Recurrent Neural Networks

The MLP networks studied so far have been strictly feedforward networks.

Feedforward networks have no memory since the output is only dependent on the input.

Recurrent Networks have internal feedback which gives them dynamic capabilities.

TDNN also have dynamic capabilities because the inputs have memory but they are not considered recurrent networks because there are no feedback connections.

There may be stability concerns when dealing with recurrent networks because of the feedback.

Applications
1. Sequence Recognition: produce a particular output for a temporal input pattern.

· This task is well suited to TDNN. Drawbacks include having to chose the proper number of delays and the proper delay times.

· Partially recurrent networks can also used. The most simple use feedback connections with fixed weights and updating is sequential.

2. Sequence Reproduction: Generate the rest of a sequence (autoassociative).

3. Temporal Association: Generate a sequence when a sequence is given (heteroassociative).

Standard backpropagation can be used to train recurrent networks with fixed recurrent weights.

Back Propagation Through Time (BPTT) can be used to train fully recurrent networks with learned recurrent weights.

Real Time Recurrent Learning (RTRL) (Williams and Zipser) is a learning rule for a general recurrent network without duplicating the units. Weights are changes after each input rather than after the entire sequence as in BPTT.

Back Propagation Through Time
BPTT can be used to train a recurrent network for a small finite sequence of steps: K.

We can trick the algorithm to seeing an equivalent feedforward network. The network is replicated K times and only one set of weights is updated since there is only one network. This is also called unfolding the network in time.

BPTT Training takes place in two steps:

1.
The plant motion stage, where the plant takes k time steps.

2.
The weight adjustment stage, where the networks' weights are adjusted to make the final state approach the target state.

BPTT needs large computer resources for storage and computation.

Elman Network
The Elman network is a two layer network with feedback in the first layer. This allows the network to detect and generate time-varying patterns.

· The output is dependent on current inputs and past states.

SYMBOL 183 \f "Symbol" \s 10 \h
The hidden layer is composed of S1 tansig neurons.

SYMBOL 183 \f "Symbol" \s 10 \h
The output layer is composed of S2 linear neurons.

SYMBOL 183 \f "Symbol" \s 10 \h
The hidden layer output a1 is delayed and fed back to the input layer.

SYMBOL 183 \f "Symbol" \s 10 \h
The weight matrix W1 has dimension of S1 x R+S1.

SYMBOL 183 \f "Symbol" \s 10 \h
The network may be initialized with a supplied initial hidden layer output, or by default it is set to a vector of 0's.

The Elman network can learn temporal patterns as well as spatial patterns because it can store information.

The Jordan network is a recurrent architecture similar to the Elman network but it feeds back the output layer rather than the hidden layer. This is similar to APPCS1 for system identification with the states and desired state as input and the state as output.

[w1,b1,w2,b2] = initelm(p,s1,s2)

[a1,a2] = simuelm(p,w1,b1,w2,b2,init_a1)

[W1,B1,W2,B2,TE,TR] = TRAINELM(W1,B1,W2,B2,P,T,TP)

SYMBOL 183 \f "Symbol" \s 10 \h
TP is the same as for accelerated BP.

The Elman network is trained to generate a sequence of target vectors when presented with a sequence of input vectors.

This function has an error, after training there is a line

% fprintf(str,i,me,lr,SSE);

that needs commented out.

Application: (appelm1)A temporal pattern is recognized and classified with a spatial pattern: amplitude detection.

The input is a sine wave of a certain amplitude and the output is the amplitude of the sine wave.

The network is trained to recognize two sine waves:

% The first wave form has an amplitude of 1.

p1 = sin(1:20); % If input is wave with amplitude of 1

t1 = ones(1,20); % then output should be 1

% The second wave form has an amplitude of 2.

p2 = sin(1:20)*2; % If input is wave with amplitude of 2

t2 = ones(1,20)*2; % then output should be 2

% The network will be trained on the sequence formed by

% repeating each wave form twice.

p = [p1 p2 p1 p2];

t = [t1 t2 t1 t2];

% The network is initialized with 10 neurons:

S1 = 10;

[w1,b1,w2,b2] = initelm(p,S1,t);

% SIMUELM simulates an Elman network for as many

% timesteps as input vectors in P.

a = simuelm(p,w1,b1,w2,b2);

% The network outputs and targets can then be plotted.

Conclusions:

The Elman recurrent network can learn to recognize time-varying patterns.

In this case the network did a fairly good job with only10 neurons in the recurrent layer, and 500 training epochs.

More recurrent neurons and longer training times could be used to increase the network's accuracy on the training data.

Training the network on more amplitudes will result in a network that generalizes better.

function [a1,a2] = simuelm(p,w1,b1,w2,b2,init_a1)

%SIMUELM Simulates an Elman recurrent network.

%

%
[A1,A2] = SIMUELM(P,W1,B1,W2,B2,A1)

%
 P - Input (column) vectors to network arranged in time.

%
 W1 - Weight matrix for recurrent layer.

%
 B1 - Bias (column) vector for recurrent layer.

%
 W2 - Weight matrix for output layer.

%
 B2 - Bias (column) vector for output layer.

%
 A1 - Initial output vector of recurrent layer (optional).

%
Returns:

%
 A1 - Output (column) vectors of recurrent layer in time.

%
 A2 - Output (column) vectors of output layer in time.

%

%
A2 = SIMUELM(P,W1,B1,W2,B2,A1)

%
Returns only the output vectors.

%

%
EXAMPLE: [W1,b1,W2,b2] = initelm([-5 5; 0 2],4,1);

%
 p = [3; 1.5];

%
 a = simuelm(p,W1,b1,W2,b2)

%

%
See also NNSIM, ELMAN, INITELM, TRAINELM.

% Mark Beale, 12-15-93

% Copyright (c) 1992-94 by the MathWorks, Inc.

% $Revision: 1.1 $ $Date: 1994/01/11 16:28:47 $

[r,q] = size(p);

s1 = length(b1);

s2 = length(b2);

a2 = zeros(s2,q);

if nargin == 5, init_a1 = zeros(s1,1); end

if nargout == 1

 a1 = tansig(w1*[p(:,1); init_a1],b1);

 a2(:,1) = purelin(w2*a1,b2);

 for i=2:q

 a1 = tansig(w1*[p(:,i); a1],b1);

 a2(:,i) = purelin(w2*a1,b2);

 end

 a1 = a2;

elseif nargout == 2

 a1 = zeros(s1,q);

 a1(:,1) = tansig(w1*[p(:,1); init_a1],b1);

 a2(:,1) = purelin(w2*a1(:,1),b2);

 for i=2:q

 a1(:,i) = tansig(w1*[p(:,i); a1(:,i-1)],b1);

 a2(:,i) = purelin(w2*a1(:,i),b2);

 end

end

Hopfield Network

SYMBOL 183 \f "Symbol" \s 10 \h
A recurrent network that stores information in a dynamically stable configuration.

SYMBOL 183 \f "Symbol" \s 10 \h
Hopfield's idea: locate each stored pattern at the bottom of a "valley" of an energy landscape and then construct a dynamical procedure to locate that basis of attraction.

SYMBOL 183 \f "Symbol" \s 10 \h
The Hopfield network works in an unsupervised manner and can be used as a content addressable memory.

SYMBOL 183 \f "Symbol" \s 10 \h
The network may have some undesired spurious equilibrium points.

SYMBOL 183 \f "Symbol" \s 10 \h
Hopfield networks can be used for error correction since a noisy input will return the closest equilibrium point. An example would be character recognition.

The General Hopfield Model:

SYMBOL 183 \f "Symbol" \s 10 \h
One Layer of satlin activation function neurons. The targets must be binary.

SYMBOL 183 \f "Symbol" \s 10 \h
Feedback to every other node but itself: wii = 0

SYMBOL 183 \f "Symbol" \s 10 \h
The connections are symmetrical: wij = wji
SYMBOL 183 \f "Symbol" \s 10 \h
Upperbound = 0.5 *N/log(N)

 N is the number of processing elements.

MATLAB Model.

MATLAB's Hopfield model uses SOLVEHOP to train.

[W,b]=solvehop(T)

where T is a matrix of vectors to be learned.

DEMOHOP1

A two input hopfield is built to store the input pairs

[-1 1] and [1 -1].

An unwanted equilibrium points are shown in demohop2 to be at [0 0] and any starting point exactly in between the desired equilibrium will result in the unwanted equilibrium.

Demohop3 is a three dimensional example.

It can also have undesired equilibria.

DEMOHOP4 is an example in five dimensional space and shows that undesired equilibria can result.

_925536400.doc
���

Hopfield Network State Space

a(2)

a(1)

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

_925536415.doc
��

Hopfield Network State Space

a(2)

a(1)

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

_925536425.doc
��

a(3)

Hopfield Network State Space

a(2)

a(1)

1

0.5

0

-0.5

-1

1

0

-1

1

0.5

0

-0.5

-1

_940314972.ppt

_925536420.doc

_925536406.doc

_908883831.doc

