Multilayer Perceptrons (MLP)

(Multi Layer Feedforward Networks)



Input patterns:  p(1)...p(R)

:Rx1 column vector

Outputs:  a2(1)...a2(S2)

:Sx1 column vector

Hidden outputs:  a1(1)...a1(S1)
:Sx1 column vector

Weights:  w(1,1)...w(S1,R)
:S1xR matrix  (w1)


  w(1,1)...w(S2,S1)
:S2xS1 matrix  (w2)
Biases:  b(1)...b(S1)


:S1x1 column vector


      b(1)...b(S2)


:S2x1 column vector

Targets:  t(1)...t(S2)


:S1x1 column vector

Activation Function: F1,F2
:String value.

a1=F1(w1*p+b1)

a2=F2(w2*a1+b2)

R and S2 are fixed by the problem.

S1, Fn and the number of hidden layers are user selectable.

Introduction
(Review)




The input layer simply passes the signal to each node of the first hidden layer.

The hidden layers multiply the inputs by weights, sum them (including any bias) and operate on the sum with a function.  The result is passed to each node of the next hidden layer or the output layer.

The output layer multiplies the inputs by weights, sum them (including any bias) and operates on the sum with a function.  The result is the output.

The functions can be either linear or non-linear.  They need to be continuous, monotonically increasing, and differentiable.

Function signals propagate forward through the network, while error signals propagate backward through the network.  These error signals are used for training the network.  This is why the MLP is sometimes referred to as a backpropagation network.  Actually, backpropagation only refers to the training paradigm.

Backpropagation Training

Algorithm:

1.  Initialization:  Randomize the weights to small values.

2.  Presentation:  Apply a pattern to the input and calculate the network output.

3.  Error Computation:  Compare the output with the desired output and compute the error (difference).

4.  Backward Computation:  Backpropagate the error through the network and adjust the weights to minimize the error.

5.  Iteration:  Repeat steps 2-4 until a desired error goal is reached.

Training requires two passes:


1.  A forward pass of the function signal.


2.  A backward pass of the error signal.

Error:  The usual error function is the sum of squared errors (SSE):



  :is the error of neuron j at iteration n.



  : is the instantaneous (one presentation:n) sum of squared error of all output neurons.

Forward:

The output of a node is the summation of the previous layer's outputs times weights plus a bias operated on by an activation function.




where:
n:   =  the n'th training pattern.



p:   = the number of inputs to neuron j.



j   = internal activation of neuron j.


wji = weight from neuron i to neuron j.



bj   = bias of neuron j.




where:
yj(n)  = the output of neuron j.



j      = the activation function of neuron j.

so :



The output of a neuron k equals:




where:






 

Backwards:

The change in weight is proportional to the instantaneous gradient (similar to the LMS algorithm).  Using the chain rule:




Taking the derivative of the instantaneous SSE

results in







of the error term, 





of the output of neuron j, 


  (later)

of the net activation,




Combining the terms results in:





The change in weight equals:





Where  is the learning rate.  The minus sign accounts for reducing the error.

The gradient term is defined as





And the weight update is:





This works well for the output layer with yj(n) being the outputs of the last hidden layer, but updating the weights of the hidden layers is more complicated.

The method of updating these weights and making them responsible for their fair share of the output error is termed the credit assignment problem.  

Case 1:  Neuron j is an output neuron:

The weight updates are straight forward.

Case 2:  Neuron j is a hidden neuron.

The weight update is more complicated.

The local gradient for neuron j (a hidden neuron) is:





where:





and k is the output neuron.  So





and





hence





We also note the internal activity of the hidden node k is





And 





Then, combining the partial derivatives:





Therefore, the local gradient for the hidden node j is:





The term 

 depends on the activation function, 

 is the next layer's gradient term, and 

 is the weight matrix connecting it to the next layer.

So, in summary:





with the gradient terms being different depending on which layer the neuron is in.

Activation Functions

Linear:









Logistic:









Hyperbolic Tangent:









By representing the derivatives as functions of the operations, computation time is saved.

Learning Rate
The learning rate controls the step size of the steepest descent approximation.

A smaller step size smoothes the descent, assures a minimum, but increases the chance it is local.

A larger step size usually decreases training time but leads to oscillatory behavior.

Momentum
Decreases BP's sensitivity to small details in the error surface.  It incorporates a pseudo-second order information by adding part of the last weight change to the current weight change.  This will hopefully help carry the descent through any local minimum. 

Implementation





where:



 is the momentum constant between 0 and 1.



 is the learning rate

In section 6.9 we shall investigate an adaptive learning rate.

Pattern and Batch Training Modes
Pattern Mode:  Weight updates are performed after each presentation.  Randomizing the order of presentation makes the learning stochastic and reduces the possibilities of local minimum.

Batch Mode:  Weight updates are performed after all patterns have been presented to the network.

Stopping Criteria
There are several different stopping criteria that can be implemented:

1.  A target SSE is reached.

2.  Weight changes do not result in a reduction in SSE.

3.  The gradient vector is sufficiently small.

4.  Just before overfitting begins to occur (cross-validation).

Initialization
Weights are initialized to small random values to prevent premature saturation.  The size of the weights should be dependent on fan_in, the magnitude of the inputs, and the function.

Example:

For a two input network with two logistic hidden nodes and one logistic output node we have initial weight matrices of:



We can combine them to be used in the MATLAB code and calculate the output value for the initial weights.

x = [0.4;0.7];

% rows = # of inputs = 2





% columns = # of patterns = 1

w1 = [0.1 -0.2; 0.4 0.2];% rows = # of hidden nodes = 2





% columns = # of inputs = 2

w2 = [0.2 -0.5];

% rows = # of outputs = 1





% columns = # of hidden nodes = 2

b1=[-0.5;-0.2];

% rows = number of hidden nodes = 2  

b2=[-0.6];


% rows = number of output nodes = 1

X = [1;x]


% Augmented input vector.

W1 = [b1 w1]

W2 = [b2 w2]

h=logsig(W1*X)

output=logsig(W2*[1;h])  

X =

    1.0000

    0.4000

    0.7000

W1 =

   -0.5000    0.1000   -0.2000

   -0.2000    0.4000    0.2000

W2 =

   -0.6000    0.2000   -0.5000

h =

    0.3543

    0.5250

output =

    0.3118  

Sequential Weight Updates
The output layer weights are changed in proportion to the negative gradient of the squared error with respect to the weights.  These weight changes can be calculated using the chain rule.  The weight update equation for the output neurons is:




The output of the hidden layer of the above network is (pj=h=[0.35 0.52].  The target output is T = [0.7].  The update for the output layer weights is calculated by first propagating forward through the network to calculate the error terms:

h = logsig(W1*X);

% Hidden node output.

H = [1;h];


% Augmented hidden node output.

t = [0.7];


% Target output.

output=logsig(W2*H)% Actual output

Out_err = t-output  

output =

    0.3118

Out_err =

    0.3882  

Next, the gradient vector for the output weight matrix is calculated.

delta2=output.*(1-output).*Out_err    % Derivative of logsig function. 

delta2 =

    0.0833  

And lastly, the weights are updated with the learning rate ( =0.5.

lr = 0.5;

del_W2 = 2*lr*H'*delta2

% Change in weight.

new_W2 = W2+del_W2

% Weight update.     

del_W2 =

    0.0833    0.0295    0.0437

new_W2 =

   -0.5167    0.2295   -0.4563  

Out_err = t-logsig(new_W2*[1;logistic(W1*X)]) 
% New output error  

Out_err =

    0.3626  

Updating the output weights reduces the error from  0.3882 to 0.3626.
Hidden Layer Weight Update

First we must backpropagate the gradient terms back to the hidden layer:

[numout,numhid]=size(W2);

delta1=delta2.*h.*(1-h).*W2(:,2:numhid)'  

delta1 =

    0.0038

   -0.0104  

Now we calculate the hidden layer weight change.  Note that we don't propagate back through the dummy node.

del_W1 = 2*lr*delta1*X'

new_W1 = W1+del_W1  

del_W1 =

    0.0038    0.0015    0.0027

   -0.0104   -0.0042   -0.0073

new_W1 =

   -0.4962    0.1015   -0.1973

   -0.2104    0.3958    0.1927  

Now we calculate the new output value.

output = logsig(new_W2*[1;logsig(new_W1*X)])  

output =

    0.3379  

And the new output error:

Out_err = t-output 
% New output error  

Out_err =

    0.3621  

The output changed from 0.3118 to 0.3379 which is closer to 0.7.
Updating the hidden weights reduces the ouput error from  0.3626 to 0.3621.

Batch Training

During batch training all of the training patterns are processed before a weight update is made.  Suppose the training set consists of four patterns (z=4).  Now we have four output patterns from the hidden layer of the network and four target outputs.

x = [0.4 0.8 1.3 -1.3;0.7 0.9 1.8 -0.9];

t = [0.1 0.3 0.6 0.2];

[inputs,patterns] = size(x);

[outputs,patterns] = size(t);

W1 = [0.1 -0.2 0.1; 0.4 0.2 0.9];
% rows = # of hidden nodes = 2







% columns = # of inputs +1 = 3

W2 = [0.2 -0.5 0.1];


% rows = # of outputs = 1







% columns = # of hidden nodes+1 = 3

X = [ones(1,patterns); x];

% Augment with bias dummy node.

h = logsig(W1*X);

H = [ones(1,patterns);h];

e = t-logsig(W2*H)  

e =

   -0.4035   -0.2065    0.0904   -0.2876  

The sum of squared error is:

SSE = sum(sum(e.^2))  

SSE =

    0.2963  

Next, the gradient vector is calculated:

output = logsig(W2*H)

delta2 = output.*(1-output).*e  

output =

    0.5035    0.5065    0.5096    0.4876

delta2 =

   -0.1009   -0.0516    0.0226   -0.0719  

And lastly, the weights are updated with a learning rate ( =0.5:

lr = 0.5;

del_W2 = 2*lr* delta2*H'

new_W2 = W2+ del_W2  

del_W2 =

   -0.2017   -0.1082   -0.1208

new_W2 =

   -0.0017   -0.6082   -0.0208  

The new sum of squared error is calculated as:

e = t- logsig(new_W2*H);

SSE = sum(sum(e.^2))  

SSE =

    0.1926  

The SSE has been reduced from 0.2963 to 0.1926 by just changing the output layer weights and biases.

To change the hidden layer weight matrix we must backpropagate the gradient terms back to the hidden layer.  Note that we can't backpropagate through a dummy node, so only the weight portion of W2 is used.

[numout,numhidb] = size(W2);

delta1 = h.*(1-h).*(W2(:,2:numhidb)'*delta2)  

delta1 =

    0.0126    0.0065   -0.0028    0.0088

   -0.0019   -0.0008    0.0002   -0.0016  

Now we calculate the hidden layer weight change.  

del_W1 = 2*lr*delta1*X'

new_W1 = W1+del_W1  

del_W1 =

    0.0250   -0.0049    0.0016

   -0.0041    0.0009   -0.0003

new_W1 =

    0.1250   -0.2049    0.1016

    0.3959    0.2009    0.8997  

h = logsig(new_W1*X);

H = [ones(1,patterns);h];

e = t-logsig(new_W2*H);

SSE = sum(sum(e.^2))

SSE =

    0.1917  

The new SSE is 0.1917 which is less than the SSE of 0.1926 so the change in hidden layer weights reduced the SSE slightly more.

MATLAB Implementation

Initialization

[W1,B1,...] = INITFF(P,S1,'F1',...,Sn,'Fn')

   P  - Rx2 matrix of input vectors.

   Si - Size of ith layer.

   Fi - Transfer function of the ith layer (string).

Returns:

   Wi - Weight matrix of the ith layer.

   Bi - Bias (column) vector of the ith layer.

[W1,B1,...] = INITFF(P,S1,'F1',...,T,'Fn')

   T - SnxQ matrix of target vectors.

 Returns weights and biases.

IMPORTANT: Each ith row of P must contain expected min and max values for the ith input.

Ex: [W1,b1,W2,b2] = initff([0 10; -5 5],5,'tansig',3, 'purelin');

          p = [4; -1];

          a = simuff(p,W1,b1,'tansig',W2,b2,'purelin')

Presentation

After the weights are initialized, present the network with the patterns and compute the outputs of the layers.

% PRESENTATION PHASE

  a1 = feval(f1,w1*p,b1);

  a2 = feval(f2,w2*a1,b2);

where:
w1 - first layer weights



w2 - output layer weights



b1 - first layer bias



b2 - second layer bias



f1 - first layer activation function



f2 - output layer activation function



p - input patterns



a1 - output of first layer

Error Computation

Compare the output with the desired output and calculate the error vector and sum-of-squared error.

e = t-a2;

SSE = sumsqr(e);

where:
t - the target vector.

Learning

Derivatives of the errors are called delta vectors.  Functions for calculating the delta vectors include:


deltalin(a,e)


d=e


deltalin(a,d,W)

d = w'*e


deltalog(a,e)


d = a.*(1-a).*e


deltalog(a,e,W)

d = a.*(1-a).*(w'*e);


deltatan(a,e)


d = (1-(a.*a)).*e


deltatan(a,e,W)

 d = (1-(a.*a)).*(w'*e)

a = output vector of that layer.

e: = error vector for that layer.


for the output layer:   e= target-output

Matlab's functions use the code:

 % BACKPROPAGATION PHASE

  d2 = feval(df2,a2,e);

  d1 = feval(df1,a1,d2,w2);

Where df1 and df2 are one of the above functions.

With the delta vectors, MATLAB can compute the change in weights:

 % LEARNING PHASE

  [dw1,db1] = learnbp(p,d1,lr);

  [dw2,db2] = learnbp(a1,d2,lr);




or learnbpm if momentum is used.

LEARNBPM Backpropagation learning rule with momentum.

[dW,dB] = LEARNBM(P,D,LR,MC,dW,dB)

  P  - RxQ matrix of input vectors.

  D  - SxQ matrix of error vectors.

   lr - the learning rate.

   mc - momentum constant.

   dW - SxR weight change matrix.

   dB - Sx1 bias change vector (optional).

 Returns:

   dW - a new weight change matrix.

   dB - a new bias change vector (optional).

x = (1-mc)*lr*d;

dw = mc*dw + x*p';

if nargout == 2

  [R,Q] = size(p);

  db = mc*db + x*ones(Q,1);

end

Learnbp is similar, but the momentum constant = 0.

Network Training

TRAINBP Train feed-forward network with backpropagation.

 TRAINBP can be called with 1, 2, or 3 sets of weights

 and biases to train up to 3 layer feed-forward networks.

 [W1,B1,W2,B2,...,TE,TR] = TRAINBP(W1,B1,F1,W2,B2,F2,...,P,T,TP)

   Wi - SixR weight matrix for the ith layer.

   Bi - S1x1 bias vector for the ith layer.

   Fi - Transfer function (string) for the ith layer.

   P  - RxQ matrix of input vectors.

   T  - SxQ matrix of target vectors.

   TP - Training parameters (optional).

 Returns new weights and biases and

   Wi - new weights.

   Bi - new biases.

   TE - the actual number of epochs trained.

   TR - training record: [row of errors]

 Training parameters are:

   TP(1) - Epochs between updating display, default = 25.

   TP(2) - Maximum number of epochs to train, default = 100.

   TP(3) - Sum-squared error goal, default = 0.02.

   TP(4) - Learning rate, default = 0.01.

 TRAINBPM Train feed-forward networks with bp + momentum.

 TRAINBPM can be called with 1, 2, or 3 sets of weights

 and biases to train up to 3 layer feed-forward networks.

 [W1,B1,W2,B2,...,TE,TR] = TRAINBPM(W1,B1,F1,W2,B2,F2,...,P,T,TP)

   Wi - SixR weight matrix for the ith layer.

   Bi - S1x1 bias vector for the ith layer.

   Fi - Transfer function (string) for the ith layer.

   P  - RxQ matrix of input vectors.

   T  - SNxQ matrix of target vectors.

   TP - Training parameters (optional).

 Returns new weights and biases and

   Wi - new weights.

   Bi - new biases.

   TE - the actual number of epochs trained.

   TR - training record: [row of errors]

 Training parameters are:

   TP(1) - Epochs between updating display, default = 25.

   TP(2) - Maximum number of epochs to train, default = 1000.

   TP(3) - Sum-squared error goal, default = 0.02.

   TP(4) - Learning rate, 0.01.

   TP(5) - Momentum constant, default = 0.9.

   TP(6) - Maximum error ratio, default = 1.04.

trainbp uses

tbp1, tbp2, or tbp3


they in turn use deltalin type functions and learnbp.

trainbpm uses 

tbpx1, tbpx2 or tbpx3


they in turn use deltalin type functions and learnbpm.

MLP Design
General Rules:

1.  Use only one hidden layer.

2.  Use very few hidden nodes.

3.  Train, train, train.

Number of hidden layers:

Theoretically, there is never a need for more than two hidden layers.  For the vast majority of problems one layer is sufficient.

Training usually slows significantly when more hidden layers are added because


1.  Error must propagate through more layers.


2.  Number of false minima increases.

Two hidden layers may be required if the function has discontinuities.

A second hidden layer may reduce the total number of neurons needed. (choose one hidden layer, if the number of nodes is large, you may try another layer to reduce the number of nodes.

Number of Hidden Neurons:

Too few neurons will starve the training and the goal won't be reached.

Too many neurons may increase training time and can lead to overfitting.

A rough guideline (geometric progression): 


input = n 


output = m 


hidden = (m*n)^.5

Best method:


1.  Start with too few nodes.


2.  Add a node and train, train, train.

How long to train:

1.  estimate noise in data


2.  cross validation



-  overfitting results only occurs when the training set does not adequately define the population.

Demonstrations
Training a non-linear neuron: DEMOBP1

Local and global error minima: DEMOBP2

Learning rate too large: DEMOBP3

Learning with momentum: DEMOBP5
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