
Data Structures and Algorithms for Nearest Neighbor

Search in General Metric Spaces

Peter N. Yianilos
�

Abstract

We consider the computational problem of �nding nearest
neighbors in general metric spaces. Of particular interest are
spaces that may not be conveniently embedded or approxi-
mated in Euclidian space, or where the dimensionality of a
Euclidian representation is very high.
Also relevant are high-dimensional Euclidian settings in

which the distribution of data is in some sense of lower di-
mension and embedded in the space.
The vp-tree (vantage point tree) is introduced in several

forms, together with associated algorithms, as an improved
method for these di�cult search problems. Tree construc-
tion executes in O(n log(n)) time, and search is under certain
circumstances and in the limit, O(log(n)) expected time.
The theoretical basis for this approach is developed and

the results of several experiments are reported. In Euclidian
cases, kd-tree performance is compared.

Keywords | Metric Space, Nearest Neighbor, Computa-

tional Geometry, Associative Memory, Randomized Methods,

Pattern Recognition, Clustering.

1 Introduction.

Nearest neighbor analysis is a well established technique
for non-parametric density estimation, pattern recogni-
tion, memory-based reasoning, and vector quantization.
It is also highly intuitive notion that seems to correspond
in some way with the kind of inexact associative recall
that is clearly a component of biological intelligence.
One useful abstraction of nearness is provided by the

classical notion of a mathematical metric space [1]. Eu-
clidian n-space is but one example of a metric space.
The Nearest Neighbor �eld includes the study of de-

cision making and learning based on neighborhoods, the
underlying metrics and spaces, and the matter of com-
puting/searching for the neighborhood about a point.
See [2] for a recent survey. Our focus is on search, and,
for simplicity, on locating any single nearest neighbor.
Given a �xed �nite subset of the space and calling it

the database, our task is then to locate for each new query
drawn from the space, a database element nearest to it.
As the database is �nite, we might search by consid-

ering every member. But in a somewhat analogous set-
ting, binary search can locate a queries position within a
�nite ordered database while considering only log(n) ele-
ments. Moreover, binary search proceeds given only ordi-

�NEC Research Institute, 4 Independence Way, Princeton, New

Jersey 08540, pny@research.nj.nec.com

nal knowledge. I.e., it doesn't matter what the database
objects are.
So while the notions of ordering and metric-distance

are only loosely analogous, we are nevertheless motivated
to look for improved search methods that depend only
on the information received through metric evaluation.
Now binary search presumes that the database has

been sorted { an n log(n) process. We then seek to or-
ganize our database in as much time so that under some
circumstances, logarithmic time search is possible.
We introduce the vp-tree (vantage point tree) in several

forms as one solution. This data structure and the al-
gorithms to build and search it were �rst discovered and
implemented by the author during 1986-871 in conjunc-
tion with the development of improved retrieval tech-
niques relating to the PF474 device [3]. Motivation was
provided by the fact that this chip's notion of string dis-
tance is non-Euclidian. Here elements of the metric space
are strings, E.g., a database of city names and associated
postal codes. This early work was described in [4].
Independently, Uhlmann has reported the same basic

structure [5, 6] calling it a metric tree.
There is a sizable Nearest Neighbor Search literature,

and the vp-tree should properly be viewed as related to
and descended from many earlier contributions which we
now proceed to summarize.
Burkhard and Keller in [7] present three �le structures

for nearest neighbor retrieval. All three involve picking
distinguished elements, and structuring according to dis-
tance from these members. Their techniques are coordi-
nate free. The data structures amount to multi-way trees
corresponding to integral valued metrics only.
Fukunaga in [8, 9] exploits the triangle inequality to re-

duce distance computations searching a hierarchical de-
composition of Euclidian Space. His methods are re-
stricted to a Euclidian setting only by his use of a com-
puted mean point for each subset. However this is not an
essential component of his approach { at least concep-
tually. He recursively employs standard clustering [10]
techniques to e�ect the decomposition and then branch-
and-bound searches the resulting data structure. Dur-

1First coded and tested in July of 1987 during a Proximity

Technology Inc. company workshop in Sunnyvale California. Par-

ticipants in addition to the author were Samuel Buss (then at U.C.

Berkeley/Mathematics), Mark Todorovich, and Mark Heising.

ing search, the triangle inequality implies that a clus-
ter need not be explored if the query is far enough out-
side of it. While exploring a cluster at the lowest level,
Fukunaga further points out that the triangle inequality
may be used to eliminate additional distance computa-
tions. A key point apparently overlooked, is that when
the query is well inside of a cluster, the exterior need not
be searched.

Collections of graphs are considered in [11] as an ab-
stract metric space with a metric assuming discrete val-
ues only. This work is thus highly related to the con-
structions of [7]. In their concluding remarks the au-
thors correctly anticipate generalization to more contin-
uous settings such as Rn.

The kd-tree of Friedman and Bentley [12, 13, 14, 15]
has emerged as a useful tool in Euclidian spaces of
moderate dimension. Improvements relating to high-
dimensional settings, distribution adaptation, and incre-
mental searches, are described in [16], [17], and [18] re-
spectively.

A kd-tree is built by recursively bisecting the database
using single coordinate position cuts. For a given coordi-
nate, the database is cut at the median of the distribution
generated by projection onto that coordinate. An opti-
mized kd-tree results by choosing the cutting coordinate
to be that whose distribution exhibits the most spread.

In addition to various vp-tree forms, we have imple-
mented optimized kd-tree software so that experimental
comparisons can be made operating on identical spaces
and given identical query sequences.

Like the kd-tree, each vp-tree node cuts/divides the
space. But rather than using coordinate values, a vp-
tree node employs distance from a selected vantage point.
Near points make up the left/inside subspace while the
right/outside subspace consists of far points. Proceeding
recursively, a binary tree is formed. Each of its nodes
identi�es a vantage point, and for its children (left/right),
the node contains bounds of their associated subspace
as seen by the vantage point. Other forms of the vp-
tree include additional subspace bounds and may employ
buckets near leaf level.

To build these structures, the metric space is decom-
posed using large spherical cuts centered in a sense at
elements near the corners of the space. This contrasts
with the coordinate aligned hyperplanar cuts of the kd-
tree (See Figures 1 & 2), and the use of computed Eu-
clidian cluster centroids in [8]. Randomized algorithms
for vp-tree construction execute in O(n � log(n)) time and
the resulting tree occupies linear space.

For completeness, early work dealing with two special
cases should be mentioned. Retrieval of similar binary
keys is considered by Rivest in [19] and the L1 (max)
metric setting is the focus of [20].

More recently, the Voronoi digram [21] has provided a
useful tool in low- dimensional Euclidian settings { and

Figure 1: vp-tree decomposition

Figure 2: kd-tree decomposition

the overall �eld and outlook of Computational Geometry
has yielded many interesting results such as those of [22,
23, 24, 25] and earlier [26].

Unfortunately neither the kd-tree, or the constructions
of computational geometry, seem to provide a practical
solution for high dimensions. As dimension increases, the
kd-tree soon visits nearly every database element while
other constructions rapidly consume storage space.

Furthermore, even if the database is in some sense of
only moderately high dimension, it may not be possible
or convenient to �nd or implement a dimension reducing
transformation. So it is important that we develop tech-
niques that can deal with raw untransformed data, and
exhibit behavior as close as possible to intrinsic rather
than representational dimension.

So despite considerable progress for Euclidian space,
the development of more general techniques is important;

not just because of the problems with high dimension,
but also because there is no a priori reason to believe
that all or even most useful metrics are Euclidian.
In the sections that follow we will consider a probabilis-

tic formulation of the problem and obtain certain theo-
retical results, present the algorithms and data struc-
tures for the vp-tree in several forms, and report on a
number of experiments. These experiments include Eu-
clidian cases with side-by-side kd-tree comparisons, non-
Euclidian spaces, and the di�cult real-world problem of
image fragment retrieval. Here fragments as large as
50 � 50 pixels are treated corresponding to representa-
tional dimension 2; 500.

2 Theoretical Insight and Basic Results.

In this section we develop a simple but fairly general
result which says that under certain circumstances, one
may organize a database so that expected search time
is logarithmic. It should be thought of as justifying in
the limit the algorithms and data structures presented
later. Only elementary concepts from General Topology
and Measure/Probability Theory are employed.

2.1 Notation. Given a metric space (S; d) and some
�nite subset SD � S representing the database against
which nearest neighbor queries are to be made, our objec-
tive is to somehow organize SD so that nearest neighbors
may be more e�ciently located.
For a query q 2 S, the nearest neighbor problem then

consists of �nding a single minimally distant member of
SD. We may write NN(q;SD) to stand for this operation
where the space may be omitted for brevity.
Now the element nearest to q may be quite far, and

for a particular problem it may be reasonable to impose
a distance threshold � , at or beyond which one is unin-
terested in the existence of neighbors. Also observe that
while computing NN(q), one may by reduce � as ever
nearer neighbors are encountered. We write NNj� (q;SD)
to denote this important notion of � restricted search.
Next we will assume that the range of the space's dis-

tance distance function is [0; 1]. Since any metric's range
may be compressed to this interval without a�ecting the
nearest-neighbor relation2, this restriction may be made
without loss of generality3.

2.2 Vantage Points. Each element of a metric space
has in a sense a perspective on the entire space; formed
by considering its distances to every other element. This
perspective need not however contain any information.
Consider the pathological case of the discrete metric in
which the distance between any pair of distinct points is

2Bounded metrics may simply be scaled. Unbounded metrics

may be adjusted using the well known formula: �d(a; b) =
d(a;b)

1+d(a;b)
.

3The method of compression may a�ect search e�ciency/time,

but not the result.

one. Here, full-space search is unavoidable. However, to
the extent that information is present, we will see that
nearest neighbor search may bene�t.
We begin by formalizing this notion of perspective and

de�ning a related pseudo-distance function:

De�nition 1 Let (S; d) be a [0; 1] bounded metric space.
Given a distinguished element p 2 S, we make the fol-
lowing de�nitions for all a; b 2 S:

1. �p : S ! [0; 1] is given by: �p(a) = d(a; p).

2. dp : S � S ! [0; 1] is given by: dp(a; b) = j�p(a) �
�p(b)j = jd(a; p)� d(b; p)j.

Function �p is best thought of as a projection of S into
[0; 1], from the perspective of p. I.e. it is S as seen by
p, via d. Function dp is not in general a metric since if
a and b are distinct but equidistant from p, dp(a; b) = 0.
It is however a clearly symmetric function and satis�es
the triangle inequality, making it a pseudo-metric.
Now since d is a metric we may rely on symmetry and

the triangle inequality to arrive at:

d(a; b) � jd(a; p)� d(b; p)j = dp(a; b)

Hence, distances shrink when measured by dp so that
d in a sense dominates it. One useful consequence of this
behavior is given by the following obvious implication:

dp(a; b) � �) d(a; b) � � (2.1)

So if during a search we've already encountered a
database element x at distance � from q, then as our
search progresses, we need not consider any element for
which dp(q; x) � � . Thus, in the absence of coordi-
nates or Euclidian structure, we can begin to see how
query's distance to a distinguished vantage point may be
exploited to e�ectively direct and limit the search.
For some p 2 SD consider now the image �p(SD) of

SD in [0; 1]. Next denote by � the median of �p(SD)
thus dividing [0; 1] into [0; �) and [�; 1]. The �rst of
these intervals contains points from the inside the sphere
S(p; �), while the second consists of points from outside
and on the surface. We denote the inverse images of
these SpL and SpR respectively; and imagine that SD is
divided in this way into left and right subspaces.
Now NL = jSpL j counts the points of SD mapped left

to [0; �), while NR = jSpR j counts those sent right to
[�; 1]. We can say little in general about the compara-
tive sizes of NL and NR since nothing has been assumed
about the nature of the metric space. In particular if
there are many points of SD exactly distance � from p,
then NR may be much larger than NL.
But if spheres in (SD ; �) typically have on their sur-

face relatively few members of SD , then we can say that
NL � NR, i.e, we have partitioned SD into two subsets
of roughly equal size.

Now suppose for a given q, that our objective is
NNj� (q), and that �p(q) � � + � . Then it follows from
EQ- 2.1 that SpL may be excluded from consideration.
Similarly if �p(q) � �� � , we may ignore SpR . In both
cases then, roughly half the space is excluded from con-
sideration. Thus, the information gleaned from a single
point's perspective is sometimes su�cient to signi�cantly
prune the search. However if ��� < �p(q) < �+� , then
no such reduction is possible.
So it is clear that our ability to prune is dependent on

a fortuitous choice of p and q, on � , and on our ability
to choose NL � NR. We will succeed to the extent that
it is improbable that �p(q) 2 (�� �; �+ �) (Figure 3).
If our probability distribution is in some sense nice (see

x2.3), then we can make this probability approach zero
as � does. So that for � su�ciently small, we will with
high probability exclude approximately half of the space
from consideration.

0 1
µ

τ

Figure 3: A continuous rendering of the density of
�p(SD) in [0,1] { and a � neighborhood of median �

It is easy now to see how we may recursively proceed
to form a binary tree. This then forms the most basic
vp-tree. Speci�c construction and search algorithms are
presented in x3.

2.3 A Probabilistic Viewpoint. Since individual in-
stances of �nite metric spaces (databases) may be patho-
logical for nearest neighbor search, we are led to formu-
late the problem in probabilistic terms and seek expected
time results.
We therefore de�ne probability measure P which

we assume reects the distribution from which both
database elements and queries are drawn4. It is worth-
while noting that the arguments that follow may be gen-
eralized to deal with separate distributions.
Now from EQ- 2.1 it is clear that mapping �p is uni-

formly continuous, from which it follows that the inverse
images of any point or interval (whether open, closed, or

4We can do this in general by choosing the smallest sigma-

algebra containing the space's metric topology, and de�ning a mea-

sure on it.

half-open) must have de�ned probability.
Thus, given some such point or interval X , we may for

the sake of notational simplicity refer to P (X) which is
understood to mean P (��1

p
(X)). So if x 2 [0; 1], then

P (x) is the probability of the surface of sphere S(p; x).
Now in the case of the discrete metric, there is about

every point a spherical surface of probability one. This is
in stark contrast to Euclidian settings where any volume
related probability measure results in zero probability
spherical surfaces. Remembering that the discrete metric
is pathological to nearest neighbor schemes, we are led
to consider metrics which share this property.

De�nition 2 Let (S; d; P) be a metric space with as-
sociated probability measure P , the combination is said
to have the ZPS (Zero Probability Spheres) property if
and only if: P (Ss(x; r)) = 0;8x 2 S; r � 0, where
Ss(x; r) = fy 2 Sjd(y; x) = rg.

The discrete metric is thus excluded along with many
other cases. This is however a very strong condition. We
assume it for simplicity's sake but comment that there
are several ways to weaken it while preserving the essence
of the arguments that follow.

2.4 Basic Results. The probability of a countable in-
tersection of nested sets, is just the limit of the individual
probabilities. This and ZPS then imply that about any
x 2 [0; 1], there exists an interval of arbitrarily small
probability. Nothing more than this basic observation is
necessary to establish the two simple theorems that fol-
low. It is however worth remarking that uniform conver-
gence to zero probability can be established. I.e., given
� > 0, there exists N su�ciently large, so that every
interval of the canonical [0; 1] N -partitioning, has prob-
ability less than �.
We now make more rigorous our earlier comments re-

garding procedures for recursive space bisection.

Theorem 1 Let (S; d; P), be a [0; 1] bounded metric
space with the ZPS property under probability measure
P . Then except for cases of probability zero, every size n
database SD � S drawn from P , may be organized into a
binary tree; so that given M > 1, and queries `q' drawn
from P , 9 � > 0 such that NNj� (q;SD) may be computed
using at most M � blog

2
(n)+1c metric evaluations on an

expected basis.

Proof: Let d = blog2(n)+1c and if n < 2d�1 draw additional
elements until equality.
Pick some p1 2 SD and consider �p(SD�fp1g). Set value

�1 so that equally many image points are to its left and right.
Continue recursively bisecting the space { forming a binary
tree and establishing �i for each non-leaf element of SD. By
ZPS this is almost always possible (failure probability zero).

De�ne � = (M1=(d�1) � 1)=2 so M = (1 + 2�)d�1.
Associate with p1 values L1 = P ([0; �1)) and R1

=
P ([�1; 1]). Now by our earlier comments we may choose �1
such that P ([�1 � �1; �1 + �1]) < �.

In what follows we will proceed recursively to associate
and � values to each non-leaf node.
The root's probability function is just P . We de�ne that

of its left child to be essentially PL = P j[0; �1+ �1) but more

formally PL(X) = P (X \��1p1 ([0; �1 + �1)))=P ([0; �1 + �1)).

To understand this observe that NNj�1 search will explore
leftward only if �(q) 2 [0; �1 + �1). An alternative view is
that the left subtree is only concerned with the subspace
��1p1 ([0; �1 + �1)) and sees it as the entire space. In a similar
way we associate a new probability function with the right
child. Now it must be noted that these modi�ed functions
remain probability measures, and inherit ZPS.
Having done this, and � values may be associated with

the left and right child. This enables the process to continue
down the tree until all non-leaf nodes have values. Finally set
� = min �i.
For a query q drawn by P , We compute NNj� (q) starting at

the root. Thus a single metric evaluation is always performed.
Then with probability of no more than L1 + �, we will be
required to explore leftward. The probability of rightward
exploration is similarly bounded by R1

+�. In both cases the
subtrees will see the query as random within their subspaces
of interest.
If leaf level is reached, a single evaluation is always per-

formed. It then follows that the overall cost (metric evalua-
tions) of the search is on an expected basis is the value F (d)
where F (1) = 1 and F (i) = 1 + (1 + 2�)F (i � 1). This re-

cursion evaluates to F (d) =
Pd�1

0
(1+ 2�)i which is bounded

above by (1 + 2�)d�1d =M � blog2(n) + 1c 2

A result similar in avor may be proven in which a tree
is built and used to classify additional members of the
space so that all buckets (leaf levels) have equal probabil-
ity. Each of these leaves then correspond to a subspace
of the metric space and we have in e�ect then equipar-
titioned the space with respect to the probability distri-
bution. This is analogous to vector quantization in Eu-
clidian space. Thinking of the root-leaf path as a binary
code, we might also interpret it as metric space hashing.

Theorem 2 Let (S; d; P), be a [0; 1] bounded metric
space with the ZPS property under probability measure
P . Then for any �xed database size n, and M > 1, 9
� > 0 such that we may compute NNj� (q;SD) with at
most M � dlog

2
(n) + 1e expected metric evaluations; as

databases SD � S and queries `q' are drawn from P .

Proof: For brevity's sake assume n is a power of 2. As in
the previous theorem we will build a binary tree. Before we
were forced to bisect a particular �nite database at each level
so that in general L 6= R. Here we begin by building a
balanced binary tree so that its initial dlog2(n) + 1e levels
have Li = Ri = 1=2. We may do this by picking for the
root an arbitrary element, then setting the root's � so that
 L = R. Having done this we may pick a vantage point for
the left and right children from the associated subspaces and
proceed recursively to the required depth.
Observe that the leaf level subspaces have equal probability

of 1=n. As for theorem- 1 we may �nd � for this tree so that
we expect to visit at mostM � dlog2(n)+1e nodes. So clearly
no more than this number of leaf nodes will be visited on an
expected basis.
Now each element of a particular drawn database may be

classi�ed and then attached to this tree by �rst identifying
which of the 1=n leaf partitions it belongs to, and adding it
to an initially empty list rooted at and replacing the corre-
sponding leaf node. The expected size of each list is clearly

one. So the �nal expected number of metric evaluations re-
mains M � dlog2(n) + 1e. 2

These theorems describe binary constructions to mo-
tivate the algorithms and experiments which follow; but
higher degree trees may be built by further partitioning
[0; 1]. In the extreme case the root has degree n and
only three metric evaluations are expected. As a practi-
cal matter however, the � values necessary to approach
even log

2
(n) search are so small as to be of little practical

value. So the basic theorems presented are best thought
of as existence results which establish a theoretical foun-
dation while motivating algorithm development.

2.5 Corners of the Space. Now it is fairly clear that
we'd like � as large as possible; and its value depends
on �p and hence on p. This then suggests that some
elements of the space may be better vantage points than
others. We are thus lead to consider the problem of se-
lecting a vantage point.
As an example consider the unit square with uniform

probability distribution. Here we must choose � so that
two regions of area 0:5 result. Three natural choices for
p consist of the square's midpoint (denoted pm), a corner
(denoted pc), and the midpoint of an edge (denoted pe).
These along with their associated division boundaries are
illustrated in Figure 4.

0

1

1

b=2.5066
r=0.3989

b=1.3338
r=0.5225
pe

b=1.2533
r=0.7979
pc

p m

Figure 4: Natural choices for p to divide the unit square

To choose among them, notice that for small � the
length of the boundary will be proportional in the limit
to the probability that no pruning takes place. Thus min-
imizing these boundary lengths (denoted b in the �gure)
is the obvious strategy.
Observe that pm is by far the worst choice as its bound-

ary length is double that of pc. Choice pe is also much
better than pm, but not quite as good as pc. It is interest-
ing to note that from a traditional clustering viewpoint,
pm is the natural centroid. But we have seen that it is
far from the best choice. From this example we draw
the intuition that points near the corners of the space

make the best vantage points. (See again the vp-tree
decomposition of Figure- 1).

These simple results then suggest a strategy for van-
tage point selection, and given a particular distribution,
provide a framework for drawing more conclusions. The
ZPS distribution restriction is key to achieving them;
and our overall outlook in which �nite cases are imag-
ined to be drawn from a larger more continuous space,
distinguishes in part this work from the discrete distance
setting of [7, 11].

2.6 Set Perspectives.We have seen that a single dis-
tinguished element p, induces a pseudo-metric dp, which
is always dominated by d. More generally, we observe
that each size n �nite subset P of a metric space, consid-
ered as vantage points, induces a natural mapping into
Euclidian n-space. I.e. the i-th coordinate of the image
of x, is just �pi

(x).
Under L1 then, distances in the Euclidian range space

are always dominated by distances in the domain. This
amounts to Euclidian approximation of the original met-
ric. This mapping and elementary observation will help
us later de�ne enhanced forms of the vp-tree.

3 Algorithms and Data Structures.

3.1 The Simplest vp-tree.We begin by presenting a
simple algorithm for vp-tree construction. The root cor-
responds to the entire space. Its distinguished vantage
point then splits the space into left and right subspaces
corresponding to the root's left and right tree descen-
dants. Similarly, each node is thought of as correspond-
ing to an ever smaller subset of the database.

An optimized tree results because function Select vp
endevours to pick better than random vantage points.
Replacing it with a simple random selection generates a
valid and e�ective tree; but experiments have shown that
some e�ort towards making better choices, results in non-
trivial search-time savings. Our algorithm constructs a
set of vantage point candidates by random sampling, and
then evaluates each of them. Evaluation is accomplished
by extracting another sample, from which the median
of �p(S), and a corresponding moment are estimated.
Finally, based on these statistical images, the candidate
with the largest moment is chosen. Given constant size
samples, execution time is O(n log(n)). Our experimen-
tal implementation includes several sampling and evalu-
ation parameters.

Algorithm 1 Given set S of metric space elements; re-
turns pointer to the root of an optimized vp-tree.

function Make vp tree(S)

if S = ; then return ;

new(node);

node".p := Select vp(S);

node".mu := Medians2S d(p; s);

L := fs 2 S�fpgjd(p; s) < mug;
R := fs 2 S�fpgjd(p; s) � mug;
node".left := Make vp tree(L);

node".right := Make vp tree(R);

return node;

function Select vp(S)

P := Random sample of S;

best spread := 0;

for p 2 P

D := Random sample of S;

mu := Mediand2D d(p; d);

spread := 2nd-Momentd2D (d(p; d)�mu);

if spread > best spread

best spread := spread; best p := p;

return best p;

In the simple construction above, only mu is retained
in a node to describe the metric relationship of the
left/right subspaces to the node's vantage point. At the
expense of storage space, one may retain instead four val-
ues representing lower/upper bounds of each subspace as
seen by the vantage point. It is this form of tree that is
actually used in the experiments we later report.

3.2 The vp
s
-tree. Now notice that in the course of

execution, an element of S is compared with the vantage
point belonging to each of its ancestors in the tree. This
information is also not captured in the simple tree de-
scribed above. Retaining it in a particular way results in
a vps-tree { the construction of which we now describe.
The central working structure employed consists of a

database element identi�er `id', and a list `hist' of dis-
tances from the item to each vantage point tracing back
to the root. A list of these structures is initialized from
the entire database, with the history set to null. The
algorithm then recursively splits the list into two lists L
and R, while adding to the history of each item. Each re-
sulting tree node then contains a list `bnds' giving lower
and upper bounds (a range interval) for its corresponding
subspace as seen by each ancestral vantage point.
Execution time remains O(n log(n)). Assuming �xed

precision is used to represent the bounds, the tree occu-
pies linear space. But this is an asymptotic statement,
and over the practical range of n, and given �xed machine
word sizes, the space is better described by O(n log(n)).

Algorithm 2 Given set S of metric space elements; re-
turns pointer to the root of an optimized vps-tree.

function Make vps tree(S)

list = ;;
for s 2 S

new(item); item".id := "s; item".hist := ;;
add item to list;

return Recurse vps tree(list);

function Recurse vps tree(list)

if list = ; then return ;
new(node); node".p := Select vp(list);

delete node".p from list;

for item 2 list

append d(p,item".id) to item".hist;
mu := Medianitem2list tail(item".hist);
L := ;; R := ;;
for item 2 list

if tail(item".hist) < mu then

add item to L, delete from list;

else

add item to R, delete from list;

node".left := Recurse vps tree(L);

node".right := Recurse vps tree(R);

node".bnds := Merge(node".left".bnds,
node".right".bnds,node".p".hist);

return node;

function Merge(range list1,range list2,value list)

\The two range lists are combined with

the value list to yield a single range list

which is returned."5

There's no guaranty that these algorithms build a bal-
anced tree7 { for in practice, the ZPS assumption may
not hold. Furthermore, even if it does, we may draw a
rather pathological database. So in the end, the balance
achieved is problem dependent.

3.3 The vp
sb
-tree. Our constructions so far have in-

volved a single node structure. We now consider one way
to form buckets of leaves in order to save space while
preserving the notion of ancestral history present in the
vps-tree. Buckets are formed by collapsing subtrees near
leaf level into a at structure. Each bucket contains say
nb element records. Each record must specify an id, and
in addition holds distance entries for every ancestor. We
call the resulting structure a vpsb-tree. In our implemen-
tation the bucket distance values are quantized so as to
occupy only 2-bytes.
One may think of these vectors of distances, as the

image of an element under the set perspective mapping
de�ned by the ordered set of its ancestors. (x2.6)
The data structures corresponding to these three tree

types are depicted in Figure- 5. Database elements are
represented by a 4-byte integer, real values by a 4-byte
oat, and bucket distances by a 2-byte integer. These
correspond closely to our experimental implementation;
except that the vp-tree we implement contains subspace
bounds rather than the single value mu.

3.4 Searching the tree. We present a single search
algorithm which describes search in a vp-tree where a
node contains subspace bounds for each child. The algo-
rithm is easily generalized to the other tree forms. It is a

5The length of the third argument value list determines the

length of list returned. By combined we mean the production for

each ancestral vantage point, of a single lower/upper bound based

on the corresponding information within the three arguments.
7And we've not considered the issue of median ambiguity.

VP ID

mu

left

right

VP ID

upper
lower

upper
lower

upper
lower

left

right

VP -TREE
s

VP -TREE
sb

Nb VP ID VP IDd(x,a) d(x,b) d(x,c) d(x,d)

record for element ‘x’

bucket structure

a

b

c

d

VP-TREE

Figure 5: Sample 32-bit machine data structure imple-
mentations for the most basic vp-tree, the vps-tree, and

the vpsb-tree.

straightforward recursive branch-and-bound tree search
in which variable tau keeps track of the closest neigh-
bor yet encountered. Subtrees are then pruned when the
metric information stored in the tree su�ces to prove
that further consideration is futile. I.e., cannot yield a
strictly closer neighbor.

Algorithm 3 Called with query `q' and the root of a
vp-tree; returns the `id' of a nearest neighbor in global
variable `best'. Before calling, global variable `tau' is set
to the desired search radius and `best' should be set to
;. Setting tau to 1 then searches without constraint. On
return `tau' is the distance to `best'. We denote by IL
the open interval whose left endpoint is n".left bnd[low]-
tau and right endpoint is n".left bnd[high]+tau. Open
interval IR is de�ned similarly.

procedure Search(n)

if n = ; then return ;

x := d(q,n".id);

if x < tau then

tau := x;

best := n".id;

middle := (n".left bnd[high] + n".right bnd[low])/2;

if x < middle then

if x 2 IL then

Search(n".left);

if x 2 IR then

Search(n".right);

else

if x 2 IR then

Search(n".right);

if x 2 IL then

Search(n".left);

Notice that the order of exploration is determined by
comparison with the middle value computed. This is
properly viewed as a heuristic. In high dimensions this
may not be the best choice and branching order repre-
sents an interesting area for future work.

Actual databases, particularly those consisting of sig-
nals or images, frequently contain large clusters of very
similar items. In these cases one may �nd that search
rapidly locates a very near neighbor, and then performs
much more work which yields only a very slightly nearer
item. Because of this problem, our implementation in-
cludes an error tolerance setting which in e�ect narrows
intervals IL and IR. E.g. Given tolerance 0.01, the pro-
cedure will return a neighbor which is guaranteed to be
at most 0.01 more distant from the query than its true
nearest neighbor.

Now having summarized and sketched our algorithms
and data structures, we turn to experimental results.

4 Selected Experimental Results.

A modular software system was built with plug-in met-
ric spaces and search routines. Two basic metric space
settings were implemented: hypercubes, and image frag-
ments. Both support various metrics including the stan-
dard Minkowski family.

4.1 Hypercubes.We very nearly reproduce certain of
the experimental settings from [13] and use them to begin
our process of evaluation. Hypercubes of increasing di-
mension are �rst considered, each containing a database
consisting of 8,192 coordinate-wise normally distributed
pseudorandom points.

The vp-tree8 and kd-tree are compared for the L1, L2,
and L1 metrics as dimension ranges from 2 to 14. Since
interior vp-tree nodes contain data elements while the
kd-tree contains data elements at its leaf level only, we
use total nodes visited to measure complexity. The re-
sulting statistics were observed to agree well with actual
CPU time used.

Figure 6 demonstrates the remarkable agreement be-
tween these two methods for the L2 metric. Similar
agreement is found for the L1 metric, while for L1, the
vp-tree maintains a small constant advantage. Detailed
examination of the results does however reveal one qual-
itative di�erence which increases with dimension. By di-
mension 14, the kd-tree visits roughly 5:7 times as many
nodes under L1 versus L1. The ratio for vp-tree search
is only 1:7. This suggests that vp-tree performance may
be atter with respect to choice of metric.

If dimension is �xed and database size grows, we

8In all of our experiments, �xed sample sizes are employed to

choose and evaluate vantage points. In hypercube settings, we

evaluate 100 random vantage point candidates by computing their

distance to 100 random database elements. For image experiments,

only 10 candidates are drawn.

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 N
od

es
 V

is
ite

d

Dimension

kd-tree
vp-tree

Figure 6: Search Cost vs. Dimension Comparison For
L2 Metric and Based on Nodes Visited

expect and �nd asymptotically logarithmic growth in
search time. For dimension 8 (Figure 7), kd-tree per-
formance is in the limit between that of the vps-tree and
vp-tree. Examining CPU time, the same is true although
the di�erences are smaller. In dimensions 2 and 4, the
performance ordering from best to worst is vps-tree, vp-
tree, then kd-tree for all database sizes.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 1000 10000

A
ve

ra
ge

 N
od

es
 V

is
ite

d

Database Size

kd
vp

vps

Figure 7: Search Cost vs. Database Size - Dimension 8

The kd-tree does however eventually catch up in this
random hypercube environment. By dimension 12 for
example, it visits fewer nodes than vps-tree search once
database size grows beyond 30; 000. By this point how-
ever, neither perform very well { visiting roughly 25% of
the nodes.

So despite their ignorance of the coordinate structure
of the space, and randomized construction, vp-trees com-
pare well in this setting with the kd-tree.

Comparisons with the experiments of [8] are more dif-
�cult because leaf level buckets are employed. Neverthe-
less, based purely on metric evaluations, the kd-tree and
vp/vps-tree methods produce superior results.

4.2 Random Linear Embedding. As a simple em-
bedding model, we construct random linear rotation ma-
trices which correspond to isometric embeddings of Rm

into Rn where n > m.

Pseudorandom databases are then drawn in a
coordinate-wise uniform fashion within Rm and mapped
to the longer vectors of Rn.
To study this setting we de�ne three types of query

distribution { all pseudo-random but con�ned to di�er-
ent subspaces:

T1: Drawn in Rm and then mapped to Rn.

T2: Drawn in Rn.

T3: Drawn in Rm, mapped, and then combined with Rn

noise having maximum amplitude �.

The �rst two of these are fairly clear; the third requires
explanation. It is proposed as a better model for the
independent e�ects of subspace and observational error.
We �rst embed a plane into 10-dimensional space

(n = 10, m = 2) and draw a 2,000 element database. Ta-
ble 1 contains the results. The values shown are average
nodes visited. Its �rst and last columns contain for com-
parison purposes, performance for fully- random 2 and
10 dimensional hypercubes. The `R2 7! R

10' columns
contain results for a 2-dimensional space embedded in
10-space given types 1 and 2 queries.

R
2

R
2 7!R

10
R
2 7!R

10
R
10

Type 1 Type 2
kd 21 31 3833 816
vp 15 15 279 1048
vps 12 12 246 698

Table 1: Basic Embedding Search Example

All trees perform well given type 1 queries and de-
grade for type 2. But notice that the kd-tree searches
nearly every node 9 when presented with type 2 queries.
In fact, its performance is markedly worse that in the
fully random 10-dimensional setting. This illustrates the
weakness of coordinate-based schemes and the pitfalls of
assuming that random cases are indicative in any way of
overall performance.
If this same database is now embedded into ever higher

dimensions (3 through 50) and type 3 queries presented,
Figure 8 results. In this graph, � (the amplitude of added
noise) is expressed on the horizontal axis in normalized
units.10 The bottom group of six curves corresponds to
vp-tree performance for range spaces of increasing di-
mension. The upper group provides kd-tree results. It
is apparent that vp-tree performance degrades in a more
reasonable fashion for queries increasingly distant from
the data plane.

9There are 4,000 total.
10The unit consists of the average distance from a type 1 query

to its nearest neighbor. So � = 1 then corresponds to added R
n

noise of comparable amplitude.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 N
od

es
 V

is
ite

d

Multiples of Average Subspace Spacing

kd dim 50
kd dim 25
kd dim 10
kd dim 6
kd dim 4
kd dim 3

vp dim 50
vp dim 25
vp dim 10
vp dim 6
vp dim 4
vp dim 3

Figure 8: O� Data Plane Queries for Range Spaces of
Increasing Dimension.

Similar results are obtained given much larger
databases and given databases as simple as a mere line
embedded in Rn.

These results suggest that if one is given a database of
unknown internal structure, the vp-tree may represent
a better approach to organization for nearest neighbor
retrieval.

4.3 Image Retrieval. To test the method on a dif-
�cult real-world problem, a library of 16 B&W digital
images measuring 604� 486 pixels was built. Our met-
ric space is the set of all �xed size subimages (windows).
Sizes 4�4, 8�8, 16�16, 32�32, and, 50�50 are consid-
ered. So for example, a single library image corresponds
to 260; 715 metric space elements of size 32� 32.

The Euclidian metric is then applied and nearest
neighbor retrieval e�ectiveness studied. The vp-trees
built were very nearly balanced although large uniform
regions (e.g. the sky) represent pathological subspaces
creating occasional deep subtrees. Databases built from
as many as 8 library images were considered correspond-
ing to a metric space and vp-tree having over two million
members.

For queries from the database, our depth-�rst branch
and bound search reduces to standard binary tree search
and the query is located without backtracking. Exactly
d node visits are then required where this refers to the
depth in the tree of the element matching the query.

For queries even slightly distant from a database mem-
ber, considerably more work is necessary. For window
size 32 � 32 and trees of roughly one million elements,
5% of the nodes are visited on average to satisfy very
near queries while 15% are visited in the general case.

In one series of experiments we choose subsets of four
images each, and formed vp-trees. Searches were then
performed using two query sources. The �rst source
(general) consisted of a subset of six images di�erent
from each of the database images. The second source
(similar) consisted of a pair of images captured so as

to correspond very closely to a database image in each
of the subsets. The results are summarized in table- 2
where the percentages shown are averages over the two
databases.11

Queries 4�4 8�8 16�16 32�32 50�50
Similar 1.0% 3.4% 4.5% 4.5% 5.2%
General 1.4% 5.7% 10.7% 15.7% 19.3%

Table 2: Image Search Results

Figures 9 and 10 depict 32 � 32-pixel query/nearest-
neighbor pairs for the similar and general cases
respectively.12

Figure 9: A query (left) nearest neighbor pair where the
query is drawn from an image very similar to one in the
database.

Limited experiments with vpsb-tree trees result in per-
formance improvements that vary greatly, but seem to
fall in the 15� 30% range.
We do not expect the kd-tree to perform well for large

windows but perform experiments to verify our intuition.
Indeed, little advantage is gained over exhaustive search
for window sizes as small as 16� 16.
Reducing search radius � does decrease vp-tree search

time but signi�cant savings are achieved only at the ex-
pense of search e�ectiveness. In one experiment � was
reduced until search time was roughly halved. At this
radius however, a nearest neighbor was located for only
half of the queries. In another radius related experiment
using single queries, we reduced � to only slightly more
than the known distance to their nearest neighbor { thus

11Our use of a pair of databases represents a crude statistical
precaution necessary due to the small number of images we can

computationally a�ord to deal with. Despite this measure, and our

careful attempts to build a varied image set, we are mindful of the

fact that the entire space of naturally occurring images is immense

indeed in comparison with our experiments. One should therefore

not conclude that the statistics we report are representative of the

fully general case.
12The value displayed in these �gures represents Euclidian dis-

tance between the query/database-element pair.

Figure 10: A query (left) nearest neighbor pair where
the query is drawn from an image entirely di�erent from
anything in the database.

insuring search success. In one case, the nearest neigh-
bor was located after only 1200 node visits, with an ad-
ditional 13,799 required to complete the search. We o�er
this as illustration that �nding a nearest neighbor and be-
ing sure are two separate matters { with the latter often
dominating total cost.

This and other experiments suggest that heuristic
search techniques represent an interesting area for fur-
ther investigation. Indeed, independent of its ability to
�nd nearest neighbors and prove it, the vp-tree method
using only the simple search technique described, seems
to very rapidly locate highly similar database elements.
In some applications this may su�ce.

Image searches with error tolerance (x3.4) also result in
reduced work. Our limited experiments suggest however
that reasonable tolerance values provide savings of at
most perhaps a factor of two.

Finally, independent of search-time re�nements, better
data structures and construction techniques, represent a
clear opportunity for future work.

4.4 Non-Euclidian Examples. To illustrate the
promised generality of our methods, two non-Euclidian
cases are considered: 1) the pseudometric13 that arises
from normalized correlation. It measures the angle that
two points form with the origin. and, 2) the ordi-
nary Euclidian vector distance d(X;Y) normalized by
(kXk+ kY k). That the result is a metric follows from a
tedious argument provided in [27]. In both cases the vp-
tree is applied to randomly constructed databases and
exhibits search performance that corresponds well qual-
itatively to a standard Euclidian setting.

13Our methods have been presented for metric spaces only but

may be generalized to pseudo-metric spaces.

5 Concluding Remarks.

We have come to view the vp-tree construction and
search processes as somewhat analogous to standard
sort and binary search in one dimension { �rst because
of their complexity, but perhaps more importantly be-
cause both primarily exploit ordinal rather than cardi-
nal/representational information.
One may sort a �le or build a binary tree of arbitrary

objects given only an appropriate comparison function.
By analogy, we have shown that a metric space may be
organized for nearest neighbor retrieval given only the
metric { without consideration of any particular repre-
sentation such as a coordinate form. So for example, we
will build the same vp-tree for a database in Euclidian
space, independent of coordinate system.
We propose that techniques such as those of this pa-

per should be used to develop application portable utility
software for dynamic organization of and nearest neigh-
bor retrieval from databases under application speci�c
metrics.
Finally we observe that both kd-trees and vp-trees may

be viewed as very special cases arising from particular
uniformly continuous functionals and lying within the
divide-and-conquer algorithmic paradigm. In one case
coordinate projection, and in the other, distance from
distinguished elements is used to hierarchically decom-
pose space.

6 Acknowledgements.

I thank Eric Baum, Bill Gear, Igor Rivin, and Warren
Smith for helpful discussions.

References

[1] J. L. Kelly, General Topology. New York: D. Van Nos-

trand, 1955.

[2] B. V. Dasarathy, ed., Nearest neighbor pattern classi�-

cation techniques. IEEE Computer Society Press, 1991.

[3] P. N. Yianilos, \A dedicated comparator matches sym-

bol strings fast and intelligently," Electronics Magazine,

December 1983.

[4] P. N. Yianilos, \New methods for neighborhood searches

in metric spaces." Invited Talk: The Institute for De-

fense Analyses, Princeton, NJ, July 23 1990.

[5] J. K. Uhlmann, \Satisfying general proximity/similarity

queries with metric trees," Information Processing Let-

ters, November 1991.

[6] J. K. Uhlmann, \Metric trees," Applied Mathematics

Letters, vol. 4, no. 5, 1991.

[7] W. A. Burkhard and R. M. Keller, \Some approaches

to best-match �le searching," Communications of the

ACM, vol. 16, April 1973.

[8] K. Fukunaga, \A branch and bound algorithm for

computing k-nearest neighbors," IEEE Transactions on

Computers, July 1975.

[9] K. Fukunaga, Introduction to Statistical Pattern Recog-

nition. Academic Press, Inc., second ed., 1990.

[10] G. Salton and A. Wong, \Generation and search of clus-

tered �les," ACM Transactions on Database Systems,

December 1978.

[11] C. D. Feustel and L. G. Shapiro, \The nearest neighbor

problem in an abstract metric space," Pattern Recogni-

tion Letters, December 1982.

[12] J. H. Friedman, F. Baskett, and L. J. Shustek, \An algo-

rithm for �nding nearest neighbors," IEEE Transactions

on Computers, October 1975.

[13] J. H. Friedman, J. L. Bentley, and R. A. Finkel, \An

algorithm for �nding best matches in logarithmic ex-

pected time," ACM Transactions on Mathematical Soft-

ware, vol. 3, September 1977.

[14] J. L. Bentley and J. H. Friedman, \Data structures for

range searching," Computing Surveys, December 1979.

[15] J. L. Bentley, \Multidimensional divide-and-conquer,"

Communications of the ACM, vol. 23, April 1980.

[16] C. M. Eastman and S. F. Weiss, \Tree structures for high

dimensionality nearest neighbor searching," Information

Systems, vol. 7, no. 2, 1982.

[17] B. S. Kim and S. B. Park, \A fast nearest neighbor

�nding algorithm based on the ordered partition," IEEE

Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 8, November 1986.

[18] A. J. Broder, \Strategies for e�cient incremental nearest

neighbor search," Pattern Recognition, vol. 23, no. 1/2,

1990.

[19] R. L. Rivest, \On the optimality of Elias's algorithm for

performing best-match searches," Information Process-

ing 74, 1974.

[20] T. P. Yunck, \A technique to identify nearest neighbors,"

IEEE Transactions on Systems, Man, and Cybernetics,

October 1976.

[21] F. Aurenhammer, \Voronoi diagrams { a survey of a

fundemental geometric data structure," ACM Comput-

ing Surveys, vol. 23, September 1991.

[22] P. M. Vaidya, \An O(n log n) algorithm for the all-

nearest-neighbor problem," Discrete & Computational

Geometry, vol. 4, no. 2, pp. 101{115, 1989.

[23] K. L. Clarkson, \A randomized algorithm for closest-

point queries," SIAM Journal on Computing, vol. 17,

August 1988.

[24] K. L. Clarkson, \New applications of random sampling

in computational geometry," Discrete & Computational

Geometry, vol. 2, pp. 195{222, 1987.

[25] A. M. Frieze, G. L. Miller, and S.-H. Teng, \Separator

based parallel divide and conquer in computational ge-

ometry," SPAA 92, 1992.

[26] D. Dobkin and R. J. Lipton, \Multidimensional search-

ing problems," SIAM Journal on Computing, vol. 5,

June 1976.

[27] P. N. Yianilos, \Normalized forms for two common met-

rics," tech. rep., The NEC Research Institute, Princeton,

New Jersey, December 1991.

