the tasks previously
done via the command line. Visual SlickEdit pricing starts at
$299.00 for a full media kit on Windows and Linux x86 plat-
forms. Single-user Academic pricing is available for students and
faculty starting at $99.00.

SlickEdit Inc.
800.934.3348
www.slickedit.com

/n Software Delivers IP*Works! and
IP*Works! Zip for the .NET
Compact Framework
/n Software has delivered new editions of IP*Works! and
IP*Works Zip! for the .NET Compact Framework. IP*Works! is a
suite of professional Internet components providing everything

needed to write connected applications. IP*Works! contains
more than 30 royalty-free components implementing HTTP,
FTP, SOAP, SMTP, POP, IMAP, SNMP, NNTP, XML, MIME, Telnet,
Multicast, and more. IP*Works! Zip is a suite of development
components for adding compression and decompression func-
tionality to web and desktop applications. The current release
of IP*Works! Zip allows developers to integrate compression
and decompression into applications using the Zip, Tar, Gzip, or
Jar standards for compression. The components also feature
password support and streaming compression and decompres-
sion. IP*Works! and IP*Works! Zip for the .NET Compact Frame-
work are available from the company’s web site.

/n Software Inc.
800.225.4190
www.nsoftware.com

Quest Software Presents JClass
DesktopViews
Quest Software has presented JClass DesktopViews, a set of
components for Java applications and applets. Key features in-
clude: 100 percent pure Java JavaBeans; widest breadth and
depth for components of Swing development; stable and scala-
ble; and works with the latest Java SDKs and JREs. Included in
JClass DesktopViews: JClass Chart—embeds professional charts
and graphs in your GUIs; JClass Chart 3D—provides interactive,
three-dimensional data presentation; JClass LiveTable—creates
professional tables and forms; JClass Field—provides data vali-
dation for a range of data types; JClass HiGrid—a front end for
database applications; JClass DataSource—a tool for data ac-
cess; and JClass JarMaster—a way to package and manage your
Java classes for rapid download.

Quest Software Inc.
949.754.8000
www.quest.com

Datalight Introduces ROM-DOS 7.1
Datalight has introduced an upgrade to ROM-DOS 7.1, a devel-
opment kit that allows developers to build Internet-ready em-
bedded systems using as little as a 186 or higher processor, 60K
to 90K of ROM or flash, and a packet driver or modem for In-
ternet connectivity. Using the TCP/IP stack within ROM-DOS,
applications can have remote system control or alerts delivered
via e-mail, pager, or cell phone. ROM-DOS provides a secure
web server that allows an embedded system to be viewed and
controlled from a web browser. ROM-DOS also provides sup-
port for the Internet standard File Transfer Protocol (FTP) with
an FTP server. The Remote Console features work with Sun Mi-
crosystems’ JVM environment to provide remote DOS console
access to a remote system. In addition to the publishing of the
LFN libraries, Datalight has added support for Berkeley Socket
Distribution (BSD). The BSD makes it easy to migrate from any
OS to DOS without writing a new program to make the transi-
tion. See the company’s web site for more details.

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 39

NEW PRODUCTS
Submit new product announcements to wdletter@cmp.com.

http://redirect.wdj.com/scripts/redirect.pl?http://www.thinprint.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.slickedit.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.nsoftware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.nsoftware.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.quest.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.datalight.com

40 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

COMPRESSION PLUS 5.0

http://www.becubed.com

Compression Plus supports many
other popular archive formats, in
addition to ZIP, including ARC, ARK,
PAK, ARJ, GZ, LBR, TAR, TAZ,
TGZ, Z and ZOO files. You can also
UUENCODE, UUDECODE, decode
a Base64 file, decode a MIME
attachment which uses Base64
encoding and more! Includes 32bit
Self Extractor.

Trial version available on our
website

Formerly from EllTech

Datalight Inc.
800.221.6630
www.datalight.com

Celestial Software Releases
AbsoluteTelnet
Celestial Software has released AbsoluteTelnet, a software ter-
minal emulator that gives you terminal access to your net-
worked host systems from any Windows PC. AbsoluteTelnet in-
cludes the Telnet, SSH, and SSH2 protocols, with port
forwarding and X11 forwarding. AbsoluteTelnet is compatible
with Linux, Solaris, AIX, HPUX, DCOSx, AT&T, DEC, SGI, Sequent,

and FreeBSD. AbsoluteTelnet provides emulations such as
VT100, VT220, VT320, XTERM, ANSI, SCO-ANSI, and QNX. File
transfers can be accomplished with Zmodem. AbsoluteTelnet
also includes SSH capabilities with strong encryption algo-
rithms such as Blowfish, Twofish, AES, Arcfour, 3DES, Cast128,
IDEA, and RC4. International character set support including
character translation for many Russian, Japanese, Chinese, and
Korean character sets is included, in addition to all ISO 8859
character sets and their Windows equivalents. AbsoluteTelnet
is available for $29.95.

Celestial Software
www.celestialsoftware.net

NEW PRODUCTS
D

EV
EL

O
PE

RS
’

M
A

RK
ET

PL
A

C
E

http://redirect.wdj.com/scripts/redirect.pl?http://www.becubed.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.marx.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.nag.com/info/wd
http://redirect.wdj.com/scripts/redirect.pl?http://www.taltech.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.thbcomponents.com
mailto:wdnetwork@halldata.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.datalight.com
http://redirect.wdj.com/scripts/redirect.pl?http://www.celestialsoftware.net
http://redirect.wdj.com/scripts/redirect.pl?http://www.celestialsoftware.net

http://redirect.wdj.com/scripts/redirect.pl?http://www.alexcorp.com

http://redirect.wdj.com/scripts/redirect.pl?http://www.seapine.com

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 43

W I L S O N

WTL IS a windowing framework extension
to ATL that attempts (and largely succeeds)
to provide an application framework anal-
ogous in functionality, but vastly different
in bloat, to MFC. It provides many of the
challenging-to-write-oneself features such
as frames, splitters, command-updates, tool-
bars, coolbars, and so on. It’s very nice stuff
(although it has no-more and no-less regard
for “proper” C++ practices than does ATL
itself), and I strongly recommend you try it
out. It’s quite hard to actually find out where
it lives, but at the time of this writing is was
available at http://download.microsoft
.com/download/VisualStudioNET/In-
stall/7.0/WXP/EN-US/WTL70.exe.

Although WTL is a Microsoft library, Mi-
crosoft does not widely promote it, and
the WTL library files take pains to note
that Microsoft does not support WTL. I
guess this is a commercial decision, since
Microsoft is heavily pushing .NET, but it
seems a disservice to all those talented
C++/COM/ATL/MFC developers out
there. Thankfully, a significant core of
Win32 developers is using it, and there are
resources (such as CodeProject, www.code-
project.com) that are popularizing it. While
we must admit (sometimes against our IT-
political mores) that C#/.NET does indeed
have merit as an application development
technology, it is far from a universal solu-
tion. A very good example of where one
would wish to remain in the tight world
of C++ is in shell extensions. All the func-
tionality in the Remote Reboot compo-
nent is within one 43-KB DLL (and a lot of
that is the string resources), with the only
dependencies (bar one, which we’ll cover
shortly) being system DLLs (i.e., that are in-
stalled with your system) found on all

95/NT-family systems. The installation pro-
gram that installs all the Synesis Software
Shell Extensions contains only those sev-
en DLLs, and then uses its DllRegis-
terServer() entry points to register them.
It could hardly be simpler! (I also use the
NSIS installer, http://nsis.sourceforge.net/,
which helps keep everything small.)

The one dependency that I mentioned is
a run-time one, on ATL.DLL. The shell ex-
tensions do not require this DLL to run, but
they do utilize it in their registration, since
they use the ATL registrar on their embed-
ded .rgs (registry script) files that are creat-
ed by the ATL wizard. I’ve never had a user
report a failure to install, so ATL.DLL must
be pretty widely embedded out there by
now, but in testing Remote Reboot on an
NT 4 boot on one of my machines, I came
across this very problem. ATL.DLL was not
installed, so the shell extension would not
install. This is something you should be
aware of, but you’re pretty unlikely to come
across it; this is the first time I have since
1999. (Nonetheless, I’m considering whether
to remove this and provide my own regis-
tration, as other providers, such as Borland,
have done in the past.)

The line between ATL and WTL is not
a clean one. This presents no serious prob-
lem for using the technologies, but it does
seem to be a conceptual muddiness.
When creating the WTLSTL subproject
for the STLSoft libraries, it was kind of ar-
bitrary to select between which compo-
nents go into WTLSTL and which into
ATLSTL. My choice is to have the non-
trivial user-interface stuff to go into WTL-
STL and all the rest remain within ATLSTL.

In my opinion, Microsoft has made a
mistake with its half-hearted promulga-

tion of WTL. I think it should have made
WTL a fully supported part of the Visual
Studio distribution, on a par with ATL and
MFC, including wizards. Perhaps with Vi-
sual Studio 8, Microsoft may smell the cof-
fee of all those C++ developers out there
who have good reason to eschew .NET for
part/all of their developments. These peo-
ple want development tools and libraries
that suit their needs, and I don’t think
they’re going to be going away for a long
time to come, no matter how many mar-
keting dollars may get behind the current
“let’s pretend that writing complex soft-
ware is trivial, and can be done by people
with little training/experience” thrust.

Though not shown, I’ve used another
WTLSTL class, in addition to SimpleCon-
textMenuHandler<>, for the help windows
on the dialogs. The SimpleHelpWindow<>
class intercepts the WM_HELP message,
and loads a string resource sharing the giv-
en control ID, which it then displays in a
floating help window, as shown in Figure
7. Using the class is very simple, as can be
seen with COptionsDialog (Listing 10).

One final note on WTL: Both versions
3.1 and 7.0 of WTL work fine with ATL ver-
sions 3.0 and above (Visual C++ 6.0 and
7.0), but do not work with Visual C++ 5.0.
For reasons far too weird to go into here,
I use Visual C++ 5.0 for the Synesis Soft-
ware Shell Extensions, and wanted to get
WTL 3.1 to work with it also. I’ll not go into
details here (though I intend to submit a
Tech Tip to WDN on the subject), but suf-
fice to say that with a very small amount
of editing of the WTL headers, it is possi-
ble to make it work.

—M.W.

WTL & ATL

44 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

W I L S O N

Figure 4 The Remote Reboot main dialog

Figure 5 Shutdown failed

Figure 6 Remote reboot in progress

Figure 7 Context help from WTLSTL’s
SimpleHelpWindow<>

SYFNCOMDECL DataObject_GetDropHandle(LPDATAOBJECT lpdo, HDROP *phdrop)
{

HRESULT hr;

if(lpdo == NULL ||
phdrop == NULL)

{
hr = E_INVALIDARG;

}
else
{

FORMATETC fe;
STGMEDIUM sm;

*phdrop = NULL;

fe.cfFormat = CF_HDROP;
fe.ptd = NULL;
fe.dwAspect = DVASPECT_CONTENT;
fe.lindex = -1;
fe.tymed = TYMED_HGLOBAL;

#ifdef __cplusplus
hr = lpdo->GetData(&fe, &sm);

#else
hr = lpdo->lpVtbl->GetData(lpdo, &fe, &sm);

#endif /* __cplusplus */

if(SUCCEEDED(hr))
{

*phdrop = (HDROP)sm.hGlobal;

sm.hGlobal = NULL;

ReleaseStgMedium(&sm);
}

}

return hr;
}

Listing 2 Retrieving a drop handler from IDataObject

typedef winstl::basic_drophandle_sequence<TCHAR>
drophandle_sequence_t;

HDROP hdrop;

. . . // Get the drop handle from the IDataObject

drophandle_sequence_t paths(hdrop);

if(paths.empty())
{

::MessageBox(NULL, _T("Invalid selection" . . .
}
else
{

std::for_each(paths.begin(), paths.end(),
std::back_inserter(m_paths));

. . .
}

Listing 3 Using WinSTL’s drophandle_sequence

www.windevnet.com AUGUST 2003 windows::developer NETWORK | 45

W I L S O N

struct trace_FORMATETC
{
public:

void operator ()(FORMATETC const &fe)
{

TCHAR szFmtName[_MAX_PATH + 1];

if(0 == ::GetClipboardFormatName(fe.cfFormat, szFmtName,
stlsoft_num_elements(szFmtName)))

{
if(fe.cfFormat == CF_HDROP)
{

// CF_HDROP is built-in, so does not have a registered
// name
lstrcpy(szFmtName, _T("Drop handle (HDROP)"));

}
else
{

lstrcpy(szFmtName, _T("<unknown clipboard format>"));
}

}

ATLTRACE(_T("fmt: %d / 0x%04x / %s, tymed: %d\n")
, fe.cfFormat
, fe.cfFormat
, szFmtName
, fe.tymed);

}
};

static void DumpFormats(LPDATAOBJECT lpdobj)
{

IEnumFORMATETC *pe;
HRESULT hr = lpdobj->EnumFormatEtc(DATADIR_GET, &pe);

if(SUCCEEDED(hr))
{

// Typedef a COMSTL sequence for FORMATETC
//
// The template parameters are:
//
// a - the COM enumerator interface, in this case
// IEnumFORMATETC
// b - value type, in this case FORMATETC
// c - value policy type, describes operations to init(),
// copy() and clear() instances of FORMATETC
// d - reference type, how one wishes to access the value
// when dereferencing the iterator(s)
// e - cloning policy, determines whether want forward
// iterator or input iterator semantics
// f - the # of elements retrieved per call to
// IEnumFORMATETC::Next()

typedef comstl::enum_simple_sequence
/* a */ < IEnumFORMATETC
/* b */ , FORMATETC
/* c */ , FORMATETC_policy
/* d */ , FORMATETC const &
/* e */ , forward_cloning_policy<IEnumFORMATETC>
/* f */ , 10

> enum_sequence_t;

enum_sequence_t fmts(pe, true); // true: swallow ref

std::for_each(fmts.begin(), fmts.end(), trace_FORMATETC());
}

}

Listing 4 Tracing clipboard formats with COMSTL’s enum_simple_sequence

void CRemoteReboot::OnShutdownServer()
{

ShutdownServer(false, IsKeyPressedAsync(VK_SHIFT), NULL);
}

void CRemoteReboot::OnRebootServer()
{

ShutdownServer(true, IsKeyPressedAsync(VK_SHIFT), NULL);
}

void CRemoteReboot::OnReboot()
{

CRebootDialog(m_szHost).DoModal();
}

// Helpers

void CRemoteReboot::ShutdownServer(bool bReboot,
bool bForce,
LPCTSTR pcszMessage)

{
DWORD dwTimeout;
TCHAR szMessage[256];
LPCTSTR timeoutName = bReboot

? _T("DefaultRebootTimeout")
: _T("DefaultShutdownTimeout");

// Load the appropriate timeout, or use 30s otherwise
if(ERROR_SUCCESS != Reg_QueryDWordValue(NULL,

s_szRegKey,
timeoutName,
dwTimeout))

{
dwTimeout = 30;

}

// Load the appropriate message, or use defaults otherwise
if(NULL == pcszMessage ||

0 == *pcszMessage)
{

int cchMessage = stlsoft_num_elements(szMessage);
LPCTSTR msgName = bReboot

? _T("DefaultRebootMessage-tx")
: _T("DefaultShutdownMessage-tx");

if(ERROR_SUCCESS != Reg_QuerySzValue(NULL,

s_szRegKey,
msgName,
szMessage,
cchMessage))

{
if(0 == ::LoadString(_Module.GetResourceInstance(),

bReboot
? IDS_DEFAULT_REBOOT
: IDS_DEFAULT_SHUTDOWN,

szMessage,
cchMessage))

{
szMessage[0] = _T('\0');

}
}

pcszMessage = szMessage;
}

// Initiatate the system shutdown ...
if(::InitiateSystemShutdown(m_szHost,

const_cast<LPTSTR>(pcszMessage),
dwTimeout,
bForce,
bReboot))

{
// ... and show the pending dialog, or
CPendingDialog(m_szHost, dwTimeout, bForce, bReboot).DoModal();

}
else
{

// ... explain why it failed
TCHAR szErr[512];

FormatMessage(::GetLastError(), szErr, stlsoft_num_elements(szErr));

MessageBox_printf(_Module.GetResourceInstance(),
NULL,
MAKEINTRESOURCE(IDS_SHUTDOWN_FAIL),
MAKEINTRESOURCE(IDS_PROJNAME),
MB_OK | MB_ICONEXCLAMATION,
m_szHost,
szErr);

}
}

Listing 8 Shutdown methods

46 | windows::developer NETWORK AUGUST 2003 www.windevnet.com

W I L S O N

class COptionsDialog
: public CDialogImpl<COptionsDialog>
, public SimpleHelpWindow<COptionsDialog, true>

{
typedef SimpleHelpWindow<COptionsDialog, true> help_window_class_type;

public:
enum { IDD = IDD_OPTIONS };

BEGIN_MSG_MAP(COptionsDialog)
MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
MESSAGE_HANDLER(WM_SYSCOMMAND, OnSysCommand)
COMMAND_ID_HANDLER(IDOK, OnCloseCmd)
COMMAND_ID_HANDLER(IDCANCEL, OnCloseCmd)
CHAIN_MSG_MAP(help_window_class_type)

END_MSG_MAP()

// Message handlers
private:

LRESULT OnInitDialog(UINT uMsg, . . .);
LRESULT OnSysCommand(UINT uMsg, . . .);
LRESULT OnCloseCmd(WORD wNotifyCode, . . .);

. . .
};

Listing 10 Using WTLSTL’s SimpleHelpWindow<>

	TOC:
	toc2:
	toc4:
	toc5:
	toc3:
	toc:

