Windows Operating System Internals

Assignments OS4.2

Assignment 4.2.1:

Describe to your instructor the actions taken by a kernel to switch context between processes/threads. Explain the concept of process/thread control blocks.

Assignment 4.2.2:

Design and implement a simple command interpreter min_shell.exe (a command shell) using the Windows application programming interface (Windows API). The command interpreter should be able to read input line by line either from standard input or from a file (given on the command line). Each line of input should be interpreted as a program, which is executed within a separate process.

Usage of min_shell.exe:

$ type script.txt
C:\Windows\system32\notepad.exe script.txt
C:\Windows\system32\calc.exe
C:\Windows\system32\charmap.exe

$ min_shell.exe script.txt

Use the Windows-functions CreateProcess() and WaitForSingleObject() to sequentially execute commands in separate processes.

Assignment 4.2.3:

Design and implement a version of the UNIX time-command (mytime.exe) using the Windows API. The mytime-command should interpret its arguments as a program that has to be executed within a separate process. Mytime.exe shall call GetSystemTime() before creation and after completion of the new process.

Usage of mytime.exe:

$ mytime.exe “cmd /c dir c:”

Use the Winodws-functions CreateProcess() and WaitForSingleObject() to synchronize mytime.exe with the newly created process.

Assignment 4.2.4:

Modify your implementation of the min_shell command interpreter from assignment 4.2.2 in such a way, that it reads commands from the console (standard input) and supports asynchronous execution of programs (i.e.; min_shell_ext is not waiting for a process to complete before executing the next command). Asynchronous execution should be indicated by & (ampersand) at the end of a line.
Extend min_shell with the following set of (builtin) instructions:

· cd – change the current working directory,

· exit – terminate the min_shell command interpreter,

· wait – wait for all asynchronously started processes.

January 2005
© 2005 David A. Solomon and Mark Russinovich
1

