Radial Basis Function Networks
A Radial Basis Function Network (RBF) has been proven to be a universal function approximator [Park and Sandberg 1991].

It can perform similar function mappings as a MLP but its architecture and functionality are very different.

We will first examine the RBF architecture and then examine the differences between it and the MLP that arise from this architecture.

[image: image1.wmf]Input Space

Hidden Nodes

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Receptive

Fields

Output Layer

Bias

W

Radial Basis Function Network

· Two layer network that has different types of neurons in the hidden layer and the output layer.

· The hidden layer, is a non-linear, local mapping layer.

· This layer contains radial basis function neurons which most commonly use a gaussian activation function (g(x)).

· These functions are centered over receptive fields which activate the local radial basis neurons.

Gaussian Activation Function

Where:

x is the input vector.

(j is the center of a region called a receptive field.

(j is the width of the receptive field.

gj(x) is the output of the jth neuron.

· The output layer is a layer of standard linear neurons and performs a linear transformation of the hidden node outputs.

· This layer is equivalent to a linear output layer in a MLP, but the weights are usually solved for using a least square algorithm rather trained for using backpropagation.

Receptive Fields

· Center on areas of the input space where input vectors lie.

· Serve to cluster similar input vectors.

· If an input vector (x) lies near the center of a receptive field ((), then that hidden node will be activated.

· If an input vector lies between two receptive field centers, but inside the receptive field width (() then the hidden nodes will both be partially activated.

· When input vectors that lie far from all receptive fields there is no hidden layer activation and the RBF output is equal to the output layer bias values.

Local Versus Global Mapping

· A RBF is a local network that is trained in a supervised manner.

· This contrasts with a MLP network that is a global network.

· The distinction between local and global is the made though the extent of input surface covered by the function approximation.

· An MLP performs a global mapping, meaning all inputs cause an output, while an RBF performs a local mapping, meaning only inputs near a receptive field produce an activation.

· The ability to recognize whether an input is near the training set or if it is in an untrained region of the input space gives the RBF a significant benefit over the standard MLP.

· It can give a "don't know" output.

· Since networks generalize improperly and arbitrarily when operating in regions outside the training area, no confidence should be given to their outputs in those regions.

· This ability makes the RBF the network of choice for safety critical applications or for applications that have a high financial impact.

A RBF can be designed with the function:

>> [w1,b1,w2,b2]=solverbe(P,T,sc)

This function creates as many radbas neurons as input patterns. Each input pattern has a radbas neuron dedicated to it.

The spread constant should be chosen so that the receptive fields overlap. This means that several radbas neurons have some activation to each input.

The second layer is simply a linear regression to reduce the SSE to zero using SOLVELIN.

The drawback is that solverbe has as many hidden nodes as inputs. The storage and retrieval requirements are not acceptable for large problems.

A RBF can also be designed with the function:

>> [w1,b1,w2,b2,nr,dr]=solverb(P,T,dp)

Where:
nr = number of radbas neurons

dr = record of errors

dp=[disp_freq max_neuron err_goal spread]

This function iteratively creates a radbas neuron one at a time. Neurons are added until the SSE falls below the error goal.

At each iteration the input vector that will result in lowering the error the most is used to create a radbas neuron.

It is again important that the spread parameter is chose so that there is overlap in the receptive fields.

Other methods have receptive field shapes that are trainable.

RBF Network Design Choices
· The width parameter should be chosen so that the receptive fields overlap but so that one function does not cover the entire input space. This means that several radial basis neurons have some activation to each input but all radial basis neurons are not highly active for a single input.

· Choose the number of radial basis neurons. Depending on the training algorithm used to implement the RBF, this may, or may not, be a decision made by the designer. Some algorithms incrementally add a radial basis neurons to reduce the training error to the preset goal.

· The maximum number is the number of input patterns

· The minimum is related to the error tolerance and the complexity of the mapping. This minimum must be experimentally determined. A more complex map and a smaller tolerance requires more neurons.

Tradeoff: There are several network architectures that will meet a specified error criteria. These architectures consist of different combinations of the radial basis function widths and the number of radial basis functions in the network.

Radial Basis Function Example

As an example of the implementation of a RBF network, a function approximation over an interval will be used.
y=.05*x.^3-.2*x.^2-3*x+20;

· A radial basis function width of 4 will be used and the centers will be placed at [-8 -5 -2 0 2 5 8].

· Most training routines will have an algorithm for determining the placement of the radial basis neurons, but for this example, they will simply be placed to cover the input space.

Test the network can now be tested both outside the training region and inside the training region.

· The network generalizes very well in the training region but poorly outside the training region.

· As the inputs get far from the training region, the radial basis neurons are not active. This would alert the operator that the network is trying to operate outside the training space and that no confidence should be given to the output value.

Small Neuron Width Example

The radial basis function width will be set to 0.2 so that there is no overlap between the neurons.

· The width parameter is too small and that there is poor generalization inside the training space.

· For proper overlap, the width parameter needs to be at least equal to the distance between input patterns.

Large Neuron Width Example

A very large radial basis function width equal to 200 will be used. Such a large width parameter causes each radial basis function to cover the entire input space. When this occurs, the radial basis functions are all highly activated for each input value. Therefore, the network may have problems learning the desired mapping.

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 3.273238e-017

· The hidden layer activations ranged from 0.9919 to 1.0.
This made the regression solution of the output weight matrix very difficult and ill-conditioned.

MLPs versus RBFs

1. A Radial basis function network has a single hidden layer whereas a MLP can have more than one.

2. Typically the individual neurons in a MLP share a common neuron model. The hidden and output nodes of a RBF have different models.

3. The argument for the activation function of the hidden RBF neuron is the Euclidean norm (distance) between the input vector and the center of that unit, whereas the MLP computes the inner product of the input vector and the synaptic weight vector.

4. MLPs construct global approximations to non-linear input-output mappings. Consequently they can generalize to areas that have no training data. RBF networks construct local approximations to non-linear input-output mappings. They learn fast but may require many neurons to span the input space.

5. If no input vector is close to a receptive field, the outputs in the hidden layer are zero. This can be used as a "don't know" and will alert the user that the network is trying to operate in an area where it was not trained.

RBF Demonstrations

DEMORB1: Uses a radial basis function network to approximate the function of demobp4.

We would like a solution with less than 100 hidden layer neurons which fits the data with a sum squared error of less than 0.02.

A radial basis spread of 1.0 should be used, and progress should be displayed every 10 neurons.

 >> [w1,b1,w2,b2,nr,tr] = solverb(P,T,[10 100 0.02 1]);

The final error fell below the error goal of 0.02 when the hidden layer reached 6 neurons.

DEMORBF2: Compares training times for function approximation.

 BENCHMARK RESULTS

 =================

Function Technique
Time
Epochs
Flops

TRAINBP

11.4
742
3890376

TRAINBPX

2.7
146
766331

TRAINLM

1.9
5

372123

SOLVERB

0.7
6

37403

~ Times are in seconds and may vary.

* Epochs refers to number of neurons for SOLVERB.

DEMORB3: (underlapping neurons) Using SOLVERB, a radial basis network is trained to respond to specific inputs with target outputs. However, because the spread of the radial basis neurons is too low, the network requires many neurons.

The spread of the radial basis neurons B is set to a small number (sc = 0.01).

Check for generalization with inputs .01 apart.

The test vectors reveal that the function has been overfit! The network could have done better with a higher spread constant.

DEMORB4: (overlapping neurons)

Using SOLVERB a radial basis network is trained to respond to specific inputs with target outputs. However, because the spread of the radial basis neurons is too high, each neuron responds essentially the same, and the network cannot be designed.

A spread constant too large is used (sc=100).

TRAINRB cannot properly design a radial basis network due to the large overlap of the input regions of the radial basis neurons. All the neurons output a 1 for each pattern resulting in similar responses for dissimilar inputs.

For this problem a spread constant greater than .1 (the distance between inputs) and less than 2 (the spread of the input space) should be used.

function [w1,b1,w2,b2,k,tr] = solverb(p,t,tp)

%SOLVERB Design radial basis network.

%

%
[W1,B1,W2,B2,TE,TR] = SOLVERB(P,T,DP)

%
 P - RxQ matrix of Q input vectors.

%
 T - SxQ matrix of Q target vectors.

%
 DP - Design parameters (optional).

%
Returns:

%
 W1 - S1xR weight matrix for radial basis layer.

%
 B1 - S1x1 bias vector for radial basis layer.

%
 W2 - S2xS1 weight matrix for linear layer.

%
 B2 - S2x1 bias vector for linear layer.

%
 NR - the number of radial basis neurons used.

%
 TR - training record: [row of errors]

%

%
Design parameters are:

%
 DP(1) - Iterations between updating display, default = 25.

%
 DP(2) - Maximum number of neurons, default = # vectors in P.

%
 DP(3) - Sum-squared error goal, default = 0.02.

%
 DP(4) - Spread of radial basis functions, default = 1.0.

%
Missing parameters and NaN's are replaced with defaults.

%

%
See also NNSOLVE, RADBASIS, SIMRB, SOLVERB.

% Mark Beale, 12-15-93

% Copyright (c) 1992-94 by the MathWorks, Inc.

if nargin < 2, error('Not enough input arguments'),end

% TRAINING PARAMETERS

if nargin == 2, tp = []; end

[r,q] = size(p);

tp = nndef(tp,[25 q 0.02 1]);

df = tp(1);

eg = tp(3);

b = sqrt(-log(.5))/tp(4);

[s2,q] = size(t);

mn = min(q,tp(2));

% PLOTTING FLAG

plottype = max(r,s2) == 1;

% RADIAL BASIS LAYER OUTPUTS

P = radbas(dist(p',p)*b);

PP = sum(P.*P)';

d = t';

dd = sum(d.*d)';

% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

e = ((P' * d)' .^ 2) ./ (dd * PP');

% PICK VECTOR WITH MOST "ERROR"

pick = nnfmc(e);

used = [];

left = 1:q;

W = P(:,pick);

P(:,pick) = []; PP(pick,:) = [];

e(:,pick) = [];

used = [used left(pick)];

left(pick) = [];

% CALCULATE ACTUAL ERROR

w1 = p(:,used)';

a1 = radbas(dist(w1,p)*b);

[w2,b2] = solvelin(a1,t);

a2 = purelin(w2*a1,b2);

sse = sumsqr(t-a2);

% TRAINING RECORD

tr = zeros(1,mn);

tr(1) = sse;

% PLOTTING

newplot;

if plottype

 h = plotfa(p,t,p,a2);

else

 h = ploterr(tr(1),eg);

end

for k = 1:(mn-1)

 % CHECK ERROR

 if (sse < eg), break, end
 % CALCULATE "ERRORS" ASSOCIATED WITH VECTORS

 wj = W(:,k);

 %---- VECTOR CALCULATION

 a = wj' * P / (wj'*wj);

 P = P - wj * a;

 PP = sum(P.*P)';

 e = ((P' * d)' .^ 2) ./ (dd * PP');

 % PICK VECTOR WITH MOST "ERROR"

 pick = nnfmc(e);

 W = [W, P(:,pick)];

 P(:,pick) = []; PP(pick,:) = [];

 e(:,pick) = [];

 used = [used left(pick)];

 left(pick) = [];

 % CALCULATE ACTUAL ERROR

 w1 = p(:,used)';

 a1 = radbas(dist(w1,p)*b);

 [w2,b2] = solvelin(a1,t);

 a2 = purelin(w2*a1,b2);

 sse = sumsqr(t-a2);

 % TRAINING RECORD

 tr(k+1) = sse;

 % PLOTTING

 if rem(k,df) == 0

 if plottype

 delete(h);

 h = plot(p,a2,'m');

 drawnow;

 else

 h = ploterr(tr(1:(k+1)),eg,h);

 end

 end

end

[S1,R] = size(w1);

b1 = ones(S1,1)*b;

% TRAINING RECORD

tr = tr(1:(k+1));

% PLOTTING

if rem(k,df) ~= 0

 if plottype

 delete(h);

 plot(p,a2,'m');

 drawnow;

 else

 ploterr(tr,eg,h);

 end

end

% WARNINGS

if sse > eg

 disp(' ')

 disp('SOLVERB: Network error did not reach the error goal.')

 disp(' More neurons may be necessary, or try using a')

 disp(' wider or narrower spread constant.')

 disp(' ')

end

Radial Basis Function Homework

1. Use the same function approximation example as in the last homework:

f(x)=.05*x.^3-.2*x.^2-3*x+20

over the interval x=[-10:.5:10].

Train a radial basis function network using the attached MATLAB script: rbtrain.

Experiment with different spread constants and compare the number of radbas neurons needed and the generalization of the network.

To comment on the generalization you need to simulate the RBF network using:

x=[-10:.05:10]

yout=simurb(p,W1,B1,W2,B2)'

2. Comment on the generalization of the network outside of the training region. This generalization depends on the spread constant.

3. Find the smallest training set that when combined with a well chosen spread constant gives good generalization over the input range.

4. Then try a noisy training set:

fn(x)=.05*x.^3-.2*x.^2-3*x+20+.2*rands(1,41).*(.05*x.^3-.2*x.^2-3*x+20)

and experiment with the RBF network to get a network that generalizes and doesn't overfit. You may need to limit the number of neurons.

5. Now use more training data from the noisy case to determine its effect on overfitting..

x=[-10:.05:10];

fxn=.05*x.^3-.2*x.^2-3*x+20+.2*rands(1,401).*(.05*x.^3-.2*x.^2-3*x+20)

_970476398

