Specialized Neural Networks
Associative Memories

Crossbar Structure

Bidirectional Associative Memory

Hopfield Network (already covered)

Counterpropagation Network

Probabilistic Neural Network

Generalized Regression Neural Network

Adaptive Resonance Theory Network

Neural Networks for System ID and Control

Polynomial Networks

Modular Neural Networks

Associative Memories

SYMBOL 183 \f "Symbol" \s 10 \h
Stores information by associating each data item with one or more stored data items.

SYMBOL 183 \f "Symbol" \s 10 \h
Content addressable memories: data is accessed by its content not by its location.

SYMBOL 183 \f "Symbol" \s 10 \h
Handle noisy data well.

SYMBOL 183 \f "Symbol" \s 10 \h
Heteroassociative: input and output are different

SYMBOL 183 \f "Symbol" \s 10 \h
Autoassociative: input and output are the same.

Crossbar Structure

A transformation matrix is embedded in a single layer linear ANN.

Bidirectional Associative Memory
SYMBOL 183 \f "Symbol" \s 10 \h
A matrix with symmetric weights embedded in an ANN.

SYMBOL 183 \f "Symbol" \s 10 \h
The memory is bi-directional so that an x will produce a y and a y will produce a x.

SYMBOL 183 \f "Symbol" \s 10 \h
The weights are not learned they are solved for.

SYMBOL 183 \f "Symbol" \s 10 \h
Stores bipolar patterns (+1, -1)

As an example:

A1=[1 -1 -1 -1 -1 1]
=>
B1=[-1 1 -1]

A2=[-1 1 -1 -1 1 -1]
=>
B2=[1 -1 -1]

A3=[-1 -1 1 -1 -1 1]
=>
B3=[-1 -1 1]

The correlation matrix Mi are formed from each pair:

Mi=Ai'xBi
Resulting in 3 (6x3) matrices.
The Master matrix M is formed by adding the Mi matrices.

M1=[-1 1 -1

M=M1+M2+M3 =[-1 3 -1

1 -1 1

 3 -1 -1

1 -1 1

-1 -1 3

1 -1 1

 1 1 1

1 -1 1

 3 -1 -1

 -
1 1 -1]

-3 1 1]

A2=MxB2' and B2=A2xM
Note: the network is bidirectional

Counterpropagation Neural Network
Developed by Robert Hect-Nielson in 1987.

Can reduce training time by a factor of 100 over BP.

It is a combination of two networks:

1.

Self organizing Kohonen network

2.

Grossberg outstar network

It functions as a look-up table that is capable of generalization.

Once a network is trained, applying an input results in the desired output, even when the input data is partially incomplete.

It is useful for pattern recognition, pattern completion, and signal enhancement.

It allows a Kohonen network to produce a more sophisticated output than a simple category number.

Probabilistic Neural Network
The probabilistic neural network is a neural network implementation of a Bayes optimal classifier.

Learning is fast to instantaneous.

Classification is slow and memory requirements are large.

Problem statement:

m component random vector:

[x1 x2... xm]

K populations (classes):

k=1, 2, ... K

costs of misclassification a sample from k:
ck
prior probability that a sample is from k:
hk
probability density function of class k:

fk(X)

Many times all ck and all hk are treated as being equal.

The bayes optimal decision rule classifies X into i if:

hicifi(X) > hjcjfj(X)
for all j

The probability density function are rarely known and must be estimated. We usually assume they come from a normal distribution.

The training set is used to estimate the probability density function.

Nearest Neighbor classifier. A pattern is classified to be in the same class as its nearest neighbor.

In the above example, the ? would be classified as a o, even though it is in the middle of many x's. This is a weakness of the nearest neighbor classifier.

If the probability density functions are know, the Bayes optimal classifier is easy to build.

Parzen's method is used to estimate the density function as

Where:
 SYMBOL 115 \f "Symbol" controls the width of the area of influence.

W is the weighting function and is usually

Gaussian

The probability that an input pattern belongs to a class is dependent on how much it fits into the area of influence. This is similar to a RBFN region; and similarly, the spread constant SYMBOL 115 \f "Symbol" must be chosen so that there is moderate overlap.

When to use a PNN

SYMBOL 183 \f "Symbol" \s 10 \h
For classification tasks.

SYMBOL 183 \f "Symbol" \s 10 \h
When you want the training time to be short.

(Sigma optimization may be time consuming)

SYMBOL 183 \f "Symbol" \s 10 \h
When confidence estimates for the decision are needed. This model has a solid theoretical framework to support these estimates.

Drawbacks of a PNN

SYMBOL 183 \f "Symbol" \s 10 \h
Must have a thorough representative training set.

SYMBOL 183 \f "Symbol" \s 10 \h
The entire training set must be stored as well as processed each time an unknown case is classified. This results in large memory requirements and poor performance.

Example:

A simple PNN will now be implemented that classifies an input as one of two classes.

The training data consists of two classes of data with four vectors in each class. A test data point will be used to verify correct operation.

class = 2 prob = 0.1025 0.3114
This function properly classified the input vector as class 2 and output a measure of membership (0.3114).

As a final example, we will use a test point:

x=[-2.5 -2.5].

class = 1

prob = 0.9460 0.0037

The PNN properly classified the input vector to class 1.

The PNN also outputs a number related to the membership of the input to each class (0.946 0.004). These numbers can be used as confidence values for the classification.

Generalized Regression Neural Networks

(GRNN)

Feedforward neural network

Suited to function approximation tasks such as system modeling and prediction.

Can be used for pattern classification.

The GRNN is composed of four layers:

The first layer is the input layer and is fully connected to the pattern layer.
The second layer is the pattern layer and has one neuron for each input pattern. This layer performs the same function as the first layer RFB neurons: its output is a measure of the distance the input is from the stored patterns.
The third layer is the summation layer and is composed of two types of neurons: S-summation neurons and a single D-summation neuron (division).
The S-summation neuron computes the sum of the weighted outputs of the pattern layer.

The D-summation neuron computes the sum of the unweighted outputs of the pattern neurons.

There is one S-summation neuron for each output neuron and a single D-summation neuron.

The last layer is the output layer and divides the output of each S-summation neuron by the output of the D-summation neuron.

A general diagram of a GRNN is shown below.

The output of a GRNN is the conditional mean given by:

Where the exponential function is a Gaussian function with a width constant sigma.

Note that the calculation of the Gaussian is performed in the pattern layer, the multiplication of the weight vector and summations are performed in the summation layer, and the division is performed in the output layer.

GRNN Learning

The GRNN learning phase is similar to that of a PNN.

It does not learn iteratively as do most ANNs

It learns by storing each input pattern in the pattern layer and calculating the weights in the summation layer.

The equations for the weight calculations are given below.

1. The pattern layer weights are set to the input patterns.

2. The summation layer weights matrix is set using the training target outputs. Specifically, the matrix is the target output values appended with a vector of ones that connect the pattern layer to the D-summation neuron.

Example:

To demonstrate the operation of the GRNN we will use the same example used in the RBF section.

The training patterns will be limited to five vectors distributed throughout the input space [-10 -6.7 -3.3 0 3.3 6.7 10].

A width parameter of 2 will also be used.

The training parameters must cover the training space and the set should also contain the values at any minima or maxima.

First the weight matrices are calculated.

The recall performance for the network is very dependent on the width parameter.

A small width parameter gives good recall of the training patterns but poor generalization.

A larger width parameter would give better generalization but poorer recall.

The choice of a good width parameter is necessary to having good performance.

Usually, the largest width parameter that gives good recall is optimal.

In the example above, a width parameter of 2 was found to be the maximum width that has good recall.

Note that with the proper choice of training data and width parameter, the network was able to generalize with very few training parameters.

A small width parameter generalizes poorly (spread = 0.5):

A large spread constant also generalizes poorly (spread=5).

If there is nothing known about the function, a large training set must be chosen to guarantee it is representative. This would make the network very large (many pattern nodes) and would require much memory and long recall times.

Clustering techniques can be used to select a representative training set, thus reducing the number of pattern nodes.

Adaptive Resonance Theory Network
(ART)

There is no guarantee that as more inputs are added to a competitive network, the weight matrix will converge. This is a problem of learning stability.

This problem occurs because the old cluster centers are allowed to move towards new inputs, this is called plasticity.

Grossberg refers to this as the stability-plasticity-dilemma.

The goal is to build a network that can be receptive to new patterns but remain stable in response to old patterns.

Grosssberg and Carpenter developed adaptive resonance theory to address this dilemma.

As new input patterns are presented, they are compared to the prototype cluster centers to determine if they closely resemble one of them (resonate). If they do, they are allowed to enter that cluster and the cluster center moves accordingly. If not, a new cluster is formed.

Vigilance parameter: a user defined parameter that determines how different a parameter must be to define a new cluster. Determines the coarseness of the categories.

Properties of ART

1.
It continues to learn (plasticity).

2.
New information does not destroy old information (stability).

ART1: only handles binary input patterns

ART2: analog or binary patterns

ART3: More sophisticated version of ART2

ARTMAP: Supervised ART network

Fuzzy ARTMAP: improves the performance of ARTMAP to incorporate fuzzy logic.

ART uses
instars for pattern recognition

outstars for pattern recall

a very complex architecture

Polynomial Networks
Functional Link Network

SYMBOL 183 \f "Symbol" \s 10 \h
Inputs are functions or combinations of parameters.

SYMBOL 183 \f "Symbol" \s 10 \h
These higher order terms may contain more valuable info.

SYMBOL 183 \f "Symbol" \s 10 \h
Developed by Pao of Case Western Reserve

Group Method of Data Handling (GMDH)

SYMBOL 183 \f "Symbol" \s 10 \h
Introduced by Ivakhnenko in 1968.

SYMBOL 183 \f "Symbol" \s 10 \h
Each neuron has two inputs.

SYMBOL 183 \f "Symbol" \s 10 \h
The output is a quadratic combination of the inputs.

SYMBOL 183 \f "Symbol" \s 10 \h
Each layer increases the degree of the polynomial created by the network.

Sigma-Pi Network

SYMBOL 183 \f "Symbol" \s 10 \h
Generalization of the MLP that incorporates product terms into the net input of each neuron.

Modular Neural Networks
A number of expert networks, each of which can be a multilayer network, provide outputs.

An gating network combines the output of the expert networks into one overall output.

Good for problems that have discontinuities.

_910087217

_940930693.ppt

_940931003.unknown

_940931004.unknown

_940930934.unknown

