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Abstract. The lifting scheme is a new exible tool for constructing wavelets and wavelet

transforms. In this paper, we use the Euclidean algorithm to show how any discrete wavelet

transform or two band subband transform with �nite �lters can be obtained with a �nite number

of lifting steps starting from the Lazy wavelet (or polyphase transform). We show a bound on

the number of lifting steps that is proportional to the length of the �lters. This factorization

provides an alternative for the lattice factorization, with the advantage that it can also be used

in the biorthogonal (non-unitary) case. The lifting factorization asymptotically reduces the

computational complexity of the transform by a factor of two and allows for wavelet transforms

that map integers to integers.

1. Introduction

Over the last decade several constructions of compactly supported wavelets originated both

frommathematical analysis and the signal processing community. The roots of critically sampled

wavelet transforms are actually older than the word \wavelet" and go back to the context of

subband �lters, or more precisely quadrature mirror �lters [36, 37, 41, 51, 52, 53, 54, 58, 56, 59].

In mathematical analysis, wavelets were de�ned as translates and dilates of one �xed function

and were used to both analyze and represent general functions. [15, 20, 25, 35, 24]. In the late

eighties the introduction of multiresolution analysis and the fast wavelet transform by Mallat

and Meyer provided the connection between subband �lters and wavelets [33, 34, 35]; this led

to the �rst construction of smooth, orthogonal, and compactly supported wavelets in 1987

[18]. Later many generalizations to the biorthogonal or semiorthogonal (pre-wavelet) case were

introduced. Biorthogonality allows the construction of symmetric wavelets and thus linear phase

�lters. Examples are: the construction of semiorthogonal spline wavelets [1, 10, 12, 13, 50], fully

biorthogonal compactly supported wavelets [14, 57], and recursive �lter banks [28].

Recently a new angle to study these constructions was provided by the so-called \lifting

scheme" [46]. The basic idea behind lifting is that it provides a simple relationship between

all multiresolution analyses that share the same low-pass �lter or high pass �lter. The low-

pass �lter gives the coe�cients of the re�nement relation which entirely determines the scaling
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function. The wavelet can be found as a linear combination of scaling functions where the

coe�cients are given by the high-pass �lter. In [46] it is shown how lifting can be used for

painless custom-design of wavelets. As an example a family of biorthogonal wavelets associated

to the interpolating Deslauriers-Dubuc scaling functions [21] was derived. These wavelets can be

thought of as biorthogonal Coiets; they were also derived independently, but without the use

of lifting, by several people: Reissell [38], Tian and Wells [48], and Strang [43]. Two software

packages for this family are available: [23] uses lifting, while [5] does not. The advantages of

lifting are numerous:

1. Lifting allows for an in-place implementation of the fast wavelet transform, a feature similar

to the Fast Fourier Transform. This means the wavelet transform can be calculated without

allocating auxiliary memory [45].

2. Using lifting it is particularly easy to build non linear wavelet transforms. A typical

example are wavelet transforms that map integers to integers [8]. Such transforms are

important for hardware implementation and for lossless image coding.

3. Lifting allows the construction of wavelets without making use of the Fourier transform.

This means that it can be used for building wavelets that are not necessarily translates

and dilates of one function, so-called \second generation wavelets" [44]. In fact this was

the original motivation behind the development of lifting. Typical examples are wavelets

adjusted to weight functions, to irregular samples [47], or manifolds, see [40] for the con-

struction of wavelets on a sphere. In this paper we use the term classical wavelets or �rst

generation wavelets for wavelets formed by translation and dilation.

4. Every transform built with lifting is immediately invertible where the inverse transform

has exactly the same computational complexity as the forward transform.

5. Lifting allows for adaptive wavelet transforms. This means one can start the analysis of

a function from the coarsest levels and then build the �ner levels by re�ning only in the

areas of interest, see [40] for a practical example.

6. Lifting exposes the parallelism inherent in a wavelet transform. All operations within one

lifting step can be done entirely parallel while the only sequential part is the order of the

lifting operations.

7. Lifting does not rely on the Fourier transforms and can be introduced with using only

arguments in the spatial domain. It thus allows an easy way to introduce wavelets which

is particularly useful for people without a strong mathematical background [47].

The ideas behind lifting are not entirely new and have close connections with several earlier

and/or independent developments.

� The lifting scheme is inspired by the work of Donoho [22] and Lounsbery et al. [32]. Donoho

[22] shows how to built wavelets built from interpolating scaling functions, while Lounsbery
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et al. built a multiresolution analysis of surfaces using a technique that is algebraically the

same as lifting.

� The technique of Vetterli en Herley [57] to build biorthogonal wavelet �lters is another

predecessor of lifting. Their Proposition 4.7 is the key behind lifting in the �rst generation

setting. It turns out that the same lemma was also used for the construction of �lter banks

in [49] and in [31].

� Dahmen and collaborators, independently of lifting, worked on stable completions of mul-

tiscale transforms, a setting similar to second generation wavelets [9, 17]. Again inde-

pendently, both of Dahmen and of lifting, Harten developed a general multiresolution

approximation framework based on prediction [26].

� In [16], Dahmen and Micchelli propose a construction of compactly supported wavelets

that generate complementary spaces in a multiresolution analysis of univariate irregular

knot splines.

� There are also close similarities between lifting and so-called \ladder" structures in �lter

bank design [7, 30]. After �nishing this paper we found that in this context a factorization

result, similar to the one presented in this paper, was obtained earlier by Kalker and Shah

in an unpublished manuscript [29]. While our work goes into more detail concerning the

non-uniqueness, implementation, and computational complexity, their work considers also

the more general M -band setting.

� Finally, on a more abstract abstract level, lifting connects with ideas introduced in other

research areas. For example the notion of computations that are guaranteed to be invertible

has been a topic of study in the theory of computation, and led to the de�nition of so-called

reversible gates. In cryptology, ciphers are typically built by splitting data in two pieces

and alternatively adding non-linear functions that depend on one piece to the other piece,

see e.g. the DES standard [42]. These schemes again guarantee invertibility and can be

thought of as far cousins of lifting.

Because of the many advantages of lifting, it is natural to ask how general lifting is. What

is the set of wavelet �lter banks that can be obtained using lifting? This paper answers this

question in the �rst generation setting. For some time it was assumed that only particular

wavelet transforms could be obtained with lifting, typically biorthogonal ones associated with

interpolating scaling functions. We show here that every wavelet or subband transform with

�nite �lters can be obtained with a �nite number of lifting steps.

Our result is constructive in the sense that it gives an easy procedure to compute the �lters

needed in each lifting step; the key ingredient is simply an application of the Euclidean algorithm

to the ring of Laurent polynomials. In fact, connections between the Euclidean algorithm and

the wavelet transform are not entirely new. Vetterli and Herley [57] use the Euclidean algorithm

and the connection to diophantine equations to �nd all high pass �lters, given a low-pass �lter,
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that make a �nite �lter wavelet transform. A di�erent connection between constructing wavelets,

Bezout's theorem, and the Euclidean algorithm is pointed out in [19]. In a more general context,

the Euclidean algorithm also plays a role in using an inverse scattering framework for problems

in signal processing [6].

This paper is organized as follows. In Section 2 we review some facts about �lters and

Laurent polynomials. Section 3 gives the basics behind wavelet transforms and the polyphase

representation while Section 4 discusses the lifting scheme. We review the Euclidean algorithm

in Section 5 before moving to the main factoring result in Section 6. Section 7 gives several

examples. In Section 8 we show how lifting can reduce the computational complexity of the

wavelet transform by a factor of two. Finally Section 9 contains comments.

2. Filters and Laurent polynomials

A �lter h is a linear time invariant operator and is completely determined by its impulse

response: fhk 2 R j k 2 Zg. The �lter h is a Finite Impulse Response (FIR) �lter in case only

a �nite number of �lter coe�cients hk are non-zero. We then let kb (respectively ke) be the

smallest (respectively largest) integer number k for which hk is non-zero. The z-transform of a

FIR �lter h is a Laurent polynomial h(z) given by

h(z) =
keX

k=kb

hk z
�k :

In this paper, we consider only FIR �lters. We often use the symbol h to denote both the �lter

and the associated Laurent polynomial h(z). The degree of a Laurent polynomial h is de�ned

as

jhj = ke � kb:

So the length of the �lter is the degree of the associated polynomial plus one. Note that the

polynomial zp seen as a Laurent polynomial has degree zero, while as a regular polynomial it

would have degree p. In order to make consistent statements, we set the degree of the zero

polynomial to �1.

The set of all Laurent polynomials with real coe�cients has a commutative ring structure.

The sum or di�erence of two Laurent polynomials is again a Laurent polynomial. The product of

a Laurent polynomial of degree l and a Laurent polynomial of degree l0 is a Laurent polynomial

of degree l + l0. This ring is usually denoted as R[z; z�1].

Within a ring, exact division is not possible in general. However, for Laurent polynomials,

division with remainder is possible. Take two Laurent polynomials a(z) and b(z) 6= 0 with

ja(z)j > jb(z)j, then there always exists a Laurent polynomial q(z) (the quotient) with jq(z)j =
ja(z)j � jb(z)j, and a Laurent polynomial r(z) (the remainder) with jr(z)j < jb(z)j so that

a(z) = b(z) q(z) + r(z):
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We denote this as (C-language notation):

q(z) = a(z) = b(z) and r(z) = a(z)% b(z):

If jb(z)j = 0 which means b(z) is a monomial, then r(z) = 0 and the division is exact. A Laurent

polynomial is invertible if and only if it is a monomial. This is the main di�erence with the

ring of (regular) polynomials where constants are the only polynomials that can be inverted.

Another di�erence is that the long division of Laurent polynomials is not necessarily unique.

The following example illustrates this.

Example 1. Suppose we want to divide a(z) = z�1 + 6 + z by b(z) = 4 + 4 z. This means we

have to �nd a Laurent polynomial q(z) of degree 2 so that r(z) given by

r(z) = a(z)� b(z) q(z)

is of degree zero. This implies that b(z) q(z) has to match a(z) in two terms. If we let those

terms be the term in z�1 and the constant then the answer is q(z) = 1=4 (z�1 + 5). Indeed,

r(z) = (z�1 + 6 + z)� (4 + 4 z)(1=4 z�1+ 5=4) = �4 z:

The remainder thus is of degree zero and we have completed the division. However if we choose

the two matching terms to be the ones in z and z�1, the answer is q(z) = 1=4 (z�1+1). Indeed,

r(z) = (z�1 + 6 + z)� (4 + 4 z)(1=4 z�1+ 1=4) = 4:

Finally, if we choose to match the constant and the term in z, the solution is q(z) = 1=4 (5 z�1+1)

and the remainder is r(z) = �4 z�1.

The fact that division is not unique will turn out to be particularly useful later. In general

r(z) q(z) has to match a(z) in at least ja(z)j � jb(z)j+ 1 terms, but we are free to choose these

terms in the beginning, the end, or divided between the beginning and the end of a(z). For each

choice of terms a corresponding long division algorithm exists.

In this paper, we also work with 2� 2 matrices of Laurent polynomials, e.g.,

M(z) =

"
a(z) b(z)

c(z) d(z)

#
:

These matrices also form a ring, which is denoted by M2(R[z; z�1]). If the determinant of such

a matrix is a monomial, then the matrix is invertible. The set of invertible matrices is denoted

GL2(R[z; z�1]). A matrix from this set is unitary (sometimes also referred to as para-unitary)

in case

M(z)�1 = M(z�1)t:
5



-

-

-

eg(z�1)

eh(z�1)

-

-

��
��
��
��

# 2

# 2

-

-

BP

LP

-

-

��
��
��
��

" 2

" 2

-

-

g(z)

h(z)

6

?

��
��
+ -

Figure 1. Discrete wavelet transform (or subband transform): The forward

transform consists of two analysis �lters eh (low-pass) and eg (high-pass) followed

by subsampling, while the inverse transform �rst upsamples and then uses two

synthesis �lters h (low-pass) and g (high-pass).

3. Wavelet transforms

Figure 1 shows the general block scheme of a wavelet or subband transform. The forward

transform uses two analysis �lters eh (low-pass) and eg (band pass) followed by subsampling,

while the inverse transform �rst upsamples and then uses two synthesis �lters h (low-pass) and

g (high-pass). For details on wavelet and subband transforms we refer to [43] and [58]. In this

paper we consider only the case where the four �lters h, g, eh, and eg, of the wavelet transform
are FIR �lters. The conditions for perfect reconstruction are given by

h(z)eh(z�1) + g(z)eg(z�1) = 2

h(z)eh(�z�1) + g(z)eg(�z�1) = 0:

We de�ne the modulation matrix M(z) as

M(z) =

"
h(z) h(�z)
g(z) g(�z)

#
:

We similarly de�ne the dual modulation matrix fM(z). The perfect reconstruction condition can

now be written as

fM(z�1)tM(z) = 2 I; (1)

where I is the 2 � 2 identity matrix. If all �lters are FIR, then the matrices M(z) and fM(z)

belong to GL2(R[z; z�1]).

A special case are orthogonal wavelet transforms in which case h = eh and g = eg. The

modulation matrix M(z) = fM(z) is then
p
2 times a unitary matrix.

The polyphase representation is a particularly convenient tool to express the special structure

of the modulation matrix. [3]. The polyphase representation of a �lter h is given by

h(z) = he(z
2) + z�1ho(z

2);
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Figure 2. Polyphase representation of wavelet transform: �rst subsample into

even and odd, then apply the dual polyphase matrix. For the inverse transform:

�rst apply the polyphase matrix and then join even and odd.

where he contains the even coe�cients, and ho contains the odd coe�cients:

he(z) =
X
k

h2kz
�k and ho(z) =

X
k

h2k+1 z
�k ;

or

he(z
2) =

h(z) + h(�z)
2

and ho(z
2) =

h(z)� h(�z)
2 z�1

:

We assemble the polyphase matrix as

P (z) =

"
he(z) ge(z)

ho(z) go(z)

#
;

so that

P (z2)t = 1=2M(z)

"
1 z

1 �z

#
:

We de�ne eP (z) similarly. The wavelet transform now is represented schematically in Figure 2.

The perfect reconstruction property is given by

P (z) eP (z�1)t = I: (2)

Again we want P (z) and eP (z) to contain only Laurent polynomials. Equation (2) then implies

that det P(z) and its inverse are both Laurent polynomials; this is possible only only in case

detP (z) is a monomial in z: detP (z) = Czl; P (z) and eP (z) belong then to GL2(R[z; z�1]).

Without loss of generality we assume that detP (z) = 1. Indeed, if the determinant is not one,

we can always divide ge(z) and eg(z) by the determinant. This means that for a given �lter h,

we can always scale and shift the �lter g so that the determinant of the polyphase matrix is one.

The problem of �nding an FIR wavelet transform thus amounts to �nding a matrix P (z)

with determinant one. Once we have such a matrix, eP (z) and the four �lters for the wavelet

transform follow immediately. From (2) and Cramer's rule it follows that

~he(z) = go(z
�1); ~ho(z) = �ge(z�1); ~ge(z) = �ho(z�1); ~go(z) = he(z

�1):
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Figure 3. The lifting scheme: First a classical subband �lter scheme and then

lifting the low-pass subband with the help of the high-pass subband.
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Figure 4. The dual lifting scheme: First a classical subband �lter scheme and

later lifting the high-pass subband with the help of the low-pass subband.

This implies

eg(z) = z�1 h(�z�1) and eh(z) = �z�1 g(�z�1):

The most trivial example of a polyphase matrix is P (z) = I. This results in h(z) = eh(z) = 1

and g(z) = eg(z) = z�1. The wavelet transform then does nothing else but subsampling even

and odd samples. This transform is called the polyphase transform, but in the context of lifting

often is referred to as the Lazy wavelet transform [46]. (The reason is that the notion of the

Lazy wavelet can also be used in the second generation setting.)

4. The Lifting Scheme

The lifting scheme [46, 44] is an easy relationship between perfect reconstruction �lter pairs

(h; g) that have the same low-pass or high-pass �lter. One can then start from the Lazy wavelet

and use lifting to gradually build one's way up to a multiresolution analysis with particular

properties.

De�nition 2. A �lter pair (h; g) is complementary in case the corresponding polyphase matrix

P (z) has determinant 1.

If (h; g) is complementary, so is (eh;eg). This allows us to state the lifting scheme

Theorem 3 (Lifting). Let (h; g) be complementary. Then any other �nite �lter gnew comple-

mentary to h is of the form:

gnew(z) = g(z) + h(z) s(z2);
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where s(z) is a Laurent polynomial. Conversely any �lter of this form is complementary to h.

Proof. The polyphase components of h(z) s(z2) are he(z) s(z) for even and ho(z) s(z) for odd.

After lifting, the new polyphase matrix is thus given by

P new(z) = P (z)

"
1 s(z)

0 1

#
:

This operation does not change the determinant of the polyphase matrix.

Figure 3 shows the schematic representation of lifting. Theorem 3 can also be written relating

the low-pass �lters h and eh. In this formulation, it is exactly the Vetterli-Herley lemma [57,

Proposition 4.7]. The dual polyphase matrix is given by:

eP new(z) = eP (z)
"

1 0

�s(z�1) 1

#
:

We see that lifting creates a new eh �lter given by

ehnew(z) = eh(z)� eg(z) s(z�2):
Theorem 4 (Dual lifting). Let (h; g) be complementary. Then any other �nite �lter hnew com-

plementary to g is of the form:

hnew(z) = h(z) + g(z) t(z2);

where t(z) is a Laurent polynomial. Conversely any �lter of this form is complementary to g.

After dual lifting, the new polyphase matrix is given by

P new(z) = P (z)

"
1 0

t(z) 1

#

Dual lifting creates a new eg given by

egnew(z) = eg(z)� eh(z) t(z�2):
Figure 4 shows the schematic representation of dual lifting. In [46] lifting and dual lifting are

used to build wavelet transforms starting from the Lazy wavelet. There a whole family of

wavelets is constructed from the Lazy followed by one dual lifting and one primal lifting step.

All the �lters h constructed this way are half band and the corresponding scaling functions are

interpolating. Because of the many advantages of lifting, it is natural to try to build other

wavelets as well, perhaps using multiple lifting steps. In the next section we will show that any

wavelet transform with �nite �lters can be obtained starting from the Lazy followed by a �nite

number of alternating lifting and dual lifting steps. In order to prove this, we �rst need to study

the Euclidean algorithm in closer detail.
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5. The Euclidean Algorithm

The Euclidean algorithm was originally developed to �nd the greatest common divisor of two

natural numbers, but it can be extended to �nd the greatest common divisor of two polynomials,

see e.g [4]. Here we need it to �nd common factors of Laurent polynomials. The main di�erence

with the polynomial case is again that the solution is not unique. Indeed the gcd of two Laurent

polynomials is de�ned only up to a factor zp. (This is similar to saying that the gcd of two

polynomials is de�ned only up to a constant.) Two Laurent polynomials are relatively prime in

case their gcd has degree zero. Note that they can share roots at zero and in�nity.

Theorem 5 (Euclidean Algorithm for Laurent Polynomials). Take two Laurent polynomials a(z)

and b(z) 6= 0 with ja(z)j > jb(z)j: Let a0(z) = a(z) and b0(z) = b(z) and iterate the following

steps starting from i = 0

ai+1(z) = bi(z) (3)

bi+1(z) = ai(z)% bi(z): (4)

Then an(z) = gcd(a(z); b(z)) where n is the smallest number for which bn(z) = 0.

Given that jbi+1(z)j < jbi(z)j, there is anm so that jbm(z)j = 0. The algorithm then �nishes for

n = m+1. The number of steps thus is bounded by n 6 jb(z)j+1. If we let qi+1(z) = ai(z) = bi(z),

we have that "
an(z)

0

#
=

1Y
i=n

"
0 1

1 �qi(z)

#"
a(z)

b(z)

#
:

Consequently "
a(z)

b(z)

#
=

nY
i=1

"
qi(z) 1

1 0

#"
an(z)

0

#
;

and thus an(z) divides both a(z) and b(z). If an(z) is a monomial then a(z) and b(z) are

relatively prime.

Example 6. Let a(z) = a0(z) = z�1 + 6+ z and b(z) = b0(z) = 4 + 4z. Then the �rst division

gives us (see the example in Section 2):

a1(z) = 4 + 4 z

b1(z) = 4

q1(z) = 1=4 z�1 + 1=4:
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Next step yields

a2(z) = 4

b2(z) = 0

q2(z) = 1 + z:

Thus a(z) and b(z) are relatively prime and"
z�1 + 6 + z

4 + 4 z

#
=

"
1=4 z�1 + 1=4 1

1 0

#"
1 + z 1

1 0

#"
4

0

#

The number of steps here is n = 2 = jb(z)j+ 1.

6. The Factoring Algorithm

In this section, we explain how any pair of complementary �lters (h; g) can be factored into

lifting steps. First, note that he(z) and ho(z) have to be relatively prime because any common

factor would also divide detP (z) and we already know that detP (z) is 1. We can thus run the

Euclidean algorithm starting from he(z) and ho(z) and the gcd will be a monomial. Given the

non-uniqueness of the division we can always choose the quotients so that the gcd is a constant.

Let this constant be K. We thus have that"
he(z)

ho(z)

#
=

nY
i=1

"
qi(z) 1

1 0

#"
K

0

#
:

Note that in case jho(z)j > jhe(z)j, the �rst quotient q1(z) is zero. We can always assume

that n is even. Indeed if n is odd, we can multiply the h(z) �lter with z and g(z) with z�1.

This doesn't change the determinant of the polyphase matrix. It ips (up to a monomial) the

polyphase components of h and thus makes n even again. Given a �lter h we can always �nd a

complementary �lter g0 by letting

P 0(z) =

"
he(z) g0e(z)

ho(z) g0o(z)

#
=

nY
i=1

"
qi(z) 1

1 0

#"
K 0

0 1=K

#
:

Here the �nal diagonal matrix follows from the fact that the determinant of a polyphase matrix

is one and n is even. Let us slightly rewrite the last equation. First observe that"
qi(z) 1

1 0

#
=

"
1 qi(z)

0 1

#"
0 1

1 0

#
=

"
0 1

1 0

#"
1 0

qi(z) 1

#
: (5)

Using the �rst equation of (5) in case i is odd and the second in case i is even yields:

P 0(z) =

n=2Y
i=1

"
1 q2i�1(z)

0 1

#"
1 0

q2i(z) 1

#"
K 0

0 1=K

#
: (6)

Finally, the original �lter g can be recovered by applying Theorem 3.
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Now we know that the �lter g can always be obtained from g0 with one lifting or:

P (z) = P 0(z)

"
1 s(z)

0 1

#
(7)

Combining all these observations we now have shown the following theorem:

Theorem 7. Given a complementary �lter pair (h; g), then there always exist Laurent polyno-

mials si(z) and ti(z) for 1 6 i 6 m and a non-zero constant K so that

P (z) =
mY
i=1

"
1 si(z)

0 1

#"
1 0

ti(z) 1

#"
K 0

0 1=K

#
:

The proof follows from combining (6) and (7), setting m = n=2 + 1, tm(z) = 0, and sm(z) =

K2 s(z). In other words every �nite �lter wavelet transform can be obtained by starting with

the Lazy wavelet followed by m lifting and dual lifting steps followed with a scaling.

The dual polyphase matrix is given by

eP (z) = mY
i=1

"
1 0

�si(z�1) 1

#"
1 �ti(z�1)
0 1

#"
1=K 0

0 K

#
:

From this we see that in the orthogonal case (P (z) = eP (z)) we immediately have two di�erent

factorizations.

Figures 6 and 5 represent the di�erent steps of the forward and inverse transform schemati-

cally.

7. Examples

We start with a few easy examples. We denote �lters either by their canonical names (e.g.

Haar), by (N; eN) where N (resp. eN) is the number of vanishing moments of eg (resp. g), or by

(la � ls) where la is the length of analysis �lter eh and ls is the length of the synthesis �lter

h. We start with a sequence x = fxl j l 2 Zg and denote the result of applying the low-pass

�lter h (resp. high-pass �lter g) and downsampling as a sequence s = fsl j l 2 Zg (resp. d).

The intermediate values computed during lifting we denote with sequences s(i) and d(i). All

transforms are instances of Figure 6.

7.1. Haar wavelets. In the case of (unnormalized) Haar wavelets we have that h(z) = 1+z�1,

g(z) = �1=2 + 1=2z�1, eh(z) = 1=2 + 1=2z�1, and eg(z) = �1 + 1z�1. Using the Euclidean

algorithm we can thus write the polyphase matrix as:

P (z) =

"
1 �1=2
1 1=2

#
=

"
1 0

1 1

#"
1 �1=2
0 1

#
:

12
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Figure 5. The forward wavelet transform using lifting: First the Lazy wavelet,

then alternating lifting and dual lifting steps, and �nally a scaling.
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Figure 6. The inverse wavelet transform using lifting: First a scaling, then

alternating dual lifting and lifting steps, and �nally the inverse Lazy transform.

The inverse transform can immediately be derived from the forward by running

the scheme backwards.

This corresponds to the following implementation:

s
(0)

l = x2l

d
(0)

l = x2l+1

dl = d
(0)

l � s
(0)

l

sl = s
(0)

l + 1=2 dl:

7.2. Givens rotations. Consider the case where the polyphase matrix is a Givens rotation

(� 6= �=2). We then get"
cos� � sin �

sin� cos�

#
=

"
1 0

sin�= cos� 1

#"
1 � sin� cos�

0 1

#"
cos� 0

0 1= cos�

#
:

We can also do it without scaling with three lifting steps as (here assuming � 6= 0)"
cos� � sin�

sin � cos�

#
=

"
1 (cos� � 1)= sin�

0 1

#"
1 0

sin � 1

#"
1 (cos�� 1)= sin�

0 1

#

This corresponds to the well known fact in geometry that a rotation can always be written as

three shears.

The lattice factorization of [52] allows the decomposition of any orthonormal �lter pair into

shifts and Givens rotations. It follows any orthonormal �lter can be written as lifting steps, by
13



�rst writing the lattice factorization and then using the example above. This provides a di�erent

proof of Theorem 7 in the orthonormal case.

7.3. Scaling. These two examples show that the scaling from Theorem 7 can be replaced with

four lifting steps:

P (z) =

"
K 0

0 1=K

#
=

"
1 K �K2

0 1

#"
1 0

�1=K 1

#"
1 K � 1

0 1

#"
1 0

1 1

#

or

P (z) =

"
K 0

0 1=K

#
=

"
1 0

�1 1

# "
1 1� 1=K

0 1

#"
1 0

K 1

#"
1 1=K2 � 1=K

0 1

#

Given that one can always merge one of the four lifting steps with the last lifting step from the

factorization, only three extra steps are needed to avoid scaling. This is particularly important

when building integer to integer wavelet transform in which case scaling is not invertible [8].

7.4. Interpolating �lters. In case the low-pass �lter is half band, or h(z) + h(�z) = 2, the

corresponding scaling function is interpolating. Since he(z) = 1, the factorization can be done

in two steps:

P (z) =

"
1 ge(z)

ho(z) 1 + ho(z) ge(z)

#
=

"
1 0

ho(z) 1

#"
1 ge(z)

0 1

#
:

The �lters constructed in [46] are of this type. This gives rise to a family of (N; eN) (N andeN even) symmetric biorthogonal wavelets built from the Deslauriers-Dubuc scaling functions

mentioned in the introduction. The degrees of the �lters are jhoj = N�1 and jgej = eN�1. In caseeN 6 N , these are particularly easy as g
( eN)
e (z) = �1=2 h( eN)

o (z�1). (Beware: the normalization

used here is di�erent from the one in [46].)

Next we look at some examples that had not been decomposed into lifting steps before.

7.5. 4-tap orthonormal �lter with two vanishing moments (D4). Here the h and g �lters

are given by [18]:

h(z) = h0 + h1 z
�1 + h2 z

�2 + h3 z
�3

g(z) = �h3 z2 + h2 z
1 � h1 + h0 z

�1;

with

h0 =
1 +

p
3

4
p
2

; h1 =
3 +

p
3

4
p
2

; h2 =
3�

p
3

4
p
2

; and h3 =
1�

p
3

4
p
2

:

The polyphase matrix is

P (z) =

"
h0 + h2 z

�1 �h3 z1 � h1

h1 + h3 z
�1 h2z

1 + h0

#
; (8)

14



and the factorization is given by:

P (z) =

2
4 1 �

p
3

0 1

3
5
2
4 1 0

p
3
4
+

p
3�2
4

z�1 1

3
5
2
4 1 z

0 1

3
5
2
4

p
3+1p
2

0

0
p
3�1p
2

3
5

This corresponds to the following implementation for the forward transform:

d
(1)

l = x2l+1 �
p
3x2l

s
(1)

l = x2l +
p
3=4 d

(1)

l + (
p
3� 2)=4 d

(1)

l�1

d
(2)

l = d
(1)

l + s
(1)

l+1

sl = (
p
3 + 1)=

p
2 s

(1)

l

dl = (
p
3� 1)=

p
2d

(2)

l :

The inverse transform follows from reversing the operations and ipping the signs:

d
(2)

l = (
p
3 + 1)=

p
2 dl

s
(1)

l = (
p
3� 1)=

p
2 sl

d
(1)

l = d
(2)

l � s
(1)

l+1

x2l = s
(1)

l �
p
3=4 d

(1)

l � (
p
3� 2)=4 d

(1)

l�1

x2l+1 = d
(1)

l +
p
3x2l:

Given that the inverse transform always follows immediately from the forward transform, we

from now on only give the forward transform.

One can obtain a di�erent lifting factorization of D4 by shifting the �lter pair corresponding

to:

h(z) = h0 z + h1 + h2 z
�1 + h3 z

�2

g(z) = h3 z � h2 + h1 z
�1 � h0 z

�2;

with

P (z) =

"
h1 + h3 z

�1 �h2 � h0 z
�1

h0 z + h2 h3z + h1

#

as polyphase matrix. This leads to a di�erent factorization:

P (z) =

2
4 1 � 1p

3
z�1

0 1

3
5
2
4 1 0

p
3
4 z + 6�3

p
3

4 1

3
5
2
4 1 �1

3

0 1

3
5
2
4 3+

p
3

3
p
2

0

0 3�
p
3

3
p
2

3
5 ;
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and corresponds to the following implementation:

d
(1)

l = x2l+1 � 1=
p
3 x2l�2

s
(1)

l = x2l + (6� 3
p
3)=4 d

(1)

l +
p
3=4 d

(1)

l+1

d
(2)

l = d
(1)

l � 1=3 s
(1)

l

sl = (3 +
p
3)=(3

p
2) s

(1)

l

dl = (3�
p
3)=(3

p
2) d

(2)

l :

This second factorization can also be obtained as the result of seeking a factorization of the

original polyphase matrix (8) where the �nal diagonal matrix has (non-constant) monomial

entries.

7.6. 6-tap orthonormal �lter with three vanishing moments (D6). Here we have

h(z) =
3X

k=�2
hk z

�k;

with [18]

h�2 =
p
2

�
1 +

p
10 +

q
5 + 2

p
10

�
=32 h�1 =

p
2

�
5 +

p
10 + 3

q
5 + 2

p
10

�
=32

h0 =
p
2

�
10� 2

p
10 + 2

q
5 + 2

p
10

�
=32 h1 =

p
2

�
10� 2

p
10� 2

q
5 + 2

p
10

�
=32

h2 =
p
2

�
5 +

p
10� 3

q
5 + 2

p
10

�
=32 h3 =

p
2

�
1 +

p
10�

q
5 + 2

p
10

�
=32:

The polyphase components are

he(z) = h�2 z + h0 + h2 z
�1 ge(z) = �h3 z � h1 � h�1 z

�1

ho(z) = h�1 z + h1 + h3 z
�1 go(z) = h2 z + h0 + h�2 z

�1:

In the factorization algorithm the coe�cients of the remainders are calculated as:

r0 = h�1 � h3 � h�2=h2
r1 = h1 � h2 � h0=h2
s1 = h0 � h�2 � r1=r0 � h2 � r0=r1
t = �h3=h�2 � s21:
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If we now let

� = h3=h1 � �0:4122865950
� = h2=r1 � �1:5651362796
�0 = h�2=r0 � 0:3523876576

 = r1=s1 � 0:0284590896

0 = r0=s1 � 0:4921518449

� = �h3=h�2 � s21 � �0:3896203900
� = s1 � 1:9182029462;

then the factorization is given by:

P (z) =

"
1 0

� 1

#"
1 �z�1 + �0

0 1

#"
1 0

 + 0z 1

#"
1 �

0 1

#"
� 0

0 1=�:

#

We leave the implementation of this �lter as an exercise for the reader.

7.7. (9-7) �lter. Here we consider the popular (9-7) �lter pair. The analysis �lter eh has 9

coe�cients, while the synthesis �lter h has 7 coe�cients. Both high-pass �lters g and eg have 4

vanishing moments. We choose the �lter with 7 coe�cients to be the synthesis �lter because it

gives rises to a smoother scaling function than the 9 coe�cient one [19]. For this example we

run the factoring algorithm starting from the analysis �lter:

~he(z) = h4 (z
2 + z�2) + h2 (z + z�1) + h0 and ~ho(z) = h3 (z

2 + z�1) + h1 (z + 1):

The coe�cients of the remainders are computed as:

r0 = h0 � 2 h4 h1=h3

r1 = h2 � h4 � h4 h1=h3

s0 = h1 � h3 � h3 r0=r1:

Then de�ne

� = h4=h3 � �1:586134342
� = h3=r1 � �0:05298011854
 = r1=s0 � 0:8829110762

� = s0=t0 � 0:4435068522

� = r0 � 2 r1 � 1:149604398:
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Now

eP (z) =
"
1 �(1 + z�1)

0 1

#"
1 0

�(1 + z) 1

#"
1 (1 + z�1)

0 1

#"
1 0

�(1 + z) 1

#"
� 0

0 1=�

#
:

Note that here too many other factorizations exist; the one we chose is symmetric: every quotient

is a multiple of (z+1). This shows how we can take advantage of the non-uniqueness to maintain

symmetry. The factorization leads to the following implementation:

s
(0)

l = x2l

d
(0)

l = x2l+1

d
(1)

l = d
(0)

l + � (s(0)l + s
(0)

l+1)

s
(1)

l = s
(0)

l + � (d
(1)

l + d
(1)

l�1)

d
(2)

l = d
(1)

l +  (s
(1)

l + s
(1)

l+1)

s
(2)

l = s
(1)

l + � (d
(2)

l + d
(2)

l�1)

sl = � s
(2)

l

dl = d
(2)

l =�:

7.8. Cubic B-splines. We �nish with an example that is used frequently in computer graphics:

the (4,2) biorthogonal �lter from [14]. The scaling function here is a cubic B-spline. This example

can be obtained again by using the factoring algorithm. However, there is also a much more

intuitive construction in the spatial domain [47]. The �lters are given by

h(z) = 3=4 + 1=2 (z + z�1) + 1=8 (z2+ z�2)

g(z) = 5=4z�1 � 5=32 (1+ z�2)� 3=8 (z + z�3)� 3=32 (z2+ z�4);

and the factorization reads:

P (z) =

"
1 1=4(1 + z�1)

0 1

#"
1 0

(1 + z) 1

#"
1 �3=16(1+ z�1)

0 1

#"
1=2 0

0 2

#
:

8. Computational complexity

In this section we take a closer look at the computational complexity of the wavelet transform

computed using lifting. As a comparison base we use the standard algorithm, which corresponds

to applying the polyphase matrix. This already takes advantage of the fact that the �lters will

be subsampled and thus avoids computing samples that will be subsampled immediately. The

unit we use is the cost, measured in number of multiplications and additions, of computing one

sample pair (sl; dl). The cost of applying a �lter h is jhj+ 1 multiplications and jhj additions.
18



The cost of the standard algorithm thus is 2(jhj+ jgj) + 2. If the �lter is symmetric and jhj is
even the cost is 3 jhj=2 + 1.

Let us consider a general case not involving symmetry. Take jhj = 2N , jgj = 2M , and

assume M > N . The cost of the standard algorithm now is 4(N + M) + 2. Without loss

of generality we can assume that jhej = N , jhoj = N � 1, jgej = M , and jgoj = M � 1. In

general the Euclidean algorithm started from the (he; ho) pair now needs N steps with the

degree of each quotient equal to one (jqij = 1 for 1 6 i 6 N). To get the (ge; go) pair, one

extra lifting step (7) is needed with jsj = M � N . The total cost of the lifting algorithm is:

scaling: 2

N lifting steps: 4N

�nal lifting step: 2(M �N + 1)

total 2(N +M + 2)

We have shown the following:

Theorem 8. Asymptotically, for long �lters, the cost of the lifting algorithm for computing the

wavelet transform is one half of the cost of the standard algorithm.

In the above reasoning we assumed that the Euclidean algorithm needs exactly N steps with

each quotient of degree one. In a particular situation the Euclidean algorithm might need fewer

than N steps but with larger quotients. The interpolating �lters form an extreme case; with

two steps one can build arbitrarily long �lters. However, in this case Theorem 8 holds as well;

the cost for the standard algorithm is 3(N + eN) � 2 while the cost of the lifting algorithm is

3=2(N + eN).

Of course, in any particular case the numbers can di�er slightly. Table 1 gives the cost S of

the standard algorithm, the cost L of the lifting algorithm, and the relative speedup (S=L� 1)

for the examples in the previous section.

One has to be careful with this comparison. Even though it is widely used, the standard

algorithm is not necessarily the best way to implement the wavelet transform. Lifting is only

one idea in a whole tool bag of methods to improve the speed of a fast wavelet transform. Rioul

and Duhamel [39] discuss several other schemes to improve the standard algorithm. In the case

of long �lters, they suggest an FFT based scheme known as the Vetterli-algorithm [57]. In the

case of short �lters, they suggest a \fast running FIR" algorithm [55]. How these ideas combine

with the idea of using lifting and which combination will be optimal for a certain wavelet goes

beyond the scope of this paper and remains a topic of future research.
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Wavelet Standard Lifting Speedup

Haar 3 3 0%

D4 14 9 56%

D6 22 14 57%

(9-7) 23 14 64%

(4,2) B-spline 17 10 70%

(N; eN) Interpolating 3(N + eN)� 2 3=2(N + eN) � 100%

jhj = 2N , jgj = 2M 4(N +M) + 2 2(N +M + 2) � 100%

Table 1. Computational cost of lifting versus the standard algorithm. Asymp-

totically the lifting algorithm is twice as fast as the standard algorithm.

9. Comments

1. From an algebraic point of view the main result of this paper is not new. It has been

known for a long time that elements of the ring GL2(R[z; z�1]) can be written as products

of so called elementary matrices [2].

2. The main result of this paper also holds in case the �lter coe�cients are not necessarily

real, but belong to another �eld such as the rationals, the complex numbers, or even a �nite

�eld. However, similar results do not hold in case the �lter coe�cients themselves belong

to a ring such as the integers or the dyadic numbers. It is thus not guaranteed that �lters

with binary coe�cients can be factored into lifting steps with binary �lter coe�cients.

3. In this paper we never concerned ourselves with whether �lters were causal, i.e., only

had �lter coe�cients for k > 0. Given that all subband �lters here are �nite, causality

can always be obtained by shifting the �lters. Obviously, if both analysis and synthesis

�lters have to be causal, perfect reconstruction is only possible up to a shift. By executing

the Euclidean algorithm over the ring of polynomials as opposed to the ring of Laurent

polynomials it can be assured that then all lifting steps are causal as well.

4. The long division used in the Euclidean algorithm guarantees that, except for at most one

quotient of degree 0, all the quotients will be at least of degree 1 and the lifting �lters thus

contain at least 2 coe�cients. In some cases, e.g., hardware implementations, it might be

useful to use only lifting �lters with at most 2 coe�cients. Then, in each lifting step, an

even location will only get information from its two immediate odd neighbors or vice versa.

Such lifting steps can be obtained by not using a full long division, but rather stopping

the division as soon as the quotient has degree one. The algorithm still is guaranteed to

terminate as the degree of the polyphase components will decrease by exactly 1 in each

step. We are now guaranteed to be in the setting used to sketch the proof of Theorem 8.
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5. In the beginning of this paper, we pointed out how lifting is related to the multiscale

transforms and the associated stability analysis developed by Wolfgang Dahmen and co-

workers. It is claimed that their setting is more general than lifting as it allows for a

non-identity operator K on the diagonal of the polyphase matrix, while lifting requires

identities on the diagonal. This paper shows that, at least in the �rst generation or time

invariant setting, no generality is lost by restricting oneself to lifting. Indeed, any invertible

polyphase matrix with a non-identity polynomial K(z) on the diagonal can be obtained

using lifting. Moreover, most of the advantages of lifting mentioned in the introduction

rely fundamentally on the identity on the diagonal and would disappear when allowing a

general K.

6. A natural question is how this factorization generalizes to the M -band setting. In algebra

it is known that aM �M polyphase matrix with elements in a Euclidean domain and with

determinant one can be reduced to an identity matrix using elementary row and column

operations, see [27, Theorem 7.10]. This reduction, also known as the Smith normal form,

allows for lifting factorizations in the M -band case. For more details and applications of

factorizations in the M -band case, we refer to [29].

7. The construction in this paper gives essentially a factorization of the polyphase matrix

representation of the �lter bank, by means of the Euclidean algorithm. The basic reason

why these factorizations are possible can also be explained (albeit less elegantly) by the

following argument. For simplicity, assume that the �lter bank is orthogonal, with non-

zero �lter coe�cients h0; : : : ; h2L+1, and g0; : : : ; g2L+1, with L > 1. The orthogonality

relations imply both h0 h2L + h1 h2L+1 = 0 and h0 g2L + h1 g2L+1 = 0. It follows that

g2L = � h2L, g2L+1 = � h2L+1 = 0 for some � 2 R, so that all the gn can be written as

gn = g0n+� hn, using only 2L non-zero g0n, n = 0; : : : ; 2L�1, instead of the 2L+2 non-zero

gn, n = 0; : : : ; 2L+ 1. The g0n inherit moreover many orthogonality relations from the gn,

so that they, in turn, can be used to whittle the 2L+ 2 non-zero hn down to 2L non-zero

h0n. Iteration of the whole process leads to a decomposition of the �lter pair; the inverse

procedure is exactly a lifting scheme.
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