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Abstract

The number of required hidden units is statistically estimated for feedforward neural networks that are constructed by adding hidden u
one by one. The output error decreases with the number of hidden units by an almost constant rate, if each appropriate hidden unit is sels
out of a great number of candidate units. The expected value of the maximum decrease per hidden unit is estimated theoretically as a fun
of the number of learning data sets in relation to the number of candidates that are obtained by random search. This relation can be expe
to cover other searching methods. In such a case, the number of candidates implies how many steps might be required if random search
used instead. Therefore the number of candidates can be regarded as a parameter that represents the efficiency of the search. Col
simulation shows that estimating this parameter experimentally from the actual decrease in output error is useful for demonstrating
efficiency of the gradient search. It also shows the influence, on the number of hidden units, of the hidden unit's nonink2@ByEIsevier
Science Ltd. All rights reserved.

Keywords:Neural network; Feedforward network; Least squares approximation; Number of hidden units; Statistics of extremes; Efficien
of search

1. Introduction A simple one of flexible networks is the growth network
that is constructed by adding hidden units one by one so as
The number of hidden units in a feedforward neural net- to reduce the output error of the network (for example,
work is significant in characterizing the performance of the Fahlman and Lebiere, 1990). For speed learning, the main
network. It greatly influences network capacity (Baum, 1988; network is fixed during learning; only the added unit is made
Akaho and Amari, 1990), generalization ability (Baum and to learn, so as to compensate for residual error. The output
Haussler, 1989), learning speed and output response. Foerror decreases with the number of hidden units added. The
capacity and universality in application to function approxi- larger the decrease per hidden unit, the smaller the network
mation, it is apparently better for the number of hidden units to that can be constructed. The decrease per hidden unit, that
be as large as possible. On the other hand, from the standpoinis, the performance of the hidden unit, can be theoretically
of generalization, the number should not be too large for evaluated for the network whose output units have a linear
heuristic learning systems in which the best network is a-priori function (Fujita, 1992). In this case, it is possible to clarify
unknown and has to be determined stochastically. Using thethe quantitative relation between the number of hidden units
analogy of Akaike’'s Information Criterion (Akaike, 1974; and the network output error. The statistical evaluation of
Kurita, 1990; Moody, 1992), an optimum number of hidden this relation gives valuable information about the efficiency
units ought to exist, which depends on the complexity of a of stochastic search for hidden units of good performance,
given learning task. But estimating the number before the as will be mentioned later. This information is different from
learning task is done is difficult. To meet such a requirement, such a kind of information as the lower or upper bound of the
the actual number of hidden units should be flexible and capacity of the threshold logic network implementing an
adjustable to the optimum number during learning. There arbitrary dichotomy as evaluated by Baum (1988).
may be many such kinds of learning systems (for example, This paper describes statistical estimation of the number
Ash, 1989; Hagiwara, 1990; Hirose et al., 1989). of hidden units for feedforward neural networks. We first
derive the decrease in output error per hidden unit based on
mreprints should be sent to Osamu Fujita. E-mail: futaro the least-squares approximation (restatement of the paper by
@ba.2.so-net.ne.jp He is now with Justsystem Corporation. Fujita, 1992). Then we theoretically estimate the expected
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maximum value of the decrease as the largest value in thesin or tanh functionwhj is ann-dimensional column vector
great number of samples from an ideal distribution of the as a weight vector, analis a coefficient that represents the
hidden unit. In other words, the best hidden unit is selected nonlinearity of the hidden unit used for discussion in Sec-
out of a finite number of candidate units that have the various tion 4. (In general, it is not necessary to notatexplicitly
functions of hidden units. The expected largest value dependsbecause it can be included v, .) For the cascaded net-
on not only the number of candidate units but also the numberwork, h; is given by

of learning data sets which represents the complexity and
difficulty of learning tasks. The expected largest decrease hy =T(b[XH; - 1]wp), ©)
per hidden unit is used to estimate the total numbe_r of hidden,ynere KH,_;] is the augmented matrix consistingfand
umts required to reduce the o.utput error 'Fo a desired vaIue.Hj_l = [hy, hy, -+, hy_j], andw, is the (n+j — 1)-dimen-
Finally, based on the theoretical estimation, the results of g5 weight vector. The output of the hidden unit in the
computer simulation for an actual learning task are discussed

! . > ‘cascaded network depends on the output of the other hidden
We show that the relationship between the decrease in output,its added previously.

error and the number of the candidate units represents the | o y be an actual output vector produced by the linear

efficiency of the search for good hidden units. We also oyinyt unit of the network as a linear combination of the
show that it has close relation with the nonlinearity of the 5,mn vectors oH i.e.

hidden unit that is an ability to produce various outputs.

wherew is anm-dimensional weight vector. Thugsatisfies

y € L[H] where L[H] denotes the column space of the
matrix H. Let y, be an optimum vector such that it mini-
mizes the sum of squared output errors,

2. Feedforward neural network model

In this section, a feedforward neural network model, con-
sisting of a linear output unit and nonlinear hidden units, is
described mathematically as a nonlinear transformation of ) K 5
input matrix data into an output vector. Each unit is repre- iz —yli" = Z @ =), ®)
sented by a vector whose components are its output values for =1
all learning data. The vectors of nonlinear hidden units span awherellyll is the Euclidean norm of. According to the
vector space. This vector space should be as close to thdheory of the least squares approximation, the optinygm
desired output vector of the output unit as possible. The outputis given by
error is defined by the minimum distance between the desiredyo —Pz )
output vector and the actual output vector in the vector space,
which is based on the least-squares approximation. The perwhereP is the projection matrix onta[H]. If H consists of
formance of each hidden unitis evaluated as to its contribution linearly independent columns only, thetfH is non-singu-
to the decrease in the output error (Fujita, 1992). lar andP is expressed by

Let us consider am-input—1-output feedforward neural _ T 1T
network that consists of a linear output unit anegionlinear P=H(HH) "H. )
hidden units. Suppose thidtlata sets for both the inputs and  ence, the least sum of squared output errors is expressed
the desired output are given. The input data sets are reprey,
sented byK X n matrix X, and the desired output data sets
are represented b¢-dimensional column vectar The out- lz— PZP =IP.zI*=2"P.z (8)

puts of the hidden units are representedby mmatrixH, ) ) , i )
whereP. = | — P andl is the identity matrix.P. is the

which is generally a nonlinear function &f, as follows: ST i i L

projection matrix ontd_~[H], which is the orthogonal com-
H=1(X), (1) plement of L[H]. It has two basic properties,
wheref denotes the mapping — H. The column space of p2=p_ andP! =P,, in common with P. The optimum
H can be outside of the column spaceXobecause of the  weight vector is given by
nonlinearity off.

In conventional neural networks, there are two types of Wo= H'z 9)
interconnection between hidden units. Let us call the one a
layered network and the other a cascaded network in this
paper. For the layered network that has only one hidden
layer, there is no interconnection between hidden units,
and so the output vector of theh hidden unit,h; (the jth

column vector oH) is produced by an augmented matrix. Such a space expansion brings
hy =1 (bX wy,), (2) about the decrease of the minimum valuellaf— yl?
wheref is a nonlinear function for each component such as from z'"P.zto z'"P./z whereP,' is the projection matrix

whereH" = (H™H)'HT, i.e. the pseudoinverse #f.

Let us consider the case in which a new hidden unit is
added. Leth be the output vector of the added hidden
unit. The column space to whighbelongs is expanded
by one dimension front.(H) to L([Hh]), where Hh] is
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ontoL*[Hh], i.e. expected value of;is
P’ =1~ [Hh]([Hh]"[Hh]) ~*[Hh]" ; ;
_ —_1_ S
— Pc _ Pch(hTPch) 71hTPC’ (10) E(rS) - l r¢S(r) dr=1 l‘b (r) dl’, (15)
Let A be the decrease of the output error. Using Eq. (A0), 4 it is expressed by the following inequality (see Appen-
is expressed by dix B)
T 2
- Pch) 2
A=Z"pz— 7P 2= Ph(hPh) TPz = . Fe 2
2 P22 Poz=2 Pch(h'Peh) “h'Pez =" 1 ey 1 [K=m=TK—m-ip(K-m+1
(12) s 2cs K—m-1)
Theh that maximizes the is the best one for reducing the (16)
output error. whereT'() is the gamma function. The right side gives a

The network can be constructed as small as possible byclose approximation t&(rg) for K — m>> 1 ands > 1 as

adding the bedts one by one. The cascaded network can be follows:

generally smaller than the three-layered network. The over- 2

all network size is satisfactory in either network, although it T

is not necessarily minimum in comparison with the case in Ef)~1-as K-m-1 (17)

which all'hs are optimized simultaneously. wherea is the abbreviation of the coefficient given in Eq.
(16) and is close to 1 fok — m > 1. The expected rate of
the squared output error decreasing by one hidden unit is

3. Statistical estimation of the number of hidden units expressed by
2
The number of required hidden units for reducing the P’ .zl 7t
output error depends on how large theof each unit can < P zI? =1-E(r)~aes K=m-1 (18)

be. In this section, the expected largest value\d$ esti- o2 _ )
mated statistically, based on a certain supposition that the e squared output erréPc” " for m hidden units added

largest value ofA is obtained by random search for one by one can thus be estimated as follows:
For the convenience of theoretical treatments rewrit- P2 m 2 2m
7 —— D
ten as <—|IP?°) ”2> ~a"[]s K-1-1=s K. (19)
Z .
Pz Pch 2” 2 ¢ =1
A= IPzl" TPl Pz, (12) Therefore, the number of required hidden units is estimated

o ] approximately as
where the term within the parentheses denotes the inner ©)
__ Klog(lIPg”Zll/C)

product. This inner product corresponds to the inner product jp~ 22" ¢ =7~/ (20)
(u, v) of (K — m)-dimensional unit vectors andv because logs

of the projectiorP.. In order to estimate the expected largest whereC is the criterion of the allowable output error.
value ofA, let us consider the distribution of= (u, v)?in

the range of 0= r = 1. Suppose that is constant and is

uniformly distributed on the surface of thK & m)-dimen- 4. Computer simulation and discussion

sional hypersphere. In this case, the cumulative distribution

function ®(r) can be expressed by the beta distribution as 4.1. Largest value oA

follows:

®(r)=cB, (; % (13) by obtaining the largest value of pseudo-random numbers
from the beta distribution, which can be generated by the

whereB, is the incomplete beta function andks the inverse method given by Atkinson (1979). Fig. 1 shows the distri-

of the beta functioB(1/2, (K — m — 1/2) (see Appendix A).  bution of 100 samples af; for each value oK — mands.

In this distribution, how large canbe, if candidate vectors  This shows that the theoretical estimation, Eq. (17), can be

for v are obtained by random sampling of unit vectors?d et used as an approximation. The theoretical value is slightly

be the number of sampleswfandrgbe the largest value of  less than the experimental value; this outcome agrees with

> The actual value d&(r ) can be examined experimentally

r in those samples. The distribution density functiorof r the inequality in Eqg. (16). (Based on an empirical correc-
is given by (Gumbel, 1958), tion, it was found that a better approximation can be

_ obtained by changing to (o + 2)/3. This correction, how-
Yelr =585 (16 (r2), (14) Y changing t© (a + 2)

ever, has no intrinsic meaning and serves only to provide a
where ¢ is the distribution density function o®. The better fit with the experimental data.)
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The theoretical estimation is no more than an approxima- value inssamples ofi, v)? for one random sample ofand
tion. The theory in Section 3 is developed on the basis of the srandom samples of. The K — m)-dimensional unit vec-

supposition thaPh/lIPhll is uniformly distributed on the
hypersphere. In practice, however, the distributioi oot
only depends on the distribution of input vectors and
weights, but also varies with the nonlinear functibrof
the hidden unit. Besides, the projection fofonto L*[H]
makes the situation complex. Even if the distributionhof
is determined exactly, the distribution Bfh/IPhll is loca-

torsu andv are produced by/l£ll where¢ is a K — m)-
dimensional vector whose componept¢i =1, ---, K — m)
are pseudo-random numbers uniformly distributed in the
range [— 1, 1]. In addition, Fig. 2 also shows the case
thatu andv are random binary vectors such that= { —
1, 1}.

The results of the computer simulation show that the

lized in some cases, and dispersed in other cases, dependindistribution of rg for the non-uniform distribution of

on P.. Since the distribution oP /Pl cannot be deter-
mined exactly, it is natural for the first step of approximation
to assume tha®:h/lIP hllis, theoretically, uniformly distrib-

P /Pl is almost equal to that for the uniform distribu-
tion. The reason can be explained as follows. The distri-
bution density of¢/lgll is high in the direction of the

uted on the hyperspherical surface. However, it is important corners of the hypercube and very low in the direction

to examine whether this supposition is good or not for more
practical conditions.

For most of neural network models, the output value is
restricted to a certain range, for example; L, 1] or (0, 1),
and so the output vectdr, whoseK components have out-
put values such as these, is restricted inKhdimensional
hypercube. Ifh is uniformly distributed in the hypercube,
the distribution o h/lIPhllis probably non-uniform on the
(K — m)-dimensional hypersphere ib‘[H] and has an
anisotropy due to the projection of the hypercube. It is
worthwhile examining the largest values &foy computer
simulation for such a non-uniform distribution Bgh/IIPchll.

For example, suppose thBth is uniformly distributed in
the K — m)-dimensional hypercube (although such a case
rarely occurs in practice). Fig. 2 shows the distribution of
100 samples of  for the non-uniform distribution oPh/
IPhllin comparison with that for the uniform distribution of
P /Pl shown in Fig. 1. Eachgis obtained as the largest

Experimental distribution Theoretical estimation

-

Frequency
...o-.. Empirical correction
—&— No correction

(K-m)

0.1 F

1.: Largest value of r

0.01F ™ ‘ 1

218

214 220

s : Number of random vectors

Fig. 1. Estimation of the largest valugwith respect ts andK — m. The
experimental distribution of 100 values affor each condition is obtained
by computer simulation in which the valuesrofre generated as pseudo-

of the coordinate axes. There aré2 highest-density
points that are symmetrically and uniformly distributed
on the hyperspherical surface. The frequency of conden-
sation and rarefaction is2™. When the number of sam-
ples is much less than®2™ the distribution of the
samples is too sparse to reflect the anisotropy, and can
be regarded as approximately uniform on the
hyperspherical surface.

Using this fact, under such a conditionsxg 2™, there
is another approach to approximation of the largest value
of A based on the conventional theoretical statistics of
extremes in the normal distribution (Appendix C). The
distribution of {1, v) for random binary vectors can be
approximated by a kind of the binomial distribution and
by the normal distribution after all. According to the
conventional theory (Gumbel, 1958), the most probable
largest value (that is not the expected largest value) can be

Distribution of rg

Frequency o .
u and v : uniform
distribution on
hypersphere

(r: beta distribution) A

u and v (=E/IIEll): non-uniform
-+ distribution on hypersphere

' A(E: uniform distribution in hypercube)

! B(&: random binary vector)
B

1 F T T T T T T

(u,v)?

0.1 [

r,: Largest value of r

0.01 |

220

s: Number of random vectors

Fig. 2. The distribution of the largest valuesrof (u, v)2 in comparison
with rg shown in Fig. 1. Thel — m)-dimensional unit vectors andv are
produced by/lll wheret is a (K — m)-dimensional vector whose compo-

random numbers from the beta distribution. Theoretical estimation is based nents are pseudo-random numbers uniformly distributed in [-1, 1] for case

on the approximation shown in Eq. (17).

(A) and pseudo-random binary numbers of-{1, 1} for case (B).
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approximated by The output error decreases exponentially under any con-

ditions. This means that the rate of decrease per hidden unit

M. (21) is almost constant. Under detailed observation, however, the

K—m rate of decrease in fact increases with the number of inputs

This approximation also fits the experimental data well, but and the number of hidden units added, and varies with the
it should not be used for an larger value. In an extreme case,types of network and the nonlinear function. The rate of

the approximate value of Eq. (21) can be more than 1, which decrease of the cascaded network is larger than that of the

violates the upper limit such that(v)? < 1. layered network, and that of the sin-unit is larger than that of
the tanh-unit.
4.2. Actual decrease of output error The actual rate of decrease of the output error is closely

related to the parameterBased on Eq. (19), the value f
According to Eq. (19), the output error decreases with the can be estimated inversely from the actual rate of decrease

number of hidden units by an almost constant rates i per hidden unit obtained from the results of the computer
constant. Such cases are often observed in practice, even iSimulation, as follows:
the distribution oP h/IIPhllis not uniform and does not satisfy K

curves showing the decreasing values of the squared outpus =~ | ——5—
error obtained by computer simulation. The network is con- laclied
structed by adding hidden units one by one. Each hidden unitisin Eg. (22), the estimated value sfrepresents how many
the best selected out of 64 candidates. The vdttoi each steps might be required for determinihgfor one hidden
candidate unit is made to maximiagoy modifying its weight unit if random search were used instead. According to the
vector w with a multi-start gradient ascent (hiliclimbing) computer simulation shown in Fig. 3, for exampkejs
method. Thus, eadhis the best selected out of 64 candidates estimated at about I0which means that it might take 10
that each possess the local maximumaobbtained through  steps to search for eathif the random search method were
100 steps of the gradient ascent method. The input and desired

the supposition used in the theory. For example, Fig. 3 displays ( IIP(O)z||> m
C
(22)

output data are given as random values, which means the input 0.16 [ RN T i
data space is irreducible. As shown in Egs. (2) and (3), two 014 - > et s=21° |
types of neural networks—Ilayered networks and cascaded net- .
works—are examined, and two types of hidden unit activation A 0.12 h .
functions—tanh and sin—are used. 3 =8 5=2
=~ 010 .
>
<
T \E/ 0.08 Random function |
% 0.06 + b =1000 u
14 o 2210 annioy)
L: Layered network C: Cascaded network 0.04 r b=10 7 b=1 ]
0.02 L7 el el
f: tanh (2 wx) (a) 1 10 100
%) K=128 | m
‘g 0.16 [+ e — ,
i:’ \\14 0.14 Lb=1000 s=210
& N ’
5 N b=100 ¥ s=214
o A 012 L |
g %_\ s=2 12
ey - 0.0 |} §
5 f: sin (2 wx) é 0.08
0 [ Y . = B
E 10 | — E’;ﬁ} 'C“,Zﬁﬁde \E/ - <-- Random function
) | #n: number of inputs 0.06 b=10 ¢ —>— b=1000 7
, . —a— b=100 |
10 \ \\\ 5 1 004 L b 10 sin(by) |
NN 1 b —a— b=1
10 0.02 Lo T
0 20 40 60 80 100 1 10 100
Number of hidden units (b) m

Fig. 3. Decreasing curves of the squared output error with the number of Fig. 4. Dependence of the average of mak{iponsandm. The dimension
hidden units. Two types of networks—Ilayered network and cascaded net- of the subspace d¥.h is set constant as — m= 128. Two types of hidden
work—and two types of hidden unit activation functions—tanh and sin— unit activation functions—tanh and sin—are compared with a random
are examined. function.
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used for determinindh in order to construct a similarly-  the sin unit{max{A}) for smallmincreases witlb up to the
sized network. In the computer simulation using the gradi- level of the random function. By comparison, the tanh unit
ent ascent method with multi-start, however, the total num- saturates at a level much lower than that of the random
ber of learning steps for determining one hidden unit is 6400 function. These facts can be explained as followsh 1§
(64 trials of a 100-step search from various random starting small, both functions are approximately linear for small
points). The cost of one step for the gradient ascent methodAs b becomes large, the number of folds of the sin function
is only a few times greater than that for the random search. increases infinitely, but that of the tanh function does not
This implies thah obtained by searching only 1@oints by increases by more than two. The higher the nonlinearity is,
gradient search is equivalent to that obtained by searchingthe wider is the range of directions thiatcan cover in its
10’ points by random search. This result shows that the vector space, and therefore the better is lithat can be
gradient ascent method is much more efficient for searchingselected. In that sense, the sin function is better than the tanh
than a simple random search in this case. Thus, the evaluafunction for constructing as small a network as possible. It
tion of sbased on Eqg. (22) shows the efficiency of the search does have a drawback, however, in that it is less robust; this
in an actual learning process for determinihgfor one results in high noise sensitivity.
hidden unit. The parametes obtained experimentally can be used for
The rate of decrease in output error depends on howevaluating the efficiency of learning, if the above-men-
appropriately the vectoh is determined. Hence the rate tioned effect of the nonlinearity dfis taken into account.
depends not only upon the efficiency of the search but Oncesis evaluated for various sets of conditions, the num-

also upon the distribution df, i.e. the diversity ot pro- ber of hidden units can be roughly estimated by usifay a
duced by the nonlinear functidnTo clarify in detail, Fig. 4 similar set of conditions. There are two points of basic
shows the actual dependenceaobn sandm, whereK — m importance in the use of. One is that the optimization

is constant for various. Two types of nonlinear functions  problem is simply formulated by the maximization of the
for f—tanh and sin—are compared with a random function inner product of unit vectors that have restrictions. The other
as a standard of comparison, where the random functionis thats means the number of steps required for random
produces a random vector for To investigate the perfor- search and it can be used as a standard of comparison
mance ofh = f(bXw,) from a statistical standpoing ran- with respect to the efficiency of search. Although the non-
dom vectors ofw, are given for each of 100 random linearity of f exerts influence upon the distribution ofr),
examples ofz and X. In this case, it is assumed that all this effect can be regarded as negligible in practice when
inputs are directly connected with the output unit, ke. dimensions of vector spaces suchrad and m are very
= X andm = n. The plotted points indicat& g, that is, large in comparison with lag Under such conditions, it is
(max{A}) for Pzl = 1, where({) denotes the average of supposed thas random points off(X) are projected on
100 values of max4}, and max{A} is the largest value of  L*[X] with sparse and approximately uniform distribution.
A in thessamples ofA(h). The main characteristic is that Conversely, it can be said that evaluationsafnder other
max{A} > increases witlm and saturates at the same level conditions shows the effect of the nonlinearityfain pro-
as the random function. This implies that the diversity of the ducing various output vectors of the hidden unit.
nonlinear mapping of X to h increases with the dimension
of the column space oK (the input space), and so the
number of hidden units required depends indirectly on the 5. Summary
number of inputs to each hidden unit (althoughs not
explicitly notated in Eq. (20)). This is the reason that the = The number of required hidden units is statistically esti-
rate of decrease of the output error gets larger with the mated for feedforward neural networks constructed by add-
number of hidden units for the cascaded network, but the ing hidden units one by one. This number is approximately
diversity and nonlinearity of the random function must be proportional to the number of learning data sets, the loga-
highest, and s¢max{A}) saturates finally at the level of the rithm of the decreasing rate of the output error, and the
random function, as shown in Fig. 4. This effect can easily inverse of log. This parametes is introduced, for theore-
be seen for the tanh units that have weak nonlinearity. tical estimation, as the total number of candidates that are
The dependence of the diversitylofipon the nonlinear-  randomly searched for the optimum hidden unit. This for-
ity of fis also shown in Fig. 3. The rate of decrease of the sin mulation can be applied for evaluating an actual learning
unit is larger than that of the tanh unit. This is because the method. In such a cassgcan be considered as a parameter
nonlinearity of the sin function is higher than that of the tanh that represents the efficiency of the search for better hidden
function. The effect of such a difference between sin and units and is equivalent to the number of steps required for
tanh is clearly seen in Fig. 4(a) and (b). In this case, the determining one hidden unit by random search. The com-
nonlinearity off is indicated by the coefficieri, which is puter simulation shows that the output error decreases expo-
used as sitlily,) or tanhpy,) wherey,, = Xw,,, becausé has nentially with the number of hidden units; this agrees with
a close relation with the number of folds (or bend) in the the theoretical results. Although the decrease in the output
curve of the nonlinear function in the unit rangeyaf For error depends not only upon the number of inputs but also
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upon the nonlinearity of hidden units, these effects are This probability can be estimated by using a functigw;

negligible when the dimension of the vector space is
very large.

A), which is equal to 1 fov € A and O forv & A, as
follows:

I ; i K—m
J dvy J JX({Vi};{l —Vi= Z V2> 1—V2 —g}) dvyee-dv
. —r -1 -1 i=2
®(r)= lim —
o K—m
J - J x({vih{l = Z V2> 1—g}) dvy--dv,
-1 -1 i=1
J bﬂl—ﬂéfK*m’Wz—(1—Vf—8yK*m’DQ}dw
= LIHE) ! a[l_(l_s)(K—m)/z]

= lime J [(A—v)* ™32 4 O(e)] dvy

—\r

Jr

—c J (1_\6)(K7m73)/2 dVl
—r
r

—c Jt—UZ(l_t)(K—m—3)/2 dt
0

1K-m-1
=& (3" 5 )
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Appendix A The cumulative distribution function &(r)

®(r) is expressed by

&(r)=P[r = v(u,v)? (A1)

where P[e] denotes the probability of evere The vec-
torsu andv are supposed to be uniformly distributed on
the surface of theK — m)-dimensional hypersphere. On
this supposition, we may pwt = [1 O --- O] only if v is
uniformly distributed on the hyperspherical surface,
which does not change the distribution of Thus, ®(r)

is represented by

K—-m K—m
(N=P[r=ViI> Z=1=P[r=v, = — rl> V=1].
=1 =1

(A2)

Appendix B The expected largest value oE(ry)

E(rg) is expressed by
1 1

E(ry) = J reg(r)dr=1— J ®5(r) dr. (A4)
0 0
®(r) can be rewritten as
1-r
d(N=1-c I (1—t) " V2k-m=372 (A5)
0

For approximation, let us introduce the following function,
1-r
Gr)=1-c¢ J tk=m=372 g
0
2c
k—-m-1
which satisfiegb(r) < G(r) and therefore®(r) < G%r). Let

=1 (L —r)k-m=v2) (AB)
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Gs ! be the inverse off = G(r) as follows:

K_m_l 2/(K—m-1)
e (1) (A7)

Puttinggo = G40), E(rs) can be expressed by the following
inequality:

=G =1

1

1 1
Er)=1— J ®%(r)dr > 1— JGS(r) dr = J Gs *(q) da.
0 0 o
(A8)

Using an inequality +qYs < — (1/s)Inq for q € [qp, 1],
we have

o 2/(K—-m—1)
E(rs) >1— (Krnl>

2c

1 1 2/(K —m—1)
XJ (— —Inq) dg=1
o S

K_m—l 2/(K—m-—1)
_( 2cs )

0
X J —e K-m=Dgr_q

—Ingo

K_m_l 2/(K—m-—1)
_< 2cs )

wo(K=m=1 Y
Nk Zmo1 Qo
K-—m—1\?&-m-D /K_m-1
= = rf—-— =
( 2cs ) <K—m—1>
=1—qs 2K-m-D (A9)

wherey is the incomplete gamma functioh,is the gamma
function, and

K-—m—1\?&-mD /K_m-1
(= rf——>). Al
“ ( 2c ) (K—m—l) (A10)

The coefficientx is approximately equal to 1 f&f — m>> 1.
The right and left sides of the inequality Eq. (A9) are
asymptotically equal as— <.

Appendix C The most probable largest value in the
normal distribution

Suppose thati andv are K-dimensional random binary
vectors represented yl¢ll whereg; ={ — 1,1} (i=1, -,
K). The distribution of g, v) is represented by a kind of the
binomial distribution. If K is large, the distribution is

approximated by the normal distributiad(0, 1K). The
largest value of , v)? is considered as the largest value
in the sample of? distribution with 1 degree of freedom,
but it is too difficult to simply express the expected largest
value. For simple approximation, it is better to represent as
the square of the largest valug ) in the normal distribu-
tion. According to the conventional theory (Gumbel, 1958),
the characteristic largest valug in s samples is defined
by F(xg = 1 — 1/s where F(x) is the distribution func-
tion. For the normal distributioN(0, 1K), xs can be
approximated as

(A11)

2logs 1 (log4r + loglogs)
K 2logs ’

As for the most probable largest valug, it can be approxi-
mated as

2log(¢/ \/ﬂ)
—x (A12)

Therefore, using the later approximation, the largest value
of (u, v)? for K — m dimensional vectorsi andv can be
approximated by

2log(s//27)

S (A13)
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