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Introduction
Many combinatorial structures decompose into
components, with the list of component sizes car-
rying substantial information. An integer factors
into primes—this is a similar situation, but different
in that the list of sizes of factors carries all the in-
formation for identifying the integer. The combi-
natorial structures to keep in mind include per-
mutations, mappings from a finite set into itself,
polynomials over finite fields, partitions of an in-
teger, partitions of a set, and graphs.

The similar behavior of prime factorization and
cycle decompositions of permutations was ob-
served by Knuth and Trabb Pardo [24]. We attempt
to explain why such systems are similar.

We are interested in probability models which
pick “a random combinatorial structure of size
n”, meaning that each of the objects of that size
is equally likely. We also consider the model which
picks an integer uniformly from 1 to n. Such mod-
els lead to stochastic processes that count the

number of components of each conceivable size.
What are the common features of these processes?

There are two broad areas of commonality. The
first and most basic is essentially an algebraic
property. It involves representing the distribution
of the combinatorial process as that of a sequence
of independent but not identically distributed ran-
dom variables, conditioned on a weighted sum; see
(5). All our combinatorial examples satisfy this ex-
actly. On the other hand, prime factorizations of
a uniformly chosen integer cannot be described in
terms of conditioning a process of independent
random variables on the value of a weighted sum
because the value of the weighted sum in this case
tells us the value of the random integer. However,
by considering conditioning as a special case of the
more general construction of “biasing” a distrib-
ution, we can view prime factorization as having
a very close relative of the conditioning property.
Conditioning independent random variables on
various weighted sums has a long history; for com-
binatorial examples we refer the reader to Shepp
and Lloyd [29], Holst [20], Kolchin [25], Diaconis
and Pitman [13], and Arratia and Tavaré [9].

The second broad area of commonality, shared
by some but not all of the examples listed above,
is an analytic property. The number of compo-
nents of size at most x has, for fixed x, a limit in
distribution as n →∞, and the expected value of
this limit is asymptotic to θ logx as x→∞ , where
θ > 0 is a constant. We call combinatorial struc-
tures that have this property “logarithmic”. For the
main examples in this paper the logarithmic struc-
tures are permutations, polynomials, mappings, the
Ewens sampling formula, and prime factoriza-
tions, and the nonlogarithmic structure is that of
integer partitions.
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Combinatorial Examples
Consider a combinatorial structure which decom-
poses into components. Let p(n) be the number of
instances of size n. Given an instance of size n,
the most basic description reports only the num-
ber k of components. We are interested in a fuller
description, the component structure, specifying
how many of these k components are of sizes
one, two, three, and so on.

For a given combinatorial structure, the usual
approach is to assume that n is fixed and to count
how many of the p(n) instances of size n have each
particular component structure. Equivalently, one
can think of drawing an instance at random from
the uniform distribution over all p(n) possibilities
and ask for the probability of each particular com-
ponent structure. In this random formulation, the
counts of components of each size become random
variables. We write Ci or Ci(n) for the number of
components of size i .  Thus (C1(n), C2(n),
. . . , Cn(n)) specifies the entire component size
counting process, and K(n) := C1(n) + C2(n)+
· · · + Cn(n) is the total number of components. The
random variables C1(n), C2(n), . . . are dependent,
and in fact a certain weighted sum of them is con-
stant: 

(1) C1(n) + 2C2(n) + · · · + nCn(n) = n.

We illustrate the above concepts with four ex-
amples from combinatorics and one family of dis-
tributions from genetics that plays a unifying role.
For each example we provide one instance, with
n = 10. Some references are listed after the name
of the example; these are not intended to be ex-
haustive, but rather pointers to the literature.

Example 1. Integer partitions [17, 27] . Partition
the integer n as n = l1 + l2 + · · · + lk with
l1 ≥ l2 ≥ · · · ≥ lk ≥ 1. For integer partitions, p(n)
is the traditional notation for the number of such
partitions, and 

∑
p(n)xn =

∏
i≥1(1− xi)−1. We write

Ci(n) for the number of parts which are i, and the
component counting structure (C1(n), . . . , Cn(n)) is
an encoding of the partition. An instance for n = 10
is

10 = 5 + 3 + 1 + 1.

In this instance C1(10) = 2, C3(10) = C5(10) = 1, the
other Ci(n) being zero.

Example 2. Permutations [29, 7]. Consider the
cycle decomposition of a permutation of the set
{1,2, . . . , n}, with Ci(n) being the number of cycles
of length i. The total number of instances of size n
is p(n) = n!, and C1(n) is the number of fixed points.
An instance for n = 10 is the function π with π (1)
= 9, π (2) = 1, π (3) = 7, π (4) = 4, π (5) = 3, π (6) =
2, π (7) = 5, π (8) = 8, π (9) = 10, π (10) = 6, whose
cycle decomposition is

π = (1 9 10 6 2 ) (3 7 5 ) (4) (8).

In this instance C1(10) = 2, C3(10) = C5(10) = 1.

Example 3. Mappings [15, 25]. Consider all map-
pings from the set {1,2, . . . , n} to itself, so that
there are p(n) = nn possibilities. A mapping f cor-
responds to a directed graph with edges (i, f (i)) for
i = 1 to n, and the “components” of f are precisely
the connected components of the underlying undi-
rected graph. An instance for n = 10 is the function
f with f(1) = 9, f(2) = 6, f(3) = 5, π (4) = 4, f(5) = 3,
f(6) = 6, f(7) = 3, f(8) = 8, f(9) = 2, f(10) = 2. In this
instance C1(10) = 2, C3(10) = C5(10) = 1. Note that
the number of fixed points, 3 in this instance, is not
C1(10).

Example 4. Polynomials over GF(q) [16, 3]. Con-
sider monic polynomials of degree n over the finite
field GF(q) . Writing f (x) = xn + an−1xn−1 + · · ·+
a1x + a0, we see that there are p(n) = qn possibili-
ties. These polynomials can be uniquely factored into
a product of monic irreducible polynomials, and
Ci(n) reports the number of irreducible factors of
degree i. For the case q = 2, an instance with n = 10
is

f (x) = x10 + x8 + x5 + x4 + x + 1 =

(x + 1)2(x3 + x2 + 1)(x5 + x4 + x3 + x + 1).

In this instance C1(10) = 2, C3(10) = C5(10) = 1.

Example 5. The Ewens Sampling Formula [14].
The Ewens sampling formula (ESF) with parameter
θ > 0 is not in general a combinatorial model, but
it does play a central role in our story. The model
arose originally in population genetics, where the
parameter θ is a mutation rate. See also Chapter
41 of [21].

For each n = 1,2, . . . and θ > 0, the ESF is a dis-
tribution for (C1(n), C2(n), . . . , Cn(n)). It gives the
distribution of the cycle structure of a random
permutation of n objects, choosing a permutation
with probability biased by θK(n), where K(n) is the
number of cycles. For irrational θ these are cer-
tainly not models in combinatorics, but for
θ = 1,2,3,4, . . . the ESF is the distribution of a
“random permutation with colored cycles” in which
there are θ colors available.

Independent Random Variables,
Conditioned on a Weighted Sum
One unifying feature of our combinatorial exam-
ples is that each has a component structure that
can be described in terms of a process of inde-
pendent random variables Z1, Z2, . . ., conditioned
on the value of a weighted sum. We illustrate this
in the example of random permutations.

Cauchy’s formula says that for nonnegative in-
tegers a1, a2, . . . , an with a1 + 2a2 + · · ·+
nan = n, the number of permutations having ai cy-
cles of length i, for i = 1 to n, is n!/

∏
(ai ! iai ). Pick-
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ing a random permutation of n objects and choos-
ing uniformly over the n! possibilities, one can say
that, for any a = (a1, . . . , an) ∈ Zn+,

(2)

P((C1(n), . . . , Cn(n)) = a) =

1(
n∑
j=1

jaj = n)
n∏
j=1

(
1
j

)aj
1
aj !
.

The formula above uses an indicator function,
1(A) = 1 if A is true, and 0 if not.

Now suppose that Z1, Z2, . . . are independent
Poisson random variables with EZj = 1/j. In con-
trast to (2),

(3)

P((Z1, . . . , Zn) = a =
n∏
j=1

P(Zj = aj ))

=
n∏
j=1

e−1/j

(
1
j

)aj
1
aj !

= e−
∑n

1 1/j
n∏
j=1

(
1
j

)aj
1
aj !
.

Let Tn be the following weighted sum of the in-
dependent random variables:

Tn = Z1 + 2Z2 + · · · + nZn.

It follows from (2) and (3) that

(4)

P(Tn = n) =
∑

a:
∑
jaj=n

P((Z1, . . . , Zn) =

a) = e−
∑n

1 1/j .

Now

P((Z1, . . . , Zn) = a | Tn = n)

=
1(
∑
jaj = n)P((Z1, . . . , Zn) = a)

P(Tn = n)
.

Using (4), we see that this ratio simplifies to the
expression in (2). This proves that the distribution
of (C1(n), . . . , Cn(n)) equals the distribution of
(Z1, . . . , Zn) conditional on the event {Tn = n}. All
of our combinatorial processes satisfy an identity
of this form; that is

(5) L((C1(n), . . . , Cn(n)))

= L((Z1, Z2, . . . , Zn) |Tn = n).

For a general treatment of (5) for combinatorial
structures, see [9].

Logarithmic Combinatorial Structures
Some of our examples have a limit in distribution:

(6) (C1(n), C2(n), . . . , Cn(n),0,0, · · · )

⇒ (Z1, Z2, . . . ).

In those examples where the limit exists, such
as random permutations, random mappings, ran-
dom polynomials over GF (q), and the Ewens sam-
pling formula, it turns out that the limit process
(Z1, Z2, . . . ) has independent coordinates which
satisfy (5). For partitions of an integer and for par-
titions of a set, (6) is not satisfied, and each coor-
dinate Ci(n) goes off to infinity as n grows.

There are combinatorial examples, such as ran-
dom forests, which satisfy both (5) and (6) but
which still do not satisfy all our requirements for
being “logarithmic”. The condition that best char-
acterizes the property of being a “logarithmic com-
binatorial structure” is that both (5) and (6) hold
and, for some constant θ ∈ (0,∞) ,

(7) i EZi → θ, i P(Zi = 1)→ θ as i →∞.

The terminology “logarithmic” comes from the re-
lation

(8)
∑
i≤x

EZi ∼ θ logx

as x→∞ . A logarithmic combinatorial structure
of size n tends to have around θ logn compo-
nents.

Continuum Limits for Logarithmic
Combinatorial Structures

Scale invariant Poisson processes on (0,∞)
What happens if we rescale the limit process
(Z1, Z2, . . . ) for a logarithmic combinatorial struc-
ture? Formally, consider the random measure Mn
with mass Zi at the point i/n , for i ≥ 1. The in-
dependence of the Zi means that for any system
of nonoverlapping subintervals of (0,∞) the ran-
dom measure Mn assigns independent masses.
The logarithmic property implies that the expected
mass assigned to an interval (a, b) is
E
∑
i/n∈(a,b) Zi ∼

∑
na<i<nb θ/i ∼ θ log(b/a) =∫ b

a θdx /x.
The “scale invariant” Poisson process M on

(0,∞) with intensity θ dx/x has exactly θ log(b/a)
for the expected number of points in any interval
(a, b). Like the Mn, the Poisson process assigns in-
dependent masses to nonoverlapping subinter-
vals. It is not hard to show that for any logarith-
mic combinatorial structure satisfying (8) the
random measures Mn converge in distribution to
M:

(9) Mn ⇒M.

The convergence above is characterized by in-
tegrating against continuous functions with com-
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pact support. Observe that for the random variable
Tn that appears in the conditioning (5) we have

Tn
n

=
∑
i≤n

i
n
Zi =

∫
(0,1]

xMn(dx).

Thus it is natural to anticipate from (9) that

(10) Tn/n ⇒ T

where

(11) T :=
∫

(0,1]
xM(dx).

The limit process M is simple. Since M has an
intensity measure which is continuous with
respect to Lebesgue measure, with probability
one M has no double points. Thus we can
identify M with a random discrete subset of
(0,∞). In particular the points of M in (0,1] can
be labeled Xi for i = 1,2, . . . with

(12) 0 < · · · < X2 < X1 ≤ 1.

With this labeling, the integral in (11) is expressed
as the sum of locations of all points of the Pois-
son process M in (0,1):

(13) T = X1 +X2 + · · · .

Computation with Laplace transforms shows
that the density gθ of T, with gθ(x) = 0 if x < 0,
satisfies

(14) xgθ(x) = θ
∫ x
x−1

gθ(u)du, x > 0,

so that for x > 0,

(15) xg′θ(x) + (1− θ)gθ(x) + θgθ(x− 1) = 0.

Equation (15) shows why θ = 1 is special. See Ver-
vaat [32], p. 90, and Watterson [33]. For the case
θ = 1, the density g1 of T is g1(t) = e−γρ(t), where
γ is Euler’s constant and ρ is Dickman’s function
[31].
The rescaled limit of the large components is the
Poisson-Dirichlet process
The limit in (6) inherently focuses on the small com-
ponents, in that convergence in distribution for in-
finite-dimensional random vectors is equivalent to
convergence for the restrictions to the first b co-
ordinates, for each fixed b. How can we discuss the
limit distribution for the large components?

One way is to let Li(n) be the size of the ith
largest component of a combinatorial structure of
size n, with Li(n) = 0 whenever i > K(n), the num-
ber of components. Note that the vectors
(C1(n), C2(n), . . . , Cn(n)) and (L1(n), L2(n), . . . ,

Ln(n)) carry exactly the same information; each can
be expressed as a function of the other.

Typically, for any fixed i and k ,
P(Li(n) > k) → 1, so it would not be useful to ask
for the limit of (L1(n), L2(n), . . . ). However, all the
examples which satisfy (7) have a limit for the
process of large components [18, 5]; rescaling all
sizes by n,

(16)
(L1(n)

n
,
L2(n)
n

, . . .
)
⇒ (V1, V2, . . . ).

The distribution of the limit is called the Poisson-
Dirichlet distribution with parameter θ, after King-
man [22, 23]. It is most directly characterized by
the density functions for its finite-dimensional
distributions, which involve the density gθ of T de-
scribed in (13)–(15). The joint density of
(V1, V2, · · · , Vk) is supported by points
(x1, . . . , xk) satisfying x1 > x2 > · · · > xk > 0 and
x1 + · · · + xk < 1, and at such points has value, in
the special case θ = 1,

(17) ρ
(

1− x1 − x2 − · · · − xk
xk

)
1

x1x2 · · ·xk ,

where ρ is Dickman’s function. For the case of gen-
eral θ > 0 the expression for the joint density
function is [33]

(18) gθ
(

1− x1 − · · · − xk
xk

) eγθ θk Γ (θ)xθ−1
k

x1x2 · · ·xk .

The Poisson-Dirichlet process arises from the
scale invariant Poisson process by conditioning
For all the combinatorial systems in this paper
the discrete dependent process (C1(n), . . . , Cn(n))
comes from the independent process (Z1, Z2, . . . )
by conditioning on Tn = n, as in (5). Restricting to
the logarithmic class, each of the discrete ingre-
dients in this, (C1(n), . . . , Cn(n)) and (Z1, Z2, . . . ) ,
can be rescaled to get a continuum limit in which
only the parameter θ appears. For the dependent
system (C1(n), . . . , Cn(n)), the continuum limit is
the Poisson-Dirichlet distribution of (V1, V2, . . . ), a
dependent process. For the independent system
(Z1, Z2, . . . ) the continuum limit is the scale in-
variant Poisson process M, an “independent
process”. It is most natural to expect to fill in the
fourth edge of this square diagram, and relate the
dependent and independent continuum systems
to each other by conditioning.

Theorem 1 [5]. For any θ > 0, let the scale in-
variant Poisson process on (0,∞), with intensity
θ dx/x , have its points falling in (0,1] labeled so
that (12) holds. Let (V1, V2, . . . ) have the Poisson-
Dirichlet distribution with parameter θ. Then
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(19) L((V1, V2, . . . )) = L( (X1, X2, . . . ) |T = 1).

Prime Factorizations of Uniformly Chosen
Integers
Our primary common theme has been that natural
random combinatorial processes arise from inde-
pendent random variables by conditioning on the
value of a weighted sum, as in (5). Our secondary
common theme is that many of these processes are
“logarithmic”, with the limit of the component
counting process, viewed from the small end, being
a process of independent random variables whose
rescaled limit is the scale invariant Poisson process.
Also, the logarithmic combinatorial structures,
viewed from the large end, have a rescaled de-
pendent process limit, the Poisson-Dirichlet
process. How does the prime factorization of a ran-
dom integer, chosen uniformly from 1 to n, fit into
this picture? In brief, the factorization into primes
fits the picture perfectly, although there are su-
perficial changes.

As is usual in number theory, the dummy vari-
able p is understood to denote an arbitrary prime,
and π (n) is the number of primes ≤ n. A positive
integer i has a prime factorization of the form
i =
∏
pap, which can be viewed as a decomposition

(20) log i =
∑
ap logp.

Our probability model is to pick a random in-
teger N = N(n) uniformly from the n possibilities
1,2, . . . , n:

P(N = i) =
1
n
, i = 1,2, . . . , n .

The prime factorization of this random integer,

(21) N(n) =
∏
pCp(n)

defines a process of random variables Cp(n). The
coordinates here are mutually dependent, and we
write Cp(n) to emphasize that we focus on the dis-
tribution rather than on the factorization of a par-
ticular integer. Taking logarithms in (21) gives

(22) logN =
∑
Cp(n) logp ≤ logn,

which is similar to (1).

The superficial differences
The first difference between prime factorizations
and our decomposable combinatorial structures is
that the coordinates are indexed by primes p rather
than by positive integers i. More importantly, the
possible component sizes, which show up as the
weights on the left-hand side in (1) and (22), are
not 1,2,3, . . ., but rather log 2, log 3, log 5, . . ..

The second difference is that the overall system
size, which shows up on the right-hand sides of
(1) and (22), is for prime factorizations not the pa-
rameter n, but rather logn. Thus, for example, the
Hardy-Ramanujan theorem, that a “normal” inte-
ger n has around log logn prime divisors, is like
the statement that a random permutation of n
objects typically has about logn cycles. Both state-
ments say that a system of size s has typically
about log s components.

The third difference is that for prime factor-
izations, the size of a particular random choice
within the system of size n is not constant, but
rather

logN =
∑
Cp(n) logp,

which is uniformly distributed over the set
{0, log 2, log 3, log 4, . . . , logn}. In particular, the
analog of (5) cannot be something involving con-
ditioning on the exact value of a weighted sum of
independent random variables.
The similarities with other logarithmic
combinatorial structures
The first similarity is that prime factorizations
satisfy an analog of (6). For primes the indepen-
dent random variables Zp that arise in the limit are
geometrically distributed:

P(Zp ≥ k) = p−k,
P(Zp = k) = (1− 1/p)p−k, k = 0,1,2, . . . .

Take the natural enumeration of primes in order
of size, p1 = 2, p2 = 3, p3 = 5, . . .. In the analog of
(6), which is

(23) (Cp(n))p ⇒ (Zp)p as n →∞,

convergence in distribution means simply that for
each fixed k, (Cp1 (n), . . . , Cpk (n))⇒ (Zp1 , . . . , Zpk )
as n →∞. This can be easily verified in terms of
cumulative distribution functions, as follows. Let
a1, . . . , ak ∈ Z+ be given, and let
r = 2a13a2 · · ·pakk . Then as events, {Cpi ≥ ai for
i = 1 to k } = { r |N }, with probability (1/n)bn/rc.
This converges to 1/r ,  and 1/r =

∏k
1 p

−ai
i =∏k

1 P(Zpi ≥ ai) = P(Zpi ≥ ai for i = 1 to k).
A second similarity is that the Zp satisfy the ana-

log of (8). Recalling that the “system size” is not
n but rather logn, the analog of (8) with θ = 1 is
that ∑

logp≤logn
EZp =

∑
p≤n

1
p − 1

∼ log(logn).

Note that the analog of (7) would be that
(logp)EZp → 1, which is not true.

A third similarity is a Poisson-Dirichlet (θ = 1)
limit for the rescaled sizes of the large components.
List the prime factors of our random integer N as
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P1 ≥ P2 ≥ · · · ≥ PK where K =
∑
Cp is the number

of prime factors of N, including multiplicities. To
have enough coordinates to fill out the process, de-
fine Pi = 1 whenever i > K. The process giving the
sizes of the components of our random integer is
(logP1, logP2, . . . ) ;  this is the analog of
(L1, L2, . . . ) . Rescaling by the system size, which is
logn, and writing Pi(n) to emphasize that we are
considering a joint distribution which depends on
the parameter n, we find that the analogy suggests
the result proved by Billingsley [12]:

(24)

(
logP1(n)

logn
,
logP2(n)

logn
, . . .

)
⇒ (V1, V2, . . . ).

A fourth similarity is that the limit process (Zp)
rescaled converges in distribution to the scale in-
variant Poisson process, as in (9). The random
measure Mn for primes is Mn :=∑
Zp δ(logp / logn) which puts down mass Zp at

the location logp/ logn . With this definition, (9)
holds. Corresponding to (10) is the statement that
Tn/ logn ⇒ T , where

(25) Tn =
∑
p≤n

Zp logp,

and T is from (13) with θ = 1. These results for the
independent process are easy but may have been
written down first in [1]. 
Not exactly conditioning, but the closest
possible analog
A direct attempt to start with (5) and find an ana-
log for the prime factorization of a uniformly dis-
tributed random integer is doomed to fail, since
the value of Tn =

∑
p≤n Zp logp completely deter-

mines the vector (Zp)p≤n , thanks to unique prime
factorization.

Just as the random integer N(n) encodes the
process (Cp(n))p, the independent process (Zp)p≤n
can be encoded in a random integer. We define

(26) M ≡M(n) := exp(Tn) =
∏
p≤n

pZp .

The procedures for defining N and M are in
sharp contrast. For N pick a number at random,
and consider the distribution of the multiplicities
of primes in its factorization. For M pick those mul-
tiplicities independently at random, and look at the
resulting distribution of integers. As n varies, the
M(n) all use the same multiplicities (Zp) ; the de-
pendence on n is only through the range of the
product. The random integer M may be larger
than n, but it is always free of primes p > n .

For i ≤ n, P(N = i) = 1/n does not vary with i,
while for an integer i free of primes larger than n,
say i =

∏
p≤n pap, we have

P(M(n) = i) =
∏
p≤n

P(Zp = ap)

=
∏
p≤n

(1− 1/p)p−ap = c(n)/i;

with a normalizing constant 

c(n) =
∏
p≤n

(1− 1/p).

Thus, to convert from the distribution of the in-
dependent process, encoded as the values of
P(M(n) = i), into the distribution of the dependent
process, encoded as the values P(N = i) =
(1/n)1(i ≤ n), not only do we condition on i ≤ n,
which corresponds to conditioning on the event
{Tn ≤ logn}, but we also bias with a factor pro-
portional to i. In summary, for all positive integers
i,

(27) P(N(n) = i)

= P(M(n) = i)

∏
p≤n

(1− 1/p)−1

1(i ≤ n)
i
n

We can view biasing and conditioning in a uni-
fied framework as follows. In the context of ran-
dom elements A,B of a discrete space X, one says
that “the distribution of B is the h-bias of the dis-
tribution of A ” if for all α ∈ X ,  P(B = α) =
ch h(α)P(A = α), where the normalizing constant
ch may be expressed as ch = (Eh(A))−1. Starting
from the given distribution for A , one can form
this h-biased distribution if and only if h(α) ≥ 0
for all α such that P(A = α) > 0 and
0 < Eh(A) <∞. Conditioning on an event of the
form {A ∈ S}, where S ⊂ X, is exactly the case of
biasing where h is an indicator function,
h(α) = 1(α ∈ S), and the normalizing constant is
ch = 1/P(A ∈ S). For our examples, let A be the in-
dependent process either A = (Z1, Z2, . . . , Zn) for
the combinatorial processes, or A = (Zp)p≤n, which
can be encoded as M(n), for the prime factoriza-
tions. Similarly, let B be the dependent process: ei-
ther B = (C1(n), . . . , Cn(n)) for the combinatorial
processes, or for the prime factorizations,
B = (Cp(n))p≤n, which can be encoded as N(n).

The conditioning relation (5) can be viewed as
the statement that the distribution of B is the h-
bias of the distribution of A , where h(A) is the in-
dicator function of the event {Tn = n}. The rela-
tion (27) also says that distribution of B is the
h -bias of the distribution of A ,  but now
h(A) = 1(Tn ≤ logn) exp(Tn − logn) , correspond-
ing to the last two factors of (27).

The close similarity of these two versions of bi-
asing shows in the asymptotics of the normaliz-
ing factor. For logarithmic combinatorial struc-
tures having θ = 1, in particular for our examples
2 and 4, the constant is
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ch = P(Tn = n)−1 ∼ eγn,
i.e. the exponential of Euler’s constant, times the
system size. For prime factorizations, the con-
stant is the first factor on the right side of (27),
ch =

∏
p≤n(1− 1/p)−1 , with ch ∼ eγ logn by

Mertens’s theorem. Reading this as eγ times the
system size, one can see that prime factorizations
have exactly the same asymptotics as examples 2
and 4.
Exploiting the similarity of primes and
permutations
The similarity of logarithmic combinatorial struc-
tures having θ = 1 (such as permutations) and
prime factorizations leads us to try to use one
system to study the other. In particular, results for
permutations lead to new conjectures in number
theory. We describe two examples from [1], one still
open, the other recently worked out. We also quote
a third conjecture, as (28), without including the
somewhat long story of how it relates to permu-
tations.

First, we describe an open problem. Thanks to
the “Feller coupling” in [2], we know for permuta-
tions that the independent system (Z1, . . . , Zn)
can be converted to the dependent system
(C1(n), . . . , Cn(n)) using, on average, 2 + o(1)
changes. More specifically, in the Feller coupling,
to convert to (C1(n), . . . , Cn(n)), one of the coordi-
nates Zj is increased by one, and a random selec-
tion of coordinates are decreased, with the num-
ber of decrements having mean 1 + o(1). This leads
to two versions of a conjecture about prime fac-
torizations according to whether or not some small
exceptional probability is allowed.

The first version of the conjecture is that cou-
plings of M =M(n) and N = N(n), defined in (26)
and (21), exist in which to change from M to N,
one prime factor is inserted into M, and a random
number of prime factors are deleted from M, the
number of deletions having mean 1 + o(1). With
probability approaching zero, additional prime
factors may also be inserted into M.

The second version of the conjecture is a direct
translation from the situation for permutations and
is simpler to state: simply remove the possibility
of inserting more than one prime factor. Thus, the
conjecture is that there is a coupling using a sin-
gle insertion and a random number of deletions.
In other words, we conjecture that one can con-
struct, on a single probability space, random in-
tegers M(n) and N(n) and a random prime P0 such
that N always divides P0M. The first version is a
moral certainty to be true and should be provable
using analysis. For the second version we have no
strong convictions about whether or not the con-
jecture is true, but it might actually be neater to
prove this stronger conjecture: since it does not
involve any o(1) error bound, conceivably there is
a purely algebraic or combinatorial proof.

Second, we tell the story of a conjecture that
lasted only half a year before being proved. In the
1950s Kubilius [26] proved his “fundamental
lemma”, which may be stated as follows. Let
u = u(n) and β = 1/u. Let A = A(n) be the inde-
pendent process, observing all primes with
logp ≤ β logn, i.e A = (Zp)logp≤β logn. Similarly, let
B = B(n) be the dependent process, observing all
small prime factors of an integer chosen uniformly
from 1 to n, where the small primes p are those
with logp ≤ β logn. Kubilius proved that the total
variation distance dTV (A,B) tends to zero if β→ 0,
together with an upper bound of the form
dTV (A,B) = O(exp(−(u/8) logu) + n−1/15). What
happens if we do not have β(n) → 0? In particular,
what happens if β is constant?

The natural conjecture, from [1], is that prime
factorizations have the same behavior as random
permutations. In [7] an explicit strictly monotone
function H : [0,1]→ [0,1] was described, with
H(0) = 0,H(1) = 1, together with a heuristic argu-
ment that for permutations, for the case β constant
∈ [0,1] while n →∞, looking at A = (Zi)i≤βn ver-
sus B = (Ci(n))i≤βn , dTV (A,B) → H(β). A proof of
this was given in [30]. A simpler characterization
of H, which follows easily from (19), is that H(β)
is the total variation distance between the restric-
tions to [0, β] of the Poisson-Dirichlet process with
θ = 1 and the corresponding scale invariant Pois-
son process M. Finally, it is proved in [10] that for
prime factorizations, for any constant β ∈ [0,1],
dTV (A,B) → H(β). In terms of Buchstab’s function
ω and Dickman’s function ρ [31], H can be de-
scribed as follows: for 0 < β < 1, with u = 1/β,

2H(β) = eγE|ω(u− T )− e−γ| + ρ(u)

=
∫
t>0

|ω(u− t)− e−γ|ρ(t)dt + ρ(u).

Discussion
For random combinatorial structures, and for
prime factorizations, identifying the limit processes
is a first step. The next step involves giving bounds
on the rates of convergence, under various metrics
on the spaces involved. Estimates for the loga-
rithmic class are studied in [5, 6], Hansen and
Schmutz [19], and Stark [30], and applications of
such estimates are given in [1, 8, 11].

For comparing the discrete dependent process
with its independent discrete limit, it is very ef-
fective to consider the total variation distance, as
Kubilius did for primes. Even for combinatorial
structures which are not logarithmic, such as in-
teger partitions and set partitions, the total vari-
ation distance comparisons with independent
processes are useful [27, 28].

For the large components of logarithmic com-
binatorial structures, where the limit is the Pois-
son-Dirichlet process, the total variation distance
method is useless, since as always when compar-
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ing a discrete distribution with a continuous dis-
tribution the total variation distance is identically
one. One way around this is to use the Ewens Sam-
pling Formula with parameter θ (example 5) as the
comparison object in place of the Poisson-Dirich-
let distribution with parameter θ. Here the ESF may
be considered as the “discrete analog” of the Pois-
son-Dirichlet, in that both are one parameter fam-
ilies, with no place for “small scale” structure. For
example, both random mappings and ESF(θ = 1/2)
look almost the same at the large end, and this may
be quantified by bounds on the total variation dis-
tance between their respective processes
(Cb+1(n), Cb+2(n), . . . , Cn(n)) , observing only large
components [5].

Two other metrics are especially useful for the
processes in this paper. One is the Wasserstein dis-
tance on Zn+ or Zπ (n)

+ , which in our context mea-
sures the expected number of changes needed to
convert the dependent component counting
process to its independent limit. Another is the l1
Wasserstein distance on R∞ . In the context of
prime factorizations and the Poisson-Dirichlet
limit in (24), this is the infimum, over all conceiv-
able couplings, of

(28) E
∑
i≥1

| logPi(n)− (logn)Vi|.

We conjecture that this is O(1); see [1, 4].
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