Associative Learning Rules

Association: a link between the inputs and outputs of a network so that when a stimulus A is presented to the network, it will output a response B.

Unsupervised Networks

SYMBOL 183 \f "Symbol" \s 10 \h
Target vectors are not given.

SYMBOL 183 \f "Symbol" \s 10 \h
Useful for pattern recognition and recall.

Hebbian Learning

SYMBOL 183 \f "Symbol" \s 10 \h
Hebb's postulate:  If two neurons are active at the same time the connection between them should increase.





lr = [0,1]

If lr is large, the network learns the associations fast but forgets the old associations quickly.

A decay term is necessary so that the weights don't only continue to increase:





The max weight value is equal to lr/dr.

Example: a banana associator is initially designed so that it will respond to sight but not to smell.  The sight information is very poor (intermittent) so we want it to respond to either.





po = unconditioned stimulus

banana sight

p  = conditioned stimulus

banana smell

b = -0.5    wo = 1      w = 0

a = hardlim(wopo+wp-.5)

Assume sight information is lost half the time.  Use Hebb rule to train the network. 

p(bad sensor) = [0 1]     or p(good sensor) = [1 1]

a(1) = hardlim(1*0 +0*1-.5) = 0

Since output is zero, Hebb rule doesn't update.

a(2) = hardlim(1*1 +0*1-.5) = 1

w(2) = w(1)+a(2)p(2) = 0+1*1 = 1      (weight => 1)

a(3) = hardlim(1*0 +1*1-.5) = 1



Network learned to associate even if sight sensor failed.

DEMOH1:  Hebbian Associator

A 5-input HARDLIM layer is trained with the Hebb rule.

Training Vector
P = [1 0 0;





        0 1 0;





        0 0 1;





        0 0 1;





        0 1 0];

Weights and Biases (hinton diagram):

Initial: 




Final: (single pass)




For example: an input vector [0 0 0 1 0]' was presented the output would correctly recall [0 0 1 1 0]'.

Thus, the network recalls previously seen input vectors.

Instar Learning

Grossberg developed the instar and outstar neurons.

The instar learning rule is a variation of Hebbs rule that only allows a neuron to forget (decay) if it is learning something new (a(i)SYMBOL 185 \f "Symbol"0).  This algorithm allows networks to learn their input vectors with minimum forgetting.




The learning rate is usually set equal to the decay rate.




An instar can be trained to detect any vector p.  Where the weight vector points to that vector p and the activation is the dot product between the input and p.

Graphical representation: when the instar is active the weight vector is moved along a line between the old weight vector and the input vector.




DEMOIS1:  INSTAR ASSSOCIATION
A 3-input SATLIN neuron is trained with the instar rule on a set of normalized input vectors.  The input vectors occur randomly around a prototype vector.  The instar neuron automatically learns to recognize the prototype vector.

p = [0.4082; 0.8165; -0.4082];

A three input satlin neuron is trained with 200 noisy versions of p using the instar learning rule.

The weight vector is initially set to a random value

W = [-0.8133    0.1474   -0.5628];

Before training the instar network does not recognize the input:     
A = satlin(W*p)=.01

After training the instar network does recognize the input:

A = satlin(W*p)=.999





We can see that the weight vector was moved to the center of the inputs.  The network can now be used to identify how close an input is to the center of the training data.

So an instar network can be used to recognize certain input vectors (pattern recognition).

Kohonen Rule
Recall the instar learning rule:




If the neuron had a threshold activation function, the instar rule need only be applied to neurons with a(i) = 1.  This also allows the a(i) be dropped from the equation resultant in the Kohonen Rule:




This rule requires fewer computations than the instar rule.

This rule is used for training networks such as self organizing feature maps.

Outstar Learning
The Instar network learns to identify input vectors and its dual network, called an Outstar network, can store and recall a vector.  

Putting these two network architectures together results in an associative memory.

The Outstar network also uses a Hebbian learning rule.  Again, when the input and output are both active, the weight connecting the two is increased.  The Outstar network is trained by applying an active signal at the input while applying the vector to be stored at the output.  This is a type of supervised network since the desired output is applied to the output.  After training, when the input is made active, the output will be the stored vector.




We can set the weights are equal to the desired output and when the input is 1, the output is the the desired output.  If the input is 0, the outputs are zero.  The learning rule is:




Learning occurs when p(j) is non-zero.  When learning occurs, the weights move toward the output vector.

This algorithm can generalize to higher dimensional inputs.  The general Outstar architecture is now:




DEMOOS1:  OUTSTAR Association

A 3-neuron PURELIN is trained with the outstar rule.

The outstar will consist of a single input which feeds through weights to 3 purelin neurons.  Here are two possible values for the single input.

P1 = [1 0]; 

A second input vector contributes directly to the three neurons net input, without being weighted.  Here are the corresponding 3-element vectors for the second input.

P2 = [5  4;

         -2  1;

          3 -6];

The weights between P1 and the three neurons will initially have values of 0.

W = zeros(3,1);

After training, the outstar's output is calculated for a P1 input of 1, and P2 input of zeros.

A = purelin(W*1+0)

A =

     5

    -2

     3

Hinton diagram of final weights.







Instars learn to recognize patterns and outstars recall patterns.

These associative learning rules: Hebb, instar, Kohonen, and outstar; are trained unsupervised and are usually building blocks for more complex networks that will be investigated in Chapter 8 of the MATLAB NN Toolbox Manual.

Self Organizing Networks

There are two major types of self-organizing networks:


1.
Competitive networks


2.
Self Organizing Maps

Competitive networks:

SYMBOL 183 \f "Symbol" \s 10 \h
A competitive network accepts an input and returns zeros for all neurons except the winner which outputs a 1.

SYMBOL 183 \f "Symbol" \s 10 \h
The input to a competitive layer is found by computing the negative distance between the input and each weight vector and adding the bias.  If all biases are zero, the neuron with the weight vector closest to the input has the least negative input and will therefore win the competition and output a 1.

SYMBOL 183 \f "Symbol" \s 10 \h
Competitive networks may be trained with the Instar learning rule.  The neuron winning the competition will have its weights changed closer to the input vector.

SYMBOL 183 \f "Symbol" \s 10 \h
This results in each group of input vectors having a neuron's weight vector positioned near its center.

SYMBOL 183 \f "Symbol" \s 10 \h
Some neurons may start out very far from all the inputs that they never get allocated and are "dead" neurons.  Biases are given to those neurons that rarely win a competition in order to give them an advantage.

DEMOC1:

%    We can use GENCLUST to create some test data:

X = [0 1; 0 1];   % Cluster centers to be in these bounds

clusters = 8;     % This many clusters.

points = 6;       % Number of points in each cluster.

std_dev = 0.05;   % Standard deviation of each cluster.

P = nngenc(X,clusters,points,std_dev);

Initially all the weight vectors start at [.5 .5].




During training, the weight vectors move to the centers of the clusters.

DEMOC2:

DEFINING VECTORS TO BE CLASSIFIED

Here 910 inputs are distributed between 0 and 1, with a much higher density of values near 0 than near 1.

P = 0.1 ./ [(1/11):0.001:1] - 0.1;




The input vectors in this example are not distributed uniformly.  The neuron weights start out at the center and then learn to classify the inputs to match the distribution.

SYMBOL 183 \f "Symbol" \s 10 \h
Competitive networks can suffer from instability (lr too high ) or slow learning (lr too low).  A tradeoff must be made.

Suppose there are a 11 input vectors (dimension=2) that we want to group into 3 clusters.  The weight matrix is randomly initialized and the network is trained for 20 presentation of the 11 inputs.



We can see that there is a dead neuron.  By using a bias, we can give it an advantage.



We can see that the dead neuron has come alive.  It has centered itself in third cluster.  

Self-Organizing Maps

(SOM)

A self-organizing map (also called a feature map) is a type of competitive network with the outputs physically ordered in one or more dimension.

In a feature map, the geometrical arrangement or location of the outputs contains information about the input vectors.  If the input vectors X1 and X2 are fairly similar, their outputs should be located close together; and if X1 and X2 are quite similar, then their outputs should be equal.  

Feature maps may also have more than one active output: a winner's neighbors may also produce an output.




Kohonen's SOM first determines the winning neuron with a competitive layer, then updates all neurons within a certain neighborhood using the Kohonen rule.

When a vector p is presented, the weights of the winning neuron and its neighbors move towards p.

Neighborhood Matrices
The neighborhood matrix, M, can be grid, dist (vector distance), or Manhattan distance  

Example neighborhood matrix for a 2x2 matrix: 
Error! Not a valid embedded object..

nbgrid(2,2)

        x1   x2   x3   x4

x1     0     1     1     1

x2     1     0     1     1

x3     1     1     0     1

x4     1     1     1     0

nbman(2,2)

     0     1     1     2

     1     0     2     1

     1     2     0     1

     2     1     1     0

nbdist(2,2)

         0        1.0000    1.0000    1.4142

    1.0000         0        1.4142    1.0000

    1.0000    1.4142         0        1.0000

    1.4142    1.0000    1.0000         0

Steps in using a SOM:

1.
Initialize network architecture:
Determine neighborhood matrix: M,  Initialize weights.

2.
Train the map.

3.
Simulate the map.

TRAINSM:  Used to train a SOM.

tp = [df me lr]; W = trainsm(W,M,P,tp)

Training begins with the neighborhood large enough to cover all the neurons and the learning rate = lr.

During training both the neighborhood size and learning rate are decreased.  When training begins all weights go towards the input vectors (neighborhood size is large) and as training continues, the weights tend to organize themselves.

The learning rate is gradually reduced during training.  It starts out large (lr = 1) for quick learning and decreases to improve stability.  This method is also used in competitive networks.

Feature maps not only learn to categorize their inputs, they also learn the topology and frequency of the distribution (they evenly classify the input space).

Suppose we have a two input network that is to organize the data into a one dimensional feature map of length 5.  




One Dimensional Feature Map

In the following example, we will organize 18 input pairs.  To observe the order of the classifications, we will use different symbols to plot the classifications (1,3 and 5 are * ; 2 and 4 are o).  The cluster centers are marked with a + and connected by a line.




It is apparent that the network not only clustered the data, but it also organized the data so that the data near each other were put in clusters next to each other.  The use of self organizing maps preserves the topography of the input vectors.

DEMOSM1

DEFINING VECTORS TO BE CLASSIFIED

Here 100 data points are created on the unit circle:

angles = 0:0.5*pi/99:0.5*pi;

P = [sin(angles); cos(angles)];

Here the data points are plotted.

plot(P(1,:),P(2,:),'+r')



INITIALIZE NETWORK ARCHITECTURE

The map will be a 1-dimensional layer of 10 neurons using  Manhattan distance.

S = 10;

M = nbman(S);   % determines neighborhoods

INITSM initializes weights for a S neuron map.

W = initsm(P,S);

%TRAINING THE MAP

TRAINSM trains a self-organizing map using the instar rule.

df = 100;     % Frequency of progress displays (in epochs).

me = 500;    % Maximum number of epochs to train.

lr = 1;    % Learning rate.

tp = [df me lr];

W = trainsm(W,M,P,tp);

TRAINSM: 0/500 epochs, neighborhood = 9, lr = 1.

TRAINSM: 100/500 epochs, neighborhood = 1, lr = 0.232681.

TRAINSM: 200/500 epochs, neighborhood = 1, lr = 0.0989032.

TRAINSM: 300/500 epochs, neighborhood = 1, lr = 0.044218.

TRAINSM: 400/500 epochs, neighborhood = 1, lr = 0.0211469.

TRAINSM: 500/500 epochs, neighborhood = 1, lr = 0.0111824.




a = simusm([1; 0],W,M)

a =   (9,1)       0.5000

       (10,1)       1.0000

%    Either neuron 1 or 10 should have an output of 1, as the as the above input vector was at one end of the presented input space.  Neighbor neurons output 0.5.

DEMOSM2

We would like to classify 1000 two-element vectors occuring in a rectangular shaped vector space.

P = rands(2,1000); 



We will use a 5 by 6 layer of neurons to classify the vectors above.

We create a layer of 30 neurons with INITSM:

W = initsm(P,30);

We then use NBMAN to define the distances between each neuron given that they are spread out in a 5 by 6 grid. 

M = nbman(5,6);

plotsm(W,M)




Each neuron is represented by a red dot at the location of its two weights.  Initially all the neurons have the same weights in the middle of the vectors, so only one dot appears.  

We train the map on the vectors using TRAINSM, displaying the maps progress every 20 epochs for 250 epochs.

tp = [20 250];

W = trainsm(W,M,P,tp); 

TRAINSM: 0/250 epochs, neighborhood = 9, lr = 1.

TRAINSM: 20/250 epochs, neighborhood = 1.55185, lr = 0.507871.





We can now use SIMUSM to classify vectors by giving them to the network and seeing which neuron responds.

p = [0.5; 0.3];      a = simusm(p,W,M,0) 

a = (9,1)     1

Learning Vector Quantization Networks

LVQ



A LVQ network is a hybrid network that has an initial competitive layer that trains unsupervised, followed by a linear layer that is trained with supervised learning.

The first layer classifies the inputs into subclasses and the second layer combines the subclasses into single classes.  Therefore S1 is always larger than S2 when each neuron is devoted to a subclass and class.

This network allows complex class boundaries.  A standard competitive network can only create decision regions which are convex, the LVQ overcomes this limitation.

DEMOLVQ1

Here are 10 2-element example input vectors.

P = [-3 -2 -2  0  0  0  0 +2 +2 +3;

        0 +1 -1 +2 +1 -1 -2 +1 -1  0];

Here are the classes these vectors fall into.

C = [1 1 1 2 2 2 2 1 1 1];

These classes can be transformed into vectors to be used as targets for the LVQ network.

T = ind2vec(C);

     1     1     1     0     0     0     0     1     1     1

     0     0     0     1     1     1     1     0     0     0

S = 4;

[W1,W2] = initlvq(P,S,T);




MATLAB uses sparse matrix nomenclature where:

a= (2,1)     1

means    a=[0 1]'
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