Generalized Arithmetic in C4+4*

Timothy A. Budd
Department of Computer Science
Oregon State University
Corvallis, Oregon
97331
budd@cs.orst.edu

September 20, 1994

Abstract

A generalized arithmetic package allows a programmer to think of numbers as abstract
quantities, without regard to whether they are represented as integers, floating point values,
fractions, complex numbers, or even polynomials. In this paper we describe two implementation
techniques that can be used to produce a generalized arithmetic package in the programming
language C++4, and evaluate the advantages and disadvantages of the two approaches. The
second approach uses a technique called multiple polymorphism that has applicability to many
other problem areas.

Keywords: C++4, Object Oriented Programming, Arithmetic, Polymorphism

1 Introduction

One of the philosophical principles of object oriented programming is that objects should be char-
acterized by their behavior rather than by their structure. Distinct types of objects that share a
common behavior, in C++ terms that implement a set of virtual methods derived from a common
parent class, should be logically interchangeable. In everyday discourse one of the more common and
interesting situations where this occurs involves the use and manipulation of numbers and quantities.
We use a common set of operations, such as addition and subtraction, on a variety of different forms
of values, such as integers, rational numbers, floating point approximations, sometimes even com-
plex numbers and polynomials. In large measure we do this without concern for the particular form
the quantity takes, even mixing different forms with impunity. A mathematician would not balk,
for example, at adding an integer to a polynomial containing coefficients represented as complex
numbers.

It is an interesting experiment, therefore, to see if one can write a set of C++ classes that come
close to corresponding to this everyday usage of numbers. In the next section we outline two different

*To appear in Journal of Object-Oriented Programming

techniques for producing such values. The majority of this paper is thereafter devoted to comparing
and contrasting the implementation techniques used in these systems. The techniques described,
Coercive Generality and Double Polymorphism, are not limited to use only in arithmetic. Similar
situations occur whenever dynamic lookup must be based on two or more arguments, rather than
only a single receiver. Ingalls [Ing86], for example, describes the display of multiple graphics objects
on different display ports.

2 Generalized Arithmetic

The abstract specifications for our generalized arithmetic package are easy to state. We want to
define a class of objects, called Number, that can represent abstract quantities. At the very least
these should be able to represent the concrete values directly manipulated by the underlying C
language and hardware, that is integers and floating point values. Thus a declaration, such as the
following, should create a quantity n representing an integer value 3, and a quantity f representing
the floating point value 3.1415926.

Number n = 3;

Number f = 3.1415926;

We can perform operations on numbers to generate new numbers. These may have the effect
of altering the underlying type of the number. For example, computing n / 3 should produce a
fractional number. The expression f / 3, on the other hand, should produce a new floating point
number. Since C+-+ applies the conventional rules of precedence to arithmetic operators, if i is a
complex number representing the value with zero real part and one imaginary part, then 3 + 4 * |
would produce a complex number representing 3-+4i.

For the purposes of this experiment we decided to implement only the four arithmetic operations
addition, subtraction, multiplication and division, in the context of the three classes Integer, Frac-
tion, and Float. In section 3.2 we will discuss the difficulty of adding new operations or new classes
of numbers.

Storage allocation for automatic variables in C++ is performed as part of the declaration process.
Since different types of numbers occupy different amounts of storage, it is not possible for the single
class Number to maintain storage for all the possibilities. Instead, instances of Number will simply
maintain a pointer to an instance of another class, called InternalNumber. A portion of the class
declaration for Number is shown in Figure 1 (the complete code for both versions are given in
the appendix). The class definition provides rules for converting C constants of type integer and
double into instances of Number, a destructor to recover the storage used by the InternalNumber
when numbers are deleted, and friend functions to perform the arithmetic operations. The classes
Integer, Fraction and Float are all implemented as subclasses of the class InternalNumber. The
friend functions implementing the arithmetic operations merely throw them back to the instances
of Internal Number. These functions are shown in Figure 2.

As might be expected, the most difficult aspect of implementing the generalized arithmetic pack-
age 1s handling operations where the arguments are of dissimilar types. The next three subsections
will describe two entirely different approaches to this problem, and explore one technique which

class Number {
InternalNumber *val;

“Number() { delete(val); }

public:
/* construction */
Number() { val = new InternalNumber();}
Number(int i) { val = new Integer(i);}
Number(double d) { val = new Float(d);}
(

Number(InternalNumber *v) { val = v;}

/* arithmetic */
friend Number operator+(Number& x, Number& y
friend Number operator—(Number& x, Number& y
friend Number operators(Number& x, Number& y);
friend Number operator/(Number& x, Number& y);

);
).

bl

/* printing */
void streamon(ostream& s)
{ (*val).streamon(s); }

Figure 1: Declaration for Class Number

Number operator+(Number&x, Number& y)

{ return *(new Number (*(x.val) + *(y.val))); }
Number operator—(Number&x, Number& y)

{ return *(new Number (*(x.val) — *(y.val))); }
Number operators(Number&x, Number& y)

{ return *(new Number (*(x.val) * *(y.val))); }
Number operator/(Number&x, Number& y)

{ return *(new Number (*(x.val) / *(y.val))); }
ostreamé& operator<<(ostreamé&s, Number& n)

{ n.streamon(s); return s; }

Figure 2: Friend Functions for Numbers

class Float : public InternalNumber {
double val;
int generality() { return 30; }
public:

InternalNumber *operator+(InternalNumber& y)
{ if (y.generality() == 30)
{Float *f = (Float *) &y;
return new Float(val + f—val);}

else {

1

return InternalNumber::operator+(y);

InternalNumber *coerce(InternalNumber& y)
{ return y.asFloat(); }

Figure 3: Addition in Class Float

might at first appear to offer a promising solution but which does not. This will then be followed
by a comparison of the advantages and disadvantages of the two successful techniques.

2.1 Coercive Generality

Coercive generality is the technique used by the Smalltalk-80 system described in the “blue book”
[GoR84], and in the Little Smalltalk system [Bud87]. In this scheme each type of number is assigned
a “generality index”. Two numbers are of the same class if they have the same generality index. If
not, the number with the lower generality index is modified (coerced) into being compatible with
the number with the higher generality index. In our system we used the values 10, 20 and 30 for
the generality index values for Integer, Fraction and Float, respectively. The generality value can
be obtained by invoking the function “generality” on an instance of InternalNumber.

Instances of each of the derived classes test the generality of an argument, performing the op-
eration if it matches the generality of the first argument. If not, the message is passed up to the
method in the superclass. The code for addition in the class Float, shown in Figure 3, illustrates
this behavior.

Control reaches the method in class InternalNumber only if two arguments are of different types.
The generality values are consulted for each of the two arguments to determine which is “more
general”. The more general value is then passed the message “coerce”, along with the other value as
the argument. The coerce routine must alter the argument so that it is compatible with the receiver.
Once the coerced result is returned, the original operation is then retried. Presumably this time the
appropriate value is generated. The code to perform this is shown in Figure 4.

class InternalNumber {

virtual InternalNumber *operator+(InternalNumber& y)
{ if (generality() < y.generality())
return (*(y.coerce(*this)) + y);
else return *this 4+ *coerce(y); }

Figure 4: Addition code in Class InternalNumber

Each class must provide a means for coercing objects of lower generality into one compatible with
the receivers class. In some cases, such as class Fraction, this involves merely creating a new object
(a Fraction with a denominator of one). In other cases, such as class Float (Figure 3), this involves
sending yet another message, asFloat, to the object to be converted. Classes of lower generality than
Float must provide some means of responding to this message.

It is important to note that the technique of Coercive Generality requires the various types of
numbers to form a linear hierarchy. In simple cases this is easy; for example it is clear that floating
point values are more general than integers. More complicated cases are less clear cut; for example
what is the relationship between complex numbers and polynomials? The technique of Double
Polymorphism, described in the next section, avoids the necessity of forming this linear ordering.

2.2 Double Polymorphism

In a 1986 paper at the first OOPSLA (object oriented programming systems, languages and appli-
cations) conference, Daniel Ingalls presented an interesting technique for handling polymorphism
in several variables [Ing86]. In simple terms, we make use of the automatic polymorphism facility
implicit in message passing by making each argument, in turn, a receiver for a message and encoding
the types of the remainder of the arguments in the message selector. Thus when a floating point
value receives the message “+7, it reverses the arguments, passing to the argument that it received
the message “addToFloat” (Figure 5). The type of the argument is now explicit in the message
selector. Each alternative class must then provide a mechanism whereby it can be added to each
possible type of argument.

Using this scheme requires no generality numbers. It is not necessary for types of numbers to form
a linear hierarchy. The cost, however, is that each type of number must have explicit information
about each other type of number. One could argue that it is bad object oriented programming style
to have knowledge about each number class distributed over all other classes, however it 1s largely
the case that this knowledge was already present implicitly in the “coerce” messages of the generality
technique.

class InternalNumber {

virtual InternalNumber *operator+(InternalNumber& y)
{return this;}

virtual InternalNumber *addToFloat(InternalNumber& y)
{cout << ”subclass should provide\n”; return this;}

b

class Float : public InternalNumber {
double val;
public:
Float(double d) { val = d; }

InternalNumber *operator+(InternalNumber& y)
{ return y.addToFloat(*this);}
InternalNumber *addToFloat(InternalNumber& y)
{Float *f = (Float *) &y;
return new Float(val + f—val);}

b

class Integer : public InternalNumber {
int val;

InternalNumber *operator+(InternalNumber& y)
{ return y.addToInteger(*this);}

InternalNumber *addToFloat(InternalNumber& y)
{ return (*asFloat()).addToFloat(y);}

5

Figure 5: Addition Using Double Polymorphism

class Integer;
class Number {
public:
virtual int operator4+(Number& x)
{ cout << ”in Number Number +7; return 7;}
virtual int operator+(Integer& x)
{ cout << ”in Number Integer +”; return 7;}
5

class Integer : public Number {
public:
int operator+(Number& x)
{ cout << ”in Integer, Number +”; return 7;}
int operator+(Integer& x)
{ cout << ”in Integer,Integer +”; return 7;}
5

main() {
Number *a;
a = new Integer();

(*a) + (*a);

Figure 6: Why Overriding Is Not Sufficient for Mixed Mode Arithmetic

2.3 Overloading

The language C++ allows programmers to overload the arithmetic operators (a fact we have already
used in both of the solutions presented). Tt is instructive to note why we cannot simply use this
mechanism to achieve the effect we desire. The reason is that, while the message passing paradigm
insures that a choice of method is found based on the class of the receiver, the selection of a method
to be used in an overridden operator is based on the declared (static) type of the arguments and
not the current (dynamic) type, which may be a derived subclass. This is illustrated by the simple
example program shown in Figure 6, which is a very simplified version of our Number hierarchy. If
a variable a is declared to be a pointer to Number, but nevertheless contains a pointer to an instance
of a derived class Integer, the selection of a method to be executed in the expression (*a) 4+ (*a) will
be first based on the dynamic (run time) type of a for the first (receiver) argument and second on
the static (declared) type of a for the argument. This the resulting value printed will indicate the
method selected is “Integer,Number” and not “Integer,Integer”.

Thus even if we directly defined methods for addition, for example, with all possible pairs of types
of arguments, only the method where the argument is declared the general class “InternalNumber”
would ever be executed.

While overloading cannot be used to directly solve the problem of selecting the right method
from the class hierarchy, it can be used to reduce the number of names required to implement

Coercive Generality Double Polymorphism
methods lines of code methods lines of code

Class InternalNumber 9 39 19 50
Class Float 6 49 18 52
Class Fraction 9 63 16 51
Class Integer 8 49 19 95
Total 32 200 72 208

Table 1: Lines of Code, Number of Procedures

double polymorphism. For example, we can replace the methods addToInteger(InternalNumberé& x)
and addToFloat(InternalNumbead x) with addTo(Integer& x) and addTo(Float& x). However this
reduction is actually an illusion; both from the compilers point of view and from the perspective
of the number of lines of code that must be written the two are the same. Interestingly, when we
experimented with a solution implemented in this fashion it was consistently about 10% slower than
the version encoding the types of arguments in the method names.

3 Comparisons

Both the solutions described in previous sections implement the same functionality. Thus a com-
parison of the two techniques cannot be based on any differences in input/output behavior. Instead,
we will examine a number of secondary issues, such as size, execution speed, and the ease with with
changes and extensions can be implemented.

3.1 Size and Speed

Size can be measured in a variety of ways. From the programmers point of view, the most direct
measurement of size involves the number of source lines, or possibly the number of procedures
(methods) necessary to implement the system. These are shown in Table 1, which also breaks these
figures down into quantities associated with each class. As can be seen from these statistics, the
double polymorphism approach requires many more procedures; in this case over twice as many
methods are defined using that approach. On the other hand, the procedures are generally very
short, so that the final number of source lines is approximately the same for the two techniques.
Given the extensive use of in-line functions in C+4+, statistics such as lines of code or number
of procedures are less meaningful than they might be for some other languages. A function that is
expanded in-line will not impose the overhead of a procedure call, and in most cases the improvement
in understandability is worth the slight increase in code size. Other characteristics of the program,
such as object program size and run time performance, are less influenced by static program layout.
Figures for object size and executing timings are shown in Table 2. For the purposes of timings,
we used the following simple main program, gathering statistics by averaging repeated runs of
the program on a Microvax II. As one might expect from the smaller number of procedures, the
code for the generality version is smaller, about three forths the size of the double polymorphism

Coercive Generality Double Polymorphism
object size (bytes) 7828 10012

execution time (seconds) 11.9 9.8

Table 2: Object Size and Execution Time

version. Despite this fact, the double polymorphism version is consistently about 25% faster than
the generality version.

main() {
Number n = 3;
Number m = 5.5;

Number p;

int 1i;

for (i=1;i < 10000; i++)
p=(5/n)+m;

1

One explanation for the superior performance of double polymorphism may be the streamlined
manner in which type conversion is handled. Consider adding an integer to a floating point value.
Using generality, the addition method in class Integer will first be executed. This invokes the
generality function, before passing the addition message up to the class InternalNumber. The method
in InternalNumber will invoke generality twice more, then call coerce. The method for coerce in class
Float will call asFloat, before finally trying the addition method and producing the answer. Thus
eight procedure calls are necessary to produce the proper value. Using double polymorphism, on the
other hand, invoking the addition routine involves sending the message addTolnteger, which will in
turn in class Float invoke the method asFloat and addToFloat, for a total of only four procedure
invocations.

Even in the situation where the arguments agree in form one can argue that the execution time
performance of double polymorphism is no worse than that of generality. In generality, one additional
procedure invocation will be necessary to establish the generality number of the argument. Using
double polymorphism, one additional instruction is necessary to reverse the arguments. Given this,
one would expect the execution time behaviors of the two systems to be closer if conversions are
not required. This is borne out by empirical observations, where a program which merely added
together two integers 10,000 times required 2.4 seconds using generality and 2.3 seconds using double
polymorphism.

3.2 Extensibility

The three types of numbers we have described are only a small part of the set of numeric objects
one might consider implementing. Other possibilities include infinite precision integers, complex
numbers, polynomials, or even special types of numerical forms such as degrees or radians. Similarly
there are many other operations, such as relational comparisons or logical operators, that one might

Coercive Generality Double Polymorphism

Class InternalNumber 0 0]
Class Float 1 op
Class Fraction 1 op
Class Integer 1 opP

New Class 2+ OP OP x CL
TOTAL (approximately) 2 + CL + OP 2 x OP x CL

OP = number of operators
CL = number of classes

Table 3: Methods Required if a new Class is Added

wish to add to the system. Thus another way one might compare these two approaches is the ease
with which they can be extended to include new classes or new operators.

3.2.1 Adding New Classes

When generality is used, adding new classes is relatively easy. It is not necessary to change the base
class InternalNumber at all. In the new class, methods for producing the generality index and for
coerce must be provided, as well as methods for each of the supported operations. A technique must
be provided to coerce each value of lower generality into the new type, and to convert the new type
into values of higher generality. How this is accomplished will vary from situation to situation, but
usually it can be accomplished by adding about one new method to each existing class.

Adding a new class when double polymorphism is used is much harder. The base class Inter-
nalNumber defined methods for each pair of class and operator. These must be redefined in each
derived subclass. Thus if a new class is added, OF methods, where OP is the number of operators
being supported, must be defined in each existing class. In addition, all OP x CL pairs must be
defined in the new class. Thus while for generality the number of new methods that need to be
defined 1s approximately the sum of the number of classes and the number of operators, for double
polymorphism this figure is the product of these two quantities (Table 3).

3.2.2 Adding New Operations

The simplicity of the generality approach in comparison to double polymorphism is still apparent
even if one considers only the task of adding a new operator to an existing collection of classes. Using
generality, it is only necessary to add the method for the operator in each existing class (assuming
the already provided techniques for coercion are sufficient). The the total number of new methods
is roughly proportional to the number of classes. Using double polymorphism, on the other hand,
a method must be provided in each class to handle the operator and an argument from each of
the other classes. Thus the number of new methods is proportional to the square of the number of
classes (Table 4).

10

Coercive Generality Double Polymorphism

Class InternalNumber 1 CL+1
Class Float 1 CL+1
Class Fraction 1 CL+1
Class Integer 1 CL+1
TOTAL CL CL x CL

CL = number of classes

Table 4: Methods Required if a new Operator is Added

4 Conclusions

In many problems a situation can occur in which there is variation in two or more parameters, for
example an event handler may have both multiple event types and multiple event handlers, or a
graphics system may have multiple display objects and different display ports, or a numeric package
can permit both the left and right arguments to arithmetic operations to vary among several types.
From a programming point of view, these can be handled by dynamic lookup based on two or more
objects. Most object oriented languages, such as C++ or Smalltalk, support dynamic lookup based
only on a single object, the receiver’.

We have described two approaches to dealing with the problem of dynamic lookup based on two
arguments in the context of the problem of generalized numbers. The technique of coercive generality
might be considered the more “traditional” approach, or at least to possess the claim of earlier
development. The generality approach is simpler, in terms of lines of code, number of methods,
object size, and ease of extension. Nevertheless, the newer approach of double polymorphism is
superior in one very important respect; it is faster in execution. Given that the number of operators
available for overridding is fixed by the language, and that the number of classes is likely to be
in practice relatively small, this last statistic may well be the only important measure in most
programmers’ minds.

Operations using generalized numbers can never hope to be as efficient as operations using the na-
tive concrete types (integers and doubles) provided by the underlying hardware and C system. Thus
one would probably not used a generalized number as, for example, a loop counter. Nevertheless,
there are situations where the more general facility is desirable.

The utility of the double (or even multiple) polymorphism technique is not limited to its use
with mixed mode arithmetic. As Ingalls describes in his original paper [Ing86], it can be used any
time you have arguments that can vary in two or more positions for a method, and the type of the
arguments cannot be determined at compile time. Such situations can easily occur, for example, if
you have multiple types of picture objects that can be displayed on multiple types of output devices.
Thus the technique is one that should be more widely known and used by programmers working in
object oriented languages.

1To the authors knowledge, only the object oriented language CLOS directly supports dynamic lookup based on
two or more objects [Kee89].

11

Acknowledgements

A number of people provided useful comments on an earlier draft of this paper, these include Frank
Griswold, Rajeev Pandey, Don Pardo and Bjarne Stroustrup. Jim Adcock pointed out the use of
overloaded arguments instead of using multiple method names described in section 2.3.

References

[Bud87] Budd, Timothy A.; “A Little Smalltalk” Addison-Wesley, 1987.

[GoR84] Goldberg, Adele and Robson, David, Smalltalk-80: The Language and Its Implementa-
tion, Addison-Wesley, 1984.

[Tng86] Ingalls, Daniel H.H., A Simple Technique for Handling Multiple Polymorphism, Sigplan
Notices, Vol 21(11): 347-349, November 1986.

[Kee89] Keene, S. E.; Object-Oriented Programming in Common Lisp, Addison-Wesley, 1989.

12

Appendix 1: The Coercive Generality Code

While the following code shows the viability of the ideas, it is still somewhat incomplete. Memory
management could be improved, for example. Similarly, fractions should be divided by their greatest
common divisor, and fractions with a denominator of 1 should be made into integers. Finally a
realistic system would implement many more operations (such as relational and logical operators).

/*
generalized arithmetic using coercive generality
written by Tim Budd
Oregon State University
Corvallis, OR 97331

/

include <stream.h>

class InternalNumber {
protected:
virtual int generality() { return 0; }

public:

/* printing */
virtual void streamon(ostream& s) { s << ” undefined ”7; }
/* conversion */
virtual InternalNumber *coerce(InternalNumber& y)
{ return &y;}
virtual InternalNumber *asFloat() ;
virtual InternalNumber *asFraction() ;
/* addition */
virtual InternalNumber *operator+(InternalNumber& y)
{ if (generality() < y.generality())
return (*(y.coerce(*this)) + y);
else return *this + *coerce(y); }
/* division */
virtual InternalNumber *operator/(InternalNumber& y)
{ if (generality() < y.generality())
return (*(y.coerce(*this)) / y);
else return *this / *coerce(y); }
/* multiplication */
virtual InternalNumber *operator*(InternalNumber& y)
{ if (generality() < y.generality())
return (*(y.coerce(*this)) * y);
else return *this * *coerce(y); }
/* subtraction */
virtual InternalNumber *operator-(InternalNumber& y)
{ if (generality() < y.generality())
return (*(y.coerce(*this)) - y);
else return *this - *coerce(y); }

I8

class Float : public InternalNumber {
double val;
int generality() { return 30;}
public:
Float(double d) { val = d; }

/* printing */
void streamon(ostream& s) { s << ” Float ” << val; }
/* conversion */
InternalNumber *coerce(InternalNumber& y)
{ return y.asFloat(); }
/* addition */

13

InternalNumber *operator+(InternalNumber& y)
{ if (y.generality() == 30)
{Float *f = (Float *) &y;
return new Float(val + f—val);}
else {
return InternalNumber::operator+(y);

1}
/* division */
InternalNumber *operator/(InternalNumber& y)
{ if (y.generality() == 30)
{Float *f = (Float *) &y;
return new Float(val / f—val);}
else {
return InternalNumber::operator/(y);

1}
/* multiplication */
InternalNumber *operator*(InternalNumber& y)
{ if (y.generality() == 30)
{Float *f = (Float *) &y;
return new Float(val * f—val);}
else {
return InternalNumber::operator*(y);

1}
/* subtraction */
InternalNumber *operator-(InternalNumber& y)
{ if (y.generality() == 30)
{Float *f = (Float *) &y;
return new Float(val - f—val);}
else {
return InternalNumber::operator-(y);

1}
I8

class Fraction : public InternalNumber {
InternalNumber *top, *bottom;
int generality() { return 20;}
public:
Fraction(InternalNumber *t, InternalNumber *b)
{ top = t; bottom = b; }

/* fraction specific */
InternalNumber *reciprocal()
{ return new Fraction(bottom, top); }

/* conversion */
InternalNumber *asFloat()
{ return (*(*top).asFloat()) / (*(*bottom).asFloat()); }
/* addition */
InternalNumber *operator+(InternalNumber& y)
{ if (y.generality() == 20)
{ Fraction *f = (Fraction *) &y;
return new Fraction(
*(*top * ¥*f{—bottom) + *(*¥*f—top * *bottom),
*bottom * *f—bottom);}
else {
return InternalNumber::operator+(y);

1}
/* division */
InternalNumber *operator/(InternalNumber& y)
{ if (y.generality() == 20)
{ Fraction *f = (Fraction *) &y;
return new Fraction(*top * *f—bottom,
*bottom * *f—top);}
else {
return InternalNumber::operator/(y);

14

1}
/* multiplication */
InternalNumber *operator*(InternalNumber& y)

{ if (y.generality() == 20)
{ Fraction *f = (Fraction *) &y;
return new Fraction(*top * *f—top,

*bottom * *f—bottom);}

else {

return InternalNumber::operator*(y);

1}
/* subtraction */
InternalNumber *operator-(InternalNumber& y)

{ if (y.generality() == 20)
{ Fraction *f = (Fraction *) &y;
return new Fraction(

*(*top * ¥*f{—bottom) - *¥(*f—top * *bottom),
*bottom + *f—bottom);}

else {

return InternalNumber::operator-(y);

I
/* printing */
void streamon(ostream& s)
{ s << 7Fraction ” ; (*top).streamon(s);
s << 7/7; (¥*bottom).streamon(s);}

I8

class Integer : public InternalNumber {
int val;
int generality() { return 10;}
public:
Integer(int i) { val = i;}

/* printing */
void streamon(ostream& s) { s << "Integer ” << val; }

/* addition */
InternalNumber *operator+(InternalNumber& y)
{ if (y.generality() == 10)
{ Integer *i = (Integer *) &y;
return new Integer(val + i—val);}
else {
return InternalNumber::operator+(y);

1}

/* conversion */
InternalNumber *asFloat()
{ return (new Float((double) val));}

/* division */
InternalNumber *operator/(InternalNumber& y)
{ if (y.generality() == 10)
return new Fraction(this, &y);
else {
return InternalNumber::operator/(y);

1}

/* multiplication */
InternalNumber *operator*(InternalNumber& y)
{ if (y.generality() == 10)
{ Integer *i = (Integer *) &y;
return new Integer(val * i—val);}
else {
return InternalNumber::operator*(y);

1}

15

/* subtraction */
InternalNumber *operator-(InternalNumber& y)
{ if (y.generality() == 10)
{ Integer *i = (Integer *) &y;
return new Integer(val - i—val);}
else {
return InternalNumber::operator-(y);

1}
I8

class Number {
InternalNumber *val;
Number() { delete(val); }

public:

/* construction */
Number() { val = new InternalNumber();}
Number(int i) { val = new Integer(i);}
Number(double d) { val = new Float(d);}
Number(InternalNumber *v) { val = v;}

/* assignment */
Number operator=(int i)
delete val; val = new Integer(i); return *this;}
Number operator=(Number y)
val = y.val; return *this; }
Number operator=(Number *y)
val = y—val; return *this; }

/* arithmetic */
friend Number operator+(Number&x, Number& y);
friend Number operator-(Number&x, Number& y);
friend Number operator*(Number&x, Number& y);
friend Number operator/(Number&x, Number& y);

/* printing */
void streamon(ostream& s)
{ (*val).streamon(s); }

I8

/* friend functions */
inline Number operator4+(Number&x, Number& y)

{ return *(new Number (*(x.val) + *(y.val))); }
inline Number operator-(Number&x, Number&

{ return *(new Number (*(x.val) - *(y.val))); }
inline Number operator*(Number&x, Number& y)

{ return *(new Number (*(x.val) * *(y.val))); }
inline Number operator/(Number&x, Number& y)

{ return *(new Number (*(x.val) / *(y.val))); }
inline ostreamé& operator<<(os1:ream<§z/s7 Numberé& n)

{ n.streamon(s); return s; }

16

Appendix 2: The Double Polymorphism Code

/*

generalized arithmetic using double polymorphism

written by Tim Budd
Oregon State University
Corvallis, OR 97331

/
include <stream.h>
class InternalNumber {

public:
/* printing */

virtual void streamon(ostream& s) { s << ” undefined ”7; }

/* addition */
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber

/* conversion */
virtual InternalNumber
virtual InternalNumber

/* division */
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber

/* multiplication */
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber

/* subtraction */
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber
virtual InternalNumber

I8

class Float : public InternalNumber {
double val;
public:
Float(double d) { val =

/* printing */

*operator+(InternalNumber& y) ;
*addToFloat(InternalNumber& y) ;
*addToFraction(InternalNumber& y) ;
*addTolInteger(InternalNumber& y) ;

*asFloat() ;
*asFraction() ;

*operator/(InternalNumber& y) ;
*divFromFloat(InternalNumber& y) ;
*divFromFraction(InternalNumber& y) ;
*divFromInteger(InternalNumber& y) ;

operator(InternalNumber& y) ;
*multByFloat(InternalNumber& y) ;
*multByFraction(InternalNumber& y) ;
*multByInteger(InternalNumber& y) ;

*operator-(InternalNumber& y) ;
*subFromFloat(InternalNumber& y) ;
*subFromFraction(InternalNumber& y) ;
*subFromInteger(InternalNumber& y) ;

d; }

void streamon(ostream& s) { s << ” Float ” << val; }

/* addition */

InternalNumber *operator+(InternalNumber& y)
{ return y.addToFloat(*this);}
InternalNumber *addToFloat(InternalNumber& y)
{Float *f = (Float *) &y;
return new Float(val + f—val);}
InternalNumber *addToFraction(InternalNumber& y)
{return addToFloat(*y.asFloat());}
InternalNumber *addTolInteger(InternalNumber& y)
{return addToFloat(*y.asFloat());}

17

/* division */
InternalNumber *operator/(InternalNumber& y)
{ return y.divFromFloat(*this);}
InternalNumber *divFromFloat(InternalNumber& y)
{Float *f = (Float *) &y;
return new Float(val / f—val);}
InternalNumber *divFromFraction(InternalNumber& y)
{return divFromFloat(*y.asFloat());}
InternalNumber *divFromInteger(InternalNumber& y)
{return divFromFloat(*y.asFloat());}

/* multiplication */
InternalNumber *operator*(InternalNumber& y)
{ return y.multByFloat(*this);}
InternalNumber *multByFloat(InternalNumber& y)
{Float *f = (Float *) &y;
return new Float(val + f—val);}
InternalNumber *multByFraction(InternalNumberé& y)
{return multByFloat(*y.asFloat());}
InternalNumber *multByInteger(InternalNumber& y)
{return multByFloat(*y.asFloat());}

/* subtraction */
InternalNumber *operator-(InternalNumber& y)
{ return y.subFromFloat(*this);}
InternalNumber *subFromFloat(InternalNumberé& y)
{Float *f = (Float *) &y;
return new Float(val - f—val);}
InternalNumber *subFromFraction(InternalNumber& y)
{return subFromFloat(*y.asFloat());}
InternalNumber *subFromInteger(InternalNumberé& y)
{return subFromFloat(*y.asFloat());}
ki

class Fraction : public InternalNumber {
InternalNumber *top, *bottom;
public:
Fraction(InternalNumber *t, InternalNumber *b)
{ top = t; bottom = b; }

/* fraction specific */
InternalNumber *reciprocal()
{ return new Fraction(bottom, top); }

/* addition */
InternalNumber *operator+(InternalNumber& y)
{ return y.addToFraction(*this);}
InternalNumber *addToFloat(InternalNumber& y)
{ return (*asFloat()).addToFloat(y);}
InternalNumber *addToFraction(InternalNumber& y)
{ Fraction *f = (Fraction *) &y;
return new Fraction(*top + *f—top, *bottom + *f—bottom);}
InternalNumber *addTolInteger(InternalNumber& y)
{ return addToFraction(*y.asFraction());}

/* conversion */
InternalNumber *asFloat()
{ return (*(*top).asFloat()) / (*(*bottom).asFloat()); }

/* division */
InternalNumber *operator/(InternalNumber& y)
{ return y.divFromFraction(*this);}
InternalNumber *divFromFloat(InternalNumber& y)
{ return (*asFloat()).divFromFloat(y);}
InternalNumber *divFromFraction(InternalNumber& y)

18

{ return (*reciprocal()).multByFraction(y);}
InternalNumber *divFromInteger(InternalNumber& y)
{ return new Fraction (top , ¥*bottom * y); }

/* multiplication */
InternalNumber *operator*(InternalNumber& y)
{ return y.multByFraction(*this);}
InternalNumber *multByFloat(InternalNumber& y)
{ return (*asFloat()).multByFloat(y);}
InternalNumber *multByFraction(InternalNumberé& y)
{ Fraction *f = (Fraction *) &y;
return new Fraction(*top * *f—top, *bottom * *f—bottom);}
InternalNumber *multByInteger(InternalNumber& y)
{ return new Fraction (*top * y , bottom); }

/* printing */
void streamon(ostream& s)
{ s << 7Fraction ” ; (*top).streamon(s);
s << 7/7; (¥*bottom).streamon(s);}

I8

class Integer : public InternalNumber {
int val;
public:
Integer(int i) { val = i;}

/* printing */
void streamon(ostream& s) { s << "Integer ” << val; }

/* addition */
InternalNumber *operator+(InternalNumber& y)
{ return y.addToInteger(*this);}
InternalNumber *addToFloat(InternalNumber& y)
{ return (*asFloat()).addToFloat(y);}
InternalNumber *addToFraction(InternalNumber& y)
{ return (*asFraction()).addToFraction(y);}
InternalNumber *addTolInteger(InternalNumber& y)
{ Integer *i = (Integer *) &y;
return new Integer(val + i—val);}

/* conversion */
InternalNumber *asFloat(
{ return (new Float((double) val));}

/* division */
InternalNumber *operator/(InternalNumber& y)
{ return y.divFromInteger(*this);}
InternalNumber *divFromFloat(InternalNumber& y)
{ return (*asFloat()).divFromFloat(y);}
InternalNumber *divFromFraction(InternalNumber& y)
{ return (*asFraction()).divFromFraction(y);}
InternalNumber *divFromInteger(InternalNumber& y)
{ return new Fraction(this, &y); }

/* multiplication */
InternalNumber *operator*(InternalNumber& y)
{ return y.multByInteger(*this);}
InternalNumber *multByFloat(InternalNumber& y)
{ return (*asFloat()).multByFloat(y);}
InternalNumber *multByFraction(InternalNumber& y)
{ return (*asFraction()).multByFraction(y);}
InternalNumber *multByInteger(InternalNumber& y)
{ Integer *i = (Integer *) &y;
return new Integer(val * i—val);}

19

/* subtraction */
InternalNumber *operator-(InternalNumber& y)
{ return y.subFromInteger(*this);}
InternalNumber *subFromFloat(InternalNumberé& y)
{ return (*asFloat()).subFromFloat(y);}
InternalNumber *subFromFraction(InternalNumber& y)
{ return (*asFraction()).subFromFraction(y);}
InternalNumber *subFromInteger(InternalNumberé& y)
{ Integer *i = (Integer *) &y;
return new Integer(val - i—val);}

I8

class Number {

InternalNumber *val;

public:

/* construction */
Number() { val = new InternalNumber();}
Number(int i) { val = new Integer(i);}
Number(double d) { val = new Float(d);}
Number(InternalNumber *v) { val = v;}

/* assignment */
Number operator=(int i)
delete val; val = new Integer(i); return *this;}
Number operator=(Number y)
val = y.val; return *this; }
Number operator=(Number *y)
val = y—val; return *this; }

/* arithmetic */
friend Number operator+(Number&x, Number& y);
friend Number operator-(Number&x, Number& y);
friend Number operator*(Number&x, Number& y);
friend Number operator/(Number&x, Number& y);

/* printing */
void streamon(ostream& s)
{ (*val).streamon(s); }

I8

/* friend functions */
Number operator+(Number&x, Number& y)

{ return *(new Number (*(x.val) + *(y.val))); }
Number operator-(Number&x, Numberé& y)

{ return *(new Number (*(x.val) - *(y.val))); }
Number operator*(Number&x, Number& y)

{ return *(new Number (*(x.val) * *(y.val))); }
Number operator/(Number&x, Number& y)

{ return *(new Number (*(x.val) / *(y.val))); }
ostream& operator< < (ostreamé&s, Number& n)

{ n.streamon(s); return s; }

20

