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Abstract

In this paper we propose a method for construction of feed-forward neural classifiers based on regularization and adaptive architectures.
Using a penalized maximum likelihood scheme, we derive a modified form of the entropic error measure and an algebraic estimate of the test
error. In conjunction with optimal brain damage pruning, a test error estimate is used to select the network architecture. The scheme is
evaluated on four classification problems.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pattern recognition is an important aspect of most
scientific fields and indeed the objective of most neural
network applications. Some of the classic applications of
neural networks like Sejnowski and Rosenbergs ‘NetTalk’
concern classification of patterns into a finite number of
categories. In modern approaches to pattern recognition
the objective is to produce class probabilities for a given
pattern. Using Bayes decision theory, the ‘hard’ classifier
selects the class with the highest class probability, hence,
minimizing the probability of error. If different costs are
associated with the individual classes, a risk-based approach
can be adopted (Bishop, 1995; Ripley, 1996). The conven-
tional approach to pattern recognition is statistical and
concerns the modeling of stationary class-conditional
probability distributions by a certain set of basis functions,
e.g. Parzen windows or Gaussian mixtures (Duda and Hart,
1973; Bishop, 1995; Ripley, 1996).

In this paper we define and analyze a system for
construction and evaluation of feed-forward neural
classifiers based-on regularization and adaptive architec-
tures. The proposed scheme is a generalization of the
approach we have suggested for time series processing
(Svarer et al., 1993a,b) and for binary classification in the
context of a medical application (Hintz-Madsen et al.,

1995). The key concept of the new methodology for
optimization of neural classifiers is an asymptotic
estimate of the test error of the classifier providing an
algebraic expression in terms of the training error and a
model complexity estimate. Our approach is a penalized
maximum likelihood scheme. The likelihood is
formulated using a simple stationary noise model of the
pattern source. For any given input pattern there can
be defined a probability distribution over a fixed finite
set of classes. The training set involves simply labeled
data, i.e. each input vector is associated with a single
class label. The task of the network is to estimate the
relative frequencies of class labels for a given pattern.
In conjunction with SoftMax normalization of the
outputs of a standard, computationally universal, feed-
forward network we recover a slightly modified form of
the so-called entropic error measure (Bridle, 1990). For
a fixed architecture the neural network weights are
estimated using a Gauss–Newton scheme (Seber and
Wild, 1995), while the model architecture is optimized
using optimal brain damage (Cun et al., 1990). The
problem of proper selection of regularization
parameters is also briefly discussed, see also Larsen et al.
(1996).

While most of the components of our approach have
been described in brief conference papers, here we
have aimed at a complete account of the
computational aspects, as well as thorough tests on practical
examples.
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2. Neural classifiers

Assume we have a training set,D, consisting ofq input–
output pairs

D ¼ { (xm,ym)lm¼ 1, …,q} (1)

wherex is an input vector consisting ofnI elements andy is
the corresponding class label. In this presentation we will
assume that the class label is of the definite formy ¼

1,…,nO, with nO being the number of classes. An alternative
soft target assignment might be relevant in some practical
contexts where the target could be, e.g. an estimate of class
probabilities for the given input (Ripley, 1996).

We aim to model the posterior probability distribution

p(y¼ ilx), i ¼ 1, …,nO (2)

In some applications it might be desirable to use a rejection
threshold when classifying, that is if all of the posterior
probabilities fall below this threshold then no classification
decision is made, see e.g. (Duda and Hart, 1973; Hintz-
Madsen et al., 1995).

To represent these distributions we choose the following
feed-forward network architecture:

hj(x
m) ¼ tanh

∑nI

k¼ 1
wjkxm

k þ wjO

 !
(3)

fi(xm) ¼
∑nH

j ¼ 1
Wij hj(xm) þ WiO (4)

with nI input units,nH hidden units,nO output units, and
parametersu ¼ (w, W), wherewjo andWiO are thresholds.
To ensure that the outputs can be interpreted as probabil-
ities, we use the normalized exponential transformation
known as SoftMax (Bridle, 1990):

p̂(ym ¼ ilxm) ;
exp[fi(xm)]∑nO

i9 ¼ 1

exp[fi9(x
m)]

(5)

where p̂(ym ¼ ilxm) is the estimated probability, thatxm

belongs to classi. Numerical aspects of Eq. (5) are discussed
in Appendix A.

Assuming that the training data are drawn independently,
the likelihood of the model can be expressed as

P(Dlu) ¼
∏q

m ¼ 1

∏nO

i ¼ 1
p̂(ym ¼ ilxm)di,ym (6)

where the Kronecker delta is defined by:di,ym ¼ 1 if i ¼ ym

otherwisedi,ym ¼ 0.
Training is based on minimization of the negative

normalized log-likelihood

E(u) ¼ ¹
1
q
logP(Dlu) ¼

1
q

∑q

m ¼ 1
e(xm,ym,u) (7)

where

e(xm,ym,u) ¼ ¹
∑nO

i ¼ 1
di,ym fi(xm) ¹ log

∑nO

i9 ¼ 1

exp[fi9(xm)]

 !" #
(8)

Numerical aspects of Eq. (8) are discussed in Appendix A.
In order to eliminate overfitting and ensure numerical

stability, we augment the cost function by a regularization
term, e.g. a simple weight decay, to form a penalized
log-likelihood,

C(u) ¼ E(u) þ
1
2
uTRu (9)

where R is a positive definite matrix. In this paper we
consider a diagonal matrix with elements 2a jd j,k/q.

The gradient of Eq. (7) is

]E(u)
]uj

¼ ¹
1
q

∑q

m ¼ 1

∑nO

i ¼ 1
[di,ym ¹ p̂(ym ¼ ilxm)]

]fi(x
m)

]uj
(10)

See Appendix B for details.
The matrix of second derivatives (the Hessian) can be

expressed as

Hjk;
]2E(u)
]uj]uk

<
1
q

∑q

m¼ 1

∑nO

i ¼ 1

∑nO

i9 ¼ 1

p̂(ym ¼ ilxm)[di, i9

¹ p̂(ym ¼ i9lxm)]
]fi9(xm)

]uk

]fi(xm)
]uj

ð11Þ

where we have used a Gauss–Newton like approximation.
See Appendix B for details.

It is important to notice that the Hessian in Eq. (11) is
singular everywhere for the SoftMax network. This is due
to the redundant output representation (Eq. (5)) which
leaves the set of outputs invariant to certain linear
transformations of the hidden-to-output weights. The use
of regularization, however, ensures that the effects of
this symmetry don’t interfere with training or evaluation
of the network. We are currently working on a modified
implementation which explicitly removes the SoftMax
redundancy (Andersen et al., 1997).

Using matrix–vector notation the Gauss–Newton
paradigm of updating the weights can now be computed
as (Seber and Wild, 1995)

unew¼ u ¹ h(H þ R)¹ 1 ]E
]u

þ Ru
� �

(12)

whereRu andR are the first and second derivatives of the
regularization term, respectively, andh is a step-size, that
may be used to ensure a decrease in the cost function, e.g. by
line search.

The determination of regularization parameters is an
issue of ongoing research. A natural approach is to minimize
the test error with respect to the regularization parameters.
Here one may use an estimate of the test error, as derived
in the next section. This technique is demonstrated in
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Section 3.1. Another approach which is based on minimiza-
tion of a validation error has been implemented in (Larsen
et al., 1996).

2.1. Test error estimate

One of the main objectives in our approach is to estimate
a network model with a high generalization ability. In order
to obtain this we need an estimate of the generalization
ability of a model. The generalization, or test error, for a
given networku may be defined as

Etest(u) ¼

∫
e(x,y,u)P(x, y)dxdy (13)

whereP(x,y) is the true underlying distribution of examples
ande(x,y,u) is the error on example (x,y). Since the test error
involves an average over all possible examples, it is in
general not accessible, but it can be estimated by using
additional statistical assumptions, thus giving us the
following estimate for the average test error of a network
u estimated on a training setD (Murata et al., 1994),

〈Êtest〉 ¼ Etrain(u(D)) þ
Neff

q
(14)

where Etrain(u(D)) is the training error of the model.
The effective number of parameters is given byNeff ¼

Tr[H(H þ R)¹1], whereR is the second derivative of the
regularization term.

In brief, the following assumptions enter the derivation of
Eq. (14):

• Independence of input and error on output.
• Many examples per weight:Neff/q → 0.
• There exists a network,u*, that implements the true

model.

For a detailed discussion on test error estimates and their
assumptions, see, e.g. (Larsen, 1992, 1993). This estimate of
the test error averaged over all possible training sets may be
used to select the optimal network e.g. among a nested
family of pruned networks; hence, be used as a pruning
stop criterion similarly to our procedure for evaluation of
function approximation networks (Svarer et al., 1993a,b).

2.2. Pruning with optimal brain damage

In order to reduce and optimize a networks architecture,
we recommend to apply a pruning scheme such asoptimal
brain damage(OBD) (Cun et al., 1990). The aim of OBD is
to estimate the importance of the weights for the training
error and rank the weights according to their importance. If
the importance is estimated using a second order expansion
of the training error around its minimum, the saliency for a
weight ui is (Svarer et al., 1993a,b)

si ¼ Rii þ
1
2
Hii

� �
u2

i (15)

where the HessianH ii is given by Eq. (11) andRii is theith
diagonal element ofR. The following assumptions enter the
derivation of OBD:

• The training error is at a minimum.
• The terms of third and higher orders in the deleted

weights can be neglected.
• The off-diagonal terms in the Hessian, [(]2E(u))/

(]uj]uk)] can be neglected (if more than one weight is
pruned).

By repeatedly removing weights with the smallest salien-
cies and retraining the resulting network, a nested family of
networks is obtained. Here we may use the previously
derived test error estimate to select the ‘optimal’ network.

2.3. Recipe overview

The algorithm can be summarized by the following:

1. Determine regularization parameters (e.g. by using the
grid-sampling technique described later in Section 3.1).

2. Train/retrain network using Gauss–Newton optimiza-
tion.

3. Compute the estimated test error.
4. Compute OBD saliencies and remove a percentage of the

weights with the smallest saliency. Goto 2, if number of
remaining weights. 0.

5. Select the network with the smallest estimated test error
as the optimal network.

2.4. Comments on algorithm complexity

When choosing an algorithm for solving a particular
problem, it is necessary not only to ensure that the algorithm
is theoretically well founded, but it should also be
applicable in practice. One limiting factor is the available
computational resources. Though a diminishing problem, it
still needs consideration. In this section we will briefly
discuss the complexity of the proposed algorithm.

For each training iteration, it is necessary to compute the
regularized Hessian and its inverse. Computing the Hessian
is anO(qnO

2 N2) operation, whereq is the number of training
examples,nO the number of classes andN the number of
weights, while inverting the regularized Hessian is anO(N3)
operation. Since the number of training examples is usually
larger than the number of weights, it is the computation of
the Hessian that can be a limiting factor.

As a guiding principle, this algorithm will on a computer
with performance equivalent to a Pentium 200 MHz
machine produce results in hours when dealing with net-
work configurations of hundreds of weights, while using
thousands of weights is less feasible and will take consider-
able longer.

Note, that after each pruning step with OBD, it is usually
only necessary to retrain the network for just a few itera-
tions. Because only weights with small saliencies are
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removed, the minimum of the cost function is only slightly
changed.

3. Experiments

The proposed methodology for constructing neural
classifiers has been evaluated on several problems: the arti-
ficial contiguity problem,the real world problems ofglass
classification, bacteria cell classification,and skin lesion
classification.

3.1. The contiguity problem

The contiguity problem has been used for evaluating
optimization schemes, see e.g. (Denker et al., 1987;
Gorodkin et al., 1993). The boolean input vector (6 1) is
interpreted as a one-dimensional image and connected
clumps of þ 1s are counted. Two classes are defined:
those with two and three clumps. We consider the case,
wherenI ¼ 10. In this case there are 792 legal input patterns
consisting of 432 patterns with three clumps and 360 with
two clumps. We use a randomly selected training set with
150 patterns and a test set with 510 patterns both containing
an even split of the two classes.

Initially a network architecture consisting of 10 input
units, 8 hidden units and 2 output units was chosen. We
only employ two different weight decays:aw for the
input-to-hidden weights andaW for the hidden-to-output
weights. By sampling the space spanned byaW and aw

for non-pruned networks1 with e.g. a 33 3 grid and com-
puting the estimated test error, it is possible to fit e.g. a
diagonal quadratic form2 in a least-square sense to the
sample points, locate the minimum3 of the quadratic form

and use the weight decays found for the design of the
network. This is shown in Figs. 1 and 2. In order to cover
a large range of values for the regularization parameters, it is
appropriate to use a logarithmic scale for the sampling grid.
The values foraw andaW should be chosen large enough to
ensure numerical stability in Eq. (12), yet small enough in
order not to impose too large a restriction on the number of
degrees of freedom. This method is a quick and dirty way to
determine the approximate order of magnitude for the
regularization parameters and works best when the
estimated test error surface is close to being convex. This
is typically the case due to the nature of the test error
estimate.

Next, 10 fully connected networks were trained4 using the
estimated weight decay parameters, subsequently pruned
using the OBD saliency ranking, removing one weight per
iteration. In Figs. 3 and 4 the distribution of the individual
test errors is shown for fully connected networks and
pruned networks, respectively. The error distribution
shows that the mean error is predominantly driven by a
few examples with a high error, thus suggesting that one
should monitor the median5 error as well in order to get a
good indication of a network’s performance. This problem
arises due to the nature of the logarithm in the error function
and one should be aware of this property when evaluating
the performance.

Seven of the ten pruned networks had a classification6

error on the test set between 0% and 3.3%, while three
networks had an error of 16 to 19%. In (Gorodkin et al.,
1993) seven of ten networks had an error of 8%–38%
using the same size of training set, while three networks
had errors around 0%. Compared with these results,
our classifier design scheme has a significantly higher
yield.

Fig. 1. The estimated test error for thecontiguity problemas function of the
weight decay pa rameters. The grid indicates the points where the estimated
test error is sampled.

1 To reduce the computational burden.
2 Diagonal quadratic form:ðz¹ zOÞ¼ ðx¹ xOÞ2=a2 þðy¹ yOÞ2=b2.
3 In case the minimum is located outside the sample-grid, one should

relocate the grid and find a new minimum.

Fig. 2. Quadratic form fitted to the 33 3 grid for thecontiguity problem
shown in Fig. 1. Minimum located at (aw, aW) ¼ (0.68, 2.83 10¹4).

4 Training was stopped when the 2-norm of the gradient vector was
below 10¹5.

5 Emedian¼ median {e(xm,ym,u)lm ¼ 1,…,q}, wheree is the error measure
defined by Eq. (8).

6 Following Bayes decision theory, the network output with the highest
probability determines the class label.
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3.2. The glass classification problem

The real world glass classification problem is a part of the
Proben1 neural network benchmark collection (Prechelt,
1994). The task is to classify glass splinters into six classes.
The glass splinters have been chemical analyzed and nine
different measures have been extracted from the analysis,
see (Prechelt, 1994) for details. The original dataset(glass1)
consists of 214 examples divided into a training set (107), a
validation set (54) and a test set (53). Since our approach
doesn’t require a validation set, we have used two different
training scenarios: one using the original training set and
one using a new training set consisting of the original train-
ing and validation set. The initial network architecture
chosen consisted of 9 input units, 6 hidden units and 6

output units. We estimated the regularization parameters
using the sample-grid technique and the small training set.
The parameters were found to beaw ¼ 2.23 10¹2 andaW ¼

4.7 3 10¹4.
In Figs. 5 and 6 and Figs. 7 and 8 we show the pruning

results of networks trained with thesmallandlarge training
set, respectively, using the estimated regularization para-
meters. The ‘optimal’ network found with thesmalltraining
set had a classification error of 32% on the test set, while the
‘optimal’ network found with thelarge training set had an
error of 28%. In (Prechelt, 1994) Prechelt reports a test error
of 32% for a fixed network axchitecture using thesmall
training set. The validation set is used to stop training,
thus he effectively uses both the training and validation
set for training (Sjo¨berg, 1995). Our approach using the

Fig. 3. The distribution of the errors of the individual test examples for 10 fully connectedcontiguitynetworks combined in one pool. Notice the ‘long tail’ of
the distribution resulting in a high mean error (0.94) and a small median error (0.022) i.e. the mean is predominantly driven by a few examples with higherror.

Fig. 4. The distribution of the errors of the individual test examples for 10 prunedcontiguitynetworks selected by the minimum of the estimated test error
combined in one pool. The mean error is 0.37 and the median error is 0.0014 showing a significant performance improvement as result of pruning compared to
the fully connected networks in Fig. 3.
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estimated test error for model selection eliminates the need
for a validation set, thus allowing us to use more data for the
actual training resulting in a better generalization
performance. The problem of comparing the performance
of neural network models is addressed in (Larsen and
Hansen, 1995).

For comparison a standardk-Nearest-Neighbor7 (k-N-N)
classification (Duda and Hart, 1973) was performed using
the large training set. The training error may be computed
from the training set by including each training pattern in
the majority vote. Aleave-one-out‘validation’ error on the
training set may be computed by excluding each training
pattern from the vote. Finally, the test patterns may be clas-
sified by voting among thek nearest neighbors found among
the training patterns. Using theleave-one-outvalidation
error we found thatk ¼ 2 was optimal for this data set.
The 2-N-N scheme had a classification error of 34% on
the test set. Thus the performance of the optimizedk-N-N
scheme cannot match Prechelt’s or our networks.

3.3. The bacteria cell classification problem

In order to evaluate the quality of water in e.g. oceans and
lakes, it is desirable to know the type and extent of bacteria
cells in water samples. Here we address the problem of
classifying cells in microscopic images into five different
morphological classes. 398 cells have been detected and
their shapes are described by 10 complexFourier descrip-
tors (Granlund, 1972). The dataset is divided into a training
set (320) and a test set (78).

Initially a network architecture consisting of 20 input
units, 6 hidden units and 5 output units was chosen. The

regularization parameters were after preliminary
experiments set toaw ¼ 0.5 andaW ¼ 0.5.

In Fig. 9 a typical pruning scenario for a network is
shown. Before pruning this particular network classified
96.9% of the training set and 85.9% of the test set correctly,
while the ‘optimal’ pruned network in Fig. 10 had a classi-
fication rate of 92.5% on the training set and 92.3% on the
test set. Thus the pruning has increased the generalization
ability of the network.

A k-N-N classification was performed for comparison.
Using the leave-one-out validation error as described in
Section 3.2 we found thatk ¼ 3 was optimal for this data
set. The 3-N-N scheme classified 91.0% of the test set cor-
rectly. Thus for this data set the performance of the neural
andk-N-N classifier is similar.

3.4. The skin lesion classification problem

The incidence of malignant melanoma, the most lethal of
skin cancers, has risen rapidly during the last 50 years.
Fortunately patients can be saved from this life-threatening
cancer, if it is detected at an early stage. Thus, in recent
years, there has been an increased interest in schemes for
automatic and early detection of melanoma. Digital imaging
may assist and improve the possibility of such early detec-
tions. A review of digital imaging in this field was recently
published inSkin Research and Technology(Stoecker et al.,
1995).

From a collection of color photographs of skin tumors at
The National University Hospital of Denmark 21 statistical
measurements describing color and texture properties have
been acquired for each tumor and are used for classification
into three groups: Benign nevi (non-cancer), dysplastic nevi
(non-cancer, but increased risk of developing cancer) and
melanoma.

Fig. 5. Pruning of aglass classificationnetwork using thesmalltraining set. The vertical line indicates the ‘optimal’ network selected by the minimum of the
estimated test error. Note that the test error is very high and evolves quite differently from the classification error on the test set shown in Fig. 6. The
development of the median test error is more similar to the development of the classification error on the test set.

7 Within k-N-N a pattern is classified according to a majority vote among
its k nearest neighbors using the simple Euclidean metric.
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A total of 180 images with an even split of the three
classes were used for training and 60 images were used
for testing. Ten feed-forward networks with an initial archi-
tecture consisting of 21 inputs, 4 hidden units and 3 output
units were trained and subsequently pruned; hence resulting
in ten nested families of pruned networks. The estimate of
the test error for each family was used to select the network
with the lowest estimated generalization error. The weight
decay parameters were after preliminary experiments set to
aw ¼ 0.1 andaW ¼ 1.

In Figs. 11–13 a typical pruning scenario is shown.
Table 1 shows the confusion matrix for the test set classified
with the fully connected networks and the selected ‘optimal’
networks. The mean and standard deviation of the 10 runs
are reported. Overall the fully connected networks classified
89.6%6 1.6% of the training set and 54.6%6 4.1% of the
test set correctly, while the results for the pruned networks

are 86.7%6 3.6% for the training set and 58.9%6 2.1% for
the test set. Thus the pruning has increased the generaliza-
tion ability of the networks. An important effect of the prun-
ing approach is the selection of input features, that are
salient for the classification; thus providing us with infor-
mation that can be used in clinical dermatology. Of the ten
pruned networks, four didn’t use input 15 and three didn’t
use input 16. Such information can be valuable feedback for
the design of future experiments. In the particular case, the
two inputs that some networks discard are color variances,
suggesting that these do not carry useful information for the
classifier. Hence, we might e.g. investigate the color control
of the illumination system in order to stabilize color
variances.

A k-N-N classification was performed for comparison.
Using the validation error as described in Section 3.2 we
found thatk ¼ 6 was optimal for this data set. The 6-N-N

Fig. 6. The classification error during pruning of aglass classificationnetwork using thesmall training set. The vertical line indicates the ‘optimal’ network
selected by the minimum of the estimated test error shown in Fig. 5.

Fig. 7. Pruning of aglass classificationnetwork using thelarge training set. The vertical line indicates the ‘optimal’ network selected by the estimated test
error.

1665M. Hintz-Madsen et al./Neural Networks 11 (1998) 1659–1670



scheme classified 74.7% of the training set and 57.3% of the
test set correctly. Thus the performance of the optimized
k-N-N scheme fall in between the pruned and fully
connected networks.

4. Conclusion

We have developed a methodology for construction and
evaluation of neural classifiers. Our aim was to present a
practical approach dealing with the problems of overfitting
and model selection without the use of a validation set. The
approach was applied to one artificial and three real world
problems. It was shown that the test error estimator for
classifiers could be used to select optimal networks among
families of pruned networks, thus increasing the generaliza-
tion ability compared to non-pruned networks. Currently,

the aim is to establish more empirical data for the validation
of the neural classifier construction approach.
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Appendix A Numerical considerations

When doing computer simulations, one has to consider
the effects of calculations with finite wordlength data. Here

Fig. 8. The classification error during pruning of aglass classificationnetwork using thelarge training set. The vertical line indicates the ‘optimal’ network
selected by the estimated test error shown in Fig. 7. Notice the overall lower classification error on the test set compared with Fig. 6.

Fig. 9. Pruning of abacteria cellnetwork. The vertical line indicates the ‘optimal’ network selected by the minimum of the estimated test error.
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we rewrite the SoftMax Eq. (5) and the error measure in
Eq. (8) to prevent overflow caused by the exponential
function. The reformulations ensure that the argument to
the exponential function is always smaller than or equal to
zero. Eq. (5) can be rewritten as

p̂(ym ¼ ilxm) ¼
exp[fi(xm)]∑

i9

exp[fi9(xm)]
(A1)

¼
exp[fi(xm) ¹ fimax

(xm)]∑
i9

exp[fi9(xm) ¹ fimax
(xm)]

(A2)

¼
exp[fi(x

m) ¹ fimax
(xm)]

1þ
∑

i9Þimax

exp[fi9(xm) ¹ fimax
(xm)]

(A3)

where

fimax
(xm) ¼ max

i
{fi(xm)} (A4)

Eq. (8) is reformulated as

e(xm,ym,u) ¼ ¹
∑

i
di,ym fi(xm) ¹ log

∑
i9

exp[fi9(xm)]

 !" #
(A5)

Fig. 10. The ‘optimal’ prunedbacteria cellnetwork selected by the minimum estimated test error in Fig. 9. Note that a large number of inputs are not used. A
vertical line through a node indicates that a threshold is present.

Fig. 11. Pruning of askin lesionnetwork. The vertical line indicates the ‘optimal’ network selected by the estimated test error. Notice the big difference
between the test error and median test error.
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Fig. 12. The classification error during pruning of askin lesionnetwork. Note again that the median test error in Fig. 11 follows the development of the
classification test error better than the test error.

Fig. 13. The ‘optimal’ prunedskin lesionnetwork (from 103 to 48 weights) selected by the minimum of the estimated test error in Fig. 11. Note that two inputs
are not used.

Table 1
Confusion matrix for the test set using fully connected (103 weights) and pruned networks (41–62 weights)

Fully connected ANN (%) Pruned ANN (%)
Conf. mat. Benign nevi Dyspl. nevi Melanoma Benign nevi Dyspl. nevi Melanoma

Benign nevia 42.4 6 9.1 29.06 6.2 22.06 10.1 47.66 9.3 27.56 7.6 18.56 8.8
Dyspl. nevia 24.376 65.2 49.56 6.9 5.56 3.7 22.4þ 6.0 53.56 5.8 5.56 4.4
Melanomaa 33.36 6.7 21.56 6.7 72.56 7.6 30.06 8.4 19.06 3.9 76.06 7.8

The mean and standard deviation of 10 runs are reported. Note that the classifier performs best for the critical melanoma class.
aIndicates the estimated output classes.
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¼ ¹
∑

i
di,ym

"
fi(xm) ¹ log

 
exp[fimax

(xm)]
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where

fimax
(xm)

is given by Eq. (A4).

Appendix B Computation of gradient and Hessian

The gradient of Eq. (7) is
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]fi9(x

m)
]uj

(B3)

wheredi, ym ¼ 1 if i ¼ ym otherwisedi,ym ¼ 0.
Note that only when the indexi equals the correct class

for example xm in Eq. (B3), is the contribution to the
gradient non-zero. This means that Eq. (B3) can be reduced
to
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]uj

¼ ¹
1
q

∑q

m ¼ 1
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i ¼ 1
[di,ym ¹ p̂(ym ¼ ilxm)]

]fi(x
m)

]uj
(B4)

The Hessian can be expressed as

]2E(u)
]uj]uk
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1
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]uj]uk

¹
]p̂(ym ¼ ilxm)

]uk

]fi(xm)
]uj

�
ðB5Þ

<
1
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¼
1
q
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p̂(ym ¼ ilxm)[di, i9 ¹ p̂(ym ¼ i9lxm)]

3
]fi9(xm)

]uk
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where we have used the Gauss–Newton approximation
(Seber and Wild, 1995). This is motivated by Fisher’s
argument which is valid when using a log-likelihood cost
function.
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