Backpropagation Enhancements

Scaling

Momentum

Adaptive Learning Rate

Global

Local

Adaptive Activation Function Slope

Adaptive Training Sets

Network Pruning

Generalization

Cross Validation Training

Optimal Training Methods

Conjugate Gradients

Levenberg Marquardt

Demonstrations

Homework

Scaling

Used:

1.
To avoid premature saturation of the sigmoidal units. (Input Scaling)

2.
To allow the use of a specific output neuron.

(Output Scaling)

Types:

1.
linear scaling

2.
z-score scaling (mean center and unit variance)

- subtract off the mean from each input category

- divide each input by that categories variance

This results in data scattered around 0 with a unit variance.

3.
Weight Scaling

Momentum

Each new search direction is a combination of the current gradient and the previous search direction.

This is similar to a low pass filter applied to the search direction.

It has the effect of filtering out rapid local fluctuations in the gradient.

Adaptive Learning Rate

MATLAB: If the error is decreasing, increase the lr.

 If the error is increasing, decrease the lr.

Delta-Delta: p195-197 of Haykin.

Take the partial derivative of the error function with respect to the learning rate parameter.

The adjustment to the learning rate should be:

SYMBOL 103 \f "Symbol" is called the control step size parameter for the learning rate adaptation procedure. Each weight has its own adjustable learning rate.

Note:

1.
When two consecutive gradients have the same sign, the adjustment is positive.

2.
When two consecutive gradients have different same signs, the adjustment is negative.

Problems: SYMBOL 103 \f "Symbol" is difficult to choose.

Delta-Bar-Delta:

An improvement on the delta-delta adjustment. See page 196 Haykin.

Note:

1.
Has the same adjustment criterion as the delta-delta rule.

2.
The lr is increased linearly but decreased exponentially.

Problems: Both of these update rules require large memory storage requirements: lr for each weight, partial derivatives, etc.

Fuzzy Control of the Learning Rate:
The heuristics can be implemented as fuzzy rules to change the learning rate.

Local Adaptive Learning Rate

(uses delta-bar-delta)

1. Each weight has its own learning rate SYMBOL 104 \f "Symbol"ij.

2. The learning rates are adjusted during the learning process based on gradient information.

3. When the gradient has the same sign for several iterations, increase its learning rate.

4. When the gradient flips signs for several iterations, decrease its learning rate.

Adaptive Activation Function Slope

Applying the standard gradient descent approach:

and

Changing these slope gains have shown to increase convergence considerably.

Adaptive Training Sets

Another method for increasing training efficiency may be to initially decrease the training set size and then allow it to grow as the SSE decreases.

Other techniques initially train on the mean of the training patterns and then expand to include other training patterns.

See: "Progressive Range Expansion" by Gorse, Shephard and Taylog, ICANN 93.

Many of these techniques claim to avoid local minima. This can be extremely useful for very large training sets.

The memory limitation of the LM algorithm can also be helped by these techniques. For example, train using LM on a reduced set, then finish training with accelerated back prop with the entire set.

Network Pruning

A neural network with minimum size is less likely to overfit the data.

There are two major techniques:

1. Network growing: start with a small MLP and add a new neuron or layer only when the error specifications can't be met.

2. Network Pruning: Start with a MLP that meets the specs and prune it by eliminating weights or nodes.

Cascade Correlation learning algorithm (Fahlman): a growing technique that adds feature detector layers of single neurons.

Weight Decay: a network pruning technique that adds a term to each weight each training epoch that tends to push the weight towards zero.

Optimal Brain Surgery: a pruning technique that approximates the surface around the minima as a quadratic surface and uses the Hessian matrix to select weights to remove. When a substantial number of weights are removed the network undergoes retraining. Substantial reduction of network complexity can result.

Generalization

1.
Size and efficiency of the training set

2.
Architecture of the network

3.
Physical complexity of the problem

The number of training patterns (N) is related to the number of weights by the formula:

N>W/e where:
W = number of weights

e = desired accuracy in percent.

e.g.: if a network has 2 inputs 5 hidden nodes and one output, the number of weights equals 12+6=18. For a 10% accuracy there should be 180 patterns.

: This is a very broad approximation.

Cross Validation

The data is divided into two sets.

1. Training

2. Validation (10-20%)

Network Complexity:

Try different network sizes to find a best MSE before overfitting.

We may still have good generalization performance with an overly complex network if the training is stopped in time.

Training as an Optimization Problem:

Definitions:

Gradient methods of solving this equation are based on the Taylor series expansion:

Where f(x+(x) is the minimum, and f(x) is the current value of the error at x..

The gradient vector

 is a row vector of first order partial derivatives of the error function f:

The Jacobian gradient vector g is defined as the transpose of the gradient vector so that:

The Hessian matrix H is defined as the nxn matrix of second order partial derivatives:

Since the neural network activation functions are continuous and differentiable, the first and second order partial derivatives exist. Therefore, at a local or global minimum, the Jacobian gradient vector is zero and the Hessian matrix is positive definite.

In the case of neural networks:

x1 ... xn are the weights and biases.

f(x) is the sum of squared errors.

Steepest Descent:

This is the basic gradient descent algorithm used in backpropagation. The first order approximation of the change of the error (E) is:

Steps are taken in the negative gradient direction.

The step size is either constant or varied.

With a small step size, convergence to a local or global minima is guaranteed.

Steepest Descent With Line Search:

If we conduct a line search along the gradient direction to minimize E, we can take one step in that direction.

(x=u where u is a unit vector in the direction of -g

Computing the line search is computationally intensive.

The path to the minimum may follow a zigzag pattern.

Conjugate Gradient Method:

Does not follow a zigzag pattern.

Is guaranteed to minimize a quadratic in n steps where n is the dimension of the search.

For non-quadratic functions, it is an iterative process.

Movement from the starting point to the minimum point can be expressed as a sum of n steps in directions pi of size (i:

or also written as:

pi (i=1,2,...,n) are conjugate directions that form a basis for the n-dimensional error space:

The conjugate gradient algorithm chooses the negative gradient as the first search direction p1 and chooses the other conjugate directions as the successive search directions.

New search directions are a linear combination of the current gradient direction and the old search direction:

where (k can be computed by several methods:

Polak-Ribiere

Fletcher Reeves

The step size i is computed by using a line search. The performance of the CG algorithm is dependent on the choice of this method.

Since the error surface is approximated by a quadratic function, the algorithm may not reach the desired error goal in n iterations

After n iterations, a new gradient direction is computed and the algorithm is restarted.

The conjugate gradient algorithm has been shown to be superior to the BP algorithm in learning speed but may be more subject to local minima.

The CG algorithm uses the Hessian matrix in its derivation of conjugate directions yet the Hessian matrix is never calculated.

Calculation of this second order information (H) is computationally intensive, may be ill conditioned, but can be very useful.

Newton's Method:

If x is near the minimum, the second order Taylor approximation holds and is:

where (x is the step required to get to Emin.

Taking the partial derivative of this quadratic representation with respect to x, we get:

Using the derivative of the second order Taylor approximation we get:

The weights are updated iteratively.
Disadvantages of Newton's method:

It is computationally intensive to find the Hessian matrix and its inverse.
The Hessian matrix may be singular or rank deficient.
The method is unstable unless x is close to xmin

Gauss-Newton Method:

Several methods use an approximation of the Hessian matrix to construct second order information about the sum of squared error surface:

define

then

Let us now define a new matrix A which consists of the variation of each term m of the error function due to the variation of each parameter n (bias or weight).

By taking the partial derivatives of the error equation with respect to each parameter we get the Jacobian vector in terms of A and f:

A second differentiation with respect to each parameter gives:

The Jacobian and approximate Hessian can now be substituted into Newton's method to give us:

This weight update is called the Gauss-Newton method.

The Hessian approximation is positive definite near the minimum.

The increment size should be limited so that the Hessian approximation, neglecting the higher order term, is valid.

This method is good near the minimum but poor far from it.

Newton-Raphson Method:

The Newton-Raphson method makes use of:

The reliable convergence of steepest descent when far from the minimum

The rapid convergence of Gauss-Newton when close to the minimum.

This is accomplished by use of a variable metric .

When far from the minimum, x approaches the Newton-Raphson increment.
 is reduced and x approaches the negative gradient. When closer to the minimum, is large and
Levenberg Marquardt Method:

Levenberg (1944) applied the same methodology to the Gauss-Newton approximation:

Marquardt applied a method for varying the metric (. This metric is similar to a learning rate, in that it is

Made larger when errors are increasing

This moves towards the reliable convergence of steepest descent.

Made smaller when errors are decreasing

this moves towards the fast convergence of Newton's method.

Marquardt made the metric change by a factor of 10.

The MATLAB LM method is memory intensive since the A matrix is of dimension nxm where:

n = number of weights and biases.

m = total number of error terms (patterns * outputs)

It the hard drive cycles or "out of memory" use BPX.

Comparison Example

Table 5.1 Training Method Comparison Summary

METHOD
EPOCHS
FLOPS
FLOPS/EPOCH
SYMBOL 109 \f "Symbol"P TIME

BP
10,001
5.9e8
5.9e4
26.7 min.

LM
35
1.4e8
4.1e6
1.9 min.

SCG
936
1.9e8
2.1e5
15.9 min.

Demonstrations
BP3

Learning Rate Too Large

BP6

Momentum and Adaptive Learning Rate

LM1

Levenberg Marquardt Approximation

LM2

Underfitting

LM3

Overfitting

Next Week: Applications and Radial Basis Functions

_937908523

_937909192.unknown

_937909624.unknown

_937909906.unknown

_937909188.unknown

_937907587.unknown

_937908479.unknown

_905254819.doc
��

BP-. LM- and SCG-- Network Errors

Sum-Squared Error

Epoch

3

10

2

10

1

10

0

10

-1

10

10000

8000

6000

4000

2000

0

_937907562.unknown

_905254750.doc
��

SCG

LM

BP

FLOP Comparison

Floating Point Operations

Method

8

x 10

6

5

4

3

2

1

0

3.5

3

2.5

2

1.5

1

0.5

_905254793.doc
��

LM

SCG

BP

Time Usage Comparison

Processor Time

Method

2000

1500

1000

500

0

3.5

3

2.5

2

1.5

1

0.5

