
Universit ät
Bielefeld

Forschungsberichte der

Technischen Fakult�at

Abteilung Informationstechnik

Fundamental Algorithms for a

Declarative Pattern Matching System

Stefan Kurtz

Report 95-03

Universit�at Bielefeld � Postfach 10 01 31 � 33501 Bielefeld � FRG

Impressum: Herausgeber:

Robert Giegerich, Alois Knoll, Peter Ladkin,

Helge Ritter, Gerhard Sagerer, Ipke Wachsmuth

Technische Fakult�at der Universit�at Bielefeld,

Abteilung Informationstechnik, Postfach 10 01 31,

33501 Bielefeld, FRG

Fundamental Algorithms for a

Declarative Pattern Matching System

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Universit�at Bielefeld

vorgelegte

Dissertation

von

Stefan Kurtz

Bielefeld, im Juli 1995

Acknowledgments

I would like to thank my supervisor Robert Giegerich for his valuable interest, guidance

and encouragement. I am indebted to Enno Ohlebusch who has patiently given me much

of his time to discuss numerous topics of the thesis. Special thanks go to Esko Ukkonen

for helpful discussions during his visit in Bielefeld. Valuable contributions to the quality

of the thesis were made by Dorothee Berndt and Jens Stoye. I would like to thank Bernd

B�utow, Georg F�ullen, Frank Hischke, Antje Krause, Marc Rehmsmeier, and Karsten Loer

for carefully reading parts of the thesis. Finally, I am much obliged to Preston Crutch�eld

and Birgit Kurtz for improving my English.

Contents

1 Motivation and Overview 1

2 Functional Programming Concepts 7

2.1 An Introduction to Miranda . 10

2.1.1 Types . 10

2.1.2 Functions . 12

2.1.3 List Comprehensions . 14

2.1.4 Non-Strict Functions and In�nite Data Structures 15

2.2 The Model of Computation . 16

2.3 Monads . 17

2.3.1 State Transformers . 19

2.3.2 Array Transformers . 20

2.4 Extensions to Miranda . 22

3 The String Processing Machinery 23

3.1 Basic De�nitions and Notations . 24

3.2 A+-Trees . 25

3.2.1 Su�x Links . 25

3.2.2 Locations . 26

3.3 Su�x Trees . 29

3.3.1 Applications . 30

3.3.2 Space Requirements . 31

3.3.3 The Sentinel Character . 32

3.4 Implementation . 33

3.4.1 Strings . 33

3.4.2 Edge Labels . 34

3.4.3 Edge Sets . 35

3.4.4 Atomic A+-Trees . 36

I

II CONTENTS

3.4.5 Compact A+-Trees . 37

3.4.6 Locations . 38

3.5 Su�x Tree Algorithms . 40

3.5.1 The Lazy Su�x Tree Algorithm . 41

3.5.2 Ukkonen's Online Su�x Tree Algorithm 43

3.5.3 McCreight's Su�x Tree Algorithm 47

3.6 Implementation of Su�x Tree Algorithms 51

3.6.1 The Lazy Su�x Tree Algorithm . 51

3.6.2 Tree Transformers . 53

3.6.3 Compact Tree Transformers . 56

3.6.4 Locations . 57

3.6.5 Ukkonen's Online Su�x Tree Algorithm 58

3.6.6 McCreight's Su�x Tree Algorithm 59

3.7 Computing Su�x Links and Annotations . 61

3.7.1 Su�x Links for Atomic A+-Trees . 62

3.7.2 Su�x Links for Compact Su�x Trees 63

3.7.3 Annotations for Compact Su�x Trees 66

3.7.4 Merging the Computations . 67

3.8 Deterministic Finite Automata . 69

3.8.1 Implementation . 70

3.9 String Comparisons . 72

3.9.1 The Edit Distance Model . 72

3.9.2 The Maximal Matches Model . 77

3.9.3 The q-Gram Model . 79

3.9.4 Signi�cance of the Models in Molecular Biology 82

3.9.5 Implementation . 83

3.10 Summary . 93

4 Exact String Searching 94

4.1 The Brute Force Algorithm . 95

4.2 The Knuth-Morris-Pratt Algorithm . 96

4.2.1 Implementation . 98

4.3 The Karp-Rabin Algorithm . 100

4.3.1 Implementation . 101

4.4 The Boyer-Moore Algorithm . 102

CONTENTS III

4.4.1 The Good-Su�x Heuristic . 103

4.4.2 The Bad-Character Heuristic . 107

4.4.3 E�ciency of the Search Phase . 109

4.4.4 Horspool's Heuristic . 110

4.4.5 Sunday's Heuristic . 112

4.4.6 Implementation . 114

4.5 The Chang-Lawler Algorithm . 119

4.5.1 Implementation . 121

4.6 Overview of the Implementations . 125

5 Multiple Exact String Searching 126

5.1 The Su�x Tree Search Algorithm . 127

5.1.1 Implementation . 127

5.2 The Aho-Corasick Algorithm . 128

5.2.1 Implementation . 129

5.3 Other Approaches . 131

6 Approximate String Searching 132

6.1 Sellers' Algorithm . 133

6.1.1 Implementation . 136

6.2 Memorizing Distance Columns . 137

6.2.1 Essential Su�xes . 138

6.2.2 Ukkonen's Implementation Techniques for MDC 143

6.2.3 An Online Implementation Technique for MDC 144

6.2.4 A Technique Based on Deterministic Finite Automata 145

6.2.5 Implementation . 148

6.3 Properties of Table D . 151

6.4 Ukkonen's Cuto� Algorithm . 153

6.4.1 Implementation . 153

6.5 Ukkonen's Column-DFA . 154

6.5.1 Implementation . 157

6.6 Diagonal Transition Algorithms . 162

6.6.1 The Basic Idea . 163

6.6.2 The Brute Force Diagonal Transition Algorithm 166

6.6.3 E�cient Computation of Jumps . 167

6.6.4 Implementation . 171

IV CONTENTS

6.7 The Column Partition Algorithm . 178

6.7.1 Implementation . 182

6.8 Chang and Lawler's Filtering Technique . 185

6.8.1 Linear Expected Time Algorithm . 185

6.8.2 Improved Linear Expected Time Algorithm 187

6.8.3 Sublinear Expected Time Algorithm 189

6.8.4 Improved Sublinear Expected Time Algorithm 191

6.8.5 Implementation . 191

6.8.6 Other Approaches . 196

6.9 Overview of the Implementations . 197

7 Performance Results 199

7.1 Exact String Searching . 199

7.2 Multiple Exact String Searching . 201

7.3 Approximate String Searching . 202

8 Conclusion 211

A Implementation of Queues 215

B Prede�ned Functions 217

Bibliography 219

Index 232

Chapter 1

Motivation and Overview

String Algorithms in the Functional Programming Paradigm

A large part of human knowledge is collected in the form of strings of symbols over some

suitable alphabet. Strings have to be e�ciently processed in many di�erent ways. Some

operations on strings, like string searching and string comparison, are so important in any

processing of information that they can be considered important primitives of computation.

In the last 15 years, the motivation for research in string algorithms came to a substantial

part from several application �elds like information retrieval, computer vision, and molec-

ular biology. Especially in the latter �eld, a large number of interesting string searching

and comparison problems appeared in the context of analyzing DNA, RNA, and protein

sequences. This led to the development of a multitude of software, ranging from programs

solving isolated problems [LP85, AGM+89] to systems providing a large number of functions

for simple sequence analysis [DHS84, Sta88, Ger91]. To cope with the exponential growth

of biological sequence data (to the current volume of about 100 million nucleotides), the

primary design goal for these tools was e�ciency. Only rudimentary ways to combine the

basic functions were incorporated. For a more complex analysis, it was necessary to resort

to the operating system level.

Newer developments reacted upon this severe drawback. In [Sea89, Meh91, Gon92, MM93b],

di�erent experimental systems were proposed that allowed for a convenient description of

complex patterns, and incorporated several novel ideas to e�ciently search for these patterns.

However, all systems had a common disadvantage. They could not easily be adjusted to new

requirements. That is, the user was in general not able to integrate his own functionality

with built-in features. This was because the systems were only extensible (if at all) on a

very low level of abstraction which is known as error-prone and unproductive.

Recently, Giegerich [Gie92] suggested to embed a tool for sequence analysis in the functional

programming paradigm. In particular, he described a declarative pattern matching system

named Pamelita,1 which provided several basic matching functions and utilities to combine

them to complex matchers. Building upon this machinery, the system can be extended on

a coherent level of abstraction. More precisely, the user can obtain a family of matching

functions tailored to a speci�c biological research context by providing some simple functional

1The name Pamelita was chosen since the system mimics the PAMALA system of Mehldau [Meh91].

1

2 CHAPTER 1. MOTIVATION AND OVERVIEW

programs. This idea is very promising because it could gain signi�cantly from the widely

known virtues of functional programming, such as transparency, compositionality, type-

safeness and high programming productivity.

Pamelita is more a research program than a prototype. To become a useful tool for biological

sequence analysis, there are many improvements necessary. In [Gie92], Giegerich enumerates

ten work items, most of which concern language design and user interfaces. However, the

most important point is to provide a large number of e�ciently implemented basic matching

functions. In other words, string searching and string comparison algorithms have to be

embedded in the functional programming paradigm. A �rst step addressing this demand was

made in [Gie92] where the construction of su�x trees and the search for repeat structures

was studied. This was done in an ad hoc manner, but the results were promising and

encouraged Giegerich and Kurtz [GK94] to have a closer look especially at functional su�x

tree constructions.

In the thesis we will consider the embedding of fundamental string algorithms in the func-

tional programming paradigm more systematically and in greater detail. In particular, we

provide a thorough development and complete implementation of several string searching

and comparison algorithms. We mainly restrict ourselves to well established algorithms, but

we also provide some new algorithmic ideas.

Unlike traditional imperative presentations, we apply the structuring methods of functional

languages to construct implementations from individual reusable components. The use of

higher order functions and lazy evaluation allows to \glue" program components together in

ways that are not supported by modular imperative languages like Modula-2 and Ada. By

this method we obtain a greater degree of modularity than usually seen.

Although a Pamelita-like tool will be an important application for our functional implemen-

tations, the use is not restricted to problems occurring in the analysis of biological sequences.

Due to their
exibility and modularity, our implementations form a powerful collection of

functions to be conveniently reused in a variety of contexts. For example, we have used

this collection several times for rapid prototyping of string algorithms. Some students at

the University of Bielefeld [Ber95, Kra95, San95, Sto95] have already based parts of their

master's thesis on this collection.

Heretofore, string algorithms have always2 been given in an imperative style (see the text-

books [Sed88, CLR90, GBY91, BY92, Ste94]) with asymptotic e�ciency analysis for the

random access machine [AHU74]. Instead, we use functional style and analyze the e�ciency

in the computation model of outermost graph reduction. The implementation methods for

lazy functional languages (see [PJ87, PJL91]) usually correspond more or less closely to this

model, so that it is generally a good predictor of the behavior of an actual implementation.

However, we will also validate the analytical e�ciency results by practical measurements.

Note that our implementations are more than a reimplementation of known algorithms.

Since the programming techniques in the imperative and the functional world are often

incompatible, our implementations often look quite di�erent from their imperative counter-

parts, even if they are based on the same algorithmic ideas. One of the main contributions

of the thesis is to show that despite these di�erences the functional programs can (except

for one case) compete with the corresponding imperative programs concerning asymptotic

2We only know of the three exceptions [All92, SR92, GK94] which use functional style.

3

e�ciency. This result is remarkable since it has been questioned that purely functional

programs can achieve the same complexity class as imperative programs.

The dissimilarity of imperative and functional style has an important consequence for the

structure of the thesis. Rather than referring to some well-known operational description

in form of an imperative program, we view a problem from a declarative point and develop

an algorithm from its basic idea. In particular, we will establish the properties that are

responsible for the correctness and e�ciency of the algorithm. This also includes a careful

analysis of the boundary cases, in order to achieve robust implementations. This process

simpli�es and clari�es the structure of an algorithm and leads to a declarative description

which does not refer to a particular computation model. Note that even for well-studied

problems, a declarative view sometimes leads to interesting insights. Giegerich and Kurtz

[GK95a] have demonstrated this with the development of the lazy su�x tree construction.

We will give more examples in the thesis.

The declarative description is a very important step in the program development. It speci�es

an algorithm on an abstract level, but it is precise enough to argue about its e�ciency aspects.

Moreover, it often maps to a functional implementation in a transparent and relatively

straightforward way.

Note that with respect to the functional programs, the thesis is self-contained. For all

functions that we use in the implementations, the complete and real code is given. Indeed,

the text of the thesis is an executable and extensively tested collection of functional programs

with \comments" in LATEX format.

Structure of the Thesis and Summary of the Results

Chapter 2 is devoted to functional programming concepts. First, we recall the fundamental

di�erences between the imperative and the functional programming paradigm. Then we

shortly discuss the most important properties of functional languages including some aspects

of di�erent evaluation strategies. For those readers without experience in the functional

world, we introduce the basic ideas and the most important notations of the purely functional

programming language Miranda3 [Tur85]. This is done in an informal way by the use of

several examples. We restrict ourselves to a subset of Miranda which su�ces for most of the

implementations given in the thesis. In section 2.2, we describe the model of computation

according to which we determine the e�ciency of our functional programs. Subsequently, we

review Wadler's [Wad90, Wad92b, Wad92a] monadic programming style, and outline how it

can be used to incorporate updatable arrays in Miranda without destroying the referential

transparency of the language. Finally, we establish two extensions of Miranda that are

necessary for some of the implementations that we give. The �rst extension provides arrays

with an e�cient creation and lookup function. The second extension additionally includes

an e�cient array update function.

In chapter 3, we describe our string processing machinery. We begin with some basic de�-

nitions and notations. Section 3.2 introduces the concept of A+-trees which occurs in many

variants throughout the thesis: A+-trees serve as the \raw material" for su�x trees, and they

are used to implement the Knuth-Morris-Pratt Algorithm [KMP77] and the Aho-Corasick

3Miranda is a trademark of Research Software Limited.

4 CHAPTER 1. MOTIVATION AND OVERVIEW

Algorithm [AC75]. The main contribution of section 3.2 is the notion of locations which

allows to describe algorithms on A+-trees in a convenient and concise way. Section 3.3 is

devoted to su�x trees. We outline some applications, consider space requirements, and

explain the role of the sentinel character. In section 3.4, we regard implementation issues.

In particular, we discuss some important design decisions concerning the representation of

strings, edge labels, and edge sets. To cope with the di�erent degrees of compactness and

speci�c annotations, we introduce a polymorphic data type for A+-trees. Moreover, we show

how to implement some basic functions on locations to be used throughout the thesis. Sec-

tion 3.5 is devoted to su�x tree construction. We begin with the lazy su�x tree algorithm.

Its worst case e�ciency is quadratic, but it leads to a simple functional implementation

with a good average case performance. We also describe Ukkonen's linear online algorithm

[Ukk93b] and the widely known linear algorithm of McCreight [McC76]. All three su�x tree

algorithms are discussed in a similar way in [GK95a]. However, we use a slightly di�erent

notation and make some technical details explicit which are left open in [GK95a]. This leads

to a more compact and concise declarative description which provides the basis for proving

the correctness of the algorithms. At least for Ukkonen's algorithm, we give the �rst de-

tailed correctness proof. Section 3.6 shows the functional implementation of the three su�x

tree algorithms. Since Ukkonen's and McCreight's algorithms require updatable states, we

implement them in monadic programming style. In this way, we obtain the �rst purely

functional implementation of linear su�x tree algorithms. The main contribution of section

3.7 is a higher order function to compute su�x trees including su�x links and annotations

in a uni�ed way. In section 3.8, we brie
y recall the concept of deterministic �nite automata

and show how to implement these purely functionally using circular structures. Section 3.9

is devoted to string comparison models. In particular, we consider the edit distance model

[Ula72], the maximal matches model [EH88], and the q-gram model [Ukk92a]. We describe

the Wagner-Fischer Algorithm [WF74] which uses the technique of dynamic programming to

compute the edit distance. An important contribution is a new algorithm which performs a

parallel walk of two su�x trees in order to compute the q-gram distance. In section 3.9.4, we

brie
y discuss the signi�cance of the three comparison models in molecular biology. Section

3.9.5 is devoted to implementation issues. We provide a higher order function that allows for

the implementation of many variations of the Wagner-Fischer Algorithm in a convenient and

purely functional way. Moreover, we present a new and very
exible approach for computing

suboptimal alignments.

In chapter 4, we consider the exact string searching problem which consists of �nding exact

occurrences of a pattern in an input string. We present the most important solutions to

the problem and show how to implement them in our functional framework. All functional

implementations have the same asymptotic e�ciency as their imperative counterparts. We

begin with the Brute Force Algorithm. Subsequently, we consider the Knuth-Morris-Pratt

Algorithm [KMP77]. It achieves linear worst case running time by precomputing information

about matches and mismatches which is used to avoid repeated comparisons. Our implemen-

tation of the Knuth-Morris-Pratt Algorithm is based on A+-trees. Section 4.3 is devoted

to the Karp-Rabin Algorithm [KR87] which applies hash techniques to obtain a speedup

in the average case. A large part of chapter 4 is devoted to the Boyer-Moore Algorithm

[BM77]. The basic idea of this algorithm is to align the pattern with a fragment of the input

string and to look for a match by comparing the aligned characters from right to left. The

information gathered in this comparison is used to determine a shift of the pattern to the

5

right. In sections 4.4.1 and 4.4.2, we consider two heuristics to determine such a shift. We

show how to preprocess the pattern and the input alphabet in order to apply the heuristics

e�ciently. The main contribution of section 4.4.1 is a new and relatively simple linear time

preprocessing method to be used in the Boyer-Moore Algorithm. This method utilizes the

su�x tree of the pattern which has been augmented with some extra information. In sec-

tions 4.4.4 and 4.4.5, we consider Horspool's [Hor80] and Sunday's [Sun90] heuristics which

allow for a simpli�ed and faster preprocessing phase. Both heuristics lead to exact string

searching algorithms with good average case behavior. In section 4.4.6, we show how to im-

plement the Boyer-Moore Algorithm and its variations. Section 4.5 is devoted to the widely

unknown exact string searching algorithm of Chang and Lawler [CL90]. We have included

this algorithm because it combines the advantages of the Knuth-Morris-Pratt Algorithm and

the Boyer-Moore Algorithm in an elegant way. This is accomplished by traversing the su�x

tree of the pattern in two di�erent manners. Section 4.6 summarizes the properties of the

functional implementations given in chapter 4.

In chapter 5, we consider the multiple exact string searching problem which consists of

�nding exact occurrences of several patterns in an input string. We describe the su�x tree

search algorithm which preprocesses the input string into a su�x tree in order to achieve

optimal search time. Section 5.2 deals with the Aho-Corasick Algorithm [AC75] which

preprocesses the patterns into an A+-tree in order to look for all patterns in the input string

simultaneously. In section 5.3, we brie
y describe other approaches for solving the multiple

exact string searching problem.

Chapter 6 deals with the approximate string searching problem which consists of �nding

approximate occurrences of a pattern in an input string. We measure the approximation

quality by the edit distance. Except for one,4 all functional implementations achieve the

same asymptotic e�ciency as their imperative counterparts. In section 6.1, we describe

Sellers' [Sel80] dynamic programming solution to the approximate string searching prob-

lem. Since Sellers' method is a variation of the Wagner-Fischer Algorithm, it can easily

be implemented using the framework developed in section 3.9.5. This is also true for the

\cuto�" variation of Sellers' method (which was suggested by Ukkonen [Ukk85b]). In sec-

tion 6.2.1, we analyze the combinatorics of the dynamic programming table computed by

Sellers' method. This was already done in [Ukk93a], but we present some simpler proofs and

additional properties. We give a declarative description of Ukkonen's algorithm [Ukk93a]

which traverses the su�x tree of the input string to solve the approximate string searching

problem. Our description abstracts from a concrete data structure which makes it quite

amenable for the correctness proof given in section 6.2.1. In section 6.2.2, we brie
y dis-

cuss the implementation techniques suggested in [Ukk93a]. Section 6.2.3 presents a new

online implementation technique for Ukkonen's algorithm. In section 6.2.4, we develop the

ideas presented in [Ukk93a] one step further. We describe a new algorithm that incremen-

tally computes a deterministic �nite automaton for solving the approximate string searching

problem. For the remainder of chapter 6, we restrict ourselves to the unit cost model. This

leads to an instance of the approximate string searching problem widely known as the k-

di�erences problem. After brie
y recalling the combinatorics of the problem, we describe the

most important solutions in detail beginning with Ukkonen's \cuto�" algorithm [Ukk85b].

Section 6.5 is devoted to Ukkonen's [Ukk85b] deterministic �nite automaton which is ob-

tained by precomputing each column possibly occurring in the dynamic programming table.

4The O(k � n) worst case algorithm of [LV88].

6 CHAPTER 1. MOTIVATION AND OVERVIEW

We present a functional program that constructs the automaton incrementally. Section 6.6

deals with the Diagonal Transition Algorithm which was devised in [LV88]. Our declara-

tive presentation of the algorithm contrasts the traditional imperative views. We present

two variations of the algorithm. A brute force method which runs fast in practice, and a

variation that achieves an improved worst case performance by preprocessing the pattern

and the input string. The preprocessing methods of [CL94] and [UW93] are considered

in section 6.6.3. A main contribution is a declarative description and detailed correctness

proof of Chang and Lawler's linear time algorithm for computing matching statistics. Sec-

tion 6.6.4 considers implementation issues. Unfortunately, the functional implementation of

the preprocessing Diagonal Transition Algorithm does not achieve the improved worst case

running time as it is possible for an imperative implementation. In section 6.7, we present

Chang and Lampe's Column Partition Algorithm [CL92]. Our presentation contains some

important details omitted in [CL92]. We derive an e�cient functional implementation in

a systematic way by program transformation. The algorithms presented in section 6.8 are

due to Chang and Lawler [CL94]. The idea is to apply a �lter to the input string to elimi-

nate large portions that cannot contain an approximate match. By modifying a notation of

Ehrenfeucht and Haussler [EH88] we can describe Chang and Lawler's �lter techniques in a

very concise and intuitive way. This clari�es the boundary cases and reveals some sources

for improving the techniques. In section 6.8.6, we brie
y describe two further approaches for

solving the k-di�erences problem. Section 6.9 summarizes the properties of the functional

implementations given in chapter 6.

Chapter 7 gives some performance results for the string searching algorithms we have im-

plemented. In chapter 8, we recall the main �ndings of the thesis and outline some topics of

future work.

Chapter 2

Functional Programming Concepts

Imperative programming languages such as FORTRAN, Pascal, C and Ada make essential

use of assignments to variables as the basic construct, around which are built the control

abstractions of sequencing, branching and looping, and so on. For a given input, an im-

perative program determines a sequence of instructions that transform a store (made up of

cells) by updating the contents of the cells. The imperative programmer has to organize the

computation sequencing into small steps and to care about the memory management, that

is, the use and reuse of variables and the distribution of large values across many cells. On

the one hand, this �ne control allows to write programs which are hard to beat in terms of

space and time. On the other hand, the necessity to provide the administrative details of

sequencing and memory management leads to some well-known disadvantages:

� The productivity of the programmer is low.

� The programs are often error prone.

� It is problematic to port the programs to other machine architectures, especially highly

parallel machines.

� It is di�cult to treat the programs by formal proof methods.

� Parts of the programs are often not reusable.

A good example for the bene�ts of liberating the programmer from administrative details

can even be found in most imperative languages with the concept of arithmetic expressions.

By providing an appropriate arithmetic expression, the programmer only has to describe

what is to be computed. The details of how it is computed are left to the compiler. Consider

the following arithmetic expression (see [Rea89])

((i+ j) � (abs (i� j) + 1)) div 2

which describes the sum of the integers between two given integers i and j. It contains the

application of several functions as well as referring to data values i, j, 1 and 2. Nothing is

said about certain details, such as where the intermediate results are stored. We can also

see the potential for several di�erent orders of evaluation, including parallel evaluations of

subexpression, such as (i + j) and (abs (i � j) + 1). Another important point is that the

7

8 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

occurrences of i and j stand for integer values rather than cells in which values may be

placed.

One of the most important ideas of the functional programming paradigm is to completely

liberate the programmer from sequencing and memory management details. This is achieved

by using expressions as the uniform basis for programming. In particular, programming in

a functional language consists of de�ning functions. The primary role of the computer is to

evaluate expressions and to print the results. An expression which contains occurrences of

the names of functions is evaluated by using the function de�nitions as reduction rules. Let

us brie
y recall the most important properties of functional programming.

Referential Transparency According to [Sto77], referential transparency means the fol-

lowing:

\The only thing that matters about an expression is its value, and any

subexpression can be replaced by any other equal in value. Moreover, the

value of an expression is, within certain limits, the same whenever it occurs."

Therefore, an expression in a functional language is free of side e�ects. It can be

constructed, manipulated and reasoned about, like any other kind of mathematical

expression, using more or less familiar algebraic laws. Moreover, since the evaluation

of di�erent subexpressions does not a�ect each other, the value of an expression is

independent of the order in which it is evaluated. This principle is known as the

con
uence or Church-Rosser property. It allows the programmer to devise an algorithm

without considering the control
ow. Therefore, functional languages are very suitable

for programming highly parallel computers (see [PJ89]).

Abstraction This is a very important property in programming since it allows for sepa-

ration of concerns. Functional languages allow a high degree of abstraction. This is

mainly achieved by considering functions as values. That is, functions can be passed

as arguments to other functions and returned as results. This concept of higher order

functions considerably simpli�es the structuring, the modi�cation, the composition,

and the modularization of programs and leads to a higher degree of reusability.

Polymorphic Typing Like monomorphic typing which is used in Pascal, polymorphic typ-

ing eliminates many sources for errors. However, it is more
exible and considerably

improves the reusability.

Notational Convenience The notation of functional languages obeys normal mathemat-

ical principles. It is very simple, concise, and powerful. Hence, for many problems,

functional languages are an ideal tool to write down executable speci�cations.

For a more detailed discussion of these topics we refer the reader to the textbooks [Hen80,

GHT84, Wik87, BW88, Rea89, Mac90, Hin92, Thi94].

Note that there are functional languages that are not referentially transparent, since they

allow for impure features like assignments (for example, Standard ML [MTH90] and most

dialects of LISP [McC60]). We refer to these as impure functional languages. In the thesis

we only consider pure, that is, referentially transparent functional languages.

9

Functions which are always unde�ned with unde�ned arguments are called strict whereas

functions which can give de�ned results even when arguments are unde�ned are called non-

strict. Functional languages like Standard ML or Scheme [RC86] assume strict functions and

use eager evaluation. This means that arguments to functions are fully evaluated before the

function is applied. Functional languages like Miranda [Tur85], Lazy ML [AJ89], Haskell

[FHPJW92], Gofer [Jon94], and Clean [PE95] support non-strict functions and are based on

lazy evaluation. This means that the evaluation of function arguments is postponed until

the value is known to be required.

The programs described in the thesis are written in a lazy functional language. This is for

the following advantages of lazy evaluation:

� It is often the case that the most natural speci�cation of a function is closer to being

an e�cient program for lazy evaluation than it is for eager evaluation [Rea89].

� Laziness allows to use in�nite data structures in an elegant way. This provides a further

mechanism to separate control and calculation and thus improves modularization and

reusability. Consider streams, which, according to Abelson and Sussman [AS84], are a

very powerful tool for structuring programs. In a lazy functional language, streams are

nothing else but in�nite lists, whereas in an eager functional language, it is necessary

to introduce a special syntax for streams like it is done in Scheme.

� Whenever an expression has a de�ned value it can be computed by lazy evaluation.

In this sense, lazy evaluation is fully consistent with the principle of referential trans-

parency [Tur85] and programs may be written without any concern for control
ow.

This is not true for eager evaluation.

As the thesis should also be valuable to the programmers who prefer eager functional lan-

guages, we will always point out where in our programs the laziness is important. In most

cases, standard techniques (see [Rea89]) can then be applied to derive variants of our func-

tions that are e�cient for eager evaluation.

We will use the lazy functional language Miranda as a notation for our programs. Miranda

is a widespread language with a simple but mature implementation [Tur86, Tur89]. Because

of its terse syntax, it is used in several textbooks (see [PJ87, BW88, PJL91, Hol91, Hin92,

CMP94]) as well as in some papers (see [MLC91, NS93, HL93, GK94]). We restrict ourselves

to those features of Miranda that are (with similar syntax and semantics) also present in the

lazy functional languages Gofer, Haskell, and Clean. Hence, it is straightforward to translate

our programs to these languages.

In the following section, we give an introduction to the basic concepts and notations of

Miranda. Similar to Turner [Tur86, PJ87], this will be done in an informal way by several

simple examples. However, our introduction is tailored to the speci�c needs of the application

�eld. So we mostly take examples of simple string processing functions.

10 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

2.1 An Introduction to Miranda

A Miranda program is a collection of equations de�ning various functions and sets of val-

ues, called types. Expressions consist of functions and values and they themselves denote

a value. The Miranda system evaluates expressions by using the function de�nitions as re-

duction rules. Let us give an example. To indicate a Miranda program, we use typewriter

font. Miranda expressions that occur in running prose are printed in emphasize font, mostly

surrounded with brackets for better readability.

list � ::= Empty | Cons � (list �)

length::(list �)!num

length Empty = 0

length (Cons a x) = 1 + length x

In the �rst line above, a type (list �) is introduced. It consists of the values Empty and

(Cons a1 (� � � (Cons an Empty) � � �)), for all n � 1 where ai is a value of type �, 1 � i � n.

The rest of the program de�nes a function length which takes a value of type (list �) as an

argument and returns a numeric value of type num. The two equations de�ning length can

be used as reduction rules to evaluate the expression (length (Cons 0 (Cons 1 Empty))) to

2 as follows:

length (Cons 0 (Cons 1 Empty))) 1 + length (Cons 1 Empty)

) 1 + 1 + length Empty

) 1 + 1 + 0

) 2 + 0

) 2

The sign) should be read as \reduces in one step to". Note that for the last two reduction

steps the prede�ned equations 1 + 1 = 2 and 2 + 0 = 2 are used. In the following, we shall

be more speci�c about Miranda's type systems and the notation of functions.

2.1.1 Types

Miranda is polymorphic and strongly typed. This means the following:

� Sometimes in functions and data structures no particular property of the elements of

a type is required. This situation can be handled by using polymorphic types which

essentially describe families of types. Polymorphic types in Miranda contain universally

quanti�ed type variables �, ��, � � �, and so on. To improve readability, we adopt the

notation of [BW88] and use greek letters �, �,
, and so on, for type variables.

� Any inconsistency in the type structure results in a type error at compile time. Thus,

every compiled Miranda program is type-safe. That is, every expression has a unique

most common type. This helps in reasoning about programs and permits to generate

e�cient code since at running time no type information is required.

2.1. AN INTRODUCTION TO MIRANDA 11

We have already seen an example of polymorphism. The type (list �) is polymorphic, that

is, it contains values over an arbitrary type �. Special instances of this type are (list num),

(list bool) and (list (list bool)). The function length is polymorphic, since no particular

property of the name a is required in the de�nition of length.

With the equation de�ning (list �), we have seen the uniform way of introducing user-de�ned

types in Miranda. Additional examples are a type for weekdays and a type for binary trees

with node labels of arbitrary type:

weekday ::= Mon | Tue | Wed | Thu | Fri | Sat | Sun

binarytree � ::= Nil | Binary � (binarytree �) (binarytree �)

These equations introduce constructors, that is, identi�ers constructing types. In partic-

ular, the type weekday consists of 7 values, the constructors Mon; : : : ; Sun. The type

(binarytree �) consists of in�nitely many values which are built from the type construc-

tors Nil and Binary and the constructors for the type �. An example is the value

Binary 7 (Binary 8 Nil Nil) (Binary 9 Nil Nil)

of type (binarytree num). Note that a user-de�ned constructor always begins with a capital

letter.

Miranda has several prede�ned types. There are three primitive types num, bool and char

containing numerical values, boolean values (True and False) and ASCII-characters. More-

over, we can make use of three prede�ned compound types, which are constructed according

to the following rules:

� If � is a type, then [�] is a type. It contains the value []. Moreover, if a is of type �

and x is of type [�], then (a : x) is of type [�]. The values of type [�] are called lists,

[] is the constructor for the empty list, and (:) is the in�x constructor for a non-empty

list.

� Let n = 0 or n � 2. If �1 to �n are types, then (�1; : : : ; �n) is a type. It contains the

n-tuples of the form (a1; : : : ; an) where ai is of type �i, 1 � i � n.

� If � and � are types, then � ! � is a type. It contains all functions with arguments

of type � and results of type �. Note that ! is right associative, that is, �! � !

means �! (� !
).

Lists can be written with square brackets and commas separating the elements. So [1; 2; 3]

is the shorthand notation for (1 : (2 : (3 : []))). Note that the symbol () is overloaded. It

denotes a type, and the only element of this type, the nullary tuple. There are no 1-tuples,

since for an element a of type � the expression (a) is of type � by convention.

In principle, it is not necessary to have prede�ned types since for each prede�ned type we

can introduce an isomorphic user-de�ned type. For instance, (list �) is isomorphic to the

type [�], that is, there is a bijective function from (list �) to [�]. Empty maps to [] and

(Cons a x) maps to (a : x). The reason for having prede�ned types is that they allow for

a more convenient notation and considerably improve the readability and e�ciency of the

programs.

12 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

There are several prede�ned functions on the prede�ned types. Consider, for instance, lists:

(#l) returns the length of the list l, the in�x function (++) appends two lists, and (l!i)

returns the i-th list element in l for 0 � i � #l � 1. Some of the prede�ned functions are

explained in this chapter. For de�nitions of the other prede�ned functions appearing in the

thesis we refer the reader to Appendix B.

Type declarations for functions are written with the symbol (::) as for the function length

above. Since the Miranda system is able to deduce the type of a function from its de�ning

equations, type declarations are not really necessary. However, for documentation purposes,

they are very useful. Moreover, they support the system to produce helpful error messages.

Therefore, we will always give a function with its type declaration. Sometimes it is incon-

venient to spell out the type declarations in terms of the basic type names. For these cases,

type synonyms allow for the introduction of new type names for an already existing type.

As an example, consider type synonyms for dates:

month == num

day == num

date == (weekday,month,day)

2.1.2 Functions

In Miranda, functions are de�ned by equations. An equation de�ning a function, say f , can

contain patterns, that is, expressions built from variables and constructors. To apply an

equation de�ning f , the patterns have to match the actual parameters of f . Suppose f is a

function on lists. Then the identi�er y is a pattern that matches any list, the constructor []

is a pattern that matches the empty list, and the expression (a : x) is a pattern that matches

any non-empty list binding a to the �rst element and x to the remainder of the list. If a

match succeeds, then the matching subexpression is replaced by the right hand side of the

equation after substituting bound variables. If a match fails, the next equation de�ning f is

tried. As an example consider the functions hd and su�xes.

hd::[�]!�

hd (a:x) = a

suffixes::[�]![[�]]

suffixes [] = [[]]

suffixes (a:x) = (a:x):suffixes x

hd returns the �rst element of a non-empty list. Note that hd is unde�ned for an empty list.

su�xes returns the list of all su�xes of a list ordered by descending length. In particular,

the only su�x of the empty list is the empty list itself. For a non-empty list of the form

(a : x) we get (a : x) itself as a su�x together with all su�xes of x.

An equation de�ning a function can have several alternative right hand sides distinguished

by boolean expressions, called guards. The semantics speci�es that the guards are tested in

order, from top to bottom. The keyword otherwise may be used as the last guard, indicating

that this is the case which applies when all the other tests fail. This is illustrated by the

prede�ned function merge which merges two ordered list into a single ordered list.

2.1. AN INTRODUCTION TO MIRANDA 13

merge::[�]![�]![�]

merge [] y = y

merge (a:x) [] = a:x

merge (a:x) (b:y) = a:merge x (b:y), if a<=b

= b:merge (a:x) y, otherwise

Note that a function application is simply written by juxtaposition of the function and the

arguments. This reduces the number of brackets which have to be written in expressions.

Since function application is left associative, an expression (f a b) is parsed as ((f a) b),

meaning that the result of applying f to a is a function which is then applied to b. So (+3) is

a function of type (num! num) that adds 3 to its argument. This device which applies to

any function of two or more arguments is known as currying (after the logician H.B. Curry).

Local de�nitions can be introduced on the right hand side of a function de�nition, by the

means of a where clause. This is illustrated by the function split which splits a list into a

pre�x of a given length and the remaining su�x. Note that the de�nition below contains

the patterns 0 and (i+1). The pattern 0 matches only itself and the pattern (i+1) matches

any positive integer j, binding i to (j � 1).

split::num![�]!([�],[�])

split 0 x = ([],x)

split (i+1) [] = ([],[])

split (i+1) (a:x) = (a:y,z)

where (y,z) = split i x

Miranda allows higher order functions. That is, functions can be both passed as parameters

and returned as results. The most important higher order function is the composition (:)

which is written in in�x notation. It is de�ned as follows:

(.)::(�!�)!(
!�)!
!�

(f.g) x = f (g x)

The use of higher order functions is an important feature of functional programming. It

often leads to a very concise form of expressions. As an example, consider the prede�ned

functions map, foldl, and foldr which implement common recursion schemata on lists:

map::(�!�)![�]![�]

map f [] = []

map f (a:x) = f a:map f x

foldl::(�!�!�)!�![�]!�

foldl f a [] = a

foldl f a (b:x) = foldl f (f a b) x

foldr::(�!�!�)!�![�]!�

foldr f a [] = a

foldr f a (b:x) = f b (foldr f a x)

14 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

map applies f to each element of a list, i.e., map f [x1; x2; : : : ; xn] = [f x1; f x2; : : : ; f xn].

foldl folds a list from the left, i.e., foldl f a [x1; x2; : : : ; xn] = f (� � � (f (f a x1) x2) � � �) xn.
foldr folds a list from the right, i.e., foldr f a [x1; x2; : : : ; xn] = f x1(f x2(� � � (f xn a) � � �)).
A lot of useful functions can be obtained using map, foldl, and foldr. Consider, for instance,

the prede�ned function sum that computes the sum of a list of numbers, and the function

or that returns the disjunction of a list of boolean values.

sum::[num]!num

sum = foldl (+) 0

or::[bool]!bool

or = foldr (_) False

The ()-notation is Miranda syntax to convert an in�x operator (for instance, _ or +) into

an ordinary binary operator. Let us give some more examples of higher order functions.

member::[�]!�!bool

member x a = or (map (a=) x)

reverse::[�]![�]

reverse = foldl revcons []

where revcons x a = a:x

prefixes::[�]![[�]]

prefixes = foldr extend [[]]

where extend a ps = []:map (a:) ps

member checks if a value a is present in a list x. reverse applied to any �nite list returns

a list of the same elements in reverse order. pre�xes returns the list of pre�xes of a list

ordered by increasing length. member and reverse are prede�ned functions. We will make

use of several prede�ned higher order functions. This avoids explicit recursion and makes

programs more concise and readable.

2.1.3 List Comprehensions

List comprehensions give a concise syntax for a rather general class of iterations over lists.

A simple example is:

squares::num![num]

squares n = [i * i | i [1..n]]

(squares 100) returns the squares of the numbers from 1 to 100. The expression on the right

hand side should be read as \list of i times i where i is drawn from [1::n]". The construct

to the right of the bar is called a generator: The pattern introduced on the left hand side of

the symbol ranges over all elements on the right hand side that match the pattern. List

comprehensions can contain several generators and also �lters, that is, boolean expressions.

This is illustrated by the functions triads and select. triads lists all Pythagorean triads in a

given range, select returns all lists y such that (a : y) occurs in x.

2.1. AN INTRODUCTION TO MIRANDA 15

triads::num![(num,num,num)]

triads n = [(i,j,k) | i [1..n]; j [i..n]; k [j..n]; i^2 + j^2 = k^2]

select::�![[�]]![[�]]

select a x = [y | c:y x; a = c]

Note that list comprehensions add no fundamental new power to a language. That is, any

program containing list comprehensions can be translated to an equivalent program that does

not contain them (see [PJ87]). However, due to their resemblance to set comprehensions in

mathematics, list comprehensions greatly increase the ease with which one can write and

read functional programs.

2.1.4 Non-Strict Functions and In�nite Data Structures

One consequence of lazy evaluation is that it allows to handle non-strict functions. Consider

the function cond :

cond::bool!�!�!�

cond True x y = x

cond False x y = y

cond is non-strict which means that the expression (cond False (1=0) 2) evaluates to 2.

cond exactly corresponds to the control structure provided by guarded equations. So the

third equation de�ning the function merge (see section 2.1.2) can alternatively be written

as follows:

merge (a:x) (b:y) = cond (a<=b) (a:merge x (b:y)) (b:merge (a:x) y)

Note that under a strict semantics the second and the third argument of cond are evaluated

independently of the value of the �rst argument. Hence, in an eager language cond does not

exactly correspond to guarded equations.

Lazy evaluation allows programming with unknowns. That is, we can simultaneously de�ne

and use an expression. As an example consider the function scanl, which applies foldl to

every initial segment of a list. More precisely, the expression (scanl f a [x1; : : : ; xn]) returns

the list z = [z0; z1; : : : ; zn] such that z0 = a and zj+1 = f zj xj+1 for each j; 0 � j � n� 1.

scanl::(�!�!�)!�![�]![�]

scanl f a x = z

where z = a:[f b c | (b,c) zip2 z x]

The implementation of scanl relies on the fact that the list constructor (:) is non-strict. As

a consequence, the expression z can be used on the right hand side of the equation de�ning

z. Note that the �rst element of z is given. So scanl returns a wellde�ned result. scanl is

equivalent to the prede�ned function scan. However, experimental results show that scanl

is considerably faster than scan. For this reason we use scanl instead of scan.

An important virtue of lazy evaluation is that it allows to write down de�nitions of in�nite

data structures. Here are some examples of in�nite lists of natural numbers and an in�nite

binary tree.

16 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

nats = [0..]

odds = [1,3..]

fibonaccis = f 0 1

where f i j = i:f j (i+j)

infbinarytree = root

where root = Binary 0 (Binary 1 root Nil) (Binary 2 root Nil)

(repeat a) returns an in�nite list which contains only the element a. The function enum

enumerates all, that is, in�nitely many strings over a given alphabet.

repeat::�![�]

repeat a = repa where repa = a:repa

enum::[�]![[�]]

enum alphabet = []:[a:w | w words; a alphabet]

where words = enum alphabet

To obtain only the �rst 100 strings over the alphabet fa; bg, we can use a prede�ned func-

tion take and evaluate the expression (take 100 (enum [a; b])). Similarly, the expression

(takewhile (< 1000) �bonaccis) returns all Fibonacci numbers smaller than 1000. The lazi-

ness guarantees the e�ciency of these de�nitions: The two lists are enumerated as demanded

by the functions (take 100) and (takewhile (< 1000)). Note that in a language with strict

functions the code for enumerating elements is intertwined with the code for selecting ele-

ments. That is, there is no separation between the logical separate phases. This leads to

less
exible and reusable programs.

2.2 The Model of Computation

In order to evaluate an expression, the equations de�ning functions are used as reduction

rules. Each reduction step replaces a reducible subexpression (redex for short) by an equiva-

lent expression. We shall adopt the computation model of lazy evaluation which means that,

in order to evaluate an expression, no subexpression is evaluated until its value is known to

be required. Lazy evaluation uses a leftmost outermost reduction strategy. Every reduction

step reduces an outermost redex, that is, a redex contained in no other redex. If there is more

than one outermost redex, the leftmost is taken. To ensure that arguments are evaluated

at most once, an expression is represented by a graph that indicates shared subexpressions.

This is illustrated by an example from [BW88]: The graph

?(4 + 2)(�)

represents the expression (4 + 2) � (4 + 2). If the function sq is de�ned by (sq i = i � i) and
the expression (sq (4 + 2)) is to be evaluated, then lazy evaluation leads to the following

sequence of reduction steps:

sq (4 + 2)) (�) (4 + 2)

) (�) 6

) 36

?

?

2.3. MONADS 17

Hence, the expression (4+2) is evaluated only once instead of twice when ordinary outermost

reduction is applied. With the representation of expressions by graphs, lazy evaluation never

needs more reduction steps than eager evaluation.

The time and space requirement of a computation is measured in terms of outermost graph

reduction steps. We say that an expression e is evaluated to the value v using n steps and

O(m) space if the following holds:

� The sequence

e = g0) g1) g2) � � �) gn = v (2.1)

of outermost graph reduction steps is of length n.

� The largest graph in the sequence (2.1) is of size O(m).

Note that the number of outermost graph reduction steps does not correlate reliably with ac-

tual execution time, because some kinds of reduction are much slower than others. Consider,

for instance, the two equations de�ning functions f and g:

f (a : b : x) (i+ 1) (j + 2; 0) = 1000

g a = 7

Evaluating the expression (f [1; 2] 5 (3; 0)) to 1000 and (g 6) to 7 takes one outermost graph

reduction step in both cases. However, due to the complicated left hand side an application

of the �rst equation costs much more time.

The Miranda system provides a statistics facility which counts reduction steps. It is impor-

tant to note that this statistics does not refer to outermost graph reduction steps. Instead,

the work of an abstract machine is measured. More precisely, the Miranda system trans-

forms each function into an expression that essentially consists of a small family of built-in

functions, called SKI-combinators [Tur79]. These are interpreted by a very simple abstract

machine. It is reasonable to assume that every reduction performed by this machine takes

constant time. Hence, the actual execution time of a program is more or less proportional

to the measured number of SKI-reductions. (For a SPARC 10/41 a constant rate of about

80.000 SKI-reductions per CPU-second was measured [BG93].) Moreover, every graph re-

duction step leads to a certain number of SKI-reductions which is constant for each left

hand side of a function de�nition and independent of the input size. Thus, the asymptotic

e�ciency, in terms of outermost graph reduction steps, is not a�ected and can be validated

with the statistics provided by the Miranda system. This will be done in Chapter 7.

Besides the SKI-reductions, the Miranda system also reports the number of cells claimed

during an evaluation. However, it is unclear if this number can be used to validate the

analytically determined space consumption of an evaluation.

2.3 Monads

Purely functional programming languages allow many algorithms to be expressed very con-

cisely, but there are a few algorithms in which in-place updatable state seems to play a crucial

role. Among these are algorithms based on the use of incrementally modi�ed hash tables

18 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

where lookups are interleaved with the insertion of new items. Similarly, the union/�nd

algorithm relies for its e�ciency on the set representations being simpli�ed each time the

structure is examined. Likewise, many graph algorithms require a dynamically changing

graph structure in which sharing is explicit, so that changes are visible non-locally.1 For

these algorithms, purely functional languages which lack updatable state, appear to be in-

herently ine�cient (see [PMN88]).

Recent advances in theoretical computer science, notably in the areas of type theory and

category theory, have suggested new approaches that allow to integrate updatable state into

purely functional languages. For recent results see [Hud93]. One of the most important

approaches in this �eld are monads. In several papers [Wad90, Wad92b, Wad92a], Wadler

has shown that the essence of impure features can be captured by the use of monads in a

purely functional programming language.

In this section, we review Wadler's idea. In particular, we give a short introduction to

monads in functional programming and demonstrate that the monadic programming style

is a helpful structuring technique to encapsulate state based computations. We especially

show how one could integrate arrays with in-place updates in Miranda, without destroying

the referential transparency.

Let M be a type identi�er, that is, an identi�er used to denote a type. The basic idea in

converting a program to monadic style is this: a function of type (� ! �) is converted to

a function of type (� ! M �). Thus, a function in monadic style accepts an argument of

type � and returns a result of type � with a possible additional e�ect captured by M . As

shown in [Wad92a], this e�ect may be to act on state, generate output or raise exception.

There are two basic functions unit and bind manipulating monadic values:

� unit is of type (�! M �). It takes a value of type � into its corresponding monadic

value.

� bind is of type (M � ! (� ! M �) ! M �). Informally bind gets us around

the monad. bind is usually written in in�x notation. In Miranda, this is expressed

by pre�xing bind with the symbol $. The in�x notation is used to express that the

arguments are sequentially evaluated: bind has a monadic value of type (M �) as its

�rst argument. It extracts a value of type � and applies a function to it, yielding a

monadic value of type (M �).

According to [Wad92b], a monad is de�ned as follows:

De�nition 2.3.1 A monad is a triple (M;unit; bind) consisting of a type identi�er M and

functions:

unit :: �!M �

bind :: M �! (�!M �)!M �

such that for all (a :: �), (m ::M �), (f :: �!M �) and (g :: � !M
) the following laws

hold:

(unit a) $bind f = f a

1Examples of such graph algorithms are the linear time su�x tree constructions of McCreight [McC76]
and of Ukkonen [Ukk93b] described in chapter 3.

2.3. MONADS 19

m $bind unit = m

(m $bind f) $bind g = m $bind h

where h a = (f a) $bind g. 2

According to the three laws above, bind is sort of associative, and has unit as a left and

right identity.

Example 2.3.2 [Wad92b] The trivial monad (trivial; unit; bind) is de�ned by:

trivial � == �

unit::�!trivial �

unit a = a

bind::(trivial �)!(�!trivial �)!trivial �

m $bind f = f m

2.3.1 State Transformers

Imperative programming languages operate by assigning to a state. This is also possible in

impure functional languages. In purely functional languages, assignment may be simulated

by passing around a value representing the current state. We can express this by the monad

(statetrans � �) of state transformers where � is the type of the states and � the type of

the value returned by a state transformation.

statetrans � � == �!(�,�)

unit::�!statetrans � �

unit value state = (value,state)

bind::(statetrans � �)!(�!statetrans �
)!statetrans �

(st $bind f) state = f value istate

where (value,istate) = st state

For instance, to mimic a counter, we can instantiate � by num. This yields an appropriate

state transformer:

countertrans � == statetrans num �

A state transformer takes an initial state and returns a value paired with the new state.

The function unit returns the given value and propagates the state unchanged. The higher

order function bind takes the state transformer (st :: statetrans � �) and a function (f ::

� ! statetrans �
) and passes the initial state to st. This yields a value paired with an

intermediate state named istate. (f value) is a state transformer of type (statetrans �
)

which is applied to istate. This yields the result paired with the �nal state.

It is straightforward to verify for statetrans the laws in De�nition 2.3.1 (see [Wad92b]).

Thus, the triple (statetrans; unit; bind) is indeed a monad. We now consider a special form

of state transformers where the state is an array.

20 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

2.3.2 Array Transformers

Arrays play a central role in computing because they closely match current architectures.

Programs are littered with array lookups such as a[i] and array updates such as a[i] := v.

These operations are popular because an array lookup is implemented by a single indexed

fetch instruction, and an array update by a single indexed store. It is relatively easy to add

arrays to a purely functional language if one restricts to provide only e�cient array creation

and lookup operations. How to incorporate an e�cient array update operation, without

destroying the referential transparency, is a question with a long history. Monads provide a

new answer to this old question.

Let (array �) be the type of arrays with non-negative indices containing values of type �.

The operations on this type are as follows:

makearray::num![�]!array �

lookup::num!(array �)!�

update::num!�!(array �)!array �

Let vlist = [v0; v1; : : : ; vn�1] be a list of type [�].

� The call (makearray n vlist) returns an array a with the indices 0; : : : ; n�1 such that

a[i] = vi for all i; 0 � i � n� 1.

� The call (lookup i a) returns the value in array a at index i.

� The call (update i v a) returns an array where the entry i has value v and the remainder

is identical to a.

The behavior of these operations satis�es the following laws:

lookup i (makearray n vlist) = vi

lookup i (update j v a) =

(
v; if i = j

lookup i a; otherwise

makearray slightly generalizes the array creation operation newarray presented in [Wad90,

Wad92a]. While newarray creates an array in which each entry is initialized with the same

value, makearray performs the initializations according to a list of possibly di�erent values.

The e�cient way to implement the update-operation is to overwrite the speci�ed entry of

the array. However, in a purely functional language this is only safe if there are no other

references to the array when the update-operation is performed. An array satisfying this

property is called single threaded, following [Sch85].

Example 2.3.3 [Wad92a] Consider the function bad de�ned as follows:

bad::num!�!�!array �!(array �,array �)

bad i v w a = (update i v a,update i w a)

Obviously, there are two references to the array a after applying the above equation. There-

fore, the array a is not single threaded, and it is not safe to implement the update-operation

by overwriting the entry a[i]. 2

2.3. MONADS 21

This example shows that an e�cient update operation in a purely functional language re-

quires that the arrays are single threaded. Monads provide a method to guarantee the single

threadedness. The idea is to encapsulate the arrays into the monad arraytrans of array

transformers. This monad is obtained from the monad of state transformers with the state

taken to be an array:

arraytrans � � == statetrans (array �) �

Three new functions are added, corresponding to array creation, array lookup, and array

update.

block::num![�]!(arraytrans � �)!�

block n vlist at = b

where (b,a) = at (makearray n vlist)

fetch::num!arraytrans � �

fetch i a = (lookup i a,a)

assign::num!�!arraytrans � ()

assign i v a = ((),update i v a)

� Suppose vlist is as above. The call (block n vlist at) creates a new array a of size n

such that a[i] is initialized with vi for all i; 0 � i � n� 1. Then the array transformer

at is applied to this array yielding a value b and an array a. Finally, the array is

deallocated and b is returned.

� The call (fetch i a) returns the value at index i and the unchanged array.

� The call (assign i v a) returns the nullary tuple (), and updates the array so that

index i contains value v. The typing of assign makes clear that the value returned is

not of interest. In an impure language, one has an analogous function with result type

(), indicating that the purpose of the function lies in its side e�ect.

A little thought shows that these operations are indeed single threaded. fetch is the only

operation that could duplicate the array, thereby violating the single threaded property. To

cope with this problem, fetch is implemented as follows (see [Wad92a, PJW91]): �rst the

entry i in the array is fetched, and then the pair consisting of this value and the reference

to the array is returned.

arraytrans is made into an abstract data type supporting the �ve functions unit, bind,

block, fetch, and assign. unit and bind are inherited from the monad of state transformers.

Each function manipulating an array must now be based on the data type arraytrans. This

means that the type system of Miranda rejects each function outside the abstract data type

that has an explicit array argument. In particular, the de�nition of the function bad (see

Example 2.3.3) causes a type error. The type system totally guarantees that the arrays are

single threaded, and hence updates can be implemented by overwriting without destroying

the referential transparency. As noted in [LPJ94], such a reliance on the type system also

occurs in other contexts. For instance, the implementation of the addition makes no attempt

22 CHAPTER 2. FUNCTIONAL PROGRAMMING CONCEPTS

to check that its arguments are indeed integers. In the same way, the array transformers

make no attempt to ensure that there is only one reference to the array which is to be

updated. This property is simply guaranteed by the type system.

Note that the operation block plays a central role in the abstract data type arraytrans.

It is the only one that does not have the type identi�er arraytrans in its result type.

Without block there would be no way to write a program using arraytrans that did not

have arraytrans in its output type.

2.4 Extensions to Miranda

Let us call a purely functional implementation of an algorithm optimal if it has the same

asymptotic space and time complexity as an implementation of the algorithm in an imper-

ative language. For most of the algorithms considered in the thesis we present an optimal

functional implementation using only the basic language features of Miranda as they were

described in section 2.1. However, in some cases the Miranda system would have to be

slightly extended in order to achieve an optimal purely functional implementation. Since we

are not able to incorporate these extensions in the Miranda system, we assume that they

are given by some abstract data types. This clearly separates the extensions from the basic

language features of Miranda and makes it easy to translate the programs to other purely

functional languages which provide the extensions.

We need the following extensions to Miranda:

Extension 1 consists of a data type (array �) with the functions makearray and lookup

as speci�ed in section 2.3.2. We assume that a call to lookup takes constant time, and

that makearray creates and initializes an array of size n in O(n) steps. See the index
of the thesis for an account of the pages where extension 1 is used.

Extension 2 is like extension 1 but with an additional function update as speci�ed in sec-

tion 2.3.2. We assume that this function takes constant time. Extension 2 is mainly

used for implementing linear time su�x tree algorithms (see section 3.6.3). Since these

are relatively complicated, we use monadic programming style to guarantee single

threadedness. Another application for extension 2 is the implementation of the pre-

processing phase of Horspool's and of Sunday's exact string searching algorithms (see

section 4.4.6). Since the preprocessing phase is quite simple, we do not use monadic

programming style in this case. Instead, we directly apply the functions makearray,

lookup, and update. The single threadedness is immediately clear.

To test the correctness of our implementations, we have realized the abstract data types in a

straightforward way. Since the realizations are rather ine�cient, we do not present them in

the thesis. For the measurements of the running time one has to resort to a purely functional

language that supports the extensions (for instance Haskell or Clean). For the case of linear

time su�x tree algorithms this is done in a forthcoming master's thesis of Krause [Kra95].

Chapter 3

The String Processing Machinery

Su�x trees represent structured information about all subwords of a string. Hence, it is not

surprising that they are an ubiquitous data structure with a myriad of applications to string

processing problems, like repeat detection, multiple string searching, data compression, and

approximate string searching. Sometimes there are better methods than those based on

su�x trees. However, as pointed out by Apostolico [Apo85], there is no other form of index

structure that seems to outperform su�x trees in versatility and elegance.

The algorithm of Wagner and Fischer [WF74]1 uses the technique of dynamic programming

to compute the edit distance and the optimal alignments of two strings. Over the last two

decades, this algorithm and its variations have become the most established tool for string

comparisons and string searching. A variety of applications in computer science, molecular

biology, speech processing, and coding theory is described by Kruskal and Sanko� [KS83].

Note that some authors have emphasized the importance of su�x trees and of the Wagner-

Fischer Algorithm for string processing (see [Apo85, Mye91].) However, a systematic treat-

ment of both concepts was (if at all) restricted to an abstract level. The main goal of this

chapter is to establish a powerful string processing machinery by unifying both concepts on

the implementation level. In particular, we show that a lazy functional language provides

an ideal tool to handle various
avors of su�x trees, and many variations of the Wagner-

Fischer Algorithm in a compact,
exible, and reusable framework. This leads to a collection

of functions that serve as the building blocks of a system solving a variety of string searching

and comparison problems. Note that in this chapter we focus on the main idea of the two

concepts, as well as their functional implementation. The di�erent problems solved by su�x

trees and the Wagner-Fischer Algorithm are considered in detail in later chapters. We begin

the description of our string processing machinery with some basic de�nitions and notations.

1According to [KS83], the basic idea underlying the Wagner-Fischer Algorithm was independently dis-
covered and published by several other authors. For instance, Needleman and Wunsch [NW70] describe a
variation which is of great importance in molecular biology applications.

23

24 CHAPTER 3. THE STRING PROCESSING MACHINERY

3.1 Basic De�nitions and Notations

Let S be a set. jSj denotes the number of elements in S and P(S) refers to the set of subsets
of S.

IN0 denotes the set of positive integers including 0. IR+

0
denotes the set of positive reals

including 0. The symbols h; i; j; k; l;m; n; q; r refer to integers if not stated otherwise. jij is
the absolute value of i and i � j denotes the product of i and j.
LetM be a set and f :M �M ! IR+

0
be a function. f is a metric onM if for all x; y; z 2M

the following properties hold:

Zero Property f(x; y) = 0 () x = y

Symmetry f(x; y) = f(y; x)

Triangle Inequality f(x; y) � f(x; z) + f(z; y):

Let A be a �nite set, the alphabet. The elements of A are characters. Strings are written by

juxtaposition of characters. In particular, " denotes the empty string. The set A� of strings

over A is de�ned by

A� =
[
i�0

Ai

where A0 = f"g and Ai+1 = faw j a 2 A; w 2 Aig. A+ denotes A� n f"g. The symbols

a; b; c; d refer to characters and p; s; t; u; v; w; x; y; z to strings, unless stated otherwise.

The length of a string s, denoted by jsj, is the number of characters in s. We make no

distinction between a character and a string of length one. If s = uvw for some (possibly

empty) strings u; v and w, then

� u is a pre�x of s,

� v is a subword of s, and

� w is a su�x of s.

If u is a pre�x of s, we write u < s. If w is a su�x of s, we write s
R
w.2 A pre�x or su�x of

s is proper if it is di�erent from s. A su�x of s is nested if it occurs more than once in s. A

set S of strings is pre�x-closed if u 2 S whenever ua 2 S. A set S of strings is su�x-closed if

u 2 S whenever au 2 S. A subword v of s is right-branching if there are di�erent characters

a and b such that va and vb are subwords of s. Let q > 0. A q-gram of s is a subword of s

of length q. The term q-gram is adopted from [Ukk92a]. Note that q-grams are sometimes

called q-tuples (see [CM94, PW95]).

si is the i-th character of s. That is, if jsj = n, then s = s1 : : : sn where si 2 A. sn : : : s1,
denoted by s�1, is the reverse of s = s1 : : : sn. If i � j, then si : : : sj is the subword of s

beginning with the i-th character and ending with the j-th character. If i > j, then si : : : sj
is the empty string. A string w begins at position i and ends at position j in s if si : : : sj = w.

2Note that some authors write w = s when w is a su�x of s (for example, [CLR90]). We do not use this
notation since it suggests that w < s implies s = w, which is obviously not the case. Moreover, we found it
convenient not to have related symbols for denoting the pre�x and the su�x relation.

3.2. A+-TREES 25

3.2 A+-Trees

In this section, we present the concept of A+-trees which occurs in many variants throughout

the thesis. A+-trees especially serve as the \raw material" for su�x trees. They are also

used to implement the Knuth-Morris-Pratt Algorithm and the Aho-Corasick Algorithm.

Note that a large part of the standard terminology for su�x trees is generalized to A+-trees.

This is necessary since some su�x tree constructions (see [McC76, Ukk93a]) apply standard

operations to intermediate trees that are not su�x trees.

De�nition 3.2.1 An A+-tree T is a rooted tree with edge labels from A+. For each a 2 A,
every node k in T has at most one a-edge k aw- k0. 2

Let T be an A+-tree. edges(T) denotes the set of edges and nodes(T) the set of nodes in

T . leaves(T) refers to the set of leaves and inner(T) to the set of inner nodes in T . Hence,

we have nodes(T) = inner(T) [leaves(T). If T is the empty tree (the root with no edges),

then the root is the only inner node. An edge leading to a leaf is a leaf edge.

The size of T , denoted by jT j, is the number of nodes in T . Let S be a set. An S-annotation

of T is a function ' : nodes(T)! S. Two A+-trees are isomorphic if they can be obtained

from each other by renaming their nodes. More precisely, T and T 0 are isomorphic if there

is a bijective function � : nodes(T)! nodes(T 0) such that k u- k0 2 edges(T) if and only if

�(k) u- �(k0) 2 edges(T 0).

path(k) denotes the concatenation of the edge labels on the path from the root of T to the

node k. Due to the requirement of unique a-edges at each node of T , paths are also unique.

Therefore, we denote k by w if and only if path(k) = w. The node " is usually denoted by

root. Let w 2 nodes(T). jwj is the depth of w and Tw is the subtree of T at node w.

De�nition 3.2.2 A string w occurs in T if T contains a node wu, for some string u.

words(T) denotes the set of strings occurring in T . 2

A+-trees are classi�ed according to their degree of compression. We are interested in two

special classes: atomic and compact A+-trees.

De�nition 3.2.3 T is atomic if every edge in T is marked by a single character. T is

compact if every node in T is either the root, a leaf, or a branching node. 2

Atomic A+-trees are also known under the name trie [AHU82]. An atomic A+-tree is

uniquely determined by the set of words occurring in it. The same holds for a compact

A+-tree. We use the adjective compact since among all A+-trees with the same set of words

occurring in them, the compact A+-tree is the smallest one.

3.2.1 Su�x Links

For some constructions and many applications it is convenient to augment A+-Trees with

auxiliary edges connecting nodes that seem to be quite unrelated in the tree structure:

26 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.1: An Atomic and a Compact A+-tree with Su�x Links

b

@
@
@R

�
�

�	

a

b

�
�

�	

b

b

�
�

�	

b

b

b

b

�j

��

bXXXXXXXXXXXXz

������������9

abca

b

c

b

@
@
@R

�
�

�	

abca

b

cabca

b

b

?
bca

bY
q

)
M

}

De�nition 3.2.4 Let aw 2 nodes(T). Suppose v is the longest su�x of w such that v is a

node in T . The unlabeled edge aw - v is the su�x link for aw. If w = v, then the su�x link

for aw is atomic. The set of su�x links for all nodes in T (except for the root) is denoted

by links(T). In some cases we only need the inner su�x links, that is, the su�x links for

the inner nodes of T (except for the root). We denote them by innerlinks(T). 2

Su�x links are usually de�ned as edges from a node aw to a node w (cf. [McC76, Ukk93b]).

For general A+-trees this would, of course, lead to unde�ned su�x links since w may not

exist. To cope with this problem, we follow [GK95b] and generalize the notion. Since " is

a node in T and " is a su�x of w, each node aw in T has a su�x link. In the terminology

of [AC75] the su�x links in an atomic A+ tree are called failure transitions. Some authors

also de�ne a su�x link root - root (cf. [McC76, Ukk93b]). We found that this obscures the

algorithms using su�x links.

Example 3.2.5 Figure 3.1 shows an atomic and a compact A+-tree with su�x links rep-

resented by unlabeled dotted edges. In the atomic A+-tree (on the left) the su�x links for

the nodes a, b and ab are atomic. In the compact A+-tree (on the right) the su�x links for

the nodes abca, c, cabca and ccabca are atomic. All other su�x links are not atomic. 2

3.2.2 Locations

If T is an atomic A+-tree, then there is a bijective function : words(T) ! nodes(T),

de�ned by (s) = s. If T is a compact A+-tree, then such a bijective function does not exist

in general since a string s 2 words(T) possibly \ends inside an edge". However, every string

occurring in T can uniquely be described in terms of the nodes and edges of T :

De�nition 3.2.6 Let T be a compact A+-tree and s 2 words(T). The location of s in T ,

denoted by locT (s) is de�ned as follows:

� If s 2 inner(T), then locT (s) = s.

� If s 2 leaves(T), then there is a leaf edge u v- s in T and locT (s) = (u; v; "; s).

� If there is no node s in T , then there is an edge u vw- uvw in T such that s = uv, v 6= ",

w 6= " and locT (s) = (u; v; w; uvw).

3.2. A+-TREES 27

locations(T) = flocT (s) j s 2 words(T)g is the set of locations in T . If a location is a node,

we call it node location, otherwise edge location. Sometimes we identify a node location with

the corresponding node. 2

By convention the root is the location of " in the empty A+-tree. As locations allow a

uni�ed representation of the strings occurring in a compact A+-tree, they are a central data

structure in many algorithms described in the thesis.

The location of a string corresponding to a leaf is not the leaf itself. Instead, it is de�ned

in terms of the edge leading to the leaf. At the end of section 3.3.3 we give the reason for

this. Note that an edge-location (u; v; w; uvw) corresponds to a leaf if and only if w = ".

In an edge-location (u; v; w; uvw) the string w and the node uvw are redundant. Both can

uniquely be determined from u and v provided the A+-tree is given. If we omit w and uvw,

we get canonical reference pairs as they were introduced in [Ukk93b]. In some applications

the third and fourth component of an edge-location is not used at all. However, in several

cases, having them at hand considerably simpli�es the algorithmic description.

For convenience we introduce some additional notions related to locations.

De�nition 3.2.7 Let T be a compact A+-tree. Suppose s 2 words(T).

1. jlocT (s)j = jsj is the depth of the location locT (s).

2. Let v be the shortest string such that sv 2 nodes(T). Then sv is denoted by

ceiling(locT (s)).

3. For all a 2 A we de�ne: occurs(locT (s); a) () sa occurs in T .

4. getloc(locT (s); w) denotes locT (sw) for all sw 2 words(T). 2

In the terminology of McCreight [McC76] a node location s is called locus of s. Moreover,

ceiling(locT (s)) is the extended locus of s. The term ceiling is adopted from [CL94]. The

function getloc is the analogue to the function canonize in [Ukk93b] which was de�ned for

reference pairs.

Example 3.2.8 Let T be the compact A+-tree shown in Figure 3.1. Then, for instance,

locT (") = root ceiling(locT ("))) = root

locT (a) = (root; a; bca; abca) ceiling(locT (a)) = abca

locT (abca) = (root; abca; "; abca) ceiling(locT (abca)) = abca

locT (c) = c ceiling(locT (c)) = c

locT (cab) = (c; ab; ca; cabca) ceiling(locT (cab)) = cabca

2

Following a path is the most important operation on su�x trees. In some applications we

have to perform this operation starting from an arbitrary location, going down as far as

possible. We describe this by a function scanpre�x .

28 CHAPTER 3. THE STRING PROCESSING MACHINERY

De�nition 3.2.9 Let T be a compact A+-tree. For each s 2 words(T) and each string

w the function scanpre�x : locations(T) � A� ! locations(T) � A� is speci�ed as follows:

scanpre�x (locT (s); w) = (locT (su); v); where uv = w and u is the longest pre�x of w such

that su 2 words(T). 2

Example 3.2.10 Let T be the compact A+-tree as shown in Figure 3.1. Then, for instance,

scanpre�x (locT (cab); cd) = (locT (cabc); d) and scanpre�x (locT (bca); d) = (locT (bca); d). 2

For some su�x tree constructions to be described in section 3.5 we need to insert strings

into an A+-tree. Therefore, we introduce the following operation:

De�nition 3.2.11 Let T be a compact A+-tree. Suppose a is a character and s is a string

such that s 2 words(T), sa =2 words(T) and s does not correspond to a leaf in T . For each

string y the expression T [locT (s) ay] denotes the pair (T 0; z) which is speci�ed as follows:

� If locT (s) = s, then T 0 is obtained from T by adding a leaf edge s ay- say. Moreover,

z = ? which should be read as \z is unde�ned".

� If locT (s) = (u; v; w; uvw), then T 0 is obtained from T by splitting the edge u vw- uvw

into u v- s w-uvw, and adding a new leaf edge s ay- say. Moreover, z = s, that is, z is

the new inner node created by the splitting.

In some contexts we do not need to identify z and omit it so that T [locT (s) ay] denotes

T 0 alone. 2

The insert operation subsumes the function create-state in [Ukk93b] which was introduced

for splitting some edge. Note that our notation [] has nothing to do with list

comprehensions. It stems from the �eld of term rewriting [HO80] where it has similar

semantics.

Lemma 3.2.12 Let T be a compact A+-tree. Suppose a is a character and s is a string

such that s 2 words(T), sa =2 words(T) and s does not correspond to a leaf in T . For each

string y the following is true: T 0 = T [locT (s) ay] is a compact A+-tree, s is a node in T 0

and words(T 0) = words(T) [fsav j v < yg.
Proof Routine. 2

Example 3.2.13 Let T be the compact A+-tree of Figure 3.1. Then the compact A+-tree

T [locT (bc) d] is shown in Figure 3.2. 2

For some constructions and many applications of compact A+-trees it is very important

to have an e�cient access from locT (cy) to locT (y). This access is provided by a function

linkloc, that uses the su�x links of the inner nodes as a \shortcut".

3.3. SUFFIX TREES 29

Figure 3.2: The Result of an Insert-Operation

bXXXXXXXXXXXXz

������������9

abca

b

c

b

@
@
@R

�
�

�	

abca

b

cabca

b

b

?
bc

b

@
@
@R

�
�

�	

a

b

d

b

Y

?

)
M

}

�

De�nition 3.2.14 Let T be a compact A+-tree. We de�ne the function

linkloc : locations(T) n frootg ! locations(T) as follows:

linkloc(s) = z

where s - z is the su�x link for s

linkloc(u; av; w; uavw) =

(
locT (v); if u = root

getloc(z; av); otherwise

where u - z is the su�x link for u: 2

Note that linkloc never uses the su�x link of a leaf.

Lemma 3.2.15 Let T be a compact A+-tree such that all inner su�x links of T are atomic.

Suppose that cy and y occur in T . Then linkloc(locT (cy)) = locT (y).

Proof

1. Suppose cy 2 inner(T). Then cy - y 2 innerlinks(T) and linkloc(locT (cy)) =

linkloc(cy) = y = locT (y).

2. Suppose cy 2 leaves(T) or there is no node cy in T . Then locT (cy) = (u; av; w; uavw)

and cy = uav. Notice that u is an inner node.

� If u = root, then av = cy and therefore v = y. Hence, we get linkloc(locT (cy)) =

linkloc((u; av; w; uavw)) = locT (v) = locT (y).

� If u 6= root, then there is an atomic su�x link u - z such that u = bz for some

b 2 A. Therefore, bzav = uav = cy which implies zav = y. Hence, we get

linkloc(locT (cy))= linkloc((u; av; w; uavw))= getloc(z; av)= locT (zav)= locT (y).

2

3.3 Su�x Trees

Su�x trees allow an e�cient access to all subwords of a string. We de�ne them as a special

form of A+-trees:

De�nition 3.3.1 A su�x tree for x 2 A� is an A+-tree T such that

words(T) = fw j w is a subword of xg:

30 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.3: The Atomic and the Compact Su�x Tree for the String acbcabcac

ast(acbcabcac)
bXXXXXXXXXXXXz

������������9

a

b

@
@
@R

�
�

�	

b

b

?
c
b

?
a
b

?
c
b

c

b

?
b
b

?
c
b

?
a
b

?
b
b

?
c
b

?
a
b

?
c
b

c

b

@
@
@R

�
�

�	

a

b

@
@
@R

�
�

�	

b

b

?
c
b

?
a
b

?
c
b

c

b

b

b

?
c
b

?
a
b

?
b
b

?
c
b

?
a
b

?
c
b

b

?
b
b

?
c
b

?
a
b

@
@
@R

�
�

�	

b

b

?
c
b

?
a
b

?
c
b

c

b

cst(acbcabcac)
bXXXXXXXXXXXXz

������������9

a

b

@
@
@R

�
�

�	

bcac

b

cbcabcac

b

c

b

@
@
@R

�
�

�	

a

b

@
@
@R

�
�

�	

bcac

b

c

b

bcabcac

b

b

?
bca

b

@
@
@R

�
�

�	

bcac

b

c

b

The atomic su�x tree for x is denoted by ast(x). The compact su�x tree for x is denoted

by cst(x). 2

Example 3.3.2 Figure 3.1 shows the compact su�x tree for ccabca. Figure 3.3 shows the

atomic and the compact su�x tree for the string acbcabcac. 2

ast(x) and cst(x) are uniquely determined by the words occurring in them.

3.3.1 Applications

Su�x trees were �rst considered by Weiner [Wei73]. The original motivation for Weiner was

to transmit or store a message with excerpts from a main string in minimum space or time.

It became soon apparent that su�x trees are ideally suited for other, almost straightforward,

applications.

� If T is a su�x tree for x, then w is a subword of x if and only if w occurs in T . The

latter condition is checked in O(jAj � jwj) steps by traversing T down from the root,

directed by the characters in w. This is useful for multiple exact searches of di�erent

strings in a �xed text.

� A leaf in a su�x tree for x corresponds to a su�x of x. Hence, with a suitable

annotation of the su�x tree it is simple to �nd the �rst or the last end position of w

3.3. SUFFIX TREES 31

in x in O(jAj � jwj) steps. Similarly, one can compute all positions in x where w ends.

In chapter 5 we describe this application in detail.

� The branching nodes in a su�x tree for x correspond to the right-branching subwords

of x. This property is used in several algorithms for detecting structural patterns, like

repeats [Apo85], squares [AP83, Apo85, Cro86, Kos94], and palindromes [Apo85].

� Several authors [RPE81, CWM84, Apo85, FG89] show that su�x trees are a suitable

data structure for linear time sequential data compression techniques.

� Some special problems on strings can elegant and e�ciently be solved with su�x trees.

Among these are the computation of the longest common substring of two strings x and

y in O(jxj+ jyj) steps [Apo85], the test for unique decipherability of codes [Rod82], the
statistics without overlap problem [AP85, Apo85] and the computation of the shortest

unique subword of a string [Pow89].

� Chang and Lawler [CL90] have devised an exact string searching algorithm that tra-

verses the su�x tree of the pattern. We consider this algorithm in detail in section

4.5.

� Recently, Bieganski et al. [BRCR94] have described a basic set of su�x tree operations

to be used in a system for biological sequence analysis. In addition to the operations

supported by our machinery, the authors outline a new su�x tree based method to

compute alignments. Unfortunately, the presentation of this method is quite informal,

and e�ciency results remain unclear.

� In section 4.4.1 we give a new linear time algorithm which uses the su�x tree of the

pattern to compute the functions used by the Boyer-Moore Algorithm [BM77].

� In [EH88] a new string distance measure is described which is computable in linear

time using su�x trees. A similar e�ciency result is achieved for the q-gram distance

[Ukk92a]. For details see sections 3.9.2 and 3.9.3.

� The su�x tree of the pattern can be used to e�ciently determine the longest pre�x

of a string which is also a subword of the pattern. With this property su�x trees

have become a very important data structure in several approximate string searching

algorithms [LV88, LV89, GG88, JTU91, Ukk92a, UW93, Mye94a, CL94]. We consider

some of these algorithms in chapter 6.

3.3.2 Space Requirements

Note that for the e�ciency of locating a subword of x it does not matter which kind of su�x

tree for x we use. However, the space requirement for atomic and compact su�x trees di�er

in an order of magnitude:

� ast(x) is the largest su�x tree for x. If x 2 An, then ast(x) has O(n2) nodes in

the worst case (take x = aibi, i = n=2). Isomorphic subtrees can be shared [CS85].

Sharing brings the space requirements down to O(n). However, subtree sharing may

be impossible, when nodes are to be annotated with extra information.

32 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.4: The Compact Su�x Tree for ccabca$

bXXXXXXXXXXXXz

������������9

$

b

c

b

@
@
@R

�
�

�	

a

b

@
@
@R

�
�

�	

$

b

bca$

b

cabca$

b

b

@
@
@R

�
�

�	

a

b

bca$

bb

@
@
@R

�
�

�	

$

b

bca$

b

� cst(x) is the smallest su�x tree for x. If x 2 An, then cst(x) has O(n) nodes, as all
inner nodes are branching, and there are at most n leaves. Since the edge labels are

subwords of x, they can be represented in constant space by a pair of pointers into x.

This is necessary to achieve a theoretical worst case bound of O(n). In practice, this is

quite a delicate choice of representation in a virtual memory environment. Traversing

the tree and reading the edge labels will create random-like accesses into x, and can

lead to paging problems. This phenomenon is discussed in [GK95a] in more detail.

Besides atomic and compact su�x trees, some authors also discuss \position trees" [KBG87,

MR80, GK94]. These are su�x trees of an intermediate level of compactness, that need

O(n2) space in the worst case and O(n � log n) space in the expected case [AS92]. We do not

consider position trees in the thesis.

3.3.3 The Sentinel Character

If w is a nested su�x of x, then a su�x tree for x does not contain a leaf w (see Example

3.3.4 below). It is often convenient to add to x a sentinel character, say $, that does not

occur in x. Then x$ has no nested su�x, except for the empty string. This implies the

following lemma:

Lemma 3.3.3 Let w be a string and T be a su�x tree for x$. Then w ends at position j

in x if and only if j = jxj � juj for some string u such that wu$ 2 leaves(T).
Proof Suppose w ends at position j in x. Then there is a string u such that x

R
wu and

j = jxj � juj. Hence, x$
R
wu$ which implies wu$ 2 leaves(T). To show the opposite

direction, suppose wu$ 2 leaves(T) and let j = jxj � juj. Then x$
R
wu$ and therefore

x
R
wu. Hence, w ends at position j in x. 2

Example 3.3.4 The compact su�x tree for ccabca$ is shown in Figure 3.4. The string c ends

in ccabca at the positions 6�1 = 5, 6�4 = 2, and 6�5 = 1. Notice that the correspondence

stated in Lemma 3.3.3 does not hold without the sentinel character: Consider the compact

su�x tree for ccabca as shown in Figure 3.1. The subtree cst(ccabca)c has only two leaves,

although c occurs three times in x. 2

With respect to su�x links the sentinel character has the following e�ect:

3.4. IMPLEMENTATION 33

Lemma 3.3.5 In T = cst(x$) all su�x links are atomic.

ProofWe must show that w 2 nodes(T) whenever aw 2 nodes(T). aw is either a branching

node, or a leaf in T . Hence, aw is right-branching in x$, or a non-nested su�x of x$. But

then the same holds for w, and so w 2 nodes(T). 2

Note that in cst(x) the inner su�x links are atomic. For a leaf aw in cst(x), w may be nested

and not right-branching in x. So there is no node w in cst(x) and we have a non-atomic

su�x link aw - v for some proper su�x v of w. Now suppose that aw is the longest su�x

of x such that aw is not nested, and w is nested. Then all su�xes of w are nested. Hence,

aw is the only su�x of x with the above property. That is, there is at most one non-atomic

su�x link in each compact su�x tree. This property was remarked by Robert Giegerich.

Example 3.3.6 Consider cst(ccabca) as shown in Figure 3.1: The su�x link bca - root for
the leaf bca is not atomic since there is no node ca in cst(ccabca). 2

It often simpli�es proofs and constructions considerably to assume the presence of the sentinel

character. However, in contexts where x may be expanded to the right (for instance, during

online constructions), the requirement for a unique �nal character does not make sense.

Since the su�x link of a leaf aw in a su�x tree T may not be atomic, it cannot be used

to access locT (w) e�ciently. As a consequence we have de�ned the location of aw in terms

of the edge u v- aw leading to aw (cf. De�nition 3.2.6). This allows the e�cient access to

locT (w), using the atomic su�x link of the inner node u.

3.4 Implementation

In this section, we show how to implement A+-trees, su�x trees, and locations. As a

prerequisite we discuss some important design decisions concerning the representation of

strings, edge labels and edge sets.

3.4.1 Strings

In chapter 2, we have brie
y discussed the general di�erences of the imperative and func-

tional programming paradigm: The absence of details concerning sequencing and memory

management in functional programs leads to implementations that often seem to be quite

unrelated to the corresponding imperative implementations. In our particular application

�eld there is another very important source for the dissimilarity: In imperative programs

strings are usually represented by arrays, whereas in the functional world lists are preferred.

So do we.

De�nition 3.4.1 Suppose that the characters of the alphabet A are represented by some

type �. Strings are represented by lists of type [�]. This is expressed by the type synonym

string � == [�]

34 CHAPTER 3. THE STRING PROCESSING MACHINERY

The empty list represents the empty string. The list (a : w) represents the string aw. 2

The type (string �) is polymorphic. It can be used for strings over arbitrary alphabets. In

particular, it is not restricted to �nite alphabets. However, we will assume that � contains

only �nitely many values and that the comparison of �-values takes constant time.

The decision to use lists was not made because Miranda does not o�er arrays. We rather

feel that lists are often a more natural representation of sequential information. As an

example consider string searching algorithms which typically processes an input string from

left to right such that the access to the input characters is limited to a small sliding window.

Imperative implementations of string searching algorithms usually abstract from this fact

and assume that the input string is stored in an array such that at any time each character

can be accessed in a constant number of steps (see [Sed88, CLR90, Aho90, GBY91, BY92,

Ste94]). However, in several applications the input string is given online, and some bu�ering

mechanism is necessary to obtain a space e�cient algorithm (cf. [BM77]). In our functional

language we get such a bu�ering mechanism for free if we use lists: The laziness and the

memory management of the Miranda system guarantee that at any time only the needed

part of the list representing the input string is stored.

Note that the use of lists does not have a negative e�ect on the asymptotic running time. In

almost all cases we can organize the computation such that a required value is held locally.

This means that only constant time operations are applied to lists. In the few places where

other operations are used (for example, indexing into a list or determining the length of a

list) the overall running time is dominated by other computations.

3.4.2 Edge Labels

Consider the compact su�x tree for some string x. To achieve linear space, it is necessary

to represent each edge label w of cst(x) in constant space. As w is a subword of x, we

can represent it by a pair (i; j) of integers such that w = xi : : : xj. This is the usual way,

as employed in [Ukk93b], for example. However, in our framework this solution has two

disadvantages:

� It requires to store x as an array.

� It is inconvenient, as one always has to explicitly refer to x, when reading an edge

label. This means that x becomes a part of the data structure su�x tree.

Of course, one can use extension 1 to get rid of the �rst disadvantage. However, we adopt

the alternative representation of [GK95a] which avoids both disadvantages:

De�nition 3.4.2 A subword w of x is represented by a pair (s; jwj) of type

subword � == (string �,num)

where s is a su�x of x such that w is a pre�x of s. 2

3.4. IMPLEMENTATION 35

This representation allows a convenient and e�cient access to the length and the characters

of the label w. Note that the representation is not unique. However, our implementations

yield compact su�x trees which are labeled with subwords (s; jwj) such that s is the longest

su�x of x of which w is a pre�x. This constraint proved to be helpful when testing the

di�erent su�x tree constructions.

The left component s of the subword-representation is a lazy list, that is, an unevaluated

list expression. It should be thought of as a pointer to s, rather than a copy of s. Therefore,

the representation of subwords needs constant space.

To advance i characters in a subword, the pre�x of length i is dropped, and the right

component is updated. This takes O(i) time altogether.

advance::num!(subword �)!(subword �)

advance i (s,j) = (drop i s,j-i)

3.4.3 Edge Sets

The e�ciency of most algorithms involving A+-trees heavily depends on how expensive it is

to access for each a 2 A an a-edge outgoing from a node s. Therefore, it is necessary to have

a closer look on how the edges of an A+-tree can be stored. There are four basic techniques:

Arrays We can associate with each node an array of pointers, with one pointer for each

a 2 A. This leads to a constant access time, but is prohibitive in size for large

alphabets. It is only reasonably if almost every node has an a-edge for each a 2 A.
Ordered lists We can store the l outgoing edges for a node in an ordered list. Such a

representation is simple and space e�cient, but the costs to access a certain edge is

proportional to l.

Binary search trees We can store the l outgoing edges of a node in a binary search tree

[Knu73]. This is space e�cient and the access time is proportional to log
2
l. However,

it leads to an overhead which only pays o� if the average number of outgoing edges at

each node is very large.

Hash tables We can use a hash table implementing a function hash : nodes(T) � A !
nodes(T) such that hash(s; a) = saw if and only if there is an edge s aw- saw in T .

McCreight [McC76] recommends this technique since he found it to be space e�cient

(in the average case) and reasonably speedy. However, the access time is not constant

in general, due to the necessity of handling collisions.

Because every of the four technique has its disadvantages, sometimes a compromise is suit-

able. We can, for instance, store only the edges of the most frequently used nodes as an

array. For the other nodes the outgoing edges can be encoded as an ordered list. This is the

solution recommended in [AC75]. A comprehensive discussion of the di�erent implementa-

tion techniques for su�x trees was recently given by Andersson and Nilsson [AN95]. For our

functional implementation we use ordered lists, thereby following [GK95a].

De�nition 3.4.3 The set of edges outgoing from a node of an A+-tree is represented by an

ordered list. 2

36 CHAPTER 3. THE STRING PROCESSING MACHINERY

The main reason for this decision is that Miranda and other modern functional languages in-

clude polymorphic lists as a prede�ned data type with an e�cient implementation and much

notational convenience, like list comprehensions (see section 2.1.3). Using these polymorphic

lists for representing the outgoing edges, leads to short, readable and e�cient programs, that

are hard to beat by an implementation based on one of the other techniques. For the e�-

ciency of the implementations our decision leads to a factor l where l is the average number

of edges outgoing from the visited nodes. Notice that in the worst case l 2 jAj.

3.4.4 Atomic A+-Trees

The design decisions discussed in the previous sections lead to the following representation

of atomic A+-trees.

De�nition 3.4.4 An atomic A+-tree T with su�x links and an S-annotation ' (cf. page

25) is implemented by the type (tree � �).

tree � � ::= N [edge � �] (tree � �) � | Undeftree

edge � � == (�,tree � �)

The elements of A and of S are represented by values of type � and �, respectively. Every

node s in T is represented by an expression of the form (N es link tag) such that the

following holds.

1. es is a list containing for each edge s a- sa 2 edges(T) a pair (a; node) such that sa is

represented by the expression node. es is ordered according to the �rst component of

the pairs.

2. If s - v 2 links(T), then v is represented by the expression link. If s is the root, then

link = Undeftree. Since there is no other node with link = Undeftree, this convention

allows us to identify the root of an A+-tree.

3. tag is the representation of '(s). 2

Note that the type (tree � �) is polymorphic. This enables us to use it as a uni�ed represen-

tation of the various forms of A+-trees, which di�er in the underlying alphabet, the degree

of compression and the speci�c annotations for the nodes.

Example 3.4.5 The atomic A+-tree of Figure 3.1 is implemented by the following expres-

sion. Notice that a node s 6= root maps to the expression sN . The tags at the nodes are left

unde�ned which is expressed by the prede�ned polymorphic value undef.

atree::tree char �

atree = root

where root = N [('a',aN),('b',bN)] Undeftree undef

aN = N [('b',abN)] root undef

abN = N [('b',abbN)] bN undef

abbN = N [] bN undef

bN = N [] root undef

3.4. IMPLEMENTATION 37

Note that some subexpressions in atree are shared so that it actually becomes a circular

structure. For instance, bN occurs in three places: as a subexpression of root, of abN, and

of abbN. In the latter two cases, bN is the expression the su�x link \points to". 2

seledges and seltag select certain subexpressions of an expression (N es link tag). isleaf

tests if a node is a leaf. All three functions take constant time.

seledges::(tree � �)![edge � �]

seledges (N es link tag) = es

seltag::(tree � �)!�

seltag (N es link tag) = tag

isleaf::(tree � �)!bool

isleaf (N es link tag) = (es = [])

3.4.5 Compact A+-Trees

Due to the polymorphism, we can reuse the type (tree � �). By instantiating the type

variable � with (subword �) we obtain the type (ctree � �) for compact A+-trees. Similarly

a type is introduced which represents edges that are labeled by subwords.

ctree � � == tree (subword �) �

cedge � � == edge (subword �) �

According to De�nition 3.4.4, the nodes of an atomic A+-tree are represented by an expres-

sion of the form (N es link tag). The like holds for the nodes of a compact A+-tree: The

only di�erence is that the edge labels for the compact form are subwords.

Example 3.4.6 cst(ccabca) (see Figure 3.1) is implemented by the following expression.

actree::ctree char �

actree = root

where root = N [(("abca",4),abcaN),

(("bca",3),bcaN),

(("ccabca",1),cN)] Undeftree undef

abcaN = N [] bcaN undef

bcaN = N [] root undef

cN = N [(("abca",4),cabcaN), (("cabca",5),ccabcaN)] root undef

cabcaN = N [] abcaN undef

ccabcaN = N [] cabcaN undef

2

38 CHAPTER 3. THE STRING PROCESSING MACHINERY

3.4.6 Locations

The implementation of locations is straightforward: For node locations we introduce a con-

structor LocN and for edge locations a constructor LocE. Since the strings v and w in the

edge location (u; v; w; uvw) are subwords of the same string, we represent them in the usual

way by the type (subword �). This means that a location takes constant space.

location � �

::= LocN (ctree � �) | LocE (ctree � �) (subword �) (subword �) (ctree � �)

The following function returns the ceiling of a location.

ceiling::(location � �)!ctree � �

ceiling (LocN node) = node

ceiling (LocE node v w node') = node'

To determine if a location corresponds to the root and to a leaf, we use the functions rootloc

and lea
oc, respectively. rootloc exploits the fact that the root is the unique node with an

unde�ned su�x link. lea
oc makes use of the fact that a string corresponds to a leaf if and

only if its location is of the form (u; v; "; uv).

rootloc::(location � �)!bool

rootloc (LocN (N es Undeftree tag)) = True

rootloc loc = False

leafloc::(location � �)!bool

leafloc (LocE node v (w,0) node') = True

leafloc loc = False

The function getloc (see De�nition 3.2.7) is implemented below. Note that the �rst argument

of getloc is restricted to node locations. More precisely, if s is a node in T and w is a string

such that sw 2 words(T) then (getloc s w) returns locT (sw) in O(l � jwj) time where l is the

average number of edges outgoing from the nodes visited by getloc.

getloc::(ctree � �)!(subword �)!(location � �)

getloc node (w,0) = LocN node

getloc (N es link tag) (a:w,j)

= LocE (N es link tag) (v,j) (advance j (v,i)) node, if isleaf node _ j < i

= getloc node (advance i (a:w,j)), otherwise

where ((v,i),node) = hd [((c:u,i),node) | ((c:u,i),node) es; a = c]

Note that the de�nition of getloc becomes more e�cient if we replace (N es link tag) by

an identi�er, say node0, and then select es form node0. This is because reusing node0 saves

the reconstruction of the expression (N es link tag) against which node0 is matched. We

have not done this optimization and will not do it in similar cases, for the following reasons.

First, we think that an implementation using pattern matching is better to read. Second,

the reconstruction of the matched expression does not have an in
uence on the asymptotic

3.4. IMPLEMENTATION 39

e�ciency. In Haskell and Clean, the function getloc would be implemented with as-patterns.

These allow to give a name to a pattern, for use on the right hand side. In this way,

readability and e�ciency is achieved at the same time.

The function scanpre�x (see De�nition 3.2.9) is implemented as follows:

scanprefix::(location � �)!(string �)!(location � �,string �)

scanprefix loc w = (loc',w')

where (vnodes,loc',w') = scanprefix' loc w

scanpre�x 0 is a generalization of scanpre�x . It additionally computes the list vnodes of

nodes visited during a traverse from loc to loc0. If loc0 is a node location, then it is not

included in vnodes. The laziness guarantees that vnodes is not evaluated if scanpre�x is

called. For implementing scanpre�x 0, we need a function lcp that returns the length of the

longest common pre�x of two strings u and v.

lcp::(string �)!(string �)!num

lcp u v = #takewhile (True=) [c=a | (c,a) zip2 u v]

scanprefix'::(location � �)!(string �)!([ctree � �],location � �,string �)

scanprefix' loc [] = ([],loc,[])

scanprefix' (LocN node) (a:w)

= down [((c:u,i),node') | ((c:u,i),node') seledges node; a = c]

where down [] = ([],LocN node,a:w)

down (((c:u,i+1),node'):es)

= ([node],loc',drop k w), if isleaf node' _ k < i

= (node:vnodes,loc,w'), otherwise

where k = lcp u w, if isleaf node'

= lcp (take i u) w, otherwise

loc' = LocE node (c:u,1+k) (advance k (u,i)) node'

(vnodes,loc,w') = scanprefix' (LocN node') (drop k w)

scanprefix' loc w

= ([],loc',drop k w), if isleaf node' _ k < i

= scanprefix' (LocN node') (drop k w), otherwise

where LocE node (s,l) (u,i) node' = loc

k = lcp u w, if isleaf node'

= lcp (take i u) w, otherwise

loc' = LocE node (s,l+k) (advance k (u,i)) node'

The �rst equation for scanpre�x 0 handles the case where the string to be scanned is empty.

The third and fourth deal with edge locations. Node locations are handled in the sec-

ond equation using a function down which is applied to the list of a-edges outgoing from

node. The �rst equation for down covers the case where there is no such a-edge. The sec-

ond equation corresponds to the case where the a-edge leads to a leaf or the edge label of

the a-edge is not a pre�x of aw. The third equation covers the other cases. Notice that

(scanpre�x (locT (s)) w) computes the result (locT (su); v) in O(l � juj) steps, where l is the
average number of edges outgoing from the visited nodes.

The function scanpre�x 0 and even the special instance scanpre�x are very general. Most

programs involving compact A+-trees are based one of these functions.

The implementation of linkloc can almost literally be transfered from De�nition 3.2.14.

40 CHAPTER 3. THE STRING PROCESSING MACHINERY

linkloc::(location � �)!(location � �)

linkloc (LocN (N es link tag)) = LocN link

linkloc (LocE (N es link tag) av w node')

= getloc (N es link tag) (advance 1 av), if link = Undeftree

= getloc link av, otherwise

Note that linkloc exploits the fact that the root is the unique node for which the link-value

is set to Undeftree.

linkloc is often applied iteratively. Therefore, we introduce a function su�x locs. In particu-

lar, (su�x locs f (locT (s))) computes the list of locations of all su�xes of s and applies f to

locT (") = root. If we instantiate f by the function (: []), then we obtain a list which includes

the root. If we instantiate f by the function (const []), then we obtain a list without the

root.

suffixlocs::(location � �![location � �])!(location � �)![location � �]

suffixlocs f loc = f loc, if rootloc loc

= loc:suffixlocs f (linkloc loc), otherwise

3.5 Su�x Tree Algorithms

There are two simple intuitive approaches to su�x tree construction. One is imperative by

nature. It successively inserts the su�xes of x by updating an initially empty tree. This

approach is used as a starting point for the derivation of Weiner's [Wei73], McCreight's

[McC76] and also Ukkonen's [Ukk93b] method. Linear running time is achieved by using

su�x links as \shortcuts" to certain locations in the tree.

An alternative approach centers on the data structure, that is, the su�x tree. It �rst de-

termines the outgoing edges of the root, and then constructs the subtrees recursively in a

top-down manner. No updates of the tree are necessary, and so this approach is declarative

by nature. In particular, it is well-suited for a purely functional implementation. Unfortu-

nately, the declarative approach leads to a quadratic worst case running time. However, the

performance in practice is very good. Giegerich and Kurtz [GK94, GK95a] were the �rst to

describe and analyze the declarative approach in detail. They called it lazy su�x tree algo-

rithm. A short remark in [AN95] suggests that Andersson and Nilsson have independently

discovered the virtues of this algorithm.

In this section we present three algorithms for constructing compact su�x trees. The lazy

algorithm, Ukkonen's online algorithm and McCreight's algorithm. These are discussed in

a similar way in [GK95a]. However, we use a slightly di�erent notation and make some

technical details explicit which are left open in [GK95a]. This leads to a more compact

and concise declarative description. It provides the basis for proving the correctness of

Ukkonen's and McCreight's algorithm. At least for the former we provide the �rst detailed

correctness proof. We do not explain Weiner's algorithm because it is quite complicated and

of no practical virtue, due to its space consumption. For a modern exposition of Weiner's

algorithm we refer the reader to [LO94] or [GK95b]. The latter work especially clari�es the

relation between the three linear time su�x tree algorithms.

3.5. SUFFIX TREE ALGORITHMS 41

3.5.1 The Lazy Su�x Tree Algorithm

Following [GK95a] we call a su�x tree algorithm (potentially) lazy when it constructs the

su�x tree for x from the root towards the leaves. This has the advantage that the con-

struction phase may be interleaved with tree traversal. Paths of the su�x tree need to

be constructed only when being traversed for the �rst time. This kind of incrementality is

achieved for free when implementing the lazy algorithm in a lazy language (see section 3.6.1).

It can be simulated in an eager language by explicit synchronization between construction

and (all) traversal routines (see [GKS95]).

As stated in [GK95a], the idea of the lazy algorithm is to group su�xes according to their

�rst character and to take the longest common pre�x of each group as the edge label. The

following de�nition makes this description more precise.

De�nition 3.5.1 Let S � A�. An element v 2 S is super
uous in S if S n fvg 6= ; and v
is a pre�x of each element in S n fvg. The functions grouplcp : P(A�) ! A� � P(A�) and

group : P(A�)! P(A� � P(A�)) are speci�ed as follows:

� grouplcp(S) = (w; S 0) if w is the longest string such that fws j s 2 S 0g = fv 2 S j
v is not super
uous in Sg.
� For each a 2 A, (aw; S 00) 2 group(S) if and only if S 0 6= ; and (w; S 00) = grouplcp(S 0)

where S 0 = fs j as 2 Sg. 2

Note that super
uous strings result from nested su�xes.

Example 3.5.2 Let x = acbcabcac. Suppose

S1 = fs 2 A� j x R csg = fbcabcac; abcac; ac; "g;
S2 = fs 2 A� j x R acsg = fbcabcac; "g;
S3 = fs 2 A� j x R cbsg = fcabcacg;
S4 = fs 2 A� j x R bsg = fcabcac; cacg:
Note that " is super
uous in S1 and S2. It results from the nested su�xes c and ac. We get

the following:

grouplcp(S1) = ("; fbcabcac; abcac; acg);
grouplcp(S2) = (bcabcac; f"g);
grouplcp(S3) = (cabcac; f"g);
grouplcp(S4) = (ca; fbcac; cg): 2

Let S be the set of su�xes of x. The lazy algorithm constructs cst(x) directly from S. In

particular, it creates for each (aw; S 00) 2 group(S) an edge from the root labeled aw. Such

an edge leads to a subtree recursively constructed from S 00. The recursion terminates with a

leaf edge when the set of su�xes becomes unitary. Figure 3.5 exempli�es how cst(acbcabcac)

is constructed.

Su�x trees imply a lexicographic ordering of all su�xes of a text. So it is easy to read the

su�x array of [MM93a] from the su�x tree. In this sense the lazy algorithm constructs

su�x arrays in a top-down (and left to right) fashion.

42 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.5: The Construction of cst(acbcabcac)
b

a c b c a b c a c "
c b c a b c a c
b c a b c a c
c a b c a c
a b c a c
b c a c
c a c
a c
c bXXXXXXXXXXXXz

������������9

a

c b c
b c
c a
a c
b
c
a
c

c

b a a "
c b c
a c
b a
c c
a
c

b

?
bca

b c
c
a
c

bXXXXXXXXXXXXz

������������9

a

b

@
@
@R

�
�

�	

bcac

b

cbcabcac

b

c

b

@
@
@R

�
�

�	

a

b c
c
a
c

bcabcac

b

b

?
bca

b

@
@
@R

�
�

�	

bcac

b

c

b

bXXXXXXXXXXXXz

������������9

a

b

@
@
@R

�
�

�	

bcac

b

cbcabcac

b

c

b

@
@
@R

�
�

�	

a

b

@
@
@R

�
�

�	

bcac

b

c

b

bcabcac

b

b

?
bca

b

@
@
@R

�
�

�	

bcac

b

c

b

Let l = jAj. According to [GK95a], the running time of the lazy algorithm is determined by

the number of characters read from all su�xes, and the number of operations per character

read. The sum of su�x lengths is (n � (n + 1)=2). For x = an�1$, all su�xes except for

the longest are read to the last character. The grouping of su�xes can be implemented by

counting sort [CLR90]. This leads to a space consumption of O(l + n), but avoids iteration

over the characters in A. The worst case is therefore O(n2) for x = an�1$. The expected

length of the longest repeated subword is O(logl n) (see [AS92]). Since no su�x is read

beyond the point where it becomes unique, the average case e�ciency is O(n � logl n). l does
not occur as a factor in the O-terms above. This is a property that the lazy algorithm shares

with the su�x array algorithm of [MM93a]. All other known su�x tree algorithms must use

more complicated data structures to reduce the alphabet factor (see section 3.4.3).

The measurements in [GK95a] show that the lazy algorithm is practically linear and be-

comes faster for larger alphabets. This is due to the locality behavior which determines the

performance of the memory subsystem and indirectly a�ects the running time. The lazy

algorithm has optimal locality on the tree data structure. Once a subtree is completed, it

is not accessed again. In principle, more than a \current path" in the tree need not be in

memory. With respect to text access, the lazy algorithm also behaves very well. For each

subtree, only the corresponding su�x-rests are accessed. At a certain tree level, the number

of su�xes considered will be smaller than the number of available cache entries. As these

su�xes are read sequentially, practically no further cache misses will occur. This point is

reached earlier when the branching degree of the tree nodes is higher, since the su�xes split

up more quickly. Hence, the locality of the lazy algorithm improves for larger values of l.

3.5. SUFFIX TREE ALGORITHMS 43

3.5.2 Ukkonen's Online Su�x Tree Algorithm

In this section, we review Ukkonen's online su�x tree algorithm [Ukk93b]. While Ukkonen

derives his algorithm in an operational style using the atomic su�x tree as an interme-

diate step, we follow [GK95a] and give a declarative presentation based on properties of

su�xes. However, our presentation improves on [GK95a] in two aspects: On the one hand,

we use locations which simpli�es the description. On the other hand, we treat the delayed

setting of the su�x links explicitly. This is quite intricate, but necessary for deriving the

implementation in section 3.6.5.

The online algorithm generates a series of compact su�x trees for longer and longer pre�xes

of a string. The initial step of the algorithm is trivial: cst(") is just the root with no edges.

Suppose that xay is an arbitrary string for which we want to construct the compact su�x

tree. Assume that we have read the pre�x xa and that cst(x) is already constructed. At this

point of the algorithm we have not \seen" anything of y. Therefore, let us call xa the visible

part, and y the hidden part of xay. In terms of functional programming, y can be thought

of as a lazy list, that is, an unevaluated list expression. As the online algorithm proceeds,

more and more characters of y become visible, that is, more and more of y is evaluated.

The crucial point of the online algorithm is the step from cst(x) to cst(xa). Since cst(xa)

must represent all subwords of xa, we consider all new subwords of xa, that is, all those not

occurring in cst(x). Every new subword of xa is obviously a non-empty su�x of xa, that is,

it is of the form sa where s is a su�x of x. Note that sa has to be a leaf in cst(xa), since

otherwise sa would be a subword of x and hence occur in cst(x).

If s is a leaf in cst(x), then the leaf edge u w- s of cst(x) gives rise to the leaf edge u wa- sa in

cst(xa). Therefore, the labels of all leaf edges in cst(x) have to grow by the character a. To

accomplish this growth all at once in constant time, Ukkonen [Ukk93b] treats the leaf edges

as open edges. The idea is that a label of a leaf edge in cst(xa) is of the form way for some

su�x w of x. Like xay we can also divide way into a visible and a hidden part.

De�nition 3.5.3 An open edge in cst(xa) is a leaf edge with an edge label way, that

represents the su�x wa of xa. wa is the visible part of way, and y the hidden part. For

Ukkonen's online algorithm all leaf edges are open edges. 2

Our de�nition of open edges is tailored for the implementation of edge labels by the type

(subword �) (see De�nition 3.4.2). If the edge labels are implemented by a pair of integers

instead, then the solution introduced in [Ukk93b] is recommended: An open edge is labeled

by the pair (i;1), where the symbol1 means that the edge is open to grow. This solution

is equivalent to ours.

Due to open edges, the labels of leaf edges grow while more and more characters become

visible. Thus, to insert a new su�x sa into cst(x), nothing must be done when s is a

leaf. Hence, we only consider the complementary case, when s is not a leaf in cst(x), or

equivalently s is a nested su�x of x.

De�nition 3.5.4 [GK95a] A su�x sa of xa is relevant if s is a nested su�x of x and sa is

not a subword of x. 2

44 CHAPTER 3. THE STRING PROCESSING MACHINERY

The step from cst(x) to cst(xa) now means the following: Insert all relevant su�xes sa of

xa into cst(x). To make this description more precise, we study some properties of relevant

su�xes. In particular, we show that the relevant su�xes of xa form a contiguous segment

of the list of all su�xes of xa, whose bounds are marked by \active su�xes":

De�nition 3.5.5 [GK95a] The active su�x of x, denoted by �(x), is the longest nested

su�x of x. 2

The notion active su�x corresponds to the notion active point introduced in [Ukk93b].

Example 3.5.6 [GK95a] Consider the string adcdacdad and a list of columns, where each

column contains the list of all su�xes of a pre�x of this string. The relevant su�xes in each

column are marked by the symbol # and the active su�x is printed in bold face.

" #a ad adc adcd adcda adcdac adcdacd adcdacda adcdacdad

" #d dc dcd dcda dcdac dcdacd dcdacda dcdacdad

" #c cd cda cdac cdacd cdacda cdacdad

" d #da dac dacd dacda dacdad

" a #ac acd acda acdad

" c cd cda #cdad
" d da #dad

" a ad

" d

"

Lemma 3.5.7

1. For all su�xes s of x: s is nested () j�(x)j � jsj.
2. For all su�xes s of x: sa is a relevant su�x of xa () j�(x)aj � jsaj > j�(xa)j.
3. �(xa) is a su�x of �(x)a.

4. If sa = �(xa) and �(x)a 6= sa, then s is a right-branching subword of x.

Proof

1. Routine.

2. sa is a relevant su�x of xa () s is a nested su�x of x and sa is not a subword

of x () j�(x)j � jsj and sa is not a nested su�x of xa () j�(x)aj � jsaj and
jsaj > j�(xa)j () j�(x)aj � jsaj > j�(xa)j.

3. Since both �(xa) and �(x)a are su�xes of xa, it su�ces to show j�(x)aj � j�(xa)j.
If �(xa) = ", then this is obviously true. Let �(xa) = wa. Since wa is a nested

su�x of xa, we have uwav = x for some strings u and v. Hence, w is a nested su�x

of x. Since �(x) is the longest nested su�x of x, we have j�(x)j � jwj and hence

j�(x)aj � jwaj = j�(xa)j.

3.5. SUFFIX TREE ALGORITHMS 45

4. Suppose sa = �(xa) and �(x)a 6= sa. Then there is a su�x csa of xa such that

j�(x)aj � jcsaj > j�(xa)j. From Statement 2 we know that csa is a relevant su�x of

xa. That is, cs is a nested su�x of x, and csa is not a subword of x. Hence, there is a

character b 6= a such that csb is a subword of x. Since sa is a subword of x, too, s is a

right-branching subword of x. 2

Except for Statement 4, these properties were already proved in [GK95a]. By Statement 2

the relevant su�xes of xa are \between" �(x)a and �(xa). Hence, by Statement 3, �(xa) is

the longest su�x of �(x)a that is a subword of x. Based on this fact, the step from cst(x)

to cst(xa) can be described as follows:

Take the su�xes of �(x)a one after the other by decreasing length and insert

them into cst(x), until a su�x is found which occurs in the tree and therefore

equals �(xa).

This can formally be described by a function naiveukkstep which has three arguments: An

arbitrary string ay, a compact A+-tree T and a string s such that �(x)a
R
sa
R
�(xa) and

words(T) = words(cst(x)) [fva j �(x)a R va R sa; v 6= sg. In other words, the relevant

su�xes va of xa that are longer than sa already occur in T .

De�nition 3.5.8 The function naiveukkstep is de�ned as follows:

naiveukkstep(T; s; ay) =

8><
>:

(T; sa); if occurs(loc; a)

(T [loc ay]; s); else if loc = root

naiveukkstep(T [loc ay]; u; ay); otherwise

where loc = locT (s)

bu = s for some b 2 A and some u 2 A�

Lemma 3.5.9 naiveukkstep(cst(x); �(x); ay) = (cst(xa); �(xa)).

Proof By induction on jsaj � j�(xa)j one can show that naiveukkstep(T; s; ay) returns

(cst(xa); �(xa)) (cf. Lemma 3.5.12). With T = cst(x) and s = �(x) the claim follows. 2

The crucial point in the function naiveukkstep is to determine the location of s in T . The

easiest way to accomplish this is to follow the path for s down from the root, anew for each

su�x s. This leads to a naive version of Ukkonen's algorithm, which is called naiveOnline

in [GK95a]. The e�ciency of naiveOnline is as follows:

Theorem 3.5.10 [GK95a] Let x 2 An and l = jAj. naiveOnline computes cst(x) inO(l�n2)
time in the worst case and in O(l � n � logn) time in the expected case.

Proof There are O(n) nodes created. The path length to access each node is O(n) in the

worst and O(logn) in the expected case [AS92]. Selecting the suitable branch at each node

introduces a factor l. 2

An optimal functional program for naiveOnline is given in [GK95a]. Along the path from the

root to locT (s) the program de- and reconstructs the tree in O(l) steps for each node visited.

Thus, it turns a local update into a global one with no e�ect on asymptotic e�ciency.

46 CHAPTER 3. THE STRING PROCESSING MACHINERY

For achieving linear running time, the su�x s of �(x) is represented in constant space by its

location in T . A direct access to the location of the next su�x is provided by the function

linkloc. This leads to a function ukkstep.

De�nition 3.5.11 The function ukkstep is de�ned as follows:

ukkstep(T; L; ay; z; loc) =

8><
>:

(T; L0; getloc(loc; a)); if occurs(loc; a)

(T 0; L0; loc); else if loc = root

ukkstep(T 0; L0; ay; r; linkloc(loc)); otherwise

where (T 0; r) = T [loc ay]

L0 =

8><
>:
L; if z = ?
L [fz - locg; else if occurs(loc;a) or r = ?
L [fz - rg; otherwise

Note that for a new inner node z the su�x link z - r cannot be set instantly, since r may

not exist yet. However, r will be created in the next call to ukkstep. Therefore, z is taken

as an argument of ukkstep and the setting of the su�x link is delayed until r is constructed.

The following lemma proves the correctness of ukkstep.

Lemma 3.5.12 Suppose that for T , L, z, and loc the following properties hold:

1. loc is the location of s in T for some s such that �(x)a
R
sa
R
�(xa).

2. T is the compact A+-tree such that

words(T) = words(cst(x)) [fva j �(x)a R va R sa; v 6= sg.

3. If s = �(x), then L = innerlinks(T) and z = ?. Suppose s 6= �(x). Then there is

a compact A+-tree T 00 and a location loc00 in T 00 such that (T; z) = T 00[loc00 ay]. If

z = ?, then L = innerlinks(T). Otherwise, L = innerlinks(T 00). This means that z

is either set to ? or the su�x link for z is not already set.

Then ukkstep(T; L; ay; z; loc) = (cst(xa); innerlinks(cst(xa)); loccst(xa)(�(xa))).

Proof By induction on jsaj � j�(xa)j.

� Suppose jsaj � j�(xa)j = 0. Then sa = �(xa), that is, occurs(loc; a) is true. Hence,

ukkstep(T; L; ay; z; loc) = (T; L0; getloc(loc; a)). Obviously, T = cst(xa). Moreover,

getloc(loc; a) = getloc(locT (s); a) = locT (sa) = locT (�(xa)). If z = ?, then we have

L0 = L = innerlinks(T). Otherwise, by Lemma 3.5.7, Statement 4, s is a right-

branching subword of x. Thus, loc = locT (s) is a branching node in T which means

that L0 = L [fz - locg = innerlinks(T 00) [fz - locg = innerlinks(T).

� Suppose jsaj � j�(xa)j > 0 and s = ". Then �(xa) = " and therefore loc = root and

occurs(loc; a) is false. Hence, ukkstep(T; L; ay; z; loc) = (T 0; L0; loc), where (T 0; r) =

T [loc ay]. Obviously, r = ?, T 0 = cst(xa), and loc = root = locT 0(�(xa)). If z = ?,
then L0 = L = innerlinks(T) = innerlinks(T 0). Otherwise, L0 = L [fz - locg =
innerlinks(T 00) [fz - locg = innerlinks(T) = innerlinks(T 0).

3.5. SUFFIX TREE ALGORITHMS 47

� Suppose jsaj � j�(xa)j > 0 and s 6= ". Then occurs(loc; a) is false and loc 6= root.

Hence,

ukkstep(T; L; ay; z; loc) = ukkstep(T 0; L0; ay; r; linkloc(loc)) (3.1)

where (T 0; r) = T [loc ay]. It is easy to verify that the properties 1-3 hold for T 0, L0,

r, and linkloc(loc) considerably. Hence, we can apply the induction hypothesis and

the right hand side of (3.1) reduces to (cst(xa); innerlinks(cst(xa)); loccst(xa)(�(xa))).

This completes the proof. 2

Ukkonen's online algorithm is speci�ed by the function ukk:

ukk(T; L; "; loc) = (T; L)

ukk(T; L; ay; loc) = ukk(T 0; L0; y; loc0)

where (T 0; L0; loc0) = ukkstep(T; L; ay;?; loc)

Theorem 3.5.13 Let x 2 An, l = jAj and T = cst(x). Then ukk(cst("); ;; x; root) returns
(T; innerlinks(T)) in O(l � n) time and O(n) space.
Proof The correctness of ukk follows from Lemma 3.5.12. The complexity proof carries over

from [Ukk92b]. 2

In section 3.6.5, we give a monadic implementation of Ukkonen's online algorithm which

closely resembles the structure of the functions ukkstep and ukk.

3.5.3 McCreight's Su�x Tree Algorithm

The su�x tree algorithm of McCreight is widely known. McCreight's presentation is semi-

formal (see [McC76, page 266]) and commonly considered as rather complicated and di�cult

to grasp (see [Ukk92b, page 484]). Other authors describing McCreight's algorithm either

closely follow the presentation in [McC76] (see [Ste94]) or they only brie
y outline the main

ideas (see [RPE81, FG89, CL94]). Recently, Giegerich and Kurtz [GK95a] have given a

formal treatment of McCreight's algorithm. So do we. However, we use a di�erent notation.

This leads to a more compact description which maps to the implementation in a transparent

and relatively straightforward way.

For this section we suppose that x is a string of length n � 2 whose last character is the

sentinel character $. We start the description by introducing some terminology.

De�nition 3.5.14 Let s be a su�x of x.

� T (s) is the compact A+-tree such that words(T (s)) = fu j x R w R
s; u < wg.

� A pre�x u of s is left-occurring if u < w for some string w 6= s and x
R
w
R
s.

� If s 6= x, then head(s) is the longest left-occurring pre�x of s. If s = x, then head(s)

is the empty string.

� tail(s) = v if s = head(s)v. 2

48 CHAPTER 3. THE STRING PROCESSING MACHINERY

A left-occurring pre�x is a nested pre�x in the terminology of [GK95a]. We did not adopt

the term nested pre�x since it suggests symmetry to the notion of nested su�xes, which is

not the case. The following lemma clearly states the relation between left-occurring pre�xes

and nested su�xes. The notions head and tail are adopted from [McC76]. The compact

A+-tree T (xi : : : xn) is denoted by Ti in [McC76].

Lemma 3.5.15 Let s be a non-empty su�x of x. Then the following holds.

� tail(s) 6= ".

� If x = ws for some w, then the string u is a left-occurring pre�x of s if and only if u

is a nested su�x of wu.

� If as is a su�x of x, then head(s) is the longest pre�x of s that occurs in T (as).

Proof Obvious. 2

The general structure of McCreight's algorithm is to construct cst(x) by successively inserting

the su�xes of x into an initially empty tree, from longest to shortest. More precisely, the

algorithm constructs the sequence

cst("); T (x1 : : : xn); T (x2 : : : xn); � � � ; T (xn�1xn); T (xn) = cst(x) (3.2)

of compact A+-trees, of which only the �rst and the last one is a su�x tree.

The initial step of the algorithm is trivial: T (x) = T (x1 : : : xn) is obtained from cst(")

by inserting the longest su�x x. Thus, T (x) is the compact A+-tree with only one edge

root x- x. Let as be a su�x of x. For the step from T (as) to T (s) it is most important to

compute locT (as)(head(s)) and tail(s). Once we have done this we can simply construct T (s)

from T (as) by an insert-operation.

Lemma 3.5.16 T (s) = T (as)[locT (as)(head(s)) tail(s)] for all su�xes as of x.

Proof We have

words(T (s)) = fu j x R w R
s; u < wg

= fu j x R w R
as; u < wg [fu j u < sg

= words(T (as)) [fu j head(s) < u < s; u 6= head(s)g
= words(T (as)) [fhead(s)w j w < tail(s); w 6= "g
= words(T (as)[locT (as)(head(s)) tail(s)]):

Note that the last equality follows from Lemma 3.2.12. 2

Example 3.5.17 Let x = abab$. Figure 3.6 shows the sequence of compact A+-trees con-

structed to obtain cst(x). Moreover, we have

head(abab$) = " tail(abab$) = abab$

head(bab$) = " tail(bab$) = bab$

head(ab$) = ab tail(ab$) = $

head(b$) = b tail(b$) = $

head($) = " tail($) = $

2

3.5. SUFFIX TREE ALGORITHMS 49

Figure 3.6: The Compact A+-Trees constructed to obtain T ($) = cst(abab$)

cst(")

b

T (abab$)

b

?
abab$

b

T (bab$)

b

@
@
@R

�
�

�	

abab$

b

bab$

b

T (ab$)

b

@
@
@R

�
�

�	

ab

b

@
@
@R

�
�

�	

$

b

ab$

b

bab$

b

T (b$)

b
HHHHHHj

�������

ab

b

@
@
@R

�
�

�	

$

b

ab$

b

b

b

@
@
@R

�
�

�	

$

b

ab$

b

T ($)

bXXXXXXXXXXXXz

������������9

$

b

b

b

@
@
@R

�
�

�	

$

b

ab$

b

b

?
ab

b

@
@
@R

�
�

�	

$

b

ab$

b

The easiest way to determine locT (as)(head(s)) and tail(s) is to follow the path for s in T (as)

down from the root, until one \falls out of the tree" (as guaranteed by the sentinel character

in x). In other words, we have scanpre�x (root; s) = (locT (as)(head(s)); tail(s)). Using

scanpre�x to compute locT (as)(head(s)) and tail(s), leads to a naive version of McCreight's

algorithm. Giegerich and Kurtz [GK95a] call this algorithm naiveInsertion and show an

e�ciency of O(l � n2) in the worst case and of O(l � n � logn) in the average case (l is the

size of the alphabet). An optimal functional implementation of naiveInsertion is given in

[GK95a]. Like naiveOnline it de- and reconstructs the tree during the scan from the root,

turning the local updates into global ones without extra overhead.

To obtain a linear-time algorithm, locT (as)(head(s)) and tail(s) must be computed in constant

time (averaged over all steps). This is accomplished by exploiting the following relationships:

Lemma 3.5.18 Let as be a su�x of x. Suppose head(as) = aw for some string w. Then

the following holds:

1. There is a branching node aw in T (as).

2. w is a pre�x of head(s).

3. w = head(s) whenever there is no branching node w in T (as).

Proof Since aw is a left-occurring pre�x of as, we have x
R
awcv

R
as = awdu for some

characters c and d and some strings u and v such that awcv 6= as. Obviously, d 6= c,

since otherwise awd would be a left-occurring pre�x of as. As both awd and awc occur

in T (as), aw is a branching node in T (as), that is, Statement 1 is proved. Moreover,

x
R
wcv

R
s = wdu which means that w is a left-occurring pre�x of s. As head(s) is the

longest left-occurring pre�x of s, w is a pre�x of head(s), which proves Statement 2. Since

wcv 6= s, we can conclude x
R
wcv

R
as. Hence, wcv occurs in T (as). Now suppose that

there is no branching node w in T (as). Then wd does not occur in T (as). Hence, w is the

longest pre�x of wdu = s, which occurs in T (as). Therefore, w = head(s) which proves

Statement 3. 2

50 CHAPTER 3. THE STRING PROCESSING MACHINERY

Note that McCreight explicitly mentions only the second property of Lemma 3.5.18 (see

[McC76, Lemma 1]). Apostolico [Apo85, page 86] claims that all clever variations of su�x

trees are built in linear time by resorting to similar properties. In fact, for Ukkonen's online

algorithm (which was described several years after Apostolico has made his claim) we have

such a property, too. It is stated in Lemma 3.5.7, Statement 2: The relevant su�xes of xa

form a contiguous segment of the list of all su�xes of xa, whose bounds are marked by active

su�xes.

The following function speci�es a construction step in McCreight's algorithm.

De�nition 3.5.19 The function mccstep is de�ned as follows:

mccstep(T; L; loc; cy; z)

= (T 0; L0; loc00; y0; r)
where loc0 = linkloc(loc)

(T 0; r) = T [loc00 y0]

((loc00; y0); L0) =

8>>><
>>>:

(scanpre�x (loc; y); L); if loc = root

(scanpre�x (loc0; cy); L); else if loc is a node

(scanpre�x (loc0; cy); L [fz - loc0g); else if loc0 is a node

((loc0; cy); L [fz - rg); otherwise

Lemma 3.5.20 Let as be a su�x of x and T 00 be the compact A+-tree preceding T (as)

in the sequence (3.2), i.e., (T (as); z) = T 00[locT 00(head(as)) tail(as)] (see Lemma 3.5.16).

Then

mccstep(T (as); innerlinks(T 00); locT 00(head(as)); tail(as); z)

returns

(T (s); innerlinks(T (as)); locT (as)(head(s)); tail(s); r);

where (T (s); r) = T (as)[locT (as)(head(s)) tail(s)].

Proof

1. If loc = root, then head(as) = ". Therefore, as = tail(as) = cy which implies y = s.

Hence, (loc00; y0) = scanpre�x (loc; y) = (locT (as)(head(s)); tail(s)). Moreover, since loc

is a node location, z 2 inner(T 00). That is, there is no su�x link to be set. Thus,

L0 = L = innerlinks(T 00) = innerlinks(T (as)).

2. If loc 6= root, then head(as) = aw for some string w. By Lemma 3.5.18, Statement

2, w is a pre�x of head(s). By de�nition locT 00(aw) = loc. Let loc0 = linkloc(loc).

loc0 is de�ned since only the inner su�x links of T 00 are used to compute it. Hence,

loc0 = linkloc(loc) = locT 00(w) = locT (as)(w) by Lemma 3.2.15.

(a) If loc is a node, then so is loc0 and we obtain (loc00; y0) = scanpre�x (loc0; cy) =

(locT (as)(head(s)); tail(s)). Moreover, z 2 inner(T 00). Thus, there is no su�x link

to be set and we obtain L0 = L = innerlinks(T 00) = innerlinks(T (as)).

(b) If loc is an edge location, then z 2 inner(T (as)) n inner(T 00). That is, the su�x

link for z has not been set.

� If loc0 is a node, then we have loc0 = w and L0 = L [fz - loc0g =

innerlinks(T 00) [fz - loc0g = innerlinks(T (as)). Moreover, (loc00; y0) =

scanpre�x (loc0; cy) = (locT (as)(head(s)); tail(s)).

3.6. IMPLEMENTATION OF SUFFIX TREE ALGORITHMS 51

� If loc0 is an edge location, then by Lemma 3.5.18, Statement 3, we obtain

w = head(s) and hence (loc00; y0) = (loc0; cy) = (locT (as)(head(s)); tail(s)).

Moreover, we conclude L0 = L [fz - rg = innerlinks(T 00) [fz - rg =

innerlinks(T (as)), where the node r = w will be created with T (s). 2

McCreight's algorithm is speci�ed by the function mcc.

mcc(T; L; loc; cy; z) =

(
(T; L); if y = " and loc = root

mcc(mccstep(T; L; loc; cy; z)); otherwise

Theorem 3.5.21 Let x 2 An, l = jAj and T = cst(x). Then mcc(T (x); ;; root; x;?)
returns (T; innerlinks(T)) in O(l � n) time and O(n) space.
Proof The correctness follows from Lemma 3.5.20. The complexity arguments carry over

from [McC76]. 2

Before we consider implementation issues, we should remark that Ukkonen's and McCreight's

su�x tree algorithms are very closely related, although they are based on rather di�erent

intuitive ideas. Based on a declarative description, Giegerich and Kurtz [GK95b] have shown

the following:

� Ukkonen's algorithm can be transformed into McCreight's algorithm by a modi�cation

of its control structure, leaving the sequence tree insertion operations invariant.

� The modi�cation is a slight optimization. Under a fair implementation, of the related

data structures, it will give McCreight's algorithm a minor e�ciency advantage over

Ukkonen's algorithm, on every possible input. This is con�rmed by the measurements

in [GK95a].

� The modi�cation sacri�ces the online property. McCreight's algorithm will always read

ahead of Ukkonen's algorithm in x.

The result of Giegerich and Kurtz is one more example which shows that a declarative view

often leads to new interesting insights about algorithms.

3.6 Implementation of Su�x Tree Algorithms

3.6.1 The Lazy Su�x Tree Algorithm

For the functional implementation of the lazy algorithm, we represent a su�x s of x in

constant space by the pair (s; jsj) of type (subword �). The function grouplcp (see De�nition
3.5.1) is always applied to a non-empty list of su�xes ordered by their length. If this list

contains only one element (s; slen), then the length of the longest common pre�x is slen,

and the list [([]; 0)] of rest su�xes represents the empty string. If all su�xes represented in

the list begin with the character a, then a is dropped from these, and grouplcp is applied to

the resulting list. Otherwise, the longest common pre�x has length 0. Note that the pattern

(c : u; i+1) in the list generators only matches non-empty strings. Thus, grouplcp eliminates

super
uous strings which result from nested su�xes.

52 CHAPTER 3. THE STRING PROCESSING MACHINERY

grouplcp::[subword �]!(num,[subword �])

grouplcp [(s,slen)] = (slen,[([],0)])

grouplcp ((a:s,slen+1):ss)

= (prefixlen+1,rests), if [0 | (c:u,i+1) ss; a ~= c] = []

= (0,(a:s,slen+1):ss), otherwise

where (prefixlen,rests) = grouplcp ((s,slen):[(u,i) | (c:u,i+1) ss])

The length of a su�x is used only when grouplcp is applied to a unitary list. This situation

occurs when a label for a leaf edge is to be computed. In [GK95a], the length component

of a su�x was omitted and computed on demand in O(jsj). This led to a considerable

simpli�cation and improved the speed by a factor 2. However, the running time was measured

without evaluating the length of a su�x. The argument was that applications using the

length read the characters of the su�x anyway which amortizes the cost of calculating the

length. In the thesis, some operations on compact su�x trees occur that do evaluate the

length without reading the su�x. Therefore, we prefer the more complicated solution that

allows to obtain the length of s in constant time, rather than in O(jsj).
The implementation of the function group is straightforward. Let characters be the ordered

list of characters in A. For each a in characters, the su�xes beginning with a are selected

and a is dropped from these. If the resulting list is not empty, then it matches the expression

(y : ys) and the function grouplcp is applied to it. This yields a pair (j; rests). j is the

length of the longest common pre�x w of the su�xes represented by (y : ys), and rests is

the list of the remaining su�xes. Taking the �rst component s of the pair y, we obtain a

subword (a : s; j + 1) of x representing aw.

group::[�]![subword �]![(subword �,[subword �])]

group characters ss = [((a:fst y,j+1),rests) | a characters; y:ys [select a];

(j,rests) [grouplcp (y:ys)]]

where select a = [(u,i) | (c:u,i+1) ss; a = c]

The lazy algorithm is implemented by a function lazytree which calls a function subtree

to construct a subtree from a list of su�xes. To obtain the entire su�x tree, subtree is

applied to all su�xes of x paired with their lengths. If the list of su�xes becomes unitary,

subtree returns a leaf. Otherwise, it constructs a node with some outgoing edges whose

labels are obtained by grouping the su�xes. The outgoing edges lead to subtrees recursively

constructed from the corresponding set of remaining su�xes. Note that lazytree requires

that the length of x and the characters in A are known in advance.

lazytree::[�]!(subword �)!ctree � �

lazytree characters (x,n)

= subtree (zip2 (suffixes x) [n,n-1..])

where subtree [([],0)] = N [] undef undef

subtree ss

= N es undef undef

where es = [(aw,subtree rests) | (aw,rests) group characters ss]

Let l = jAj. Since lazytree uses iteration over l characters to group su�xes, each character

is inspected l times. This leads to an extra factor l. The running time of lazytree is therefore

3.6. IMPLEMENTATION OF SUFFIX TREE ALGORITHMS 53

O(l � n2) in the worst case, and O(l � n � logn) in the average case. The space consumption

is O(n). Thus, lazytree is not optimal. The iteration over the characters in A and the

resulting factor can be avoided if one uses counting sort. However, this only works with

extension 2. We will not give such an implementation.

Note that lazytree constructs compact su�x trees with unde�ned su�x links and annota-

tions. In section 3.7, we show how to compute su�x links and calculate the annotations,

respectively.

3.6.2 Tree Transformers

The linear time su�x tree algorithms build compact su�x trees via local updates at some

nodes. Moreover, they construct su�x links in order to have e�cient access to these nodes.

In this way, the algorithms produce a cyclic graph structure with multiple pointers to nodes.

Such a graph structure can be implemented by the recursive type (ctree � �) (see section

3.4.5). Multiple pointers are represented by shared subexpressions. However, in an expres-

sion of type (ctree � �), a local update can only be accomplished by its global reconstruction.

This would contradict the linear time constraint. Therefore, to implement McCreight's and

Ukkonen's su�x tree algorithms purely functionally, we use another representation of the

su�x tree. In order to update a tree in-place, the nodes are stored in an updatable array

such that each node can only be accessed via its unique index in the array. Thus, our im-

plementation requires extension 2, as de�ned in section 2.4. To ensure single threadedness,

the array will be manipulated by tree transformers which are a special instance of state

transformers. We introduce the following type for nodes.

node ::= Index num | Leaf | Undefnode

The argument of the constructor Index is an index into the array. For the linear time su�x

tree algorithms, we do not store any information at the leaves. Hence, these are represented

by a constructor Leaf without index argument. The constructor Undefnode stands for the

symbol ? introduced in De�nition 3.2.11.

For each node represented by an expression (Index i), we store at index i of the array a triple

(es; link; tag) of type ([(�; node)]; node; �) where es is the list of the labeled outgoing edges,

link is the su�x link, and tag the annotation. Thus, a node is not represented explicitly

as a pointer to a subtree. Instead, we use an index i referring to the array. Note that es,

link, and tag correspond to the arguments of the constructor N which was introduced for

the recursive type (tree � �) (cf. De�nition 3.4.4). However, as we access inner nodes via

indices into an array, we get a non-recursive type, and therefore do not need a new type

constructor. We can simply combine es, link, and tag to a triple. To select one of the three

items from the triple, we introduce the polymorphic functions �rst, second and third. These

will also be used in other contexts.

first::(�,�,
)!�

first (left,mid,right) = left

second::(�,�,
)!�

second (left,mid,right) = mid

54 CHAPTER 3. THE STRING PROCESSING MACHINERY

third::(�,�,
)!

third (left,mid,right) = right

In each step of the construction, we must know which of the entries in the array represent

the actual A+-tree, and which are free to store the inner nodes created later. We therefore

introduce a free-index that divides the array into two parts:

� The entries with the indices 0; : : : ; free � 1 represent the actual tree.

� The entries with the indices � free can be used to store the nodes created later.

At the beginning of the construction the root is the only node. Consequently, we store it at

index 0 which is expressed as follows:

root::node

root = Index 0

Example 3.6.1 The atomic A+-tree in Figure 3.1 has �ve nodes. It is represented by an

array as follows:

atreeArray::array ([(char,node)],node,num)

atreeArray = makearray 5 [node0,node1,node2,node3,node4]

where node0 = ([('a',Index 1),('b',Index 4)],undef,undef)

node1 = ([('b',Index 2)],Index 0,undef)

node2 = ([('b',Index 3)],Index 4,undef)

node3 = ([],Index 4,undef)

node4 = ([],Index 0,undef)

2

As we always have to provide access to the free-index, it becomes part of the state. Hence,

the monad treetrans of tree transformers is de�ned as follows:

treetrans � �
 == statetrans (state � �)

state � � == (array ([(�,node)],node,�),num)

The functions unit and bind are inherited from the monad of state transformers as de�ned

in section 2.3.1. To manipulate the array-component of the state, we follow section 2.3.2

and introduce the functions block, fetch, and assign.

block::num!(treetrans � �
)!

block n treetrans = value

where (value,state) = treetrans (makearray n vlist,1)

vlist = take n (repeat ([],undef,undef))

fetch::node!treetrans � � ([(�,node)],node,�)

fetch (Index i) (array,free) = (lookup i array,(array,free))

3.6. IMPLEMENTATION OF SUFFIX TREE ALGORITHMS 55

assign::node!([(�,node)],node,�)!treetrans � � ()

assign (Index i) v (array,free) = ((),(update i v array,free))

block needs O(n) time to initialize n entries of the array with the triple ([]; undef ; undef).

This means that initially every node has an empty list of outgoing edges, an unde�ned

su�x link, and and unde�ned annotation. Moreover, the free-index is initialized to 1.

(fetch node state) returns in constant time the items stored for node. It propagates the

state unchanged. To avoid duplicating the state, fetch must be implemented as follows.

First the entry i in the array is fetched and then pair consisting of this value and the un-

changed state is returned. (assign node v state) updates the array-component of state such

that the entry with the index speci�ed by node contains value v. This takes constant time.

newnode is the only operation that changes the right component of the state, that is, the

free-index. It returns a new node with index free and increments free by 1. After calling

newnode, the entry with the index free can be used to store items for the next node to be

created. Notice that newnode does not access or change the array-component of the state.

newnode::treetrans � � node

newnode (array,free) = (Index free,(array,free+1))

For convenience we introduce the function use which applies a function f to the value

returned by a tree transformer treetrans. use corresponds to the function using introduced

by Hutton [Hut92] in the context of parser combinators.

use::(treetrans � �
)!(
!�)!treetrans � � �

(treetrans $use f) state = (f value,state')

where (value,state') = treetrans state

(seledge ok node) returns the list [(w; node0)] if there is an edge node w-node0 such that

(ok w) is true. Otherwise, it returns the empty list. The running time is proportional to the

number of edges outgoing from node.

seledge::(�!bool)!node!treetrans � � [(�,node)]

seledge ok node = fetch node $use (selok.first)

where selok es = [(w,node') | (w,node') es; ok w]

(sellink node) selects in constant time the su�x link of node.

sellink::node!treetrans � � node

sellink node = fetch node $use second

(setlink node link) sets the su�x link of node to link and returns link. This takes constant

time.

setlink::node!node!treetrans � � node

setlink node link = (fetch node $bind set) $use const link

where set (es,undeflink,tag) = assign node (es,link,tag)

Since the access to the array is accomplished by fetch and assign only, all the functions of this

section are single-threaded. To preserve this property, we make the type (treetrans � �
)

into an abstract data type supporting all functions of this section.

56 CHAPTER 3. THE STRING PROCESSING MACHINERY

3.6.3 Compact Tree Transformers

Compact tree transformers are special instances of tree transformers.

ctreetrans � �
 == treetrans (subword �) �

Let es be an ordered list of edge labels paired with nodes. Suppose bpair = ((bv; k); bnode).

(insertedges es bpair) inserts bpair into es, yielding an ordered list. If there is a pair

((cu; j); cnode) in es such that c = b, then it is replaced by bpair. The running time of

insertedges is proportional to the length of es.

insertedges::[(subword �,node)]!(subword �,node)![(subword �,node)]

insertedges es ((b:v,k),bnode)

= takewhile ((<b).sel) es ++ ((b:v,k),bnode):dropwhile ((<=b).sel) es

where sel ((c:u,j),cnode) = c

(addleaf ay node) returns node and adds a leaf edge labeled ay to the node. Note that we

do not store any information for the leaves: A leaf is represented by the constructor Leaf.

addleaf::(subword �)!node!ctreetrans � � node

addleaf ay node = (fetch node $bind add) $use const node

where add (es,link,tag) = assign node (es',link,tag)

where es' = insertedges es (ay,Leaf)

(splitedge node v w node0) splits node vw-node0 into the edges node v-node00 w-node0. It

returns a new node denoted by node00. The splitting is accomplished in two steps as follows.

At the entry speci�ed by node00 the triple ([(w; node0)]; undef ; undef) is stored. That is, a

new node node00 is introduced with a new edge node00 w-node0. Then the edge node vw-node0

is replaced by the edge node v-node00. The running time is proportional to the number of

edges outgoing from node.

splitedge::node!(subword �)!(subword �)!node!(ctreetrans � � node)

splitedge node v w node'

= fetch node $bind split

where split (es,link,tag)

= newnode $bind add

where add node''

= assign node'' ([(w,node')],undef,undef) $bind const replace

where replace = assign node (es',link,tag) $use const node''

es' = insertedges es (v,node'')

The function (cseledge a) selects an a-edge.

cseledge::�!node!ctreetrans � � [(subword �,node)]

cseledge a = seledge ok

where ok (c:u,i) = (a = c)

3.6. IMPLEMENTATION OF SUFFIX TREE ALGORITHMS 57

3.6.4 Locations

In analogy to section 3.4.6 we introduce two constructors, LocN for node locations and LocE

for edge locations.

location � ::= LocN node | LocE node (subword �) (subword �) node

For convenience we introduce a function loc2node that extracts the node from a node loca-

tion.

loc2node::(location �)!node

loc2node (LocN node) = node

The monadic implementation of getloc is similar to the implementation given in section

3.4.6. However, it must also cover the case for edge locations, because in the �rst equation

de�ning ukkstep (cf. De�nition 3.5.11) loc may be an edge location. Let sz 2 words(T).

Then (getloc (locT (s)) z) returns locT (sz) and propagates the state unchanged. This takes

O(l � jzj) steps, where l is the average number of edges outgoing from the nodes visited by

getloc.

getloc::(location �)!(subword �)!ctreetrans � � (location �)

getloc loc (z,0) = unit loc

getloc (LocN node) (a:z,j)

= (cseledge a node $use hd) $bind down

where down ((v,i),node')

= unit (LocE node (v,j) w node'), if node' = Leaf _ j < i

= getloc (LocN node') (advance i (a:z,j)), otherwise

where w = advance j (v,i)

getloc (LocE node (v,k) (w,i) node') (z,j)

= unit (LocE node (v,k+j) (advance j (w,i)) node'), if node' = Leaf _ j < i

= getloc (LocN node') (advance i (z,j)), otherwise

Note the di�erences and similarities between the monadic implementation above and the

implementation of getloc given in section 3.4.6. In both implementations, the A+-tree T

is not an explicit argument. In the monadic implementation, the information for a certain

node is fetched from the array, whereas in the other implementation pattern matching on

the constructor N is used. The like holds for the monadic implementation of linkloc below

and the implementation given in section 3.4.6.

linkloc::(location �)!ctreetrans � � (location �)

linkloc (LocN node) = sellink node $use LocN

linkloc (LocE node v w node')

= sellink node $bind down

where down link = getloc (LocN node) (advance 1 v), if node = root

= getloc (LocN link) v, otherwise

For convenience we introduce the functions nodeloc and rootloc. nodeloc checks if a location

is a node. rootloc checks if a location is the root.

58 CHAPTER 3. THE STRING PROCESSING MACHINERY

nodeloc::(location �)!bool

nodeloc (LocN node) = True

nodeloc loc = False

rootloc::(location �)!bool

rootloc (LocN node) = (node = root)

rootloc loc = False

The function insert corresponds to the operator [] expressing insertion into A+-trees

(cf. De�nition 3.2.11). More precisely: let (T 0; r) = T [loc ay] and suppose the array

represents the compact A+-tree T . Then (insert loc ay) returns r and updates the array

such that the new array represents T 0.

insert::(location �)!(subword �)!ctreetrans � � node

insert (LocN node) ay = addleaf ay node $use const Undefnode

insert (LocE node v w node') ay = splitedge node v w node' $bind addleaf ay

3.6.5 Ukkonen's Online Su�x Tree Algorithm

The monadic implementation of the boolean function occurs (see De�nition 3.2.7) is straight-

forward.

occurs::(location �)!�!ctreetrans � � bool

occurs (LocN node) a = cseledge a node $use (~=[])

occurs (LocE node v (c:w,j) node') a = unit (a = c)

The monadic implementation of ukkstep (cf. De�nition 3.5.11) is as follows:

ukkstep::(subword �)!node!(location �)!ctreetrans � � (location �)

ukkstep ay z loc

= occurs loc a $bind ukkcases

where (a:y,i) = ay

ukkcases occ

= ukklink undef $bind const (getloc loc (a:y,1)), if occ

= (insert loc ay $bind ukklink) $use const loc, if rootloc loc

= (insert loc ay $bind ukklink) $bind nextstep, otherwise

where ukklink r = unit r, if z = Undefnode

= setlink z (loc2node loc), if occ _ r = Undefnode

= setlink z r, otherwise

nextstep r = linkloc loc $bind ukkstep ay r

The implementation closely resembles the de�nition of ukkstep. The identi�ers in the im-

plementation are consistent with those in the de�nition. Of course, r and z stand for r and

z, respectively. The case distinction in the de�nition of ukkstep corresponds to the three

cases of the function ukkcases above. The function ukklink is used for setting the su�x

links. It is supplied with the argument r, which is either unde�ned, set to Undefnode or to

the node just created. The case distinction in ukklink re
ects the cases de�ning the new set

3.6. IMPLEMENTATION OF SUFFIX TREE ALGORITHMS 59

L0 of su�x links (cf. De�nition 3.5.11). Note that it is necessary to set a su�x link if and

only if z 6= Undefnode. ukkstep begins by evaluating the expression (occurs loc a). Let occ

be the value of this expression. Then the following cases occur.

1. If occ is true, then the su�x link for z is set to (loc2node loc) if necessary. Moreover,

the location of the next active su�x is computed.

2. If occ is false and loc is the root, then ay is inserted at the root and the su�x link for

z is set to (loc2node loc) if necessary.

3. If occ is false and loc is not the root, then ay is inserted at location loc. This yields

a value r returned by the function insert. Moreover, the su�x link for z is set to

(loc2node loc) or to r if necessary. The next step is to compute the location (linkloc loc)

of the next su�x and to call ukkstep with the proper arguments.

The monadic implementation of the function ukk (see section 3.5.2) is now straightforward.

ukk::(subword �)!(location �)!ctreetrans � � ()

ukk ([],0) loc = unit ()

ukk ay loc = ukkstep ay Undefnode loc $bind ukk (advance 1 ay)

We assume a function showctree that returns a readable representation of a compact A+-

tree. callukk calls block. This initializes the state. Moreover, ukk is called, followed by

showctree. This yields a readable representation of the constructed tree which is returned

after deallocating the state. Recall that we only store information for the inner nodes of the

compact su�x tree. Therefore, it su�ces to create an array of size n = jxj.

callukk::(ctreetrans � �
)![�]!

callukk showctree x = block n (ukk (x,n) (LocN root) $bind const showctree)

where n = #x

From the above it is clear that callukk takes O(jAj �n) time and requires O(n) space. Hence,
the monadic implementation is optimal.

3.6.6 McCreight's Su�x Tree Algorithm

It is easily veri�ed that in mccstep (cf. De�nition 3.5.19) the �rst argument of the function

scanpre�x is always a node location. Moreover, the second argument of scanpre�x is a non-

empty su�x of x, due to the presence of the sentinel character in x. Finally, we do not need

to compute the list of nodes visited during a traversal, as done by the function scanpre�x 0.

Hence, the monadic implementation of scanpre�x is much simpler than the implementation

given in section 3.4.6. It can easily be developed from the function scanpre�x 0 by translating

its second equation to monadic style.

60 CHAPTER 3. THE STRING PROCESSING MACHINERY

scanprefix::node!(subword �)!ctreetrans � � (location �,subword �)

scanprefix node (a:w,j+1)

= cseledge a node $bind down

where down [] = unit (LocN node,(a:w,j+1))

down (((c:u,i+1),node'):es)

= unit (loc',advance k (w,j)), if node' = Leaf _ k < i

= scanprefix node' (advance k (w,j)), otherwise

where k = lcp u w, if node' = Leaf

= lcp (take i u) w, otherwise

loc' = LocE node (c:u,1+k) (advance k (u,i)) node'

The monadic implementation of mccstep (cf. De�nition 3.5.19) is as follows:

mccstep::(location �,subword �,node)!ctreetrans � � (location �,subword �,node)

mccstep (loc,cy,z)

= linkloc loc $bind mcccases

where

mcccases loc'

= scanprefix root (advance 1 cy) $bind justinsert, if rootloc loc

= case2 (loc2node loc'), if nodeloc loc

= setlink z (loc2node loc') $bind case2, if nodeloc loc'

= (insert loc' cy $bind setlink z) $use triple loc' cy, otherwise

where case2 node = scanprefix node cy $bind justinsert

justinsert (loc'',y') = insert loc'' y' $use triple loc'' y'

triple::�!�!
!(�,�,
)

triple left mid right = (left,mid,right)

The implementation closely resembles the de�nition ofmccstep. The identi�ers are consistent

with those of the de�nition. r and z refer to r and z, respectively. The case distinction in the

de�nition of mccstep corresponds to the four cases of the function mcccases above. mccstep

applies linkloc to obtain the location loc0 of the next su�x. Then it proceeds as follows:

1. If loc is the root, then the pair (loc00; y0) is computed by applying scanpre�x to the

root and the string y which is obtained by advancing one character in cy. Then y0 is

inserted at loc00 which yields a value r that is returned together with loc00 and y0.

2. If loc is a node, then so is loc0. If furthermore loc is not the root, then (loc00; y0) is

computed by applying scanpre�x to (loc2node loc0) and the string cy. Then y0 is

inserted at loc00, which yields a node r that is returned together with loc00 and y0.

3. If loc0 is a node but not loc, then the su�x link for z is set to (loc2node loc0). The rest

is like in case 2.

4. If loc0 is not a node, then (loc00; y0) = (loc0; cy). Hence, cy is inserted at loc0, yielding a

new inner node r. The su�x link for z is set to r, and r together with loc0 and cy is

returned.

3.7. COMPUTING SUFFIX LINKS AND ANNOTATIONS 61

Note that the value r does not explicitly occur in the implementation of mccstep. After r is

returned by the function insert, it is propagated by bind to serve as the second argument of

setlink which itself returns r, so that it can be used as the third argument for the function

triple.

The monadic implementation of the function mcc is now straightforward.

mcc::(location �,subword �,node)!ctreetrans � � ()

mcc (loc,(a:y,i),z)

= unit (), if y = [] & rootloc loc

= mccstep (loc,(a:y,i),z) $bind mcc, otherwise

callmcc calls block. This initializes the state. Moreover, a leaf edge labeled x is added to the

root. Thenmcc is called with the proper initial arguments. Finally, a readable representation

of the constructed tree is obtained by showctree. The representation is returned after

deallocating the state.

callmcc::(ctreetrans � �
)![�]!

callmcc showctree x

= block n ((addedge $bind mcc) $bind const showctree)

where addedge = addleaf (x,n) root $use const (LocN root,(x,n),undef)

n = #x

From the above it is clear that callmcc takes O(jAj � n) time and O(n) space. Hence, the

implementation is optimal.

The implementations of ukkstep and mccstep are tailored so that they closely resemble

De�nitions 3.5.11 and 3.5.19, respectively. The development was not straightforward. It

takes some time to get used to the monadic programming style. The main problem is that in

order to guarantee the single-threadedness, the compact tree transformers do not explicitly

have the compact A+-tree as an argument. This means that one has to do without an

important technique for structuring functional programs. The intermediate results, namely

the created and visited nodes cannot be bound to identi�ers using a where clause. Instead,

they are implicitly passed between the compact tree transformers or they occur as arguments

to some locally de�ned functions. This often leads to programs that are relatively hard to

understand. In a functional language which allows �-expressions (for instance Haskell or

Clean) this notational disadvantage can be relaxed: Instead of introducing local functions,

one has anonymous functions which are introduced inside ordinary expressions. For an

example see [Wad92b].

3.7 Computing Su�x Links and Annotations

Su�x links are very important in many applications of A+-trees. In atomic A+-trees, for

instance, the su�x links allow to �nd all occurrences of some patterns in an input string in

linear time (see section 5.2). In compact su�x trees the su�x links are used for determining

the q-gram distance (see section 3.9.3), for sublinear exact and approximate string searching

(see sections 4.4, 4.5, 6.8), and for computing matching statistics (see section 6.6). This

section shows how to compute su�x links e�ciently.

62 CHAPTER 3. THE STRING PROCESSING MACHINERY

3.7.1 Su�x Links for Atomic A+-Trees

Let T be an atomic A+-tree. To construct the su�x links of T , we use the algorithm of

Aho and Corasick for computing the failure transitions (see [AC75, Algorithm 3]). The idea

of this algorithm can be described as follows: Suppose that sa - v is a su�x link in T .

The node v is determined as follows. If s = root, then v = root. If s 6= root, then let

s -u 2 links(T). Since u is a su�x of s, we can conclude sa
R
ua. Assume that v is longer

than ua. Then v = wa and therefore w is a su�x of s such that w 2 nodes(T). This is

a contradiction since u is the longest su�x of s such that u 2 nodes(T). Hence, v is the

longest su�x of ua such that v 2 nodes(T). That is, v can be found by following the su�x

link path starting at u, until a node with an a-edge is found or the root is reached. This is

accomplished by the function next.

De�nition 3.7.1 The function next : nodes(T)�A ! nodes(T) is de�ned as follows:

next(s; a) =

8><
>:
sa; if s a- sa 2 edges(T)
root; else if s = root

next(v; a); otherwise

where s - v 2 links(T)

Lemma 3.7.2 Let u be a node in T and v = next(u; a) for some a 2 A. Then v is the

longest su�x of ua such that v is a node in T .

Proof Routine. 2

The implementation of the function next is straightforward.

next::(tree � �)!�!(tree � �)

next (N es link tag) a = hd asucc, if asucc ~= []

= N es link tag, if link = Undeftree

= next link a, otherwise

where asucc = [node | (c,node) es; a = c]

For the sake of good readability and practical performance, we use list comprehensions to

select an a-edge, thereby ignoring the fact that the list of outgoing edges is ordered. The

function addlinks computes the su�x links of T in a single tree traversal. The main work is

done by the function setlink which sets the su�x link for s to the node u as speci�ed above.

More precisely, if s is represented by the expression (N es link tag) and u is represented

by link0 then link is replaced by link0. Furthermore, for each edge s a- sa outgoing from s,

setlink is called with the arguments sa = node and v = next(link0; a). This yields an a-edge

leading to a subtree in which the su�x links are set.

addlinks::((tree � �)!(tree � �)!(tree � �))!(tree � �)!tree � �

addlinks setlink (N es link tag)

= root where root = N [(a,setlink node root) | (a,node) es] Undeftree tag

setlink::(tree � �)!(tree � �)!(tree � �)

setlink (N es link tag) link'

= N es' link' tag

where es' = [(a,setlink node (next link' a)) | (a,node) es]

3.7. COMPUTING SUFFIX LINKS AND ANNOTATIONS 63

We have implemented addlinks as a higher order functions since it will be supplied with a

variation of setlink that performs some additional calculations (see section 5.2). According to

the description above, the su�x link s -u must be computed before the su�x link sa - v.

Because of the laziness, we do not have to worry about this order: su�x links are computed

when they are demanded. In an eager language the solution is not so straightforward. Like

in Aho and Corasick's imperative implementation, one can, for instance, use a queue to

implement a breadth �rst traversal. This guarantees that the computations are done in the

right order. However, it leads to a much longer and more complicated program.

Theorem 3.7.3 addlinks computes the su�x links of T in O(l � jT j) steps where l is the
average number of edges outgoing from the nodes visited by next.

Proof The correctness of the implementation is clear. To analyze the e�ciency of addlinks,

we have to determine the number of calls to the function next. First observe that in each

call of the form (next s a) either

(1) a di�erent edge label a is consumed (�rst and second equation implementing next), or

(2) a su�x link s - v 2 links(T) is traversed (third equation implementing next).

The number of steps of type (1) is bound by jedges(T)j. Moreover, for each step of type (2)

there are jsj � jvj > 0 steps of type (1). Thus, the number of steps of type (2) is bound by

jedges(T)j, too. Therefore, there are at most (2 � jedges(T)j) calls to the function next. 2

Note that Aho and Corasick [AC75] did not give a proof of the above e�ciency result and

we have not seen such a proof elsewhere.

3.7.2 Su�x Links for Compact Su�x Trees

To our knowledge there is no application3 of compact su�x trees that requires the su�x

links of the leaves to be set. This is due to the fact that these are in general not atomic

which means that they cannot be used to provide e�cient access from the location of a string

cy to the location of y (cf. section 3.2.2). Therefore, we restrict ourselves to the problem of

computing the inner su�x links of a compact su�x tree e�ciently. Of course, this problem

does not occur when the tree is constructed by Ukkonen's or McCreight's algorithm since

these construct the inner su�x links anyway. The problem is motivated by the fact that the

lazy algorithm does not compute any su�x links. Giegerich and Kurtz [GK95a] have already

given a solution. We adopt this. However, while in [GK95a] only the code of a function is

given, we also present the main idea which is not trivial. Moreover, we additionally prove

the linearity claim of [GK95a] and show how to improve the solution of Giegerich and Kurtz.

In this section, let T be the compact su�x tree for some string x of length n. The idea of

computing the inner su�x links of T is similar to Aho and Corasick's algorithm for computing

failure transitions. It can be described as follows:

Suppose cy 2 inner(T). Then y 2 inner(T) as well. Hence, locT (y) = y. Let u av- cy be an

edge in T . Then uav = cy. y is determined as follows:

3Except for building the compact \a�x tree" of x by reverse uni�cation of cst(x) and cst(x�1). See
[Sto95].

64 CHAPTER 3. THE STRING PROCESSING MACHINERY

1. If u = root, then av = cy, i.e., v = y. Hence, y = locT (y) = locT (v) = getloc(root; v).

2. If u 6= root, then u - z 2 innerlinks(T) and u = bz for some b 2 A. Therefore,

we get bzav = uav = cy which implies zav = y. Hence, y = locT (y) = locT (zav) =

getloc(locT (z); av) = getloc(z; av).

According to this description, the function cstlinks (as shown below) computes the inner

su�x links of a compact su�x tree, leaving the su�x links for the leaves unde�ned. It does

so in a single tree traversal. The second case above implies that the su�x link u - z must

be computed before the su�x link cy - y. Due to the laziness, we do not have to worry

about this order (cf. section 3.7.1).

cstlinks::(ctree � �)!(ctree � �)

cstlinks (N es link tag)

= root

where root = N es' Undeftree tag

es' = [(av,setcstlink node (getloc root (advance 1 av))) | (av,node) es]

setcstlink::(ctree � �)!(location � �)!(ctree � �)

setcstlink (N [] link tag) loclink = N [] undef tag

setcstlink (N es link tag) (LocN link')

= N es' link' tag

where es' = [(w,setcstlink node (getloc link' w)) | (w,node) es]

cstlinks is very similar to the function addlinks from section 3.7.1. The functions getloc and

setcstlink play the role of the function next and setlink in addlinks. The main di�erence is

that cstlinks sets the su�x links for the leaves to undef. Moreover, the su�x links for the

nodes immediately below the root are in general not set to the root.

To determine the e�ciency of cstlinks, one �rst notes that there are O(n) inner nodes in T ,
and thereforeO(n) su�x links to be set. Hence, there areO(n) calls to the function setcstlink.
The main part of the work is done by the function getloc. There are O(n) calls of the form
(getloc u "), each taking constant time. Since each call of the form (getloc u w), w 6= ",

consumes a non-empty pre�x of w, the number of these calls is bound by the length of the

labels of the inner edges. To state this precisely, we de�ne a function elen : edges(T)! IN0:

elen(s av- sav) =

8><
>:

0; if sav is a leaf

jvj; else if s = root

javj; otherwise

The number of calls of the form (getloc u w), w 6= " is at most
P

e2edges(T) elen(e). Unfor-

tunately, we do not know whether this upper bound is in general proportional to n. So we

cannot prove the linearity this way and present a second approach which is indeed successful.

First note that for each call of the form (getloc u vz), vz 6= ", the following is evident:

� It traverses an edge u v- uv.

� It occurs if and only if some su�x link auvz -uvz is to be computed.

3.7. COMPUTING SUFFIX LINKS AND ANNOTATIONS 65

Figure 3.7: cst(accaccaa) with the Inner Links

bPPPPPPPPPq

���������)

a

b

@
@
@R

�
�

�	

a

b

cca

b

@
@
@R

�
�

�	

a

b

ccaa

b

c

b
HHHHHHj

�������

a

b

@
@
@R

�
�

�	

a

b

ccaa

b

ca

b

@
@
@R

�
�

�	

a

b

ccaa

b

y

- �

�

Example 3.7.4 When cstlinks computes the inner su�x links for cst(accaccaa) (see Figure

3.7), we observe the following:

� (getloc root a) traverses the edge root a- a to compute the su�x link ca - a.

� (getloc root cca) traverses the edge root c- c to compute the su�x link acca - cca.

� (getloc c ca) traverses the edge c ca- cca to compute the su�x link acca - cca.

� (getloc root ca) traverses the edge root c- c to compute the su�x link cca - ca.

� (getloc c a) traverses the edge c a- ca to compute the su�x link cca - ca. 2

Lemma 3.7.5 getloc traverses each edge in T at most jAj times.

Proof Suppose u v- uv is an edge in T which is traversed by getloc. Obviously, u and uv

are inner nodes. Moreover, there exists a character a and a string z such that auvz is an

inner node in T and the following statements hold:

� u = " and either root avz- avz 2 edges(T) or a vz- avz 2 edges(T).
� u 6= ", u = wy for some strings w, y such that aw yvz- auvz 2 edges(T).

To show the uniqueness of z, suppose there is a string z0 such that avz0 is an inner node in

T . Consider the following cases:

� u = ". If root avz
0- avz0 2 edges(T), then a is not a node in T . Therefore, we

get root avz- avz 2 edges(T) which implies z = z0. If a vz0- avz0 2 edges(T), then

root a- a 2 edges(T). Hence, there is no edge root avz- avz from which we conclude

a vz- avz 2 edges(T). This implies z = z0.

� u 6= ". Suppose u = w0y0 for some strings w0, y0 such that aw0 y
0vz0- auvz0 2 edges(T).

Without restriction to generality we can assume that w0 is a pre�x of w. Hence, there

is a string s such that w = w0s and sy = y0. Assume s 6= ". Then aw0s = aw

is not a right-branching subword of x since we have an edge aw0 syvz
0- auvz0. This

is a contradiction. Hence, s = " which implies w = w0 and y = y0. Let c be the

�rst character of yv. Since there is only one c-edge outgoing from aw, we �nally get

yvz0 = yvz which implies z = z0. 2

66 CHAPTER 3. THE STRING PROCESSING MACHINERY

According to Lemma 3.7.5, there are O(jAj � n) calls to getloc in the worst case. Each call

takes O(l) steps, where l is the average number of outgoing edges of the nodes visited by

getloc. In the worst case l = jAj. Hence, cstlinks computes the inner su�x links for T in

O(jAj2 � n) steps in the worst case. Under the assumption that the alphabet A is constant,

this shows the linearity claimed in [GK95a]. However, the factor jAj2 is unsatisfying. It

remains to show a tighter upper bound.

The speed of cstlinks can be improved by exploiting the ordering of the edge labels: Let cy

and y be some inner nodes in T with a list es and es00 of outgoing edges, respectively. Let

cy av- cyav be an edge in T that leads to an inner node cyav. Then there is an a-edge in es00

that must be traversed in order to compute the su�x link for cyav. Selecting this a-edge

in a brute force manner takes O(jes00j) steps on the average. This adds up to O(jesj � jes00j)
steps for all edges in es. Alternatively, we can scan es and es00 simultaneously in O(jes00j)
steps, thereby exploiting the fact that the two lists are ordered.

selectfast::[cedge � �]![cedge � �]![cedge � �]

selectfast [] es'' = []

selectfast (((a:v,j),node):es) (((c:u,i),node'):es'')

= ((a:v,j),setcstlink node loclink):selectfast es es'', if a = c

= selectfast (((a:v,j),node):es) es'', otherwise

where loclink = getloc node' (advance i (a:v,j))

The function selectfast implements the simultaneous scan of es and es00. If we compute es0 in

the last line of setcstlinks by the expression (selectfast es (seledges link0)), then we obtain

a faster variant of cstlinks.

3.7.3 Annotations for Compact Su�x Trees

The various forms of compact su�x trees essentially di�er in the speci�c annotations of the

nodes. Using the polymorphic type (ctree � �), together with a higher order function, we

represent and compute all these forms in a uni�ed way. In particular, we supply a function

implementing the lazy su�x tree algorithm with a function that computes an annotation.

De�nition 3.7.6 An annotation function is a function of type

annotationfunction � � == num![cedge � �]!�

Let T be a compact su�x tree. For each S-annotation ' of T considered in the thesis, we

provide an annotation function annotate such that for each node s in T we have '(s) =

annotate d es where d is the depth of the node s and es is the list of edges outgoing from

s. In other words, if a node is represented by an expression (N es link tag) then tag is

computed from the depth of the node and the list es.

The function cstannotation applies an annotation function to a compact su�x tree, yielding

the tree with its annotation. The su�x links are set to undef. Note that it does not make

sense to set the su�x link to the expression link since this is either unde�ned or it is an old

link which will point to obsolete subtrees after computing the annotation.

3.7. COMPUTING SUFFIX LINKS AND ANNOTATIONS 67

cstannotation::(annotationfunction � �)!(ctree �
)!(ctree � �)

cstannotation annotate

= cstanno' 0

where cstanno' d (N es link tag)

= N es' undef (annotate d es')

where es' = [((w,j),cstanno' (d+j) node) | ((w,j),node) es]

Example 3.7.7 depth is a simple annotation function. It computes the depth of a node.

depth::annotationfunction � num

depth d es = d

If we apply (cstannotation depth) to the expression actree, de�ned in Example 3.4.6, we

obtain the following tree.

actreedepth::ctree char num

actreedepth

= root

where root = N [(("abca",4),N [] undef 4),

(("bca",3),N [] undef 3),

(("ccabca",1),cN)] undef 0

cN = N [(("abca",4),N [] undef 5), (("cabca",5),N [] undef 6)] undef 1

shortestpathlen is an annotation function that computes for each node v in T the length of

the shortest path from v to some leaf in T . If T = cst(x$), then this information can be

used to determine in O(jAj � jwj) steps the rightmost position in x where w ends.

shortestpathlen::annotationfunction � num

shortestpathlen d es = 0, if es = []

= min [i+splen | ((w,i),N es' link splen) es], otherwise

With a similar annotation function one computes the leftmost occurrence of w in x. 2

If we have more than one annotation, say '1; : : : ; 'k, we store the tuple ('1(s); : : : ; 'k(s))

at each node s of T . The name of the corresponding annotation function is then obtained

by concatenating the names of the k annotations. In chapters 4 and 6, we will see several

examples.

3.7.4 Merging the Computations

To construct a compact su�x tree including its inner su�x links and annotations, we can

simply compose lazytree, cstlinks, and cstannotate as follows.

lazytree'::[�]!(subword �)!(annotationfunction � �)!(ctree � �)

lazytree' characters (x,n) annotate

= cstlinks (cstannotation annotate (lazytree characters (x,n)))

68 CHAPTER 3. THE STRING PROCESSING MACHINERY

Note that it does not make sense to reverse the order of cstlinks and cstannotation. This

would yield a su�x tree without su�x links since cstannotation sets the su�x links to undef.

Due to the laziness, the construction of the tree, the calculation of the annotations, and the

setting of the su�x links are not clearly separated in phases. Instead, if lazytree0 is applied,

the three computations are meshed according to the order in which the values are demanded

by other calculations. The e�ciency of lazytree0 can considerably be improved by merging

the three computations. This was already suggested in [GK95a].

lazytree''::[�]!(subword �)!(annotationfunction � �)!ctree � �

lazytree'' characters (x,n) annotate

= root

where root = N es Undeftree (annotate 0 es)

where es = [((a:v,j),subtree rests (getloc root (v,j-1)) j) |

((a:v,j),rests) group characters ss]

ss = zip2 (suffixes x) [n,n-1..]

subtree [([],0)] loclink d = N [] undef (annotate d [])

subtree ss (LocN link) d

= N es link (annotate d es)

where es = [((w,j),subtree rests (getloc link (w,j)) (d+j)) |

((w,j),rests) group characters ss]

lazytree00 is equivalent to lazytree0. It can be developed systematically by some program

transformation steps. Note that the merging of the phases is not possible for su�x tree

constructions that are based on updates (see naiveOnline or naiveInsertion). As noted in

[GK95a], this is due to the following fact. When updating a tree that includes su�x links, the

links from elsewhere would still retain their old values and hence point to obsolete subtrees.

For convenience we introduce a function cst that uses the lazy algorithm to compute the

compact su�x tree for x including the su�x links and annotations. The ordered list repre-

senting the di�erent characters in x is obtained by a function getalpha. This function can

be implemented by sorting all characters in x and removing adjacent duplicates from the

resulting list. Using merge sort [CLR90], getalpha takes O(n � logn) steps.

cst::(subword �)!(annotationfunction � �)!ctree � �

cst (x,n) annotate = lazytree'' (getalpha x) (x,n) annotate

The function cst is an important part of our string processing machinery. In all applications

compact su�x trees are constructed in a uni�ed way using cst. The decision to take the lazy

su�x tree algorithm is justi�ed by practical reasons:

� It perfectly �ts into the functional world.

� It is fast on the average.

� It constructs the paths of the su�x tree incrementally as they are traversed, leaving

incomplete those subtrees that are never actually needed.

To our opinion these virtues outweigh the disadvantage of non-linear asymptotic running

time. Note that for simplicity, in all programs involving su�x tree constructions, we assess

the running time of cst with O(jAj �n). Thus, if we say that a program is optimal, we mean

that it is optimal modulo lazy su�x tree construction.

3.8. DETERMINISTIC FINITE AUTOMATA 69

3.8 Deterministic Finite Automata

Automata are mathematical models of devices that process information by giving responses

to inputs. The simplest automaton is the deterministic �nite automaton (DFA for short). It

is a recognition device which has a �nite number of states. A state contains the information

resulting from the input string read so far. This information is used to determine the reaction

of the automaton on the next input character.

In this section, we brie
y recall the concept of deterministic �nite automata. We are mainly

interested in implementation issues. In sections 6.2.4 and 6.5, we give constructions for

particular classes of DFAs which can be used for approximate string searching. For a com-

prehensive overview of (deterministic) �nite automata we refer the reader to the survey of

Perrin [Per90]. Following [ASU85] we de�ne a DFA as follows:

De�nition 3.8.1 A deterministic �nite automaton is a 4-tuple (S;F ; s0; nextstate) where

1. S is a �nite set of states,

2. F � S is a distinguished set of accepting states,

3. s0 2 S is the initial state,

4. nextstate : S � A ! S is a function, the transition function.

For each s 2 S and each b 2 A, nextstate(s; b) is a transition which yields the b-successor

of s. 2

The DFA M = (S;F ; s0; nextstate) begins in state s0 and reads the characters of an input

string one at a time. If the automaton is in state s and reads the character b, it \moves"

from state s to the b-successor of s. Whenever the current state is a member of F , M is said

to have accepted the string read so far. This is formally de�ned as follows:

De�nition 3.8.2 Let M = (S;F ; s0; nextstate) be a DFA and t 2 An. The protocol of t

w.r.t.M is the sequence (s0; s1; : : : ; sn) of states such that sj+1 = nextstate(sj ; tj+1) for each

j; 0 � j � n� 1. M accepts t1 : : : tj if sj 2 F . 2

In the terminology of Perrin [Per90], a protocol is called a path.

Example 3.8.3 Let S = f0; 1; 2; 3; 4g, F = f4g, s0 = 0, A = fa; bg and

nextstate(0; b) = nextstate(2; b) = nextstate(4; b) = 0

nextstate(0; a) = nextstate(1; a) = nextstate(3; a) = 1

nextstate(1; b) = 2

nextstate(2; a) = nextstate(4; a) = 3

nextstate(3; b) = 4:

Obviously, M = (S;F ; s0; nextstate) is a DFA. A state transition graph is a widely used and

clear representation of a DFA, albeit only for small examples. For M such a graph is given

70 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.8: A State Transition Graph

> l a
0 - l b

1 - l a
2 - l b

3 - l4
....
..

.......................
................

.............
............

...........
..........

.........
.........

.........
........
........
.......
........
.......
.......
.......
......
.......
......
.......
......
......
......
......
......
......
......
......
.....
......
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
......
.....
......
......
......
......
.....
......
......
.......
......
......
......
.......
..

...
..

...............
............

.........
.........

.......
.......
.......
.......
......
......
.....
......
.....
.....
......
.....
.....
.....
....
.....
.....
.....
....
.....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
.....
....

I

b

b

..
..
..
..
..
.
..
.
..
.
..
..
..
..
.
..
.
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
..
..
..
..
..
...
...
....
.................................

...
..
...
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
..
..
..
...
....
...........

a

..
...
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
....
...
....
...
....
....
....
....
....
....
.....
....
.....
.....
.....
.....
......
......
......
.......
.......
........
.........
...........

................
...

a

�
.
..................................

.....
...
...
..
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
...
...
...
.....
.................................

....
...
...
..
..
..
.
..
..
.
.

b
N ..

..
..
...
..
..
...
...
..
...
...
...
...
...
....
....
....
....
.....
.....
......
.......
...........

..

a

9

in Figure 3.8. State 0 (marked by the symbol >) is the initial state, state 4 (shown as a thick

circle) is the only accepting state. A directed edge from state i to state j labeled b represents

the transition nextstate(i; b) = j. The protocol for aabababb w.r.t. M is 0 1 1 2 3 4 3 4 0.

Hence, M accepts aabab and aababab. One can show that M accepts a string v if and only

if abab is a su�x of v. Hence, M can be used to �nd all occurrences of abab in some input

string over the alphabet fa; bg. 2

3.8.1 Implementation

A DFA can be implemented by an expression of type (tree � bool): The states correspond

to the nodes of the tree. The accepting states are represented by a boolean annotation.

A transition nextstate(s; b) = s0 corresponds to an edge s b- s0. However, this representa-

tion leads to a factor jAj when evaluating a state transition. Since the transition function

nextstate is a total function, it makes sense to use for each state an A-indexed array, which

contains pointers to the successors of s. Using this representation, each state transition can

be evaluated in constant time.

Since our extensions (see section 2.4) only provide arrays that are indexed by integers, we

presuppose a suitable encoding of A. In particular, we assume that A is given by a pair

(characters; encode) of type

alphabet � == ([�],�!num)

characters is a list of the form [c0; c1; : : : ; cl�1] containing all characters of A in ascending

order, that is, c0 < c1 < � � � < cl�1 where < is the built-in ordering. encode is a function

de�ned by (encode ci = i). We assume that for each element ci inA the expression (encode ci)

is evaluated in constant time. Note that the alphabet representation requires O(jAj) space.

Example 3.8.4 The nucleotides Adenin, Cytosin, Guanin, and Thymin can be represented

by the following type:

nucleotide ::= A | C | G | T

This implicitly introduces the ordering A < C < G < T . The DNA-alphabet can now be

represented as follows:

3.8. DETERMINISTIC FINITE AUTOMATA 71

dnaAlpha::alphabet nucleotide

dnaAlpha = ([A,C,G,T],encode)

where encode A = 0

encode C = 1

encode G = 2

encode T = 3

2

De�nition 3.8.5 Let M = (S;F ; s0; nextstate) be a DFA. Each state s 2 S is represented

by an expression (S accept succ) of type

dfa ::= S bool (array dfa)

such that the following holds:

� accept is true if and only if s 2 F .
� for each b 2 A, the expression (lookup (encode b) succ) returns the representation of

the b-successor of s.

M is implemented by the expression representing s0. 2

A DFA-representation is a circular structure, in which certain expressions are shared. Each

state and each transition is represented in constant space. Hence, the space requirement is

O(jSj � jAj). Note that the type dfa requires extension 1.

Example 3.8.6 The DFA of Example 3.8.3 is represented by the following expression.

dfa1::dfa

dfa1 = s0

where s0 = S False (makearray 2 [s1,s0])

s1 = S False (makearray 2 [s1,s2])

s2 = S False (makearray 2 [s3,s0])

s3 = S False (makearray 2 [s1,s4])

s4 = S True (makearray 2 [s3,s0])

2

Note that the type dfa is independent of the alphabet. Hence, we can also use dfa1 to �nd

all occurrences of the pattern cdcd in an input string over the alphabet fc; dg.
Suppose a DFAM = (S;F ; s0; nextstate) is given by an expression s0. The function dfarun

applies M to an input string t and returns a list jlist of indices such that j is in jlist if and

only if M accepts t1 : : : tj.

dfarun::(alphabet �)!dfa![�]![num]

dfarun (characters,encode) s0 t

= [j | (j,S True succ) zip2 [0..] (scanl nextstate s0 t)]

where nextstate (S accept succ) b = lookup (encode b) succ

A state transition is evaluated in constant time by the function nextstate. The protocol is

easily obtained in O(jtj) steps using the function scanl which was de�ned in section 2.1.4.

72 CHAPTER 3. THE STRING PROCESSING MACHINERY

3.9 String Comparisons

The comparison of strings is an important operation applied in several �elds, such as molec-

ular biology, speech recognition, computer science, and coding theory (see [KS83] for an

overview). The most important model for string comparison is the model of edit distance.

It measures the distance between strings in terms of edit operations, that is, deletions, in-

sertions, and replacements of single characters. Two strings are compared by determining a

sequence of edit operations that converts one string into the other and minimizes the sum of

the operations' costs. Such a sequence can be computed in time proportional to the product

of the lengths of the two strings, using the technique of dynamic programming.

As stated in [KS83], the edit distance is a measure of local similarities in which matches

between subwords are highly dependent on their relative positions in the strings. There are

situations where this property is not desired. Suppose one wants to consider strings as similar

which di�er only by an exchange of large subwords. This occurs, for instance, if a text �le

has been created from another by a block move operation. In such a case, the edit distance

model should not be used since it gives a large string distance. There are two other string

comparison models that are more appropriate for this case: The maximal matches model

of Ehrenfeucht and Haussler [EH88] and the q-gram model of Ukkonen [Ukk92a]. The idea

of the maximal matches model is to count the minimal number of occurrences of characters

in one string such that if these characters are \crossed out", the remaining subwords are

all subwords of the other string. Thus, strings with long common subwords have a small

distance. The idea of the q-gram model is to count the number of occurrences of di�erent

q-grams in the two strings. Thus, strings with many common q-grams have a small distance.

A very interesting aspect is that the maximal matches distance and the q-gram distance

of two strings can be computed in time proportional to the sum of the lengths of the two

strings, using compact su�x trees.

In the following sections, we consider the three models of string comparison in detail. In

section 3.9.4, we review their signi�cance for applications in molecular biology. For the rest

of this section let u and v be strings of length m and n, respectively.

3.9.1 The Edit Distance Model

The notion of edit operations was introduced by Ulam [Ula72]. It is the key to the edit

distance model.

De�nition 3.9.1 An edit operation is a pair (a; b) 2 (A1 [f"g)� (A1 [f"g) n f("; ")g. 2

By abuse of notation, a and b denote strings of length � 1. However, if a 6= " and b 6= ",

then the edit operation (a; b) is identi�ed with a pair of characters. This motivates the use

of the identi�ers a and b.

An edit operation (a; b) is usually written as a! b. This re
ects the operational view which

considers edit operations as rewrite rules transforming a source string into a target string,

step by step. In particular, there are three kinds of edit operations:

� a! " denotes the deletion of the character a,

3.9. STRING COMPARISONS 73

� "! b denotes the insertion of the character b,

� a! b denotes the replacement of the character a by the character b.

Notice that "! " is not an edit operation. Insertions and deletions are sometimes referred

to collectively as indels. There is no uniform naming for an edit operation of the third type.

Some authors use the term replacement [KS83, MM88], as we do. Others instead prefer the

terms substitution [Wat89b, Mye91] and change [WF74, Ukk93a].

Sometimes string comparison just means to measure how di�erent strings are. Often it is

additionally of interest to analyze the total di�erence between two strings into a collection

of individual elementary di�erences [KS83]. The most important mode of such analyses is

an alignment of the strings.

De�nition 3.9.2 An alignment A of u and v is a sequence

(a1 ! b1; : : : ; ah ! bh)

of edit operations such that u = a1 : : : ah and v = b1 : : : bh. 2

Obviously, h � maxfm;ng holds. If A contains at least one indel, we have h > maxfm;ng.
Note that the unique alignment of " and " is the empty alignment, that is, the empty sequence

of edit operations. An alignment is usually written by placing the characters of the two

aligned strings on di�erent lines, with inserted spaces denoting ". In such a representation,

every column represents an edit operation.

Example 3.9.3 The alignment A = (" ! d; b ! b; c ! a; " ! d; a ! a; c ! "; d ! d) of

bcacd and dbadad is written as follows:

b c a c d

d b a d a d

2

Besides alignments, there are also traces and listings as modes of analyses. We do not

consider these in the thesis. The reader is referred to [KS83] for a detailed presentation.

The notion of optimal alignment requires some scoring or optimization criterion. This is

given by a cost function.

De�nition 3.9.4 A cost function � assigns to each edit operation a ! b, a 6= b a positive

real cost �(a! b). The cost �(a! a) of an edit operation a! a is 0. If �(a! b) = �(b! a)

for all edit operations a ! b and b ! a, then � is symmetric. If �(a ! b) = 1, for all edit

operations a ! b, a 6= b then � is the unit cost function. � is extended to alignments in a

straightforward way: The cost �(A) of an alignment A = (a1 ! b1; : : : ; ah ! bh) is the sum

of the costs of the edit operations A consists of. More precisely,

�(A) =
hX

i=1

�(ai ! bi):

2

74 CHAPTER 3. THE STRING PROCESSING MACHINERY

De�nition 3.9.5 The edit distance of u and v, denoted by edist�(u; v), is the minimum

possible cost of an alignment of u and v. That is,

edist�(u; v) = minf�(A) j A is an alignment of u and vg:

An alignment A of u and v is optimal if �(A) = edist�(u; v). If � is the unit cost function,

then edist�(u; v) is the unit edit distance between u and v. 2

If � is symmetric, then edist� is a metric [WF74]. Note that there can be more than one

optimal alignment. The unit edit distance is sometimes called Levenshtein distance.

The edit distance problem is to compute the edit distance and the optimal alignments.

A simple algorithm for solving this problem has been independently discovered by many

di�erent authors (see [KS83] for an account). In the following, we especially refer to the

simplest version which is due to Wagner and Fischer [WF74]. All other di�er somewhat.

But, as remarked in [KS83], they can be seen as
owing out of the same concept.

The basic idea of the Wagner-Fischer Algorithm is to evaluate the edit distance between

longer and longer pre�xes of u and v until the �nal result is obtained. This is stated in the

following theorem:

Theorem 3.9.6 Let E�(i; j) = edist�(u1 : : : ui; v1 : : : vj) for all i; j; 0 � i � m, 0 � j � n.

Then the following recurrences hold:

E�(0; 0) = 0 (3.3)

E�(i + 1; 0) = E�(i; 0) + �(ui+1 ! ") (3.4)

E�(0; j + 1) = E�(0; j) + �("! vj+1) (3.5)

E�(i + 1; j + 1) = min

8><
>:
E�(i; j + 1) + �(ui+1 ! ")

E�(i+ 1; j) + �("! vj+1)

E�(i; j) + �(ui+1 ! vj+1)

9>=
>; (3.6)

Proof See [WF74]. 2

The Wagner-Fischer Algorithm computes the (m + 1) � (n + 1)-table E� according to the

recurrences in Theorem 3.9.6. The computation proceeds row by row, but any other order

consistent with the data dependencies of the recurrence is possible as well. E�(m;n) gives

the edit distance of u and v. Every entry in E� is computed in constant time which leads

to an O(m � n) time complexity. An optimal alignment is recovered by tracing back from

the entry E�(m;n) to an entry in its three-way minimum that yielded it, determining which

entry gave rise to that entry, and so on back to the entry E�(0; 0). This requires saving the

entire table, giving an algorithm that takes O(m � n) space as well.
Note that if one is interested only in the edit distance of u and v then O(n) space su�ces
as one need to keep only the previous row of the table to compute the next row. Using such

a distance-only algorithm as a sub-procedure, Hirschberg [Hir75] gave a divide and conquer

algorithm that can determine an optimal alignment in O(m+ n) space. This algorithm was

given in the context of the longest common subsequence problem, but Myers and Miller

[MM88] have shown that it can be applied to most comparison algorithms that have a linear

3.9. STRING COMPARISONS 75

Figure 3.9: A Part of the Edit Graph G(u; v)

@
@
@
@
@
@
@
@R?

-

-?b(i+1;j) b(i+1;j+1)

b(i;j) b(i;j+1)

ui+1!vj+1

"!vj+1

"!vj+1

ui+1!"ui+1!"

space distance-only algorithm. This re�nement is very important since space, not time, is

often the limiting factor when computing optimal alignments between large strings.

As noted by Myers [Mye91] there is an intuitive graph theoretical formulation of the edit

distance problem: The edit graph G(u; v) of u and v is an edge labeled graph. The nodes

are the pairs (i; j), 0 � i � m, 0 � j � n. The edges are given as follows:

� For 0 � i � m� 1; 0 � j � n there is a deletion edge (i; j) ui+1!"- (i + 1; j).

� For 0 � i � m; 0 � j � n� 1 there is an insertion edge (i; j)
"!vj+1- (i; j + 1).

� For 0 � i � m�1; 0 � j � n�1 there is a replacement edge (i; j)
ui+1!vj+1- (i+1; j+1).

This is illustrated in Figure 3.9.

The central feature of G(u; v) is that each path from (0; 0) to (i; j) is labeled by an alignment

of u1 : : : ui and v1 : : : vj, and a di�erent path is labeled by a di�erent alignment. An edge

(i0; j 0) a!b- (i; j) is minimizing if E�(i; j) equals E�(i
0; j 0) + �(a ! b). A minimizing path is

any path from (0; 0) to (m;n) that consists of minimizing edges only. In this framework, the

edit distance problem means to enumerate the minimizing paths in G(u; v).

Example 3.9.7 Let u = bcacd and v = dbadad. Suppose � is the unit cost function. Then

edist�(u; v) = 4 and there are the following optimal alignments of u and v.

b c a c d b c a c d b c a c d b c a c d b c a c d b c a c d b c a c d

d b a d a d d b a d a d d b a d a d d b a d a d d b a d a d d b a d a d d b a d a d

Figure 3.10 shows G(u; v) with all minimizing edges. The minimizing paths are given by the

thick edges. Each node is marked by the corresponding edit distance. It is straightforward

to read the optimal alignments of u and v from the edit graph. 2

In the �eld of computer science, the edit distance problem mostly occurs in the context of

the unit cost function. The longest common subsequence problem [Hir75] and the string-

to-string correction problem [WF74] consists of �nding alignments with a minimal number

of edit operations a ! b, a 6= b. These problems arose in applications such as comparing

the contents of �les (see, for instance, the command di� in the UNIX4 operating system)

4UNIX is a trademark of Bell Laboratories.

76 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.10: The Minimizing Edges and Paths in the Edit Graph G(bcacd; dbadad)

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f f

b

c

a

c

d

d b a d a d
0 1 2 3 4 5 6

1 1 1 2 3 4 5

2 2 2 2 3 4 5

3 3 3 2 3 3 4

4 4 4 3 3 4 4

5 4 5 4 3 4 4

@
@
@@R?

@
@
@@R?

@
@
@@R

-

?

@
@
@@R?

@
@
@@R?

@
@
@@R

-

-
@
@
@@R

-

@
@
@@R?

@
@
@@R

-

?

-

-
@
@
@@R

@
@
@@R

-

-

@
@
@@R

-

@
@
@@R

-
@
@
@@R

-
@
@
@@R

-

@
@
@@R

@
@
@@R

-

?

-

@
@
@@R?

@
@
@@R?

-
@
@
@@R

@
@
@@R

@
@
@@R?

@
@
@@R?

@
@
@@R

-

?

-

?

?

and correcting the spelling of words. The restriction to the unit cost function leads to a

problem with an interesting combinatorics which was already studied intensively. Let us

brie
y mention the two main contributions. For ease of presentation we assume m � n.

Masek and Paterson [MP80] devised an algorithm that computes the unit edit distance of

two strings over a �nite alphabet in O(m � n= logn) time. According to Myers [Mye91], this

is the only algorithm that improves on the quadratic worst case time of the Wagner-Fischer

Algorithm. Unfortunately, the overhead of Masek and Paterson's algorithm is very high and

in practice it leads to a speedup only for very long strings.

Ukkonen [Ukk85a] and Myers [Mye86] have independently devised an algorithm that runs

in O(n � e) time where e = edist�(u; v). The more similar u and v, the more e�cient the

algorithm becomes. In the expected case, the algorithm takes O(n + e2) time, as shown by

Myers [Mye86]. However, in the worst case, e is proportional to m+n and so this algorithm

does not improve on the quadratic worst case complexity. The reader is referred to Myers

[Mye91] and Stephens [Ste94] for a comprehensive survey of techniques for solving the longest

common subsequence problem, the string to string correction problem, and related problems.

There are several variations of the Wagner-Fischer Algorithm. Most important is the vari-

ation of Sellers [Sel80] which sets the entries in the �rst row of E� to 0. This means that

pre�x deletions are not charged. Sellers' variation can be used for computing local optimal

alignments, and for solving the approximate string searching problem. Other variations of

the Wagner-Fischer Algorithm calculate for each table entry some additional information

[Ukk93a], or stop computing a column when it is clear that the remaining column values

are redundant [Ukk85b]. In section 3.9.5, we develop a uni�ed implementation framework

which covers the Wagner-Fischer Algorithm and all these variations.

3.9. STRING COMPARISONS 77

3.9.2 The Maximal Matches Model

The idea of Ehrenfeucht and Haussler's [EH88] string comparison model is to measure the

distance between strings in terms of common subwords. Strings are considered as similar if

they have long common subwords. The key to the model is the notion of partition. Recall

that u and v are strings of length m and n, respectively.

De�nition 3.9.8 A partition of v w.r.t. u is a sequence (w1; c1; : : : ; wr; cr; wr+1) of subwords

w1; : : : ; wr; wr+1 of u and characters c1; : : : ; cr such that v = w1c1 : : : wrcrwr+1. Let 	 =

(w1; c1; : : : ; wr; cr; wr+1) be a partition of v w.r.t. u. w1; : : : ; wr; wr+1 are the submatches

in 	. c1; : : : ; cr are the marked characters in 	. The size of 	, denoted by j	j, is r.
mmdist(v; u) is the size of any minimal partition of v w.r.t. u. Following Ukkonen [Ukk92a],

we call mmdist(v; u) maximal matches distance of v and u. 2

The notion of partition subsumes the notion of compatible marking, introduced by Ehren-

feucht and Haussler. More precisely, the marked characters in a partition of v w.r.t. u form

a marking of u that makes v compatible with u (cf. [EH88, page 193]). We use partitions

instead of compatible markings since it is convenient to also denote the submatches. This

convenience will especially be used in section 6.8, when we describe Chang and Lawler's

�ltering technique for solving the k-di�erences problem. The function mmdist corresponds

to the function di� in [EH88].

Example 3.9.9 [EH88] Let v = cbaabdcb and u = abcba. 	1 = (cba; a; b; d; cb) is a partition

of v w.r.t. u, since cba, b, and cb are subwords of u. 	2 = (cb; a; ab; d; cb) is a partition of v

w.r.t. u, since cb and ab are subwords of u. It is clear that 	1 and 	2 are of minimal size.

Hence, mmdist(v; u) = 2. 2

There are two canonical partitions.

De�nition 3.9.10 Let 	 = (w1; c1; : : : ; wr; cr; wr+1) be a partition of v w.r.t. u. If for all

h; 1 � h � r, whch is not a subword of u, then 	 is the left-to-right partition of v w.r.t. u.

If for all h; 1 � h � r, chwh+1 is not a subword of u, then 	 is the right-to-left partition of

v w.r.t. u. The left-to-right partition of v w.r.t. u is denoted by 	lr(v; u). The right-to-left

partition of v w.r.t. u is denoted by 	rl(v; u). 2

Example 3.9.11 For the strings v = cbaabdcb and u = abcba of Example 3.9.9 we have

	lr(v; u) = 	1 and 	rl(v; u) = 	2. 2

	lr(v; u) and 	rl(v; u) correspond to Ehrenfeucht and Haussler's markings Ml(v; u) and

Mr(v; u). As these are of minimal size (see [EH88, Lemma 1.1]), 	lr(v; u) and 	rl(v; u) are

of minimal size, too. Hence, we can conclude j	lr(v; u)j = mmdist(v; u) = j	rl(v; u)j. This
property leads to a simple algorithm for calculating the maximal matches distance. The

partition 	lr(v; u) can be computed by scanning the characters of v from left to right, until

a pre�x wc of v is found such that w is a subword of u, but wc is not. w is the �rst submatch

and c is the �rst marked character in 	lr(v; u). The remaining submatches and marked

characters are obtained by repeating the process on the remaining su�x of v, until all of the

78 CHAPTER 3. THE STRING PROCESSING MACHINERY

characters of v have been scanned. Using the compact su�x tree of u, the longest pre�x w

of v that is a subword of u, can be computed in O(jAj � jwj) time. This gives an algorithm

to calculate mmdist(v; u) in O(jAj � (m+ n)) time and O(m) space.

	rl(v; u) can be computed in a similar way by scanning v from right to left. However, one

has to be careful since the reversed scanning direction means to compute the longest pre�x

of v�1 that occurs as subword of u�1. This can, of course, be accomplished by using cst(u�1)

instead of cst(u).

It is easily veri�ed that mmdist(u; v) = 1 and mmdist(v; u) = 2 if v and u are as in Example

3.9.9. Hence, mmdist is not a metric on A�. However, one can obtain a metric as follows:

Theorem 3.9.12 Let mmm(u; v) = log
2
((mmdist(u; v) + 1) � (mmdist(v; u) + 1)). mmm is

a metric on A�.

Proof See [EH88]. 2

From the above it is clear that mmm(u; v) can be computed in O(jAj � (m + n)) steps and

O(maxfm;ng) space. We will return to the metric mmm when we consider the signi�cance

of the di�erent distance models for biological applications.

Next we study the relation of the maximal matches distance and the unit edit distance. We

�rst show an important relation of alignments and partitions.

Lemma 3.9.13 Let A be an alignment of v and u. Then there is an r; 0 � r � �(A), and

a partition (w1; c1; : : : ; wr; cr; wr+1) of v w.r.t. u such that w1 is a pre�x and wr+1 is a su�x

of u.

Proof By structural induction on A. If A is the empty alignment, then �(A) = 0, v = u = ",

and the statement holds with r = 0 and w1 = ". If A is not the empty alignment, then A is

of the form (A0; b ! a) where A0 is an alignment of some strings v0 and u0 and b ! a is an

edit operation. Obviously, v = v0b and u = u0a. Assume the statement holds for A0. That

is, there is an r0; 0 � r0 � �(A0) and a partition (w1; c1; : : : wr0; cr0; wr0+1) of v
0 w.r.t. u0 such

that w1 is a pre�x and wr0+1 is a su�x of u0. First note that w1 is a pre�x of u since it is

pre�x of u0. There are three cases to consider:

� If b = ", then a 6= " and �(A) = �(A0) + 1. Therefore, v = v0b = w1c1 : : : wr0cr0wr0+1.

If wr0+1 is the empty string, then it is a su�x of u = u0a. If wr0+1 = wc for some

string w and some character c, then v0b = w1c1 : : : wr0cr0wcw
0 where w0 = " is a su�x

of u = u0a. Thus, the statement holds with r = r0 + 1 � �(A).

� If b 6= " and a 6= b, then �(A) = �(A0) + 1. Hence, v = v0b = w1c1 : : : wr0cr0wr0+1bw

where w = " is a su�x of u = u0a. Thus, the statement holds with r = r0 + 1 � �(A).

� If b 6= " and a = b, then �(A) = �(A0). Let w = wr0+1b. Then v = v0b = w1c1 : : : wr0cr0w,

and w is a su�x of u = u0a since wr0+1 is a su�x of u
0. Thus, the statement holds with

r = r0 � �(A). 2

The following theorem shows that mmdist(v; u) is a lower bound for the unit edit distance

of v and u.

3.9. STRING COMPARISONS 79

Theorem 3.9.14 Suppose � is the unit cost function. Then mmdist(v; u) � edist�(v; u).

Proof Let A be an optimal alignment of v and u. Then by Lemma 3.9.13 there is a partition

	 of v w.r.t. u such that j	j � �(A). Hence, mmdist(v; u) � j	j � �(A) = edist�(v; u). 2

A similar result was already obtained in [Ukk92a]. The relation between mmdist and edist�
suggests to use mmdist as a �lter in contexts where the unit edit distance is of interest only

below some threshold k. In fact, Ukkonen [Ukk92a] as well as Chang and Lawler [CL94]

have devised �ltering techniques based on maximal matches. They use them to speed up

algorithms for the k-di�erences approximate string searching problem. In section 6.8, we

have a closer look on the technique of Chang and Lawler.

3.9.3 The q-Gram Model

Like the maximal matches model, the q-gram model considers common subwords of the

strings to be compared. However, while the former model considers subwords of possibly

di�erent length, the latter restricts to subwords of a �xed length q. For this section let q be

a positive integer. Recall that u and v are strings of length m and n, respectively.

De�nition 3.9.15 [Ukk92a] The q-gram pro�le of u is the function Gq(u) : Aq ! IN0 such

that Gq(u)(w) is the number of di�erent positions in u where the string w 2 Aq ends. The

q-gram distance qgdist(u; v) of u and v is de�ned by

qgdist(u; v) =
X
w2Aq

jGq(u)(w)�Gq(v)(w)j: 2

One can show that the symmetry and the triangle inequality hold for qgdist (cf. [Ukk92a]).

The zero property does not hold as shown by the following example. Hence, qgdist is not a

metric.

Example 3.9.16 Let q = 2, u = aaba and v = abaa. Then u and v have the same q-gram

pro�le faa 7! 1; ab 7! 1; ba 7! 1; bb 7! 0g. Hence, the q-gram distance of u and v is 0. 2

Ukkonen describes two algorithms for computing the q-gram distance of u and v. We brie
y

describe them here. The �rst algorithm encodes each string w 2 Aq into a q-digit integer ew
in base l = jAj (see section 4.3). ew serves as an index into some arrays �u and �v of size jAjq.
The arrays are used to count the number of occurrences of q-grams of u and v, respectively.

In particular, after u and v have been scanned, �u[ew] = Gq(u)(w) and �v[ew] = Gq(v)(w)

hold for each w 2 Aq. Besides the two arrays, the algorithm constructs a list C consisting

of the codes of the q-grams of u and v. This takes O(m + n) space and time. Initializing

each of the array entries with 0 takes jAjq time. If each lookup and update operation in �u
and �v can be accomplished in constant time, the pro�les are accumulated in the arrays in

O(m+n) time. Merging �u and �v takes O(m+n) steps if C is used to skip the zero entries

of the arrays. Thus, the overall running time and the space requirement of the algorithm

is O(m + n + jAjq). Note that Ukkonen derives a running time of O(m + n) since he does

80 CHAPTER 3. THE STRING PROCESSING MACHINERY

not count the time for creating and initializing �u and �v. Due to the exponential time and

space requirement, the applicability of the algorithm is rather limited.

The second algorithm given in [Ukk92a] uses a modi�ed su�x automaton [BBH+85, Cro88].

We outline the algorithm on the basis of compact su�x trees. Let Gr(u) be the set of q-

grams of u. First note that qgdist(u; v) can be obtained from the q-gram pro�les of u and

v restricted to Gr(u), and from the total number of q-grams of v not occurring in u. More

precisely:

qgdist(u; v) =
X

w2Gr(u)

jGq(u)(w)�Gq(v)(w)j+
X

w2AqnGr(u)

Gq(v)(w) (3.7)

Let r = jGr(u)j. Ukkonen's algorithm computes for each w 2 Gr(u) a unique integer codebw 2 f1; : : : ; rg, and for each w 2 Aq n Gr(u) the code bw = 0. bw serves as an index into

some arrays �u and �v of size r and r + 1, respectively. In a �rst phase, T = cst(u) is

traversed in O(jAj �m) time directed by the characters in u. The traverse uses the function

linkloc and never reaches a location of depth larger than q. After u has been scanned, the

array �u is computed such that �u[bw] = Gq(u)(w) holds for each w 2 Gr(u). Moreover, bw is

stored at location locT (w). In a second phase, T is traversed in a similar way, directed by the

characters in v. This takes O(jAj�n) time and yields the array �v such that �v[bw] = Gq(v)(w)

for each w 2 Gr(u) and �v[0] =
P

w2AqnGr(u)Gq(v)(w). Merging �u and �v in O(r) time

according to equation (3.7) gives qgdist(u; v). The overall running time of this algorithm is

O(jAj � (m + n)). It requires O(m) space for T (including the codes), and for the arrays �u
and �v.

The third algorithm we describe here was developed in cooperation with Robert Giegerich

[Gie94b]. It is not published, except in the lecture notes [Gie94a]. The method is similar

to the previous algorithm, but does without arrays and can easily be implemented in our

functional framework. The idea is to annotate cst(u$) and cst(v$) such that the q-gram

pro�le of u$ and v$ can be read from the su�x trees.

De�nition 3.9.17 Let T be a compact A+-tree. For each node s in T , lnum(s) is the

number of leaves in the subtree Ts. lnum is an IN0-annotation of T . 2

lnum can be computed in O(jT j) steps by a single traversal of T . Let T = cst(u$) and

T 0 = cst(v$) with the annotation lnum. It is easily veri�ed that

lnum(ceiling(locT (w))) = Gq(u$)(w) (3.8)

for each location locT (w) of depth q. The corresponding relation holds for v and T 0.

Now imagine that T and T 0 are laid on top of each other. Consider all locations of depth

q. There are locations which are common to T and T 0 and there are locations which either

occur in T or in T 0. To make this precise, we de�ne three sets L\, LT and LT 0 as follows:

� (loc; loc0) 2 L\ () (loc; loc0) 2 locations(T) � locations(T 0) and there is a w 2 Aq

such that loc = locT (w) and loc
0 = locT 0(w).

� loc 2 LT () loc 2 locations(T), jlocj = q and loc =2 floc j (loc; loc0) 2 L\g.
� loc0 2 LT 0 () loc0 2 locations(T 0), jloc0j = q and loc0 =2 floc0 j (loc; loc0) 2 L\g.

3.9. STRING COMPARISONS 81

Each of the elements in L\, LT and LT 0 contribute to the q-gram distance of u$ and v$, as

described in the following algorithm. LOT is an acronym for \lay on top".

Algorithm LOT Enumerate L\, LT and LT 0 by traversing T and T 0 in parallel from the

roots to the locations of depth q (for details see function pwalk in section 3.9.5). Compute

qgdist(u$; v$) =
X

(loc;loc0)2L\

jlnum(ceiling(loc))� lnum(ceiling(loc0))j+
X

loc2LT[LT 0

lnum(ceiling(loc)) (3.9)

Finally, set qgdist(u; v) =

(
qgdist(u$; v$); if um�q+2 : : : um = vn�q+2 : : : vn
qgdist(u$; v$)� 2; otherwise

2

Theorem 3.9.18 Algorithm LOT correctly computes qgdist(u; v) in O((jAj+ q) � (m+ n))

time and O(m+ n) space.

Proof From equation (3.8) it immediately follows that qgdist(u$; v$) is computed correctly.

Notice that

qgdist(u$; v$) = qgdist(u; v) +
X
w2X

jGq(u$)(w)�Gq(v$)(w)j (3.10)

whereX = fum�q+2 : : : um$; vn�q+2 : : : vn$g. If um�q+2 : : : um = vn�q+2 : : : vn, then the second

summand in (3.10) is 0. Otherwise, it is 2. This proves the correctness of Algorithm LOT.

T and T 0 including the annotation lnum can be computed in O(jAj � (m + n)) time and

O(m + n) space. No extra space is needed since once an element from L\, LT , or LT 0

is enumerated its contribution to qgdist(u$; v$) can be accumulated. There are O(q � m)

locations of depth � q in T and O(q � n) locations of depth � q in T 0. Only these are

visited. Hence, the enumeration of the three sets can be accomplished in O(q � (m + n)).

qgdist(u$; v$) is computed in O(m + n) according to equation (3.9). Finally, calculating

qgdist(u; v) from qgdist(u$; v$) takes O(q) steps. 2

Note that we can vary Algorithm LOT such that qgdist is directly computed form cst(u) and

cst(v). This variation requires to annotate each node s in cst(u) by the number of positions

in u where s ends. cst(v) is annotated correspondingly. This annotation can not e�ciently

be constructed after the su�x trees have been computed. This is because if s is a pre�x of

a nested su�x sx of u, then the corresponding occurrence of s is not witnessed by a leaf sx

in cst(u). However, the annotation is available in the lazy su�x tree algorithm. Consider

the function lazytree de�ned on page 52. Suppose the local function subtree constructs

a node s in cst(u) from the list ss. Then the number of positions in u where s occurs is

equal to jssj. By a simple modi�cation of the lazy su�x tree algorithm, the length of ss

can be made available to the function subtree. This allows to compute the annotation at

virtually no cost. We do not know how to modify Ukkonen's online algorithm such that it

simultaneously computes the annotation.

The variation of Algorithm LOT is very interesting. Like the second algorithm of Ukkonen,

it requires to construct only the nodes of depth � q. This may improve the practical running

time considerably.

82 CHAPTER 3. THE STRING PROCESSING MACHINERY

Like the maximal matches distance, the q-gram distance provides a lower bound for the unit

edit distance.

Theorem 3.9.19 Let � be the unit cost function. Then qgdist(u; v)=(2 � q) � edist�(u; v).

Proof See [JU91, Ukk92a].

Ukkonen exploits this relation to speed up approximate string searching algorithms which

are based on the unit edit distance. In particular, he uses the q-gram distance as a �lter

for determining subwords of the input string where an approximate match may occur. For

details see [JU91, Ukk92a].

3.9.4 Signi�cance of the Models in Molecular Biology

In molecular biology, strings occur as a linear representation of information recorded in a

genetic macromolecule, such as DNA, RNA, or proteins. The main use of string comparison

in that context is to detect homologies between such biosequences. Two biosequences have

a high degree of homology if the di�erences that have developed between them are relatively

minor. Knowledge of homology sheds light on evolution and on the structure and function of

organisms. In particular, today it is standard practice to compare new biosequences against

the current databases to look for homologies that will hopefully give signi�cant clues to their

function [AGM+89].

It is especially the edit distance model that provides the basis for most programs comparing

biosequences. According to [KS83], the enormous success is due to the following facts:

� Deletions, insertions and replacements are accepted as a fairly accurate model of the

evolutionary process at the nucleotide level. Hence, the result of a comparison often

conforms closely to what biologists are likely to consider appropriate and realistic.

� The cost function provides a simple and well-motivated criterion for choosing among

homologies.

� The Wagner-Fischer Algorithm for solving the edit distance problem is simple and

practical. The most important point, however, is that the algorithm always �nds the

best homology out of all possible homologies between the biosequences.

� The edit distance model and the Wagner-Fischer Algorithm extends in a natural and

consistent way to a wide range of problems occurring in the comparison of biosequences.

In particular, these are the problem of handling gap costs [NW70], the problem of

simultaneously comparing several biosequences [CL88, AL89], and the problem of ap-

proximate searching in sequence databases [Mye94b].

Note that in the �eld of molecular biology the Wagner-Fischer Algorithm is often referred

to as the dynamic programming algorithm. We have tried to avoid this confusion. Follow-

ing Myers [Mye91], we emphasize that dynamic programming is a general computational

paradigm of wide applicability. A problem is solved by dynamic programming if the answer

can be e�ciently determined by computing a table of optimal answers to progressively larger

3.9. STRING COMPARISONS 83

and larger subproblems. The principle of optimality requires that the optimal answer to a

given problem can be expressed in terms of optimal answers to smaller subproblems. The

edit distance follows this principle which was formally stated in Theorem 3.9.6.

The most important disadvantage of the edit distance is that it can only be computed in

more or less quadratic time. The maximal matches and the q-gram distance can be computed

faster, however, for the cost of less
exibility. Except for the choice of di�erent values of q,

there is no parameter, comparable to the cost function in the edit distance model, that can

be used to \calibrate" the distances depending on the speci�c biological application.

As noted earlier, there are situations where the edit distance model is inappropriate. Con-

sider some long strings x, y and z and a single character a. The edit distance between xyz

and xayz is usually very small, but between xyz and zxy it is usually very large. A good

example for such a situation occurs in molecular biology: For instance, xyz and zxy may be

two di�erent linear representations of the same piece of circular DNA, obtained by cutting

the strand in two di�erent places [CHM+86]. The metric mmm and the q-gram distance (if

q is chosen appropriately) are relatively invariant from the positions where x, y, and z occur.

Hence, both distance models can cope with this situation.

Unfortunately, for both the maximal matches and the q-gram comparison model there is no

convenient mode to analyze the total di�erence into a collection of individual di�erences.

Without such a representation it is doubtful that the two distance models will �nd a wide

range of applicability in string comparisons for molecular biology.

Recently, Berndt [Ber95] studied the di�erent string comparison models by analyzing the

phylogeny of bacteria. The main results of the study are as follows: The edit distance

and the q-gram distance (for q = 5; 7; 9) allows to reconstruct the expected evolutionary

relationships, while the metric mmm does not.

3.9.5 Implementation

Edit Distance

The main goal of this section is to develop a uni�ed framework for implementing variations

of the Wagner-Fischer Algorithm. Using a polymorphic type for representing the dynamic

programming table, we can cope with the di�erent kinds of entries computed by the vari-

ations. Using higher order functions, we can abstract from the di�erent ways new table

entries are computed from previous table entries.

Edit operations are implemented by a type editoperation which introduces three constructors

D, I, and R for a deletion, insertion and replacement operation. Alignments are lists of edit

operations.

editoperation � ::= D � | I � | R � �

alignment � == [editoperation �]

Note that both types are polymorphic. We can use them to represent edit operations and

alignments over some arbitrary alphabet.

Example 3.9.20 The alignment A = ("! d; b! b; c ! a; "! d; a! a; c! "; d! d) of

bcacd and dbadad (see Example 3.9.3) is represented by the following list:

84 CHAPTER 3. THE STRING PROCESSING MACHINERY

[I d, R b b, R c a, I d, R a a, D c, R d d]

2

Since the constructor expressions are hard to read, we introduce a function showalign that

converts an alignment into the usual representation in lines. showalign proceeds from right

to left. It yields two lines line and line0 which are concatenated with a newline character

in between. Each character in line is aligned with a character in line0. An edit operation

(D a) means that the character a in line is aligned with a space in line0. (I b) means that

a space in line is aligned with the character b in line0. (R a b) means that the character a

in line is aligned with the character b in line0.

showalign::alignment char![char]

showalign alignment = line ++ "\n" ++ line'

where (line,line') = foldr front ([],[]) alignment

front (D a) (line,line') = (a:line,' ':line')

front (I b) (line,line') = (' ':line,b:line')

front (R a b) (line,line') = (a:line,b:line')

For the sake of good readability we introduce a type synonym for cost functions.

costfunction � == (editoperation �)!num

The unit cost function is given as follows:

unitcost::costfunction �

unitcost (R a a) = 0

unitcost eop = 1

A straightforward implementation of the Wagner-Fischer Algorithm represents the table E�

by a two-dimensional array. The recurrences of Theorem 3.9.6 can then be translated directly

into some iterations and assignment operations. We do not adopt this solution. Instead, we

represent the table by a list of columns, and the columns by a list of values of some arbitrary

type �.

table � == [column �]

column � == [�]

The table entries are usually of type num, but we also consider variations with pairs and

lists of pairs.

The variations of the Wagner-Fischer Algorithm we implemented, compute a table column

by column in a uni�ed way. In particular, every variation is speci�ed by a table speci�cation,

that is, a pair (�rstcol ; nextcol) of type

tablespec � � == (column �,column �!�!column �)

3.9. STRING COMPARISONS 85

�rstcol is the �rst column of the table. nextcol is a function that takes the previous column

of the table and the actual character, and produces the next column of the table. As we will

see later, an expression for computing the �rst column is easily obtained. The complicated

part of a table speci�cation is the function nextcol.

Recall that u and v are strings of length m and n, respectively. The nucleus of our im-

plementation is a higher order function absnextcol, which abstracts from the di�erences of

the variations. In particular, absnextcol takes three functions �rstentry, join3, and join2 as

arguments:

1. �rstentry computes the �rst entry of a column.

2. join3 computes a new entry from three previous entries.

3. join2 computes a new entry from two previous entries plus the rest of the column.

Note that this function is only used for the cuto� variations of the Wagner-Fischer

Algorithm described in sections 6.1, 6.4, and 6.2.5. These variations never evaluate

the bottom portion of a column if the corresponding entries can be inferred to be

redundant.

absnextcol has some more arguments: The string u, the previous column col of the table,

and a character b = vj for some j; 1 � j � n.

absnextcol::(�!�!�)!(�!�!�!�!�!�)!(�!�!�!�!(string �)![�])!

(string �)!(column �)!�!(column �)

absnextcol firstentry join3 join2 u col b

= x:nextval u col x

where x = firstentry (hd col) b

nextval [] restcol no = []

nextval (a:s) (nw:we:restcol) no = y:nextval s (we:restcol) y

where y = join3 a b we no nw

nextval (a:s) [nw] no = join2 a b no nw s

absnextcol computes at most m + 1 entries of a column as follows:

1. The �rst entry x of a column is obtained from the �rst entry (hd col) of the previous

column, and the character b. This is illustrated in Figure 3.11 by an insertion edge

occurring in the �rst row of the edit graph G(u; v) (see section 3.9.1).

2. The rest of the column is computed by a recursively de�ned function nextval. The �rst

argument of nextval is a su�x of u, the second is a su�x of the previous column, and

the third is the previously computed value no of the actual column. If the su�x of

u is empty, then there is no value to be computed. Now consider the situation where

the su�x of u is of the form (a : s) and there are at least two remaining values nw

and we of the previous column. Then a new entry y is computed by applying join3

to the characters a, b, and the three table entries to the \west", the \north" and the

\northwest". This is illustrated by a part of the edit graph G(u; v) as shown in Figure

3.11.

86 CHAPTER 3. THE STRING PROCESSING MACHINERY

Figure 3.11: Graphical Explanation of absnextcol

- bxb(hd col) "!b

x = �rstentry (hd col) b
@
@
@
@
@
@
@
@R?

-

-?bwe by

bnw bno

a!b

"!b

"!b

a!"a!"

y = join3 a b we no nw

@
@
@
@
@
@
@
@R

-

?b

a!"

"!b

a!b

bnw

`̀
`̀
`̀
`̀
`̀
`̀
`̀
`

(join2 a b no nw s)

(

bno

3. Suppose the su�x of u is of the form (a : s) and there is only one remaining value nw

of the previous column. (Recall that this case occurs only for the cuto� variations.)

Then join2 is applied to the characters a and b, to the table entries in the \north" and

the \northwest" and the remaining su�x s of u. This is illustrated in Figure 3.11 by

a part of the edit graph G(u; v). Note that join2 returns a list of values, that is, the

remaining entries of the column to be computed. This list can be empty.

absnextcol does without any index operations. The computation is organized in such a way

that those entries of a column necessary for the computation of the next entry, are always

at hand. They are either selected by a hd-operation (case 1) or they occur as arguments

of the function nextval (cases 2 and 3). Thus, absnextcol computes each column entry in

constant time, and therefore the choice to take lists for the main data structure does not

have a negative e�ect on the asymptotic e�ciency of the implementation.

The geographical naming convention for the table entries is adopted from Allison [All92].

The structure of absnextcol is very similar to Allison's functional program for computing

the unit edit distance (see [All92, Algorithm 2]). However, our approach is more general.

absnextcol implements the central idea of all variations of the Wagner-Fischer Algorithm

considered in the thesis. By instantiating the �rst three arguments of absnextcol, we ob-

tain a nextcol -function useful for solving a speci�c string comparison or approximate string

searching problem. This is shown by the following table speci�cation for the Wagner-Fischer

Algorithm.

edisttable::(costfunction �)!(string �)!tablespec � num

edisttable delta u

= (firstcol,nextcol)

where firstcol = 0:[no + delta (D a) | (no,a) zip2 firstcol u]

firstentry we b = we + delta (I b)

join3 a b we no nw

= min2 (min2 (we+delta (I b)) (no+delta (D a))) (nw+delta (R a b))

nextcol = absnextcol firstentry join3 undef u

For each cost function delta and each string u, the expression (edisttable delta u) returns

a table speci�cation for the Wagner-Fischer Algorithm. The �rst column of the table is

computed by the expression �rstcol. The �rst entry in �rstcol is 0, according to equation

3.9. STRING COMPARISONS 87

(3.3) of Theorem 3.9.6. The other entries of �rstcol are obtained by adding the cost of a

deletion operation to the previously computed entry to the \north" (see equation (3.4) of

Theorem 3.9.6). Note the use of programming with unknowns: �rstcol is de�ned and used

simultaneously. Since the �rst value 0 of �rstcol is given, this leads to a wellde�ned result.

By instantiating the �rst three arguments of absnextcol, we derive a function nextcol which

implements equations (3.5) and (3.6) of Theorem 3.9.6. The �rst entry of each column

is obtained by adding the cost of an insertion operation to the entry in the \west" (see

�rstentry). Three entries are joined by adding the cost of the corresponding edit operation

to each and taking the minimum value (see join3). Note that the columns computed are of

the same length. Hence, the situation where exactly two values must be joined never occurs.

In other words, join2 is never called and we can set the third argument of absnextcol to

undef.

Using the table speci�cation edisttable, we obtain a function edist that computes the edit

distance of two strings u and v with respect to a cost function delta in O(m�n) time. Starting

with the �rst column, all other columns are computed by applying nextcol. The edit distance

is the last entry of the last column computed. Note that we do not use explicit recursion in

edist, but the built-in function foldl. According to [Tur89], foldl forces nextcol to evaluate

its �rst argument which is the column in our case. Hence, edist needs only O(m) space.

edist::(costfunction �)!(string �)!(string �)!num

edist delta u v = last (foldl nextcol firstcol v)

where (firstcol,nextcol) = edisttable delta u

If we assume the unit cost model, then edisttable can be considerably simpli�ed. Since the

cost for deleting and inserting a character is 1, the list [0:::m] is the �rst column of the table.

Moreover, the �rst entry of each column can be obtained from the �rst entry of the previous

column by adding 1. To speed up the function join3, one exploits that nw � we + 1 and

nw � no + 1 hold (see Lemma 6.3.3).

1. If a = b, then minfnw; no+1; we+1g = nw. That is, we and no need not be evaluated.

2. If a 6= b and no < nw, then no � we and therefore minfnw+1; no+1; we+1g = no+1.

That is, we need not be evaluated.

3. If a 6= b and no � nw, then minfnw + 1; no+ 1; we+ 1g = minfwe; nwg+ 1.

This suggests the following function ujoin3:

ujoin3::�!�!num!num!num!num

ujoin3 a b we no nw = nw, if a = b

= 1 + no, if no < nw

= 1 + min2 we nw, otherwise

The restriction to the unit cost function leads to the following table speci�cation.

88 CHAPTER 3. THE STRING PROCESSING MACHINERY

uedisttable::(string �)!tablespec � num

uedisttable u = (firstcol,nextcol)

where firstcol = [0..#u]

firstentry we b = 1 + we

nextcol = absnextcol firstentry ujoin3 undef u

The unit edit distance of u and v is computed by the function uedist in O(m �n) time. uedist

is equivalent to Allison's [All92] functional program for computing the unit edit distance.

uedist::(string �)!(string �)!num

uedist u v = last (foldl nextcol firstcol u)

where (firstcol,nextcol) = uedisttable v

Note that Allison also gives a functional program that implements the algorithm of [Ukk85a]

and Myers [Mye86] mentioned above. The program computes the unit edit distance of u and

v in O(minfm;ng � edist�(u; v)) time by exploiting the laziness. It e�ciently implements

a greedy strategy that requires added complication when the algorithm is written in an

imperative language. Unfortunately, Allison's program does not �t into our framework since

it computes the table entries diagonal by diagonal. Therefore, we will not consider it here.

We now study the problem of computing the optimal alignments. If the table E� of the

Wagner-Fischer Algorithm is represented by a two dimensional array, it can be checked in

constant time, whether or not an edge (i0; j 0) a!b- (i; j) in the edit graph G(u; v) is mini-

mizing. This gives a simple back-tracking algorithm that computes optimal alignments by

enumerating the minimizing paths in the graph G(u; v). The running time of this algorithm

is proportional to the sum of the length of the optimal alignments.

Adopting this algorithm to our framework, would lead to an ine�cient program, due to

the list representation of the main data structure. Our approach for computing optimal

alignments is more general. We apply the \list of successes" technique of Wadler [Wad85].

In each entry (i; j) of the table, we calculate the list of all alignments of u1 : : : ui and v1 : : : vj
ordered by their costs. The optimal alignments can then easily be obtained by taking some

pre�x of this list. The following table speci�cation clari�es our approach.

aligntable::(costfunction �)!(string �)!tablespec � [(num,alignment �)]

aligntable delta u

= (firstcol,nextcol)

where add e eop = [(cost + delta eop,eop:alignment) | (cost,alignment) e]

firstcol = [(0,[])]:[add no (D a) | (no,a) zip2 firstcol u]

firstentry we b = add we (I b)

join3 a b we no nw

= merge (merge (add we (I b)) (add no (D a))) (add nw (R a b))

nextcol = absnextcol firstentry join3 undef u

The table entries are lists of pairs. Each pair consists of an alignment with its cost in the �rst

component. The functions �rstcol, �rstentry, and join3 are de�ned similarly as in edisttable.

The di�erences are as follows:

� The �rst entry of �rstcol is the list consisting of the empty alignment with cost 0.

3.9. STRING COMPARISONS 89

� The function + is replaced by the function add which can be considered as the ex-

tension of + on values of type [(num; alignment �)]. add takes all pairs of the form

(cost; alignment) from some entry e and adds an edit operation eop to such a pair. In

this way, the alignments are constructed in reverse order.

� The function min2 is replaced by the function merge which produces a single ordered

list from its ordered arguments (see section 2.1.2).

Using the table speci�cation aligntable, we obtain a function enumalignments that enumer-

ates the alignments of u and v w.r.t. a cost function delta.

enumalignments::(costfunction �)!(string �)!(string �)![(num,alignment �)]

enumalignments delta u v = last (foldl nextcol firstcol v)

where (firstcol,nextcol) = aligntable delta u

In order to select appropriate alignments from the list of all alignments, we use the function

selectalignments. The �rst argument of selectalignments is a function select which speci�es

the alignments to be selected from the second argument alignments. The edit distance edist

is the �rst component of the �rst element of alignments. Using takewhile, we obtain a

maximal pre�x of alignments such that for each element (cost; alignment) of this pre�x, the

expression (select edist cost) evaluates to true. Finally, from each selected pair the second

component is taken and reversed.

selectalignments::(num!num!bool)![(num,alignment �)]![alignment �]

selectalignments select alignments

= map (reverse.snd) (takewhile (select edist.fst) alignments)

where edist = fst (hd alignments)

To compute optimal alignments we only have to provide a function that selects all alignments

whose costs are equal to the edit distance:

optimal::(costfunction �)!(string �)!(string �)![alignment �]

optimal delta u v = selectalignments (=) (enumalignments delta u v)

The running time of optimal is O(m �n+mergetime), where mergetime is the time used by

the function merge (see join3 above). First note that merge applies a prede�ned polymor-

phic comparison function � to compare some pairs (cost; alignment) and (cost0; alignment0)

(cf. the de�nition of merge in section 2.1.2). If (cost 6= cost0), then the comparison imme-

diately yields true or false. If (cost = cost0), then additionally alignment and alignment0

are compared. Since the �rst edit operation in alignment is di�erent from the �rst edit

operation in alignment0, the comparison immediately yields true or false. In other words,

the comparison operation performed by merge always takes constant time. This implies

that mergetime is proportional to the number of calls of the function merge. The latter is

bound by the sum of the lengths of all optimal alignments. Thus, optimal achieves the same

asymptotic running time as the back-tracking algorithm described above.

Our approach requires lazy evaluation. For each table entry (i; j) only a pre�x of all align-

ments of u1 : : : ui and v1 : : : vj is evaluated, namely the optimal alignments. Thus, the space

90 CHAPTER 3. THE STRING PROCESSING MACHINERY

requirement is proportional to the sum of the length of the optimal alignments. In a lan-

guage with eager evaluation, our approach would clearly lead to exponential space and time

requirements.

In biological applications, it is sometimes necessary to compute suboptimal alignments, that

is, alignments whose costs lie in the �-neighborhood of the edit distance, for some � > 0 (see

[NB93]). Reusing the functions enumalignments and selectalignments we can easily solve

this problem by an appropriate select-function.

suboptimal::num!(costfunction �)!(string �)!(string �)![alignment �]

suboptimal epsilon delta u v = selectalignments select (enumalignments delta u v)

where select edist cost = epsilon >= cost - edist

Note that our approach of computing suboptimal alignments allows a maximum of
exibility

since the enumeration of the alignments and the selection of suboptimal alignments are log-

ically separated. The laziness guarantees the time and space e�ciency of the approach. In

this sense, lazy evaluation provides a very powerful mechanism to \glue" individual program

parts together, as remarked by Hughes [Hug89]. In an eager language, the separation of

the di�erent tasks is usually not achieved. The program code for enumerating the align-

ments becomes intertwined with the code for selecting suboptimal alignments, resulting in

a monolithic program.

Maximal Matches Distance

Suppose 	lr(v; u) = (w1; c1; : : : ; wr; cr; wr+1) is the left-to-right partition of v w.r.t. u (see

De�nition 3.9.8). Moreover, let T = cst(u) and loceps = locT ("). (lrpartition loceps v)

computes in O(jAj � n) time and O(m) space the list

[(vnodes1; loc1); : : : ; (vnodesr; locr); (vnodesr+1; locr+1)] (3.11)

where loch = locT (wh), and vnodesh is the list of nodes visited while traversing T from

the root to the location loch. lrpartition uses a function locmax which calls scanpre�x 0 to

determine the values vnodesh, loch, and the remaining su�x cx = chwh+1 : : : wrcrwr+1 of v.

lrpartition::(location � �)!(string �)![([ctree � �],location � �)]

lrpartition loceps v

= locmax (scanprefix' loceps v)

where locmax (vnodes,loc,c:x) = (vnodes,loc):locmax (scanprefix' loceps x)

locmax (vnodes,loc,[]) = [(vnodes,loc)]

The list (3.11) contains valuable information which is used in other contexts (see section

6.8). To determine mmdist(v; u), we only need the length of this list. Moreover, it is not

necessary to annotate the compact su�x tree. Therefore, we let the second argument (the

annotation function) of cst unde�ned.

mmdist::(string �)!(string �)!num

mmdist v u = #(lrpartition (LocN (cst (u,#u) undef)) v) - 1

3.9. STRING COMPARISONS 91

Note that due to the laziness the elements of the list (3.11) are not evaluated for computing

mmdist(v; u). With a function (logbase 2), which calculates the logarithm to base 2, an

implementation of the function mmm is now straightforward. Note that logbase uses the

prede�ned function log which returns the natural logarithm.

mmm::(string �)!(string �)!num

mmm u v = logbase 2 ((mmdist u v + 1) * (mmdist v u + 1))

where logbase base i = log i/log base

mmm takes O(jAj � (m + n)) time and O(maxfm + ng) space. Hence, our implementation

is optimal.

q-Gram Distance

In this section, we give an implementation of Algorithm LOT. We do not implement the

variation described in section 3.9.3 since it only works in conjunction with a modi�ed lazy

su�x tree algorithm which computes for each node s in cst(x) the number of occurrences of

s in x.

Consider a compact A+-tree T and suppose v is a node in T such that es represents the set

of edges outgoing from v. The function getlnum computes lnum(v) (see De�nition 3.9.17).

If v is a leaf, then es = [] and lnum(v) = 1. Otherwise, lnum(v) is the sum of the lnum-

annotations of the nodes directly below v. getlnum takes O(jT j) time to construct the

annotation lnum since each edge of T is inspected exactly once.

getlnum::annotationfunction � num

getlnum d es = 1, if es = []

= sum [lnum | (w,N es' link lnum) es], otherwise

Let loc be a location in T . The function scanone enumerates all locations which can be

reached from loc by scanning one character of an edge label in T . More precisely, if loc =

locT (w) for some w 2 words(T), then the expression (scanone loc) returns the ordered list

[(a; locT (wa)) j 9a 2 A : wa 2 words(T)] in time proportional to its length.

scanone::(location � �)![(�,location � �)]

scanone (LocN node)

= map down (seledges node)

where down ((w,k),node')

= (hd w,LocE node (w,1) (drop 1 w,k-1) node'), if isleaf node' _ k > 1

= (hd w,LocN node'), otherwise

scanone (LocE node (v,j) (w,i) node')

= [], if i = 0

= [(hd w,LocE node (v,j+1) (drop 1 w,i-1) node')], if isleaf node' _ i > 1

= [(hd w,LocN node')], otherwise

The function scanjust iterates scanone. More precisely, if loc = locT (w) for some w 2
words(T) then (scanjust k loc) returns the list [locT (wx) j 9x 2 Ak : wx 2 words(T)] in
time proportional to the number of visited locations.

92 CHAPTER 3. THE STRING PROCESSING MACHINERY

scanjust::num!(location � �)![location � �]

scanjust (i+1) loc = [loc'' | (a,loc') scanone loc; loc'' scanjust i loc']

scanjust 0 loc = [loc]

Now suppose T = cst(u$) and T 0 = cst(v$). To represent the disjoint union of the sets L\,

LT , and LT 0 (see section 3.9.3), we introduce the type oneortwo:

oneortwo
 ::= One
 | Two

Each pair (loc; loc0) 2 L\ is represented by the expression (Two loc loc0). Each location

loc 2 LT [LT 0 is represented by the expression (One loc). Hence, the union of L\, LT and

LT 0 is represented by a list repL of type [oneortwo (location � num)].

The function pwalk implements a parallel walk of T and T 0 which yields the list repL in

O(q � (m+ n)) time.

pwalk::num!(location � �)!(location � �)![oneortwo (location � �)]

pwalk (i+1) loc loc' = mergelocs i (scanone loc) (scanone loc')

pwalk 0 loc loc' = [Two loc loc']

pwalk is called with three arguments k, loc, and loc0 such that 0 � k � q, loc = locT (w),

and loc0 = locT 0(w) for some w 2 Aq�k. It enumerates all pairs (locT (wx); locT 0(wx)) 2 L\
and all locations locT (wx) 2 LT and locT 0(wx) 2 LT 0 for some x 2 Ak. If k = 0, then

w 2 Aq and (loc; loc0) 2 L\ is the only element enumerated. If k = i + 1 for some i � 0,

then (scanone loc) and (scanone loc0) is evaluated. This yields two ordered lists which are

merged by a function mergelocs.

mergelocs::num![(�,location � �)]![(�,location � �)]![oneortwo (location � �)]

mergelocs i ((a,loca):locs) ((b,locb):locs')

= pwalk i loca locb ++ mergelocs i locs locs', if a = b

= map One (scanjust i loca) ++ mergelocs i locs ((b,locb):locs'), if a < b

= map One (scanjust i locb) ++ mergelocs i ((a,loca):locs) locs', otherwise

mergelocs i locs [] = [One loc | (a,loca) locs; loc scanjust i loca]

mergelocs i [] locs' = [One loc | (b,locb) locs'; loc scanjust i locb]

Suppose the second and the third argument of mergelocs are of the form ((a; loca) : locs)

and ((b; locb) : locs0), respectively. If a = b, then loca = locT (wa) and locb = locT 0(wa).

Hence, pwalk is called recursively with the three arguments i, loca, and locb and mergelocs

is applied to the remaining lists locs and locs0. If a < b, then T 0 does not contain a location

for wa. Hence, (scanjust i loca) enumerates all elements locT (wax
0) 2 LT for some x0 2 Ai.

Correspondingly, for the case a > b. The cases where either the second or the third argument

of mergelocs is empty, are analogous.

The use of the function scanone considerably simpli�es the implementation of Algorithm

LOT. In a previous implementation without this function, we had a dozen of case distinctions

in mergelocs and pwalk. Case distinctions concerning edge locations and node locations are

now gathered in scanone.

The function loc2num extracts from each element in repL its contribution to the q-gram

distance of u$ and v$ (see equation 3.9 in Algorithm LOT). Note that abs is the prede�ned

function for computing the absolute value of a number.

3.10. SUMMARY 93

loc2num::(oneortwo (location � num))!num

loc2num (One loc) = seltag (ceiling loc)

loc2num (Two loc loc') = abs (seltag (ceiling loc) - seltag (ceiling loc'))

The function qgdist computes the q-gram distance of u and v according to algorithm LOT.

qgdist::�!num!(string �)!(string �)!num

qgdist sentinel q u v

= sum (map loc2num repL), if drop (m-q+1) u = drop (n-q+1) v

= sum (map loc2num repL) - 2, otherwise

where m = #u

n = #v

loceps = LocN (cst (u++[sentinel],m+1) getlnum)

loceps' = LocN (cst (v++[sentinel],n+1) getlnum)

repL = pwalk q loceps loceps'

Initially, qgdist constructs T and T 0 including the annotation lnum. Then it computes

loceps = locT (") and loceps
0 = locT 0(") and evaluates the expression (pwalk q loceps loceps0)

yielding the list repL. Finally, qgdist(u$; v$) is computed according to equation (3.9) in

Algorithm LOT. To obtain the string um�q+2 : : : um, the �rst m � q + 1 elements of u are

dropped. Correspondingly, vn�q+2 : : : vn is obtained. From the above it is clear that the

overall running time of the function qgdist is O((jAj + q) � (m + n)). Due to the laziness,

only one element of the list repL is stored at any time of the computation. Hence, the space

requirement of qgdist is O(m+ n) and our implementation is optimal.

3.10 Summary

In this chapter, we have established a powerful string processing machinery. We have shown

how to represent and construct various forms of A+-trees and dynamic programming tables

in a uni�ed way. Using polymorphic types, we were able to abstract from the di�erent under-

lying alphabets, the di�erent degrees of compression, and the di�erent forms of table entries.

Using higher order functions, we were able to abstract from the di�erent forms of application-

speci�c annotations, and the diverse ways a new table entry is obtained from previous table

entries. Our string processing machinery consists of the following main components:

� A data type location with the functions getloc, scanpre�x, and linkloc. This data type

allows a convenient and concise implementation of algorithms that construct or traverse

su�x trees.

� A higher order function cst to compute su�x trees including su�x links and annota-

tions in a uni�ed way.

� A higher order function absnextcol which provides a
exible framework to implement

various forms of the Wagner-Fischer Algorithm in a uni�ed way.

In the following chapters, we will apply these components in many di�erent contexts.

Chapter 4

Exact String Searching

The exact string searching problem occurs in many di�erent contexts, like text editing, data

retrieval, and symbol manipulation. It is one of the best studied problems in computer sci-

ence. We present some well-known and one widely unknown exact string searching algorithm

in detail, and show how to implement the algorithms in a uni�ed functional framework. We

begin with a precise de�nition of the problem.

De�nition 4.0.1 Suppose the following items are given:

� A string p 2 A� of length m.

� A string t 2 A� of length n.

A is the input alphabet, p is the pattern, and is t the input string. The exact string searching

problem is to enumerate all positions in t where p ends. These positions are referred to as

solutions to the exact string searching problem. 2

Let Ap be the set of characters in p. In general, m is much smaller than n which means

that Ap contains only a small fraction of the input characters. To state e�ciency results, we

sometimes have to refer to this fraction Ap explicitly.

We assume the input string to be given online. Each considered exact string searching

algorithm scans t from left to right. At each time the access to t is restricted to a small

sliding window of size O(m). Our functional implementations preserve these properties of

the algorithms. In particular, t is represented by a lazy list, that is, a stream of input

characters. The length of this list is never computed. However, when we give e�ciency

results for our programs, we always refer to an input string of length n. An important virtue

of our functional implementations is that, except for the three algorithms of Boyer-Moore

type, an explicit bu�ering mechanism is not required to achieve the space e�ciency of O(m).

Lazy evaluation and the memory management of the Miranda system guarantee that only

the needed portion of the input string is stored at any time.

The problem formulation of De�nition 4.0.1 is consistent with [BY89c, CLR90, CL90, Sun90,

HD91]. Some authors restrict themselves to the simpli�ed form of the exact string searching

problem such that only the �rst occurrence of p in t has to be found [Hor80, Sed88, Aho90,

Pir92, Ste94]. They argue that a program for the simpli�ed form can easily be extended

94

4.1. THE BRUTE FORCE ALGORITHM 95

to solve the general problem. We emphasize that the lazy functional programs presented in

this chapter can be used to solve both forms of the problem, without changing their code.

This is due to the compositionality: For each of our functions of the form

f::(string �)!(string �)![num]

f p t = ...

solving the exact string searching problem one can derive a variant

f'::(string �)!(string �)!num

f' p t = hd (f p t)

solving the simpli�ed form of the exact string searching problem. The laziness guarantees

the e�ciency of the function f 0: to evaluate the expression (hd (f p t)) at most one solution

is enumerated.

4.1 The Brute Force Algorithm

The Algorithm for exact string searching that immediately comes to mind is the Brute Force

Algorithm:

Algorithm BF Enumerate all m-grams w of t from left to right. Compare p and w

character by character in any order. If p = w, then report a match. 2

Since the character comparisons in the Brute Force Algorithm are done without knowledge

about previous comparisons, the algorithm is memoryless.

The Brute Force Algorithm requires a bu�er of size O(m) to hold an m-gram of t. In the

worst case, the algorithm needs O(m � n) time. For example, if p = am�1b and t = an and

the comparisons of p and w are performed from left to right, then m � (n�m+ 1) character

comparisons are necessary. The expected running time of the Brute Force Algorithm is

O(m+ n) since the majority of the comparisons between p and an m-gram w 6= p are likely

to fail very early (cf. [BM77]).

An optimal functional implementation of the Brute Force Algorithm is given by the function

exsBF. (The pre�x exs stands for exact searching.)

exsBF::(string �)!(string �)![num]

exsBF p t = [j | (j,s) zip2 [m..] (suffixes t); p = take m s]

where m = #p

exsBF generates for each j � m a lazy list representing the su�x s of t beginning at

position j � m + 1. It compares p from left to right with the pre�x w of s of length m,

using the polymorphic built-in predicate \=". If p = w, then j is a solution to the exact

string searching problem. Note that the expression (take m s) is evaluated until a mismatch

is detected, or p equals s1 : : : sm. After p and (take m s) have been compared, the latter

96 CHAPTER 4. EXACT STRING SEARCHING

expression can be garbage collected. The expression (zip2 [m::] (su�xes t)) computes only

one pair (j; s) at any time. Since s is not evaluated, it takes constant space. Hence, the space

consumption of exsBF is O(m). Note that in an imperative implementation of Algorithm

BF a considerable part of program code is necessary to handle the bu�ering of the input

string, in order to achieve space e�ciency (cf. [BM77]).

There are two general ideas to improve the Brute Force Algorithm:

(1) Record information about previous computations to speed up the comparison of p and

an m-gram w of t.

(2) Skip m-grams of t for which it is clear that they do not match p.

In fact, each exact string searching algorithm described in this chapter follows one or both

of these ideas:

� The Knuth-Morris-Pratt Algorithm described in section 4.2 follows idea (1).

� The Karp-Rabin Algorithm described in section 4.3 and the algorithms of Boyer-Moore

type described in section 4.4 follow idea (2).

� The Chang-Lawler Algorithm described in section 4.5 follows both ideas.

Note that we do not consider string searching algorithms that are based on bit-vector opera-

tions (see [WM92, BYG92]). This is because these algorithms are limited to short patterns.

4.2 The Knuth-Morris-Pratt Algorithm

Knuth and Pratt discovered an exact string searching algorithm that is much better in its

worst case behavior than the Brute Force Algorithm. In parallel to these authors, Mor-

ris discovered virtually the same algorithm. They published their algorithm together in

[KMP77].

The Knuth-Morris-Pratt Algorithm processes the input string online character by character

and compares it with the pattern from left to right. The basic idea is that at each time a

mismatch is detected, the \false start" consists of characters that have already been exam-

ined. By recording this information, repeating comparisons with the known characters can

be avoided.

Every step in the Knuth-Morris-Pratt Algorithm is characterized by the following three

items:

� an m-gram w of t which is aligned with p,

� a common pre�x s of p and w,

� the actual input character b.

The Knuth-Morris-Pratt Algorithm works as follows:

4.2. THE KNUTH-MORRIS-PRATT ALGORITHM 97

1. If jsj = m, then a match is reported. The longest proper su�x s0 of s that is a pre�x

of p, is determined. p is moved to the right such that s0 is aligned with itself.

2. If jsj < m, then there is a character c in the pattern which is aligned with the actual

input character b.

(a) If b 6= c and s 6= ", then a mismatch is found. The longest proper su�x s0 of s

that is a pre�x of p, is determined. p is moved to the right such that s0 is aligned

with itself.

(b) If b 6= c and s = ", then a mismatch is found. p is moved one position to the right

and the next input character is scanned.

(c) If b = c, then the next input character is read, and the algorithm proceeds with

the common pre�x sb of p and w.

Example 4.2.1 Let p = abab. The following alignments exemplify the above cases. The

arrow points to the actual input character.

1.
?

sz }| {
: : : : : :a b a b c

a b a b
)

?
sz}|{

: : : : : :a b a b c

a b a b

Since jsj = m = 4, a match is reported. ab is the longest proper su�x of s that is a

pre�x of p. To align ab with itself, the pattern is moved 2 positions to the right.

2. (a)
?

sz }| {
: : : : : :a b a c

a b a b
)

?
sz}|{

: : : : : :a b a c

a b a b

a is the longest proper su�x of s that is pre�x of p. To align a with itself, the

pattern is moved 2 positions to the right.

(b)
?

: : : : : :c b a c

a b a b
)

?
: : : : : :c b a c

a b a b

Since s = " and c 6= a, the pattern is moved one position to the right and the

next input character is read.

(c)
?

sz}|{
: : : : : :a b a c

a b a b
)

?
sz }| {

: : : : : :a b a c

a b a b

Since the input character and the corresponding pattern character are equal, the

next input character is read and the algorithm proceeds with the common pre�x

aba of abac and abab. 2

In every of the four cases described above, the Knuth-Morris-Pratt Algorithm

� never moves the pattern to the left.

98 CHAPTER 4. EXACT STRING SEARCHING

Figure 4.1: The KMP-tree for p = abab

b - b - b - b - b	 �
Y Y

a b a b

� either reads the next input character (case (2b) and (2c)), or moves the pattern at

least one position to the right (case (1), (2a) and (2b)).

Hence, the four cases can occur at least 2 �n times altogether. Cases (2b) and (2c) can easily

be accomplished in constant time. To achieve the same e�ciency for cases (1) and (2a) we

need an additional function � : fs j s < p; s 6= "g ! fs j s < p; s 6= pg such that �(s) is

the longest proper su�x of s that is a pre�x of p. � only depends on p. Hence, it can be

precomputed and stored in a table of size O(m). In [KMP77], an algorithm is given that

computes � in O(m) time. Thus, the running time of the Knuth-Morris-Pratt Algorithm is

O(m+ n) and the space requirement is O(m).

The worst case performance of the Knuth-Morris-Pratt Algorithm occurs if p = Fi for some

i > 0 where Fi is the i-th Fibonacci-string, de�ned as follows [Apo85, Aho90]:

F1 = b; F2 = a; Fi+2 = Fi+1Fi

In [KMP77], it is shown that the maximum number of times the Knuth-Morris-Pratt Algo-

rithm can shift the pattern to the right, while scanning the same input character, is at most

1 + logrm where r = (1 +
p
5)=2 � 1:618 is the golden ratio.

The Knuth-Morris-Pratt Algorithm performs very well for highly repetitive patterns and

input strings. Unfortunately, this situation occurs only rarely in actual applications. Thus,

in practice the Knuth-Morris-Pratt Algorithm is not likely to be signi�cantly faster than the

Brute Force Algorithm. However, there is an important virtue of the Knuth-Morris-Pratt

Algorithm. At each time of the computation the algorithm must store only the scanned

pre�x s of p and the actual input character. Thus, it achieves the space e�ciency of O(m)

without bu�ering parts of the input string. This considerably simpli�es the implementation.

In section 5.2, we describe how the Knuth-Morris-Pratt Algorithm can be generalized to

search for several patterns simultaneously.

4.2.1 Implementation

Most implementations of the Knuth-Morris-Pratt Algorithm represent the function � by an

integer array (see [KMP77, CLR90, Aho90, Ste94]). Instead, we represent � by the su�x

links of the atomic A+-tree T such that words(T) = fs 2 A� j s < pg. T is called KMP-tree

for p. According to De�nition 3.2.4, there is a su�x link s - v in T if and only if �(s) = v.

Obviously, T has m + 1 nodes and m edges. Hence, it takes O(m) space. Figure 4.1 shows

the KMP-tree for p = abab.

The KMP-tree T for p has a linear structure without branching nodes. It is computed by

the function nobranch in O(m) time. Note that the su�x links are left unde�ned. Moreover,

4.2. THE KNUTH-MORRIS-PRATT ALGORITHM 99

the node p in T is annotated with true and all other nodes with false. To obtain the su�x

links for T we will use the function addlinks introduced in section 3.7.1.

nobranch::(string �)!tree � bool

nobranch (a:u) = N [(a,nobranch u)] undef False

nobranch [] = N [] undef True

The Knuth-Morris-Pratt Algorithm is realized as a traversal of the KMP-tree. This plays the

role of a memory, in which information about previous character comparisons is recorded.

Suppose that w is the m-gram of t, p is aligned with. The common pre�x s of w and p (see

page 96) is represented by the node s of T . If the next input character b matches the next

pattern character, then there is an edge s b- sb outgoing from s. This edge is traversed.

Otherwise, the su�x link s - p1 : : : pi is traversed. This avoids the comparison of p1 : : : pi
with itself.

The di�erent cases of the Knuth-Morris-Pratt Algorithm correspond to the di�erent equa-

tions de�ning the function next (see section 3.7.1):

� case (2c) corresponds to the �rst equation,

� case (2b) to the second equation and

� cases (1) and (2a) to the third equation.

Thus, the search phase of the Knuth-Morris-Pratt Algorithm is accomplished by iteratively

applying the function next. In particular, the expression (scanl next root t) returns the

list [s0; s1; : : : ; sn] of nodes where s0 is the root of T and sj+1 = next(sj; tj+1) for each

j; 0 � j � n� 1 (see section 2.1.4). If sj = p for some j, then a match ending at position j

is reported.

iternext::(tree � bool)!(string �)![num]

iternext root t = [j | (j,N es link True) zip2 [0..] (scanl next root t)]

The combination of list comprehensions with the higher order function scanl will be used in

several places throughout the thesis. It provides a very convenient notation to implement

the search phase of string searching algorithms which scan the input string character by

character, thereby performing state transitions.

The Knuth-Morris-Pratt Algorithm is implemented by the function exsKMP.

exsKMP::(string �)!(string �)![num]

exsKMP = iternext.(addlinks setlink).nobranch

In a �rst phase, the linear structure of T including the boolean annotation is computed in

O(m) time. In the second phase, the su�x links are added using the function addlinks.

According to Theorem 3.7.3, this takes O(l � jT j) steps, where l is the average number of

edges outgoing from the nodes visited during the computation of the su�x links. In our

case, l = 1 and jT j = m+1. Hence, the function addlinks requires O(m) steps. In the third

100 CHAPTER 4. EXACT STRING SEARCHING

phase, which is accomplished by the function iternext, at most 2 � n su�x links and labeled

edges of T are traversed. Each such step takes constant time. Thus, the third phase takes

O(n) time, and our implementation achieves a total running time of O(m+ n) and requires

O(m) space. This is optimal. Note that the function next can considerably be optimized if

it is applied to a KMP-tree, in which each node either has one or zero outgoing edges.

Several people have noticed that there is a strong resemblance of the preprocessing phase

and the search phase of the Knuth-Morris-Pratt Algorithm [Sed88, Aho90, Ste94]. However,

van der Woude [vdW89] complained that most implementations of the Knuth-Morris-Pratt

Algorithm do not justice to this strong resemblance. We react upon this statement: in our

implementation the function next is used in the preprocessing phase (see addlinks) and in

the search phase (see iternext).

Note that the KMP-tree together with the function next can be considered as a space

e�cient O(m)-representation of a deterministic �nite automaton (S;F ; s0; nextstate) where
S = nodes(T), F = fpg, s0 = root, and nextstate = next.

4.3 The Karp-Rabin Algorithm

The Karp-Rabin Algorithm [KR87] is very similar to the Brute Force Algorithm. The di�er-

ence is that the Karp-Rabin Algorithm performs integer comparisons, rather than directly

comparing p with each m-gram of t, character by character. Let �ngerprint be a hash func-

tion, that maps each string w 2 Am to an integer. If �ngerprint(p) 6= �ngerprint(w), then

we know that p 6= w. If �ngerprint(p) = �ngerprint(w), then we must still compare p and

w, character by character, to make sure we do not have a mismatch. Since the hash function

will be chosen such that a collision is very unlikely to occur, most of the m-grams of t that

are not equal to p, are skipped.

The Karp-Rabin Algorithm requires the input alphabet to be known in advance. Therefore,

we assume that l = jAj and a bijective function encode : A ! f0; : : : ; l � 1g is given.

encode(b) is the code of b. encode is generalized to each string w of length m as follows:

encodem(w) =
mX
i=1

encode(wi) � lm�i: (4.1)

Thus, anm-gram of t is encoded as anm-digit integer in base l. The hash function �ngerprint

is de�ned by

�ngerprint(w) = encodem(w) mod q; (4.2)

where q is a large prime. q should be as large as possible such that the computation of

(l + 1) � q is not causing an arithmetic over
ow.

Let bvc be an (m + 1)-gram of t. The code of vc can be computed from the code of bv by

eliminating the \in
uence" of b and adding the \in
uence" of c. More precisely, we have

encodem(vc) = (encodem(bv)� encode(b) � lm�1) � l + encode(c).

A fundamental property of the mod-operation is that it can be applied at any step of the

computation. This keeps the numbers we are dealing with small. Thus, we can compute

the �ngerprint of vc from the �ngerprint of bv in constant time according to the following

equation (see [Sed88, Aho90, Ste94]):

�ngerprint(vc) = (l � i+ encode(c)) mod q (4.3)

4.3. THE KARP-RABIN ALGORITHM 101

where i = (l � q + �ngerprint(bv)� encode(b) � k) mod q and k = lm�1 mod q.

Algorithm KR Compute �ngerprint(t1 : : : tj) according to equations (4.1) and (4.2). For

each j;m + 1 � j � n compute �ngerprint(tj�m+1 : : : tj) from �ngerprint(tj�m : : : tj�1) ac-

cording to equation (4.3). If �ngerprint(p) = �ngerprint(tj�m+1 : : : tj) and p = tj�m+1 : : : tj
for some j, then output j. 2

The correctness of Algorithm KR is clear. The algorithm requires a table of size jAj to
represent the bijective function encode. Hence, the space consumption is O(jAj+m). The

running time is O(m+ n+ cc) where cc is the number of character comparisons performed.

The worst case running time occurs when the �ngerprints of them-grams are always identical

with the �ngerprint of p. This means that m symbols are to be compared in every step.

Thus, the worst case running time is O(m � n). However, the use of the very large prime

q makes it extremely unlikely that a collision occurs. In particular, one can show that the

�ngerprints in every step would be expected, on the whole, to be unequal (see [KR87]).

Under these circumstances, each input character is processed in constant time, giving an

O(m+ n) expected running time.

4.3.1 Implementation

The Karp-Rabin Algorithm requires the input alphabet A to be known in advance. For our

functional implementation we therefore assume thatA is given as a pair (characters; encode)

of type (alphabet �) (see section 3.8.1). Let l = jAj and q be a large prime. If we use Horner's

rule (cf. [CLR90]) and furthermore apply the mod-operation at each step of the computation,

then we obtain a �ngerprint in O(m) time as follows (see [CLR90, Ste94]):

fingerprint::num!num![num]!num

fingerprint l q codelist = foldl nextcode 0 codelist

where nextcode i codeb = (l * i + codeb) mod q

Note that the function �ngerprint is applied to a list of codes, rather than a list of characters.

The function nextfp is applied to the �ngerprint fpbv of bv and to the codes of the characters

b and c. It returns the �ngerprint of vc in constant time according to equation (4.3). The

constant (l � q) is added to fpbv to ensure that the partial result remains positive.

nextfp::num!num!num!num!(num,num)!num

nextfp k l q fpbv (codeb,codec) = (l * i + codec) mod q

where i = (l * q + fpbv - codeb * k) mod q

The function exsKR implements the Karp-Rabin Algorithm.

102 CHAPTER 4. EXACT STRING SEARCHING

exsKR::(alphabet �)!num!num!(string �)!(string �)![num]

exsKR (characters,encode) l q p t

= [j | (j,s) jslist; p = take m s]

where m = #p

multiples = 1:[(l * i) mod q | i multiples]

k = multiples!(m-1)

codep = map encode p

codet = map encode t

fpp = fingerprint l q codep

firstfp = fingerprint l q (take m codet)

fplist = scanl (nextfp k l q) firstfp (zip2 codet (drop m codet))

potmatch = [j | (j,fp) zip2 [m..] fplist; fpp = fp]

jslist = [(j,drop (j-j') s) | (j,(j',s)) zip2 potmatch ((m,t):jslist)]

Initially, exsKR evaluates the constants m and k and encodes the characters of p and t. This

takes O(m+n) time. Recall that k is the constant (lm�1 mod q). To compute k, the in�nite

list multiples = [r0; r1; : : :] is constructed where r0 = 1 and rk+1 = (rk � l) mod q for each

k � 0. Obviously, k = rm�1. The computation of k takes O(m) steps. Starting with �rstfp =

�ngerprint(t1 : : : tm), and using the function nextfp, the list fplist of �ngerprints of the m-

grams of t is constructed in O(n) steps. Note that the expression (zip2 codet (drop m codet))

returns the list [(encode(t1); encode(tm+1)); : : : ; (encode(tn�m); encode(tn))]. Each �ngerprint

in fplist is compared with the �ngerprint fpp of p. This gives a list potmatch of positions

where a potential match occurs. For each j in potmatch, the pair (j; s) is computed where

s represents the su�x tj�m+1 : : : tn of t. This yields a list jslist in O(n) time. For each

element (j; s) in jslist it is checked if p is identical to the pre�x of s of length m. This gives

the positions of the exact matches of p in t. Altogether, exsKR takes O(jAj+m) space and

O(m+ n+ cc) time where cc is the number of character comparisons performed. Thus, our

implementation is optimal.

4.4 The Boyer-Moore Algorithm

The basic idea of the Boyer-Moore Algorithm [BM77] is to align the pattern with a subword

of t, and to look for a match by comparing the characters in p from right to left with the

characters in t. The information gathered in this comparison is used to determine a valid

shift, that is, a positive value by which p can be moved to the right without missing an

occurrence of p in t.

The Boyer-Moore Algorithm incorporates two heuristics to determine a valid shift. The

\good-su�x heuristic" and the \bad-character heuristic"1. Both are solely based on the

pattern and the input alphabet. When a match or a mismatch occurs, each heuristic proposes

a valid shift, and the pattern is moved to the right by the larger of these shifts. The heuristics

often allow to skip altogether the examination of many input characters.

In the following two sections, we explain the good-su�x and the bad-character heuristic in

detail. Section 4.4.3 considers the e�ciency of the Boyer-Moore Algorithm. Sections 4.4.4

1The terms good-su�x heuristic and bad-character heuristic are taken from [CLR90].

4.4. THE BOYER-MOORE ALGORITHM 103

and 4.4.5 are devoted to Horspool's and Sunday's heuristic, respectively. Finally, in section

4.4.6 we give a functional implementation of the described algorithms.

4.4.1 The Good-Su�x Heuristic

Every step of the Boyer-Moore Algorithm, in which the good-su�x heuristic is applied, can

be characterized by the following items:

� an m-gram w of t, which is aligned with p,

� the longest common su�x s of p and w.

s is the good su�x of w. The following �gure shows how the di�erent items are related.

wz }| {
sz }| {

: :
: : : : : : : : : : : : : : : : : :| {z }

p

The good-su�x heuristic works as follows:

1. If s is a nested su�x of p, then the heuristic looks for the rightmost nested occurrence

of s in p which is not a su�x of p. It proposes a shift that aligns s with this occurrence.

2. If s is not a nested su�x of p, then the good-su�x heuristic looks for the longest proper

su�x s0 of s which occurs as a pre�x of p. It proposes a shift that aligns s0 with this

occurrence.

Note that the empty string is always a nested su�x. Hence, if s = ", then the good-su�x

heuristic determines the valid shift 1, to align the empty string with its rightmost nested

occurrence in p.

Example 4.4.1 Let p = cdadaad and consider the following alignments exemplifying the

two cases of the good-su�x heuristic.

1. sz}|{
: : : : : :a d c a c a d

c d a d a a d
) : : : : : :a d c a c a d

c d a d a a d

The good su�x ad of adcacad is a nested su�x of p, and p3p4 is the rightmost nested

occurrence of ad in p. Hence, we can safely shift the pattern 3 positions to the right,

to align ad with p3p4.

2. sz }| {
: : : : : :a d c a a a d

c d a d a a d
) : : : : : :a d c a a a d

c d a d a a d

The good su�x aad of adcaaad is not a nested su�x of p. The empty string is the

longest proper su�x of aad that occurs as a pre�x of p. Therefore, we can safely shift

the pattern 7 positions to the right, to align the empty su�x of aad with the empty

pre�x of p. 2

104 CHAPTER 4. EXACT STRING SEARCHING

De�nition 4.4.2 The good-su�x heuristic is speci�ed by a function gsshift : fs j p R sg !
f1; : : : ; mg, which is de�ned as follows:

gsshift(s) =

(
minfjuj j u 2 A+; s0 2 A�; s

R
s0; p = s0ug; if s is not nested

minfjuj j u 2 A+; p
R
sug; otherwise

2

Lemma 4.4.3 gsshift(s) is a valid shift.

Proof Obvious. 2

Example 4.4.4 If p = cdadaad, then gsshift(ad) = gsshift(d) = 3, gsshift(") = 1, and

gsshift(s) = 7, for s 2 fcdadaad; dadaad; adaad; daad; aadg. 2

The function gsshift corresponds to table delta2 in [BM77]. Since gsshift depends only

on the pattern, it can be preprocessed and stored in a table. The linear time preprocessing

algorithms presented in the literature are complicated and di�cult to understand (see [Sed88,

page 278]). In fact, Knuth's preprocessing algorithm [KMP77] was incorrect. It was corrected

by Rytter [Ryt80] and, according to [Smi82], later modi�ed by Mehlhorn (see also [Aho90]).

In a short remark, Crochemore stated that the compact su�x tree of the reverse of p con-

tains all functions precomputed for the Boyer-Moore Algorithm (see [Cro86, page 64]). Un-

fortunately, he did not explain how to obtain these functions from the compact su�x tree.

Crochemore's remark motivated us to have a closer look on the relation between su�x trees

and the preprocessed functions of the Boyer-Moore Algorithm. We found a simple algo-

rithm, called GST, that uses the compact su�x tree of p$ to construct the function gsshift .

Algorithm GST is di�erent from the algorithms presented in the literature. It can easily be

implemented in our functional framework. The idea is to annotate T = cst(p$) with some

extra information and to collect this information for each su�x of p. In the following, we

will explain Algorithm GST in detail.

The non-nested su�xes of p form a contiguous segment of the list of all su�xes of p. The

same is true for the nested su�xes. More precisely, a su�x s of p is nested if and only if

j�(p)j � jsj. (Recall that �(p) denotes the longest nested su�x of p.) For this reason, the

construction of gsshift is accomplished in two phases. In the �rst phase, gsshift is constructed

for the non-nested su�xes, in the second for the nested su�xes of p. As usual, a su�x of p

is represented by its location in T . Changing from one su�x to the next is done e�ciently

using the function linkloc (see De�nition 3.2.14).

The First Phase of Algorithm GST

Suppose s is a non-nested su�x of p. Let s0 be the longest proper su�x of s that is a pre�x

of p. Then gsshift(s) = m � js0j by De�nition 4.4.2. Since s0 is a nested su�x of p, it

is also a su�x of �(p). Suppose x is another non-nested su�x of p. Then s0 is a proper

su�x of x as well. Moreover, s0 is the longest proper su�x of x that is a pre�x of p. Thus,

gsshift(s) = m � js0j = gsshift(x), that is, the gsshift-value is the same for all non-nested

su�xes of p. Based on this observation, we can compute gsshift(s) for all non-nested su�xes

s of p by the following three steps:

4.4. THE BOYER-MOORE ALGORITHM 105

(1) Compute �(p).

(2) Compute the longest su�x s0 of �(p) that is a pre�x of p.

(3) Set gsshift(s) = m� js0j for all non-nested su�xes s of p.

There are two methods to compute �(p).

� If we construct cst(p$) with Ukkonen's online algorithm (see section 3.5.2), then we

get �(p) as a by-product with the last but one intermediate tree cst(p).

� Since a su�x s of p is nested if and only if locT (s) is a node location, we can compute

�(p) as the longest su�x of p, that has a node location in T .

In our functional implementation of Algorithm GST (see section 4.4.6), we use the second

method since it does not assume a particular su�x tree algorithm. To accomplish step (2),

we annotate T .

De�nition 4.4.5 The boolean annotation ispre�x of T is de�ned as follows: ispre�x (v) is

true if and only if v is a pre�x of p$. 2

Obviously, ispre�x (v) is true if and only if jvj = m + 1 or there is an edge v u- vu in T

such that ispre�x (vu) is true. Therefore, ispre�x can be computed in O(m) time by a single

traversal of T .

The Second Phase of Algorithm GST

Suppose s is a nested su�x of p. By De�nition 4.4.2 gsshift(s) is the length of the shortest

non-empty string u such that su is a su�x of p. Obviously, s is a right-branching subword of

p$ since the �rst character of u is not the sentinel character $. Hence, there is a branching

node s in T . In terms of the su�x tree, we have gsshift(s) = j � 1 where j is the length

of the second shortest path from s to a leaf of T . To obtain gsshift(s), we annotate T such

that j is available at node s.

De�nition 4.4.6 The annotation minpathlen : nodes(T)! P(IN0) is de�ned as follows:

minpathlen(v) =

(
f0g; if v is a leaf

twominfjwj j w 2 A+; vw 2 leaves(T)g; otherwise

where twomin(M) = fmin(M);min(M n fmin(M)g)g for all M � IN0, jM j � 2. 2

Note that minpathlen is wellde�ned since from each branching node there are at least two

non-empty paths of di�erent lengths to some leaves of T .

We have minpathlen(v) = twominfjuj + i j v u- vu 2 edges(T); i 2 minpathlen(vu)g for
each branching node v in T . Hence, minpathlen(v) can be computed in time proportional

to the number of edges outgoing from v. Since there are O(m) edges in T , the annotation

minpathlen can be obtained in O(m) time by a single traversal of T .

106 CHAPTER 4. EXACT STRING SEARCHING

Figure 4.2: cst(cacac$) with Annotations ispre�x and minpathlen (T=True, F=False)

bXXXXXXXXXXXXz

������������9

(T;f1;2g)

$

b
(F;f0g)

c

b

@
@
@R

�
�

�	

(T;f1;3g)

$

b
(F;f0g)

ac

b

@
@
@R

�
�

�	

(T;f1;3g)

$

b
(F;f0g)

ac$

b
(T;f0g)

b

?
ac

b

@
@
@R

�
�

�	

(F;f1;3g)

$

b
(F;f0g)

ac$

b
(F;f0g)

Note that it does not su�ce to store only the length j of the second shortest path at each

branching node v of T . The length i of the shortest path may be necessary to compute the

length of the second shortest path for the father node of v. If i would not be available at

node v, then it would have to be computed from the nodes below v. This would lead to a

non-linear algorithm.

Example 4.4.7 Let p = cacac. The compact su�x tree for p$ with the annotations ispre�x

and minpathlen is shown in Figure 4.2. The annotation minpathlen at node c is computed

as follows:

minpathlen(c) = twomin(f1 + i j i 2 minpathlen(c$)g [
f2 + i j i 2 minpathlen(cac)g)

= twomin(f1 + 0g [f2 + 1; 2 + 3g)
= f1; 3g

The value 3 in minpathlen(c) is obtained from the length 1 of the shortest path from cac to

a leaf. If the value 1 would not be available at cac, it would have to be computed from the

nodes below cac. 2

The second phase of Algorithm GST computes gsshift(s) for each nested su�x s as follows.

If minpathlen(s) = fi; jg and i < j, then gsshift(s) = j � 1. Altogether, we obtain the

following result:

Lemma 4.4.8 Algorithm GST computes gsshift in O(m) space and O(jApj �m) time.

Proof The construction of cst(p$) with the annotations ispre�x and minpathlen takes

O(jApj � m) time. Computing the locations of the su�xes of p takes O(jApj � m) time.

Collecting the gsshift-value in two phases takes O(m) time. 2

Unlike the O(m)-algorithms in the literature, Algorithm GST has an an additional alphabet

factor jApj, due to the usage of su�x trees. However, this factor can be eliminated if one

uses hash tables to represent the edges of the su�x tree. Anyway, Algorithm GST should

be compared to the existing methods.

4.4. THE BOYER-MOORE ALGORITHM 107

Example 4.4.9 Let p = cacac and T be the compact su�x tree in Figure 4.2. To

construct gsshift , Algorithm GST computes locT (p) = (cac; ac; $; cacac$), locT (acac) =

(ac; ac; $; acac$) and locT (cac) = cac. Hence, �(p) = cac. Since ispre�x (cac) is true, a pre�x

of p is found and the �rst phase is completed with gsshift(cacac) = gsshift(acac) = m�3 = 2.

Because cac is nested, gsshift(cac) can immediately be computed from minpathlen(cac),

yielding gsshift(cac) = 3 � 1 = 2. The like holds for the su�xes ac, c, and ". Hence,

gsshift(ac) = gsshift(c) = 3� 1 = 2 and gsshift(") = 2� 1 = 1. 2

The good-su�x heuristic can be improved if one ensures that after a shift a di�erent character

is aligned with the character that caused the mismatch when comparing p and w from right

to left. This idea �rst appeared in [KMP77]. It can be speci�ed by the following function

gsshift 0.

gsshift 0(s) =

(
minfjuj j u 2 A+; s0 2 A�; s

R
s0; p = s0ug; if s is not nested

min(fmg [P); otherwise

where P = fjuj j u 2 A+; p
R
su;m = jsuj or pm�jsj 6= pm�jsujg

As it only slightly speeds up the running time of the Boyer-Moore Algorithm (see [KMP77]),

but complicates preprocessing, we will not further consider this improvement.

4.4.2 The Bad-Character Heuristic

Every step of the Boyer-Moore Algorithm, in which the bad-character heuristic is applied,

can be characterized by the following items:

� an m-gram w 6= p of t which is aligned with p,

� the good su�x s of w,

� two di�erent characters b and a such that bs is a su�x of w and as is a su�x of p.

b is the bad character of w since it leads to the �rst mismatch when comparing p and w

from right to left. badpos(w) = m� jsj is the position in w where the bad character occurs.

Since jsj < m, we have badpos(w) > 0. The following �gure shows how the di�erent items

are related:

wz }| {
sz }| {

b: :
a: : : : : : : : : : : : : : : : : :| {z }
p

The bad-character heuristic works as follows:

1. If b does not occur in p, then p may be moved completely past the position in w where

b occurs. Hence, badpos(w) is a valid shift.

2. If pi is the rightmost occurrence of b in p and badpos(w) > i, then the pattern can be

moved badpos(w) � i positions to the right, before b matches any pattern character.

Therefore, badpos(w)� i is a valid shift.

108 CHAPTER 4. EXACT STRING SEARCHING

3. If pi is the rightmost occurrence of b in p and badpos(w) < i, then the pattern has

to be moved to the left. This recommendation will be ignored by the Boyer-Moore

Algorithm since the good-su�x heuristic will propose a shift to the right in all cases.

Example 4.4.10 Suppose p = cdadaad and consider the following alignments exemplifying

the three di�erent cases of the bad-character heuristic. The arrow points to the bad character.

1.
?

: : : : : :a d c a b a b

c d a d a a d
) : : : : : :a d c a b a b

c d a d a a d

The bad character b at position 7 does not occur in p. Therefore, we can safely shift

the pattern 7 positions to the right.

2.
?

: : : : : :a d c a c a d

c d a d a a d
) : : : : : :a d c a c a d

c d a d a a d

The bad character c at position 5 occurs in the pattern only to the left of the bad

character at position 1. Therefore, we can safely shift the pattern 5� 1 = 4 positions

to the right.

3.
?

: : : : : :a d c a a a d

c d a d a a d
) : : : : : :a d c a a a d

c d a d a a d

The bad character a at position 4 occurs in the pattern to the right of the bad character

at position 6. Therefore, the bad-character heuristic proposes a shift of 4 � 6 = �2
positions.

As can easily be veri�ed, the good-su�x heuristic proposes a shift of 1; 3 and 7 for the three

cases above. Therefore, the Boyer-Moore Algorithm chooses a shift of 7; 4 and 7. 2

The bad-character heuristic uses information about where the bad character occurs in the

pattern (if it occurs at all). This information only depends on the input alphabet and the

pattern. It is represented by a function rmostoccm.

De�nition 4.4.11 For each j; 1 � j � m the function rmostoccj : A! f0; : : : ; jg is de�ned
as follows:

rmostoccj(b) =

(
maxfi j 1 � i � j; pi = bg; if b occurs in p1 : : : pj
0; otherwise

Example 4.4.12 Suppose p = cdadaad and A = fa; b; c; dg. Then rmostoccm(a) = 6,

rmostoccm(b) = 0, rmostoccm(c) = 1, and rmostoccm(d) = 7. 2

Lemma 4.4.13 If badpos(w)� rmostoccm(b) is positive, then it is a valid shift.

Proof Obvious. 2

4.4. THE BOYER-MOORE ALGORITHM 109

The function rmostoccm corresponds to the table delta1 in [BM77]. In particular, we have

rmostoccm(b) = m � delta1(b) for each b 2 A. Note that we have de�ned several instances

of functions containing information of rightmost occurrences. This is because the heuristic

of Horspool (see section 4.4.4) requires information about the rightmost occurrence of an

input character in p1 : : : pm�1. Such information is given by the function rmostoccm�1.

The bad-character heuristic is not applied if a successful match occurs (since then there is

no bad character), or if badpos(w) � rmostoccm(b) � 0. In both situations, a valid shift is

determined solely by the good-su�x heuristic.

An e�cient implementation of the bad-character heuristic requires the input alphabet A to

be known in advance. Then the function rmostoccj can be stored in a table of size jAj. The
standard algorithm constructs rmostoccj in two phases using O(jAj+ j) steps.

Algorithm RMO [BM77] For each character b 2 A set rmostoccj(b) = 0. For i = 1; : : : ; j

set rmostoccj(pi) = i. 2

To obtain rmostoccm, we can also use T = cst(p$) with the annotation minpathlen. This is

reasonable since T is constructed anyway if we use Algorithm GST for computing gsshift .

Algorithm RMOm Set rmostoccm(b) = m+1�juj�min(minpathlen(bu)) for each edge

root bu- bu in T such that b 6= $. Set rmostoccm(b) = 0 for each b 2 A n Ap. 2

The correctness of Algorithm RMOm is obvious. The e�ciency is O(jAj) if we do not count
the preprocessing for cst(p$). In section 4.4.6, we give an implementation of Algorithm RMO

and Algorithm RMOm.

4.4.3 E�ciency of the Search Phase

For a space e�cient implementation of the search phase of the Boyer-Moore Algorithm, the

m-gram of t which is aligned with the pattern, is stored in a bu�er of size O(m). With a

little care the bu�ering operations can be accomplished in O(n) time. Let cc denote the

number of character comparisons performed in the search phase. The running time of the

search phase is O(n+ cc).

The worst case running time occurs for p = am and t = an. Then cc = m � (n � m + 1)

since it takes m character comparisons to verify each of the n�m + 1 matches. Therefore,

in the worst case the Boyer-Moore Algorithm performs as many character comparisons as

the Brute Force Algorithm. In the expected case cc < n (see [BM77]). For this reason,

the Boyer-Moore Algorithm is often termed \sublinear". If we consider the simpli�ed exact

string searching problem (see page 94), then cc 2 O(n) even in the worst case (see [KMP77]).

This occurs for t = an and p = bam�1: The good-su�x heuristic proposes a shift of m for

every alignment of am and p. Hence, there are n=m of these. To verify that am does not

match p, exactly m character comparisons are required.

The heuristics presented in sections 4.4.1 and 4.4.2 are taken from the paper of Boyer and

Moore [BM77]. There are several other heuristics to determine a shift. In the following, we

present two simple ones which lead to a very good performance in the expected case.

110 CHAPTER 4. EXACT STRING SEARCHING

4.4.4 Horspool's Heuristic

Horspool [Hor80] noted that in the normal usage of the Boyer-Moore Algorithm the good-

su�x heuristic does not make much contribution to the overall speed of the search. Its

only purpose is to optimize the handling of highly repetitive patterns. Since these are not

too common, it is not worthwhile to expend the considerable e�ort needed to precompute

the good-su�x heuristic. Based on this argument, Horspool suggested to do without the

good-su�x heuristic.

Let w be the m-gram of t which is aligned with p. To avoid the situation where the bad-

character heuristic proposes a backward shift, Horspool's heuristic determines a shift that

aligns the input character b = wm with its rightmost occurrence in p1 : : : pm�1 (if there is

any). This is illustrated by the following �gure:

wz }| {
: b : : : : : :

: : : : : : b : : : : : : : : : : : :| {z }
p

) : b : : : : : :
: : : : : : b : : : : : : : : : : : :

Lemma 4.4.14 m� rmostoccm�1(wm) is a valid shift.

Proof Obvious. 2

Example 4.4.15 Suppose p = cdadaad and A = fa; b; c; dg. Then rmostoccm�1(a) = 6,

rmostoccm�1(b) = 0, rmostoccm�1(c) = 1, and rmostoccm�1(d) = 4. Consider the following

alignments where the arrow points to the last character in w.

1.
?

: : : : : :a d c a b a b

c d a d a a d
) : : : : : :a d c a b a b

c d a d a a d

We can safely shift p by 7 � rmostoccm�1(b) = 7 � 0 = 7 positions to the right. The

same shift is determined by the Boyer-Moore Algorithm.

2.
?

: : : : : :a d c a c a d

c d a d a a d
) : : : : : :a d c a c a d

c d a d a a d

We can safely shift p by m� rmostoccm�1(d) = 7�4 = 3 positions to the right. In the

same situation, the Boyer-Moore Algorithm shifts the pattern 4 positions to the right.

2

The shift proposed by Horspool's heuristic is never larger than the shift determined in the

Boyer-Moore Algorithm. This result is not surprising. However, to our knowledge it is not

stated elsewhere. Therefore, we give a proof for it:

Lemma 4.4.16 Let w 2 Am. If w = p, then gsshift(w) � m� rmostoccm�1(wm). If w 6= p,

then maxfgsshift(s); badpos(w) � rmostoccm(b)g � m � rmostoccm�1(wm), where s is the

good su�x and b is the bad character of w.

4.4. THE BOYER-MOORE ALGORITHM 111

Proof Let w = p. Then w is the good su�x of w. Since w is not nested, we get

gsshift(w) = m � js0j where s0 is the longest proper su�x of w that is a pre�x of p. If

s0 = ", then gsshift(w) = m � m � rmostoccm�1(wm). If s0 6= ", then wm = pjs0j. Since

rmostoccm�1(wm) � js0j, we get gsshift(w) = m� js0j � m� rmostoccm�1(wm).

Let w 6= p. Suppose s is the good su�x and b is the bad character of w. If s = ", then

wm = b 6= pm. Hence, rmostoccm(b) = rmostoccm�1(wm) < m and therefore

maxfgsshift("); badpos(w)� rmostoccm(b)g = maxf1; m� rmostoccm(b)g
= m� rmostoccm(b)
= m� rmostoccm�1(wm):

Let s 6= " and u be the shortest non-empty string such that p
R
su or p = s0u for a su�x s0

of s (cf. De�nition 4.4.2). Since wm is the last character of s and also of s0 whenever s0 6= ",

we can conclude gsshift(s) = juj � m� rmostoccm�1(wm). 2

Horspool's heuristic leads to an algorithm which does not have to compute the good su�x.

Hence, it can compare the characters of p and w in any order, as speci�ed in Horspool's

paper [Hor80]. Most authors ignore that Horspool's heuristic leads to a free choice for

the comparison order. They give a speci�cation of the algorithm in which characters are

compared from right to left [Aho90, Ste94] like it is necessary in the Boyer-Moore Algorithm.

In fact, Baeza-Yates [BY89c] shows that the running time is independent of the comparison

order. Thus, let the Boyer-Moore-Horspool Algorithm be the variation of the Boyer-Moore

Algorithm that uses Horspool's heuristic and an arbitrary but �xed comparison order.

The Boyer-Moore-Horspool Algorithm only needs the function rmostoccm�1 to be prepro-

cessed. It can be obtained in O(jAj+m) steps by Algorithm RMO. Like for the Boyer-Moore

Algorithm a bu�ering scheme is necessary to store the actual m-gram of t. Therefore, the

running time of the Boyer-Moore-Horspool Algorithm is O(jAj + m + n + cc) where cc is

the number of character comparisons performed. Assume that the comparison order for the

Boyer-Moore-Horspool Algorithm speci�es j as the last index of p and w to perform the

character comparison at. In the worst case, cc 2 O(n � m) (take t = an and p such that

pj = b and pi = a, 1 � i � m, i 6= j). Notice that this is also the worst case if we consider

the simpli�ed exact string searching problem.

According to [BYR92], cc 2 O(n) in the expected case. Thus, one can expect that the

Boyer-Moore Algorithm is faster than the Boyer-Moore-Horspool Algorithm. However, doing

without the good-su�x heuristic, the preprocessing for the Boyer-Moore-Horspool Algorithm

is simpler and faster, although it is still O(jAj + m). In fact, empirical measurements by

Baeza-Yates [BY89c] show that Horspool's variant, with a right to left comparison order,

outperforms the Boyer-Moore Algorithm for almost all pattern lengths and alphabet sizes,

despite the result of Lemma 4.4.16.

Due to the free choice of the comparison order, the Boyer-Moore-Horspool Algorithm can

be combined with any other linear time exact string searching algorithm in order to improve

the average case behavior. Baeza-Yates [BY89a, BY89b], for instance, obtains a hybrid

algorithm that combines the Boyer-Moore-Horspool Algorithm with the Knuth-Morris-Pratt

Algorithm. In practice, the combination is slightly faster than the Boyer-Moore-Horspool

Algorithm for searches in English text.

112 CHAPTER 4. EXACT STRING SEARCHING

4.4.5 Sunday's Heuristic

The heuristics applied in the Boyer-Moore Algorithm as well as Horspool's heuristic always

shift the pattern between 1 and m positions to the right. Hence, the new input character b

immediately to the right of w is a part of the next m-gram, p will be aligned with. Based

on this observation, Sunday [Sun90] suggested to shift the pattern to the right such that b

is aligned with its rightmost occurrence in p. If b does not occur in p, then p can safely be

shifted m+ 1 positions to the right. The following picture illustrates Sunday's heuristic.

wz }| {
: b : : : : : :

: : : : : : b : : : : : : : : : : : :| {z }
p

) : b : : : : : :
: : : : : : b : : : : : : : : : : : :

Lemma 4.4.17 If w ends at position j < n in t, then 1 +m � rmostoccm(tj+1) is a valid

shift.

Proof Obvious. 2

Example 4.4.18 Let p = cdadaad. Consider the following alignments where the arrow

points to the input character that determines the shift.

1.
?

: : : : : :a d c a b a b d

c d a d a a d
) : : : : : :a d c a b a b d

c d a d a a d

We can safely shift p by 1+m� rmostoccm(d) = 1+m�m = 1 position to the right.

Notice that Horspool's heuristic determines a shift of 7 in the same situation.

2.
?

: : : : : :a d c a c a d b

c d a d a a d
) : : : : : :a d c a c a d b

c d a d a a d

We can safely shift p by 1 +m� rmostoccm(b) = 1 + 7� 0 = 8 positions to the right.

In the same situation, Horspool's heuristic proposes a shift of 3. 2

This example shows that neither Sunday's nor Horspool's heuristic should always be pre-

ferred. Consequently, Smith [Smi91] suggested to combine both heuristics, by taking the

maximum of the shifts proposed by the di�erent heuristics. We conjecture that this only

leads to a small improvement of the running time.

Sundays heuristic leads to a string searching algorithm that is similar to the Boyer-Moore-

Horspool Algorithm. Therefore, the remarks on the e�ciency of the Boyer-Moore-Horspool

Algorithm (see section 4.4.4) hold for this new algorithm as well.

Sunday [Sun90] describes three di�erent string searching algorithms, all of which use his

heuristic, but di�er in the way the symbol comparisons are performed. The simplest of the

three is the Quick Search Algorithm, which performs the character comparisons from left to

right. The other two methods try to precompute an optimal comparison order which must

4.4. THE BOYER-MOORE ALGORITHM 113

be represented by an additional data structure. The Maximal Shift Algorithm chooses a

comparison order such that in case of a mismatch, the distance to the next possible pattern

position is maximized. This is done by sorting the pattern characters in descending order

of their distance to their next leftward occurrence in the pattern, or, if there is none, to the

position where the pattern begins.

In the Optimal Mismatch Algorithm, the probability of an early detection of a mismatch is

maximized by comparing rarer symbols �rst. This requires the pattern symbols to be sorted

in descending order of their frequency of occurrence in the input string. Hence, knowledge

about the character distribution in the input string is needed in advance. Smith [Smi91] has

developed an adaptive version of the Optimal Mismatch Algorithm with the advantage that

it does not require such knowledge. Improvements involving character distributions were

also suggested by Baeza-Yates [BY89b, BY89a] to be used in the Boyer-Moore-Horspool

Algorithm. They can obviously be applied to the Brute Force Algorithm as well.

Based on empirical data, Sunday found the Optimal Mismatch Algorithm to be the fastest of

his methods, and reported all three to be superior in average case performance to the Boyer-

Moore Algorithm. A speed advantage of 10-20 percent is, for instance, reported for the

Optimal Mismatch Algorithm. The speed di�erentials, however, decrease with an increase

in the pattern length [Ste94].

Sunday's algorithms have also been empirically compared to a simpli�ed Boyer-Moore variant

by Pirklbauer [Pir92]. In this study, it was found that for long strings and for the case

where preprocessing time was taken into account, the Maximal Shift and Optimal Mismatch

Algorithm behaved rather badly. Their preprocessing overheads were found to be signi�cant,

especially when searching only for the �rst occurrence of the pattern. The Quick Search

Algorithm was recommended because of its ease of implementation and of its performance

which was similar to that of the Boyer-Moore Algorithm. Unfortunately, neither Sunday

nor Pirklbauer considered the Boyer-Moore-Horspool Algorithm. We conjecture, that the

latter performs similar to the Quick Search Algorithm, due to the strong resemblance of

both algorithms.

Before we consider implementation issues, we brie
y outline some ideas for improving the

algorithms considered in this section. For the algorithms of Boyer-Moore type, the average

shift value grows with larger input alphabets. Improved performance can therefore be ob-

tained by increasing the size of the input alphabet. This technique has been considered in

[KMP77] and in [Sch88]. Baeza-Yates [BY89b] proposed a simple alphabet transformation

which leads to a practical implementation of a Boyer-Moore-Horspool variant. Essentially

this involves grouping k symbols of the pattern as a \supersymbol". This increases the size

of the input alphabet to jAjk and has been shown to be practical if A is small.

The Boyer-Moore Algorithm veri�es a match or a mismatch between the actual m-gram of

t and p, without memorizing any information about previous character comparisons. For

instance, if a mismatch between wm�1 and pm�1 occurs, and if the Boyer-Moore Algorithm

shifts p one position to the right, then the information that wm = pm is completely lost.

Knuth [KMP77] recognized this fact. He suggested a variation of the Boyer-Moore Algorithm

which uses a deterministic �nite automaton. Each state of this automaton carries partial

information about the characters of the actual m-gram of t that match the corresponding

characters of p. Unfortunately, the number of states can be 2m in the worst case. Recently,

Baeza-Yates et al. [BYCG94] have formalized Knuth's idea. Several improvements for both

114 CHAPTER 4. EXACT STRING SEARCHING

the average and the worst case behavior of so-called Boyer-Moore automata are proposed.

In particular, it is shown that for a certain class of patterns the Boyer-Moore automata have

O(m3) states if A is the binary alphabet.

Crochemore et al. [CCG+94] presented an improved Boyer-Moore Algorithm, called Tur-

boBM. If one considers the simpli�ed string searching problem, then TurboBM performs

at most 2 � n character comparisons. Note that the upper bound for the Boyer-Moore Al-

gorithm is 3 � n, as shown in [Col90]. The idea of TurboBM is to memorize the previous

good su�x when comparing the actual m-gram of t with p. On the one hand, this often

allows to skip several character comparisons. On the other hand, it often allows to compute

a shift value which is larger than the shift value proposed by the good-su�x and the bad-

character heuristic. Besides TurboBM, Crochemore et al. [CCG+94] also devised variations

of the Boyer-Moore Algorithm, called reverse factor algorithms. These algorithms scan the

m-gram w of t from right to left, as long as the scanned su�x of w is a subword of p.

Determining the shift value from this su�x, (usually) leads to a larger shift value and an

improved average case performance. In particular, if jAj � 2, then the average number of

character comparisons is O(n � (logjAjm)=m).

4.4.6 Implementation

The Preprocessing

Let T = cst(p$). For each node v in T , the annotations ispre�x (v) and minpathlen(v)

are represented by a pair consisting of a boolean value and an ordered list of at most two

elements. Let v be an inner node in T such that es represents the edges outgoing from

v. The expression (gettwomin es) returns twomin(v) in time proportional to the length

of es. This is accomplished as follows. For each edge v u- vu outgoing from v the list

[l + i j i minpathlen(vu)], where l = juj is computed. The resulting lists are ordered and

merging them gives an ordered list, of which the �rst two elements are taken.

gettwomin::[cedge � (�,[num])]![num]

gettwomin = take 2.foldl merge [].map collect

where collect ((u,l),N es link (b,minpathlen')) = [l+i | i minpathlen']

The function ispre�xminpathlen computes the annotations ispre�x and minpathlen as de-

scribed in section 4.4.1. This takes O(m) steps for all nodes of T .

isprefixminpathlen::num!annotationfunction � (bool,[num])

isprefixminpathlen m d es

= (m+1 = d,[0]), if es = []

= ([0 | (s,N es link (True,minpathlen)) es] ~= [],gettwomin es), otherwise

The list gsshift list = [gsshift(p1 : : : pm); gsshift(p2 : : : pm); : : : ; gsshift(pm); gsshift(")] repre-

sents gsshift . It is computed in two phases by the function gst which implements Algorithm

GST.

gst::(string �,num)!(ctree � (bool,[num]))![num]

gst p root = collectshifts 0 (suffixlocs (:[]) (getloc root p))

4.4. THE BOYER-MOORE ALGORITHM 115

The second argument of gst is the root of cst(p$). gst computes the locations of all su�xes

of p. This is accomplished in O(jApj �m) steps by applying the function (su�xlocs (: []))

(see section 3.4.6) to locT (p). Then gst calls the function collectshifts to obtain the shifts.

collectshifts::num![location � (bool,[num])]![num]

collectshifts nonnested (LocE node v w node':slocs)

= collectshifts (nonnested+1) slocs

collectshifts nonnested slocs

= take nonnested (repeat i) ++ [j-1 | LocN (N es link (isprefix,[i,j])) slocs]

where i = hd [i | (i,LocN (N es link (True,mpl))) zip2 [nonnested..] slocs]

collectshifts has two arguments: The number nonnested of previous non-nested su�xes of

p, and a list of locations for the remaining su�xes. If an edge location is encountered,

then nonnested is incremented. If a node location is encountered, then we have reached the

location of �(p) and collectshifts computes a value i = m � js0j = nonnested + j�(p)j � js0j
where s0 is the longest su�x of �(p) that is a pre�x of p. Obviously, gsshift(s) = i for each

non-nested su�x s of p. Hence, the �rst part of gsshift list is returned by the expression

(take nonnested (repeat i)) The implementation of the second phase, which yields the list of

gsshift-values for the nested su�xes of p, is straightforward. The remaining list slocs of node

locations is scanned. At each node s a list [i; j] is found which represents minpathlen(s).

Obviously, j � 1 is the correct value of gsshift(s). The running time for gst is O(jApj �m).

We assume that the input alphabet A is given as a pair (characters; encode) of type

(alphabet �). The function rmostoccm is represented by an array rmoarraym of size jAj
such that (lookup (encode b) rmoarraym = rmostoccm(b)) for each b 2 A. The func-

tion makermoarraym implements Algorithm RMOm to return rmoarraym. Note that it

requires extension 1.

makermoarraym::[�]!�!(string �,num)!(ctree � (bool,[num]))!array num

makermoarraym characters sentinel (p,m) root

= makearray l (mergealpha characters occ)

where l = #characters

occ = [(c,m+1-j-hd (snd (seltag node))) |

((c:u,j+1),node) seledges root; sentinel ~= c]

The fourth argument of makermoarraym is the root of T . The entries for the characters

occurring in p are obtained from the minpathlen-annotation of the nodes immediately below

the root (see Algorithm RMOm). This yields a list occ in O(jApj) steps. Using a function

mergealpha, the list occ is merged with the zero-values for the characters of A not occurring

in p. The resulting list is transformed into an array. Thus, makermoarraym takes O(jAj)
time and space to return rmoarraym.

mergealpha::[�]![(�,num)]![num]

mergealpha (a:as) ((c,j):cjs) = 0:mergealpha as ((c,j):cjs), if a < c

= j:mergealpha (a:as) cjs, if c < a

= j:mergealpha as cjs, otherwise

mergealpha as [] = [0 | a as]

mergealpha [] cjs = map snd cjs

116 CHAPTER 4. EXACT STRING SEARCHING

For the algorithms using Horspool's or Sunday's heuristic we implement a function make-

rmoarray which computes for each j; 1 � j � m an array rmoarray such that for each b 2 A
we have (lookup (encode b) rmoarray = rmostoccj(b)).

makermoarray::(alphabet �)!num!(string �)!array num

makermoarray (characters,encode) j p

= foldl update' (makearray l (take l (repeat 0))) (zip2 (map encode p) [1..j])

where l = #characters

update' array (codea,i) = update codea i array

makermoarray implements Algorithm RMO. This requires extension 2. Due to the simplic-

ity of Algorithm RMO, our implementation does without the monad of array transformers

(see section 2.3.2). The �rst phase of Algorithm RMO is accomplished by creating an ar-

ray of size l = jAj. Each of the l entries of the array is initialized with 0. Then the list

[(encode(p1); 1); : : : ; (encode(pj); j)] is generated. Using the function foldl, it is scanned from

left to right. For each list element (codea; i) the function update0 is called which updates

the actual array with value i at index codea. Note that foldl forces update0 to evaluate its

�rst argument. Moreover, there is no call to the function lookup which can duplicate the

array. Hence, the array is single threaded and it is save to implement the array updates by

overwriting. The running time of makermoarray is O(jAj+ j).

The Boyer-Moore Algorithm

Every step of the Boyer-Moore Algorithm is characterized by a su�x wy of t such that w

is aligned with p. To determine the valid shift, the good su�x s of w must be computed

in O(jsj) steps. This is usually accomplished by representing w and p as arrays which are

compared from right to left. Equivalently, one can compare w�1 and p�1 from left to right.

So do we.

De�nition 4.4.19 A su�x wy of t such that jwj � m is represented by a pair (x; y) of

strings where x = w�1. x is the bu�er for t. 2

Note that such a pair (x; y) takes O(m) space since jxj � m and y is a lazy list which requires

constant space.

Let 1 � i � m. Shifting the pattern i positions to the right means to move the �rst i charac-

ters from the remaining su�x to the front of the bu�er and to forget the last i characters of the

bu�er. In other words, a pair (x; y) is transformed into (yiyi�1 : : : y1x1 : : : xm�i; yi+1yi+2 : : :).

This is accomplished by the function rightshift.

rightshift::num!num!(string �)!(string �)!(string �,string �)

rightshift m i x y = move i (take (m-i) x) y

move::num!(string �)!(string �)!(string �,string �)

move (i+1) x (b:y) = move i (b:x) y

move i x y = (x,y)

4.4. THE BOYER-MOORE ALGORITHM 117

The function exsBM implements the Boyer-Moore Algorithm.

exsBM::(alphabet �)!�!(string �)!(string �)![num]

exsBM (characters,encode) sentinel p t

= [j | (j,True) bmsearch m (reverse (take m t),drop m t)]

where m = #p

root = cst (p++[sentinel],m+1) (isprefixminpathlen m)

rmoarraym = makermoarraym characters sentinel (p,m) root

gsshiftlist = reverse (gst (p,m) root)

p' = reverse p

bmsearch j (x,[]) = [(j,p' = x)]

bmsearch j (x,y)

= (j,match):bmsearch (j+shift) (rightshift m shift x y)

where (match,shift) = bmcmp p' [m,m-1..] gsshiftlist x

bmcmp (a:u) (i:is) (goodsuffixshift:gssl) (b:v)

= bmcmp u is gssl v, if a = b

= (False,max2 goodsuffixshift badcharactershift), otherwise

where badcharactershift = i-lookup (encode b) rmoarraym

bmcmp u is [goodsuffixshift] v = (True,goodsuffixshift)

exsBM �rst computes cst(p$) with the annotations ispre�x and minpathlen. Then it con-

structs the array rmoarraym and the list gsshift list in reverse order, using the preprocessing

functions makermoarraym and gst. Thus, exsBM requires extension 1. The search pro-

cess is accomplished by a function bmsearch which is called with some arguments j and

(x; y) = (w�1; tj+1 : : : tn) where w = tj�m+1 : : : tj. Initially, j = m. bmsearch returns a list

of pairs (j;match) such that match is true if and only if p ends at position j in t. The

comparison of p0 = p�1 and x = w�1 is accomplished by a function bmcmp. Suppose the

arguments of bmcmp are of the form

(a : u) (i : is) (goodsu�xshift : gssl) (b : v)

Then a = pi, b = wi and goodsu�xshift = gsshift(wi+1 : : : wm). If a = b, then bmcmp

proceeds by comparing u = pi�1 : : : p1 and v = wi�1 : : : w1 from left to right. If a 6= b, then a

mismatch is detected. Moreover, b is the bad character of w, i = badpos(w), and wi+1 : : : wm

is the good su�x of w. Therefore, by Lemma 4.4.13 and Lemma 4.4.3, the maximum of

goodsu�xshift and i� rmostoccm(b) is a valid shift.

Suppose the arguments of bmcmp are of the form

u is [goodsu�xshift] v

Then u = ", v = ", and p = w. Hence, p is the good su�x of w and goodsu�xshift =

gsshift(p). A match is reported and the shift is determined solely by the good-su�x heuristic.

The preprocessing phase in exsBM requires O(jApj �m+ jAj) time. Now consider the search

phase. There are O(n) calls to the function move, each of which moves a di�erent input

character to the bu�er for t. Due to the laziness, the expression (take (m � i) x) in the

function rightshift is evaluated only if a character comparison occurs. Hence, the total

running time of the function take is O(cc) where cc is the number of character comparisons

performed. Moreover, there are O(cc) calls to the function bmcmp, each of which takes

constant time. Thus, we can conclude that the total running time of bmsearch is O(n+ cc).
Hence, our implementation is optimal.

118 CHAPTER 4. EXACT STRING SEARCHING

The Boyer-Moore-Horspool Algorithm

The function exsBMH implements the Boyer-Moore-Horspool Algorithm. It compares the

characters of the pattern and the input string from right to left.

exsBMH::(alphabet �)!(string �)!(string �)![num]

exsBMH (characters,encode) p t

= [j | (j,True) bmh m (reverse (take m t),drop m t)]

where m = #p

rmoarray = makermoarray (characters,encode) (m-1) p

p' = reverse p

bmh j (x,[]) = [(j,p' = x)]

bmh j (x,y) = (j,p' = x):bmh (j+shift) (rightshift m shift x y)

where shift = m-lookup (encode (hd x)) rmoarray

The preprocessing is accomplished by the function makermoarray. Hence, exsBMH requires

extension 2. For the search phase we use a function bmh which returns a list of pairs

(j;match) such that match is true if and only if p ends in t at position j. As in exsBM, we

represent a su�x wy of t by the pair (x; y), where x = w�1 (see De�nition 4.4.19). This

implies that wm = hd x. A valid shift is computed in constant time according to Lemma

4.4.14. To check if w and p match, we compare p�1 and x using the built-in predicate \=".

Note that \=" compares the characters of the strings from left to right. If a mismatch is

found, the comparison is stopped. The preprocessing takes O(jAj+m) time. Let cc be the

number of character comparisons performed. Similar to bmsearch one shows that bmh has

a running time of O(n+ cc). Hence, our implementation is optimal.

An Algorithm with Sunday's Heuristic

The function exsBMS implements an exact string searching algorithm that uses Sunday's

heuristic. The algorithm is like the Quick Search Algorithm, except that it compares the

characters of p and t from right to left.

exsBMS::(alphabet �)!(string �)!(string �)![num]

exsBMS (characters,encode) p t

= [j | (j,True) bms m (reverse (take m t),drop m t)]

where m = #p

rmoarray = makermoarray (characters,encode) m p

p' = reverse p

bms j (x,[]) = [(j,p' = x)]

bms j (x,b:y) = (j,p' = x):bms (j+shift) newpair

where shift = 1+m-lookup (encode b) rmoarray

newpair = (reverse (take m y),drop m y), if 1+m = shift

= rightshift m shift x (b:y), otherwise

exsBMS is very similar to exsBMH. The main di�erence is that in exsBMS a shift is deter-

mined from the character tj+1 (see Lemma 4.4.17) which can easily be accessed since it is

the �rst character b of the remaining su�x (b : y) of the input string. Note that if the shift

4.5. THE CHANG-LAWLER ALGORITHM 119

Figure 4.3: The Idea of Algorithm ECL

z }| {
| {z }| {z }

x y

p

wi wi+1

is m+1, we do not apply the function rightshift to x and (b : y) since this would move m+1

characters from (b : y) into the bu�er. Instead, we take the pre�x of y of length m, reverse

it and copy it into the bu�er. Moreover, instead of dropping the �rst m + 1 characters of

(b : y) we drop the �rst m characters of y to obtain the new remaining su�x of t.

The preprocessing in exsBMS takes O(jAj+m) time and requires extension 2. The search

phase which is accomplished by the function bms, takes O(n + cc) time, where cc is the

number of character comparisons performed. Hence, our implementation is optimal.

4.5 The Chang-Lawler Algorithm

An algorithm of Chang and Lawler [CL90] solves the exact string searching problem by

traversing the compact su�x tree of p$. On the one hand, the algorithm avoids repeating

certain successful character comparisons, similar to the Knuth-Morris-Pratt Algorithm. On

the other hand, the algorithm skips over parts of the input string, similar to the Boyer-

Moore Algorithm, but without knowing the input alphabet in advance. Thus, the algorithm

of Chang and Lawler combines the virtues of two classical algorithms. In particular, it

achieves a worst case running time of O(jApj � (m + n)) and performs less than n character

comparisons in the expected case.

The algorithm of Chang and Lawler is widely unknown. We do not know any reference to

it, except for a short remark in [CL90]. Even the successor paper [CL94] did not mention

the algorithm. Since we think that it is very interesting, we take some time to give the

details omitted in [CL90]. Moreover, we describe a variant of the algorithm, suggested by

Robert Giegerich [Gie94b]. The idea of Chang and Lawler is to divide the input string into

non-overlapping subwords w1; w2, and so on, of length m. It is evident that an exact match

of p splits into a pre�x x and a su�x y such that x is a su�x of wi and y is a pre�x of wi+1

for some i � 0. This is illustrated in Figure 4.3.

Algorithm ECL [CL90] Let t = w0 : : : wk such that jwij = m for 0 � i � k � 1 and

jwkj < m. For each i; 0 � i � k � 1 compute

Xi = fm� jxj j x 2 A+; wi

R
x; x < pg and

Yi = fjyj j y < wi+1; p
R
y; jyj < mg:

For each r 2 Xi \ Yi output (i+ 1) �m+ r. 2

Note that if n is a multiple of m then wk = ". This additional empty string at the end

ensures that for each occurrence of p there is a uniquely determined pair (wi; wi+1) such that

p is a subword of wiwi+1 but not of wi+1.

120 CHAPTER 4. EXACT STRING SEARCHING

Figure 4.4: cst(caacc$) with Annotations ispre�x and issu�x

bXXXXXXXXXXXXz

������������9

(T;T)

$

b
(F;F)

c

b
HHHHHHj

�������

(T;T)

$

b
(F;F)

c$

b
(F;F)

b

?
a
b

@
@
@R

�
�

�	

(F;F)

acc$

b
(F;F)

cc$

b
(F;F)

b

?

aacc$

b
(T;F)

Theorem 4.5.1 Algorithm ECL correctly solves the exact string searching problem.

Proof Let p = tj�m+1 : : : tj for some j;m � j � n. Then there is an i; 0 � i � k � 1 such

that p is a subword of wiwi+1 but not of wi+1. Let q = (i + 1) �m, x = tj�m+1 : : : tq, and

y = tq+1 : : : tj. x is a non-empty su�x of wi and y is a pre�x of wi+1 of length < m. Since

xy = p, x is a pre�x and y is a su�x of p. Hence, m � jxj 2 Xi and jyj 2 Yi. Obviously,

m� jxj = jyj. Thus, jyj 2 Xi \ Yi and the match ending at j = q + jyj will be detected. 2

Let T = cst(p$). To enumerate the sets Xi and Yi e�ciently, Chang and Lawler suggest

to use boolean annotations ispre�x (see De�nition 4.4.5) and issu�x of T . These allow to

decide in constant time for each location locT (v) in T whether v is a pre�x or a su�x of p.

De�nition 4.5.2 The boolean annotation issu�x of T is de�ned as follows: issu�x (v) is

true if and only if v is a su�x of p. 2

Example 4.5.3 The compact su�x tree for caacc$ with the annotations ispre�x and

issu�x is shown in Figure 4.4. 2

The annotation ispre�x can be computed in O(m) time (see section 4.4.1). This also holds

for the annotation issu�x , since for each node v in T we have: issu�x (v) is true if and

only if there is a leaf v$ in T . Altogether, T including the annotations can be computed in

O(jApj �m) time.

Chang and Lawler do not describe how to compute Yi and Xi using the two annotations.

We will do this in the following. Yi is not empty since " is a pre�x of wi+1 and a su�x of p

of length < m. The elements of Yi are enumerated in ascending order by following the path

for wi+1 down from the root of T . Let u be the longest pre�x of wi+1 that occurs in T . Note

that juj � max(Yi) since all pre�xes of wi+1 longer than u are not subwords and hence not

su�xes of p. Thus, we can stop the enumeration of Yi once we have reached the location of

u in T . In other words, we can skip parts of the input string, similar to the Boyer-Moore

Algorithm. Altogether, Yi can be enumerated in O(jApj � juj) time.

The elements of Xi can be enumerated in ascending order by following the path for wi

down from the root of T , traversing a su�x link, if we cannot go further down. After wi

has been completely scanned, we have computed the location of the longest su�x v of wi

that is a subword of p. Using su�x links, we obviate to traverse T from the root anew for

each su�x of wi that is longer than v. This is a technique known from the Knuth-Morris-

Pratt Algorithm. It avoids repeating comparisons between the pattern characters and the

4.5. THE CHANG-LAWLER ALGORITHM 121

matching input characters in wi. All su�xes of wi longer than v are not subwords and hence

not pre�xes of p. For all non-empty su�xes s of v, we compute the location of s in T using

the function linkloc. For each location, we check in constant time if it corresponds to a

pre�x of p. Note that r 2 Xi \ Yi implies r � max(Yi). Hence, to construct the intersection

of Xi and Yi, it su�ces to enumerate the elements of Xi which are � max(Yi). Using the

technique described above, this requires O(jApj � juj) time. Since Yi and Xi are enumerated

in ascending order, their intersection can be computed in O(max(Yi)) = O(juj) time.

Like the algorithms of Boyer-Moore type, the algorithm of Chang and Lawler requires a

bu�er of size O(m) to store the actual pair (wi; wi+1). With a little care the bu�ering

operations can be accomplished in O(n) time. The running time including preprocessing

is O(jApj � m + n + jApj � l � (n=m)) where l is the average length of the longest pre�x of

wi, 1 � i � k, that is a subword of p. In the worst case, l = m. For the expected case

Chang and Lawler [CL90] show l = logjAjm. Thus, if one compares Algorithm ECL with the

Knuth-Morris-Pratt Algorithm (in the worst case) and with the Boyer-Moore Algorithm (in

the expected case), one notices an additional alphabet factor jApj in both cases. However,

if we store the edges of T in a hash table, we can get rid of this factor.

Note that, unlike the Boyer-Moore Algorithm, the Chang-Lawler Algorithm does not have

to know the input alphabet in advance. Consequently, the term jAj does not appear in

O(jApj �m + n + jApj � l � (n=m)). A very interesting property of Algorithm ECL is that it

can be parallelized since all pairs (wi; wi+1) can be searched independently.

Recently, Robert Giegerich [Gie94b] suggested to compute the set Xi using T
0 = cst(p�1$).

Let us call this variation Algorithm ECL0. First note that x is a su�x of wi and a pre�x

of p if and only if x�1 is a pre�x of w�1
i and a su�x of p�1. Hence, we can construct Xi

similar as Yi. The elements of Xi are enumerated in descending order by following the path

for w�1
i down from the root of T 0. Let u0 be the longest pre�x of w�1

i that is a subword

of p�1. The enumeration can be stopped once the location of u0 in T 0 is reached. Thus,

Xi is enumerated in O(jApj � ju0j) steps. Let l0 be the average length of the longest pre�x

of w�1
i , 0 � i � k � 1, that is a subword of p�1. The running time of Algorithm ECL0 is

O(jApj �m + n + jApj � (l + l0) � (n=m)). Since l0 2 O(l), this is the same as for Algorithm

ECL. Algorithm ECL0 is slightly simpler than Algorithm ECL. It does without su�x links

and the annotation ispre�x . Moreover, it constructs Xi and Yi in virtually the same way.

However, it requires to additionally construct T 0.

4.5.1 Implementation

Let T = cst(p$). For each node in T we represent the annotations depth, ispre�x , and issu�x

by a triple of type (num; bool; bool) which is computed by the function depthispre�xissu�x

as described in sections 3.7.3, 4.4.6, and 4.5. This takes O(m) steps altogether.

depthisprefixissuffix::num!annotationfunction � (num,bool,bool)

depthisprefixissuffix m d es

= (d,m+1=d,False), if es = []

= (d,isp,iss), otherwise

where isp = [0 | (s,N es' link' (d',True,iss')) es] ~= []

iss = [0 | ((s,1),N [] link' tag') es] ~= []

122 CHAPTER 4. EXACT STRING SEARCHING

Let loc be a location in T . (locdepth loc) returns the depth of loc. If loc is a node, then jlocj =
depth(loc). If loc is an edge location of the form (u; v; w; uvw), then jlocj = depth(u) + jvj.

locdepth::(location � (num,�,
))!num

locdepth (LocN (N es link (h,isp,iss))) = h

locdepth (LocE (N es link (h,isp,iss)) (v,j) w node') = h+j

Let loc = locT (s) for some s 2 words(T). (locispre�x loc) is true if and only if s is a pre�x

of p. The latter holds if ispre�x (ceiling(loc)) is true. (locissu�x loc) is true if and only if s

is a su�x of p. In particular, if loc is a node, then s is a su�x of p if and only if issu�x (loc)

is true. If loc is an edge location (u; v; w; uvw), then s is a su�x of p if and only if jwj = 1

and uvw is a leaf.

locisprefix::(location � (�,bool,
))!bool

locisprefix = second.seltag.ceiling

locissuffix::(location � (�,
,bool))!bool

locissuffix (LocN (N es link (h,isp,iss))) = iss

locissuffix (LocE node v (w,i) node') = i=1 & isleaf node'

Note that each of the functions locdepth, locispre�x , and locissu�x takes constant time.

Consider the items wi, wi+1, Xi, and Yi as determined in Algorithm ECL. For abbreviation

we let w = wi, w
0 = wi+1, X = Xi, and Y = Yi. We represent the sets X and Y by the lists

inX = [inX0; : : : ; inXm�1] and inY = [inY0; : : : ; inYmax(Yi)] of booleans such that inXr is true

if and only if r 2 X and inYr is true if and only if r 2 Y . This representation considerably

simpli�es and speeds up the construction of the intersection of X and Y .

Let loceps = locT ("). The expression (enumY loceps w0) enumerates the list inY in time

O(jApj � juj), where u is the longest pre�x of w0 that is a subword of p. Recall that juj �
max(Y). At �rst, enumY calls the function scanpre�x 0 to compute loc = locT (u) and the

list vnodes of nodes visited while traversing T from the root to loc. Then the ordered list

listY = [r j r 2 Y] is computed. For each node v in vnodes, jvj occurs in listY if and only

if issu�x (v) is true. If u is a su�x of p, then (locissu�x loc) evaluates to true and the last

element of the list listY is juj = jlocj. Finally, enumY transforms listY into inY using the

function num2bool.

enumY::(location � (num,�,bool))!(string �)![bool]

enumY loceps w' = num2bool 0 listY

where (vnodes,loc,s) = scanprefix' loceps w'

listY = [d | N es link (d,isp,True) vnodes] ++

[locdepth loc | locissuffix loc]

num2bool::num![num]![bool]

num2bool r (d:ds) = True:num2bool (r+1) ds, if r=d

= False:num2bool (r+1) (d:ds), otherwise

num2bool r [] = []

4.5. THE CHANG-LAWLER ALGORITHM 123

The list inX is computed by the function enumX inO(jApj) time per element on the average.

enumX calls a function enumX 0 with two arguments loc = locT (z) and s. zs is a su�x of

w and z is the longest pre�x of zs that is a subword of p. Let r = m�jzsj. enumX 0 returns

the list [inXr; : : : ; inXm�1]. If s 6= ", then zs is not a subword and hence not a pre�x of p.

Therefore, r =2 X, that is, inXr is false. If s = ", then z is a subword of p. In this case,

enumX 0 calls the function (su�x locs (const [])) to obtain the list slocs = [locr; : : : ; locm�1]

of locations of the non-empty su�xes of z. Obviously, inXq = locispre�x (locq) for each

q; r � q � m� 1. Hence, (map locispre�x slocs) returns the correct result.

enumX::(location � (�,bool,
))!(string �)![bool]

enumX loceps w = enumX' (scanprefix loceps w)

enumX'::(location � (�,bool,
),string �)![bool]

enumX' (loc,s) = map locisprefix (suffixlocs (const []) loc), if s = []

= False:enumX' (scanprefix loc (drop 1 s)), if rootloc loc

= False:enumX' (scanprefix (linkloc loc) s), otherwise

Example 4.5.4 Let p = caacc and t = abcbcbcaaccaaccbcb. Algorithm ECL splits t into the

sequence (w0; w1; w2; w3) = (abcbc; bcaac; caacc; bcb) of subwords. The following table shows

inY and the evaluated part of inX for the di�erent pairs of consecutive subwords (w;w0).

(w;w0) = (abcbc; bcaac) (bcaac; caacc) (caacc; bcb)

inY= [True] [True; T rue] [True]

inX = [False; : : :] [False; T rue; : : :] [True; : : :]

Hence, there are two occurrences of p in t. One ends at position (1 + 1) �m + 1 = 11 and

one ends at position (2 + 1) �m + 0 = 15. 2

Let q = (i + 1) �m. The expression (intersect loceps q w w0) returns the list of positions

j such that j = q + r for some r 2 X \ Y . At �rst the lists inX and inY are computed

using the functions enumX and enumY considerably. Then the three lists [q; q+1 : : :], inY ,

and inX are zipped. The resulting list contains a triple (q + r;True;True) if and only if

r 2 X \ Y . Note that in the implementation of enumX we did not have to take care about

the fact that only the �rst max(Y) + 1 elements of the list inX are evaluated. It is simply

the laziness that guarantees this (see also Example 4.5.4). The running time of intersect is

O(jApj � juj) where u is the longest pre�x of w0 that is a subword of p.

intersect::location � (num,bool,bool)!num!(string �)!(string �)![num]

intersect loceps q w w'

= [j | (j,True,True) zip3 [q..] (enumY loceps w') (enumX loceps w)]

The function enumwpairs enumerates the list of pairs ((i+1) �m; (wi; wi+1)), 0 � i � k� 1.
The main work is done by a function divide which is called with some arguments w = wi

and s = wi+1 : : : wk to return the list [wi; : : : ; wk]. Note that if s = " and jwij = m, then

i = k � 1 and wk = " is the last element in this list (cf. Algorithm ECL). The running time

of enumwpairs is O(n). Due to the laziness, there are only two consecutive words wi and

wi+1 to be stored at the same time. Hence, the space consumption is O(m).

124 CHAPTER 4. EXACT STRING SEARCHING

enumwpairs::num!(string �)![(num,(string �,string �))]

enumwpairs m t = zip2 [m,2 * m..] (zip2 wlist (drop 1 wlist))

where wlist = divide (take m t) (drop m t)

divide w [] = [w,[]], if m = #w

= [w], otherwise

divide w s = w:divide (take m s) (drop m s)

The function exsCL implements Chang and Lawler's exact string searching algorithm.

exsCL::�!(string �)!(string �)![num]

exsCL sentinel p t

= [j | (q,(w,w')) enumwpairs m t; j intersect loceps q w w']

where m = #p

loceps = LocN (cst (p++[sentinel],m+1) (depthisprefixissuffix m))

Initially, the compact su�x tree of p$ with the three annotations is computed. For each

pair (q; (w;w0)) returned by (enumwpairs m t) the function intersect is called to obtain

the solutions to the exact string searching problem. The overall running time of exsCL is

O(jApj �m+n+ jApj � l � (n=m)), where l is as in section 4.5. The space requirement is O(m).

Hence, our implementation is optimal.

For Algorithm ECL0 we implement a variation of the function intersect.

intersect'::num!(location � (num,�,bool))!

(location � (num,�,bool))!num!(string �)!(string �)![num]

intersect' m loceps loceps' q w w'

= [j | (j,True,True) zip3 [q+minx..] inX (drop minx (enumY loceps w'))]

where inX = (reverse.drop 1.enumY loceps'.reverse) w

minx = m-#inX

intersect0 is supplied with an additional argument loceps0 = locT 0(") where T
0 = cst(p�1$).

Let minx = min(X). The set X is represented by the list inX = [inXminx; : : : ; inXm�1] such

that inXr is true if and only if r 2 X. Note that minx = m � jinXj. inX is computed

in four phases. At �rst w is reversed. Then the list [True; inXm�1; inXm�2; : : : ; inXminx] is

enumerated, using the function enumY and the tree T 0. The �rst element of this list is

dropped and the remaining list is reversed. This gives list inX. Note that r 2 X \Y implies

r � min(X). Thus, to determine the intersection of X and Y , it su�ces to compute the

elements of Y that are � min(X). This is accomplished by dropping the �rst minx elements

of the list inY which is constructed by applying enumY to loceps0 and w0.

The function exsCL0 is an optimal implementation of algorithm ECL0.

exsCL'::�!(string �)!(string �)![num]

exsCL' sentinel p t

= [j | (q,(w,w')) enumwpairs m t; j intersect' m loceps loceps' q w w']

where m = #p

p' = reverse p

loceps = LocN (cst (p++[sentinel],m+1) (depthisprefixissuffix m))

loceps' = LocN (cst (p'++[sentinel],m+1) (depthisprefixissuffix m))

4.6. OVERVIEW OF THE IMPLEMENTATIONS 125

4.6 Overview of the Implementations

In this chapter, we presented the most important algorithms for solving the exact string

searching problem. We implemented most of the algorithms. Figure 4.5 gives an overview of

the programs. All functional implementations are optimal. That is, they achieve the same

asymptotic e�ciency as their imperative counterparts. Input strings are scanned online from

left to right. At each time the access to t is restricted to a small sliding window of size O(m).

A remarkable virtue of our functional implementations is that, except for exsBM, exsBMH,

and exsBMS, an explicit bu�ering mechanism is not required to achieve the space e�ciency

of O(m). Lazy evaluation and the memory management of the Miranda system guarantee

that only the needed portion of the input string is stored at any time.

Figure 4.5: Overview of the exs-Programs

running time

function space worst expected comment

exsBF O(m) O(m � n) O(m+ n) generates su�xes; uses built-in predicate

\=" to compare pattern and m-gram of t

exsKMP O(m) O(m+ n) O(m+ n) traverse su�x links of KMP-tree in order

to avoid repeating character comparisons;

no bu�ering of t required

exsKR O(m+ jAj) O(m � n) O(m+ n) input alphabet must be known in advance;

uses hash techniques to avoid character

comparisons

exsBM O(m+ jAj) O(m � jApj
+jAj
+m � n)

O(m � jApj
+jAj
+n)

input alphabet must be known in ad-

vance; requires extension 1; applies good-

su�x and bad-character heuristic; explicit

bu�ering of t

exsBMH O(m+ jAj) O(m
+jAj
+m � n)

O(m
+jAj
+n)

input alphabet must be known in advance;

requires extension 2; applies Horspool's

heuristic; uses built-in predicate \=" to

compare pattern and m-gram of t; explicit

bu�ering of t

exsBMS O(m+ jAj) O(m
+jAj
+m � n)

O(m
+jAj
+n)

input alphabet must be known in ad-

vance; requires extension 2; applies Sun-

day's heuristic; uses built-in predicate \="

to compare pattern and m-gram of t; ex-

plicit bu�ering of t

exsCL O(m) O(jApj �m
+n

+jApj � l � (n=m))

divide t into non-overlapping subwords of

length m; traverse cst(p$) in two di�erent

ways; combine features of KMP and BM

Algorithm

l = m l = logjAjm

exsCL0 O(m) O(jApj �m
+n

+jApj � l � (n=m))

divide t into non-overlapping subwords of

length m; traverse cst(p$) and cst(p�1$)

in the same way; combine features of KMP

and BM Algorithm

l = m l = logjAjm

Chapter 5

Multiple Exact String Searching

The multiple exact string searching problem is a generalization of the exact string searching

problem. The goal is to look for occurrences of several patterns in a single input string.

This problem occurs in di�erent contexts, for instance, in searching bibliographic databases

[AC75], in security applications to detect suspicious keywords [WM94], and in the analysis

of biosequences [Bos88, Smi88, Sta88, CG89, Ste91].

De�nition 5.0.1 Suppose the following items are given:

� A �nite set P � A�.

� A string t 2 A� of length n.

A is the input alphabet, P is the pattern set, and t the input string. The multiple exact string

searching problem is to enumerate all positions in t where some p 2 P ends. These positions

are referred to as solutions to the multiple exact string searching problem. 2

The multiple exact string searching problem is sometimes called dictionary matching problem

(see [Bre94]). It has recently gained interest after the development of algorithms that can

e�ciently handle dynamically changing pattern sets (cf. [AF91, AFM92, IS92]).

If we allow preprocessing of the input string, then we can construct the compact su�x tree of

t$ and search each p 2 P separately in O(jAj�jpj) time. This leads to an algorithm which will

be called su�x tree search algorithm. If we do not allow to preprocess t, then a naive method

would be to look for each pattern p 2 P separately, using one of the algorithms described in

the previous chapter. However, the disadvantage is that t is scanned jPj times which leads

to a search time of a least O(jPj � n). The Aho-Corasick Algorithm [AC75] overcomes this

problem by looking for all patterns simultaneously. In the following two sections we present

the su�x tree search algorithm and the Aho-Corasick Algorithm in detail. Section 5.3 gives

a short description of other approaches to the multiple exact string searching problem.

126

5.1. THE SUFFIX TREE SEARCH ALGORITHM 127

5.1 The Su�x Tree Search Algorithm

The su�x tree search algorithm is of special interest if the pattern set is large. One hopes that

the e�ort for constructing the compact su�x tree of the input string is amortized by the speed

up of the search. If we have constructed T = cst(t$), then the multiple exact string searching

problem can be solved as follows: For each p 2 P evaluate (loc; s) = scanpre�x(locT ("); p).

According to De�nition 3.2.9, p occurs in T if and only if s = ". Suppose s = ". Then

loc = locT (p). Let x = ceiling(loc) and k = jlocj� jxj. Obviously, p ends at position j in t if
and only if j = n+1� k� jyj for some string y such that xy is a leaf in T . Hence, it su�ces

to enumerate the lengths of all paths from x to some leaf in T . This can be accomplished in

O(jTxj) steps by a single traversal of the subtree Tx. Let occp be the number of occurrences

of p in t. Obviously, occp 2 O(jTxj). Hence, the positions in t where p ends can be computed

in O(jAj � jpj+ occp) time. Altogether, the su�x tree search algorithm requires O(n) space
and it achieves a running time of O(jAj �n+Pp2P(jAj � jpj+ occp)) where the �rst summand

is for the construction of T .

5.1.1 Implementation

Suppose the node x in T is represented by the expression (N es link tag). The function

paths returns the list plens = [jyj j xy is a leaf in Tx] of lengths of the paths from x to some

leaf in Tx. If x is a leaf, then there is only the empty path from x to a leaf and plens = [0].

Otherwise, for each edge x w-node and each i returned by (paths node) there is an element

l + i in plens where l = jwj. The running time of paths is proportional to jplensj.

paths::(ctree � �)![num]

paths (N es link tag) = [0], if es = []

= [l+i | ((w,l),node) es; i paths node], otherwise

Suppose p 2 words(T) and loc = locT (p). loc2endpos determines from loc the list of positions

in t where p ends. This is accomplished as described in the previous section. The running

time of loc2endpos is proportional to the length of the list returned by the function paths.

loc2endpos::num!(location � �)![num]

loc2endpos n (LocN node) = [n+1-i | i paths node]

loc2endpos n (LocE node v (w,k) node') = [n+1-k-i | i paths node']

exmsSTS implements the su�x tree search algorithm. At �rst it constructs the compact

su�x tree of t$ using the function cst. Since we do not need to annotate the tree, the second

argument of cst is unde�ned. P is given as a list patterns. For each element in patterns the

function scanpre�x is called. If it returns a pair of the form (loc; []), then p occurs in T and

the positions in t where p ends are computed by evaluating (loc2endpos n loc).

exmsSTS::�![string �]!(string �)![[num]]

exmsSTS sentinel patterns t

= [loc2endpos n loc | p patterns; (loc,[]) [scanprefix loceps p]]

where n = #t

loceps = LocN (cst (t++[sentinel],n+1) undef)

128 CHAPTER 5. MULTIPLE EXACT STRING SEARCHING

Recall that the function cst implements the lazy su�x tree construction. Thus, the con-

struction phase is interleaved with the search phase of the algorithm accomplished by the

functions scanpre�x and loc2endpos. Paths of T are constructed only when being traversed

for the �rst time. This is a very important feature of our implementation, since the practical

running time is not dominated by the construction of the su�x tree, but by the searches.

5.2 The Aho-Corasick Algorithm

The Aho-Corasick Algorithm is a generalization of the Knuth-Morris-Pratt Algorithm. It

processes the input string online character by character and looks for all patterns simultane-

ously. This is accomplished by representing the pattern set by an atomic A+-tree. Like the

Knuth-Morris-Pratt Algorithm, the Aho-Corasick Algorithm traverses at most 2 � n edges.

If a node v is reached such that p is a su�x of v for some p 2 P, then a match is found.

De�nition 5.2.1 We write w < P if there is a p 2 P such that w < p. The AC-tree for P
is the atomic A+-tree T with su�x links and a boolean annotation accept such that

� words(T) = fw 2 A� j w < Pg.
� For each node v in T , accept(v) is true i� there is a p 2 P such that p is a su�x of v.

A node v is accepting if accept(v) is true. 2

Note that the AC-tree for P = fpg is identical to the KMP-tree for p (see section 4.2.1).

An AC-tree T corresponds to a pattern matching machine as de�ned in [AC75]. However,

in the pattern matching machine of Aho and Corasick each node v is annotated by the set

fp 2 P j v R pg. This allows to identify the patterns ending at position j in t whenever j is

a solution to the multiple exact string searching problem.

Algorithm AC [AC75] Compute the AC-tree for P. Let s0 = root. For each j; 0 � j �
n� 1, compute sj+1 = next(sj; tj+1), where the function next is de�ned as in section 3.7.1.

If accept(sj) is true for some j; 0 � j � n, then output j. 2

The AC-tree together with the function next can be considered as a space e�cient represen-

tation of a DFA. The nodes of are the states and next is the state transition function.

Theorem 5.2.2 Algorithm AC correctly solves the multiple exact string searching problem.

Proof We �rst show by induction on j that sj is the longest string such that t1 : : : tj
R
sj

and sj < P (see [AC75, Lemma 3]). For j = 0 the claim immediately follows. Suppose the

claim holds for some j; 0 � j � n � 1. Let sj+1 = next(sj ; tj+1). By Lemma 3.7.2 sj+1 is

the longest su�x of sjtj+1 such that sj+1 is a node in T . Hence, by De�nition 5.2.1, sj+1
is the longest string such that sjtj+1

R
sj+1 and sj+1 < P. Note that sjtj+1 is a su�x of

t1 : : : tj+1, since sj is a su�x of t1 : : : tj by induction hypothesis. Hence, sj+1 is also a su�x of

t1 : : : tj+1. This proves the induction step. Now suppose that j is a solution to the multiple

exact string searching problem. Then there is some p 2 P such that p is a su�x of t1 : : : tj.

From the result above we can conclude that p is a su�x of sj. Hence, accept(sj) is true and

Algorithm AC outputs j. 2

5.2. THE AHO-CORASICK ALGORITHM 129

Figure 5.1: The AC-Tree for fcacbaa; acb; aba; acbab; ccbabg.
b rr- b - b - b - b - b - b

HHHHHj

@
@
@
@
@@R

r- b - b - bb

rrb - b - b - b - b
HHHHHj rb - b

c a c b a a

c

b a ba

c b a b

b

a

Example 5.2.3 Let P = fcacbaa; acb; aba; acbab; ccbabg. The corresponding AC-tree is

shown in Figure 5.1. The accepting nodes are shown as thick circles. 2

Example 5.2.3 is taken from [Aho90]. However, we emphasize that there is a small but

important di�erence. Since acb 2 P, the node cacb is an accepting node, according to

De�nition 5.2.1. This contrasts [Aho90, page 275] where an accepting node is de�ned as

follows: each node corresponding to a pattern is an accepting node. Consequently, the node

cacb would not be accepting, since cacb =2 P (see [Aho90, Example 4.4]). This would mean

that for t = cacb Algorithm AC would not output position 4, which is incorrect, since the

pattern acb ends at this position.

The AC-tree can be constructed by inserting the patterns, one after the other, into an initially

empty tree. This takes O(jAP j � r), where r =
P

p2P jpj and AP is the set of characters

occurring in the patterns. Alternatively, one can modify the lazy su�x tree algorithm such

that it constructs an atomic A+-tree. This leads to a construction time of O(r2).
The su�x links of the AC-tree are obtained in O(jAP j �r) steps, as described in section 3.7.1.
The annotation accept can be computed in constant time per node as follows. Let v be a

node in T . If v is the root, then accept(v) is true if and only if v 2 P. Otherwise, accept(v)
is true if and only if v 2 P or accept(w) is true, where v -w is the su�x link for v in T . To

obtain the annotation in this way accept(w) must be determined before accept(v). This can

be accomplished by computing the annotation in a breadth �rst traversal of T . Altogether,

the construction of T including su�x links and annotation can be done in O(jAP j � r) time.

The running time of the search phase is determined by the number of calls to the function

next. In each call of the form next(s; tj+1) either (1) the input character tj+1 is consumed,

or (2) the su�x link s - v is traversed. The number of steps of type (1) is bound by n.

Moreover, for each step of type (2) there are jsj�jvj > 0 steps of type (1). Thus, the number

of steps of type (2) is bound by n, too. Therefore, there are at most 2 �n calls to the function

next. Each call requires O(jAP j) time in the worst case. Hence, the overall running time of

Algorithm AC is O(jAP j � (n+ r)). The space requirement is O(r).

5.2.1 Implementation

The function treeinsert takes a string v and inserts it into an atomic A+-tree. The resulting

tree contains a node v which is labeled by the value True. The running time of treeinsert

is O(l � jvj) where l is the average number of edges outgoing from the visited nodes.

130 CHAPTER 5. MULTIPLE EXACT STRING SEARCHING

treeinsert::(tree � bool)!(string �)!tree � bool

treeinsert (N es link tag) [] = N es link True

treeinsert (N es link tag) (a:w)

= N (edgeinsert es) link tag

where edgeinsert ((c,node):es) = (c,node):edgeinsert es, if a > c

= (a,nobranch w):(c,node):es, if a < c

= (c,treeinsert node w):es, otherwise

edgeinsert [] = [(a,nobranch w)]

We suppose the pattern set P is given as a list patterns. patterns2tree iteratively applies the

function treeinsert to all patterns. This yields an atomic A+-tree T 0 such that words(T 0) =

fw 2 A� j w < Pg. The running time of patterns2tree is O(jAP j � r), where r = P
p2P jpj.

patterns2tree::[string �]!tree � bool

patterns2tree patterns = foldl treeinsert (N [] undef False) patterns

Note that the tree T 0 returned by patterns2tree has unde�ned su�x links. Moreover, each

node v is labeled with the value True if and only if v 2 P. To set the su�x links in T 0, we

could use the function (addlinks setlink) as de�ned in section 3.7.1. In a second phase we

could compute the annotation accept, since then the su�x links are available. However, a

little thought shows that in the second phase we would also have to update the su�x links,

since changing some node labels means that previous su�x links may point to obsolete

subtrees. For this reason, we merge the setting of the su�x links and the computation of

the annotation. This leads to a function setlink0.

setlink'::(tree � bool)!(tree � bool)!tree � bool

setlink' (N es link tag) link'

= N es' link' (tag _ seltag link')

where es' = [(a,setlink' node (next link' a)) | (a,node) es]

The function setlink0 is similar to the function setlink (see section 3.7.1). setlink0 ad-

ditionally computes the annotation accept as described in section 5.2. Thus, if we apply

(addlinks setlink0) to T 0, then we obtain the AC-tree T for P. Let us brie
y explain how

setlink0 works: Suppose the node v in T 0 is represented by the expression (N es link tag).

Moreover, let v -w be the su�x link for v and assume that w is represented in T by the

expression link0. Then (seltag link0 = accept(w)) and accept(v) is true if and only if tag or

(seltag link0) evaluates to true. From Theorem 3.7.3 we conclude that the overall running

time of (addlinks setlink0) is O(jAP j �r). Due to the laziness, we do not have to worry about
the order in which the su�x links and the annotations are computed. Note that an imple-

mentation in an eager language (cf. [AC75, Algorithm 3]) requires added complication, since

the computation must be arranged in an order that is compatible with the dependencies of

the su�x links and the annotations (see the remark on page 63).

exmsAC is an optimal implementation of Algorithm AC. In a �rst phase exmsAC constructs

the tree structure. In a second phase the su�x links and the annotation accept is calculated.

This yields the AC-tree for P which is traversed using the function iternext. Recall that

iternext was already used for implementing the Knuth-Morris-Pratt Algorithm (see section

4.2.1). This emphasizes the strong resemblance of both algorithms.

5.3. OTHER APPROACHES 131

exmsAC::[string �]!(string �)![num]

exmsAC = iternext.addlinks setlink'.patterns2tree

5.3 Other Approaches

The basic idea of the Commentz-Walter Algorithm [CW79] is to construct an atomic A+-

tree T for the reversed patterns. T is used to keep track of the su�xes of the patterns

matching the current part of the input string. In particular, to check if there is a match

ending at position j, T is traversed, directed by the characters tj; tj�1, and so on, until a

node in T is reached which does not have a suitable outgoing edge. A shift value, by which

T can be moved to the right, without loosing a solution, is computed similarly to the Boyer-

Moore Algorithm. The preprocessing time of the Commentz-Walter Algorithm is O(jAP j�r),
where r =

P
p2P jpj. The search takes O(n � r) steps in the worst case. If P is small, then

the algorithm is expected to be faster then the Aho-Corasick Algorithm. Baeza-Yates and

R�egnier [BYR90] show that the Commentz-Walter Algorithm can be simpli�ed and speeded

up by computing the shift values according to Horspool's heuristic.

The method of Kim and Shawe-Taylor [KST92b] is based on q-grams. The idea is to build

an atomic A+-tree T that contains the reversed q-grams of the patterns together with cor-

responding shift information. To determine if j is a solution to the multiple exact string

searching problem, T is traversed, directed by the reverse of the q-gram tj�q+1 : : : tj. This

yields a shift value which aligns tj�q+1 : : : tj with its rightmost occurrence in some p 2 P
(if such an occurrence exists), or it aligns a su�x of tj�q+1 : : : tj with its occurrence as

a pre�x of some p 2 P. This strategy is very similar to the good-su�x heuristic of the

Boyer-Moore Algorithm. Kim and Shawe-Taylor give a detailed complexity analysis for

their algorithm. Under reasonable assumptions, they show that the expected running time

is O((n=m + jPj �m) � log(jPj �m)).

Wu and Manber [WM94] devised an algorithm that generalizes Horspool's heuristic to q-

grams. This allows to handle large pattern sets e�ciently. Let m = minfjpj j p 2 Pg and
q be a positive integer in the order of logjAj(2 � r). Wu and Manber recommend to choose

q = 2 if P is small and q = 3 if P is large. The central feature of the algorithm is a

function qmove. For each w 2 Aq, qmove(w) is de�ned as follows: if w is a subword of

some p 2 P, then qmove(w) = m�maxfi j 9p 2 P : w ends in p at position ig. Otherwise,
qmove(w) = m�q+1. To save character comparisons, each q-gram is hash coded. In order to

check if j is a solution to the multiple exact string searching problem, k = qmove(tj�q+1 : : : tj)

is evaluated. If k > 0, then tj�q+1 : : : tj does not occur as a su�x of any p 2 P. Hence,

j is not a solution to the multiple exact string searching problem and the algorithm moves

k positions to the right. In typical situations this case occurs most of the time. If k � 0,

then tj�q+1 : : : tj is a su�x of some p 2 P. To verify, if j is indeed a solution to the multiple

exact string searching problem, the algorithm uses two additional precomputed functions, to

determine a small subset of P, containing all candidates which may end at position j. These

candidates are directly compared to the corresponding su�x of t1 : : : tj. If there is a match,

it is reported and the algorithm moves one position to the right. The worst case running

time of the algorithm is O(n � r). However, in the expected case only O((q � n)=m) steps

are needed. Wu and Manber implemented their algorithm as part of the glimpse system

[MW93]. They found it to be very fast in practice, even for thousands of patterns.

Chapter 6

Approximate String Searching

In this chapter, we consider the problem of �nding approximate occurrences of a pattern in

an input string. This problem occurs in many di�erent contexts. For instance, if one looks

up a name in a directory, one may not remember the exact spelling of a name, or the name

may be misspelled. Another example occurs in biological sequence analysis. A genomic

database is likely to contain DNA or protein sequences of many individuals. Therefore,

matching a piece of DNA against the database must allow a small but signi�cant error due

to the di�erences in DNA among individuals of the same or related species. Furthermore,

current DNA sequencing techniques are not perfect, and experimental error can sometimes

contribute as much as 5-10 percent inaccuracies.

There are several distance models to measure the approximation quality. The most common

model is the edit distance model. Some authors also use the hamming distance model which

counts the number of mismatches of two strings of the same length. This leads to the k-

mismatches problem which is, for instance, studied in [LV86, GG88, OM88, KST92a, TU93,

BYP92, PW95]. Note that the hamming distance can be viewed as an edit distance with a

cost function that charges replacements with low costs and indels with high costs. Ukkonen

[Ukk92a] studies approximate string searching in the q-gram model and the maximal matches

model. However, the main motivation for this was to speed up approximate string searching

algorithms that are based on the edit distance. Recently, Zobel and Dart [ZD95] have

practically evaluated the di�erent distance models for �nding approximate matches in large

lexicons. In this chapter, we measure the approximation quality by the edit distance. This

leads to the following problem de�nition.

De�nition 6.0.1 Suppose the following items are given:

� A cost function �.

� A non-negative real value k.

� A string p 2 A� of length m.

� A string t 2 A� of length n.

A is the input alphabet, k is the threshold value, p is the pattern, and t is the input string. An

approximate match is a subword v of t such that edist�(p; v) � k. The approximate string

132

6.1. SELLERS' ALGORITHM 133

searching problem is to enumerate all positions in t where an approximate match ends. These

positions are referred to as solutions to the approximate string searching problem. 2

As in chapter 4, Ap denotes the set of characters in p.

In sections 6.1 and 6.2, we describe in detail several algorithms for solving the approximate

string searching problem for arbitrary cost functions. In sections 6.3 to 6.8 the k-di�erences

problem is considered. This is the approximate string searching problem restricted to the

unit cost function. Except for one, all described algorithms process the input string online

from left to right. Two algorithms bu�er parts of the input string, but at each time the

access to t is restricted to one input character, or to a small sliding window of size O(m)

and O(k �m), respectively. Our functional implementations preserve these properties of the

algorithms. We emphasize that an explicit bu�ering mechanism is not required to achieve

space e�cient algorithms. Lazy evaluation and the memory management of the Miranda

system guarantee that only the needed portion of the input string is stored at any time.

Note that there are simpli�ed forms of the approximate string searching problem which, for

instance, ask if there is an approximate occurrence of p in t. Our lazy functional programs

can be used to solve these problems without changing their code.

6.1 Sellers' Algorithm

By a slight modi�cation of the Wagner-Fischer Algorithm, Sellers [Sel80] obtained a simple

method (SEL for short) to solve the approximate string searching problem. The idea of

Sellers was to not charge the insertion of input characters into the empty string. Technically

this means to set the entries in the �rst row of E� to 0. This gives a table in which the

entry E�(i; j) is the minimal edit distance of p1 : : : pi with some su�x of t1 : : : tj. From the

last row of this table one can easily obtain the solutions to the approximate string searching

problem.

Sellers' variation is usually described by giving the recurrence for an (m+1)� (n+1)-table,

similar as in Theorem 3.9.6. Our approach is slightly di�erent. Similar to the functional

implementation of the Wagner-Fischer Algorithm, we specify SEL by an initial column and

a function that transforms one column into the next column. This means that the speci�ed

columns do not only refer to the global input string t, but to some arbitrary string. In

section 6.2 and 6.5, we will make use of this notational convenience.

De�nition 6.1.1 C denotes the set of functions f : f0; : : : ; mg ! IR+

0
. The elements of C

are columns. We de�ne a function nextdcol : C � A ! C as follows. For all f 2 C and all

b 2 A,
nextdcol(f; b) = fb

where fb(0) = 0

fb(i + 1) = min

8><
>:
fb(i) + �(pi+1 ! ")

f(i) + �(pi+1 ! b)

f(i+ 1) + �("! b)

9>=
>;

134 CHAPTER 6. APPROXIMATE STRING SEARCHING

Moreover, we de�ne a function dcol : A� ! C as follows:

dcol(vb) = nextdcol(dcol(v); b)

dcol(") = f

where f(0) = 0

f(i+ 1) = f(i) + �(pi+1 ! "):

dcol(v) is the distance column of v. f 2 C is a distance column if f = dcol(v) for some

v 2 A�. 2

A scheme which is very similar to De�nition 6.1.1 already occurred in [JU91]. Note that

dcol(v) and nextdcol(f; b) depend on p. This is not re
ected by our notation.

Algorithm SEL [Sel80] Compute dcol("). For each j; 1 � j � n compute

dcol(t1 : : : tj) = nextdcol(dcol(t1 : : : tj�1); tj):

If dcol(t1 : : : tj)(m) � k, then output j. 2

Theorem 6.1.2 Algorithm SEL correctly solves the approximate string searching problem.

Proof One easily shows by induction that for each string v and for each i; 0 � i � m, the

following equality holds:

dcol(v)(i) = minfedist�(p1 : : : pi; s) j s is a su�x of vg

Hence, dcol(t1 : : : tj)(m) � k () there is a su�x s of t1 : : : tj such that edist�(p; s) � k

() there is an approximate match ending at position j. 2

In an implementation of Algorithm SEL, every distance column is represented by an array

or a list which takes O(m) space. dcol(") is computed in O(m) steps. For each j; 1 � j � n

the distance column dcol(t1 : : : tj) is computed in O(m) steps as well. This gives an overall

time e�ciency of O(m � n). Since in every step only the actual and the previous distance

column must be stored, SEL needs O(m) space.

In the following, we show how to improve the average case behavior of SEL. The idea is to

compute the distance column of t1 : : : tj modulo some equivalence.

De�nition 6.1.3 Let f and f 0 be distance columns. f and f 0 are equivalent, denoted by

f � f 0, if for all i; 0 � i � m we have f(i) = f 0(i) whenever f(i) � k or f 0(i) � k. 2

An equivalence notion for columns was introduced in [Ukk93a]. However, it referred to pairs

of distance and length columns (see also De�nitions 6.2.7 and 6.2.12). The following lemma

shows that the relation � is preserved by nextdcol.

Lemma 6.1.4 Let f � f 0 and b 2 A. Then nextdcol(f; b) � nextdcol(f 0; b).

Proof Let fb = nextdcol(f; b) and f 0b = nextdcol(f 0; b). By induction on i, we show that

fb(i) � k or f 0b(i) � k implies fb(i) = f 0b(i). For i = 0 we have fb(i) = 0 = f 0b(i). Assume

that fb(i+ 1) � k and consider the following cases:

6.1. SELLERS' ALGORITHM 135

� If fb(i+1) = fb(i)+�(pi+1 ! "), then fb(i) < k which implies fb(i) = f 0b(i) by induction

hypothesis.

� If fb(i+1) = f(i)+�(pi+1 ! b), then f(i) � k which implies f(i) = f 0(i) by assumption.

� If fb(i+ 1) = f(i+ 1) + �("! b), then f(i+ 1) < k which implies f(i+ 1) = f 0(i+ 1)

by assumption.

Hence, we obtain

fb(i+ 1) = min

8><
>:
fb(i) + �(pi+1 ! ")

f(i) + �(pi+1 ! b)

f(i+ 1) + �("! b)

9>=
>; = min

8><
>:
f 0b(i) + �(pi+1 ! ")

f 0(i) + �(pi+1 ! b)

f 0(i + 1) + �("! b)

9>=
>; = f 0b(i + 1)

By an analogous argumentation, one shows f 0b(i+ 1) = fb(i + 1) whenever f 0b(i + 1) � k. 2

Lemma 6.1.4 corresponds to Lemma 4 in [Ukk93a]. However, Ukkonen omitted the proof.

De�nition 6.1.5 [Ukk93a] Let f be a distance column. An entry f(i) is essential if f(i) �
k. lei(f) = maxfi j 0 � i � m; f(i) � kg is the last essential index of f . Let l = lei(f).

f(l) is the last essential entry in f . 2

Note that f(m) � k if and only if the last essential index of f is m. Suppose l = lei(f)

and fb = nextdcol(f; b). By Lemma 6.1.4, the essential entries in fb do not depend on

f(l+1); f(l+2); : : : ; f(m) since these values are larger than k. Hence, it is not necessary to

always calculate fb completely, as done by Sellers' Algorithm. The calculation of fb can be

modi�ed as follows: Compute fb(0); fb(1); : : : ; fb(l) according to De�nition 6.1.1. If l < m,

then compute

fb(l + 1) = min

(
fb(l) + �(pl+1 ! ");

f(l) + �(pl+1 ! b)

)

fb(l + 2) = fb(l + 1) + �(pl+2 ! ")

fb(l + 3) = fb(l + 2) + �(pl+3 ! ")
...

until a value fb(h) is reached such that either h = m or fb(h) > k holds. Thus, the

computation of fb is cut o� at index h. The last essential index of fb is the maximal

i; 0 � i � h such that fb(i) � k. If b = tj and f = dcol(t1 : : : tj�1), then j is a solution to

the approximate string searching problem if and only if lei(fb) = m.

This modi�cation leads to a cuto� variation of Sellers' method (SELco for short) which was

suggested by Ukkonen [Ukk85b] in the context of the unit edit distance. Chang and Lampe

[CL92] showed that Ukkonen's cuto� trick leads to an average case time e�ciency of O(k �n)
if one assumes the unit cost function. In [Ukk93a], it is implicitly stated that this e�ciency

result holds for an arbitrary cost function as well. Note that the cuto� variation does not

improve the worst case e�ciency of O(m � n).

136 CHAPTER 6. APPROXIMATE STRING SEARCHING

6.1.1 Implementation

Since Sellers' method di�ers from the Wagner-Fischer Algorithm only by the computation of

the �rst column value, we can take the table speci�cation edisttable and modify the function

�rstentry appropriately. This gives the following table speci�cation for SEL.

seltable::(costfunction �)!(string �)!tablespec � num

seltable delta p

= (firstcol,nextdcol)

where firstcol = 0:[no + delta (D a) | (no,a) zip2 firstcol p]

firstentry we b = 0

join3 a b we no nw

= min2 (min2 (we+delta (I b)) (no+delta (D a))) (nw+delta (R a b))

nextdcol = absnextcol firstentry join3 undef p

Recall that a column is represented by a list. So dcol(") is represented by �rstcol. The

function appSEL implements Sellers' method. (The pre�x app stands for approximate string

searching.) By evaluating the expression (scanl nextdcol �rstcol t), the distance columns

are enumerated. j is a solution to the approximate string searching problem if and only if

f(m) � k where f = dcol(t1 : : : tj). The access to f(m), using the prede�ned list operator

(!), takes O(m) time. However, this is amortized by the computation of f in O(m) steps.

appSEL::(costfunction �)!num!(string �)!(string �)![num]

appSEL delta k p t

= [j | (j,f) zip2 [0..] (scanl nextdcol firstcol t); k >= (f!m)]

where (firstcol,nextdcol) = seltable delta p

m = #p

The function selcotable returns the table speci�cation for the cuto� variation of Sellers'

method.

selcotable::(costfunction �)!num!(string �)!tablespec � num

selcotable delta k p

= (firstcol,nextdcol)

where firstcol = 0:takewhile (<=k) [no+delta (D a) | (no,a) zip2 firstcol p]

firstentry we b = 0

join3 a b we no nw

= min2 (min2 (we+delta (I b)) (no+delta (D a))) (nw+delta (R a b))

join2 a b no nw s

= takewhile (<=k) z

where z = x:[no+delta (D a) | (no,a) zip2 z s]

where x = min2 (no + delta (D a)) (nw + delta (R a b))

nextdcol f b = cutsuffix (>k) f'

where f' = absnextcol firstentry join3 join2 p f b

For the cuto� variation, a distance column f is represented by the list [f(0); f(1); : : : ; f(l)]

where l = lei(f). So �rstcol represents the maximal pre�x of [dcol(")(0); : : : ; dcol(")(m)] that

consists of values � k. �rstcol can easily be computed using the function (takewhile (� k)).

6.2. MEMORIZING DISTANCE COLUMNS 137

Suppose f is a distance column and fb = nextdcol(f; b) is to be computed. Recall that

fb(0); fb(1); : : : ; fb(l) are calculated according to De�nition 6.1.1. Hence, �rstentry and join3

are taken literally from seltable. We additionally have de�ned the function join2 which is

called whenever l < m. join2 computes a list z and returns the longest pre�x of z that

consists of values � k. The �rst element of z is x = fb(l + 1) which depends on the value

fb(l) in the \north" and the value f(l) in the \northwest". The remainder of z is the list

[fb(l + 2); fb(l + 2); : : :]. If join2 returns the empty list and fb(l) > k, then the list f 0 above

has a non-empty su�x which consists of values greater than k. This su�x is cut o� in O(jf 0j)
steps using the function (cutsu�x (> k)).

cutsuffix::(�!bool)!(column �)!(column �)

cutsuffix bad = foldr front []

where front value [] = [], if bad value

front value f = value:f

appSELco implements the cuto� variation of Sellers' method. In order to decide if a column

f corresponds to a position where an approximate match ends, it is necessary to test the

condition lei(f) = m. This is accomplished by dropping the �rst m elements of f . The

remaining list is not empty if and only if lei(f) = m.

appSELco::(costfunction �)!num!(string �)!(string �)![num]

appSELco delta k p t

= [j | (j,f) zip2 [0..] (scanl nextdcol firstcol t); ok f]

where (firstcol,nextdcol) = selcotable delta k p

ok f = ([] ~= drop (#p) f)

It is easily veri�ed that both appSEL and appSELco are optimal implementations of SEL

and SELco, respectively.

6.2 Memorizing Distance Columns

In some applications, one wants to solve the approximate string searching problem for a

�xed input string but a varying pattern and threshold value.1 A brute force method for this

case is to precompute t into a su�x tree and to make a depth-�rst traversal over this tree

that �nds all subwords v of t such that edist�(p; v) � k. Each path in the tree is followed

until the edit distance between the corresponding string and all pre�xes of p is larger than k.

To determine these edit distances, the corresponding column of table E� is computed each

time a character in the su�x tree is scanned. The total number of columns evaluated in

such a way is �(m � n). Thus, the brute force method does not improve on Sellers' method,

in general.

In [Ukk93a], another method is presented which performs a more e�cient search. It evaluates

at most n distance columns. The key to this method is the observation that the essential

entries in dcol(t1 : : : tj) depends only on a relatively short su�x of t1 : : : tj, the shortest

1Consider, for instance, the intensive study of a biosequence. Di�erent aspects of the analysis often means
to search for di�erent approximate patterns with di�erent thresholds.

138 CHAPTER 6. APPROXIMATE STRING SEARCHING

essential su�x. If this su�x occurs again in t, say as a su�x of t1 : : : tj0 for some j 0 >

j, then dcol(t1 : : : tj0) is equivalent to dcol(t1 : : : tj). In a lot of cases, Ukkonen's method

recognizes this and skips the computation of dcol(t1 : : : tj0), thus improving the search time.

Unfortunately, the technique requires to store all computed distance columns, which often

leads to a large space consumption.

In the following section, we establish the basis for Ukkonen's method from a declarative point

of view. We introduce the notion of essential su�xes and state their properties. Some of these

were already given in [Ukk93a]. However, we make explicit some properties implicitly used

in [Ukk93a] and provide simpler proofs. Moreover, we describe an algorithm to e�ciently

compute shortest essential su�xes together with a sequence of distance columns which can be

used to solve the approximate string searching problem. Unlike the presentation in [Ukk93a],

our presentation of the algorithm does not assume a concrete data structure. This makes it

quite amendable for a detailed correctness proof.

6.2.1 Essential Su�xes

The following lemma states that the entries in a distance column are not increasing if one

extends a string to the left. Since our distance column notation is independent of the global

input string t, this property can conveniently be expressed.

Lemma 6.2.1 Let v be a string and b be a character. Then dcol(v)(i) � dcol(bv)(i) for all

i; 0 � i � m.

Proof

dcol(v)(i) = minfedist�(p1 : : : pi; s) j v
R
sg

� min(fedist�(p1 : : : pi; s) j v
R
sg [fedist�(p1 : : : pi; bv)g)

= minfedist�(p1 : : : pi; s) j bv
R
sg

= dcol(bv)(i): 2

From this lemma we can conclude that dcol(v)(i) � dcol(wv)(i) for each string w and each

i; 0 � i � m. This property will be exploited several times. Note that Ukkonen implicitly

used this property, too, but did not state it.

De�nition 6.2.2 Let v be a string. A su�x s of v is essential if dcol(s) � dcol(v). ses(v)

denotes the shortest essential su�x of v. 2

Recall that a distance column depends on � and p. The essential entries in a distance column

additionally depends on k. Hence, ses(v) depends on �, p, and k. Since p and k are arbitrary

but �xed, we omit them in our notation. ses(v) determines the essential entries in dcol(v).

In other words, if ses(v) = ses(v0) then dcol(v) � dcol(ses(v)) = dcol(ses(v0)) � dcol(v0)

(see [Ukk93a, Theorem 1]).

Example 6.2.3 Let � be the unit cost function and p = abbb. Suppose v = bbaba. Then

we have dcol(bbaba) = 00112, dcol(baba) = 00112, dcol(aba) = 00112, dcol(ba) = 00123,

6.2. MEMORIZING DISTANCE COLUMNS 139

dcol(a) = 00123, and dcol(") = 01234. If k = 0, then bbaba, baba, aba, ba, and a are the

essential su�xes of v. Hence, ses(v) = a. If k > 0, then bbaba, baba, and aba are the essential

su�xes of v. Hence, ses(v) = aba. 2

In the terminology of [Ukk93a], ses(t1 : : : tj) is the viable (k-approximate) pre�x (of p) at

j. We have not adopted Ukkonen's terminology since it re
ects a property of ses(t1 : : : tj)

to be clari�ed later in our presentation. Note that Ukkonen de�nes the notion viable pre�x

in an operational way using length columns (see De�nition 6.2.7). Lemma 6.2.8 shows that

both notions are equivalent.

The following three lemmas state some basic properties of essential su�xes. Lemma 6.2.4

shows that the last essential entry of a distance column determines whether a su�x is

essential or not. Ukkonen exploits this property for the shortest essential su�x. Lemma

6.2.5 corresponds to Theorem 2 in [Ukk93a]. The \("-direction of Lemma 6.2.6 is a slight

generalization of Lemma 3 in [Ukk93a].

Lemma 6.2.4 Let v be a string and h = lei(dcol(v)). For each su�x s of v, the following

statements are equivalent:

(1) s is essential.

(2) s
R
ses(v).

(3) dcol(s)(h) = dcol(v)(h).

Proof

(1)) (2) Let s be essential. Then jsj � jses(v)j. Since s and ses(v) are su�xes of v, we

have s
R
ses(v).

(2)) (3) Let s
R
ses(v). Then dcol(ses(v))(h) � dcol(s)(h) � dcol(v)(h) holds. Since

dcol(v)(h) � k, we obtain dcol(v)(h) = dcol(ses(v))(h). Therefore, dcol(s)(h) = dcol(v)(h).

(3)) (1) Let dcol(s)(h) = dcol(v)(h). Suppose s0 is the shortest su�x of v such that

dcol(v)(h) = edist�(p1 : : : ph; s
0). Since edist�(p1 : : : ph; s

0) = dcol(s)(h), s0 is a su�x of

s. Obviously, s0 is the shortest su�x of s such that dcol(s)(h) = edist�(p1 : : : ph; s
0). Let

0 � i � m and dcol(v)(i) � k or dcol(s)(i) � k. If dcol(s)(i) � k, then dcol(v)(i) � k

since dcol(s)(i) � dcol(v)(i). Hence, i � h. Let s00 be the shortest su�x of v such that

dcol(v)(i) = edist�(p1 : : : pi; s
00). Since i � h, s00 is a su�x of s0. Thus, s00 is also a su�x

of s which implies dcol(v)(i) = edist�(p1 : : : pi; s
00) � dcol(s)(i). This implies dcol(s)(i) =

dcol(v)(i). Hence, dcol(v) � dcol(s), that is, s is essential. 2

Lemma 6.2.5 Let v be a string and b a character. Then ses(vb) is a su�x of ses(v)b.

Proof Since v
R
ses(v), we have vb

R
ses(v)b. From dcol(v) � dcol(ses(v)) and Lemma 6.1.4

we conclude dcol(vb) = nextdcol(dcol(v); b) � nextdcol(dcol(ses(v)); b) = dcol(ses(v)b).

Hence, ses(v)b is an essential su�x of vb. Since ses(vb) is the shortest essential su�x of vb,

we obtain ses(v)b
R
ses(vb). 2

Lemma 6.2.6 Let v and v0 be strings. ses(v) = ses(v0) if and only if v and v0 have a

common essential su�x.

140 CHAPTER 6. APPROXIMATE STRING SEARCHING

Proof The \)"-direction is trivial. To show the \("-direction, suppose that s is an es-

sential su�x of v and of v0. Then s
R
ses(v) and s

R
ses(v0). Let s0 = ses(s). Obvi-

ously, dcol(s) � dcol(v) and s0
R
ses(v) or ses(v)

R
s0. Assume that s0 6= ses(v). Then

dcol(v) � dcol(ses(v)) 6� dcol(s0) � dcol(s). This is a contradiction. Hence, s0 = ses(v). In

analogy, one shows s0 = ses(v0). This implies ses(v) = ses(v0). 2

To compute shortest essential su�xes, we introduce length columns:

De�nition 6.2.7 For all strings v, we de�ne the column lcol(v) by

lcol(v)(i) = minfjsj j v R s; edist�(p1 : : : pi; s) = dcol(v)(i)g

for each i; 0 � i � m. Thus, lcol(v)(i) is the length of the shortest su�x of v, whose edit

distance from p1 : : : pi is dcol(v)(i). lcol(v) is the length column of v. g 2 C is a length

column if g = lcol(v) for some v 2 A�. 2

The sequence of length columns for all pre�xes of t corresponds to table L in [JU91, Ukk93a].

Lemma 6.2.8 Let h = lei(dcol(v)). Then lcol(v)(h) = jses(v)j.
Proof

lcol(v)(h) = minfjsj j v R s; edist�(p1 : : : ph; s) = dcol(v)(h)g
= minfjsj j v R s; dcol(s)(h) = dcol(v)(h)g
= minfjsj j v R s; dcol(s) � dcol(v)g
= minfjsj j v R s; s is essentialg
= jses(v)j: 2

From Lemma 6.2.8 we conclude that edist�(p1 : : : pi; ses(t1 : : : tj)) = dcol(v)(i) where p1 : : : pi
is the longest pre�x of p such that dcol(t1 : : : tj)(i) � k. For this reason Ukkonen calls

ses(t1 : : : tj) the viable k-approximate pre�x of p at j.

In analogy to nextdcol, we introduce a function for computing length columns.

De�nition 6.2.9 For all f; g 2 C and all b 2 A, the function nextlcol : C � C �A ! C is

de�ned as follows: nextlcol(f; g; b) = gb where gb(0) = 0 and

gb(i+ 1) =

8><
>:
gb(i); if fb(i+ 1) = fb(i) + �(pi+1 ! ")

g(i) + 1; else if fb(i+ 1) = f(i) + �(pi+1 ! b)

g(i+ 1) + 1; else if fb(i+ 1) = f(i+ 1) + �("! b)

where fb = nextdcol(f; b)

This recurrence is also given in [JU91, Ukk93a].

Lemma 6.2.10 For each i; 0 � i � n we have lcol(")(i) = 0. For each string v and each

character b we have lcol(vb) = nextlcol(dcol(v); lcol(v); b).

Proof Routine. 2

6.2. MEMORIZING DISTANCE COLUMNS 141

Figure 6.1: Distance Columns and Length Columns for p = abbb and t = a8b8

dcol

a a a a a a a a b b b b b b b b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

b 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

b 3 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1

b 4 3 3 3 3 3 3 3 3 2 1 0 1 1 1 1 1

lcol

a a a a a a a a b b b b b b b b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

b 0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

b 0 1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 2

b 0 1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3

As can easily be veri�ed, a length column can be computed in O(m) steps. Since length

columns depend on the corresponding distance columns, both will be computed simultane-

ously (see section 6.2.5).

Example 6.2.11 [Ukk93a] Let � be the unit cost function. Suppose p = abbb and t = a8b8.

The distance columns and the length columns of all pre�xes of t are shown in Figure 6.1.

Let k = 1. Then ses(ai) = a, 1 � i � 8, ses(a8b) = ab, ses(a8bb) = abb, ses(a8bbb) = abbb,

and ses(a8bi) = bbb, 4 � i � 8. Hence, there are �ve di�erent shortest essential su�xes. 2

The notion of equivalence extends to pairs of columns:

De�nition 6.2.12 [Ukk93a] Two pairs (f; g) and (f 0; g0) of columns are equivalent, denoted

by (f; g) � (f 0; g0), if for each i; 0 � i � m, f(i) = f 0(i) and g(i) = g0(i) whenever f(i) � k

or f 0(i) � k. 2

nextlcol preserves equivalence as well, that is, if (f; g) � (f 0; g0) then for all characters b we

have (nextdcol(f; b); nextlcol(f; g; b)) � (nextdcol(f 0; b); nextlcol(f 0; g0; b)).

We now present an algorithm that e�ciently computes ses(t1 : : : tj) for each j; 0 � j � n.

As a by-product, we get for each j a distance column fj that is equivalent to dcol(t1 : : : tj).

This can be used to solve the approximate string searching problem. If fj(m) � k, then j

is a solution to the approximate string searching problem. The algorithm memorizes, in a

lot of cases, that the shortest essential su�x of t1 : : : tj and a distance column equivalent

to dcol(t1 : : : tj) was already computed in a previous step. Therefore, we call the algorithm

MDC which means memorizing distance columns.

142 CHAPTER 6. APPROXIMATE STRING SEARCHING

Algorithm MDC Set s0 = ", f0 = dcol("), g0 = lcol("), V0 = f"g, D0 = f"g, and
col0(") = (dcol("); lcol(")). For each j; 0 � j � n � 1 compute sj+1 2 A�, fj+1 2 C,

gj+1 2 C, Dj+1 � Vj+1 � A�, and colj+1 : Dj+1 ! P(C � C) as follows:

(i) If sjtj+1 2 Vj, then sj+1 is the longest su�x of sjtj+1 that occurs in Dj. Set

(fj+1; gj+1) = colj(sj+1), Vj+1 = Vj, Dj+1 = Dj, and colj+1(s) = colj(s) for each

s 2 Dj+1.

(ii) If sjtj+1 =2 Vj, then set (fj+1; gj+1) = (nextdcol(fj ; tj+1); nextlcol(fj ; gj; tj+1)). Let

h = lei(fj+1). sj+1 is the su�x of sjtj+1 of length gj+1(h). Moreover, set Vj+1 =

Vj [fs j sjtj+1
R
s
R
sj+1g. If sj+1 2 Dj, then set Dj+1 = Dj and colj+1(s) = colj(s)

for each s 2 Dj+1. Otherwise, set Dj+1 = Dj [fsj+1g and for each s 2 Dj+1 de�ne

colj+1(s) =

(
(fj+1; gj+1); if s = sj+1
colj(s); otherwise

2

Note that at any time it su�ces to store one \generation" of values. More precisely, if the

six items sj+1, fj+1, gj+1, Vj+1, Dj+1, and colj+1 are computed, then sj, fj, gj, Vj, Dj, and

colj are no longer needed.

The basic structure of Algorithm MDC is equivalent to Algorithm A in [Ukk93a]. However,

Algorithm MDC does not assume a concrete data structure to represent a generation of

values. This abstraction simpli�es the correctness proof (see below). Moreover, it provides

a uni�ed basis for the di�erent implementation techniques considered in the next sections.

Theorem 6.2.13 For each j, 0 � j � n the following holds:

1. sj = ses(t1 : : : tj)

2. (fj; gj) � (dcol(t1 : : : tj); lcol(t1 : : : tj))

3. Vj = f"g [fs j ses(v)b
R
s
R
ses(vb) for some pre�x vb of t1 : : : tjg

4. Dj = fses(v) j v is a pre�x of t1 : : : tjg
5. colj(s) � (dcol(s); lcol(s)) for each s 2 Dj

Proof By induction on j. For j = 0 properties 1-5 obviously hold. Suppose properties 1-5

hold for some j; 0 � j � n� 1. Consider the following cases:

(i) If sjtj+1 2 Vj, then there is a pre�x vb of t1 : : : tj such that ses(v)b
R
sjtj+1

R
ses(vb).

By Lemmas 6.2.4 and 6.2.5, sjtj+1 is an essential su�x both of vb and of t1 : : : tj+1.

By Lemma 6.2.6, we get ses(vb) = ses(t1 : : : tj+1). Moreover, we can conclude that

ses(t1 : : : tj+1) is the longest su�x of sjtj+1 that occurs in Dj. Therefore, sj+1 =

ses(t1 : : : tj+1). Furthermore,

(fj+1; gj+1) = colj(sj+1)

� (dcol(sj+1); lcol(sj+1))

� (dcol(t1 : : : tj+1); lcol(t1 : : : tj+1))

Finally, properties 3, 4, and 5 hold for Vj+1, Dj+1, and colj+1.

6.2. MEMORIZING DISTANCE COLUMNS 143

(ii) If sjtj+1 =2 Vj, then
(fj+1; gj+1) = (nextdcol(fj; tj+1); nextlcol(fj; gj; tj+1))

� (nextdcol(dcol(t1 : : : tj); tj+1);

nextlcol(dcol(t1 : : : tj); lcol(t1 : : : tj); tj+1))

� (dcol(t1 : : : tj+1); lcol(t1 : : : tj+1))

Let h = lei(fj+1). Then h = lei(dcol(t1 : : : tj+1)) and by Lemma 6.2.8 we conclude

gj+1(h) = lcol(t1 : : : tj+1)(h) = jses(t1 : : : tj+1)j. Since ses(t1 : : : tj+1) is a su�x of

sjtj+1, we obtain sj+1 = ses(t1 : : : tj+1). Obviously, property 3 holds for Vj+1. If sj+1 2
Dj, then properties 4 and 5 hold forDj+1 and colj+1. If sj+1 =2 Dj, then property 4 holds

for Dj+1. Moreover, colj+1(sj+1) = (fj+1; gj+1) � (dcol(t1 : : : tj+1); lcol(t1 : : : tj+1)) �
(dcol(sj+1); lcol(sj+1)). 2

Algorithm MDC computes a new pair (fj+1; gj+1) of columns only if sjtj+1 =2 Vj. Thus, the
total number of computed pairs of columns is bound by q0 = jfsjtj+1 j 0 � j � n � 1gj.
Moreover, a new pair of columns is stored only if sj+1 =2 Dj. Hence, the number of pairs

of columns stored is q = jDnj. Obviously, q � q0 � n. A precise theoretical analysis of the

parameters q and q0 seems to be quite di�cult for an arbitrary cost function. Boundary

values for q and q0 are only known for the unit cost model.

Lemma 6.2.14 [Ukk93a] If � is the unit cost function, then q = O(minfn;mk+1 � jAjkg)
and q0 = O(minfn;mk+1 � jAjk+1g).
Proof See [Ukk93a]. 2

In the following, we consider how to implement Algorithm MDC. In section 6.2.2, we outline

the implementation techniques suggested in [Ukk93a]. These require to preprocess t into

a compact su�x tree. In section 6.2.3, we present a new technique which does without

preprocessing. The main advantage is that it uses atomic A+-trees and is therefore easier to

implement than Ukkonen's techniques. Finally, section 6.2.4 is devoted to a new technique

that connects the idea of Algorithm MDC with deterministic �nite automata.

6.2.2 Ukkonen's Implementation Techniques for MDC

For ease of presentation, Ukkonen describes his implementation techniques for Algorithm

MDC on the basis of an atomic A+-tree. In practice, a compact su�x trees is used instead.

As an alternative, Ukkonen suggests to use a su�x automaton [BBH+85, Cro88] or a space

economical su�x array [MM93a]. However, the latter data structure does not include su�x

links (or something comparable). This may lead to problems.

Let us assume that T = cst(t) including all inner su�x links has been preprocessed. To

implement Algorithm MDC, each string s 2 Vj is represented in constant space by its

location in T . colj is stored in a hash table which maps locT (s) to colj(s) for each s 2 Dj.

This table requires O(m �q) space. Note that the hash table is necessary since locT (s) can be

an edge location of the form (u; v; w; uvw). An alternative solution is to create the node uv

by splitting the edge u vw- uvw (see De�nition 3.2.11). Then colj(s) can be stored at uv and

a hash table is not necessary. However, the splitting changes the structure of T so that it

cannot be used for solving an approximate string searching problem with a di�erent pattern

or threshold. Therefore, we will not consider the alternative solution.

144 CHAPTER 6. APPROXIMATE STRING SEARCHING

To keep track of the locations representing Vj and Dj, one uses two additional hash tables.

Both need O(n) space since jVjj � jVnj � n and jDjj � jDnj � n. With this representation

an implementation of AlgorithmMDC should not be too di�cult. The resulting program (cf.

[Ukk93a, Algorithm A]) traverses T directed by the characters in t. Each input character tj+1
leads to a transition from locT (sj) to locT (sjtj+1). If locT (sj) is a node location, then such

a transition may require to inspect jAj edges outgoing from sj. Starting with locT (sjtj+1),

one successively calls the function linkloc until locT (sj+1) is reached. The total number of

calls to linkloc is bound by n and each call takes constant time on the average. Hence, the

traversal requires O(jAj �n) steps. Additionally there are q0 pairs of columns to be computed

and q to be stored. Thus, the program achieves an overall running time of O(m � q0+ jAj �n)
and uses O(m � q + n) space.

One of the main contributions of Ukkonen is an implementation technique for Algorithm

MDC that eliminates the dependency on n [Ukk93a, Algorithm B]. The technique works in

two phases: First it computes all di�erent shortest essential su�xes sj and corresponding

pairs (fj; gj) of columns, thereby skipping all steps of Algorithm MDC that do not produce

a new shortest essential su�x. This is accomplished by using a dictionary H which supports

operations for minimum extraction, deletion, and insertion. H is implemented by a balanced

search tree. Thus, each operation can be performed in log jHj time. In a second phase, the

compact su�x tree is traversed to obtain the solutions to the approximate string searching

problem. In particular, a position j 0 is output whenever there is a shortest essential su�x sj
such that fj(m) � k and sj ends at position j

0 in t. According to [Ukk93a, Theorem 10], this

technique can be implemented in O(m � q + n) time and O(m � q) space if jAj is a constant.
Unfortunately, the second implementation technique requires considerable overhead. For

this reason, Ukkonen devised a similar technique which does without a dictionary [Ukk93a,

Algorithm C]. It is much easier to implement and runs fast in practice. However, it computes

O(m �q) extra pairs of columns. Therefore, the running time is O(m2 �q+size of the output)

and the space requirement is O(m2 � q) (see [Ukk93a, Theorem 11]).

6.2.3 An Online Implementation Technique for MDC

Ukkonen's implementation techniques lead to programs that traverse only a small subset of

all locations in T , namely those locations representing Vn. In this section, we present a new

technique, the online implementation technique. The idea is to use an atomic A+-tree and

to construct only those parts of the tree that are likely to be traversed. In particular, for

each j; 0 � j � n one incrementally constructs the smallest atomic A+-tree Tj (including

su�x links) such that Vj � words(Tj) and words(Tj) is su�x-closed. Obviously, T0 is just

the root with no edges. Tj+1 is constructed from Tj as follows:

(i) If there is a tj+1-edge outgoing from node sj, then Tj+1 = Tj.

(ii) If there is no tj+1-edge outgoing from node sj, then apply Algorithm 1 of [Ukk93b]2

with top = sj. This adds for each su�x s of sj an edge s
tj+1- stj+1 to Tj, until s is

the root or such an edge already exists. Moreover, the algorithm adds a su�x link for

stj+1 if necessary. The resulting atomic A+-tree is Tj+1.

2This algorithm is used for the online construction of atomic su�x trees.

6.2. MEMORIZING DISTANCE COLUMNS 145

The correctness of this construction is clear. According to [Ukk93a], a shortest essential

su�x is of length O(m). Hence, case (ii) takes O(m � jAj) steps. Since it occurs q0 times, Tn
is constructed in O(m � q0 � jAj) time and O(m � q0) space.
Using Tj, we do not need hash tables. This considerably simpli�es the implementation. Vj
is represented by a boolean annotation of Tj. For each s 2 Dj the pair colj(s) of columns

is stored at node s of Tj. A node at which no pair of columns is stored represents a string

s =2 Dj. With this representation AlgorithmMDC can be implemented inO(m�q0�jAj+jAj�n)
time and O(m � q0) space.

6.2.4 A Technique Based on Deterministic Finite Automata

The technique we describe in this section does not follow the control
ow as speci�ed in

Algorithm MDC. Instead, it connects the ideas of Algorithm MDC with the concept of

deterministic �nite automata. The approach is to preprocess �, A, k, and p into a DFA whose

states are the shortest essential su�xes. The DFA is constructed in a top down manner, in a

similar way as the lazy su�x tree construction proceeds. Therefore, the construction phase

of the algorithm can be interleaved with the enumeration of the protocol. This leads to an

incremental construction which can easily be implemented in a lazy functional language.

The preprocessing technique is of special interest in contexts where the cost function, the

input alphabet, the threshold, and the pattern are �xed, and the input string varies. Con-

sider, for instance, the search for approximate occurrences of the \TATAAT"-box in DNA

sequences.

Before we describe the preprocessing of the algorithm, we show some important properties

of the set of all shortest essential su�xes.

Lemma 6.2.15 Let SES = fses(v) j v 2 A�g. SES is not empty, pre�x-closed, and �nite.

Proof Since ses(") = ", we obtain " 2 SES . Hence, SES is not empty. Suppose vb 2 SES .

Then ses(vb) = vb. By Lemma 6.2.5, we obtain ses(v)b
R
ses(vb). Hence, ses(v)

R
v. Since

v
R
ses(v), we can conclude ses(v) = v, that is, v 2 SES . Hence, SES is pre�x-closed. As

noted in [Ukk93a], a shortest essential su�x is of length O(m). Thus, there is a q � 1 such

that jsj � q �m for each s 2 SES . Therefore, SES is �nite. 2

According to Lemma 6.2.15, the set SES can be represented by an atomic A+-tree T such

that words(T) = SES .

Example 6.2.16 Let � be the unit cost function. Suppose A = fa; bg, k = 1, and p = abba.

Then SES is represented by the atomic A+-tree shown in Figure 6.2. Each node s such that

dcol(s)(m) � k is shown as a thick circle. 2

De�nition 6.2.17 The SES -automaton for �, A, k, and p is the deterministic �nite au-

tomaton (SES ;F ; s0; nextstate) where SES is as above, F = fs 2 SES j dcol(s)(m) � kg,
s0 = ", and nextstate(s; b) is the longest su�x of sb that occurs in SES . 2

146 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.2: The Atomic A+-tree Representing SES

b

@
@
@R

�
�

�	

a

b

?
b

b

@
@
@R

�
�

�	

a

rb

?
a

r

b

r

b

b

?
b

b

?
a

rb

@
@
@R

�
�

�	

a

rb

@
@
@R

�
�

�	

a

r

b

r

b

r

Example 6.2.18 Let �, A, k, and p be as in Example 6.2.16. The SES -automaton for �,

A, p, and k is given by the following table. The accepting states are underlined. They

correspond to the nodes in Figure 6.2 which are marked by thick circles.

" a ab aba abaa abb abba abbaa abbab abbb b bb bba

a a a aba abaa a abba abbaa a aba bba a bba a

b b ab abb ab ab abbb abbab ab abb bb bb bb ab

2

Algorithm SESA Construct the SES -automatonM = (SES ;F ; s0; nextstate) for �, A, p,
and k. Compute the protocol (s0; s1; : : : ; sn) of t w.r.t. M . Output j if sj 2 F . 2

Theorem 6.2.19 Algorithm SESA correctly solves the approximate string searching prob-

lem.

Proof Let 0 � j � n. It su�ces to prove that j is a solution to the approximate string

searching problem if and only if sj 2 F . In analogy to Theorem 5.2.2, one shows that sj is

the longest su�x of t1 : : : tj that occurs in SES . Let j be a solution to the approximate string

searching problem. Then dcol(t1 : : : tj)(m) � k. Obviously, we have t1 : : : tj
R
sj
R
s where

s = ses(t1 : : : tj). Hence, dcol(sj)(m) � dcol(s)(m) � k which implies sj 2 F . Let sj 2 F .
Then dcol(t1 : : : tj)(m) � dcol(sj)(m) � k. Hence, j is a solution to the approximate string

searching problem. 2

The most interesting part of Algorithm SESA is the construction of the SES -automatonM .

Lemma 6.2.15 suggests a construction which begins with state " and obtains longer and longer

states of SES in a top-town manner. Suppose s 2 SES and assume that we have computed

dcol(s) and lcol(s). According to Lemma 6.2.8, sb 2 SES if and only if jsbj = lcol(sb)(h)

where h = lei(dcol(sb)). To check the latter condition, one evaluates the distance column

dcol(sb) = nextdcol(dcol(s); b) and the length column lcol(sb) = nextlcol(dcol(s); lcol(s); b).

If jsbj = lcol(sb)(h), then one constructs a state sb and a transition nextstate(s; b) = sb. In

this way, sb and a transition from s to sb are constructed in O(m) time.

6.2. MEMORIZING DISTANCE COLUMNS 147

Suppose nextstate(s; b) 6= sb. That is, a transition nextstate(s; b) 6= sb is to be constructed.

By de�nition, nextstate(s; b) is the longest proper su�x of sb that occurs in SES . If s = ",

then we have nextstate(s; b) = ". If s 6= ", then nextstate(s; b) = nextstate(s0; b) where s0

is the longest proper su�x of s that occurs in SES . The construction of the transitions can

be organized such that state s0 is available if nextstate(s; b) is to be constructed (see section

6.2.5). Hence, nextstate(s; b) can be found in constant time. This means that each transition

nextstate(s; b) 6= sb is constructed in O(m) time, due to the computation of dcol(sb) and

lcol(sb).

Note that the top down approach allows to interleave the construction of M with the enu-

meration of the protocol of t w.r.t. M . Hence, M can be constructed incrementally. A

transition is constructed immediately before it is to be evaluated for the �rst time. This is

very similar to the lazy su�x tree algorithm. However, there are two important di�erences:

1. The construction of a transition nextstate(s; b) 6= sb may require to construct a tran-

sition nextstate(s0; b) 6= s0b. This may itself require to construct another transition,

and so on.

2. It is necessary to store dcol(s) and lcol(s) whenever there is a character b 2 A such

that nextstate(s; b) is not constructed yet. In the worst case, O(jSES j � m) space is

required for storing the columns.

The incremental construction can easily be implemented in a lazy functional language. This

will be shown in section 6.2.5. In an eager language, the laziness can be simulated by explicit

synchronization of the steps which construct a transition and the steps which evaluate a

transition.

The most important disadvantage of the incremental construction is the worst case space

requirement of O(jSES j � m) for the columns. If one completely constructs M , the space

requirement for the columns can considerably be reduced as shown in the following theorem.

Theorem 6.2.20 Algorithm SESA can be implemented in O(jSES j � jAj �m+ n) time and

O(jSES j � jAj+m2) space.

Proof In a �rst phase, the states and the transitions nextstate(s; b) = sb can be constructed

in a depth �rst strategy. This means that the states are created in lexicographic ordering.

If s is the current state, then it su�ces to store the distance and the length columns for

the pre�xes of s. Since jsj 2 O(m), O(m2) space is required for the columns. Hence, the

�rst phase of the construction takes O(jSES j � jAj �m) time and O(jSES j +m2) space. In

a second phase, the transitions nextstate(s; b) 6= sb are constructed as described above. To

guarantee that a transition is constructed before it is evaluated for the �rst time, one uses

a breadth �rst strategy which visits state s0 before state s, whenever js0j < jsj. The second
phase therefore takes O(jSES j � jAj) space and time. After M is constructed, the protocol

of t w.r.t. M is enumerated in O(n) time, without using extra space. 2

With the cuto� technique (see section 6.1), one can improve Algorithm SESA such that it

takes O(jSES j�jAj�k+n) time and O(jSES j�jAj+k �m) space in the expected case. The same

technique can obviously be applied in the incremental construction of the SES -automaton.

148 CHAPTER 6. APPROXIMATE STRING SEARCHING

Now it remains to give an upper bound for the size of SES . As noted in [Ukk93a], the

length of the shortest essential su�xes is O(m). Hence, there are at most 2 � jAjq�m � 1

di�erent shortest essential su�xes, for some q � 1. This result is not very satisfying. For a

very general class of cost functions (which contains all integer cost functions) we can prove

a useful property relating length and distance columns. This property can be exploited to

derive a tighter upper bound.

Lemma 6.2.21 Suppose � is a cost function such that �(" ! b) � 1 for all insertion

operations " ! b. Then we have lcol(v)(i) � i + dcol(v)(i) for each v 2 A� and each

i; 0 � i � m.

Proof By simultaneous induction on i and v. If i = 0 or v = ", then we have lcol(v)(i) =

0 � i + dcol(v)(i). Let f = dcol(vb) and g = lcol(vb). To show g(i+ 1) � i + 1 + f(i + 1),

we consider the following cases:

� If f(i + 1) = f(i) + �(pi+1 ! "), then we can conclude g(i + 1) = g(i) � i + f(i) =

i+ f(i+ 1)� �(pi+1 ! ") < i+ f(i+ 1) < i + 1 + f(i+ 1).

� If f(i+1) = dcol(v)(i)+�(pi+1 ! b), then g(i+1) � lcol(v)(i)+1 � i+dcol(v)(i)+1 =

i+ 1 + f(i+ 1)� �(pi+1 ! b) � i + 1 + f(i+ 1).

� If f(i + 1) = dcol(v)(i + 1) + �(" ! b), then we have g(i + 1) � lcol(v)(i + 1) + 1 �
i+ 1 + dcol(v)(i+ 1) + 1 = i+ 1 + f(i+ 1)� �("! b) + 1 � i + 1 + f(i+ 1).

Note that the restriction to the cost function is solely used to derive the last inequality. 2

Theorem 6.2.22 Let � be as in Lemma 6.2.21. Then jSES j � 2 � jAjm+k � 1.

Proof Let s 2 SES and h = lei(dcol(s)). Then jsj = lcol(s)(h) � h+dcol(s)(h), by Lemmas

6.2.8 and 6.2.21. Now h � m and dcol(s)(h) � k. This implies jsj � m + k. Hence, there

are at most 2 � jAjm+k � 1 di�erent shortest essential su�xes. 2

It is unclear whether the upper bound derived in Theorem 6.2.22 holds for arbitrary cost

functions.

Before we present an implementation of Algorithm SESA, we brie
y recall the main achieve-

ments of section 6.2. Based on the notion of essential su�xes, we have developed a declarative

description of Algorithm MDC, including a detailed correctness proof. Algorithms A, B, and

C of [Ukk93a] were described as special instances of Algorithm MDC. Moreover, we devised

a new online implementation technique which is easier to implement since it is based on

atomic A+-trees. Finally, we showed how to combine the ideas of Algorithm MDC with the

concept of deterministic �nite automata. An interesting subject of future work would be to

compare all these technique on a practical basis.

6.2.5 Implementation

For the implementation of Algorithm SESA we need a function that simultaneously computes

distance and length columns. As usual, we develop a corresponding table speci�cation.

6.2. MEMORIZING DISTANCE COLUMNS 149

dltable::(costfunction �)!(string �)!tablespec � (num,num)

dltable delta p

= (zip2 firstdcol (repeat 0),nextcol)

where firstdcol = 0:[no + delta (D a) | (no,a) zip2 firstdcol p]

firstentry we b = (0,0)

nextcol = absnextcol firstentry (dljoin3 delta) undef p

dljoin3::(costfunction �)!�!�!(num,num)!(num,num)!(num,num)!(num,num)

dljoin3 delta a b (dwe,lwe) (dno,lno) (dnw,lnw)

= min2 (min2 (dwe + delta (I b),lwe+1) (dno + delta (D a),lno))

(dnw + delta (R a b),lnw+1)

Let f be a distance column and g be a length column. f and g are represented by the list

[(f(0); g(0)); : : : ; (f(m); g(m))]. dltable is a generalization of the table speci�cation seltable

(see section 6.1.1). While seltable computes the list �rstdcol representing the distance col-

umn dcol("), dltable computes the list (zip2 �rstdcol (repeat 0)) representing dcol(") and

lcol(") (see De�nition 6.2.9). The function nextcol, as speci�ed in dltable, computes columns

with the �rst entry (0; 0). nextcol uses a function dljoin3 which joins three pairs (dwe; lwe),

(dno; lno), and (dnw; lnw) to yield a pair (f(i+1); g(i+1)). f(i+1) is computed in the usual

way by adding up corresponding costs and taking the minimum. g(i + 1) is simultaneously

computed with f(i + 1) as the second component of some pair (dwe + delta(I b); lwe + 1),

(dno+delta(D a); lno), and (dnw+delta(R a b); lnw+1), whose �rst component is f(i+1).

If there is more then one such pair, the property lno � lnw + 1 � lwe + 1 guarantees that

g(i+ 1) is correctly computed according to De�nition 6.2.9. Note that nextcol corresponds

to the function dp in [Ukk93a].

Based on the table speci�cations dltable and selcotable, one derives a cuto� version dlcotable.

dlcotable::(costfunction �)!num!(string �)!tablespec � (num,num)

dlcotable delta k p

= (zip2 firstdcol (repeat 0),nextcol)

where firstdcol = 0:takewhile (<=k) [no+delta (D a) | (no,a) zip2 firstdcol p]

firstentry we b = (0,0)

dljoin2 a b (dno,lno) (dnw,lnw) s

= takewhile ((<=k).fst) z

where z = x:[(dno + delta (D a),lno) | ((dno,lno),a) zip2 z s]

where x = min2 (dno+delta (D a),lno)

(dnw+delta (R a b),lnw+1)

nextcol f b

= cutsuffix ((>k).fst) f'

where f' = absnextcol firstentry (dljoin3 delta) dljoin2 p f b

In dlcotable, the columns f and g are represented by the list [(f(0); g(0)); : : : ; (f(h); g(h))]

where h = lei(f). Note that m = h if and only if f(m) � k. The function dljoin3 is reused

to implement the function nextcol above. dljoin2 is a straightforward generalization of the

function join2 in selcotable. Therefore, the correctness of dlcotable is obvious.

SupposeA is given as a pair (characters; encode) of type (alphabet �). Let l = jAj. The func-
tion makeSESA incrementally constructs the SES -automaton M = (SES ;F ; s0; nextstate)
for �, A, p, and k. M is implemented by the expression s0 of type dfa. s0 represents the

initial state s0 (see De�nition 3.8.5). Our implementation requires extension 1.

150 CHAPTER 6. APPROXIMATE STRING SEARCHING

makeSESA::(costfunction �)!(alphabet �)!num!(string �)!dfa

makeSESA delta (characters,encode) k p

= s0

where m = #p

l = #characters

(firstcol,nextcol) = dlcotable delta k p

blub = [(b,lookup (encode b)) | b characters]

s0 = S (m+1=#firstcol)

(makearray l [bsucc 1 (nextcol firstcol b) s0 | b characters])

bsucc d col (S accept' succ')

= S (m=h) succ, if d = snd (col!h)

= S accept' succ', otherwise

where h = #col-1

succ = makearray l [bsucc (d+1) (nextcol col b)

(lub succ') | (b,lub) blub]

Initially, makeSESA computes the table speci�cation (�rstcol ; nextcol) using the function

dlcotable. Moreover, it constructs an ordered list blub of pairs (b; lub) for each character

b. lub = lookup (encode b) is a function that returns the entry at index (encode b) if it

is applied to some array. s0 is the expression (S accept succ) where accept is true if and

only if dcol(")(m) � k. succ is an array representing the successors of s0. Note that we use

programming with unknowns: s0 is used in the equation de�ning s0.

bsucc is the central function in makeSESA. Suppose s 2 SES and b 2 A. To compute

the representation of the b-successor of s, bsucc is called with three arguments d, col, and

(S accept0 succ0) such that the following holds:

� d = jsbj,
� col represents dcol(sb) and lcol(sb), and
� (S accept0 succ0) represents the longest proper su�x of sb that occurs in SES .

Note that (S accept0 succ0) may not be constructed yet. However, due to the laziness we do

not have to worry about this.

Let h = jcolj � 1. Then h is the last essential index of dcol(sb). Hence, if d = snd (col!h)

then sb 2 SES is the b-successor of s. sb is a new state which is represented by an expression

(S accept succ). accept is true if and only if dcol(sb)(m) � k. succ is an array representing the

successors of sb. These are computed by recursively calling bsucc with the proper arguments

for each b 2 A. If d 6= snd(col!h), then the b-successor of s is the longest proper su�x of

sb that occurs in SES . By assumption, the b-successor of s is represented by the expression

(S accept0 succ0).

It is easily veri�ed that makeSESA computes each state and each transition of the SES -

automaton M in O(m) time. Hence, our implementation is optimal.

Algorithm SESA is implemented by the function appSESA.

appSESA::(costfunction �)!(alphabet �)!num!(string �)!(string �)![num]

appSESA delta alpha k p t = dfarun alpha (makeSESA delta alpha k p) t

6.3. PROPERTIES OF TABLE D 151

Figure 6.3: Table D for p = adbbc and t = abbdadcbc

j

D 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 0 1 1 1 1

i 2 2 1 1 2 1 1 0 1 2 2

3 3 2 1 1 2 2 1 1 1 2

4 4 3 2 1 2 3 2 2 1 2

5 5 4 3 2 2 3 3 2 2 1

The construction phase is accomplished by makeSESA. For computing the solutions to the

approximate string searching problem, we use the function dfarun which was introduced in

section 3.8.1.

6.3 Properties of Table D

The k-di�erences (approximate string searching) problem is the approximate string searching

problem restricted to the case of the unit cost function. For the rest of this chapter, we

consider this problem. That is, we assume that k is a non-negative integer and that � is the

unit cost function.

Due to its interesting combinatorics, the k-di�erences problem has received a lot of atten-

tion [Ukk85b, LV88, LV89, GG88, GP90, JTU91, WMM91, Ukk92a, CL92, UW93, TU93,

Mye94a, CL94, CM94]. Several fast algorithms have been developed. The key to most of

these are the properties of the dynamic programming table D which are recalled in this

section.

De�nition 6.3.1 For each i; 0 � i � m and each j; 0 � j � n we de�ne D(i; j) =

dcol(t1 : : : tj)(i). A D-diagonal is a forward diagonal (&) in D. More precisely, D-diagonal

h consists of the values D(i; h + i), 0 � i � m, 0 � h + i � n. lastcol(h) = minfn;m + hg
is the last column on D-diagonal h. 2

Example 6.3.2 [GP90] Let k = 2, p = adbbc, and t = abbdadcbc. Figure 6.3 shows the

corresponding table D. D-diagonal 4 consists of the values 0, 0, 0, 1, 1, 1. The solutions to

the k-di�erences problem are 3, 4, 7, 8, and 9. 2

From De�nitions 6.1.1 and 6.3.1 one derives the following properties of table D.

D(0; 0) = 0

D(i+ 1; 0) = D(i; 0) + 1

D(0; j + 1) = 0

D(i+ 1; j + 1) = min

8><
>:
D(i; j + 1) + 1

D(i+ 1; j) + 1

D(i; j) + (if pi+1 = tj+1 then 0 else 1)

9>=
>;

152 CHAPTER 6. APPROXIMATE STRING SEARCHING

These recurrences are, for instance, stated in [Ukk85b, GG88, GP90, CL92, UW93, CL94].

Consecutive entries in D-columns, D-rows, and D-diagonals di�er by at most one. Addition-

ally the entries in D-diagonals are non-decreasing. This is formally stated in the following

lemma.

Lemma 6.3.3 Table D has the following properties:

1. D(i; j)� 1 � D(i+ 1; j) � D(i; j) + 1, 0 � i � m� 1, 0 � j � n.

2. D(i; j) � D(i+ 1; j + 1) � D(i; j) + 1, 0 � i � m� 1, 0 � j � n� 1.

3. D(i; j + 1)� 1 � D(i; j) � D(i; j + 1) + 1, 0 � i � m, 0 � j � n� 1.

Proof

1. Follows from Lemma 1 in [Ukk85b].

2. By [Ukk85b, Lemma 2], we have D(i; j) � D(i+ 1; j + 1). Moreover, by de�nition we

have D(i+ 1; j + 1) � D(i; j) + �(pi+1 ! tj+1) � D(i; j) + 1.

3. For i = 0 the third inequality is obviously true. Suppose i > 0. Then by de�nition

D(i; j + 1) � D(i; j) + 1. Hence, we obtain D(i; j + 1) � 1 � D(i; j). Furthermore,

D(i; j) � D(i� 1; j) + 1 � D(i; j + 1) + 1 by statement 1 and 2. 2

Properties 1 and 2 were (essentially) �rst stated in [Ukk85b]. Note that all three properties

hold for the table E� correspondingly. In fact, we have taken advantage of this in the table

speci�cation uedisttable for computing the unit edit distance fast (see section 3.9.5).

From the properties stated in Lemma 6.3.3 we can conclude the following:

Lemma 6.3.4 For all i; j; 0 � i � m� 1; 0 � j � n� 1 the following properties hold.

1. If D(i; j) � D(i; j + 1) and D(i; j) � D(i + 1; j), then D(i; j) = D(i+ 1; j + 1) if and

only if pi+1 = tj+1.

2. D(i+ 1; j + 1) =

8><
>:
D(i; j); if pi+1 = tj+1
D(i; j + 1) + 1; else if D(i; j + 1) < D(i; j)

1 + minfD(i+ 1; j); D(i; j)g; otherwise

Proof

1. By assumption, we have

D(i+ 1; j + 1) = min

8><
>:
D(i+ 1; j) + 1;

D(i; j + 1) + 1;

D(i; j) + �(pi+1 ! tj+1)

9>=
>; = D(i; j) + �(pi+1 ! tj+1)

Hence, D(i; j) = D(i+ 1; j + 1) () �(pi+1 ! tj+1) = 0 () pi+1 = tj+1.

2. Routine. 2

In the following sections, we consider the most important algorithms for solving the k-

di�erences problem. Except for the algorithms described in section 6.8, all take advantage

of the properties stated in Lemmas 6.3.3 and 6.3.4.

6.4. UKKONEN'S CUTOFF ALGORITHM 153

6.4 Ukkonen's Cuto� Algorithm

The algorithm considered in this section is Algorithm SELco (see section 6.1) restricted to

the unit cost function. This restriction allows some optimizations. Since the algorithm is

due to Ukkonen [Ukk85b], we call it UKKco. Jokinen et al. [JTU91] instead use the term

\enhanced dynamic programming".

Algorithm UKKco [Ukk85b] Compute D(i; 0) = i for each i; 0 � i � k, and set l0 = k.

For each j; 0 � j � n� 1 and each i; 0 � i � lj, perform the following steps:

(1) If i < lj, then compute D(i+ 1; j + 1) according to Lemma 6.3.4, Statement 2.

(2) Let i = lj < m. If pi+1 = tj+1 or k > D(i; j + 1), then set D(i + 1; j + 1) = k and

lj+1 = lj + 1. Otherwise, set lj+1 = maxfl j 0 � l � lj; D(l; j + 1) = kg.

For each j; 0 � j � n output j if lj = m. 2

Theorem 6.4.1 Algorithm UKKco correctly solves the k-di�erences problem.

Proof We show by induction on j that lj is the last essential index of the j-th column of

table D, and that the values D(i; j) are computed correctly for each i; 0 � i � lj. This

implies the correctness. For j = 0 the claim easily follows. Suppose the claim holds for some

j; 0 � j � n� 1. Let 0 � i � lj.

(1) If i < lj, then D(i + 1; j + 1) depends on D(i; j + 1), D(i + 1; j) and D(i; j). These

values are computed correctly. Hence, D(i+ 1; j + 1) is computed correctly according

to Lemma 6.3.4, Statement 2.

(2) Let i = lj < m. Then D(i; j) = k and k � D(i + 1; j + 1) < D(i + 2; j + 1) < � � � <
D(m; j+1). If pi+1 = tj+1 or k > D(i; j+1), then D(i+1; j+1) = k and lj+1 = lj+1

is the last essential index of column j + 1. Otherwise, D(i+ 1; j + 1) > k and the last

essential index of the column j + 1 is � lj. 2

Algorithm UKKco computes O(lj) entries in column j of table D. In the worst case, lj = m.

Hence, the worst case running time is O(m � n). Ukkonen [Ukk85b] stated that the average

value of the lj is O(k). Chang and Lampe [CL92] provided the �rst proof of this statement.

Thus, we can conclude that the expected running time of Algorithm UKKco is O(k � n).

6.4.1 Implementation

From the table speci�cation for Algorithm SELco we can easily derive a table speci�cation

for Algorithm UKKco.

154 CHAPTER 6. APPROXIMATE STRING SEARCHING

ukkcutofftable::num!(string �)!tablespec � num

ukkcutofftable k p

= (firstcol,nextdcol)

where firstcol = [0..k]

firstentry we b = 0

join2 a b no nw s = [k], if a = b _ k > no

= [], otherwise

nextdcol f b = cutsuffix (>k) f'

where f' = absnextcol firstentry ujoin3 join2 p f b

In the �rst column of table D, only k+1 entries are computed. These are represented by the

list [0 : : : k]. Case (1) of Algorithm UKKco is implemented by the function ujoin3 which was

already used for computing the unit edit distance (see section 3.9.5). Case (2) is implemented

by the function join2. ujoin3 and join2 serve as the second and third argument of the

function absnextcol. Note that if join2 computes the empty list, the column f 0 returned by

absnextcol may end with a non-empty su�x of values that are greater than k. This su�x is

cut o� in O(jf 0j) steps using the function (cutsu�x (> k)).

appUKKco implements UKKco. Note that appUKKco di�ers from appSELco only in the

table speci�cation.

appUKKco::num!(string �)!(string �)![num]

appUKKco k p t = [j | (j,f) zip2 [0..] (scanl nextdcol firstcol t); ok f]

where (firstcol,nextdcol) = ukkcutofftable k p

ok f = [] ~= drop (#p) f

From the above it is clear that appUKKco is an optimal implementation of Algorithm

UKKco.

6.5 Ukkonen's Column-DFA

In [Ukk85b], an algorithm is described that preprocesses A, k, and p into a deterministic

�nite automaton that scans the input string t in O(n) steps, thereby �nding all approximate

matches. Intuitively, each state of the automaton represents a possible column of table D

and each transition represents the computation of a column from a previous column. Recall

that Algorithm SESA also constructs a DFA. However, unlike Algorithm SESA, Ukkonen's

algorithm is restricted to the unit cost function.

Let f be a distance column. If f(i) > k, then the exact value of f(i) does not matter (see

Lemma 6.1.4). Hence, each value f(i) larger than k can be set to k + 1, without a�ecting

the correctness of Sellers' algorithm. This motivates the following de�nition.

De�nition 6.5.1 For each v 2 A� the column ndcol(v) is de�ned as follows:

ndcol(v)(i) = minfdcol(v)(i); k + 1g

for all i; 0 � i � m. ndcol(v) is the normalized distance column of v. f 2 C is a normalized

distance column if f = ndcol(v) for some v 2 A�. 2

6.5. UKKONEN'S COLUMN-DFA 155

Note that a normalized distance column containsm+1 values, all of which are� k+1. Hence,

there are only �nitely many normalized distance columns. Ukkonen de�nes his automaton

by giving a program for its construction. Our column-notation allows a very convenient

declarative de�nition.

De�nition 6.5.2 The column-DFA for A, k, and p is the deterministic �nite automaton

(S;F ; s0; nextndcol) which is speci�ed as follows:

1. S = fndcol(v) j v 2 A�g,
2. F = ff 2 S j f(m) � kg,
3. s0 = ndcol("),

4. nextndcol(ndcol(v); b) = ndcol(vb), for all v 2 A� and all b 2 A. 2

Notice that one can de�ne the column-DFA on all distance columns. (Ukkonen initially

did this in [Ukk85b].) However, using normalized distance columns reduces the size of the

automaton considerably.

Example 6.5.3 Let A = fa; bg, k = 1, and p = abba as in Example 6.2.16. The column-

DFA forA, k, and p is represented by the following table. The states are written as sequences
of integers. The accepting states are underlined.

01222 01122 01112 01111 01101 01012 01011 00122 00121 00111 00110

a 00122 00122 00121 00121 00110 00111 00111 00122 00122 00121 00121

b 01122 01112 01112 01112 01111 01101 01101 01012 01012 01012 01011

The automaton has 11 states. Note that the corresponding SES -automaton as shown in

Example 6.2.18 has 13 states. This is because ndcol(abaa) = ndcol(abbaa) = ndcol(bba) =

00121, that is, the shortest essential su�xes abaa, abbaa, and bba map to the same normalized

distance column 00121. All other shortest essential su�xes map to a di�erent column. 2

Note that for each state f 2 S there is at least one shortest essential su�x s such that

ndcol(s) = f . This means that the column-DFA never has more states than the corre-

sponding SES -automaton. In particular, the column-DFA can be considered as a minimized

SES -automaton, in which shortest essential su�xes are identi�ed if they yield the same

normalized distance column.

Algorithm Cdfa [Ukk85b] Preprocess the column-DFA M = (S;F ; s0; nextndcol) for A,
k, and p. Compute the protocol (s0; s1; : : : ; sn) of t w.r.t. M . Output j if sj 2 F . 2

The crucial point in Algorithm Cdfa is the preprocessing phase. Ukkonen [Ukk85b] gives an

imperative program for constructing a column-DFA. By an iteration over A and an already

computed subset of S, the program successively constructs the remaining states, together

with the transitions. In order to compute a transition e�ciently, the representation of S is

very important. Ukkonen suggests to represent each f 2 S by the sequence

(f(1)� f(0); f(2)� f(1); : : : ; f(m)� f(m� 1)) (6.1)

156 CHAPTER 6. APPROXIMATE STRING SEARCHING

of di�erences. According to Lemma 6.3.3, Statement 1, f(i) � f(i � 1) 2 f1; 0;�1g for all
i; 1 � i � m. Hence, (6.1) can conveniently be stored in a ternary tree whose edge labels

are 1, 0, and �1. Each membership test and each insertion into the ternary tree can be

performed in O(m) steps. Thus, a transition can be computed in O(m) steps. Let l = jAj.
Since there are jSj � l transitions, the column-DFA can be constructed in O(jSj � l �m) time.

The space requirement for the ternary tree is O(jSj �m).

By the cuto� technique described in section 6.4, one can improve the average case e�ciency

of the preprocessing.3 In particular, each f 2 S can be uniquely represented by the sequence

(f(1)� f(0); f(2)� f(1); : : : ; f(lei(f))� f(lei(f)� 1)) (6.2)

Since the expected value of the last essential index is O(k) (see [CL92]), a membership test

and an insertion into the ternary tree takes O(k) steps in the expected case. Hence, the

construction time and the size of the ternary tree reduce in the expected case to O(jSj � l �k)
and O(jSj � k), respectively.
In every step of the preprocessing phase, the new states, that is, those for which the transi-

tions have not been computed yet, must be stored. As all new states occur in the ternary

tree, Ukkonen suggests to use a queue of pointers to the nodes representing the new states.

This queue takes O(jSj) space, and deletions and insertions can be performed in constant

time. Hence, the worst case preprocessing time is O(jSj � l �m) and the space requirement is

O(jSj � (l +m)). To obtain the complexities for the average case, one substitutes m by k.

The representation of S by a ternary tree implies jSj 2 O(3m). Taking the threshold and

the size of the input alphabet into consideration, Ukkonen derives a second upper bound.

He shows that jSj 2 O(2k � lk �mk+1). This gives the following result.

Theorem 6.5.4 [Ukk85b] Algorithm Cdfa correctly solves the k-di�erences problem in

O(q � l �m+ n) time and O(q � (l+m)) space where q = minf3m; 2k � lk �mk+1g and l = jAj.
Proof See [Ukk85b]. 2

Theorem 6.5.4 shows that if m and k are not quite small, the large time and space require-

ments may limit the applicability of Algorithm Cdfa. However, there are some practical

improvements:

� One can organize the algorithm such that the construction of the column-DFA is

interleaved with the computation of the protocol. That is, a transition is constructed

immediately before it is evaluated for the �rst time. Such an incremental construction

may lead to an improvement of the overall running time. It can easily be implemented

in a lazy language, as we will show in the following section.

� Ukkonen [Ukk85b] suggested to identify normalized distance columns if the �rst, say,

(3 � k)=2 entries are equal. This considerably reduces the number of states and the

preprocessing e�ort. Of course, simultaneously the search phase slows down since the

entries f(i) � k for each i; 3 � k=2 < i � m must be maintained, while the input string

is scanned. However, on the average such entries do not occur, and the search phase

still take O(n) time in the expected case.

3In fact, Ukkonen described the cuto� technique in his paper [Ukk85b] about the column-DFA.

6.5. UKKONEN'S COLUMN-DFA 157

� Wu, Manber, and Myers [WMM92] have carried Ukkonen's idea further. They describe

an algorithm which directly maintains the list of di�erences. That is, instead of com-

puting f 0 = nextndcol(f; b), some dynamic programming on the list (6.2) is performed

to obtain the list (f 0(1) � f 0(0); f 0(2) � f 0(1); : : : ; f 0(lei(f 0)) � f 0(lei(f 0) � 1)). This

means that the normalized distance columns do not explicitly occur in the algorithm.

The main idea of Wu, Manber, and Myers is to partition the lists of di�erences into

non-overlapping regions of length r where r 2 O(logn). Since the list of di�erences

is of expected length O(k), there are O(k=r) such regions. Each region is uniquely

encoded as a state of a \universal" automaton which is used to compute one region

from a previous region in constant time. In this way, a state transition of the column-

DFA is simulated by O(k=r) state transitions of the universal automaton. The latter

automaton is much smaller than the former. In particular, Wu, Manber, and Myers

show that the universal automaton requires O(jAj � m= logn + n) space and that it

can be computed in O(jAj �m + n) time. Now consider the search phase. The uni-

versal automaton performs O(k �n= logn) state transitions, each taking constant time.

Thus, the search phase takes O(k � n= logn) expected time. Wu, Manber, and Myers

have shown that in practice their algorithm is four to �ve times faster than Algorithm

UKKco. They present no measurements which compare their algorithm to Algorithm

Cdfa.

6.5.1 Implementation

In this section, we �rst consider the main data types used for implementing Algorithm

Cdfa. Then we give a greedy preprocessing function that always constructs the column-DFA

completely. Moreover, we develop a function that performs an incremental construction,

thereby exploiting lazy evaluation. Finally, we combine the preprocessing phase with the

search phase.

Let (S;F ; s0; nextndcol) be the column-DFA for A, k, and p. A state f 2 S is represented

by the list [f(0); f(1); : : : ; f(lei(f))]. Hence, f is an accepting state if and only if this list is

of length m+ 1. If we apply the following function di�s to the above list, then we obtain in

O(lei(f)) steps the list (6.2) of di�erences. Notice that (scanl (+) 0) is the inverse function
to di�s.

diffs::[num]![num]

diffs f = [e-e' | (e,e') zip2 (drop 1 f) f]

A ternary tree is implemented by an expression of type (tern �). Each node is labeled by

an expression of type (value �).

tern � ::= T (value �) (tern �) (tern �) (tern �) | Emptytern

value � ::= Defval � | Undefval

A non-empty ternary tree is implemented by an expression of the form (T v e e0 e00). An

implicit edge labeled 1 leads to the subtree e. An implicit edge labeled 0 leads to the subtree

e0. An implicit edge labeled �1 leads to the subtree e00. Let tern be an expression of type

(tern dfa). A node in tern is denoted by v if v is the path from the root to the node. The

158 CHAPTER 6. APPROXIMATE STRING SEARCHING

state f 2 S occurs in tern if there is a node v such (di�s f = v) and v is labeled by an

expression (Defval s) where the expression s of type dfa represents f according to De�nition

3.8.5. The constructor Undefval is used for labeling nodes which do not represent a state.

We use the function getvalue to select an �-value from an expression of the form (Defval s).

getvalue::(value �)!�

getvalue (Defval s) = s

Note that we could also use the data type tree to implement a ternary tree. However, this

would lead to a tree structure with explicit edge labels, which would nearly double the size

of the representation.

Let ds be a list of di�erences 0, 1, and �1. (newtern s ds) returns in O(jdsj) time a ternary

tree with the path ds. The node corresponding to ds is labeled with (Defval s).

newtern::�![num]!(tern �)

newtern s (1:ds) = T Undefval (newtern s ds) Emptytern Emptytern

newtern s (0:ds) = T Undefval Emptytern (newtern s ds) Emptytern

newtern s (-1:ds) = T Undefval Emptytern Emptytern (newtern s ds)

newtern s [] = T (Defval s) Emptytern Emptytern Emptytern

(lookuptern ds tern) looks for the path ds in the ternary tree tern. If the path exists,

then the label of the corresponding node is returned. Otherwise, Undefval is returned. The

running time is O(jdsj).

lookuptern::[num]!(tern �)!value �

lookuptern (1:ds) (T value e e' e'') = lookuptern ds e

lookuptern (0:ds) (T value e e' e'') = lookuptern ds e'

lookuptern (-1:ds) (T value e e' e'') = lookuptern ds e''

lookuptern [] (T value e e' e'') = value

lookuptern ds Emptytern = Undefval

(inserttern s ds tern) updates the ternary tree tern. That is, it constructs a node corre-

sponding to the path ds if such a node does not already exist in tern. The node is labeled

with (Defval s). The running time is O(jdsj).

inserttern::�![num]!(tern �)!(tern �)

inserttern s (1:ds) (T value e e' e'') = T value (inserttern s ds e) e' e''

inserttern s (0:ds) (T value e e' e'') = T value e (inserttern s ds e') e''

inserttern s (-1:ds) (T value e e' e'') = T value e e' (inserttern s ds e'')

inserttern s [] (T value e e' e'') = T (Defval s) e e' e''

inserttern s ds Emptytern = newtern s ds

We assume that A is given as a pair (characters; encode) of type (alphabet �). The function

makecdfa computes the column-DFA for A, k, and p.

6.5. UKKONEN'S COLUMN-DFA 159

makecdfa::[�]!num!(string �)!dfa

makecdfa characters k p

= s0

where m = #p

l = #characters

(firstcol,nextdcol) = ukkcutofftable k p

nextndcol f b = map (min2 (k+1)) (nextdcol f b)

initialtern = inserttern s0 (diffs firstcol) Emptytern

s0 = S (m=k) (makearray l (fst (gettrans firstcol initialtern)))

gettrans f tern = foldr bsucc ([],tern) (map (nextndcol f) characters)

bsucc f' (ss,tern)

= (s:ss,tern'), if value = Undefval

= (getvalue value:ss,tern), otherwise

where df' = diffs f'

value = lookuptern df' tern

s = S (1+m=#f') (makearray l translist')

(translist',tern') = gettrans f' (inserttern s df' tern)

Initially, makecdfa computes m and l and calls the function ukkcuto�table (see section 6.4) to

obtain the table speci�cation (�rstcol ; nextdcol). By de�nition, �rstcol represents ndcol(").

The function nextndcol is easily implemented by combining nextdcol with a normalization

step accomplished by the function (map (min2 (k + 1))). The running time of nextndcol is

proportional to the length of f . According to De�nition 3.8.5, the column-DFA is imple-

mented by an expression s0 of type dfa. The successors of s0 are computed by evaluating the

expression (gettrans �rstcol initialtern) where initialtern is a ternary tree in which �rstcol

occurs as the only state. initialtern is obtained by inserting s0 with the path (di�s �rstcol)

into an empty ternary tree. Note that we use programming with unknowns: s0 depends

on initialtern and vice versa. However, since we do not need to evaluate s0 to compute

initialtern the mutual dependency does not lead to problems.

Let f 2 S and suppose tern is a ternary tree representing some subset of S n ffg. The

expression (gettrans f tern) returns a pair (translist; tern0). translist is the list of succes-

sors of f . tern0 is a ternary tree in which all states occur that have been obtained while

computing translist. gettrans is implemented by iterating the function bsucc on the states

(f 0 = nextndcol f b), for each b 2 A. bsucc works as follows. It computes the list df 0 of

di�erences for f 0 and looks up df 0 in tern. This takes O(jf 0j) steps and gives an expression

value of type (value dfa). Consider the following cases.

� If value = Undefval , then f 0 does not occur in tern. Therefore, an expression s is

computed which represents f 0. s is inserted in tern. This takes O(jf 0j) steps and gives

a ternary tree to which gettrans is applied in order to compute the successors of s and

the updated ternary tree tern0. If there are h states occurring in tern and h0 states

occurring in tern0, then the running time of gettrans is O(jh0� hj � l � r) where l = jAj
and r is the average length of the r0 � r states inserted in tern. Note again the use of

programming with unknowns: s depends on translist0 and vice versa. Since s can be

inserted into tern without evaluating s, this dependency does not cause an error.

� If value 6= Undefval , then f 0 occurs in tern and the b-successor of f is selected from

the expression value.

160 CHAPTER 6. APPROXIMATE STRING SEARCHING

From the remarks above, it is clear that the running time of makecdfa is O(jSj � l �m) in the

worst case and O(jSj � l � k) in the average case. Note that the function makecdfa computes

the column-DFA in a greedy strategy. Whenever a new state f 0 is obtained, the function

bsucc immediately constructs a path (v = di�s f 0) in the actual ternary tree and labels the

node v with the dfa-expression s representing f 0. Due to the laziness, it is not necessary

to evaluate s. However, after (bsucc f 0 (ss; tern)) is evaluated, other calls of the function

bsucc may occur which look up or insert some value in tern0. To perform these operations,

all ternary operation initiated by the call (bsucc f 0 (ss; tern)) must be completed. Hence,

makecdfa always evaluates the column-DFA completely. The construction is not incremental

which means that it is not very useful in practice. However, we have included it here because

it is an optimal implementation which is simple and elegant due to the use of programming

with unknowns.

An alternative to the greedy strategy is to construct a path (v = di�s f 0) in the actual

ternary tree and to label the node v with a unique number, the state number of f 0. f 0 is

stored in a queue. In this way, the computation of the dfa-expression representing f 0 is

postponed until all states with a smaller state number have been completely processed. In

the following, we show how to implement the postponing strategy. We need a data type

(queue �) supporting the following four functions:

emptyqueue::queue �

queueisempty::(queue �)!bool

enqueue::(queue �)!�!(queue �)

dequeue::(queue �)!(�,queue �)

emptyqueue returns the empty queue. (queueisempty q) checks if q is the empty queue.

(enqueue q a) adds an element a to the back of q. dequeue is applied to a non-empty

queue q and returns a pair (a; q0) where a is the �rst element of the front of q and q0 is q

after removing a from the front. In Appendix A, we show how to implement queues purely

functionally such that the four operations take constant time on the average.

Let characters = [c0; : : : ; cl�1]. The function makeftrans constructs a list

ftrans = [(f0; trans0); : : : ; (fh; transh)]

such that the following is true: S = ff0; : : : ; fhg, and for each j; 0 � j � h, transj is the

list [i0; : : : ; il�1] of indices where nextndcol(fj; cr) = fir for each r; 0 � r � l� 1. Obviously,

ftrans is a representation of the column-DFA.

makeftrans::[�]!num!(string �)![([num],[num])]

makeftrans characters k p

= generate (newtern 0 (diffs firstcol)) 1 (enqueue emptyqueue firstcol)

where (firstcol,nextdcol) = ukkcutofftable k p

nextndcol f b = map (min2 (k+1)) (nextdcol f b)

generate tern snr new

= [], if queueisempty new

= (f,trans):generate tern' snr' new', otherwise

where (f,new'') = dequeue new

(trans,tern',snr',new') = foldr bsucc' ([],tern,snr,new'')

(map (nextndcol f) characters)

6.5. UKKONEN'S COLUMN-DFA 161

makeftrans uses a function generate to construct ftrans from left to right. generate has

three arguments: a ternary tree tern, an integer snr, and a queue new. Suppose generate

has constructed [(f0; trans0); : : : ; (fh0; transh0)] for some h0 � h. Then new contains the

states fh0+1; : : : ; fsnr�1. Moreover, tern represents the states f0; : : : ; fsnr�1, and a node in

tern which corresponds to a state fr is labeled by the expression (Defval r). Note that r is

of type num. Due to its polymorphism, we can reuse the data type (tern �) and instantiate

� by num. generate works as follows. If new is empty, then h0 = h and ftrans is computed.

If new is not empty, then f = fh0+1 is dequeued which gives a queue new00. To obtain the

list trans = transh0+1 and appropriately updated values tern0, snr0 and new0, the function

bsucc0 is iteratively applied to the states (f 0 = nextndcol f b), for each b 2 A.

bsucc'::[num]!([num],tern num,num,queue [num])!([num],tern num,num,queue [num])

bsucc' f' (ss,tern,snr,new)

= (snr:ss,tern',snr+1,enqueue new f'), if value = Undefval

= (getvalue value:ss,tern,snr,new), otherwise

where df' = diffs f'

value = lookuptern df' tern

tern' = inserttern snr df' tern

bsucc0 computes the list df 0 of di�erences for f 0 and looks up df 0 in tern. This gives an

expression value of type (value num). Consider the following cases.

� If value = Undefval , then f 0 does not occur in tern. Hence, snr is the state number

of f 0. tern is updated such that it contains f 0 with the state number snr. snr in

incremented, and f 0 is enqueued. This means that the computation of the successors

of f 0 is postponed until all states which are already in the queue have been completely

processed.

� If value 6= Undefval , then f 0 occurs in tern. The state number of f 0 is selected from

the expression value.

bsucc0 needs O(jf 0j) steps. Hence, the running time of makeftrans is O(jSj � l � m) in the

worst case and O(jSj � l � k) in the average case.

The function makecdfa 0 constructs the column-DFA using the postponing strategy. It com-

putes the list ftrans and transforms each pair (f; trans) into an expression (S accept succ)

representing f . accept is true if and only if f(m) � k. For each ir in trans the entry succ[r]

in the array succ is obtained by selecting the element with index ir in the list dfastates.

Note the use of programming with unknowns. The list dfastates is constructed and looked

up simultaneously.

makecdfa'::[�]!num!(string �)!dfa

makecdfa' characters k p

= hd dfastates

where m = #p

l = #characters

ftrans = makeftrans characters k p

dfastates = map transform ftrans

transform (f,trans) = S (1+m=#f) (makearray l [dfastates!i | i trans])

162 CHAPTER 6. APPROXIMATE STRING SEARCHING

appCdfa implements Algorithm Cdfa. The preprocessing is accomplished by makecdfa 0.

Searching is done by the function dfarun.

appCdfa::(alphabet �)!num!(string �)!(string �)![num]

appCdfa alpha k p t = dfarun alpha (makecdfa' (fst alpha) k p) t

makecdfa 0 performs O(jSj � jAj) accesses to the list dfastates using the prede�ned operator

(!). Each access takes O(jSj) steps on the average. Hence, the transformation of ftrans

into the column-DFA requires O(jSj2 � jAj) time if the list dfastates is completely evaluated.

However, makecdfa 0 constructs the column-DFA incrementally. Only those elements of the

list dfastates are computed which occur in the protocol of t w.r.t. the column-DFA. Moreover,

there are at most n application of the operator (!). So, if the column-DFA is large and n is

not too large, the postponing strategy may lead to an improved overall running time.

Note that if we replace makecdfa 0 by makecdfa, we obtain an optimal implementation of

Algorithm Cdfa. This, however, has the undesirable property that it always constructs the

column-DFA completely. It is unclear how to obtain an optimal purely functional implemen-

tation that performs an incremental construction of the column-DFA. It should be remarked

that it does not make sense to transform the list dfastates into an array in order to have

constant time access to each state. For creating an array, its size must be known. This can

only be determined by computing the length of ftrans which requires the construction of all

states of the column-DFA. This, of course, contradicts the incremental construction.

6.6 Diagonal Transition Algorithms

The values along a D-diagonal are non-decreasing and increase only in unit steps. Hence,

a D-diagonal may contain consecutive identical values. The basic idea of the Diagonal

Transition Algorithms is to omit the calculation of identical values and instead compute

only diagonal transitions, that is, positions where the diagonal values increase.4 The �rst

k + 1 transitions along each diagonal are su�cient to characterize the solutions to the k-

di�erences problem. In order to compute a diagonal transition, it is necessary to determine

the \jump" of a su�x of p and a su�x of t.

De�nition 6.6.1 We de�ne a function jump : A� �A� ! IN0 by

jump(x; y) = maxfjzj j z < x; z < yg:
That is, jump(x; y) is the length of the longest common pre�x of x and y. jump(x; y) is

called the jump for x and y. 2

The various Diagonal Transition Algorithms only di�er in the way jumps are computed. A

brute force algorithm directly compares characters of the pattern and of the input string. It

achieves a worst case running time of O(m � n) and an expected running time of O(k � n).
Alternative algorithms preprocess the pattern and the input string in order to compute jumps

in constant time, thereby improving the worst case behavior to O(k �n). The following results
have been obtained for preprocessing.

4The term \diagonal transition" is adopted from Chang and Lampe [CL92].

6.6. DIAGONAL TRANSITION ALGORITHMS 163

� The technique of Landau and Vishkin [LV88] requires O(m) space. It preprocesses

the input string in O(k2 � n) time and the pattern in O(m) time and uses Harel and

Tarjan's [HT84] constant time algorithm for computing the lowest common ancestor

(LCA for short) of two nodes of cst(p$).

� The method of Galil and Giancarlo [GG88] precomputes the compact su�x tree of p$

and a summary of exact matches between p and t in O(m + n) space and time. Such

a summary was later called matching statistics by Chang and Lawler [CL94].

� A second technique of Landau and Vishkin [LV89] takes O(k � n) time and O(m + n)

space. It preprocesses the pattern and the input string into a compact su�x tree and

then applies an LCA algorithm.

� Galil and Park [GP90] devised a preprocessing method which takes O(m2) space and

time. It uses similar triples as the �rst technique of Landau and Vishkin, but does

without a su�x tree and an LCA algorithm.

� A method of Ukkonen and Wood [UW93] requires O(m2 � jAj) time using a simple form

of the Aho-Corasick pattern matching machine [AC75]. A modi�cation of the su�x

automata construction in [Cro88] gives an O(m2 + jAj) time preprocessing method.

� The preprocessing technique of Chang and Lawler [CL94] takes O(m) space. It applies

the less complicated constant time LCA algorithm of Schieber and Vishkin [SV88] and

a new method to compute the matching statistics in O(m+n) time using only cst(p$).

In the following, we consider Diagonal Transition Algorithms in detail. In particular, section

6.6.1 explains their basic idea. In section 6.6.2, we describe the brute force Diagonal Transi-

tion Algorithm. Section 6.6.3 is devoted to preprocessing. We outline the method of Chang

and Lawler and describe how the matching statistics can be used for the technique of Ukko-

nen and Wood. Finally, section 6.6.4 shows a functional implementation of the discussed

techniques.

6.6.1 The Basic Idea

The monotonicity property of the D-diagonals suggests a more compact representation of

table D. For each D-diagonal it su�ces to store only the positions where the values of a

D-diagonal increase.

De�nition 6.6.2 For each l; 0 � l � m and each h;�l � h � n we de�ne

C(l; h) = maxfh+ i j 0 � i � m; 0 � h+ i � n;D(i; h+ i) � lg: 2

The entries with value � l on D-diagonal h end at column C(l; h). Moreover, C(l; h)� h is

the row number of the last entry on D-diagonal h whose value is � l. Notice that C(l; h) is

wellde�ned for all l; h; 0 � l � m, �l � h � n. It is easily veri�ed that for all D-diagonals

h;�m � h � n�m the following equivalence holds:

D(m; h+m) � k () C(k; h) = h+m: (6.3)

164 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.4: Table C for k = 2, p = adbbc, and t = abbdadcbc

h
C �2 �1 0 1 2 3 4 5 6
0 1 1 2 3 6 5 6

l 1 3 3 2 4 6 9 8
2 3 4 4 4 7 8 9

Hence, table C can be used to solve the k-di�erences problem. If D(m; j) � k, then m�k �
j � n. Since D(m;m�k) is a value on D-diagonal �k and D(m;n) is a value on D-diagonal

n�m, it su�ces to compute C(l; h) for all l; h; 0 � l � k, �l � h � n�m+ k � l.

Example 6.6.3 [GP90] Let k = 2, p = adbbc, and t = abbdadcbc as in Example 6.3.2.

Figure 6.4 shows the entries C(l; h), 0 � l � k, �l � h � n � m + k � l of table C.5

Note that the shape of the entries form a parallelogram. For h 2 f�2;�1; 2; 3; 4g we obtain
C(k; h) = h+m. Hence, the solutions to the k-di�erences problem are 3, 4, 7, 8, and 9. 2

The de�nition of table C is consistent with [CL92]. However, it di�ers from [LV88, GG88,

LV89, GP90, UW93, Ste94] where C(l; h) is de�ned as the largest column h + i such that

D(i; h + i) = l. In most cases, this di�erence does not matter since the following property

holds:

If h+ i = C(l; h) and h+ i < lastcol(h) then D(i; h+ i) = l: (6.4)

However, the condition D(i; h + i) = l sometimes leads to inconsistencies as shown in the

following example.

Example 6.6.4 Consider the D-diagonal 4 in Figure 6.3. It consists of the values 0, 0, 0,

1, 1, 1. There is no value 2 but a value 1 on this D-diagonal. According to De�nition 6.6.2,

we get C(2; 4) = 9 as shown in Figure 6.4. According to the de�nition in [LV88, GG88,

LV89, GP90, UW93, Ste94], C(2; 4) would be unde�ned. Galil and Park [GP90, Example 3]

recognize this. But instead of correcting their de�nition of table C accordingly, they state

that \C(2; 4) is set to 9, the last column of D-diagonal 4." 2

A method for computing table C �rst appeared in [LV88]. Later authors [GG88, LV89,

GP90, UW93] used the method in almost identical form and only modi�ed the computation

of jumps. The idea of the method can be explained by Figure 6.5. Let us assume we want to

compute C(l; h) and already have obtained C(l� 1; h+ 1), C(l� 1; h), and C(l � 1; h� 1).

This means that in table D the entries of value � l � 1 reach

� column C(l � 1; h+ 1) on D-diagonal h+ 1,

� column C(l � 1; h) on D-diagonal h,

� column C(l � 1; h� 1) on D-diagonal h� 1.

5Note that the corresponding table in the paper of Galil and Park [GP90, Table 3] contains several
additional values which are needed for the boundary cases. We handle the boundary cases by explicit case
distinction and therefore do not need the additional values.

6.6. DIAGONAL TRANSITION ALGORITHMS 165

Figure 6.5: Computation of C(l; h) by the Diagonal Transition Algorithm

b b

b b

@
@
@
@@R?-

h+1hh�1 j

C(l;h)

D(j�h;j)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b b

b

z }| {tj+1:::tn

8>>><
>>>:

pj�h+1:::pm

......
..

..
......

....
....

.....
...

.

......
.

...
.....

.....
...

.

.....
..

..
......

....
....

@
@
@

@
@
@

@
@
@
@
@
@
@

Let j = maxfC(l � 1; h + 1); C(l � 1; h) + 1; C(l � 1; h � 1) + 1g. D(j � h; j) gets a value

� l from one of the last entries of value � l � 1 on the D-diagonals h + 1, h, and h � 1.

These entries are found on the thick lines in Figure 6.5. As the next values on D-diagonal

h� 1m and h+1 on the dotted lines are not smaller than D(j� h; j), we can apply Lemma

6.3.4, Statement 1. Hence, the values on D-diagonal h on the dashed line remain equal

to D(j � h; j) until there is mismatch between a pattern character in pj�h+1 : : : pm and the

corresponding input character in tj+1 : : : tn. Once a mismatch has been detected, the column

C(l; h) is reached.

Example 6.6.5 [GP90] Consider the computation of C(2; 2) in Example 6.6.3. We obtain

column j = maxfC(1; 3); C(1; 2)+1; C(1; 1)+1g = maxf6; 4+1; 2+1g = 6. So D(6�2; 6) =
D(4; 6) gets value 2 from D(3; 6) = 1. There is a match p5 = t7 at column 7 of D-diagonal

2 which is the last match. Therefore, C(2; 2) = j + 1 = 7. 2

So the basic idea to compute table C is relatively simple. However, we feel that the program

for computing table C, as it is given in [LV88, GG88, LV89, GP90, UW93], is not easy to

understand. This is for the following reasons:

� The program does not exactly compute the table as it was de�ned in the corresponding

papers. This is due to the inconsistencies mentioned above (see Example 6.6.4).

� The program computes several �ctitious table entries to handle the boundary cases

which occur when either C(l � 1; h+ 1), C(l � 1; h), or C(l � 1; h� 1) is unde�ned.

In our opinion, the computation of table C can easier be understood if one handles the

boundary cases more explicitly by case distinction. We have done this in Lemma 6.6.6.

Lemma 6.6.6 Let 0 � l � k � m and �l � h � n�m+ k � l. Suppose

j =

8>>><
>>>:
h; if l = 0

C(l � 1; h+ 1); else if h = �l
maxfC(l � 1; h+ 1); C(l � 1; h) + 1g; else if h = �l + 1

maxfC(l � 1; h+ 1); C(l � 1; h) + 1; C(l � 1; h� 1) + 1g; else if h � �l + 2

166 CHAPTER 6. APPROXIMATE STRING SEARCHING

Then C(l; h) =

(
lastcol(h); if j � lastcol(h)

j + jump(pj�h+1 : : : pm; tj+1 : : : tn); otherwise

Proof We �rst consider the case l = 0. By assumption j = h < lastcol(h). It su�ces

to show that C(0; h) = h + jump(p; th+1 : : : tn). If C(0; h) = h, then p1 6= th+1. Hence,

C(0; h) = h + 0 = h + jump(p; th+1 : : : tn). Let C(0; h) � h + i + 1 for some i � 0. Then

D(i; h + i) = 0. Moreover, D(i; h + i) � D(i; h + i + 1) and D(i; h + i) � D(i + 1; h + i).

By Lemma 6.3.4, Statement 1, D(i; h + i) = D(i + 1; h+ i + 1) if and only if pi+1 = th+i+1.

Therefore, C(0; h) = h + jump(p; th+1 : : : tn).

Now suppose l > 0. It is easily veri�ed that the following properties hold:

� C(l � 1; h+ 1) is de�ned.

� C(l � 1; h) is de�ned if h � �l + 1.

� C(l � 1; h� 1) is de�ned if h � �l + 2.

Hence, j is de�ned. Consider the following cases:

1. If j � lastcol(h), then D(lastcol(h)�h; lastcol(h)) � l and hence C(l; h) = lastcol(h).

2. Suppose j < lastcol(h) and let j 0 = j + jump(pj�h+1 : : : pm; tj+1 : : : tn). Obviously,

j 0 � lastcol(h) and D(j 0 � h; j 0) = D(j � h; j) � l by Lemma 6.3.4, Statement 1.

Assume that D(j 0 � h; j 0) < l. Then C(l � 1; h) exists and we obtain C(l � 1; h) �
j � C(l � 1; h) + 1. This is a contradiction. Hence, D(j 0 � h; j 0) = l and therefore

C(l; h) = j 0. 2

The value j, as de�ned in Lemma 6.6.6, is very important for determining C(l; h). We will

call it start column for C(l; h). From Lemma 6.6.6 it is not di�cult to derive an algorithm

that computes table C. This will be shown in section 6.6.4.

6.6.2 The Brute Force Diagonal Transition Algorithm

De�nition 6.6.7 [GP90] Let 0 � cd � n �m + k. C-diagonal cd, denoted by Cdiag(cd),

consists of the values C(l; h), 0 � l � k, �l � h � n�m + k � l such that l + h = cd. Let

Cdiag(cd)(l) = C(l; h) be the l-th value of C-diagonal cd. 2

Example 6.6.8 The C-diagonals in Figure 6.4 are as follows:

Cdiag(0) = (1; 3; 3);Cdiag(1) = (1; 3; 4); : : : ;Cdiag(6) = (6; 8; 9): 2

The simplest Diagonal Transition Algorithm is Algorithm DTbf. It computes jumps in a

brute force manner, and can be viewed as a variation of Ukkonen's [Ukk85a] or Myers'

[Mye86] algorithm for calculating the unit edit distance. Algorithm DTbf corresponds to

algorithm MN2 in [GP90].

Algorithm DTbf For each cd; 0 � cd � n�m�k construct Cdiag(cd) according to Lemma

6.6.6. Compute jumps brute force by pairwise character comparisons. Output cd� k+m if

Cdiag(cd)(k) = cd� k +m. 2

6.6. DIAGONAL TRANSITION ALGORITHMS 167

Theorem 6.6.9 Algorithm DTbf correctly solves the k-di�erences problem in O(m) space

and O(m � n) worst case running time. The expected running time is O(k � n).
Proof Let h = cd � k. By de�nition, Cdiag(cd)(k) = cd � k +m if and only if C(k; h) =

h+m. The correctness of the algorithm now follows from equivalence (6.3). Each C-diagonal

contains O(k) entries. Since DTbf needs to store only three C-diagonals at any time, O(k)
space su�ces for the C-diagonals. The computation can be arranged such that the access to t

is restricted to a sliding window of size O(m). Hence, the space requirement is O(m). There

are O(n) C-diagonals to be computed. It takes O(k + cc) time to compute a C-diagonal

where cc is the number of character comparisons to determine the jumps. In the worst case,

cc 2 O(m) since each comparison of pi with ti+cd, 1 � i � m, can occur (see [GP90, Lemma

2]). Myers [Mye95b] showed that in the expected case cc 2 O(k). This completes the proof.

2

6.6.3 E�cient Computation of Jumps

The crucial point in the Diagonal Transition Algorithms is the calculation of jumps. To

obtain a value C(l; h), every Diagonal Transition Algorithm calculates the jump for some

su�x of p and some su�x of t. In order to accomplish this calculation in constant time, one

can preprocess p and t into the matching statistics.

De�nition 6.6.10 Let T = cst(p$). For each su�x y of t maxpsubword(y) is the longest

pre�x of y that is a subword of p. The matching statistics of t w.r.t. p is the function

mstats : fy j t R y; y 6= "g ! locations(T) de�ned by mstats(y) = locT (maxpsubword(y)).

2

The term matching statistics is due to Chang and Lawler [CL94]. A similar notion (called

\Best-Fit") already occurred in [GG88]. Note that the matching statistics in [CL94] consists

of two tables M(t; p) and M 0(t; p). These can easily be obtained from the function mstats.

In particular,

M(t; p)(j) = jmstats(tj : : : tn)j
M 0(t; p)(j) = ceiling(mstats(tj : : : tn))

for each j; 1 � j � n. Therefore, we will refer to mstats when we explain how Chang and

Lawler compute jumps.

In [CL94], a linear time algorithm for computing the matching statistics is devised. It

traverses cst(p$) in a single left-to-right scan of the input string. The algorithm is presented

as an imperative program that manipulates several pointers in a crucial way. Although

invariants are given, we feel that the program is not easy to understand. Stephens [Ste94]

gives a slightly improved presentation of Chang and Lawler' program, including an extensive

example. However, the description is still imperative. We have devised a declarative and

simpler description of the algorithm on the basis of locations. The two inner loops in Chang

and Lawler's program roughly correspond to the functions linkloc and scanpre�x , as de�ned

in section 3.2.2.

168 CHAPTER 6. APPROXIMATE STRING SEARCHING

Algorithm MS [CL94] Construct T = cst(p$) with all inner su�x links. Set (loc1; s1) =

scanpre�x (locT ("); t). For each j; 1 � j � n� 1 successively compute

(locj+1; sj+1) =

8><
>:

(linkloc(locj); "); if sj = "

scanpre�x(locj; drop(1; sj)); else if locj is the root

scanpre�x(linkloc(locj); sj); otherwise

The following two lemmas show the correctness and the linearity of Algorithm MS.

Lemma 6.6.11 Algorithm MS computes for each j; 1 � j � n a pair (locj; sj) such that

1. locj = mstats(tj : : : tn)

2. maxpsubword(tj : : : tn)sj = tj : : : tn.

Proof By induction on j. Let j = 1. Then (locj; sj) = scanpre�x (locT ("); t) = (locT (u); v)

where uv = t and u is the longest pre�x of t such that u 2 words(T) (see De�nition 3.2.9).

Hence, u = maxpsubword(t) which implies properties 1 and 2. Now suppose 1 and 2 hold

for some j; 1 � j � n � 1 and (locj+1; sj+1) is determined according to Algorithm MS.

Let b = tj and y = tj+1 : : : tn. By case distinction, we show that locj+1 = mstats(y) and

maxpsubword(y)sj+1 = y hold.

� If sj = ", then maxpsubword(by) = by. Therefore, locj 6= root and we obtain

maxpsubword(y)sj+1 = y where sj+1 = ". Moreover, we get locj = mstats(by) =

locT (maxpsubword(by)) = locT (by). Thus, we can conclude locj+1 = linkloc(locj) =

linkloc(locT (by)) = locT (y) = locT (maxpsubword(y)) = mstats(y):

� If sj 6= ", and locj is the root, then maxpsubword(by) = " and therefore sj = by. Thus,

(locj+1; sj+1) = scanpre�x (root; drop(1; sj)) = (locT (u); v), where uv = drop(1; sj) = y

and u is the longest pre�x of y such that u 2 words(T). Hence, u = maxpsubword(y)

and we can conclude locj+1 = mstats(y) and usj+1 = y.

� If sj 6= " and locj is not the root, then maxpsubword(by) = bw for some

string w. Hence, wsj = y. Since w is a pre�x of maxpsubword(y), we obtain

(locj+1; sj+1) = scanpre�x (linkloc(locj); sj) = scanpre�x (locT (w); sj) = (locT (u); v)

where uv = wsj = y and u is the longest pre�x of y such that u 2 words(T). Hence,
u = maxpsubword(y). Thus, we can conclude locj+1 = mstats(y) and usj+1 = y. 2

Note that the above proof is the �rst detailed correctness proof of Chang and Lawler's

algorithm. In section 6.6.4, we will see that it is straightforward to translate Algorithm MS

into a functional implementation.

Lemma 6.6.12 Algorithm MS needs O(jApj � (m+ n)) time.

Proof First note that at each node the number of outgoing edges is bound by jApj. The

su�x tree including inner su�x links can be constructed in O(jApj �m) time. The total time

used by scanpre�x is proportional to the number of character comparisons this function

performs. Each input character in t is compared at most once successfully against a pattern

character. Thus, scanpre�x carries out at most n successful character comparisons. Every

6.6. DIAGONAL TRANSITION ALGORITHMS 169

unsuccessful character comparison either occurs while inspecting the list of outgoing edges

at a node, or it does not lead to a recursive call of scanpre�x . Hence, scanpre�x performs

at most jApj � n unsuccessful character comparisons and therefore needs O(jApj � n) time

altogether. By an analogous argumentation, one can show the like for linkloc. 2

As already stated in [CL94], Algorithm MS has very much in common with McCreight's

su�x tree algorithm [McC76]. In fact, the latter can be modi�ed to compute mstats: Apply

McCreight's algorithm to T = cst(p$) and t. Do not perform any operation that changes T ,

but output each location of a \head", and each \tail" encountered. This gives the sequence of

pairs (locj; sj) computed by Algorithm MS. Our uni�ed description of McCreight's algorithm

and Algorithm MS allows to verify this agreement formally. It should not be too di�cult to

obtain Algorithm MS from the function mcc (see section 3.5.3) by some simplifying program

transformation steps.

In addition to T = cst(p$) and the matching statistics, the method of Chang and Lawler

requires to preprocess a table Leaf of size O(m) such that Leaf (x) = x$ for each non-empty

su�x x of p. (Note that such a table is not mentioned in [CL94].) Table Leaf can be

computed in linear time by a single traversal of cst(p$). The traversal successively computes

locT (x) for shorter and shorter su�xes x of p and sets Leaf (x) = ceiling(locT (x)). Note that

without the sentinel character a non-empty su�x of p may not correspond to a leaf. Hence,

a table corresponding to table Leaf does not exist if we take cst(p) instead of cst(p$). In

other words, Chang and Lawler's method for computing jumps requires a sentinel character.

Since only O(m) recent values of the matching statistics must be stored at any time, Chang

and Lawler's method requires O(m) space. In order to compute the jump for a su�x x of p

and a su�x y of t in constant time, the following identity is exploited:

jump(x; y) = minfjmstats(y)j; jzjg (6.5)

where z is the lowest common ancestor of the nodes Leaf (x) and ceiling(mstats(y)) in

T . To compute z, the constant time LCA algorithm of Schieber and Vishkin [SV88] is

used. Unfortunately, this algorithm is quite complicated and creates considerable overhead.

Therefore, we feel that Chang and Lawler's method is in practice not the best solution to

compute jumps in constant time. In our opinion, the following method of [UW93] is more

practical.

Ukkonen and Wood [UW93] precompute three tables to obtain jumps:

� A table maxpre�x equivalent to table M(t; p) in [CL94] (see above).

� A table witness such that for each j; 1 � j � n we have: witness(j) = q implies that

q + 1 is a position in p where maxpsubword(tj : : : tn) begins. Note that witness(j) is

not uniquely determined.

� A table pjump such that pjump(x; x0) = jump(x; x0) for each pair x; x0 of non-empty

su�xes of p.

The table maxpre�x and witness can be considered as another form of matching statistics.

In [UW93], table witness is denoted by \M" and table pjump by \Pre�x". maxpre�x can

be obtained from the function mstats. The same holds for the table witness if we annotate

the su�x tree appropriately.

170 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.6: cst(babaa$) with the Annotation su�xbegin

bXXXXXXXXXXXXz

������������9

5

$

b
5

ba

b

@
@
@R

�
�

�	

2

a$

b
2

baa$

b
0

b

?
a

b

?
a$

b
3

b

@
@
@R

�
�

�	

$

b
4

baa$

b
1

4

De�nition 6.6.13 Let T = cst(p$) and suppose that the edges outgoing from a node in T

are ordered. The annotation su�xbegin of T is de�ned as follows:

su�xbegin(v) =

(
m� jvj+ 1; if v is a leaf

su�xbegin(vcw); otherwise

where v cw- vcw is the smallest edge outgoing from v: 2

The constraint \smallest edge" makes the annotation su�xbegin unambiguous and easily

computable. If the edges outgoing from a node are represented by an ordered list, then a

single bottom up traversal of cst(p$) in O(m) steps su�ces to construct su�xbegin.

Example 6.6.14 Figure 6.6 shows T = cst(babaa$) with the annotation su�xbegin. The

edges are ordered according to the �rst character of the edge label. 2

If we apply Algorithm MS to T = cst(p$) with the annotation su�xbegin, then we obtain

a function mstats such that witness(j) = su�xbegin(ceiling(mstats(tj : : : tn))) for each

j; 1 � j � n. Hence, mstats subsumes both, Chang and Lawler's as well as Ukkonen and

Wood's matching statistics.

Note that the computation of maxpre�x and witness does not necessarily require the sentinel

character. Suppose we have computed values locj by applying Algorithm MS to cst(p). If

we modify De�nition 6.6.13 by deleting the term +1, then we get maxpre�x (j) = jlocjj and
witness(j) = su�xbegin(ceiling(locj)).

In [UW93], two devices are described to obtain table maxpre�x and witness in O(n) steps.
A simple form of the Aho-Corasick pattern matching machine [AC75] is constructed in

O(m2 � jAj) time and space. A modi�cation of the su�x automaton (see [BBH+85, Cro88])

takes O(m2+ jAj) time and space to be constructed. We will instead use the compact su�x

tree of p$ and apply Algorithm MS.

Table pjump (see above) can be precomputed and stored in O(m2) space. Each table entry

can be obtained in constant time which is due to the following lemma.

Lemma 6.6.15 For all su�xes au and bv of p, the following recurrence holds:

pjump(au; bv) =

8><
>:

1 + pjump(u; v); if a = b and u 6= " and v 6= "

1; else if a = b

0; otherwise

Proof Obvious. 2

6.6. DIAGONAL TRANSITION ALGORITHMS 171

In [LV88] and [GP90], an algorithm is given that �lls table pjump diagonal by diagonal

using O(m2) space and time. It exploits the fact that pjump is symmetric which means that

pjump(x; x0) = pjump(x0; x) for each x; x0. An algorithm with the same complexity that

proceeds row by row is described in section 6.6.4. Thus, the preprocessing for the method

of Ukkonen and Wood takes O(jApj � (m+ n) +m2) time and O(m2) space altogether if one

takes Algorithm MS to compute the matching statistics.

The following lemma corresponds to Lemma 2 in [UW93]. Using mstats and the annotation

su�xbegin, it explains how Ukkonen and Wood compute jumps in constant time.

Lemma 6.6.16 [UW93] Let x be a su�x of p and y be a su�x t. Then

jump(x; y) = minfjmstats(y)j; pjump(x; pq+1 : : : pm)g;

where q = su�xbegin(ceiling(mstats(y))).

Proof Let u = maxpsubword(y). By de�nition, u is a pre�x of pq+1 : : : pm and there-

fore pq+1 : : : pm = uz for some string z. Obviously, jump(x; y) � juj holds. If juj �
jump(x; uz), then u is a pre�x of x and y. Hence, jump(x; y) � juj which implies

jump(x; y) = juj = minfjuj; jump(x; uz)g. If juj > jump(x; uz), then jump(x; y) =

jump(x; u) = jump(x; uz) = minfjuj; jump(x; uz)g. Thus, in both cases jump(x; y) =

minfjuj; jump(x; uz)g = minfjmstats(y)j; pjump(x; pq+1 : : : pm)g. 2

6.6.4 Implementation

In this section, we �rst show how to preprocess p and t in order to compute jumps according

to Lemma 6.6.16. Moreover, we give a function that enumerates C-diagonals. The function

abstracts from the di�erent ways of computing jumps. Finally, we derive two implemen-

tations of Diagonal Transition Algorithms. An implementation of Algorithm DTbf and an

implementation of an algorithm that uses matching statistics and table pjump to obtain

jumps in constant time. The latter algorithm will be called DTpp in the sequel.

Matching Statistics

Besides the annotation su�xbegin, we need the annotation depth (see section 3.7.3) to

determine the depth of a location. Both annotations are computed in constant time by the

following annotation function.

depthsuffixbegin::num!annotationfunction � (num,num)

depthsuffixbegin m d es = (d,m-d+1), if es = []

= (d,i), otherwise

where i = hd [i | (u,N es' link (d,i)) es]

Note that the second argument d of depthsu�xbegin is the depth of the actual node v. If

the ordered list es representing the edges outgoing from v is empty, then v is a leaf and

su�xbegin(v) = m� jvj+ 1 = m� h+ 1 according to De�nition 6.6.13. If es is not empty,

then su�xbegin(v) is set to su�xbegin(vcw) where v cw- vcw is the smallest edge in es.

Recall that the edges in es are ordered according to the �rst character of the label.

172 CHAPTER 6. APPROXIMATE STRING SEARCHING

The matching statistics is represented by the list

mstatslist = [mstats(t1 : : : tn); mstats(t2 : : : tn); : : : ; mstats(tn)]:

The function mstats computes mstatslist according to Algorithm MS.

mstats::�!(string �)!(string �)!num![location � (num,num)]

mstats sentinel t p m

= mstats' (scanprefix loceps t)

where loceps = LocN (cst (p++[sentinel],m+1) (depthsuffixbegin m))

mstats'::(location � �,string �)![location � �]

mstats' (loc,s) = suffixlocs (const []) loc, if s = []

= loc:mstats' (scanprefix loc (drop 1 s)), if rootloc loc

= loc:mstats' (scanprefix (linkloc loc) s), otherwise

At �rst, mstats constructs T = cst(p$) with the annotations depth and su�xbegin. Let

loceps = locT ("). mstats calls the function mstats
0 with the argument (loc1; s1) according

to Algorithm MS. mstats0 closely resembles the case distinction of the algorithm. In the

j-th call, mstats0 has the argument (locj; sj). If sj is empty, then so is sj+1 and the rest of

mstatslist consists of the locations of the non-empty su�xes of tj : : : tn. These are easily

obtained by applying the function (su�x locs (const [])) to locj. If sj is not empty, then

mstats0 returns a list with the �rst element locj. The rest of the list is constructed by applying

mstats0 to a pair (locj+1; sj+1) which is determined according to the second and third case

of Algorithm MS. Since the function mstats resembles Algorithm MS almost literally, it is

clear that the implementation is optimal with a running time of O(jApj �(m+n)) and a space

consumption of O(m). Note that the functions enumX and enumX 0 (see section 4.5.1) are

very similar to mstats and mstats0, respectively.

For each location loc in mstatslist the function locdepthsu�xbegin returns the pair (jlocj; q)
where q = su�xbegin(ceiling(loc)).

locdepthsuffixbegin::(location � (num,num))!(num,num)

locdepthsuffixbegin (LocN node) = seltag node

locdepthsuffixbegin (LocE node s (w,j) (N es link (h,q))) = (h-j,q)

To implement DTpp, we transform the matching statistics into a list ppt of preprocessed

information for t. (Of course, ppt also depends on p.)

ppt = map locdepthsu�x begin (mstats sentinel t p m):

Since each call of locdepthsu�xbegin takes constant time, ppt is constructed in O(m) space

and O(jApj � (m + n)) time.

Pjump

Let pjumplist = [row1; : : : ; rowm] such that

rowi = [pjump(pi : : : pm; p1 : : : pm); pjump(pi : : : pm; p2 : : : pm); : : : ; pjump(pi : : : pm; pm)]

for each i; 1 � i � m.

6.6. DIAGONAL TRANSITION ALGORITHMS 173

Example 6.6.17 For p = babaa we get

pjumplist = [[5; 0; 2; 0; 0];

[0; 4; 0; 1; 1];

[2; 0; 3; 0; 0];

[0; 1; 0; 2; 1];

[0; 1; 0; 1; 1]]: 2

The function getpjumplist computes pjumplist row by row starting with rowm. For each

i; 1 � i � m� 1, rowi is computed by evaluating (nextrow pi [rowi+1; : : : ; rowm]).

getpjumplist::(string �)![[num]]

getpjumplist p

= foldr nextrow [] p

where nextrow a [] = [map (equal a) p]

nextrow a (row:rows)

= foldr nextval [equal (last p) a] (zip2 p (drop 1 row)):row:rows

where nextval (b,value) row' = 1+value:row', if a = b

= 0:row', otherwise

If i = m, then [rowi+1; : : : ; rowm] = []. The j-th entry in rowm is 1 if pm = pj, and 0,

otherwise. Hence, rowm is computed in O(m) steps by the expression (map (equal pm) p),

where the function equal is de�ned as follows:

equal::�!�!num

equal a b = 1, if a = b

= 0, otherwise

Let 1 � i � m � 1. Then rowi can be obtained from rowi+1 in O(m) steps. The last entry

in rowi is obviously computed by the expression (equal (last p) pi). The other entries in

rowi depend on p1 : : : pm�1 and the last m � 1 entries of rowi+1. Let b = pj and value =

pjump(pi+1 : : : pm; pj+1 : : : pm) for some j; 1 � j � m � 1. b and value are obtained by

zipping p and (drop 1 row). According to Lemma 6.6.15, we obtain

pjump(pi : : : pm; pj : : : pm) =

(
1 + value; if pi = b

0; otherwise

Note that getpjumplist does not exploit the fact that pjump is symmetric.

For DTpp we need constant time access to each element in rowi for each i; 1 � i � m.

Therefore, extension 1 is required to transform pjumplist into a list ppp of arrays which

contain the preprocessed information for p.

ppp = map (makearray m) (getpjumplist p):

From the above it is clear that the computation of ppp takes O(m2) time and space.

174 CHAPTER 6. APPROXIMATE STRING SEARCHING

Computing C-Diagonals

For the implementation of the Diagonal Transition Algorithms the exact value of a table entry

C(l; h) does not matter if it is � lastcol(h). Therefore, each entry C(l; h) is represented by a

value r such that C(l; h) = minflastcol(h); rg. We store r instead of C(l; h) since this avoids

a lot of minimum-operations and leads to a more e�cient and simpler implementation. The

correctness is not a�ected by this \inaccuracy", which can easily be checked against the

proof of Lemma 6.6.6. However, we have to modify the condition for an approximate match.

Since

C(k; h) = h+m () minflastcol(h); rg = h +m () r � h+m; (6.6)

an approximate match occurs at position h+m if and only if r � h+m.

Let j be the start column for C(l; h) (see page 166). To compute a jump, DTbf needs access

to the strings pj�h+1 : : : pm and tj+1 : : : tn (see Lemma 6.6.6). In the same situation, DTpp

needs access to the pair

(deptho
oc; q) = locdepthsu�xstart (mstats(tj+1 : : : tn)) (6.7)

and a value pjump(pj�h+1 : : : pm; pq+1 : : : pm) (see Lemma 6.6.16). Since t and p as well as

the preprocessed counterparts ppp and ppt are represented by lists, such an access should not

be accomplished globally, for instance, by dropping the �rst j � h elements of p (ppp) and

the �rst j elements of t (ppt). It is more e�cient to hold the required information locally.

Therefore, instead of using the column number h explicitly, we operate on a triple (j; x; y)

such that

� x = pj�h+1 : : : pm and y = tj+1 : : : tn for DTbf.

� x = pppj�h+1 : : : pppm and y = pptj+1 : : : pptn for DTpp.

(j; x; y) is the access triple for j and h. Note that x and y are lazy lists. Hence, an access triple

needs constant space. For better readability, we introduce a corresponding type synonym.

accesstriple � � == (num,[�],[�])

For DTbf an access triple is of type (accesstriple � �) since x and y are both lists of type

[�]. For DTpp an access triple is of type (accesstriple (array num) (num; num)) since x is

a list of arrays over type num and y is a list of num-pairs.

DTbf can simply apply the function lcp (see section 3.4.6) to x and y to obtain a jump. Now

consider DTpp. If y is not empty, then the �rst element of y is the pair (deptho
oc; q) as

de�ned in equation (6.7). If additionally x is not empty, then the �rst element of x is an array

pjumprow such that (lookup q pjumprow = pjump(pj�h+1 : : : pm; pq+1 : : : pm)). Hence, the

following function jumppp correctly computes the jump for pj�h+1 : : : pm and tj+1 : : : tn from

x and y.

jumppp::[array num]![(num,num)]!num

jumppp [] y = 0

jumppp x [] = 0

jumppp (pjumprow:xrest) ((depthofloc,q):yrest)

= 0, if depthofloc = 0

= min2 depthofloc (lookup q pjumprow), otherwise

6.6. DIAGONAL TRANSITION ALGORITHMS 175

Obviously, jumppp takes constant time. It will be used as the jump-function for DTpp.

For the rest of this section it does not matter whether x and y refer to strings or to lists of

preprocessed information. The di�erence is simply handled by the jump-functions lcp and

jumppp. In this way, we abstract from the di�erent methods of computing jumps.

Let cd � 0 and suppose startcols is a list of access triples of the form (jl; xl; yl) such that

jl is the start column of Cdiag(cd)(l) = C(l; h). The function newcdiag computes Cdiag(cd)

from startcols. For each triple (j; x; y) = (jl; xl; yl) in startcols, the jump value jumpval of

x and y is calculated by a function jump. This gives C(l; h) = j + jumpval. To obtain the

corresponding access triple, jumpval elements are dropped from x and y.

newcdiag::([�]![�]!num)![accesstriple � �]![accesstriple � �]

newcdiag jump startcols

= map getcvalue startcols

where getcvalue (j,x,y) = (j+jumpval,drop jumpval x,drop jumpval y)

where jumpval = jump x y

The running time of getcvalue is O(jumpval) since it takes O(jumpval) time to drop the

�rst jumpval elements from x and y. This implies that newcdiag requires O(m) steps.

Unfortunately, this also holds if jumpval is determined in constant time, which means that

our implementation cannot achieve an O(k � n) worst case running time.

Now it remains to show how to compute the start columns. According to Lemma 6.6.6,

the start column j on D-diagonal h is obtained from some values referring to the same

D-diagonal and the D-diagonals above and below it (see also Figure 6.5). To obtain the

corresponding access triple for j and h, we introduce three functions that maintain the

second and third component of an access triple properly.

above::(accesstriple � �)!(accesstriple � �)

above (col,x,y) = (col,drop 1 x,y)

same::(accesstriple � �)!(accesstriple � �)

same (col,x,y) = (col+1,drop 1 x,drop 1 y)

below::(accesstriple � �)!(accesstriple � �)

below (col,x,y) = (col+1,x,drop 1 y)

The correctness of these functions becomes clear if one considers Figure 6.5. If we get a start

column from the D-diagonal above, we only drop the �rst element of x. If we get it from

the same D-diagonal, we also drop the �rst element of y and increment the column number.

If we get it from the D-diagonal below, we only drop the �rst element of y and increment

the column number. Note that (drop 1) is the identity on the empty list (see Appendix B).

Hence, the three functions are also de�ned for the boundary cases where either x or y is

empty.

For convenience, we introduce a function maxat which computes the maximum of two access

triples according to their �rst component. maxat takes constant time.

176 CHAPTER 6. APPROXIMATE STRING SEARCHING

maxat::(accesstriple � �)!(accesstriple � �)!(accesstriple � �)

maxat (col,x,y) (col',x',y') = (col,x,y), if col >= col'

= (col',x',y'), otherwise

Note that the prede�ned function max2 cannot be used instead of maxat. This is because

max2 additionally compares x and x0 if col = col0.

DTbf and DTpp use the same function getCdiags to compute C-diagonals. In addition to

the jump-function, getCdiags has two arguments x and y. For DTbf x points to p and y

points to t. For DTpp x points to ppp and y points to ppt.

getCdiags::([�]![�]!num)![�]![�]![[accesstriple � �]]

getCdiags jump x y

= getCdiags' 2 (drop 2 y) cdiag0 cdiag1

where getCdiags' cd [] cdiag cdiag' = []

getCdiags' cd s cdiag cdiag'

= cdiag:getCdiags' (1+cd) (drop 1 s) cdiag' cdiag''

where cdiag'' = newcdiag jump ((cd,x,s):startcols)

startcols = [maxat (below e) (maxat (same e') (above e'')) |

(e,e',e'') zip3 cdiag cdiag' cdiag'']

cdiag0 = newcdiag jump ((0,x,y):map above cdiag0)

cdiag1 = newcdiag jump ((1,x,drop 1 y):[maxat (same e) (above e') |

(e,e') zip2 cdiag0 cdiag1])

getCdiags calls a function getCdiags0 with four arguments:

� the number cd of the previously computed C-diagonals. Note that cd � 2.

� the su�x s = ycd+1 : : : yn of y.

� the last but one C-diagonal cdiag = Cdiag(cd� 2).

� the last C-diagonal cdiag0 = Cdiag(cd� 1).

Note that the C-diagonals are represented by lists of access triples. If s is the empty list,

then no C-diagonal is to be computed. Otherwise, getCdiags0 constructs a new C-diagonal

cdiag00 and calls itself with \shifted" arguments. cdiag00 is computed by applying newcdiag

to the list ((cd; x; s) : startcols). Let cd = l + h for some l � 0 and h � �l.

� If l = 0, then cd is the start column for C(l; h) and (cd; xcd�h+1; ycd+1) = (cd; x; s) is

the access triple for cd and h.

� Suppose l > 0 and let (jl; xl; yl) be an access triple for cd and h such that jl is the

start column for C(l; h). (jl; xl; yl) is obtained from the values e, e0, and e00 which are

generated from cdiag, cdiag0, and cdiag00, respectively. In particular, (jl; xl; yl) is the

maximum of (below e), (same e0), and (above e00).

Note that we use programming with unknowns to implement getCdiags0. cdiag00 depends

on startcols, and startcols depends on cdiag00. Initially, getCdiags0 is called with cdiag0 =

6.6. DIAGONAL TRANSITION ALGORITHMS 177

Cdiag(0) and cdiag1 = Cdiag(1). These values are computed in a similar way as cdiag00.

However, cdiag0 only depends on itself, and cdiag1 only depends on cdiag0 and cdiag1.

Note that getCdiags is independent of k. It generates C-diagonals which are lazy lists of

access triples. To solve the k-di�erences problem, only the �rst k + 1 elements of these lists

are evaluated. Since newcdiag takes O(m) steps, we obtain a running time of O(m �n). Since
only three C-diagonals are stored at any time, the space requirement for the C-diagonals is

O(k).

DTbf and DTpp

The function appDTbf implements DTbf. appDTbf generates the list cdiags of C-diagonals.

According to equivalence (6.6), Cdiag(h + k)(k) must be compared to r = h +m, for each

h � �k. Since h ranges over [�k;�k+1; : : :], r ranges over [m�k;m�k+1; : : :]. Therefore,

the list cdiags is zipped with the list [m� k; ::] to obtain the proper values of r.

appDTbf::num!(string �)!(string �)![num]

appDTbf k p t = [r | (r,cdiag) zip2 [m-k..] cdiags; first (cdiag!k) >= r]

where cdiags = getCdiags lcp p t

m = #p

From the above it is clear that appDTbf takes O(m �n) time and O(m) space. Therefore, it

is an optimal implementation of DTbf.

DTpp is implemented by the function appDTpp which di�ers from appDTbf as follows:

� It has an additional preprocessing phase to construct ppp and ppt.

� It computes jumps by the function jumppp.

Recall that DTpp requires extension 1.

appDTpp::�!num!(string �)!(string �)![num]

appDTpp sentinel k p t

= [r | (r,cdiag) zip2 [m-k..] cdiags; first (cdiag!k) >= r]

where cdiags = getCdiags jumppp ppp ppt

m = #p

ppp = map (makearray m) (getpjumplist p)

ppt = map locdepthsuffixbegin (mstats sentinel t p m)

We have seen that ppt is constructed in O(jApj � (m + n)) steps. The laziness guarantees

that only O(m) values of ppt are stored at any time. The space and time requirement for

the construction of ppp is O(m2). As in appDTbf, the computation of a C-diagonal requires

O(m) steps. Hence, the preprocessing e�ort does not pay o� and we achieve a worst case

running time of O(m �n) which is not optimal. Note that an optimal implementation would

store O(m) recent portions of ppt in an array. However, this requires complicated storage

management which creates considerable overhead. We will not give such an implementation.

178 CHAPTER 6. APPROXIMATE STRING SEARCHING

6.7 The Column Partition Algorithm

The basic idea of Chang and Lampe's Column Partition Algorithm [CL92] is to partition

each column of table D into runs of consecutive natural numbers. For instance, the column

(0; 1; 1; 1; 2; 3) is partitioned into three runs (0; 1), (1), and (1; 2; 3). Formally, an entryD(i; j)

belongs to run l of column j if and only if i�D(i; j) = l. Obviously, ifD(i; j)+1 = D(i+1; j),

then both D(i; j) and D(i + 1; j) belong to the same run of column j. Moreover, we have

i � D(i; j) = i + 1 � (D(i; j) + 1) � i + 1 � D(i + 1; j) by Lemma 6.3.3, Statement 1. In

other words, while i grows, i�D(i; j) is non-decreasing.

In order to solve the k-di�erences problem, one determines where each run ends. More

precisely, a table of end points of runs is computed.

De�nition 6.7.1 For all l � 0 and all j; 0 � j � n we de�ne

SP (0; j) = 0

SP (l + 1; j) = EP (l; j) + 1

EP (l; j) = maxfi j 0 � i � m; i�D(i; j) � lg

SP (l; j) is the starting point of run l in column j. EP (l; j) is the end point. 2

Table SP is introduced for ease of presentation. Neither table EP nor table SP explicitly

occur in [CL92]. Recently, Stephens [Ste94] gave a presentation of the Column Partition

Algorithm, including some additional examples. However, in contrast to our presentation,

Stephens closely follows [CL92].

Note that a run can be empty. In such a case, EP (l; j) < SP (l; j). Run 0 is not empty since

EP (0; j) � 0 = SP (0; j). In [CL92, Ste94], it is not clearly stated how the endpoints of runs

are related to the solutions to the k-di�erences problem. The following lemma clari�es this

relation.

Lemma 6.7.2 For all j; 0 � j � n, all k < m, and all l � 0 we have D(m; j) � k if and

only if EP (m� k � 1; j) < m.

Proof D(m; j) � k () m�D(m; j) � m� k
() m�D(m; j) > m� k � 1

() maxfi j 0 � i � m; i�D(i; j) � m� k � 1g < m

() EP (m� k � 1; j) < m: 2

Example 6.7.3 Let k = 2, p = adbbc, and t = abbdadcbc. Figure 6.7 shows the corre-

sponding table of end points. Run 3 of column 9 is empty since EP (3; 9) = 4 < SP (3; 9) =

EP (2; 9) + 1 = 5. The solutions to the k-di�erences problem are 3, 4, 7, 8, and 9, as can be

easily read from row m� k � 1 = 2, according to Lemma 6.7.2. 2

The following lemma states some basic properties of runs. The endpoints of runs are non-

decreasing and no two consecutive runs may both be empty. These properties were already

stated, but not proved in [CL92].

6.7. THE COLUMN PARTITION ALGORITHM 179

Figure 6.7: Table EP for p = adbbc, t = abbdadcbc, and each l; 0 � l � 4

j

EP 0 1 2 3 4 5 6 7 8 9

0 5 0 1 2 1 0 1 1 2 2

1 5 5 2 2 3 4 1 2 2 3

l 2 5 5 5 3 4 5 5 4 3 4

3 5 5 5 5 5 5 5 5 5 4

4 5 5 5 5 5 5 5 5 5 5

Lemma 6.7.4 [CL92] Let i = EP (l; j) for some l � 0 and some j; 0 � j � n. Then:

1. EP (l + 1; j) � i.

2. If i < m and EP (l + 1; j) = i, then EP (l + 2; j) > i.

Proof

1. If i = m, then EP (l+1; j) = i. Suppose i < m. By assumption, i+1�D(i+1; j) � l+1.

If i+1�D(i+1; j) = l+1, then EP (l+1; j) � i+1 > i. If i+1�D(i+1; j) > l+1,

then EP (l + 1; j) = i.

2. By assumption, i�D(i; j) � l. Assume EP (l+2; j) = i. Then i+1�D(i+1; j) > l+2

which implies D(i; j) � D(i + 1; j) + 2. This is a contradiction to Lemma 6.3.3,

Statement 1. Thus, EP (l + 2; j) > i. 2

The following lemma gives a recurrence for computing table EP . The �rst part corresponds to

Proposition 3, and the second part to Proposition 4 in [CL92]. While Chang and Lampe only

give proof sketches, we spell out the complete proofs and additionally handle the boundary

cases.

Lemma 6.7.5 [CL92] Let i = EP (l; j) and i0 = SP (l; j) for some l � 0 and j; 0 � j < n.

Then the following holds:

1. If i = i0 � 1, then EP (l; j + 1) = minfm; i0g.

2. If i � i0 and H = fh j i0 � h � minfm� 1; ig; ph+1 = tj+1g, then

EP (l; j + 1) =

8><
>:

min(H); if H 6= ;
i; if H = ; and i = EP (l + 1; j)

i+ 1; if H = ; and i < EP (l + 1; j)

Proof

180 CHAPTER 6. APPROXIMATE STRING SEARCHING

1. Let i = i0 � 1. Then l > 0 and i = EP (l � 1; j). If i = m, then EP (l � 1; j) = m and

therefore EP (l; j + 1) = m = minfm; i0g. Suppose i < m. Then i � D(i; j) � l � 1.

Moreover, EP (l+1; j) > i by Lemma 6.7.4, Statement 2. Thus, i+1�D(i+1; j) � l+1

which implies D(i; j) = D(i + 1; j) + 1. Therefore, we get D(i; j) � D(i+ 1; j + 1) �
D(i+1; j)+1 = D(i; j), that is, D(i; j) = D(i+1; j+1). Thus, i+1�D(i+1; j+1) =

i+1�D(i; j) � l. If i+1 = m, then triviallyEP (l; j+1) = m = minfm; i0g. If i+1 < m,

then D(i+ 2; j + 1) � D(i+ 1; j) + 1 � D(i; j) and therefore i+ 2�D(i+ 2; j + 1) �
i+2�D(i; j) = i+1�D(i+1; j) � l+1 which implies EP (l; j+1) = i+1 = minfm; i0g.

2. Let i � i0 and H = fh j i0 � h � minfm � 1; ig; ph+1 = tj+1g. We �rst show that

i0 � EP (l; j+1) � i+1. If i0 = 0, then i0 � EP (l; j+1) obviously holds. If i0 > 0, then

i0�1�D(i0�1; j) � l�1 and i0�D(i0; j) � l. Hence, i0�D(i0�1; j) � i0�D(i0; j) and

therefore D(i0; j) � D(i0�1; j) � D(i0; j+1). Thus, we can conclude i0�D(i0; j+1) �
i0 � D(i0 � 1; j) � l which implies i0 � EP (l; j + 1). If i + 1 = m, then we obviously

get EP (l; j + 1) � m. If i + 1 < m, then D(i + 2; j + 1) � D(i + 1; j) + 1. Moreover,

i�D(i; j) � l and i + 1�D(i+ 1; j) � l + 1. Thus, D(i+ 1; j) � D(i; j) and we can

conclude i + 2 � D(i + 2; j + 1) � i + 2 � (D(i + 1; j) + 1) = i + 1 � D(i + 1; j) �
i + 1�D(i; j) � i0 + 1�D(i0; j) � l + 1. This implies EP (l; j + 1) � i + 1. Consider

the following three cases:

� If H 6= ;, then let h = min(H). We have ph+1 = tj+1 and ph0+1 6= tj+1 for all

i0 � h0 < h. Hence, D(h; j) = D(h+1; j+1) which implies h+1�D(h+1; j+1) =

h + 1 � D(h; j) = l + 1. If h = i0, then h � D(h; j + 1) � l as shown above.

Suppose h > i0. Then D(h; j) � D(h � 1; j) and D(h � 1; j + 1) � D(h � 1; j).

Hence, D(h; j + 1) = D(h � 1; j) + 1 by Lemma 6.3.4, Statement 1. Thus,

h�D(h; j + 1) = h� (D(h� 1; j) + 1) = h� 1�D(h� 1; j) � h�D(h; j) = l,

that is, EP (l; j + 1) = h.

� SupposeH = ; and i = EP (l+1; j). ThenD(i; j) � D(i; j+1) andD(i+1; j)+1 =

D(i; j). Therefore, D(i+ 1; j + 1) = D(i; j) and i�D(i; j + 1) � i�D(i; j) = l.

Moreover, i+1�D(i+1; j +1) = i+1�D(i; j) = l+1, that is, EP (l; j+1) = i.

� Suppose H = ; and i < EP (l + 1; j). Then D(i + 1; j) = D(i; j) and D(i; j) �
D(i; j + 1). Hence, D(i; j) + 1 = D(i + 1; j + 1) since pi+1 6= tj+1. Thus, we can

conclude i+1�D(i+1; j+1) = i�D(i; j) = l which implies EP (l; j+1) � i+1.

Since EP (l; j + 1) � i+ 1, we get EP (l; j + 1) = i + 1. 2

In order to obtain each entry of table EP in constant time, the input alphabet and the

pattern is preprocessed. In particular, a function position : A� f0; : : : ; mg ! f0; : : : ; mg is
precomputed:

position(b; i0) = min(fh j i0 � h � m� 1; b = ph+1g [fmg)
With the assumptions of Lemma 6.7.5, the following holds:

H 6= ; () position(tj+1; i
0) � minfm� 1; ig (6.8)

If H 6= ;; then min(H) = position(tj+1; i
0) (6.9)

The function position can be e�ciently represented by a table which contains for each b 2 A
the list of positions in p where b occurs. Such a table can be precomputed in O(jAj +m)

6.7. THE COLUMN PARTITION ALGORITHM 181

space and time. However, it does not allow to evaluate position(b; i0) in constant time. An

alternative solution is to directly represent the function position by an jAj � (m+ 1)-table.

This can be precomputed in O(jAj �m) time according to the following equation:

position(b; i0) =

(
i0; if i0 = m or b = pi0

position(b; i0 + 1); otherwise
(6.10)

We prefer the second representation since it allows to compute each entry of table EP in

constant time. However, according to Chang and Lampe both representations lead to the

same running time in practice.

To solve the k-di�erences problem, one computes table EP and outputs j if EP (m�k�1; j)
is smaller than m (see Lemma 6.7.2). Note that it does not su�ce to evaluate the entries

EP (0; j); EP (1; j); : : : ; EP (m� k� 1; j) of column j since EP (l; j) may depend on the entry

EP (l + 1; j � 1) for some l � 0. In other words, it is not clear which entries of each column

must be computed. Therefore, the evaluation of table EP requires a demand driven strategy.

This can easily be realized in a lazy functional language (see section 6.7.1).

A more e�cient evaluation strategy computes only the essential entries of table EP , that is,

the entries smaller than m. This strategy leads to the following algorithm which is called

kn:clp in [CL92].

Algorithm CP [CL92] Construct an jAj � (m + 1)-table representing function position.

For each j; 1 � j � n and each l � 0 compute EP (l; j) according to Lemma 6.7.5 until

EP (l; j) = m. Store only the essential entries. If a column contains at least m� k essential

entries, then output j. 2

Theorem 6.7.6 Let q be the average of row m in table D. Algorithm CP correctly solves

the k-di�erences problem in O(jAj �m + (m� q) � n) time and O(jAj �m) space.

Proof The correctness follows from the previous lemmas. The preprocessing phase takes

O(jAj � m) space and time. Let l = maxfl j l � 0; EP (l; j) < mg. Obviously, Algorithm

CP evaluates l + 1 entries in column j. Due to the preprocessing, each of the entries is

evaluated in constant time. Now note that EP (l; j) < m implies m�D(m; j) > l, and that

EP (l+1; j) � m implies m�D(m; j) � l+1. Thus, l+1 = m�D(m; j), that is, the search

phase takes O((m� q) � n) time. Since at each time only two columns of table EP must be

stored, the space requirement for the search phase is O(m). 2

Since q can be zero, Algorithm CP takes O(m � n) time in the worst case. According to

[CL92], it is always faster than UKKco. Hence, the average case running time is O(k � n).
Note the dependence of the algorithm on the row average q: the larger q, the faster becomes

Algorithm CP. q grows with the size of the input alphabet. In particular, the observed

running time is O(k � n=
q
jAj � 1) (see [CL92, CM94]). According to Chang and Lampe,

Algorithm CP was measured to be considerably faster than other algorithms. For instance,

it improves on DTpp by a factor 2.5 for jAj = 2, by a factor 4 for jAj = 4, and by a factor

10 for jAj = 20.

Before we consider implementation issues, we note that Chang and Marr [CM94] claim

that the column partition technique can also be applied to the table E� when � is the unit

cost function. This may lead to an improved method for computing the unit edit distance.

Unfortunately, Chang and Marr do not substantiate their claim.

182 CHAPTER 6. APPROXIMATE STRING SEARCHING

6.7.1 Implementation

To implement the Column Partition Algorithm, extension 1 is required. We assume that the

input alphabet A is given as a pair (characters; encode) of type (alphabet �). The function

position is represented by a two-dimensional array posarray such that for each b 2 A and

each h; 0 � h � m we have (lookup h (lookup (encode b) posarray) = position(b; h)).

posarray is computed in O(jAj � m) time by the function getposarray. For each b 2 A,
getposarray calls the function (getpos b) to obtain the list [position(b; 0); position(b; 1); : : : ;

position(b;m)] from right to left according to equation (6.10). This list is transformed into

an array of length m + 1 using the function makearray. Finally, the resulting list of arrays

is transformed into an array of arrays of length jAj.

getposarray::(alphabet �)!(string �)!num!array (array num)

getposarray (characters,encode) p m

= makearray l (map (makearray (m+1).getpos) characters)

where l = #characters

getpos b = foldr prev [m] (zip2 [0..] p)

where prev (i',a) (i:is) = i':i:is, if b = a

= i:i:is, otherwise

Note that Stephens independently gave an imperative program that is (essentially) equivalent

to the function getposarry (see [Ste94, Figure 5.17]).

In the following, we �rst de�ne a function colpart that completely computes each column of

table EP . From colpart we develop in a systematic way a variation colparte that computes

only the essential entries.

For each j; 0 � j � n column j of table EP is represented by the list endpointsj =

[EP (0; j); EP (1; j); EP (2; j); : : :]. Let (posarrayb = lookup (encode b) posarray) where b =

tj+1. Then the expression (colpart m endpointsj posarrayb) returns the list endpointsj+1.

Each entry in this list is calculated in constant time by the function nextep. In particular, for

each l � 0, nextep is called with the arguments i0 = SP (l; j) and (i : eps) = [EP (l; j); EP (l+

1; j); EP (l+2; j); : : :] to return the list [EP (l; j+1); EP (l+1; j+1); EP (l+2; j+1); : : :]. The

entry epl = EP (l; j + 1) is calculated according to the case distinction in Lemma 6.7.5. To

decide H = ; and to extract min(H), properties 6.8 and 6.9 are exploited after evaluating

h = position(b; i0) = position(tj+1; i
0) by a lookup in array posarrayb.

colpart::num![num]!(array num)![num]

colpart m endpoints posarrayb

= nextep 0 endpoints

where nextep i' (i:eps)

= epl:nextep (i+1) eps

where h = lookup i' posarrayb

epl = min2 m i', if i+1 = i'

= h, if h <= min2 (m-1) i

= i, if i = hd eps

= i+1, otherwise

To solve the k-di�erences problem, one begins with column endpoints0 = [m;m; : : :] and

computes the list [endpoints1; : : : ; endpointsn] using the function colpart. If the entry

6.7. THE COLUMN PARTITION ALGORITHM 183

endpointsj(m � k � 1) is smaller than m, then one outputs j (cf. Lemma 6.7.2). Note

that each list endpointsj is in�nite. However, the laziness guarantees that only those entries

are evaluated which are required to determine the value endpointsj0(m � k � 1) for some

j 0 � j.

For the implementation of Algorithm CP each column of table EP is represented by a list

of its essential entries. More precisely, column j is represented by the list eendpointsj =

[EP (0; j); EP (1; j); : : : ; EP (l; j)], where l is the maximal index such that EP (l; j) < m. This

implies that the �rst column of table EP is represented by the empty list.

The most important part of the implementation is a function nexteep that computes only the

essential entries of an EP -column. In other words, nexteep transforms the list eendpointsj
into the list eendpointsj+1. We show how to develop nexteep from nextep in a systematic

way by some program transformation steps. At �rst we copy the de�nition of function

nextep and replace every occurrence of the identi�er nextep by nexteep. With the resulting

de�nition we proceed as follows:

� Suppose nexteep is called with the arguments i0 and (i : eps). Let eps 6= []. Recall

that i0 = SP (l; j), i = EP (l; j), and (hd eps = EP (l+1; j)) for some l � 0. Since i and

(hd eps) occur in eendpointsj, we conclude i � hd eps < m. Under these conditions,

nexteep is simpli�ed which leads to the following de�nition for the value epl:

epl = i', if i+1 = i'

= h, if h <= i

= i, if i = hd eps

= i+1, otherwise

If i + 1 6= i0, then epl < m. Suppose i + 1 = i0. Then h > i and (i < hd eps). Hence,

i0 � hd eps < m which implies epl < m. Moreover, the fourth equation de�ning epl

subsumes the �rst equation which allows a further simpli�cation. The result is shown

in 1 below.

� The equation for nexteep obtained in the previous step is copied and transformed under

the condition that i < m and eps = [] hold. This leads to a de�nition for the case

where the second argument of nexteep is the list [i]. See 2 below.

� The equation obtained in the previous step is copied and transformed under the con-

dition that i = m holds. This leads to a de�nition for the case where the second

argument of nexteep is the empty list. See 3 below.

Altogether, we end up with the following modi�cation of colpart.

184 CHAPTER 6. APPROXIMATE STRING SEARCHING

colparte::num![num]!(array num)![num]

colparte m eendpoints posarrayb

= nexteep 0 eendpoints

where nexteep i' [] = [h], if h < m || 3

= [], otherwise

where h = lookup i' posarrayb

nexteep i' [i] = h:nexteep (i+1) [], if h <= i || 2

= i+1:nexteep (i+1) [], if i+1 < m

= [], otherwise

where h = lookup i' posarrayb

nexteep i' (i:eps) = epl:nexteep (i+1) eps || 1

where h = lookup i' posarrayb

epl = h, if h <= i

= i, if i = hd eps

= i+1, otherwise

It is easily veri�ed that nexteep only returns essential entries. Moreover, our systematic

development guarantees that all essential entries are computed by nexteep. Therefore, the

de�nition above is correct.

Algorithm CP is implemented by the function appCP. It preprocesses the pattern and the

input alphabet into the two-dimensional array posarray. This takes O(jAj � m) time and

space. From this a list posarrayt is constructed which contains for each b 2 ft1; t2; : : : ; tng
a reference to the array posarrayb as de�ned above. The initial column of table EP is

represented by the empty list. Successively applying the function (colparte m) yields the

list of columns containing the essential entries of table EP . An approximate match occurs

if and only if there are at least m � k interesting entries in a column. To test the latter

condition, the �rst m � k � 1 elements of a list representing a column are dropped. If the

remaining list is non-empty, then EP (m� k� 1; j) < m. This technique avoids unnecessary

evaluations of column entries.

appCP::(alphabet �)!num!(string �)!(string �)![num]

appCP (characters,encode) k p t

= [j | (j,eendpoints) zip2 [0..] (scanl (colparte m) [] posarrayt);

drop (m-k-1) eendpoints ~= []]

where m = #p

posarray = getposarray (characters,encode) p m

posarrayt = [lookup (encode b) posarray | b t]

The preprocessing phase in appCP takes O(jAj �m) time and space. It is easily veri�ed that

nexteep computes each column entry in constant time. Thus, each column is obtained in

O(m � q) steps where q is the average value of row m in table D. Therefore, appCP is an

optimal implementation of CP.

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 185

6.8 Chang and Lawler's Filtering Technique

For a random string t the number of solutions to the k-di�erences problem is very small

compared to n. The running time of an algorithm that solves the k-di�erences problem

is therefore dominated by the e�ort needed to verify for almost all positions that there

is no approximate match. This means that a fast algorithm should identify approximate

mismatches fast. Chang and Lawler's linear and sublinear expected time algorithms [CL94]

do so by applying a �lter to t. The algorithms discard a subword of t if it can be inferred

that it does not contain an approximate match. The remaining subwords are marked as

interesting. To each interesting subword a dynamic programming algorithm is applied to

verify if there is indeed an approximate match.

In this section, we give a declarative presentation of Chang and Lawler's �ltering technique.

Since it is based on maximal matches (note that this is not mentioned in [CL94]), we use

the notion of partitions. In this way, we obtain a very concise and intuitive description, and

can give simpli�ed correctness proofs which argue about subwords, submatches, and marked

characters, rather than complicated index expressions.

Some of the ideas and proofs presented in this section were developed in joint work with

Enno Ohlebusch.

6.8.1 Linear Expected Time Algorithm

The linear expected time algorithm of Chang and Lawler (LET for short) is based on the

following two observations:

� An approximate match is at least of length m� k.
� An approximate match contains at most k + 1 marked characters of the partition

	lr(t; p).

Thus, a subword of t which is shorter than m � k and which contains k + 1 consecutive

marked characters, can be discarded since it does not contain an approximate match. The

remaining subwords may contain an approximate match. Hence, they are considered as

interesting subwords. This is formally stated in the following algorithm.

Algorithm LET [CL94] Compute 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1). If r � k, then t is an

interesting subword. Otherwise, for each h; 1 � h � r�k, let sh = whch : : : wh+kch+kwh+k+1.

If jshj � m�k, then sh is an interesting subword. Merge all overlapping interesting subwords.

For each interesting subword obtained in such a way solve the k-di�erences problem. 2

In an implementation of Algorithm LET, one represents the partition 	lr(t; p) by some

pointers into the input string. In [CL94], the pointers refer to the �rst position of each

subword whch. We found it convenient to have pointers to the marked characters instead:

De�nition 6.8.1 Consider the partition 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1). For each

h; 1 � h � r let mph be the position of the marked character ch in t. Additionally de-

�ne mp0 = 0 and mpr+1 = n+ 1 as boundary values. 2

186 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.8: An Approximate Match with Exact k Di�erences

: : : : : : : : :

vz }| {
| {z }

wh

z }| {x1 a1

ch
| {z }

wh+1 ch+1

6
d(1)

ch+k�1

6
d(k�1)

ak�1z }| {xk| {z }
wh+k ch+k

ak

6
d(k)

z }| {xk+1| {z }
wh+k+1

Theorem 6.8.2 [CL94] Algorithm LET correctly solves the k-di�erences problem.

Proof Let edist�(p; v) � k for some subword v of t which begins at position j. An approxi-

mate match contained in an interesting subword will be detected by Algorithm LET. Hence,

to prove the correctness, it su�ces to show that v is a subword of an interesting subword. Ac-

cording to Lemma 3.9.13, there is an l; 0 � l � k and a partition 	 = (x1; a1; : : : ; xl; al; xl+1)

of v w.r.t. p. Moreover, mph�1 < j � mph for some h; 1 � h � r+1. Consider the following

cases:

� If r � k, then t is an interesting subword and v is a subword of t.

� If r > k and h > r � k, then v is a subword of whch : : : wrcrwr+1 which is a subword

of sr�k = wr�kcr�k : : : wrcrwr+1. Hence, v is a subword of sr�k. Since jvj � m� k, we
conclude jsr�kj � m� k. Thus, sr�k is an interesting subword.

� If r > k and h � r � k, then mph+i is de�ned for all i; 0 � i � k + 1. One shows

by induction on i that mph+i � j + jx1a1 : : : xij holds for all i; 0 � i � l + 1 (see also

Theorem 6.8.5). This implies mph+k+1 � mph+l+1 � j + jvj. Hence, v is a subword of

sh = whch : : : wh+kch+kwh+k+1. Since jvj � m � k, we have jshj � m � k. Thus, sh is

an interesting subword. 2

Note that Theorem 6.8.2 precisely handles the boundary cases of Algorithm LET which

occur when r � k or h > r � k. These cases are not considered in [CL94].

The proof of Theorem 6.8.2 gives a precise analysis of the relation between the submatches

and the marked characters in the partitions 	 and 	lr(t; p). In particular, it shows that the

pre�x x1a1 : : : xiai of the approximate match v ends at least at the marked character ch+i.

Thus, mph+i is the maximal position in t where the i-th di�erence ai in v is guaranteed to

occur (if there is one). This is illustrated in Figure 6.8 which shows a possible arrangement

of an approximate match v = x1a1 : : : xkakxk+1 with exactly k di�erences a1; : : : ; ak. d(i)

points to the maximal position in t where the i-th di�erence ai can occur.

To verify whether an interesting subword indeed contains an approximate match, Chang and

Lawler apply their version of the Diagonal Transition Algorithm (see section 6.6.3). One

reason for this is the space e�ciency and the good average and worst case running time of

O(k �n). Another reason is that the Diagonal Transition Algorithm uses the matching statis-

tics of t w.r.t. p as a preprocessed information. This can also be used to compute the positions

mp0; mp1; : : : ; mpr; mpr+1 of the marked characters in 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1)

without much extra e�ort. Let T = cst(p$) and y = tmph+1 : : : tn for some h; 0 � h � r.

Then according to De�nitions 6.6.10 and 3.9.10 we have: mph+1 = mph + 1 + jwh+1j =
mph+1+ jmaxpsubword(y)j = mph+1+ jlocT (maxpsubword(y))j = mph+1+ jmstats(y)j.

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 187

Hence, mph+1 can be obtained in constant time from mstats. Altogether, the preprocess-

ing time of Algorithm LET is dominated by the time to compute the matching statistics.

According to Lemma 6.6.12, this is O(jApj � (m + n)).

We emphasize that the Diagonal Transition Algorithm can be replaced by any other algo-

rithm that solves the k-di�erences problem. For instance, if one takes Algorithm UKKco

or Algorithm CP, then the full generality of the matching statistics is not needed and the

positions of the marked characters can directly be obtained from 	lr(t; p). This is computed

from T = cst(p) in O(jApj � n) steps as described in section 3.9.2.

The di�erent phases of Algorithm LET can be meshed. Thus, only O(k) marked positions

mph and O(k �m) input characters must be stored at any time. Of course, this requires extra

bu�ering operations which can be accomplished in O(n) time altogether. Note that Chang

and Lawler derive a space bound of O(m). It seems that they do not count the space for

storing the input characters.

Let us call a position in t interesting if it is included in one of the interesting subwords. The

overall running time of Algorithm LET is O(jApj � (m+ n) + ipos � iwork) where ipos is the
number of interesting positions in t and iwork is the average amount of work done for each

interesting position. In the worst case, ipos = n and iwork = k (iwork = m if we take

Algorithm UKKco or Algorithm CP). For the expected case Chang and Lawler derive the

following result:

Theorem 6.8.3 Let t be a uniformly random string and k� = m=(logjAjm+ c1)� c2 where
c1 and c2 are constants depending on jAj. If k < k�, then ipos � iwork 2 O(n).
Proof See [CL94]. 2

Ukkonen [Ukk92a] independently devised a �ltering algorithm that is based on maximal

matches. A closer look reveals that it is virtually the same as Algorithm LET. Experimental

results in [JTU91] show that Ukkonen's Algorithm is faster than other algorithms when m

is large and k is not too large relative to m. This behavior is consistent with Theorem 6.8.3.

We do not know an experimental comparison of Ukkonen's algorithm and Algorithm LET.

The algorithms described in the following three sections have a structure similar to Algorithm

LET. They mainly di�er in how they compute interesting subwords.

6.8.2 Improved Linear Expected Time Algorithm

In this section, we show how to improve the �lter applied in Algorithm LET. The idea is

to not totally ignore the arrangement of the subwords of p in an approximate match. In

particular, we exploit the fact that an approximate match has a partition of size l � k which

begins with a pre�x and ends with a su�x of p (see Lemma 3.9.13). This leads to a more

sensitive �lter which requires some additional computational e�ort. However, we will show

that the preprocessing still takes O(jApj � (m + n)) time. So the improved sensitivity may

pay o�.

De�nition 6.8.4 Consider the partition 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1). De�ne y1 =

w1 and zr+1 = wr+1. For each h; 2 � h � r + 1 let yh be the longest su�x of wh that is a

pre�x of p. For each h; 1 � h � r let zh be the longest pre�x of wh that is a su�x of p. 2

188 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.9: Considering the Pre�x x1 and the Su�x xk+1 of an Approximate Match

1.
q j: : : : : : : : :

vz }| {
| {z }

yh
| {z }

zh+k+1

| {z }
wh

z }| {x1 a1

ch
| {z }

wh+1 ch+1

6
d(1)

ch+k�1

6
d(k�1)

ak�1z }| {xk| {z }
wh+k ch+k

ak

6
d(k)

z }| {xk+1| {z }
wh+k+1

2.
j q

: : : : : : : : :

vz }| {
| {z }

yh
| {z }

zh+k

| {z }
wh

z }| {x1 a1

6
d(1)

ch

a2z }| {x2| {z }
wh+1 ch+1

6
d(2)

ch+k�1

6
d(k)

akz }| {xk| {z }
wh+k

The additional pre�x/su�x property of a partition (see Lemma 3.9.13) suggests that an

approximate match v is a subword of yhchwh+1 : : : wh+kch+kzh+k+1, as illustrated in Figure

6.9, 1. However, careful analysis shows that v can begin to the left of yh. Fortunately, in

that case v is a subword of whchwh+1 : : : wh+k�1ch+k�1zh+k, as illustrated in Figure 6.9, 2.

These considerations lead to the following improved linear expected time algorithm (ILET

for short):

Algorithm ILET Compute 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1). If r � k, then t is an

interesting subword. Otherwise, for each h; 1 � h � r � k, let sh = yhch : : : wh+kch+kzh+k+1.

If jshj � m�k, then sh is an interesting subword. Merge all overlapping interesting subwords.

For each interesting subword obtained in such a way solve the k-di�erences problem. 2

Theorem 6.8.5 Algorithm ILET correctly solves the k-di�erences problem.

Proof Let edist�(p; v) � k for some subword v of t which begins at position j. According

to Lemma 3.9.13, there is an l; 0 � l � k, and a partition 	 = (x1; a1; : : : ; xl; al; xl+1) of v

w.r.t. p such that x1 is a pre�x and xl+1 is a su�x of p. Moreover, mph�1 < j � mph for

some h; 1 � h � r + 1. It su�ces to show that v is a subword of some interesting subword.

Consider the following cases:

� If r � k, then t is an interesting subword and v is a subword of t.

� If r > k and h > r � k, then v is a subword of whch : : : wrcrwr+1 which is a subword

of sr�k = yr�kcr�k : : : wrcrzr+1 = yr�kcr�k : : : wrcrwr+1. Hence, v is a subword of sr�k.

Since jvj � m� k, we conclude jsr�kj � m� k. Thus, sr�k is an interesting subword.

� If r > k and h � r�k, then mph+i is de�ned for all i; 0 � i � k+1. Let q = mph�jyhj,
that is, q points to the �rst character of the subword yhch. The following subcases can

occur:

1. Suppose q � j. This case is illustrated in Figure 6.9, 1. One shows by induction

on i that mph+i � j+ jx1a1 : : : xij holds for all i; 0 � i � l+1. Next we show that

mph+l + jzh+l+1j+ 1 � j + jvj (6.11)

holds. Note that h + l + 1 � h + k + 1 � r + 1, that is, zh+l+1 is de�ned. If

mph+l+1 � j+ jvj, then (6.11) immediately follows. Suppose mph+l+1 < j+ jvj.

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 189

Sincemph+l+1 � j+jx1a1 : : : xlalj, there is a pre�x u of xl+1 such thatmph+l+1 =
j + jx1a1 : : : xlaluj. Let u0 be such that xl+1 = uu0. Obviously, u0 is a su�x of p

since xl+1 is. Furthermore, u0 is a pre�x of zh+l+1. Hence, we can concludemph+l+

jzh+l+1j+1 = j+ jx1a1 : : : xlaluj+ jzh+l+1j+1 � j+ ja1a1 : : : xlaluj+ ju0j = j+ jvj.
Thus, (6.11) holds and we derive mph+k + jzh+k+1j + 1 � mph+l + jzh+l+1j + 1 �
j + jvj. Therefore, v is a subword of sh = yhchwh+1 : : : wh+kch+kzh+k+1. Since

jvj � m� k, we have jshj � m� k. Hence, sh is an interesting subword.

2. Suppose j < q. This case is illustrated in Figure 6.9, 2. Assume h = 1. Then

q = mph� jyhj = mph� jwhj = 1 which is a contradiction since mp0 = 0 < j < q.

Therefore, h > 1. Next we show by induction on i that

mph+i�1 � j + jx1a1 : : : xij (6.12)

holds for all i; 1 � i � l. To establish the induction start for (6.12), supposemph <

j+jx1j. Then u = tj : : : tmph�1 is a pre�x of x1. Hence, u is a pre�x of p since x1 is.

Moreover, u is a su�x of wh. Since j < q, we have juj = mph�j > mph�q = jyhj.
This is a contradiction since yh is the longest su�x of wh that is a pre�x of p.

Thus, mph � j + jx1j. The induction step for proving (6.12) is straightforward

and we omit it here. In analogy to case 1, one shows mph+k�1 + jzh+kj + 1 �
mph+l�1 + jzh+lj+ 1 � j + jvj. Thus, v is a subword of whch : : : wh+k�1ch+k�1zh+k
which is a subword of sh�1 = yh�1ch�1whch : : : wh+k�1ch+k�1zh+k. Therefore, v

is a subword of sh�1. Since jsh�1j � jvj � m � k, we conclude that sh�1 is an

interesting subword. 2

Algorithm ILET additionally has to compute the lengths of yh and zh for h; 1 � h � r+1. Let

T be the compact su�x tree for p$ with the annotations ispre�x and issu�x (see De�nitions

4.4.5 and 4.5.2). The length of the submatch wh is determined by scanning T from the root.

For each location locT (u) visited during such a scan one checks in constant time if the pre�x

u of wh is a su�x of p. The longest such u is zh. Thus, jzhj can be computed at virtually

no cost. The length of yh can be obtained from loc = locT (wh). This is accomplished by

computing the locations of the su�xes of wh using the function linkloc. For each visited

location locT (u), one checks in constant time for the su�x u of wh if u is a pre�x of p. The

longest such u is yh. Thus, jyhj can be computed in O(jwhj � jyhj) steps. Altogether, the

preprocessing for ILET takes O(jApj �(m+n)) time. Recall that this result was also obtained

Algorithm LET. Since Algorithm ILET applies a stronger �lter, its search phase is always

faster than the search phase of Algorithm LET. Hence, the e�ciency results of Theorem

6.8.3 hold for Algorithm ILET, too. A more precise analysis of the expected case behavior

is subject to future work.

6.8.3 Sublinear Expected Time Algorithm

The sublinear expected time algorithm (SET for short) is a variation of Algorithm LET. It

divides the input string into non-overlapping subwords of length len = b(m � k)=2c. Since
an approximate match v is of length � m� k, it contains the whole of at least one subword
ti�len+1 : : : ti�len+len for some i � 1. Moreover, v contains at most the �rst k marked characters

of the partition 	lr(ti�len+1 : : : tn; p). Thus, the subword ti�len+1 : : : ti�len+len can be discarded

if the �rst k + 1 marked characters in 	lr(ti�len+1 : : : tn; p) occur in ti�len+1 : : : ti�len+len.

190 CHAPTER 6. APPROXIMATE STRING SEARCHING

Algorithm SET [CL94] Let len = b(m�k)=2c and for each i � 1 de�ne qi = i � len+1. For

each qi � n, compute ri = jw1c1 : : : wkckwk+1j where w1; c1; : : : ; wk; ck; wk+1 are the �rst 2�k+
1 items of the partition 	lr(tqi : : : tn; p). If ri � len, then si = tmaxf1;qi�d(m+3�k)=2eg : : : tqi+ri�1
is an interesting subword. Merge all overlapping interesting subwords. For each interesting

subword obtained in such a way solve the k-di�erences problem. 2

Theorem 6.8.6 Algorithm SET correctly solves the k-di�erences problem.

Proof Let edist�(p; v) � k for some subword v of t which begins at position j. It su�ces

to show that v is a subword of an interesting subword. Since jvj � m � k, there is a

qi; 1+ len � qi � n such that tqi : : : tqi+len�1 is a subword of v. Let w1; c1; : : : ; wk; ck; wk+1 be

the �rst 2 � k+1 items of the partition 	lr(tqi : : : tn; p) and suppose ri = jw1c1 : : : wkckwk+1j.
In analogy to Theorem 6.8.2, one shows ri � jvj. Since jvj � len, we obtain ri � len.

Hence, si is an interesting subword. Moreover, m + k � jvj implies j � qi + len � jvj �
maxf1; qi + len� (m+ k)g � maxf1; qi � d(m + 3 � k)=2eg. Hence, v is a subword of si. 2

Let k� be as in Theorem 6.8.3. In [CL94], it is shown that on the average only the �rst

q = (k + 1) � (logjAjm + O(1)) characters of each subword tqi : : : tqi+len�1 are examined by

Algorithm SET, provided k < k�=2� 3. Since there are 2 �n=(m� k) of these subwords, the
total number of examined characters is 2�n�q=(m�k). For this reason, Chang and Lawler call
their algorithm sublinear. However, for achieving sublinearity, the following requirements

must be ful�lled:

1. The length of the submatches w1; : : : ; wk+1 must directly be determined by scanning

cst(p$) while reading tqi : : : tn character by character (see section 3.9.2). This takes

O(Pk+1
i=1 jwij) time. If the matching statistics of t w.r.t. p would be used for this, then

only O(k) steps are necessary. However, then the algorithm would not be sublinear,

because O(jApj � (m + n)) preprocessing time would be required to determine the

matching statistics.

2. The su�x of tqi : : : tqi+len�1 which is not examined for computing the length of the

submatches w1; : : : ; wk+1 must be skipped in constant time. This requires the input

string to be given as an array of size n. Note that Chang and Lawler assume that the

input string is given online [CL94, page 328].

From the �rst point and a previous remark (see page 187), we conclude that the matching

statistics in Algorithm SET and Algorithm LET is necessary only when the checking of the

interesting subwords for approximate matches is done by Chang and Lawler's version of the

Diagonal Transition Algorithm. From the second point we conclude that Algorithm SET is

not truly sublinear. This fact was already remarked but not explained by Myers [Mye94a].

Recently, Chang and Marr [CM94], have described a variation of Algorithm SET, called

optimal sublinear expected time algorithm (OPT for short). This variation also divides the

input string into non-overlapping subwords of length b(m�k)=2c. But instead of computing

maximal matches, Algorithm OPT looks up precomputed information about approximate

matches between all strings w 2 Aq and all subwords of p. (q = r � logjAjm where r is a

constant which is independent of m and n, but dependent on jAj.) This means that the

preprocessing for Algorithm OPT is independent of the input string. For complexity results

we refer the reader to [CM94].

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 191

6.8.4 Improved Sublinear Expected Time Algorithm

There are two sources for improving Algorithm SET. First, it is not necessary to inspect the

entire stretch of d(m + 3 � k)=2e characters to the left of position qi. It su�ces to include

the subword tqi�len : : : tqi�1 immediately to the left of qi. Second, one can exploit the fact

that there is always a partition of an approximate match ending with a su�x of p. Hence, it

su�ces to consider the subword jw1c1 : : : wkckzk+1j where zk+1 is the longest pre�x of wk+1

that is a su�x of p. These considerations lead to the following improved sublinear expected

time algorithm (ISET for short):

Algorithm ISET Let len and qi be de�ned as in Algorithm LET. For each qi � n compute

ri = jw1c1 : : : wkckzk+1j where w1; c1; : : : ; wk; ck; wk+1 are the �rst 2 � k + 1 items of the

partition 	lr(tqi : : : tn; p) and zk+1 is the longest pre�x of wk+1 that is a su�x of p. If

ri � len, then si = tqi�len : : : tqi+ri�1 is an interesting subword of t. Merge all overlapping

interesting subwords. For each interesting subword obtained in such a way solve the k-

di�erences problem. 2

Theorem 6.8.7 Algorithm ISET correctly solves the k-di�erences problem.

Proof Let edist�(p; v) � k for some subword v of t which begins at position j. It su�ces to

show that v is a subword of an interesting subword. There is an i � 1 such that qi � len �
j � qi � 1 and tqi : : : tqi+len�1 is a subword of v. Let w1; c1; : : : ; wk; ck; wk+1 be the �rst

2 � k + 1 items of the partition 	lr(tqi : : : tn; p) and suppose ri = jw1c1 : : : wkckzk+1j where
zk+1 is the longest pre�x of wk+1 that is a su�x of p. In analogy to Theorem 6.8.5, one

shows ri � jvj. Since jvj � len, we conclude ri � len. Hence, si = tqi�len : : : tqi+ri�1 is an

interesting subword. Obviously, v is a subword of si. 2

The computation of the lengths of the submatches can be done as in Algorithm ILET. Hence,

zk+1 is computed at virtually no cost, and ISET determines the interesting subwords of t as

e�cient as Algorithm SET does. Since Algorithm ISET applies a stronger �lter, its search

phase is always faster than the search phase of Algorithm SET. A more precise analysis of

the expected case behavior is subject to future work.

6.8.5 Implementation

Let 	lr(t; p) = (w1; c1; : : : ; wr; cr; wr+1). Suppose T is the compact su�x tree of p$ with the

annotations, depth, ispre�x , and issu�x , as used in section 4.5. Recall that the latter two

annotations enable us to decide in constant time for each location locT (u) in T if u is a pre�x

of p or if u is a su�x of p, respectively. Assume loc = locT (wh) for some h; 1 � h � r + 1

and let vnodes be the list of nodes visited while traversing T from the root to loc. loc2len

computes the triple (wlen; ylen; zlen) where wlen = jwhj, ylen is the length of the longest

su�x of wh that is a pre�x of p, and zlen is the length of the longest pre�x of wh that is a

su�x of p.

192 CHAPTER 6. APPROXIMATE STRING SEARCHING

loc2len::([ctree � (num,bool,bool)],location � (num,bool,bool))!(num,num,num)

loc2len (vnodes,loc)

= (wlen,ylen,zlen)

where wlen = locdepth loc

slocs = suffixlocs (:[]) loc

ylen = hd [d | (d,loc') zip2 [wlen,wlen-1..] slocs; locisprefix loc']

zlen = wlen, if locissuffix loc

= last [d | N es link (d,isp,True) vnodes], otherwise

Since wlen = jlocj, we obtain wlen directly from loc using the function locdepth. To calculate

ylen, the list slocs of the locations of the su�xes of wh is computed. ylen is the depth of the

�rst location loc0 in slocs which corresponds to a pre�x of p. The latter condition is checked

by the function locispre�x . The laziness guarantees that only wlen � ylen + 1 elements of

slocs are evaluated. Hence, ylen is computed in O(wlen � ylen) steps. Note that slocs

contains the location of ". Since " is a pre�x of p, ylen is wellde�ned. If (locissu�x loc) is

true, then wh is a su�x of p and therefore zlen = wlen. Otherwise, zlen is the depth of the

last node in vnodes which is of the form (N es link (d; isp; T rue)), where the value True in

the tag means that the node location corresponds to a su�x of p. Since " is a pre�x of wh,

zlen is wellde�ned. It is easily veri�ed that loc2len needs constant space and O(jwhj) time

to compute the triple (wlen; ylen; zlen).

The function preprocess computes the triple

(mps; ylens; zlens) = ([mp0; mp1; : : : ; mpr; mpr+1]; [jy1j; : : : ; jyr+1j]; [jz1j; : : : ; jzr+1j])

where the mph, yh, and zh are as in De�nitions 6.8.1 and 6.8.4.

preprocess::�!(string �)!num!(string �)!([num],[num],[num])

preprocess sentinel p m t

= (mps,ylens,zlens)

where loceps = LocN (cst (p++[sentinel],m+1) (depthisprefixissuffix m))

wyzlens = map loc2len (lrpartition loceps t)

wlens = map first wyzlens

ylens = hd wlens:map second (drop 1 wyzlens)

zlens = map third (init wyzlens) ++ [last wlens]

mps = 0:[1 + mp + wlen | (mp,wlen) zip2 mps wlens]

First preprocess computes T and the location loceps = locT ("). This takes O(jApj � m)

time and O(m) space. The three annotations of T are calculated in O(m) by the annota-

tion function depthispre�xissu�x as de�ned in section 4.5.1. preprocess calls the function

lrpartition to compute a list of pairs (vnodesh; loch) where loch = locT (wh) and vnodesh is

the list of nodes visited while traversing T from the root to loch. From each pair of this

list the triple (wlen; ylen; zlen) is obtained using the function loc2len. This yields a list

wyzlens in O(jApj � n) steps. wlens, ylens, and zlens are computed by selecting the �rst,

the second, and the third element of the triples in wyzlens, respectively. Note that y1 = w1

and zr+1 = wr+1 according to De�nition 6.8.4. Therefore, the �rst element in ylens is set

to the �rst element in wlens and the last element in zlens is set to the last element in

wlens. mps is the list of running sums obtained by adding up the values in wlens. We use

the technique of programming with unknowns for computing mps. That is, mps is de�ned

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 193

and used simultaneously. This mandates a lazy evaluation strategy. Altogether, preprocess

achieves a running time of O(jApj � (m + n)) using O(m) space.

An interesting subword ti : : : tj of t is represented by the pair (i; j). To implement Algorithm

LET, we use the function letisubwords which computes the corresponding list of interesting

subwords.

letisubwords::num!num![num]![(num,num)]

letisubwords k m mps

= [(1,last mps-1)], if mps' = []

= [(mp+1,mp'-1) | (mp,mp') zip2 mps mps'; m-k < mp'-mp], otherwise

where mps' = drop (k+2) mps

For each h; 1 � h � r � k, the pair (mp;mp0) = (mph�1; mph+k+1) is computed by zipping

mps and mps0 = [mpk+2; mpk+3; : : : ; mpr+1]. Obviously, tmp+1 : : : tmp0�1 is the subword sh =

whch : : : wh+kch+kwh+k+1. If m�k < mp0�mp, then jshj � m�k. Hence, sh is an interesting
subword. Therefore, the pair (mp+ 1; mp0 � 1) belongs to the list returned by letisubwords.

Suppose jmpsj � k + 2. Then mps0 = [] and there are less than k marked characters in t.

This means that t is the only interesting subword. Therefore, letisubwords returns the list

[(1; n)] where n + 1 is the last element of the list mps. The running time of letisubwords is

proportional to the length of mps. Note that due to the laziness only O(k) elements of mps

are stored at any time.

To implement Algorithm ILET, we use the function iletisubwords which computes the cor-

responding list of interesting subwords.

iletisubwords::num!num!([num],[num],[num])![(num,num)]

iletisubwords k m (mps,ylens,zlens)

= [(1,last mps-1)], if zlens' = []

= [(left,right) | (left,right) lrpos; m-k <= right-left+1], otherwise

where mps' = drop (k+1) mps

zlens' = drop (k+1) zlens

lrpos = [(mp-ylen,mp'+zlen) |

(ylen,mp,mp',zlen) zip4 ylens (drop 1 mps) mps' zlens']

For each h; 1 � h � r � k the 4-tuple (ylen;mp;mp0; zlen) = (jyhj; mph; mph+k; jzh+k+1j) is
computed by zipping the following four lists:

ylens [mp1; mp2; : : : ; mpr+1] [mpk+1; mpk+2; : : : ; mpr+1] [jzk+2j; jzk+3j; : : : ; jzr+1j]
Let left = mp � ylen and right = mp0 + zlen. Obviously, tleft : : : tright is the subword

sh = yhch : : : wh+kch+kzh+k+1. If m� k � right� left + 1, then sh is an interesting subword

and the pair (left ; right) belongs to the list returned by iletisubwords. Note that jmpsj � k+2

if and only if zlens0 = []. Hence, if zlens0 is empty, then t is the only interesting subword

and iletisubwords returns a list with the only element (1; n) = (1; last mps� 1).

The function setisubwords computes the list of interesting subwords according to Algorithm

SET. At �rst, len = b(m � k)=2c and toleft = d(m + 3 � k)=2e are determined. Then the

function divide is called to construct the list

qslist = [(qi; tqi : : : tn) j qi = 1 + i � len; 1 � i; qi � n]

194 CHAPTER 6. APPROXIMATE STRING SEARCHING

Since tqi : : : tn is not evaluated, this takes O(n) time. For each pair (q; s) occurring in qslist,

a function howfar is called which calculates how far the �rst k + 1 maximal matches in s

reach. More precisely, howfar determines the �rst 2 �k+1 items w1; c1; : : : ; wk; ck; wk+1 of the

partition 	lr(s; p) and returns the length r of w1c1 : : : wkckwk+1. Note that lrpartition only

evaluates k + 1 locations and determines the length of the submatches from these. Hence,

howfar takes O(jApj � r) time. If r � len, then tmaxf1;q�toleftg : : : tq+r�1 is an interesting

subword.

setisubwords::�!num!(string �)!num!(string �)![(num,num)]

setisubwords sentinel k p m t

= [(max2 1 (q-toleft),q+r-1) | (q,s) qslist; r [howfar s]; len <= r]

where len = (m-k) div 2

toleft = (1 + m + 3 * k) div 2

qslist = zip2 [1+len,1+len+len..] (divide len (drop len t))

loceps = LocN (cst (p++[sentinel],m+1) (depthisprefixissuffix m))

howfar s = k + sum (take (k+1) [wlen | loc lrpartition loceps s;

(wlen,ylen,zlen) [loc2len loc]])

divide::num!(string �)![string �]

divide q [] = []

divide q s = s:divide q (drop q s)

The function isetisubwords computes the list of interesting subwords according to Algorithm

ISET. It is very similar to setisubwords. The main di�erence is that the local function howfar

sums up the length of the items w1; c1; : : : ; wk; ck; zk+1 where zk+1 is the longest pre�x of wk+1

that is a su�x of p.

isetisubwords::�!num!(string �)!num!(string �)![(num,num)]

isetisubwords sentinel k p m t

= [(q-len,q+r-1) | (q,s) qslist; r [howfar s]; len <= r]

where len = (m-k) div 2

loceps = LocN (cst (p++[sentinel],m+1) (depthisprefixissuffix m))

qslist = zip2 [1+len,1+len+len..] (divide len (drop len t))

howfar s = sumup k (map loc2len (lrpartition loceps s))

sumup::num![(num,num,num)]!num

sumup (l+1) ((wlen,ylen,zlen):rest) = 1 + wlen + sumup l rest

sumup 0 ((wlen,ylen,zlen):rest) = zlen

sumup l rest = 0

mergeisubwords merges consecutive interesting subwords (begin; end) and (begin0; end0) to

one subword (begin; end0) whenever they overlap or follow each other without a gap. This

takes time proportional to the number of interesting subwords.

mergeisubwords::[(num,num)]![(num,num)]

mergeisubwords ((begin,end):(begin',end'):isubwords)

= mergeisubwords ((begin,end'):isubwords), if end+1 >= begin'

= (begin,end):mergeisubwords ((begin',end'):isubwords), otherwise

mergeisubwords isubwords = isubwords

6.8. CHANG AND LAWLER'S FILTERING TECHNIQUE 195

(pairs2strings 1 t) is applied to the list of merged interesting subwords. It returns for every

interesting subword (begin; end) the triple (begin; end; s) where s is a lazy list representing

the su�x tbegin : : : tn of t. This takes O(n) steps.

pairs2strings::num!(string �)![(num,num)]![(num,num,string �)]

pairs2strings j s ((begin,end):isubwords)

= (begin,end,s'):pairs2strings begin s' isubwords

where s' = drop (begin-j) s

pairs2strings j s [] = []

The four �lter algorithms di�er only in the way interesting subwords are computed. We

therefore introduce a higher order function app�lter which abstracts from this di�erence.

app�lter takes two functions �lterkdi� and solvekdi� as arguments. �lterkdi� determines

the interesting subwords in the input string t. These are merged. Then for each merged sub-

word (begin; end), the corresponding su�x s of t which begins at position begin is computed.

This gives a list misubwords of triples. For each element (begin; end; s) in misubwords, the

function solvekdi� is called to solve the k-di�erences problem for the subword tbegin : : : tend.

appfilter::(string �![(num,num)])!((num,num,string �)![num])!(string �)![num]

appfilter filterkdiff solvekdiff t

= [j | (begin,end,s) misubwords; j solvekdiff (begin,end,s)]

where misubwords = pairs2strings 1 t (mergeisubwords (filterkdiff t))

Implementations of the four �lter Algorithms LET, ILET, SET, and ISET are obtained

in a straightforward way by supplying app�lter with the speci�c function for computing

the interesting subwords. This resembles the close relationship of the four algorithms. For

convenience we introduce the following type synonym:

filteralgorithm � == ((num,num,string �)![num])!

�!num!(string �)!(string �)![num]

appLET::filteralgorithm �

appLET solvekdiff sentinel k p

= appfilter (letisubwords k m.first.preprocess sentinel p m) solvekdiff

where m = #p

appILET::filteralgorithm �

appILET solvekdiff sentinel k p

= appfilter (iletisubwords k m.preprocess sentinel p m) solvekdiff

where m = #p

appSET::filteralgorithm �

appSET solvekdiff sentinel k p = appfilter (setisubwords sentinel k p m) solvekdiff

where m = #p

appISET::filteralgorithm �

appISET solvekdiff sentinel k p = appfilter (isetisubwords sentinel k p m) solvekdiff

where m = #p

196 CHAPTER 6. APPROXIMATE STRING SEARCHING

Every of the four implementations above does not use a speci�c function to solve the k-

di�erences problems for the interesting subwords. We leave it to the application to derive

instances with a �xed \k-di�erences subproblem solver". From the remarks above, it is

clear that the implementations are optimal. appSET and appISET are not sublinear since

they call the function divide to compute the list qslist. This takes O(n) steps. However,

an imperative implementation which reads t online cannot not achieve a better than linear

asymptotic runtime. Note that in the worst case, the submatches are of length O(m). Hence,

appSET and appISET perform O(jApj � k �m) steps for each subword tqi : : : tn. Thus, their

worst case running time is O(jApj � k �m � n=(m� k)).

6.8.6 Other Approaches

By generalizing the Boyer-Moore-Horspool Algorithm, Tarhio and Ukkonen [TU93] obtained

another �lter algorithm for solving the k-di�erences problem. To explain this algorithm, we

rede�ne the notion of minimizing edges (see page 75). Consider the edit graph G(p; t). An

edge (i0; j 0) a!b- (i; j) in G(p; t) is minimizing if D(i; j) equals D(i0; j 0) + �(a! b) where � is

the unit cost function. A successful minimizing path is any path from some node (0; j 0) to

some node (m; j) such that D(m; j) � k. The algorithm of Tarhio and Ukkonen is based on

the following observation. If a successful minimizing path goes through the node (i; h + i)

for some i; 0 � i � m, then for at most k indices l; 1 � l � m the character th+l is bad, that

is, th+l 6= pr for all r;maxf1; l� kg � r � minfm; l+ kg (see [TU93, Lemma 3]). This leads

to the following method for determining interesting subwords of t. Let h = 0 and align p

with t1 : : : tm. Perform the following step until h > n: For l = m;m � 1; : : : ; k + 1 check if

th+l is bad. If � k bad characters are found in this way, then tmaxf1;h�kg : : : tminfn;h+kg is an

interesting subword of t. h is incremented by r and p is shifted r positions to the right where

r is minimal such that at least one of the characters th+m; th+m�1; : : : ; th+m�k matches the

corresponding pattern character. To determine r and to decide if th+l is bad, A, p, and k are
preprocessed in O((k+ jAj) �m) time and O(jAj �m) space. The worst case running time of

the algorithm is O(m �n=k+m �n). It occurs if t is an interesting subword. If 2 �k+1 < jAj,
then the algorithm takes

O
 jAj
jAj � 2 � k � k � n �

k

jAj+ 2 � k2 +
1

m

!!

expected time to determine the interesting subwords. If the pattern and the input alphabet

is large and the threshold value is small, then the dynamic programming steps for checking

if an interesting subword contains an approximate match, are executed very seldom. Hence,

in this case the above bound also holds for the entire algorithm. Experimental results in

[TU93] show that Tarhio and Ukkonen's algorithm runs considerably faster than Algorithm

UKKco, provided the input alphabet is large.

Myers [Mye94a] has developed an algorithm for solving the k-di�erences problem, whose

search phase is sublinear in n. To explain Myers' algorithm, we introduce the following

notion: The condensed k-neighborhood of s 2 A�, denoted by neighborhoodk(s), is the set of

strings w such that edist�(w; s) � k, and for all pre�xes v of w we have v =2 neighborhoodk(s).

A simple method to solve the k-di�erences problem is to construct neighborhoodk(p) and to

look up each w 2 neighborhoodk(p) in an inverted index of the input string. Unfortunately,

this simple method is impractical in general since the size of the neighborhood rapidly grows

6.9. OVERVIEW OF THE IMPLEMENTATIONS 197

with the pattern length and the threshold value. Myers has found a way to avoid this problem

by dividing p into non-overlapping subwords of length q = logjAj n. For each such subword

s the algorithm computes neighborhoodk0(s) where k
0 < k is a reduced threshold value. The

elements in neighborhoodk0(s) are looked up in an inverted index for the input string. Using a

\doubling trick", the resulting partial approximate matches are then successively combined

to obtain approximate matches with p if they exist. This is technically complicated, and we

do not give the details here. Myers has shown that, if the input alphabet is �xed and �nite,

the preprocessing of t into a suitable inverted index can be accomplished in O(n) space and
time. The inverted index only depends on A and t, but not on p. Hence, it can be used for

varying patterns. After precomputing the inverted index, the approximate matches are found

in O(k � nf(k=m) � logn) time where f is a monotone increasing function such that f(0) = 0.

The search phase of the algorithm is sublinear if k=m is small enough to guarantee that

f(k=m) < 1. As shown in [Mye94a], this is true for a wide range of values. For instance,

if jAj = 4, then f(k=m) < 1 for all k=m < 0:33. If jAj = 20, then f(k=m) < 1 for all

k=m < 0:56. Practical experiments show that Myers' algorithm is sometimes much faster

than Algorithm UKKco and the algorithm of Wu, Manber, and Myers [WMM92] which we

described in section 6.5.

6.9 Overview of the Implementations

In this chapter, we presented the most important algorithms for solving the approximate

string searching problem. We implemented most of the algorithms. Figure 6.10 gives an

overview of the programs. Except for DTpp, all functional implementations are optimal.

That is, they achieve the same asymptotic e�ciency as their imperative counterparts. Input

strings are scanned online from left to right. At each time the access to t is either restricted to

one input character or to a small sliding window of sizeO(m) orO(k�m). A remarkable virtue

of our functional implementations is that an explicit bu�ering mechanism is not required to

achieve space e�ciency. Lazy evaluation and the memory management of the Miranda

system guarantee that only the needed portion of the input string is stored at any time.

Note that the programs reuse several parts of our string processing machinery. Let us only

enumerate the most important parts:

� For appSEL, appSELco, appSESA, and appUKKco we have developed table speci�ca-

tions, reusing the function absnextcol to realize the main recurrences of the Wagner-

Fischer Algorithm.

� For appSEL, appSELco, and appUKKco we have reused the function scanl to implement

the search phase.

� For the implementation of Algorithm MS (see function mstats) we have reused the

functions scanpre�x and linkloc to realize the traversing of the su�x tree.

� For appLET, appILET, appSET, appISET, and appDTpp we have reused the function

cst to compute compact su�x trees.

� For appLET, appILET, appSET, and appISET we have reused the function lrpartition

to compute left-to-right partitions in di�erent ways.

198 CHAPTER 6. APPROXIMATE STRING SEARCHING

Figure 6.10: Overview of the app-Programs

running time

function worst expected comment

appSEL O(m � n) O(m � n) simplest variation of the Wagner-Fischer

Algorithm; do not charge insertions into

empty string; set �rst row to 0

appSELco O(m � n) O(k � n) cuto� variation of appSEL; compute dis-

tance column up to last essential index

appSESA O(q � jAj �m+ n) incremental construction of SES -automa-

ton in top down strategy; states are short-

est essential su�xes; compute length and

distance columns; scan t in constant time

per character; extension 1 required

q = 2 � jAjm+k�1 q = ? q is number of constructed states

appUKKco O(m � n) O(k � n) optimization of appSELco for unit cost

function

appCdfa O(q � jAj �m+ n) incremental construction of Column-DFA;

store normalized distance columns in tern-

ary tree; postpone processing of columns

by storing them in a queue; scan t in con-

stant time per character; extension 1 re-

quired

q = 3m q = ? q is number of processed columns

appDTbf O(m � n) O(k � n) compute positions in D-diagonals where

values increase; calculate jumps by pair-

wise character comparisons

appDTpp O(jApj � (m+ n)

+m2

+m � n)

O(jApj � (m+ n)

+m2

+k � n)

variation of appDTbf ; calculate jumps in

constant time from precomputed match-

ing statistics and table pjump; extension

1 required; improved O(k � n)-worst case

running time of search phase not achieved

appCP O(jAj �m
+m � n)

O(jAj �m
+ k�np

jAj�1
)

preprocess A and p; compute endpoints

of runs of consecutive integers in constant

time; extension 1 required

appLET O(jApj � (m+ n)

+m � n)
O(jApj � (m+ n)

+n)

if k < k�

discard subwords of t which are shorter

thanm�k and which contain k+1 marked

characters; compute length of submatches

directly from cst(p$)

appILET see appLET variation of appLET ; stronger �lter; ex-

ploits pre�x/su�x property of partition

appSET O(jApj � k �m
�n=(m� k))

O(logjAj �k�nm�k)

if k < k�=2� 3

divide t into non-overlapping subwords of

length (m � k)=2; discard subword if it

contains the �rst k+ 1 marked characters

appISET see appSET variation of appSET ; stronger �lter; ex-

ploits su�x property of partition

Note that the �rst three programs work for arbitrary cost functions.

All other programs are restricted to the unit cost function.

Chapter 7

Performance Results

We extensively studied the practical e�ciency of the di�erent exact and approximate string

searching algorithms described in chapters 4, 5, and 6. For all measurements we used random

patterns of varying lengths, and random input strings of �xed length n = 10:000 over

alphabets of the sizes jAj = 4; 20; 50; 80. All patterns and input strings were generated

independently.

The main goal is to validate the analytical e�ciency results of our implementations and to get

an idea of the relative e�ciency of the di�erent programs. Rather than the runtime, we show

the number of SKI-reductions (see section 2.2), as reported by the Miranda system (version

2.014). To decrease random variation, each measurement shows the average number of SKI-

reductions performed by a particular program for ten di�erent patterns of �xed length. Recall

that the number of SKI-reductions refers to an abstract machine. Hence, the measurements

are independent of the particular computer and the operating system. This also means that

it was not necessary to perform a particular measurement more than once. We should remark

that the number of SKI-reductions and the runtime correlate (see section 2.2). For example,

a SPARC 10/41 performs a constant rate of about 80.000 SKI-reductions per CPU-second.

7.1 Exact String Searching

We tested the e�ect of the pattern length on the exact string searching algorithms BF,

KMP, KR, BM, BMH, BMS, CL, and CL0. The measurements are shown in Figure 7.1. The

smallest number of reductions in each row is printed in bold face. The main results are as

follows:

� The performance of exsBF is almost independent of the pattern length and the alpha-

bet size. This is consistent with the expected running time of O(m + n). exsBF is

the fastest program for jAj = 4 and the third fastest program for jAj � 20. The good

behavior may be due to the simplicity of the implementation and the fact that exsBF

performs string comparisons with the built-in predicate \=".

� The performance of exsKMP is almost independent of the pattern length and improves

slightly with growing alphabet size. This is consistent with the results in [BY89a]. In

almost all cases, exsKMP is the slowest program. This may be explained by the

199

200 CHAPTER 7. PERFORMANCE RESULTS

Figure 7.1: Number of Reductions in 1000 for the exs-Programs

jAj m BF KMP KR BM BMH BMS CL CL0

4 8 173 608 460 277 243 271 1299 833
4 16 174 635 460 311 264 266 738 581
4 32 174 635 459 293 283 381 470 371
4 64 174 634 459 319 307 345 323 304
4 128 175 630 458 440 314 364 234 260
20 8 170 559 460 203 171 143 693 457
20 16 170 561 460 167 136 124 473 324
20 32 170 565 459 168 121 118 317 244
20 64 170 560 459 208 116 125 228 198
20 128 170 560 458 295 117 123 197 205
50 8 170 542 460 193 164 121 595 392
50 16 170 542 460 152 125 93 412 276
50 32 170 544 459 153 108 83 300 217
50 64 170 545 459 214 102 90 243 201
50 128 170 543 458 383 105 104 244 230
80 8 170 543 460 189 160 116 586 389
80 16 170 543 460 150 124 88 423 283
80 32 170 544 459 149 107 78 325 230
80 64 170 543 459 215 100 78 268 218
80 128 170 543 458 441 103 95 284 280

fact that it uses the function next which works on arbitrary atomic A+-trees. We

conjecture that an optimized version of next which is tailored for KMP-trees, leads to

a considerable speed-up of exsKMP.

� The performance of exsKR is almost constant. Since m is small compared to n, this

fact is consistent with the expected performance of O(m + n). In most cases, exsKR

is the second slowest program. The bad performance may be due to the overhead of

Miranda's unbound precision arithmetic.

� As expected, exsBM performs better with growing alphabet size. There is an interest-

ing e�ect of the pattern length. The step from m = 8 to m = 16 leads to a speed-up

(except for jAj = 4). The step from m = 16 to m = 32 does not have an in
uence

on the speed. The step from m = 32 over m = 64 to m = 128 slows down exsBM

considerably. This may be explained by the increasing preprocessing e�ort for larger

patterns which is not amortized by the larger expected shifts.

� The performance of exsBMH improves with growing alphabet size and pattern length.

This is consistent with the analytical results. exsBMH is always faster than exsBM.

This may be explained by the smaller preprocessing e�ort of exsBMH and the fact

that exsBMH performs string comparisons with the built-in predicate \=". exsBMH

beats exsBF for jAj � 20. In most cases, exsBMH is the second fastest program.

� exsBMS shows a similar behavior as exsBMH w.r.t. alphabet size and pattern length.

If jAj � 20, then exsBMS is in almost all cases the fastest program. The speed advan-

tage over the second fastest program exsBMH is sometimes considerable, especially for

larger alphabets. This may be explained as follows. If the alphabet size is large, then

7.2. MULTIPLE EXACT STRING SEARCHING 201

Figure 7.2: Number of Reductions in 1000 for the exms-Programs

jAj r STS AC
4 32 1763 701

4 64 2285 814

4 128 2600 881

4 256 3043 892

4 512 3363 915

4 1024 3782 951

jAj r STS AC
20 32 1477 672

20 64 2114 859

20 128 2768 1048

20 256 3482 1285

20 512 3865 1461

20 1024 4392 1543

jAj r STS AC
50 32 1606 680

50 64 2036 857

50 128 2784 1127

50 256 4306 1577

50 512 6221 2000

50 1024 7593 2213

jAj r STS AC
80 32 1550 669

80 64 2038 850

80 128 2992 1144

80 256 4747 1713

80 512 7376 2376

80 1024 10416 2982

the maximal shift value ofm+1 for exsBMS and ofm for exsBMH occurs often. To per-

form a maximal shift, exsBMS evaluates the expression (reverse (take m y); drop m y),

while exsBMH calls the function rightshift which may be much slower.

� exsCL behaves bad if the pattern is short and the alphabet size is small. This is

consistent with the analytical results. For jAj = 4 and m = 128, exsCL is the second

fastest program. However, for jAj � 20 it cannot compete with exsBMH and exsBMS.

� exsCL0 shows the same behavior as exsCL w.r.t. pattern length and alphabet size.

In almost all cases, there is a slight speed advantage over exsCL which reduces with

growing alphabet size and pattern length.

Figure 7.4 shows a plot of the measurements for the �ve fastest programs exsBF, exsBM,

exsBMH, exsBMS, and exsCL0. Based on the empirical results, we recommend to choose

exsBF for jAj = 4 and exsBMS for jAj � 20.

7.2 Multiple Exact String Searching

The Su�x Tree Search Algorithm and the Aho-Corasick Algorithm were applied to sets of

random patterns. In particular, for each r = 32, 64, 128, 256, 512, 1024 we randomly chose

ten di�erent sets P of random patterns such that
P

p2P jpj = r. The measurements are

shown in Figure 7.2. The smallest number of reductions in each row is printed in bold face.

A plot of the measurements can be found in Figure 7.5.

The main results of the measurements are as follows: exmsSTS and exmsAC show the

expected behavior. They both slow down with a growing alphabet size and growing r. The

e�ect on the speed when doubling r is moderate for jAj � 20, and increasing for jAj � 50.

This may be explained by the fact that for large alphabets random patterns do not have long

common subwords. For exmsSTS this means that almost all patterns force the lazy su�x

tree algorithm to construct a new path in the su�x tree. For exmsAC this means that most

transitions take O(jAj) time since they mostly occur at the root of the KMP-tree which has

O(jAj) outgoing edges. Our measurements reveal that exmsAC is always two to three times

faster than exmsSTS. The preprocessing e�ort for constructing the compact su�x tree of

the input string does therefore not pay o� for exmsSTS.

202 CHAPTER 7. PERFORMANCE RESULTS

7.3 Approximate String Searching

We tested the approximate string searching algorithms SESA, UKKco, Cdfa, DTbf, DTpp,

CP, LET, ILET, SET, ISET. For the last four algorithms we have used Algorithm UKKco to

solve the k-di�erences problems for the interesting subwords. Recall that Algorithm SESA

works for arbitrary cost functions. However, we have always supplied appSESA with the unit

cost function, in order to compare it with the other programs which are restricted to the

k-di�erences problem. Note that we have not measured the functions appSEL and appSELco

since appUKKco is an optimization of appSELco which in turn is an optimization of appSEL.

We adopted the test scheme of [JTU91] and performed three test series:

1. We measured the e�ect of the pattern length in a test series with varying m = 8, 16,

32, 64, 128, and �xed k = 4.

2. We measured the e�ect of an absolute threshold value in a test series with varying

k = 1; 2; 3; 4 and �xed m = 10.

3. We measured the e�ect of a relative threshold value in a test series with varying

m = 8; 16; 32; 64; 128 and k = m=8.

The measurements are shown in Figure 7.3. The smallest number of reductions in each row

is printed in bold face. Unfortunately, appSESA and appCdfa run into heap space problems

for m 2 f64; 128g and k = m=8. Therefore, the corresponding measurements are missing in

the third test series. The main results of the measurements are as follows:

� The performance of appSESA is good, except if the pattern and the threshold value is

large. In the �rst and third test series, the speed improves with larger alphabet size.

If k = 4 is �xed, then a growing pattern length slows down appSESA. For jAj = 4

the decrease in speed is considerable, for jAj � 20 it is moderate. If m = 10 is

�xed, then a growing threshold value leads to a considerable increase in the running

time. However, in many cases appSESA beats the other programs. We found the good

relative performance of appSESA remarkable since it does not exploit any property of

the unit cost model, like all the other algorithms do.

� Our test series validate the O(k � n) expected running time of appUKKco. The �rst

series shows that for �xed k = 4 a varying pattern length does (almost) not in
uence

the speed. The second and third series show that a growing threshold value slows

down the program considerably. A growing alphabet size has a positive e�ect on the

performance of appUKKco. This e�ect was also measured in [JTU91]. Note that except

for the cases where appSESA ran into heap space problems, it is always faster than

appUKKco. Since the latter is an optimization of appSELco, we can conclude that

for the unit cost function appSESA is faster than appSELco. It should be evaluated

whether this relation holds for other cost functions, too.

� As expected, appCdfa shows a good performance for small threshold values, small

patterns, and small alphabets. For instance, if m = 10, k � 3, and jAj � 20, then

appCdfa is the second fastest program. In most cases, appCdfa is slower than appSESA.

This may be explained by the fact that appCdfa uses list indexing, while appSESA does

7.3. APPROXIMATE STRING SEARCHING 203

not. Another reason may be that the automata construction performed by appSESA is

\more lazy", which means that the construction of a new transition does not force the

algorithm to construct many new states. In order to validate this, detailed information

about the lazy evaluation process is required. This can be provided by modern pro�ling

tools for lazy functional languages (see [RW93, SPJ95]).

� The three test series clearly reveal the O(k � n) expected running time of appDTbf.

For �xed k = 4 the speed is almost invariant of the pattern length and the size of the

alphabet. The second and third series show that appDTbf slows down considerably

with growing k. In comparison to the other programs, the performance of appDTbf

is quite bad. This may be due to the overhead created by the use of access triples.

appDTbf is only half as fast as appUKKco which is also O(k � n) in the expected case.

A similar relationship was observed in [JTU91].

� appDTpp is the slowest program in all cases. (Note that it is also the most complicated.)

The bad performance may be due to the overhead created by the use of access triples.

Moreover, the preprocessing e�ort plays a role. Consider, for instance, the �rst test

series. For �xed k = 4 there is a slight dependence on m. This may result from the

precomputation of table pjump which requires O(m2) time.

� The �rst and the third test series show that appCP slows down by a factor 2 if m is

doubled. The second test series clearly shows that the speed of appCP is independent

of the threshold value. The larger the alphabet, the better appCP performs. appCP

is one of the fastest programs for large alphabets and small patterns. This behavior is

consistent with the results in [CL92, WMM92, CM94]. Note that our measurements do

not validate the statement of Chang and Lampe [CL92] according to which Algorithm

CP is always faster than AlgorithmUKKco. Especially for largem and small alphabets,

appCP is much slower than appUKKco.

� appLET shows the expected behavior. If k = 4 is �xed and m is small, then a slight

absolute increase of m makes the �lter much more sensitive which leads to a speed-up

by a factor > 2. If m is larger, then the sensitivity of the �lter does not change with

growing m. If m = 10 is �xed, then appLET considerably slows down with growing

threshold value and slightly speeds up with growing alphabet size. appLET is one of

the fastest program if k = m=8 and m varies.

� appILET shows a similar behavior as appLET w.r.t. the threshold value, the pattern

length, and the alphabet size. However, in comparison to appLET, the running time

of appILET is disappointing. Although it applies a stronger �lter, appILET is always

slower than appLET. This can be explained by the increased preprocessing e�ort which

does not pay o�. More measurements are necessary to characterize combinations of

pattern lengths and threshold values where the stronger �lter of appILET becomes

important.

� appSET is one of the fastest programs in the �rst and the third test series. The larger

the pattern and the alphabet, the better appSET performs. If the pattern is not

too small, then there is a speed advantage over appLET. A growing threshold value

considerably slows down appSET. This is consistent with the theoretical results.

204 CHAPTER 7. PERFORMANCE RESULTS

� In most cases, appISET and appSET show nearly identical performance. However,

sometimes appISET runs 20 percent faster than appSET. These may be the cases where

the stronger �lter of appISET shows its e�ect. More measurements are necessary to

reveal those combinations of pattern lengths and threshold values where the stronger

�lter of appISET becomes important.

On the basis of our measurements we can recommend the following choices depending on

jAj, k, and m.

1. If m and k are small, then appSESA is a good choice.

2. If m is small and the alphabet size is large, then appCP is a good choice.

3. If m is much larger than k, then appISET is a good choice.

Figures 7.6, 7.7, and 7.8 show the plots of the three test series for the programs appSESA,

appUKKco, appCdfa, appCP, appLET, and appISET. Recall that we have no measurements

for appSESA and appCdfa when m 2 f64; 128g and k = m=8.

If one studies our performance results, one should take into account the following facts:

� The length of the input string is relatively small. Hence, for some programs the

preprocessing e�ort is considerable compared to the search time. More measurements

with longer input strings may lead to di�erent performance results.

� The patterns and input strings we considered are random. Measurements with real

data, for instance DNA sequences or english text, may lead to di�erent performance

results.

� There are sources for optimizing the programs. Although we have several ideas for

optimizations, we have not applied them since they would lead to programs which

are much harder to explain and to understand, and which do not reuse many other

functions. The main goal concerning e�ciency was to achieve the asymptotic behavior

of the corresponding imperative programs.

7.3. APPROXIMATE STRING SEARCHING 205

Figure 7.3: Number of Reductions in 1000 for the app-Programs

jAj k m SESA UKKco Cdfa DTbf DTpp CP LET ILET SET ISET
4 4 8 2267 5134 1359 9207 14285 2286 7117 8393 15797 15902
4 4 16 3494 5582 8262 9274 15292 4276 7558 8861 10049 10101
4 4 32 4020 5787 9222 9290 15044 8129 1954 3225 6907 5422
4 4 64 4768 5967 12382 9322 15348 17043 2024 3344 1363 1376
4 4 128 4320 5810 10067 9293 15458 34134 2103 3347 822 840
20 4 8 2841 4214 2780 9114 12546 1156 6390 7795 10727 10786
20 4 16 3275 4269 7197 9107 13795 2186 2626 3548 7193 7091
20 4 32 3620 4329 6799 9101 14867 4204 2250 3584 1550 1568
20 4 64 3361 4313 5040 9107 15638 8317 2405 3759 891 902
20 4 128 3220 4306 4587 9113 16250 16415 2579 4007 558 572
50 4 8 1453 3943 3330 9138 11926 764 6306 7791 9658 9705
50 4 16 1592 3964 3558 9137 12988 1349 2440 3937 5729 4633
50 4 32 2168 4024 4762 9126 14485 2749 2827 4273 1525 1539
50 4 64 2384 4048 5530 9122 16019 5480 3079 4458 967 975
50 4 128 2165 4019 4972 9124 17237 10868 3302 4627 691 700
80 4 8 1536 3931 3903 9136 11819 705 6370 7864 9565 9609
80 4 16 1548 3934 3073 9136 12953 1191 2624 4135 5129 4087
80 4 32 1618 3943 3470 9136 14707 2295 3353 4826 1656 1669
80 4 64 1584 3940 2734 9136 16774 4408 3982 5394 1118 1126
80 4 128 1637 3944 3503 9135 18738 8781 4286 5635 845 853
4 1 10 433 2289 423 3173 8109 2658 2263 3159 4392 3272
4 2 10 668 3235 677 5195 10364 2658 4847 4982 6809 6870
4 3 10 1273 4304 1490 7233 12616 2659 6316 7607 10548 10626
4 4 10 2418 5358 2726 9252 14852 2660 7370 8660 13080 13156
20 1 10 522 1925 470 3110 6458 1459 1939 3365 1600 1534
20 2 10 1061 2687 766 5105 8611 1459 2075 3376 4385 3444
20 3 10 2033 3493 1509 7113 10765 1459 4599 5016 7413 7458
20 4 10 3407 4292 3675 9101 12906 1459 6515 7874 9117 9159
50 1 10 503 1840 538 3102 5779 909 2103 3615 1269 1312
50 2 10 774 2552 917 5113 7902 909 2104 3615 2414 2085
50 3 10 1239 3269 1733 7122 10022 909 2553 3785 6652 6687
50 4 10 1936 3990 3086 9127 12138 909 5663 6914 8139 8171
80 1 10 497 1825 552 3101 5749 815 2195 3728 1269 1316
80 2 10 712 2526 857 5115 7869 815 2195 3728 2136 1981
80 3 10 1074 3230 1702 7126 9985 815 2366 3779 6627 6660
80 4 10 1595 3939 3561 9135 12100 815 5343 6566 8103 8133
4 1 8 455 2408 438 3202 7747 2270 3217 3413 5348 4836
4 2 16 762 3451 778 5219 10804 4276 2432 3318 5594 4022
4 4 32 4020 5787 9222 9290 15044 8129 1954 3225 6907 5422
4 8 64 10149 17366 24301 17043 2065 3341 12715 12671
4 16 128 18655 33503 42328 34134 2103 3341 21482 21487
20 1 8 525 1902 474 3105 6115 1156 1855 3289 2577 2001
20 2 16 1071 2681 842 5108 9423 2186 2090 3482 1531 1533
20 4 32 3620 4329 6799 9101 14867 4204 2250 3584 1550 1568
20 8 64 7532 17063 24634 8317 2405 3758 1650 1660
20 16 128 13863 33001 43280 16415 2579 4002 1795 1801
50 1 8 452 1824 463 3102 5563 764 1961 3490 1677 1628
50 2 16 661 2524 832 5114 8706 1349 2437 3938 1341 1369
50 4 32 2168 4024 4762 9126 14485 2749 2827 4273 1525 1539
50 8 64 7061 17110 24886 5480 3079 4457 1781 1789
50 16 128 13038 33092 44273 10868 3301 4624 2056 2062
80 1 8 494 1823 553 3101 5479 705 2019 3559 1575 1592
80 2 16 697 2522 918 5115 8690 1191 2624 4135 1365 1392
80 4 32 1618 3943 3470 9136 14707 2295 3353 4826 1656 1669
80 8 64 6839 17156 25557 4408 3982 5393 2072 2079
80 16 128 12743 33148 45630 8781 4286 5632 2525 2530

206

Figure 7.4: The Five Fastest exs-Programs

jAj = 4

128

256

512

1024

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

BF
BM

BMH
BMS

CL’

m

jAj = 20

64

128

256

512

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

BF
BM

BMH
BMS

CL’

m

jAj = 50

64

128

256

512

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

BF
BM

BMH
BMS

CL’

m

jAj = 80

64

128

256

512

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

BF
BM

BMH
BMS

CL’

m

207

Figure 7.5: The exms-Programs

jAj = 4

512

1024

2048

4096

32 64 128 256 512 1024

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

STS
AC

r

jAj = 20

512

1024

2048

4096

8192

32 64 128 256 512 1024

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

STS
AC

r

jAj = 50

512

1024

2048

4096

8192

32 64 128 256 512 1024

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

STS
AC

r

jAj = 80

512

1024

2048

4096

8192

16384

32 64 128 256 512 1024

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

STS
AC

r

208

Figure 7.6: First Test Series for the app-Programs (k = 4)

jAj = 4

512

1024

2048

4096

8192

16384

32768

65536

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 20

512

1024

2048

4096

8192

16384

32768

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 50

512

1024

2048

4096

8192

16384

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 80

512

1024

2048

4096

8192

16384

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

209

Figure 7.7: Second Test Series for the app-Programs (m = 10)

jAj = 4

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

red
uct

ion
s in

 10
00

SESA
UKKco

Cdfa
CP

LET
ISET

k

jAj = 20

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4

red
uct

ion
s in

 10
00

SESA
UKKco

Cdfa
CP

LET
ISET

k

jAj = 50

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4

red
uct

ion
s in

 10
00

SESA
UKKco

Cdfa
CP

LET
ISET

k

jAj = 80

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4

red
uct

ion
s in

 10
00

SESA
UKKco

Cdfa
CP

LET
ISET

k

210

Figure 7.8: Third Test Series for the app-Programs (k = m=8)

jAj = 4

256

512

1024

2048

4096

8192

16384

32768

65536

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 20

256

512

1024

2048

4096

8192

16384

32768

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 50

256

512

1024

2048

4096

8192

16384

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

jAj = 80

256

512

1024

2048

4096

8192

16384

8 16 32 64 128

red
uct

ion
s in

 10
00

 (lo
g2-

sca
le)

SESA
UKKco

Cdfa
CP

LET
ISET

m

Chapter 8

Conclusion

Main Findings

In this thesis, we have described how to systematically embed fundamental string algo-

rithms in the functional programming paradigm. Since the programming techniques in the

functional and in the imperative world are mostly incompatible, the well-known imperative

descriptions of string algorithms were an unsuitable starting point for our purposes. For

this reason we have always redeveloped the considered string algorithms from a declarative

point of view. In particular, we have elaborated the basic ideas and the properties that

are responsible for the correctness and e�ciency of the algorithms. The declarative devel-

opment improved the understanding of the algorithms, revealed some inconsistencies in the

literature, and allowed precise and clear correctness proofs. Moreover, it led to robust and

e�cient functional implementations in a transparent and straightforward way. Finally, as an

immediate spin-o�, the declarative approach led to the development of some new algorithms:1

� Algorithm LOT computes the q-gram distance of two strings of length m and n by a

parallel walk of the compact su�x trees, using O(m+n) space and O((jAj+q)�(m+n))

time. Algorithm LOT is simpler than previous methods and can easily be implemented

in our functional framework.

� Algorithm GST uses the compact su�x tree of the pattern to precompute the functions

needed for the Boyer-Moore Algorithm. Algorithm GST runs in O(m) space and

O(jApj �m) time. It is much simpler than the preprocessing methods presented in the

literature.

� Algorithm SESA incrementally constructs a deterministic �nite automaton to solve

the approximate string searching problem. It runs in O(r � (jAj + m)) space and

O(r � jAj �m+ n) time where r is the number of states created. Practical experiments

show that Algorithm SESA often is faster than previous algorithms for solving the

k-di�erences problem. This is remarkable because it does not exploit any property of

the unit cost model, like the competing algorithms do.

1Recall the following notations: m is the length of the pattern, n is the length of the input string, A is
the input alphabet, Ap � A is the pattern alphabet, and q is a positive integer.

211

212 CHAPTER 8. CONCLUSION

� By using a more sensitive �lter, we have obtained Algorithm ISET, which improves on

Chang and Lawler's sublinear expected time algorithm SET. Preliminary experiments

show that Algorithm ISET is sometimes 20 percent faster than Algorithm SET.

A main contribution of the thesis is a complete implementation of a variety of string search-

ing and string comparison algorithms. We used the lazy functional language Miranda with

two extensions: Extension 1 provided arrays with an e�cient creation and lookup function.

Extension 2 additionally included an e�cient array update function. Building our imple-

mentation from individual reusable components, we achieve a higher degree of modularity

than is usually seen. It is especially the use of higher order functions, polymorphic types,

and lazy evaluation that supports the reusability. Let us recall some important points where

we have bene�ted from these language features:

� We have represented and constructed various forms of A+-trees in a uni�ed way. The

use of higher order functions and polymorphic types made it possible to abstract

from the di�erent underlying alphabets, the di�erent degrees of compression, and the

application-speci�c annotations of the nodes.

� The Wagner-Fischer Algorithm for computing the edit distance and optimal alignments

occurs in many variants throughout the thesis. We have implemented all these variants

in a uni�ed way. By using a higher order function (namely absnextcol) and polymorphic

types, we were able to abstract from the di�erent ways a new entry in the dynamic

programming table is computed from previous table entries.

� We have conveniently realized the search phase of several string searching algorithms

which scan an input string character by character, thereby performing state transitions.

By using polymorphic types and a higher order function (namely scanl), we were able

to abstract from the di�erent forms of states and state transition functions.

� The monad of state transformers provides a higher order function (namely bind) which

is used to encapsulate state based computations so that their external behavior is purely

functional. On the basis of this monad, we have developed the �rst purely functional

implementations of linear time su�x tree constructions.

� The four �lter algorithms for solving the k-di�erences problem di�er only in the way

that interesting subwords are computed. By using a higher order function (namely

app�lter), we were able to abstract from this di�erence.

� We have implemented several incremental constructions of su�x trees and deterministic

�nite automata. Due to the laziness, the incrementality was achieved for free.

� We have implemented a simple method for computing the su�x links of A+-trees. Due

to the laziness, we did not have to concern ourselves with the order in which the su�x

links are constructed.

� We have implemented a table speci�cation to enumerate all alignments of two strings.

Due to the laziness, we can logically separate the enumeration of the alignments and

their selection. In this way, we obtained a very
exible method to compute suboptimal

alignments.

213

� We have represented input strings by lazy lists. In this way, we were able to implement

space e�cient string searching algorithms which do not require an explicit mechanism

for bu�ering the input string.

Modularity, elegance, and
exibility is, of course, not the only criterion to assess the quality

of programs. An important aspect, which has often been neglected in the literature about

functional programming (see [Rea89, Hol91]), is the asymptotic e�ciency of functional pro-

grams. We have not neglected this aspect in the thesis. By using the computational model

of outermost graph reduction, we have analyzed the e�ciency of our implementations. It

was shown that (except for Algorithm DTpp) all functional programs achieve the same

asymptotic running time as their imperative counterparts. The analytical results were con-

�rmed by practical measurements. Our e�ciency results are remarkable, because it has

been questioned that functional programs can generally achieve the same complexity class

as imperative programs (see [PMN88]).

In order to obtain e�cient functional programs, we have often liberated from implementation

techniques developed for imperative languages: For instance, rather than arrays, we used

lists to represent strings. Rather than pointers, we used shared subexpressions. Rather than

directly updating arrays, we used monadic programming style to guarantee single-threaded

arrays. Instead of manipulating a global state, we organized the computation such that the

required information is available locally. These and other di�erences often led to functional

programs that did not have much in common with the corresponding imperative programs.

A remarkable feature of our implementation is the rare use of the extensions to Miranda.

Extension 2 is only used for implementing linear time su�x tree constructions and for the

preprocessing phase of Horspool's and Sunday's exact string searching algorithms. Extension

1 is exclusively used for storing and e�ciently looking up preprocessed information about

the input alphabet and the pattern. This means that (except for the linear time su�x tree

constructions) we utilize only \small" arrays of size jAj or size m.

Future Research

An important direction of future research is to analyze the new algorithms in more detail.

Algorithm LOT and its variation (see page 81) should be compared to Ukkonen's su�x

tree based algorithm for computing the q-gram distance. An interesting question is to

what extent both algorithms bene�t from the lazy su�x tree algorithm. Algorithm GST

should be compared to previous preprocessing methods for the Boyer-Moore Algorithm. The

comparison should be performed on a practical as well as on a theoretical basis. Algorithm

SESA should be analyzed with respect to the number of states and transitions generated if the

SES -automaton is constructed incrementally. A comparison with the competing algorithm of

Sellers should be undertaken using di�erent cost functions. Another important research issue

is to compare the di�erent implementation techniques for Algorithm MDC. An interesting

question is whether the simplicity of our new online implementation technique leads to an

improved running time. Algorithm ILET and ISET should be examined on a theoretical and

practical basis. That is, analytical results should be obtained to quantify the threshold value

for which the algorithms are linear and \sublinear," respectively. Moreover, the algorithms

should be measured with respect to the number of interesting positions computed.

An obvious direction of future research is to apply our string processing machinery to a wider

214 CHAPTER 8. CONCLUSION

class of problems on strings. This includes three problems which have interesting applications

in molecular biology: the approximate substring matching problem, the approximate overlap

problem, and the approximate codon matching problem. For a description of these problems

and ideas for their solution, see [CL94]. Generalizations of the approximate string searching

problem should be considered as well. Approximate searching of limited regular expressions

[WMM92], of network expressions [Mye92b], and of regular expressions [MM89, Mye92a,

KM92]. Another important application area is the search for structural patterns, like repeats

and palindromes. We are currently developing corresponding search functions which are

based on compact su�x trees. An interesting generalization, which is also quite important

for molecular biology applications, is the search for approximate structural patterns. Little

work has been done in this �eld (see [LS93, Sch95]).

A wide area of future work will be to perform more experiments on larger data sets. In

order to accomplish this, our programs should be translated to the lazy functional languages

Clean [PE95] or Haskell [FHPJW92]. Both languages support updatable arrays and provide

state-of-the-art compilers for generating native object code. A translation should not be

too di�cult since in our implementations we have restricted ourselves to those features of

Miranda that are (with similar syntax and semantics) also present in Clean and Haskell.

Moreover, we have clearly separated our extensions from the basic language features of

Miranda.

In our eyes, it is an open question if either Clean or Haskell is the better choice for pragmatic

reasons. Clean is quite interesting since it includes a special type system called \uniqueness

typing" (see [BS93, SBEP94]) which employs information to deduce whether a data structure

is single threaded at a certain moment. By using uniqueness typing, we do not need a

monadic programming style to ensure single threadedness. This may improve the readability

of functional programs which perform state-based computations. An advantage of Haskell

is that its implementations provide advanced pro�ling facilities (see [RW93, SPJ95]) which

is very important in tuning programs. To our knowledge, Clean does not support advanced

pro�ling facilities.

A main goal in the future is to make available our functional implementations as a library

for string processing applications. Due to the features we have shown in the thesis, this

could make functional programming the technique of choice in a multitude of string pro-

cessing applications. With improvements in compiler technology for functional languages,

the e�ciency advantage of imperative programs over functional programs will decrease more

and more, so that, in the future, tradition will be the main motivation for using imperative

languages when implementing string processing applications.

Appendix A

Implementation of Queues

The polymorphic abstract data type (queue �) supports the following functions:

emptyqueue::queue �

queueisempty::(queue �)!bool

enqueue::(queue �)!�!(queue �)

dequeue::(queue �)!(�,queue �)

emptyqueue returns the empty queue. (queueisempty q) checks if q is the empty queue.

(enqueue q a) adds an element a to the back of q. dequeue is applied to a non-empty queue

q and returns a pair (a; q0) where a is the �rst element of the front of q and q0 is q after

removing a from the front. For a formal speci�cation of these operations see [BW88].

The simplest functional implementation represents the queue (q1; : : : ; ql) by the list q =

[q1; : : : ; ql]. That is, the beginning of the list acts as the front of the queue and the end

of the list acts as the back of the queue. Unfortunately, this representation means that

(enqueue q a) appends an element to the end of q which requires O(jqj) time. An alternative

solution was suggested by Robert Giegerich [Gie94b]. It represents the queue (q1; : : : ; ql) by

a function q :: [�] ! [�] such that q [] = [q1; : : : ; ql]. The four functions above are de�ned

as follows:

emptyqueue = id

queueisempty q = (q [] = [])

enqueue q a = q.(a:)

dequeue q = ((hd.q) [],drop 1.q)

It is easily veri�ed that each operation takes constant time. However, in practice this solution

proved to be quite slow. For this reason, we apply the implementation technique of Holyer

[Hol91]. The idea is to split a queue into two lists. One list contains some elements of the

front of the queue, and the other list contains the remaining elements. In particular, the

queue (q1; : : : ; ql) is represented by a pair (x; y) of type

queue � == ([�],[�])

such that the following holds:

215

216 APPENDIX A. IMPLEMENTATION OF QUEUES

1. x ++ (reverse y) = [q1; : : : ; ql] and

2. l > 0 implies x 6= [].

x is the front and y is the back of the queue. This representation is not unique. It depends

on the history of accesses. The empty queue has an empty front and an empty back. Hence,

the �rst two functions can be de�ned as follows:

emptyqueue::queue �

emptyqueue = ([],[])

queueisempty::(queue �)!bool

queueisempty ([],[]) = True

queueisempty (x,y) = False

If q is empty, then enqueue adds the element a to the front. If q is not empty, then a is

added to the back. This ensures conditions 1 and 2 and takes constant time in both cases.

enqueue::(queue �)!�!(queue �)

enqueue ([],[]) a = ([a],[])

enqueue (x,y) a = (x,a:y)

dequeue is applied to a non-empty queue q which, by conditions 1 and 2, has a non-empty

front. It returns the �rst element of the front and the remaining queue. If this makes the

front empty, the back is reversed and used to replace the front. This ensures conditions 1

and 2.

dequeue::(queue �)!(�,queue �)

dequeue ([a],y) = (a,(reverse y,[]))

dequeue (a:x,y) = (a,(x,y))

dequeue takes more than constant time when the front contains only one element. However,

one can show that dequeue takes constant time on the average: Any particular element

passed through the queue is removed once from the front and moved once from the back

to the front. Removing an element takes constant time. Since (reverse y) is evaluated in

O(jyj), the total time spend to move r elements is therefore proportional to r. Hence, moving

an element takes constant time on the average.

Appendix B

Prede�ned Functions

x ++ y appends the lists x and y in O(jxj) time.

(++)::[�]![�]![�]

[] ++ y = y

(a:x) ++ y = a:(x ++ y)

x!i returns the i-th element of x in O(i) steps.

(!)::[�]!num!�

(a:x)!0 = a

(a:x)!(i+1) = x!i

#x returns the length of x in O(jxj) steps.

(#)::[�]!num

#[] = 0

#(a:x) = 1 + #x

const is a function for creating constant valued functions. For instance, (const []) is the

function that always returns the empty list.

const::�!�!�

const x y = x

(drop i x) returns in O(minfi; jxjg) time the list which remains when the �rst i elements are

removed from x. If jxj � i, then (drop i x = []). Hence, (drop 1) is the identity on [].

drop::num![�]![�]

drop (i+1) (a:x) = drop i x

drop i x = x

(dropwhile f x) drops the longest pre�x of x whose elements satisfy f . The running time is

proportional to the length of this pre�x.

217

218 APPENDIX B. PREDEFINED FUNCTIONS

dropwhile::(�!bool)![�]![�]

dropwhile f [] = []

dropwhile f (a:x) = dropwhile f x, if f a

= a:x, otherwise

fst returns the �rst component of a pair. snd returns the second component of a pair. It is

de�ned correspondingly.

fst::(�,�)!�

fst (a,b) = a

If x 6= [], then (init x) returns x without its last element. (init []) is unde�ned.

init::[�]![�]

init (a:x) = [], if x = []

= a:init x, otherwise

If x 6= [], then (last x) returns the last element of x in O(jxj) steps. (last []) is unde�ned.
last::[�]!�

last x = x!(#x-1)

(max2 a b) returns the maximum of a and b under the built-in ordering <. min2 returns

the minimum. It is de�ned correspondingly.

max2::�!�!�

max2 a b = b, if a < b

= a, otherwise

(take i x) returns the pre�x of x of length i. If jxj � i, then (take i x = x). The running

time is O(minfjxj; ig).
take::num![�]![�]

take (i+1) (a:x) = a:take i x

take i x = []

(takewhile f x) takes the longest pre�x of x whose elements satisfy f . The running time is

proportional to the length of this pre�x.

takewhile::(�!bool)![�]![�]

takewhile f [] = []

takewhile f (a:x) = a:takewhile f x, if f a

= [], otherwise

(zip2 x y) returns a list of pairs, formed by pairing corresponding elements of x and y. The

running time is O(minfjxj; jyjg).
zip2::[�]![�]![(�,�)]

zip2 (a:x) (b:y) = (a,b):zip2 x y

zip2 x y = []

There are prede�ned functions zip3 and zip4 which zip three and four lists to yield a list of

triples and quadruples, respectively. They are de�ned in an analogy to zip2.

Bibliography

[AC75] A. Aho and M. Corasick. E�cient String Matching: An Aid to Bibliographic

Search. Communications of the ACM, 18:333{340, 1975.

[ACGM92] A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors. Proceedings

of the Third Annual Symposium on Combinatorial Pattern Matching, Tucson,

Arizona, April/May 1992. Lecture Notes in Computer Science 644, Springer

Verlag, 1992.

[ACGM93] A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors. Proceedings

of the Fourth Annual Symposium on Combinatorial Pattern Matching, Padova,

Italy, June 1993. Lecture Notes in Computer Science 684, Springer Verlag,

1993.

[AF91] A. Amir and M. Farach. Adaptive Dictionary Matching. In Proceedings 32nd

IEEE Symposium on Foundations of Computer Science, pages 760{766, 1991.

[AFM92] A. Amir, M. Farach, and Y. Matias. E�cient Randomized Dictionary Matching

Algorithms. In [ACGM92], pages 262{275, 1992.

[AG85] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer

Verlag, 1985.

[AGM+89] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A Basic

Local Alignment Search Tool. J. Mol. Biol., 215:403{410, 1989.

[Aho90] A. Aho. Algorithms for Finding Patterns in Strings. In van Leeuwen, J., editor,

Handbook of Theoretical Computer Science, Volume A, pages 257{300. Elsevier,

1990.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley, Reading, MA, 1974.

[AHU82] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, MA, 1982.

[AJ89] L. Augustsson and T. Johnsson. The Chalmers Lazy-ML Compiler. The Com-

puter Journal, 32:127{141, 1989.

[AL89] S.F. Altschul and D.J. Lipman. Trees, Stars, and Multiple Biological Sequence

Alignment. SIAM J. Appl. Math., 49(1):197{209, 1989.

219

220 BIBLIOGRAPHY

[All92] L. Allison. Lazy Dynamic-Programming can be Eager. Information Processing

Letters, 43:207{212, 1992.

[AN95] A. Andersson and S. Nilsson. E�cient Implementation of Su�x Trees. Software

| Practice and Experience, 25(2):129{141, 1995.

[AP83] A. Apostolico and F.P. Preparata. Optimal O�-line Detection of Repetitions

in a String. Theoretical Computer Science, 22:297{315, 1983.

[AP85] A. Apostolico and F.P. Preparata. Structural Properties of the String Statistics

Problem. Journal of Computer and System Sciences, 31:394{411, 1985.

[Apo85] A. Apostolico. The Myriad Virtues of Subword Trees. In [AG85], pages 85{96,

1985.

[Apo94] A. Apostolico. Guest Editor's Foreword. Algorithmica, 12(4/5):245{246, 1994.

[AS84] H. Abelson and G.J. Sussman. The Structure and Interpretation of Computer

Programs. MIT-Press, Cambridge, MA, 1984.

[AS92] A. Apostolico and W. Szpankowski. Self-Alignments in Words and Their Ap-

plications. Journal of Algorithms, 13:446{467, 1992.

[ASU85] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, Reading, MA, 1985.

[BBH+85] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.

The Smallest Automaton Recognizing the Subwords of a Text. Theoretical

Computer Science, 40:31{55, 1985.

[Ber95] D. Berndt. �Ahnlichkeitsma�e f�ur Sequenzen basierend auf Teilwortgraphen.

Master's Thesis, Technische Fakult�at, Universit�at Bielefeld, 1995.

[BG93] B. Brehme and R. Giegerich. So z�ahlt Miranda. Unpublished Manuscript,

Technische Fakult�at, Universit�at Bielefeld, 1993.

[BM77] R.S. Boyer and J.S. Moore. A Fast String Searching Algorithm. Communica-

tions of the ACM, 20(10):762{772, 1977.

[Bos88] D.R. Boswell. A Program for Template Matching of Protein Sequences.

CABIOS, 4(3):345{350, 1988.

[BRCR94] P. Bieganski, J. Riedl, J.V. Carlis, and E.F. Retzel. Generalized Su�x Trees

for Biological Sequence Data: Applications and Implementation. In Proceedings

of the IEEE 27th Hawaii International Conference on System Sciences, pages

35{44. IEEE Computer Society Press, 1994.

[Bre94] D. Breslauer. Dictionary-Matching on Unbounded Alphabets: Uniform Length

Dictionaries. In [Gus94], pages 184{197, 1994.

[BS93] E. Barendsen and S.L Smetsers. Conventional and Uniqueness Typing in Graph

Rewrite Systems. Report CSI-R9328, Computing Science Department, Univer-

sity of Nijmegen, 1993.

BIBLIOGRAPHY 221

[BW88] R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice

Hall, Englewood Cli�s, NJ, 1988.

[BY89a] R.A. Baeza-Yates. E�cient Text Searching. Ph.D. Thesis, Department of Com-

puter Science, University of Waterloo. Also as Research Report CS-89-17, 1989.

[BY89b] R.A. Baeza-Yates. Improved String Matching. Software | Practice and Expe-

rience, 19(3):257{271, 1989.

[BY89c] R.A. Baeza-Yates. String Searching Algorithms Revisited. In Workshop on

Algorithms and Data Structures (WADS'89), pages 75{96. Lecture Notes in

Computer Science 382, Springer Verlag, 1989.

[BY92] R.A. Baeza-Yates. String Searching Algorithms. In W. Frakes and R.A. Baeza-

Yates, editors, Information Retrieval: Algorithms and Data Structures, pages

219{240. Prentice Hall, Englewood Cli�s, NJ, 1992.

[BYCG94] R.A. Baeza-Yates, C. Cho�rut, and G.H. Gonnet. On Boyer-Moore Automata.

Algorithmica, 12(4/5):268{292, 1994.

[BYG92] R.A. Baeza-Yates and G.H. Gonnet. A New Approach to Text Searching. Com-

munications of the ACM, 35(10):74{82, 1992.

[BYP92] R.A. Baeza-Yates and C.H. Perleberg. Fast and Practical Approximate String

Matching. In [ACGM92], pages 185{192, 1992.

[BYR90] R.A. Baeza-Yates and M. R�egnier. Fast Algorithms for Two Dimensional and

Multiple Pattern Matching. In Proceedings of Second Scandinavian Workshop

on Algorithm Theory, SWAT'90, pages 332{347. Lecture Notes in Computer

Science 447, Springer Verlag, 1990.

[BYR92] R.A. Baeza-Yates and M. R�egnier. Average Running Time of Boyer-Moore-

Horspool Algorithm. Theoretical Computer Science, 92(1):19{31, 1992.

[CCG+94] M. Crochemore, L. Czumaj, S. G�asieniec, T. Lecroq, W. Plandowski, and

W. Rytter. Speeding Up Two String-Matching Algorithms. Algorithmica,

12(4/5):247{267, 1994.

[CG89] K.Y. Cockwell and I.G. Giles. Software Tools for Motif and Pattern Scan-

ning: Program Descriptions including a Universal Sequence Reading Algorithm.

CABIOS, 5(3):227{232, 1989.

[CHM+86] B. Clift, D. Haussler, R. McConnell, T.D. Schneider, and G.D. Stormo. Se-

quence Landscapes. Nucleic Acids Research, 14(1):141{158, 1986.

[CL88] H. Carillo and D. Lipman. The Multiple Sequence Alignment Problem in Biol-

ogy. SIAM Journal of Applied Mathematics, 48(5):1073{1082, 1988.

[CL90] W.I. Chang and E.L. Lawler. Approximate String Matching in Sublinear Ex-

pected Time. In Proceedings 31st IEEE Symposium on Foundations of Com-

puter Science, pages 116{124, 1990.

222 BIBLIOGRAPHY

[CL92] W.I. Chang and J. Lampe. Theoretical and Empirical Comparisons of Approx-

imate String Matching Algorithms. In [ACGM92], pages 175{184, 1992.

[CL94] W.I. Chang and E.L. Lawler. Sublinear Approximate String Matching and

Biological Applications (revised version of [CL90]). Algorithmica, 12(4/5):327{

344, 1994.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

MIT-Press, Cambridge, MA, 1990.

[CM94] W.I. Chang and T.G. Marr. Approximate String Matching and Local Similarity.

In [Gus94], pages 259{273, 1994.

[CMP94] C. Clack, C. Myers, and E. Poon. Programming with Miranda. Prentice Hall,

Englewood Cli�s, NJ, 1994.

[Col90] R. Cole. Tight Bounds on the Complexity of the Boyer-Moore Pattern Matching

Algorithm. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms,

pages 224{233, 1990.

[Cro86] M. Crochemore. Transducers and Repetitions. Theoretical Computer Science,

45:63{86, 1986.

[Cro88] M. Crochemore. String Matching with Constraints. In Proceedings of 1988

International Symposium on Mathematical Foundations of Computer Science,

pages 44{58. Lecture Notes in Computer Science 324, Springer Verlag, 1988.

[CS85] M.T. Chen and J.I. Seiferas. E�cient and Elegant Subword Tree Construction.

In [AG85], pages 97{107, 1985.

[CW79] B. Commentz-Walter. A String Matching Algorithm Fast on the Average. In

Proceedings ICALP '79, pages 118{132. Lecture Notes in Computer Science 71,

Springer Verlag, 1979.

[CWM84] Fraser. C., A. Wendt, and E.W. Myers. Analyzing and Compressing Assem-

bly Code. In Proceedings of the ACM SIGPLAN '84 Symposium on Compiler

Construction, SIGPLAN Notices Volume 19, No. 6, pages 117{121, 1984.

[DHS84] J. Devereux, P. Haeberli, and O. Smithies. A Comprehensive Set of Sequence

Analysis Programs for the VAX. Nucleic Acids Research, 12(1):387{395, 1984.

[EH88] A. Ehrenfeucht and D. Haussler. A New Distance Metric on Strings Computable

in Linear Time. Discrete Applied Mathematics, 20:191{203, 1988.

[FG89] E.R. Fiala and D.H. Greene. Data Compression with Finite Windows. Com-

munications of the ACM, 32(4):490{505, 1989.

[FHPJW92] J.H. Fasel, P. Hudak, S. Peyton Jones, and P. Wadler. Haskell Special Issue.

ACM SIGPLAN Notices, 27(5), 1992.

[GBY91] G.H. Gonnet and R.A. Baeza-Yates. Text Algorithms. In Handbook of Algo-

rithms and Data Structures in Pascal and C, pages 251{288. Addison-Wesley,

Reading, MA, 1991.

BIBLIOGRAPHY 223

[Ger91] German Cancer Research Center and Center for Molecular Biology. Short De-

scriptions for the Program Package HUSAR: Heidelberg Unix Sequence Analysis

Resources, 1991.

[GG88] Z. Galil and R. Giancarlo. Data Structures and Algorithms for Approximate

String Matching. Journal of Complexity, 4:33{72, 1988.

[GHT84] H. Glaser, C. Hankin, and D. Till. Principles of Functional Programming.

Prentice Hall, Englewood Cli�s, NJ, 1984.

[Gie92] R. Giegerich. Embedding Sequence Analysis in the Functional Programming

Paradigm { A Feasibility Study. Report Nr. 8, Technische Fakult�at, Universit�at

Bielefeld, 1992.

[Gie94a] R. Giegerich. Algorithmen auf Sequenzen. Lecture Notes, Technische Fakult�at,

Universit�at Bielefeld, 1994.

[Gie94b] R. Giegerich. Personal Communication, 1994.

[GK94] R. Giegerich and S. Kurtz. Su�x Trees in the Functional Programming Para-

digm. In Proceedings of the European Symposium on Programming (ESOP'94),

pages 225{240. Lecture Notes in Computer Science 788, Springer Verlag, 1994.

[GK95a] R. Giegerich and S. Kurtz. A Comparison of Imperative and Purely Functional

Su�x Tree Constructions. Science of Computer Programming, 25(2-3), 1995.

[GK95b] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A Unify-

ing View of Linear-Time Su�x Tree Construction. accepted for publication in

Algorithmica, also available as Report Nr. 94-03, Technische Fakult�at, Univer-

sit�at Bielefeld, 1995.

[GKS95] R. Giegerich, S. Kurtz, and J. Stoye. Lazy Su�x Trees. In preparation, 1995.

[Gon92] G.H. Gonnet. A Tutorial Introduction to Computational Biochemistry Using

Darwin. Draft Research Report, ETH Z�urich, 1992.

[GP89] Z. Galil and K. Park. An Improved Algorithm for Approximate String Match-

ing. In Proceedings ICALP '89, pages 394{404. Lecture Notes in Computer

Science 372, Springer Verlag, 1989.

[GP90] Z. Galil and K. Park. An Improved Algorithm for Approximate String Match-

ing, (revised version of [GP89]). SIAM Journal on Computing, 19(6):989{999,

1990.

[Gus94] D. Gus�eld, editor. Proceedings of the Fifth Annual Symposium on Combina-

torial Pattern Matching, Asilomar, California, June 1994. Lecture Notes in

Computer Science 807, Springer Verlag, 1994.

[HD91] A. Hume and Sunday D.M. Fast String Searching. Software | Practice and

Experience, 21(11):1221{1248, 1991.

224 BIBLIOGRAPHY

[Hen80] P. Henderson. Functional Programming: Application and Implementation.

Prentice Hall, Englewood Cli�s, NJ, 1980.

[Hin92] R. Hinze. Eine Einf�uhrung in die Funktionale Programmierung mit Miranda.

Teubner-Verlag, Stuttgart, 1992.

[Hir75] D.S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common

Subsequences. Communications of the ACM, 18:341{343, 1975.

[HL93] P.H. Hartel and K.G. Langendoen. Benchmarking Implementations of Func-

tional Languages. In Proceedings of the Conference on Functional Programming

Languages and Computer Architecture, June 1993, pages 341{349. ACM Press,

New York, NY, 1993.

[HO80] G. Huet and D.C. Oppen. Equations and Rewrite Rules: A Survey. In Book,

R.V., editor, Formal Language Theory: Perspectives and Open Problems. Aca-

demic Press, 1980.

[Hol91] I. Holyer. Functional Programming with Miranda. Pitman, 1991.

[Hor80] R.N. Horspool. Practical Fast Searching in Strings. Software | Practice and

Experience, 10(6):501{506, 1980.

[HT84] D. Harel and R.E. Tarjan. Fast Algorithms for Finding Nearest Common An-

cestors. SIAM Journal on Computing, 13:338{355, 1984.

[Hud93] P. Hudak. ACM SIGPLAN Workshop on State in Programming Languages.

Technical report, Yale University, New Haven, Department of Computer Sci-

ence, 1993.

[Hug89] J. Hughes. Why Functional Programming matters. The Computer Journal,

32(2):98{107, 1989.

[Hut92] G. Hutton. Higher Order Functions for Parsing. Journal of Functional Pro-

gramming, 3(2):323{343, 1992.

[IS92] R.M. Idury and A.A. Sch�a�er. Dynamic Dictionary Matching with Failure

Functions. In [ACGM92], pages 276{287, 1992.

[Jon94] M.P. Jones. The Implementation of the Gofer Functional Programming System.

Report, YALEU/DCS/RR-1030, Yale University, New Haven, Department of

Computer Science, 1994.

[JTU91] P. Jokinen, J. Tarhio, and E. Ukkonen. A Comparison of Approximate String

Matching Algorithms. Technical Report A-1991-7, Department of Computer

Science, University of Helsinki, 1991.

[JU91] E. Jokinen and E. Ukkonen. Two Algorithms for Approximate String Match-

ing in Static Texts. In Proceedings of 16th International Symposium on Math-

ematical Foundations of Computer Science, pages 240{248. Lecture Notes in

Computer Science 520, Springer Verlag, 1991.

BIBLIOGRAPHY 225

[KBG87] M. Kempf, R. Bayer, and U. G�untzer. Time Optimal Left To Right Construc-

tion of Position Trees. Acta Informatica, 24:461{474, 1987.

[KM92] J.R. Knight and E.W. Myers. Approximate Regular Expression Pattern Match-

ing with Concave Gap Penalties. In [ACGM92], pages 67{78, 1992.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching in Strings.

SIAM Journal on Computing, 6(2):323{350, 1977.

[Knu73] D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and

Searching. Addison-Wesley, Reading, MA, 1973.

[Kos94] S.R. Kosaraju. Computation of Squares in a String. In [Gus94], pages 146{150,

1994.

[KR87] R.M. Karp and M.O. Rabin. E�cient Randomized Pattern Matching Algo-

rithms. IBM Journal of Research and Development, 31(2):249{260, 1987.

[Kra95] A. Krause. Realisierung von Zustandskonzepten in Funktionalen Programmier-

sprachen am Beispiel von Linearen Su�xbaum-Konstruktionen. Master's The-

sis (in preparation), Technische Fakult�at, Universit�at Bielefeld, 1995.

[KS83] J.B. Kruskal and D. Sanko�. Time Warps, String Edits, and Macromolecules:

The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading,

MA, 1983.

[KST92a] J.Y. Kim and J. Shawe-Taylor. An Approximate String-Matching Algorithm.

Theoretical Computer Science, 92(1):107{117, 1992.

[KST92b] J.Y. Kim and J. Shawe-Taylor. Fast Multiple Keyword Searching. In

[ACGM92], pages 41{51, 1992.

[LO94] A. L�opez-Ortiz. Linear Pattern Matching of Repeated Substrings. ACM

SIGACT NEWS, 25(3):114{121, 1994.

[LP85] D.J. Lipman and W.R. Pearson. Rapid and Sensitive Protein Similarity Search.

Science, 227:1435{1441, 1985.

[LPJ94] J. Launchbury and S.L. Peyton Jones. Lazy Functional State Threads. In ACM

Conference on Programming Language Design and Implementation, Orlando,

FL, June 1994, 1994.

[LS92] J. Launchbury and P.M. Sansom, editors. Proceedings of the 1992 Glasgow

Workshop on Functional Programming. Springer Verlag, 1992.

[LS93] G.M. Landau and J.P. Schmidt. An Algorithm for Approximate Tandem Re-

peats. In [ACGM93], pages 120{133, 1993.

[LV86] G.M. Landau and U. Vishkin. E�cient String Matching with k mismatches.

Theoretical Computer Science, 43:239{249, 1986.

[LV88] G.M. Landau and U. Vishkin. Fast String Matching with k Di�erences. Journal

of Computer and System Sciences, 37:63{78, 1988.

226 BIBLIOGRAPHY

[LV89] G.M. Landau and U. Vishkin. Fast Parallel and Serial Approximate String

Matching. Journal of Algorithms, 10:157{169, 1989.

[Mac90] B.J. MacLennan. Functional Programming: Practice and Theory. Addison-

Wesley, Reading, MA, 1990.

[McC60] J. McCarthy. Recursive Functions of Symbolic Expressions and Their Compu-

tation by Machine, Part I. Communications of the ACM, 3(4):184{195, 1960.

[McC76] E.M. McCreight. A Space-Economical Su�x Tree Construction Algorithm.

Journal of the ACM, 23(2):262{272, 1976.

[Meh91] G. Mehldau. A Pattern Matching System for Biosequences. Ph.D. Thesis, avail-

able as Technical Report TR 91-21, University of Arizona, Tucson, Department

of Computer Science, 1991.

[MLC91] F. Major, G. Lapalme, and R. Cedergren. Domain Generating Functions for

Solving Constraint Satisfaction Problems. Journal of Functional Programming,

1(2):213{227, 1991.

[MM88] E.W. Myers and W. Miller. Sequence Comparison with Concave Weighting

Functions. Bulletin of Mathematical Biology, 50(2):97{120, 1988.

[MM89] E.W. Myers and W. Miller. Approximate Matching of Regular Expressions.

Bulletin of Mathematical Biology, 51(1):5{37, 1989.

[MM90] U. Manber and E.W. Myers. Su�x Arrays: A New Method for On-Line String

Searches. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms,

pages 319{327, 1990.

[MM93a] U. Manber and E.W. Myers. Su�x Arrays: A New Method for On-Line String

Searches (revised version of [MM90]). SIAM Journal on Computing, 22(5):935{

948, 1993.

[MM93b] G. Mehldau and E.W. Myers. A System for Pattern Matching Applications on

Biosequences. CABIOS, 9(3):299{314, 1993.

[MP80] U. Masek and M.S. Paterson. A Faster Algorithm for Computing String-Edit

Distances. Journal of Computer and Systems Sciences, 20(1):785{807, 1980.

[MR80] M.E. Majster and A. Reiser. E�cient On-line Construction and Correction of

Position Trees. SIAM Journal on Computing, 9(4):785{807, 1980.

[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT-

Press, Cambridge, MA, 1990.

[MW93] U. Manber and S. Wu. GLIMPSE: A Tool to Search Through Entire File Sys-

tems. Technical Report TR 93-34, University of Arizona, Tucson, Department

of Computer Science, 1993.

[Mye86] E.W. Myers. An O(ND) Di�erences Algorithm. Algorithmica, 2(1):251{266,

1986.

BIBLIOGRAPHY 227

[Mye91] E.W. Myers. An Overview of Sequence Comparison Algorithms in Molecular

Biology. Technical Report TR 91-29, University of Arizona, Tucson, Depart-

ment of Computer Science, 1991.

[Mye92a] E.W. Myers. A Four-Russians Algorithm for Regular Expression Matching.

Communications of the ACM, 39:430{448, 1992.

[Mye92b] E.W. Myers. Approximate Matching of Network Expressions with Spacers.

Technical Report TR 92-5, University of Arizona, Tucson, Department of Com-

puter Science, 1992.

[Mye94a] E.W. Myers. A Sublinear Algorithm for Approximate Keyword Searching. Al-

gorithmica, 12(4/5):345{374, 1994.

[Mye94b] E.W. Myers. Algorithmic Advances for Searching Biosequence Databases. In

S. Suhai, editor, Computational Methods in Genome Research. to appear in

Plenum Press, 1994.

[Mye95a] E.W. Myers. Guest Editor's Foreword. Algorithmica, 13(1/2):1{6, 1995.

[Mye95b] E.W. Myers. Incremental Alignment Algorithms and their Application. to

appear in: SIAM Journal on Computing, 1995.

[NB93] D. Naor and D. Brutlag. On Suboptimal Alignments of Biological Sequences.

In [ACGM93], pages 179{196, 1993.

[NS93] E. N�ocker and S. Smetsers. Partially Strict Non-Recursive Data Types. Journal

of Functional Programming, 2(3):191{215, 1993.

[NW70] S.B. Needleman and C.D. Wunsch. A General Method Applicable to the Search

for Similarities in the Amino-Acid Sequence of Two Proteins. Journal of Molec-

ular Biology, 48:443{453, 1970.

[OM88] O. Owolabi and D.R. McGregor. Fast Approximate String Matching. Software

| Practice and Experience, 18:387{393, 1988.

[PE95] R. Plasmeijer and M. van Eekelen. Concurrent Clean Language Reference Man-

ual. Computing Science Department, University of Nijmegen, 1995.

[Per90] D. Perrin. Finite Automata. In van Leeuwen, J., editor, Handbook of Theoretical

Computer Science, Volume B, pages 1{57. Elsevier, 1990.

[Pir92] K. Pirklbauer. A Study of Pattern Matching Algorithms. Structured Program-

ming, 13:89{98, 1992.

[PJ87] S.L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice Hall, Englewood Cli�s, NJ, 1987.

[PJ89] S.L. Peyton Jones. Parallel Implementations of Functional Programming Lan-

guages. The Computer Journal, 32(2):175{186, 1989.

[PJL91] S.L. Peyton Jones and D. Lester. Implementing Functional Languages. Prentice

Hall, Englewood Cli�s, NJ, 1991.

228 BIBLIOGRAPHY

[PJW91] S.L. Peyton Jones and P. Wadler. Imperative Functional Programming. In Pro-

ceedings of the 20th ACM Symposium on Principles of Programming Languages,

Charlston, SC, January 1993, pages 71{84, 1991.

[PMN88] C.G. Ponder, P.C. McGeer, and A.P. Ng. Are Applicative Languages Ine�cient?

SIGPLAN Notices, 6:135{139, 1988.

[Pow89] P.A. Powell. Molecular Biological Applications of the Su�x Tree Index Struc-

ture for String Queries. Technical Report TR-89-79, Computer Science Depart-

ment, University of Minnesota, Minneapolis, MN, 1989.

[PW95] P.A. Pevzner and M.S. Waterman. Multiple Filtration and Approximate Pat-

tern Matching. Algorithmica, 13(1/2):135{154, 1995.

[RC86] J. Rees and W. Clinger. The Revised3 Report on the Algorithmic Language

Scheme. ACM SIGPLAN Notices, 21(12):37{79, 1986.

[Rea89] C. Reade. Elements of Functional Programming. Addison-Wesley, Reading,

MA, 1989.

[Rod82] M. Rodeh. A Fast Test for Unique Decipherability Based on Su�x Trees. IEEE

Transactions on Information Theory, 28(4):648{651, 1982.

[RPE81] M. Rodeh, V.R. Pratt, and S. Even. Linear Algorithms for Data Compression

via String Matching. Journal of the ACM, 28(1):16{24, 1981.

[RW93] C. Runciman and D. Wakeling. Heap Pro�ling of Lazy Functional Programs.

Journal of Functional Programming, 3(2):217{245, 1993.

[Ryt80] W. Rytter. A Correct Preprocessing Algorithm for Boyer-Moore String-

Searching. SIAM Journal on Computing, 9:509{512, 1980.

[San95] T. Sander. Lazy Scanner Generierung. Master's Thesis, Technische Fakult�at,

Universit�at Bielefeld, 1995.

[SBEP94] S. Smetsers, E. Barendsen, M. van Eekelen, and R. Plasmeijer. Guaranteeing

Safe Destructive Updates through a Type System with Uniqueness Informa-

tion for Graphs. In H.J. Schneider and H. Ehrig, editors, Proceedings of the

Workshop on Graph Transformations in Computer Science. Lecture Notes in

Computer Science 776, Springer Verlag, 1994.

[Sch85] D.A. Schmidt. Detecting Global Variables in Denotational Speci�cations.

TOPLAS, 7:299{310, 1985.

[Sch88] R. Schaback. On the Expected Sublinearity of the Boyer-Moore Algorithm.

SIAM Journal on Computing, 17(4):648{658, 1988.

[Sch95] J.P. Schmidt. All Shortest Paths in Weighted Graphs and its Application to

Finding All Approximate Repeats in Strings. Technical Report, Department of

Computer Science, Polytechnic University, Brooklyn, NY 11201, 1995.

BIBLIOGRAPHY 229

[Sea89] D.B. Searls. Investigating the Linguistics of DNA with De�nite Clause Gram-

mars. In Proceedings of the North American Conference on Logic Programming,

pages 189{208. MIT-Press, 1989.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.

[Sel80] P.H. Sellers. The Theory and Computation of Evolutionary Distances: Pattern

Recognition. Journal of Algorithms, 1:359{373, 1980.

[Smi82] G. de V. Smit. A Comparison of Three String Matching Algorithms. Software

| Practice and Experience, 12:57{66, 1982.

[Smi88] R. Smith. A Finite State Machine Algorithm for Finding Restriction Sites and

other Pattern Matching Applications. CABIOS, 4(4):459{465, 1988.

[Smi91] P.D. Smith. Experiments with Very Fast String Substring Search Algorithms.

Software | Practice and Experience, 21(10):1065{1074, 1991.

[SPJ95] P.M. Sansom and S.L. Peyton Jones. Time and Space Pro�ling for Non-Strict,

Higher-Order Functional Languages. In Proceedings of the 22nd ACM Sympo-

sium on Principles of Programming Languages, San Francisco, CA, January

1995, pages 355{366, 1995.

[SR92] P. Sanders and C. Runciman. LZW Text Compression in Haskell. In [LS92],

pages 215{226, 1992.

[Sta88] R. Staden. Methods to De�ne and Locate Patterns of Motifs in Sequences.

CABIOS, 4(1):53{60, 1988.

[Ste91] M.J.E. Sternberg. PROMOT: A Fortran Program to Scan Protein Sequences

Against a Library of Known Motifs. CABIOS, 7(2):257{260, 1991.

[Ste94] G.A. Stephen. String Searching Algorithms. World Scienti�c Publishing, 1994.

[Sto77] J.E. Stoy. The Scott-Strachey Approach to Programming Language Theory.

MIT-Press, Cambridge, MA, 1977.

[Sto95] J. Stoye. A�xb�aume. Master's Thesis, Technische Fakult�at, Universit�at Biele-

feld, 1995.

[Sun90] D.M. Sunday. A Very Fast Substring Searching Algorithm. Communications

of the ACM, 33(8):132{142, 1990.

[SV88] B. Schieber and U. Vishkin. On Finding Lowest Common Ancestors. SIAM

Journal on Computing, 17(6):1253{1263, 1988.

[Thi94] P. Thiemann. Grundlagen der Funktionalen Programmierung. Teubner-Verlag,

Stuttgart, 1994.

[TU93] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore String Matching. SIAM

Journal on Computing, 22(2):243{260, 1993.

230 BIBLIOGRAPHY

[Tur79] D.A. Turner. A New Implementation Technique for Applicative Languages.

Software | Practice and Experience, 9:31{49, 1979.

[Tur85] D.A. Turner. Miranda: A Non-Strict Functional Language with Polymorphic

Types. In Proceeding IFIP International Conference on Functional Program-

ming Languages and Computer Architecture, Nancy, France, pages 1{16. Lec-

ture Notes in Computer Science 201, Springer Verlag, 1985.

[Tur86] D.A. Turner. An Overview of Miranda. SIGPLAN Notices, 21(12), 1986.

[Tur89] D.A. Turner. Miranda System Manual. Research Software Ltd, 23 St Augustines

Road, Canterbury, Kent CT1, 1989.

[Ukk85a] E. Ukkonen. Algorithms for Approximate String Matching. Information and

Control, 64:100{118, 1985.

[Ukk85b] E. Ukkonen. Finding Approximate Patterns in Strings. Journal of Algorithms,

6:132{137, 1985.

[Ukk92a] E. Ukkonen. Approximate String-Matching with q-Grams and Maximal

Matches. Theoretical Computer Science, 92(1):191{211, 1992.

[Ukk92b] E. Ukkonen. Constructing Su�x Trees On-line in Linear Time. Algorithms,

Software, Architecture. J.v.Leeuwen (Ed.), Information Processing 92, Volume

I, pages 484{492, 1992.

[Ukk93a] E. Ukkonen. Approximate String-Matching over Su�x Trees. In [ACGM93],

pages 229{242, 1993.

[Ukk93b] E. Ukkonen. On-line Construction of Su�x-Trees (revised version of [Ukk92b]).

to appear in: Algorithmica, also available as Report, A-1993-1, Department of

Computer Science, University of Helsinki, Finland, 1993.

[Ula72] S.M. Ulam. Some Combinatorial Problems Studied Experimentally on Com-

puting Machines. In Zaremba, S.K., editor, Applications of Number Theory to

Numerical Analysis, pages 1{3. Academic Press, 1972.

[UW93] E. Ukkonen and D. Wood. Approximate String Matching With Su�x Au-

tomata. Algorithmica, 10:353{364, 1993.

[vdW89] J. van der Woude. Playing with Patterns, Searching for Strings. Science of

Computer Programming, 12(3):177{190, 1989.

[Wad85] P. Wadler. How to Replace Failure by List of Successes. In Proceedings of the

Conference on Functional Programming Languages and Computer Architecture,

pages 113{128. Lecture Notes in Computer Science 201, Springer Verlag, 1985.

[Wad90] P. Wadler. Comprehending Monads. In ACM Conference on Lisp and Func-

tional Programming, pages 61{78, 1990.

BIBLIOGRAPHY 231

[Wad92a] P. Wadler. Monads for Functional Programming. In M. Broy, editor, Program

Design Calculi, Proceedings of the International Summer School 1992. Springer

Verlag, NATO ASI series, Series F: Computer and System Sciences, Heidelberg,

1992.

[Wad92b] P. Wadler. The Essence of Functional Programming. In Proceedings of the

19th Annual ACM SIGPLAN-SIGACT Symposium of Programming Languages,

pages 1{14, 1992.

[Wat89a] M.S. Waterman. Mathematical Methods for DNA Sequences. CRC-Press, Boca

Raton, FL, 1989.

[Wat89b] M.S. Waterman. Sequence Alignments. In [Wat89a], pages 53{92. 1989.

[Wei73] P. Weiner. Linear Pattern Matching Algorithms. In IEEE 14th Annual Sym-

posium on Switching and Automata Theory, pages 1{11, 1973.

[WF74] R.A. Wagner and M.J. Fischer. The String to String Correction Problem.

Journal of the ACM, 21(1):168{173, 1974.

[Wik87] �A. Wikstr�om. Functional Programming Using Standard ML. Prentice Hall,

Englewood Cli�s, NJ, 1987.

[WM92] S. Wu and U. Manber. Fast Text Searching Allowing Errors. Communications

of the ACM, 10(35):83{91, 1992.

[WM94] S. Wu and U. Manber. A Fast Algorithm for Multi Pattern Matching. Technical

Report TR 94-17, University of Arizona, Tucson, Department of Computer

Science, 1994.

[WMM91] S. Wu, U. Manber, and E.W. Myers. Improving the Running Time for some

String-Matching Problems. Technical Report TR 91-20, University of Arizona,

Tucson, Department of Computer Science, 1991.

[WMM92] S. Wu, U. Manber, and E.W. Myers. A Sub-quadratic Algorithm for Approxi-

mate Limited Expression Matching. Technical Report TR 92-36, University of

Arizona, Tucson, Department of Computer Science, 1992.

[ZD95] J. Zobel and P. Dart. Finding Approximate Matches in Large Lexicons. Soft-

ware | Practice and Experience, 25(3):331{345, 1995.

Index

jSj, 24
jT j, 25
jlocT (s)j, 27
jij, 24
jsj, 24
?, 28
(:), 11

�(A), 73

�(a! b), 73

[], 11

a! b, 72

�, 134, 141
", 24R
, 24

(), 11

s�1, 24

::, 12

	lr(v; u), 77

	rl(v; u), 77

	, 77

j	j, 77
<, 24, 128

s0, 69

!, 217

++, 217

#, 217

Ai, 24

AP , 129
Ap, 94

A+, 24

A�, 24
A, 70

above, 175

absnextcol, 85

access triple, 174

accesstriple, 174

actreedepth, 67

addleaf, 56

addlinks, 62

advance, 35

Algorithm

AC, 128

BF, 95

Cdfa, 155

CP, 181

DTbf, 166

ECL, 119

ECL0, 121

GST, 104

ILET, 188

ISET, 191

KR, 101

LET, 185

LOT, 81

MDC, 142

MS, 168

RMO, 109

RMOm, 109

SEL, 134

SESA, 146

SET, 190

UKKco, 153

alignment, 73

optimal, 74

suboptimal, 90

alignment, 83

aligntable, 88

alphabet, 24

input, 94, 126, 133

alphabet, 70

annotation, 25

accept, 128

depth, 67

function, 66

ispre�x, 105

issu�x, 120

lnum, 80

minpathlen, 105

shortestpathlen, 67

su�xbegin, 170

annotationfunction, 66

appCdfa, 162

appCP, 184

232

INDEX 233

appDTbf, 177

appDTpp, 177

appfilter, 195

appILET, 195

appISET, 195

appLET, 195

approximate match, 133

appSEL, 136

appSELco, 137

appSESA, 150

appSET, 195

appUKKco, 154

array, 20

arraytrans, 21

assign, 21, 55

ast(x), 30

bad, 20

below, 175

Binary, 11

binarytree, 11

bind, 18

bind, 19

block, 21, 54

bool, 11

bsucc', 161

C, 133

C(l; h), 163

Cdiag(cd), 166

C, 70

callmcc, 61

callukk, 59

cedge, 37

ceiling(loc), 27

ceiling, 38

char, 11

character, 24

bad, 107

marked, 77

sentinel, 32

collectshifts, 115

colpart, 182

colparte, 184

column, 133

DFA, 155

distance, 134

length, 140

normalized distance, 154

start, 166

column, 84

cond, 15

const, 217

cost function, 73

costfunction, 84

countertrans, 19

cseledge, 56

cst(x), 30

cst, 68

cstannotation, 67

cstlinks, 64

ctree, 37

ctreetrans, 56

currying, 13

cutsuffix, 137

D(i; j), 151

D, 83

D-diagonal, 151

date, 12

day, 12

dcol(v), 134

Defval, 157

depth

of location, 27

of node, 25

depth, 67

depthisprefixissuffix, 121

depthsuffixbegin, 171

dequeue, 216

deterministic �nite automaton, 69

dfa, 71

dfarun, 71

diagonal transition, 162

diffs, 157

distance

edit, 74

maximal matches, 77

q-gram, 79

divide, 194

dlcotable, 149

dljoin3, 149

dltable, 149

dnaAlpha, 71

drop, 217

dropwhile, 218

E�(i; j), 74

edist�(u; v), 74

eager evaluation, 9

edge

leaf, 25

234 INDEX

location, 27

minimizing, 75, 196

open, 43

edge, 36

edges(T), 25

edist, 87

edisttable, 86

edit

distance, 74

graph, 75

operation, 72

editoperation, 83

Empty, 10

emptyqueue, 160, 215, 216

Emptytern, 157

encode, 100

end point, 178

enqueue, 216

enum, 16

enumalignments, 89

enumwpairs, 124

enumX, 123

enumX', 123

enumY, 122

EP (l; j), 178

equal, 173

essential

entry, 135, 181

index, 135

su�x, 138

exmsAC, 131

exmsSTS, 127

exsBF, 95

exsBM, 117

exsBMH, 118

exsBMS, 118

exsCL, 124

exsCL', 124

exsKMP, 99

exsKR, 102

extension 1, 22, 34, 71, 115, 117, 149, 173,

177, 182

extension 2, 22, 53, 116, 118, 119

f, 95

f', 95

False, 11

fetch, 21, 54

filteralgorithm, 195

�ngerprint, 100

fingerprint, 101

first, 53

�rstentry, 85

foldl, 13

foldr, 13

free, 54

fst, 218

function

higher order, 13

non-strict, 9

strict, 9

transition, 69

G(u; v), 75

Gq(u), 79

Gr(u), 80

G, 70

getCdiags, 176

getlnum, 91

getloc, 38, 57

getpjumplist, 173

getposarray, 182

gettwomin, 114

getvalue, 158

group, 41

group, 52

grouplcp, 41

grouplcp, 52

gsshift, 104

gst, 114

guard, 12

hd, 12

head, 47

heuristic

bad-character, 102

good-su�x, 102

Horspool's, 110

Sunday's, 112

hidden part, 43

I, 83

iletisubwords, 193

Index, 53

in�nite data structure, 15

init, 218

inner(T), 25

innerlinks(T), 26

insert, 58

insertedges, 56

inserttern, 158

INDEX 235

intersect, 123

intersect', 124

isetisubwords, 194

isleaf, 37

isomorphic, 25

isprefixminpathlen, 114

iternext, 99

join2, 85

join3, 85

jump, 162

jumppp, 174

k�, 187

LT , 80

L\, 80

last, 218

lastcol(h), 151

lazy evaluation, 9

lazytree, 52

lazytree', 67

lazytree'', 68

LCA, 163

lcol(v), 140

lcp, 39

Leaf, 53

leafloc, 38

leaves(T), 25

left-occurring, 47

leftmost outermost reduction, 16

lei(f), 135

length, 10

letisubwords, 193

linkloc, 29

linkloc, 40, 57

links(T), 26

list, 10

list comprehension, 14

locT (s), 26

locations(T), 27

loc2endpos, 127

loc2len, 192

loc2node, 57

loc2num, 93

location, 26

location, 38, 57

locdepth, 122

locdepthsuffixbegin, 172

LocE, 38, 57

locisprefix, 122

locissuffix, 122

LocN, 38, 57

log, 91

logbase, 91

lookup, 20

lookuptern, 158

lrpartition, 90

M 0(t; p), 167

M(t; p), 167

makearray, 20

makecdfa, 159

makecdfa', 161

makeftrans, 160

makermoarray, 116

makermoarraym, 115

makeSESA, 150

map, 13

matching statistics, 167

max2, 218

maxat, 176

maxpre�x, 169

maxpsubword(y), 167

mcc, 51

mcc, 61

mccstep, 50

mccstep, 60

member, 14

merge, 13, 15

mergealpha, 115

mergeisubwords, 194

mergelocs, 92

metric, 24

mmdist, 90

mmm, 91

monad, 18

move, 116

mph, 185

mstats, 167

mstats, 172

mstats', 172

IN0, 24

N, 36

naiveInsertion, 49

naiveOnline, 45

naiveukkstep, 45

ndcol(v), 154

newcdiag, 175

newnode, 55

newtern, 158

236 INDEX

next, 62

next, 62

nextdcol, 133

nextfp, 101

nextlcol, 140

nextndcol, 155

nextstate, 69

Nil, 11

nobranch, 99

node, 53

nodeloc, 58

nodes(T), 25

nullary tuple, 11

num, 11

num2bool, 122

occurs, 58

One, 92

oneortwo, 92

optimal, 89

or, 14

otherwise, 12

P, 126
P(S), 24
pairs2strings, 195

partition, 77

path

minimizing, 75, 196

paths, 127

pattern, 94, 133

set, 126

patterns2tree, 130

pjump, 169, 170

position, 180

prede�ned types, 11

pre�x, 24

prefixes, 14

preprocess, 192

problem

k-di�erences, 151

approximate string searching, 133

edit distance, 74

exact string searching, 94

longest common subsequence, 74

multiple exact string searching, 126

string-to-string correction, 75

programming with unknowns, 15

protocol, 69

pwalk, 92

qgdist(u; v), 79

q-gram, 24

distance, 79

pro�le, 79

qgdist, 93

queue, 156

queue, 215

queueisempty, 216

IR
+

0
, 24

R, 83

redex, 16

referential transparency, 8

repeat, 16

representation

A+-tree, 36

alphabet, 70

edge labels, 34

edge sets, 35

strings, 33

reverse, 24

reverse, 14

rightshift, 116

rmostocc, 108

root, 54

rootloc, 38, 58

run, 178

S, 71

same, 175

scanjust, 92

scanl, 15

scanone, 91

scanprefix, 39, 60

scanprefix', 39

second, 53

selcotable, 136

select, 15

selectalignments, 89

selectfast, 66

seledge, 55

seledges, 37

sellink, 55

seltable, 136

seltag, 37

SES, 145

automaton, 145

ses(v), 138

setcstlink, 64

setisubwords, 194

setlink, 55, 62

INDEX 237

setlink', 130

shortestpathlen, 67

showalign, 84

single threaded, 20

SKI, 17

snd, 218

SP (l; j), 178

split, 13

splitedge, 56

squares, 14

starting point, 178

state, 54

statetrans, 19

string

empty, 24

Fibonacci, 98

input, 94, 126, 133

representation, 33

string, 33

submatch, 77

suboptimal, 90

subtree, 25

subword, 24

right-branching, 24

subword, 34

successor, 69

su�x, 24

active, 44

closed, 24

essential, 138

good, 103

link, 26

nested, 24

relevant, 43

suffixes, 12

suffixlocs, 40

sum, 14

sumup, 194

super
uous, 41

symmetry, 24

T (s), 47

T [loc ay], 28

T, 70, 157

table, 84

table speci�cation, 84

tablespec, 84

tail, 47

take, 218

takewhile, 218

tern, 157

third, 54

threshold value, 133

tree

A+, 25

AC, 128

atomic A+, 25

compact A+, 25

KMP, 98

ternary, 156

tree, 36

treeinsert, 130

treetrans, 54

triads, 15

triangle inequality, 24

trie, 25

triple, 60

trivial, 19

True, 11

Two, 92

uedist, 88

uedisttable, 88

ujoin3, 87

ukk, 47

ukk, 59

ukkcutofftable, 154

ukkstep, 46

ukkstep, 58

undef, 36

Undefnode, 53

Undeftree, 36

Undefval, 157

unit, 18

unit, 19

unitcost, 84

update, 20

use, 55

value, 157

visible part, 43

where clause, 13

witness, 169

words(T), 25

yh, 187

zero property, 24

zh, 187

zip2, 218

Bisher erschienene Reports an der Technischen Fakult�at

Stand: December 18, 1995

94{01 Modular Properties of Composable Term Rewriting Systems

(Enno Ohlebusch)

94{02 Analysis and Applications of the Direct Cascade Architecture

(Enno Littmann and Helge Ritter)

94{03 From Ukkonen to McCreight and Weiner: A Unifying View

of Linear-Time Su�x Tree Construction

(Robert Giegerich and Stefan Kurtz)

94{04 Die Verwendung unscharfer Ma�se zur Korrespondenz Analyse

in Stereo Farbbildern

(Alois Knoll and Andr�e Wolfram)

94{05 Searching Correspondences in Colour Stereo Images

{ Recent Results Using the Fuzzy Integral

(Alois Knoll and Andr�e Wolfram)

94{06 A Basic Semantics for Computer Arithmetic

(M. Freericks, A. Fauth, A. Knoll)

94{07 Reverse Restructuring: Another Method of Solving

Algebraic Equations

(Bernd B�utow and Stephan Thesing)

95{01 PaNaMa User Manual V1.3

(Bernd B�utow and Stephan Thesing)

95{02 Computer Based Training-Software:

ein interaktiver Sequenzierkurs

(Frank Meier, Garrit Skrock, Robert Giegerich)

95{03 Fundamental Algorithms for a Declarative Pattern Matching System

(Stefan Kurtz)

