Adaptive Networks

Adaptive networks change over time. The most common receives a single input at each time step and adapts its weights accordingly. Its objective is to learn over time and in changing conditions.

The MATLAB function adaptwh simulates this adaptive network.

[A,E,W,b]=adaptwh(W,b,P,T,lr)

This function presents the network with each input vector in sequence and adapts the weights and biases according to the resulting error. When all presentations are complete, it returns:

W, b - weights and biases

A - Networks output signal.

E - Networks error signal.

This is different from trainwh which presents all training vectors each epoch and repeats this presentation until an error goal is reached.

The choice of the learning rate is a tradeoff:

1. small assures stability

2. large makes it adapt fast

Many of the Adaptive networks use a time delayed neural network (TDNN). This can be simulated using delaysig().

Adaline

Adaptive Linear Element: conceived by Widrow and Hoff.

Trains with LMS (adaptive).

Hard Limit Function: 'hardlims' for symmetric

x - inputs (-1 or +1)

y - output (-1 or +1)

d - desired output value (-1 or +1)

e - error may have values of (-2, 0, 2)

MATLAB discusses the Adaline without the hardlimit activation function.

Linear Networks Revisited

solvelin: solves for the weights and biases to reduce the SSE. In some cases the SSE can be reduced to zero (demolin1).

trainwh: iteratively solves for the weights and biases using the Widrow Hoff rule (demolin2).

A linear network can solve a set of linearly independent equations to any error level. (demolin3)

A linear network will minimize the SSE for an over determined problem (demolin4). An overdetermined problem has more constraints than degrees of freedom. A problem such as this may be better solved with a non-linear network.

An underdetermined problem (demolin5) has an infinite number of solutions. Trainwh will find a different solution for each initial weight and bias combination.

solvelin or trainwh can be used. When solvelin is used, the sum of squared weights and biases are also minimized.

A linear network can solve a problem with zero error if it has as many degrees of freedom as the number of constraints.

e.g. in demolin2 each neuron had 4 degrees of freedom (3 weights and 1 bias), the network had 3 inputs and four outputs and could solve the problem of four training patterns (constraints) to a SSE of zero.

Commonly if a linear has as many degrees of freedom (S*R+S where R is number of inputs and S is number of outputs) as constraints (Q = number of input output pairs), then it can solve the problem with zero error.

This is not true if the input vectors are linearly dependent and the network has no biases (demolin6). If biases are used, it is equivalent to appending the input matrix with an additional element (row in MATLAB notation) of ones. If this row of ones breaks the linear dependence, a no error solution can be found (in demolin6 the dependence is still there).

P=[1 2 3

Pbias = [1 2 3

 4 5 6]

 4 5 6

 1 1 1]

(x1+x3)/2=x2 The ones don't break the dependence.

Therefore, biases can help, but it is not guaranteed.

If the resulting input matrix has a determinant of 0 (which means there are linearly dependent inputs), then solvelin will be numerically unstable.

e.g. For T=[1 4 9] the above solution, solvelin:

Warning: Rank deficient, rank = 2 tol = 6.2804e-015

W = [5.6667 -1.6667 0] B = 0

Solvelin results in a SSE of 105.

Trainwh results in a SSE of around 2.

Learning Rate:

If the learning rate is too large, instabilities can occur (see demolin7).

Linear Layer Practical Examples:

1. Linear Prediction:

2. Adaptive Prediction:

3. Linear System Identification:

4. Adaptive System Identification:

5. Adaptive Noise Cancellation

Linear Prediction

Linear networks can be used to predict future values of a time series.

APPLIN1:

The input signal is a sine wave.

5 inputs are used to predict the next input.

The network is trained off-line and w, b are set.

Since the signal is a linear wave form, the linear network performs excellent. If the input were non-linear, a linear predictor may still function well since it gives a minimum SSE result to its linear approximation.

If better performance is needed for a non-linear signal, a multilayer perceptron or radial basis network may be used.

Adaptive Prediction

The same network can be trained on line and can adapt to a changing linear system. This is similar to the homework assignment.

APPLIN2:

The network adapts to a sine wave that changes its frequency with time.

The signal frequency is learned in 30 samples and the change in frequency is learned even faster.

At a typical signal processing sample frequency of 20kHz, this would take 1.5 milliseconds.

Linear System Identification

Linear networks can be trained to model a linear or near linear system.

APPLIN3:

A nonlinear input is given to a neural network and it is trained to give the finite impulse response (linear combination of time delayed inputs) as the output.

As with linear predictors, linear neural networks can model linear systems with zero error and non-linear systems with a minimum SSE.

Again, highly nonlinear systems should be modeled with multilayer perceptrons or radial basis functions.

Adaptive System Identification
If the system to be modeled changes with time due to cyclic operating conditions, wear, temperature effects, drifting instruments, etc.; an adaptive linear network can track the new model.

The weights and biases may refer to actual parameters of the system. These parameters could be monitored and alert instabilities, etc.

A linear ANN model may be useful to create a linear model of a non-linear system.

Delayed signals may assist in system estimation or identification.

Adaptive Noise Cancellation

(APPLIN5)

It is possible to cancel noise if a signal that is correlated with the interference exists.

Suppose the signal is a pilot's voice and the noise is from the engines. A microphone is put near the engines to measure the noise.

The noisy signal is input to an ANN which adaptively trains to estimate the noise. The difference between the noisy signal and the noise is the pilot's voice.

Adaptive noise cancellation works by subtraction not by filtering. Therefore, it can remove interference even if the signal occupies the same frequencies.

