Perceptron

In 1943 McCulloch and Pitts introduced a neuron model whose weighted sum of its inputs was compared to a threshold and output 0, or 1.

In 1950 Frank Rosemblatt developed the Perceptron using the McColloch-Pitts model and Hebbian Learning:

"When the synaptic input and the neuron output are both active, the weight is enhanced."

This simple form of a neural network is used for classification of linearly separable variables.

It consists of a single neuron with adjustable weights and bias.




The activation function is the hard limit function whose output is a +1 or -1 (sometimes called a signum function sgn(v)).




The decision boundary is always perpendicular to the weight vector.

The bias allows the decision surface to not go through the origin.

2 Layer Perceptron
Two layer perceptrons were also studied by Rosemblatt, but a supervised training algorithm was not used.

Two layer perceptrons may be able to separate linearly inseparable classes.  The hidden layer weights are randomly assigned; this may transform the problem into a linearly separable one.

Perceptron Training








Training Algorithm:

1.  If the pattern is correctly classified, no change is made to the weight vector.

2.  If the pattern is incorrectly classified: 





Limitations of a single layer perceptron:


Outputs can only be 1 or -1 (or 1 and 0).


Can only classify linearly separable patterns.


The NN architecture is completely specified by the problem.

Graphical Example:
Calculate a decision surface to satisfy the AND logic gate problem.




Choose a weight vector that is orthogonal to the decision surface.  There are infinite, but lets choose 

.

Find the bias to satisfy the equation: wT*p + b = 0

Pick a point on the decision surface.  p = [1.5 0]'

Solve the equation:  


So b = -3.

We can test the equation with the original inputs:


a = hardlim(wT*p + b)

p=[0 0]   a = -1

p = [0 1]   a = -1

p=[1 0]   a = -1

p = [1 1]   a = +1

So Class 1 = -1    Class 2 = +1
Learning Rule Example:
For simplicity, lets use an example where the decision boundary goes through the origin, so no bias is needed.




The following input/output pairs will be used.




Which could be classified with the following decision surface.




A random weight matrix is chosen:



For the first pattern (p1):







Since this is the incorrect response, we use the update rule:




so 


For the second pattern (p2):




Since this is the incorrect response, we use the update rule:







For the third pattern (p3):




Since this is the incorrect response, we use the update rule:







Now (don't update because correct response):

p1:  


p2:  


p3:  


MATLAB's NNET Toolbox Structure

Most NN architectures have the following functions:


1.  Initialization of weight matrices.


2.  Simulation of the NN.


3.  Learning rule functions.


4.  Training functions (combine simulation and learning).

Perceptron Functions:


1.  [W,b] = initp(P,T)


2.  a = simup(P,W,b)


3.  [dW,db] = learnp(p,e)



where:   e = t-a


4.  tp = [disp_freq   max_epoch]


     [W,b,ep,tr] = trainp(W,b,P,T,tp)



where:   ep = number of epochs





tr = a record of the training errors

Perceptrons have slow convergence when there are outliers.  This is because small weight changes only slowly cancel out the effects of the outliers.

The normalized perceptron rule (learnpn) makes the effect of each input vector on the weights the same.

Demonstrations:

demop1:  Two input classification results in a decision line.

demop2:  Three input classification results in a decision plane.

demop3:  Multiple output perceptrons can separate regions into multiple classes.

demop4:  Outliers can cause long training times.

demop5:  Normalized perceptron training rule.

demop6:  Linearly non-separable variables.

demop7:  Two layer perceptron.

function [w,b,te,tr] = trainp(w,b,p,t,tp)

%TRAINP Train perceptron layer with perceptron rule.

%


%
[W,B,TE,TR] = TRAINP(W,B,P,T,ME)

%
  W  - SxR weight matrix.

%
  B  - Sx1 bias vector.

%
  P  - RxQ matrix of input vectors.

%
  T  - SxQ matrix of target vectors.

%
  TP - Training parameters (optional).

%
Returns:

%
  W  - New weight matrix.

%
  B  - New bias vector.

%
  TE - Trained epochs.

%
  TR - Training record: errors in row vector.

%


%
Training parameters are:

%
  TP(1) - Epochs between updating display, default = 1.

%
  TP(2) - Maximum number of epochs to train, default = 100.

%
Missing parameters and NaN's are replaced with defaults.

%


%
If TP(1) is negative, and a 1-input neuron is being trained

%
  the input vectors and classification line are plotted

%
  instead of the network error.

%


%
See also NNTRAIN, PERCEPT, HARDLIM, INITP, LEARNP, SIMUP.

% Mark Beale, 1-31-92

% Copyright (c) 1992-94 by the MathWorks, Inc.

% $Revision: 1.1 $  $Date: 1994/01/11 16:30:24 $

if nargin < 4, error('Not enough arguments.'), end

% TRAINING PARAMETERS

if nargin == 4

  tp = [1 100];

else

  tp = nndef(tp,[1 100]);

end

df = tp(1);

me = tp(2);

% PLOTTING FLAG

[r,q] = size(p);

[s,q] = size(t);

plottype = (df < 0) & (max(r,s) <= 3);

df = abs(df);

% PRESENTATION PHASE

a = hardlim(w*p,b);

e = t-a;

SSE = sum(sum(abs(e)));

tr = zeros(1,me+1);

tr(1) = SSE;

% PLOTTING

clg

message = sprintf('TRAINP: %%g/%g epochs, SSE = %%g.\n',me);

fprintf(message,0,SSE)

if plottype

  plotpv(p,t)

  h = plotpc(w,b);

else

  h = ploterr(tr(1),0);

end

for i=1:me

  % CHECK PHASE

  if SSE == 0, i=i-1; break, end

  % LEARNING PHASE

  [dw,db] = learnp(p,e);

  w = w + dw;

  b = b + db;

  % PRESENTATION PHASE

  a = hardlim(w*p,b);

  e = t-a;

  SSE = sum(sum(abs(e)));

  tr(i+1) = SSE;

  % PLOTTING

  if rem(i,df) == 0

    fprintf(message,i,SSE)

    if plottype

      h = plotpc(w,b,h);

    else

      h = ploterr(tr(1:(i+1)),0,h);

    end

  end

end

% RESULTS

te = i;

tr = tr(1:(i+1));

% PLOTS

if rem(i,df) ~= 0

  fprintf(message,i,SSE)

  if plottype

    plotpc(w,b,h);

  else

    ploterr(tr,0,h);

  end

end
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