Linear Networks

Rosemblatt developed the perceptron in the late 1950's.

In 1960, Bernard Widrow and his student Marcian Hoff developed the adaptive linear (ADALINE) network.

They also developed a learning rule Least Mean Square (LMS) algorithm to train it.

Linear Networks are similar to the perceptron, but have linear activation functions rather than hard limit functions. This allows the output to take on any value.

Since the output of an ADALINE can take on any value, the perceptron learning rule will not work. We will investigate the Widrow-Hoff learning rule, also known as the least mean square (LMS) rule.

We want to train the network so that the output equals a target output. The difference is the error of each output node (target - actual):

e = t - a

We want to minimize an error function. The error function minimized is the sum of squared errors.

Where q is the output node in a network with r outputs.

This problem has only one minimum since it is a linear system which forms a quadratic error surface.

Both the perceptron and the ADALINE have a similar limitation. They can only solve linearly separable problems.

The perceptron had a decision boundary that is orthogonal to the weight vector and offset by the bias.

The linear network has a similar decision boundary.

While the perceptron divided the area where the output was [0 1], the ADALINE's decision boundary separates the negative output area from the positive area.

This decision boundary can be found by setting the output equation to 0.

Although ADALINE networks are very simple, they have many useful applications: ADALINE networks are used in most long distance phone lines for echo cancellation.

They can also be used for adaptive filtering, this will be discussed later.

Derivation of LMS Algorithm
To minimize this function, we take the partial derivative of the error function with respect to the weights wk.

The minimum occurs when the partial derivative of the error function with respect to the weights equals zero.

The MATLAB function:
W=solvelin(P,T) finds this solution. (This is not always numerically stable, see Masters, Chapter 9)

The network equation is:

where X is augmented by a column of ones being the biases.

If X is invertible, solution can be found to be

If the system of equations is overdetermined, the pseudoinverse can be used:

These solutions can be numerically unstable. MATLAB's program uses either the Cholesky, LU or QR method of factorization depending on the structure of the X matrix. These technique can allow large weights to be generated. These weights may work well in reducing the SSE, but rarely fit the test set well. The most reliable solution uses the Singular Value Decomposition SVD.

In the SVD decomposition you can put limits on the size of the weights. This usually helps the generalization capabilities of the network.

Master's book explains this technique and the problems encountered with using regression for neural networks.

As we said, sometimes solving for the weights and biases directly (LMS) produces networks that don't generalize well. Gradient descent procedures are usually used.

The Widrow-Hoff learning algorithm is implemented by taking small steps in the steepest descent direction. The steepest descent direction is found by finding the partial derivative of the SSE with respect to the weights:

The step size is dependent on the size of the gradient and a learning rate, (.

Using a gradient descent procedure the change in weights equals:

where:
(is the learning rate.

k is the step (iteration)

In matrix notation:

If the learning rate is too large instabilities in training occur. The maximum learning rate can be found to be less that the inverse of the maximum eigenvalue:

The direct solution to the LMS algorithm is implemented in MATLAB as solvelin() while the gradient descent algorithm is implemented with trainwh().

The LMS algorithm is also called a "stochastic gradient algorithm" and follows a random trajectory.

_904020171.unknown

_904022179.unknown

_936083980.unknown

_936086680.ppt

_904022581.unknown

_904019860.ppt

