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Abstract

The subject of our study is the single large prime variation of the quadratic sieve algorithm. We derive a

formula for the average numbers of complete and incomplete relations per polynomial, directly generated by

the algorithm. The number of additional complete relations from the incomplete relations is then computed

by a known formula. Hence practical hints for the optimal choice of the parameter values can be derived. We

further compare theoretical estimates for the total number of smooth integers in an interval with countings

in practice.
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1. Introduction

We assume that the reader is familiar with the multiple polynomial quadratic sieve
algorithm [Bre89, Pom85, PST88, Sil87, RLW89]. We consider the single large prime
variation of the algorithm and write MPQS for short. If we can predict the rate
by which the complete relations in MPQS are generated as a function of the various
parameters in the algorithm, then we can determine a good choice of the parameter
values. Here we give a method to do so.

The outline of the paper is as follows. Section 2 contains notation and preparation.
Counting and approximating the number of smooth integers in an interval are the
subjects of Section 3. In Sections 4 and 5 we give an approximation of the numbers of
complete and incomplete relations per polynomial in the single large prime version of
the quadratic sieve algorithm. We present numerical results in Section 6. In Section 7
we give a formula to approximate the number of complete relations descendent from a
given number of incomplete relations. We analyze the total amount of work in Section
8 and draw conclusions in Section 9.
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2. Notation and preparation

We write log x= log y for (log x)= log y. In the sequel u denotes logx= log y. Euler's
constant is denoted by  (= 0.5772...).

Let m be an integer. We write P (m) for the largest positive prime factor of m. If
P (m) � y then m is called y{smooth. The number of y{smooth positive integers � x

is denoted by  (x; y).

Furthermore we denote by

k : multiplier,

n : k times the number to be factored,

F : factor base,

B : upper bound for the elements in the factor base,

L : upper bound for the large primes,

M : radius of the sieve interval (= [�M;M ]);

T : sieve threshold;

W (x) = ax2 � 2bx� c : sieve polynomial,

� : graph of W .

We assume that the number to be factored is composite, does not contain prime
divisors � B and that n is not a perfect power. The multiplier is chosen such that
n � 1 mod 8. Hence 2 is a member of the factor base. In practice we choose B between
105 and 106 and L between 10B and 100B. If n has about 100 decimal digits, then M
is about 107. We say that an integer is a W{value if it equals W (x) for some integer
x in the sieve interval. The integers a, b and c satisfy the following conditions:

a �
p
2n=M; jbj < a=2; b2 + ac = n:

Let �R be the minimum and S the maximum of W on the sieve interval. The
minimum of W is attained at x = b=a and the maximum at the boundary of the sieve
interval. We have aW (x) = (ax� b)2 � n so that aR = �aW (b=a) = n. Furthermore,
aS = aW (�M) = (�aM � b)2 � n � (�

p
2n� b)2 � n � n since jbj < a=2 <

p
n=M

and M is large. Thus R � S � n=a � M
p
n=2. Note that also c � S. Theoretically

T = log(1
3
M
p
n=2) � logL, but in practice we have to lower this value a bit to get

more relations per time unit.

We use the term complete relation for a B{smoothW{value. An incomplete relation
is a W{value y that is divisible by a large prime q, B < q � L, such that y=q is B{
smooth. Let t1 and t2 be the number of complete and incomplete relations, respectively.

There are relatively few W{values in the interval (�eT ; eT ) compared with the total
number 2M+1 ofW{values. Indeed, ifW (x) = y and x � b=a, then x = b

a
+ 1

a

p
n+ ay
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so that the number of W { values in (�eT ; eT ) is approximately

2

a

�p
n+ aeT �

p
n� aeT

�
=

4eTp
n+ aeT +

p
n� aeT

:

If T � log(1
3
M
p
n=2) � logL and a �

p
2n=M , then the number of W{values in

(�eT ; eT ) is approximately

2
p
2M=(3L)p

1 + 1=(3L) +
p
1� 1=(3L)

�
p
2

3L
M

and this is only a very small fraction of M .

The set

�1 = f(x; y) 2 R
2 j x > b=a; y = W (x); eT � y � Sg

is called the right upper branch of � on the sieve interval. The right lower branch of �
on the sieve interval is the set

�2 = f(x; y) 2 R
2 j x > b=a; y = W (x); �R � y � �eTg:

The left upper branch �3 and left lower branch �4 of � on the sieve interval are de�ned
similarly: replace x > b=a by x < b=a in the corresponding de�nitions of the right
upper and lower branch.

Let t1;i and t2;i be the total number of complete and incomplete relations of �i

(i = 1; 2; 3; 4), respectively. We have t1 �
P

i t1;i and t2 �
P

i t2;i since there are
relatively few W{values in the interval (�eT ; eT ).

3. Smooth integers in an interval

The Dickman{De Bruijn function � plays a key role in approximating the number
of smooth integers below some bound. The function is de�ned by the di�erential{
di�erence equation

�(u) = 1 (0 � u � 1);

u�0(u) + �(u� 1) = 0 (u > 1):

We have

�(u) = 1� log u (1 � u � 2): (3.1)
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From the de�nition of � it follows that � is piecewise analytic and that � agrees with
an analytic function �m on the interval [m� 1; m] (m = 1; 2; : : : ). We can expand the
Taylor series of �m in a left neighborhood of u = m:

�(m� �) = �m(m� �) =
1X
i=0

c
(m)

i �i (0 � � � 1):

Bach and Peralta [BP92] describe an e�cient method due to Patterson and Rumsey

to compute the coe�cients c
(m)

i iteratively. Since �1(u) = 1 (0 � u � 1), we have

c
(1)

0 = 1 and c
(1)

i = 0 for i > 0. The coe�cients c
(2)

i can be computed from (3.1):

�(2� �) = 1� log 2� log(1� �=2) = 1� log 2 +
1X
i=1

�i

i 2i
(0 � � � 1):

In general we have

c
(m)

i =
i�1X
j=0

cm�1j

imi�j
for i > 0 and c

(m)

0 =
1

m� 1

1X
j=1

c
(m)

j

j + 1
:

Empirically, Bach and Peralta found that 55 coe�cients are su�cient to compute
� to IEEE standard double precision (with a relative error of about 10�17) in the
range 0 � u � 20. Below we list rounded values of �(m) for integers m in the range
2 � m � 11. These values were computed from the Taylor series of �m in a left
neighborhood of u = m using the �rst 55 coe�cients. See also [vdLW69].

m �(m) m �(m)
2 0:306 853 7 0:874 567 � 10�6
3 0:486 084 � 10�1 8 0:323 207 � 10�7
4 0:491 093 � 10�2 9 0:101 625 � 10�8
5 0:354 725 � 10�3 10 0:277 017 � 10�10
6 0:196 497 � 10�4 11 0:664 481 � 10�12

For the number  (x; y) of positive y{smooth integers � x we use the approximation

 (x; y) � x

�
�(u) + (1� )

�(u� 1)

logx

�
; (3.2)

that descends from the relation

 (x; x1=u) = x

�
�(u) + (1� )

�(u� 1)

logx

�
+O(�(x; x1=u)) (x!1): (3.3)
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Here

�(x; x1=u) =

(
x1=u

log x
+ x

log2 x
for 1 < u � 2;

x

log3=2 x
for u > 2:

For details on the function  we refer to the comprehensive bibliography in Norton's
memoir [Nor71].

In the sequel we also need an approximation of the number of smooth integers in an
interval. Hildebrand and Tenenbaum [HT86, p. 270] proved that, under the assumption
of the Riemann hypothesis, for any �xed �, 0 < � < 1, we have

 
�
x +

x

z
; y
�
�  (x; y) =

log(1 + y= logx)

z log y
 (x; y)

�
1 +O�

�
1

z
+
log log(1 + y)

log y

��
; (3.4)

uniformly in the ranges

x � 2; (log logx)2=3+� < log y � (logx)2=5; 1 � z � R(x; y)�1: (3.5)

Here R(x; y) = exp(�y1=2��) + exp(�b0u log�2 2u) log y, where b0 is some positive ab-
solute constant.

We have log(1+y= logx) � log y�log log x and log log(1+y) � log log y. Substituting
this and approximation (3.2) into (3.4) it follows that

 
�
x +

x

z
; y
�
�  (x; y) ��

1� log log x

log y

�
�(x; y; z)

�
1 + c1(�)

1

z
+ c2(�)

log log y

log y

�
; (3.6)

where the function � is de�ned by

�(x; y; z) =
x

z

�
�(u) + (1� )

�(u� 1)

log x

�
;

and the ci(�) are numbers depending on �.

To test approximation (3.6) (with appropriate values for the numbers ci = ci(�)) we
sieved y{smooth integers from the interval [x; x + �] for various values of x, y and
�. We chose x and y such that their values corresponded to the order of magnitude
of polynomial values and values of B, respectively, that we used in our experiments
described in Section 6. In the experiments described in this section 1=z = �=x is
negligible compared with log log y= log y. Using the least squares method we get the
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number ~c2 = 1:116 that yields good approximations when using formula (3.6) with
c2 = ~c2 (and c1 = 0). In the table below we list the results. (The terms 2 � 105 and
2 � 106 were added to simplify the sieve program.)

x y � (3.6) sieved quotient
1027 5 � 104 108 + 2 � 105 3606 3521 1.024
1035 3 � 105 108 + 2 � 105 527 529 0.996
1040 8 � 105 108 + 2 � 105 159 149 1.067
1045 6:5 � 105 1011 + 2 � 106 6771 6818 0.993
1050 8:5 � 105 1011 + 2 � 106 646 666 0.970
1050 106 1011 + 2 � 106 912 928 0.983

We conclude that approximation (3.6) (and thus approximation (3.2)) is useful in
practice in the range of our interest, even if we do not satisfy conditions (3.5) com-
pletely.

4. Complete relations

We show how we approximate the number t1;1 of complete relations of the right upper
branch �1. We divide the interval [eT ; S] in N subintervals [yi; yi+1] (i = 0; 1; : : : ;
N � 1) in the following way. Let h = (logS � T )=N , fi = T + ih and choose yi = efi

(i = 0; 1; : : : ; N � 1). Hence yi+1 = yi +
yi
z
, where z = (eh � 1)�1.

To apply (3.6) with an appropriate choice of the numbers c1 and c2, we certainly
must have z � 1 so that eh � 1 � 1. This means that N � (logS � T )= log 2. Since
S � M

p
n=2, T � log(1

3
M
p
n=2) � logL, and in practice L � 10B and B � 105,

N must be larger than (log 3 + 6 log 10)= log 2 � 21:5. Our calculations indicate that
N = 100 is a safe lower bound. We can choose N much larger so that 1=z becomes
much smaller (see the end of Section 3), but then our algorithm to predict t1;1 becomes
too slow. Instead we stick to N = 100 and take the error constants in approximation
(3.6) into account.

Let xi 2 [�M;M ] be the number (not necessarily an integer) such that (xi; yi) 2 �1.
For the slope si of the chord between the points (xi; yi) and (xi+1; yi+1) we have si =
(yi+1 � yi)=(xi+1 � xi).

Let Y be a positive number and let t
(Y )

1;1

�
t
(Y )

2;1

�
denote the number of (in)complete

relations y = W (x) with (x; y) 2 �1 and y � Y . Clearly we have

t1;1 =
N�1X
i=0

(t
(yi+1)
1;1 � t

(yi)
1;1 ): (4.1)

Now we investigate the smoothness probability of polynomial values. Approximation
(3.6) estimates the number of random smooth integers in an interval and thus we cannot
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simply apply (3.6) to special smooth numbers such as complete relations. P.L. Mont-
gomery [Mon95] proposed an elegant way to compare the smoothness probabilities of
W{values and random numbers. The idea is as follows.

We compute the expected contribution of a prime p � B to W (x). Let p � B be a
prime not dividing the discriminant ofW , i.e., p is not a divisor of 4n. For those primes
p we de�ne rp as the number of roots of the congruence equation W (x) � 0 mod p.
We have rp = 2 or 0 according as n is a quadratic residue mod p or not. Any root
modulo p corresponds to a unique root mod pj for any j > 1 via Hensel lifting. Hence
the expected factor contribution of p to W (x) is

p
rp

�
1

p
+ 1

p2
+���

�
= prp=(p�1):

We do not sieve with the prime divisors of n and so we put rp = 0 if p divides n. Since
n � 1 mod 8 the expected contribution of prime 2 is

22(
1

2
+ 1

4
+ 1

8
+���) = 22:

If we �nally de�ne r2 = 2 then the estimated logarithmic norm after sieving by elements
in the factor base is

logW (x)�
X
p�B

rp
log p

p� 1
:

Since the corresponding value for a random number y equals

log y �
X
p�B

log p

p� 1
;

we assume that the numbers W (x) are about as smooth as random integers with
logarithmic norm �+ logW (x), where

� =
X
p�B

(1� rp)
log p

p� 1
: (4.2)

The probability that for a random integer y, with yi � y � yi+1, there exists an
integer x such that (x; y) is a member of �1 is approximately 1=si. Hence, using the
correction term � in (3.6), it follows that

t
(yi+1)
1;1 � t

(yi)
1;1 ��

1� log gi
logB

�
yi

siz

�
�(vi) + (1� )

�(vi � 1)

gi

��
1 + c1

1

z
+ c2

log logB

logB

�
; (4.3)
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where gi = � + fi and vi = gi= logB. Note that yi=(siz) = xi+1 � xi. Combining this
approximation with formula (4.1), we obtain an approximation of t1;1.

To approximate t1;2, we replace �1 by �2, S by R, yi by jyij, xi+1�xi by xi�xi+1 and
proceed as above. Since W (x) is almost symmetric around the y{axis by construction,
we have t1;3 � t1;1 and t1;4 � t1;2.

5. Incomplete relations

We show how to approximate the number t2;1 of incomplete relations from branch �1.
We have

t2;1 =
N�1X
i=0

(t
(yi+1)
2;1 � t

(yi)
2;1 ): (5.1)

Since the probability that a W{value is divisible by a prime q is rq=q, we have

t
(Y )

2;1 �
X

B<q�L

rq

q
t
(Y=q)
1;1 ;

where the summation ranges over all primes q between B and L. Write gi;q = �+ fi�
log q and vi;q = gi;q= logB. We then obtain

t
(yi+1)
2;1 � t

(yi)
2;1 �

X
B<q�L

rq

q

�
t
(yi+1=q)
1;1 � t

(yi=q)
1;1

�

� (xi+1 � xi)
X

B<q�L

rq

q

�
1� log gi;q

logB

��
�(vi;q) + (1� )

�(vi;q � 1)

gi;q

�

�
�
1 + c1

1

z
+ c2

log logB

logB

�
; (5.2)

where we used (4.3) with fi replaced by fi � log q and yi=(siz) by xi+1 � xi. Approxi-
mation (5.2) together with equation (5.1) yields an approximation of t2;1. To compute
approximations t2;i (i = 2; 3; 4) we apply similar adjustments as at the end of Section
4.

6. Numerical results

Below we list the results of our experiments. For each number to be factored we sieved
thousands of polynomials and computed the average number of (in)complete relations
obtained per polynomial. The number of polynomials we sieved is denoted by r, the
estimated values of t1 and t2 are written as ~t1 and ~t2, respectively. By Cx we denote
a composite number of x decimal digits and r.e. in the tables means relative error.
We picked one polynomial to compute ~t1 and ~t2 as described above, since di�erent
polynomials in one experiment turned out to give almost the same values for ~t1 and ~t2.
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We selected polynomials such that the leading coe�cient a of each polynomial was
the square of an integer co{prime with primes in the factor base.

We computed the Taylor series of � up to degree 55. Since we had to compute many
values of the Dickman{De Bruijn function we precomputed a table of values �(u) from
u = 2 to u = 10 using a step size of 1=211. Using linear interpolation we then
approximated �(u) for a particular value of u. The number N of subintervals of one
branch was chosen te be 100.

To determine numbers c1 and c2 in approximations (4.3) and (5.2) we chose sample
numbers to be factored (listed in the appendix), determined the actual number of
complete and incomplete relations per polynomial and used the least squares method
to minimize the sum of the squares of the relative errors. We found c1 = �0:4813 and
c2 = 1:344 for approximation (4.3) and c1 = 1:688 and c2 = �2:372 for approximation
(5.2).

The program for the approximation of complete relations was written in Maple V
Release 3; for the incomplete relations we wrote a program in Fortran.

A. Complete relations

We did experiments for ten values of (n=k;
p
a; b). (Note that coe�cient c is deter-

mined by a and b since the discriminant of each polynomial is equal to 4n.) These
values can be found in the appendix. Tables 1 and 2 contain the chosen values of the
parameters, the resulting value of � and the actually found value of t1 compared to
the calculated estimate ~t1.

Number: 1a 2a 3a 4a 5a
k 1 41 1 47 71

B=105 2 4 3 4 3
M=106 1 0.5 1 1 0.5

T 76.55 80.32 82.42 84.74 87.46
r 3400 13 000 25 400 16 400 117 100

� �2:605 �2:150 �0:5899 �2:373 �1:881
~t1 2.148 1.241 0.5849 0.8715 0.1099
t1 2.604 1.206 0.5089 0.9684 0.1004

r.e. (%) �17:5 2.89 14.9 �10:0 9.41

Table 1: Estimated and actual number of complete relations per polynomial

B. Incomplete relations

We did experiments for six tuples (n=k;
p
a; b). Again, see the appendix for the actual

values. Table 3 contains the parameter values and the results of the experiments.
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Number: 6a 7a 8a 9a 10a
k 41 79 13 1 29

B=105 7 5 5 8 9.5
M=106 2 2.5 2.5 3 5

T 99.49 84.87 86.07 104.6 113.6
r 22 314 292 280 287 312 65 260 36 785

� �2:652 �1:972 �1:293 �2:145 �1:592
~t1 0.1332 0.02 646 0.02 702 0.06 321 0.01 360
t1 0.1423 0.03 058 0.03 009 0.06 281 0.01 279

r.e. (%) �6:41 �13:5 �10:2 0.638 6.31

Table 2: Estimated and actual number of complete relations per polynomial

Number: 1b 2b 3b 4b 5b 6b
k 47 79 13 1 23 1

B=105 4 5 5 8 9.5 10
L=106 6 10 10 16 14.25 10
M=106 1 2.5 2.5 2 10 10

T 88.02 84.87 86.07 97.64 107.1 113.8
r 34 911 292 280 287 312 36 400 17 842 23 087

� �1:865 �1:972 �1:293 �2:145 �2:072 �0:9389
~t2 0.3908 0.2366 0.2296 0.2796 0.1807 0.03 370
t2 0.5052 0.2571 0.2569 0.3063 0.1876 0.03 180

r.e. (%) �22:6 �7:97 �10:6 �8:71 �3:66 6.08

Table 3: Estimated and actual number of incomplete relations per polynomial

7. Complete relations from incomplete relations

What eventually matters is the total number of complete relations derived from the t1
complete relations and the t2 incomplete relations. In order to estimate this number,
we have to compute the expected number, E(s), of complete relations descendent from
a given number s of incomplete relations. Lenstra and Manasse [LM94] explained how
to approximate E(s). In [BR95] it was shown that E(s) can be estimated with, in
almost all cases, a relative error of less than 5 %. For the sake of completeness we state
the result here and we refer to [LM94] and [BR95] for a full explanation and numerical
results. We have

E(s) � 1

2

5X
i=2

(�2)i
�
s

i

�
��i(B;L; �) �(B;L; �i);
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where � is de�ned by

�(x; y; v) =

Z y

x

t�vd
t

log t
=
y1�v

log y
� x1�v

log x

+ v(Ei((1� v) log y)� Ei((1� v) logx)) (0 < x < y; v > 0);

Ei is the exponential integral de�ned by

Ei(x) =

Z x

�1

et

t
dt;

and � is a positive constant smaller than 1. On the basis of our experiments we took
� = 0:73, cf. [LM94].

8. The amount of work

In practice the sieve phase dominates the run time of the algorithm; it takes more
than 90 % of the total time. Therefore we only consider the amount of work done in
the sieve part of the algorithm. The determination of good parameter values depends
heavily on the computer used and the implementation of the algorithm.

The amount of work is approximately proportional to the number of sieve updates
(additions of logarithms to the elements of the sieve array). Per root and per factor
base element q we have to apply the sieve updates on the 2M + 1 cells of the sieve
interval, using stride q. This means that the number of sieve updates per polynomial
is approximately equal to

4M
X
q2F

1

q
:

The total number of complete relations after processing r polynomials is approximately
rt1+E(rt2). Since we have to generate at least 1+ jFj complete relations, an approxi-
mation of the minimal number of polynomials needed is the solution r0 of the equation

r0t1 + E(r0t2) = 1 + jFj: (8.1)

We determine r0 by using binary search in some interval. The total amount of work is
approximately

4Mr0
X
q2F

1

q
(8.2)

sieve updates and the expression is dependent on B, L and M . By varying the param-
eters in some interval, one can compute the total amount of work and thus determine
good parameters.
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On a computer without hierarchical memory (cache or virtual memory), for example
the Cray C90 supercomputer, the CPU{time is a linear function in (8.2). Of course
the same holds for implementations on computers with virtual memory, as long as
page{faults do not occur during the sieving process.

Most people do not have access to a supercomputer and use an implementation on
workstations (or PCs) with cache. In this case the CPU{time is dominated by cache
e�ects [WW95]. Simply stated, cache is a small and expensive amount of memory
that is accessible very fast by the processor(s). Physical memory is larger and cheaper
but it takes much more time to fetch data from it. Therefore it makes sense to write
programs such that the data used most frequently stays in cache as long as possible. In
our case it is a good idea to split up the sieve array in blocks such that each block �ts in
cache. The elements of the sieve array under consideration are then manipulated very
fast. Of course, at a certain moment the cache has to be refreshed. In general di�erent
computers use di�erent cache policies (refreshment strategies). We conclude that it is
di�cult to give one formula that gives the CPU{time in terms of the parameters.

We give an example that illustrates how to determine good parameters. For a given
choice of the parameters we estimate the number of complete and incomplete relations
generated by one polynomial by formulae (4.3) and (5.2) and we estimate the total
number of polynomials needed by solving equation (8.1). Next we do the actual sieve
run for one polynomial and measure the CPU{time. Thus we have an estimation of
the total sieve time. To verify our estimates we also carry out the complete sieve run
for each choice of the parameters. In practice of course, this is only done for the �nal
choice of parameters derived from our estimates. The sample number is the 62 decimal
digit number

10 5783259093 2620060454 1346963019 3620363971 1810100364 0923795313

with k = 1, M = 2:5 � 105, T = 68:12, � = �1:522, pa = 429 1273798937 and
b = 27443 6107325508 5474186145.
We vary the most important parameter B in the range [100 000; 500 000] with step size
50 000 and take L = 10 � B for each choice of B. For simplicity the other parameters
are kept �xed for each choice of B. The table below contains columns for the estimated
and actual number r0 of polynomials needed and the total sieve time in seconds. The
experiments were carried out on a Silicon Graphics Indy workstation with one 100 MHz
R4000 processor and 8 Kb data cache size. (Since we used an implementation written
for the Cray vector computer, the code was not optimal for usage on workstations so
a better performance should be possible.)
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B=105 r0 (est.) r0 (act.) sieve time (est.) sieve time (act.)
1 2377 2055 16 654 14 398
1.5 1641 1425 11 974 10 395
2 1317 1155 10 119 8874
2.5 1127 990 9140 8033
3 1003 885 8671 7655
3.5 918 825 8529 7674
4 855 765 8589 7689
4.5 804 720 8730 7825
5 764 690 9000 8135

The relative error in the estimation of the total sieve time is less than 16 %. We
have plotted the estimated and actual sieve time, see Figure 8. The estimated times
are systematically higher than the actual times, but since the shape of the two graphs
is the same, the minimum of the estimated time graph lies close to that of the actual
time graph. The graphs show that B = 300 000 is a good choice, but some larger values
are also acceptable since from there the sieve time does not uctuate too much. If B
becomes smaller than 200 000 then the sieve time increases considerably. Therefore,
to be sure, one might choose a B that is somewhat larger than the estimated optimal
choice.
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Figure 1: Estimated and actual sieve times (/1000 s)

9. Conclusions

We have given expressions to approximate the average number of complete and incom-
plete relations per polynomial we �nd using the single large prime variation of MPQS.
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Next, the number of complete relations descendent from a given number of incomplete
relations is estimated by using a known formula. From these results we can derive
a good approximation of the total number of polynomials needed and hence we are
able to estimate the total sieve time after processing one polynomial. The prediction
formulae can be used to determine good parameters.

For numbers with 65{100 decimal digits our experiments indicate that the average
relative error of the estimations of the number of (in)complete relations per polynomial
is about 10 %.

An example illustrates that we can estimate the total sieve time with a relative error
of less than 16 % only on the basis of a test run on one polynomial. The example, used
to �nd a good value for B, yields a range of B-values where the actual sieve time is
close to minimal.

Along the way we tested approximation formula (3.6) for the total number of smooth
integers in an interval and observed that the approximation worked well in the range of
our interest, even if conditions (3.5) were not satis�ed completely. In the experiments
with more than 500 sieved numbers the error of the estimate was less than 5 %. From
this it follows that the classical formula (3.3) for the approximation of the total number
of smooth numbers below some bound is also useful in practice.
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Appendix

The following 18 numbers Number 1{18 are used to determine c1 and c2 in approxi-
mations (4.3) and (5.2). The numbers do not interfere with those of Tables 1, 2 and
3. We list the square root

p
a of the leading coe�cient of the chosen polynomial and

b. In the Tables 4, 5, 6 below we list the chosen parameters, the number r of sieved
polynomials, �, t1 and t2.

Number 1 C62
n=k = 11 9418190562 3383706600 5776102904 8038688463 4734397795 0205279043np
a = 1137 7985757553, b = �122533 9205727893 5806928333

Number 2 C62
n=k = 12 4960434331 2369771507 1881486773 5798764534 8378146406 8316835097np
a = 317 7594878677, b = �36769 2049127053 7109069372

Number 3 C67
n=k = 2795300 4544218809 0098428471 3449908979 6930327677 1193962889 0773152249np
a = 69049 8676367814, b = 6141119 7980268423 3761996924
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Number 4 C70
n=k = 3452074587 1532036897 1663724885 9085645491 3776024644 1573043843n
3590687149p
a = 61164 1107106217, b = �684001154 8751383787 6228906623

Number 5 C71
n=k = 1 1111111111 1111111111 1111111111 1111111111 1111111111n
1111111111 1111111111p
a = 59982 2833488191, b = 1265942212 7495946598 6178939644

Number 6 C73
n=k = 125 8308688150 5179142348 1385763915 7371927998 2504149545n
2167806649 6312946019p
a = 495384 4251317617, b = 9 2578266926 6479862115 5975230049

Number 7 C73
n=k = 374 6281167477 1257926128 5180095995 9020537316 7454521437n
5261287497 4743890821p
a = 351266 6308597937, b = 1 7699066017 4448675718 5749361392

Number 8 C76
n=k = 901440 4467263718 8992383413 6656698645 6858019702 1805964137n
0498292646 0417171821p
a = 5301075 2767899037, b = �963 8357898726 9109565464 7268570179

Number 9 C81
n=k = 1 2084979326 5793320196 7285818566 0539963519 8873106157n
9813709116 9898443228 8871633489p
a = 9071728 9289477089, b = �13159 6978618865 5546891188 6370038398

Number 10 C81
n=k = 1 2756160780 8611099305 8711238270 6682428104 3584769443n
1177445428 2344210861 0440705197p
a = 13501794 5809631273, b = �55856 6477642561 2204513394 1344005728

Number 11 C81
n=k = 1 2804626196 3485075791 3316233394 7732460978 8865639874n
5232331043 0957142640 4937004817p
a = 9145180 1150415749, b = 8968 6153120320 6925962274 5273510003

Number 12 C81
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n=k = 5 0637629921 9632522549 0667694055 0900653300 3228780546n
9758645025 0364355475 3465666097p
a = 25252227 2969049649, b = 3421 9602490260 7990556819 7711369718

Number 13 C82
n=k = 54 1397729081 4966784940 0566002598 8468945940 6325764580n
6017604383 9674763457 6574474851p
a = 58758139 0028964029, b = �27533 1111357320 1577238353 6387564611

Number 14 C86
n=k = 389079 4216696731 3164779897 1098709133 3423459224 7603987842n
9842778661 3756224933 3353028281p
a = 297038425 8314072489, b = �2352011 2511694002 4248915047 5760387015

Number 15 C88
n=k = 11175709 2730877850 7566337550 9268349948 6353284691 8694497998n
8537535212 0764988950 2631975827p
a = 1760793650 3778546661, b = 142666646 7066789181 4484201414 6991688541

Number 16 C88
n=k = 21635556 5990646589 4381332995 5809413444 1212020197 1957079131n
3709426842 5925590441 2221060057p
a = 1646945457 7510843897, b = 55968176 2595691602 3311711198 9664685591

Number 17 C91
n=k = 1 3049963709 6764364819 9568631191 9613777969 9609425129n
6224051097 7317881302 8992552947 8108284379p
a = 8391974343 4446932021, b = 1799938559 2054466830 2724667288 2065532161

Number 18 C95
n=k = 35497 2695591791 3798837415 1428489573 4961682843 8902745455n
7880927844 3957786766 7167167895 2104479787p
a = 9 4010239651 0674712937, b = 11 7351838585 6995091351 3581526051 1685001862

Number 1a up to Number 10a are examples used to compare the estimated and
actual number of complete relations per polynomial (see Tables 1 and 2).

Number 1a C65
n=k = 27158 0560707763 8170285090 4822402606 4919324961 0446180354 8064706241p
a = 1538 3080127953, b = �672943 6594969807 7121164793
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Number: 1 2 3 4 5 6
k 43 1 1 5 23 59

B=105 3 3.5 4 4.5 5 4.5
L=106 3 3.5 6 6.75 10 6.75
M=106 0.25 0.5 0.5 0.5 2 0.5

T 58.27 56.95 62.57 61.82 67.33 66.00
r 2475 1200 4000 9465 4964 25 000

� �2:569 �1:397 �1:629 �0:6330 �1:797 �2:035
t1 2.947 7.389 1.963 0.5008 2.057 0.2990
t2 12.37 29.90 10.67 3.475 13.60 1.865

Table 4: Actual number of (in)complete relations per polynomial

Number: 7 8 9 10 11 12
k 5 109 1 5 1 1

B=105 5 5 6 5 4 7
L=106 5 5 180 50 200 7
M=106 0.5 0.5 2 2 2 0.5

T 65.61 71.04 81.49 76.96 79.67 73.83
r 24 312 25 385 69 432 79 328 87 904 43 970

� �0:6977 �3:186 �0:9103 �1:318 �0:9949 �0:4083
t1 0.2040 0.1916 0.1717 0.09 899 0.08 221 0.05 388
t2 1.251 0.9779 2.305 1.676 1.651 0.2994

Table 5: Actual number of (in)complete relations per polynomial

Number 2a C67
n=k = 4999228 1439980547 1200119698 6062426712 9417318768 0936258414 0274996129p
a = 20276 9767993829, b = �5103108 6608932988 4245660016

Number 3a C70
n=k = 3407462558 0870149333 5159834239 1305240184 2217017985 5972598052n
9382492473p
a = 29115 0507704933, b = �200353646 9616791195 2118089548

Number 4a C70
n=k = 7446263828 5084664090 2304588883 2293771397 0280869969 0700499067n
2643660783p
a = 91942 6170405581, b = �362914086 3289343194 0606822182
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Number: 13 14 15 16 17 18
k 11 1 43 17 19 11

B=105 7.5 8 8.5 8.5 9 8
L=106 11.25 8 8.5 8.5 9 12
M=106 1 1 1 1 1 1

T 76.43 80.01 83.51 83.38 86.58 106.1
r 13 500 16 068 15 000 16 000 27 500 113 000

� �1:000 �1:251 �2:116 �1:862 �2:745 �0:8066
t1 0.06 178 0.04 363 0.02 687 0.02 631 0.01 778 0.001 699
t2 0.4461 0.2610 0.1559 0.1500 0.1044 0.0105

Table 6: Actual number of (in)complete relations per polynomial

Number 5a C73
n=k = 452 2421093387 6231088785 6962118423 9709711935 6087407616 9382896713n
5633689471p
a = 718570 3169703073, b = 4 9938242915 8672800079 0845023439

Number 6a C83
n=k = 138 1842483120 1804965895 4919777751 4146329101 5347888233 4496837656n
5549227846 1653455089p
a = 72975948 9819948209, b = 194279 0662870352 6047288876 4531567349

Number 7a C85
n=k = 44884 3150792924 5691032960 4491477299 0585267717 7194205247 3840148537n
2743386385 7714147711p
a = 339613268 9863474013, b = �22113030 0646978737 5654873872 8057541679

Number 8a C85
n=k = 63707 3407732464 4027659439 0221020431 2154608342 1294091436 7818192696n
6398299023 2113191301p
a = 233339860 4569422437, b = �8866157 1010598397 3774112477 9900638768

Number 9a C88
n=k = 74819830 5013400188 9590279365 2111113412 8394311143 9946201421n
9624982641 5188333977 2212945401p
a = 638716555 3933850141, b = 8422796 5151088504 2033019053 5854508860

Number 10a C94
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n=k = 5820 8670385704 7731277020 3646825636 8097924769 4045734980 3172591869n
2043944029 4338517568 2700432109p
a = 3 4090217783 4280797121, b = 4 0593839263 3466719333 7596276279 3179399737

Number 1b up to Number 6b are examples used to compare the estimated and actual
number of incomplete relations per polynomial (see Table 3).

Number 1b C78
n=k = 39431014 3497913309 9512682779 8377912751 2464722783 4573671137n
3104823631 3132467031p
a = 7812839 5401083641, b = 1623 8764058964 5821009161 0356527005

Number 2b C85
n=k = 44884 3150792924 5691032960 4491477299 0585267717 7194205247 3840148537n
2743386385 7714147711p
a = 339613268 9863474013, b = �22113030 0646978737 5654873872 8057541679

Number 3b C85
n=k = 63707 3407732464 4027659439 0221020431 2154608342 1294091436 7818192696n
6398299023 2113191301p
a = 233339860 4569422437, b = �8866157 1010598397 3774112477 9900638768

Number 4b C88
n=k = 74819830 5013400188 9590279365 2111113412 8394311143 9946201421n
9624982641 5188333977 2212945401p
a = 782193202 5824032009, b = 9613471 1095933128 1036342979 5711992830

Number 5b C94
n=k = 1592 0897086948 0220278154 1767196127 6633096702 4136090439 3052330290n
7248179613 9299053383 8706754807p
a = 1 6450910750 5595962661, b = 7895009666 7907417812 2472377015 3992652248

Number 6b C100
n=k = 1193079720 2615798693 9665343380 4125664465 3472413608 6808267215n
2071152844 3608270987 3992085756 0778854537p
a = 22 1018067486 2769424693

b = �70 1459496438 2136923254 1327637222 2556389907
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