
 I N S T R U C T O R G U I D E

Microsoft SQL Server 2000 - Database
DesignDO

 N
O

T
DU

PL
IC

AT
E

In
st

ru
ct

or
 E

di
tio

n

Microsoft SQL Server 2000
Database Design

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Course Edition: 1
For software version: 2000

ACKNOWLEDGEMENTS

Project Team

Curriculum Developer and Technical Writer: Rozanne M. Whalen • Copy Editor: Christy D. Flanders •
Reviewing Editors: Elizabeth M. Swank, Taryn Chase and Angie J. French • Quality Assurance Analyst: Frank
Wosnick • Print Designer: Daniel P. Smith

Project Support

Managing Editor: Clare S. Dygert • Acquisitions Editor: Tina Maria Nelson

Administration

Senior Director of Content and Content Development: William O. Ingle • Director of Certification: Mike
Grakowsky • Director of Design and Web Development: Joy Insinna • Manager of Office Productivity and
Applied Learning: Cheryl Russo • Manager of Databases, ERP, and Business Skills: Mark Onisk • Director
of Business Development: Kent Michels • Instructional Design Manager: Susan L. Reber • Manager of
Publishing Services: Michael Hoyt

NOTICES
DISCLAIMER: While Element K Press LLC takes care to ensure the accuracy and quality of these materials, we cannot guarantee their accuracy, and all materials are
provided without any warranty whatsoever, including, but not limited to, the implied warranties of merchantability or fitness for a particular purpose. The name used in the data
files for this course is that of a fictitious company. Any resemblance to current or future companies is purely coincidental. We do not believe we have used anyone’s name in
creating this course, but if we have, please notify us and we will change the name in the next revision of the course. Element K is an independent provider of integrated
training solutions for individuals, businesses, educational institutions, and government agencies. Use of screenshots or another entity’s product name or service in this book
is for editorial purposes only. No such use should be construed to imply sponsorship or endorsement of the book by, nor any affiliation of such entity with Element K.

TRADEMARK NOTICES: Element K and the Element K logo are trademarks of Element K LLC. SQL Server is a registered trademark of Microsoft Corporation in the U.S. and
other countries. All other product names and services used throughout this book may be common law or registered trademarks of their respective proprietors.

Copyright © 2001 Element K Content LLC. All rights reserved. Screenshots used for illustrative purposes are the property of the software proprietor. This publication, or any
part thereof, may not be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, storage in an information
retrieval system, or otherwise, without express written permission of Element K, 500 Canal View Boulevard, Rochester, NY 14623, (716) 240-7500, (800) 434-3466. Element K
Press LLC’s World Wide Web site is located at www.elementkpress.com.

This book conveys no rights in the software or other products about which it was written; all use or licensing of such software or other products is the responsibility of the
user according to terms and conditions of the owner. Do not make illegal copies of books or software. If you believe that this book, related materials, or any other Element K
materials are being reproduced or transmitted without permission, please call 1-800-478-7788.

ii

Course Number: NH77462 (IGEE)

MICROSOFT SQL SERVER 2000 - DATABASE DESIGN

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

About This Course . xv

Lesson 1: An Overview of SQL Server . 1

Lesson 2: Exploring Transact-SQL . 49

Lesson 3: Designing and Implementing Databases . 91

Lesson 4: Creating and Managing Tables . 119

Lesson 5: Designing and Implementing Data Integrity . 143

Lesson 6: Implementing Indexes . 167

Lesson 7: Joining Tables . 199

Lesson 8: Designing Advanced Queries . 215

Lesson 9: Designing Views . 229

Lesson 10: Creating Stored Procedures . 247

Lesson 11: Using Functions . 279

Lesson 12: Creating Triggers . 299

Lesson 13: Understanding Transactions and Locks . 317

Lesson 14: Implementing Distributed Queries . 337

Lesson 15: Optimizing Queries. 355

Lesson 16: Analyzing Queries . 377

Appendix A: The Movies Database Structure . 397

CONTENT
OVERVIEW

Contents iii

MICROSOFT SQL SERVER 2000 - DATABASE DESIGN

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Appendix B: Course Script Files . 399

Additional Instructor Notes . 403

Glossary. 405

Index . 409

CONTENT
OVERVIEW

iv

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

About This Course . xv
Course Setup Information . xvi
How to Use This Book . xxi

LESSON 1: AN OVERVIEW OF SQL SERVER

TOPIC 1A Exploring the Components of SQL Server 2
Features of Microsoft SQL Server . 3

Task 1A-1 Exploring the Features of Microsoft SQL Server 6
Components of SQL Server . 6

Task 1A-2 Exploring the SQL Server Services. 7
Administrative Tools . 7

Task 1A-3 Identifying Administrative Utilities 9
Registering Servers . 9

Task 1A-4 Using SQL Server Enterprise Manager 10
SQL Query Analyzer . 12

Task 1A-5 Using SQL Query Analyzer . 13

TOPIC 1B SQL Server Database Structure . 16
Task 1B-1 Discussing the Components of SQL Server 20

System Tables . 22
Task 1B-2 Identifying the Default Databases and System Tables 24

Creating Database Diagrams . 26
Task 1B-3 Creating and Working with a Database Diagram 26

Apply Your Knowledge 1-1 . 31

TOPIC 1C . 31
SQL Server Architecture. 31

Task 1C-1 Understanding the SQL Server Architecture 34
Designing a Database Application . 34

Task 1C-2 Exploring the Application Architecture 36

TOPIC 1D Identifying SQL Server Management Tasks 36
Task 1D-1 Determining SQL Server Management Tasks 37

An Overview of SQL Server Security . 37
Task 1D-2 Configuring Your Server’s Authentication Mode 39

Creating Login Accounts . 40

CONTENTS

Contents v

MICROSOFT SQL SERVER 2000 - DATABASE DESIGN

About This Course

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Task 1D-3 Creating a SQL Login Account . 40
Apply Your Knowledge 1-2 . 41
Configuring Database Users and Permissions . 42

Task 1D-4 Working With Server and Database Roles 44
Lesson 1 Review . 46

LESSON 2: EXPLORING TRANSACT-SQL
TOPIC 2A Working with Transact-SQL . 50

Task 2A-1 Using SQL Query Analyzer . 51
Osql . 53

Task 2A-2 Using Osql . 54

TOPIC 2B Transact-SQL Statements . 55
Data Definition Language Statements . 56

Task 2B-1 Creating a Simple Table . 57
Data Manipulation Language Statements . 59

Task 2B-2 Inserting Data . 60
Using SELECT . 60

Task 2B-3 Selecting Data. 61
Using a WHERE Clause With the SELECT Statement 62
Functions. 63
Apply Your Knowledge 2-1 . 66
Using UPDATE . 68
Using DELETE . 68
Apply Your Knowledge 2-2 . 68
Data Control Language Statements. 69

Task 2B-4 Assigning Permissions to the Public Database Role 71
Using DENY . 72
Using REVOKE . 72
Apply Your Knowledge 2-3 . 73
Working with Books Online . 73
Apply Your Knowledge 2-4 . 74

TOPIC 2C Programming in Transact-SQL . 75
Task 2C-1 Using Variables . 77

Executing SQL Statements . 77
Apply Your Knowledge 2-5 . 80
Control-of-Flow Statements . 81
Apply Your Knowledge 2-6 . 83
Creating SQL Scripts . 84

Task 2C-2 Saving a Script File . 84
Apply Your Knowledge 2-7 . 85
Working with XML . 86

Task 2C-3 Choosing an XML Format. 89
Lesson 2 Review . 90

CONTENTS

vi

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

LESSON 3: DESIGNING AND IMPLEMENTING DATABASES

TOPIC 3A Identifying Database Design Issues 92
Task 3A-1 Designing Databases . 93

Estimating the Space Requirements for Databases 93
Task 3A-2 Identifying the Space Requirements for Databases 96

Optimizing Databases . 96
Task 3A-3 Optimizing Database Performance. 99

TOPIC 3B Creating Databases . 99
Creating a Database Using Transact-SQL . 100
Apply Your Knowledge 3-1 . 102
Creating Multiple Data Files and Filegroups . 103
Apply Your Knowledge 3-2 . 105
Configuring Database Options. 106

Task 3B-1 Setting Database Options . 108
Displaying Information About Databases and Transaction Logs 109

Task 3B-2 Using Stored Procedures to View Database Information 109

TOPIC 3C Managing Databases .111
Apply Your Knowledge 3-3 . 112
Monitoring the Size of a Transaction Log . 113
Apply Your Knowledge 3-4 . 114
Shrinking Databases or Files . 114

Task 3C-1 Configuring SQL Server to Automatically Shrink a Database File
. 115

Deleting a Database . 116
Task 3C-2 Deleting a Database . 116

Apply Your Knowledge 3-5 . 117
Lesson 3 Review . 118

LESSON 4: CREATING AND MANAGING TABLES

TOPIC 4A Design and Create Tables .120
Task 4A-1 Normalizing Table Designs . 122

Defining Columns for a Table . 123
Apply Your Knowledge 4-1 . 130
Implementing User-defined Data Types . 131
Apply Your Knowledge 4-2 . 132
Creating a Table . 133
Apply Your Knowledge 4-3 . 135

TOPIC 4B Maintaining Tables .137
Apply Your Knowledge 4-4 . 138
Dropping a Table . 139
Apply Your Knowledge 4-5 . 139

CONTENTS

Contents vii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Scripting Tables . 139
Task 4B-1 Using SQL Server Enterprise Manager to Generate a Script . . . 140

Lesson 4 Review . 142

LESSON 5: DESIGNING AND IMPLEMENTING DATA INTEGRITY

TOPIC 5A Understanding Data Integrity .144
Apply Your Knowledge 5-1 . 145

TOPIC 5B Implementing Constraints .147
Task 5B-1 Adding a Primary Key Constraint . 150

Apply Your Knowledge 5-2 . 151
Defining Foreign Key Constraints . 152

Task 5B-2 Adding a Foreign Key Constraint to the Movie Table 154
Apply Your Knowledge 5-3 . 155
Default Constraints . 156

Task 5B-3 Adding a Default Constraint to the Movie Table 157
Apply Your Knowledge 5-4 . 157
Check Constraints . 158

Task 5B-4 Adding a Check Constraint to the Movie Table 159
Check Your Skills 5-1. 160
Managing Constraints . 160

Task 5B-5 Disabling Constraint Checking . 161
Using Data Transformation Services . 163
Apply Your Knowledge 5-5 . 164
Lesson 5 Review . 165

LESSON 6: IMPLEMENTING INDEXES

TOPIC 6A Designing Indexing .168
Task 6A-1 Understanding Index Architecture 172

Guidelines for Defining Indexes . 172
Apply Your Knowledge 6-1 . 174

TOPIC 6B Implementing Indexes .175
Task 6B-1 Creating a Clustered Index on the Movie Table 178

Creating Composite Indexes . 179
Apply Your Knowledge 6-2 . 179
Creating a Unique Index . 180
Apply Your Knowledge 6-3 . 181
Using the Sysindexes Table . 181

Task 6B-2 Viewing the Information in Sysindexes 182

TOPIC 6C Maintaining Indexes .183
Task 6C-1 Rebuilding an Index . 186

CONTENTS

viii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using DROP_EXISTING to Change an Index . 188
Task 6C-2 Using DROP_EXISTING to Re-create an Index Based on a Pri-

mary Key . 189
Using SQL Profiler . 190

Task 6C-3 Generating a Workload File in SQL Profiler 191
Using the Index Tuning Wizard . 192
Apply Your Knowledge 6-4 . 193
Managing Index Statistics . 194

Task 6C-4 Observing Index Statistics . 196
Lesson 6 Review . 198

LESSON 7: JOINING TABLES

TOPIC 7A Querying Multiple Tables .200
Apply Your Knowledge 7-1 . 202
Defining an Outer Join . 203
Apply Your Knowledge 7-2 . 204
Designing a Cross Join . 205

Task 7A-1 Working with Cross Joins . 205

TOPIC 7B Implementing Advanced Table Joins206
Task 7B-1 Joining Multiple Tables . 206

Apply Your Knowledge 7-3 . 207
Implementing Self Joins . 208

Task 7B-2 Working with Self Joins . 208
Combining the Results of Multiple SELECT Statements 208

Task 7B-3 Combining SELECT Statements . 209
Creating a Table Based on a Results Set . 210

Task 7B-4 Creating a New Table Based on a SELECT INTO Statement . . . 211
Apply Your Knowledge 7-4 . 212
Lesson 7 Review . 213

LESSON 8: DESIGNING ADVANCED QUERIES

TOPIC 8A Designing Subqueries .216
Task 8A-1 Designing Single Value Subqueries 217

Using a Subquery to Return a List of Values . 218
Apply Your Knowledge 8-1 . 219
Designing Correlated Subqueries . 220
Apply Your Knowledge 8-2 . 221

TOPIC 8B Changing Data Through Queries .222
Task 8B-1 Inserting Data Based on a Query 222

Deleting Rows Based on a Query . 223
Task 8B-2 Deleting Rows Based on a Query . 224

CONTENTS

Contents ix

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Updating Rows Based on a Query . 224
Apply Your Knowledge 8-3 . 225
Lesson 8 Review . 227

LESSON 9: DESIGNING VIEWS

TOPIC 9A Creating and Managing Views .230
Task 9A-1 Creating a View . 232

Creating a View Based on Joined Tables . 233
Apply Your Knowledge 9-1 . 234
Displaying View Definitions . 235

Task 9A-2 Displaying View Information . 236
Modifying a View . 237
Apply Your Knowledge 9-2 . 237
Dropping a View . 237

Task 9A-3 Dropping a View . 238
Using Views to Work With Data . 238
Apply Your Knowledge 9-3 . 240
Creating Indexed Views . 241

Task 9A-4 Creating an Indexed View . 242
Partitioned Views . 243

Task 9A-5 Creating a Partitioned View . 244
Lesson 9 Review . 245

LESSON 10: CREATING STORED PROCEDURES

TOPIC 10A Designing Stored Procedures .248
Task 10A-1 Using Books Online to Research System Stored Procedures . . 249

Executing Extended Stored Procedures . 250
Task 10A-2 Running Extended Stored Procedures 250

Running Stored Procedures the First Time . 251
Task 10A-3 Understanding How SQL Server Processes Stored Procedures . 253

TOPIC 10B Creating Stored Procedures .253
Task 10B-1 Creating a Stored Procedure. 255

Executing Stored Procedures . 256
Task 10B-2 Executing a Stored Procedure . 257

Preventing Users From Reading the Text of a Stored Procedure 257
Apply Your Knowledge 10-1 . 258
Modifying a Stored Procedure . 259
Apply Your Knowledge 10-2 . 260

TOPIC 10C Using Parameters in Stored Procedures261
Task 10C-1 Creating a Stored Procedure With an Input Parameter 262

Checking for Valid Input Parameter Values . 263

CONTENTS

x

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Apply Your Knowledge 10-3 . 263
Output Parameters. 264

Task 10C-2 Creating and Executing a Stored Procedure With Output Param-
eters . 265

Managing Errors . 266
Apply Your Knowledge 10-4 . 268
Creating and Using Custom Error Messages . 269
Apply Your Knowledge 10-5 . 272
Using @@Error . 274

TOPIC 10D Managing Stored Procedures .275
Task 10D-1 Recompiling a Stored Procedure . 275

Managing the Performance of Stored Procedures 276
Apply Your Knowledge 10-6 . 277
Lesson 10 Review . 278

LESSON 11: USING FUNCTIONS

TOPIC 11A Working with Aggregate Functions .280
Task 11A-1 Using Aggregate Functions to Summarize Data 281

Apply Your Knowledge 11-1 . 282
Using GROUP BY to Group the Results of Aggregate Functions 283

Task 11A-2 Designing GROUP BY Queries . 284
Using GROUP BY With HAVING . 285
Apply Your Knowledge 11-2 . 286
Displaying the TOP n Rows in a Results Set . 287

Task 11A-3 Using TOP in a Query . 287
Apply Your Knowledge 11-3 . 288

TOPIC 11B Designing and Creating User-defined Functions289
Apply Your Knowledge 11-4 . 292
Creating a Multi-statement Table-valued Function. 293
Apply Your Knowledge 11-5 . 294
Creating an Inline Table-valued Function. 294
Apply Your Knowledge 11-6 . 295
Managing User-defined Functions. 296

Task 11B-1 Dropping a User-defined Function. 296
Lesson 11 Review . 297

LESSON 12: CREATING TRIGGERS

TOPIC 12A Designing and Implementing Triggers300
Task 12A-1 Designing Triggers . 301

Creating a Trigger . 301
Task 12A-2 Creating an INSERT Trigger . 304

CONTENTS

Contents xi

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Apply Your Knowledge 12-1 . 305
Creating a DELETE Trigger . 306

Task 12A-3 Creating a DELETE Trigger . 307
Creating an UPDATE Trigger . 309
Apply Your Knowledge 12-2 . 310
Creating an INSTEAD OF Trigger . 310

Task 12A-4 Creating an INSTEAD OF Trigger . 312
Managing Triggers . 313
Apply Your Knowledge 12-3 . 314
Implementing Complex Triggers . 314
Lesson 12 Review . 315

LESSON 13: UNDERSTANDING TRANSACTIONS AND LOCKS

TOPIC 13A Designing and Implementing Transactions318
Task 13A-1 Working with Explicit Transactions 320

Apply Your Knowledge 13-1 . 322
Enabling Implicit Transactions . 323

TOPIC 13B Managing Locks .324
Task 13B-1 Observing the Current Locks on Your Server 326

Managing Locks . 329
Task 13B-2 Implementing Session Locking . 330

Configuring a Lock Timeout . 333
Task 13B-3 Implementing a Lock Timeout . 333

Table-level Locking . 334
Task 13B-4 Implementing Table-level Locking 335

Deadlocks . 335
Lesson 13 Review . 336

LESSON 14: IMPLEMENTING DISTRIBUTED QUERIES

TOPIC 14A Establishing Linked Servers. .338
Task 14A-1 Defining a Linked Server . 340

Configuring Linked Server Security . 341
Task 14A-2 Logging in to Linked Servers . 343

Configuring Linked Server Settings . 345

TOPIC 14B Creating and Managing Distributed Queries346
Apply Your Knowledge 14-1 . 347
Executing Stored Procedures. 348
Apply Your Knowledge 14-2 . 348
Modifying Data Through Distributed Queries 348

Task 14B-1 Configuring the MSDTC Service . 349
Apply Your Knowledge 14-3 . 350

CONTENTS

xii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using Ad Hoc Queries . 350
Task 14B-2 Using Ad Hoc Queries to Retrieve Data From Remote Servers . 352

Implementing Distributed Partitioned Views . 352
Lesson 14 Review . 353

LESSON 15: OPTIMIZING QUERIES

TOPIC 15A Exploring the Query Optimizer .356
Apply Your Knowledge 15-1 . 360
Limiting Long-running Queries . 361

Task 15A-1 Configuring the Query Governor . 361
Using SHOWPLAN_ALL and SHOWPLAN_TEXT. 362

Task 15A-2 Using SHOWPLAN to View the Query Execution Plan 363
Using the Graphical Execution Plan . 364

Task 15A-3 Analyzing a Graphical Execution Plan 366

TOPIC 15B Using Indexes to Optimize Queries .368
Apply Your Knowledge 15-2 . 369
Designing Indexing to Optimize Queries . 373

Task 15B-1 Designing Indexing . 373
Overriding the Query Optimizer . 374
Apply Your Knowledge 15-3 . 375
Lesson 15 Review . 376

LESSON 16: ANALYZING QUERIES

TOPIC 16A Analyzing the Performance of Queries378
Apply Your Knowledge 16-1 . 379
Analyzing OR Queries . 385
Apply Your Knowledge 16-2 . 386
Analyzing Table Join Queries . 389
Apply Your Knowledge 16-3 . 393
Lesson 16 Review . 396

APPENDIX A: THE MOVIES DATABASE STRUCTURE
Table Design .397

APPENDIX B: COURSE SCRIPT FILES
Using the Course SQL Script Files .399

Additional Instructor Notes .403

CONTENTS

Contents xiii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Glossary .405

Index. .409
CONTENTS

xiv

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

ABOUT THIS COURSE
This course teaches you how to use the Transact-SQL language to query and pro-
gram Microsoft SQL Server 2000 in a Windows 2000 Server environment. This
course also assists you in preparing for the Microsoft Certified Systems Engineer
and Microsoft Certified Database Administrator Exam #70-229, Designing and
Implementing Databases with Microsoft SQL Server 2000 Enterprise Edition.

Course Prerequisites

or have equivalent knowledge. You should also know the basics of querying a
SQL server by using the SELECT, INSERT, and UPDATE SQL statements. If
you aren’t familiar with using these commands, you should first take the

Course Objectives
When you’re done working your way through this book, you’ll be able to:

• Identify the features of Microsoft SQL Server 2000.

• Use Transact-SQL to query a SQL server.

• Design, create, and manage databases.

• Create and manage tables.

• Implement data integrity techniques.

• Design and implement indexes.

• Query multiple tables through the use of joins.

• Design subqueries.

• Use aggregate functions in queries and create user-defined functions.

• Create and manage views.

• Design and implement stored procedures.

• Create triggers.

ABOUT THIS
COURSE

About This Course xv

To ensure your success, we recommend you first take the following New Horizons
courses or have equivalent knowledge: Windows 2000 - Installation and Adminis-

Microsoft SQL Server 2000 - Querying with Transact-SQLNew Horizons course.

tration, or the Windows 2000 for Windows NT AdministratorsNew Horizons course,

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Manage transactions and locks.

• Implement queries across multiple servers.

• Optimize queries.

• Analyze query performance.

COURSE SETUP INFORMATION

Hardware and Software Requirements
To run this course, you will need:

• At least 128 MB of RAM for each student computer (256 MB strongly
recommended). At least 256 MB for the instructor’s computer.

• A 2 GB or larger hard drive for each of the student computers, and a 4 GB
or larger hard drive for the instructor’s computer.

• A Pentium 300 MHz processor or faster.

• A VGA or higher resolution video card and monitor.

• A mouse or compatible tracking device.

• A 12 X (or faster) CD-ROM drive.

• A network adapter and network cabling.

• A licensed copy of Windows 2000 Server or Advanced Server for each stu-
dent and the instructor.

• Windows 2000 Service Pack 1 or later.

• A licensed copy of Microsoft SQL Server 2000 Enterprise Edition for each
student and the instructor.

• For the instructor’s computer only, a display system to project the instruc-
tor’s computer screen and PowerPoint slides.

Class Requirements
In order for the class to run properly, perform the procedures described below.

For the instructor’s computer:

1. Install Windows 2000 Server on the C drive using the following parameters:

• Install a new copy of Windows 2000 Server (clean install).

• Accept the license agreement.

• Enter the product key, if necessary.

• Convert or format the C drive to NTFS. (Your C drive should be at
least 4 GB in size.)

• Select the regional settings appropriate for your location.

• Use a name and organization appropriate for your setup.

• Select Per-Server licensing, and add enough licenses to cover all the
computers in the classroom.

See Additional Instructor
Notes.

ABOUT THIS
COURSE

xvi

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Use INSTRUCTOR as the computer name. Use password as the
Administrator’s password.

• On the Windows 2000 Components page, select (don’t check) Network-
ing Services and click Details. Check Domain Name System and click
OK. Select Internet Information Services (IIS), and then click Details.
Check NNTP Service, and then click OK. Click Next to install the Win-
dows 2000 components.

• Set the appropriate date, time, and time zone for your location.

• On the Networking Settings page, select Custom Settings. Assign a
static IP address that is unique on your network and an appropriate
subnet mask. (We strongly recommend using a dummy IP addressing
scheme such as 200.200.200.#, and using 200.200.200.100 for the
instructor’s computer.) Use this same IP address (200.200.200.100) for
the Preferred DNS Server address.

• Install the computer into the default workgroup of WORKGROUP.

• Complete the installation and log on as Administrator. Select I Will
Configure This Server Later, and click Next. Uncheck Show This
Screen At Startup and close the Windows 2000 Configure Your Server
window.

2. Configure a root DNS zone and a forward lookup zone:

• From the Administrative Tools menu, choose DNS.

• Right-click on your server and choose Configure The Server.

• Click Next to start the Configure DNS Server Wizard.

• On the Root Server page, verify that This Is The First DNS Server On
This Network is selected. Click Next.

• On the Forward Lookup Zone page, verify that Yes, Create A Forward
Lookup Zone is selected and click Next.

• Select Standard Primary and click Next.

• On the Zone Name page, in the Name text box, type classroom.com.
(This will create a zone for the classroom.) Click Next.

• Click Next to accept the default zone filename.

• On the Reverse Lookup Zone page, select Yes, Create A Reverse
Lookup Zone and click Next.

• Select Standard Primary and click Next.

• In the Network ID text box, type 200.200.200. Click Next.

• Click Next to accept the default zone filename.

• Click Finish.

3. Configure the root zone, classroom.com, and 200.200.200.x Subnet zones to
accept dynamic updates:

• In DNS, expand your server, and expand Forward Lookup Zones.

• Verify that the root and classroom.com zones are there.

• Right-click on the root zone and choose Properties. In the Allow
Dynamic Updates drop-down list, select Yes. Click OK to close the
Properties dialog box.

• Configure the classroom.com zone to accept dynamic updates.

ABOUT THIS
COURSE

About This Course xvii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Below Reverse Lookup Zones, verify that you see the 200.200.200.x
Subnet zone.

• Configure this zone to accept dynamic updates.

• Close DNS.

4. Install the instructor’s computer as a domain controller for the classroom.
com domain.

• From the Start menu, choose Run.

• In the Open text box, type dcpromoto start the Active Directory Instal-
lation Wizard.

• Create a new domain, a new domain tree, and a new forest.

• Use classroom.com for the DNS name of the domain.

• Accept the default domain NetBIOS name of CLASSROOM.

• Accept the default locations for the Active Directory database, its log,
and the SYSVOL folder.

• Set permissions to be compatible with only Windows 2000 servers.

• Set the Administrator password for the Directory Services Restore
Mode to password.

• Restart the computer when prompted. Log back on as Administrator.

5. Change your root, classroom.com, and 200.200.200.x Subnet zones to Active
Directory-integrated:

• In DNS, right-click on a zone and choose Properties.

• Click Change. Select Active Directory-integrated and click OK.

• Click OK to confirm that you want to change the zone type.

• Click OK to close the Properties dialog box.

• Repeate these steps for all zones.

6. Install Service Pack 1 for Windows 2000.

7. Create a Group Policy to enable all users to log on locally at the domain
controllers:

• From the Administrative Tools menu, choose Active Directory Users
And Computers.

• Expand your domain and right-click on the Domain Controllers Organi-
zational Unit (OU). Choose Properties to open the Domain Controllers
Properties dialog box.

• Select the Group Policy tab.

• Verify that the Default Domain Controllers Policy object is selected and
click Edit.

• Below the Computer Configuration node, expand Windows Settings→
Security Settings→Local Policies. Select User Rights Assignment.

• In the details pane, double-click on Log On Locally. If necessary, check
Define These Policy Settings. Click Add to open the Select Users Or
Groups dialog box.

ABOUT THIS
COURSE

xviii

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Click Browse. In the list of names, double-click on the Domain Users
group. Click OK to close the Select Users Or Groups dialog box. Click
OK again.

• Click OK to close the Security Policy Setting dialog box.

• Close the Group Policy window.

• Click OK to close the Domain Controllers Properties dialog box.

• Leave Active Directory Users And Computers open.

8. In Active Directory Users And Computers, create a user account for each
student in the class, the instructor, and for the SQL Server services.

• Name the student accounts Student# (where # is each student’s assigned
number) and the instructor’s account Instructor. Name the SQL Server
service account SQLService. Assign a password of password to each
account.

• Add these accounts to the Domain Admins group.

• Close Active Directory Users And Computers.

9. Create a folder named C:\Setup. Copy the \English\Ent folder (including all
files and subfolders) from the SQL Server 2000 Enterprise Edition CD-ROM
to C:\Setup. Share the C:\Setup\Ent folder as SQL2000.

10. Install SQL Server 2000 Enterprise Edition on the computer.

• Click SQL Server 2000 Components, and then click Install Database
Server.

• Install SQL Server to your local computer.

• Create a new instance of SQL Server.

• If necessary, enter your name and company name on the User Informa-
tion page.

• Agree to the Software License Agreement.

• Install the Server and Client Tools.

• Create a default instance of SQL Server 2000.

• Choose the Typical Installation Type.

• Configure the SQL Server services to use the domain user account
named SQLService with a password of password.

• Choose Windows Authentication Mode.

• Configure the server to use a Processor with one processor.

• When the installation is complete, start the SQL Server services.

— From the Microsoft SQL Server program group, choose Service
Manager.

— Verify that the SQL Server service is selected, and then click Start/
Continue.

11. Copy the student data files from the course CD-ROM to C:\Data.

For each student’s computer:

1. Install Windows 2000 Server on the C drive using the following parameters:

• Install a new copy of Windows 2000 Server (clean install).

See Additional Instructor
Notes.

ABOUT THIS
COURSE

About This Course xix

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Accept the license agreement.

• Enter the product key, if necessary.

• Convert or format the C drive to NTFS. (Your C drive should be at
least 2 GB in size.)

• Select the regional settings appropriate for your location.

• Use a name and organization appropriate for your setup.

• Select Per-Server licensing, and add enough licenses to cover all the
computers in the classroom.

• Use a computer name of SQLSERVER#, where # is a number from 1
up to the total number of students in the classroom. Use password as
the Administrator’s password.

• On the Windows 2000 Components page, click Next. (Accept all of the
default Windows 2000 components including Internet Information
Server.)

• Set the appropriate date, time, and time zone for your location.

• On the Networking Settings page, select Custom Settings. Assign an IP
address of 200.200.200.# to each student, where # is each computer’s
assigned number.

• Use 255.255.255.0 as the subnet mask and 200.200.200.100 for the Pre-
ferred DNS Server address.

• Install the computer into the CLASSROOM domain. Enter Administra-
tor for the domain user name, and password for the password.

• Complete the installation and log on as Administrator. Select I Will
Configure This Server Later, and click Next. Uncheck Show This
Screen At Startup and close the Windows 2000 Configure Your Server
window.

2. Install Service Pack 1 for Windows 2000.

3. Install the Windows 2000 Administrative Tools.

• From the Start menu, choose Run.

• In the Open text box, type \\instructor\c$ to connect to the administra-
tive share for the root of the instructor’s hard disk.

• Access the \winnt\system32 folder on the instructor’s computer. Double-
click on the Adminpak file to install the Administrative Tools.

4. Install SQL Server 2000 Enterprise Edition on each student computer.

• Connect to the SQL2000 share on the instructor’s computer.

• Double-click on Autorun.

• Click SQL Server 2000 Components, and then click Install Database
Server.

• Install SQL Server to your local computer.

• Create a new instance of SQL Server.

• If necessary, enter your name and company name on the User Informa-
tion page.

• Agree to the Software License Agreement.

• Install the Server and Client Tools.

ABOUT THIS
COURSE

xx

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Create a default instance of SQL Server 2000.

• Choose the Typical Installation Type.

• Configure the SQL Server services to use the domain user account
named SQLService with a password of password.

• Choose Windows Authentication Mode.

• Configure the server to use with one processor.

• When the installation is complete, start the SQL Server services.

— From the Microsoft SQL Server program group, choose Service
Manager.

— Verify that the SQL Server service is selected, and then click
Start→Continue.

5. Copy the student data files from the course CD-ROM to C:\Data.

HOW TO USE THIS BOOK
You can use this book as a learning guide, a review tool, and a reference.

As a Learning Guide
Each lesson covers one broad topic or set of related topics. Lessons are arranged
in order of increasing proficiency with Microsoft SQL Server 2000; skills you
acquire in one lesson are used and developed in subsequent lessons. For this rea-
son, you should work through the lessons in sequence.

We organized each lesson into explanatory topics and step-by-step activities. Top-
ics provide the theory you need to master Microsoft SQL Server 2000, and
activities allow you to apply this theory to practical hands-on examples.

You get to try out each new skill on a specially prepared sample file. This saves
you typing time and allows you to concentrate on the technique at hand. Through
the use of sample files, hands-on activities, illustrations that give you feedback at
crucial steps, and supporting background information, this book provides you
with the foundation and structure to learn Microsoft SQL Server 2000quickly and
easily.

As a Review Tool
Any method of instruction is only as effective as the time and effort you are will-
ing to invest in it. For this reason, we encourage you to spend some time
reviewing the book’s more challenging topics and activities.

As a Reference
You can use the Concepts sections in this book as a first source for definitions of
terms, background information on given topics, and summaries of procedures.

ABOUT THIS
COURSE

About This Course xxi

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

An Overview of SQL Server

Overview
In this lesson, we will take a look at the who, what, and where of SQL
Server. We’re going to start by examining exactly what SQL Server is, and
then move on to looking at each of its components (such as databases, data-
base objects, and services). We’ll also show you how SQL Server works by
describing its architecture. Finally, we’ll look at the tasks you’ll be expected
to perform as a database developer.

Objectives
To understand the capabilities of Microsoft SQL Server, you will:

1A Define the components of SQL Server.

In this topic, we will begin by examining what exactly SQL Server is and
the features it offers you. We will also explore how you can integrate
SQL Server not only with Windows 2000, but also with the other
Microsoft Server applications such as Microsoft Exchange Server. In
addition, we will explore the core services used by SQL Server. Finally,
we will provide you with an overview of the utilities that you can use to
administer SQL Server 2000.

1B Define the types of objects you can implement within a database.

In this topic, we will examine the different types of objects you can
implement within a database (such as tables, indexes, and views). We will
also explore the system databases and their contents. Finally, we will
show you how to work with a database by creating a database diagram
within SQL Server Enterprise Manager.

1C Define the components that make up SQL Server’s architecture.

As a developer, it’s important that you understand SQL Server’s architec-
ture in order to develop sound applications. In this topic, we will define
each of the SQL Server architecture components. We will also show you
how each of these components works together to enable a client and
server to communicate.

1D Identify the administrative tasks for managing SQL Server, and to
examine the procedures you use to implement security.

In the database environment, you’ll find that there are two distinct roles:
the database administrator and the database designer. In this topic, we
will look at the responsibilities of each role. We will also provide you
with a review of how you implement security in SQL Server 2000.

Data Files:
none

Lesson Time:
2 hours

LESSON

1

Lesson 1: An Overview of SQL Server 1

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 1A
Exploring the Components of SQL Server
If you’re thinking about implementing a database on your network, you should
understand the role that a database server such as Microsoft SQL Server plays.
Microsoft SQL Server is a client/server database management system. A client/
server database management system consists of two components: a front-end
component (the client), which is used to present and manipulate data; and a back-
end component (the database server), which is used to store, retrieve, and protect
the databases. For example, you can use Microsoft Access or a custom applica-
tion written in Visual Basic on a client workstation to access databases on a
Microsoft SQL server. In a client/server system, the majority of the data process-
ing is done on the server instead of the clients. This means that a client/server
system can reduce your network traffic (because only the results of queries must
be sent to the clients). In addition, client/server systems are easier to scale
because you can upgrade their performance simply by upgrading the server’s
hardware.

You can use SQL Server 2000 to support databases of almost any size. In fact,
SQL Server easily supports terabyte-size databases. (Of course, for such large
databases, you’ll want to configure SQL Server on clustered servers.) You’ll find
that your SQL Server database (and the applications you use with that database)
typically takes one of two forms:

• An Online Transaction Processing (OLTP) system, in which users continually
make changes to the data in the database. For example, the database system
for recording customers’ orders at Amazon.com is an OLTP system.

• An Online Analytical Processing (OLAP) system, in which you primarily
focus on analyzing the data in the database. You typically don’t make many
changes to such databases. For example, let’s say that you have four differ-
ent retail stores, each with its own inventory and order database. In this
environment, you would use an OLAP system to combine the data from each
of the four databases for performing analysis such as sales trends, customer
demographics, and so on.

You’ll frequently hear Microsoft SQL Server 2000 referred to as a relational data-
base management system (RDBMS). An RDBMS uses established relationships
between the data in a database to ensure the integrity of the data. For example, if
you’re setting up an order-entry database system, you’ll probably define a rela-
tionship between the customer and invoice tables so that a sales clerk can’t enter
a customer account number in the invoice table if that customer doesn’t exist in
the customer table. These relationships enable you to prevent users from entering
incorrect data.

We focus on all of the
techniques for designing and

using an OLTP database in
this course.

2

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

The commands you primarily use to query a database on a database server are
part of the Structured Query Language (SQL).The Structured Query Language is
a standardized set of commands used to work with databases. Microsoft SQL
Server 2000 supports an enhanced version of SQL referred to as Transact-SQL.
You use Transact-SQL commands to create, maintain, and query databases. You
can use these commands either directly by manually entering commands in tools
such as SQL Query Analyzer, or indirectly by using a client application such as
Microsoft Access that is written to issue the necessary SQL commands. The
American National Standards Institute (ANSI) and the International Standards
Organization (ISO) are responsible for defining the standards for SQL. Microsoft
SQL Server supports the most recently published standards for ANSI SQL.
Because this standard was published in 1992, you’ll sometimes hear the version
of SQL implemented in SQL Server referred to as SQL-92.

In addition to Transact-SQL, you can also use the following languages to query
SQL Server:

• Extensible Markup Language (XML)—Developed by the World Wide Web
Consortium (W3C) to standardize the language used to develop Web
documents.

• Multidimensional Expressions (MDX)—A language that enables you to
define objects for analyzing data.

• SQL Distributed Management Objects (SQL-DMO)—A collection of objects
that perform management and replication tasks. When you’re developing a
custom application, you can call these objects to perform a management task
(such as creating a login account) instead of having to write a program from
scratch to perform the same task.

Features of Microsoft SQL Server
SQL Server includes many features that make it a powerful database management
system for enterprise networks and smaller networks. These features include
everything from supporting a wide variety of operating systems to integration
with Windows 2000 and the Microsoft Server applications.

Support for Multiple Platforms
You can install the server component of Microsoft SQL Server 2000 on a variety
of operating systems, including:

• Windows 98 and Windows Me.

• Windows NT 4.0, including the Workstation, Server, and Enterprise Edition
versions.

• Windows 2000 Professional and the Windows 2000 Server family.

You can also install the client utilities of SQL Server 2000 on a wide variety of
operating systems. The client utilities enable you to query and manage SQL
servers. You can install the client utilities on computers running Windows 3.x,
Windows 9x, Windows Me, Windows NT versions 3.x or later, Windows 2000,
and DOS. You can even connect to SQL Server via Web browsers. SQL Server
also supports third-party clients such as those running UNIX or Apple Macintosh.

SQL:
Structured Query Language
is a language you use to
add, modify, retrieve, and
delete data from a relational
database management
system.

Transact-SQL:
Microsoft’s enhanced version
of ANSI SQL-92.

Lesson 1: An Overview of SQL Server 3

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Integration with Windows 2000
Microsoft designed SQL Server to integrate with both Windows 2000’s security
and the Active Directory itself. This integration with Windows 2000’s security
makes it possible for you to create your user accounts only in Windows 2000 and
use them for granting access to SQL Server. In addition, you can rely on Win-
dows 2000 to authenticate your users instead of SQL Server 2000. By using
Windows 2000 to authenticate your users, you can take advantage of its enhanced
security features such as encryption. SQL Server’s integration with the Active
Directory enables your users to search the Active Directory for SQL servers.

SQL Server also integrates with Windows 2000 utilities and services. For
example, you can use the SQL Server counters within System Monitor to evaluate
the performance of your server. Use the Application log in the Event Viewer to
troubleshoot SQL Server errors. You can also integrate SQL Server 2000 with
Windows 2000 services. For example, by integrating SQL Server with Internet
Information Services, you make it possible for your users to query databases from
a Web browser.

SQL Server consists of several services in Windows 2000. You can manage these
services by using Windows 2000 utilities such as the Computer Management
MMC. You can also manage these services using SQL Server’s utilities.

Integration with Microsoft .NET Enterprise Servers
Microsoft designed SQL Server 2000 to integrate with its .NET Enterprise Server
applications. We describe how you can take advantage of this integration in the
following table.

Server Application Enables SQL Server to
Microsoft Exchange Server Send email messages to notify you when problems occur or

when a scheduled job is completed.
Microsoft Host Integration Server
2000

Integrate with IBM mainframes or AS/400 applications and data
using the Systems Network Architecture (SNA) protocol.

Microsoft Systems Management
Server (SMS)

Store software and hardware inventory collected by SMS.

Microsoft Windows 2000 with
Internet Security and Acceleration
(ISA) Server

Provide secure access to SQL Server data. You use ISA Server as
both a firewall to protect your internal network, and a Web cache
to provide Internet access to your users.

Scalability
Microsoft SQL Server is scalable, which means your database management sys-
tem can grow with your company. SQL Server is multi-threaded and can take
advantage of Windows 2000’s threading and scheduling services. Microsoft SQL
Server also supports a parallel database architecture. If your server has multiple
processors, SQL Server will issue database commands to all processors
simultaneously. Finally, the Standard edition of SQL Server 2000 can address up
to 2 gigabytes (2 GB) of RAM and 32 terabytes (32 TB) of hard-disk space.

Replication
Depending on your network, you might find that you need more than one SQL
server. For example, you’ll typically need multiple SQL servers if your network
consists of two or more sites connected by WAN links. You might also choose to
configure more than one server for fault tolerance. If you find that you need more

The maximum amount of
RAM and disk space

supported by SQL Server
2000 varies depending on

the edition you’re installing.

4

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

than one SQL server for your network, you can configure SQL Server to auto-
matically copy information from one SQL server to another. The process of
copying data from one SQL server to another is called replication. Replication
automates the process of copying data from one SQL server to another so that
you don’t have to manually copy data to your SQL servers.

Centralized Management
You can manage all of your SQL servers by using the Microsoft SQL Server
Enterprise Manager utility. This utility provides you with a graphical interface for
performing such management tasks as creating and maintaining databases and
their objects, optimizing the server, and configuring replication.

Reliability
SQL Server includes reliability features such as transaction processing, online
backups, and log shipping. Transaction processing enables SQL Server to detect
and roll forward or back any incomplete transactions in a database. An incom-
plete transaction can occur if your server shuts down improperly (like when the
power fails). SQL Server uses transaction processing to prevent databases from
becoming corrupt. Online backups enable you to back up your server’s databases
without shutting down the server or disconnecting users. The log shipping feature
makes it easy for you to set up mirrored SQL servers. Your primary server is
called the production server, and the backup server is called the standby server.
With log shipping, SQL Server automatically copies all changes to a database on
the production server to your standby server.

SQL Server 2000 supports Windows Clustering (a feature of Windows 2000
Advanced Server and Datacenter Server). This feature enables you to configure
two servers (called nodes) into a cluster. This capability is referred to as failover
clustering, because it enables SQL Server to continue running in the event of a
failure.

Automating Tasks
One of the wonderful features of SQL Server is its ability to schedule jobs. You
can use this feature to schedule jobs to run at a specific time or on a regular
basis. For example, you can schedule jobs to import or export data, back up a
database, or replicate information between servers. You can also configure SQL
Server to notify you when a scheduled task is completed; SQL Server can send
this notice via email, pager, or the net send command. SQL Server includes a
sophisticated alerts management system that enables you to configure your server
to automatically monitor for problems on the server, and even run jobs in the
event a problem occurs.

Lesson 1: An Overview of SQL Server 5

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 1A-1:
Exploring the Features of Microsoft SQL Server

1. You’re planning to install Microsoft Access on your client workstations;
your clients will use Microsoft Access to work with a database that’s
currently stored on your Windows 2000 server. Why should you con-
sider implementing Microsoft SQL Server in this environment?

I should consider implementing Microsoft SQL Server because it processes
my clients’ queries on the server itself. If I use only Microsoft Access, my
clients’ computers must process queries. Implementing SQL Server enables
me to reduce network traffıc.

2. You have a client that is considering downsizing a corporate database
from a minicomputer to a Microsoft SQL Server on a microcomputer.
Your client is concerned about performance. What features of SQL
Server should you describe to your client?

Microsoft SQL Server is multi-threaded. It also supports a parallel database
architecture so that it can take advantage of multiple processors in a
microcomputer. The Standard edition of SQL Server can also address up to 2
GB of RAM and 32 TB of hard-disk space.

Components of SQL Server
Microsoft SQL Server’s environment consists of both services and administrative
tools. Let’s start exploring SQL Server by identifying its services.

The SQL Server Services
SQL Server consists of four core components. In the Windows 2000 environment,
these components are services. If you install SQL Server on Windows 98 or Me,
Setup installs these components as applications. The following table describes the
four core components.

Service Responsible for
MSSQLServer Processing all Transact-SQL statements, managing database

files, allocating the server’s resources to clients, and ensuring
data integrity. The MSSQLServer service is the database engine.

SQL Server Agent Managing all scheduled jobs, monitoring for alerts, and
notifying operators.

Microsoft Search Providing support for full-text queries through creating and
maintaining the necessary indexes.

Microsoft Distributed Transaction
Coordinator

Enabling clients to include several types of data in a single
transaction.

6

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 1A-2:
Exploring the SQL Server Services

Setup: SQL Server was installed on your computers during classroom
setup.

1. Log on to Windows 2000 as student# with a password of password.
(Replace # with your assigned student number.) Make sure that you log on
to the Classroom.com domain. If you see the Configure Your Server dialog
box, uncheck Show This Screen At Startup and then close the dialog box.

2. From the Microsoft SQL Server program group, choose Service Manager to
start the SQL Server Service Manager utility. You can use this utility to view
the status of your server’s services, and to start, pause, or stop any of the
services.

3. Look at the status of the Distributed Transaction Coordinator, Microsoft
Search, SQL Server, and SQL Server Agent services. (Use the Services
drop-down list to select each service.) You should see that the Microsoft
Search and SQL Server services are currently running on your server.

4. Close SQL Server Service Manager.

Administrative Tools
SQL Server also includes many utilities for administering your server. The utili-
ties consist of graphical tools, wizards, and command-line utilities. These utilities
use a special object interface called SQL Distributed Management Objects (SQL-
DMO); this interface is implemented as a dynamic link library (DLL) which uses
objects and methods for performing such administrative tasks as creating data-
bases, configuring replication, scheduling jobs, and defining alerts. All of the SQL
Server utilities use SQL-DMO to perform such tasks on your server. In addition,
you can develop applications to call SQL-DMO to perform administrative tasks.

Graphical Tools
SQL Server 2000 includes several powerful utilities you can use to administer
almost every component of your server. The following table describes the graphi-
cal utilities included with SQL Server 2000.

Review the configuration of
the classroom with your
students. Your server is a
domain controller for the
Windows 2000 Active
Directory domain named
Classroom.com. Each
student’s computer is a
member of this domain and
is named sqlserver# (where
is a number from 1 to the
total number of students in
the classroom). Each
student’s Windows 2000
user name is student#
(where # is the same
number as his/her server’s
number).

Log on as instructor with a
password of password.

Lesson 1: An Overview of SQL Server 7

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Utility Enables You to
Client Network Utility Manage the configuration of each client’s Network Library.
SQL Server Enterprise Manager Perform management tasks on all SQL servers on your network.

For example, you can create and manage your server’s
databases, monitor the space used within devices, configure
your server, and manage replication. SQL Server Enterprise
Manager is a Microsoft Management Console (MMC) snap-in.

SQL Server Network Utility Manage the configuration of the server’s Network Libraries.
SQL Query Analyzer Analyze the plan of a query, view statistics about a query’s

performance, and execute/manage queries.
SQL Server Service Manager Start, stop, and pause the SQL Server services.
SQL Server Profiler Monitor and analyze the server’s performance.
SQL Server Setup Install and configure SQL Server.

SQL Server Wizards
In addition to the above graphical utilities, SQL Server also includes several wiz-
ards and assistants for performing administrative tasks. These wizards make it
easy for you to perform many administrative tasks by walking you through them
step-by-step.

Wizard Enables You to
Configure Publishing and
Distribution Wizard

Configure a server to publish its data. (Published data is called a
publication.) After you’ve configured a server as a publisher, other
SQL servers can subscribe to its publications.

Create Database Wizard Create a database and its transaction log.
Create Job Wizard Create and schedule administrative jobs for performing such tasks

as backing up a database and truncating the transaction log.
Database Maintenance Plan
Wizard

Configure and schedule maintenance tasks such as backups,
consistency checking, and log shipping for a database.

Index Tuning Wizard Obtain SQL Server’s recommendations for indexing a database. You
can even use this wizard to create the indexes it recommends.

Command-line Utilities
In addition to the graphical utilities included with SQL Server, you can enter
commands in a Command Prompt window. The following table describes some of
the command-line utilities you can use to administer your SQL Server.

Command Enables You to
bcp Copy data between database management systems or applications by using

text files.
osql Use ODBC to connect to your server to run SQL statements.

Other Utilities
The following table describes other utilities you can use to help you administer
your SQL server.

You can get help on any
Transact-SQL statement by

highlighting it with your
mouse, and then pressing

[Shift][F1].

8

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Utility Enables You to
SQL Server Books Online View and query SQL Server’s documentation online.
Transact-SQL Help View context-sensitive help in SQL Query Analyzer. You

access this help by pressing [Shift][F1] in SQL Query
Analyzer.

TASK 1A-3:
Identifying Administrative Utilities

1. Match each SQL Server utility with the types of tasks you can use it to
perform.

c SQL Server Enterprise
Manager

a. Enables you to configure the server’s
Network-Library.

h Client Network Utility b. Use to track activity on your SQL
server.

f bcp c. Enables you to configure and manage
all SQL servers on your network.

b SQL Server Profiler d. Use to query SQL Server at the com-
mand line.

d osql e. Enables you to automate administra-
tive tasks such as backups.

g Index Tuning Wizard f. Import text files into a SQL database.
e Database Maintenance

Plan Wizard
g. Use to automate the creation of

indexes for a database.
a SQL Server Network Util-

ity
h. Use to configure the client’s Network

Library.

Registering Servers
When you run SQL Server Enterprise Manager on a SQL server, it will automati-
cally register and display that server in the console tree. You must register any
other servers you want to manage from within SQL Server Enterprise Manager.
You’ll also have to register your SQL server if you install the SQL Server admin-
istrative tools on a client workstation.

To register a server in SQL Server Enterprise Manager, right-click on the SQL
Server Group container in the console tree. From the shortcut menu, choose New
SQL Server Registration to start the Register SQL Server Wizard. You use this
wizard to specify the server you want to connect to as well as how you want to
be authenticated on that server. After you’ve registered a server, SQL Server
Enterprise Manager saves the registration information so that you can see that
server the next time you open SQL Server Enterprise Manager.

Lesson 1: An Overview of SQL Server 9

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 1A-4:
Using SQL Server Enterprise Manager

1. From the Microsoft SQL Server program group, choose Enterprise Man-
ager to open SQL Server Enterprise Manager.

2. Look at the SQL Server Enterprise Manager interface. SQL Server
Enterprise Manager uses the Microsoft Management Console (MMC)
interface. MMC enables you to “snap in” administrative tools so that you
can perform a variety of administrative tasks from within a single utility.
When you first open SQL Server Enterprise Manager, you see the MMC
displayed with the Microsoft SQL Server’s snap-in loaded. The left pane in
SQL Server Enterprise Manager is called the console tree, and the right pane
is called the details pane.

3. In the console tree, expand Microsoft SQL Servers to display a list of the
server groups in SQL Server Enterprise Manager. By default, SQL Server
Setup creates only the SQL Server Group. You can also create your own
server groups to organize your SQL servers.

4. Right-click on the SQL Server Group and look at the shortcut menu.
You can choose New SQL Server Registration to start the Register SQL
Server Wizard. Use this option to register other SQL servers within SQL
Server Enterprise Manager.

5. Close the shortcut menu.

6. Expand the SQL Server Group to display a list of servers registered in the
group. By default, SQL Server Enterprise Manager automatically registers
your local server in this group; SQL Server Enterprise Manager logs you in
to your server by using your Windows 2000 account.

10

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Look at the green arrow on your server’s icon. The green arrow indicates
that your server is currently running.

8. In the console tree, right-click on your server. From the shortcut menu,
choose Edit→SQL Server Registration Properties.

9. Look at the Registered SQL Server Properties dialog box. You can use
this dialog box to register your server with a different login account and
password, switch between Windows Authentication and SQL Server Authen-
tication security, move your server to a different server group, and set server
configuration options.

10. Click Cancel to close the Registered SQL Server Properties dialog box.

11. Expand your server to display the folders for configuring your server. For
example, you use the Security folder to configure your server’s login
accounts.

12. Minimize SQL Server Enterprise Manager.

You can specify a different
login account and password
only with SQL Server
Authentication. If you’re
using Windows
Authentication, you can log
in to your SQL server only
with your current Windows
2000 user account. You can’t
specify a different Windows
user account.

Lesson 1: An Overview of SQL Server 11

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

SQL Query Analyzer
You use SQL Query Analyzer to run SQL queries as well as to optimize the per-
formance of the queries. A query is simply a command you send to your server.
This query can request data from the server, change data, or delete information.
Queries consist of one or more SQL statements. The query window in SQL
Query Analyzer consists of one or more panes. The pane in which you type your
query is called the Editor pane, and SQL Query Analyzer displays the results of
your query in the Results pane, as shown in Figure 1-1. Other panes you can con-
figure SQL Query Analyzer to display include:

• Messages pane, for displaying any error messages.

• Execution Plan pane, for displaying SQL Server’s plan for executing a query
in a graphical format.

• Trace pane, for tracking server trace information.

• Statistics pane, for displaying statistics about the tasks performed by the
server to process a query.

Figure 1-1: The Query window consists of at least two panes: the Editor pane and the
Results pane.

One of the new features in SQL Server 2000 is that you can display an Object
Browser window within SQL Query Analyzer. This is a wonderful enhancement
to SQL Query Analyzer because it enables you to browse for the names of the
objects you want to query.

Default Databases
When you install SQL Server, the Setup utility automatically creates several sys-
tem and sample user databases. System databases contain information used by
SQL Server to operate. You create user databases and they can contain any infor-
mation you need to collect. You can use SQL Query Analyzer to query any of
your SQL databases, including the system and sample databases. The following
table describes the type of information stored in each of the default databases.

12

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Database Contains

master Information about the operation of SQL Server, including user accounts,
other SQL servers, environment variables, error messages, databases,
storage space allocated to databases, and the tapes and disk drives on the
SQL server.

model A template for creating new databases. SQL Server automatically copies
the objects in this database to each new database you create.

msdb Information about all scheduled jobs, defined alerts, and operators on your
server. This information is used by the SQL Server Agent service.

Northwind A sample database for learning SQL Server.
pubs A sample database for learning SQL Server.
tempdb Temporary information. This database is used as a scratchpad by SQL

Server.

TASK 1A-5:
Using SQL Query Analyzer

1. From the Microsoft SQL Server program group, choose Query Analyzer to
run SQL Query Analyzer.

2. Look at the Connect To SQL Server dialog box. You use this dialog box
to specify which SQL server you want to connect to as well as how you
want to log in to the server. In the SQL Server text box, type . to specify
your local server. Below Connect Using, select Windows Authentication.

3. Click OK to log in to your server with Windows Authentication.

Lesson 1: An Overview of SQL Server 13

distribution History information about replication. SQL Server creates this database on
your server only if you configure replication.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Look at the SQL Query Analyzer interface. By default, SQL Query Ana-
lyzer displays the Editor pane in the Query window and the Object Browser
window. (You don’t see the Results pane because you haven’t yet executed a
query.) SQL Query Analyzer also connects you to your login account’s
default database. Your login account was assigned the master database as its
default database during classroom setup.

5. In the Object Browser window, expand the pubs database. You now see a
list of folders containing the different types of objects within the pubs
database.

14

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. Expand the User Tables folder and the dbo.authors table within it. You
can use the Object Browser window to display a list of the columns,
indexes, constraints, and triggers for this table. You can also use the Object
Browser window to identify other objects that are based on this table (such
as views, stored procedures, and indexes). We’re going to talk more about
the types of objects you can create within a database in the next topic.

7. Expand the Columns folder to display a list of the columns that make up
the authors table. You can use this information to help you write a query to
query the authors table.

8. From the Database drop-down list, select pubs. You’re going to query the
pubs database.

9. In the Editor pane, type the following query:

SELECT au_id, au_lname, au_fname
FROM authors

You use the SELECT SQL statement to display rows in a table. By using
SELECT au_id, au_lname, au_fname, you specify that you want the
results set to contain only those columns.

10. Choose Query→Execute to have SQL Server process your query. (You can
also execute queries by pressing [Ctrl]E, [F5], or by clicking the Execute
Query button on the toolbar.)

The Object Browser window
displays both the owner’s
name (the user who created
the object) and the object’s
name itself for each object.
For example, the notation
“dbo.authors” means that the
table is owned by the user
named dbo, and the table
name is authors.

Lesson 1: An Overview of SQL Server 15

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

11. Look at the Results pane. SQL Query Analyzer displays the results of your
query in a separate pane in the window.

12. Choose Edit→Clear Window (or press [Ctrl][Shift][Delete]) to clear your
previous query from the Editor pane. Notice that clearing the Editor pane
doesn’t clear the Results pane.

13. Minimize SQL Query Analyzer.

TOPIC 1B
SQL Server Database Structure
Now that we’ve looked at what SQL Server does for you as a database server,
let’s take a look at the components of a database in more detail. Most impor-
tantly, you use SQL Server to store one or more databases. In the Microsoft SQL
Server environment, the term databaserefers to a collection of tables and other
database objects such as indexes. A table consists of rows and columns; these
rows and columns contain the data for the table. A database can contain a virtu-
ally unlimited number of tables; each table can contain a maximum of 1,024
columns (fields). You can also define up to 250 indexes per table. You create an
index by specifying the columns with which you want to sort the data within a
table.

You will typically create a database to contain all of the associated tables,
indexes, and other database objects for a particular application. For example, let’s
say that you’re planning to create a system for managing customer orders. In this
scenario, your database might consist of tables for storing customer information,
inventory, tax schedules, and invoices. You might also create indexes based on
customer numbers, part numbers, and invoice numbers. As you can see, a single
database can contain multiple tables and indexes. We talk about creating many of
the different database objects in detail later on in the course.

Tables
One of the most critical components of a database is its tables. That’s because
SQL Server uses tables to store data. You create a table to contain a set of related
information. When you create a table, you define its columns. Columns refer to
the individual pieces of information (fields) you want to track for a specific table.
For example, if you want to create a table to store customer information, you
should define columns to store such information as an account number, name,
address, city, state, zip code, and telephone number for each customer.

database:
A collection of related

database objects such as
tables, views, and indexes.

Each database in SQL Server
consists of at least one data

file and a transaction log file.

table:
An object within a database

that contains rows and
columns of information.

Components of Tables

16

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can control how information is stored in a particular column by configuring
the following properties in the following table.

Property Enables You to Specify
Data type The type of data that can be entered into the column. For example, if

you configure a column’s data type as decimal, users can enter only
numeric information into the column. You must also specify a data type
when you define variables.

Constraint Rules for validating data entry. You use constraints to enforce data
integrity between tables. For example, if you have a customer table and
an invoice table, you can create a constraint on the invoice table such
that users can enter a customer ID number in the invoice table only if
that ID number exists in the customer table.

Default A default value for a column. For example, if you are creating a table to
store customer information, you might want to set default values for the
city and state columns.

Rule Valid values for data entry. You can use rules to make sure that your
users enter specific values into a column. For example, if you want to
restrict users to entering either 1, 2, or 3 in a column, you could create
a rule stating that only those numbers are valid for the column.

Indexes
Because each table can contain anywhere from a few hundred rows up to millions
of rows, you use indexes to speed up table searches. You can define indexes for
your tables so that you can search faster for information within the tables. For
example, if you have a customer information table, you can create an index on
the customer’s account number. When you create an index, you specify a key.
You use this key to identify the column or columns in the table on which you
want to base your index.

Nonclustered Index
(animated)

Clustered Index (animated)

Lesson 1: An Overview of SQL Server 17

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can create two types of indexes within SQL Server: nonclusteredand
clustered.When you create a nonclustered index, you specify a key for sorting
the data. SQL Server creates the index as a separate object within the database;
this index contains the sorted key information for each row in the table, and a
pointer that identifies the row within the table. When you query a table for a spe-
cific row, SQL Server can search the index to find the row rather than searching
the table itself—much like you use the index in the back of a book to find a spe-
cific page. When you create a nonclustered index, you don’t change the order of
the data within the table.

If you create a clustered index, in contrast, you force SQL Server to store the
data within the table in the order specified by the index. For example, you could
create a clustered index for a customer information table by using the customer
account number as the key. When you add data to the table, SQL Server auto-
matically places the new rows in order by account number. A clustered index
controls the order in which data is stored within a table. You can create only one
clustered index per table. You should always create a clustered index for a table.
By creating a clustered index, you configure SQL Server to automatically store
the data in a table in a specific order. Although both clustered and nonclustered
indexes enable you to search tables faster, the clustered index provides better per-
formance because it is part of the table itself and not a separate database object.

Because SQL Server stores the rows in a table in order by its clustered index,
you’ll find that a clustered index improves the performance of queries that typi-
cally return a group of rows instead of a single row. For example, you might
define a clustered index on a customer table based on the ZIP code column if you
frequently retrieve customers’ information by ZIP code.

Views
You can define views within a SQL Server database. A view enables you to
specify how you want to see the data within one or more tables. You define a
view by choosing the tables within the database you want to view and then the
columns within those tables. For example, if you create a customer order database
that contains customer, inventory, and invoice tables, you might want to create a
view that contains the customer account number and name from the customer
table and the orders placed by that customer from the invoice table. Views help
you secure your server by enabling you to grant users permissions to a view
without having to grant them permissions to the tables on which a view is based.

In a sense, you can think of a view as a “virtual” table, because each view uses
the same format as a table (meaning it consists of columns and rows). In addi-
tion, you query a view just as you would a table. For example, you can use the
statement SELECT * FROM object_name, where object_name is either a
table or a view name. SQL Server retrieves the columns and rows that make up a
view each time you query the view. This process is called materializingthe view;
and depending on the view and the tables on which it’s based, the process can
place quite a heavy load on your server. For this reason, one of the enhancements
Microsoft added to SQL Server 2000 is support for creating indexes on a view. A
clustered index on a view forces SQL Server to store the view’s results set in a
database just like it stores tables. We’re going to talk more about how you create
indexed views later on in the course.

nonclustered index:
A separate database object

that contains the key
columns on which you want

to index a table, along with a
value to identify each row in

the table. A nonclustered
index doesn’t change the

order of the actual rows in
the table.

clustered index:
An index that changes the
way SQL Server stores the
rows in a table. This index

isn’t a separate database
object. Instead, SQL Server

uses this index to determine
the order in which it stores

the rows that make up a
table. You can define only

one clustered index per
table.

You can create indexed views
only in the SQL Server 2000

Enterprise and Developer
editions.

materializing:
The process of retrieving the
rows and columns from one

or more tables to display the
results set for a view.

18

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Stored Procedures
Another type of database object you can create within a SQL Server database is a
stored procedure. You can create a stored procedure to perform a series of
Transact-SQL commands on your server. You can execute a stored procedure
within SQL Server tools such as SQL Query Analyzer, or call a stored procedure
from a custom program such as one written in Visual Basic. SQL Server compiles
and caches a stored procedure the first time you run it to improve its
performance.

Triggers
You can configure SQL Server to perform specific Transact-SQL statements when
a user adds, deletes, or changes the contents of a table. Because these Transact-
SQL statements are run only when an action is performed against a table,
Microsoft refers to these statements as triggers. You use a trigger to perform such
tasks as verifying the accuracy of the data in your table or keeping records of
changes.

User-defined Functions
One of the enhancements in SQL Server 2000 is support for user-defined
functions. You can create your own functions to perform complex calculations—
and then save them as one of a database’s objects. The advantage to defining
your own functions is that you can then re-use a function within a custom appli-
cation instead of having to write the calculations performed by the function.

Identifying SQL Server Objects
Now that we’ve explored the different types of objects you can create, let’s take a
moment to explain the different types of names you can use to refer to objects.
You use objects’ names in stored procedures, programs, and queries. SQL Server
enables you to identify objects by using either their fully qualified names or their
partial name. A fully qualified namefor an object consists of four components:
the SQL server name, the database name, the owner name, and the object name.
Each component in the fully qualified name for an object must be separated by a
period (in other words, server.database.owner.object). For example, if you have a
table named “customer” that is stored in a database named “receipts” on a server
named “sales,” then the fully qualified name for the table is:

sales.receipts.owner_name.customer.

The owner of an object is typically the same as the owner of the database. By
default, the owner of a database is usually the database user account named dbo
(which is short for database owner).

You don’t always have to use an object’s fully qualified name. Instead, you can
use a partial name to identify an object. When you use a partial name, you can
omit some of the components of an object’s fully qualified name. For example, if
you’re currently working on the sales server, if your current database is the
receipts database, and if you’re the owner of the customer table, then you could
identify the customer table simply by its partial name—customer. A partial object
name can be any of the following:

fully qualified name:
An object name that contains
the server, database, owner,
and object names. Because
this name consists of four
components, you’ll
sometimes hear the fully
qualified name for an object
referred to as the four-part
object name.

Lesson 1: An Overview of SQL Server 19

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• server.database..object

• server..owner.object

• server…object

• database.owner.object

• database..object

• owner.object

• object

When you use a partial name, SQL Server assumes the following:

• If you don’t specify a server name, SQL Server assumes the object is on
your local server (the server to which you’re connected).

• If you don’t specify a database name, SQL Server assumes your current
database.

• If you don’t specify an owner name, SQL Server assumes the owner is the
SQL user associated with your login account.

Most of the time you’ll find that you identify objects by using a partial name,
such as database.owner.object or just the object name itself. You typically use a
fully qualified name only when you’re creating distributed queries (queries that
query data distributed across multiple servers).

TASK 1B-1:
Discussing the Components of SQL Server

1. What is a database? What types of objects can a database contain?

A database is a collection of related information. A database consists of
tables, indexes, views, stored procedures, and triggers.

2. Compare and contrast clustered and nonclustered indexes.

Both clustered and nonclustered indexes enable you to perform faster
searches on a table. A clustered index changes the order of the data within a
table; the data is stored in the order of the clustered index’s key. In contrast,
a nonclustered index doesn’t change the order of the data within a table.
Instead, a nonclustered index contains the sorted key information for each
row and a pointer to the original row within the table.

3. You would like to create a table named bookstores in the pubs database.
Assuming that dbo is the owner of the database and that the database is
on your current server, what name should you use to identify this table?

I should use the partial name pubs.dbo.bookstores.

4. Why might you create a clustered index on a view?

By default, SQL Server doesn’t store the results set of a view unless I define
a clustered index. If the view is complex and will use a lot of overhead on
my SQL server to retrieve its results set, I’ll get better performance by creat-
ing a clustered index on the view.

If you omit any of the “in-
between” names in a partial

name, you must still indicate
it by putting a period in the

name.

20

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. In SQL Server Enterprise Manager, expand your server’s Databases folder
to display a list of the databases on your server.

6. Look at your server’s databases. You should see four system databases
(master, model, msdb, and tempdb) as well as two user databases
(Northwind and pubs). These databases were automatically created on your
server when SQL Server was installed during classroom setup.

7. Expand the Northwind database to display a list of the types of objects
you can define within the Northwind database.

8. Select the Tables object and take a look at the details pane. You should
see a list of both system tables within the Northwind database (such as those
that begin with sys) as well as data tables (such as Customers). These tables
are created automatically when you install SQL Server.

9. Assuming that you want to access the Customers table in your server’s
Northwind database, what is the table’s fully qualified name?

sqlserver#.northwind.dbo.customers.

10. If you’re currently working on your server and you’re the owner of the
Customers table, what partial names could you use to refer to this
table?

Answers include: customers, northwind..customers.

11. Switch to SQL Query Analyzer.

12. What is your current database?

My current database is pubs. (We queried this database earlier in the
lesson.)

Lesson 1: An Overview of SQL Server 21

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

13. In the following space, write a query to view all rows in the Customers
table in the Northwind database (given that your current database is
pubs).

Because I’m not currently using the Northwind database, I must use at least
a partial name to view the rows in the Customers table. For example, I
could use the following query:

SELECT *
FROM northwind..customers

14. In SQL Query Analyzer, execute the query you wrote in step 13.

15. Clear the Query window.

16. Minimize SQL Query Analyzer.

System Tables
Within each database, SQL Server maintains information about that database in
system tables. (These tables are copied to new databases from the model
database.) These system tables make up the database catalog. Another term you’ll
hear for the database catalog is metadata, which means information about
information. In other words, a database’s metadata describes the database’s struc-
ture, components, users, security, and so on. The following table describes some
of the system tables in each database catalog.

System Table Contains a Row for Each
sysusers Windows 2000 user, SQL Server user, Windows 2000 group, or

role that you’ve defined as users of the database.
sysobjects Object in the database.
syspermissions Permission you grant or deny to any database user.

In addition to the database catalog, SQL Server also maintains a system catalog
in the master database. SQL Server uses the system catalog to keep track of
everything to do with the configuration of your server. Most importantly, the sys-
tem catalog contains metadata for tracking all other databases on your server. For
this reason, the master database is critical to the operation of SQL Server. The
following table describes some of the system tables stored in the system catalog.

System Table Contains a Row for Each
sysdatabases Database on the SQL server.
sysxlogins Login account that can log in to the SQL server.
sysmessages Error or warning message. You can also create your own error

messages. (You might do so if you’re developing a custom
application.) If you do, SQL Server adds your error messages to the
sysmessages table in the master database.

We’re going to show you
how to create your own error

messages in the “Stored
Procedures” lesson.

22

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Retrieving Metadata
You can view the metadata stored in system tables by querying them just like any
other database table. One word of caution, though. Microsoft strongly recom-
mends that you don’t write scripts that query the system tables directly in order
to avoid potential problems with querying the same tables in future versions of
SQL Server, because Microsoft has stated that the structure of system tables can
change with new versions of SQL Server. For this reason, Microsoft recommends
that you use the system stored procedures, system functions, and system informa-
tion schema views included with SQL Server 2000 to query the system tables
instead of writing your own scripts. The following table describes some of the
system stored procedures that you can use to query system tables. If you’re like
most people, you’ll find that you frequently need to use these stored procedures,
so you should memorize the stored procedures in this table.

System Stored Procedure Enables You to View Information About
sp_help A database’s objects. This stored procedure returns a list of

all objects in the database, along with each object’s owner
and type.

sp_help object A database object. Use this stored procedure to view not
only the owner, type, and creation date of the object, but
also its structure. For example, if you use sp_help with
a table name, SQL Server displays a list of the columns
that make up the table.

sp_helpdb database The files and size of a database. Use sp_helpdb to view
a list of the database’s files, their location, and size
information.

sp_helpindex table The indexes defined for the specified table. Use the results
to determine index type, along with the columns on which
each index is based.

Let’s take a look at an example where you view information about the authors
table in the pubs database. You can see this table’s structure by running the fol-
lowing query:

sp_help authors

You can also view metadata by using system functions. You query a system func-
tion by using the SELECT Transact-SQL statement. For example, to view the
length of a column named ‘au_lname’ in the authors table within the pubs data-
base, you can execute this query by using the following syntax:

SELECT COL_LENGTH('authors','au_lname')

The following table describes some of the functions you can use to query a data-
base’s metadata.

System Function Enables You to Obtain
COL_LENGTH('table', 'column') The width of a column.
DATALENGTH(data_type) The length of an expression of any data

type.
DB_ID('database_name') The unique ID number assigned to a

database.
STATS_DATE('table_id', 'index_id') The date when the statistics for an index

were last updated.

system stored
procedures:
Stored procedures written by
Microsoft that are installed
when you install SQL Server
2000. You can use these
stored procedures to perform
most of the administrative
tasks on your server.

You’ll find that the majority
of Microsoft’s system stored
procedures have names that
begin with “sp_.” For
example, sp_help is a
system stored procedure.

Lesson 1: An Overview of SQL Server 23

USER_NAME(user_id) The user name for a given user ID.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

A third technique you can use to view metadata is to use the information schema
views that are included with SQL Server. These views enable you to examine
metadata for all objects in a database. Like system functions, you use these views
with the SELECT statement, as follows:

SELECT *
FROM information_schema.columns

We describe some of the views you can use to query metadata in the following
table.

System Information Schema
View Enables You to View
information_schema.columns Information about the columns defined in a database.
information_schema.tables A list of the tables in a database.
information_schema.tables_privileges Security information for the tables in a database.

TASK 1B-2:
Identifying the Default Databases and System Tables

1. In your own words, define the term metadata.

Metadata is data about data. In other words, metadata consists of informa-
tion about a database such as what tables it contains, the types of columns,
and users of the database.

2. What is the difference between the system catalog and a database cata-
log?

The system catalog consists of information about all databases on the server
and is stored in the master database. Each database contains a database
catalog. The database catalog consists of system tables containing informa-
tion about only that database.

3. In SQL Server Enterprise Manager, expand the master database and select
the Tables object. You should see a list of the tables within the master
database. By default, SQL Server 2000 displays the system databases and
tables in SQL Server Enterprise Manager (instead of hiding them).

4. What is the role of the sysdatabases table in the master database?

SQL Server uses the sysdatabases table to track information about all of the
databases on my server.

24

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. In the details pane, right-click on the sysdatabases table and choose Open
Table→Return All Rows to display all of the rows in the sysdatabases
table. You should see a row for each of the databases on your server. In
addition, you see the unique ID number SQL Server assigns to each database
(in the dbid column) as well as when the database was created (in the crdate
column).

6. Close the sysdatabases table. Make sure you close the window with the
title Data in Table ‘sysdatabases’, not SQL Server Enterprise Manager.

7. In the console tree, right-click on your server and choose Edit SQL
Server Registration Properties.

8. Look at the available options for your server’s registration. You can use
the Show System Databases And System Objects option to control whether
or not SQL Server Enterprise Manager displays the system databases and
tables.

9. Uncheck Show System Databases And System Objects, and then click
OK.

10. Look at your server’s Databases folder. You no longer see the master,
msdb, model, and tempdb system databases.

11. Expand the Northwind database and select the Tables object. You see
only the user data tables in the Northwind database (the system tables are
now hidden).

12. Reconfigure SQL Server Enterprise Manager to display the system data-
bases and objects.

13. Switch to SQL Query Analyzer.

Lesson 1: An Overview of SQL Server 25

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

14. From the Database drop-down list, select Northwind.

15. Execute the following query:

SELECT table_name, table_type
FROM information_schema.tables

This query enables you to view a list of the tables and views defined in the
Northwind database.

16. Minimize SQL Query Analyzer.

Creating Database Diagrams
One of the wonderful tools included in SQL Server Enterprise Manager is its
Create Database Diagram Wizard. You use this wizard to create a diagram con-
taining some or all of the tables in a database, the structure of those tables, and
their relationships with other tables. For example, in the pubs database, the
authors table has a relationship with the titleauthor table that’s based on the
author ID column.

You create a database diagram by expanding the database in SQL Server Enter-
prise Manager. Next, right-click on the Diagrams icon below the database, and
choose New Database Diagram. Use the Create Database Diagram Wizard to
select the tables you want to view in your diagram. After you create your data-
base diagram, you can use the Query Designer to build queries based on the
tables in your database. You can also use the Query Designer to join tables in the
query based on the relationships between the tables.

TASK 1B-3:
Creating and Working with a Database Diagram

Objective: To create a database diagram based on the Northwind sample
database.

1. In SQL Server Enterprise Manager, in the console tree, expand the
Northwind database.

2. Right-click on the Diagrams object and choose New Database Diagram
to start the Create Database Diagram Wizard.

3. On the Welcome page, click Next.

26

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. On the Select Tables To Be Added page, below Available Tables, select the
Categories table.

5. Below Available Tables, press [Shift] and select the Suppliers table to
select all of the user tables in the Northwind database—but not the system
tables. (The system tables all have names that begin with “sys.”)

6. Click Add to add the tables to your diagram.

7. Below Available Tables, select the Territories table and click Add to add
this table to your diagram.

8. Click Next, and then click Finish.

9. Take a look at your database diagram. You should see all of the tables in
the Northwind database, their structures, and how each table links to other
tables in the database. (Because there are so many tables, your diagram
might be too small to read.)

10. On the toolbar, click the Zoom button.

11. From the drop-down list, choose 75% to enlarge your database diagram.

12. Based on the relationships between the tables you see in the diagram,
which tables will you need to query if you want to see a list of orders,
the dates the orders were placed with the Northwind company, and the
names of the customers?

I have to query the Customers and Orders tables.

Lesson 1: An Overview of SQL Server 27

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

13. In the database diagram, select the Orders table. If you select a table by
clicking on its title bar, you should see that the first column in the table is
selected and that you have a blinking cursor in that column. You should see
that only the Orders table is highlighted in your diagram.

14. Right-click on the Orders table and choose Task→Open Table to display
the rows in the Orders table.

15. On the toolbar, click the Show/Hide Diagram pane button to display the
Diagram pane. (The Show/Hide Diagram pane button is the second button
from the left on the toolbar.) The Diagram pane enables you to view the
structure of the table you are querying and to add tables to the query. You
can also use the Diagram pane to specify which columns from each of the
tables you want to view in the query.

16. Look at the Diagram pane. You now see a split screen consisting of the
Diagram pane in the top half and the rows in the Orders table in the bottom
half. The Diagram pane shows the structure of the Orders table. You can use
the check boxes to the left of each column to specify which columns you
want to see in your query results.

17. In the Diagram pane, right-click anywhere in the empty space and choose
Add Table to display a list of tables in the Northwind database.

As you work through this
Task, you might see a

message asking if you want
to continue working with this

results set. This message
appears if there’s a time
delay between your first

query to see all columns and
rows in the Orders table and

your next query. Because
you no longer need to see all
rows in the Orders table, you

can click No when you get
this message.

28

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

18. From the list of tables, select Customers and then click Add to add the
Customers table to the query.

19. Click Close to close the Add Table dialog box.

20. Look at the Diagram pane. You now see the Orders and Customers tables
in the Diagram pane—and that the Orders table is linked to the Customers
table by the column Customer ID.

21. In the Orders table in the Diagram pane, check the OrderID and
OrderDate columns. In the Customers table, check the CompanyName
and ContactName columns to add the Order ID, Order Date, Company
Name, and Contact Name columns to your query.

22. On the toolbar, click the Show/Hide SQL pane button. (This is the fourth
button from the left on the toolbar.)

23. Look at the SQL pane. The SQL pane enables you to view the Transact-
SQL statement you’ve built in the Diagram pane. You use the SELECT
Transact-SQL statement to query the table to display specific rows. Because
you initially viewed all columns in the Orders table, the SELECT statement
contains the command to show all columns (SELECT *,).

24. Right-click the SQL pane and choose Properties. In the Properties dialog
box, uncheck Output All Columns to modify the SELECT statement so
that it no longer displays all columns.

25. Click Close to close the Properties dialog box.

26. On the toolbar, click the Show/Hide SQL pane button again to close the
SQL pane.

Lesson 1: An Overview of SQL Server 29

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

27. You want to display the results of your query in alphabetical order by
company name. Within each company’s orders, you would like to see the
orders sorted by order date. Of the columns in both tables, which col-
umns should you use to perform this sort?

I should sort on the Company Name column first to sort by company name,
and then sort on the Order Date column to sort the orders by order date.

28. In the Diagram pane, in the Customers table, select (don’t uncheck) the
Company Name column. On the toolbar, click the Sort Ascending button
to configure SQL Server to sort the results set by the Company Name
column. (The Sort Ascending button has A-Z on it.)

29. Look at the Company Name column. SQL Server displays “A - Z” next to
the Company Name column to indicate that it’s going to sort your query by
this column.

30. In the Orders table, configure SQL Server to sort by order date in
ascending order.

31. On the toolbar, click the Run button to execute the query. (The Run button
is the one with the exclamation point.)

32. Take a look at the results of your query. You should see a list of orders
sorted first by company name and then by order date.

33. Close the Query window (don’t close SQL Server Enterprise Manager).

34. In the Database Diagram window, on the toolbar, click the Save button to
save your diagram. Enter Northwind for the name of your database dia-
gram, and then click OK.

35. Close the Database Diagram window.

30

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 1-1

Querying a Database Diagram
Objective: To create a database diagram based on the pubs database.

You’re also going to use this diagram to build a query to dis-
play each author’s last name, first name, and the title of their
books.

1. In SQL Server Enterprise Manager, build a database diagram of the pubs
database. Add all tables except for those that begin with “sys” to the data-
base diagram.

2. Based on this diagram, which should you use in a query if you want to see a
list of the authors’ names and the titles of their books?

I should include the authors, titleauthor, and titles tables in my query to see
the authors’ names and the titles of their books.

3. How are these tables linked together?

The authors table is linked to the titleauthor table by the au_id column. The
titleauthor table is then linked to the titles table by the title_id column.

4. Build a query that shows each author’s last name, first name, and the title of
his/her books. Sort the results set by the author’s last name and the title.

5. Save the database diagram as pubs.

6. Close the Database Diagram window.

TOPIC 1C

SQL Server Architecture
Because SQL Server is a client/server database management system, components
of its architecture reside on both the client and the server itself, as shown in Fig-
ure 1-2. We’re going to start exploring the architecture by examining the client
components, and then move on to the server’s architecture.

Suggested time:
20 minutes

Client/Server Architecture

Lesson 1: An Overview of SQL Server 31

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 1-2: SQL Server architecture.

Client Architecture
On the client, the SQL Server architecture consists of three layers: the client
application, a database interface, and a Net-Library. At the client application
layer, your clients use an application such as the SQL Server utilities, Microsoft
Access, or a custom application (developed in programs such as Visual Basic) to
access the SQL server. At its most basic, the client application enables your users
to send SQL queries to the server and displays those queries’ results sets. Your
client application can send these SQL statements to a SQL server by using a vari-
ety of methods and languages, including Transact-SQL, Extensible Markup
Language (XML), and English Query. XML enables you to send queries as part
of a URL or template over the Hypertext Transport Protocol (HTTP). In other
words, XML enables you to query a SQL server from a Web browser. English
Query enables you to query SQL Server by using a question such as “How many
customers live in Utah?” instead of its equivalent Transact-SQL query:

SELECT *
FROM customers
WHERE state = "UT"

The client application works in conjunction with a database Application Program-
ming Interface (API) to access the data on the server. If you’re developing an
application from scratch, you can choose your application’s API. If you’re using
applications such as Microsoft Access or the SQL Server utilities, you use what-
ever database API the programmer chose for those applications. So what is a
database API? An API defines the language and functions the client application
can use to access the resources on the SQL server. SQL Server 2000 supports a
variety of database APIs, including OLE DB, ODBC, and DB-Library. ODBC is
an industry-standard, non-proprietary interface for accessing a variety of data
sources, including SQL Server. Developed by Microsoft, the OLE DB interface
also enables you to access a variety of data sources, and has the advantage of
being object-oriented. In fact, you might think of OLE DB as an object-oriented
version of ODBC. Because OLE DB is accessible only from C and C++, you
must use Microsoft’s ActiveX Data Objects to encapsulate OLE DB for use in
languages such as Visual Basic, Active Server Pages, and Visual Basic Scripting.
The DB-Library API was also developed by Microsoft, but is specifically

Internet applications might
use the Hypertext Transport
Protocol (HTTP) to access

SQL Server data instead of a
database API.

32

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

designed to work only with SQL Server. For this reason, many programmers
choose to invest their time in learning OLE DB and ODBC, because they can use
these APIs to communicate with a much wider variety of data sources. You’ll find
that very few new applications have been written to use the DB-Library API.

As a client, you communicate with a SQL server by using a Net-Library (also
called a Net-Lib or a Network Library). SQL Server uses Net-Libraries to prepare
client requests for sending by the appropriate network protocol, and to receive
responses from the server. You can configure both the client and the SQL server
to use more than one Net-Library, but both the client and the server must have a
Net-Library in common. SQL Server supports TCP/IP, Named Pipes, IPX/SPX
(NWLink), Banyan Vines, and AppleTalk ADSP. We’re going to talk more about
Net-Libraries in the next lesson.

Tabular Data Stream Protocol
SQL Server uses the Tabular Data Stream (TDS) protocol to send data between
the client and the server. TDS packets, in turn, are then encapsulated in the proto-
col stack used by the Net-Library. For example, if you’re using SQL Server on a
TCP/IP-based network, TDS packets are encapsulated in TCP/IP packets.

Server Architecture
On the server, the SQL Server architecture consists of the Database Engine
(which is made up of two components: the Relational Engine and the Storage
Engine), Open Data Services (ODS), and the server’s Net-Library. The Relational
Engine is responsible for checking the syntax of Transact-SQL queries, designing
an optimized execution plan for each query, executing queries, and enforcing
security. The Storage Engine handles everything to do with the server’s files,
including allocating space, reading and writing data, logging and recovery, and
backup and restore operations. ODS acts as an interface between the server’s Net-
Library and its applications. Its job is to manage communications on the network
between the server and its clients. Specifically, the server receives client requests
and responds through Open Data Services. The server’s Net-Library accepts con-
nection requests from a client’s Net-Library.

Client/Server Communications
Let’s take a few minutes to look at how all of these components that make up
SQL Server’s architecture work together. For example, let’s say that you’re work-
ing on a client computer and you use SQL Query Analyzer to send a query to a
SQL server. Here’s how the communications between your client computer and
the server take place:

1. When you execute the query within SQL Query Analyzer, it sends your
query to the appropriate database API on your computer. (The database API
your client computer chooses depends on the application you’re using.) The
database API is responsible for using the appropriate provider, driver, or
DLL to encapsulate your query into one or more Tabular Data Stream (TDS)
packets. Your computer then forwards these TDS packets to the client com-
puter’s Net-Library.

2. The client computer’s Net-Library is responsible for encapsulating the TDS
packets using the appropriate network protocol. For example, if you’re using
the TCP/IP Sockets Net-Library, your computer encapsulates the TDS pack-
ets using the TCP/IP protocol. Your client computer then sends these packets
to the server’s Net-Library; the server’s Net-Library strips out the network
protocol portion of the packets so that only the TDS packets remain.

Net-Library:
A Dynamic Link Library
(DLL) that enables a client
and a SQL server to
communicate over a specific
network protocol.

Client/Server
Communications
(animated)

Lesson 1: An Overview of SQL Server 33

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Your server’s Open Data Services strips out the TDS packet information so
that it can retrieve your query from the packets. After Open Data Services
extracts your query, it sends it to the Relational Engine, which has the job of
determining the best execution plan for processing your query and then com-
piling it. Next, the Relational Engine executes the query based on this
optimized execution plan. At this point, the Relational Engine talks to the
Storage Engine to retrieve the data.

4. The Storage Engine retrieves the data that satisfies your query and stores it
in data buffers. It then passes this data along to the Relational Engine. The
Relational Engine combines the data it receives from the Storage Engine into
a single results set, and sends this results set on to Open Data Services.

5. Open Data Services takes the data it receives from the Relational Engine and
sends it to the server’s Net-Library, which is responsible for encapsulating
the data with the appropriate network protocol. The server then sends the
resulting packets to the client.

TASK 1C-1:
Understanding the SQL Server Architecture

1. What is the role of the Net-Library?

The Net-Library enables SQL Server to communicate with clients over a
variety of network protocols (including TCP/IP, NetBEUI, and NWLink).

2. What database APIs does SQL Server support?

SQL Server supports the OLE DB, ODBC, and DB-Library APIs.

Designing a Database Application
You’ll find that there are several factors you should consider when designing a
database application. These factors include:

• Selecting an application architecture. This architecture determines how much
of your application resides on the server, and how much on the client. We’re
going to look at your choices for application architecture in more detail in
just a moment.

• Designing the database for optimum performance. You should consider how
you can best take advantage of your server’s hardware at this point. For
example, does your server have a drive array? If so, you should plan to
spread your database across the array.

• Determining the types of objects you should create within the database, and
their relationships to each other. As part of your planning, make sure you
consider any constraints you might want to define to enforce data integrity.
You should also consider how you want to secure the database.

• Creating the database and its objects.

• Optimizing the application and the database. At this stage, you should make
sure that you test the critical steps performed by your application and data-
base to verify that they can keep up with the workload. Make sure that

34

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

you’ve created the necessary indexes to enhance performance—and that
you’ve designed your database to take advantage of your server’s hardware.

• Designing a strategy for deploying the application.

Choosing an Application Architecture
When you design an application, there are several different client/server architec-
tures you can choose from. These architectures vary as to how much of the data
processing is done by the SQL server as compared to the client. Before you look
at the architectures, it is important that you understand that all client/server appli-
cations consist of three logical layers:

• Presentation—the user interface (this layer usually resides on the client);

• Business—the application’s logic and rules for working with the data (this
layer can be on the server, client, or both); and

• Data—the actual database itself, its rules for database integrity, and stored
procedures (this layer is typically only on the server).

Application architectures are usually categorized based on the number of comput-
ers that are involved in the application. For example, an application that consists
of a portion running on the server and on the client is usually referred to as
2-Tier. The following table describes the different application architectures.

Application
Architecture Description
Intelligent Server (2-Tier) An application that resides on both the server and the client, but the

majority of the processing (the Business and Data layers) is performed by
the server. Only the Presentation layer resides on the client.

Intelligent Client (2-Tier) An application that resides on both the server and the client, but the
majority of the processing (the Presentation and Business layers) is
performed by the client. Only the Data layer resides on the server. Example:
Microsoft Access.

N-Tier An application that resides on a database server (the Data layer), an
application server (the Business layer), and the client (the Presentation
layer).

Internet An application where the Business and Presentation layers reside on a
Web server, the Data layer on a database server, and the client uses a Web
browser to access the information. Example: Web sites that use SQL
databases.

End-users don’t typically access SQL Server directly. Instead, they access SQL
Server by using an application that you’ve designed to meet their specific
requirements. You can design your application to access SQL Server by using any
of the following:

• Transact-SQL, Microsoft’s enhanced version of the SQL language. Keep in
mind that you can develop stored procedures consisting of Transact-SQL
statements, and then call these stored procedures from other programs (such
as those written in Visual Basic).

• XML. This language enables users to query your server to insert, update,
delete, or simply view SQL Server data by executing URL queries or tem-
plate files within a Web browser. The Web browser then uses the Hypertext
Transfer Protocol (HTTP) to communicate with your server.

Intelligent Server
Applications

Intelligent Client
Applications

N-Tier Applications

Internet Applications

Lesson 1: An Overview of SQL Server 35

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• MDX. You use this language to define multidimensional objects (called
cubes) for analyzing data in an OLAP environment.

• OLE DB and ODBC APIs.

• ActiveX Data Objects (ADO) and ActiveX Data Objects Multidimensional
(ADO MD).

• English Query.

TASK 1C-2:
Exploring the Application Architecture

1. Why are applications sometimes referred to as 2-tier?

This term indicates that a portion of the application’s layers resides on the
server, and the remaining layer(s) reside(s) on the client.

2. Where do the three layers of an application reside in an Intelligent
Server (2-Tier) application?

The Presentation layer resides on the client, and the Business and Data lay-
ers reside on the server.

TOPIC 1D
Identifying SQL Server Management Tasks
In most database management systems, you’ll find that there are two distinct
management roles: the database developer and the database administrator.
Depending on the size of your network and your database management system,
you might find that one person can perform the roles of both the database devel-
oper and administrator. In order to clear up any confusion you might have, and
also to explain why we cover the specific topics in this course, we want to take a
moment to define the responsibilities of both the database developer and the data-
base administrator. The database developer is responsible for the following tasks:

• Designing databases—including the types of objects the application needs,
and the design of those objects.

• Creating and managing database objects (such as tables and indexes).

• Working with the data in the databases.

• Testing and optimizing the application that accesses the database.

• Optimizing database performance.

In contrast to the database developer, the database administrator manages the
overall functioning of the database server. Some of the tasks the database admin-
istrator is responsible for include:

• Installing, configuring, and optimizing SQL Server.

• Creating and managing databases and their files.

• Transferring data from other database management systems into SQL Server.

• Replicating data.

You might want to
emphasize to students that

this course covers the tasks
performed by the database

developer and not the
database administrator.

36

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Managing security.

• Maintaining backups.

• Automating management tasks.

• Optimizing the performance of the SQL server.

This course focuses on the tasks you perform as a database developer. As a result,
we’re going to spend most of our time looking at how you create and manage
databases and their objects, implement data integrity, design, create, and manage
indexes, and so on. Although we touch on some of the steps you must perform to
administer SQL Server 2000, this type of information isn’t the focus of the
course. For more information on installing and configuring SQL Server, see the

TASK 1D-1:
Determining SQL Server Management Tasks

1. You’re planning to implement SQL Server on your network. As the
database developer, what are some of the tasks you will be responsible
for?

Answers might include: Designing, creating, and managing all databases
and their objects, including tables, indexes, views, and stored procedures.

2. If you’re the database developer and not the administrator, what are
some of the tasks you aren’t responsible for?

Answers might include: Installing and configuring the server; optimizing the
server’s performance; monitoring the server by using System Monitor;
implementing security; backing up and restoring data; managing replication;
transferring data between servers; and monitoring the disk space used by
databases.

An Overview of SQL Server Security
Although managing security is primarily a database administrator’s task, as a
database developer, it’s important that you understand how SQL Server’s security
works. SQL Server’s security consists of three layers:

• Login security, which enables you to control who can log in to the SQL
server.

• Database access security, which enables you to control who can access each
database on your server.

• Permissions security, which enables you to control what a user or group of
users can do to a database and the Transact-SQL commands the user or
group can use.

You implement login security by configuring your server’s authentication mode,
and by defining login accounts for your users. Let’s start by taking a look at the
authentication mode. Microsoft SQL Server 2000 supports two login authentica-
tion modes, as described in the following table.

Use these questions to
encourage discussion with
the students.

Lesson 1: An Overview of SQL Server 37

New Horizons course Microsoft SQL Server 2000 - System Administration.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Authentication Mode Enables Users to Log In to the SQL Server Using
SQL Server and Windows Either a SQL or Windows login account.
Windows Only A Windows login account.

If you configure your server to use SQL Server and Windows Authentication
(also known as mixed-mode authentication), your server will accept both SQL
Server and Windows login accounts. With Windows Only Authentication, your
server will accept only Windows login accounts. This means that your users must
have user accounts within the Windows 2000 domain so that Windows 2000 can
authenticate them. You configure your server’s authentication mode during instal-
lation, but you can always change it later by modifying your server’s properties
within SQL Server Enterprise Manager.

One of the biggest advantages of Windows Authentication is that SQL Server
relies on Windows 2000 to authenticate your users, which means that you can
take advantage of all of the Windows 2000 security features—such as password
encryption, password expiration dates, minimum password length, and account
lockout. In addition, Windows Authentication enables your users to access the
SQL server without having to remember a separate login account and password.
In contrast, SQL Server Authentication enables clients who can’t log on to a Win-
dows 2000 domain (such as those running UNIX or connecting over the Internet)
to connect to your SQL server. Finally, with Windows Authentication, you can
map Windows 2000 groups to login accounts, which means that you can enable a
whole group of users to log in to SQL Server by defining only one login account.

When a user logs in to SQL Server by using her Windows account, the client
uses a trusted connection. This is a trusted connection because Windows 2000
performs the user authentication, not SQL Server. In other words, SQL Server is
trusting Windows 2000 to validate the user’s account. Windows 2000 uses the
trusted connection to forward the user’s account and group membership informa-
tion to SQL Server. When the user’s account information is forwarded to SQL
Server, SQL Server checks its sysxlogins table in the master database to verify
that the user’s Windows 2000 account (or a group of which the user is a member)
has a valid login account.

When a user logs in to a SQL server by using SQL Server Authentication, the
user establishes a non-trusted connection. This type of connection is referred to as
non-trusted because SQL Server performs the user authentication. Similar to Win-
dows Authentication, SQL Server verifies that the user’s SQL login account is
defined in the sysxlogins table. If the user doesn’t have a login account in the
sysxlogins table, SQL Server doesn’t permit the user to log in.

You specify the login authentication mode when you install SQL Server. You can
change your server’s login authentication mode by modifying its properties within
SQL Server Enterprise Manager. Keep in mind that if you change your server’s
authentication mode, you must stop and restart the server. Let’s take a look at
how you go about modifying your server’s authentication mode.

38

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 1D-2:
Configuring Your Server’s Authentication Mode

1. If necessary, switch to SQL Server Enterprise Manager.

2. In the console tree, right-click on your server and choose Properties to
display the SQL Server Properties dialog box.

3. Select the Security tab and take a look at your options. You can config-
ure your server to use both SQL Server and Windows Authentication
(mixed) or Windows Only Authentication. You can use the audit settings to
configure SQL Server to record successful login attempts, failed login
attempts, or all login attempts.

4. Choose SQL Server And Windows to configure your server to support both
SQL and Windows login accounts.

5. Click OK to save your changes.

6. Click Yes when prompted to confirm that you want to stop and restart the
SQL Server service.

Remember, if you change
your server’s authentication
mode, you must stop and
restart the SQL Server
service before it will reflect
your change.

Lesson 1: An Overview of SQL Server 39

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Login Accounts
The second component of login security is login accounts. SQL Server supports
two types of login accounts: SQL Server and Windows. You create a Windows
login account by adding a user or group’s Windows 2000 account as a login on
your server. (If you want to add several Windows 2000 users as login accounts
on your SQL server, you’ll find it’s much faster if you make them a member of a
group and then add that group as a login account.) You create a SQL Server login
account by defining the account name and password. You can create login
accounts by using SQL Server Enterprise Manager, the sp_grantlogin stored
procedure to add a Windows user or group account, or the sp_addlogin stored
procedure to create a SQL login account.

TASK 1D-3:
Creating a SQL Login Account

1. In SQL Server Enterprise Manager, in the console tree, expand your serv-
er’s Security folder.

2. Select the Logins object to view a list of the login accounts on your SQL
server in the details pane. By default, SQL Setup creates a SQL login
account named sa (system administrator) with full permissions to manage the
server. In addition, Setup creates a login account for the Windows user
account for the service account (this is the account the SQL Server services
use to log in to your server). Finally, Setup creates a Windows login account
for the Windows 2000 Administrators group. As a result, all members of the
local Administrators group on your SQL server can log in to your SQL
server.

3. Right-click on the Logins object and choose New Login.

4. In the Name text box, type sqluser#. (Replace # with your assigned
number.)

5. Below Authentication, select SQL Server Authentication to configure your
new login account to use SQL Server authentication.

6. In the Password text box, type password to assign a password to the SQL
Server login account.

7. Click OK to create your new login account.

Name your user sqluser.

40

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. In the Confirm New Password text box, type password, and then click OK.
You must retype the password so that you can make sure that you typed the
password correctly.

9. Switch to SQL Query Analyzer.

10. Choose File→Disconnect to disconnect your current login session within
SQL Query Analyzer.

11. In the message box, click No. You don’t need to save your previous queries.
By default, SQL Query Analyzer always prompts you to save your queries to
a script file whenever you exit the program.

12. Choose File→Connect to open the Connect To SQL Server dialog box. You
can use this dialog box to log in with your Windows account, or to log in
with a SQL login account.

13. In the Connect To SQL Server dialog box, choose SQL Server
Authentication. In the Login Name text box, type sqluser#. In the Password
text box, type password.

14. Click OK to log on to SQL Server using a SQL login account. (At this
point, your sqluser# user can’t do much on your server because you haven’t
given this account any permissions to your server’s databases.)

15. Close SQL Query Analyzer.

APPLY YOUR KNOWLEDGE 1-2
Creating a Login Account for a Windows 2000 Account

Objective: To create a Windows 2000 user account. You will then create
a login account for this user in SQL Server Enterprise
Manager. Finally, you will test the new login account by log-
ging on to Windows 2000 and running SQL Query Analyzer.

For this Lab, You Will Need the
Following Information

Use this Value or Another Value
Provided by Your Instructor

A Windows 2000 account name Your first name

Suggested time:
10 minutes

Lesson 1: An Overview of SQL Server 41

A password password

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

1. In Active Directory Users And Computers, create a user with your name.
Use your first name as your logon name. Set your password to password.
Add this user as a member of Domain Admins. Close Active Directory Users
And Computers.

2. In SQL Server Enterprise Manager, add a login account for the new user’s
Windows 2000 account by right-clicking on the Logins folder below your
server and choosing New Login. In the Name text box, type your first name.
From the Domain drop-down list, choose Classroom. Click OK to save your
new login account.

3. Close SQL Server Enterprise Manager.

4. Log off, and then log back on to Windows 2000 as the user with your first
name and a password of password.

5. Verify that you can log in to your SQL server by running SQL Query
Analyzer. (Make sure you choose Use Windows Authentication in the Con-
nect To SQL Server dialog box.)

6. Close SQL Server Query Analyzer.

7. Log off from Windows 2000 and log back on as student#.

Configuring Database Users and Permissions
Now that you’ve seen how to create both Windows and SQL Server login
accounts, your next task is to learn how to make these login accounts database
users. One of the easiest ways you can add a login account as a database user is
to make them a member of a database role (which makes the login account a user
of the database). You add a login account as a database user by using either SQL
Server Enterprise Manager or the sp_grantdbaccess stored procedure. You
must be a database owner or a member of the db_accessadmin database role to
add a login account as a database user.

Each database contains a special database user called the dbo. This user has all
permissions for working with the database. The sa SQL Server login account and
all members of the sysadmin server role use the dbo user account for all data-
bases on your server. Another special database user you can create is the guest
user. You can use the guest database user to grant guest access to a database.
You’ll typically use the guest database user account when you want to grant tem-
porary access to a database. Creating a guest account enables all users with logins
who aren’t users of the database to access that database. For this reason, you
should create a guest account only after you’ve carefully considered the security
of your server.

You can implement permissions by assigning individual statement and object per-
missions to users, or by adding database users as members of a role. Statement
permissions enable you to control whether users can execute statements for creat-
ing objects. For example, you can grant users the CREATE DATABASE and

You can’t add a guest
database user to the master

and tempdb databases.

42

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CREATE TABLE statement permissions. Object permissions enable you to con-
trol what users can do with existing objects. For example, you can grant users the
SELECT and INSERT permissions so that they can view the contents of a table
and insert rows into it. For more information on statement and object permis-

course.

SQL Server 2000 includes both server roles (for administering the server itself)
and database roles (for working with and administering individual databases). You
can also create your own user-defined database roles. The following table
describes the server roles to which you can assign users.

Server Role Nickname Enables the Login Account to
Bulk Insert Administrators bulkadmin Perform bulk insert operations.
Database Creators dbcreator Create and alter databases.
Disk Administrators diskadmin Manage database files.
Process Administrators processadmin Manage SQL Server processes.
Security Administrators securityadmin Manage and audit server logins.
Server Administrators serveradmin Configure server-wide settings.
Setup Administrators setupadmin Install SQL Server replication.
System Administrators sysadmin Perform any action on your server.

In the following table, we describe the database roles to which you can assign
users. Keep in mind that other than the public role, you can’t modify the permis-
sions associated with each role. If you find that you need roles with specific
permissions, you can create your own user-defined roles.

Database Role Enables the Database User to
public Use the default permissions assigned to the role.
db_accessadmin Add or remove database users, groups, and roles.
db_backupoperator Back up and restore the database.
db_datareader Read data from any table in the database.
db_datawriter Add, change, or delete data from any table in the

database.
db_ddladmin Add, change, or drop database objects.
db_dbowner Perform any database role activity.
db_securityadmin Assign statement and object permissions to users.

In addition to the database roles that give users permissions, two database roles
deny privileges. We describe these roles in the following table.

Database Role Prevents the Database User from
db_denydatareader Reading data from any table in the database.
db_denydatawriter Adding, changing, or deleting data from any table in the

database.

Lesson 1: An Overview of SQL Server 43

sions, see the New Horizons Microsoft SQL Server 2000 - System Administration

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

How SQL Server Validates Permissions
Each time a user attempts an action that issues a SQL statement (whether the
action is issuing a statement directly, such as in a query, or by using a utility such
as SQL Server Enterprise Manager), SQL Server first verifies that the user has the
necessary permissions to execute the statement. If the user has the necessary per-
missions, SQL Server processes the user’s request. If the user doesn’t have the
necessary permissions, SQL Server sends an error message to the user.

TASK 1D-4:
Working With Server and Database Roles

1. Start SQL Server Enterprise Manager.

2. In the console tree, expand your server’s Security folder to display a list
of the objects related to security.

3. Select the Server Roles object and take a look at the details pane. You
should see a list of the server roles to which you can add users.

44

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. In the details pane, double-click on System Administrators to display the
Server Role Properties dialog box. You can add or remove login accounts
from this role. By default, SQL Setup adds the built-in Administrators Win-
dows 2000 group, service account, and the sa SQL login account as
members of the System Administrators role.

5. Click Cancel to close the Server Role Properties dialog box.

6. In the console tree, select the Logins object to display a list of your serv-
er’s login accounts in the details pane.

7. Double-click on sqluser#. Look at the tabs in the SQL Server Login
Properties dialog box. You can use this dialog box to add the login account
to both server roles and database roles (by using the Database Access tab).

8. Select the Database Access tab. You use this page to configure the login
account as a database user and add them to a database role.

Lesson 1: An Overview of SQL Server 45

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

9. In the list of databases, check pubs to add sqluser# as a user of the pubs
database.

10. Look at the changes in the dialog box. You should see that SQL Server
Enterprise Manager automatically made sqluser# a member of the public
database role for the pubs database.

11. In the Permit In Database Role list, check db_owner to add sqluser# as a
member of the db_owner role.

12. Click OK to close the SQL Server Login Properties dialog box.

13. Close all open windows.

Summary
In this lesson, we examined the components and services that make up SQL
Server, and the default databases and tables. We also explored the types of
tasks you’re responsible for as a database developer and examined the utili-
ties you can use to accomplish those tasks. Finally, we provided you with an
overview of the security features you can implement within SQL Server
2000.

LESSON 1 REVIEW
1A List two features that make SQL Server a powerful database manage-

ment system.

Answers include: SQL Server supports multiple operating systems including
Windows 98, Windows Me, Windows NT Workstation, Windows NT Server,
and the Windows 2000 Server family; SQL Server’s security, services, and
performance monitoring are integrated with Windows 2000; and SQL Server
integrates with all of the Microsoft .NET Enterprise Server applications.

46

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

1B In the SQL Server environment, what do the terms database and table
mean?

The term database refers to a collection of database objects. The term table
refers to a database object that contains the actual data. A table consists of
rows and columns.

1C What three layers make up the client/server application architecture?

The client/server application architecture consists of the following layers:

• Presentation—the user interface;

• Business—the application’s logic and rules for working with the data;
and

• Data—the actual database itself, its rules for database integrity, and
stored procedures.

1D List and explain the two login security modes you can implement in
SQL Server.

SQL Server supports both Windows and Mixed Authentication modes. With
the Windows Authentication mode, my users can log in to SQL Server by
using only their Windows 2000 user accounts. In contrast, with Mixed
Authentication, users can log in to SQL Server by using either a Windows or
a SQL Server login account.

Lesson 1: An Overview of SQL Server 47

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Exploring Transact-SQL

Overview
As a database developer, it’s critical that you understand how to use the
Transact-SQL language to work with SQL Server and its databases. In this
lesson, we will explore how you use Transact-SQL to query your server.
We’ll also introduce you to the types of SQL commands you can use, along
with the basics for executing those statements.

Objectives
To learn the Transact-SQL language, you will:

2A Use the tools included with SQL Server 2000 for executing SQL
statements.

SQL Server 2000 includes two primary tools for executing SQL queries:
SQL Query Analyzer, a graphical utility, and osql, a command-line utility.
In this topic, we will show you how to work with both tools.

2B Execute Transact-SQL statements.

In this topic, we will show you how to use the three types of SQL state-
ments (Data Definition Language, Data Manipulation Language, and Data
Control Language) to work with SQL Server 2000.

2C Use Transact-SQL to develop programs.

The Transact-SQL language includes elements that enable you to design
flexible programs. For example, you can use a variable to store a value
based on user-entered information—and then use that variable within a
program. In this topic, you will learn how to declare and use variables. In
addition, you will implement control-of-flow statements such as
IF...ELSE to control the steps performed by a program.

Data Files:
create_table.sql
select_lab.sql
update_delete_lab
insert.sql
select.sql
permissions.sql
deny_revoke_lab.sql
variables.sql
execute_lab.sql
statement.sql

Lesson Time:
3 hours

LESSON

2

Lesson 2: Exploring Transact-SQL 49

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 2A
Working with Transact-SQL
Now that we’ve explored what SQL Server is and why you would use it, let’s
move on to looking at how you access the data on a SQL server. You access data
by using Microsoft’s enhanced version of the Structured Query Language,
Transact-SQL. Transact-SQL is SQL Server’s implementation of the ANSI
SQL-92 standard. You can use the SQL language in a variety of relational data-
base management systems, including Microsoft SQL Server, Oracle, and Sybase.
You use the SQL language to work with the data on your server. For example,
you can use the SELECT SQL statement to retrieve data from your server.

When you send a statement to your server for processing, the statement is called
a query. Actually, a query can consist of one or more SQL statements. SQL
Server includes two utilities you can use to query your server: SQL Query Ana-
lyzer and the osql command-line utility. In addition, you can use SQL queries in
a wide variety of application development environments such as Visual Basic.

SQL Query Analyzer
SQL Query Analyzer enables you to work with queries in a graphical
environment. You can select text to copy and paste just as you would within a
word processing application. In addition, SQL Query Analyzer offers you the fol-
lowing advantages:

• SQL Query Analyzer automatically assigns different colors to query
components. In addition, you can customize these colors to suit your own
taste.

• You can open multiple query windows, each with a separate connection to
your server; you can even establish each connection with different user
credentials.

• You can parse (test) queries for accuracy before executing them.

• You can display the results of a query in grid or text format.

• SQL Query Analyzer can execute all or only parts of a script based on the
components you select.

• You can generate a graphical execution plan to see how SQL Server will
process your query. You can use this information to optimize your queries.

• SQL Query Analyzer includes an Object Browser window that you can use
to view the names of databases and objects. In addition, you can view the
structure of objects such as tables.

You can purchase the ANSI
SQL-92 standard document

from ANSI by going to
http://webstore.ansi.org/
ansidocstore/find.asp and

searching for the document
name. Search for “ANSI X3.

135-1992 (R1998).”

50

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 2A-1:
Using SQL Query Analyzer

Setup: You are logged on to Windows 2000 as student#.

1. Start SQL Query Analyzer and log in by using Windows Authentication.

2. In the Editor pane, type the following query:

USE pubs
SELECT *
FROM authors

3. Choose Query→Parse to test the syntax of your query. If you’ve entered
the query correctly, you see a message stating that the command completed
successfully. If you have a syntax error, SQL Query Analyzer displays the
line number and the nature of the error. You can then correct the error before
attempting to execute your query. Correct any syntax errors.

4. Choose Query→Execute to execute your query. SQL Server processes your
query and returns the results in the Results pane. Notice that you now see
the pubs database displayed in the Database drop-down list.

5. Look at the colors SQL Query Analyzer assigns to your SQL keywords.
For example, look at the USE and SELECT keywords as compared to
objects (such as pubs and authors). By default, SQL Query Analyzer dis-
plays SQL keywords in blue and text in black.

Lesson 2: Exploring Transact-SQL 51

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. Choose Tools→Options to display the Options dialog box for configuring
SQL Query Analyzer. Select the Fonts tab. You can use the Fonts page to
customize the colors SQL Query Analyzer assigns to components of queries.

7. Below Colors, choose Keyword and look at your choices. The default fore-
ground color (the letters of the keyword) is blue and the font is Courier New
(Western).

8. Click Cancel to close the Options dialog box.

9. In the Editor pane, add the following lines to your previous query:

SELECT *
FROM titles

10. Execute the query.

11. Look at the Results pane. You see all rows in both the authors and the
titles tables listed. (Use the vertical scroll bar in the Results pane to display
all of the results from both queries.)

52

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

12. In the Editor pane, use your mouse to highlight only the following lines
(as shown in the graphic):

SELECT *
FROM titles

13. Execute the query. You should see that SQL Query Analyzer returns only
the rows in the authors table. You can selectively execute query statements
in the Editor pane by highlighting their lines.

14. On the toolbar, click the Clear Window button to clear your previous
query from the Editor pane.

15. Minimize SQL Query Analyzer.

Osql
In addition to SQL Query Analyzer, you can use the osql utility to execute SQL
statements, stored procedures, and script files. In contrast to SQL Query Analyzer,
osql is a command-line utility. You use osql either by logging in to your server
and then executing commands in interactive mode, or by logging in and execut-
ing commands as part of the osql syntax. The basic syntax for osql is as follows:

osql -S server_name -U login_id -P password

You should use this syntax if you want to log in to your server by specifying a
SQL login account. In contrast, if you want to log in to your server by using
Windows Authentication, use this syntax instead:

osql -S server_name -E

All of the parameters you use with the osql command are case-sensitive. These
parameters can be preceded by either a hyphen (-) or a slash (/). The following
table defines the optional parameters you can use with osql.

Parameter Enables You To
-U login_id Specify the SQL login account you want to use to log in to the

SQL server. If you don’t specify both the -U and -P param-
eters, you must use the -E parameter. SQL Server will then
use your current Windows account to log you in to the SQL
server (and won’t prompt you for a password).

-P password Provide the password for the SQL login account you specified
with the -U parameter.

-E Log in by using your current Windows account (rather than
specifying a SQL login account). Because SQL Server uses
Windows 2000 to authenticate your user account, Microsoft
refers to this type of connection as trusted.

Lesson 2: Exploring Transact-SQL 53

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Parameter Enables You To
-S server_name Specify the name of the SQL server to which you want to

connect. You must use the -S parameter when you run the
osql command on a computer other than the SQL server.

-? Display a help screen containing all of the osql parameters.
-i input_file Specify the name of a file that contains Transact-SQL statements

or stored procedures. For example, you use -i when you want
osql to run a SQL script file.

-o output_file Identify the name of a file for receiving output from osql.
-b Configure osql to automatically exit and return a DOS

ERRORLEVEL value if an error occurs when osql processes SQL
statements. Osql sets the DOS ERRORLEVEL value to 1 if it
encounters an error with a severity of 10 or greater; in contrast,
osql sets DOS ERRORLEVEL to 0 if the error’s severity is less
than 10.

-Q "query" Run the specified query. Use this option when you want to
connect to a SQL server and run a query by using a single
command. For example, you can use the command osql
-S server_name -E -Q "SELECT * FROM
pubs.dbo.authors" to connect to your server and
display a list of all of the authors in the pubs database.

When you use osql in interactive mode, it displays line numbers as shown in Fig-
ure 2-1. You type your SQL statements, one to each line. Osql does not execute
your query until you type the SQL keyword GO on a separate line. After you’re
done querying your server in osql, type EXIT to disconnect and close the osql
utility.

Figure 2-1: Type your SQL statements on separate lines in osql.

TASK 2A-2:
Using Osql

1. Write an osql statement for logging in to your partner’s SQL server by
using a trusted connection.

osql -S sqlserver# -E.

2. Open a Command Prompt window.

Have the students work in
pairs for this task.

54

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Connect to your partner’s server by using the osql statement you
recorded in step 1. You should see a 1> prompt when you’re successfully
connected to your partner’s server.

4. At the 1> prompt, enter USE pubs to specify that you want to use your
partner’s pubs database and to advance to the second line in osql.

5. At the 2> prompt, enter SELECT au_lname, au_fname, phone.

6. At the 3> prompt, enter FROM authors to specify that you’re querying
the authors table.

7. At the 4> prompt, enter GO. Osql now processes all lines of your query.
When it’s done displaying all rows of the authors table, you should see a 1>
prompt. This means that you can now enter a new query.

8. At the 1> prompt, enter EXIT to disconnect from your partner’s server and
close osql.

9. Close the Command Prompt window.

TOPIC 2B
Transact-SQL Statements
You can group SQL statements into three categories:

• Data Definition Language (DDL) statements, which enable you to create
database objects.

• Data Manipulation Language (DML) statements, which enable you to query
or modify data.

• Data Control Language (DCL) statements, which enable you to determine,
set, or revoke users’ permissions to SQL databases and their objects.

We’re going to start our tour of the SQL language by exploring the statements
you can use to create database objects. After you’ve created objects, we’ll move
on to showing you how to work with those objects by using DML statements.
We’ll then examine how you can protect objects by using security and the DCL
statements.

Throughout this course,
we’re going to provide you
with the ANSI SQL syntax for
Transact-SQL statements.
Microsoft strongly
recommends that you use
the ANSI-compliant syntax
whenever you’re developing
programs or scripts in order
to make them as compatible
as possible with other SQL-
based systems.

Lesson 2: Exploring Transact-SQL 55

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Data Definition Language Statements
The primary DDL statements are CREATE, ALTER, and DROP. You’ll always use
these statements in conjunction with an object type and an object name. The gen-
eral syntax for these statements is:

CREATE object_type object_name

You replace object_type with the type of object you’re creating. For example, you
create a table by using the statement CREATE TABLE table_name. You
might need to specify other parameters as part of the CREATE statement, depend-
ing on the object type. For example, when you create a table, you’ll need to not
only specify the new table’s name, but also the columns you want to define in
that table. So, to create a new table named customersin the pubs sample data-
base, you might use the following syntax:

USE pubs
CREATE TABLE customers
(
lname varchar(20), fname varchar(20), address varchar(20),
city varchar(15), state char(2),
zip char(9), phone char(10)
)

Be aware that you must be a member of either the sysadmin server role or the
dbcreator, db_owner, or db_ddladmin database roles to use any of the DDL
Transact-SQL statements. Although we talk about this in more detail later in the
course, we want to point out that you’ll see better performance with SQL Server
if all of your objects have the same owner. When objects that depend on each
other (such as a view based on a table) have different owners, SQL Server must
evaluate a user’s permissions for both objects before the user can access the view.
For this reason, if you have more than one user creating objects, you should
make sure that the object owner is the same for both objects. If necessary, you
can change an object’s owner by using the sp_changeobjectowner stored
procedure.

Naming Objects
Microsoft recommends that you use its standard naming rules when you name
objects. Object names that conform to these rules are referred to as standard
identifiers. A standard identifier must meet the following requirements:

• Names must be between one and 128 characters in length (including letters,
numbers, and symbols). You can’t include spaces in a standard identifier.

• The first character of the object’s name must begin with a letter (a-z or
A-Z).

• Any subsequent characters you use in the name can be any character includ-
ing letters, numbers, or the @, $, #, or _ symbols.

SQL Server requires that you begin the names for variables, temporary tables and
procedures, and global temporary objects with specific symbols, as follows:

• Variables must begin with @.

• Temporary objects must begin with #.

• Global temporary objects must begin with ##.

In addition to these requirements, the names you assign to temporary objects
can’t be more than 116 characters (including the # or ## symbols).

You might want to mention
to students that the

purpose of this lesson is to
get their feet wet with the

SQL language. We’re going
to cover the CREATE and

ALTER statements in
greater detail in later

lessons.

56

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

If you use a name that doesn’t conform to the rules for standard identifiers, you
must delimit the name by using either square brackets ([]) or double quotes
(“ ”). Names that contain spaces or use reserved words must also be delimited.
As such, Microsoft refers to them as delimited identifiers. For example, if you
name a table customer addresses, you’ll have to delimit the table’s name when-
ever you refer to it (because the name contains a space):

SELECT *
FROM [customer addresses]

You can always use the square brackets as delimiters; however, SQL Server
doesn’t permit you to use double quotes as delimiters unless you’ve turned on
support for them. You can turn on support for double quotes by executing the
following query: SET QUOTED_IDENTIFIER ON. By default, SET
QUOTED_IDENTIFIER is off. You must turn it on for each user.

Designing Naming Conventions
While you’ll find that everyone has their own opinion as to how you should
name objects, we’ve found that there are a few guidelines that come in handy.
Keep the following suggestions in mind when you name objects:

• Keep names short but meaningful.

• Try to develop a standard, so that it’s easy for you and your users to identify
object types.

• Include something in the object name that indicates its object type. For
example, you might want to include “view” or “vw” in the names of views
because they’re often mistaken for tables.

• Make your object names (and even user names) unique.

• Use singular names for objects and their properties. If you name some
objects in a database with plural names and others with singular names, it
will be difficult for you to remember the object names. For example, in the
pubs sample database, several of the tables have plural names (authors, dis-
counts, publishers, and so on) and others have singular names (employee,
titleauthor, roysched, and so on). Because these names aren’t consistent, you
might have difficulty remembering which names have an “s” on the end and
which don’t.

• Avoid using spaces in object names. As we’ve said, if you use spaces, you
must delimit those names with square brackets or double quotes whenever
you use them in a query.

TASK 2B-1:
Creating a Simple Table

Setup: The student data files were copied to your computer during
classroom setup.

1. In SQL Query Analyzer, choose File→Open. When you’re prompted to save
your query, click No.

2. Access the Student Data folder (C:\Data) or as specified by your
instructor.

Lesson 2: Exploring Transact-SQL 57

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. In the list of files, double-click on create_table to open the script file. This
file contains the SQL statement for creating a table named practice within
the pubs database.

4. Look at the script file as your instructor reviews each of the statements.
The USE pubs line of the script switches your current database to the pubs
database. Next, because SQL Server requires that you execute the CREATE
TABLE statement as its own batch separate from all other SQL statements,
we separate the USE pubs and the CREATE TABLE statements by using
the GO statement. Finally, the CREATE TABLE statement creates a table
named practice that consists of two columns: lname and fname.

5. Execute the script file. You can execute the script by choosing Query→
Execute, clicking the Play button on the toolbar, or by pressing [Ctrl]E.

6. Look at the Results pane. You should see that your commands completed
successfully.

7. Choose File→New. You’re going to open a new Query window.

8. Verify that Blank Query Window is selected.

9. Click OK to open a second Query window.

10. Close the Query window containing the create_table script file.

11. In the new Query window, to display the structure of the practice table,
execute the following query:

sp_help practice

58

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

12. Look at the Results pane. SQL Query Analyzer displays five grids. The
first grid enables you to view the name of the table, its owner, the table type,
and the date and time you created the table. The second grid enables you to
view a list of the table’s columns and their data types.

Next, the third grid enables you to determine if you’ve defined any identity
columns on the table. An identity column enables SQL Server to automati-
cally increment a value that you specify for each new row you add to the
table. You can use the fourth grid to determine if you’ve configured any of
the table’s columns as each row’s “globally unique identifier”
(RowGuidCol). This designation indicates that the values within this column
aren’t only unique within the table, but also across the entire database.

Finally, you use the fifth grid to determine in which filegroup the table
resides. You can distribute a database across multiple files, each in separate
filegroups, in order to optimize its performance. Unless you specify other-
wise, SQL Server creates new objects in the primary filegroup.

13. Clear the Query window.

Data Manipulation Language Statements
Now that you’ve seen how to use DDL to create objects, let’s move on to how
you go about working with those objects. You manipulate objects by using the
DML statements: INSERT, SELECT, UPDATE, and DELETE. By default, only
the members of the sysadmin server role or dbcreator, db_owner, db_datawriter,
or db_datareader roles can execute DML statements. Let’s take a look at each of
these statements in more detail.

Using INSERT
You use the INSERT statement to add rows to a table. Here’s the syntax:

INSERT INTO table_name
(column_list)
VALUES (values_list)

Lesson 2: Exploring Transact-SQL 59

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In this syntax, you replace table_name with the name of the table to which
you want to add rows. If you aren’t inserting information into all columns in the
table, replace column_list with a list of columns to which you’re inserting
information for the new rows. If you’re inserting information into all columns in
the table, you don’t have to specify the column names. Finally, replace
values_list with a list of values for the columns. You must enclose the val-
ues for all columns with non-numeric data types in quotes.

TASK 2B-2:
Inserting Data

1. Write an INSERT statement for inserting your name into the practice
table.

I could use the following statement to insert my name into the practice table.
I don’t have to specify the column names because I’m providing a value for
all columns in the row.

INSERT INTO practice
VALUES ('last_name', 'first_name')

2. In SQL Query Analyzer, use the INSERT statement you recorded in step
1 to add a row to your table. Remember, you can choose Query→Parse to
check your syntax.

3. Use the INSERT command to add another name to your table. You
should have a total of two rows in your practice table. We’re going to look
at how you view these rows next.

4. Clear the Query window.

Using SELECT
You can use the SELECT Transact-SQL statement to display the contents of a
table. At its most basic, you use SELECT to display all columns and all rows in
the table by executing the following query:

SELECT *
FROM table_name

In contrast, if you want to display only selected columns for a table, execute this
query instead:

SELECT column_list
FROM table_name

In this query, you replace column_list with a list of column names separated
by commas. For example, to list each author’s last name and first name from the
authors table in the pubs database, you could execute this query:

SELECT au_lname, au_fname
FROM pubs.dbo.authors

If this table isn’t in your
current database, you must

specify both the database
and table name by using the

format database.
owner.table. Remem-

ber, if you’re the owner of
the table, you can use the

format
database..table.

See Additional Instructor
Notes.

Script file: insert.sql.

Remember, you can use the
partial name of authors for

the table if the pubs database
is your current database.

60

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can use the string concatenation operator (+) to group two character-based
columns into a single column. (The character-based data types include varchar,
char, nvarchar, nchar, text, and ntext.) You can also add constants to the com-
bined columns. For example, to combine the au_fname and au_lname columns
from the authors table to display a single column with the first and last names
separated by a space, use this query:

SELECT au_fname + ' ' + au_lname
FROM pubs.dbo.authors

If you concatenate two columns together, SQL Query Analyzer no longer displays
the column names in the Results pane. You can specify a column heading for the
combined columns by using an AS clause. To use a two (or more) word column
heading, you must enclose the name in quotes. For example, if you want to use
the column heading Names of Authors, you should use this syntax:

SELECT au_fname + ' ' + au_lname AS 'Names of Authors'
FROM pubs.dbo.authors

Sorting the Results
You can use the clause ORDER BY followed by one or more column names to
change the order of the results set. For example, to list the authors in alphabetical
order, use this syntax:

SELECT *
FROM authors
ORDER BY au_lname

By default, SQL Server sorts in ascending order. You can specify descending
order by adding the DESC keyword to the end of your ORDER BY clause. You
can also sort by multiple columns by separating them with commas. For example,
to list all authors in alphabetical order by last name and then first name, use the
following syntax:

SELECT *
FROM authors
ORDER BY au_lname, au_fname

TASK 2B-3:
Selecting Data

1. Write a query for viewing all rows in the practice table.

SELECT *
FROM practice

2. In SQL Query Analyzer, execute the query you recorded in step 1.

3. Write a query for listing all rows in the practice table with the first and
last names concatenated together. Use Name as the column heading in
the results set.

SELECT fname+' '+lname AS 'Name'
FROM practice

4. Execute the new query you recorded in step 3.

Script file: select.sql.

Lesson 2: Exploring Transact-SQL 61

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. Write a query for sorting all rows in the practice table in descending
order by last name.

SELECT *
FROM practice
ORDER BY lname DESC

6. Execute the new query you recorded in step 5.

7. Clear the Query window.

Using a WHERE Clause With the SELECT Statement
You can create more powerful SELECT queries by using a WHERE clause to
choose specific rows in a table. When you use a WHERE clause, you can specify a
value to identify one or more rows in the table. Use the following syntax to
execute a SELECT query with a WHERE clause:

SELECT column_list
FROM table_name
WHERE column_name conditional_operator value

If the column you use in the WHERE clause is one of the character data types,
you must enclose the value in quotes. In contrast, if the column you use is one of
the numeric data types, you can’t enclose the value in quotes. For example, if
you wanted to view all customers in the customers table who live in California,
you should type:

SELECT *
FROM authors
WHERE state = 'CA'

In this query, you must enclose the value ‘CA’ in quotes because the state column
uses the character data type.

Conditional Operators
The following table describes the conditional operators you can use in SQL
Server in a WHERE clause.

Symbol Description
= Equal to
!= Not equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

You can use multiple conditions in your WHERE clause by using the operators
AND, OR, and AND NOT. For example, you might use the following query to
select all rows from the authors table where the authors live in Oakland, CA:

SELECT *
FROM authors
WHERE state = 'CA' AND city = 'Oakland'

You might mention to
students that the WHERE
clause doesn’t have to be
on a separate line. We’ve

put it on a separate line to
increase readability.

62

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Operator Precedence
If you use multiple operators in a query, SQL Server evaluates them in order as
follows:

1. Parentheses—if you’ve grouped conditional statements together by parenthe-
ses, SQL Server evaluates the contents of the parentheses first.

2. Arithmetic—multiplication (uses the operators *, /, or %).

3. Arithmetic—addition (uses the operators + or -).

4. Other—string concatenator (+).

5. Logical—NOT.

6. Logical—AND.

7. Logical—OR.

For example, if you want to find the names of all authors in the pubs database
who live in the states of California or Utah, and who have contracts on file, use
the following syntax:

SELECT au_lname, au_fname
FROM authors
WHERE (state = 'CA' OR state = 'UT') AND contract = 1

In contrast, consider this query:

SELECT au_lname, au_fname
FROM authors
WHERE state = 'CA' OR state = 'UT' AND contract = 1

In this example, SQL Server would find all authors who either live in California
(regardless of whether they have a contract on file), or live in Utah and have a
contract on file. This is because SQL Server evaluates conditions that use the
logical AND before it evaluates those that use the logical OR. If you want to be
sure of how SQL Server will process your queries containing multiple operators,
you should use parentheses.

SQL Server and Case-sensitivity
When you install SQL Server, you can configure it to use a collation that is either
case-sensitive or case-insensitive. If you install SQL Server as case-insensitive
(the default setting), it will preserve the case you use when you add or change
the data in columns; however, when you search for rows by using a WHERE
clause, you can use either uppercase or lowercase values in your WHERE clause.
For example, using WHERE city = 'Oakland' or WHERE city =
'oakland' will return the same rows in your SELECT statement.

Functions
Transact-SQL includes many functions that enable you to manipulate or perform
calculations. You use functions as part of a SELECT statement. SQL Server sup-
ports the following three types of functions: rowset, aggregate, and scalar.

Lesson 2: Exploring Transact-SQL 63

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Aggregate Functions
Aggregate functions enable you to perform calculations on multiple rows but
return only a single value in response. Some of the aggregate functions include:
AVG(), COUNT(), MIN(), MAX() and SUM(). For example, if you
want to calculate the average price of a book in the titles table of the pubs data-
base, you can use the following query:

SELECT AVG(price)
FROM titles

You should be aware that if a table’s columns permit null values (where no data
is entered into the column), the results of your aggregate function’s calculations
might be inaccurate. SQL Server doesn’t include any columns with null values in
its calculations. For example, you might think that using the MIN() function to
find the lowest-priced book in the titles table would return a book with a price of
null. (Your query would be SELECT MIN(price) FROM titles.) However,
SQL Server ignores null values, so you get the lowest-priced book with an actual
value in the price column instead.

Rowset Functions
You use rowset functions just as you would a table in a SQL statement. Use
rowset functions to perform distributed queries where you’re retrieving data from
a remote server. Before you can use a rowset function to perform a distributed
query, you must first link the remote server to your server by using the
sp_addlinkedserver stored procedure. After you’ve linked the remote
server, you can use the OPENQUERY() function to retrieve data from the
server. Use the following syntax:

SELECT *
FROM OPENQUERY(linked_server_name,'query')

Scalar Functions
Scalar functions perform calculations on only one value and return only one
value. You typically use scalar functions to return system information or to deter-
mine the status of components such as cursors. For example, you can use the
DB_NAME() function to identify the name of the current database. In the fol-
lowing table, we describe the types of scalar functions you can use in SQL
Server.

For detailed information on
each of these types of

functions along with their
syntax, please see the

“Functions” topic within
Books Online. We’re going to

look at how you use Books
Online later on in this

lesson.

64

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Type of Scalar
Function Enables You to Examples

Date and Time Perform calculations or
extract portions of a
date or time. You can
use these functions to
perform date math
functions (such as
determining the
difference between two
dates), or to extract a
portion of a date (such
as to identify only the
month within a date
value).

YEAR(date)

Mathematical Perform calculations
based on the
parameters you specify
within the function.

ROUND(numeric_expression,
length)

Metadata View information about
databases and their
objects.

COL_LENGTH('table, column)

Security Identify information
about users and role
memberships.

IS_MEMBER('group' | 'role')

String Perform operations on
character data.

UPPER(column | variable |
expression)

System Determine information
about objects and
system settings.

CONVERT(data_type,
expression [,style])

System Statistical Retrieve statistics for
your server.

@@CONNECTIONS

Text and Image Work with text and
image data.

TEXTPTR(column)

Let’s take a look at some examples of these functions. One use for the
CONVERT() function is to format dates. As part of this function, you must
specify the style of date you want. For example, style 107 uses the format Mon
DD, YY, where “Mon” is the abbreviation for the name of the month. In contrast,
style 101 uses the format MM/DD/YY. In the following syntax, we use the
CONVERT() function to display the order date in the Northwind..orders table in
style 107. We show you the results of this statement in Figure 2-2.

SELECT orderID, CONVERT(varchar(30), orderdate, 107)
AS 'Order Date'

FROM Northwind..orders

Lesson 2: Exploring Transact-SQL 65

Configuration View information about
your connection and the
server’s configuration.

@@SERVERNAME

Cursor View information about
cursors.

CURSOR_STATUS('local' |
'global', 'cursor_name')

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 2-2: You can use the CONVERT() function to display a date in a variety of
formats.

Here’s another example. The following statement shows you how to use the
USER_NAME() and APP_NAME() functions to view the name of the user
you’re currently logged on as and the application you’re using.

SELECT USER_NAME(), APP_NAME()

We show you the results of this statement in Figure 2-3. In this example, SQL
Server displays the user name as dbo because we’re logged on as a member of
the sysadmin server role.

Figure 2-3: You can use system functions to view your current user name and application.

APPLY YOUR KNOWLEDGE 2-1

Using the SELECT Statement
Objective: To use the SELECT statement to work with the data in the

authors and titles tables from the pubs database.

1. In SQL Query Analyzer, verify that you have the pubs database selected.
Use a stored procedure to view the structure of the authors table in the pubs
database. What stored procedure did you use?

sp_help authors

Suggested time:
30 minutes

Script file: select_lab.sql.

66

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. In the space below, write a SELECT statement that will enable you to view
a list of all authors’ first names, last names, and telephone numbers. Concat-
enate the authors’ first and last names and use the column heading Name.
Execute this query in SQL Query Analyzer.

SELECT au_fname+' '+au_lname AS Name, phone
FROM authors

3. In the space below, write a SELECT statement for viewing all authors who
live in California but not in Oakland. Include the authors’ first names, last
names, city, and state in your results. Concatenate the authors’ first and last
names, and use Name for the column heading. Concatenate the city and state
columns and use City and State for the column heading. Separate the city
and state with a comma.

SELECT au_fname+' '+au_lname AS Name,
city+', '+state AS 'City and State'

FROM authors
WHERE state = 'CA' AND city <> 'Oakland'

Execute this query in SQL Query Analyzer. How many rows are in your
results?

10.

4. View the structure of the titles table. (You can use the Object Browser win-
dow or sp_help titles.)

5. In the space below, write a query to select all books with a price greater
than 20 dollars. Include the title of the book and its price in your results.

SELECT title, price
FROM titles
WHERE price > 20

Execute the query in SQL Query Analyzer. How many rows are in your
results?

Three.

6. In the space below, write a query to select all books with a price of at least
15 and no more than 20 dollars, and year-to-date sales greater than 2000
dollars. Include the title of the book, its price, and year-to-date sales in your
results.

SELECT title, price, ytd_sales
FROM titles
WHERE (price>=15 AND price<=20) AND ytd_sales>2000

Execute the query in SQL Query Analyzer. How many rows are in your
results?

Five.

7. In the space below, write a query to determine the average price of all of the
books in the titles table.

SELECT AVG(price)
FROM titles

Lesson 2: Exploring Transact-SQL 67

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Execute this query in SQL Query Analyzer. What is the average price?

14.7662

8. Clear the Query window.

Using UPDATE
You can use the UPDATE Transact-SQL statement to modify the contents of a
row. Use the following syntax:

UPDATE table_name
SET column_name= value, ...column_name = value
WHERE column_name conditional_operator value

In this example, you replace table_namewith the name of the table you want to
update. Replace column_namewith the name of the column you want to update,
followed by the new value for the column. Finally, you must identify which row
in the table you want to update by using the WHERE clause. In the WHERE clause,
you must specify a column name, a conditional operator (such as =), and a value
for that column. For example, if you want to change the zip code for an author in
the authors table whose ID number is 172-32-1176, type:

UPDATE authors
SET zip = '78912'
WHERE au_id = '172-32-1176'

Using DELETE
You can use the DELETE Transact-SQL statement to delete a row from the table.
Here’s the syntax:

DELETE FROM table_name
WHERE column_name = 'value'

You replace table_namewith the name of the table. Identify the row you want to
delete by replacing column_namewith the name of a column and valuewith a
value that identifies one or more rows in the table. For example, to delete an
author with the ID number of 172-32-1176, type:

DELETE FROM authors
WHERE au_id = '172-32-1176'

APPLY YOUR KNOWLEDGE 2-2

Updating and Deleting Rows
Objective: To add a new row to the practice table, change its values, and

then delete it.

1. In SQL Query Analyzer, use INSERT to add a new row to the practice
table. Use Practice for the first name and User for the last name. What query
did you use?

INSERT INTO practice
VALUES ('User', 'Practice')

If you don’t specify a
WHERE clause with the

UPDATE statement, SQL
Server changes all rows in

the table with the value you
specify.

When you use a WHERE
clause, you can specify val-

ues by using any case
(including uppercase, lower-

case, or mixed-case), as
long as you selected a case-

insensitive sort order when
you installed Microsoft SQL

Server.

If you don’t specify a
WHERE clause with the

DELETE statement, SQL
Server deletes all rows in

the table.

Suggested time:
15 minutes

Script file: update_delete_
lab.sql.

68

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Verify that you inserted the row correctly by using the SELECT statement.
Write the query you used in the space below.

SELECT *
FROM practice

3. In the space below, write a query to change the Practice User’s first name to
Joe. Execute this query in SQL Query Analyzer, and then verify your change
with the SELECT statement.

UPDATE practice
SET fname = 'Joe'
WHERE lname = 'User'

4. In the space below, write a query to delete the new row. Execute this query
in SQL Query Analyzer.

DELETE FROM practice
WHERE lname = 'User'

5. Verify that you deleted the row by using the SELECT statement.

6. Clear the Query window.

Data Control Language Statements
You use DCL statements to set users’ permissions. You can assign permissions to
a specific user or database role. Keep in mind that you must be a member of the
sysadmin server role or dbcreator, db_owner, or db_securityadmin database roles
to use the DCL statements. These statements consist of GRANT, DENY, and
REVOKE. You view the assigned permissions for an object by using the
sp_helprotect stored procedure. Here’s the following syntax for viewing
users’ permissions: sp_helprotect 'object'

Replace objectwith the name of the object for which you want to view the per-
missions assignments. For example, the following statement enables you to view
the permissions assigned to the authors table in the pubs database:
sp_helprotect authors

Statement Permissions
The permissions you can assign to users consist of both statement and object
permissions. Statement permissions enable you to control whether users can use
the following Transact-SQL statements:

• CREATE DATABASE

• CREATE DEFAULT

• CREATE PROCEDURE

• CREATE RULE

• CREATE TABLE

• CREATE VIEW

• BACKUP DATABASE

• BACKUP LOG

The object you specify when
you use the
sp_helprotect stored
procedure must be in your
current database. You can’t
use an object’s fully quali-
fied name (database.owner.
object) to view the
permissions assigned to
objects that aren’t in your
current database.

Lesson 2: Exploring Transact-SQL 69

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In addition to controlling whether users can use these statements, statement per-
missions also control whether users can perform the equivalent tasks in SQL
Server utilities. For example, if you give a user the CREATE DATABASE state-
ment permission, the user can use the command in SQL Query Analyzer, and the
user can also create a database within SQL Server Enterprise Manager.

Because creating a database updates system tables in the master database, you
can assign the CREATE DATABASE statement permission only in the master
database. In addition, you must make the user to whom you want to assign the
permission a user of the master database.

Object Permissions
Now that we’ve looked at statement permissions, let’s move on to object
permissions. You use object permissions to control the tasks users can perform on
objects within a database. For example, you might grant object permissions to
permit some users to insert, delete, or update the information in a table, while
restricting other users from performing those tasks. Object permissions enable
you to control whether users can use the Transact-SQL statements that apply to
database objects. The following table describes these statements and the objects
on which you use them.

Transact-SQL Statement Database Objects
DELETE Tables and views
DUMP TABLE Tables
EXECUTE Stored procedures
INSERT Tables and views
SELECT Tables, views, and columns
UPDATE Tables, views, and columns

Object permissions apply to any Transact-SQL statement, stored procedure, or
utility that uses those statements. So, if you have the permission to delete a table,
you can delete the table by using either the DROP TABLE statement in a query,
the Delete option in SQL Server Enterprise Manager, or a stored procedure that
issues the DROP TABLE statement.

Using GRANT
So how do you go about assigning permissions? You do so by using the GRANT
SQL statement. Here’s the syntax you use to grant statement permissions:

GRANT {ALL|statement[, ...n]}
TO user_name[, ...n]}

You can use the GRANT Transact-SQL statement to grant all statement permis-
sions or only selected statement permissions. If you want to grant a user more
than one statement permission, list the permissions separated by commas. In this
syntax, you replace user_namewith the name of one or more users (or a database
role) to whom you want to grant the permissions. For example, to grant the
CREATE DATABASE and CREATE TABLE permissions to the user named Sally,
use the following syntax:

GRANT CREATE DATABASE, CREATE TABLE
TO Sally

70

To grant object permissions to a user or database role, use this syntax instead:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

GRANT
{
{ALL|permission[, ...n]} [(column_name[, ...n])]
ON {table_name|view|stored_procedure|extended_procedure}
}
TO user_name[, ...n]

Replace permissionwith one or more object permissions. You can optionally
assign permissions for specific columns in a table or view rather than all
columns. If you want to assign permissions for specific columns, list their names
and separate them by commas. Replace table_name, view, stored_procedure, or
extended_procedurewith the name of the object to which you want to grant the
user permissions. Replace user_namewith the name of the user or database role.
For example, to grant the INSERT, UPDATE, and DELETE object permissions to
David for the authors table, use the following syntax:

GRANT INSERT, UPDATE, DELETE
ON authors
TO David

TASK 2B-4:
Assigning Permissions to the Public Database Role

1. In SQL Query Analyzer, execute the following SQL statement:

sp_helprotect 'practice'

This query enables you to view the current permissions assignments for the
practice table. Because you haven’t assigned any permissions to users or
roles for this table, you see a message stating that there are no matching
rows to report. (SQL displays this message because it stores permissions in
rows in the table named syspermissions in each database.)

2. In the space below, write the SQL statement for giving the public data-
base role the SELECT, INSERT, UPDATE, and DELETE permissions to
the practice table in the pubs database.

GRANT SELECT, INSERT, UPDATE, DELETE
ON practice
TO public

3. Execute the query you recorded in step 2 to assign permissions to the
public database role.

4. Execute the query:

sp_helprotect 'practice'

You should see that the public role now has the DELETE, INSERT,
SELECT, and UPDATE object permissions.

5. Clear the Query window.

You must first use the
database in which the object
exists or use the object’s
fully qualified name to
identify it when using the
GRANT statement. You
don’t have to assign the
SELECT permission
because SQL Server auto-
matically grants it to the
public database role for
each object in the database.

Script file: permissions.sql.

Mention to students that
they can type this new
query below the
sp_helprotect
’practice’ query.
When they’re ready to run
the query, have them high-
light the lines of the
GRANT statement and
execute the query.

Lesson 2: Exploring Transact-SQL 71

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using DENY
If you want to prevent a user or role from accessing an object or from using a
statement permission, you can deny the user’s permissions. Denying permissions
removes all permissions granted to the user or role and prevents the user from
inheriting any permissions.

To deny permissions, begin by selecting a database. You can deny permissions
only in your current database. Then, use the following syntax to deny permis-
sions:

DENY {ALL|statement[, ...n]}
TO user_name[, ...n]

For example, to deny the CREATE DATABASE permission for the user Andy,
you should use the following syntax:

DENY CREATE DATABASE
TO Andy

You can deny object permissions by using this syntax:

DENY { {ALL|permission[, ...n]} [(column_name[, ...n])]
ON {table_name|view|stored_procedure|extended_procedure} }
TO user_name[, ...n]

For example, to deny the UPDATE and DELETE object permissions to David for
the authors table, use the following syntax:

DENY UPDATE, DELETE
ON authors
TO David

Using REVOKE
You can revoke granted or denied permissions from a user or role. While revok-
ing a granted permission is similar to denying the user permission, the end result
is different. If you deny a user’s permission, the user can’t inherit permissions for
an object. In contrast, if you revoke a user’s permission, the user can inherit per-
missions for that object.

To revoke permissions, begin by selecting a database. Next, use the REVOKE
Transact-SQL statement to deny permissions. Here’s the syntax:

REVOKE {ALL|statement[, ...n]}
FROM user_name[, ...n]

For example, to revoke the CREATE DATABASE statement permission from
Sally, use the following syntax:

REVOKE CREATE DATABASE
FROM Sally

Here’s the syntax for revoking object permissions:

REVOKE { {ALL|permission[, ...n]} [(column_name[, ...n])]
ON {table_name|view|stored_procedure|extended_procedure} }
FROM user_name[, ...n]

You can assign the
CREATE DATABASE

permission only in the mas-
ter database.

72

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 2-3

Denying and Revoking Permissions
Objective: To deny permissions to the public database role for the prac-

tice table. You will then revoke all permissions from the public
role.

1. In the space below, write the SQL statement for denying the DELETE per-
mission from the public database role for the practice table. Execute this
query in SQL Query Analyzer.

DENY DELETE
ON practice
TO public

2. Verify the change to the public database role’s permissions by executing the
sp_helprotect stored procedure.

3. Write the SQL statement for revoking the UPDATE and INSERT permis-
sions from the public database role for the practice table. Execute the query
in SQL Query Analyzer.

REVOKE UPDATE, INSERT
ON practice
FROM public

4. Verify that you’ve changed permissions by using the sp_helprotect
stored procedure.

5. What’s the difference between denying and revoking permissions?

Revoking a user or role’s permissions removes the assignment altogether. So,
if a user has permissions through another role, the user can inherit those
permissions for the object. In contrast, denying permissions prevents the user
or role from exercising those permissions whatsoever.

6. Clear the Query window.

7. Minimize SQL Query Analyzer.

Working with Books Online
One of the utilities included with SQL Server 2000 is Books Online. You can use
Books Online to read about techniques for installing, managing, and optimizing
SQL Server, as well as how to design, create, manage, and optimize databases.
Books Online consists of four navigation trees: Contents, Index, Search, and
Favorites. The navigation trees are displayed in the left pane of the interface. You
can use the Contents tree to browse the topics covered in Books Online. When
you select a topic, Books Online displays its contents in the right pane of the
interface. Use the Index tree to search for specific terms; in contrast, you can use
the Search tree to search for any word in Books Online. Finally, you can add spe-
cific topics as Favorites; Books Online displays those topics in the Favorites
navigation tree.

Suggested time:
15 minutes

Script file: deny_revoke_
lab.sql.

Lesson 2: Exploring Transact-SQL 73

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

When you use Books Online to find the syntax of SQL statements, you will find
that Microsoft uses various formats to identify the components of each statement.
The following table describes some of the formats used to represent the compo-
nents of a SQL statement.

Component Format Example
SQL keywords All uppercase letters SELECT

User-supplied
parameters of SQL
statements (such as
database, table, and
column names)

All lowercase letters SELECT *
FROM authors

Optional syntax Enclosed in square brackets
[]

CREATE TABLE
[server.database.owner.]
table_ name...

Options that are
alternatives to each
other

Separated by the vertical bar
character (|)

WITH [NO_LOG |
TRUNCATE_ONLY

APPLY YOUR KNOWLEDGE 2-4

Using SQL Server Books Online
Objective: To use Books Online to read and research the Transact-SQL

language.

1. From the Microsoft SQL Server program group, start Books Online.

2. In the left pane, select the Contents tab if necessary. Expand Transact-SQL
Reference. Within the Transact-SQL Reference, select the Functions topic
and read about the various functions included in SQL Server 2000.

Which function can you use to find the highest price of a book in the titles
table in the pubs database?

MAX(column_name)

3. How can you use this function to find the highest price of a book in the
titles table of the pubs database?

SELECT MAX(price)
FROM titles

4. In SQL Query Analyzer, use this function to find the highest price of a book.
How much is the book?

22.95

5. In Books Online, by using the Index tab, find the syntax for the osql utility.
What command should you use to run osql, find the highest price of a book
in the titles table, and close osql?

osql -E -Q "SELECT MAX(price) FROM pubs..titles"

Suggested time:
30 minutes

If students ask, they can
find out the title of this

book by using the
following query: SELECT

title, price
FROM titles

WHERE price=
(SELECT

MAX(price) FROM
titles)

74

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

the same price for the book as you had gotten for your answer in step 4.)

6. Close the Command Prompt window.

7. Use the Search tab to search for Transact-SQL tips. What are some of the
techniques Microsoft recommends you use to improve the performance of
queries?

Answers include: Send multiple statements as a single batch rather than
individually; consolidate statements into a single stored procedure rather
than separate procedures; and restrict the use of cursors.

8. Close Books Online.

9. In SQL Query Analyzer, clear the Query window.

TOPIC 2C
Programming in Transact-SQL
You can use Transact-SQL to program scripts and stored procedures for perform-
ing specific tasks on your server. Components of SQL programs include the SQL
statements themselves, along with variables, control-of-flow statements, and
comments. We’re going to start exploring how you program in SQL by looking at
variables and how you might use them.

Variables
You use variablesfor assigning values. Because you can assign different values
to variables, using them in your programs makes those programs more flexible;
you can write your programs such that users input the values for variables.
Microsoft refers to variables as “local” because they’re available to you only in
your current batch of SQL statements or stored procedure. Variables are not only
local to your batch of statements or stored procedure, but also to your connection.
This means that a variable you declare can’t be accessed by another user’s
connection. Uses for local variables include acting as a counter for a loop to
count (or control) how many times the loop is performed, holding a value for
testing control-of-flow statements, and saving a data value to be returned by a
stored procedure.

Before we go into how you define and work with variables, we want to take a
moment to talk about the term global variable. Prior to SQL Server 2000,
Microsoft’s documentation referred to entities with names that began with two @
signs as global variables. For example, Microsoft originally called the entity
@@SERVERNAME a global variable. This term isn’t technically accurate because,
by definition, a variable is something to which you can assign a value. In SQL
Server 2000, Microsoft corrected this error, and you’ll now find that they call
these entities functions instead of global variables. Keep in mind that these func-
tions (the ones that begin with @@) are parameterless, which means that you can
view their contents by executing a statement such as SELECT @@SERVERNAME.
We describe some of the available functions in the following table.

You might mention to
students that these
recommendations represent
advanced query techniques.
We will be covering these
techniques later in the
course.

We cover stored procedures
in depth in the “Creating
Stored Procedures” lesson.

variable:
A programming entity to
which you assign a value.

Lesson 2: Exploring Transact-SQL 75

Execute this command from a Command Prompt window. (You should get

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Function Contains
@@CONNECTIONS The number of logins to your server since its last

startup.
@@ERROR The error number of the last executed Transact-SQL

statement.
@@ROWCOUNT The number of rows affected by your last SQL

statement.
@@SERVERNAME The name of your SQL server.
@@VERSION The type of CPU installed in your server, and the

date, time, and version of the SQL Server software.

Working with Local Variables
Now that we’ve looked at what variables are and why you use them, let’s move
on to how you implement them. Before you can use a variable in SQL, you must
first define it. You define a local variable by assigning it a name and a data type.
Begin the name of a local variable with a single at (@) sign. You use the
DECLARE Transact-SQL statement to define a local variable. Here’s the syntax:

DECLARE @variable_name data_type

In this syntax, you replace variable_name with the name you want to assign
to the variable and data_type with the variable’s data type. For example, to
define a variable in which you plan to store a last name, you might use the fol-
lowing syntax: DECLARE @temp_name varchar(20).

This statement assigns the name @temp_nameto the variable and defines its data
type as varchar (variable character) with a maximum width of 20 characters.

After you’ve declared a variable, you can assign a value to it by using several
techniques. For example, you can assign a constant value to a variable by using
the syntax: SELECT @temp_name = 'Whalen'.

Alternatively, you can use this syntax:

SELECT @temp_name = au_lname
FROM authors
WHERE au_id = '172-32-1176'

This syntax enables you to store the contents of a column into a variable based
on a condition in your WHERE clause. In this example, you’ll end up storing the
last name, White, into the variable @temp_name. (Remember that you must
declare the variable before you can assign a value to it.)

You can also use the SET statement to assign a value to a local variable. For
example, you might use the following syntax to list all authors who live in a par-
ticular state:

DECLARE @temp_state char(2)
SET @temp_state = 'ca'
SELECT au_lname, au_fname, state
FROM pubs.dbo.authors
WHERE state = @temp_state

These statements enable you to define a local variable named @temp_state, set its
value, and then query the authors sample table for a list of authors who live in
the state defined in the variable.

You can use the DECLARE
statement to declare multiple
variables by separating them
with commas. For example,
this statement declares two

variables: DECLARE
@fname

varchar(20),
@lname

varchar(20).

76

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 2C-1:
Using Variables

1. What query should you use to define a variable named @vlname for
storing an author’s last name and setting its initial value to Hunter?

DECLARE @vlname varchar(20)
SET @vlname = 'Hunter'

2. How can you use this variable to find an author with this last name in
the authors table? (Hint: the name of the last name column in the
authors table is au_lname.)

SELECT *
FROM authors
WHERE au_lname = @vlname

3. In SQL Query Analyzer, execute together the queries you recorded in
steps 1 and 2.

4. What query could you use to determine how many logins have occurred
on your server since its last startup?

SELECT @@CONNECTIONS

5. Execute the new query you recorded in step 4. You might find the number
of connections higher than you expected. This is because the value of this
variable is increased each time you log in to your server. So, if you’ve
opened and closed SQL Query Analyzer several times, you increase the
number of logins on your server.

6. Clear the Query window.

Executing SQL Statements
Up to this point in the course, we’ve had you execute SQL statements individu-
ally in tools such as SQL Query Analyzer. In addition to executing SQL
statements individually, you can also execute SQL statements by using any of the
following techniques: dynamically, through batches, transactions, and scripts.

Dynamic SQL Statements
Microsoft refers to a dynamic SQL statement as one that’s constructed during the
execution of a script. For example, you might design a stored procedure with
variables so that you can construct a SELECT statement that incorporates those
variables. Using dynamic statements increases the flexibility of SQL because it
enables you to construct a statement when a SQL script or stored procedure is
run.

You build a dynamic statement by combining the EXECUTE Transact-SQL key-
word with strings and variables. SQL Server determines the values of the
variables whenever it processes the statement. Here’s the syntax:

EXECUTE ({@variable | 'Transact-SQL string'}
+ {@variable | 'Transact-SQL string'}...)

Script file: variables.sql.

Lesson 2: Exploring Transact-SQL 77

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In this syntax, you should replace @variable with the name of a local variable
(remember, you must have declared a value for the variable first). Replace
'Transact-SQL string' with the static components of a SQL statement.
For example:

DECLARE @vname varchar(20), @vtable varchar(20), @vdbase
varchar(20)
SET @vname = "'White'"
SET @vtable = 'authors'
SET @vdbase = 'pubs'
EXECUTE ('USE '+ @vdbase + 'SELECT * FROM ' + @vtable + '
WHERE au_lname = ' + @vname)

In this example, you must enclose the value for the @vname variable in both
double and single quotes because you need the value of the variable to include
the single quotes. In other words, you want the value of @vname to be ‘White’
not White (without any quotes). You need the single quotes around White so that
the WHERE clause will be WHERE au_lname = 'White' when SQL Server
dynamically constructs the statement.

You should consider the following when constructing dynamic SQL statements:

• The SQL statement along with all variables must consist of character data. If
you want to use numeric data in the dynamic statement, you must convert it
to character data first.

• You can nest multiple dynamic statements.

• You can’t use functions in a dynamic statement.

Batches
A SQL batch is simply a set of SQL statements executed together. You can run a
batch interactively or as part of a script. When you send SQL statements indi-
vidually to the server for processing, your server incurs a certain amount of
overhead to process those statements. In contrast, if you combine several SQL
statements into a batch, your server incurs this overhead only once for the entire
batch—instead of for each individual statement that makes up the batch. Batches
enhance the performance of your server because SQL Server can parse, optimize,
compile, and execute the statements together rather than individually. If you have
a syntax error within a batch, SQL Server won’t process any of the statements in
the batch.

You define a batch in tools such as SQL Query Analyzer by using the GO
command. This command isn’t a SQL statement. Instead, it’s simply a signal that
identifies the end of a batch within the Microsoft SQL Server client utilities (such
as SQL Query Analyzer and osql). SQL Server treats all statements from a previ-
ous GO statement as a single batch—or all statements since the start of your
query session or script until the first GO as a batch.

For example, you can use the following syntax to cause SQL Server to execute
the statements as a batch:

batch:
A series of SQL statements

you send to the server so
that the server can process

them together.

The techniques you use to
identify a batch within

programs vary. For example,
you use the SQL EXECUTE

command within an ODBC
application to identify a

batch.

Point out to students that
the PRINT ’ ’ state-

ment causes SQL Server to
display a blank line in the

results set.

78

USE pubs
SELECT MAX(price) AS 'Highest Book Price'
FROM titles
PRINT ' '
SELECT MIN(price)AS 'Lowest Book Price'
FROM titles
PRINT ' '
SELECT AVG(price)AS 'Average Book Price'
FROM titles
GO

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You should be aware of the following considerations when defining batches:

• You can’t combine the following SQL statements into a single batch:
CREATE PROCEDURE, CREATE VIEW, CREATE TRIGGER, CREATE
RULE, and CREATE DEFAULT. Each statement requires that you follow it
by the GO command. For example, if you want to create a database, table,
and a trigger, you must use the following syntax:

CREATE DATABASE database_name
CREATE TABLE table_name (column list)
GO
CREATE TRIGGER trigger_name
GO

• If you declare and use local variables within a batch, those variables are
available only to you as part of the batch. If you reference a local variable
after a GO command, you’ll get an error message.

• You must precede stored procedures with the EXECUTE (or EXEC) keyword
if you run them within a batch unless the stored procedure is used in the
first line of the batch. For example, consider the following query:

SELECT *
FROM pubs..practice
EXECUTE sp_help 'practice'
GO

Because you’re using the sp_help stored procedure within a batch, you must
precede it with the EXECUTE keyword, as follows:

SELECT *
FROM pubs..practice
EXECUTE sp_help 'practice'
GO

Transactions
SQL Server processes transactions like a batch; in other words, SQL Server treats
the statements within a transaction as a single unit. But here’s the key difference
between a transaction and a batch: you can undo the changes made by all of the
statements within a transaction, but you can’t undo the actions of the statements
within a batch. The entire transaction must succeed or fail as a whole in order to
maintain data integrity. You can define multiple batches within a single
transaction.

You mark the beginning of a transaction by preceding the SQL statements with
the BEGIN TRANSACTION statement. You end a transaction by using either the
COMMIT TRANSACTION or ROLLBACK TRANSACTION statement. If you use
ROLLBACK TRANSACTION, SQL Server undoes any of the changes or rows
affected by the transaction. Use the following syntax to define a transaction:

Lesson 2: Exploring Transact-SQL 79

BEGIN TRANSACTION
SQL statement #1
SQL statement #2
...

COMMIT TRANSACTION

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You use transactions when you must make sure that all of the statements com-
plete successfully. If any one of the statements fail, you don’t want any of the
statements to execute. You typically see transactions used in applications that
involve money. For example, in an application for handling checking and savings
bank accounts, you would use a transaction to write the SQL statements for trans-
ferring money from one account to the other.

Scripts
A SQL script is simply a text file containing a series of SQL statements. You can
open the file within SQL Query Analyzer and then re-execute its statements. You
can also use osql to run script files.

APPLY YOUR KNOWLEDGE 2-5

Running SQL Statements
Objective: To design and execute a dynamic SQL statement. You will

also execute a batch of statements.

1. Write a query to execute a dynamic SQL statement for querying the titles
table in the pubs database for all books. Have SQL Server display only the
title and price columns, and sort the results in descending order by price.
Declare variables for storing the database, table, and columns you want to
include in the SELECT statement. Verify that your query works by executing
it in SQL Query Analyzer.

DECLARE @vdbase varchar(20), @vtable varchar(20), @vcol1
varchar(20), @vcol2 varchar(20)
SET @vdbase = 'pubs'
SET @vtable = 'titles'
SET @vcol1 = 'title'
SET @vcol2 = 'price'
EXECUTE ('USE '+@vdbase+' SELECT '+@vcol1+', '+@vcol2+' FROM
' +@vtable+' ORDER BY PRICE DESC')

2. Write a query to insert two new rows into the practice table in the pubs
database. Add the necessary commands to have SQL Server treat the query
as a batch. Execute the query in SQL Query Analyzer.

INSERT INTO practice
VALUES ('LastName1', 'FirstName1')
INSERT INTO practice
VALUES ('LastName2', 'FirstName2')
GO

3. In SQL Query Analyzer, verify that the new rows were inserted into the
practice table. Write the query you used in the space below.

SELECT *
FROM practice

4. Clear the Query window.

Suggested time:
20 minutes

Script file: execute_lab.sql.

Remind students to be
careful with their spaces in
the EXECUTE command.

80

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Control-of-Flow Statements
You use control-of-flow statements to control how SQL Server executes the state-
ments in a stored procedure. Control-of-flow statements include:

• IF...ELSE

• BEGIN...END

• WHILE

• CASE

Let’s take a look at each of these statements in more detail.

IF…ELSE
Use the IF...ELSE statement to have SQL Server first determine if a condition
is true or false, and then perform an action for each value. For example, you
could use the following IF...ELSE statement to display one message if an
author lives in California and a different message if the author doesn’t:

DECLARE @temp_state char(2)
SELECT @temp_state = state
FROM authors
WHERE au_lname='White'
IF @temp_state='ca'

PRINT 'This author lives in California.'
ELSE

PRINT 'This author does not live in California.'

SQL Server displays the statement between the IF and ELSE statement if the
condition @temp_state=‘ca’ is true, and the statement after the ELSE if the con-
dition is false. SQL Server treats only the first statement after the ELSE keyword
as what it should do if the condition is false. (In this example, the PRINT key-
word simply displays a message on the screen. You can use the PRINT keyword
to display either a message contained within quotes or the value of a variable.)

BEGIN…END
If you want SQL Server to process more than one statement if a condition is true
or false, define a block of statements by using the BEGIN...END keywords.
These keywords enable you to group SQL statements together within an
IF...ELSE statement. For example:

IF (SELECT COUNT(*) FROM authors WHERE contract = 0) > 0
BEGIN
PRINT 'These authors do not have contracts
on file:'

PRINT ' '
SELECT au_lname, au_fname, au_id
FROM authors
WHERE contract = 0
END

ELSE
PRINT 'All authors have contracts on file.'

This block of code enables you to run multiple SQL statements based on whether
the condition is true or false by using the BEGIN...END keywords. In this
example, the IF condition counts the number of rows in the authors table where
the contract column has a value of zero (0). If the count is greater than zero, you
will see a message stating that there are authors who don’t have contracts on file,
followed by a list of those authors.

Lesson 2: Exploring Transact-SQL 81

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

WHILE
You can use a WHILE statement to repeatedly perform a task until a specific con-
dition is met. For example, you might use a WHILE statement to add rows to a
table. Here’s the syntax:

SET NOCOUNT ON
GO
DECLARE @counter INT
SET @counter=0
WHILE (@counter<20)
BEGIN

INSERT INTO pubs..practice
VALUES('Last'+CAST(@counter as char(2)), 'First')
SET @counter = @counter+1

END
SET NOCOUNT OFF

Using the statement SET NOCOUNT ON prevents SQL Server from displaying
the message stating the number of rows affected by the INSERT statement. Use
the CAST(variable) AS data_type) clause to convert the integer vari-
able @counter to character format.

CASE
The CASE statement evaluates an expression to see if it is true or false. Based on
the result, it uses a specific value for true or false. For example, the following
query returns the full name of the state an author in the pubs database lives in,
rather than the state abbreviation:

SELECT au_fname + ' ' + au_lname AS Name, 'State of Residence' =
CASE

WHEN 'CA' THEN 'California'
WHEN 'IN' THEN 'Indiana'
WHEN 'KS' THEN 'Kansas'
WHEN 'MD' THEN 'Maryland'
WHEN 'MI' THEN 'Michigan'
WHEN 'OR' THEN 'Oregon'
WHEN 'TN' THEN 'Tennessee'
WHEN 'UT' THEN 'Utah'

END
FROM pubs..authors
ORDER BY state, au_lname

If you want to use a numeric value to determine which case is used, but have
SQL Server display a character-based message, you must use the following syn-
tax:

SELECT au_fname+' '+au_lname AS Name, 'Contract Status' =
CASE
WHEN (contract=1) THEN 'Contract on file.'
WHEN (contract=0)
THEN 'We do not have a contract with this author.'
END

FROM pubs..authors

Notice that you must use the syntax 'Contract Status' = in the SELECT
statement. This is because the CASE statement returns character data even though
the conditional statement evaluates a numeric column.

82

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 2-6

Using Control-of-Flow Statements
Objective: To create a query to display different messages based on a

book’s year-to-date sales.

1. Write a query to list the books in the titles table. Include the title and year-
to-date sales columns in the results set; sort the results set in descending
order by the year-to-date sales column. Make sure you include a line to use
the pubs database. Use the CASE control-of-flow statement to display mes-
sages of your choice based on each book’s year-to-date sales. Sort the rows
in descending order by year-to-date sales. Record your messages in the fol-
lowing table.

Condition Message
year-to-date sales <= 200
year-to-date sales > 200 and <= 1000
year-to-date sales > 1000 and <= 5000
year-to-date sales > 5000

USE pubs
SELECT title, 'Year-to-date sales' =

CASE
WHEN (ytd_sales<=200)
THEN 'message'

WHEN (ytd_sales>200 AND ytd_sales<=1000)
THEN 'message'

WHEN (ytd_sales>1000 AND ytd_sales<=5000)
THEN 'message'

WHEN (ytd_sales>5000)
THEN 'message'
END

FROM titles
ORDER BY ytd_sales DESC

2. Execute your query in SQL Query Analyzer.

3. Use SQL Server Books Online to determine how you can add a case for
handling null values in the ytd_sales column for the titles table.

I should use the following syntax to handle null values:

WHEN (ytd_sales IS NULL) then 'message'.

4. Edit your query to include the syntax for handling null values. Execute the
query again to verify that your change works.

5. Don’t clear the Query window.

Suggested time:
20 minutes

Script file: statement.sql.

Lesson 2: Exploring Transact-SQL 83

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating SQL Scripts
You can create a SQL script by using any text editor such as Notepad or SQL
Query Analyzer. If you create your script within Notepad, make sure you save it
with the extension .sql. By default, SQL Query Analyzer automatically appends
the .sql extension to scripts when you save them. You can load and execute a
script from within SQL Query Analyzer or by using the osql command-line
utility.

Comments
You should always document your work by including comments in scripts. SQL
Server supports two types of comments: inline and block. An inline comment is
one that you place on the same line as a SQL statement. You must precede it
with two hyphens. For example, use the following syntax for inline comments:

SELECT *
FROM authors
WHERE contract = 0 -- Find authors without contracts.

You can use a block of comments when you want to isolate several comments
from your SQL statements. Identify a block of comments by preceding them with
/* and ending them with */. By convention, you’ll typically see lines within the
block of comments preceded by **. For example:

/*
** This syntax typically indicates a block of comments
** in a script.Use the /* to indicate the start of the
** block, and a */ to indicate the end of the block.
*/

When you’re debugging a script, you might find it helpful to prevent SQL Server
from executing some of the lines of your script. Use the block comment indica-
tors to comment out those lines. For example:

/*
USE pubs
SELECT AVG(price)
FROM titles
*/

Remember, SQL Server won’t execute the statements between the block comment
indicators.

TASK 2C-2:
Saving a Script File

1. In SQL Query Analyzer, verify that you still see your query from Lab 6.

2. Above the query, insert the following block of comments:

/* Query to display a message based on each book's
year-to-date sales.
** Designed by your_name on date.
*/

Replace your_name with your name, and date with today’s date. (Notice

84

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

that SQL Query Analyzer automatically displays your comments in light
green.)

3. Choose File→Save As to display the Save Query dialog box. Look at the
Save In drop-down list. Verify that your current folder is C:\Data.

4. Look at the Save In drop-down list to verify that your current folder is
C:\Data. In the File Name text box, type sales and then click Save. SQL
Query Analyzer automatically appends the .sql extension to your script file.
By default, SQL Query Analyzer saves the file in the ANSI file format.

5. On the toolbar, click the New Query button to open a new, blank Query
window.

6. Close the Query window containing the SQL statements for your script.

7. Choose File→Open to display the Open Query File dialog box.

8. From the list of query files, select the sales script and click Open to load
your script into SQL Query Analyzer.

9. Execute the script to re-run your query. You should see that SQL Query
Analyzer switches to the pubs database and then runs your query.

10. Close SQL Query Analyzer.

APPLY YOUR KNOWLEDGE 2-7

Using Osql to Execute a Script
Objective: To use osql to execute the sales SQL script.

1. In the space below, write the command you should use to execute the sales
SQL script. As part of the command, log on to your server using Windows
Authentication.

osql -S sqlserver# -E -i c:\Data\sales.sql

2. Open a Command Prompt window and execute the command you wrote in
step 1.

3. Close all open windows.

Students must do steps 5
and 6 in order to close the
sales.sql script file and
open a new Query window.
If students simply clear the
existing Query window,
SQL Query Analyzer
interprets the clear as a
change to the sales.sql
script file.

Suggested time:
10 minutes

If you need help with this
command, refer to the osql
topic in Books Online.

Lesson 2: Exploring Transact-SQL 85

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Working with XML
SQL Server 2000 enables you to configure Microsoft Internet Information Ser-
vices (IIS) to access data on your SQL server. After you configure this support,
users can query your server over the Hypertext Transfer Protocol (HTTP). This
means that users can enter queries as a URL in the Address text box of their Web
browser. You can also develop Web pages that display SQL Server data. Whether
you use a query within a Web browser or you develop Web pages to display SQL
Server data, the language you must use is called the Extensible Markup Language
(XML).

Before users can access your server through HTTP using XML, you must first
configure a virtual directory for SQL Server. Let’s explore what a virtual direc-
tory is first. A virtual directory is nothing more than an alias that points to a
folder somewhere on your network. (This folder can be on your IIS server, SQL
server, or any other server.) We call a virtual directory an alias because the name
your users use to access this directory doesn’t indicate where that folder is
stored—or the actual path to that folder. For example, you access a virtual direc-
tory when you enter a URL such as www.microsoft.com/sql. In this example,
“sql” represents the name of the virtual directory, yet that reference could point to
any server (or multiple servers) on Microsoft’s network. You configure a virtual
directory by using the IIS Virtual Directory Management for SQL Server utility.

So, in order to set up an IIS server to access a SQL server, you must first config-
ure a virtual directory. Your first step is to create a folder to store the files you
want to make accessible through the virtual directory. Next, you use the IIS Vir-
tual Directory Management for SQL Server utility to define the virtual directory
and point it to this folder. As part of the virtual directory’s configuration, you
specify the types of access you want to permit when users query your server with
a URL. SQL Server supports three types of access:

• Directly accessing objects in databases (such as tables and views).You typi-
cally won’t enable support for direct database access in order to make your
server as secure as possible.

• Executing XML Path (XPath) Language queries.With these types of queries,
users access schema files in the URL instead of accessing a database
directly. You can think of schema files as essentially a view that’s based on
one or more tables within a database.

• Executing template files.To support these queries, you create a document
that contains the SQL statements you want users to be able to execute along
with XML formatting. When users call this template in a URL, the SQL
statements you’ve included in the template file are executed.

Designing an XML Query
While this course isn’t meant to teach you XML programming, we want to pro-
vide you with an overview of using the SELECT statement in an XML query.
You use a SELECT statement to display SQL data on a Web page. As part of
your query, you must specify the format in which you want to display the data, as
follows:

SELECT columns
FROM table
FOR AUTO | EXPLICIT | RAW

In the following table, we describe the differences between the AUTO,
EXPLICIT, or RAW XML formats.

virtual directory:
A virtual directory is an alias

to a folder that can be
accessed through your IIS

server.

86

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Format Description
AUTO Displays each of the rows in the query’s result set as nested XML

elements, and uses each column’s name to identify the attributes
in the result set. (In comparison, the RAW format simply identi-
fies each row in the result set as “row.”)

EXPLICIT Displays each of the rows in the query’s result set based on the
explicit formatting you specify.

RAW Displays each of the rows in the query’s results set as an XML
element with the generic identifier of “row.”

You can optionally add the keyword XMLDATA to any of these formats to enable
SQL Server to include not only the data, but also information about the structure
of the table(s) behind the data. SQL Server returns this schema information
before it displays the results set. Here’s the syntax:

SELECT columns
FROM table
FOR AUTO | EXPLICIT | RAW [, XMLDATA]

Let’s say that you want to use the following query to retrieve data in the XML
format. This query retrieves a list of stores’ ID numbers, their names, and all
orders on file from the pubs database:

SELECT store.stor_id AS StoreID, stor_name AS Name,
order.ord_num AS OrderNum,

order.qty AS Quantity
FROM stores AS store JOIN sales AS orders
ON store.stor_id = orders.stor_id
ORDER BY stor_name
FOR XML format

Let’s take a look at using the RAW and AUTO formats in more detail. In Figure
2-4, you can see what the results set for this query looks like when we use the
clause FOR XML RAW. Notice that each row in the results set is contained in its
own tag named “row.” In addition, SQL Server repeats the ID number and name
of each store for each order they have on file. Now, take a look at the results set
you see in Figure 2-5. We used the clause FOR XML AUTO in this example.
When you use the AUTO format, SQL Server displays the results set in a hierar-
chy: You should see that each store has its own tag containing the StoreID and
Name information (the store tag is called the parent tag), and then indented below
each store tag is a tag for each order on file (each order represents a child tag).
Using the AUTO format also provides you with greater flexibility because you
have control over the labels assigned to each of the tags.

Lesson 2: Exploring Transact-SQL 87

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 2-4: Displaying data with the RAW XML format.

Figure 2-5: Displaying data with the AUTO XML format.

There are a few restrictions you can run into when using the FOR XML clause as
part of a URL query. You can’t use the FOR XML clause within:

• A subquery for an INSERT, UPDATE, DELETE, SELECT, or
SELECT...INTO statement. For example, you can’t execute the following
query:

SELECT *
FROM table_name1
WHERE ... (SELECT * FROM table_name2 FOR XML RAW)

• A COMPUTE BY or FOR BROWSE clause.

• A stored procedure that you call by an INSERT statement.

88

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• As part of the SELECT statement you use to define a view.

• A cursor.

TASK 2C-3:
Choosing an XML Format

1. Which XML format do you think was used in the query to generate the
results set you see in the graphic below? How can you tell?

This query used theFOR XML RAW clause to generate this output. I can tell
because each element uses only the generic tag of “row.”

2. You’ve been asked by the Web development team for your company to
provide them with data from your company’s customers table in XML
format. They don’t want the data in hierarchical order, but they would
like you to include information about the customers table’s schema.
What FOR XML clause should you use?

I should use the clauseFOR XML RAW, XMLDATA. This clause enables
me to provide the Web development team with the customer information in a
non-hierarchical format. Using theXMLDATA keyword enables me to also
provide the Web development team with the customers table’s schema.

Summary
In this lesson, we provided you with an overview of using the Transact-SQL
language to work with both SQL Server and its data. You learned how to
use the two primary tools for executing queries: SQL Query Analyzer and
osql. You also explored the various types of SQL statements you can use,
including Data Definition Language, Data Control Language, and Data
Manipulation Language statements. Finally, we explored the types of pro-
gramming commands you can use to program in Transact-SQL.

Lesson 2: Exploring Transact-SQL 89

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

LESSON 2 REVIEW
2A In what scenario would you use osql instead of SQL Query Analyzer?

Because osql enables me to both log on to a SQL server and run a script or
query with a single command, I would use osql whenever I want to create a
batch file to perform tasks on my server.

2B What are the three categories of SQL statements? Give an example of
each.

• Data Definition Language (DDL) statements:CREATE DATABASE.

• Data Manipulation Language (DML) statements:SELECT.

• Data Control Language (DCL) statements:GRANT.

2C How can you document SQL scripts?

I can document SQL scripts by using comments. The comments I use can be
inline (on the same line as a SQL statement) or within a block. I must pre-
cede inline SQL statements by two hyphens (--). I identify a block of
comments by preceding them with /* and ending them with */.

90

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing and
Implementing Databases

Overview
One of your first tasks as a database developer is to create the databases you
need. In this lesson, we will show you how to go about designing your data-
bases and optimizing their design for performance. Next, we’ll discuss how
to create databases and their filegroups using Transact-SQL. Finally, we will
explore how you manage databases by expanding, shrinking, and dropping
them.

Objectives
To design, create, and manage databases, you will:

3A Identify the issues for designing databases.

One of the first factors you should consider when designing your data-
bases is their size. In this topic, we will discuss how to estimate the size
of your databases so that you can configure the size of its files. We will
also examine how you can design your database so as to optimize its
performance.

3B Create and configure databases.

After you’ve designed your strategy for implementing a database, your
next task is to create the database. In this topic, we will create a database
by using Transact-SQL. We will also show you the techniques you can
use to configure database options.

3C Manage databases.

Because databases change over time, it’s important that you know how to
either increase or decrease the size of a database. In this topic, we will
show you how to automatically or manually change the size of a
database. You’ll also learn how to increase the size of a database’s trans-
action log. Finally, you’ll learn how to delete a database if you no longer
need it.

Data Files:
create_database.sql
filegroup.sql
set_options.sql
increase_size.sql

Lesson Time:
2 hours

LESSON

3

Lesson 3: Designing and Implementing Databases 91

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 3A
Identifying Database Design Issues
Before you can create databases, you should understand SQL Server’s terminol-
ogy for databases and their components. We’re going to start by looking at this
terminology, and then move on to how you go about creating databases on your
server.

Databases and Files
A database is a collection of database objects; these objects include tables,
indexes, views, and stored procedures. At a minimum, each database consists of a
primary data file with an extension of .mdf. In addition to its primary data file,
you can optionally configure SQL Server to store a database in a secondary data
file. These files use the extension of .ndf. You might choose to use a secondary
data file if you want to distribute a database across multiple physical drives. Plac-
ing the data files on separate hard drives can help improve the performance of a
database because SQL Server can perform file I/O operations on both drives
simultaneously.

Transaction Logs
In addition to a database’s primary data file, you must also create a transaction
log for each database. The transaction log consists of at least one file. SQL Server
automatically assigns the extension of .ldf to each transaction log file. Let’s take
a moment to explore the role of the transaction log. SQL Server uses the transac-
tion log to make it possible to either recover (roll forward) or undo (roll back) a
transaction. This capability of rolling back or rolling forward transactions enables
SQL Server to protect your database from corruption in the event of a server
crash.

Here’s how transaction logging works: When you change a database, the first
thing SQL Server does is to copy the pages of the database that you’re changing
into a portion of RAM called the buffer cache. (Depending on what’s happening
on your server, these pages might already be cached in RAM.) Next, SQL Server
records your change to both the data pages and the transaction log in RAM. It
then writes the change to the database’s transaction log on your server’s hard
disk. At this point, SQL Server considers your change committed. Only after writ-
ing the change to the transaction log can SQL Server then write the changed data
pages in RAM out to the database on your server’s hard disk. What’s most
important for you to understand is that SQL Server alwayswrites the change to
the transaction log on the hard disk before it writes that same change to the
database. It’s this strategy of writing to the transaction log before writing to the
database that makes it possible for you to recover a failed transaction (or to undo
a transaction, for that matter). Because SQL Server writes to the transaction log
before it writes to your database, you’ll sometimes hear a database’s transaction
log referred to as a write-ahead log.

SQL Server identifies two types of transactions: explicit and implicit. An explicit
transaction is a group of one or more Transact-SQL statements that begin with
the BEGIN TRANSACTION statement and end with the COMMIT
TRANSACTION statement. SQL Server doesn’t commit the changes you make in
an explicit transaction’s SQL statements until it processes the COMMIT
TRANSACTION statement. As a result, you can roll back the transaction at any
time prior to the COMMIT TRANSACTION statement. Remember, though, you

92

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

must always use COMMIT TRANSACTION after you use BEGIN
TRANSACTION. For example, if you precede an INSERT statement with the
BEGIN TRANSACTION statement, SQL Server won’t add the new row to your
table until you execute the COMMIT TRANSACTION statement.

You use an implicit transaction when you use SQL statements by themselves
without the BEGIN TRANSACTION statement. SQL Server considers all state-
ments you execute part of a transaction until you issue either a COMMIT
TRANSACTION, COMMIT WORK, or ROLLBACK TRANSACTION statement. The
good news is that SQL Server doesn’t enable implicit transactions by default.
Instead, SQL Server turns on what’s called the autocommit transaction mode. In
this mode, SQL Server treats each individual SQL statement (along with its
parameters) as a separate transaction. For example, if you execute a query and
don’t use the BEGIN TRANSACTION and COMMIT TRANSACTION statements,
nor do you turn on implicit transactions, SQL Server autocommits the transaction.
Why is this better? It’s better because it means you don’t have to worry about
executing a COMMIT TRANSACTION statement for SQL Server to commit your
changes.

TASK 3A-1:
Designing Databases

1. You’re planning to implement a customer service application within
SQL Server. What components do you need to create to support this
application? What file extensions will SQL Server use?

I must create a database for storing the necessary database objects, such as
tables, indexes, views, and stored procedures. This database must contain at
least a primary data file with a file extension of .mdf. I also need to create a
transaction log for this database. SQL Server stores the transaction log in a
file with the extension .ldf. After I’ve created the database, the database
developer must create the database objects needed for the customer service
application.

2. Explain the function of a transaction log.

To protect my databases, SQL Server writes all changes to my database to
the transaction log on the server’s hard disk before it writes these changes
to the database itself. After SQL Server writes the transactions to the trans-
action log, SQL Server can then write the changes to the database on the
hard disk. Because SQL Server always writes to the transaction log first, it
can roll back or roll forward any incomplete transactions in the event of a
server failure.

Estimating the Space Requirements for Databases
One of your tasks when you create a database is to specify its initial size. SQL
Server creates your database’s data file based on this initial size. For example, if
you create a database named sqldata with a size of 50 MB, SQL Server creates a
50 MB data file to store the database. You should estimate your space require-

Lesson 3: Designing and Implementing Databases 93

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

ments prior to creating your databases to avoid over-allocating disk space. If you
find that your space requirements change, however, you can either shrink or grow
your databases. You can also configure SQL Server 2000 to automatically grow
or shrink your databases, and we’ll talk more about that later on in this lesson.

Microsoft recommends that you configure the size of a database’s transaction log
as 10 to 25 percent of the size of the database. For example, if you estimate that
your database will use 150 MB of disk space, you should configure the transac-
tion log’s size to be between 15 and 37.5 MB. If you frequently update the
database, you’ll find that you should use a transaction log size that’s close to 25
percent of the database’s size.

How SQL Server Measures Disk Space
SQL Server uses disk space in 8 KB pages. SQL Server uses some pages to keep
track of the space allocated within a database, and other pages to store user and
index data. Within a database, SQL Server allocates space for database objects
such as tables and indexes in extents. An extentis a contiguous block of eight
pages for a total of 64 KB of disk space, as shown in Figure 3-1. A database con-
sists of 16 extents per megabyte. SQL Server uses both uniform and mixed
extents. With a uniform extent, SQL Server dedicates the entire extent to an
object. SQL Server uses a mixed extent to store up to eight objects. By default,
SQL Server stores any new objects you create in a mixed extent. If that object
grows to where it needs more than eight pages (64 KB), SQL Server stores the
object’s additional pages in a uniform extent.

Figure 3-1: Measurements of disk space.

page:
The minimum block of disk

space that SQL Server
copies from your server’s

hard disk to RAM, and vice
versa. In SQL Server 2000,

SQL Server uses 8 KB
pages.

extent:
An allocation of disk space

made up of eight contiguous
8 KB pages for a total of 64

KB.

Measurements of Disk
Space

94

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

How SQL Server Manages Disk Space
Let’s take a look at how SQL Server uses the pages within a database in more
detail. When you create a database file, SQL Server automatically creates the first
extent as a mixed extent. Within this file, SQL Server reserves the first page for
storing file information such as any file attributes you configure, the name of the
database to which the file belongs, the file’s filegroup, minimum size, and file
growth increment. This page is called the File Header page.In addition to the
File Header page, SQL Server also uses a second page called the Page Free
Space (PFS) pageto keep track of the amount of free space available in the
pages that make up the file. SQL Server can manage up to 8,000 contiguous
pages per PFS page (approximately 64 MB of data). If your database exceeds this
size, SQL Server adds PFS pages as necessary.

SQL Server also uses two other types of pages to identify free extents and mixed
extents with available pages: Global Allocation Map (GAM) pageand Secondary
Global Allocation Map (SGAM) page. SQL Server uses a GAM page to keep
track of all extents within a file. For each extent, SQL Server uses a bit to indi-
cate whether the extent is allocated or not. If an extent is allocated, SQL Server
marks the bit as 0; in contrast, if the extent is free, SQL Server marks this bit as
1. A single GAM page can manage up to 63,904 extents (roughly 4 GB of data).
SQL Server can allocate additional GAM pages as needed. SQL Server uses the
SGAM page to keep track of up to 63,904 mixed extents that have at least one
page free. (If a mixed extent has a free page, SQL Server can store data on that
page.) Like GAM pages, SQL Server uses a bit with a value of 1 to indicate that
a mixed extent has one or more free pages. If an extent is a uniform extent or has
no free pages, SQL Server marks this bit with a value of 0.

Keep in mind that the GAM and SGAM pages work together to help SQL Server
identify available extents. For example, if an extent’s bit has a value of 1 on the
GAM page, this means that the extent is available for storing data—even if the
SGAM page has a value of 0 for the same extent. This is because SQL Server
doesn’t update the information on the SGAM page until it actually begins to store
data in the extent. In the following table, we describe the possible combinations
of an extent’s bits on both the GAM and SGAM pages, and what each combina-
tion means.

GAM Bit SGAM Bit Result
1 0 This extent is available for storing data.
0 1 This extent is a mixed extent with at least one free

page available for storing data.
0 0 This extent is not available for storing data. The extent

could be either a full mixed extent or a uniform extent.

In summary, when you create a database file, SQL Server uses at least the first
four pages of that file to keep track of information about the file along with its
space usage. These pages are numbered sequentially beginning with 0, as follows:

• Page 0: File Header page

• Page 1: Page Free Space page

• Page 2: Global Allocation Map page

• Page 3: Secondary Global Allocation Map page

We show you what these pages look like within the file’s extent in Figure 3-2.

File Header page:
The first page in the first
extent of a file. SQL Server
uses this page to store
information about the file,
including the name of the
database to which it belongs,
the filegroup, and sizing
information.

Page Free Space (PFS)
page:
SQL Server keeps track of
the available space in the
file’s pages within the PFS
page. Each PFS page can
keep track of a maximum of
8,000 contiguous pages in
the file. If necessary, SQL
Server adds multiple PFS
pages to keep track of free
space.

Global Allocation Map
(GAM) page:
SQL Server uses this page to
keep track of all extents
within a file and identifies
whether or not each extent is
allocated.

Secondary Global
Allocation Map (SGAM)
page:
SQL Server uses the SGAM
page to keep track of all
mixed extents, along with
whether or not each mixed
extent has at least one free
page.

File Space Pages

Lesson 3: Designing and Implementing Databases 95

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 3-2: File space pages.

TASK 3A-2:
Identifying the Space Requirements for Databases

1. How does SQL Server address the storage space on your hard drive?

SQL Server uses disk space in 8 KB pages. It allocates disk space in extents.
An extent is a contiguous block of eight pages, for a total of 64 KB.

2. What factors should you consider when estimating the size of a data-
base?

Answers might include: The amount of data stored in the database’s tables,
the size of the transaction log, and anticipated growth.

3. At what point does SQL Server use a uniform extent to store a table’s
data?

SQL Server uses a mixed extent to store a table until the table’s size exceeds
more than eight pages. When a table’s size exceeds 64 KB (eight pages),
SQL Server allocates the table’s next extent as a uniform extent.

Optimizing Databases
SQL Server 2000 includes features that enable you to optimize the performance
of its databases. These features include such techniques as:

• Creating multiple data files.

• Creating filegroups.

96

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Installing a drive array in your server.

• Using separate hard disks for transaction logs and the tempdb database.

One factor to bear in mind with a database system is that your server must per-
form frequent file Input and Output (I/O) operations. Any technique you
implement that improves the speed of file I/O will improve the speed of the data-
base system itself. So the one thing all of these different techniques have in
common is that they enable you to improve the speed of file I/O in SQL Server.
Let’s examine each of these techniques in detail.

Creating Multiple Data Files and Filegroups
In general, you should spread as much of your database across as many hard
disks as you can. You can do so by creating multiple files for your database, and
placing each file on a separate hard disk. For example, if your server has four
hard disks, you’ll see better performance if you create four data files for the data-
base, and place each data file on each of the four hard disks. You can further
enhance performance by placing tables and their associated nonclustered indexes
in separate data files on separate hard disks. This strategy enhances performance
because SQL Server can access a table’s nonclustered index on a separate hard
disk from that of the table itself.

When you create a database, SQL Server automatically creates a default filegroup
that contains your database’s primary data file. You can add secondary data files
to this default filegroup, or you can create secondary files within a new user-
defined filegroup. You use filegroups to administer groups of secondary data files
as a unit. For example, if you have a very large database, instead of backing up
the entire database, you can back up by filegroups. Although filegroups don’t
inherently improve the performance of your database, keep in mind that creating
a user-defined filegroup requires that you create at least one secondary data file.
Creating this secondary data file on a separate hard disk does improve the perfor-
mance of a database.

You can use filegroups only for storing data files. SQL Server doesn’t permit you
to store a database’s transaction log file within a filegroup. You can, however,
create multiple transaction log files for a database, and then place these files on
separate hard disks.

Implementing Drive Arrays
If you don’t want the administrative workload for creating multiple files and
filegroups, a different strategy for improving file I/O performance is to implement
a hardware drive array in your server. A drive array, also known as a Redundant
Array of Independent Disks (RAID), enables your server to write data across
multiple hard disks simultaneously. While both Windows 2000 and Windows NT
enable you to implement a software RAID (disk striping with parity), this strat-
egy increases the workload on your server, which can degrade your server’s
overall performance. Microsoft recommends that you implement a hardware
RAID instead of a software RAID on your SQL server.

SQL Server 2000 supports RAID levels 0, 1, 5, and 10. Each of these RAID lev-
els varies as to performance enhancements and fault tolerance. With RAID level
0, disk striping, your server writes (stripes) data across multiple hard disks. This
strategy greatly improves the performance of both reading and writing to the hard
disks, but doesn’t offer you any fault tolerance. If any one of the hard disks in
the drive array fails, your server won’t be able to access any of the data on any

filegroup:
A collection of one or more
database data files. You use
filegroups to group data files
together so that you can
administer them as a single
unit.

Lesson 3: Designing and Implementing Databases 97

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

of the hard disks in the drive array. RAID level 1, disk mirroring or disk
duplexing, enables your server to mirror the data on one hard disk onto a second
hard disk. RAID level 1 doesn’t improve file I/O performance, but it does offer
excellent fault tolerance. In this strategy, if one disk fails, your server can still
access the data on the other hard disk.

RAID level 5, disk striping with parity, enables your server to stripe data along
with parity information across multiple hard disks. If one of the hard disks in the
array fails, your server can reconstruct its information by using the parity infor-
mation on the other disks in the array. RAID level 5 enhances your server’s fault
tolerance. It also increases your server’s performance when reading data, but not
when writing data. Your server will be slower when writing data because it must
write the parity information across the hard disks.

With RAID 10, you configure your server to mirror two drive arrays. In other
words, RAID 10 is a combination of both RAID 1 (disk mirroring) and RAID 0
(disk striping). RAID 10 enables you to increase the fault tolerance of disk strip-
ing by mirroring the drive array. In addition, RAID 10 offers you the fastest disk
I/O because your server doesn’t have to write parity information to the hard
disks. The only drawback to RAID 10 is its cost. For example, if you want to
implement RAID 10, you’ll need to mirror a four-disk array with a second four-
disk array—for a total of eight hard disks.

Using Separate Hard Disks for the Transaction Log and
Tempdb
Another strategy you can use to enhance file I/O performance is to place your
database’s transaction log on its own hard disk separate from that of the database.
SQL Server writes to a database’s transaction log sequentially. For this reason,
your server will perform better if the transaction log is on its own dedicated hard
disk. This strategy enables the hard disk’s read-write heads to stay in place for
writing to the transaction log. Keep in mind that most production database servers
typically have only one user database, so this means that you’ll need to store only
one database’s transaction log on a separate hard disk.

Microsoft also recommends that you isolate your server’s tempdb database from
your user databases to improve performance. Remember, SQL Server uses the
tempdb database as its scratchpad for performing tasks such as sorting a table,
rebuilding indexes, and so on. You’ll improve the overall performance of SQL
Server if you can isolate this database on its own hard disk or disk array. Don’t
worry about fault tolerance with the tempdb database; SQL Server empties it out
each time you restart your server.

If you have the luxury of
designing your “ideal” SQL

server, here’s what we
recommend: a RAID 10 disk

array for storing your
server’s operating system,
SQL Server software, and
user database; a mirrored
pair of hard disks for the

database’s transaction log;
and a separate hard disk or

disk array for the tempdb
database.

98

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 3A-3:
Optimizing Database Performance

1. You’re responsible for designing the server on which your company will
use SQL Server and a customer service database. You want to minimize
your administrative workload while still providing the best possible per-
formance for your server. What should you do?

Because implementing multiple data files and filegroups increases the admin-
istrative workload, I should implement either a RAID 5 or RAID 10 disk
array. This strategy enables my server to take advantage of reading and
writing to multiple disks simultaneously without requiring me to plan and
implement multiple files/filegroups.

TOPIC 3B
Creating Databases
Now that we’ve looked at the factors you should consider before creating a data-
base (such as capacity and file placement), let’s move on to the nuts and bolts of
creating a database. You can create a database by using the CREATE DATABASE
Transact-SQL statement, the Create Database Wizard, or SQL Server Enterprise
Manager. You can use SQL Server Enterprise Manager to both access the Create
Database Wizard and to create a database by using dialog boxes. You start the
Create Database Wizard in SQL Server Enterprise Manager by first selecting your
server in the console tree, and then choosing Tools→Wizards. From the list of
wizards, expand the Database category, select the Create Database Wizard, as
shown in Figure 3-3, and then click OK. To use the dialog boxes in SQL Server
Enterprise Manager to create a database, right-click on the Databases folder
below your server. From the shortcut menu, choose New Database. For more
information on creating databases by using SQL Server Enterprise Manager,

Administration.

You must be logged on as a
member of either the
sysadmin or dbcreator server
roles in order to create a
database.

Lesson 3: Designing and Implementing Databases 99

please see the New Horizons course Microsoft SQL Server 2000 - System

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 3-3: Starting the Create Database Wizard.

Creating a Database Using Transact-SQL
You can create a database and its transaction log by using the CREATE
DATABASE Transact-SQL statement. You use this statement in either SQL Query
Analyzer or the osql command-line utility. SQL Server keeps tracks of any new
databases you create in the sysdatabases table and the space allocated to each
database in the sysusages table. These tables are both stored in the master data-
base; for this reason, you should always back up the master database after
creating a new database.

When you create a database, you must specify information about the database
such as its logical name, filegroup, primary data file name, size, maximum size,
and the increments with which you want it to grow. Use the following syntax
with the CREATE DATABASE statement:

CREATE DATABASE logical_database_name
ON

PRIMARY (NAME = logical_file_name,
FILENAME = 'path\file_name',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

LOG ON
(NAME = logical_file_name,
FILENAME = 'path\file_name',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

The CREATE
DATABASE command isn’t

case-sensitive; however,
most documentation of SQL

displays commands and
parameters in uppercase

letters and values in lower-
case letters.

For readability, we’ve added
spaces around the equal

signs (=) in all SQL
statement examples. When
you write your statements,

these spaces aren’t
necessary.

100

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In this example, we’re creating a single data file within the default filegroup.
(SQL Server calls the default filegroup “primary.”) We’re going to show you how
to create secondary data files and user-defined filegroups in just a moment. In the
following table, we describe the parameters you use in this CREATE DATABASE
statement.

Parameter Use to Specify
Database Name The logical name of the database. You use this name to access the

data in the database. For example, you use this name to query the
database in SQL Query Analyzer.

Logical File Name The logical name of the primary data file.
File Name The name and path assigned to the operating system file in which SQL

Server will store your database. This file is part of the primary
filegroup. You must also specify a file name for the transaction log;
this file is not part of the database filegroup.

Size The initial size of the database file. You can specify the size in KB or
MB. This file must be at least as big as the model database. By
default, SQL Server configures the model database as 1.5 MB in size.
The model database’s primary data file is .75 MB, and its transaction
log file is also .75 MB.

Maxsize The maximum size to which you want SQL Server to be able to grow
the file. You can specify maxsize in KB or MB. If you don’t specify a
maxsize, SQL Server configures the database file for unrestricted file
growth (which means it can grow until your server’s hard disk is
completely full).

File Growth Increment The increment with which you want SQL Server to grow the file. You
can specify the increment in either MB, KB, or as a percentage. You
can’t specify a file growth increment that exceeds the value you specify
for the file’s maximum size. If you set the file growth increment to zero,
SQL Server can’t increase the database file’s size. If you don’t specify a
file growth increment, SQL Server sets it to a default value of 10
percent and a minimum value of one extent (64 KB).

For example, to create a database named movies with a 15 MB primary data file
in the primary filegroup, and a 3 MB transaction log file, here’s the syntax:

CREATE DATABASE movies
ON
PRIMARY (NAME = movies_data,
FILENAME =
'c:\Program Files\Microsoft SQL Server\mssql\Data\movies.mdf',

SIZE = 15MB,
MAXSIZE = 20MB,
FILEGROWTH = 20%)
LOG ON
(NAME = movies_log,
FILENAME =
'c:\Program Files\Microsoft SQL Server\mssql\Data\movies.ldf',

SIZE = 3MB,
MAXSIZE = 5MB,
FILEGROWTH = 20%)

Assign the extension .mdf to
primary database files, .ndf
to secondary database files,
and .ldf to transaction log
files.

Lesson 3: Designing and Implementing Databases 101

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

This example creates a database with a logical name of movies. The logical name
of the database’s data file is movies_data, and the physical name of the data file
is movies.mdf. The database is 15 MB in size, can grow to 20 MB, and must
grow in increments of 20 percent of the database size. This example also creates
a transaction log file with a logical name of movies_log, and a physical file name
of movies_log.ldf. The transaction log is 3 MB in size, can grow to 5 MB, and
must also grow in increments of 20 percent of the transaction log size.

APPLY YOUR KNOWLEDGE 3-1

Creating a Database
Objective: To create a database for use throughout this course.

Setup: If necessary, log on to your computer as Student# with a pass-
word of password.

1. Given the information in the following table, write the syntax you should
use to create this database by using Transact-SQL. Notice that this database
contains only one data file and it’s stored in the primary filegroup.

Parameter Value
Database name movies
Primary data file’s
logical name

movies_data

Primary data file’s path
and file name

C:Program Files\Microsoft SQL Server\mssql\Data\movies_data.mdf

Database initial size 25 MB
Database maximum size 40 MB
Database file growth
increment

1 MB

Transaction log logical
name

movies_log

Transaction log path
and file name

C:Program Files\Microsoft SQL Server\mssql\Data\movies_log.ldf

Transaction log initial
size

6 MB

Transaction log
maximum size

8 MB

Transaction log file
growth increment

1 MB

Suggested time:
10 minutes

Script file: create_database.
sql.

102

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE master
CREATE DATABASE movies
ON
PRIMARY (NAME = movies_data,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_data.mdf',
SIZE = 25MB,
MAXSIZE = 40MB,
FILEGROWTH = 1MB)
LOG ON
(NAME = movies_log,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_log.ldf',
SIZE = 6MB,
MAXSIZE = 8MB,
FILEGROWTH = 1MB)

2. If necessary, open SQL Query Analyzer and log in to your server with Win-
dows Authentication. Write and parse the query you wrote in step 1.

3. When your syntax is correct, execute your query.

4. In SQL Query Analyzer, choose File→Save As. From the Save In drop-down
list, verify that you’ve selected the My Documents folder. In the File Name
text box, type movies; and then click Save to save the commands for creat-
ing the movies database as a SQL script.

5. Close the Query window.

6. Reconnect to your SQL server. (Choose File→Connect, and log on to your
server using Windows Authentication.)

Creating Multiple Data Files and Filegroups
If you decide to create multiple data files for a database, you can create them all
within the primary filegroup, or you can create one or more user-defined
filegroups to contain the data files. In the following example, we show you how
to create a secondary data file within the primary filegroup:

Lesson 3: Designing and Implementing Databases 103

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CREATE DATABASE logical_database_name
ON

PRIMARY (NAME = logical_file_name,
FILENAME = 'path\file_name.mdf',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)
(NAME = logical_file_name,
FILENAME = 'path\file_name.ndf',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

LOG ON
(NAME = logical_file_name,
FILENAME = 'path\file_name',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

Notice that you add a secondary data file name simply by adding a second file
specification (the information that’s contained within the parentheses). Make sure
you name the secondary data file with the extension .ndf.

In this next example, we show you how to create a secondary data file in a user-
defined filegroup:

CREATE DATABASE logical_database_name
ON

PRIMARY (NAME = logical_file_name,
FILENAME = 'path\file_name.mdf',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

FILEGROUP filegroup_name
(NAME = logical_file_name,
FILENAME = 'path\file_name.ndf',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

LOG ON
(NAME = logical_file_name,
FILENAME = 'path\file_name',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

As you can see, you create a user-defined filegroup simply by adding the clause
FILEGROUP filegroup_name, and then following it with a file specification
for creating a file within that filegroup.

Adding Files and Filegroups to an Existing Database
Now that you’ve seen how to create a database with multiple data files and
filegroups, let’s take a look at how you add a data file or filegroup to an existing
database. You add either a file or a filegroup by using the ALTER DATABASE
statement. If you want to add a new file and place it in a new filegroup, you must
add the filegroup first—and then add the new file to that filegroup. Here’s the
syntax for adding a new filegroup:

ALTER DATABASE logical_database_name
ADD FILEGROUP new_filegroup_name

104

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You add a new file to a database by using the ALTER DATABASE statement as
well. If you don’t specify a TO FILEGROUP clause as part of the statement,
SQL Server automatically creates the new file within the database’s default
filegroup. Here’s the syntax for adding a file to a database:

ALTER DATABASE logical_database_name
ADD FILE

(NAME = logical_file_name,
FILENAME = 'path\file_name.ndf',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

TO FILEGROUP filegroup_name

Configuring the Default Filegroup
By default, SQL Server configures the primary filegroup as your database’s
default filegroup. Unless you specify otherwise, SQL Server stores any new data-
base objects you create in the default filegroup. Because your database’s system
tables (such as those that keep track of the database’s users and permissions) are
stored in the primary filegroup, you want to make sure that this filegroup doesn’t
run out of space. For this reason, you might want to configure a user-defined
filegroup as the default instead of the primary filegroup. You can do so by modi-
fying the filegroup’s properties using the ALTER DATABASE statement or SQL
Server Enterprise Manager. Here’s the syntax for using the ALTER DATABASE
statement to change the default filegroup:

ALTER DATABASE database_name
MODIFY FILEGROUP filegroup_name DEFAULT

Viewing Information about Files and Filegroups
SQL Server includes two system stored procedures that you can use in SQL
Query Analyzer to view information about files and filegroups. Use the following
stored procedure to identify the physical names and attributes of the current data-
base’s data files: sp_helpfile. You can optionally specify a file name to view
information about that specific file.

You can view information about the current database’s filegroups by using the
following stored procedure: sp_helpfilegroup. You can optionally specify a
filegroup name so that you can view information about only that filegroup.

APPLY YOUR KNOWLEDGE 3-2

Adding a Filegroup and Data File to a Database
Objective: To add a second filegroup and a data file within it to the mov-

ies database. You’re also going to set this new filegroup as the
default filegroup for the movies database.

1. In SQL Query Analyzer, design and execute a query to add a filegroup
named Data to the movies database. Write the query you used in the follow-
ing space.

USE master
ALTER DATABASE movies
ADD FILEGROUP Data

Suggested time:
15 minutes

Script file: filegroup.sql.

Lesson 3: Designing and Implementing Databases 105

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Design and execute a query to add a data file with a logical name of
movies_data2 and a physical file name of movies_data2.ndf. Create this file
with an initial size of 10 MB, and don’t specify a maximum size (so that the
file growth is unlimited). Add this file to the Data filegroup. Write the query
you used in the following space.

ALTER DATABASE movies
ADD FILE
(NAME = movies_data2,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_data2.ndf',
SIZE = 10 MB)
TO FILEGROUP Data

3. Use sp_helpfile and sp_helpfilegroup to view information about
the files and filegroups for the movies database. (Hint: Make sure you use
the movies database first.)

4. Clear the Query window.

Configuring Database Options
Now that you’ve created a database, you can configure its options. (Actually, you
can also set these options when you use the CREATE DATABASE statement to
create a database.) For example, you can configure a database as read-only if you
don’t want users to be able to make changes to its data. You can configure an
existing database’s options by using either SQL Server Enterprise Manager or the
ALTER DATABASE statement. You can display and modify a database’s options
in SQL Server Enterprise Manager by right-clicking on the database and choosing
Properties from the shortcut menu. Use the following syntax to configure data-
base options by using Transact-SQL:

ALTER DATABASE database_name
SET option[, status]

You’ll find that some of the database options can be enabled simply by specifying
the keyword. Others require that you specify a status value (such as ON or OFF).
For example, here’s the syntax to configure the movies database as read-only:

ALTER DATABASE movies
SET READ_ONLY

Microsoft divides the database options you can configure into categories. Within
each category, you’ll find several different options you can set. The following
table describes each of the option categories and some of the common options
you might configure. (For each option, we provide you with the SQL keyword
you should use in the SET clause when configuring the option.)

Category Option Enables You to Configure
Auto AUTO_SHRINK Whether SQL Server can automatically

decrease the size of the database. This
option is disabled by default. You must
specify ON or OFF for this option.

If you want to set certain
options for all new databases

you create, set them on the
model database. SQL Server

then sets these options for
any new databases you

create.

106

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Category Option Enables You to Configure
Cursor CURSOR_CLOSE_ON_COMMIT SQL Server to automatically close open

cursors whenever it commits their
transactions. This option is disabled by
default. Specify either ON or OFF for this
option.

Recovery RECOVERY FULL |
BULK_LOGGED | SIMPLE

How much data SQL Server keeps in the
database’s transaction log. The more
information SQL Server maintains in the
transaction log, the greater the
recoverability of your data. If you use the
Full Recovery Model, SQL Server logs all
transactions in your database’s transaction
log. With the Bulk-Logged Recovery Model,
SQL Server logs all transactions in the
transaction log except for bulk operations.
Finally, with the Simple Recovery Model,
SQL Server clears all transactions from the
log as soon as it commits them. By default,
SQL Server configures all databases to use
the Full Recovery Model.

SQL ANSI_NULL_DEFAULT Support for null columns in a database.
Null means that no data has been stored in
the column. By configuring a column to
permit nulls, you permit users to not enter
data in that column. By default, SQL Server
disables this option, which means that all
database columns are set to not permit
nulls unless you specify otherwise.

State SINGLE_USER |
RESTRICTED_USER |
MULTI_USER

The database so that it can be used by only
a single user, or by only certain users
(those users who are members of the db_
owner, dbcreator, or sysadmin roles), or by
all users. By default, SQL Server configures
a database as multi-user.

READ_ONLY | READ_WRITE The database as read-only or read-write.
Use the READ_ONLY option to enable
users to view data but not make any
changes to the data. By default, SQL
Server configures new databases as
READ_WRITE.

Viewing Database Option Settings
You can use the DATABASEPROPERTYEX() function to determine the status
of a database’s options. Here’s the syntax:

SELECT DATABASEPROPERTYEX('database_name', 'property')

Replace database_name with the database for which you want to view an
option’s status. Replace property with any of the following properties:

• IsAutoShrink

• IsCloseCursorsOnCommitEnabled

• Recovery

Lesson 3: Designing and Implementing Databases 107

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• IsAnsiNullDefault

• Updateability (to determine if a database is read-only or read-write)

• UserAccess

TASK 3B-1:
Setting Database Options

1. In SQL Query Analyzer, verify that you’re using the movies database.

2. Execute the following query:

SELECT DATABASEPROPERTYEX('movies', 'UserAccess')

You can use this query to determine if the database is configured as single-
user, restricted user, or multi-user.

3. Look at the Results pane. You should see that the movies database is con-
figured for multi-user access (the default setting).

4. Let’s set the movies database for single-user access. Execute this new
query:

ALTER DATABASE movies
SET SINGLE_USER

You should see a message stating that the command completed successfully.

5. Execute a new query to verify that the movies database is single-user:

SELECT DATABASEPROPERTYEX('movies', 'UserAccess')

6. Click the New Query button on the toolbar to attempt to open a Query
window with a second connection to the movies database.

7. Look at the SQL Query Analyzer message box. After a few moments, you
should see a message stating that themovies database is open and configured
to support only one user at a time. You can’t connect to the movies database
because you have an existing connection to the database and have configured
it as single-user.

Script file: set_options.sql.

108

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Click OK to close the message box.

9. Close the new Query window.

10. Write and execute a new query to reconfigure the movies database for
multi-user access. Record the query you used in the space below.

ALTER DATABASE movies
SET MULTI_USER

11. Write and execute a query to configure the movies database to use the
Simple Recovery Model. Record the query you used in the space below.

ALTER DATABASE movies
SET RECOVERY SIMPLE

Displaying Information About Databases and
Transaction Logs
SQL Server 2000 includes several stored procedures that you can use to view
information about your databases. We describe these stored procedures in the fol-
lowing table.

Stored Procedure Enables You to View
sp_helpdb The name, size, owner, database ID, creation data, and database

options. If you run the sp_helpdb stored procedure against
the master database, you can view information about all data-
bases on your server. If you want to view information about
only one database, you can run the sp_helpdb procedure
with a specific database’s name by typing sp_helpdb
database_name.

sp_spaceused A summary of the storage space used by a database and its
transaction log and objects. You can use sp_spaceused
by itself or followed by the name of a database, transaction
log, or object.

TASK 3B-2:
Using Stored Procedures to View Database Information

1. In SQL Query Analyzer, verify that you’re using the movies database.

2. In the Query window, execute the following query:

sp_helpdb

This query enables you to view information about all databases on your
server.

Lesson 3: Designing and Implementing Databases 109

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Look at the Results pane. You should see a list of your server’s databases
(in alphabetical order). Notice that the new database you created displays
your Windows 2000 account information as the owner, whereas the data-
bases created during the installation of SQL Server display the sa login ID
as the owner. You can also see the options configured for each database by
looking at the Status column.

4. Clear the Query window.

5. In the following space, write a query for displaying information about
only the movies database.

sp_helpdb movies

6. In SQL Query Analyzer, execute the query you recorded in step 5. This
query enables you to view the name of the database and its size, along with
the names and sizes of each of the files that make up the database.

7. In the Query pane, execute a new query:

sp_spaceused

The sp_spaceused procedure enables you to view the size of the movies
database. You can also view the amount of space within the movies database
that’s reserved for data and indexes. Because you’ve just created the movies
database, it contains only the system tables and indexes automatically copied
by SQL Server into the movies database from the model database.

8. Clear the Query window.

110

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 3C
Managing Databases
As you implement databases on your SQL server, you might find that the size
needs for those databases change. Management tasks include:

• Increasing (expanding) or decreasing (shrinking) the size of a database.

• Increasing the size of a transaction log.

• Dropping (deleting) a database.

Changing the Size of a Database
You can either increase (expand) or decrease (shrink) the size of a database. In
order to do so, you must be the owner of the database or a member of the
sysadmin server role to modify its size. In addition, you must be using the master
database to change the size of any other database. When you change the size of a
database or transaction log, you should always back up the master database both
before and after the change. This way, if any problems occur due to the change in
size, you can restore the master database to recover from the failure.

You can increase the size of a database by using any of the following techniques:

• Automatically, by setting the automatic growth option on the database, its
transaction log, or both.

• Manually, by increasing the size of the database, its transaction log, or both.

• Manually, by configuring secondary database files, log files, or both.

Automatically Expanding a Database and its Transaction Log
You can configure SQL Server to automatically expand your database and trans-
action log files as needed by using either the ALTER DATABASE statement or
SQL Server Enterprise Manager. As you know, you can configure the database
and its transaction log with an initial size, a maximum size, and a growth
increment.

Use the following syntax to expand your files by using the ALTER DATABASE
statement:

ALTER DATABASE database_name
MODIFY FILE
(NAME = 'logical_name',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

You can configure a database file to support unrestricted file growth by using the
clause MAXSIZE = UNLIMITED, or by not specifying a maximum size. (If you
don’t specify a maximum size, SQL Server automatically configures the database
file for unrestricted file growth.) Be aware that if you configure a file to support
unrestricted file growth, it can continue to grow until your server runs out of disk
space. As an alternative, you might want to set a maximum size that’s less than
your server’s available disk space and configure a file growth increment; that
way, SQL Server can expand the database without the risk of your server running
out of disk space.

Lesson 3: Designing and Implementing Databases 111

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

If you want to configure SQL Server to automatically expand a transaction log by
using the ALTER DATABASE statement, replace logical_namein the above syn-
tax with the name of the database’s transaction log.

Manually Expanding a Database and its Transaction Log
If you configure SQL Server not to automatically grow a database or its transac-
tion log, you can manually expand them by using either SQL Server Enterprise
Manager or the ALTER DATABASE statement. To manually expand a database or
its transaction log in SQL Server Enterprise Manager, perform the following
steps:

1. In SQL Server Enterprise Manager, below your server’s Databases folder,
right-click on the database you want to expand. From the shortcut menu,
choose Properties.

2. Use the Data Files page to expand the database by increasing each data file’s
size in the Space Allocated (MB) text box. Use the Transaction Log page to
expand the transaction log. Expand the transaction log by increasing its size
in the Space Allocated (MB) text box.

You can manually increase the size of the database or its transaction log by using
the following ALTER DATABASE statement:

ALTER DATABASE database_name
MODIFY FILE

(NAME = 'logical_name',
SIZE = size)

If you think about it, another technique you can use to expand a database is to
add secondary data files. Remember, you can create these database files in the
primary filegroup or in a user-defined filegroup. As we’ve said, you use second-
ary database files as a strategy to distribute a database across multiple hard drives
to enhance performance. Create secondary database files by using either SQL
Server Enterprise Manager or the ALTER DATABASE statement. To create sec-
ondary database files by using the ALTER DATABASE statement, use the
following syntax:

ALTER DATABASE database_name
ADD FILE

(NAME = 'logical_name',
FILE NAME = 'path\filename',
SIZE = size,
MAXSIZE = maxsize,
FILEGROWTH = filegrowth_increment)

APPLY YOUR KNOWLEDGE 3-3

Maintaining the Size of Databases and Transaction Logs
Objective: To use the ALTER DATABASE statement to change the size

of the movies database and its transaction log.

1. In SQL Query Analyzer, execute the query sp_helpdb movies to view
the total size of the movies database, along with the size of each of its files.

Because we covered creating
secondary data files and

filegroups in the previous
topic, we aren’t going to

cover them here. But keep in
mind that you use secondary
data files and filegroups as a

technique for manually
expanding a database.

Suggested time:
10 minutes

Script file: increase_size.
sql.

112

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. You want to increase the size of the movies database by increasing the size
of the movies_data2 secondary data file from 10 MB to 15 MB. What SQL
statement should you use?

USE master
ALTER DATABASE movies
MODIFY FILE

(NAME = 'movies_data2',
SIZE = 15MB)

3. Execute this query in SQL Query Analyzer.

4. Verify that you’ve increased the size of the movies_data2 file by executing
the query sp_helpdb movies.

5. You want to increase the maximum size of the movies database’s transaction
log from 8 MB to 10 MB. What SQL statement should you use?

USE master
ALTER DATABASE movies
MODIFY FILE

(NAME = 'movies_log',
MAXSIZE = 10MB)

6. Execute this query in SQL Query Analyzer.

7. Verify your changes by using sp_helpdb.

8. Clear the Query window.

Monitoring the Size of a Transaction Log
You should keep a close eye on the amount of space used in your database’s
transaction logs in order to make sure they don’t run out of space. (Of course,
this is only an issue if you haven’t configured the transaction log to support unre-
stricted file growth.) If a transaction log runs out of space, your users won’t be
able to make any changes to the associated database. If you need to increase the
size of a transaction log, use SQL Server Enterprise Manager or the ALTER
DATABASE Transact-SQL statement.

You can monitor the amount of space used in a transaction log by using SQL
Server Enterprise Manager, Windows 2000 System Monitor, or the DBCC
SQLPERF(LOGSPACE) statement. This statement enables you to view a list of
databases, the total log size in MB, and the percent of space used within each log
file. In System Monitor, you can monitor each database’s transaction log by using
the SQL Server: Databases object and then choosing the appropriate database
instance. The following table describes some of the counters associated with the
SQL Server: Databases object and how you can use them to monitor transaction
logs.

Counter Enables You to Monitor
Log File(s) Size (KB) The size of the transaction log. You might want to monitor this

counter if you’ve configured SQL Server to automatically
increase the size of your transaction log.

Percent Log Used The percentage of the transaction log space that’s currently in
use.

Lesson 3: Designing and Implementing Databases 113

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can monitor these counters in System Monitor’s Chart view, or you can cre-
ate an alert in the Alert view. For example, you can configure System Monitor to
generate an alert if the Percent Log Used counter exceeds 75 percent.

Certain situations can generate extra transactions that can cause your transaction
logs to fill up sooner than normal. For example, if you’re importing data into a
table with indexes, SQL Server logs all inserts and index changes in the transac-
tion log. If you’re going to import a large amount of data, you might consider
deleting the table’s indexes, importing the table, and then rebuilding the indexes
in order to avoid filling up the transaction log. Another situation that can cause
your transaction logs to fill up is adding or modifying text or image data by using
the WRITETEXT or UPDATETEXT statement with the WITH LOG option. SQL
Server doesn’t typically log images in order to reduce the amount of space used
in the transaction log.

APPLY YOUR KNOWLEDGE 3-4

Using System Monitor to Monitor Transaction Logs
Objective: To use System Monitor to monitor the movies database’s

transaction log.

1. In System Monitor, create a chart to monitor the transaction log for the mov-
ies database. Monitor both the size of the transaction log (by using the Log
File Size counter) and the percentage of the log file in use (by using the Per-
cent Log Used counter). You can select multiple counters by holding down
the [Ctrl] key.

2. What percentage of the movies database’s log file is currently in use?

Approximately 5 percent of the movies database’s log file is in use.

3. In System Monitor, create an alert to notify you when the transaction log for
the movies database is more than 75 percent full.

4. Close System Monitor.

Shrinking Databases or Files
If you find that you’ve allocated too much space to a database, you can shrink
the entire database or one of its files. Shrinking a database updates its information
in the master database. For this reason, make sure that you back up the master
database before and after you shrink a database. You can configure SQL Server to
automatically shrink a database, or you can manually shrink the database by
using the DBCC SHRINKDATABASE statement. You configure SQL Server to
automatically shrink a database by checking the Auto-shrink database option. You
can shrink an individual database file by using the DBCC SHRINKFILE
statement.

Suggested time:
15 minutes

You access System Monitor
by choosing Performance

from the Administrative Tools
program group.

Remember, you configure a
database’s options by

displaying its properties
within SQL Server Enterprise

Manager or by using the
ALTER DATABASE

statement.

114

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

If you manually shrink a database or one of its files, make sure that you don’t
attempt to make it smaller than the size of the model database or the amount of
data currently stored in the database or file. When you use the DBCC
SHRINKDATABASE statement, SQL Server shrinks the database as a deferred job
that runs in the background on your server. Because shrinking the database runs
as a deferred job, you might not see changes to your database immediately. Use
the following syntax to shrink an entire database:

DBCC SHRINKDATABASE (database_name, target_percent
[, NOTRUNCATE|TRUNCATEONLY])

Replace database_namewith the logical name you assigned to the database.
Replace target_percentwith the amount of free space you would like to have in
the database after SQL Server shrinks it. You can optionally add the parameters
NOTRUNCATE or TRUNCATEONLY. Using the NOTRUNCATE option configures
SQL Server to keep the freed file space in the database rather than returning the
space to the operating system. Using TRUNCATEONLY configures SQL Server to
return any freed space to the operating system, shrinks the database file to the last
allocated extent, and reduces the file size without moving any data. SQL Server
doesn’t attempt to move data to any unallocated pages. DBCC
SHRINKDATABASE ignores the target_percentparameter when you use the
TRUNCATEONLY option.

You can shrink one of the database’s files by using the DBCC SHRINKFILE
statement. Use the following syntax to shrink a database file:

DBCC SHRINKFILE (file_name, target_size
[,EMPTYFILE|NOTRUNCATE|TRUNCATEONLY])

Replace file_namewith the name of the database or transaction log file you want
to shrink. You can use the EMPTYFILE option to configure SQL Server to move
all data from the file to other files within its filegroup so that you can then delete
the file altogether. You then delete the file by using the ALTER DATABASE
statement. The NOTRUNCATE and TRUNCATEONLY options work the same in
DBCC SHRINKFILE as they do with DBCC SHRINKDATABASE.

TASK 3C-1:
Configuring SQL Server to Automatically Shrink a
Database File

1. In SQL Query Analyzer, execute the following query:

ALTER DATABASE movies
SET AUTO_SHRINK ON

Enabling this option makes it possible for SQL Server to automatically
shrink the database as needed.

2. Clear the Query window.

Lesson 3: Designing and Implementing Databases 115

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Deleting a Database
If you find that you no longer need a database, you can delete it to reclaim disk
space on your server. SQL Server also refers to deleting a database as dropping
the database. When you delete a database, SQL Server removes its information
from the sysdatabases table in the master database. Because of this change, make
sure you back up the master database both before and after you delete a database.
SQL Server automatically deletes all of the database’s files when you delete the
database. You can optionally delete the backup and restore history for the data-
base as well. You must be logged in to the SQL server as the sa user or a
member of the sysadmin or db_owner roles to delete a database.

You can’t delete a database if it is in the process of being restored, is open by
any user, or is publishing any of its tables in replication. You also shouldn’t
delete any of the system databases (although you can delete the msdb database).

You delete a database by using either SQL Server Enterprise Manager or the
DROP DATABASE command. To use the DROP DATABASE command to delete
a database, execute the following statement: DROP DATABASE
database_name.

Replace database_namewith the name of the database you want to delete. You
can delete multiple databases by listing the name of each database, separating the
name of each database with a comma.

TASK 3C-2:
Deleting a Database

1. In SQL Query Analyzer, verify that the master database is your current
database.

2. Execute the following query:

DROP DATABASE movies

3. Execute a new query:

sp_helpdb

This stored procedure enables you to view a list of the databases defined on
your server. You should see that you no longer have a movies database.

4. Clear the Query window.

116

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 3-5

Using a Script File to Create a Database
Objective: To use the movies.sql script file you created earlier in the les-

son to re-create the movies database on your server.

1. In SQL Query Analyzer, open the movies.sql script file.

2. Modify the script file to include the following changes:

• Increase the maximum file size to the transaction log to 10 MB.

• Add the commands to create the movies_data2 secondary data file. Con-
figure this file with an initial size of 15 MB and support for unrestricted
file growth. Create this file within a filegroup named Data.

Record the changes you made to the script in the following space.

USE master
CREATE DATABASE movies
ON
PRIMARY (NAME = movies_data,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_data.mdf',
SIZE = 25MB,
MAXSIZE = 40MB,
FILEGROWTH = 1MB),
FILEGROUP Data (NAME = movies_data2,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_data2.ndf',
SIZE = 15MB)
LOG ON
(NAME = movies_log,
FILENAME =
'C:\Program Files\Microsoft SQL

Server\mssql\Data\movies_log.ldf',
SIZE = 6MB,
MAXSIZE = 10MB,
FILEGROWTH = 1MB)

3. Save your changes to the movies.sql script file.

4. Execute the script.

5. Use sp_helpdb to verify that you see the movies database again.

6. Close all open windows.

Suggested time:
15 minutes

Lesson 3: Designing and Implementing Databases 117

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, you learned just about everything you need to know about
creating databases. We began by defining the planning you should do when
designing a database. We also talked about how you can optimize a data-
base’s design by using multiple files or filegroups, or by implementing
RAID. Next, you learned how to create a database by using the CREATE
DATABASE Transact-SQL statement. Finally, you learned how to manage
databases by setting options with the ALTER DATABASE statement, and
how to expand, shrink, and delete a database.

LESSON 3 REVIEW
3A What formula can you use to estimate how big you should make a data-

base’s transaction log?

Microsoft recommends that I initially configure the size of a transaction log
as 10 to 25 percent of the database size.

3B You would like to make sure that your database’s transaction log
doesn’t use all of the available disk space on your server. How can you
prevent this from happening?

I can prevent a transaction log from using all of the available disk space by
configuring it with a size limit. I limit the size by specifying the maxsize
parameter as part of theCREATE DATABASE statement.

3C What are some of the management tasks you might perform on data-
bases?

Answers might include: Expanding the size of a database or its transaction
log; shrinking a database; and deleting a database.

118

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating and Managing
Tables

Overview
As database systems go, tables are pretty much the heart and soul of the
database. In this lesson, we will examine the system data types you can use
to define the columns in a table. We’ll show you how to create and use
user-defined data types to standardize the structure of tables within a
database. We’ll also discuss how to create and maintain a table by using
Transact-SQL.

Objectives
To create and manage tables, you will:

4A Identify the data types you can use to define the columns in a table.

In this topic, you will learn how you go about designing tables by
reviewing the principles of data modeling. Next, you’ll learn the different
data types you can use when defining a table’s columns. Finally, you’ll
learn how to create both user-defined data types and tables themselves by
using Transact-SQL.

4B Maintain tables.

After you’ve created your tables, odds are that you’ll need to make
changes to their structure. In this topic, we will show you how to add,
modify, and drop columns from a table. We will also walk you through
creating a script file that you can use to re-create a database’s tables and
objects.

Data Files:
data_types.sql
movie_tables.sql
modify_table.sql

Lesson Time:
3 hours

LESSON

4

Lesson 4: Creating andManaging Tables 119

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 4A
Design and Create Tables
Because your primary goal when you implement a database management system
is to give users access to information, the tables and the data within them are the
heart of SQL Server. When you create a table, you must define the types of infor-
mation (columns) you want to store in each row in the table. For example, if you
are creating a table to store customer information, you might create columns to
store the customer’s first name, last name, phone number, and address
information.

Designing a Table
You should always plan the design of tables for a database before you actually
create them. You can begin the design by examining the data you want to store in
each table. Because SQL Server is a relational database, meaning you can link
tables together, you should try to normalizeyour tables. When you normalize
tables, you prevent duplications of data both within each table and across mul-
tiple tables. For example, assume that you are responsible for designing the tables
for a point-of-sale system for a movie rental store, and you would like to have
tables that contain the following information:

• Customer names and addresses

• Videotape inventory

• Invoices for each customer’s movie rentals

You would like the customer table to contain the customer’s name, telephone
number, and address. For the movie table, you would like to track each tape’s
unique ID number and title. You would like the invoice table to identify the cus-
tomer and the movies rented. When you design the invoice table, you should try
to minimize the duplication of information contained in other tables. So, you
might design the invoice table to contain only the customer’s phone number and
the tape numbers of the movies rented. By using the customer’s telephone num-
ber, you can link the invoice table to the customer table, and then query the
customer table for the customer’s name and address. Likewise, by using the tape
numbers for the movies rented, you can query the movie table for the titles.

When you design normalized tables, you prevent the duplication of data across
multiple tables. But, if you want to be able to link multiple tables together, as in
the movie rental store example, the tables must have at least one column in
common. For example, by creating a phone number column in both the customer
and invoice tables, you link the information in both tables together by that
column.

There are three normal forms, each one having a greater degree of normalization.
In First Normal Form (1NF), you must configure the columns in a table so that
each contains different information. For example, if you want to store each cus-
tomer’s birthdate in the customer table, you must design the table so that only
one column contains the customer’s birthdate in order for the table to conform to
1NF. In Second Normal Form (2NF), you can’t configure a table where one of its
columns is derived from another column. Continuing with our example, if you
configure the customer table with a birthdate column, you can’t configure a sec-
ond column to contain the customer’s birth year in order to conform to 2NF.
Finally, in Third Normal Form (3NF), you can’t configure tables with any dupli-
cate information. For example, let’s say that your database contains the customer

normalization:
The process of organizing

the information in tables
within a relational database

in order to minimize the
duplication of data across

those tables.

120

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

and employees tables. If you want to store birthdate information for both tables,
in 3NF, you must put the birthdate information in its own separate table—and
then link the customer and employee tables to this table. While we could go on
in much greater detail about normalizing tables, here’s the most important thing
you should understand: When you normalize tables, you prevent the duplication
of data across those tables. Preventing duplication reduces the disk space require-
ments for your data and helps to eliminate data entry errors.

Consider the Output
Another factor you should consider when designing a table is how you might
want the data from a table to be displayed. For example, if you create a customer
table that contains a single column for storing the customer’s name, you might
not be able to display a list of customers in alphabetical order by their last
names. If users enter the customers’ names as first_name last_name, you will be
able to display the customers only in alphabetical order by their first names. You
could also have problems with inconsistent data entry—some users might enter
customers’ names as last_name, first_name, while other users might enter the
names as last_name first_name(with no comma). In this scenario, you should
create separate columns for each portion of the customer’s name, including first
name, middle name or initial, last name, and possibly a suffix (for storing “Jr.” or
“III”).

Lesson 4: Creating andManaging Tables 121

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 4A-1:
Normalizing Table Designs

1. Given the structure of the following tables, what changes should you
make to normalize their design?

I should remove the DepartmentName column from the Employees table.

2. As a consultant, you’ve been asked to analyze the design of a database
for a local junior college. One of the complaints the college administra-
tion has is that they have students that take more than five classes, but
the design of the Students table enables them to enroll students in only
five classes. You can see the structure of two of the database’s tables in
the following graphic. How should you normalize the design of these two
tables? Do you need any additional tables to improve the design of this
database?

In order to normalize these tables, I should first remove the ClassTitle1,
ClassTitle2, ClassTitle3, ClassTitle4, and ClassTitle5 columns from the Stu-
dents table. Next, I should add an identification number for each class in the
Classes table. Finally, I should create an enrollment table. I’ll use this table
to store a row for each class in which a student is enrolled. This table
should have two columns: one for storing the class identification number,
and the other for storing the student’s social security number.

122

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Defining Columns for a Table
Now that we’ve looked at what you should consider when designing a table, let’s
move on to the nuts and bolts of defining a table’s columns. When you create the
columns for a table, you must give each column a name and identify the type and
length of data you want to store. You can create a maximum of 1,024 columns
within a table; the maximum size of each row can’t exceed 8,060 bytes.

The names you assign to columns can be up to 31 characters long. You should
try to keep your column names as short as possible while still making the names
meaningful. For example, if you’re creating a column to store each customer’s
last name in the customer table, you might want to name the column last_name
or lname. Because you can build views with columns from different tables, you
might also want to put a portion of the table name in the column name. For
example, you might want to name the last name column for the customer table
cust_lname so that you can easily identify that the column is from the customer
table and contains last name information.

You use data types to identify what type of data (values) users can enter into the
column. For example, you can use the integer data type to specify that users can
enter only numbers into a column. In contrast, if you use the character data type,
users can enter both numbers and letters, along with other characters, into the
column. So, if you want users to enter only numbers into a column, you should
use the integer (or one of the other numeric) data types.

SQL Server supports two categories of data types: system and user-defined. The
system data types are included with SQL Server. You create user-defined data
types based on the system data types. You use user-defined data types to make it
easier for you to standardize column definitions across multiple tables. For
example, if you plan to create a column to store telephone numbers in multiple
tables, you might create a user-defined data type and then use this data type
within your column definitions for the tables. SQL Server separates the system
data types into the following categories: binary, character, date and time, numeric,
integer, monetary, and special.

When you define a column, you can specify whether the column will accept null
values or not. If you configure a column to accept null values, SQL Server per-
mits users to leave that column blank during data entry. If you configure the
column to not accept null values, SQL Server requires users to enter information
into the column during data entry. When you create a table by using the
CREATE TABLE Transact-SQL statement, SQL Server configures the columns to
not permit nulls by default unless you specify otherwise. In contrast, when you
create a table in SQL Server Enterprise Manager, SQL Server configures columns
to accept null entries by default.

Each of the data types has a keyword associated with it that you use as part of
the CREATE TABLE statement. As you learn about each of the data types, you’ll
see that you can use either a SQL Server keyword or an ANSI keyword to con-
figure a column to use a data type. The ANSI keyword conforms to the SQL-92
standard for defining a column’s data type.

You can exceed the
maximum row size of 8,060
bytes if you specify a
column’s data type as text or
image. You can configure
text or image columns with a
maximum size of 2 GB.

Lesson 4: Creating andManaging Tables 123

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Binary Data Types
SQL Server supports binary and varbinary data types. Use the binary data types if
you plan to store hexadecimal information in a column. Choose binary if the data
you plan to store is a fixed length; use varbinary for variable length binary data.
You can configure binary and varbinary columns with a width of up to 8,000
bytes. Use the following syntax to specify the binary data types as part of the
CREATE TABLE statement (where n represents the width of the column).

Data Type SQL Keyword ANSI SQL-92 Keyword
Binary binary (n) binary (n)
Varbinary varbinary (n) binary varying (n)

Character Data Types
The character data types enable you to configure columns to support letters, num-
bers, and special characters such as the question mark (?). You can define two
types of character data types in SQL Server: character (char) and variable length
character (varchar). You can configure the two data types with a maximum width
of 8,000 characters. When you use the character data type for a column, each
character or space in that column uses one byte of storage space. For example, if
you configure a column to use the character data type with a width of 10 charac-
ters, regardless of whether you enter data into that column or not, SQL Server
uses 10 bytes per row to store that column. For this reason, you should use the
character data type when you expect the data entered into a column for each row
to be consistent, so that the server doesn’t have to constantly recalculate the
width of the column.

In contrast to the character data type, a column that uses the variable length char-
acter data type uses disk space based on the data in the column. For example, if
you don’t enter data into a column that’s configured to use the varchar data type
with a size of 10 characters, SQL Server doesn’t use any disk space to store that
column. When you configure a column to use the varchar data type with a size of
10 characters, SQL Server can’t store more than 10 characters in that column. So,
if you enter more than 10 characters into the column, SQL Server automatically
truncates the data after the 10th character.

Use the following syntax to specify the character data types as part of the
CREATE TABLE statement (where n represents the width of the column).

Data Type SQL Keyword ANSI SQL-92 Keyword
Character char (n) character (n)
Varchar varchar (n) character varying (n), char

varying (n)

Unicode Character Data Types
SQL Server 2000 also enables you to define a column’s data type as Unicode.
You should use the Unicode character data types if you plan to store characters in
a column that are from multiple character sets. The Unicode character data types
include nchar (fixed length) and nvarchar (variable length). You can configure
each data type to store up to 4,000 characters (4,000 characters is 8,000 bytes in
length).

The actual amount of space
SQL Server uses to store a
binary or varbinary column

is the width you specify plus
four bytes. For example, if
you configure a column as
binary (5), the total space

used to store this column is
nine bytes.

124

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Use the following syntax to specify the Unicode character data types as part of
the CREATE TABLE statement (where n represents the width of the column).

Data Type SQL Keyword ANSI SQL-92 Keyword
Unicode character nchar (n) national char (n), national character

(n)
Unicode varchar nvarchar (n) national character varying (n),

national char varying (n)

Date and Time Data Types
SQL Server enables you to configure columns to support date information. You
should always use the date data types for columns if you want the ability to per-
form date calculations. For example, if you’re creating a table to store employee
information and you would like to be able to calculate how long an employee has
worked for your company, you must create a column with a date data type to
store the employee’s hire date.

SQL Server supports two date data types: datetime and smalldatetime. The fol-
lowing table describes the differences between these data types.

Data Type Size (in bytes) Supported Values
datetime 8 (4 bytes each for date and

time)
Date: 1/1/1753 AD to 12/31/9999 AD;
Time: in milliseconds past midnight

smalldatetime 4 (2 bytes each for date and
time)

Date: 1/1/1900 AD to 6/6/2079; AD
Time: number of minutes past midnight

You can enter the date for datetime or smalldatetime columns by using either
words (such as January 1, 2002) or numbers (such as 1/1/2002 or 1-1-2002). If
you don’t specify the first two digits of the year, SQL Server automatically
assumes the first two digits are 20 if the last two digits are 49 or less and 19 if
the last two digits are 50 or greater. For example, if you enter a date as 1/1/02,
SQL Server automatically converts the date to 1/1/2002.

If you enter a date but not a time, in datetime or smalldatetime columns, SQL
Server uses the default time of 12:00 A.M. If you enter a time but not a date,
SQL Server uses the default date of January 1, 1900. If you don’t enter either a
date or a time, SQL Server uses the default value of January 1, 1900 12:00 A.M.

You can configure SQL Server to display the values in the datetime or
smalldatetime columns in several different formats. For example, you can display
dates in both alphabetic and numeric formats. You can display times in several
different formats, including hours:minutes and hours:minutes:seconds:thousandths
of seconds.

Use the following syntax to specify the date and time data types as part of the
CREATE TABLE statement.

Lesson 4: Creating andManaging Tables 125

Data Type SQL Keyword
Datetime datetime
Smalldatetime smalldatetime

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Exact Numeric Data Types
Numeric data types enable you to store numbers with decimal places in columns.
SQL Server supports two types of numeric data types: exact and approximate.
The exact numeric data types enable you to store fixed-point numbers in a
column. A fixed-point number is one in which you define the number of digits
both before and after the decimal point. In contrast, the approximate numeric data
types enable you to store floating-point numbers in a column. A floating-point
number is one in which you don’t define the number of digits before and after the
decimal point; instead, you specify the number of digits of precision for the
column. If you attempt to store a number that exceeds the number of digits of
precision, SQL Server automatically rounds the number up. While you will find
that floating-point numbers aren’t as accurate as fixed-point numbers, columns
that use floating-point data types can support a larger range of numbers than col-
umns using fixed-point data types.

SQL Server includes two exact (fixed-point) numeric data types: decimal and
numeric. Although the data types have different names, decimal and numeric are
functionally equivalent and you can use them interchangeably. When you choose
the decimal (or numeric) data type, you must specify the precision and scale for
the column. The value you enter for precision identifies the maximum number of
digits, including the digits both before and after the decimal place, you can enter
into the column. The value you enter for the scale identifies the maximum num-
ber of digits you can enter into the column after the decimal place. For example,
if you choose the numeric data type with a precision of 8 and a scale of 2 for a
column, the largest number you can enter into the column is 999,999.99. If you
don’t enter values for the precision and scale when you choose the numeric data
type for a column, SQL Server automatically configures the column with a preci-
sion of 18 and a scale of 0.

The number of bytes required to store a column that’s using the numeric (or deci-
mal) data type varies depending on the number of digits of precision you specify.
The following table describes the space used by the numeric data type for varying
digits of precision.

Digits of Precision Size (in Bytes)
1 - 9 5
10 - 19 9
20 - 28 13
29 - 38 17

Use the following syntax to specify the exact numeric data types as part of the
CREATE TABLE statement (where p represents the digits of precision and s rep-
resents the scale).

Data Type SQL Keyword ANSI SQL-92 Keyword
Exact numeric decimal (p, s) dec; dec (p, s)

numeric (p, s) none

There are no ANSI keywords
equivalent to the datetime

and smalldatetime data
types. You don’t have to

specify a width for the
column as both datetime and

smalldatetime have pre-
defined widths of 8 bytes
and 4 bytes respectively.

126

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Approximate Numeric Data Types
SQL Server includes two approximate (floating-point) data types: real and float.
The real data type enables you to store numbers in a column with up to 24 digits
of precision. The float data type enables you to store numbers in a column with a
maximum of 53 digits of precision. The following table describes the two
approximate data types.

Data Type
Digits of
Precision

Size (in
Bytes) Supported Values

real 1 to 24 4 -3.40E+38 to 3.40E+38
float 25 to 53 8 -1.79E+308 to 1.79E+308

Use the following syntax to specify the approximate numeric data types as part of
the CREATE TABLE statement (where n represents the digits of precision).

Data Type SQL Keyword ANSI SQL-92 Keyword
Approximate numeric real (n) float (24)

float (n) float (n)
float (53) double precision

Integer Data Types
In contrast to the numeric data types, SQL Server uses the integer data types to
store whole numbers. Because columns with these data types can contain only
numbers, you can perform arithmetic operations on the values in the columns.
SQL Server includes four integer data types that differ in the size of the numbers
they can store and the amount of disk space they require to store those numbers.
The following table explains the four supported integer data types.

Data Type Size (in Bytes) Supported Values
bigint or big integer 8 -263 to 263-1 or -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
int or integer 4 -231 to 231-1 or -2,147,483,648 to

2,147,483,647
smallint 2 -215 to 215-1 or -32,768 to 32,767
tinyint 1 0 to 255

To minimize the amount of space used by a column, you should choose the
smallest data type that fits your needs. If you need to store whole numbers in a
column, you can choose between these four data types based on the possible
range of values for that column. For example, if the largest number you’ll store
in the column is 22,000, you should use the smallint data type.

Use the following syntax to specify the integer data type as part of the CREATE
TABLE statement (where n represents the digits of precision).

Data Type SQL Keyword ANSI SQL-92 Keyword
Big Integer bigint none
Integer int integer
Smallint smallint none

Because the approximate
data types aren’t precise, you
shouldn’t use a column with
the approximate data type as
a table’s primary key.

Lesson 4: Creating andManaging Tables 127

Tinyint tinyint none

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Monetary Data Types
You use the monetary data types, money and smallmoney, to store money infor-
mation rounded to the thousandth decimal place. Actually, most client
applications display money values rounded to the nearest cent. The following
table describes the money data types.

Data Type Size (in Bytes) Supported Values
money 8 -922,337,203,685,477.5808 to

922,337,203,685,477.5807
smallmoney 4 -214,748.3648 to 214,748.3647

To specify either the money or smallmoney data types as part of the CREATE
TABLE statement, use either money or smallmoney as the keywords. ANSI
SQL-92 doesn’t have an equivalent keyword for the monetary data types.

Text and Image Data Types
If you need to store large amounts of information or graphics for each row in a
table, you can use the text or image data types for the columns. The text data
type enables you to store up to 2 GB of data in a column. By default, SQL
Server allocates an 8 KB page to store text data from a column. As you need
more space, SQL Server dynamically links additional 8 KB pages to the table. If
you plan to store Unicode characters in a text column, use the ntext data type.
This data type enables you to store up to 1 GB of Unicode data in a column.

You use the image data type to enable you to store graphics with tables. Similar
to the text data type, you can store up to a 2 GB graphic in a column. SQL
Server allocates an 8 KB page to store the image and dynamically allocates addi-
tional pages as needed.

Use the following syntax to specify the text and image data types as part of the
CREATE TABLE statement.

Data Type SQL Keyword ANSI SQL-92 Keyword
Text text none
Unicode text ntext national text
Image image none

Special Data Types
SQL Server includes several special data types that enable you to store different
types of data within a column. We define these data types in the following table.

Data Type Size (in Bytes) Enables You to Store
bit 1 1 or 0 values (use when a column will contain only

these two values). For example, the contract
column in the authors table uses the bit data type.

cursor Up to 8 Output parameters that reference a cursor.

The ANSI SQL-92 keyword
for timestamp is rowversion.

128

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Data Type Size (in Bytes) Enables You to Store
sysname 256 Database object names. SQL Server automatically

creates this data type based on the variable-length
Unicode data type.

timestamp 8 A unique counter value that SQL Server updates
each time you modify a row. (No relation to time
data types.)

uniqueidentifier 16 A Globally Unique IDentification number (GUID) for
the entire database. We’re going to talk more about
generating values for columns later on in this
lesson.

Collation Settings
One of the new changes in SQL Server 2000 is that you can specify a collation
setting for a column that’s distinct from that of the server—and even the database
itself. You might do so if you want to be able to store data that uses a different
character set from that of the database or server. If you don’t specify a collation
for a column, SQL Server uses the database’s collation for the column.

User-defined Data Types
You can create your own data types based on the system data types. Use your
own data types to make sure that columns are consistent across a database. You
can optionally create user-defined data types in the model database; SQL Server
will then automatically copy those data types to all new databases. SQL Server
stores user-defined data types in the systypes table in each database. We’re going
to look at user-defined data types in more detail next.

Designing Efficient Tables
You should keep in mind that SQL Server stores tables in 8 KB pages. The
smaller your row size (the sum of the widths of all columns), the greater the
number of rows SQL Server can store on a page. A greater row density per page
enables SQL Server to retrieve more rows with a single I/O operation, and it also
increases the number of rows SQL Server can cache in RAM for a given amount
of memory. As you can see, you should try to keep your row size as small as
possible based on the data you want to store in your table. Don’t arbitrarily
increase the size of your columns without considering the impact on performance.
Also keep in mind that if the data you’ll be storing in a column varies in length,
you should use one of the variable length data types.

Another factor you should consider when designing your tables is planning for
growth. For example, if you choose a data type such as smallint for the customer
account number, the maximum number of customers you can have on file is
32,767. In this scenario, it would be better for you to use the integer data
type—or better yet, use the character data type so that you can use not only num-
bers, but also letters and other characters as part of a customer’s account number.

Lesson 4: Creating andManaging Tables 129

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 4-1

Designing Tables
Setup: In this activity, you’re going to design the tables you will need

in the movies database.

You’re responsible for designing the necessary tables for the movies database.
Your company, a video rental store, would like to be able to automate the process
of renting movies. You would like to be able to maintain the movie inventory,
customers, and rental invoices. In addition to standard reports such as customer
mailing labels and movie inventory, your boss would like to be able to print
reports such as rentals per day, rentals by hour of day, rentals by movie type
(such as comedy or drama), and customers by ZIP code. You have decided that
your database will consist of the following five tables.

Table Name Contains
Movie A list of the movie inventory at the rental store.
Customer Customer information.
Category A list of movie categories (such as comedy, horror, etc.).

You’re going to link this table to the movie table so that you
can identify the type of movie as part of the inventory
information.

Rental Invoice information.
Rental_detail A list of the movies rented per rental invoice. This table will be

linked to the rental table.

1. What columns and data types will you use in the movie table?

Column Name Data Type
movie_num int
title varchar(40)
category_num int
rating varchar(5)
date_purch smalldatetime
rental_price smallmoney

2. What columns and data types will you use in the customer table?

Column Name Data Type
cust_num int
lname varchar(20)
fname varchar(20)
address1 varchar(20)
address2 varchar(20)
city varchar(20)
state char(2)
zip char(10)
phone varchar(10)

Suggested time:
30 minutes

We split the customer rentals
into two tables so that you

can normalize the data. You
will use the rental table to

store information such as the
date of the rental and the

customer information. Use
the rental_detail table to

store information about the
invoice number and the

movie rented. You’ll need to
link the rental and rental_

detail tables together.

130

join_date smalldatetime

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. What columns and data types will you use in the category table?

Column Name Data Type
category_num int
description varchar(20)

4. What columns and data types will you use in the rental table?

Column Name Data Type
invoice_num int
cust_num int
rental_date smalldatetime
due_date smalldatetime

5. What columns and data types will you use in the rental_detail table?

Column Name Data Type
invoice_num int
line_num int
movie_num int
rental_price smallmoney

6. What, if any, user-defined data types do you think you should create? Why?

Because I reference the movie_num, category_num, cust_num, and invoice_
num columns in multiple tables, I might want to create user-defined data
types for these columns in order to ensure that they’re consistent across all
tables. I should use the integer data type for all of these user-defined data
types.

Implementing User-defined Data Types
If you plan to use user-defined data types in your tables, you should create them
before you create your tables themselves. You use the sp_addtype stored pro-
cedure to create user-defined data types. Use the following syntax:

sp_addtype name, 'data type', 'NULL' | ' NOT NULL'

Replace namewith the name you want to assign to your user-defined data type;
replace data typewith one of the system data types. Use either NULL or NOT
NULL to control whether or not users can leave the column blank during data
entry. You should always explicitly state whether you want a column to be null or
not null. In general, you shouldn’t permit null values in your columns, and you
should always explicitly specify whether you want a column to permit nulls or
not.

Remember, if you use the
sp_addtype stored
procedure as part of a
batch, you must precede it
with the EXEC keyword.

Lesson 4: Creating andManaging Tables 131

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

SQL Server stores user-defined data types for each database in the systypes table.
You can view information about the data types by using the following query:

SELECT *
FROM systypes

You can also use the sp_help stored procedure to view a database’s user-
defined data types. This stored procedure lists the user-defined data types at the
end of the results set, as shown in Figure 4-1.

Figure 4-1: Viewing user-defined data types.

Deleting a User-defined Data Type
If you find that you no longer need it, you can use the sp_droptype stored
procedure to delete a user-defined data type. Use the following syntax:
sp_droptype name.

APPLY YOUR KNOWLEDGE 4-2

Creating User-defined Data Types
Objective: To create the necessary user-defined data types for the movies

database.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies.

1. Start SQL Query Analyzer and connect to your server by using Windows
Authentication. From the Database drop-down list, select the movies
database.

2. Write a query for creating a user-defined data type named movie_num based
on the integer data type; don’t permit nulls in this data type.

sp_addtype movie_num, 'int', 'NOT NULL'

3. In SQL Query Analyzer, execute this query against the movies database.

Suggested time:
15 minutes

Script file: data_types.sql.

132

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. In SQL Query Analyzer, create user-defined data types named category_num,
cust_num, and invoice_num based on the integer data type; configure these
data types to not permit nulls.

EXEC sp_addtype category_num, 'int', 'NOT NULL'

EXEC sp_addtype cust_num, 'int', 'NOT NULL'

EXEC sp_addtype invoice_num, 'int', 'NOT NULL'

5. What query can you use to view a list of the user-defined data types in the
movies database?

I can use either of the following queries:

SELECT *
FROM systypes

sp_help

6. Execute the query you recorded in step 5.

7. Clear the Query window.

Creating a Table
You can create a table by using either SQL Server Enterprise Manager or the
CREATE TABLE Transact-SQL statement. Each database can have up to two
billion tables; each table can contain 1,024 columns. For each table, you can con-
figure its columns up to 8,060 bytes per row.

To create a table with SQL Server Enterprise Manager, begin by expanding the
database in which you want to create the table. In the console tree, right-click on
the Tables object; from the shortcut menu, choose New Table. You can then
define the table’s properties by using the New Table dialog box.

Use the following syntax to create a table by using the Transact-SQL commands
in a Query window:

CREATE TABLE table_name
(column_name (column_properties),
next_column_name (column_properties))

When you define the name of the table, you can optionally specify the name of
the database in which you want to create the table; to do so, use the format
database_name..table_name.For example, to create a table named customer
within the movies database, you would type CREATE TABLE
movies..customer. For each column, replace column_propertieswith the
data type of the column and, optionally, the size of the column. Depending on the
data types of the columns you’re creating, you might not need to specify a size.
For example, if you’re creating a column with the integer data type, you don’t
need to specify a size. In contrast, if you’re creating a column with the character
data type, you must specify the size (number of characters) you want to be able
to store in the column. You can add either NULL or NOT NULL after a column’s

Lesson 4: Creating andManaging Tables 133

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

properties to specify whether or not you want the column to support null values.
You should always explicitly specify whether you want a column to permit null
values when you use the CREATE TABLE statement. If you want to configure a
column to use a user-defined data type, simply specify the name of the data type
for the column properties.

You can view a table’s properties by using the sp_help stored procedure.
Here’s the syntax: sp_help 'table_name'

Automatically Generating Column Values
You can configure a column to start with an initial value and have SQL Server
automatically increment that value by using the IDENTITY property. You typi-
cally use the IDENTITY property for a column you want to use as a table’s
primary key. Use this syntax to configure the IDENTITY property:

CREATE TABLE table_name
(column_name data_type
IDENTITY (seed [, increment]) NOT NULL
...)

You must use either the integer (bigint, int, smallint, or tinyint), numeric, or deci-
mal data types for a column on which you configure the IDENTITY property. If
you use the numeric or decimal data types, you must set the scale to zero.
Replace seedwith the initial value you would like SQL Server to use for the col-
umn; replace incrementwith the value by which you want SQL Server to
increment the column for each new row. You must specify both the seed and the
increment, or neither. If you don’t specify the seed and increment, SQL Server
uses a seed value of 1, and an increment of 1.

For example, in the following syntax, we’re creating a table that contains a
CustomerID column as an IDENTITY column, plus a column for storing the cus-
tomer name. Notice that the IDENTITY column’s seed value is 1000, and the
increment is 1:

CREATE TABLE customer
(CustomerID int IDENTITY(1000, 1) NOT NULL,
CustomerName varchar(40))

You should consider the following when you use the IDENTITY property:

• You can configure only one column per table with the IDENTITY property.
You can’t update this column, nor can you configure it to permit null
values.

• Using the IDENTITY property by itself doesn’t guarantee that a column will
be unique. If you want to guarantee uniqueness, create a unique index.

• You can use either the IDENTITY column’s name or the IDENTITYCOL
keyword to query this column. Using the IDENTITYCOL keyword enables
you to query the IDENTITY column without having to know its name.

After you’ve defined an IDENTITY column, you can use several techniques to
find out information about it:

• You can use the IDENT_SEED() and IDENT_INCR() functions to
view the seed and increment properties respectively for an IDENTITY
column.

• Use the @@identity system function to determine the value of the last
row added to a table.

134

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• The SCOPE_IDENTITY() function enables you to identify the last iden-
tity value inserted into a column within your current scope. Likewise, you
can use the IDENT_CURRENT() function to determine the last
IDENTITY value generated within the scope. (Your current scope is the
stored procedure, batch, trigger, or function you’re currently executing.)

You can use the UNIQUEIDENTIFIER data type as an alternative to the
IDENTITY property. This data type enables you to store a 16-byte hexadecimal
value in the column. The UNIQUEIDENTIFIER data type doesn’t automatically
generate an initial value. Instead, you populate it by using the NEWID()
function. The best way to use the NEWID() function is to set it as the default
value for the column by defining a default constraint.

APPLY YOUR KNOWLEDGE 4-3

Creating the Tables for the Movies Database
Objective: To use the CREATE TABLE statement to create the necessary

tables in the movies database.

1. In the following space, write the CREATE TABLE statement for creating the
movie table. Don’t permit null values in any columns. Use the following
table to define the columns and their data types.

Column Name Data Type
movie_num movie_num IDENTITY(100,1)
title varchar(40)
category_num category_num
rating varchar(5)
date_purch smalldatetime
rental_price smallmoney

CREATE TABLE movie
(movie_num movie_num IDENTITY(100,1),
title varchar(40) NOT NULL,
category_num category_num NOT NULL,
rating varchar(5) NOT NULL,
date_purch smalldatetime NOT NULL,
rental_price smallmoney NOT NULL)

2. Execute your query in SQL Query Analyzer. Make sure that you create the
table in the movies database. (You might want to parse your query before
you run it to double-check your syntax.) Use sp_help 'movie' to verify
the new table’s structure.

3. Use the CREATE TABLE statement to create the following tables: customer,
category, rental, and rental_detail. Use the following tables to define the col-
umns and data types. Write the queries you use to create each table.

Suggested time:
30 minutes

Script file: movie_tables.
sql.

Lesson 4: Creating andManaging Tables 135

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Column Name Data Type Permit Nulls?

lname varchar(20) No
fname varchar(20) No
address1 varchar(30) Yes
address2 varchar(20) Yes
city varchar(20) Yes
state char(2) Yes
zip char(10) Yes
phone varchar(10) No
join_date smalldatetime No

CREATE TABLE customer
(cust_num cust_num IDENTITY(300,1),
lname varchar(20) NOT NULL,
fname varchar(20) NOT NULL,
address1 varchar(30),
address2 varchar(20),
city varchar(20),
state char(2),
phone varchar(10) NOT NULL,
join_date smalldatetime)

Category:

Column Name Data Type Permit Nulls?
category_num category_num IDENTITY(1,1) No
description varchar(20) No

CREATE TABLE category
category_num category_num IDENTITY(1,1),
description varchar(20) NOT NULL)

Rental:

Column Name Data Type Permit Nulls?
Invoice_num invoice_num IDENTITY(1,1) No
cust_num cust_num No
rental_date smalldatetime No
due_date smalldatetime No

CREATE TABLE rental
(invoice_num invoice_num IDENTITY(1,1),
cust_num cust_num NOT NULL,
rental_date smalldatetime NOT NULL,
due_date smalldatetime NOT NULL)

136

cust_num cust_num IDENTITY(300,1) No

Customer:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Column Name Data Type Permit Nulls?

movie_num movie_num No
rental_price smallmoney No

CREATE TABLE rental_detail
(invoice_num invoice_num NOT NULL,
line_num int NOT NULL,
movie_num movie_num NOT NULL,
rental_price smallmoney NOT NULL)

4. Verify the structure of all tables by using the sp_help stored procedure.

EXEC sp_help 'movie'
EXEC sp_help 'customer'
EXEC sp_help 'category'
EXEC sp_help 'rental'
EXEC sp_help 'rental_detail'

5. Clear the Query window.

TOPIC 4B
Maintaining Tables
After you’ve created a table, you can change its structure by using either SQL
Server Enterprise Manager or the ALTER TABLE Transact-SQL statement. You
can change any of the column properties within SQL Server 2000; however, you
should be aware that actions such as changing column data types can cause you
to lose the data in that column.

Adding a Column
You can add a column to a table by using SQL Server Enterprise Manager or the
ALTER TABLE statement. Use the following syntax to add a new column to a
table with the ALTER TABLE statement:

ALTER TABLE table_name
ADD column_name (column_properties)

For example, if you want to add a telephone number column to a table, you
might use the following syntax:

ALTER TABLE customer
ADD telephone varchar(12)

Modifying a Column
If you want to modify a column with the ALTER TABLE statement, use this syn-
tax:

ALTER TABLE table_name
ALTER COLUMN column_name (column_properties)

If you change the name of a
column, you must rebuild all
objects that refer to that
column, including all
indexes, views, stored
procedures, and triggers.

If you set a column’s
properties such that it
doesn’t permit nulls, the
ALTER TABLE statement
requires that you specify a
default value for the column.

Lesson 4: Creating andManaging Tables 137

invoice_num invoice_num No
line_num int No

Rental_detail:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Dropping a Column
If you want to drop a column, you must first drop all indexes and constraints that
reference the column. When you’re ready, here’s the syntax for dropping a col-
umn:

ALTER TABLE table_name
DROP COLUMN column_name

APPLY YOUR KNOWLEDGE 4-4

Modifying Table Structure
Objective: To use the ALTER TABLE statement to modify the structure

of the practice table.

Setup: You created a table named practice in the pubs database.

1. In the space below, write a SQL statement for adding a column named
phone with a data type of varchar(15) to the practice table.

ALTER TABLE practice
ADD phone varchar(15)

2. In SQL Query Analyzer, select pubs from the Database drop-down list.
Execute the query you wrote in step 1.

3. Execute a query to verify the structure of the table.

sp_help 'practice'

4. Write a query to add a column named description with a data type of
varchar(20) to the practice table. Don’t permit null values in this column.

ALTER TABLE practice
ADD description varchar(20) NOT NULL

5. Execute this query in SQL Query Analyzer. What must you do to fix this
query so that it will run properly?

I must add a default value for the description column. SQL Server requires
that I include a default value whenever I configure a column to not permit
nulls by using theALTER TABLE statement.

6. Revise the query you wrote in step 4 so that it will run properly. If neces-
sary, refer to Books Online to find the correct syntax. Write the revised
query in the space below.

ALTER TABLE practice
ADD description varchar(20) NOT NULL DEFAULT 'test'

7. Execute this query in SQL Query Analyzer to verify that you can add the
new column.

8. Write a SQL statement for dropping the column named phone from the prac-
tice table.

ALTER TABLE practice
DROP COLUMN phone

Suggested time:
20 minutes

Script file: modify_table.
sql.

138

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

9. Execute this query in SQL Query Analyzer.

10. Execute a query to verify that your table no longer contains a phone column.

11. Clear the Query window.

Dropping a Table
If you find that you no longer need a table, you can use the DROP TABLE state-
ment to delete it. Use the following syntax: DROP TABLE table_name.

In this syntax, replace table_namewith the appropriate table. Before you execute
this statement, make sure you use the correct database first.

APPLY YOUR KNOWLEDGE 4-5

Dropping a Table
Objective: To use the DROP TABLE statement to delete the practice

table from the pubs database.

1. Write a query for deleting the practice table.

DROP TABLE practice

2. In SQL Query Analyzer, verify that you’re using the pubs database. Execute
the query you wrote in step 1.

3. Verify that you no longer see the practice table by using the sp_help
stored procedure.

4. Close SQL Query Analyzer.

Scripting Tables
After you’ve created your tables, you can use utilities such as SQL Server Enter-
prise Manager to generate scripts for the tables. You can use scripts as a backup
for re-creating your database and its tables. In addition, you can use scripts to
transfer a database’s structure (but not its data) to another SQL server. You might
also use scripts while you are developing a database.

You can generate a script for an entire database, a specific table or several tables,
or script files for separate types of objects. Use the following steps to generate a
script in SQL Server Enterprise Manager:

1. In your server’s Databases folder, right-click on the database (or object) for
which you want to create a script. From the shortcut menu, choose All
Tasks→Generate SQL Script.

2. In the Generate SQL Scripts dialog box, select the objects you want to
include in your script.

3. Use the Preview button to preview the script.

4. Save your script.

Suggested time:
5 minutes

You can also right-click on
an object and choose Copy;
then open a text editor such
as Notepad, right-click, and
choose Paste to create a
script for that object.

Lesson 4: Creating andManaging Tables 139

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 4B-1:
Using SQL Server Enterprise Manager to Generate a
Script

Objective: To create a script for creating all of the tables in the movies
database.

1. From the Microsoft SQL Server program group, start SQL Server Enter-
prise Manager.

2. Below your server, expand the Databases folder.

3. Right-click on the movies database and choose All Tasks→Generate SQL
Script to open the Generate SQL Scripts dialog box.

4. On the General page, click Show All to display all of the objects in the
movies database.

5. Look at the General page. By default, SQL Server Enterprise Manager
doesn’t configure the script for any of the database’s objects.

6. Below Objects To Script, check All Tables to configure SQL Server Enter-
prise Manager to generate a script to re-create all of the user-defined tables
within the movies database.

140

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Select the Formatting tab. SQL Server Enterprise Manager automatically
includes lines in your script to drop the objects if they exist and then create
the object whenever you run the script.

8. Select the Options tab. You can use the Options page to specify whether
you want to include your server’s logins, database users, and their permis-
sions in the script, as well as indexes and constraints.

9. Select the General tab.

Lesson 4: Creating andManaging Tables 141

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

10. Click Preview to display a preview of your script. You can add comments
as well as other SQL statements to your script.

11. Look at your script. The first lines of your script contain the statements for
dropping the category, customer, movie, rental, and rental_detail tables. Your
script then re-creates the tables and their structures.

12. Click Close to close the Generate SQL Script Preview dialog box.

13. Click OK to close the Generate SQL Scripts dialog box, and to display the
Save As dialog box.

14. In the File Name text box, type tables and then click Save to save the
script file. At this point, your script file contains instructions for re-creating
the tables in your movies database.

15. Click OK to close the Scripting message box.

16. Close all open windows.

Summary
In this lesson, you learned how to go about designing a database’s tables,
from normalizing their design to choosing each column’s data type. You
learned how to create your own user-defined data types, and how to create a
table using both system- and user-defined data types. You also explored the
techniques you can use to manage a table, including how to add, modify, or
drop a column. Finally, you learned how to use SQL Server Enterprise Man-
ager’s scripting capabilities to generate a script for creating a database’s
objects.

LESSON 4 REVIEW
4A List the parameters you must configure when you add a column to a

table.

For each column in the table, I must define a column name, data type, size,
and whether the column can accept null values. Depending on the data type
I choose, I might not be required to specify a size for the column.

4B You want to add a column named comments with a data type of text to
the customer table in the movies database. What query should you use?

ALTER TABLE customer
ADD comments text

142

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing and
Implementing Data
Integrity

Overview
In a relational database system, you use constraints to ensure the integrity of
a database’s data and to construct the relationships between tables. In this
lesson, we explain how you go about designing constraints. We also show
you how to create and manage each type of constraint.

Objectives
To enforce data integrity, you will:

5A Describe the techniques you can use to enforce data integrity.

SQL Server supports two types of data integrity techniques: procedural
and declarative. In this topic, we explore the difference between both
types and explain how to select a technique for ensuring the integrity of a
database.

5B Implement constraints on tables.

After you’ve decided on the types of constraints you want to implement,
your next task is to define them. In this topic, we show you how to create
each type of constraint both when you’re creating a table and by modify-
ing an existing table. We also show you how to disable constraint
checking to improve performance of your server during bulk load
operations.

Data Files:
pk_movie.sql
pk_constraints.sql
fk_movie.sql
fk_constraints.sql
df_movie.sql
df_constraints.sql
ck_movie.sql
disable_constraint.sql
category.txt
movie.txt
customer.txt
rental.txt
rental_detail.txt

Lesson Time:
2 hours, 30 minutes

LESSON

5

Lesson 5: Designing and Implementing Data Integrity 143

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 5A
Understanding Data Integrity
In SQL Server 2000, you can enforce data integrityby using a variety of
methods. These methods enable you to make sure that the data users add or
modify in your databases is valid. You can enforce data integrity by using either
of two methods: declarative or procedural. With declarative data integrity, you
enforce integrity as part of the object itself; the integrity becomes part of the
database and table definitions. You use constraints, defaults, and rules to enforce
declarative data integrity. You enforce procedural data integritythrough the use
of programming. You can use triggers and stored procedures to implement proce-
dural integrity.

Because programming can add considerable overhead to your server’s workload,
Microsoft recommends that you primarily implement data integrity through
declarative methods wherever possible instead of through procedural methods.
For this reason, we focus on declarative data integrity in this lesson.

Declarative Data Integrity
You’ll find that you have a lot of choices when it comes to enforcing declarative
data integrity. First of all, SQL Server supports three types of declarative data
integrity:

• Domain (Column) Integrity—enables you to specify a set of values that are
valid for a column and whether or not the column can permit null values.

• Entity (Row) Integrity—requires that you configure all rows in a table with a
unique identifier (the primary key).

• Referential Integrity—enables you to establish relationships between the pri-
mary key table (also known as the referencedtable) and a foreign key table
(the referencingtable). By default, you can’t delete a row in the primary key
table, nor change the primary key of a row, if any rows in the foreign key
table refer to it.

You implement the thee types of declarative data integrity through the use of
constraints. These constraints include: default, check, referential, primary key,
unique, and foreign key. The following table describes each type of constraint,
the type of data integrity each enforces, and why you might use the constraint.

Type of Data
Integrity Constraint Enables You to
Domain CHECK Define the valid values for a column.

DEFAULT Set a default value for a column if one isn’t specified
during data entry.

REFERENTIAL Define valid values for a column based on values in a
column from another table.

Entity PRIMARY KEY Define a unique value for each row to make sure that
users don’t duplicate records. In addition, SQL Server
automatically creates an index based on the primary
key. You can’t configure the primary key column to
permit nulls.

data integrity:
The state in which all of the

information stored in a
database is accurate. If a
table contains inaccurate

data, your database has lost
its data integrity.

declarative data
integrity:

The process of enforcing
data integrity through an

object’s definition. For
example, you can use

constraints, defaults, and
rules to enforce declarative

data integrity.

procedural data integrity:
The process of enforcing

data integrity through
programming techniques.

Triggers and stored
procedures are examples of

procedural integrity
techniques.

144

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Type of Data
Integrity Constraint Enables You to

UNIQUE Define a column that must be unique (other than the
primary key). SQL Server automatically creates an
index based on this column. You can configure a
unique column to permit nulls.

Referential CHECK Define the valid values for a column based on values
in other columns in the same table.

FOREIGN KEY Specify that this column must match the primary key
of the same table or another table within the same
database.

Selecting Data Integrity Techniques
Some of the factors you should consider when choosing a data integrity technique
include functionality, overhead, and whether the technique prevents problems
from occurring before or after a transaction. Constraints provide you with a mid-
range of functionality and prevent problems from occurring before a transaction is
saved. They also offer you the advantage of very little processing overhead.
Defaults and rules have a low level of functionality and also prevent problems
from occurring before a transaction is saved, but both defaults and rules have
more processing overhead because they’re separate database objects.

Triggers provide you with a very high level of functionality for implementing
data integrity, but they also have the highest processing overhead and prevent
problems from occurring after the transaction, not before. The disadvantage to
detecting problems after a transaction completes is that it means that SQL Server
must do all the work associated with the transaction, and then it must undo that
work when the trigger detects a problem. So, SQL Server has essentially done the
work associated with the transaction twice without any results to show for it.

APPLY YOUR KNOWLEDGE 5-1

Designing Data Integrity for the Movies Database
Objective: In this lab, you’re going to design the data integrity for the

movies database. (Hint: You can use the GETDATE() function
within a default constraint to set date columns to the current
date on your server.)

1. Given the structure of the movie table, what types of constraints do you
think you should use on the movie table?

Column Name Data Type Permit Nulls?
movie_num movie_num IDENTITY(100,1) No
title varchar(40) No
category_num category_num No
rating varchar(5) No
date_purch smalldatetime Yes
rental_price smallmoney No

Suggested time:
20 minutes

Lesson 5: Designing and Implementing Data Integrity 145

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

I should configure the movie_num column as the table’s primary key. I
should also configure a foreign key constraint between the category_num
column in the movie table and the same column in the category table.
Finally, I should consider creating a check constraint on the rating column
and specify the permitted values as G, PG, R, NC17, and NR. I could also
create a default constraint on the date_purch column of GETDATE().

2. What types of constraints do you think you should use on the customer
table?

Column Name Data Type Permit Nulls?
cust_num cust_num IDENTITY(300,1) No
lname varchar(20) No
fname varchar(20) No
address1 varchar(20) Yes
address2 varchar(20) Yes
city varchar(20) Yes
state char(2) Yes
zip char(10) Yes
phone varchar(10) No
join_date smalldatetime No

I should configure the cust_num column as the table’s primary key. In addi-
tion, I could define a default constraint of GETDATE() on the join_date
column.

3. What types of constraints do you think you should configure on the category
table?

Column Name Data Type Permit Nulls?
category_num category_num IDENTITY(1,1) No
description varchar(20) No

I should configure the category table with a primary key constraint on the
category_num column.

4. What types of constraints do you think you should configure on the rental
table?

Column Name Data Type Permit Nulls?
invoice_num invoice_num IDENTITY(1,1) No
cust_num cust_num No
rental_date smalldatetime No
due_date smalldatetime No

146

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

I should configure a primary key constraint on the invoice_num column and
a foreign key constraint between the cust_num columns in the rental table
and the customer table. In addition, I might want to set a default constraint
on rental_date of the current date by using the GETDATE() function. I
could also create a default constraint on the due_date column based on my
company’s rental terms. For example, if my company rents movies for two
days, I could configure the due_date column with a default constraint of
GETDATE()+2. Another constraint I could implement is a check constraint
to make sure that the value in the due_date column is after the rental_date.

5. What types of constraints do you think you should configure on the rental
detail table?

Column Name Data Type Permit Nulls?
invoice_num invoice_num No
line_num int No
movie_num movie_num No
rental_price smallmoney No

I should configure a foreign key constraint between the invoice_num columns
in the rental_detail and rental tables. I should also configure a foreign key
constraint between the movie_num columns in the rental_detail and movie
tables. Finally, I could set a default constraint on the rental_price column (I
would typically use programming such as through a trigger to look up the
rental price in the movie table and insert it into the rental_detail table).

The rental_detail table doesn’t need a primary key column because each row
doesn’t have a unique number assigned to it. Instead, each row is linked to
the rental table by the invoice_num column. In addition, I can have multiple
rows for each invoice number.

TOPIC 5B
Implementing Constraints
Now that we’ve looked at the types of constraints you can define, let’s get into
how you create each type of constraint. You can define constraints when you cre-
ate a table by specifying them as part of the CREATE TABLE statement, or you
can add constraints later by using the ALTER TABLE statement. You can create,
change, and delete constraints without having to drop and re-create a table. Keep
in mind that SQL Server does check your existing data when you add a constraint
to a table to make sure that your data doesn’t violate the constraint. If your data
violates the constraint you’re attempting to define, SQL Server won’t create the
constraint.

You should be aware that if you have an existing table with data for which you
add a primary key or unique constraint with a clustered index, SQL Server must
completely re-order the rows in the table based on the primary key value. In
addition, because the locations of the rows have changed, SQL Server must also
re-create all nonclustered indexes. So, it’s important that you realize that defining
a clustered index on a populated table can take an additional 1.2 times the size of

Lesson 5: Designing and Implementing Data Integrity 147

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

the table during the creation of the index. For example, if your table is currently
100 MB in size, SQL Server will use an additional 120 MB (over the 100 MB
currently in use by the table) during the creation of the clustered index. We’re
going to talk more about the space requirements and how you go about
re-creating indexes in the “Implementing Indexes” lesson.

Viewing Constraints
Before we get into how you define constraints, let’s take a look at how you can
determine what constraints are already defined on the table. You can view the
constraints on a table by using the sp_helpconstraint, sp_helpdb, and
sp_help stored procedures. The sp_helpconstraint stored procedure
shows you all of the constraints you’ve defined for a particular table. Use the
following syntax with sp_helpconstraint:

sp_helpconstraint 'table_name'

To view information about only a particular constraint, use the following syntax:

sp_help 'constraint_name'

When you use sp_help, you see a lot of additional information about the table
including the table structure, any columns for which you’ve configured to use the
identity property, and a list of constraints. Use the following syntax with
sp_helpdb:

sp_helpdb 'table_name'

Defining Primary Key Constraints
You can define a primary keythat consists of one or more columns in a table;
you use the primary key to uniquely identify each row in a table. Because you
use a table’s primary key to search for records, SQL Server requires that each
row’s primary key be unique throughout the table. For example, if you create a
customer table with the account number column as its primary key, each row’s
account number must be unique throughout the table. So, by using a primary key,
you can protect the integrity of the data in a table. In addition, by specifying a
primary key when you create a table, you create an index for the table that’s
based on the primary key. Because the primary key is used for indexing the table,
SQL Server requires that you configure the columns in the primary key to not
accept null values. SQL Server doesn’t permit duplicate entries in the primary
key column(s) for a table.

Use the following syntax to add a primary key constraint when you create a
table:

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name PRIMARY KEY
[CLUSTERED | NONCLUSTERED], ...)

But what if you want to add a primary key constraint to an existing table? To do
so, use the following syntax:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name PRIMARY KEY (column_name)
[CLUSTERED| NONCLUSTERED]

primary key:
One or more columns that

you use to uniquely identify
each row in a table.

SQL Server automatically
creates a clustered index

based on the primary key if
you don’t specify the type of

index you want to create.

148

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

ALTER TABLE movie
ADD CONSTRAINT PK_movie PRIMARY KEY (movie_num)
NONCLUSTERED

You should consider the following factors when choosing your primary key:

• You can define only one primary key per table.

• The column or columns you select for the primary key can’t permit nulls.

• If you don’t specify the index type, SQL Server automatically creates a clus-
tered index based on the primary key (as long as you haven’t already defined
a clustered index for the table).

Defining Unique Constraints
In many cases, you’ll find that you want to enforce uniqueness in a column other
than the primary key column. In these cases, you can configure a unique con-
straint on a column to ensure that all values users enter for that column are
unique within the table. You should use the unique constraint on any non-primary
key column for which you want the values to be unique. For example, let’s say
that you’re creating a table for storing employee information. You plan to use the
social security number column as the table’s primary key. You also plan to store
each employee’s security code in the table. If you want to prevent duplicate
entries in the security code column, you should configure it with a unique
constraint.

You can define a unique constraint when you create a table by using the follow-
ing syntax:

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name
UNIQUE CLUSTERED | NONCLUSTERED (column_name),
...)

You typically name unique constraints UK_table_name. You can also specify
whether you want to create a clustered or nonclustered index on this column.

You can add a unique constraint to an existing table by using the following syn-
tax:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
UNIQUE CLUSTERED | NONCLUSTERED (column_name)

You should consider the following factors when configuring a unique constraint:

• Unique columns do permit nulls, but only one row’s column can be null.
(You can’t have two columns with null values because they aren’t unique.)

• You can configure more than one unique constraint on a table.

• SQL Server enforces a unique constraint through a unique index.

Lesson 5: Designing and Implementing Data Integrity 149

By convention, you typically use PK_ plus the name of the table for the name of
the primary key constraint. For example, to configure the movie_num column as
the primary key for the movie table and to create a nonclustered index based on
the primary key, use the following syntax:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 5B-1:
Adding a Primary Key Constraint

Objective: To add a primary key to the movie table.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail.

1. In SQL Server Enterprise Manager, create a database diagram for the
movies database. When prompted, include the category, customer, movie,
rental, and rental_detail tables in your diagram.

2. Look at the database diagram. (If necessary, drag the tables so that it’s
easier for you to view all of the tables on one screen.) If you’ve defined any
primary keys on your tables, SQL Server Enterprise Manager identifies them
with a key icon as part of each table in the database diagram view. None of
your tables currently have primary keys.

3. Save your database diagram as movies. Close the Database Diagram
window.

4. Open SQL Query Analyzer and log in with Windows Authentication.
Select the movies database.

5. Execute the following query:

ALTER TABLE movie
ADD CONSTRAINT PK_movie
PRIMARY KEY NONCLUSTERED (movie_num)

This query adds a primary key constraint to the movie table. By adding the
keyword NONCLUSTERED, you configure SQL Server to create a
nonclustered index based on the primary key.

6. Execute a new query:

sp_helpconstraint 'movie'

Script file: pk_movie.sql

Below the movies database,
right-click on Diagrams and

choose New Database
Diagram.

150

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

This query enables you to view the constraints on the movie table.

7. Clear the Query window.

APPLY YOUR KNOWLEDGE 5-2

Defining Primary Key Constraints
Objective: To use queries in SQL Query Analyzer to define primary key

constraints for the customer, category, and rental tables.

1. In SQL Query Analyzer, add a primary key constraint on the cust_num col-
umn of the customer table. Use PK_customer for the constraint name and
create a nonclustered index.

Record the query you used in the space below.

ALTER TABLE customer
ADD CONSTRAINT PK_customer
PRIMARY KEY NONCLUSTERED (cust_num)

2. Add a primary key constraint on the category_num column of the category
table. Use PK_category for the constraint name.

Record your query below.

ALTER TABLE category
ADD CONSTRAINT PK_category
PRIMARY KEY NONCLUSTERED (category_num)

3. Add a primary key constraint on the invoice_num column of the rental table.
Use PK_rental for the constraint name.

Record your query below.

ALTER TABLE rental
ADD CONSTRAINT PK_rental
PRIMARY KEY NONCLUSTERED (invoice_num)

4. Use sp_helpconstraint along with each table name to verify your
tables’ primary keys.

EXEC sp_helpconstraint 'customer'
EXEC sp_helpconstraint 'category'
EXEC sp_helpconstraint 'rental'

Suggested time:
15 minutes

Script file: pk_constraints.
sql

Lesson 5: Designing and Implementing Data Integrity 151

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. Clear the Query window.

6. In SQL Server Enterprise Manager, open the movies database diagram. Look
at the primary key columns you’ve defined. (You should see a primary key
icon on each of the category, customer, movie, and rental tables.)

7. Close the movies database diagram.

Defining Foreign Key Constraints
Earlier in the course we talked about normalizing your tables in order to avoid
duplicating data across multiple database. After you split up your tables, you use
relationships between those tables to link them together. For example, in the
Northwind sample database, you find both an Orders and an Order Details table.
Both tables contain an OrderID column, which means that the tables are linked
together by this column. In the Orders table, the OrderID column is the primary
key, and in the Order Details table, it’s a foreign key. If you create one or more
columns in one table that are identical to the primary key for another table, you
can link these columns by defining a foreign key constraint.

You must define the primary key before you can link a foreign key to it. After
you’ve defined the foreign key constraint, data integrity prevents you from chang-
ing the value of a primary key if you have any matching rows in the foreign key
table. Likewise, you can’t delete a row from the primary key table if it has
matching rows in the foreign key table (and vice versa). You can define a foreign
key constraint when you create a table by using the following syntax:

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name
FOREIGN KEY REFERENCES ref_table(ref_column)
...)

In this syntax, you replace ref_tablewith the name of the referenced table that
contains the primary key. Replace ref_columnwith the name of the primary key
column in the referenced table. You’ll typically name foreign key constraints
FK_table_name.

You can add a foreign key constraint to an existing table by using the following
syntax:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name FOREIGN KEY
(column_name) REFERENCES ref_table(ref_column)

foreign key:
The column or group of

columns in one table that
match the primary key
column or columns of

another table.

You can temporarily disable
the checking of foreign key

constraints if necessary.
We’re going to cover how
you do this later on in the

lesson.

152

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You should be aware that SQL Server doesn’t automatically create indexes based
on the foreign keys you define. Because you’ll typically join tables together based
on this primary key – foreign key relationship, you should consider creating an
index on the foreign key column in order to enhance the performance of table
joins. We’re going to talk about optimizing indexes in detail in the “Implementing
Indexes” lesson.

Another factor to keep in mind is that if you give users the necessary permissions
to update the data in the foreign key table, you must also give those users either
the SELECT or REFERENCES permission on the primary key table as well. Oth-
erwise, your users won’t be able to make changes to the table containing the
foreign key constraint.

Let’s take a look at how you view the primary key – foreign key relationship
within a database diagram. In Figure 5-1, we show you the database diagram for
the Orders and Order Details tables from the Northwind database. The line con-
necting the two tables enables you to see that these two tables have a primary
key – foreign key relationship. Furthermore, the key symbol on the line identifies
which table contains the primary key (the Orders table in this case), and the
infinity symbol identifies the foreign key table (Order Details). Having these two
symbols on the line connecting the tables also tells you that the relationship
between the two tables is one to many. This means that you can have one row in
the Orders table that’s linked to one or more rows in the Order Details table.

Figure 5-1: Identifying a primary key – foreign key relationship in a database diagram.

Cascading Integrity
By default, SQL Server configures the primary key – foreign key relationship
such that you can’t make changes to the primary key table if there are corre-
sponding rows within the foreign key table. Likewise, you can’t delete a row in
the primary key table if it has linked rows in the foreign key table. One of the
new changes in SQL Server 2000 is that you can define a CASCADE option for a
foreign key constraint that enables you to have changes or deletions you make in
the primary key table cascade down to the foreign key table. For example, if you
enable cascading updates and then modify the primary key for a row, SQL Server
will automatically update the information in the associated foreign key rows.

Even though the relationship
between the Orders and
Order Details tables is called
“one to many,” you should
be aware that you can have
rows in the Orders table
without any corresponding
rows in the Order Details
table. On the other hand, you
can’t have a row in the Order
Details table unless a
corresponding row exists in
the Orders table.

Lesson 5: Designing and Implementing Data Integrity 153

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name
FOREIGN KEY REFERENCES ref_table(ref_column)
[ON DELETE {CASCADE | NO ACTION)]
[ON UPDATE {CASCADE | NO ACTION)]

Keep in mind that both the ON DELETE and ON UPDATE clauses are optional
when you’re defining a constraint. If you don’t specify these clauses, SQL Server
creates the constraint with NO ACTION as the cascade setting, which means you
won’t be able to update or delete the primary key row if it has corresponding
foreign key rows. Use the CASCADE option to enable cascading integrity for
updates or deletes.

TASK 5B-2:
Adding a Foreign Key Constraint to the Movie Table

1. In SQL Query Analyzer, execute the following query:

ALTER TABLE movie
ADD CONSTRAINT FK_movie
FOREIGN KEY (category_num)
REFERENCES category(category_num)

This query adds a foreign key constraint to link the category_num column in
the movie table to the category_num column in the category table. The for-
eign key will enable SQL Server to prevent users from assigning invalid
category numbers to movies.

2. How will SQL Server handle cascading updates and deletes for the
FK_movie constraint?

SQL Server won’t permit me to update or delete a row from the category
table if it has corresponding rows in the movie table. By default, SQL Server
configures a foreign key constraint to not support cascading referential
integrity unless I specify otherwise.

3. Execute a new query:

EXEC sp_helpconstraint 'movie'

4. Clear the Query window.

Script file: fk_movie.sql

154

You can specify both update and delete cascading settings for a foreign key
constraint. Here’s the syntax:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 5-3

Defining Foreign Key Constraints
Objective: To use queries in SQL Query Analyzer to define foreign key

constraints for the rental and rental_detail tables.

1. Add a foreign key constraint between the cust_num column of the rental
table and the cust_num column of the customer table. Use FK_rental for the
constraint name.

Write the query you use in the space below.

ALTER TABLE rental
ADD CONSTRAINT FK_rental
FOREIGN KEY (cust_num)
REFERENCES customer(cust_num)

2. Add a foreign key constraint between the invoice_num column of the rental_
detail table and the invoice_num column of the rental table. Use FK_detail_
invoice for the constraint name. You would like to be able to perform
cascading deletes of invoices from both the rental and rental detail tables.
Make sure you include the appropriate syntax for supporting cascading
deletes.

Write your query in the space below.

ALTER TABLE rental_detail
ADD CONSTRAINT FK_detail_invoice
FOREIGN KEY (invoice_num)
REFERENCES rental(invoice_num)
ON DELETE CASCADE

3. Add a foreign key constraint between the movie_num column of the rental_
detail table and the movie_num column of the movie table. Use FK_detail_
movie for the constraint name.

Write your query below.

ALTER TABLE rental_detail
ADD CONSTRAINT FK_detail_movie
FOREIGN KEY (movie_num)
REFERENCES movie(movie_num)

4. Use sp_helpconstraint to verify your tables’ foreign keys.

5. Clear the Query window.

6. In SQL Server Enterprise Manager, open the movies database diagram. Look
at the primary key to foreign key relationships between your tables. You
should see the following relationships:

Primary Key Table Foreign Key Table
category movie
customer rental
rental rental_detail
movie rental_detail

Suggested time:
15 minutes

Script file: fk_constraints.
sql

Lesson 5: Designing and Implementing Data Integrity 155

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Close the movies database diagram.

Default Constraints
If you want to configure a default value for a column to make data entry easier
on your users, you can create a default constraintfor each column in your table.
SQL Server automatically fills in a column with the value you specify in the
default constraint. Of course, you can always change this default value for a
given row. For example, if you’re creating a table for storing customer address
information, you might configure a default value for the state column if most of
your customers are from the same state.

You define a default constraint when you create a table by using the following
syntax:

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name
DEFAULT expression,
...)

In this syntax, you can replace expressionwith either a constant or a function
(such as GETDATE()). You’ll typically name default constraints DF_table_
name_column_name.

You add a default constraint to an existing table by using the following syntax:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
DEFAULT expression FOR column_name

You should keep the following considerations in mind when defining default con-
straints:

• SQL Server applies the default constraint only when you insert data into a
table (not when you modify data).

• You can’t specify a default value on columns with either the IDENTITY
property or the timestamp data type.

• You can use system-supplied values such as USER, CURRENT_USER,
SESSION_USER, SYSTEM_USER, or functions such as GETDATE() to
define a default value.

default constraint:
A value that you assign to a

column. SQL Server
automatically fills in the
column with this value

during data entry. You can
always override the default

value by entering another
value into the column.

156

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating a Default Object
You can optionally create a default as a separate object so that you can use it for
multiple columns. To create a default object, use the following syntax:

CREATE DEFAULT default_name
AS expression

After you’ve created a default object, you activate it for a column by using the
sp_bindefault stored procedure. (The process of activating a default is called
binding a default.) You can unbind the default from a column by using the
sp_unbindefault stored procedure. Use the following syntax to bind a
default object:

sp_bindefault default_name, 'table.column_name'

You can drop a default object by using the following syntax:

DROP DEFAULT default_name

TASK 5B-3:
Adding a Default Constraint to the Movie Table

1. In SQL Query Analyzer, execute the following query:

ALTER TABLE movie
ADD CONSTRAINT DF_movie_date_purch
DEFAULT GETDATE() FOR date_purch

Use this query to add a default constraint to the movie table. By using the
GETDATE() functions, SQL Server will automatically fill in the column with
the current system date when you add a row to the table. You can always
override this value by typing in a date of your choice.

2. Execute a new query:

EXEC sp_helpconstraint 'movie'

3. Clear the Query window.

APPLY YOUR KNOWLEDGE 5-4

Defining Default Constraints
Objective: To use queries in SQL Query Analyzer to define default con-

straints for the customer and rental tables.

1. Add a default constraint to the join_date column in the customer table. Use
DF_customer_join_date for the constraint name and GETDATE() for the
expression.

Write your query below.

ALTER TABLE customer
ADD CONSTRAINT DF_customer_join_date
DEFAULT GETDATE() FOR join_date

Script file: df_movie.sql.

Suggested time:
10 minutes

Script file: df_constraints.
sql.

Lesson 5: Designing and Implementing Data Integrity 157

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Add default constraints to the rental table on the rental_date and due_date
columns. Use DF_rental_rental_date for the constraint on the rental_date
column with GETDATE() for the expression. Use DF_rental_due_date for
the constraint on the due_date column with GETDATE()+2 for the
expression.

Write your queries in the following space.

ALTER TABLE rental
ADD CONSTRAINT DF_rental_rental_date
DEFAULT GETDATE() FOR rental_date

ALTER TABLE rental
ADD CONSTRAINT DF_rental_due_date
DEFAULT GETDATE()+2 FOR due_date

3. Use sp_helpconstraint to verify your tables’ default constraints.

4. Clear the Query window.

Check Constraints
If you want to force users to enter only specific values into a column, you should
define a check constraint. You use a check constraint on a column to limit the
range of values that users can enter. You can also use a check constraint to con-
trol the format users use to enter data in a column. For example, you might use a
check constraint to require that users enter social security numbers using the for-
mat 999-99-9999.

You define a check constraint when you create a table by using the following
syntax:

CREATE TABLE table_name
(column_name data_type CONSTRAINT constraint_name
CHECK (search_condition),
...)

You replace search_conditionwith a condition for controlling the data entered
into the column. If you want the check constraint to require users to enter specific
words, use a condition such as (rating IN (‘G’, ‘PG’, ‘R’, ‘NC17’, ‘NR’)). Check
constraints aren’t case-sensitive as long as you’ve configured your server to use a
case-insensitive collation. So, if you used the previous constraint for the rating
column, SQL Server will accept both ‘G’ and ‘g’ as valid values for that column.
If you want the check constraint to evaluate numbers, you can use a search con-
dition such as salary >20000 AND salary <100000. You typically name
check constraints CK_table_name.

You can add a check constraint to an existing table by using the following syn-
tax:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
CHECK (search_condition)

Consider the following factors when defining check constraints:

• SQL Server applies check constraints when you both insert and modify a
table’s data.

• You can create a check constraint that references another column within the
same table.

check constraint:
A range of values that you

define for a column to force
users to enter only those

values into the column.

158

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• You can’t define check constraints on columns with the IDENTITY property
or the timestamp and uniqueidentifier data types.

• You can’t use a subquery in a check constraint.

Creating Rules
You can create the equivalent to a check constraint by defining a rule. Similar to
a default object, a rule is a separate object that you can then bind to columns in
one or more tables. Use the following syntax to create a rule:

CREATE RULE rule_name
AS expression

You can then bind the rule to a column by using the syntax:

sp_bindrule rule_name, column_name

If necessary, you drop a rule by using this syntax:

DROP RULE rule_name

TASK 5B-4:
Adding a Check Constraint to the Movie Table

1. In SQL Query Analyzer, execute the following query:

ALTER TABLE movie
ADD CONSTRAINT CK_movie
CHECK (rating IN ('G', 'PG', 'R', 'NC17', 'NR'))

Use this query to set a check constraint so that users must enter either ‘G’,
‘PG’, ‘R’, ‘NC17’, or ‘NR’ when they add a movie to the movie table.

2. Execute a new query:

EXEC sp_helpconstraint 'movie'

You should see that you’ve defined primary key, foreign key, default, and
check constraints on the movie table.

3. In the space below, write a query for adding a check constraint to the
rental table to make sure that the value in the due_date column is equal
to or later than that of the rental_date column.

ALTER TABLE rental
ADD CONSTRAINT CK_rental
CHECK (due_date >= rental_date)

4. Execute the query you wrote in step 3.

5. Use sp_helpconstraint to verify the constraints on the rental table.

6. Clear the Query window.

Script file: ck_movie.sql.

Lesson 5: Designing and Implementing Data Integrity 159

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CHECK YOUR SKILLS 5-1

Creating a Script File

1. In SQL Server Enterprise Manager, generate a SQL script for creating the
tables in the movies database and their constraints. Name the script file
constraints.sql. (Right-click on the movie database and choose All Tasks→
Generate SQL Script. On the General page, click Show All and then check
All Tables. On the Options page, check Script Primary Keys, Foreign Keys,
Defaults, and Check Constraints.)

2. In Notepad, verify that SQL Server Enterprise Manager added the necessary
commands to create the constraints on the tables as well as the structure of
the tables.

3. Close Notepad.

Managing Constraints
You manage constraints by performing such tasks as deleting and disabling them.
Let’s take a look at how you go about deleting a constraint.

Deleting a Constraint
You can drop any constraint by using the following syntax:

ALTER TABLE table_name
DROP CONSTRAINT constraint_name

Disabling Constraint Checking of Existing Data
You can disable constraint checking of existing data when you add a constraint to
a table. You should consider doing this when you know that your data already
conforms to the constraint in order to improve performance. Otherwise, when you
add a constraint to a table with existing data, SQL Server first checks all of the
rows in the table to make sure that the existing data doesn’t violate the constraint.
After you’ve added the constraint, constraint checking becomes active.

You can disable only check and foreign key constraints; all others must be
dropped and then re-added. You disable constraint checking when you create
default and check constraints by adding the WITH NOCHECK option to the
ALTER TABLE statement. For example, to add a foreign key constraint to a table
with constraint checking disabled, use the following syntax:

ALTER TABLE table_name
WITH NOCHECK
ADD CONSTRAINT constraint_name
FOREIGN KEY (column_name)
REFERENCES ref_table(ref_column)

To add a check constraint to a table with constraint checking disabled, use the
following syntax:

ALTER TABLE table_name
WITH NOCHECK
ADD CONSTRAINT constraint_name
CHECK (search_considiton)

Suggested time:
5 minutes or less

160

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Disabling Constraint Checking When Loading Data
You can also disable constraint checking on the CHECK and FOREIGN KEY con-
straints when you load new data (in order to improve performance) or update
data. You might disable constraint checking if you plan to perform a bulk import
of data into a table. Likewise, you might also disable constraint checking if you
need to change the value of a primary key for which you’ve defined a foreign
key relationship (and you haven’t configured the foreign key for cascading
updates). For example, consider the movies database: if you need to change a
customer’s account number in the customer table, and that customer has invoices
in the rental table, SQL Server won’t permit you to change the customer’s
account number. The only way you can change the customer’s account number is
to first disable the checking of the foreign key constraint, and then update the
customer’s account number in both the customer and rental tables.

Before you disable constraint checking, make sure that your data conforms to
your constraints. To disable constraint checking, use the following syntax:

ALTER TABLE table_name
NOCHECK CONSTRAINT ALL | constraint_name

After you’ve completed your updates and inserts, you re-enable constraint check-
ing by using the following syntax:

ALTER TABLE table_name
CHECK CONSTRAINT ALL | constraint_name

TASK 5B-5:
Disabling Constraint Checking

Objective: To disable constraint checking between two tables in the pubs
database.

1. In SQL Server Enterprise Manager, display the database diagram for the
pubs database.

2. Point to the line linking the authors and titleauthor tables. This line
enables you to see that there is a primary key – foreign key relationship
between the two tables. The authors table’s primary key is the au_id column,
and it’s linked to the au_id column as a foreign key on the titleauthor table.
SQL Server automatically generated a name for the foreign key of FK__
titleauthor__au_id__0519C6AF.

3. Close the database diagram.

Script file: disable_
constraint.sql.

Lesson 5: Designing and Implementing Data Integrity 161

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. In SQL Query Analyzer, execute the following query:

USE pubs
GO
SELECT au_id
FROM authors
WHERE au_lname = 'White'

You should see that the author’s ID number is 172-32-1176.

5. Execute a new query:

UPDATE authors
SET au_id = '172-32-1176'
WHERE au_lname = 'White'

6. Look at the Results pane. SQL Server won’t permit you to change an
author’s ID number because of the foreign key constraint between the
authors and titleauthor tables.

7. In the space below, write a SQL query for disabling checking of the pri-
mary key to foreign key relationship between the authors and
titleauthor tables.

ALTER TABLE titleauthor
NOCHECK CONSTRAINT FK__titleauth__au_id__05419C6AF

8. Execute the query you wrote in step 7. (Hint: This foreign key’s name
uses two underscore characters (__) between each of the elements of the
name except for “au_id.” Use only one underscore character in au_id.)

9. Execute a new query:

UPDATE authors
SET au_id = '172-32-1177'
WHERE au_lname = 'White'

Because you’ve disabled constraint checking between the titleauthor and
authors tables, SQL Server now permits you to change the author’s ID.

10. Now execute this query:

SELECT *
FROM titleauthor
WHERE au_id = '172-32-1176'

You should see that although you changed the author’s ID in the authors
table, that change had no effect on the associated rows in the titleauthor
table.

162

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

11. Execute a new query:

UPDATE titleauthor
SET au_id = '172-32-1177'
WHERE au_id = '172-32-1176'

By updating all of the rows in the titleauthor table with the new ID number
for the author, you preserve the integrity of the data.

12. In the following space, write a query to enable constraint checking on
the titleauthor table:

ALTER TABLE titleauthor
CHECK CONSTRAINT FK__titleauth__au_id__0519C6AF

13. Execute the query you wrote in step 12 to re-enable constraint checking on
the titleauthor table.

14. Attempt to change an author ID again by executing the following query:

UPDATE authors
SET au_id = '172-32-1178'
WHERE au_lname = 'White'

Use this query to verify that the foreign key constraint is active again.

Using Data Transformation Services
You can use the Data Transformation Services (DTS) included with SQL Server
Enterprise Manager to transfer data between SQL Server and many different types
of systems. For example, you can use DTS to import data from or export data to
dBASE, Microsoft Access, Microsoft Excel, Oracle, Microsoft SQL Server, Visual
FoxPro, Paradox, text files, and any ODBC data source.

Components of DTS
SQL Server’s Data Transformation Services consists of the following key compo-
nents:

• DTS Import/Export Wizard

• DTS Designer

You use the DTS Import/Export Wizard to configure your server to either import
or export data. This wizard enables you to copy data between heterogeneous data
sources, transfer the database structure (schema), copy a single database object or
the results of a query, and transform data. When you run the wizard, you generate
a DTS package. You run this package to start the import or export of data. You
start the DTS Import/Export Wizard from within SQL Server Enterprise Manager.

If you have complex data transformations you want to perform, you can use the
DTS Designer to create your DTS packages. You can also use the DTS Designer
to modify existing packages. DTS Designer offers many advanced features that
you can’t configure when you use the DTS Import/Export Wizard. For example,
you can define the workflow of the DTS package by using DTS Designer. After
you’ve created a DTS package (by using either the Wizard or DTS Designer),
you can use the dtsrun utility to open, run, delete, or overwrite the package.

You can use DTS to move
only the database structure
and data; you can’t use it to
transfer triggers, stored
procedures, rules, defaults,
constraints, and user-defined
data types.

Lesson 5: Designing and Implementing Data Integrity 163

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using DTS to Import Data
You can use the DTS Import/Export Wizard, DTS Designer, or any programming
language to create a DTS package for importing data. To use the Wizard in SQL
Server Enterprise Manager, begin by selecting your server in the console tree.
Choose Tools→Data Transformation Services, and then choose Import Data. SQL
Server Enterprise Manager automatically launches the DTS Import/Export
Wizard. On the Choose A Data Source page, select the appropriate data source
from which you’re importing the data. For example, if you want to import an
ASCII delimited text file, choose Text File from the Source drop-down list. Next,
depending on your data source, you might be prompted to provide additional
information about that source. On the Choose a Destination page, select the data-
base to which you want to import the data. Finally, you can specify the name of
the destination table for the imported data.

APPLY YOUR KNOWLEDGE 5-5

Importing Data into the Movies Database
Objective: To load data into the tables of the movies database.

Setup: Your instructor has copied the necessary files for importing
data into the movies database to the path C:\data on your
computer.

1. Given the constraints on the tables in the movies database, in what order do
you think you should import data into those tables?

Category, movie, customer, rental, rental_detail.

2. In SQL Server Enterprise Manager, in your server’s Databases folder, expand
the movies database. Choose Tools→Data Transformation Services→Import
Data. In the DTS Import/Export Wizard, select the following options:

• On the Choose A Data Source page, choose Text File as your source
and specify a file name of C:\data\category.txt.

• On the Select File Format page, accept the default settings. (You should
see that the DTS Import/Export Wizard automatically chose the delim-
ited file format, ANSI as the file type, {CR}{LF} as the row delimiter,
and double quote as the text qualifier.)

• On the Specify Column Delimiter page, accept the default settings.
(You should see that the DTS Import/Export Wizard automatically
chose the comma as the column delimiter.)

• On the Choose A Destination page, verify that the DTS Import/Export
Wizard has selected your server as the destination and that it will use
Windows Authentication. If necessary, from the Database drop-down
list, choose movies.

• On the Select Source Tables page, click in the Destination column.
From the Destination drop-down list, select the Category table.

Note: Even though the Category table is already selected, you must still use
the drop-down list to select it again. There appears to be a bug with the DTS
Import/Export Wizard that causes it to not work right if you don’t select the
table again from this list.

Suggested time:
25 minutes

164

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• On the Save, Schedule, and Replicate Package page, accept the default
settings.

3. By using the same steps, import the data for the movie, customer, rental, and
rental_detail tables. The file names are movie.txt, customer.txt, rental.txt, and
rental_detail.txt.

Note: When you import the rental_detail.txt file, you must change the file for-
mat to the delimited file format on the Select File Format page.

4. In SQL Query Analyzer, examine the contents of each of the tables by using
the SELECT statement.

5. Based on the data in the movie and category tables, write a query that will
conflict with the foreign key constraint FK_movie. (If necessary, use
sp_helpconstraint 'movie' to view the properties of this
constraint.) Execute this query to verify that you receive an error. Write your
query in the following space.

Answers will vary. Here’s one query I can use:

UPDATE movie
SET category_num = 25
WHERE movie_num = 150

6. Close all open windows.

Summary
In this lesson, you learned the types of data integrity techniques you can
implement in SQL Server. You also explored the differences between each
type of constraint, and how to create constraints on tables. Finally, you
learned how you can disable constraints in order to modify or delete data, or
to improve the performance of bulk operations.

LESSON 5 REVIEW
5A Explain the difference between declarative data integrity and procedural

data integrity.

With declarative data integrity, I use constraints to make sure that my users
input valid data into your tables. Constraints are implemented as part of the
tables themselves. With procedural data integrity, I validate data by using
programs such as stored procedures and triggers to make sure that my users
enter valid data.

Try to insert a new movie
with an invalid category
number or update an existing
row to give that movie an
invalid category number.

Lesson 5: Designing and Implementing Data Integrity 165

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5B List two differences between the primary key and unique constraints.

Answers might include: I can define only one primary key per table, but I
can define multiple unique constraints per table. I can’t configure primary
key columns to permit nulls, whereas I can configure unique constraint col-
umns to permit nulls.

166

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Implementing Indexes

Overview
SQL Server uses indexes to speed up data retrievals when processing
queries. In this lesson, we’re going to begin by exploring the different types
of indexes you can define, and why you might choose one type over the
other. We then explore how you create indexes within Transact-SQL and
configure their options. You also learn how to automate indexing by having
SQL Server analyze the typical query workload on a database. Finally, we
show you how to manage indexes by analyzing fragmentation, rebuilding
the indexes, and managing the statistics used by the query optimizer.

Objectives
To understand how to implement indexes, you will:

6A Design indexing for databases.

SQL Server supports two types of indexes: clustered and nonclustered. In
this topic, we explore how you go about selecting the type of indexes you
should create for your tables.

6B Implement indexing.

After you’ve designed a database’s indexes, your next task is to create
them. In this topic, we teach you how to use the CREATE INDEX SQL
statement to create both clustered and nonclustered indexes.

6C Manage indexing.

After you’ve created your indexes, you’ll find that you need to maintain
them. Management tasks include monitoring for fragmentation, and taking
steps to correct it if necessary. In this topic, we teach you how you go
about maintaining indexes by managing fragmentation and updating
statistics.

Data Files:
cl_movie.sql
indexes.sql
dropindex.sql
sysindexes.sql
rebuild.sql
drop_existing.sql
queries.sql
ncindex.sql

Lesson Time:
2 hours, 30 minutes

LESSON

6

Lesson 6: Implementing Indexes 167

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 6A
Designing Indexing
Your next task, after designing a database’s tables and constraints, is to determine
the indexes you should create. Let’s start by looking at the role indexes play in
optimizing query performance. When you query a table, SQL Server retrieves the
results by using one of two methods: by scanning all of the pages in a table (this
is called a table scan) or by using indexes. With a table scan, SQL Server scans
the entire table (page by page) from the beginning to end. During the scan, it
extracts the rows that meet the query condition. If SQL Server uses an index, it
searches the index itself to find the rows that meet the query condition and then
extracts the rows from the table.

When you execute a query (whether within a query tool such as SQL Query Ana-
lyzer or from within a custom program), SQL Server chooses between a table
scan and searching an index by first determining whether an index exists. Next,
the query optimizer identifies whether scanning the table or using the index to
retrieve the data will be faster; this choice forms the foundation for the query
execution plan.

As we’ve already discussed, you can create two types of indexes: clustered and
nonclustered. When you define an index, you must identify one or more columns
on which you want to base the index. This column (or columns) is referred to as
the index’s keys. A clustered index enables you to configure SQL Server to physi-
cally store the rows of a table in order by its keys. For example, if you create a
clustered index on the lname column in the customer table of the movies data-
base, SQL Server will write each row that you add to the table in order by last
name. So, if your table has customers with last names of Smith, Jones, and Frey,
SQL Server will store their rows in the following order: Frey, Jones, and Smith.

You can create a total of 250 indexes per table. Because a clustered index con-
trols how SQL Server stores the rows of a table, and SQL Server can store the
rows only in one order, you can define only one clustered index per table. You
can create up to 249 nonclustered indexes.

In contrast to a clustered index, a nonclustered index is a separate database
object. Similar to a clustered index, you create a nonclustered index by defining
its keys, but SQL Server doesn’t physically store the rows in the table based on
the nonclustered index’s keys. Instead, SQL Server stores information in the
index, which enables it to find the actual data rows.

So how does SQL Server keep track of indexes? Well, first of all, it stores the
information about each table’s indexes within the sysindexes system table in each
database. In addition, it uses an Index Allocation Map (IAM) page to keep track
of the pages and extents allocated to an index—and actually each table as well.
Each IAM page can keep track of up to 512,000 pages (roughly 4 GB of data).
SQL Server can add more IAM pages as needed.

As you saw when we created the tables in the movies database, you can create a
table without defining a clustered index. A table for which you haven’t defined a
clustered index is called a heap. A table and indexes can take any one of the fol-
lowing forms:

• A heap, which means you haven’t defined a clustered index on the table.

• A clustered index, which means SQL Server will store the table’s rows in
order by the clustered index’s key.

keys:
The column (or columns) on
which you’ve indexed a table.

heap:
A table without a clustered

index.

168

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• A nonclustered index based on a heap.

• A nonclustered index based on a clustered index.

Before we look at each of these forms and how SQL Server uses them, let’s look
a little bit more at how SQL Server organizes an index.

Balanced Tree Architecture
For both clustered and nonclustered indexes, SQL Server uses the Balanced-tree
(B-tree) architecture for storing the pages of the index, as shown in Figure 6-1.
Keep in mind that, just like your data, SQL Server stores the index information in
rows contained in 8 KB pages. The B-tree architecture consists of a root level
page, one or more levels of non-leaf level pages (also called intermediate pages),
and leaf-level pages. When you query a table and SQL Server uses the index, it
navigates each level of the index—from the root level to the leaf-level pages—to
retrieve the data.

Figure 6-1: Balanced-tree architecture.

Here’s an analogy for how SQL Server uses the B-tree architecture: think about
how you search for a phone number in a phone book. For example, let’s say
you’re looking for the phone number for someone named “Mike Johnson.” You
begin your search by looking in the Table of Contents to determine where the last
names that begin with “J” are stored in the phone book—just as SQL Server
starts its search for rows by starting at the root level page of your index. After
you know where the “Js” are, you can turn your phone book to that section.
Next, you use the range of names listed at the top of each page to narrow your
search to a specific page in the phone book. For example, the top of one page
might say “Jaworski - Johns, ” the next “Johns - Johnson F,” and the following
page “ Johnson G - Jones.” This level of your search is analogous to how SQL
Server uses the non-leaf level pages of an index. After you’ve found the phone

Balanced Tree Architecture

Lesson 6: Implementing Indexes 169

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

book page containing the names “Johnson G - Jones,” you can find Mike
Johnson’s phone number. Likewise, after SQL Server has identified the page con-
taining the leaf-level of the index, it can proceed to the leaf-level of the index to
retrieve the information you requested in your query.

The key to the B-tree architecture is that all of the levels of the index, from the
root level to the leaf-level, are balanced. Balanced in this context means that all
searches of the index require that SQL Server navigate the same number of index
levels and pages. As you add or remove data from a table, SQL Server will auto-
matically merge or split index pages in order to maintain this balance.

Heaps
SQL Server stores the rows within a heap based on the order they were entered.
In other words, the rows within a heap aren’t stored in any particular order
(unless you happen to enter the table’s rows in order—which is pretty unlikely).
SQL Server uses IAM pages to keep track of the pages allocated to a heap. When
you query a table that’s a heap, SQL Server queries the sysindexes table to find
the location of the first IAM page for the heap. Next, SQL Server queries the
IAM page to find all of the pages for the heap.

If you query a table that’s a heap and also doesn’t have any nonclustered indexes,
SQL Server performs a table scan. Keep in mind that the performance will be
slow if SQL Server must search through a large number of rows. In addition,
SQL Server returns the rows in the order they’re stored in the table—which
might or might not be the order in which you want them. Because retrieving data
based on table scans can be very slow, you’ll want to create either a clustered or
nonclustered index to improve performance.

Clustered Indexes
In a clustered index, the leaf-level pages of the B-tree architecture contain the
table data. So, when SQL Server navigates the levels of a clustered index from
the root level to the leaf level, it has actually retrieved the data (instead of a
pointer to the data). As you can see, a clustered index will provide you with fast
access to a table’s data.

It’s important that you choose the clustered index’s keys carefully. Because the
leaf-level pages of the index are the data pages of the table itself, a clustered
index is optimized for retrieving a range of rows (instead of only a single row).
You should choose the key for your clustered index based on the most common
query you will issue against the table to retrieve a range of rows. For example,
consider the customer table in the movies database. Typical queries against this
table might include retrieving a single customer’s information or a list of all cus-
tomers in alphabetical order or ZIP code order. In this scenario, your clustered
index should be on either the lname or zip columns, not the customer number
column, because these are the columns you’ll typically query to retrieve a range
of rows.

SQL Server requires that the values in the clustered index key for a table be
unique. You can enforce uniqueness one of three ways: by using a table’s primary
key as the clustered index key, specifying the UNIQUE keyword when you create
the index (which will force you to make all of the values in the clustered index
key’s column unique), or you can let SQL Server make each clustered index
key’s value unique. If you let SQL Server make the clustered index key values
unique, it appends an internal number called a uniqueifier to each row’s data in
the clustered index key column. This four-byte number isn’t visible to users.

170

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Because creating a clustered index changes the order of a table’s rows, you
should create a table’s clustered index before you create any nonclustered
indexes. Otherwise, if you create a nonclustered index first, and then a clustered
index, SQL Server must rebuild the nonclustered index.

Nonclustered Indexes
You can build a nonclustered index on top of a table that doesn’t have a clustered
index (a heap) or a table with a clustered index. The leaf-level pages of a
nonclustered index contain bookmarks. If your nonclustered index is built on top
of a heap, these bookmarks contain a row identifier (RID). An RID consists of
the following information: the file number of the database file containing the
table, the number of the page containing the data, and the number of the row (in
the format file #:page #:row #). When SQL Server navigates the nonclustered
index, it retrieves the RID from the leaf-level pages of the index and then
retrieves the row itself from the table’s pages by using the RID. SQL Server uses
Index Allocation Map (IAM) pages to track information about heaps.

If your nonclustered index is built on top of a table with a clustered index, the
bookmarks contain the row’s clustered index key. When SQL Server navigates the
nonclustered index, it retrieves the clustered index key from the leaf-level pages
of the index and then navigates the clustered index (using the key) to find the
actual data.

Retrieving data by using a nonclustered index requires extra workload than using
a clustered index. In the case of a nonclustered index built on a heap, SQL Server
must navigate the index first to find the RID, and then retrieve the data. In the
case of a nonclustered index built on a clustered index, SQL Server must navigate
both the nonclustered and clustered indexes to retrieve the data. If your query
retrieves multiple rows, it’s possible that SQL Server must read the nonclustered
index, then retrieve the data, then read the nonclustered index again, retrieve
more data, and so on. If your nonclustered index isn’t highly selective (meaning
the index doesn’t eliminate most of the table’s rows), it will be less efficient for
SQL Server to retrieve the data using the index than by simply performing a table
scan. For example, if you had an employee table containing employee informa-
tion, a nonclustered index based on an employee’s social security number is much
more selective than a nonclustered index based on gender. As a rule of thumb,
you should aim for your nonclustered indexes to eliminate more than 90 percent
of the table; if the index can’t eliminate that much of the table, you should sim-
ply let SQL Server perform a table scan instead.

SQL Server automatically rebuilds a clustered index whenever any of the follow-
ing events occur:

• You create a new clustered index.

• You drop an existing clustered index.

• You use the DROP_EXISTING clause to change the columns used as the
key for a clustered index.

Deciding Whether to Create an Index
You should consider both the advantages and disadvantages to indexes before you
create them. Updating the information in nonclustered indexes adds extra
workload for SQL Server; in addition, changing the order of the rows in a table
based on your clustered index can also increase the workload. You should make
sure that the performance you gain as a result of those indexes outweighs the cost
of maintaining them.

Lesson 6: Implementing Indexes 171

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Some of the advantages to implementing indexes include:

• Indexes typically make it faster for SQL Server to retrieve data (just as
searching through a book without an index can be slow, so can searching
through an un-indexed table).

• Indexes speed up queries that join tables and sort or group data.

• Indexes can enforce uniqueness.

• SQL Server maintains a specific sort order (ascending or descending) within
the index that’s based on the index’s keys.

Some of the disadvantages to implementing indexes include:

• Indexes must be selective (result in only a few rows returned for a query) or
they lose their value.

• Indexes increase your server’s workload because SQL Server must update
the indexes whenever you insert, update, or delete data from the table.

TASK 6A-1:
Understanding Index Architecture

1. Name two advantages to implementing a clustered index.

Answers might include: A clustered index enables SQL Server to store the
rows of the table in order by the index key, so data retrieval is much faster
because the rows are already stored in order; the query processor is opti-
mized when it uses a clustered index; SQL Server requires fewer I/O
operations to retrieve data from a table on which I’ve defined a clustered
index than from a heap.

2. On what type of columns should you base a clustered index?

I should base a clustered index on columns containing values for which I
would like SQL Server to return a group of rows rather than only one row.
For example, it’s better to base a clustered index on customer names rather
than customer account numbers.

3. Explain the B-tree architecture for indexing.

The B-tree architecture consists of a root level page, one or more levels of
non-leaf level pages, and leaf-level pages. SQL Server uses each level of the
index to narrow down its search until it can retrieve the data.

Guidelines for Defining Indexes
There are several factors you should keep in mind when you are designing the
indexes for a database. You should begin by zeroing in on the types of queries
and reports you think you might need. Specifically, you should look closely at the
WHERE clauses. For example, if you think you will frequently query the movie
table by movie title, you should consider creating an index on the movie title
column. You should also pay close attention to the order in which you specify

172

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

columns in your WHERE clauses. For example, if you plan to query the customer
table for a specific customer by name and you plan to use the format WHERE
lname = 'value' AND fname = 'value', then your index should be
based on the lname plus fname columns, not fname plus lname.

Evaluate Table Joins
Be aware of how you will use table joins when you’re designing indexes. You
typically use table joins (where you request data from more than one table)
between tables for which you’ve defined a primary key to foreign key
relationship. While SQL Server automatically creates an index based on a table’s
primary key, it doesn’t create an index on foreign keys. For example, let’s say
you’ve configured the movies database so that the primary key column category_
num from the category table is linked to the foreign key column category_num in
the movie table. If you find that you frequently need a list of all movie titles
sorted by category, and you want the result set to display a category’s description
rather than its number, you will need to use a table join in your query. To speed
up the query, you should create an index on the category_num column in the
movie table (which is the foreign key).

Identify the Role of Your Database
You should also keep in mind the role of the system for which you’re defining
indexes. If your database will be used as part of an online transaction processing
system (OLTP), it will have frequent changes to its data (inserts, updates, and
deletes). In this scenario, it would be better for you to create fewer indexes so
that you can minimize your server’s workload for updating those indexes. In con-
trast, if your database will be part of a decision support system, you will typically
update it only in batches, and usually not very often. You would be better off in
this environment creating more indexes.

Consider the Size and Selectivity of Index Keys
Keep in mind that smaller index keys are more efficient than larger keys. The
smaller an index key is, the more index rows SQL Server can store on a page.
Storing more index rows on a page improves SQL Server’s performance because
you decrease the number of I/O operations SQL Server must perform to retrieve
information. In addition, you improve the likelihood that most of the index can
be cached in RAM.

Another factor you should consider when designing an index is how selective the
key is. Don’t create an index based on keys that won’t eliminate the majority of
the rows in the table. If your index will result in SQL Server returning a large
number of rows, SQL Server can retrieve those rows faster by using a table scan
instead of an index. You can estimate the selectivity of an index by examining its
keys and the number of possible unique values in those keys within a table. For
example, let’s say that you create a nonclustered index based on the customer
account column that’s also the primary key for the customers table. In this sce-
nario, because the index key is also a primary key, each row must have a unique
value in the customer account column. This means that an index based on the
customer account column will be highly selective.

Determining the Order to Create Indexes
Remember, if you create a clustered index on a table for which you’ve already
defined nonclustered indexes, SQL Server must rebuild all nonclustered indexes.
Wherever possible, you should try to create a table’s clustered index before its
nonclustered indexes.

Lesson 6: Implementing Indexes 173

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 6-1

Designing Indexing for the Movies Database
Objective: In this lab, you’re going to analyze the movies database to see

if you need any additional indexes. The following table lists
the current indexes on your tables. (These indexes were cre-
ated when you defined primary key constraints.) Use your
database diagram for the movies database in SQL Server
Enterprise Manager to review the tables and their columns.
You can also refer to Appendix A.

Table Index (Column) Index Type
Movie Primary key (movie_num) Nonclustered
Category Primary key (category_num) Nonclustered
Customer Primary key (cust_num) Nonclustered
Rental Primary key (invoice_num) Nonclustered
Rental_detail no indexes

1. The movies database and its associated programs will be used for online
transaction processing. What types of reports do you think you will generate
from its tables? For example, you might want to print a report that lists all
of the rented movies that are due back in today. When you list a report, indi-
cate which table (or tables) you will use to generate that report.

Answers might include:

• A list of movies by category (comedy, drama, etc.)—tables: movie and
category.

• A list of movies by title—table: movie.

• A list of customers sorted by name—table: customer.

• A list of customers sorted by zip code—table: customer.

• Rentals per customer—tables: customer, rental, rental_detail, and
movie.

• Rentals by area of the city (ZIP code)—tables: customer, rental, rental_
detail, and movie.

• Rentals by movie category—tables: rental, rental_detail, movie, and
category.

2. Do you think you need any additional indexes? If so, list the table, the col-
umns you will include in the index, indicate whether the index will be
clustered or nonclustered, and explain why you need it. For example, you
might want to create a clustered index on the title column of the movie
table. This is because you might want to be able to retrieve a list of all
movie numbers for a particular title—and clustered indexes are optimized for
retrieving a group of rows.

I should create clustered indexes whenever I think I will perform frequent
queries that retrieve a group of rows. So, at a minimum, I should create the
following clustered indexes:

Suggested time:
15 minutes

174

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Customer—I should create a clustered index on either the ZIP code or
lname plus fname columns. I should choose between these two keys
based on which query I think I will perform more often: a search of
the customer table by name or by ZIP code. Given that I should try to
keep my clustered index key as small as possible, I should probably
create a clustered index on the ZIP code column (and create a
nonclustered index on the lname and fname columns). The ZIP code
column is a better choice because I will use it to return a range of
rows. In contrast, an index on the lname and fname columns will typi-
cally be used to return only a single row.

• Movie—I should consider creating a clustered index on the title column.
Because the movie table contains multiple copies of the popular movies,
I can use this index to retrieve a list of all of the copies of a particular
title.

• Rental—Clustered index on the cust_num column. Use this index to find
all invoices on file for a particular customer. (Each customer could
have more than one invoice on file.)

• Rental_detail—Clustered index on the invoice_num column. Use this
index to find the line item details for each invoice. (Each rental invoice
might have multiple line items.)

I could also create nonclustered indexes on the foreign key columns in order
to speed up table joins between the foreign key and primary key tables. At a
minimum, I should create the following indexes:

• Customer—Nonclustered index on lname and fname. I will use this
index to retrieve customer lists in alphabetical order.

• Movie—Nonclustered index on category_num. I should create this index
because the category_num column is a foreign key linked to the primary
key column in the category table. This index will help me speed up
table joins.

• Rental_detail—Nonclustered index on movie_num. I should create this
index because the movie_num column is a foreign key linked to the pri-
mary key column in the movie table.

TOPIC 6B
Implementing Indexes
Other than the indexes SQL Server automatically creates for the PRIMARY KEY
and UNIQUE constraint columns, you create an index by using the CREATE
INDEX statement. Use the following syntax:

USE database
CREATE index_type INDEX index_name
ON table_name (column_name)

Lesson 6: Implementing Indexes 175

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

When you create an index by using a primary key constraint, SQL Server typi-
cally assigns the name of the constraint to the index. You can assign names of
your choice to other indexes you create. You should choose names that reflect the
index keys so that it’s easier for you to identify the purpose of the index. You
might also choose to indicate whether the index is clustered or nonclustered by
using a prefix such as CL or NC. For example, you might use the following state-
ment to create a nonclustered index on the last name column (lname) in the
customer table:

USE movies
CREATE NONCLUSTERED INDEX NC_lname
ON customer (lname)

You should keep the following factors in mind when creating indexes:

• If you don’t specify the type of index, SQL Server automatically makes the
index nonclustered.

• You must be the owner of the table in order to execute the CREATE TABLE
statement.

• You can create an index based on a view.

• SQL Server tracks information about a database’s indexes in the sysindexes
table within the database itself.

• SQL Server automatically rebuilds all nonclustered indexes whenever you
create a clustered index. When possible, you should try to create your clus-
tered indexes before your nonclustered indexes.

• Make sure you have enough available disk space because building the clus-
tered index can require approximately 1.2 times your table size as working
space.

• Double-check that you don’t already have an index on the column.

• Select the index’s keys based on uniqueness and size.

Configuring the Fill Factor Option
You can use the FILLFACTOR option to configure how full SQL Server will fill
an index’s pages when it creates the index. Similar to tables, indexes store infor-
mation in 8 KB pages. When an index page becomes full, SQL Server must split
the index page and move some of its rows to a new page. This process of split-
ting an index page has an impact on your server’s performance. By using a fill
factor, you can configure how full SQL Server will make an index’s leaf-level
pages. If you build an index with a fill factor of 100 percent, SQL Server will fill
each of the index’s pages completely. As users add data to the table, SQL Server
must update the index’s information. If all pages of the index are completely full,
SQL Server must split a page to accommodate the new data. By contrast, if you
build an index with a lower fill factor, SQL Server will not fill each page of the
index completely. So, as users add data, SQL Server won’t have to split pages
within the index as often. Using an index with a lower fill factor, such as 50 per-
cent, improves SQL Server’s performance when you’re adding data to the table.

176

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

As an index is updated over time (as a result of users adding rows to a table),
SQL Server doesn’t maintain the fill factor percentage. It simply uses the fill fac-
tor percentage when it builds the index. If you want to re-establish the fill factor
after you’ve added data to a table, you must rebuild the index.

You can specify a fill factor percentage with each index you create, or you can
set the fill factor for your server by using the sp_configure stored procedure.
By default, SQL Server configures your server with a fill factor of 0, which
means it will fill all leaf-level index pages as full as possible and leave room for
one non-leaf level entry. If you don’t specify a fill factor percentage when you
create an index, SQL Server uses the percentage set for your server. You should
use a low fill factor for an OLTP environment. In contrast, you should use a high
fill factor for indexes in decision support systems because the data in the tables
won’t change very often. You can use the guidelines in the following table to
choose a fill factor for your indexes.

Percentage Pages Type of Activity Environment
0 Leaf-level: fill completely;

Non-leaf-level: leave
room for two index
entries

Light Mixed (OLTP and DSS)

1 – 99 Leaf-level: fill to
specified percentage;
Non-leaf-level: leave
room for two index
entries

Medium to heavy OLTP

100 Leaf-level: fill completely;
Non-leaf-level: leave
room for two index
entries

No changes DSS

You use the following syntax to set the fill factor when you create an index:

USE database
CREATE index_type INDEX index_name
ON table_name (column_name)
WITH FILLFACTOR = percentage

If you change the fill factor percentage for your server, SQL Server will use this
percentage for all new indexes you create unless you specify otherwise. Use the
following syntax to set the fill factor for your server:

sp_configure 'fill factor', percentage

You can view your server’s current fill factor setting by executing:

sp_configure 'fill factor'

Configuring the Pad Index Option
You use the pad index option to specify that SQL Server also leave free space in
the non-leaf-level pages of your index in addition to leaving room in the leaf-
level pages. Use the following syntax:

USE database
CREATE index_type INDEX index_name
ON table_name (column_name)
WITH PAD_INDEX, FILLFACTOR = percentage

Remember, if you rebuild a
clustered index, SQL Server
automatically rebuilds the
nonclustered indexes. For
this reason, the easiest way
to rebuild all indexes is to
simply rebuild the clustered
index, and SQL Server will
do the rest.

Lesson 6: Implementing Indexes 177

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

SQL Server reserves room in the non-leaf-level pages based on the fill factor per-
centage you specify. If you don’t include the PAD_INDEX option in the
CREATE INDEX statement, SQL Server doesn’t reserve room in the non-leaf-
level pages (other than room for two new index entries). You should consider
using the PAD_INDEX option on an OLTP system.

Viewing Index Information
Use the sp_helpindex and sp_help stored procedures to view information
about a table’s indexes. Use sp_helpindex 'table_name' to view only
the indexes defined for a table. Use sp_help table_name to view all infor-
mation about a table including its indexes.

TASK 6B-1:
Creating a Clustered Index on the Movie Table

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies, and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and created nonclustered indexes based
on your primary keys. You’ve imported data into the tables.

1. Start SQL Query Analyzer and select the movies database.

2. Execute the following query:

CREATE CLUSTERED INDEX CL_title
ON movie (title)

Use this query to define a clustered index for the movie table based on the
title column. This index will enable you to quickly find all tapes for a par-
ticular title.

3. Execute a new query:

sp_helpindex 'movie'

You can use sp_helpindex to view a list of the indexes defined for the
movie table. You should see that the movie table has two indexes: CL_title,
a clustered index on the movie title, and PK_movie, a nonclustered index on
the movie_num column. (You created the PK_movie index when you defined
the primary key constraint on the movie table.)

4. Clear the Query window.

Script file: cl_movie.sql.

178

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Composite Indexes
If you want to search a table based on two or more columns, you can define a
composite index. For example, if you plan to frequently use a query in which
your WHERE clause includes two columns, you should create a composite index
on those two columns. You can combine up to 16 columns in a composite index,
but the total width of all columns that make up the index key can’t exceed 900
bytes. You should put the most unique column first in the composite index. Also,
put the column that you will use first in your WHERE clause first in the index.
After you’ve created a composite index, make sure that your WHERE clause
specifies the columns in the same order. If you don’t use the columns in the same
order, SQL Server can’t use the index.

Use the following syntax to create a composite index:

USE database
CREATE index_type INDEX index_name
ON table_name (column_name_1, column_name_2)

You can use both the FILLFACTOR and PAD_INDEX options when you create a
composite index.

APPLY YOUR KNOWLEDGE 6-2

Creating Indexes
Objective: To create the remaining indexes for the movies database.

1. In SQL Query Analyzer, create a clustered index on the customer table based
on the ZIP code column. Name the index CL_zip. Write your query in the
following space.

CREATE CLUSTERED INDEX CL_zip
ON customer (zip)

2. On the customer table, create a nonclustered composite index based on the
lname and fname columns. Name the index NC_lname_fname. Write your
query here.

CREATE NONCLUSTERED INDEX NC_lname_fname
ON customer (lname, fname)

3. On the rental table, create a clustered index based on the cust_num column.
Name the index CL_cust_num. Write your query in the following space.

CREATE CLUSTERED INDEX CL_cust_num
ON rental (cust_num)

4. On the rental_detail table, create a clustered index on the invoice_num
column. Name the index CL_invoice_num. Record your query here.

CREATE CLUSTERED INDEX CL_invoice_num
ON rental_detail (invoice_num)

5. On the rental_detail table, create a nonclustered index on the movie_num
column. Name the index NC_movie_num. Write your query here.

CREATE NONCLUSTERED INDEX NC_movie_num
ON rental_detail (movie_num)

Suggested time:
15 minutes

Script file: indexes.sql.

Lesson 6: Implementing Indexes 179

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. On the movie table, create a nonclustered index on the category_num
column. Name the index NC_category_num.

CREATE NONCLUSTERED INDEX NC_category_num
ON movie (category_num)

7. Use the sp_helpindex stored procedure to verify the indexes on all
tables in the movies database.

8. Clear the Query window.

Creating a Unique Index
As you know, when you define the primary key for a table, SQL Server automati-
cally creates a unique index for that column. You can have only one primary key
per table. If you have another column in which the data is inherently unique, you
can create a unique index on that column. You can create unique indexes by
using the syntax:

CREATE UNIQUE INDEX index_name
ON table_name (column_name)

You’ll receive an error message when you run this statement if the column on
which you want to create the index contains duplicate values. You can use the
following query to determine if a column has duplicate values before you attempt
to create a unique index:

SELECT column_name,
COUNT(column_name) AS [number of duplicates]
FROM table_name
GROUP BY column_name
HAVING COUNT(column_name) > 1
ORDER BY column_name

For example, if you want to determine if a customer has more than one rental
invoice in the rental table, you could use the following query:

SELECT cust_num, COUNT(cust_num) AS [number of duplicates]
FROM rental
GROUP BY cust_num
HAVING COUNT(cust_num) > 1
ORDER BY cust_num

The results set for this query enables you to see each customer number that has
more than one rental invoice in the table.

Dropping an Index
If you find that you no longer need an index, you should drop it so that your
server won’t have the overhead of maintaining it. Use the following syntax to
drop an index:

USE database
DROP INDEX table_name.index_name

In order to drop an index, you must be the owner of the table; in addition, you
must be using the database in order to drop one of its indexes. You can’t use a
fully qualified name to reference the index to drop it. SQL Server automatically
reclaims the disk space whenever you drop an index. (If you drop a table, SQL

If you want to enforce
uniqueness on a column,

Microsoft recommends that
instead of creating a unique

index, you define a unique
constraint on that column

instead and SQL Server will
automatically create a unique

index for you.

You might point out to your
students that they wouldn’t

want to create a unique
index on the customer
number column in the

rental table. This query just
shows them how they

could check for duplicates.

180

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Server will automatically delete its indexes.) If you drop a clustered index, SQL
Server automatically rebuilds the table’s nonclustered indexes. You can’t drop
indexes created as a result of PRIMARY KEY or UNIQUE constraints. Instead,
you must drop the constraints themselves.

APPLY YOUR KNOWLEDGE 6-3

Dropping an Index
Objective: To drop and re-create an index.

1. In SQL Query Analyzer, attempt to drop the index named PK_movie from
the movie table. Record the query you used and its results in the following
space.

I used the queryDROP INDEX movie.pk_movie. Although I can
execute this query, SQL Server doesn’t permit me to drop an index based on
a primary key by using theDROP INDEX statement. Instead, I must drop
the primary key constraint, and SQL Server will then drop the index as well.

2. Drop the clustered index named CL_title from the movie table. Record your
query here.

DROP INDEX movie.CL_title

3. Re-create the index named CL_title. (This index is based on the title column
of the movie table.)

CREATE CLUSTERED INDEX CL_title
ON movie(title)

4. Clear the Query window.

Using the Sysindexes Table
Now that we’ve looked at the different types of indexes you can create and how
you create them, let’s move on to how SQL Server keeps track of those indexes.
SQL Server uses the sysindexes table as its “one-stop shop” for information about
indexes. For example, SQL Server can use the sysindexes table to determine if a
table is a heap or has a clustered index and whether any nonclustered indexes
exist for the table. In addition, it uses the sysindexes table to find the IAM page
for each table or index. You can use the columns within the sysindexes table to
determine a lot of information about an object, including:

• Use the indid column to determine if the object is a heap, clustered index, or
a nonclustered index. Use the following table as a guideline for identifying
the type of object.

Indid Value Type of Object
0 Heap.
1 Clustered index.
2 to 250 Nonclustered index.

Suggested time:
10 minutes

Script file: dropindex.sql.

Lesson 6: Implementing Indexes 181

255 Tracks the location of text, ntext, or image pages for a table. (You’ll
see this type of object only if you’ve defined a column within the
table as using the text, ntext, or image data types.)

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Identify the location of the first IAM page by using the FirstIAM column.

• Determine the root page of a clustered or nonclustered index B-tree by using
the root column.

SQL Server uses the id column in the sysindexes table to identify each object
(table or index). Unfortunately, the sysindexes table doesn’t contain the table
names associated with an index. You can get around this drawback by joining the
sysindexes table to the sysobjects table so that you can retrieve the name of the
table. Here’s the syntax:

SELECT o.name AS [Table Name], i.name AS [Index Name],
i.indid AS [Index ID], i.FirstIAM
FROM sysobjects AS o JOIN sysindexes AS i
ON o.id = i.id
WHERE o.id > 100
ORDER BY o.name

In this syntax, we’re joining the sysindexes table to the sysobjects table to
retrieve the table name, and then finding information about that object in the
sysindexes table. (We use the phrase “object” because we can look at either a
table that’s a heap or an index using this query.) Using the WHERE o.id >
100 clause enables us to select only those objects that aren’t system objects from
the sysobjects table. In addition, we’re using an inner join so our results set
shows only those objects with associated rows in the sysindexes table.

TASK 6B-2:
Viewing the Information in Sysindexes

1. In SQL Query Analyzer, execute the following query:

SELECT o.name AS [Table Name], i.name AS [Index Name],
i.indid AS [Index ID], i.FirstIAM
FROM sysobjects AS o JOIN sysindexes AS i
ON o.id = i.id
WHERE o.id > 100
ORDER BY o.name

Script file: sysindexes.sql.

182

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Look at the results set. You can see the name of the table and each index
you’ve defined for the table, along with the indid and First IAM columns for
each index. Your values in the FirstIAM column might be different from
what you see in the following graphic.

3. Look at the indid column for the category table. What types of indexes
have you defined on the category table? How can you tell?

I’ve defined only nonclustered indexes for this table. I can tell because the
first row for the category table has an indid value of 0, which means that the
table is a heap. In addition, the two other indexes for the category table
have indid values of 2 and 3, which means that they are nonclustered
indexes.

4. What types of indexes have you defined on the movie table? What are
the names of the indexes?

I’ve defined both a clustered index (CL_title) and two nonclustered indexes
(PK_movie, NC_category_num).

5. Clear the Query window.

TOPIC 6C
Maintaining Indexes
One of the problems you can encounter with indexes is that they can become
fragmented over time. Fragmentation occurs when you make changes to the data
in a table. These changes include adding or deleting rows from a table as well as
updating the value stored in an index’s key column. As you make changes to a
table’s data, the index pages can end up spread across many pages, and each
might have a very low row density. Depending on your database environment,
this fragmentation can be either good or bad. In an online transaction processing
environment, a low row density on your index pages can be beneficial because
SQL Server won’t have to split the pages to accommodate new data. In this case,
fragmentation works very similar to a fill factor. In contrast, fragmentation of
indexes in a decision support system (DSS) environment can be detrimental to
your server’s performance because SQL Server will have to retrieve more index
pages in order to scan the index.

row density:
A measure of the number of
rows stored on a data page.
A high row density means
that you have a greater
number of rows per page. In
contrast, a low row density
means that you have only a
few rows per page.

Lesson 6: Implementing Indexes 183

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can use three methods to manage index fragmentation: you can drop and
re-create a table’s clustered index (and specify a new fill factor percentage); you
can rebuild a specific index and specify a fill factor percentage; or you can use
the DBCC INDEXDEFRAG statement to defragment the leaf level pages of both
clustered and nonclustered indexes. Before we look at how you go about
defragmenting an index, let’s look at how you can determine if in fact an index is
fragmented.

Displaying Fragmentation Statistics
You can use the DBCC SHOWCONTIG statement to view fragmentation informa-
tion about the indexes on a specific table or view. The results set enables you to
determine whether a table or index is heavily fragmented, as well as how full a
table or index’s pages are (row density). You can use the table name or ID, view
name or ID, or index name or ID with the DBCC SHOWCONTIG statement. You
can find a table or view’s ID number by querying the sysobjects table, and an
index’s ID number by querying the sysindexes table, as follows:

USE database
SELECT id FROM sysindexes
WHERE name = 'index_name'

If you want to view additional information about an index, you should include
other columns such as origfillfactor, reserved, and used in your SELECT
statement. For example, the origfillfactor column enables you to view the fill fac-
tor percentage for the index. The reserved and used columns enable you to view
how much space in the database is reserved for the index, and of that space, how
much is currently in use.

When you’re ready to analyze a table or index, use the following syntax:

DBCC SHOWCONTIG (table_id | table_name | view_name | view_id[,
index_name | index_id)
[WITH options]

In this syntax, you can specify only the table or view information, which means
that SQL Server will display information about all indexes on the table or view,
or you can identify a specific index for the table or view. If you specify only a
table or view name, SQL Server checks the fragmentation of the table or view.
For example, you use the following query to have SQL Server check the frag-
mentation for the movie table:

DBCC SHOWCONTIG (movie)

In contrast, you use this query if you want to check the fragmentation of the
movie table’s PK_movie index:

DBCC SHOWCONTIG (movie, PK_movie)

The DBCC SHOWCONTIG statement supports several different options. For
example, you can use the WITH ALL_INDEXES option to have SQL Server
check the fragmentation on all indexes for a specific table or view. We describe
some of the options you can use with DBCC SHOWCONTIG in the following
table.

If you rebuild a clustered
index, SQL Server

automatically rebuilds the
table’s nonclustered indexes,

but it uses the default fill
factor configured for your
server for those indexes.

184

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Option Clause Configures SQL Server to Example

[WITH FAST]
[,
ALL_INDEXES]

Perform a fast check of indexes,
which means that SQL Server scans
only the non-leaf level pages of the
index. If you use WITH FAST,
SQL Server scans only the index you
specify. Using WITH FAST,
ALL_INDEXES enables SQL
Server to perform a fast check of all
of a table or view’s indexes.

DBCC SHOWCONTIG
(movie)WITH FAST,
ALL_INDEXES

Figure 6-2: Sample output of the DBCC SHOWCONTIG command.

When you run the DBCC SHOWCONTIG command, SQL Server displays a lot of
information that you use to analyze an object’s fragmentation. You can see what
the output from DBCC SHOWCONTIG looks like in Figure 6-2. The following
table describes the information you see in the results set from running DBCC
SHOWCONTIG and how you can use this information.

Statistic Enables You to Determine
Pages Scanned The total number of pages that make up the table

or index.
Extents Scanned The total number of extents that make up the table

or index.
Extent Switches How often DBCC had to change extents when it

was scanning the table or index.
Average Pages Per Extent How many pages are in the extent chain that

makes up the table or index.
Scan Density [Best Count: Actual Count] The ideal number of extent changes SQL Server

would have to make if the table or index is
contiguous (Best Count), and the actual number of
extent changes SQL Server had to make to analyze
the table or index (Actual Count). This number is
represented as a percentage, and it’s calculated by
dividing the Best Count by the Actual Count. You
use this percentage to determine how contiguous
an index or table is. A value of 100 percent
indicates the object is 100 percent contiguous. A
lower value indicates that the object is fragmented.

Remember, a fragmented
index might or might not be
a bad thing. In an OLTP
environment, fragmentation
can improve performance
because SQL Server won’t
have to split pages as you
add rows to the index or
table.

Lesson 6: Implementing Indexes 185

[WITH
ALL_INDEXES]

Check fragmentation statistics for all
indexes on a particular table or view.

DBCC SHOWCONTIG
(movie)WITH
ALL_INDEXES

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Statistic Enables You to Determine
Logical Scan Fragmentation What percentage of an index’s pages are out-of-

order, which means that the next page pointer in
the IAM page contains a different value than that
of the next page pointer in the index itself. This
number doesn’t mean anything if you’re analyzing
a table that’s a heap or a text index.

Extent Scan Fragmentation What percentage of an index’s extents are out-of-
order. This means that given a current extent, the
next extent for the index is not physically next
(contiguous) to the current extent. This number
doesn’t mean anything if you’re analyzing a heap.

Average Bytes Free Per Page The number of free bytes per page in the index or
table. This statistic doesn’t take into account row
size. A higher number indicates higher page
fragmentation. A lower number of free bytes per
page indicates greater row density and less
fragmentation.

Average Page Density (Full) How full the index or table’s pages are. This
calculation does take into account the size of a
row, unlike Average Bytes Free Per Page. For this
reason, this number is a more accurate indication
of page density. A higher percentage indicates
fuller pages and lower fragmentation; a lower
percentage indicates that the index pages are less
full and have higher fragmentation.

Rebuilding an Index
As we’ve said, one of the ways you can counteract fragmentation is to rebuild an
index with the DBCC DBREINDEX statement. Here’s the syntax:

DBCC DBREINDEX ('database.owner.table', index_name, fillfactor)

In this syntax, you can replace fillfactor with the percentage to which you want
SQL Server to fill the index’s pages. If you specify a fill factor percentage of 0,
SQL Server rebuilds the index with the fill factor you previously used when you
created the index. Specifying a different percentage overrides the index’s previous
fill factor setting.

TASK 6C-1:
Rebuilding an Index

Objective: To rebuild the movie table’s clustered index on the title col-
umn with a fill factor of 50 percent.

1. In SQL Query Analyzer, execute the following query:

SELECT id, indid, reserved, used, origfillfactor, name
FROM sysindexes
WHERE name = 'CL_title'

Script file: rebuild.sql.

186

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

This query enables you to view statistics about the clustered index you
defined on the movie table.

2. Look at the index’s fill factor. Because you didn’t specify a fill factor per-
centage when you created the index, SQL Server automatically used the fill
factor set for your server. By default, SQL Setup configures your server with
a fill factor of 0, which means that your server will fill the index pages as
full as possible.

3. Execute the query:

DBCC SHOWCONTIG (movie, CL_title)

You use this query to view the statistics for the CL_title index. The Scan
Density indicates how contiguous the index is, so a value of 100 percent
means the index is contiguous (no fragmentation). A number below 100 per-
cent would indicate fragmentation. The numbers after the Scan Density
Percentage, [Best Count: Actual Count], indicate the ideal number of extent
changes that would be present if everything were contiguously linked (Best
Count) and the actual number of extent changes (Actual Count). Based on
the amount of data in the movie table, SQL Server is using one 8 KB page
to store the clustered index (and thus the table itself).

4. How full are the CL_title index’s pages? What statistic do you use to
find this information?

The CL_title index’s pages are 97.62% full. I find this information by look-
ing at the Avg. Page Density (Full) statistic.

5. Execute a new query:

DBCC DBREINDEX ('movies.dbo.movie', CL_title, 30)

This query rebuilds the clustered index on the movie table with a fill factor
of 30 percent. You should see that SQL Server also automatically rebuilt the
nonclustered indexes of the movie table. SQL Server also changes the fill
factor percentage on the nonclustered indexes for the table to 30 percent.
You can verify this by examining each index’s properties in sysindexes.

6. Execute the following query:

SELECT id, indid, reserved, used, origfillfactor, name
FROM sysindexes
WHERE name = 'CL_title'

You can see that the fill factor has changed for the CL_title index.

Lesson 6: Implementing Indexes 187

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Execute the following query to determine the fill factor for all of the movie
table’s indexes:

SELECT o.name AS [Table Name], i.name AS [Index Name],
i.origfillfactor AS [Fill Factor]
FROM sysobjects AS o JOIN sysindexes AS i
ON o.id = i.id
WHERE o.name = 'movie'

8. Execute the following query:

DBCC SHOWCONTIG (movie, CL_title)

You can see that the Average Page Density (Full) is 30 percent or less.
Notice that the index now uses four pages to store its data.

9. The Scan Density [Best Count: Actual Count] for the CL_title index
(and thus the movie table) is now 50 percent. Is this a problem?

It depends on the role of the table. If it’s part of an OLTP system, having a
lower scan density (such as 50 percent) means that SQL Server won’t have
to split pages as often as I add data to the table. In this scenario, a lower
scan density helps improve performance. On the other hand, if the table’s
part of a DSS system, having a lower scan density means that SQL Server
must do more work to retrieve the table’s pages. In a DSS system, a lower
scan density hurts performance.

Using DROP_EXISTING to Change an Index
You can use the DROP_EXISTING keyword with the CREATE INDEX state-
ment to change an index’s characteristics—without having to first drop the index
and then re-create it. You can use DROP_EXISTING clause to change the fol-
lowing index characteristics:

• Change the index’s key to a different column.

• Add or remove columns from a composite index.

• Configure the index to be unique or not unique.

• Change the FILLFACTOR and PAD_INDEX options. Use this option to cor-
rect problems with fragmentation.

You can also use the DROP_EXISTING keyword to change a nonclustered index
to a clustered index, but not a clustered index to nonclustered. If you want to
change a clustered index to a nonclustered index, you must drop the index and
re-create it. Remember, if you change a nonclustered index to a clustered index,
SQL Server can use up to 1.2 times the size of your table during the rebuilding
process.

188

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CREATE index_type INDEX index_name
ON table_name (column_name)
WITH DROP_EXISTING[, FILLFACTOR = percent]

For example, if you want to re-create the PK_movie nonclustered index (based on
the primary key column movie_num) and configure it with a fill factor of 60 per-
cent, you can use the following query:

CREATE NONCLUSTERED INDEX pk_movie
ON movie (movie_num)
WITH DROP_EXISTING, FILLFACTOR = 60

Using DBCC INDEXDEFRAG to Defragment an Index
The third technique you can use to defragment an index is the DBCC
INDEXDEFRAG statement. You use this statement to defragment the leaf-level
pages of clustered and nonclustered indexes. In this scenario, SQL Server
defragments the index by re-arranging the order of the pages that make up the
leaf-level of the index. This re-arranging enables SQL Server to order the pages
in sequence from left to right, which is the order in which it scans the index
information. You can use DBCC INDEXDEFRAG to perform the following tasks:

• Perform defragmentation with a minimum of locking. This makes it easier
for your users to continue working while SQL Server defragments the index.

• Defragment indexes that span multiple files. Note: This command can’t
move an index’s pages from one file to another.

• Determine the percentage of completion during defragmentation.

• Compact the pages of an index based on the fill factor you specified when
you created the index.

Here’s the syntax:

DBCC INDEXDEFRAG ({database_name | database_id | 0
, {table_name | table_id | 'view_name' | view_id}
, {index_name | index_id})
[WITH NO_INFOMSGS]

In this syntax, you can use 0 for the database and SQL Server will look for the
table and index you specify in the current database. In the following example,
we’re defragmenting the CL_title index associated with the movie table:

DBCC INDEXDEFRAG (movies, movie, CL_title)

TASK 6C-2:
Using DROP_EXISTING to Re-create an Index Based on
a Primary Key

1. In SQL Query Analyzer, execute the following query:

CREATE UNIQUE NONCLUSTERED INDEX PK_movie
ON movie (movie_num)
WITH DROP_EXISTING, FILLFACTOR = 60

You must use the UNIQUE keyword because the PK_movie index is based
on the primary key constraint.

If your index is very
fragmented, it’s often faster
for you to rebuild the index
instead of defragmenting it.

Script file: drop_existing.
sql.

Lesson 6: Implementing Indexes 189

Here’s the syntax:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Execute a new query:

SELECT name, origfillfactor
FROM sysindexes
WHERE name = 'PK_movie'

You use this query to verify that the PK_movie index now has a fill factor
of 60 percent.

3. Clear the Query window.

Using SQL Profiler
One of the handiest utilities in SQL Server 2000 is the Index Tuning Wizard. You
can use this wizard to analyze the typical queries you perform on your server,
and have it make recommendations on indexes you should create to improve the
performance of those queries. This wizard can also make recommendations as to
when an indexed view will improve performance. You’ll need to capture the que-
ries in SQL Profiler before you can analyze them with the Index Tuning Wizard.
Let’s start this process by looking at SQL Profiler first. You can use SQL Profiler
to monitor your server and its databases, including user logins, user activity, and
application activity. The information you obtain in SQL Profiler is sometimes
called a trace. Before you begin using SQL Profiler, you should determine what
you want to monitor on your server. The following table describes some of the
information you can monitor within SQL Profiler.

Information to Monitor Enables You to
Queries Analyze the performance of a query and to identify queries that

perform full table scans (and thus reduce the performance of the
server).

Users Monitor the activities performed by specific users or applications. You
can also monitor login attempts, login failures, connections, and
disconnections.

Hard Disk Monitor disk reads and writes.
CPU Monitor CPU utilization at the Transact-SQL statement level.
Locks Identify any deadlock problems.
Errors Monitor any errors that occur on your server.

You can capture the information in SQL Profiler to a table, file, or SQL script to
analyze it later. You can analyze information in SQL Profiler as it’s recorded. If
you capture the information to a file, you can then replay the trace on the same
server or a different server. You might want to replay a trace on a different server
to test different hardware combinations. You can also use this trace file with the
Index Tuning Wizard to analyze the indexes associated with a particular database.
Finally, you can use the trace file to analyze SQL statements and stored proce-
dures to debug an application.

190

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 6C-3:
Generating a Workload File in SQL Profiler

Objective: To prepare a file for analysis in the Index Tuning Wizard.

1. From the Microsoft SQL Server menu, choose Profiler to start SQL Profiler.

2. Choose File→New→Trace. When prompted, log on to your server with
Windows Authentication to open the Trace Properties dialog box.

3. In the Trace Name text box, type workload to define a name for your trace
file.

4. Look at the Template Name. By default, SQL Profiler configures your trace
to use the Standard template for capturing server information. This template
tracks logins and logouts, user connections, execution of stored procedures,
and execution of SQL statements. This information is all you need for ana-
lyzing indexing with the Index Tuning Wizard.

5. Check Save To File to specify that you want to capture the workload on
your server to a file. SQL Profiler automatically displays the Save As dialog
box and gives the file the name of workload.trc.

6. Look at the default path for trace files. SQL Profiler automatically saves
your file to your user’s My Documents folder.

7. Click Save to create the trace file.

Lesson 6: Implementing Indexes 191

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Click Run to close the Trace Properties dialog box and begin capturing your
server’s workload to a file. You should see that SQL Profiler begins to cap-
ture information to the trace file.

9. Switch to SQL Query Analyzer. You’re going to use SQL Query Analyzer
to execute queries against the movies database so that you can analyze its
indexes.

10. Load the SQL script C:\Data\queries.sql. This file contains three typical
queries you might execute against the movies database. (Each query is pre-
ceded by a comment statement.) You can use these queries to generate a
sample workload for your server.

11. Run each query individually by highlighting it with your mouse. (After
you’ve highlighted a query, you can execute it by pressing [Ctrl]E or by
clicking the Execute Query button on the toolbar.) We’re using these queries
to generate a workload on your server. You can also execute other queries of
your own choice.

12. In SQL Query Analyzer, open a new Query window, and then close the
window containing the queries.sql script file.

13. Switch to SQL Profiler.

14. Choose File→Stop Trace to stop capturing the workload in SQL Profiler.

15. Close SQL Profiler.

Using the Index Tuning Wizard
After you’ve generated a workload file in SQL Profiler, you can use the Index
Tuning Wizard to analyze the workload and the tables in a database to identify
any additional indexes you might need. The Index Tuning Wizard works by ana-
lyzing the cost of various methods of retrieving the data for your queries,
including both table scans and indexes. In addition, the wizard will also tell you
the cost of implementing its recommendations.

Use the following steps to analyze your indexes with the Index Tuning Wizard:

1. Generate a workload file. This workload file must represent typical database
activity such as queries against the database. A workload file can be either a
SQL script or captured information from SQL Profiler.

2. Analyze the workload file by using the Index Tuning Wizard.

192

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Implement recommendations. You can implement the recommendations
immediately, or specify a date (SQL Server Agent then runs these tasks), or
save them as a script file.

The Index Tuning Wizard doesn’t provide recommendations for the following
scenarios:

• You’ve distributed database queries that access tables that don’t exist in the
local database.

• Indexes for system tables.

• Columns with PRIMARY KEY and UNIQUE constraints defined.

• Queries that use quoted identifiers instead of square brackets.

• Tables without enough data.

• If the Index Tuning Wizard’s suggested indexes don’t offer enough projected
improvement in query performance, it won’t provide you with any
recommendations.

APPLY YOUR KNOWLEDGE 6-4

Using the Index Tuning Wizard
Objective: To use the Index Tuning Wizard to analyze the workload.trc

file you created in SQL Profiler.

1. Start SQL Server Enterprise Manager. In the console tree, select your server.
Run the Index Tuning Wizard. (Choose Tools→Wizards. In the Select Wiz-
ard dialog box, expand the Management category; then select Index Tuning
Wizard.) Use the following information as you go through the wizard:

• On the Select Server And Database page, choose the movies database.
Leave Keep All Existing Indexes and Add Indexed Views checked. Set
the Tuning Mode to Thorough. (Because the movies database is small,
it won’t take long for SQL Server to perform a thorough analysis.)

• On the Specify Workload page, select My Workload File, and then
select the workload.trc file.

• On the Select Tables To Tune page, click Select All Tables so that the
wizard can analyze all tables.

2. When the Index Tuning Wizard is done, observe the recommended indexes
for the movies database. Did the wizard recommend any new indexes? If so,
what performance increase can you expect as a result?

Given the queries I used in the previous task and the current indexes on my
tables, the Index Tuning Wizard doesn’t recommend any new indexes. I see
that each of the recommended indexes the Index Tuning Wizard suggested
already exists in my database.

3. On the Index Recommendations page, click Analysis to view a report of the
indexes used in your queries. This report enables you to see what percentage
each index was used to retrieve the data in your queries. You can also see
the size of each index. Don’t save this report.

Suggested time:
15 minutes

Lesson 6: Implementing Indexes 193

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. On the Index Recommendations page, click Next. If the Index Tuning Wiz-
ard had suggested any new indexes, you would see the Schedule Index
Update Job page. You use this page to schedule jobs or create a script file.
Click Finish to close the wizard, and then click OK.

5. Close SQL Server Enterprise Manager.

Managing Index Statistics
SQL Server automatically creates and maintains statistics about index columns
and their data for use by the query optimizer. You should be aware that SQL
Server maintains statistics only on the first column of a composite index. The
query optimizer uses this statistical information to identify whether performing a
table scan or using an index will be more efficient when it retrieves data. SQL
Server automatically updates statistics as you insert or modify data into columns.

Creating Statistics
By default, SQL Server enables the Auto Create Statistics option on any new
databases you create. This option enables SQL Server to automatically create sta-
tistics for any indexed columns that contain data. In addition, SQL Server
automatically creates statistics for any non-indexed columns you use in table
joins or a WHERE clause. SQL Server creates these statistics when it attempts to
optimize a query for which there aren’t any statistics.

You can manually force SQL Server to create index statistics by using the
CREATE STATISTICS statement. You use this statement to define additional
statistics for non-indexed columns or for columns other than the first column
within a composite index by using the following syntax:

CREATE STATISTICS statistics_name
ON {table_name | view_name} (column_name,...)

You typically name your statistics STATS_column_name. You can drop statistics
by using the syntax DROP STATISTICS statistics_name.

Updating Statistics
By default, SQL Server also enables the Auto Update Statistics option for any
new database you create. SQL Server automatically updates the statistics for a
table and its indexes whenever they become outdated. Statistics become outdated
when you make a large number of updates to a table relative to its size. If neces-
sary, you can manually force SQL Server to update its statistics by using the
UPDATE STATISTICS statement. You might want to force an update of statis-
tics if you create an index on an empty table and then populate it later or execute
the TRUNCATE TABLE statement to delete all rows from a table. To update the
statistics of all indexes for a table, use the following query:

UPDATE STATISTICS table_name | view_name [index_name |
(statistics_name[, ...])]

To update statistics for a specific index, use this query:

UPDATE STATISTICS table_name index_name

When you run the UPDATE STATISTICS statement, SQL Server selects a
sample of the rows on which to base the statistics. SQL Server selects the size of
the sample based on the size of the table. If you want SQL Server to base the
statistics on all rows in the table or on a specific percentage of rows, you can use

SQL Server stores statistics
in the statblob column within

the sysindexes table.

194

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

either the FULLSCAN or SAMPLE options. The FULLSCAN option specifies that
you want SQL Server to calculate the statistics based on all rows in the table.
Use the SAMPLE option to specify a percentage or number of rows. You can use
the following syntax with the FULLSCAN or SAMPLE options:

UPDATE STATISTICS table_name
WITH [FULLSCAN | SAMPLE number {PERCENT | ROWS}]

When you use SAMPLE, specify a number followed by either PERCENT (if the
number is a percentage) or ROWS (if the number identifies a specific row count).
If the sample size you specify is too small to generate accurate statistics, SQL
Server will automatically adjust your sample size.

You can also use the sp_updatestats stored procedure to update the statistics
for all tables within a particular database. Use the following syntax:

USE database_name
EXEC sp_updatestats

Determining When Statistics Were Last Updated
You can use the DBCC SHOW_STATISTICS or STATS_DATE statements to
determine when SQL Server last updated an index’s statistics. Here’s the syntax
for DBCC SHOW_STATISTICS:

DBCC SHOW_STATISTICS (table_name, index_name)

Some of the information the DBCC SHOW_STATISTICS statement enables you
to view includes:

• The date and time SQL Server last updated statistics.

• The total number of rows in the table.

• The total number of rows SQL Server sampled to update the table’s
statistics.

• How many rows SQL Server skipped over when sampling data (called distri-
bution steps).

• The average length of an index’s key.

Use the following syntax for the STATS_DATE statement:

STATS_DATE (table_id, index_id)

Remember, you can obtain the table index ID numbers by querying the sysobjects
and sysindexes tables.

Turning Off Statistics
SQL Server automatically updates index statistics whenever the query optimizer
detects that the statistics are no longer current. Although Microsoft recommends
that you not turn off these automatic updates, you can turn them off by using the
UPDATE STATISTICS statement with the WITH NORECOMPUTE option. The
only plausible scenario where you might consider turning off automatic statistics
would be if your data is relatively static (meaning you make very few inserts,
updates, and deletes to the tables) and you need to reduce your server’s overhead.

To turn off automatic statistics with the UPDATE STATISTICS statement, use
the following syntax:

UPDATE STATISTICS table_name
WITH NORECOMPUTE

Lesson 6: Implementing Indexes 195

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

This statement will turn off automatic statistics updates for all indexes for the
table you specify. You can also turn off automatic statistics for a single index.

TASK 6C-4:
Observing Index Statistics

1. In SQL Query Analyzer, execute the following query:

DBCC SHOW_STATISTICS (movie, PK_movie)

This query enables you to view the statistics information SQL Server has
created for the PK_movie index.

2. Look at the first set of information in the results set. Some of the infor-
mation you can find in this results set includes when the statistics were last
updated (by examining the Updated column), the total number of rows in the
table (Rows column), how many rows SQL Server sampled to generate the
statistics (Rows Sampled column), how selective the index is (Density), and
the average length in bytes of the index’s key (Average Key Length
column). The number of steps you see will vary—the closer a value in the
Density column is to zero, the more selective the index.

3. Look at the next set of information in the results set. (The section that
has the column headings of All Density, Average Length, and Columns.)

The first row enables you to view the statistics created for the movie_num
key column. SQL Server calculates the All Density value by dividing 1 by
the number of unique values in the movie table. Because the movie_num
column is the table’s primary key, each row must have a unique value,
which means that if we have 156 rows in the table, we must have 156
unique movie_num values. So, SQL Server calculated the number you see in
the All Density by dividing 1 by 156, or .0064. (By default, SQL Server dis-
plays this number in scientific notation.) The second row tells you that SQL
Server also created statistics on the combination of the movie_num and title
columns. Again, because the value in each row’s movie_num column must
be unique, the movie table has 156 unique combinations of the movie_num
and title columns. As a result, the All Density value for the movie_num and
title columns is the same as that of the movie_num column.

So what does all of this mean? The lower the number you see in the All
Density column, the more selective the index is. The more selective an index
is, the greater its efficiency for retrieving data as compared to a table scan.
The values you see in this column can be anywhere from 0 to 1. You can
consider an index as highly-selective if it has a density value of 0.10 or
lower.

196

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Execute a new query:

DBCC SHOW_STATISTICS (movie, CL_title)

5. Use the results set you see for the CL_title index to complete the follow-
ing table.

Statistic Value
Total Number of Rows in Table 156
Total Number of Rows Sampled 156
Density 0.0
All Density .008

Given the information you recorded in the table, how selective is this
index? Is it more or less selective then the PK_movie index?

This index is selective because it has a value that’s pretty close to zero. It
isn’t as selective as the PK_movie index, which had an All Density value of
.006.

6. In SQL Query Analyzer, choose File→Open. When you’re prompted to save
your current query, click No.

7. Open the C:\Data\ncindex.sql script file. You’re going to use this script to
create a nonclustered index based on the state column in the pubs..authors
table.

8. Highlight and execute the first four lines of the script to create the new
nonclustered index.

9. Highlight and execute the DBCC SHOW_STATISTICS statement to view
the index’s statistics.

10. Use the results set you see for the NC_state index to complete the fol-
lowing table.

Statistic Value
Total Number of Rows in Table 23
Total Number of Rows Sampled 23
Density 0.0
All Density for State column 0.125

Given the information you recorded in the table, how selective is this
index? Should you keep this index? Why or why not?

This index isn’t highly selective because it has a value that’s greater than
0.10. I probably shouldn’t keep this index because it isn’t highly selective,
which means it might be faster if SQL Server retrieved results for queries
based on the state column by performing a table scan.

11. Close all open windows.

Lesson 6: Implementing Indexes 197

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, you learned the factors you should consider when designing
indexing. For example, you should use a clustered index to optimize queries
that retrieve a range of rows, and a nonclustered index to optimize queries
that are more selective. You also explored the techniques you can use to
create and configure an index’s options. Finally, you learned how to manage
an index by analyzing fragmentation, updating its statistics, and using the
Index Tuning Wizard to make recommendations for a database’s indexes.

LESSON 6 REVIEW
6A In what scenario should you choose to implement a nonclustered index?

How about a clustered index?

I should implement nonclustered indexes whenever I want to optimize que-
ries that retrieve only a few number of rows or even a single row from a
table. I should implement a clustered index whenever I want to optimize que-
ries that retrieve multiple rows from a table.

6B What is the role of the fill factor in an index? How should you configure
the fill factor for OLTP and DSS environments?

SQL Server uses the fill factor to determine how full to fill the index pages
when it creates an index. If my database will be used in an OLTP environ-
ment, I should use a lower fill factor to allow room for growth. If my
database will be used in a DSS environment, I should use a higher fill factor
because my system will have few changes to the data.

6C What is the easiest way for you to create and maintain the index statis-
tics for all of a database’s indexes?

The easiest way to create and maintain index statistics for a database’s
indexes is to enable both the Auto Create Statistics and Auto Update Statis-
tics options for a database.

198

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Joining Tables

Overview
In the “Creating and Managing Tables” lesson, we talked about how you
should normalize tables so that you can avoid having redundant data in
those tables. But after you split data into multiple tables, your next problem
becomes how do you query multiple tables at the same time. In this lesson,
we will show you how you go about retrieving data from multiple tables
simultaneously by using table joins. We will explore the different types of
table joins you can use and how you go about querying two or more tables
with join statements.

Objectives
To learn how to join tables, you will:

7A Use Transact-SQL to query multiple tables.

In this topic, we will define the different types of joins you can imple-
ment (inner, outer, and cross). We also provide you with the syntax for
each type of join, along with hands-on activities for implementing joins.

7B Implement advanced table joins.

In this topic, we will show you how to join three or more tables together.
You’ll explore how to combine multiple SELECT statements in order to
generate a single results set. Finally, you’ll learn how to create a table
based on a results set by using the SELECT INTO statement.

Data Files:
inner_joins.sql
outer_joins.sql
cross_joins.sql
multiple.sql
multi_table.sql
self_joins.sql
union.sql
select_into.sql
temp_tables.sql

Lesson Time:
3 hours

LESSON

7

Lesson 7: Joining Tables 199

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 7A
Querying Multiple Tables
You use table joins to produce a results set that contains columns from two or
more tables. For performance reasons, you should limit the number of tables you
reference in a join; the more tables you use in a join, the longer it will take SQL
Server to process your query. You join tables together based on a column (or col-
umns) that both tables have in common. You’ll frequently base your joins on the
primary key to foreign key relationship between tables. For example, you can use
a join to display data from both the Rental and rental_detail tables based on the
invoice_num column. In this example, the invoice_num column is the primary
key of the Rental table and the foreign key of the rental_detail table.

SQL Server supports three types of joins: inner, outer, and cross. We describe
each type of join in the following table.

Join Description
Inner Use an inner join to link two tables that have common values in one or more

columns. For example, you might want to use an inner join to link the Invoice
Number column in the Rental table to the Invoice Number column in the rental_detail
table. The results set from an inner join contains only the rows that have matching
values in the linked column from both tables

Outer Use an outer join whenever you want to join two tables together, but you want your
results set to contain not only the rows that match the join condition, but also any
unmatched rows from one or the other of the tables. For example, you can use an
outer join to link the Customers table to the Rental table so that you can view a list of
all customers even if they’ve never rented a movie.

Cross Use a cross join whenever you want to join every row in one table with every row in
the other table. For example, you might use a cross join if you want a quick way to
populate a new table with a lot of data. This type of join is also called a Cartesian
product.

You join tables together by using the SELECT statement. The syntax consists of a
SELECT statement that includes a list of columns from both tables, a FROM
clause that identifies which tables you want to join, and an ON clause that speci-
fies which column you’re using to join the two tables. Here’s the basic syntax:

SELECT column list
FROM table1 join_type JOIN table2
ON table1.column = table2.column

If your SELECT statement contains columns that have the same name in both
tables, you must explicitly specify the table from which you want to retrieve the
column. For example, the following query lists each movie’s title (from the
Movie table) and the description of its category (from the Category table).
Because you must join the Movie table to the Category table by using the
category_num column in both tables, you must qualify the column names by
using the table names:

SELECT movie.title, category.description
FROM movie INNER JOIN category
ON movie.category_num = category.category_num

200

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Likewise, if the columns you include in the SELECT statement are common to
both tables, you must also precede each column with the name of the table.
Although it isn’t required, you should precede each column in the SELECT state-
ment with the name of the table from which you want to retrieve it—even if the
columns are unique to each table. To reduce the amount of typing, SQL Server
enables you to define short aliases for your table names by using an AS clause.
For example, consider the following query:

SELECT m.title, c.description
FROM movie AS m INNER JOIN category AS c
ON m.category_num = c.category_num

As you can see by this example, instead of using the table name movie before
each of its columns, you can define an alias of “m” and use it to identify the
movie table’s columns. Likewise, you can use an alias of “c” to identify the cat-
egory table’s columns.

Defining an Inner Join
As we’ve said, you use an inner join when you want to display matching rows in
two or more tables. If you don’t specify a type of join when you define your
JOIN statement, by default, SQL Server assumes that you’re using an inner join.
You can use a WHERE clause to restrict the rows returned in your query, and you
can also use an ORDER BY clause to specify an order for the rows.

For example, the following query enables you to display a list of employees from
the pubs database and the publishers they work with:

USE pubs
SELECT e.fname, e.lname, p.pub_name
FROM employee AS e INNER JOIN publishers AS p
ON e.pub_id = p.pub_id
ORDER BY e.lname, e.fname

You can optionally use the DISTINCT keyword to restrict the rows returned in
the results set. For example, if you want to see a list of customers who have ever
rented a movie, but not see a customer listed more than once, you could use the
following query:

USE movies
SELECT DISTINCT r.cust_num, c.fname, c.lname
FROM rental AS r INNER JOIN customer AS c
ON r.cust_num = c.cust_num
ORDER by c.lname, c.fname

You can’t use a column that
could contain null values in
the join condition.

Lesson 7: Joining Tables 201

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 7-1

Working with Inner Joins
Objective: To use inner joins to display information from the tables in the

movies and pubs databases.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and you’ve created nonclustered indexes
based on your primary keys. You have imported data into the
tables. You have created database diagrams for both the mov-
ies and pubs databases.

1. Start SQL Server Enterprise Manager and display your database diagram for
the movies database. You can use the diagram to review the columns in your
tables when you construct the following joins.

2. In SQL Query Analyzer, select the movies database. Design and execute a
query to display the invoice number, rental date, and the customer’s first and
last names for all of the movie rentals. Sort the results by the rental date
column. Hint: You can use CONVERT(CHAR(10), rental_date,
101) to display the rental date in the format month/day/year. You can also
concatenate the customer’s first and last name columns. Record your query
in the following space.

USE movies
GO
SELECT r.invoice_num, CONVERT(CHAR(10), r.rental_date, 101)
AS 'rental date', c.fname+' '+c.lname as 'name'
FROM rental AS r INNER JOIN customer AS c
ON r.cust_num = c.cust_num
ORDER BY r.rental_date

3. Design and execute a query to list invoice numbers, rental date, invoice line
item numbers, and movie numbers (join the rental table to the rental_detail
table). Sort the results by the invoice number column.

What query did you use?

SELECT r.invoice_num, r.rental_date, rd.line_num, rd.movie_num
FROM rental AS r INNER JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num
ORDER BY r.invoice_num

4. Design and execute a query to list the titles and the category descriptions for
all movies with a rating of PG. List each movie only once, and sort the list
of titles in alphabetical order. Record your query below.

SELECT DISTINCT m.title, c.description
FROM movie AS m INNER JOIN category AS c
ON m.category_num = c.category_num
WHERE m.rating = 'PG'
ORDER BY m.title

Suggested time:
30 minutes

Script file: inner_joins.sql.

You can use the CONVERT
function to convert a date

column to character format
and optionally enable you to
specify a format for the date.

Other formats include 102
(yyyy.mm.dd) and 103 (dd/

mm/yy).

202

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

How many PG titles does your store have?

Twenty-five.

5. Refer to the database diagram for the pubs database. Design and execute a
query to display the store name and their discount percentage. Sort the
results by the store name column. (Note: This query returns only one row in
the results set.) What query did you use?

USE pubs
GO
SELECT s.stor_name, d.discount
FROM stores AS s INNER JOIN discounts AS d
ON s.stor_id = d.stor_id
ORDER BY s.stor_name

6. Based on the tables in the pubs database, design and execute a query to dis-
play a list of titles for which authors have a royalty percentage greater than
20 percent. (Join the titles table to the roysched table.) Display the title
name and royalty percentage in the results set; sort the results in descending
order by royalty percentage.

Record your query below.

USE pubs
GO
SELECT t.title, r.royalty
FROM titles AS t INNER JOIN roysched AS r
ON t.title_id = r.title_id
WHERE r.royalty > 20
ORDER BY r.royalty DESC

How many titles have royalty percentages greater than 20 percent?

Eleven.

7. Clear the Query window in SQL Query Analyzer. Minimize SQL Server
Enterprise Manager.

Defining an Outer Join
Because outer joins enable you to list all of the rows from one table, but only the
matching rows from the other table, you must identify the table from which you
want to display all rows. Use the keywords LEFT OUTER JOIN when you want
to list all rows from the first table in your join statement and only the matching
rows from the second table. Use RIGHT OUTER JOIN when you want to list
all rows from the second table and only the matching rows from the first table.
For example, to display a list of all customers regardless of whether they have
rented any movies, use the following syntax:

SELECT c.fname+' '+c.lname, r.invoice_num, r.rental_date
FROM customer AS c LEFT OUTER JOIN rental AS r
ON c.cust_num = r.cust_num

In this example, your results set will list all customers in the customer table
whether or not they have ever rented a movie. If the customer has rented a
movie, you will see the invoice number and the date of the rental.

You can use LEFT JOIN
instead of LEFT OUTER
JOIN and RIGHT JOIN
instead of RIGHT
OUTER JOIN.

Lesson 7: Joining Tables 203

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 7-2

Working with Outer Joins
Objective: To use outer joins to display information from the tables in the

movies and pubs databases.

1. In SQL Query Analyzer, select the movies database. Design and execute a
query to display category, description, and movie title. Include all categories
whether the store has movies in a category or not. Sort the results by cat-
egory description. What query did you use?

USE movies
SELECT c.category_num, c.description, m.title
FROM category AS c LEFT OUTER JOIN movie AS m
ON c.category_num = m.category_num
ORDER BY c.description

For which movie categories do you not find any movies in stock?

Biography, documentary, fantasy, and musical.

2. Design and execute a query to display a list of all movies and the invoices
(if any) on which they have been rented. Include the movie’s title and the
invoice number in the results set. Sort the results by movie title. Write your
query below.

USE movies
SELECT m.title, r.invoice_num
FROM movie AS m LEFT OUTER JOIN rental_detail AS r
ON m.movie_num = r.movie_num
ORDER BY m.title

3. Based on the pubs database, design and execute a query to list publishers’
names and titles of books. Display all publishers in the results set whether
they have published a book or not. Sort the results by publisher name. (Use
a right outer join.) What query did you use?

USE pubs
SELECT p.pub_name, t.title
FROM titles AS t RIGHT OUTER JOIN publishers AS p
ON t.pub_id = p.pub_id
ORDER BY p.pub_name

How many publishers do not have any published titles yet?

Five.

4. Using the pubs database, design and execute a query to display a list of all
stores and any discounts on file. Include the store name and their discount (if
any) in the results. Sort the results by store name. What query did you use?

USE pubs
SELECT s.stor_name, d.discount
FROM stores AS s LEFT OUTER JOIN discounts AS d
ON s.stor_id = d.stor_id
ORDER BY s.stor_name

5. Clear the Query window.

Suggested time:
30 minutes

Script file: outer_joins.sql.

204

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing a Cross Join
You’ll often hear cross joins referred to as Cartesian products, because the num-
ber of rows in the results set they generate is equal to the total number of rows in
one table multiplied by the total number of rows in the second table. For
example, if you cross join the customers table (91 rows) and orders table (830
rows) from the Northwind database, you’ll get a total of 75,530 rows in your
results set. You typically shouldn’t run cross joins because they can put a tremen-
dous workload on your server.

Use the following syntax to implement a cross join:

USE database
SELECT column list
FROM table1 CROSS JOIN table2

Notice that you don’t need to include the ON clause in your statement because a
cross join simply combines every row in the products table with every row in the
categories table. Be careful with cross joins as you can overload your server.

TASK 7A-1:
Working with Cross Joins

1. In SQL Query Analyzer, from the Database drop-down list, select the mov-
ies database.

2. Execute the following query:

SELECT m.title, c.description
FROM movie AS m CROSS JOIN category AS c

This query generates a cross join between the movie and category tables.

3. How many rows are in the results set?

2,184.

4. When would you use a cross join?

I might use a cross join to generate a large amount of data for a table.

5. Clear the Query window.

Script file: cross_joins.sql.

Lesson 7: Joining Tables 205

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 7B
Implementing Advanced Table Joins
Up until this point in the lesson, we’ve focused on using joins between only two
tables. Let’s move on to how you go about using joins with more than two
tables. In order to do so, you must have at least one table with a primary key to
foreign key relationship with the other tables you want to include in the join
statement. You must also have a JOIN clause with references to each of the
tables. For example, think about the movies database. If you want to display a list
of invoice numbers, the date of the rental, and the movies rented by title instead
of movie number, you’ll need to join the rental table to the rental_detail table by
using the invoice_num column and the rental_detail table to the movie table by
using the movie_num column. The following query shows you how to join these
three tables:

USE movies
GO
SELECT r.invoice_num,r.rental_date, rd.line_num, m.title
FROM rental AS r INNER JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num
INNER JOIN movie AS m
ON rd.movie_num = m.movie_num

Notice that the FROM clause begins the join of the three tables. First, the example
joins the rental table to the rental_detail table. Next, the example joins the rental_
detail table to the movie table. In general, a three table join uses the following
syntax:

USE database_name
SELECT column_list
FROM table1 INNER JOIN table2
ON join_condition_tables_1_&_2
INNER JOIN table3
ON join_condition_tables_2_&_3

The first join condition joins table1 to table2, and the second join condition joins
table2 to table3. If necessary, you can use a WHERE clause in multiple table joins
to limit the number of rows returned by the query.

TASK 7B-1:
Joining Multiple Tables

1. In SQL Query Analyzer, verify that the movies database is your current
database.

2. Open the script file C:\Data\multiple.sql.

3. Look at the script file. This statement enables you to join the rental table to
the rental_detail table by invoice number and the rental_detail table to the
movie table by movie number.

206

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Execute the script file.

5. Open a new Query window, and then close the window containing the
multiple.sql script file.

APPLY YOUR KNOWLEDGE 7-3

Designing Multiple Table Joins
Objective: To design multiple table joins to display information from the

tables in the movies and pubs databases.

1. In SQL Query Analyzer, design and execute a query to display movie rentals
by category. Include the title and category description in the results. Sort the
results by the category description. (You should see 525 rows in the results
set.) What query did you use?

USE movies
GO
SELECT m.title, c.description
FROM rental_detail AS rd INNER JOIN movie AS m
ON rd.movie_num = m.movie_num
INNER JOIN category AS c
ON m.category_num = c.category_num
ORDER BY c.description

2. Design and execute a query to display a list of movies rented by each
customer. Include the customer’s first and last names and the movie titles in
the results. Sort the results by customer name. (Hint: This query requires that
you join four tables together. You should see 525 rows in the results set.)
What query did you use?

USE movies
SELECT c.fname+' '+c.lname AS 'Customer Name', m.title
FROM customer AS c INNER JOIN rental AS r
ON c.cust_num = r.cust_num
INNER JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num
INNER JOIN movie AS m
ON rd.movie_num = m.movie_num
ORDER BY c.lname, c.fname

3. Based on the pubs database, design and execute a query to display a list of
titles and their authors. Include each author’s first and last names and the
book titles in the results. Sort the results by name. (You should see 25 rows
in the results set.) What query did you use?

USE pubs
GO
SELECT a.au_fname+' '+a.au_lname AS 'Author Name', t.title
FROM authors AS a INNER JOIN titleauthor AS ta
ON a.au_id = ta.au_id
INNER JOIN titles AS t
ON ta.title_id = t.title_id
ORDER BY a.au_lname, a.au_fname

4. Clear the Query window.

Suggested time:
30 minutes

Script file: multi_table.sql.

Lesson 7: Joining Tables 207

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Implementing Self Joins
You use a self join when you want to join a table to itself in order to reference
one column in a table to another. You must define aliases for the tables in this
scenario. If you have duplicate rows, use a WHERE clause to eliminate duplicates.
For example, consider the following scenario of when you would use a self join:
You have a table that lists all employees by ID number, as well as each employ-
ee’s manager by that ID number. If you want to display each employee’s name as
well as his/her manager’s name, you must use a self join.

TASK 7B-2:
Working with Self Joins

1. In SQL Query Analyzer, use the Northwind database.

2. Execute the following query:

SELECT e.firstname+' '+e.lastname AS 'Employee',
m.firstname+' '+m.lastname AS 'Manager'

FROM employees AS e JOIN employees AS m
ON e.reportsto = m.employeeid
ORDER BY e.lastname, e.firstname

Use this query to list each employee’s name and his/her manager’s name.
You’re joining the Northwind database’s Employees table to itself by joining
the reportsto column with the employeeid column.

3. Clear the Query window.

Combining the Results of Multiple SELECT Statements
You can use the UNION operator to join the results set of multiple SELECT state-
ments together. Use UNION when the data you want to retrieve is in different
tables and can’t be retrieved by using a single query statement. If you’re trying to
execute a complex query, you might find that you get better performance from
SQL Server if you break the queries into multiple SELECT statements and then
use UNION to display the results. In order to use the UNION operator, the refer-
enced tables must have similar data types, the same number of columns, and the
same column order in the select line of each query. SQL Server automatically
discards any duplicate rows from the results set.

Script file: self_joins.sql.

208

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

select_statement UNION [ALL] select_statement

Replace the two select_statementvariables with the SELECT statements for
which you want to merge the results sets. If you use the ALL keyword as part of
this statement, SQL Server won’t eliminate any duplicate rows from the results
set.

For example, you could use the following query to retrieve the name and tele-
phone number from the employees and customers tables in the Northwind
database:

USE northwind
SELECT name = (firstname+' '+lastname), homephone
FROM employees
UNION
SELECT companyname,phone
FROM customers

Note that you must combine the first and last name columns into a single column
for the first SELECT statement in order for this query to work. This is because
the UNION operator requires that each SELECT statement select the same number
of columns. The following query won’t work:

USE northwind
SELECT firstname, lastname, homephone
FROM employees
UNION
SELECT companyname, phone
FROM customers

TASK 7B-3:
Combining SELECT Statements

1. In SQL Query Analyzer, select the pubs database.

2. Execute the following query:

SELECT name = (au_fname+' '+au_lname), address, city+',
'+state+' '+zip
FROM authors
UNION
SELECT stor_name, stor_address, city+', '+state+' '+zip
FROM stores

This query enables you to display a list of authors’ names and addresses
along with store names and addresses. You might use such a list to generate
mailing labels. You should see a total of 29 rows.

3. Clear the Query window.

Script file: union.sql.

Lesson 7: Joining Tables 209

Use the following syntax with the UNION operator:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating a Table Based on a Results Set
You can use the SELECT INTO statement to create a table based on a SELECT
statement. This means that you can use this statement to populate new tables in a
database. For example, you might use the SELECT INTO statement to create a
new table with only selected columns from another table. You can then query
these new tables (whether temporary or permanent). By using SELECT INTO,
you can create narrower tables to break up complex queries.

Use the SELECT INTO statement to create either temporary or permanent tables.
Whether the table is temporary or permanent, you must specify a unique table
name when you create the table. Any temporary tables you create can be either
local or global. A local temporary table is available only in your current session.
In contrast, a global temporary table is available to all users with current sessions
on your server. You identify a local temporary table by preceding its name with #
and global temporary tables by preceding them with ##. SQL Server will auto-
matically reclaim the space used by temporary tables. For local temporary tables,
SQL Server reclaims the table’s space when you close your current session. For
global temporary tables, SQL Server reclaims their space when none of the users
are using the tables.

You must use aliases for the columns you choose as part of your SELECT
statement. SQL Server uses these aliases as the column names for the new table.
You define an alias for a column when you use the syntax: SELECT
column_name AS alias_name. In this example, whatever name you specify
as the alias name will be the column’s name in the new table. (You must enclose
the alias name in quotes if the name contains a space.) Use the following syntax
to create a new table with the SELECT INTO statement:

SELECT statement
INTO new_table_name
FROM existing_table_name

For example, if you want to create a table which contains the fname, lname, and
phone number columns from the customer table, you could use the following
query:

USE movies
GO
SELECT fname AS first, lname AS last, phone AS phone
INTO #temp_customer
FROM customer

Using Table Joins in the SELECT INTO Statement
You can also use table joins as part of your SELECT INTO statement. By using
joins, you can build a single table that consists of columns from more than one
table. For example, you could use the following query to build a table that con-
tains authors’ names and the titles of their books (using the tables in the pubs
sample database):

USE pubs
GO
SELECT a.au_fname+' '+a.au_lname AS author, t.title AS title
INTO auth_title
FROM authors AS a INNER JOIN titleauthor AS ta
ON a.au_id = ta.au_id
INNER JOIN titles AS t
ON ta.title_id = t.title_id

210

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Tables From Data in Other Databases
You can also use the SELECT INTO statement to create a table in a database by
using data from a table in another database. To do so, you must use a fully quali-
fied name for the table in your FROM statement. For example, if you want to
copy the author names and ID numbers from the authors table in the pubs data-
base into a table named test in the movies database, use the following syntax:

USE movies
SELECT a.au_fname+' '+a.au_lname AS 'author', a.au_id AS 'id'
INTO test
FROM pubs.dbo.author AS a

TASK 7B-4:
Creating a New Table Based on a SELECT INTO
Statement

1. In SQL Query Analyzer, select the movies database.

2. Execute the following query:

SELECT title AS title, rental_price AS rental_price
INTO G_movie
FROM movie
WHERE rating = 'G'

You use this query to create a new table named G_movie, which contains
only the movies with a “G” rating.

3. Execute a new query:

EXEC sp_help 'g_movie'

This query enables you to view the structure of the G_movie table. You
should see that it has two columns, title and price.

4. Execute a new query:

SELECT *
FROM g_movie

5. How many rows do you have in the G_movie table?

Twenty-one.

6. Clear the Query window.

Script file: select_into.sql.

Lesson 7: Joining Tables 211

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 7-4

Creating Temporary Tables
Objective: In this lab, you’re going to create temporary tables by using

the SELECT INTO statement.

1. Design and execute a query for creating a local temporary table for storing
all movies with a rating of PG. Use an appropriate name for a local tempo-
rary table. Include the Title and Movie Number columns in the table. What
query did you use?

SELECT title AS title, movie_num AS movie_num
INTO #PG_movie
FROM movie
WHERE rating = 'PG'

2. Write a query to view all rows of your new table. Execute this query in SQL
Query Analyzer.

SELECT *
FROM #PG_movie

3. In SQL Query Analyzer, open a second connection to your server. (Click the
New Query button on the toolbar.)

4. Can you query your new table in this second connection? (Execute
SELECT * FROM #PG_movie.) Why or why not?

I can’t query the new table in this second connection because local tempo-
rary tables are available only in the current session. When I open a second
Query window, I establish a new session with the server.

5. Close your new Query window without saving your changes.

6. Design and execute a query for creating a global temporary table for storing
all movies with a rating of “R.” Use an appropriate name for a global tem-
porary table. Include the title and movie number columns in the table.
Execute this query. What query did you use?

SELECT title AS title, movie_num AS movie_num
INTO ##R_movie
FROM movie
WHERE rating = 'R'

7. Write a query to view all rows of your new table. Execute this query in SQL
Query Analyzer. Record your query below.

SELECT *
FROM ##R_movie

8. Open a second connection to your server. Can you query your new table?
Why or why not?

I can query the new table because global temporary tables are available to
all current user sessions.

9. Close all open windows.

Suggested time:
10 minutes

Script file: temp_tables.sql.

212

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, you learned just about everything there is to know about table
joins: what types of joins you can implement (inner, outer, and cross), and
the syntax for each type of join statement. Lastly, you saw how you can use
the SELECT INTO statement to create a new table, and that this new table
can contain data from multiple tables if you use a join condition.

LESSON 7 REVIEW
7A What types of joins can you use to query multiple tables? When would

you use each type?

I can use three types of joins: inner, outer, and cross. I should use an inner
join when I want to link two tables together such that the results set will
contain only those rows with matching values in both tables. I use an outer
when I want to link two tables together, but I want the results set to contain
not only the rows that match the join condition, but also any unmatched
rows from one or the other of the tables. I should use a cross join when I
want to create a results set that consists of a combination of every row in
the first table with every row in the second table. I can use cross joins to
generate data for testing purposes.

7B Why might you use the UNION keyword in a query? What are some of
the restrictions to using the UNION keyword?

I should use theUNION keyword whenever I want to combine the results
sets from multipleSELECT statements into a single results set. In order to
use theUNION keyword, the tables referenced in each of theSELECT state-
ments must have similar data types, the same number of columns, and the
same column order in each line of the query.

Lesson 7: Joining Tables 213

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing Advanced Queries

Overview
In Transact-SQL, you can use a nested query within a SELECT, INSERT,
UPDATE, or DELETE query. You use a nested query (also called a
subquery) to perform tasks such as inserting rows into one table based on
another table’s rows. In this lesson, you’re going to learn how to implement
subqueries to view, insert, update, and delete data.

Objectives
To design advanced queries, you will:

8A Define the role of subqueries.

In this topic, you’re going to learn the different types of subqueries you
can implement and how to implement them. Types of subqueries you can
implement include using a subquery to return a single value or a list of
values and using a subquery to return matching rows from a second table.

8B Use queries to change data.

In this topic, you will learn how to make changes to data based on a
subquery. For example, you can use the INSERT...SELECT statement
to insert rows into one table based on the values in the second table. You
also learn how to delete rows based on a subquery.

Data Files:
single_value.sql
subqueries.sql
correlated.sql
insert_data.sql
delete_rows.sql
update_queries.sql

Lesson Time:
1 hour, 30 minutes

LESSON

8

Lesson 8: Designing Advanced Queries 215

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 8A
Designing Subqueries
A subquery is simply a nested SELECT statement within another query. You can
use subqueries to break down complex queries into smaller (less complex)
queries. You’ll typically use subqueries when a query uses the results set from a
subquery to retrieve its results set. For example, if you want to retrieve a list of
books with prices greater than the average book price, you must use a subquery
first to find the average book price, as follows:

USE pubs
SELECT title, price
FROM titles
WHERE price > (SELECT AVG(price)

FROM titles)

You should evaluate your subqueries carefully. In some cases, you might find that
you can rewrite a subquery as a table join instead. If so, you should use a join
rather than a subquery because the query optimizer can retrieve data more effi-
ciently when you use a join instead of a subquery.

SQL Server requires that you enclose a subquery in parentheses. Your subquery
can contain only one column or expression, but you can have as many subqueries
as necessary.

Using a Subquery to Return a Single Value
You typically use a single value subquery as part of a WHERE clause. For
example, the following query enables you to list the book title and price of the
highest priced book in the titles table:

USE pubs
SELECT title, price
FROM titles
WHERE price = (SELECT MAX(price)

FROM titles)

Notice that the subquery must be enclosed in parentheses. In this example, you
use the subquery to return a single value that SQL Server can then use in your
WHERE clause to evaluate the rows in a table. Because you have the subquery
returning only a single value, you’ll typically use aggregate functions in the
subquery such as MAX(), MIN(), and AVG().

If your subquery returns more than one value and your WHERE clause doesn’t
support multiple values, you’ll get an error message. In other words, in the state-
ment WHERE price = (subquery), if the subquery returns multiple values,
SQL Server will display an error. For example, a WHERE clause of WHERE
price = (SELECT price FROM titles) returns more than one value.

You can also use subqueries as part of your SELECT statement. For example, if
you want to see a list of all movie titles with a G rating, their rental price, and
the average rental price for movies with a G rating, you can use the following
query:

216

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE movies
GO
SELECT title, rental_price,

(SELECT AVG(rental_price)
FROM movie
WHERE rating = 'G') AS 'avg. price'

FROM movie

TASK 8A-1:
Designing Single Value Subqueries

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and you’ve created nonclustered indexes
based on your primary keys. You have imported data into the
tables. You have created database diagrams for both the mov-
ies and pubs databases.

1. Start SQL Query Analyzer and select the movies database as your cur-
rent database.

2. Execute the following query:

SELECT AVG(rental_price)
FROM movie

This query enables you to display the average price of a movie in the movie
table.

3. Execute a new query:

SELECT title, rental_price
FROM movie
WHERE rental_price < (SELECT AVG(rental_price)

FROM movie)

Use this query to list all movies with a rental fee of less than the average
rental fee.

Script file: single_value.sql.

Lesson 8: Designing Advanced Queries 217

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. How many movies have prices that are less than the average price?

Seventy-eight.

5. Clear the Query window.

Using a Subquery to Return a List of Values
You can also use a subquery to return a list of values for use with comparison
operators such as IN. The IN operator enables you to provide SQL Server with a
list of values in the WHERE clause instead of a single value. For example, you
used the IN operator to configure a check constraint on the movie table’s rating
column in the “Designing Data Integrity” lesson. The check constraint consists of
the following: rating IN 'G', 'PG', 'R', 'NC17', 'NR'. You
should use the IN operator when you want to use subqueries that will return mul-
tiple rows. Consider the following example:

USE movies
GO
SELECT fname, lname
FROM customer
WHERE cust_num IN (SELECT cust_num

FROM rental
WHERE rental_date > '8/1/99')

In this example, SQL Query Analyzer returns a list of customer numbers from the
rental table based on the WHERE clause. After SQL Query Analyzer evaluates the
subquery to obtain a list of customer numbers, it can then display a list of cus-
tomers who have rented movies after 8/1/99.

You can also use NOT IN as a comparison operator. NOT IN enables you to find
all rows in the main query that don’t have matching rows in the subquery. For
example, if you wanted to view a list of customers’ names who haven’t rented
any movies, you could use the following query:

USE movies
GO
SELECT fname, lname
FROM customer
WHERE cust_num NOT IN (SELECT cust_num

FROM rental)

218

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 8-1

Using Subqueries
Objective: To use the tables in the pubs database to design and execute

subqueries. If necessary, use the database diagram for the pubs
database in SQL Server Enterprise Manager to review the
structure of the tables.

1. By using the pubs database, design and execute a query to list the title and
royalty percentage of the book(s) with the highest royalty percentage. What
query did you use?

USE pubs
SELECT title, royalty
FROM titles
WHERE royalty = (SELECT MAX(royalty)

FROM titles)

How many books are in your results set?

I have two titles with a royalty percentage of 24 percent: You Can Combat
Computer Stress and The Gourmet Microwave.

2. Based on the pubs database, design and execute a query to list all books
with sales in the sales table. Record your query in the following space.

SELECT title
FROM titles
WHERE title_id IN (SELECT title_id

FROM sales)

How many books have sales on file?

A total of 16 books have sales on file.

3. What query could you use to achieve the same results as step 2 by using a
JOIN statement instead of a nested subquery? Execute this query in SQL
Query Analyzer to verify that you get the same results. Write your query in
the following space.

SELECT DISTINCT title
FROM titles RIGHT OUTER JOIN sales
ON titles.title_id = sales.title_id

4. Why should you consider using a table join instead of a subquery when they
both generate the same results set?

I should use a table join whenever possible because SQL Server can retrieve
a join’s results set more effıciently than that of a subquery.

5. Clear the Query window.

Suggested time:
30 minutes

Script file: subqueries.sql.

Steps 3 and 4 of this lab
assume that you have
covered the lesson on table
joins. If you haven’t
covered this material, you
should skip these steps (or
walk your students through
the answers).

Lesson 8: Designing Advanced Queries 219

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing Correlated Subqueries
Use a correlated subquery to specify that you want to compare rows from the
main query to matching rows in the subquery. SQL Server evaluates the subquery
once for each row in the main query. So, you might think of a correlated
subquery as being very similar to the do-while and for loops you typically use in
programming. For example, you can use the following query to list all movies
from the movie table with a rental price of $2.99 or less that haven’t been rented
(by checking the rental_detail table):

USE movies
GO
SELECT DISTINCT m.title
FROM movie AS m
WHERE m.rental_price <= 2.99

AND m.movie_num NOT IN (SELECT rd.movie_num
FROM rental_detail AS rd)

You could restate this query in English as, “Select the first movie in the movie
table with a rental price of $2.99 or less, then check the rental_detail table to see
if this movie has ever been rented, then go back to find the next movie with a
rental price of $2.99 or less and see if it has ever been rented, and so on.” Notice
that the syntax requires that you use aliases to identify the tables you use in cor-
related subqueries.

As another example, you can use a correlated subquery to list all of the titles
from the title table in the pubs database with a price of 5.99 or less that have
generated more than one hundred dollars in sales. Use the following query to
accomplish this task:

USE pubs
GO
SELECT t.title_id, t.title
FROM titles AS t
WHERE price <= 5.99

AND t.title_id IN (SELECT s.title_id
FROM sales AS s
WHERE s.qty * t.price > 100)

You can begin to build your correlated queries by first creating and testing the
subquery and then using it with your main query. Keep in mind that you can
highlight some or all of a query to execute only that portion. (So you can test a
subquery simply by highlighting it with your mouse and then executing that
portion.)

Using EXISTS and NOT EXISTS
Use the EXISTS and NOT EXISTS operators whenever you want to correlate
more than one column from the main query to the subquery. The EXISTS opera-
tor simply checks to see if any rows are returned by the subquery. If the subquery
returns rows, the EXISTS operator returns a value of true; otherwise, it returns a
value of not true. Similarly, the NOT EXISTS operator checks to see if the
subquery didn’t return any rows (in this case, NOT EXISTS returns a value of
true) or if it did return rows (in this case, NOT EXISTS returns a value of not
true).

For example, you might use the following query to find the titles of books for
which none of the stores in the pubs database have any sales:

220

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE pubs
GO
SELECT t.title_id, t.title
FROM titles AS t
WHERE NOT EXISTS (SELECT *

FROM titles AS t2 JOIN sales AS s
ON t2.title_id = s.title_id
WHERE t2.title_id = t.title_id)

In English, this query says, “Select all titles and their ID numbers from the titles
table that aren’t included in a list of all titles with sales on file.”

APPLY YOUR KNOWLEDGE 8-2

Designing Correlated Subqueries
Objective: To design and execute a correlated subquery in SQL Query

Analyzer.

1. In SQL Query Analyzer, design and execute a correlated subquery with the
EXISTS keyword. By using the movies database, write a query that displays
a list of customer names and numbers if they have rented any movies. Sort
the results by customer name. What query did you use?

USE movies
GO
SELECT fname+' '+lname, cust_num
FROM customer AS c
WHERE EXISTS (SELECT *

FROM rental AS r
WHERE c.cust_num = r.cust_num)

ORDER BY c.lname, c.fname

How many customers have rented movies?

204 customers have rented movies.

2. Design and execute a correlated subquery to display a list of all customers
who rented movies between 8/1/99 and 8/31/99. What query did you use?

SELECT fname+' '+lname, cust_num
FROM customer AS c
WHERE EXISTS (SELECT *

FROM rental AS r
WHERE c.cust_num = r.cust_num
AND (rental_date >= '8/1/99'

AND rental_date <= '8/31/99'))
ORDER BY c.lname, c.fname

How many customers are on the list?

48 customers rented movies in the month of 8/99.

3. Clear the Query window.

Suggested time:
15 minutes

Script file: correlated.sql

Lesson 8: Designing Advanced Queries 221

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 8B
Changing Data Through Queries
You can use the combination of the INSERT...SELECT statement to add rows
to a table based on a SELECT statement. To do so, use the following syntax:

INSERT table_name
SELECT columns
FROM table
WHERE condition

SQL Server inserts the data into the table name you specify in the INSERT
statement. For example, if you wanted to add all of the authors in the pubs data-
base as customers in the customer table of the movies database, you could use
the following query:

USE movies
GO
INSERT customer
SELECT au_lname, au_fname, address, ' ', city, state, zip,
phone, getdate()
FROM pubs.dbo.authors

Notice that in the FROM clause you must use a fully qualified name if the table
from which you’re inserting the rows is in another database. You can optionally
use the WHERE clause to restrict the rows inserted into the table. In the previous
example, you could have used WHERE state = 'CA' to limit the rows
inserted into the customer table to only those authors who live in California.

When you use the INSERT...SELECT statement, all rows that meet the
SELECT statement are inserted into the table you specify. You must make sure
that the columns you select have data types and formats that are compatible with
the columns in the table into which you want to insert the data.

TASK 8B-1:
Inserting Data Based on a Query

Objective: To add names from the authors table in the pubs database to
the customer table in the movies database.

1. In SQL Query Analyzer, verify that movies is your current database.

2. Execute the following query:

SELECT au_id, au_lname
FROM pubs.dbo.authors

Use this query to obtain a list of all rows in the authors table. You should
see that the table has 23 rows.

Script file: insert_data.sql.

222

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Execute a new query:

INSERT customer
SELECT au_lname, au_fname, address, ' ', city, state, zip,
phone, getdate()
FROM pubs.dbo.authors

This query attempts to add all of the rows in the authors table in the pubs
database to the customer table in the movies database. You receive an error
because the phone column in the authors table has a width of 12 characters,
where the phone column in the customer table has a width of 10 characters.
The data in the phone column in the authors table consists of a space after
the area code and a hyphen after the prefix of the phone number. If you
want to copy each author’s phone number to the customer table, you can
extract just the numeric portion of the phone number by using the
SUBSTRING function.

4. Execute a new query:

INSERT customer
SELECT au_lname, au_fname, address, ' ', city, state, zip,

SUBSTRING(phone,1,3)+SUBSTRING(phone,5,3)
+SUBSTRING(phone,9,4), getdate()
FROM pubs.dbo.authors

This query inserts all rows from the authors table into the customer table in
the movies database. You should see a message stating that 23 rows were
affected. This message means that SQL Server inserted 23 new rows into the
customer table.

5. Execute a new query:

SELECT *
FROM customer

Use this query to view a list of customers on file. You should see that you
now have 228 customers in the customer table.

6. Clear the Query window.

Deleting Rows Based on a Query
You can use the DELETE FROM statement to delete rows based on a table join
or a subquery. Use the following syntax to delete the rows:

DELETE FROM table_name
[FROM table_source]
WHERE condition

Use the second FROM clause to specify a table join if necessary. You use the
WHERE clause to select specific rows or to specify a subquery. For example, to
delete rows by using a subquery, use the following syntax:

Lesson 8: Designing Advanced Queries 223

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE movies
GO
DELETE FROM movie
WHERE movie_num NOT IN (SELECT rd.movie_num

FROM rental_detail AS rd)

In this example, SQL Server will delete all movies from the movie table if the
movie hasn’t been rented. In another example, you can use the following query to
delete rows based on a table join:

USE movies
GO
DELETE FROM rental_detail
FROM rental_detail AS rd JOIN rental AS r
ON rd.invoice_num = r.invoice_num
WHERE r.rental_date <= '3/1/99'

This query enables you to delete the line item rows from the rental_detail table
for all invoices prior to 3/1/99. You must use a join to delete these rows because
the rental date is stored in the rental table, not the rental_detail table.

TASK 8B-2:
Deleting Rows Based on a Query

1. In SQL Query Analyzer, execute the following query:

DELETE FROM customer
WHERE lname+fname IN (SELECT au_lname+au_fname

FROM pubs.dbo.authors)

Use this query to delete all rows added to the customer table in the movies
database from the authors table in the pubs database. (You must use both the
lname and fname columns to delete these rows.)

2. How many rows does this query delete?

Twenty-three.

3. Verify that you no longer have any of the authors in your customer
table by executing the query:

SELECT *
FROM customer

You should now have 205 rows in the customer table.

4. Clear the Query window.

Updating Rows Based on a Query
You can use the UPDATE statement to update rows in tables based on a WHERE
clause, table join, or both. SQL Server permits only a single update of a row in
an UPDATE statement. You use the SET keyword to specify the column and the
value you want to update. Use the following syntax to update rows based on a
query:

Script file: delete_rows.sql.

224

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

UPDATE table_name
SET column_name = expression | value
[FROM table [JOIN table2]
ON join_condition]
[WHERE condition]

For example, you could use the UPDATE statement to increase the price of the
books in the pubs database with total sales of more than $250. To increase the
books’ prices by 10 percent, use the following query:

USE pubs
GO
UPDATE titles
SET price = price * 1.1
FROM titles AS t
WHERE t.title_id IN (SELECT s.title_id

FROM sales AS s
WHERE s.qty * t.price > 250)

In this example, you’re using a correlated subquery to list all book ID numbers
for which the pubs database has sales of more than $250. After you have this list,
you can use the main query to update the prices in the titles table.

APPLY YOUR KNOWLEDGE 8-3

Working with Update Queries
Objective: To use the UPDATE statement to change the prices of movies

in the movie table.

1. In SQL Query Analyzer, design and execute a query to list the titles and
rental prices of any movies that haven’t rented. Note: The movie table con-
tains more than one copy of many of the movies. Write your query so that it
will return a list of only those movies for which none of the copies have
rented. (Hint: You’ll need to use a subquery that contains an outer join
between the movie and rental_detail tables.) You’ll find that only one movie
hasn’t rented. What query did you use?

USE movies
GO
SELECT title, rental_price
FROM movie
WHERE title NOT IN (SELECT m.title

FROM movie AS m
RIGHT JOIN rental_detail AS rd
ON m.movie_num = rd.movie_num)

Suggested time:
30 minutes

Script file: update_queries.
sql.

All of the steps of this lab
assume that you’ve covered
the “Joining Tables” lesson.
If you haven’t covered this
material, you should skip
these steps (or walk your
students through the
answers).

Lesson 8: Designing Advanced Queries 225

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Design and execute a query to reduce the price of any movie by 20 percent
if it hasn’t rented. (Remember, you want to reduce the price only if all cop-
ies of a movie have not rented. Don’t reduce the price of a movie if some of
its copies have rented.) Note: Because the smallmoney data type supports
four decimal places, SQL Server will calculate the decrease in the rental
price column to four digits of precision. You can round the rental price to
two digits of precision by using ROUND(rental_price * .8, 2) in your
formula. What query did you use?

UPDATE movie
SET rental_price = ROUND(rental_price * .8, 2)
WHERE title NOT IN (SELECT m.title

FROM movie AS m
RIGHT JOIN rental_detail AS rd
ON m.movie_num = rd.movie_num)

3. Repeat the query you wrote in step 1 to verify that you’ve lowered the
prices.

SELECT title, rental_price
FROM movie
WHERE title NOT IN (SELECT m.title

FROM movie AS m
RIGHT JOIN rental_detail AS rd
ON m.movie_num = rd.movie_num)

4. Design and execute a query to list the titles of all movies that have rented
and their rental price even if one of the copies of a specific title hasn’t
rented. What query did you use?

SELECT title, rental_price
FROM movie
WHERE title IN (SELECT m.title

FROM movie AS m
RIGHT JOIN rental_detail AS rd
ON m.movie_num = rd.movie_num)

5. Design and execute a query to increase the price of all copies of movies that
have rented by 10 percent. Record your query below.

UPDATE movie
SET rental_price = ROUND(rental_price * 1.1, 2)
WHERE movie.movie_num IN (SELECT movie_num

FROM rental_detail)

6. Repeat the query you wrote in step 4 to verify that you’ve increased the
prices of the movies that have rented.

SELECT title, rental_price
FROM movie
WHERE title IN (SELECT m.title

FROM movie AS m
RIGHT JOIN rental_detail AS rd
ON m.movie_num = rd.movie_num)

7. Close all open windows.

You might want to explain
the syntax of the ROUND()
function to your students.

226

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, you learned the different types of subqueries you can imple-
ment, including those that return a single value, a list of values, or correlate
rows between tables. You also learned how to implement subqueries as part
of the SELECT, INSERT, UPDATE, and DELETE statements.

LESSON 8 REVIEW
8A What are some of the reasons why you might choose to use subqueries

instead of table joins?

I can use subqueries as a technique to break up complex queries into their
separate components. I can then make sure each of the components works
before trying to execute the complex query as a whole. In addition,
subqueries enable me to query tables based on the results of a query. For
example, if I want to list all of the movies in the movie table with rental
prices that are greater than the average rental price—and I don’t know the
average rental price—I can use the following subquery to find the answer:

SELECT title, rental_price
FROM movie
WHERE rental_price > (SELECT AVG(rental_price)

FROM movie)

8B In what scenario might you use the INSERT...SELECT statement
instead of only the INSERT statement?

I should use theINSERT...SELECT statement whenever I want to insert a
number of rows into a table based on specific values. If I use theINSERT
statement by itself, I must write anINSERT statement for each row I want
to insert into a table.

Lesson 8: Designing Advanced Queries 227

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing Views

Overview
SQL Server enables you to create views as “windows” to some or all of one
or more tables’ columns. In this lesson, we’re going to explore the advan-
tages to creating views and the nuts and bolts of how you create them.
We’ll also examine two new features that you can implement in views in
SQL Server 2000, indexed views and partitioned views.

Objectives
To design and implement views, you will:

9A Create and manage views.

SQL Server 2000 enables you to create views based on one or more
tables as both a convenience for your users and a way to improve your
server’s performance. In this topic, we show you how you go about
implementing the different types of views you can define by using the
CREATE VIEW statement.

Data Files:
create_view.sql
join_views.sql
encrypted_views.sql
modify_view.sql
drop_view.sql
view_change.sql
partitioned_view.sql
indexed_view.sql

Lesson Time:
1 hour, 15 minutes

LESSON

9

Lesson 9: Designing Views 229

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 9A
Creating and Managing Views
You can use a view to save almost any SELECT statement as a separate database
object. This SELECT statement enables you to create a results set that you can
use just as you would any table. In a sense, you can think of a view as a virtual
table. Traditional views don’t actually contain data; they simply consist of
SELECT statements for extracting data from the actual tables in your database.
(You can create an indexed view so that SQL Server stores the view’s data in a
database to improve its performance. We’re going to look at how you create
indexed views later on in this lesson.)

The tables on which you base a view are referred to as base tables. You can use a
view to create a subset of a base table by selecting only some of its columns, or
you can use a view to display columns from multiple base tables by using a join
statement.

Why Use Views?
One of the best advantages of views is that you need to give your users permis-
sions to only the view itself and not the underlying table (or tables). So, a view
provides you with additional security. You can also use views to enable users to
see some but not all columns in a table, so if a table contains a column with sen-
sitive information, you can use a view to prevent users from seeing that column.
For example, if you have an employee table that contains employee names,
addresses, and salaries, you can create a view to enable users to see the employee
names and addresses, but not salaries.

You can also use views as a way to hide a complex database design. If you’ve
normalized the design of your database such that data is spread out over multiple
tables, it can be difficult for users to learn how to retrieve data from those tables.
By using views, you can avoid users having to learn how to write SQL state-
ments to join the tables.

Creating a View
You create a view by using the CREATE VIEW Transact-SQL statement. You can
include a total of 1,024 columns in a view. You can’t combine the CREATE
VIEW with other SQL statements in the same batch. If you want to use other
statements (such as USE database) with the CREATE VIEW statement, you
must follow those statements with the GO keyword. Use the following syntax to
create a view:

USE database
GO
CREATE VIEW view_name
AS
SELECT column_list
FROM table_name

In this syntax, you replace view_namewith the name you want to assign to the
view. You should come up with a naming convention for your views that makes it
easier for you to differentiate between tables and views. For example, you might
try using “view” as part of all of your view names. Replace column_listwith the
list of columns you want to include in the view and table_namewith the name of
the table on which you want to base the view.

230

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

For example, if you want to create a view that consists of each customer’s name
and phone number only, use the following syntax:

USE movies
GO
CREATE VIEW dbo.CustView
AS
SELECT lname, fname, phone
FROM customer

You can optionally specify a list of column names so that SQL Server will use
these names for the columns in the view instead of the column names from the
table in the SELECT portion of the statement. For example, in the following
query, the (lname, fname) clause assigns these names to the columns in the
view instead of the names au_lname, au_fname:

USE pubs
GO
CREATE VIEW dbo.PracticeView
(lname, fname)
AS
SELECT au_lname, au_fname
FROM authors

Restrictions
You can’t include the ORDER BY, COMPUTE, or COMPUTE BY clauses in the
SELECT statement you use to create a view. In addition, you can’t use the
SELECT INTO keywords. Your view can’t refer to temporary tables. For
example, the following SQL statement is invalid:

CREATE VIEW dbo.TestView
AS
SELECT col1, col2
FROM #temp_table

Permissions
If your users have permissions to the database in which you create the view, they
will inherit permissions to the view itself. But, if your users don’t inherit permis-
sions to the view, you must assign them permissions or they won’t be able to
access the view. You don’t have to give users permissions to the base tables on
which you create a view; you just have to give users permissions to the view
itself, provided you are both the owner of the table and the view.

Ownership
The views that you create depend on the base tables (or other views). SQL Server
refers to objects that depend on other objects as dependent. Objects can have
either the same or different owners. If the same owner owns both the view and
the table, that owner (typically you) needs only to assign users permissions to the
view. Likewise, when users access your view, SQL Server needs to check users
permissions only for that view.

Lesson 9: Designing Views 231

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

If you (or another user with sufficient permissions) create a view based on a table
for which you aren’t the owner, SQL Server considers the ownership chain to be
broken. Each object’s owner can change users’ permissions; so, SQL Server must
check users’ permissions for the view and all objects on which the view depends.
Checking users’ permissions for each object hurts your server’s performance.
Microsoft recommends that you don’t break the ownership chain (meaning, create
views with different owners from the base tables) in order to avoid degrading the
performance of your server.

To avoid breaking the ownership chain, you should explicitly specify the owner
of the view when you create it. You should typically make the database owner
(dbo) user the owner of all views, along with all of the other objects in a
database. You make the dbo user the owner of a view by using the following syn-
tax:

CREATE VIEW dbo.view_name
AS
SELECT column_list
FROM table_name

You can determine the objects on which a view depends along with their owners
by using the sp_depends stored procedure. Here’s the syntax:

sp_depends 'view_name'

Nested Views
SQL Server enables you to create a view based on another view (this is also
called a nested view). Keep in mind, though, that nested views can be much more
difficult to troubleshoot because you must search through multiple view defini-
tions to find a problem. For this reason, Microsoft recommends that you create
separate views instead.

TASK 9A-1:
Creating a View

Objective: To create a view based on the titles table in the pubs database.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and you’ve created nonclustered indexes
based on your primary keys. You’ve imported data into the
tables. You’ve created database diagrams for both the movies
and pubs databases.

1. Start SQL Query Analyzer and select the pubs database.

2. Choose File→Open. Open the C:\Data\create_view.sql file.

3. Highlight and execute the CREATE VIEW statement to create a view con-
taining the title, price, and ytd_sales columns for the books that have sold
more than 5,000 copies this year. By creating the view and specifying dbo as
the owner, you avoid breaking the ownership chain between the view and
the underlying table.

232

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Highlight and execute the SELECT * FROM MyTitleView query to
display a list of rows in the view.

5. Open a new Query window.

6. Close the Query window containing the create_view.sql file.

Creating a View Based on Joined Tables
You can create a view based on joined tables by using a table join as part of your
SELECT statement. You use the following syntax to create a view based on a
table join:

CREATE VIEW view_name (column_list)
AS
SELECT columns
FROM table1 JOIN table2
ON join_condition

For example, if you want to create a view that contains the title of each book in
the pubs database, along with the author’s royalty percentage for that book, you
could use the following query:

USE pubs
GO
CREATE VIEW dbo.TitleRoyaltyView
AS
SELECT t.title, r.royalty
FROM titles AS t JOIN roysched AS r
ON t.title_id JOIN r.title_id

You should base views only on inner joins, not outer joins. While SQL Server
enables you to specify an outer join in the SELECT statement, you’ll get unpre-
dictable results. For example, SQL Server frequently returns null values for the
inner table in the outer join.

Lesson 9: Designing Views 233

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 9-1

Creating Views From Joined Tables
Objective: To design and create views in SQL Query Analyzer. Some of

the views will be based on joined tables.

1. In the movies database, create a view that contains the title and category
number of each movie with an ‘R’ rating. Name the view R_MovieView.
What query did you use?

USE movies
GO
CREATE VIEW dbo.R_MovieView
AS
SELECT title, category_num
FROM movie
WHERE rating = 'R'

2. Use the SELECT statement to display the rows in the view. Record your
query here.

SELECT *
FROM R_MovieView

3. In the movies database, create a view that contains the movie_num, title, and
category description columns. Name the view MovieCategoryView. What
query did you use?

CREATE VIEW dbo.MovieCategoryView
AS
SELECT m.movie_num, m.title, c.description
FROM movie AS m JOIN category AS c
ON m.category_num = c.category_ num

4. Use the SELECT statement to verify the view. Display the results in order
by title. Display each title only once. Record your query here.

SELECT DISTINCT *
FROM MovieCategoryView
ORDER BY title

5. Create a view consisting of each customer’s first name, last name, invoice
number, and rental date. Name the view RentalsView. (Note: This view will
create a row for every invoice. If you have a customer who has rented mov-
ies more than once, you’ll see their name listed once for each rental invoice
when you use this view.) What query did you use?

CREATE VIEW dbo.RentalsView
AS
SELECT c.fname, c.lname, r.invoice_num, r.rental_date
FROM customer AS c JOIN rental AS r
ON c.cust_num = r.cust_num

Suggested time:
30 minutes

Script file: join_views.sql.

234

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. Use the SELECT statement to verify the RentalsView view. Display the cus-
tomer’s first and last names in a single column. Sort the results by customer
name. (You should see multiple rows for customers who have rented movies
more than once.) What query did you use?

SELECT fname+' '+lname AS Name, invoice_num, rental_date
FROM RentalsView
ORDER BY lname, fname

7. Clear the Query window.

Displaying View Definitions
SQL Server includes several system-created schema views that you can use to
find information about a database’s views. We describe these views in the follow-
ing table.

System View Based on System Table Enables You to View
information_schema.tables sysobjects View names.
information_schema.view_
table_usage

sysdepends Names of tables on which views
have been defined. Note: SQL
Server displays only the views for
which the current user has
permissions.

information_schema.views syscomments View definition.
information_schema.view_
column_usage

syscolumns Names of columns used in a view.
Note: SQL Server displays only the
views for which the current user
has permissions.

For example, to view a list of views defined in a database, you can use the fol-
lowing syntax:

SELECT *
FROM information_schema.tables
WHERE table_type = 'view'

To view the SELECT statement that makes up a view, use the sp_helptext
stored procedure. Use the following syntax:

sp_helptext view_name

Preventing Users From Displaying View Definitions
SQL Server stores a view’s definition in the syscomments table; however, you
shouldn’t delete the definition from this table as a technique for hiding the view
definition. Instead, you can encrypt the view. (Although you can delete the defini-
tion of the view and it will still work, Microsoft recommends that you not delete
it from syscomments to avoid problems when you upgrade to future versions of
SQL Server.)

To encrypt a view, add the WITH ENCRYPTION operator to prevent users from
reading a view’s definition. Here’s the syntax:

CREATE VIEW view_name
WITH ENCRYPTION
AS select_statement

Lesson 9: Designing Views 235

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 9A-2:
Displaying View Information

1. In SQL Query Analyzer, open the C:\Data\encrypted_views.sql script.

2. Highlight and execute the sp_helptext MovieCategoryView state-
ment to display the CREATE VIEW statement you used to define the view.

3. Highlight and execute the query for creating the view named
MovieEncryptView to create a view with an encrypted definition.

4. Highlight and execute the query sp_helptext MovieEncryptView
to view the message SQL Server generates when you attempt to display the
definition of an encrypted view.

5. Highlight and execute the SELECT * FROM
information_schema.views query to display a list of the views
defined in the movies database. SQL Server displays both system-created
views (copied from the model database) and user-created views such as the
MovieCategoryView.

6. If necessary, in the results pane, scroll down the window so that you can
view the View_Definition column. This column displays the CREATE
VIEW statement you used to define the view. You can see the definitions of
most of the views. Because you encrypted the MovieEncryptView, you see
squares in the view_definition column.

7. Open a new Query window.

8. Close the Query window containing the encrypted_views.sql script file.

236

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Modifying a View
You can alter a view by either dropping and re-creating it or by using the
ALTER VIEW statement. If you drop a view, you must re-create any permissions
assignments when you re-create the view. In contrast, if you change a view by
using the ALTER VIEW statement, the view retains whatever permissions you
had assigned to your users. You can use the following syntax to change an exist-
ing view:

ALTER VIEW view_name (column_list)
AS
select_statement

Keep in mind that if you created the view with the WITH ENCRYPTION opera-
tor, you must include that option in the ALTER VIEW statement.

APPLY YOUR KNOWLEDGE 9-2

Modifying a View
Objective: To write a query to modify the MovieCategoryView.

1. Write and execute a query for modifying the MovieCategoryView to add the
rating column from the movie table. What query did you use?

ALTER VIEW dbo.MovieCategoryView
AS
SELECT m.movie_num, m.title, c.description, m.rating
FROM movie AS m JOIN category AS c
ON m.category_num = c.category_num

2. Write and execute a query to verify that MovieCategoryView now contains
the rating column. What query did you use?

SELECT *
FROM MovieCategoryView

3. What is an advantage to using ALTER VIEW instead of dropping and
re-creating a view?

Using theALTER VIEW statement enables me to change a view yet main-
tain any permissions I’ve assigned to users for that view. If I drop and
re-create a view, I must re-create the permissions.

4. Clear the Query window.

Dropping a View
You drop a view by using the DROP VIEW statement. When you delete a view,
SQL Server automatically deletes the view definition and any permissions you’ve
assigned to users for it. If you delete a table that’s referenced by a view, SQL
Server doesn’t automatically drop the view. In this scenario, you must manually
drop the view. You can use the sp_depends stored procedure to determine if a
table has any dependent views by using the following syntax:

sp_depends object_name

Suggested time:
10 minutes

Script file: modify_view.sql.

Lesson 9: Designing Views 237

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You must be the owner of a view to delete it. But, if you’re a member of the
sysadmins server role or the database owner database role, you can drop a view
that’s owned by another user by specifying the owner’s name in the DROP VIEW
statement.

Use the following syntax to delete a view:

DROP VIEW [owner.]view_name

TASK 9A-3:
Dropping a View

1. Write and execute a query for dropping the view named MyTitleView
from the pubs database. Record your query in the following space.

USE pubs
DROP VIEW MyTitleView

2. Execute a new query:

SELECT *
FROM information_schema.views

Verify that the MyTitleView view no longer exists in the pubs database.

3. Clear the Query window.

Using Views to Work With Data
You can insert, update, and delete rows from a table by using a view. Note that
traditional views don’t contain the actual data in a table; instead, views are sim-
ply windows to the data in the table. If you’ve configured any of the columns in
the tables on which the view is based to not permit nulls, and these columns
aren’t contained in the view, you won’t be able to insert rows into the table.
Depending on the UPDATE statement, you might not be able to change the table
either.

You can’t modify the data in more than one table through a view. If a view is
based on joined tables, you can modify the data in only one of the joined tables,
not both. If you want to modify the data in both tables on which a view is based,
you’ll need to write separate statements for modifying the data in each table.

Because traditional views are essentially windows to your tables, you can’t insert,
update, or delete rows if your statements will violate data integrity. For example,
the rental and rental_detail tables in the movies database are linked together in a
primary key to foreign key relationship based on the invoice_num column. So,
you can’t change a value in the invoice_num column in either table, nor can you
change it through a view.

Use the following syntax to insert data into a table by using a view:

INSERT INTO view_name
VALUES(value_list)

Replace the value_listwith a list of values you want to insert into the columns
contained in the view.

Script file: drop_view.sql.

238

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Use the following syntax to update data through a view:

UPDATE view_name
SET column_name = value
WHERE condition

Likewise, you can use the following syntax to delete rows through a view:

DELETE FROM view_name
WHERE condition

One of the problems you can encounter when users make changes to data through
a view instead of modifying a table directly is that their changes can cause a row
to disappear from the view. For example, let’s say that you’ve created the follow-
ing view:

USE pubs
GO
CREATE VIEW dbo.UtahAuthors
AS
SELECT au_id, au_lname, au_fname, state
FROM pubs
WHERE state = 'UT'

In this scenario, it’s possible that a user could add a row to the pubs table using
this view, but use a value other than “UT” in the state column. This means that
as soon as the user adds the row, the row would disappear from the view. You
can avoid this problem by creating the view and specifying WITH CHECK
OPTION as part of the view’s definition. This option forces users to enter data
that conforms to the SELECT statement you specified in the view—including the
condition you specified in the WHERE clause. If a user attempts to add or modify
a row that doesn’t conform to the SELECT statement, SQL Server displays an
error message. Here’s the syntax if you want to specify the WITH CHECK
OPTION:

USE pubs
GO
CREATE VIEW dbo.UtahAuthors
AS
SELECT au_id, au_lname, au_fname, state
FROM pubs
WHERE state = 'UT'
WITH CHECK OPTION

Lesson 9: Designing Views 239

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 9-3

Using a View to Work With Data
Objective: To create a view containing all columns in the movie table

except the movie_num and date_purch columns. You’ll then
use this view to work with the data in the movie table.

1. In SQL Query Analyzer, design and execute a query to create a view named
MovieView. Configure dbo as the owner of the view. Include the title,
category_num, rating, and rental_price columns in the view. What query did
you use?

USE movies
GO
CREATE VIEW dbo.MovieView
AS
SELECT title, category_num, rating, rental_price
FROM movie

2. Can you use this view to insert data into the movie table? (Hint: You can
review the structure of the movie table by looking at it in the movies data-
base diagram or by executing the query sp_help movie.)

Yes, because SQL Server automatically generates the values in the movie_
num and date_purch columns of the movie table.

3. Design and execute a query to insert a new movie into the table by using the
view. Use values of your choice. (To choose a movie category number
before you add the row, you can use the query SELECT * FROM category
to view a list of categories.)

INSERT INTO MovieViewVALUES('title', category_num, '
rating', price)

4. Verify that your new movie was added to the table by using a SELECT
statement against the MovieView. (Your new movie will appear in alphabeti-
cal order because you’ve defined a clustered index on the title column.)
Write your query here.

SELECT *
FROM MovieView

(I could also useSELECT * FROM MovieView WHERE title =
'title'.)

5. Verify the movie number and date purchased assigned to the new movie by
querying the movie table directly.

What query did you use?

SELECT *
FROM movie
WHERE title = 'title of your choice'

6. Clear the Query window.

Suggested time:
20 minutes

Script file: view_change.
sql.

240

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Indexed Views
One of the enhancements in SQL Server 2000 is that you can create an index
that’s based on a view. The advantage to creating such an index is that it forces
SQL Server to store the view’s results set as an object within the database. This
means that when you select information from a view, SQL Server won’t have to
retrieve the data from the table or tables on which you’ve based the view—which
can significantly improve the performance of the view. You create an indexed
view by defining a unique clustered index on that view. (You can also create
nonclustered indexes on a view, but you must create the clustered index first.)
Notice that the clustered index must be unique, which means that you must base
it on a column that contains unique values (such as the primary key).

After you create indexes on a view, SQL Server automatically updates them
whenever you (or your users) make changes to the views’ base tables. Of course,
you should keep in mind that there’s a cost associated with updating an index.
So, you should make sure that the cost of updating the index is less than the cost
SQL Server incurs when retrieving a view’s results set. You’ll typically find that
an indexed view works best when you don’t make changes to its base tables very
often. You’ll also see significant performance gains with an indexed view if your
users frequently perform complex queries on the base tables.

So how do you go about creating an indexed view? Well, your first step is to cre-
ate a regular old view, but you must create it with the WITH SCHEMABINDING
option. This option binds the base table’s schema to the view, which means that
you can’t drop or alter the base table unless you first drop the view (or modify
the view to remove the SCHEMABINDING option). Using this option enables
SQL Server to prevent indexed views from having schemas that are different
from that of their base tables, and from having an indexed view for which its
base table no longer exists. The SCHEMABINDING option requires that you use
each table or user-defined function’s two-part name, meaning you must include
the owner name as part of the object name. Here’s how you create the view:

USE database_name
GO
CREATE VIEW view_name
WITH SCHEMABINDING
AS
SELECT column_list
FROM owner.table_name

As you know, it’s possible for you to create a view based on tables owned by
another user. However, you can’t create a view with the SCHEMABINDING
option based on tables you don’t own. That’s because using the
SCHEMABINDING option effectively prevents the tables’ owner from making
changes to their schema. If the tables’ owner wants to permit you to create a
view with the SCHEMABINDING option, the owner must grant you the
REFERENCES permission for the table (or tables) on which you want to base
your view.

Now that you’ve created your view, your next step is to create the unique clus-
tered index based on the view. As a reminder, here’s the basic syntax for creating
a clustered index:

CREATE UNIQUE CLUSTERED INDEX index_name
ON view_name (column_name)

You can create an indexed
view only on tables; you
can’t create an indexed view
based on another view.

Only the SQL Server 2000
Enterprise Edition supports
indexed views.

Lesson 9: Designing Views 241

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You can use the query SELECT
OBJECTPROPERTY(OBJECT_ID('view_name'), 'IsIndexable') to
determine whether or not you can create an index on a view. This query returns a
value of 1 if the view is indexable, and 0 if it isn’t.

TASK 9A-4:
Creating an Indexed View

1. In SQL Query Analyzer, open the C:\Data\indexed_view.sql script file.

2. Highlight and execute the query to view the definition of the view
named MovieView. This query enables you to see the SELECT statement
that makes up the view.

3. Can you create a clustered index based on this view? Why or why not?

No, I can’t create a clustered index on this view because the view’s defini-
tion doesn’t include theWITH SCHEMABINDING option. Also, I haven’t
used a valid two-part name for the movie table.

4. Highlight and execute the SELECT OBJECTPROPERTY query. You use
this query to determine if you can define an index for a view. You should
see that you can’t index MovieView.

5. Highlight and execute the query to alter the MovieView so that it’s
indexable. This query adds the WITH SCHEMABINDING option to the
view, and uses the two-part name for the movie table. In addition, it adds the
movie_num column to the view so that it contains a unique column on
which you can base the view’s clustered index.

6. Highlight and execute the query to create the unique clustered index on
MovieView.

7. Highlight and execute the sp_helpindex query. You use this query to
verify that you successfully created the index based on MovieView.

8. Open a new Query window, and then close the Query window contain-
ing the indexed_view.sql script file.

242

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Partitioned Views
Another technique you can use to improve your server’s performance is to imple-
ment a partitioned view. Such a view can be based on data from multiple sources
(such as multiple SQL servers or multiple instances of SQL Server) or even on
data from heterogeneous sources (such as data on an Oracle server). One way
that a partitioned view enhances performance is that SQL Server can scan all
tables referenced by the view simultaneously if those tables are on separate serv-
ers or if the tables are on the same server as long as the server has multiple
processors.

You create a partitioned view by specifying the UNION ALL keywords as part of
the SELECT statement. If you recall, the UNION ALL keywords enable you to
combine the rows generated by two or more SELECT statements into a single
results set. For example, let’s say that you have two tables in which you maintain
the sales orders for two different retail stores. If you want to consolidate the data
so that you can view both tables’ data together, you could use the following syn-
tax:

CREATE VIEW SalesTotalsView
AS
SELECT *
FROM store1

UNION ALL
SELECT *
FROM store2

Before you attempt to create a partitioned view, keep the following factors in
mind:

• All of the columns you reference in their relative positions within the
SELECT statements must have the same data type and collation. In other
words, if your first SELECT statement retrieves two columns, each with the
varchar data type, the second SELECT statement must also retrieve two col-
umns that use the varchar data type.

• You must include a column in both SELECT statements for which you’ve
defined a CHECK constraint. In addition, you must reference this column in
the same relative position in both SELECT statements. (This means that if
you reference this column as the third column in one SELECT statement,
you must also reference it as the third column in the other SELECT
statement.) Microsoft refers to this column as the partitioning column, and
you use it to make sure that the data stored in each table is mutually
exclusive. For example, in the previous example where we have two tables
containing each store’s sales orders, you could define a check constraint on a
column containing the store ID number in both tables.

• You can’t base a table’s partitioning column on a computed column. In addi-
tion, you can’t base a partitioned view on a table for which you’ve defined
an index based on a computed column.

• You can’t reference a table more than once in the view definition.

• You can create a distributed partitioned view, which means that the view
references a table on a remote server. In this scenario, you must first define
the remote server as a linked server. We show you how to define a linked
server in the “Implementing Distributed Queries” lesson.

partitioning column:
The column in each table
you reference in a partitioned
view that you use to ensure
that each table’s data is
mutually exclusive.

Lesson 9: Designing Views 243

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating a partitioned view automatically implies the WITH CHECK OPTION on
that view. This means that SQL Server will enforce the check constraints you
defined on the underlying tables whenever you use this view to modify data.
Let’s take a look at how you create and use a partitioned view.

TASK 9A-5:
Creating a Partitioned View

1. In SQL Query Analyzer, open the C:\Data\partitioned_view.sql script file.
You’re going to use this script file to create tables, insert data into them, and
then create a partitioned view based on the tables.

2. Highlight and execute the two CREATE TABLE statements to create the
tables named store1 and store2 within the movies database. Notice that the
CREATE TABLE statements include a check constraint on the storeID
column in both tables.

3. Highlight and execute the two INSERT statements to insert a row into
each table. Notice that each INSERT statement doesn’t violate the table’s
check constraint.

4. Highlight and execute the CREATE VIEW statement to create the parti-
tioned view named SalesTotalsView. Because both tables have the same
structure, you don’t have to worry about the order of the columns or their
data types.

5. Highlight and execute the SELECT statement. You use this statement to
access the partitioned view. You see the rows from both tables, store1, and
store2.

6. Highlight and execute the INSERT INTO SalesTotalsView
statement. Because this statement doesn’t violate the check constraint, SQL
Server permits you to insert the row.

244

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Into which table do you think SQL Server inserted the row?

Because the storeID in theINSERT statement is ‘001’, SQL Server inserted
the row into the store1 table.

8. Highlight and execute the SELECT queries for the SalesTotalsView and
store1 table. You can see that SQL Server inserted the new row into the
store1 table.

9. Highlight and execute the last INSERT statement in the script file. This
query enables you to see the error message SQL Server displays when you
violate a base table’s check constraint.

10. Close all open windows.

Summary
Views offer you a powerful resource for providing easy access to data,
securing your server (because users don’t need access to the view’s underly-
ing tables), and enhanced performance (through indexed views and
partitioned views). In this lesson, you learned how to create each type of
view and access its data.

LESSON 9 REVIEW
9A You would like to prevent anyone from reading the statement you used

to build a view. What should you do?

I can prevent users from displaying a view definition by encrypting it. I
encrypt a view definition by adding theWITH ENCRYPTION clause after
theCREATE VIEW statement as follows:

CREATE VIEW view_name
WITH ENCRYPTION
AS
SELECT statement

Lesson 9: Designing Views 245

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Stored Procedures

Overview
In SQL Server, you create stored procedures as a way of automating any
tasks that you perform on a regular basis. In addition, you use them to make
programs more modular and to take advantage of the performance benefits
stored procedures offer you. (For example, SQL Server automatically caches
the execution plans of stored procedures the first time you run them, which
means that you’ll see enhanced performance each time you run them after
that.) Many programming languages such as Visual Basic enable you to call
stored procedures from within your programs. This means that you’ll see
enhanced performance with these programs as well. In this lesson, we’re
going to define all of the factors you should consider when designing stored
procedures, and how you go about creating, executing, and managing them.

Objectives
To design and implement stored procedures, you will:

10A Identify the considerations for designing stored procedures.

In this topic, we’re going to explore the different types of stored proce-
dures SQL Server supports, including system, extended, and user-defined.
We also examine how SQL Server processes stored procedures the first
time you run them.

10B Create stored procedures.

Here’s where we get down to the details. In this topic, you’re going to
learn how to create stored procedures by using the CREATE
PROCEDURE SQL statement. You’ll learn how to execute stored
procedures, and how to insert data using a stored procedure.

10C Use parameters in stored procedures.

In this topic, we’re going to explore the techniques you can use to make
your stored procedures more flexible. You can use input parameters to
pass values to stored procedures, and you can use output parameters to
retrieve the results of a stored procedure. You’ll also learn how you can
detect and manage errors within stored procedures.

10D Manage stored procedures.

SQL Server includes techniques that you can use to control when it com-
piles stored procedures. In this topic, you’re going to learn how to
manage the compilation of stored procedures. We’ll also explore the tech-
niques you can use to analyze stored procedure performance in System
Monitor and SQL Profiler.

Data Files:
extended_proc.sql
create_proc.sql
createproc_lab.sql
input.sql
output.sql
return_codes.sql
custom_errors.sql
addnewmovie.sql

Lesson Time:
3 hours

LESSON

10

Lesson 10: Creating Stored Procedures 247

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 10A
Designing Stored Procedures
Although at its core a stored procedure is simply a named series of SQL state-
ments just like any other query, a stored procedure offers several distinct
advantages over sending the equivalent statement (or statements) as a regular
query. First, after SQL Server parses and compiles a stored procedure, it caches
the execution plans in its procedure cache. When you run the same stored proce-
dure again, SQL Server can re-use the cached execution plan instead. For this
reason, stored procedures execute faster than if you execute their SQL statements
individually. Second, if you call stored procedures from your applications instead
of explicitly writing the queries into your applications, it is much easier for you
to change a query within a stored procedure than it is to search for and change
the code in an application.

Another advantage of stored procedures is that you typically batch your SQL
statements within them. Batches offer you enhanced performance because SQL
Server can process all of the statements together instead of individually. You can
also see that executing a stored procedure that contains SQL batches will reduce
your network traffic. This is because SQL Server can send the results set for all
of the statements in the batch at the same time rather than individually.

Some of the features of stored procedures include:

• Can contain virtually any SQL statement, including commands to execute
other stored procedures.

• Can accept input parameters and generate output parameters.

• Capable of returning a status code to indicate what happened during the
execution of the stored procedure.

SQL Server supports three types of stored procedures. The first two types of
stored procedures, system and extended, are built-in, which means they’re
installed automatically when you install SQL Server itself. The third type of
stored procedure is user-defined: you create these yourself. User-defined stored
procedures can be local, temporary, or remote.

System and Extended Stored Procedures
Microsoft has written many system stored procedures to perform a wide variety
of administration tasks. The system stored procedures are stored in the master
database. All of the system stored procedures have names that begin with sp_ .
Even though these stored procedures are stored in the master database, you can
execute them from within any database on your server without having to use a
fully qualified object name. For example, the sp_helptext stored procedure
enables you to view the definition of a view or stored procedure, and you can
execute this stored procedure simply by executing sp_helptext regardless of
your current database. (In other words, you don’t have to use
master.dbo.sp_helptext if your current database isn’t the master
database.)

SQL Server also includes extended stored procedures. These are implemented as
dynamic link libraries (DLLs). Extended stored procedures primarily have names
that begin with xp_. For example, the xp_cmdshell extended stored procedure
enables you to shell out to the operating system (typically Windows 2000) to run

procedure cache:
The memory in which SQL

Server stores compiled query
execution plans.

248

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

an operating system command. Another extended stored procedure,
xp_sendmail, enables SQL Server to send email messages. You must execute
extended stored procedures either from within the master database or by using a
fully qualified name (such as master.dbo.xp_cmdshell).

User-defined Stored Procedures
You can create several types of user-defined stored procedures: local, temporary,
and remote. If you create a stored procedure as a database object within a data-
base, this type of stored procedure is referred to as local. These types of stored
procedures are considered permanent. That is, they’re always available for execu-
tion unless you delete them. You can create user-defined stored procedures in any
database including the master database.

You can create two types of temporary stored procedures: local or global. You
identify a temporary stored procedure as either local or global by preceding its
name with a # if it’s local, and ## if it’s global. A local stored procedure is avail-
able only to you during your current session. A global stored procedure is
available to all current sessions on your server.

SQL Server 2000 includes support for remote stored procedures to support legacy
applications. These types of stored procedures have been replaced in SQL Server
2000 by distributed queries.

TASK 10A-1:
Using Books Online to Research System Stored
Procedures

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and created nonclustered indexes based
on your primary keys. You’ve imported data into the tables.
You’ve created database diagrams for both the movies and
pubs databases.

1. Start SQL Server Books Online.

2. On the Contents page, expand Transact-SQL Reference.

3. Expand System Stored Procedures to view a list of system stored proce-
dures included with SQL Server 2000. (You’ll need to scroll several screens
down the Contents page to find system stored procedures.)

Lesson 10: Creating Stored Procedures 249

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. On the Contents page, select the stored procedure sp_helptext to dis-
play the help screen for this stored procedure.

5. In what scenario would you use the sp_helptext stored procedure?

I should usesp_helptext to view the text (SQL statements) contained in
unencrypted views, defaults, stored procedures, rules, or triggers.

6. Close SQL Server Books Online.

Executing Extended Stored Procedures
If you want to run an extended stored procedure, you must either run it from
within the master database, or identify the master database as part of the name as
follows:

master.owner.extended_procedure_name.

You can leave out the owner name if you’re the owner of the procedure. You can
view the name of the DLL file that makes up an extended, stored procedure by
executing the following query:

sp_helptext extended_procedure_name

You can create your own extended stored procedures but you must store them
within the master database. You can use extended stored procedures to call your
own external programs in programming languages such as C++ and Visual Basic.
You can include functions within an extended stored procedure.

TASK 10A-2:
Running Extended Stored Procedures

1. Start SQL Query Analyzer and log on with Windows Authentication.

2. Open the C:\Data\extended_proc.sql script file.

250

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Highlight and execute the master..xp_logininfo query. This query
enables you to view a list of Windows login accounts on your server. If this
statement wasn’t the first line of the query, you would have had to precede it
with the EXEC keyword.

4. Highlight and execute the query master..xp_cmdshell 'dir'. This
stored procedure enables you to run an external operating system command
and return its results to SQL Query Analyzer’s results pane.

5. Highlight and execute the query sp_helptext xp_cmdshell to view
the name of the DLL file associated with the extended stored procedure.

6. Open a new Query window, and then close the Query window contain-
ing the extended_proc.sql script file.

Running Stored Procedures the First Time
When you run a stored procedure for the first time, SQL Server must begin by
parsing the stored procedure. Next, it compiles your stored procedure. Finally,
SQL Server executes the procedure. Let’s take a look at each of these steps in
more detail.

Parse
When you run a stored procedure for the first time, SQL Server parses the SQL
statements to test their accuracy. SQL Server does support delayed name resolu-
tion, which enables your stored procedures to reference objects that don’t already
exist (this scenario typically occurs when you create objects when the stored pro-
cedure executes). It then translates the SQL statements into an internal format for
processing; this format is called the query tree or sequence tree. Finally, SQL
Server updates the sysobjects system table with the name of your stored
procedure. It also writes a row to the syscomments system table with the text of
the stored procedure.

Lesson 10: Creating Stored Procedures 251

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Compile
After SQL Server has the sequence tree for your stored procedure, it can compile
an execution plan. SQL Server checks your security as well as determines how to
optimize the query as part of creating the execution plan. The execution plan con-
tains step-by-step instructions on how SQL Server will process the query. For
example, the execution plan includes the steps for checking any constraints you
might have on referenced tables.

Execute
SQL Server can process the stored procedure after it completes creating the
execution plan. SQL Server sends statements within the stored procedure to the
appropriate manager for those statements. For example, if your stored procedure
contains Data Definition Language (DDL) statements for creating objects such as
tables, SQL Server sends those statements to the DDL manager.

Running Stored Procedures a Second Time
After you run a stored procedure for the first time, SQL Server caches the execu-
tion plan in its procedure cache. All subsequent executions of the same stored
procedure can then use this cached execution plan unless one of the following
conditions occurs:

• You restart your server (which clears the procedure cache).

• You make changes to the structure of any table or view referenced in your
stored procedure.

• You generate new index statistics for a table by using the UPDATE
STATISTICS statement.

• You drop an index that was used by the stored procedure’s execution plan.

• You make considerable changes to the index keys in the table referenced in
the stored procedure.

• You force SQL Server to recompile the stored procedure’s execution plan.

If any of these conditions occurs, SQL Server must retrieve your stored proce-
dure’s definition from the syscomments table, recompile its execution plan, and
then cache it again in the procedure cache. The advantage to a stored procedure
is that after the execution plan is cached, SQL Server can simply retrieve it from
RAM, rather than parsing and recompiling the stored procedure each time you
run it. This means that you’ll see the performance benefits of stored procedures
the second time you run them (but not the first time).

Notice that if you restart your server, SQL Server clears the procedure cache.
SQL Server must parse and recompile the execution plans of stored procedures
whenever you reboot. If you have stored procedures that you use frequently, you
can create a stored procedure to execute them, and then configure this stored pro-
cedure to run automatically when you start up your server.

252

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 10A-3:
Understanding How SQL Server Processes Stored
Procedures

1. How does a stored procedure differ from a SQL script file?

A stored procedure differs from a script file in that after SQL Server parses
and compiles a stored procedure, it caches the execution plan in its proce-
dure cache. From this point on, each time I run the stored procedure, SQL
Server can retrieve it from cache. As a result, SQL Server doesn’t have to
parse and compile the stored procedure again—where it must do so each
time you run the statements in the script file.

2. What scenarios will cause SQL Server to automatically parse and
recompile a stored procedure?

Answers might include: When I restart my server; make changes to the
structure of a table or view referenced in the stored procedure; generate new
index statistics; drop an index that was used by the execution plan; or I
force SQL Server to recompile the stored procedure.

TOPIC 10B
Creating Stored Procedures
Now that we’ve looked at the role of stored procedures, let’s move on to how
you go about creating them. You create a stored procedure by using the
CREATE PROCEDURE Transact-SQL statement in SQL Query Analyzer. (You
can also create a stored procedure by right-clicking on the Stored Procedure
object within a database in SQL Server Enterprise Manager. You then type the
SQL statements into your stored procedure just as you would within the SQL
Query Analyzer.) You might find it a little easier to develop your stored proce-
dure within SQL Query Analyzer because you can test your SQL statements as
you write them. Then after you’ve debugged your statements, simply add the
CREATE PROCEDURE statement to them.

Use the following syntax to create a stored procedure:

CREATE PROCEDURE procedure_name
[WITH option]
AS

sql_statement [...n]
GO

Lesson 10: Creating Stored Procedures 253

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Replace procedure_namewith the name you want to assign to your stored
procedure. You can abbreviate CREATE PROCEDURE as CREATE PROC. You
can’t use the CREATE PROCEDURE statement along with other statements in a
batch; you must follow it with the GO keyword. For example, you might create
the following stored procedure to list all of the rented movies that are due today:

USE movies
GO
CREATE PROC dbo.MoviesDue
AS
SELECT m.title, m.movie_num, rd.invoice_num, r.due_date
FROM rental AS r JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num
JOIN movie AS m
ON rd.movie_num = m.movie_num
WHERE convert(char(10), r.due_date, 101)

= convert(char(10), getdate(), 101)
GO

Because you can’t include the CREATE PROC statement with other statements,
you must end it with the GO keyword. As you can see in the previous example,
the GO keyword comes after the SQL statements that make up your stored
procedure.

Your stored procedure can refer to just about anything in a database, including
tables, user-defined functions, views, other stored procedures, and temporary
tables. Keep in mind that if you design your stored procedure to create a tempo-
rary table, that table’s available to you only while the stored procedure is
executing.

Permissions
To create a stored procedure, you must be either a member of the sysadmins
server role or a member of the db_owner or ddl_admin database roles for the
database in which you’re attempting to create the procedure. If you have users
who you want to create stored procedures, but you don’t want them to be a mem-
ber of either the server or database roles, you can explicitly grant these users the
CREATE PROCEDURE statement permission.

You should try to avoid breaking the ownership chain between a stored procedure
and the tables or views on which it is based. Microsoft recommends that you
make the dbo user the owner of all objects in the database (including stored pro-
cedures) to avoid this problem.

Limitations
Your stored procedures can be up to 128 MB in size, but can be further limited
by the amount of available RAM in your server. You can nest up to 32 levels of
stored procedures. You nest stored procedures when one stored procedure calls
another.

You can’t include the following statements in a stored procedure:

• CREATE DEFAULT

• CREATE PROCEDURE

• CREATE RULE

• CREATE TRIGGER

• CREATE VIEW

In this stored procedure, you
must convert the due_date

and getdate() values to
character strings because

both contain not just a date
but also a time. You must

strip out the month, day, and
year information from the

time information in order for
this WHERE condition to

work. Otherwise, you would
be able to see a list of mov-

ies due only if they
happened to be due today

and at the exact current
time.

254

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Recommendations
After you’ve debugged your stored procedure on the SQL server, you should
always test it from a client computer. This test will enable you to detect any com-
munication problems between the client and the server. You should also test it
logged on as a typical user, not as a system administrator so that you can verify
that you’ve given users sufficient permissions.

Viewing the Text of Stored Procedures
You can view the text of a stored procedure by using the sp_helptext system
stored procedure. For example, to view the text of the MoviesDue stored proce-
dure, use the following syntax:

sp_helptext MoviesDue

You can also use the sp_help stored procedure to view information about who
owns a stored procedure, as well as when the stored procedure was created. Use
the following syntax:

sp_help procedure_name

The sp_depends stored procedure enables you to see a list of objects on which
a stored procedure depends. For example, you can use sp_depends to deter-
mine which tables a stored procedure references. Use the following syntax with
sp_depends:

sp_depends procedure_name

Finally, you can use the sp_stored_procedures procedure to list all of the
defined stored procedures in your current database. Use the following syntax:

sp_stored_procedures

TASK 10B-1:
Creating a Stored Procedure

Objective: To create a stored procedure for displaying a list of movies
sorted by category.

1. In SQL Query Analyzer, open the C:\Data\create_proc.sql stored
procedure.

2. Highlight and execute the first query in the script file. You can use this
query to verify that it works and that it provides you with the desired results
set. This query lists each movie on file along with the category of that
movie. (The DISTINCT keyword prevents SQL Server from displaying mul-
tiple copies of the movies.)

Lesson 10: Creating Stored Procedures 255

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Highlight and execute the query to create the MovieByCategory stored
procedure.

4. Highlight and execute the sp_helptext query. You can use the
sp_helptext stored procedure to view an unencrypted stored procedure’s
definition.

5. Open a new Query window, and then close the Query window contain-
ing the create_proc.sql script.

Executing Stored Procedures
SQL Server requires that you run a stored procedure either as the first line of a
query or that you precede it with the EXECUTE (or EXEC) keyword. For
example, you’ll get an error message if you execute the following query:

USE movies
GO
SELECT *
FROM movie
sp_help movie

This query won’t work because the sp_help stored procedure isn’t the first line
of the query, and you haven’t preceded it with the EXECUTE keyword. You can
rewrite this query so that it will run successfully by using the following syntax:

USE movies
GO
SELECT *
FROM movie
EXEC sp_help movie

If you choose to run a stored procedure simply by typing its name (and not the
EXECUTE or EXEC keywords), you must make it the first statement in a batch.
You must use a fully qualified name to run a stored procedure that’s stored in a
database other than your current database. For example, if you want to run the
MoviesDue example stored procedure, but your current database is pubs, you
can use the name movies.dbo.MoviesDue to run it.

You might want to mention
to students that they should

always call a stored
procedure with the EXEC
keyword whenever they’re
developing programs and

script files. By getting into
this habit, they can avoid
having stored procedures

fail.

256

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE database
INSERT INTO table_name
EXEC procedure_name

TASK 10B-2:
Executing a Stored Procedure

1. In SQL Query Analyzer, execute the following query:

EXEC MovieByCategory

(You can also use EXECUTE MovieByCategory or
MovieByCategory to run this stored procedure.)

2. Look at the Results pane. You should see a list of movies sorted by cat-
egory (Adventure, Comedy, Drama, etc.).

3. Clear the Query window.

Preventing Users From Reading the Text of a Stored
Procedure
You can use the WITH ENCRYPTION keywords in the CREATE PROCEDURE
statement to encrypt the definition of a stored procedure. You can’t read the con-
tents of an encrypted stored procedure. Use the following syntax to encrypt a
stored procedure:

CREATE PROCEDURE procedure_name
WITH ENCRYPTION
AS

sql_statement [...n]
GO

Just as in views, SQL Server stores the definition of your stored procedure in the
syscomments system table. You should never edit this table directly, especially if
you want to hide the definition of a stored procedure. Instead, you should encrypt
the stored procedure.

Lesson 10: Creating Stored Procedures 257

Using Stored Procedures to Insert Data
You can use a stored procedure to insert data into a table based on the results set.
For this to work, the results set returned by the stored procedure must supply the
appropriate values and data types for the table’s columns. For example, you
might use a stored procedure to extract data from one table, modify its format,
and then insert it into another table. To insert the results set of a stored procedure
into a table, use the following syntax:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 10-1

Creating and Running Stored Procedures
Objective: To create stored procedures for producing some of the reports

you would like to retrieve from the movies database. If neces-
sary, refer to your database diagram for the movies database in
SQL Server Enterprise Manager.

1. By using the movies database, design a query for listing the customer name,
invoice number, and rental date. (You can use CONVERT(CHAR(10),
rental_date, 101) to format the date.) Sort the results by customer name and
rental date. After you’ve tested the query, create a stored procedure based on
this query and name it RentalsByCustomer. What query did you use?

USE movies
GO
CREATE PROC dbo.RentalsByCustomer
AS

SELECT c.fname+' '+c.lname AS name, r.invoice_num,
CONVERT(CHAR(10), r.rental_date, 101) AS 'rental date'
FROM rental AS r JOIN customer AS c
ON r.cust_num = c.cust_num
ORDER BY c.lname, c.fname, r.rental_date

GO

2. Save the statements you use to create the stored procedure in a script file.
(Choose File→Save As.) Name the script file rentals.sql, and save it in your
My Documents folder.

3. Open a new Query window, and then close the Query window that contains
the rentals.sql script.

4. Check the statements in your stored procedure by using sp_helptext.
What query did you use?

sp_helptext RentalsByCustomer

5. Verify that the stored procedure you created in step 1 works by running it.
What command did you use to run the stored procedure?

I can use eitherEXEC dbo.RentalsByCustomer or
RentalsByCustomer.

6. Clear the Query window.

Suggested time:
30 minutes

Script file: createproc_lab.
sql.

258

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. By using the movies database, design a query for listing the category
description, title, and rating for all movies that have rented. Sort the results
by category description and title. After you’ve tested the query, create an
encrypted stored procedure based on this query and name it
RentalsByCategory. (Hint: You must use a three-table join in your SELECT
statement.) What query did you use?

USE movies
GO
CREATE PROC dbo.RentalsByCategory
WITH ENCRYPTION
AS

SELECT c.description, m.title, m.rating
FROM rental_detail AS rd JOIN movie AS m
ON rd.movie_num = m.movie_num
JOIN category AS c
ON m.category_num = c.category_num
ORDER BY c.description, m.title

GO

8. Save the statements you use to create the stored procedure in a script file.
Name the script file category.sql.

9. Open a new Query window, and then close the query window that contains
the category.sql script.

10. Verify that you can’t read the stored procedure’s definition by using
sp_helptext. (You should see a message stating that the object’s com-
ments are encrypted.) What query did you use?

sp_helptext RentalsByCategory

11. Verify that your stored procedure works by running it.

EXEC dbo.RentalsByCategory

12. Clear the Query window.

Modifying a Stored Procedure
You can change a stored procedure by using the ALTER PROCEDURE statement.
(You can also use ALTER PROC.) When you change a stored procedure, SQL
Server replaces its previous definition with the new definition (SQL statements)
you specify. Modifying a stored procedure instead of dropping and re-creating it
enables you to retain the permissions you’ve assigned to users for the stored
procedure. If you want to modify an encrypted stored procedure, you must
include the WITH ENCRYPTION option in the ALTER PROCEDURE statement.

You must be the owner of the stored procedure, a member of the sysadmins
server role, or a member of either the db_owner or db_ddladmin database roles in
order to modify a stored procedure. You can’t assign the permission for editing a
stored procedure.

You can use ALTER
PROCEDURE to modify only
one stored procedure at a
time. If you want to modify
several nested stored
procedures, you must modify
each one individually.

Lesson 10: Creating Stored Procedures 259

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

ALTER PROCEDURE procedure_name
[WITH option]
AS

sql_statement [...n]
GO

Microsoft strongly recommends that you don’t modify any of the system stored
procedures that come with SQL Server. If you want to modify them, you should
copy their definitions to a new stored procedure, and then make the necessary
changes.

Dropping a Stored Procedure
You can drop a stored procedure by using the DROP PROCEDURE statement.
You should always run the sp_depends stored procedure to check for objects
that depend on a stored procedure before you drop it. After you’ve checked its
dependencies, you can drop the procedure by using the following syntax:

DROP PROC owner.stored_procedure_name

APPLY YOUR KNOWLEDGE 10-2

Modifying a Stored Procedure
Objective: To modify the RentalsByCategory stored procedure.

1. In SQL Query Analyzer, open the script file named category.sql. This script
file contains the commands for creating the RentalsByCategory stored
procedure.

2. Add the necessary commands to your script file to modify the
RentalsByCategory stored procedure to add the date you purchased the
movie to the results set. Save your changes to a new script file named
newcategory.sql. Record your new query in the following space.

USE movies
GO
ALTER PROC dbo.RentalsByCategory
WITH ENCRYPTION
AS
SELECT c.description, m.title, m.rating,
CONVERT(CHAR(10), m.date_purch,101) AS 'purchase date'
FROM rental_detail AS rd JOIN movie AS m
ON rd.movie_num = m.movie_num
JOIN category AS c
ON m.category_num = c.category_num
ORDER BY c.description, m.title

GO

3. Open a new Query window, and then close your old Query window.

4. Verify that your stored procedure works by running it.

EXEC RentalsByCategory

5. Clear the Query window.

Suggested time:
10 minutes

260

Use the following syntax to edit a stored procedure:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 10C
Using Parameters in Stored Procedures
You can use parametersin stored procedures to make them more interactive. You
can use both input and output parameters. Input parametersenable you to pass a
value to a variable within the stored procedure. In contrast, output parameters
return a value after you run a stored procedure. You can use output parameters to
return information to a calling stored procedure. You can define a total of 1,024
parameters in a stored procedure.

Input Parameters
You begin implementing input parameters in stored procedures by first defining
the name of the parameter as well as its data type. You can optionally assign a
default value to the parameter. For example, you might want to create a stored
procedure that enables you to list all customers who live in a specific ZIP code.
Instead of hard-coding a specific ZIP code into the stored procedure, you can
define an input parameter as part of the stored procedure, and then specify a ZIP
code whenever you execute the stored procedure.

Use the following syntax to define an input parameter:

CREATE PROCEDURE procedure_name
[@parameter_name data_type] [= default_value]
[WITH option]
AS
sql_statement [...n]

In this syntax, you replace @parameter_namewith the name you want to assign
to the parameter, and data_typewith the data type (such as char, varchar, and so
on). You should typically define a default value for the parameter so that the
stored procedure will run successfully in the event its user doesn’t supply a value.
You can use either constants (character strings or numeric values) or null for the
default value.

The following example shows you how to define an input parameter. This param-
eter, @rating, enables you to pass a particular movie rating to the stored
procedure. The SELECT statement then displays all movies in the movie table
that have a rating equal to the rating you supply using the parameter.

CREATE PROCEDURE dbo.MovieByRating
@rating varchar(5) = null
AS

SELECT rating, title
FROM movie
WHERE rating = @rating
ORDER BY title

GO

In this example, we’re using a default value of null for the @rating input
parameter. This means that if you run this stored procedure without providing a
value for the @rating parameter, you won’t see any rows in the results set.

parameter:
A programming entity that
enables you to send
information to or retrieve
information from a stored
procedure.

input parameter:
A value that you pass into a
stored procedure.

output parameter:
A value SQL Server passes
out of a stored procedure.
This value is typically
generated by a statement
within the stored procedure.

You can use an input
parameter only within the
stored procedure where you
define it.

Lesson 10: Creating Stored Procedures 261

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Executing a Stored Procedure With Input Parameters
You can pass values for parameters to a stored procedure either by reference or
by position. If you pass a value by reference, you explicitly identify the name of
the parameter followed by the value you want to use. Use the following syntax to
pass a value by reference:

EXEC procedure_name @parameter_name = value

For example, to pass a value to the @rating parameter by reference, you could
use this syntax:

EXEC MovieByRating @rating = 'G'

Notice that you must specify the parameter’s value by using the appropriate syn-
tax for its data type. In other words, values for character-based parameters must
be enclosed in quotes.

You can also pass a value to a parameter simply by position. This means that
SQL Server uses the first value you specify after the stored procedure name as
the value for the first parameter in the stored procedure. If your stored procedure
has multiple parameters, specify the values for each parameter separated by
commas. You can skip a value for a parameter if you have specified a default
value. Use the following syntax to specify a value for a parameter by position:

EXEC stored_procedure_name value [, value...]

For example, to use the MovieByRating stored procedure to list all movies with a
G rating, and to specify a value for the input parameter by using position, you
could also use this syntax:

EXEC MovieByRating 'G'

TASK 10C-1:
Creating a Stored Procedure With an Input Parameter

1. In SQL Query Analyzer, open the C:\Data\input.sql script file.

2. Highlight and execute the query to create the MovieByRating stored
procedure to create a stored procedure for listing movies by rating. This
procedure won’t list any movies unless you run it with a parameter.

3. Open a new Query window, and then close the old Query window con-
taining the input.sql script file.

4. Write and execute a query to run the stored procedure; specify a value
of your choice for the @rating parameter by reference. What query did
you use?

EXEC MovieByRating @rating = 'G'

5. Write and execute a query to execute the stored procedure; specify a
value for the @rating parameter by position. What query did you use?

EXEC MovieByRating 'PG'

6. Clear the Query window.

262

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Checking for Valid Input Parameter Values
If your stored procedure uses parameters, you should include code for making
sure that those parameters have values. You can do your error checking by using
the IF statement. You can use the RETURN keyword to break out of the stored
procedure if a parameter doesn’t have an appropriate value. For example, you can
use the following syntax to check the values for your input parameters:

CREATE PROCEDURE stored_procedure_name
@parameter data_type = value
AS

IF @parameter IS NULL
BEGIN

PRINT 'Message Line 1'
PRINT 'Message Line 2'

RETURN -- Ends running the stored procedure
END
SELECT statement

GO

APPLY YOUR KNOWLEDGE 10-3

Adding Syntax For Checking Parameters
Objective: To modify the MovieByRating stored procedure to check for

parameters before it runs.

1. In SQL Query Analyzer, open the input.sql script file. Modify the script so
that it alters the stored procedure. Add an IF statement to check to see if the
@rating parameter is null or if it isn’t G, PG, R, NC17, or NR. (Hint: Use
the NOT IN keywords.) Have the stored procedure display a message if the
@rating parameter isn’t set correctly, and then exit the stored procedure.
Save the changes to a file named newmovierating.sql (choose File→Save
As). Record your changes here.

ALTER PROCEDURE dbo.MovieByRating
@rating varchar(5) = null
AS
IF @rating IS NULL
OR @rating NOT IN ('G', 'PG', 'R', 'NC17', 'NR')
BEGIN
PRINT 'Please provide a movie rating. For example: '
PRINT 'Use "G", "PG", "R", "NC17", or "NR".'

RETURN -- ENDS running the stored procedure
END
SELECT rating, title
FROM movie
WHERE rating = @rating
ORDER BY title
GO

2. Execute your query to modify the MovieByRating stored procedures.

3. Open a new Query window, and then close your previous Query window.

Suggested time:
15 minutes

Lesson 10: Creating Stored Procedures 263

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Test your IF statement by running the MovieByRating stored procedure
without specifying any values. Test it again by using an incorrect rating such
as ‘Q’.

5. Clear the Query window.

Output Parameters
You can use output parameters to return a value from a stored procedure. This
value can then be used by whatever method you used to call the stored
procedure. For example, you might have two stored procedures: the first stored
procedure calls the second, and the second procedure then returns a value to the
first procedure. You might also simply call a stored procedure from a SQL state-
ment, and then use the value in the output parameter in a subsequent SQL
statement.

You’ll typically use the values assigned to output parameters in other stored
procedures. Output parameters thus enable you to use the results of one stored
procedure in another stored procedure.

Identify an output parameter by adding the OUTPUT keyword to its definition
within the stored procedure. In addition, you must also identify the output param-
eter as part of the EXECUTE statement you use to call its stored procedure. Use
the following syntax to define an output parameter:

CREATE PROCEDURE procedure_name
[@parameter_name data_type] [= default_value] OUTPUT
[WITH option]
AS

SQL statement [...n]

For example, the following stored procedure uses five output parameters to store
the row counts of each of the tables in the movies database:

CREATE PROC count_rows
@movie_count int OUTPUT, @cust_count int OUTPUT, @cat_count int
OUTPUT,
@rental_count int OUTPUT, @rd_count int OUTPUT
AS

SELECT @movie_count = COUNT(*) FROM movie
SELECT @cust_count = COUNT(*) FROM customer
SELECT @cat_count = COUNT(*) FROM category
SELECT @rental_count = COUNT(*) FROM rental
SELECT @rd_count = COUNT(*) FROM rental_detail

GO

Executing a Stored Procedure With Output Parameters
When you call a stored procedure that contains output parameters, you must
declare the variables in which you want to store the output parameters. These
variables can use the same names as the output parameters or different names. In
addition, you must specify the names of the output parameters along with the
OUTPUT keyword when you execute the stored procedure.

For example, to call the count_rows stored procedure from the previous
example, you should use the following syntax:

264

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DECLARE @movie_count int, @cust_count int,
@cat_count int, @rental_count int, @rd_count int

EXEC count_rows @movie_count OUTPUT, @cust_count OUTPUT,
@cat_count OUTPUT, @rental_count OUTPUT, @rd_count OUTPUT

SELECT @movie_count AS movie, @cust_count AS customer,
@cat_count AS category,@rental_count AS rental,
@rd_count AS rental_detail

In this example, using the same names for both the output parameters and the
variables simplifies the information. When you run the stored procedure (as
shown in the line that begins with EXEC), you specify the variables in which you
want to store the output parameters’ values. Finally, the SELECT line displays the
contents of the variables. You can see the output from this example in Figure
10-1. The DECLARE line in this example simply declares the variables in which
you want to store the values from the output parameters.

Figure 10-1: The count_rows stored procedure lists each table in the movies database
and the number of rows in each table.

TASK 10C-2:
Creating and Executing a Stored Procedure With
Output Parameters

1. In SQL Query Analyzer, open the script file named C:\Data\output.sql.

2. To create the SimpleMath stored procedure, highlight and execute the
following query:

USE movies
GO
CREATE PROC dbo.SimpleMath
@x smallint,
@y smallint,
@calculation smallint OUTPUT
AS

SET @calculation = @x + @y
GO

Lesson 10: Creating Stored Procedures 265

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. In the above query, what type of parameters are @x and @y? How do
they get values?

Because @x and @y are input parameters, I must specify values for them
when I run the stored procedure. I can specify values for @x and @y either
by reference or position.

4. Highlight and execute the next query (the one that begins with the
DECLARE statement) to run the SimpleMath stored procedure. Notice that
you supplied the values for the input parameters @x and @y by reference.
Because @x is the first parameter defined in the stored procedure, when you
execute SimpleMath, the first value you specify is stored in @x (in this
example, 8).

5. Open a new Query window, and then close the window containing the
output.sql script.

Managing Errors
SQL Server provides you with several tools you can use to manage errors in your
stored procedures. These tools include the RETURN SQL statement,
sp_addmessage stored procedure, the RAISERROR statement, and the
@@ERROR function. Let’s start by looking at the RETURN statement.

The RETURN Statement
You use the RETURN statement to force an unconditional exit from a stored
procedure. You can use the RETURN statement by itself, or you can use it to
return status codes to a calling stored procedure, SQL statement batch, or
application. For example, by default, a return value of zero (0) indicates that the
stored procedure ran successfully. SQL Server currently uses return values 0 to
-14 and has reserved the values -15 to -99. You can specify your own status
codes as well. Any user-defined status codes take precedence over the SQL
Server status codes. In the following example, we’re using the RETURN statement
simply to exit the stored procedure.

266

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE pubs
GO
CREATE PROCEDURE dbo.ListAuthors
@author_id varchar(10) = null
AS

IF @author_id IS NULL
BEGIN
PRINT 'Please enter a valid author ID number.'
PRINT 'Use the format 999-99-9999.'

RETURN -- Ends running the stored procedure
END
SELECT au_lname, au_fname, au_id
FROM authors
WHERE au_id = @author_id

GO

If you have the RETURN keyword return a status code, then these return codes
actually function as output parameters. You must save the return code into a vari-
able in order to use it for further processing. For example, the following stored
procedure returns the total number of rows in the results set as a RETURN status
code:

CREATE PROCEDURE dbo.NumRentals
@cust_num cust_num = null
AS
SELECT CONVERT(CHAR(10),rental_date,101) AS 'rental date',
invoice_num, cust_num

FROM rental
WHERE cust_num = @cust_num
RETURN (@@rowcount)

GO

Just as you must declare a variable for SQL Server to store the values of output
parameters, so must you declare a variable for return status codes. Continuing
with the previous example, you could use the following query to run the
NumRentals stored procedure, store the return status code in the variable named
@answer, and then display it on the screen:

DECLARE @answer smallint
EXEC @answer = NumRentals 74
SELECT 'Total number of rentals is: ', @answer

In this example, the DECLARE statement initializes the variable @answer. Next,
the EXEC @answer = NumRentals 74 statement runs the NumRentals
stored procedure with an input parameter of 74 (a customer’s account number)
and stores the return status code to the @answer variable. Finally, the SELECT
statement simply displays the return status code (in this case, the number of rows
in the results set). The results of this query are shown in Figure 10-2.

Lesson 10: Creating Stored Procedures 267

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 10-2: You can use the RETURN status code to return a status code to a calling
stored procedure.

APPLY YOUR KNOWLEDGE 10-4

Using Return Status Codes
Objective: To write a stored procedure to count the number of times a

specific movie has been rented. You will return this count by
using a return status code.

1. In SQL Query Analyzer, by using the movies database, design a stored pro-
cedure for listing the invoice number, title, and the date rented for a specific
movie number. Sort the results by the rental date. Name your stored proce-
dure MoviesRented. Include an input parameter in the stored procedure so
that you can input the movie number when you run it. Have your stored pro-
cedure return the number of rows in the results set as a return status code.
(Hint: You’ll need to join the movie, rental, and rental_detail tables.) What
query did you use?

CREATE PROCEDURE dbo.MoviesRented
@movie_num movie_num = null
AS
SELECT r.invoice_num, m.title,
CONVERT(CHAR(10),r.rental_date,101) AS 'rental date'

FROM rental AS r JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num
JOIN movie AS m
ON rd.movie_num = m.movie_num
WHERE rd.movie_num = @movie_num
ORDER BY r.rental_date
RETURN (@@rowcount)

Suggested time:
25 minutes

Script file: return_codes.
sql.

268

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Design and execute a new query to call the MoviesRented stored procedure,
display all of the movie rentals for a specific movie number (such as 155),
and display the number of rows returned by the RETURN statement. What
query did you use?

DECLARE @answer smallint
EXEC @answer = MoviesRented 155
SELECT ' Total number of rentals for this movie is: ', @answer

3. Clear the Query window.

Creating and Using Custom Error Messages
In order to provide you with greater flexibility in programming, SQL Server
enables you to create and call your own error messages. You typically use these
messages when the data a user enters violates your program’s business logic. You
use the sp_addmessage stored procedure to create your own custom error
messages. SQL Server stores all error messages, including both system and user-
defined, in the sysmessages table within the master database. You can then call
these messages by using the RAISERROR statement.

Creating Custom Error Messages
Let’s start by examining how you go about defining your own error messages.
Use the following syntax to add custom error messages with the
sp_addmessage stored procedure:

EXEC sp_addmessage
@msgnum = number,
@severity = severity_level,
@msgtext = 'Text of error message.',
@with_log = 'true' or 'false'

You can use message numbers 50000 and higher, and set the severity level from
0 to 25. Use the @with_log option to control whether or not SQL Server
records the error in the Windows 2000 Application log. Be aware that only sys-
tem administrators can create error messages with a severity level greater than 19.
The following table explains the differences between the various severity levels.

Severity Level Used to Indicate
0 or 10 Errors in information entered by the user. These messages are

considered informational.
11 through 16 Errors that can be corrected by the user.
17 Insufficient resources (such as locks or disk space).
18 Nonfatal internal errors. These errors usually indicate an internal

software problem.
19 That an internal non-configurable limit in SQL Server was exceeded.
20 through 25 Fatal errors.

As a general rule, you should use either 0 or 10 for informational messages. SQL
Server considers error messages with a severity greater than 20 as fatal and termi-
nates the client’s connection to the server. Use 15 as the severity level for
warning messages and 16 and higher as the severity level for errors.

Lesson 10: Creating Stored Procedures 269

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In the following example, we’re creating a custom error message that we can use
whenever a user searches for a movie by number that isn’t in the table:

EXEC sp_addmessage
@msgnum = 50001,
@severity = 10,
@msgtext = 'Movie number cannot be found.',
@with_log = 'true'

You can view a list of existing error messages by executing the following query:

USE master
GO
SELECT *
FROM sysmessages

This query displays each message’s error number in the error column, the severity
level in the severity column, and the text of the error message in the description
column.

Deleting Custom Error Messages
You can drop a custom error message by using the sp_dropmessage stored
procedure. Use the following syntax to drop a message:

EXEC sp_dropmessage message_number

Replace message_numberwith the number of the custom error message you want
to delete from the sysmessages table.

Using Custom Error Messages
After you’ve set up custom error messages, you can call them from within a
stored procedure by using the RAISERROR SQL statement. Use the following
syntax:

RAISERROR (msg_id|msg_txt, severity_level, state) [WITH LOG]

Replace msg_idwith the ID number of the custom error message you’ve already
created and stored in the sysmessages table. You can optionally have
RAISERROR display a new message by specifying a message text instead. If you
specify a message text, SQL Server doesn’t store this message for later use—it
simply displays it if the error occurs. Because you can display a new error mes-
sage by using the RAISERROR statement, you must also specify the severity
level and state. The stateis an arbitrary number from 1 to 127 that you can use
to provide information about what actions invoked the error. The syntax for the
RAISERROR statement requires that you specify the severity level and state
parameters even if you’re calling a custom error message you’ve stored in the
sysmessages table.

You can optionally use the WITH LOG keywords with the RAISERROR state-
ment to force SQL Server to write the error message to the Windows Application
log. You can view these messages by using Event Viewer. If you set the @with_
log option equal to true when you defined the error message by using the
sp_addmessage stored procedure, SQL Server will automatically write the
message to the Application log regardless of whether you specify the WITH LOG
keywords with the RAISERROR statement or not.

270

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

sp_addmessage @msgnum = 50001,
@severity = 10,
@msgtext = 'Cannot delete customer. Customer has rentals on
file.'
@with_log = 'true'

So how do you call this error message from your stored procedure? You call it by
using the following syntax:

RAISERROR (50001, 10, 1)

Next, you incorporate the RAISERROR statement into your stored procedure. For
example, you might use the following stored procedure to delete a customer from
the customer table in the movies database. You can use the RAISERROR state-
ment to display an error if you attempt to delete a customer if that customer has
rented any movies.

CREATE PROC dbo.DeleteCust
@cust_num cust_num = null
AS
IF EXISTS (SELECT cust_num FROM rental WHERE cust_num =
@cust_num)

BEGIN
RAISERROR(50001, 10, 1)
RETURN

END
DELETE FROM customer
WHERE cust_num = @cust_num
GO

Finally, you can run this stored procedure by using the following syntax (where
101 represents a customer number for the input parameter):

EXEC DeleteCust 101

Let’s take a look at another example. In this scenario, you could configure your
message to identify the user who performed the action. To do so, you must add
the parameter %s to your error message as follows:

sp_addmessage
@msgnum = 50002,
@severity = 10,
@msgtext = 'Customer record deleted by %s.' ,
@with_log = 'true'

Next, you must populate %s with the user’s name by declaring a variable and
then storing the user name in it. You can then reference the variable as part of the
RAISERROR statement by using the following syntax:

DECLARE @username char(30)
SELECT @username = suser_sname()
RAISERROR(50002, 10, 1, @username)

Lesson 10: Creating Stored Procedures 271

Let’s walk though a complete example from creating the error message to calling
it from a stored procedure. In the following example, we start by creating a cus-
tom error message by using the sp_addmessage stored procedure:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 10-5

Creating and Calling Custom Error Messages
Objective: To create a custom error message. You will then create a

stored procedure to delete a movie from the movie file. If an
error occurs, you will have the stored procedure call the cus-
tom error message.

1. In SQL Query Analyzer, use the sp_addmessage stored procedure to cre-
ate a custom error message. You will use this error message to notify users if
they attempt to delete a movie for which there are rentals on file. Assign the
error message a message number of 50001, a severity level of 10, and con-
figure it to write a message to the Application log. Use a message text of
your choice. What query did you use?

sp_addmessage
@msgnum = 50001,
@severity = 10,
@msgtext = 'You cannot delete this movie. This movie has
rentals on file.',
@with_log = 'true'

2. Use the sp_addmessage stored procedure to create another custom error
message. You will use this error message to record the name of the user who
deletes a movie from the movie table. Assign the error message a message
number of 50002, a severity level of 10, and configure it to write a message
to the Application log. Use a message text of your choice, but include a
variable to display the user name. What query did you use?

sp_addmessage
@msgnum = 50002,
@severity = 10,
@msgtext = 'Movie record deleted by %s.',
@with_log = 'true'

3. Execute a query to view only your new custom messages in the sysmessages
table. Record your query below.

SELECT *
FROM master..sysmessages
WHERE error > 50000

Suggested time:
20 minutes

Script file: custom_errors.
sql.

272

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Create a stored procedure named DeleteMovie to delete a movie from the
movie database. Configure the stored procedure to accept an input parameter
for the movie number. Have your stored procedure generate an error if you
try to delete a movie for which there are rentals on file; generate the second
error message if you successfully delete a movie from the file. What query
did you use?

CREATE PROC dbo.DeleteMovie
@movie_num movie_num = null
AS
IF EXISTS (SELECT movie_num FROM rental_detail WHERE
movie_num=@movie_num)

BEGIN
RAISERROR(50001, 10, 1)
RETURN

END
DELETE FROM movie
WHERE movie_num = @movie_num
DECLARE @username char(30)
SELECT @username = suser_sname()
RAISERROR(50002, 10, 1, @username)
GO

5. Execute the DeleteMovie stored procedure. Use 105 as the value for the
input parameter. Record the results below.

EXEC DeleteMovie 105

I can’t delete this movie because it has rentals on file in the rental_detail
table.

6. Retrieve a list of movies that haven’t rented by executing the following
query:

SELECT movie_num, title
FROM movie
WHERE movie_num NOT IN (SELECT movie_num FROM rental_detail)

7. Execute the DeleteMovie stored procedure for a movie that has not rented.
Record the results below.

EXEC DeleteMovie movie_number

I see a message stating that the movie was deleted by my user account.

8. Clear the Query window.

9. Open the Event Viewer (from Administrative Tools). Select the Application
log. Verify that SQL Server recorded a message stating that you deleted a
movie record.

10. Close Event Viewer.

In a previous query, we
searched for movie titles
where none of the copies of
a particular movie have
been rented. There we saw
only Ghandi returned. In
this query, we’re searching
for titles where any
individual copies of a
particular movie haven’t
been rented. This returns a
list of four movies.

Lesson 10: Creating Stored Procedures 273

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using @@Error
Another technique you can use to detect errors within a stored procedure is to
check the value of the @@ERROR system function. SQL Server automatically
stores a value to this function each time you execute a SQL statement. It uses a
value of 0 if the statement executes successfully, and a value that corresponds to
an error message in the sysmessages table if the statement is unsuccessful. You
can use the IF statement in conjunction with @@ERROR to control what SQL
Server does when an error occurs.

For example, let’s say that you want to create a procedure for inserting a new
movie into the movie table. You want to make sure that SQL Server doesn’t add
the new row if any errors occur. You can use the @@ERROR function, along with
the ROLLBACK TRANSACTION statement, to abort the transaction if an error
occurs. Let’s take a look at the code:

USE movies
GO
CREATE PROCEDURE dbo.AddNewMovie
@title varchar(40) = null,
@category_num category_num = null,
@rating varchar(5) = null,
@date_purch smalldatetime = null,
@rental_price smallmoney = null
AS
BEGIN TRANSACTION
INSERT INTO movie
(title, category_num, rating, date_purch, rental_price)
VALUES (@title, @category_num, @rating, @date_purch,

@rental_price)
IF @@error <> 0

BEGIN
ROLLBACK TRAN
RETURN

END
COMMIT TRANSACTION
GO

In this syntax, if SQL Server detects an error, it will roll back the transaction
without inserting the new row into the movie table. For example, the following
statement generates an error because the rating violates the table’s check con-
straint and thus causes SQL Server to roll back the transaction:

EXEC AddNewMovie 'Meet Joe Black', '3','Q', '05-08-01', 1.99

We’re going to create the
AddNewMovie stored

procedure later on in this
lesson.

274

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 10D
Managing Stored Procedures
You might find that you need to force SQL Server to recompile a stored proce-
dure whenever you run it. For example, it’s possible for you to have an index
that, depending on your input parameter, varies widely in its selectivity. As a
result, when you run the stored procedure, some of the time it will be more effi-
cient if SQL Server performs a table scan rather than using an index. In this
scenario, you should create the stored procedure so that SQL Server will
recompile it each time you run it. Here’s the syntax:

CREATE PROCEDURE name
WITH RECOMPILE
AS SQL Statements

By adding the WITH RECOMPILE option, you prevent SQL Server from caching
a plan for the stored procedure. SQL Server must recompile it every time you run
the stored procedure.

If you don’t want to force SQL Server to recompile a stored procedure every
time you run it, but you have had enough changes to your data that the stored
procedure’s execution plan might be inefficient, you can have SQL Server
recompile it by using the following syntax:

EXECUTE procedure_name
WITH RECOMPILE

By adding the WITH RECOMPILE option when you run the stored procedure,
SQL Server generates a new execution plan, caches it, and then executes the
stored procedure.

You can also mark a stored procedure to be recompiled without running it by
using the following syntax:

EXEC sp_recompile procedure_name | table_name

SQL Server doesn’t recompile the stored procedure when you run this command.
Instead, it marks it for recompiling the next time you run it. If you use
sp_recompile with a table name instead of a stored procedure name, SQL
Server automatically marks all stored procedures that reference the table for
recompiling.

TASK 10D-1:
Recompiling a Stored Procedure

1. In SQL Query Analyzer, execute the following query:

EXEC sp_recompile MovieByRating

This marks the MovieByRating stored procedure for recompiling the next
time you run it.

Lesson 10: Creating Stored Procedures 275

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Execute a new query:

EXEC MovieByRating 'PG'

By running the stored procedure, you force SQL Server to recompile it.

3. Clear the Query window.

Managing the Performance of Stored Procedures
You can take advantage of Windows 2000’s System Monitor to analyze the per-
formance of stored procedures. The following table describes the objects and
counters you should monitor.

Object Counter Enables You to View
SQL Server: Cache Manager Cache Hit-Ratio The percentage of pages SQL

Server retrieves from cache
rather than hard disk. The
higher this value, the better your
server’s performance.

Cache Object Counts The number of objects cached
in RAM. After your server is up
and running, this number does
not change much over time.

Cache Pages The total number of pages in
use in the cache by objects.
Once your server is up and
running, this number does not
change much over time.

Cache Use Count/sec The number of times per second
each object that is cached has
been used. The higher this
value, the better your server’s
performance.

SQL Statistics SQL Re-compilations/sec The number of recompiles per
second your server is
performing. In general, unless
you’ve just restarted your server,
this number should be low.

You can also use SQL Profiler to analyze stored procedures. For example, you
can create a trace in SQL Profiler to capture events such as the start time for a
stored procedure, whether it completed, and what happened for each of the state-
ments that make up the stored procedure.

276

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 10-6
Objective: To create a trace in SQL Profiler, execute a stored procedure,

and then review the information you see within SQL Profiler.

1. Open SQL Profiler and create a new trace using the following settings:

• Choose File→New Trace.

• Log in to your server with Windows Authentication.

• In the Trace Properties dialog box, select the Events tab.

• Below Available Event Classes, select the Stored Procedures event class
and click Add. This adds all of the events you can capture for stored
procedures to the trace. Select the TSQL event class and click Add
again.

• Click Run to begin capturing the trace information.

2. In SQL Query Analyzer, open the C:\Data\addnewmovie.sql script file.

3. Highlight and execute the query to create the AddNewMovie stored
procedure.

4. Highlight and execute the query to test the AddNewMovie stored procedure.
This query generates an error.

5. Switch to SQL Profiler and stop the trace. (Choose File→Stop Trace.)

6. Review the trace information. You’ll see a row for both the start and
completion of each statement in the stored procedure. You can also see
which steps SQL Server performed after processing the IF @@ERROR <>
0 statement. As a developer, this information can come in quite handy if
you’re trying to figure out what SQL Server does when it encounters condi-
tional logic in your program.

7. Close all open windows.

Summary
In this lesson, you learned how to create a stored procedure by using the
CREATE PROCEDURE SQL statement. You also learned how to execute
your stored procedures, and how to encrypt their contents to prevent users
from reading their definitions. To make stored procedures more flexible, you
implemented both input and output parameters. Finally, you added state-
ments to detect and report errors to your stored procedures.

Suggested time:
15 minutes

Lesson 10: Creating Stored Procedures 277

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

LESSON 10 REVIEW
10A List and describe the three types of stored procedures supported in SQL

Server.

SQL Server supports system, extended, and user-defined stored procedures.
System stored procedures enable me to perform many of the administrative
tasks on my server. System stored procedures typically have names that begin
with sp_. Extended stored procedures are actually DLLs that extend the func-
tionality of SQL Server. Extended stored procedures have names that begin
with xp_. User-defined stored procedures are ones that I define to perform
virtually any task on the server.

10B How can you view the definition of a stored procedure? How can you
determine on which objects a stored procedure depends?

I can view a stored procedure’s definition by executingsp_helptext
procedure_name. I can list the objects on which a stored procedure runs
by executingsp_depends procedure_name.

10C What’s the difference between an input parameter and an output
parameter? Give an example of when you might use each.

An input parameter enables me to specify a value for use within the stored
procedure. For example, I can use an input parameter to accept a value for
a movie rating. I can then use this value in aWHERE clause to display only
those movies with a specific rating. An output parameter enables me to
return a value from a stored procedure to either the calling stored procedure
or a SQL batch. For example, I can use an output parameter to return the
number of rows in a table to the calling stored procedure.

10D You would like SQL Server to recompile a stored procedure the next
time you run it. What should you do?

I should run the following query:EXEC sp_recompile
procedure_name.

278

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Using Functions

Overview
SQL Server 2000 includes many different system functions that you can use
to perform a variety of tasks. For example, you can use the AVG() func-
tion to find the average value in a column. In addition, you can now create
your own user-defined functions in SQL Server 2000. In this lesson, we will
explore how you use both system and user-defined functions to query your
server.

Objectives
To use functions in queries, you will:

11A Implement aggregate functions in queries.

Of the system functions, the ones you’ll use most often when querying
tables are the aggregate functions. These functions enable you to summa-
rize data. In this topic, you will learn how to use the aggregate functions.
You’ll also learn how to group the results sets by using the GROUP BY
clause.

11B Design and create user-defined functions.

In SQL Server 2000, you can create your own user-defined functions. In
this topic, you will learn how to design, create, and manage three types
of user-defined functions: scalar, multi-statement table-valued, and inline
table-valued functions.

Data Files:
functions.sql
agg_functions_lab.sql
groupby.sql
groupbylab.sql
topvalues.sql
scalar.sql
multi-statement.sql
in-line.sql

Lesson Time:
3 hours

LESSON

11

Lesson 11: Using Functions 279

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 11A
Working with Aggregate Functions
The SQL language includes many functions that you can use to summarize data
from a column within a table. Collectively, the functions that enable you to sum-
marize data are referred to as aggregate functions. You might also hear aggregate
functions referred to as group functions because they operate on groups of rows
to provide you with a single result. The following table describes the aggregate
functions supported by SQL Server and the types of calculations you can use
them to perform.

Function Enables You to Calculate the
AVG() Average of an expression (such as all values in a column).
COUNT() Number of values in an expression.
COUNT (*) Number of selected rows.
MAX() Maximum value of an expression.
MIN() Minimum value of an expression.
SUM() Total of all values in an expression.
STDEV() Statistical deviation of all values.
STDEVP() Statistical deviation of a population.
VAR() Statistical variance of all values.
VARP() Statistical variance of all values of a population.

You use the following basic syntax with aggregate functions:

USE database
SELECT FUNCTION(expression)
FROM table

In this syntax, you replace expressionwith a column name. You can optionally
include an AS clause after the function so that SQL Server can display a heading
for the column in the results set. If you don’t specify an alias when you use a
function, SQL Server doesn’t display a column heading. When you use an aggre-
gate function in your SELECT statement, you can’t include other columns in the
SELECT clause unless you use a GROUP BY clause. We show you how to use
the GROUP BY clause later in this lesson.

Let’s take a look at an example. The following query shows you how to find the
highest rental price for a movie in the movie table:

USE movies
GO
SELECT MAX(rental_price) AS 'Highest Rental Fee'
FROM movie

The following example enables you to count the number of rows in the customer
table in order to determine the total number of customers:

USE movies
GO
SELECT COUNT(*)
FROM customer

aggregate functions:
Functions that enable you to

summarize data. The result
of these functions is a single

value.

280

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Aggregate Functions and Data Types
You’ll most often use the aggregate functions on numeric data, but you can use
some of these functions against character data. For example, you can use the
MAX() function against character-based columns as follows:

USE movies
GO
SELECT MAX(title)
FROM movie

In this example, SQL Server returns the movie title of “Young Frankenstein”
because alphabetically, it’s the last movie title in the table. You can’t use the
MIN() and MAX() functions against the bit data type. Some of the other con-
siderations for aggregate functions and data types include:

• You can use the COUNT function against all data types. COUNT is the only
aggregate function you can use against text, ntext, and image data types.

• You can use only the int, smallint, decimal, numeric, float, real, money, and
smallmoney data types in the SUM() and AVG()functions.

Null Values
Other than the COUNT function, the aggregate functions ignore null values in
columns. All of the aggregate functions base their calculations on the premise that
the values in columns are significant only if those values aren’t null. If you count
the number of rows based on a column with null values (such as COUNT
(zip)), SQL Server skips any rows that have null values in that column. If you
use COUNT (*), you’ll get the actual row count—even if a row has nothing but
null values in all columns.

TASK 11A-1:
Using Aggregate Functions to Summarize Data

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and you’ve created nonclustered indexes
based on your primary keys. You have imported data into the
tables. You have created database diagrams for both the mov-
ies and pubs databases.

1. Start SQL Query Analyzer and log in with Windows Authentication.

2. Open the C:\Data\functions.sql script file.

3. Highlight and execute the first query. You can use this query to find the
highest-priced movie in the movie table. Notice that because this query
doesn’t specify a column alias, you don’t see a column heading in the results
set.

Lesson 11: Using Functions 281

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Highlight and execute the second query. You receive an error message
because you can’t include both a column and an aggregate function in your
SELECT statement unless you add a GROUP BY clause.

5. Open a new Query window, and then close the window containing the
functions.sql script file.

APPLY YOUR KNOWLEDGE 11-1

Using Aggregate Functions in Queries
Objective: To use aggregate functions to query the movies and pubs

databases. Design and execute your queries in SQL Query
Analyzer. If necessary, refer to your database diagrams for
both tables in SQL Server Enterprise Manager.

1. What is the average price of movies with a G rating? What query did you
use?

The average rental price is 2.3471.

USE movies
GO
SELECT AVG(rental_price) AS 'Average Rental Fee'
FROM movie
WHERE rating = 'G'

2. What’s the title and price of the highest-priced movie? (Hint: You must use
a subquery to find this information.) What query did you use?

The Godfather is the highest-priced rental at 5.49.

USE movies
GO
SELECT title, rental_price
FROM movie
WHERE rental_price = (SELECT MAX(rental_price)

FROM movie)

3. How many authors live in Utah? (Use the pubs database.) What query did
you use?

Two authors live in Utah.

USE pubs
GO
SELECT COUNT(*)
FROM authors
WHERE state = 'UT'

Suggested time:
15 minutes

Script file: agg_functions_
lab.sql

282

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. What is the highest royalty percentage paid to an author? (Hint: Query the
roysched table.) What query did you use?

24 percent.

USE pubs
GO
SELECT MAX(royalty) AS 'Highest Royalty Percentage'
FROM roysched

5. What’s the total year-to-date sales for all titles in the Pubs database? What
query did you use?

97,446.

USE pubs
GO
SELECT SUM(ytd_sales) AS 'Total YTD Sales'
FROM titles

6. Clear the Query window.

Using GROUP BY to Group the Results of Aggregate
Functions
You use the GROUP BY clause to divide the rows of a table into groups and then
display summary results for a specific column. You shouldn’t use the GROUP BY
clause on a column in which multiple rows have null values because SQL Server
will treat all of the rows with null values in that column as a group.

For example, you might want to count the number of movies you have in stock
for each rating (G, PG, etc.). To find this information, you must use a GROUP
BY clause to group the movies by rating—and then count the number of movies
in each group. Use the following syntax:

USE movies
GO
SELECT rating, COUNT(movie_num)
FROM movie
GROUP BY rating

In this example, you can use COUNT(movie_num), because the structure of the
movie table doesn’t permit null values in the movie_num column.

The GROUP BY clause requires a one-to-one relationship between the columns
you specify in the SELECT statement (other than the aggregate function) and the
GROUP BY clause. For example, the following query is invalid because the rating
column isn’t included in the SELECT clause:

USE movies
GO
SELECT COUNT(movie_num)
FROM movie
GROUP BY rating

Lesson 11: Using Functions 283

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

USE movies
GO
SELECT rating, COUNT(movie_num)
FROM movie

In this next example, you can use a GROUP BY clause to enable you to calculate
the total rental fee collected for each invoice in the rental_detail table:

USE movies
GO
SELECT invoice_num, SUM(rental_price)
FROM rental_detail
GROUP BY invoice_num

Using a WHERE Clause
You can also add a WHERE clause to a query that contains an aggregate function
in order to restrict the groups on which the aggregate function performs its
calculations. If you use a WHERE clause, SQL Server groups only the rows that
meet the condition you specify. For example, if you want to see the average price
of movies with a PG or R rating, you could use the following query:

USE movies
GO
SELECT rating, AVG(rental_price)
FROM movie
WHERE rating = 'PG' OR rating = 'R'
GROUP BY rating

Notice that the WHERE clause must precede the GROUP BY clause. If you reverse
the order of these clauses, you will get a syntax error.

TASK 11A-2:
Designing GROUP BY Queries

1. In SQL Query Analyzer, open the C:\Data\groupby.sql script file.

2. Execute the query to observe the error displayed by SQL Query Analyzer
when you attempt to include both a column and a group function in the
SELECT statement without a GROUP BY clause.

3. How can you fix this query?

Add aGROUP BY rating clause.

284

This query is also invalid because the rating column isn’t referenced in a
GROUP BY clause:

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. Add GROUP BY rating to the query, and then execute it again to dis-
play the average rental price for movies by rating.

5. Save your changes to the groupby.sql script.

6. Open a new Query window, and then close the window containing the
groupby.sql script.

Using GROUP BY With HAVING
If you want to restrict the rows returned by a query in which you’re using an
aggregate function and a GROUP BY clause, you can use a HAVING clause
instead of a WHERE clause. The HAVING clause offers you a distinct advantage
over a WHERE clause because it enables you to use aggregate functions to restrict
the rows returned in the results set.

For example, you could use the following query to display the rating and average
price of all movies for each rating as long as the average price of those movies is
greater than 2.50:

USE movies
GO
SELECT rating, AVG(rental_price)
FROM movie
GROUP BY rating
HAVING AVG(rental_price) >= 2.50

One other difference between a WHERE clause and a HAVING clause is that the
WHERE clause restricts the groups of rows on which the aggregate function calcu-
lates its results; in contrast, the aggregate function calculates values for all groups
of rows but displays only those that meet the HAVING clause’s criteria in the
results set.

Lesson 11: Using Functions 285

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 11-2

Designing Queries Using GROUP BY and HAVING Clauses
Objective: To design and execute queries that use the GROUP BY and

HAVING clauses. Use SQL Query Analyzer to execute each
query.

1. Design and execute a query based on the movies database that shows the
total rental price collected for each invoice in the rental_detail table. What
query did you use?

USE movies
GO
SELECT invoice_num, SUM(rental_price) AS 'Total Rental Price'
FROM rental_detail
GROUP BY invoice_num

2. Design and execute a query on the movies database that shows all invoices
and their total rental price where the total price was more than $4.00. (You
should get 22 rows in the results set.) What query did you use?

USE movies
GO
SELECT invoice_num, SUM(rental_price) AS 'Total Rental Price'
FROM rental_detail
GROUP BY invoice_num
HAVING SUM(rental_price) > 4

3. Design and execute a query that lists the category and average rental price of
movies in the Comedy category. (The category_num for Comedy is 1.) What
query did you use?

SELECT category_num,
AVG(rental_price) AS 'Average Rental Price'

FROM movie
GROUP BY category_num
HAVING category_num = 1

4. Design and execute a query that lists the average rental price of movies by
category. Include the category description in the results set and sort the
results by the description. (Hint: You must join two tables in this query.)
What query did you use?

SELECT c.description,
AVG(m.rental_price) AS 'Average Rental Price'

FROM movie AS m JOIN category AS c
ON m.category_num = c.category_num
GROUP BY c.description
ORDER BY c.description

Suggested time:
30 minutes

Script file: groupbylab.sql.

286

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. Design and execute a query that shows all customer names who have rented
movies, and the total price of each customer’s rentals. Sort the results in
order by last name and then first name. (Hint: You must join three tables in
this query.) What query did you use?

SELECT c.fname, c.lname,
SUM(rd.rental_price) AS 'Total Rental Price'

FROM rental_detail AS rd JOIN rental AS r
ON rd.invoice_num = r.invoice_num
JOIN customer AS c
ON r.cust_num = c.cust_num
GROUP BY c.lname, c.fname
ORDER BY c.lname, c.fname

6. Clear the Query window.

Displaying the TOP n Rows in a Results Set
You can use the TOP n or TOP n PERCENT keywords to specify that you want
SQL Server to return only a specific number of rows in the results set. You must
include an ORDER BY clause so that SQL Server can determine the top rows.

TASK 11A-3:
Using TOP in a Query

1. In SQL Query Analyzer, select the Northwind database and execute the
following query:

SELECT TOP 5 orderid, productid, quantity
FROM [order details]
ORDER BY quantity DESC

This query returns the top five orders based on quantity.

2. Look at the results. SQL Query Analyzer displays the orders and product
IDs with the largest quantity ordered.

3. Clear the Query window.

Lesson 11: Using Functions 287

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 11-3

Determining the Top Values
Objective: In this lab, you’re going to use SQL Query Analyzer to design

and execute queries that return the top values in the results set.

1. By using the movies database, write and execute a query to list the titles of
the top three movies based on rental price. What are they? (Hint: Make sure
you use the DISTINCT keyword so that you get three unique titles.) What
query did you use?

The Godfather, Alien, and Aliens.

USE movies
GO
SELECT DISTINCT TOP 3 title, rental_price
FROM movie
ORDER BY rental_price DESC

2. Use the movies database to write and execute a query listing the top three
invoice numbers based on total money spent renting movies. Which invoices
are they? What query did you use?

Invoice numbers 243, 244, and 254.

USE movies
GO
SELECT TOP 3 invoice_num, SUM(rental_price)
FROM rental_detail
GROUP BY invoice_num
ORDER BY SUM(rental_price) DESC

3. Use the pubs database to write and execute a query listing the titles and
prices of the top five most expensive books. What is the title and price of
the most expensive book? What query did you use?

The book’s title is “But Is It User Friendly?” and its price is 22.95.

USE pubs
GO
SELECT TOP 5 title, price
FROM titles
ORDER BY price DESC

4. Clear the Query window.

Suggested time:
20 minutes

Script file: topvalues.sql.

288

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 11B
Designing and Creating User-defined Functions
One of the new features in SQL Server 2000 is that you can now create your
own user-defined functions. These functions enable you to create programs that
return either a single value or a table. At first glance, you might think that a func-
tion and a stored procedure are the same thing. They do have several features in
common: SQL Server does parse, compile, and cache both stored procedures and
functions. In addition, you can use control-of-flow statements (such as IF) and
variables in both stored procedures and functions. But the key difference between
stored procedures and user-defined functions is that you can use user-defined
functions as part of a SQL statement, whereas you simply execute stored
procedures. For example, let’s say that you create a user-defined function named
AverageRental to calculate the average rental price for a specific category of
movie. You can then include that function within a WHERE clause, as follows:

SELECT title, rating
FROM movie
WHERE rental_price < dbo.AverageRental(1)

Notice that although you can create a stored procedure to calculate the average
rental price for a specific movie category, you can’t execute that procedure as
part of the WHERE clause.

SQL Server supports three types of user-defined functions, as described in the
following table.

Function Enables You to Create a Function that
Scalar Accepts a single value and returns a single value. You can create

these functions to not accept any input parameters, or you can
design them to accept up to 1,024 input parameters. Scalar functions
are most similar to system functions (such as MAX()).

Multi-statement Table-valued Uses multiple SQL statements to return multiple rows. This type of
function is similar to a view in that you can reference it in the FROM
clause of a SELECT statement. Microsoft refers to these functions
as “multi-statement,” because you use multiple statements to gener-
ate the results set for the function. In this sense, a multi-statement
table-valued function is very similar to a stored procedure.

Inline Table-valued Uses a single SELECT statement to return multiple rows. Like the
multi-statement table-valued function, the inline table-valued func-
tion is also very similar to a view. (Remember, you create a view
by defining a single SELECT statement.) One key difference,
though: an inline table-valued function accepts parameters—which
makes the function much more flexible than a view.

Before we get into how you go about creating functions, let’s look at the permis-
sions you need to create them. You must have the CREATE FUNCTION
permission in order to create, modify, or delete user-defined functions. You must
give any user you want to execute a user-defined function the EXECUTE permis-
sion for that function. If you plan to use a user-defined function within a check or
default constraint when you create or modify a table, the owner of the function
and the table must be the same user.

SQL Server requires that you
include the owner name
whenever you execute a
user-defined function.

Lesson 11: Using Functions 289

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating a Scalar User-defined Function
Because how you go about creating each type of user-defined function is a little
different, let’s look at each one individually. You create all user-defined functions
by using the CREATE FUNCTION SQL statement. Here’s the basic syntax for
creating a scalar function:

CREATE FUNCTION [owner_name.]function_name
([@parameter_name scalar_parameter_data_type [=default_value]}
[,...n]])
RETURNS scalar_return_data_type
[WITH option [...n]]
AS
BEGIN

function_statements
RETURN scalar_expression

END

For example, here’s how you might create a function to calculate the average
rental price for a specific movie category:

CREATE FUNCTION dbo.fn_AverageRental
(@movie_category category_num)
RETURNS smallmoney
AS
BEGIN

DECLARE @avg smallmoney
SELECT @avg = avg(rd.rental_price)
FROM rental_detail as rd join movie as m
ON rd.movie_num = m.movie_num
WHERE m.category_num = @movie_category
RETURN @avg

END

Let’s break this function down so that you can figure out what’s going on. Here’s
what each line means:

• In the first line, we’re assigning the name of fn_AverageRental to our func-
tion, and specifying that the dbo user is the owner.

• We’re using the next line, (@movie_category category_num), to
specify a name for an input parameter. In this example, the name of the
input parameter’s variable is @movie_category, and its data type is the user-
defined data type of category_num. This means that we want our function to
accept an input value and to assign it to the @movie_category variable.

• In the next line, RETURNS smallmoney, we’re identifying the data type
of the value our function returns. We want our function to return the average
rental price, so the data type we’re using is smallmoney. (We chose this data
type because the rental_price column also uses the smallmoney data type.)
You can use any data type for the return data type except text, ntext, image,
cursor, or timestamp.

• We use the AS statement to mark the beginning of the actual definition of
the function.

• Next, SQL Server requires that we use BEGIN and END to delineate the start
and end of the work we want the function to perform.

• We use the DECLARE @avg smallmoney line to identify the variable in
which we want to store the function’s results.

290

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Next, we use the SELECT statement to store a value into the @avg variable.
In this example, we’re using a table join between the movie and rental_detail
tables to find the average rental price for all movies in a specific category.
Notice that the WHERE m.category_num = @movie_category
clause enables us to select all movies based on the category we specify.
(Remember, we’re using @movie_category as an input parameter for the
function.

• The RETURN @avg line enables us to return the value calculated by the
function.

• The END line marks the end of the function’s definition.

When you’re ready to use a function, you must use the function’s two-part name.
In other words, you must specify the function’s name as owner.function_name.
You can use the function simply with the SELECT statement, as follows:

SELECT dbo.fn_AverageRentals(1)

You can also use a function as part of a WHERE clause:

SELECT title, rental_price
FROM movie
WHERE rental_price > dbo.fn_AverageRentals(1)

There are several system functions that you can’t include in a user-defined func-
tion’s definition. That’s because these system functions are considered non-
deterministic, which means that they give you different values each time you
execute them—even if you’re using the same set of input values. These system
functions include those found in the following table.

System Functions System Functions Continued
@@ERROR @@IDENTITY

@@ROWCOUNT @@TRANCOUNT

APP_NAME CURRENT_TIMESTAMP

CURRENT_USER DATENAME

FORMATMESSAGE GETANSINULL

GETDATE GetUTCDate

HOST_ID HOST_NAME

IDENT_INCR IDENT_SEED

IDENTITY NEWID

PERMISSIONS SESSION_USER

STATS_DATE SYSTEM_USER

TEXTPTR TEXTVALID

Setting the SCHEMABINDING Option
One of the options you can specify for all types of functions is WITH
SCHEMABINDING. As you saw with views, this option enables you to prevent a
user from changing or dropping an object (such as a table) on which a function is
based. In order for the schemabinding option to work, the following conditions
must be valid:

• Any user-defined functions or views referenced by the user-defined function
you’re attempting to create must also use the WITH SCHEMABINDING
option.

Lesson 11: Using Functions 291

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• You don’t reference any objects within the function definition using their
two-part names.

• You create the function and any objects on which it depends in the same
database.

• You have the REFERENCES permission on all of the objects on which your
function depends.

APPLY YOUR KNOWLEDGE 11-4

Designing and Creating a Scalar Function
Objective: To create a scalar function to calculate the average price of a

book for a specific type (such as business or psychology).

1. In the pubs database, create a function named fn_AvgPrice to calculate the
average price of books for a specific book type. Define the function so that
you can use the book type as an input parameter. Base the function on the
titles table. If necessary, use the Object Browser window or SQL Server
Enterprise Manager to review the structure of the titles table. What query did
you use?

USE pubs
GO
CREATE FUNCTION fn_AvgPrice
(@type varchar(12))
RETURNS money
AS
BEGIN

DECLARE @avg money
SELECT @avg = avg(price)
FROM titles
WHERE type = @type
RETURN @avg

END

2. Execute a query to find out what types of books are in the titles table. What
query did you use?

SELECT title, type
FROM titles
ORDER BY type

3. Execute a SELECT query to view the average price for a book type. What
query did you use?

SELECT dbo.fn_AvgPrice('psychology')

4. Execute a query that uses the fn_AvgPrice in a WHERE clause. Design the
query to display the title, type, and price columns for titles with a price
greater than the average price for a book type. What query did you use?

SELECT title, type, price
FROM titles
WHERE price > dbo.fn_AvgPrice('psychology')

Suggested time:
20 minutes

Script file: scalar.sql.

292

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. Design and execute a query that enables you to display the title, type, and
price columns for titles with a price greater than the average price for a book
type. Include only those titles that have the same book type as that of the
function. Record your query in the space below.

SELECT title, type, price
FROM titles
WHERE price > dbo.fn_AvgPrice('psychology')
AND type = 'psychology'

6. Clear the Query window.

Creating a Multi-statement Table-valued Function
Let’s move on to looking at a multi-statement table-valued function. These func-
tions enable you to retrieve multiple rows from a table. In a sense, a multi-
statement table-valued function is the combination of a stored procedure and a
view. Here’s the syntax:

CREATE FUNCTION [owner_name.]function_name
([@parameter_name parameter_data_type [=default_value]} [,...n]])
RETURNS @return_variable TABLE

(table_definition)
[WITH option [...n]]
AS
BEGIN

function_statements
RETURN

END

Notice that, like the scalar user-defined functions, you also define the heart of a
multi-statement table-valued function by enclosing it within the BEGIN and END
statements. Let’s take a look at an example. In the following function, we retrieve
a list of movie titles and their ratings for a given category of movie:

CREATE FUNCTION fn_TitleRatings
(@category category_num)
RETURNS @fn_TitleRatings TABLE
(title varchar(40) NOT NULL,
rating varchar(5) NOT NULL)
AS
BEGIN

INSERT @fn_TitleRatings
SELECT title, rating
FROM movie
WHERE category_num = @category

RETURN
END

Let’s look at some of the differences you see when you create a table-valued
function instead of a scalar function:

• You use the RETURNS line to specify the name of the function and that its
data type is TABLE.

• After you specify the name of the function, you must provide information
about the columns you want the table the function returns to contain. In this
example, we’re specifying that we want the function to return two columns:
title and rating.

You can use other types of
statements within the
BEGIN and END state-
ments, including statements
such as IF and CASE.

Lesson 11: Using Functions 293

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

• Use the statements between BEGIN and END to insert data into the table
you’re creating.

After you’ve created your multi-line table-valued function, you retrieve its data
just as you would retrieve data from a table or view, by using the SELECT
statement. So, here’s how you can view the rows in the fn_TitleRatings function:

SELECT *
FROM dbo.fn_TitleRatings(1)

Because we designed this function to accept an input parameter, we must specify
a value when we retrieve the data from the function. We’re using the category of
1 in our example, which means we’re retrieving all science fiction movies.

APPLY YOUR KNOWLEDGE 11-5

Creating and Testing a Multi-statement Table-valued Function
Objective: To create a user-defined function that displays each author’s

name, phone number, and state. As part of the function, you’re
going to have SQL Server display the complete state name
instead of its two-letter abbreviation.

1. In SQL Query Analyzer, open the C:\Data\multi-statement script file.

2. Highlight and execute the query to create the fn_AuthorState function.

3. Design and execute a query to test this function. What query did you use?

SELECT *
FROM dbo.fn_AuthorState('ca')

4. Design and execute a query that uses a value for the state abbreviation that
doesn’t exist in the authors table. What happens when you execute this
query?

I don’t see any rows in the results set.

5. Open a new Query window, and then close the window containing the
C:\Data\multi-statement script file.

Creating an Inline Table-valued Function
Now let’s look at how you use an inline table-valued function. While both a
multi-statement table function and an inline table function enable you to retrieve
a table, with an inline table function, you can specify only a SELECT statement
to retrieve the table. Another difference you’ll notice is that you use simply
RETURNS TABLE to return the results of the function. You don’t have to specify
a return variable and data type because SQL Server automatically formats the
values based on the results set of the SELECT statement. Here’s the basic syntax:

Suggested time:
10 minutes

294

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

CREATE FUNCTION [owner_name.]function_name
([@parameter_name parameter_data_type [=default_value]} [,...n]])
RETURNS TABLE
[WITH option [...n]]
AS

RETURN (SELECT statement)
END

As an example, let’s restate our previous multi-statement table-valued function as
an inline table-valued function. Here’s what it looks like:

CREATE FUNCTION fn_TitleRatings2
(@category category_num)
RETURNS TABLE
AS
RETURN (SELECT title, rating

FROM movie
WHERE category_num = @category)

Notice that we can’t use a BEGIN and END statement with an inline function.
Instead, we use the RETURN (SELECT ...) statement to specify the rows we
want to retrieve in the function.

You use this function by specifying its name in the FROM clause of a SELECT
statement. Here’s the syntax:

SELECT *
FROM dbo.fn_TitleRatings2(1)

APPLY YOUR KNOWLEDGE 11-6

Creating and Testing an Inline Table-valued Function
Objective: To create an inline table-valued function that enables you to

list rental invoices that have a total price greater than a value
you specify.

1. Design and execute a query to create an inline table-valued function named
fn_Rentals. Design this query so that you can use it to find all rental
invoices with a total value greater than a dollar value you specify. Include
the invoice_num and the total value of the rentals. (Hint: You’ll need to use
SUM(rental_price) to find the total value of the rentals.) What query
did you use?

USE movies
GO
CREATE FUNCTION fn_Rentals

(@rentals money)
RETURNS TABLE
AS
RETURN (SELECT invoice_num,

SUM(rental_price) AS 'Total Price'
FROM rental_detail
GROUP BY invoice_num
HAVING SUM(rental_price) > @rentals)

Suggested time:
20 minutes

Script file: in-line.sql.

Lesson 11: Using Functions 295

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Design and execute a query to test the fn_Rentals function. What query did
you use?

SELECT *
FROM dbo.fn_Rentals(7.50)

3. Clear the Query window.

Managing User-defined Functions
You can make changes to a user-defined function by using the ALTER
FUNCTION statement. As you saw with stored procedures and views, modifying
a function enables you to retain whatever permissions you have assigned to users
for the function. In contrast, if you drop and re-create the function, you must
re-assign users’ permissions. Here’s the syntax for the ALTER FUNCTION state-
ment:

ALTER FUNCTION owner.function_name
New function definition

You can also delete a function by using the DROP FUNCTION statement. Here’s
the syntax:

DROP FUNCTION owner.function_name

TASK 11B-1:
Dropping a User-defined Function

1. In SQL Query Analyzer, select the pubs database.

2. Execute the following query:

DROP FUNCTION dbo.fn_AuthorState

This query deletes the fn_AuthorState function from the Pubs database.

3. Close all open windows.

Summary
In this lesson, you explored how to use the aggregate system functions
within queries. You learned how to summarize results by groups using the
GROUP BY clause and how to restrict the results displayed by using the
HAVING clause. You also learned how you can create your own user-defined
functions by using the CREATE FUNCTION statement.

296

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

LESSON 11 REVIEW
11A In what scenario must you include a GROUP BY clause when you use an

aggregate function? Give an example of a query that includes a GROUP
BY clause.

I must include theGROUP BY clause whenever I want to use an aggregate
function on groups of rows from a table instead of all rows. As a rule of
thumb, I must use theGROUP BY clause if I specify a column name in the
SELECT statement along with an aggregate function. The following example
enables me to display the highest-price movie within each movie rating:

SELECT rating, MAX(rental_price)
FROM movie
GROUP BY rating

11B In what scenario should you create a multi-statement table-valued func-
tion instead of an inline table-valued function?

I should create a multi-statement table-valued function if I want to be able
to use multiple statements within aBEGIN andEND code block to define the
function. For example, I should create a multi-statement table-valued func-
tion if I want to use theCASE statement as part of the function’s definition.

Lesson 11: Using Functions 297

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Triggers

Overview
You use triggers in SQL Server to have your server perform specific actions
whenever a user inserts, updates, or deletes from a table. In SQL Server
2000, you can also define INSTEAD OF triggers on views and tables. In
this lesson, we’re going to examine the different types of triggers you can
create and then show you how to create them by using the CREATE
TRIGGER statement.

Objectives
To design and implement triggers, you will:

12A Identify the issues for designing triggers, and create each type of
trigger.

SQL Server supports FOR, AFTER, and INSTEAD OF triggers that you
can base on the INSERT, UPDATE, and DELETE actions. In this topic,
we show you the why and how you go about creating each type of
trigger.

Data Files:
insert-trigger.sql
insert-trigger-lab.sql
delete-trigger.sql
update-trigger.sql
instead-trigger.sql
manage-triggers.sql
updatemovie.sql

Lesson Time:
1 hour, 30 minutes

LESSON

12

Lesson 12: Creating Triggers 299

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 12A
Designing and Implementing Triggers
You can define triggers on tables in your SQL databases so that SQL Server will
automatically perform tasks such as verifying data, tracking changes to a table, or
enforcing business rules. The table on which a trigger is based is referred to as
the trigger table. Although a trigger is very similar to a stored procedure, you
can’t execute a trigger directly. Instead, you base triggers on the INSERT,
UPDATE, and DELETE SQL statements, and SQL Server automatically executes
the triggers for you whenever a user executes one of these SQL statements. For
example, if you create an INSERT trigger on a table, SQL Server automatically
calls the trigger whenever you insert a new row into the table.

SQL Server treats a trigger and the statement that calls it as a single transaction.
You don’t have to explicitly mark the beginning of the transaction by using the
BEGIN TRANSACTION statement. You can roll back the entire transaction from
anywhere within the trigger. For example, you can include error checking within
your trigger and call the ROLLBACK TRANSACTION statement if an error
occurs. Keep in mind that if a user transaction calls a trigger, and the trigger
executes the ROLLBACK TRANSACTION statement, SQL Server rolls back both
the trigger’s steps along with the steps in the user transaction. It’s important that
you be aware that rolling back transactions can degrade the performance of your
server. When you roll back a transaction, SQL Server will have performed all of
the steps up to the ROLLBACK TRANSACTION statement, and then it must undo
those steps. It’s much better for you to check your data prior to beginning the
transaction rather than within the transaction itself.

Why Use Triggers?
You use triggers for a couple of reasons: to enforce data integrity and to enforce
business rules. You should use triggers to enforce data integrity on your tables,
not for returning query results. Keep in mind that triggers are typically fired when
you change the data in a table. For example, you might use a trigger to perform
cascading deletes. You can use a trigger to delete a customer by first deleting the
customer’s invoices (from both the rental_detail and rental tables), and then the
customer themselves. Likewise, you can use a trigger to perform cascading
updates of rows in multiple tables.

You can also use triggers to enforce business rules that are too complex for
constraints. For example, you might not want to rent new movies to a customer if
that customer has any overdue movies. You can use a trigger to verify that the
customer doesn’t have overdue movies before permitting the customer to rent a
new movie.

Another use for triggers is to generate computed values. For example, you might
use a trigger to create each customer’s account number in the customer table by
using a portion of their last name plus a portion of their phone number instead of
using the IDENTITY property to auto-generate account numbers.

Here’s one last use for triggers: you can use them to keep track of changes
(updates) to a table. For example, you can use an update trigger to detect when-
ever users change the data in a sensitive table such as one that contains employee
salary information. The update trigger can then record the changed information
not only to the user table, but also to an audit trail table.

300

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Considerations
You should keep in mind that triggers are essentially reactive, whereas constraints
are proactive. For example, SQL Server fires an UPDATE trigger only after
you’ve updated the data in a table. In contrast, table constraints are proactive.
SQL Server checks a table’s constraints before it will let you perform an action.
For example, if you attempt to add a new movie to the movie table with a dupli-
cate movie number (the primary key for this table), the primary key constraint,
not the trigger, will prevent you from adding the new row.

You can configure more than one trigger for an action. If you’re the owner of a
table with multiple triggers for an action (such as updates), you can specify
which of the triggers must fire first and last. However, you can’t specify the order
in which SQL Server calls the in-between triggers (if you have that many!). For
example, you can configure four update triggers on a table and specify which of
the triggers you want to be first and which one you want to be last, but SQL
Server will call the remaining two triggers in random order, and the order will
vary from one UPDATE statement to the next. If you want the steps in the trig-
gers to be performed in a specific order, you should combine them into a single
trigger.

TASK 12A-1:
Designing Triggers

1. What’s the difference between a constraint and a trigger?

While I can use both a constraint and a trigger to enforce data integrity, a
constraint prevents me from inserting, changing, or deleting data that vio-
lates the constraint. In contrast, a trigger checks the data only after I’ve
inserted, changed, or deleted the data. Triggers provide me with much
greater flexibility for validating the data because they support programming
logic. In contrast, I specify a constraint at the column or table level, and I
can’t add programming logic to the constraint.

2. What are two triggers you might use in the movies database?

Answers include: ADELETE trigger to perform cascading deletes of
invoices in the rental and rental_detail tables; aDELETE trigger to perform
cascading deletes of a customer and the customer’s invoices; and an
UPDATE trigger to change a movie’s number in the movie and rental_detail
tables.

Creating a Trigger
You create a trigger by using the CREATE TRIGGER SQL statement in SQL
Query Analyzer. You must be a member of the sysadmins server role, db_owner
or db_ddladmin database roles, or the owner of the trigger table before you can
create, alter, or drop a trigger. Obviously, if you want a trigger to perform such
tasks as updating another table, you must have the necessary permissions for that
table.

You can’t create FOR or
AFTER triggers on
views—only on tables. In
contrast, you can create
INSTEAD OF triggers on
both views and tables.

Lesson 12: Creating Triggers 301

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

SQL Server supports three types of triggers: INSERT, UPDATE, and DELETE.
You can precede each type of trigger with FOR, AFTER, or INSTEAD OF. The
FOR and AFTER keywords are functionally equivalent. In both cases, you use
FOR or AFTER to create a traditional trigger. For example, you create a tradi-
tional insert trigger by specifying FOR INSERT. SQL Server fires this type of
trigger whenever you perform the specified action (INSERT in this example). In
contrast, you use an INSTEAD OF trigger to have SQL Server perform a specific
action instead of any other triggers you’ve defined on a table or view for that
same action. For example, you might define an INSTEAD OF INSERT trigger
on a view so that SQL Server performs the steps of this trigger instead of the
INSERT trigger you’ve defined on the view’s base table. (By default, SQL
Server fires any triggers on the table even when you’re working with a view
based on that table.)

You identify whether the trigger is an INSERT, UPDATE, or DELETE trigger as
part of the CREATE TRIGGER statement. Here’s the syntax:

CREATE TRIGGER owner.trigger_name
ON owner.table_name
[WITH ENCRYPTION]
{FOR | AFTER | INSTEAD OF} {INSERT | UPDATE | DELETE}
AS
SQL statements

As you’ve seen with objects such as views, stored procedures, and functions,
SQL Server stores each trigger’s definition in the syscomments system table. In
addition, SQL Server updates the sysobjects table with information about the
trigger. You can optionally use the WITH ENCRYPTION keywords to create an
encrypted trigger. This prevents users from viewing a trigger’s definition.

You can include almost all SQL statements in your trigger definition. For
example, you can use the IF statement to define conditional logic for the trigger.
You can also use any of the error-checking techniques we covered in the “Creat-
ing Stored Procedures” lesson. There are a few statements you can’t use in a
trigger, though. Here’s the list:

• ALTER DATABASE

• CREATE DATABASE

• DROP DATABASE

• DISK INIT

• DISK RESIZE

• LOAD DATABASE

• LOAD LOG

• RECONFIGURE

• RESTORE DATABASE

• RESTORE LOG

You should always specify the dbo user as the owner of any triggers you create.
Microsoft recommends that you configure the dbo user as the owner of all objects
within a database to avoid a broken ownership chain.

Viewing Information About Triggers
As we’ve said, SQL Server stores information about triggers in the sysobjects and
syscomments tables. Unless the trigger is encrypted, you can view a trigger’s
definition by executing the sp_helptext stored procedure as follows:

Microsoft added the support
for the AFTER and

INSTEAD OF keywords
in SQL Server 2000. Prior

versions of SQL Server sup-
ported only the FOR

keyword.

302

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

sp_helptext trigger_name

The sp_helptrigger stored procedure enables you to view a list of the trig-
gers defined for a table. Use the following syntax with sp_helptrigger:

sp_helptrigger table_name

Finally, you can use the sp_depends stored procedure to identify which tables
have triggers. Use the following syntax:

sp_depends table_name

Creating an INSERT Trigger
You create an INSERT trigger to fire whenever a new row is inserted into the
trigger table. When you add a new row to a table on which you’ve defined an
INSERT trigger, SQL Server not only inserts the row into the trigger table, but
also into a logical table named inserted. The inserted table contains a copy of the
row (or rows) you’ve just inserted into the trigger table; so, the inserted and trig-
ger tables have these rows in common. You can optionally reference the inserted
table to perform some of the trigger’s actions. SQL Server creates the inserted
table by using information from the transaction log. For this reason, if you per-
form a non-logged operation, the trigger won’t fire.

You might create INSERT triggers to perform several actions. For example, you
might use an INSERT trigger to insert information into the same table or another
table’s columns whenever you add a new row. Or, you could use an INSERT
trigger to write a copy of the inserted row to an audit table.

The following example creates a trigger on the roysched table in the pubs
database. (This table contains a list of titles published by authors along with the
author’s royalty percentage.) Because of the sensitive nature of this information,
you can use an INSERT trigger to write a copy of any rows added to the
roysched table to another table named audit_trail. This table must have the same
column names and data types as the roysched table if you want to write a copy of
all of the row’s information. You could optionally create the audit_trail table to
contain only the title_id and royalty columns. Use the following syntax to create
the trigger:

CREATE TRIGGER dbo.audit_changes
ON roysched
FOR INSERT
AS
INSERT audit_trail (title_id, royalty)
SELECT title_id, royalty
FROM inserted

In this example, we’re using the row (or rows) that SQL Server stores in the
inserted table to update the rows in the audit_trail table. After you’ve created this
trigger, SQL Server will automatically invoke it whenever you insert a new row
into the roysched table.

We could use either FOR
INSERT or AFTER
INSERT to create the
audit_changes trigger.

Lesson 12: Creating Triggers 303

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 12A-2:
Creating an INSERT Trigger

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and created nonclustered indexes based
on your primary keys. You have imported data into the tables.
You have created database diagrams for both the movies and
pubs databases.

1. In SQL Query Analyzer, open the C:\Data\insert-trigger.sql script file.

2. Highlight and execute the first query to view the structure of the roysched
table. You should see that this table consists of four columns: title_id,
lorange, hirange, and royalty.

3. Highlight and execute the next query to create a new table named audit-
trail. You’re going to use this table to store a copy of all new rows inserted
into the roysched table. By specifying a default value of getdate() for the
date_add column, SQL Server will automatically record the date and time a
user inserted a new row into the roysched table. By specifying a default
value of suser_sname() for the user_add column, SQL Server will record the
Windows login account of the user who inserted the row into the roysched
table.

4. Highlight and execute the query to create the audit_inserts trigger. This
query creates an INSERT trigger on the roysched table. The audit_inserts
trigger will automatically add a row to the audit_trail table whenever you
add a new row to the roysched table.

5. Highlight and execute the query that inserts a row into the roysched
table. You’re inserting royalty information for a book with a title_id of
PC9999. This statement assigns a lorange value of 0, hirange of 5000, and a
royalty percentage of 10 percent. This INSERT statement causes SQL Server
to fire your audit_inserts trigger.

6. Highlight and execute the query that displays all rows in the audit_trail
table to verify that your INSERT trigger copied the new row into the audit_
trail table. You should see that because you set default values for the date_
add and user_add columns, SQL Server automatically recorded that
information for you.

304

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Add a query to the insert-trigger.sql script file to view the definition of
the audit_inserts trigger. What query did you use?

sp_helptext audit_inserts

8. Save your changes to the insert-trigger.sql script file.

9. Open a new Query window, and then close the Query window contain-
ing the insert-trigger.sql script file.

APPLY YOUR KNOWLEDGE 12-1

Defining an INSERT Trigger on the Rental_detail Table
Objective: To run a SQL script to add a new column named “rented” to

the movie table. You will then create an INSERT trigger on
the rental_detail table. This trigger will mark a movie in the
movie table as rented when you create the customer’s invoice
by using the rental and rental_detail tables.

1. In SQL Query Analyzer, open and execute the script file C:\Data\
updatemovie.sql. This script file contains the SQL statements for adding a
new column to the movie table. The name of the column is “rented” and its
data type is char(1). The script also defines a default value of N to the
rented column. Finally, the script inserts a value of either Y or N for this
column for all movies on file.

2. Open a new query window. Close the query window containing the
updatemovie.sql.script file.

3. Create an INSERT trigger on the rental_detail table that will set the rented
column to Y for a movie whenever a customer rents it. Name the INSERT
trigger movie_rental. (Hint: Your INSERT trigger should use an UPDATE
statement to update the movie table. You will need to join the movie table to
the inserted table on the movie_num column as part of the UPDATE
statement.) What query did you use?

CREATE TRIGGER dbo.movie_rental
ON rental_detail
FOR INSERT
AS
UPDATE movie SET rented = 'Y'
FROM movie AS m JOIN inserted AS I
ON i.movie_num = m.movie_num

4. Before you can test your trigger, you must first add a new invoice to the
rental table. This is because you have defined a primary key to foreign key
relationship between the rental and rental_detail tables. Execute the follow-
ing SQL statement to insert a new invoice into the rental table:

INSERT INTO rental(cust_num)
VALUES (1)

Suggested time:
20 minutes

Script file: insert-trigger-
lab.sql.

Lesson 12: Creating Triggers 305

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. Execute the following query to find the invoice number assigned to the row
you just added (record the invoice number below):

SELECT *
FROM rental
WHERE cust_num = 1

Invoice number: ________________________

6. Now test the movie_rental trigger by executing the following query to add a
line item containing the rented movie’s movie number into the rental_detail
table (replace invoice_number with the number you recorded in step 5):

INSERT INTO rental_detail
(invoice_num, line_num, movie_num, rental_price)
VALUES (invoice_number, 1, 105, 3.99)

(This statement adds a line item row for the invoice you added to the rental
table specifying that the movie rented was movie number 105.)

7. Design and execute a query to check to see if your INSERT into the rental_
detail table caused your trigger to fire. What query did you use?

I can check by verifying that SQL Server updated the movie’s rented column
and set it to Y to indicate that the movie is rented. I can use the following
query:

SELECT movie_num, title, rented
FROM movie
WHERE movie_num = 105

8. Clear the Query window.

Creating a DELETE Trigger
You use a DELETE trigger to perform specific functions whenever a row is
deleted from the trigger table. Similar to an INSERT trigger, SQL Server also
creates a logical table containing the rows deleted by the DELETE statement. This
table is referred to as deleted. You can make calls to the deleted table as part of
your DELETE trigger. Unlike the inserted table, the deleted table doesn’t have
any rows in common with the trigger table. This is because you have deleted the
original rows from the trigger table, but SQL Server stores those rows in the
deleted table. SQL Server builds the deleted table by using entries in the transac-
tion log. If you execute a non-logged operation such as the TRUNCATE TABLE
statement, SQL Server doesn’t write the deleted rows to the deleted table.

You might use a DELETE trigger to cascade deletes. For example, if you want to
delete a customer and all of their associated rental invoices, you must delete all
of the customer’s rows from both the rental and rental_detail tables before you
can delete the customer. Keep in mind that one of the new features in SQL
Server 2000 is support for the ON DELETE CASCADE option for foreign key
constraints. This option enables you to delete a row in the primary key table—
and have SQL Server automatically delete the associated rows in the foreign key
table. If you recall, we defined such a foreign key on the invoice_num column in
the rental_detail table in the “Designing and Implementing Data Integrity” lesson.
So, we don’t need to define a trigger to perform cascade deletes between the
rental and rental_detail tables.

306

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 12A-3:
Creating a DELETE Trigger

1. In SQL Server Enterprise Manager, display the database diagram for the
movies database.

2. Look at the link between the rental and rental_detail tables. You config-
ured the invoice_num column in the rental table as the primary key. In the
rental_detail table, you configure the invoice_num column as a foreign key
that references the same column in the rental table.

3. Right-click on the link between the rental and rental_detail tables and
choose Properties to view the properties of the primary key to foreign key
relationship between the two tables.

4. Look at the Cascade options (at the bottom of the page). You can see that
you configured the FK_detail_invoice foreign key constraint to support cas-
cading deletes.

5. Uncheck Cascade Delete Related Records to change the foreign key con-
straint to not support cascading deletes. We’re going to create a trigger to
perform cascading deletes instead.

6. Click Close to close the Properties dialog box.

7. On the toolbar, click the Save button to save your changes to the foreign
key constraint.

Lesson 12: Creating Triggers 307

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Click Yes to confirm that you want to save your changes.

9. You want to delete an invoice. Given that to delete an invoice you must
delete it from both the rental and the rental_detail tables, from which
table must you delete the invoice first?

I must delete the invoice’s row (or rows) from the rental_detail table first
and the rental table second. I can’t delete the invoice from the rental table
first because SQL Server won’t let me delete rows in a primary key table
that are referenced by rows in a foreign key table.

10. You’ve decided to define a DELETE trigger to delete an invoice from
both the rental and rental_detail tables. On which table must you define
the DELETE trigger?

I must define theDELETE trigger on the rental_detail table.

11. In SQL Query Analyzer, open the C:\Data\delete-trigger.sql script file.

12. Highlight and execute the query that creates the delete_invoice trigger to
create a trigger that will delete an invoice from the rental table whenever
you delete that invoice’s line items from the rental_detail table.

13. In the script file, highlight and execute the next two queries to view the
rows in the rental and rental_detail tables for invoice number 243. You will
delete this invoice to test your DELETE trigger.

14. Highlight and execute the next query in the script file to delete invoice
number 243 from the rental_detail table. This delete causes SQL Server to
fire your delete_invoice trigger to delete the related invoice in the rental
table.

15. Re-execute the SELECT queries that display the rows for invoice num-
ber 243 in the rental and rental_detail tables to verify that your DELETE
trigger fired properly.

16. Open a new Query window, and then close the Query window contain-
ing the delete-trigger.sql script file.

308

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating an UPDATE Trigger
You can use an UPDATE trigger to perform specific actions whenever you update
the data in a table. SQL Server records a copy of the data before your change in
the deleted logical table, and a copy of the data after your change in the inserted
logical table. You can use your trigger to work with both the deleted and inserted
tables in addition to performing almost any SQL statement.

If you plan to maintain an audit trail of changes to a table, you must create an
UPDATE trigger in addition to the INSERT trigger. You might also use an
UPDATE trigger to cascade updates to a column to multiple tables within a
database. For example, you might use an UPDATE trigger to cascade a change to
a customer’s account number to both the customer and rental tables.

SQL Server fires an UPDATE trigger whenever you update a row in a table,
regardless of the information you change in that row. You can focus your
UPDATE trigger more tightly by using the IF UPDATE statement. This statement
enables you to specify a column to monitor for updates—and if that column is
modified, SQL Server fires the UPDATE trigger. Use the following syntax:

CREATE TRIGGER trigger_name
ON table_name
FOR UPDATE
AS
IF UPDATE (column_name)
BEGIN SQL statement(s)
END

You can use the IF UPDATE statement to specify an action you want SQL
Server to perform if the column is modified (such as recording information in
your audit trail table), or you can simply use the RAISERROR() function to
display an error message to your users. For example, you might use the following
trigger to prevent users from changing a customer’s account number in the cus-
tomer table:

CREATE TRIGGER no_update_cust_num
ON customer
FOR UPDATE
AS
IF UPDATE (cust_num)
BEGIN
RAISERROR ('You cannot change a customer's account number.',
10, 1)
ROLLBACK TRANSACTION
END

In this example, if you attempt to change a customer’s number, SQL Server will
display the text of the error message in the RAISERROR statement and then undo
the transaction. So, this trigger will prevent you from changing the customer’s
account number.

Lesson 12: Creating Triggers 309

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 12-2

Defining an UPDATE Trigger on the Roysched Table
Objective: To design and create an UPDATE trigger to audit changes to

the roysched table.

1. In SQL Query Analyzer, use the pubs database.

2. You’re planning to create an UPDATE trigger on the roysched table to record
changes to the audit_trail table. Which logical table should you use to copy
the data into the audit_trail table?

I should use the inserted table. I would use the deleted table only if I wanted
to record a copy of the data prior to the change that fired theUPDATE
trigger.

3. Design and execute a query to create an UPDATE trigger on the roysched
table. Configure the trigger so that SQL Server will fire it only if a user
changes the royalty column. Have the trigger add a row to the audit_trail
table to record the changes. Name your trigger dbo.audit_updates. What
query did you use?

CREATE TRIGGER dbo.audit_updates
ON roysched
FOR UPDATE
AS
IF UPDATE (royalty)
BEGIN

INSERT audit_trail (title_id, royalty)
SELECT title_id, royalty
FROM inserted

END

4. Write and execute a query that will cause SQL Server to fire your UPDATE
trigger. (Hint: Use the title_id you inserted in Task 12A-2, step 5.) What
query did you use?

UPDATE roysched
SET royalty = 50
WHERE title_id = 'PC9999'

5. Verify that your UPDATE trigger recorded a row in the audit_trail table.
What query did you use?

SELECT *
FROM audit_trail

6. Clear the Query window.

Creating an INSTEAD OF Trigger
You create an INSTEAD OF trigger to have SQL Server perform only this trig-
ger’s actions. You can create INSTEAD OF INSERT, INSTEAD OF UPDATE,
and INSTEAD OF DELETE triggers. You can create only one INSTEAD OF
trigger for each action (INSERT, UPDATE, and DELETE for each table or view).

Suggested time:
20 minutes

Script file: update-trigger.
sql.

310

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

In all cases, SQL Server ignores any FOR or AFTER triggers you’ve defined for
an action if you create an INSTEAD OF trigger. For example, let’s say that
you’ve defined a FOR UPDATE trigger on the customer table. If you now create
an INSTEAD OF UPDATE trigger on the customer table, SQL Server executes
this trigger instead.

Here’s the basic syntax for creating an INSTEAD OF trigger:

CREATE TRIGGER trigger_name
ON table_name | view_name
INSTEAD OF {INSERT | UPDATE | DELETE}
AS
SQL statement(s)

While we’ve been using tables as an example, you’ll find that you most com-
monly create INSTEAD OF triggers on views, not tables. That’s because you can
use these triggers to update views that you can’t typically update. For example,
let’s say that you’ve created a view based on a table join. In this scenario, you
can’t DELETE rows using the view. But, you can use an INSTEAD OF DELETE
trigger to enable you to delete rows. Here’s an example of how an INSTEAD OF
trigger works. We start by creating the following view to enable you to see a list
of invoices from the rental table, and each invoice’s line items from the rental_
detail table:

CREATE VIEW dbo.vw_Invoices
AS
SELECT r.invoice_num, r.rental_date, rd.line_num, rd.movie_num,
rd.rental_price
FROM rental AS r LEFT OUTER JOIN rental_detail AS rd
ON r.invoice_num = rd.invoice_num

Next, attempt to delete an invoice using the view, as follows:

DELETE FROM dbo.vw_Invoices
WHERE invoice_num = 244

When we execute this query, SQL Server displays the error message you see in
Figure 12-1. You can get around this problem by creating an INSTEAD OF
DELETE trigger. Here’s what it should look like:

CREATE TRIGGER dbo.DeleteInvoices
ON dbo.vw_Invoices
INSTEAD OF DELETE
AS

DELETE FROM rental_detail
WHERE invoice_num IN (SELECT invoice_num

FROM deleted)
DELETE FROM rental
WHERE invoice_num IN ((SELECT invoice_num

FROM deleted)

This trigger enables us to delete an invoice from both the rental and rental_detail
tables using the vw_Invoices view. Let’s create this view and INSTEAD OF trig-
ger so that you can try them out.

You can’t create an
INSTEAD OF trigger on
a view for which you’ve
configured the WITH
CHECK OPTION.

Lesson 12: Creating Triggers 311

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 12-1: Without an INSTEAD OF trigger, you can’t delete rows using a view.

TASK 12A-4:
Creating an INSTEAD OF Trigger

1. In SQL Query Analyzer, open the C:\Data\instead-trigger.sql script file.

2. Highlight and execute the query to create the vw_Invoices view. This
query lists the invoice_num, rental_date, line_num, movie_num, and rental_
price columns.

3. In the script file, highlight and execute the query to display all rows
using the vw_Invoices view. Depending on what you’ve done in earlier
tasks in this course, you might see different invoice numbers than the ones
in the screen shot below.

4. Now, let’s try to delete an invoice using the view. In the script file, high-
light and execute the DELETE query to attempt to delete all invoices in
the rental and rental_detail tables with an invoice_num of 250 by using the
view.

5. Highlight and execute the query to create the DeleteInvoices INSTEAD
OF trigger. This trigger will allow you to delete rows using a view.

312

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. Now that you’ve created the INSTEAD OF trigger, highlight and execute
the query to delete invoice number 250. You should see that SQL Server
successfully deleted the rows. Note: You’ll see several messages stating that
rows were deleted. This is because SQL Server must first delete the rows
from the view and place them in the deleted table, and then delete the asso-
ciated rows in both the rental and rental_detail tables.

7. Open a new Query window, and then close the window containing the
instead-trigger.sql script.

Managing Triggers
SQL Server includes commands that you can use to modify, delete, or tempo-
rarily disable triggers. You can modify a trigger by using the ALTER TRIGGER
statement. You can use the ALTER TRIGGER statement to change an UPDATE
trigger to a DELETE trigger. Use the following syntax to modify a trigger:

ALTER TRIGGER owner.trigger_name
ON owner.table_name
[WITH ENCRYPTION]
FOR {INSERT | UPDATE | DELETE}
AS
SQL statements

Deleting a Trigger
You can use the DROP TRIGGER statement to permanently remove a trigger.
You must either be the owner of the table on which a trigger is defined or a
member of either the sysadmin or db_owner roles in order to delete the trigger.
SQL Server automatically deletes a table’s triggers whenever you delete the table
itself. Use the following syntax to delete a trigger:

DROP TRIGGER trigger_name

Disabling and Enabling Triggers
You can temporarily disable a trigger (or all of a table’s triggers) by using the
ALTER TABLE statement along with DISABLE TRIGGER. You might want to
disable a trigger if you want to speed up the import of a large amount of data
into a table and you’ve already validated the data so the triggers aren’t necessary
during the import process.

Use the following syntax to disable a trigger:

ALTER TABLE table_name
DISABLE TRIGGER {ALL | trigger_name}

In this syntax, you replace trigger_namewith the name of the trigger you want to
disable. If you want to disable all triggers, use the ALL keyword instead.

When you’re ready to re-enable a trigger, use the following syntax:

ALTER TABLE table_name
ENABLE TRIGGER {ALL | trigger_name}

Lesson 12: Creating Triggers 313

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 12-3

Managing Triggers
Objective: To disable and enable the audit_updates trigger in the pubs

database.

1. In SQL Query Analyzer, use the pubs database. Design and execute a query
to temporarily disable the audit_updates trigger. What query did you use?

ALTER TABLE roysched
DISABLE TRIGGER audit_updates

2. Design and execute a query to verify that SQL Server doesn’t fire your
UPDATE trigger. Record your query below.

UPDATE roysched
SET royalty = 35
WHERE title_id = 'PC9999'

3. Verify that SQL Server didn’t add a row in the audit_trail table. What query
did you use?

SELECT *
FROM audit_trail

4. Design and execute a query to re-enable the audit_updates trigger. What
query did you use?

ALTER TABLE roysched
ENABLE TRIGGER audit_updates

5. Re-run your queries in steps 2 and 3 to verify that SQL Server fires your
UPDATE trigger.

6. Close all open windows.

Implementing Complex Triggers
SQL Server enables you to create triggers that by their actions call other triggers.
These types of triggers are referred to as nested triggers. You can also have a
trigger call itself. This type of trigger is referred to as a recursive trigger.

Nested Triggers
You can design a trigger to INSERT, UPDATE, or DELETE from another table
whenever SQL Server fires your trigger. For example, the audit_updates trigger
inserts a new row into the audit_trail table whenever you make a change to the
roysched table. In addition to the trigger on the roysched table, you could create
an INSERT trigger on the audit_trail table. In this scenario, whenever you make
a change to a royalty in the roysched table, SQL Server will fire your audit_
updates trigger. Because the audit_updates trigger inserts a row into the audit_
trail table, SQL Server could then fire an INSERT trigger on the audit_trail table.

Suggested time:
10 minutes

Script file: manage-triggers.
sql.

314

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

When one trigger’s action causes another trigger to fire, these triggers are called
nested triggers. You can define up to 32 levels of nested triggers. You can use the
@@NESTLEVEL function to identify the number of levels in nested triggers.
SQL Server considers a trigger a transaction; so, if you have nested triggers and
any single trigger fails, SQL Server will roll back all of the actions performed by
all of the nested triggers.

By default, SQL Server enables nested triggers, but you can disable support for
them by using the sp_configure stored procedure. You might find it neces-
sary to turn off nested triggers in order to debug errors. Use the following syntax
to disable nested triggers:

sp_configure 'nested triggers', 0

Recursive Triggers
A recursive trigger is one that contains an INSERT, UPDATE, or DELETE state-
ment as its action, yet the trigger is called by that same action. For example, you
might create an UPDATE trigger on a table to update a specific column in the
table that called the trigger. Yet, the action your trigger performs (in this case, an
UPDATE) can cause the same trigger to fire again. To avoid exceeding the
32-level nesting limit, your trigger must include a variable for checking the num-
ber of times the trigger has fired, along with statements to break out of the
trigger.

By default, SQL Server doesn’t enable the recursive trigger option. You can
enable it for your server by using the sp_dboption stored procedure as fol-
lows:

sp_dboption database_name, 'recursive triggers', True

Summary
In this lesson, you learned why you might create triggers: to ensure the
integrity of your data, perform cascading deletes and updates, and to keep
track of changes to a table. You also learned how to create each type of trig-
ger (INSERT, UPDATE, and DELETE) by using the CREATE TABLE
statement.

LESSON 12 REVIEW
12A In what scenario would you choose to implement a check constraint

instead of a trigger? In what scenario would you choose to implement a
trigger instead of a check constraint?

I should use a check constraint whenever the rules for enforcing data integ-
rity are relatively simple. For example, it’s more effıcient to use a check
constraint to make sure that users enter a movie rating of G, PG, R, NC17,
or NR than it is to define a trigger. I should implement a trigger whenever
the rules for enforcing data integrity are complex. For example, I can use a
trigger to set the value for the rented column to Y in the movie table when-
ever I add an invoice for a customer movie rental to the rental table.

Lesson 12: Creating Triggers 315

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Understanding Transactions
and Locks

Overview
In SQL Server, you use transactions to control how SQL Server processes a
query. SQL Server must be able to process all of the statements within the
transaction successfully, or all of the statements fail. In this lesson, you will
explore the types of transactions SQL Server supports and how to imple-
ment them. You’ll also learn how SQL Server protects resources in a multi-
user environment by using locks. Finally, you will see how to reduce
contention by modifying locking and the potential drawbacks to these
techniques.

Objectives
To manage transactions and locks, you will:

13A Work with transactions.

SQL Server supports two types of transactions: explicit and implicit. In
this topic, we will explore how you implement both types of transactions.

13B Work with locks.

SQL Server uses locks to protect against such problems as lost updates,
nonrepeatable reads, phantoms, and dirty reads. In this topic, you’ll learn
how the different levels of locking you can implement protect (or don’t
protect) against these problems, and why you might change your ses-
sion’s default locking settings. In addition, you’ll learn how to monitor
locking by using the sp_lock stored procedure.

Data Files:
transactions.sql
transaction-lab.sql
locking.sql
customer.sql
lock1.sql
lock2.sql
tablock.sql
tablock2.sql

Lesson Time:
1 hour, 45 minutes

LESSON

13

Lesson 13: Understanding Transactions and Locks 317

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 13A
Designing and Implementing Transactions
You can use transactions to specify that you want SQL Server to process a series
of SQL statements as a single unit rather than individually. When SQL Server
processes the statements as a single unit, all of them must be completed success-
fully, or they will all fail. This capability is referred to as atomicity.

A banking application is a common example of implementing transactions in
SQL Server. Consider the scenario where a customer transfers money from a sav-
ings account to a checking account. In this example, you would want the banking
application to implement both actions as a single transaction: a debit to the sav-
ings account, and a credit to the checking account. If either action fails, you want
the entire transaction to fail.

Types of Transactions
SQL Server supports two types of transactions: explicit and implicit. An explicit
transaction is a group of one or more Transact-SQL statements that begin with a
BEGIN TRANSACTION statement and end with the COMMIT TRANSACTION
statement. SQL Server doesn’t commit the changes made in an explicit transac-
tion’s SQL statement until it processes the COMMIT TRANSACTION statement.
For this reason, you can roll back the transaction at any time prior to the
COMMIT TRANSACTION statement. Remember, however, that you must always
use COMMIT TRANSACTION after you use BEGIN TRANSACTION. If you
enter the BEGIN TRANSACTION before an INSERT statement, for example,
SQL Server won’t commit the INSERT transaction to the table without the
COMMIT TRANSACTION statement.

You use an implicit transaction when you use Transact-SQL statements by them-
selves without the BEGIN TRANSACTION statement. SQL Server considers all
statements you execute part of a transaction until you issue either a COMMIT
TRAN, COMMIT WORK, or ROLLBACK TRAN statement. SQL Server doesn’t
enable implicit transactions by default.

What SQL Server does enable by default is the autocommit transaction mode.
This mode configures SQL Server to treat each individual SQL statement (along
with its parameters) as a separate transaction. For example, if you execute a
query and you don’t use the BEGIN TRAN and COMMIT TRAN statements, nor
do you turn on implicit transactions, SQL Server autocommits the transaction.

You can optionally set a savepoint within a transaction. This savepoint acts sort
of like a bookmark in that it enables SQL Server to return to this point if you
conditionally cancel part of a transaction. By “conditionally,” we mean that you
might have an IF statement to cancel some of the transaction steps. When SQL
Server returns to the savepoint, it can either complete the transaction or roll it
back (based on your programming). You define a savepoint by using the follow-
ing syntax:

BEGIN TRANSACTION
SQL statements
SAVE TRANSACTION savepoint_name
...

If you later want to roll back the transaction to the savepoint, you use the state-
ment ROLLBACK TRANSACTION savepoint_name.

atomicity:
A state in which SQL Server

either performs all of a
transaction’s modifications or

none of them.

318

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

How Transactions Work
When you change a database, the first thing SQL Server does is to copy the
pages of the database that you’re changing into a portion of RAM called the
buffer cache. (Depending on what’s happening on your server, these pages might
already be cached in RAM.) Next, SQL Server records your change to both the
data pages and the transaction log in RAM. It then writes the change to the data-
base’s transaction log on your server’s hard disk. At this point, SQL Server
considers your change committed. Only after writing the change to the transaction
log can SQL Server then write the changed data pages in RAM out to the data-
base on your server’s hard disk. What’s most important for you to understand is
that SQL Server alwayswrites the change to the transaction log on the hard disk
before it writes that same change to the database. It’s this strategy of writing to
the transaction log before writing to the database that makes it possible for you to
recover a failed transaction (or to undo a transaction, for that matter). Because
SQL Server writes to the transaction log before it writes to your database, you’ll
sometimes hear a database’s transaction log referred to as a write-ahead log.

SQL Server temporarily caches committed transactions. When the cache fills up,
it then writes the information to your server’s hard disk. The copies of your data-
base on the server’s hard drive and in RAM are identical at this point. To prevent
database corruption, don’t use a write-caching hard drive controller on a SQL
server. With this type of controller, it’s possible that SQL Server will think it has
written information to the hard disk when in fact the information is still cached
on the hard drive controller. If you have a power failure at this point, SQL Server
will not be able to roll back or roll forward the necessary transactions to repair
your database.

Designing Transactions
You should try to keep your transactions short to minimize the amount of work
SQL Server must do to roll back the transaction in the event of a problem. In
addition, SQL Server locks resources whenever a transaction is open. When a
resource (such as an entire table) is locked, other users can’t access it. To keep
your transaction short, try not to use control-of-flow statements such as WHILE.
You also should not use Data Definition Language statements such as CREATE
TABLE within a transaction. Don’t require user input from within a transaction
(again, to minimize locking). Instead, gather all of the necessary information from
user data entry first, write the statements to begin the transaction, perform what-
ever task is necessary, and then end the transaction.

You should also try to avoid nesting transactions. In other words, don’t begin a
transaction and then begin a second transaction within the first. If you do, SQL
Server ignores the innermost BEGIN TRANSACTION and COMMIT
TRANSACTION statements. One of the most common situations that leads to
nested transactions is when you have nested triggers or stored procedures. You
can use the @@trancount function or the DBCC OPENTRAN statement to view
a count of open transactions. This information helps you to determine if you have
nested transactions. The @@trancount system function is set to zero when you
don’t have any open transactions. When SQL Server processes the first BEGIN
TRANSACTION statement, it increases @@trancount by one; if SQL Server
processes a ROLLBACK TRANSACTION statement, it sets @@trancount to
zero.

Lesson 13: Understanding Transactions and Locks 319

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Creating Explicit Transactions
You begin an explicit transaction by using the BEGIN TRANSACTION
statement. You can optionally name a transaction; you can then use this name
when you either commit or roll back the transaction. Use the following syntax to
begin an explicit transaction:

BEGIN TRANSACTION [transaction_name]

Because you use a transaction when you’re making changes to data, you will
most commonly use the INSERT, UPDATE, and DELETE statements within a
transaction. You can’t include the following statements within an explicit transac-
tion:

• Any system stored procedure that creates a temporary table (such as
sp_dboption)

• ALTER DATABASE

• BACKUP LOG

• CREATE DATABASE

• RECONFIGURE

• RESTORE DATABASE

• RESTORE LOG

• UPDATE STATISTICS

You end a transaction by using the COMMIT TRANSACTION statement as fol-
lows:

COMMIT TRANSACTION [transaction_name]

If you want to abort a transaction, use the ROLLBACK TRANSACTION statement
as follows:

ROLLBACK TRANSACTION [transaction_name]

In all of these statements, you can abbreviate TRANSACTION as TRAN. For
example, you can use BEGIN TRAN instead of BEGIN TRANSACTION.

TASK 13A-1:
Working with Explicit Transactions

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and you’ve created nonclustered indexes
based on your primary keys. You have imported data into the
tables. You have created database diagrams for both the mov-
ies and pubs databases.

1. Start SQL Query Analyzer and use the movies database.

2. Open the script file C:\Data\transactions.sql. This script changes the title
of movie 105 from “Godfather The” to “Godfather, The”.

320

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Look at the script file. This script file begins a transaction and then dis-
plays the current value for the @@trancount system function. Next, it
displays the current title of movie number 105. It then sends an update to
the movie table to change the title of movie number 105 and displays the
title of the movie after the UPDATE statement. Finally, it displays the value
of the @@trancount system function again.

4. What do you think the value of the @@trancount system function will
be at the end of this script?

The@@trancount variable will have a value of 1 because I don’t have a
COMMIT TRAN statement in the script. As a result, SQL Server will con-
sider the transaction as still open when I execute this script.

5. Execute the script file and look at the results. You should see that the cur-
rent number of open transactions on your server is still 1 when SQL Server
finishes processing your script.

6. Open a second Query window.

7. Execute a new query:

SELECT title, movie_num
FROM movie
WHERE movie_num = 105

This query attempts to view the title of the movie with movie number 105.

8. Why is SQL Server unable to process your query?

SQL Server can’t process this query because the transaction to update the
movie’s title hasn’t completed. SQL Server has locked this row in the movie
table.

9. What do you think the current title of movie number 105 is?

The current title of movie number 105 hasn’t changed because my transac-
tion hasn’t been committed. Its title is still “Godfather The”.

10. Choose Query→Cancel Executing Query to stop the current query to view
the title of movie number 105.

11. Switch to your first Query window. (This is the window that contains the
transactions.sql script.)

12. At the end of the script, add the following line:

COMMIT TRAN

Lesson 13: Understanding Transactions and Locks 321

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

13. Highlight and execute the COMMIT TRAN statement to execute just this
statement. You don’t need to re-run the entire script to complete the
transaction.

14. Switch back to your other Query window. (The window that contains the
SELECT statement for viewing the title of movie number 105.)

15. Execute this query to view the title of movie number 105. You should see
that the title for movie number 105 is now “Godfather, The”.

16. Close the Query window containing the transactions.sql script. Don’t
save your changes to the script.

17. Clear the Query window.

APPLY YOUR KNOWLEDGE 13-1

Rolling Back a Transaction
Objective: To write the SQL statements to begin a transaction, update the

data, and then roll back the change.

1. In SQL Query Analyzer, make sure that you’re using the movies database.

2. Design and execute a query to perform the following steps:

• Begin a transaction.

• Display the current value of the @@trancount system function.

• Display the current value of the lname column for customer number 2.

• Change the last name of customer 2 to Johnson.

• Display the current value of the lname column for customer number 2
after the update.

• Roll back the transaction.

• Display the current value of the lname column for customer number 2
after the roll back.

• Display the current value of the @@trancount system function after
the roll back.

What query did you use?

BEGIN TRAN
SELECT 'The current number of open transactions is: ',
@@trancount

SELECT 'The current last name of customer number 2 is: ',
lname

FROM customer
WHERE cust_num = 2

UPDATE customer SET lname = 'Johnson'
WHERE cust_num = 2

SELECT 'After the UPDATE statement, the last name of
customer 2 is:',

lname
FROM customer

Suggested time:
15 minutes

Script file: transaction_lab.
sql.

322

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

WHERE cust_num = 2

ROLLBACK TRAN

SELECT 'After the roll back statement, the last name of
customer 2 is: ',

lname
FROM customer
WHERE cust_num = 2

SELECT 'The current number of open transactions is: ',
@@trancount

3. Clear the Query window.

Enabling Implicit Transactions
Microsoft recommends that you explicitly define transactions wherever possible;
however, you might run into situations, such as when you migrate an application
from another environment into the SQL Server environment, where you must
maintain implicit transactions. To use implicit transactions, you must first config-
ure SQL Server to support them by using the following syntax: SET
IMPLICIT_TRANSACTIONS ON.

After you’ve enabled implicit transactions, you start a transaction whenever you
issue a query that begins with any of the following SQL statements:

• ALTER TABLE

• CREATE

• DELETE

• DROP

• FETCH

• GRANT

• INSERT

• OPEN

• REVOKE

• SELECT

• TRUNCATE TABLE

• UPDATE

Remember, after you’ve begun an implicit transaction, SQL Server doesn’t com-
mit the transaction’s changes until you execute one of the following statements:
COMMIT TRAN, COMMIT WORK, or ROLLBACK TRAN.

Lesson 13: Understanding Transactions and Locks 323

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 13B
Managing Locks
To avoid conflicts, SQL Server uses locks to protect the integrity of your data-
bases during transactions. For example, locks prevent lost updates, which is a
scenario in which two users update the same row at the same time. Without
locks, one user’s change would overwrite the other user’s change. Locks also pre-
vent inconsistent analysis. Inconsistent analysis (nonrepeatable read)occurs when
a transaction in SQL Server reads the same row twice, yet the values in the row
change between each read. SQL Server uses locks to prevent phantoms as well. A
phantomcan occur when two transactions are executed at the same time. For
example, you might have one user updating the rows in the customer table to
reflect a ZIP code change, while at the same time another user inserts a new row
into the customer table. If these two transactions occur simultaneously, the trans-
action for changing the ZIP codes might change the necessary customer rows, but
then find a new row when the other user’s transaction is completed. This new
row is referred to as a phantom. Finally, locks can be used to prevent dirty reads.
A dirty read occurs when a transaction attempts to read uncommitted data.

SQL Server locks resources based on the type of action you’re performing. SQL
Server tries to implement locking that affects the smallest amount of a resource
while still maintaining the integrity of your data. For example, SQL Server 2000
includes the ability to lock a table at the row level rather than at the page level.
SQL Server can place locks on the following resources:

• A single row in a table by using the Row IDentifier (RID).

• A single row in an index by using the index key.

• An 8 KB page of a table or index.

• An extent (eight 8 KB pages).

• An entire table (including its indexes).

• An entire database.

SQL Server implements several different types of locks. These locks can be
divided into two categories: basic and special use. Let’s take a look at both types.

Basic Locks
SQL Server implements two types of basic locks: shared and exclusive. SQL
Server uses shared locks during read transactions, and exclusive locks during
write transactions. SQL Server uses shared locks (S) only if your transaction
doesn’t modify data. This lock is referred to as sharedbecause other transactions
can also place a shared lock on the same resource as well. So, multiple transac-
tions can use the resource at the same time. SQL Server releases a shared lock on
a row as soon as it reads the next row in a table. If you issue a query that returns
multiple rows, SQL Server maintains the shared lock until it has retrieved all
rows that satisfy the query.

SQL Server uses exclusive locks (X) whenever you issue transactions that change
data. For example, SQL Server uses an exclusive lock if your transaction contains
an INSERT, UPDATE, or DELETE statement. This lock is referred to as exclusive
because only one transaction can use the resource. In addition, other transactions
can’t place a shared lock on a resource that has an exclusive lock on it. Likewise,
your transaction can’t place an exclusive lock on a resource if it has shared locks
on it.

lost updates:
An update that gets lost
when one user’s update

overwrites another user’s
update.

inconsistent analysis
(nonrepeatable read):

Occurs when a transaction
reads a row multiple times

and retrieves different values.

phantom:
Occurs when one transaction

adds a new row while
another transaction is in the

midst of updating several
rows.

dirty read:
Occurs when one transaction

reads another transaction’s
uncommitted changes. As

you’ll see in this lesson, you
can configure SQL Server’s

locking such that it’s
possible for this scenario to

occur.

324

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Special Use Locks
SQL Server also uses special locks for other types of situations. For example, it
uses an intent lock to minimize conflicts between locks. An intent lockcreates a
locking hierarchy such that other transactions and locks can’t conflict with each
other. For example, let’s say you’re updating a row in a table. In this scenario,
your transaction results in an exclusive lock on that row. An intent lock prevents
another user from attempting to perform an action that would require an exclusive
lock on the table that contains this row. An intent lock can be shared (IS), exclu-
sive (IX), or shared with intent exclusive (SIX). SQL Server uses an intent shared
lock when your transaction simply reads some of the data in the resource. In con-
trast, SQL Server uses an intent exclusive lock if your transaction will change
data. SQL Server uses a shared with intent exclusive lock when your transaction
will read all of the data in the resource and change some of that data.

SQL Server uses an update lock (U)on a table when it plans to modify one of
the table’s pages. SQL Server places an update lock on a page when it first reads
the page. It then changes the update lock to an exclusive lock when it writes the
changes to the page. An update lock on a page prevents user transactions from
obtaining exclusive locks on rows within the same page; however, user transac-
tions can still place shared locks on the page.

If a table or index is in use, SQL Server places a schema lockon that table or
index. A schema stability lock (Sch-S)prevents the table or index from being
dropped while it’s currently in use. A schema modification lock (Sch-M)prevents
users from accessing a table or index while you’re modifying its structure.

Finally, SQL Server uses bulk update locksto prevent other transactions from
accessing a table when you’re importing data into the table. SQL server places a
bulk update lock on a table whenever you configure a table to use the Table Lock
On Bulk Load option. You can configure this option by using the
sp_tableoption stored procedure.

Coexistence of Locks
Some locks can’t be placed on the same resource at the same time. The following
table shows you which locks can coexist with each other.

Existing Lock
Requested Lock S X IS IX SIX U
S (shared) Yes No Yes No No Yes
X (exclusive) No No No No No No
IS (intent shared) Yes No Yes Yes Yes Yes
IX (intent exclusive) No No Yes Yes No No
SIX (shared with intent
exclusive)

No No Yes No No No

U (update) Yes No Yes No No No
Sch-M (schema
modification)

No No No No No No

Sch-S (schema
stability)

Yes Yes Yes Yes Yes Yes

1The Sch-M lock is incompatible with all other locks.
2The Sch-S lock is compatible with all other locks except Sch-M.

Lesson 13: Understanding Transactions and Locks 325

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Viewing Current Locks
You can use the sp_lock stored procedure to view information about locks on
your server. The sp_lock stored procedure lists the locks on your server, the ID
number of the database, the type of resource, and the type of lock. Sp_lock
also identifies the transaction that has placed the lock on the resource by process
ID number. You can view information about the process ID numbers in use on
your server by using the sp_who stored procedure. If you want to find the ID
number SQL Server assigned to a database, execute the query sp_helpdb
database_name.

You can also use the Current Activity object in SQL Server Enterprise Manager
to view information about locks held by a process or user, as well as any locks
that are currently being blocked (due to an exclusive lock) and locks that are
blocking other processes or users. SQL Server Enterprise Manager enables you to
view locks by process ID or by object. Of the different types of locks, you should
be most concerned about exclusive locks as these locks can block other processes
from performing their tasks. When you view the locks within SQL Server Enter-
prise Manager, you can determine whether a lock is blocking other processes or
not.

Other utilities you can use to monitor locks include SQL Profiler and the Win-
dows 2000 System Monitor. You can use SQL Profiler to monitor server events
within a trace file. For example, you can use SQL Profiler to monitor login
attempts and connections and to troubleshoot deadlocks. You use System Monitor
to analyze locks by using the SQL Server: Lock Manager and SQL Server: Locks
objects and their counters.

TASK 13B-1:
Observing the Current Locks on Your Server

1. In SQL Query Analyzer, execute the following query:

EXEC sp_lock

This query enables you to view a list of the current locks on your server.
The Type column enables you to determine the type of resource on which
the lock was placed: row (RID), key (KEY), page (PAG), table (TAB), data-
base (DB), or extent (EXT). The Mode column enables you to view the type
of lock in use: S, X, IS, IX, SIX, or U. Use the status column to determine
the status of the lock. If SQL Server has granted the lock, you will see a
status of GRANT. If SQL Server can’t grant the lock because another pro-
cess currently has a lock on the resource, you’ll see the status of WAIT.
When the blocking process releases its lock, SQL Server converts the lock
from WAIT to GRANT. During the conversion process, SQL Server displays
the lock’s status as CNVRT.

The numbers you see for
spid, dbid, ObjID, and IndID

in this task will vary
depending on what resources

you have open. You should
focus on the Mode and

Status columns for this task.

326

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

2. Open a second Query window and verify that you’re using the movies
database.

3. Execute the following query:

BEGIN TRAN
UPDATE customer
SET fname = 'Joan'
WHERE cust_num = 100

Use this query to begin a transaction that will place a lock on the Customers
table.

4. Switch back to the first Query window.

5. Execute the sp_lock query again. You should see that SQL Server has
placed several new locks on your server’s resources. For example, SQL
Server has placed exclusive locks on index key rows. This is because the
customer table has a nonclustered index on the lname column. In addition,
you should see several intent exclusive locks on pages and the table because
the UPDATE statement requires an exclusive lock.

6. Open a third Query window.

7. Execute the query:

SELECT lname
FROM customer
WHERE cust_num = 100

Use this query to attempt to access the customer’s row in the table. SQL
Server can’t process this query until the exclusive lock on this customer is
released.

Lesson 13: Understanding Transactions and Locks 327

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. In the first Query window, execute sp_lock again. You should see a new
shared lock listed among the last rows of the results set. This lock displays a
status of WAIT because of the exclusive locks on the customer’s information
in the customer table.

9. Switch to the second Query window. (You might find it easier to choose
Window and then choose the appropriate Query window from the list of
open windows. You want to switch to the Query window that contains the
BEGIN TRAN statement.)

10. At the end of the BEGIN TRAN query, add the statement:

COMMIT TRAN

This adds the necessary statement to commit the transaction.

11. Highlight and execute the COMMIT TRAN statement to commit the
transaction.

12. Close all Query windows except for the one containing the EXEC
sp_lock statement.

13. Re-run the EXEC sp_lock statement to verify that your transactions no
longer have any exclusive locks.

14. Clear the Query window.

328

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Managing Locks
SQL Server includes options that enable you to control how it locks resources.
These options are referred to as isolation levels. You can set the isolation level at
either the session- or table-level. You use the isolation levels to configure how
sensitive an application is to changes made by others. The isolation levels you set
determine how a transaction holds a lock to protect your data. The longer a trans-
action holds a lock, the more likely that lock is to conflict with other users’
actions.

Session-level Locking
You can control locking at the session level by setting the transaction isolation
level. SQL Server uses the transaction isolation level to determine to what degree
it will isolate a transaction. If you change the transaction isolation level, SQL
Server applies this setting to all transactions in your current session. (You can
later override these settings by specifying the transaction isolation level on a
statement.)

Use the following syntax to set the transaction isolation level for your current
session:

SET TRANSACTION ISOLATION LEVEL
{READ COMMITTED | READ UNCOMMITTED | REPEATABLE READ |
SERIALIZABLE}

You set the transaction isolation level by specifying one of the options in the list.
By default, SQL Server configures your session’s transaction isolation level as
READ COMMITTED. The following table describes these options beginning with
the least restrictive and progressing to the most restrictive.

Isolation Level Option Enables You to Configure SQL Server to
READ UNCOMMITTED Permit a transaction to read any data currently on a data page

regardless of whether SQL Server has committed that data or not. If
you set your isolation level to read uncommitted, your transaction
doesn’t use shared locks and it ignores any exclusive locks when
reading data. So, it’s possible that you might read a row’s data while
another user is modifying that row’s data. You can use this setting to
prevent users from locking each other out, but only if your
application can tolerate inconsistencies. This option is the least
restrictive of the transaction isolation levels.

READ COMMITTED Use shared locks when a transaction reads rows to prevent you from
reading rows on which a transaction has placed exclusive locks.
This level of isolation prevents you from reading data that’s
uncommitted (dirty reads); however, another user might change the
data before the end of your read transaction, so you might get
nonrepeatable reads and phantom data. In addition, because you put
a shared lock on the data, your transaction might prevent other
users from using the data. This is the default transaction isolation
level.

Lesson 13: Understanding Transactions and Locks 329

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Isolation Level Option Enables You to Configure SQL Server to
REPEATABLE READ Use locks to prevent dirty reads and nonrepeatable reads. This level

essentially incorporates the capabilities of READ COMMITTED to
guarantee that your transaction won’t use dirty reads and adds the
mechanisms to prevent nonrepeatable reads; however, in order to
guarantee this level of isolation, SQL Server must hold all shared
locks until completion (such as with either a COMMIT TRAN or
ROLLBACK TRAN statement) of the transaction. No other users
will be able to modify the data as long as your transaction’s locks
are outstanding. For this reason, your server’s performance can
degrade when you set the transaction isolation level to
REPEATABLE READ.

SERIALIZABLE Lock the data to prevent other users from updating or inserting rows
until your transaction is complete. This level of isolation guarantees
that if you issue a query and then re-issue the same query within the
same transaction, no users will have added rows in the interim. (In
other words, you won’t see any phantoms.) Transactions are the
most isolated with this level; this level prevents the occurrence of
dirty reads, nonrepeatable reads, and phantoms.

You can use the DBCC USEROPTIONS statement to view the current isolation
level for your session.

TASK 13B-2:
Implementing Session Locking

1. In SQL Query Analyzer, verify that you have one Query window open
with the movies database as your current database.

2. In the Query window, open the C:\Data\locking.sql script file. This script
file contains a query that begins a transaction, issues an update statement,
waits 10 seconds, and then rolls back the transaction. You will use this trans-
action to test the READ COMMITTED and READ UNCOMMITTED
transaction isolation levels.

3. Open a second Query window, and then open the C:\Data\customer.sql
script file. This file contains a query that enables you to view the current
last name assigned to customer number 100.

4. Highlight and execute the SELECT query to view the last name of cus-
tomer number 100.

330

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

5. What is your current transaction isolation level?

By default, SQL Server configures my transaction isolation level asREAD
COMMITTED. This means that if I execute a query against a row that a user
is currently updating, until the user’s transaction is committed and the exclu-
sive lock released, I won’t be able to read that row. TheREAD COMMITTED
transaction isolation level honors exclusive locks on rows.

6. In the first Query window, highlight and execute the query to begin the
transaction for changing the customer’s last name. (This is the Query win-
dow containing the BEGIN TRAN statement.)

7. In the second Query window (the Query window containing the SELECT
lname statement), highlight and execute the SELECT query to verify that
you can’t read the row until the BEGIN TRAN transaction completes.

8. When the BEGIN TRAN query finishes, look at the results set in the
SELECT lname Query window. After the BEGIN TRAN query waited 10
seconds, it then rolled back the change to the customer’s last name and
released its exclusive lock on the row. SQL Server could then process the
SELECT lname query. You should see that the customer’s last name is still
Smith.

9. In the SELECT lname Query window, highlight and execute the query
that sets your transaction isolation level to READ UNCOMMITTED. By
setting your isolation level to READ UNCOMMITTED, you will be able to
read the changes made to rows even though a user has placed an exclusive
lock on the row.

10. In the BEGIN TRAN Query window, execute the query again to begin an
update to the customer table.

Lesson 13: Understanding Transactions and Locks 331

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

11. In the SELECT lname Query window, highlight and execute the SELECT
statement. You’ll see that while the transaction to change the customer’s last
name is running, your SELECT statement displays this customer’s last name
as Whalen. Even though SQL Server hasn’t committed this change to the
database, SQL Server enables you to view the uncommitted transaction
because you set your isolation level to support reading uncommitted
transactions.

12. After the BEGIN TRAN statement finishes running, re-execute the
SELECT lname statement in the second Query window. You can see that
SQL Server rolled back the transaction to change the customer’s name.

13. Close the second Query window. (This is the Query window containing the
customer.sql script.)

14. Open a new Query window, and then close the window containing the
locking.sql script.

15. Execute a new query:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
DBCC USEROPTIONS

Use this query to set your session’s transaction isolation level to
SERIALIZABLE and then view the settings for your connection. When you
change your transaction isolation level, you change it only for that session.
You open multiple sessions with the server when you open multiple Query
windows in SQL Query Analyzer.

16. Open a new Query window and execute the following query:

DBCC USEROPTIONS

332

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

You should see that SQL Server doesn’t display a value for this session’s
transaction isolation level, which means that SQL Server configured your
session to use the default isolation level of READ COMMITTED.

17. Open a new Query window, and close all other Query windows without
saving your changes.

Configuring a Lock Timeout
You can use the SET LOCK_TIMEOUT statement to specify how long a transac-
tion can wait for the release of a blocked resource. You might use the lock
timeout to prevent a transaction from waiting indefinitely for a resource to be
released. If the timeout expires and the resource is still locked, SQL Server can-
cels the transaction. Use the following syntax to set the lock timeout:

SET LOCK_TIMEOUT time_in_milliseconds

By default, SQL Server sets the lock timeout to -1, which means it’s disabled.
Thus, a transaction will wait indefinitely for a blocking transaction to clear its
lock. If you set the lock timeout to 0, SQL Server immediately cancels the trans-
action if the resource it needs to access is locked. You can view the value of the
lock timeout for your session by executing the following query:

SELECT @@lock_timeout

TASK 13B-3:
Implementing a Lock Timeout

1. In SQL Query Analyzer, open the C:\Data\lock1.sql script file. Highlight
and execute the following query:

BEGIN TRAN
UPDATE customer
SET zip = '70130'
WHERE cust_num = 125

2. Open a second Query window, and then open the C:\Data\lock2.sql
script file.

3. In the second Query window, highlight and execute the following query:

SET LOCK_TIMEOUT 5000

This query configures your session with a lock timeout of 5000 milliseconds
(5 seconds). This means that your session will wait five seconds for a
blocked resource to be released. If the resource is still locked after five sec-
onds, SQL Server will abort your transaction.

4. Highlight and execute this query:

SELECT *
FROM customer
WHERE cust_num = 125

Lesson 13: Understanding Transactions and Locks 333

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

After five seconds, you should see that SQL Server aborted this transaction.

5. Close the second Query window.

6. In the remaining Query window, execute the following query:

ROLLBACK TRAN

This query rolls back the changes in this transaction.

7. Open a new Query window, and then close the Query window contain-
ing the lock1.sql script file. Don’t worry about saving your changes.

Table-level Locking
By default, SQL Server automatically tunes locking for your environment. If nec-
essary, however, you can specify how you want SQL Server to lock resources by
including table-level locking as part of your transaction. You specify table-locking
by adding lock hints to SELECT and UPDATE queries. You must use lock hints
as part of a transaction. For example, the following query contains a lock hint to
make the transaction SERIALIZABLE:

BEGIN TRAN
UPDATE movie (SERIALIZABLE)
SET rented = 'Y'
WHERE movie_num = 110

COMMIT TRAN

You can use the same options to set table locking that you can with session-level
locking: READUNCOMMITTED, READCOMMITTED, REPEATABLEREAD, and
SERIALIZABLE. In addition, you can use the following hints to specify how
you want SQL Server to lock the resource:

• HOLDLOCK. This option holds the resource lock until your transaction
completes. The HOLDLOCK option is functionally equivalent to the
SERIALIZABLE option.

• NOLOCK. Configures SQL Server to not use any shared locks for the transac-
tion, and to not honor any exclusive locks for the transaction either. You can
use this option only on a SELECT statement query.

• ROWLOCK. This option locks a row.

• PAGLOCK. Use this option to lock a page.

• TABLOCK. This option locks a table.

• TABLOCKX. Use this option to place an exclusive lock on a table. When you
use this option, it prevents other transactions from reading or updating the
table.

• READPAST. Use this option to skip locked rows.

• UPDLOCK. Set this option if you want to use update locks instead of shared
locks.

334

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 13B-4:
Implementing Table-level Locking

1. In SQL Query Analyzer, open the C:\Data\tablock.sql script file. Highlight
and execute the following query:

BEGIN TRAN
UPDATE customer
SET phone = '5045552215'
WHERE cust_num = 125.

This query starts a transaction to update a customer’s information. Because
you don’t have a COMMIT TRAN or ROLLBACK TRAN statement at the end
of this query, SQL Server hasn’t yet committed the changes

2. Open a new Query window, and then open the C:\Data\tablock2.sql
script file.

3. In the second Query window, highlight and execute the following query:

BEGIN TRAN
SELECT phone
FROM customer (READUNCOMMITTED)
WHERE cust_num = 125
COMMIT TRAN

Because you added the READUNCOMMITTED table-locking hint, SQL Server
could read the change made by your first query even though it hasn’t yet
committed its change to the table.

4. Close the second Query window. (This is the window containing the
tablock2.sql script file.)

5. Roll back the transaction in the first Query window.

6. Close all open windows.

Deadlocks
A deadlock occurs when two users or processes have locks on different objects
and each needs to also place a lock on the other’s object. In this situation, SQL
Server will choose a deadlock victim and abort that user’s process, thus allowing
the other user or process to continue. The SQL server then informs the deadlock
victim of the termination. SQL Server notifies the deadlock victim’s application
by using error message number 1205.

Lesson 13: Understanding Transactions and Locks 335

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

A deadlock can occur when you run several long transactions simultaneously in a
database or when the query optimizer designs a query execution plan for a com-
plex query. You can minimize deadlocks by designing your transactions such that
they use resources in the same order. You should also try to keep your transac-
tions as short as possible to avoid deadlocks. Another technique you should
implement is to have transactions check to see if error 1205 occurred. (Remem-
ber, you can use the statement IF @@error = 1205.) If you find that this
error has occurred, you should have your application attempt the transaction
again.

Summary
In this lesson, you learned the ins and outs of implementing both transac-
tions and locking. SQL Server uses both transactions and locks to help
protect the integrity of your data. With transactions, you can force SQL
Server to commit a series of SQL statements as a unit. With locking, you
help to prevent the problems that can occur when multiple users access the
same data at the same time. For example, you use locking to control what
SQL Server does when one user modifies a row when another user attempts
to view that same row.

LESSON 13 REVIEW
13A What is the difference between explicit and implicit transactions?

I must begin an explicit transaction with theBEGIN TRAN statement and
end it with either theCOMMIT TRAN or ROLLBACK TRAN statement. In
contrast, I don’t mark the beginning of a transaction in implicit transactions.
The beginning of the transaction is implied based on the SQL statement I
execute. SQL Server doesn’t commit implicit transactions until I use the
COMMIT TRAN, COMMIT WORK, or ROLLBACK TRAN statement.

13B What techniques can you use to control resource locking?

I can control resource locking by setting session-level locking or table-level
locking. Session-level locking enables me to control how SQL Server handles
locks for my entire session. Table-level locking enables me to control how
SQL Server handles locks for a single transaction.

336

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Implementing Distributed
Queries

Overview
You use distributed queries to enable you to retrieve data from not just your
own local SQL server, but also from other SQL servers (and even non-SQL
Server sources). In this lesson, we will explore how you go about executing
distributed queries. We will begin by showing you how to create linked
server definitions if you’re going to be querying another server frequently.
We will also demonstrate how you can control which server processes the
query, and how to perform different types of distributed queries. Finally, we
will discuss some ways to execute queries without defining a remote server
as a linked server.

Objectives
To implement distributed queries, you will:

14A Configure linked servers.

If you find that you’re going to use distributed queries to access another
server’s data frequently, you’ll save yourself some time by defining that
server as a linked server. In this topic, we will show you how to define a
linked server and configure its security.

14B Create and manage distributed queries.

There are all kinds of ways you can access remote data sources through
distributed queries. In this topic, we will start by executing a distributed
query against a linked server. You’ll also learn how to control which
server processes the query (your local server or the linked server). Next,
you’ll learn how to query a remote server without adding it as a linked
server. You’ll also learn how to modify data through a distributed query.

Data Files:
linked.sql
distqueries.sql
linkedprocs.sql
modify.sql

Lesson Time:
1 hour, 45 minutes

LESSON

14

Lesson 14: Implementing Distributed Queries 337

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 14A
Establishing Linked Servers
SQL Server 2000 enables you to create distributed queries. You use a distributed
query to access data from not only SQL servers, but also from any heterogeneous
data source that supports the OLE DB interface (such as Microsoft Access).
Before you can use distributed queries, you must first define each OLE DB data
source as a linked server. SQL Server stores the definitions of linked servers in
order to make it easier and more efficient for you to access those servers’ data.

You can define a linked server or a remote server in SQL Server 2000. A linked
server enables you to connect to OLE DB data sources. A remote server enables
you to connect to another SQL server for the purpose of running a stored proce-
dure on that server. Support for remote servers is considered a legacy feature and
is included in SQL Server 2000 for backwards-compatibility.

Defining Linked Servers
You begin defining a linked server by identifying information about how you
want to connect to that server. You can define this information by using either
SQL Server Enterprise Manager or the sp_addlinkedserver stored
procedure. You add a linked server in SQL Server Enterprise Manager by right-
clicking on the Linked Servers object and choosing New Linked Server. The
Linked Servers object is stored in your server’s Security folder.

Use the following syntax to add a linked server with the
sp_addlinkedserver stored procedure:

EXEC sp_addlinkedserver
@server = 'server',
@srvproduct = 'product_name',
@provider = 'provider_name',
@datasrc = 'data_source',
@location = 'location'',
@provstr = 'provider_string'

We describe each of the parameters you use with the sp_addlinkedserver
procedure in the following table.

Parameter Enables You to Specify
server The name you want to assign to the linked server. (This name doesn’t

have to be the same as the server’s actual name.)
srvproduct The product name of the OLE DB data source. For example, if you’re

adding a link to a SQL server, use “SQL Server” as the product name.
Note: If you use “SQL Server” as your product name, you don’t need to
specify the provider_name, data_source, location, and provider_string
parameters.

provider The name of the OLE DB provider that will manage access to the data
source.

datasrc The name for the data source as used by the OLE DB provider.
location The location of the database as used by the OLE DB provider.
provstr OLE DB-specific connection strings for identifying the data source.

338

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

The following table identifies some of the common data sources and the associ-
ated values for the provider name, product name, data source, and other
parameters.

Type of Data
Source

OLE DB
Provider

Product
Name

Provider
Name Data Source

SQL Server Microsoft OLE DB
Provider for SQL
Server

SQL Server N’SQLOLEDB’ Not required to
specify.

Oracle Microsoft OLE DB
Provider for
Oracle

Anything ’MSDAORA’ SQL*Net alias for
Oracle database

Access/Jet Microsoft OLE DB
Provider for Jet

Anything ’Microsoft.Jet.
OLEDB.4.0’

Full path name of
Access database
file

For example, to define a SQL server as a linked server, use the following syntax:

EXEC sp_addlinkedserver
@server = 'linked_server_name',
@srvproduct = 'SQL Server'

In this syntax, you replace server_namewith the name you want to assign to the
linked server. You’ll typically use the server’s computer name as the linked server
name.

In contrast, if you want to define a Microsoft Access database as a linked server,
you use this syntax instead:

EXEC sp_addlinkedserver
@server = 'linked_server_name',
@srvproduct = 'Microsoft.Jet.OLEDB.4.0',
@provider = 'OLE DB Provider for Jet',
@datasrc = 'C:\Data\accounting.mdb'

Viewing Linked Servers
You can use the sp_linkedservers stored procedure to view a list of linked
servers defined on your server. In addition, you can see the same list of linked
servers by accessing the Linked Servers object in SQL Server Enterprise
Manager. We define some of the other stored procedures you can use to view
information about linked servers in the following table.

Stored Procedure Enables You to View
sp_catalogs Information about the catalogs on a linked server. For a linked SQL

server, this stored procedure displays a list of databases on the
linked server.

sp_indexes A list of indexes on the linked server. Use this syntax:
sp_indexes 'linked_server',
'table_name', 'table_owner', 'database'.

sp_primarykeys The primary key columns on a linked server’s table.
sp_foreignkeys The foreign keys on a linked server’s table.
sp_tables_ex Information about the tables on a linked server.

Lesson 14: Implementing Distributed Queries 339

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 14A-1:
Defining a Linked Server

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and created nonclustered indexes based
on your primary keys. You have imported data into the tables.
You have created database diagrams for both the movies and
pubs databases.

1. Record the name of your partner’s SQL server:
_______________________________.

2. Start SQL Query Analyzer and open the C:\Data\linked.sql script file.

3. Edit the following query to use your partner’s server name:

SELECT *
FROM partner_server_name.pubs.dbo.authors

(Replace partner_server_name with the name of your partner’s server.)

4. Highlight and execute this query to attempt to execute a distributed query.
This query uses a fully qualified name to query your partner’s server.
Because you haven’t yet defined your partner’s server as a linked server, you
can’t execute a distributed query.

5. Edit the next query to use your partner’s server name. Highlight and
execute the query:

sp_addlinkedserver
@server = 'partner_server_name',
@srvproduct = 'SQL Server'

This query adds a linked server definition to your partner’s server.

6. Execute the next query:

EXEC sp_linkedservers

This query displays a list of linked servers defined on your server. By
default, SQL Server automatically includes your server in this list.

7. Open a new Query window, and then close the Query window contain-
ing the linked.sql script without saving your changes.

Assign the students to work
in pairs for this task. Each
student will define a linked

server to his/her partner’s
SQL server. Pick one of the

students as your partner.

340

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Start SQL Server Enterprise Manager.

9. Below your server, expand the Security folder to display the objects for
configuring login accounts, server roles, linked servers, and remote servers.

10. Expand the Linked Servers object. SQL Server displays a list of the serv-
ers you’ve linked to your server below the Linked Servers object.

11. Minimize SQL Server Enterprise Manager.

Configuring Linked Server Security
After you’ve defined a linked server, your next step is to configure security.
When a user logs in to your server and then runs a distributed query on the
linked server, your SQL server must log in to the linked server in the
background. One method your server can use to log in to the linked server is to
use the login account and password of the user who ran the distributed query.
This method is referred to as security delegation. In this scenario, you must
define the user’s login account and password on your SQL server as well as on
the linked server. Remember, even if you use Windows Authentication to log
users in to a SQL server, you must still define users’ login accounts on the SQL
server—and then map them to a Windows 2000 user or group account. This
method of implementing linked server security is easiest to configure when both
SQL servers are in the same Windows 2000 domain, and you’re using Windows
Authentication on those servers.

If you don’t want to define a user’s login account on both your local server and
the linked server, another strategy you can use is to configure the user’s local
login account to use a specific login account and password on the linked server.
You map local login accounts to a login account on the linked server by using the
sp_addlinkedsrvlogin stored procedure. You can also use the
sp_addlinkedsrvlogin stored procedure to enable your SQL server’s users
to access a linked server that doesn’t support security delegation (such as
Microsoft Access). Use the following syntax to map a user’s local login account
to a login account on the linked server:

sp_addlinkedsrvlogin
@rmtsrvname = 'linked_server_name',
@useself = 'false',
@locallogin = 'local_login_account',
@rmtuser = 'linked_server_login_account',
@rmtpassword = 'linked_server_password'

You don’t have to configure a
linked server login for a user
if you’ve defined the user’s
login account on both the
local and linked servers.

Lesson 14: Implementing Distributed Queries 341

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Parameter Enables You to Define
rmtsrvname The name you’ve assigned to the linked server (typically the

server’s computer name).
useself Whether or not you want this user to log in to the linked server by

using his/her login account on the local server.
locallogin The user’s login account on the local server. If you don’t specify a

value for the locallogin parameter, SQL Server automatically maps
all login accounts on the local server to the remote login account
you specify with the rmtuser parameter.

rmtuser The login account you want the user to use to log in to the linked
server. You must specify this parameter when you set useself =
false.

rmtpassword The password for the login account you specify with the rmtuser
parameter.

In summary, when one of your users executes a distributed query (a query that
retrieves data from a linked server), your SQL server must log that user in to the
linked server. Your server can use any of the following methods to log in:

• If the user’s Windows account (or a Windows group of which the user is a
member) has been mapped to a login account on both the local server and
the linked server, and you haven’t defined a linked server login for this user
by using the sp_addlinkedsrvlogin stored procedure, your server will
log the user in to the linked server by using the user’s Windows account.

• If you’ve created a SQL login account for a user on both the local server
and the linked server, and you haven’t defined a linked server login for this
user, your server will log the user in to the linked server by using the user’s
SQL login account.

• If you want a local user to log in to the linked server by using a specific
login account on the linked server, you must define a linked server login for
this user on your local server by using the sp_addlinkedssrvlogin
stored procedure.

For example, if you want a user named Sally to log in to a linked server named
Accountingas the login account named Accountantwith a password of password,
you add the linked server login by using the following statement:

sp_addlinkedsrvlogin
@rmtsrvname = 'Accounting',
@useself = 'false',
@locallogin = 'Sally',
@rmtuser = 'Accountant',
@rmtpassword = 'password'

Permissions Considerations
Regardless of how you have a user log in to a linked server, you must configure
the user with the appropriate permissions to the linked server’s databases. For
example, assume that you want the user named Susan to be able to query the
pubs database on a linked server. You’ve configured Susan to log in to the linked
server by using her Windows login account. (You’ve created Susan’s Windows
login account on both the local and linked servers.) Although Susan can log in to

342

The following table describes the parameters you use in the
sp_addlinkedsrvlogin stored procedure.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

both the local and linked servers, she still can’t execute a distributed query
against the pubs database unless she has permissions to that database. At a mini-
mum, you should assign her login account to the db_datareader database role to
enable her to read information from the pubs database.

TASK 14A-2:
Logging in to Linked Servers

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a SQL login account named sqluser#. You’ve added
sqluser# to the public and db_owner database roles for the
pubs database.

1. From the Administrative Tools program group, start Active Directory Users
And Computers.

2. In the console tree, select the Users folder. Double-click on your student#
account to display the User Properties dialog box for your user account.

3. Select the Member Of tab. Look at your group memberships. You should
see that your user account, student#, is a member of the Domain Admins
and Domain Users global groups.

4. Click Cancel to close the Properties dialog box for your user account. Close
Active Directory Users And Computers.

5. Switch to SQL Server Enterprise Manager.

6. Below your server’s Security folder, select the Logins object and look at
the Details pane. By default, SQL Server automatically maps members of
the local Administrators group to login accounts. This means that if you log
on to Windows 2000 as a user who’s a member of the local Administrators
group, you can log in to SQL Server by using Windows Authentication.
Because your user account is a member of Domain Admins and thus the
local Administrators group, you can log in to SQL Server by using your stu-
dent# account.

7. Minimize SQL Server Enterprise Manager.

Double-click on your
instructor account.

Lesson 14: Implementing Distributed Queries 343

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. In SQL Query Analyzer, execute the following query:

SELECT *
FROM partner_server_name.pubs.dbo.authors

This query executes a distributed query against your partner’s server. You
don’t have to create a linked server login for your student# account because
your account has a login account on both servers. That’s because SQL
Server Setup automatically creates a login for the built-in Windows 2000
Administrators group, and your student# user is a member of this group.

9. Choose File→Connect to display the Connect To SQL Server dialog box.
You’re going to log in to SQL Server by using your sqluser# login account.

10. Below Connection Information, select Use SQL Server Authentication. In
the Login Name text box, type sqluser#. (Replace # with your assigned
number.) In the Password text box, type password.

11. Click OK to log in to your SQL server with your SQL login account.

12. In the new Query window, execute the following query:

SELECT *
FROM partner_server_name.pubs.dbo.authors

This query enables you to attempt to execute a distributed query while
logged in as sqluser#.

13. Why does your login fail?

My login attempt fails because I’m logged in to my local SQL server as
sqluser#, but this login account doesn’t exist on my partner’s server. So, my
local server can’t log in to the linked server by using my login account.

Log in as sqluser with a
password of password.

You can copy and paste this
query from the first Query

window into the second
Query window.

344

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

14. How should you fix this problem?

I should fix this problem by either creating a duplicate login account for
sqluser# on my partner’s server or by defining a linked server login name
with thesp_addlinkedsrvlogin stored procedure.

15. In your first Query window, execute a new query:

sp_addlinkedsrvlogin
@rmtsrvname = 'partner_server_name',
@useself = 'false',
@locallogin = 'your_sqluser#',
@rmtuser = 'your_partner's_sqluser#',
@rmtpassword = 'password'

This query maps your own sqluser# account on your server to your partner’s
sqluser# account on his or her server. By executing this query, you enable
your sqluser# account to log on to your partner’s linked server.

16. In the second Query window, re-execute the following query:

SELECT *
FROM partner_server_name.pubs.dbo.authors

(You’re connected to your local server as sqluser# in this window, so you
can test the linked server login in this window.) Use this query to verify that
you can now execute a distributed query of the Pubs database on your linked
server (your partner’s server). You can access the Pubs database on your
partner’s server because your partner added sqluser# to the public and
db_owner database roles for the Pubs database.

17. Close the second Query window.

18. Clear the first Query window.

Configuring Linked Server Settings
You can use the sp_serveroption stored procedure to configure settings for
linked servers. These settings include Collation Compatible, Use Remote Colla-
tion, Collation Name, Data Access, and RPC and RPC Out. Use the following
syntax to set server options:

USE master
GO
EXEC sp_serveroption 'linked_server_name', 'option', [true |
false]

Use the Collation Compatible option if the character set and collation (sort) order
are the same on both the local and linked servers. By default, SQL Server sets
the Collation Compatible option to false so that it evaluates differences between
the character set and sort order between the local and linked servers. If both serv-
ers use the same character set and sort order, you should enable this option in
order to reduce SQL Server’s overhead when processing distributed queries. If the
linked server uses a different collation, and you want your query to use that colla-
tion, you should set the Use Remote Collation option to true. If the linked server
isn’t a SQL server, and you set the Use Remote Collation option to true, you
must specify the name of the collation by using the Collation Name option.

Lesson 14: Implementing Distributed Queries 345

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Use the Data Access option to configure a remote server used in replication to
also act as a linked server so that you can access it through distributed queries.
Use the RPC option to specify whether your local server can send out Remote
Procedure Calls (RPCs); likewise, use the RPC Out option to enable support for
RPCs to the linked server.

TOPIC 14B
Creating and Managing Distributed Queries
After you’ve defined linked servers, you can access the data on those servers
through distributed queries. You must use an object’s fully qualified name to
access an object on a linked server. An object’s fully qualified name consists of
the following components:

linked_server_name.database_name.owner.object_name

For example, if you want to display all rows in the authors table of the pubs
database on your partner’s server, use the following name:
sqlserver#.pubs.dbo.authors.

You can use the SELECT, INSERT, UPDATE, and DELETE statements in distrib-
uted queries. You can use a WHERE clause with your statements—and you can
use table joins. You can even join tables between your local and linked servers.

You can’t use the CREATE, ALTER, DROP, READTEXT, WRITETEXT, or
UPDATETEXT statements in a distributed query. You also can’t use the CREATE
TABLE along with the SELECT INTO statement to create a table and fill it with
data on the linked server, but you can use these statements to create a table and
fill it with data on the local server. You also can’t use an ORDER BY clause as
part of your SELECT statement if your select list contains a large object column.

Which Server Processes the Query?
When you execute a distributed query, either your local server or the linked
server can process the query. Unless you specify otherwise, your local server pro-
cesses a distributed query. For example, if you execute the query SELECT *
FROM sqlserver1.pubs.dbo.authors and your local server is
sqlserver2, SQL Server processes the query on your local server (sqlserver2).

You can use the OPENQUERY function to specify that you want the linked server
to process your query instead of your local server. This type of query is referred
to as a pass-through query. The OPENQUERY function enables you to force the
linked server to process a distributed query. You use the OPENQUERY function
with the following syntax:

OPENQUERY (linked_server_name, 'query')

You can use the OPENQUERY function in place of a table name. For example, the
following query enables you to select all movies from the movie table with a rat-
ing of G and specifies that the linked server must process the query:

SELECT *
FROM OPENQUERY(sqlserver1,'SELECT * FROM movies.dbo.movie WHERE
rating = "G"')

You can use the results of an OPENQUERY function in a SELECT, INSERT,
UPDATE, or DELETE statement.

346

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 14-1

Working with Distributed Queries
Objective: To design and execute distributed queries against your part-

ner’s SQL server.

Setup: You have defined your partner’s server as a linked server.

1. In SQL Query Analyzer, design and execute a query to list all movies on
your partner’s server with a category number of 4 (comedy). Don’t use a
pass-through query. What query did you use?

SELECT *
FROM sqlserver#.movies.dbo.movie
WHERE category_num = 4

2. Design and execute a query to list all customers in alphabetical order on
your partner’s server. Use a pass-through query. What query did you use?

SELECT *
FROM OPENQUERY(sqlserver#, 'SELECT *

FROM movies.dbo.customer
ORDER BY lname, fname')

3. Design and execute a query to join the movie table on your partner’s server
with the category table on your server. Include the movie title and the cat-
egory description in the results set. Sort the results by category description
and then movie title. Don’t use a pass-through query. What query did you
use?

USE movies
GO
SELECT c.description, m.title
FROM sqlserver#.movies.dbo.category AS c JOIN movie AS m
ON c.category_num = m.category_num
ORDER BY c.description, m.title

4. Design and execute a query to create a new local table named partner_movie
in your movies database. Use the SELECT INTO statement to populate this
table with movies that have a rating of G from your partner’s movie table.
Verify the contents of the partner_movie table when you are done. What
queries did you use?

SELECT *
INTO partner_movie
FROM sqlserver#.movies.dbo.movie
WHERE rating = 'G'
GO

SELECT *
FROM partner_movie

5. Clear the Query window.

Suggested time:
25 minutes

Script file: distqueries.sql.

Lesson 14: Implementing Distributed Queries 347

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Executing Stored Procedures
In addition to queries, you can also execute stored procedures on a linked server.
After you define a linked server, your users can execute stored procedures on that
server without having to establish a connection to that server first. The linked
server actually processes the stored procedure and then returns the results to you.

You must use a fully qualified name to execute a stored procedure on a linked
server. For example, you could use the following query to display information
about the movies database on a linked server:

EXEC linked_server_name.master.dbo.sp_helpdb movies

APPLY YOUR KNOWLEDGE 14-2

Executing Stored Procedures on Linked Servers
Objective: To run stored procedures on your partner’s server.

Setup: You have created user-defined stored procedures in the movies
database.

1. In SQL Query Analyzer, design and execute a query to list all stored proce-
dures on your partner’s server. What query did you use?

EXEC sqlserver#.movies.dbo.sp_stored_procedures

2. Design and execute a query to list the definition of one of the stored
procedures. What query did you use?

EXEC sqlserver#.movies.dbo.sp_helptext stored_procedure_name

3. Run one of your partner’s stored procedures. If necessary, provide the appro-
priate values for any input parameters. (Use the appropriate stored procedure
to view the definition of the stored procedure to determine if you need any
input parameters.) What query did you use?

EXEC sqlserver#.movies.dbo.MovieByCategory

4. Clear the Query window.

Modifying Data Through Distributed Queries
You can modify data on a linked server by using a distributed transaction. You
begin a distributed transaction by first enabling the XACT_ABORT session option.
This option enables SQL Server to roll back the entire distributed transaction in
the event that any of the SQL statements fail. If you don’t set this option, SQL
Server can roll back only a failed statement, not the entire transaction. Begin a
distributed transaction by using the BEGIN DISTRIBUTED TRANSACTION
statement. You end a distributed transaction by using either the COMMIT TRAN
or ROLLBACK TRAN statements.

You can use distributed transactions to work with data in tables on the linked
server just as you would on your local server (provided you have the necessary
permissions). You can use the INSERT, UPDATE, and DELETE statements within
a distributed transaction. For example, you can use the following query to insert a
row into the movie table:

Suggested time:
10 minutes

Script file: linkedprocs.sql.

You can’t nest distributed
transactions.

348

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

SET XACT_ABORT ON
BEGIN DISTRIBUTED TRAN

INSERT INTO linked_server_name.movies.dbo.movie
(title, category_num, rating, rental_price, rented)
VALUES ('Mr. Smith goes to Washington', 4, 'G',1.99, 'N')

COMMIT TRAN

Microsoft Distributed Transaction Coordinator
SQL Server uses the Microsoft Distributed Transaction Coordinator (MSDTC)
service to manage the integrity of distributed transactions. SQL Server uses the
MSDTC service whenever you execute a BEGIN DISTRIBUTED
TRANSACTION statement. MSDTC is responsible for making sure that if you
execute a distributed transaction across multiple linked servers, those transactions
occur at the same time. MSDTC’s primary goal is to ensure consistency between
data on multiple servers. So, if you have multiple linked servers and you want to
maintain a copy of a database on those servers, you can use MSDTC to update
those databases.

By default, SQL Server Setup configures the MSDTC service to start automati-
cally, but it configures the MSDTC service to log on to Windows 2000 by using
the Local System account. If you want to use MSDTC to support distributed
transactions across multiple servers, you must configure the MSDTC service to
log on by using the same user account on all servers. You can change the con-
figuration of any service by using the Services snap-in within a Microsoft
Management Console (MMC).

TASK 14B-1:
Configuring the MSDTC Service

1. From the Administrative Tools menu, select Services to open an MMC with
the Services snap-in loaded. You see a list of all of the services available on
your server.

2. In the details pane, look at the Distributed Transaction Coordinator
service. You see that it’s configured to start automatically, and to log on
using the Local System account.

3. Double-click on the Distributed Transaction Coordinator service to dis-
play its Properties dialog box.

4. On the General tab, verify that the Startup Type is Automatic.

5. Select the Log On tab. You use this page to configure the service to log on
as a specific domain user account.

6. Below Log On As, select This Account. In the text box, type
SQLService@classroom.com. In the Password and Confirm Password text
boxes, type password.

Lesson 14: Implementing Distributed Queries 349

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Click OK to save your changes.

8. Click OK to confirm the message stating that the new logon name won’t
take effect until you stop and restart the MSDTC service.

9. Right-click on the Distributed Transaction Coordinator service and
choose Stop to stop the service.

10. Right-click on the Distributed Transaction Coordinator service and
choose Start to start the service.

11. When the service is started, close the Services MMC.

APPLY YOUR KNOWLEDGE 14-3

Modifying Data on a Linked Server
Objective: To write a query to insert data into your partner’s customer

table.

1. In SQL Query Analyzer, design and execute a query to insert yourself as a
customer in your partner’s customer table. (Hint: You don’t need to provide
values for the cust_num and join_date columns.) What query did you use?

SET XACT_ABORT ON
BEGIN DISTRIBUTED TRAN
INSERT INTO sqlserver#.movies.dbo.customer
(lname, fname, address1, address2, city, state, zip, phone)
VALUES ('Ferrer', 'Henri', '123 Someplace', ' Suite 101',
'New Orleans', 'LA', '70130', '5041234566')
COMMIT TRAN

2. When your partner has completed step 1, verify that you can see your part-
ner’s name in your own customer table. What query did you use?

SELECT *
FROM customer
WHERE lname = 'partner's_last_name'

3. Clear the Query window.

Using Ad Hoc Queries
If you don’t plan to access a remote server very frequently, you can use an ad
hoc query to retrieve data from that server instead of defining it as a linked
server. You use the OPENROWSET function to connect to a server that you
haven’t defined as a linked server. The remote server can be any data source that
supports the OLE DB provider for ODBC, such as computers running SQL
Server, Access, or Oracle.

You use the OPENROWSET function in place of a table name. For example, you
can use the OPENROWSET function in the SELECT statement as follows:

SELECT *
FROM OPENROWSET(remote server information)

Suggested time:
10 minutes

Script file: modify.sql.

350

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Use the following syntax to define a remote server with the OPENROWSET func-
tion:

OPENROWSET ('provider_name' 'datasource';
'user_name'; 'password' | 'provider_string',
catalog.schema.object 'query')

We use the following table to describe the parameters you use with the
OPENROWSET function.

Parameter Enables You to Specify the
provider Name of the OLE DB provider that will manage access to the data

source.
data source Name for the data source as used by the OLE DB provider.
user_name User name you want to use to log in to the OLE DB provider.
password Password for the user name you specify.
provider_string OLE DB-specific connection strings for identifying the data source.
catalog Catalog (or database) in which the object is stored.
schema Schema name or owner of the object.
object Object name you want to access.
query Query you want to run against the remote data source.

The name of the OLE DB provider is specific to the type of data source you want
to access. The following table defines the provider and data source names for
various data sources.

Data Source Provider Name Data Source Name
SQL Server ‘SQLOLEDB’ Not required
Microsoft OLE DB Provider for
Access (Jet)

‘Microsoft.Jet.OLEDB.4.0’ Full path name of Access
database file

Microsoft OLE DB Provider for
Oracle

‘MSDAORA’ SQL*Net alias for Oracle
database

OLE DB Provider for ODBC ‘MSDASQL’ ‘LocalServer’

For example, the following query returns all rows from the category table on the
instructor’s SQL server:

SELECT *
FROM OPENROWSET('SQLOLEDB', 'instructor';
'sa'; 'password',
'SELECT * FROM movies.dbo.category')

Notice that you must provide a user name and password. This user name and
password must be a SQL login account, not a Windows login account and
password.

The following example enables you to query a Microsoft Access database to
retrieve data from the products table in the Northwind database (this database is
also included as a sample in Microsoft Access):

SELECT *
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0'
'C:\MSOffice\Access\Samples\Northwind.mdb';
'user_name'; 'password', Customers)

Lesson 14: Implementing Distributed Queries 351

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TASK 14B-2:
Using Ad Hoc Queries to Retrieve Data From Remote
Servers

1. Record the name of a server that you haven’t defined as a linked server
on your server: _____________________. (You can also query the instruc-
tor’s server.)

2. In SQL Query Analyzer, execute the following query:

SELECT *
FROM OPENROWSET('SQLOLEDB', 'server_name';
'sa'; '', 'SELECT * FROM movies.dbo.customer WHERE cust_num >
175')

This query executes an ad hoc query on a remote server. You log on to that
server by using the sa login account without a password.

3. Clear the Query window.

Implementing Distributed Partitioned Views
As you saw in the “Designing Views” lesson, you create partitioned views based
on data from multiple sources (such as multiple SQL servers or multiple instances
of SQL Server), or even on data from heterogeneous sources (such as data on an
Oracle server). A partitioned view enhances performance by enabling SQL Server
to scan all tables referenced by the view simultaneously if those tables are on
separate servers, or if the tables are on the same server as long as the server has
multiple processors.

If you want your partitioned view to access databases on multiple servers, you
must define those servers as linked servers. Here are the steps you should com-
plete:

1. Create the databases on each server.

2. Horizontally partition the tables within each database on the servers. This
means that you must define a column in all tables that you can use to
uniquely identify each server’s data. You must define a check constraint on
this column.

3. Create linked server definitions on each server.

4. Create the partitioned view on each server by using the UNION ALL
keywords. Use the same name for the view on each server so that you can
access the view from any server.

Assign the students to work
in pairs for this task. Have

the students access a
server they haven’t defined
as a linked server (or your

server).

Remind students that the
quotes in the Password

parameter are two single
quotes with no space

between them. We’re using
this syntax because the sa

user doesn’t have an
assigned password.

352

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, we showed you how to define a linked server and configure
its security. You also learned how to query a server by using a distributed
query against a linked server and by using the OPENROWSET function to
execute an ad hoc query.

LESSON 14 REVIEW
14A How do you define an SQL server as a linked server?

I define an SQL server as a linked server by using the
sp_addlinkedserver stored procedure. Here’s the syntax:

sp_addlinkedserver
@server = 'linked_server_name',
@srvproduct = 'SQL Server'

14B How can you configure a distributed query to be processed by the linked
server instead of your local server?

I specify that I want the linked server to process my query by using the
OPENQUERY function in place of the table name in my query. Use the fol-
lowing syntax:

SELECT * FROM OPENQUERY(linked_ server_name, 'query')

Lesson 14: Implementing Distributed Queries 353

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Optimizing Queries

Overview
One of the most critical components of SQL Server’s database engine is the
query optimizer. Its job is to analyze the possible methods SQL Server can
use to execute a query and then select the best method. In this lesson, we
will explain how the query optimizer selects the best execution plan. In
addition, we will show you how you can determine what execution plan
SQL Server is using for a given query. Finally, we will show you how you
can optimize queries through indexing.

Objectives
To optimize queries, you will:

15A Identify the steps the query optimizer performs to optimize a query
and analyze query execution plans.

SQL Server 2000 includes several utilities that you can use to observe
and analyze the execution plan selected by the query optimizer. In this
topic, we will show you how you can analyze execution plans by using
commands such as SET SHOWPLAN_ALL and the graphical execution
plan in SQL Query Analyzer.

15B Design indexes to improve query performance.

In this topic, you will learn how to create an index that covers a query.
Such an index can significantly improve your server’s response time for a
given query. You’ll also learn how you can override the query processor’s
index selection by using table hints.

Data Files:
newcustomer.sql
statslab.sql
querygovernor.sql
showplan.sql
graphplan.sql
cleanindex.sql
indexcovers.sql
hints.sql

Lesson Time:
2 hours

LESSON

15

Lesson 15: Optimizing Queries 355

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 15A
Exploring the Query Optimizer
One of the most important components of the SQL Server database engine is the
query optimizer. (Actually, the query optimizer is one of several components that
make up the query processor; the query processor is responsible for processing
queries.) SQL Server uses the query optimizer to come up with a plan for how it
should process your query. This plan includes all steps your server must carry
out, plus information about any index (or indexes) your server should use when
accessing the table or tables on which you’ve based your query. It also includes
plans for performing steps such as sorting the data and grouping the data based
on a GROUP BY clause, and for how it should retrieve data from joined tables.

The query optimizer’s main job is to look at a whole bunch of factors and come
up with the best plan. So how does it go about determining the best plan? The
query optimizer evaluates the different plans it can use to retrieve the data based
on cost and the speed with which they return the data. The query optimizer then
selects the plan that retrieves the data the fastest with the lowest reasonable cost
on your server’s resources. We want to emphasize that the query optimizer con-
siders both an execution plan’s cost in resources along with how fast it retrieves
the data, mostly because we don’t want you to think that it chooses an execution
plan strictly based on the lowest cost in server resources. For example, let’s say
that you’re using a server with multiple processors. In this scenario, an execution
plan that uses more than one processor has a higher resource cost, but your server
will also be able to process the query much faster. For this reason, the query
optimizer will select the execution plan that uses all of your server’s processors
(provided the query won’t overwork your server).

Let’s take a look at the calculations the query optimizer performs when choosing
an execution plan:

• Identifying what indexes you have and whether or not they reduce the pro-
cessing time for your query.

• Determining the indexes and columns the query optimizer can use to limit
the number of rows SQL Server must examine to process your query. Limit-
ing the number of rows SQL Server must examine reduces the amount of
I/O your server must perform, which improves the overall performance of
your server.

• Creating any necessary column statistics to improve your query’s
performance.

• Selecting the most efficient method for processing a table join. This calcula-
tion involves choosing the order in which it will join tables.

The query optimizer does put a limit on the number of execution plans it calcu-
lates for a given query. Obviously, generating an endless number of execution
plans before executing a query can degrade your server’s performance.

Understanding How the Query Optimizer Works
Now that you’ve seen the basics of what the query optimizer does for queries,
let’s take a look at what goes on behind the scenes whenever you execute a
query. Here’s what happens when SQL Server receives your query:

356

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

1. SQL Server begins by checking the syntax of the query. After it checks your
syntax, SQL Server breaks your query into smaller components for the data-
base engine to process. This step is called parsing, and the end result of
parsing is called a parsed query tree.

2. Next, SQL Server verifies the names of objects you use in the query and
checks whether you have the necessary permissions for those objects. It also
checks for any redundant syntax clauses and removes them, and standardizes
any subqueries. This step is called the standardization step, and the end
result is a standardized query tree.

3. SQL Server next analyzes your query to determine which indexes, if any, it
should use to speed up the query and how it will join tables if necessary.
This is the query optimization step (and the focus of this lesson).

4. SQL Server now converts the query into executable language and includes
identifiers as to which tables and indexes it will use to retrieve the data. This
step is called the compiling step.

5. Finally, SQL Server sends the compiled requests for processing. We call this
the executing step of query processing.

Because there are so many steps necessary to process a query, SQL Server saves
a query’s compiled execution plan in the procedure cache within its pool of avail-
able memory. In earlier versions of SQL Server, the procedure cache was a
reserved area within your server’s memory pool. In SQL Server 2000, the proce-
dure cache isn’t reserved in memory because SQL Server dynamically allocates
and de-allocates memory as needed. Caching the execution plan for a query
improves the performance of repetitive queries. When SQL Server executes a
compiled query, it need only retrieve the execution plan from cache and execute
it; it doesn’t need to perform the steps of parsing, standardizing, optimizing, and
compiling the query.

There are certain conditions that trigger SQL Server to recompile a query’s
cached execution plan. For example, SQL Server will automatically recompile a
query’s execution plan if you make a structural change to a table or view on
which the query’s based. Other situations which cause SQL Server to recompile a
query’s execution plan include:

• SQL Server updates the distribution statistics, either automatically because
you’ve configured the database with the auto-update statistics option, or
because you execute the UPDATE STATISTICS statement.

• You drop an index that’s used by the query’s execution plan.

• You make a large number of changes to the index keys (such as by using the
INSERT or DELETE statements).

• You force SQL Server to recompile a stored procedure or trigger by using
the sp_recompile stored procedure.

• You make a large number of changes to a table on which you’ve defined
triggers.

Displaying Query Statistics
SQL Server includes a number of techniques that you can use to find out infor-
mation about the execution plan selected by the query optimizer. You can begin
by displaying statistics information. For example, you can use the command
SET STATISTICS TIME ON to have SQL Query Analyzer display the amount
of time in milliseconds SQL Server uses to parse, compile, and execute each
statement in your query. We show you an example of the statistics you can view

Lesson 15: Optimizing Queries 357

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

for a query in Figure 15-1. In this example, the first parse and compile statistics
you see tell you the amount of time SQL Server used to parse and compile the
query. The second parse and compile statistics enable you to see the amount of
time SQL Server used to cache the query’s execution plan. (If you execute this
same query again, you won’t see the second set of parse and compile statistics
because SQL Server will have already cached the execution plan.) Use the execu-
tion times statistics to gain an idea of how long it takes SQL Server to execute
your query.

Figure 15-1: Output generated with SET STATISTICS TIME ON.

Another statement you can use to analyze a query’s statistics is SET
STATISTICS PROFILE ON. This command enables you to view both the
output from the SET SHOWPLAN_ALL ON statement (which we’ll look at in
just a moment) plus two additional columns. The first column contains the total
number of rows processed by SQL Server for each step in the query plan, and the
second column indicates how many times SQL Server executed this step. You can
see the output of this command in Figure 15-2.

Figure 15-2: Output generated with SET STATISTICS PROFILE ON.

358

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

A third statement you can use to figure out the amount of disk activity generated
by a SQL query is SET STATISTICS IO ON. This query enables you to deter-
mine exactly how much of your query SQL Server retrieved by accessing your
server’s hard disk. Before we look at the sample output for this command, let’s
take a look at the statistics it gives you. We describe each of these statistics in the
following table.

Statistic Enables You to Determine
Table The name of the table on which your query is based.
Scan Count How many times SQL Server had to access the table on which your

query is based.
Logical Reads How many pages SQL Server could retrieve from the data cache to

satisfy your query instead of having to access the server’s hard disk.
Physical Reads How many pages SQL Server had to retrieve from the server’s hard

disk to satisfy your query.
Read-Ahead Reads How many pages SQL Server placed into the data cache for your

query.

Given these statistics, let’s take a look at the STATISTICS IO for a given
query. In Figure 15-3, we show you the output generated when you enable the
STATISTICS IO option. Notice that in this example, you see that the total
number of logical reads was 1476 (meaning SQL Server read 1476 pages from
the data cache to satisfy the query)—but that the total number of physical reads
was 0. This means that SQL Server was able to retrieve all of the data for this
query from cache without having to access the server’s hard disk.

Figure 15-3: Output generated with SET STATISTICS IO ON.

Each of these SET STATISTICS statements stays active for your current ses-
sion until you turn them off. You turn off the statistics by executing the statement
SET STATISTICS statistics_type OFF. SQL Server also turns off the
statistics when you close your current session.

You can calculate what
percentage of time SQL
Server was able to retrieve a
query’s data from cache by
using the following formula:
(Logical Reads - Physical
Reads)/Logical Reads. This
value tells you the Cache Hit
Ratio for the query.

Lesson 15: Optimizing Queries 359

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 15-1

Analyzing Query Statistics
Objective: To execute an SQL script to create a very large table named

NewCustomers in the Northwind database. You’ll then analyze
the statistics generated when you query this table.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables, and created nonclustered indexes based
on your primary keys. You have imported data into the tables.
You have created database diagrams for both the movies and
pubs databases.

1. In SQL Query Analyzer, open the C:\Data\newcustomer.sql script file.

2. Take a look at this script file. We begin this script by creating a new table
named NewCustomer. Next, we use a counter (@counter) to have SQL
Server insert a copy of the rows in the Customers table into the
NewCustomer table. We’re also using a second counter (@counter2) to help
generate values for the CustomerID column so that we have no more than
five rows in the table that have the same value for the CustomerID.

3. Execute the newcustomer.sql script file.

4. Open the statslab.sql script file.

5. Execute the query to turn on STATISTICS IO and query the
NewCustomer table. When you see the results set, select the Messages tab in
the Results pane. You use this pane to view the statistics returned by the
query optimizer.

6. How many times did SQL Server access this table? How can you tell?

SQL Server accessed this table one time. I can tell by looking at the Scan
Count statistic.

7. What is the Cache Hit Ratio for this query? How do you calculate this
value?

The Cache Hit Ratio is 100 percent. I can calculate this value by using the
formula (Logical Reads - Physical Reads)/Logical Reads. In this statement,
SQL Server retrieved all of the table’s pages by using logical reads, so the
Cache Hit Ratio is 100 percent.

8. Open a new Query window, and then close the Query window containing the
statslab.sql script file.

Suggested time:
10 minutes

360

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Limiting Long-running Queries
It’s possible that you or your users can execute queries that use a huge amount of
your server’s resources. In some cases, such queries are accidental, but they
nonetheless degrade your server’s performance. You can help prevent such que-
ries from executing by configuring the query governor. This setting enables you
to specify a cost limit so that you can help prevent your server from executing
high cost queries. You specify a value for the query governor in seconds, but this
value doesn’t actually correlate directly to the elapsed time when you execute the
query; instead, it correlates to the estimated cost of the query.

By default, SQL Server Setup sets the query governor’s value to zero, which dis-
ables the query governor. You can specify a value of up to 2,147,483,647 seconds
for the query governor by using any of the following methods:

• Modifying the properties of your server in SQL Server Enterprise Manager.
(Use the Server Settings tab in the Properties dialog box for your server.)

• Using the sp_configure stored procedure to set the query governor cost
limit server option.

• Executing the SET QUERY_GOVERNOR_COST_LIMIT statement. You use
this statement if you want to set the query governor for a specific connection
instead of for all connections.

TASK 15A-1:
Configuring the Query Governor

1. In SQL Query Analyzer, open the C:\Data\querygovernor.sql script file.

2. Highlight and execute the following query:

USE Northwind
SET STATISTICS TIME ON
SELECT CompanyName, ContactName
FROM NewCustomer
ORDER BY CompanyName

3. Select the Messages tab so that you can see how long it took SQL Server
to execute this query.

4. What value do you see for the CPU time? (Look at the SQL Server
Execution Times at the end of the results set.)

Answers will vary depending on the classroom hardware.

5. Given the value you see for the CPU time, what value should you use if
you want the query governor to prevent this query from executing?
(Notice that SET STATISTICS TIME ON displays the value for CPU
time in milliseconds, but you specify the value for the query governor in
seconds.)

Answers will vary.

Lesson 15: Optimizing Queries 361

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

6. Edit the querygovernor.sql script file. Add the SET
QUERY_GOVERNOR_COST_LIMIT statement and specify a value that
will prevent the SELECT query from running.

7. Execute the script file again. You should see that the query governor pre-
vents your query from running. (Look at the end of the results set.)

8. Open a new Query window, and then close the window containing the
querygovernor.sql script file. Don’t save your changes to this file.

Using SHOWPLAN_ALL and SHOWPLAN_TEXT
To view the execution plan the query optimizer chose for executing your query,
execute the SET SHOWPLAN_ALL ON statement followed by a query. By view-
ing the execution plan, you can see whether or not the query optimizer uses a
specific index when processing the query. For example, you can execute the fol-
lowing query to determine what (if any) indexes the query optimizer uses to
return the results set:

USE movies
SET SHOWPLAN_ALL ON
GO
SELECT movie_num, title
FROM movie WHERE category_num = '1'

Use the SHOWPLAN_ALL statement to have SQL Server display detailed informa-
tion about the query’s execution plan, including information about the estimated
number of rows your query will retrieve, the I/O generated by the query, CPU
time, and the average row size of your query. For less detailed information, you
can use the SET SHOWPLAN_TEXT ON statement instead.

When you use one of the SET SHOWPLAN statements, SQL Server displays
information about the order in which it accesses your tables (if your query is
against multiple tables), and which indexes it uses or which tables it scans. The
following table describes the messages you will see when you run a query with
SHOWPLAN turned on.

Message Indicates that the Query Optimizer will
Index Seek Use a nonclustered index to retrieve the results set for your

query.
Clustered Index Seek Use the clustered index for the table to retrieve the results set

for your query.
Clustered Index Scan Scan the clustered index for the table because no other index

enables it to retrieve the results set. Essentially, the query
optimizer performs a table scan in this scenario, but it’s called
a “clustered index scan” because the data in the table is
stored in order by the clustered index. The clustered index
doesn’t improve the performance of the query.

362

Table Scan Scan the table to retrieve the results set. You’ll see this
message if the table doesn’t have a clustered index and none
of its nonclustered indexes will help improve the performance
of the query.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

One thing you should be aware of is that when you turn on one of the
SHOWPLAN options, SQL Server Query Analyzer stops processing your queries
and displays only their execution plans instead. You must turn off the SHOWPLAN
option in order to have SQL Server Query Analyzer process your query.

TASK 15A-2:
Using SHOWPLAN to View the Query Execution Plan

1. In SQL Query Analyzer, open the C:\Data\showplan.sql script file.

2. Highlight and execute the query that uses the movies database, turns on
SHOWPLAN_ALL, and selects data from the movie table.

3. Look at the results set. You can see the steps the query optimizer estimates
SQL Server must perform to retrieve this query’s results set.

4. How will SQL Server retrieve the results of this query?

SQL Server will retrieve the results by performing an index seek against the
nonclustered index named NC_category_num.

5. Highlight and execute the next query (the query that finds all movies with
titles LIKE 's%').

6. How will SQL Server retrieve the results of this query?

SQL Server will retrieve the results by performing a clustered index seek of
the clustered index named CL_title.

Lesson 15: Optimizing Queries 363

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

7. Highlight and execute the query to find all PG-rated movies.

8. How will SQL Server retrieve the results of this query?

SQL Server will retrieve the results by performing a clustered index scan of
the clustered index named CL_title. SQL Server is essentially performing a
table scan because the movie table doesn’t have an index on the rating
column.

9. Highlight and execute the last query (the query that lists the description
and category_num for all movie categories).

10. How will SQL Server retrieve the results of this query?

SQL Server will retrieve the results by performing a table scan of the cat-
egory table. SQL Server is using a table scan because the table doesn’t have
a clustered index nor does it have a nonclustered index on the description
column.

11. Open a new Query window, and then close the Query window contain-
ing the showplan.sql script file.

Using the Graphical Execution Plan
Another technique you can use to analyze a query’s execution plan is to configure
SQL Query Analyzer to display a query’s graphical execution plan. This option
enables you to view graphically each step (in order) a query must perform, along
with both the logical and physical operators SQL Server must use. The logical
operators indicate the relational operations SQL Server uses to process the
statement. For example, performing an aggregation represents a logical operation.
The physical operators enable you to determine the physical steps SQL Server
performs to retrieve the data. For example, the act of scanning a table represents
a physical operator. In the following table, we describe some of the physical
operators you can see in a query’s graphical execution plan.

Physical
Operator Icon Indicates that SQL Server
Bookmark Lookup Used a bookmark row, either a row ID (if it’s using the

table’s nonclustered index) or a clustering key (if it’s
using the table’s clustered index) to look up the
required row within the table or clustered index.

Clustered Index Scan Executed a scan of a table’s clustered index to select
the necessary rows for your query.

Clustered Index Seek Used a seek of the clustered index to select the rows
for your query.

For an explanation of all of
the icons you can see in

SQL Query Analyzer, see the
“Graphically Displaying the
Execution Plan Using SQL

Query Analyzer” topic in
Books Online.

364

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Physical
Operator Icon Indicates that SQL Server
Filter Implemented a filter to restrict the rows returned by the

query. You typically see this step when your query
includes a WHERE clause.

Index Scan Used a scan of the nonclustered index to select the
rows for your query.

Index Seek Performed a seek of the nonclustered index to retrieve
the rows for your query.

Merge Join Performed all types of joins to generate the query’s
results set. This includes inner and outer joins, plus
any SELECT statements that use the UNION
keyword. SQL Server doesn’t use a merge join for self
and cross joins.

Nested Loops Executed a search of an inner table for each row in the
outer table; SQL Server typically uses an index for this
type of search. SQL Server uses nested loops to
process inner join and left outer join statements.

Table Scan Performed a scan of the table to retrieve the rows for
the results set.

Sort Sorted all rows in the results set.

You display a query’s graphical execution plan in SQL Query Analyzer by choos-
ing Query→Show Execution Plan. After you select this option, SQL Server adds
an Execution Plan tab to the Results pane for any query you execute, as shown in
Figure 15-4. You read this graphical execution plan from right to left, and from
top to bottom. Microsoft refers to each step in the execution plan as a node. So in
this figure, you can see that the first step SQL Server performed is an index seek
of the nonclustered index NC_category_num. (We can tell this by looking at the
icons.) Next, SQL Server used the row IDs it retrieved from the nonclustered
index to perform a bookmark lookup on the actual data pages. It then displayed
the results set (that’s what the Select icon means).

Figure 15-4: A graphical query execution plan.

You can point to each node in the graphical query execution plan to have SQL
Server display additional information about that node, as shown in Figure 15-5.
You can use this additional information to find out detailed statistics about this
particular step in the query execution plan. We describe the statistics you see in
the following table.

Lesson 15: Optimizing Queries 365

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Statistic Enables You to Determine
Physical Operations The physical operation performed by the step (index seek in this

example).
Logical Operations The logical operation performed by the step.
Row Count The number of rows selected by the operation.
Estimated Row Size The estimated size of each row returned.
I/O Cost The cost of performing all of the I/O activity for this step.
CPU Cost The CPU cost for performing this step.
Number of Executes The number of times SQL Server performed this step while

processing the query.
Cost The cost for processing this step. You’ll also see the percentage

cost of this step relative to the whole query. (In our example, this
step used 26 percent of the total cost of processing our query.)

Subtree Cost The total cost for processing this step and all preceding steps.

Figure 15-5: Displaying additional information about a node.

TASK 15A-3:
Analyzing a Graphical Execution Plan

1. In SQL Query Analyzer, open the C:\Data\graphplan.sql script. This script
contains the same queries you used to view the output from SET
SHOWPLAN_ALL ON. We’re going to use it this time to display the
graphical execution plan in SQL Query Analyzer.

2. Choose Query→Show Execution Plan to turn on the graphical execution
plan in SQL Query Analyzer.

3. Highlight and execute the first query in the script file. This query enables
you to list all movies with a category number of 1.

366

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

4. In the Results pane, select the Execution Plan tab to display the graphical
execution plan for your query. You can see that SQL Server first used a seek
of the nonclustered index NC_category_num to identify the rows it needs to
retrieve the query’s data. (You can determine whether SQL Server used an
index seek or an index scan by pointing to the movie.NC_category_num
node.) It then used a bookmark lookup on the table’s clustered index to
retrieve the query’s rows.

5. Highlight and execute the next query to find all movies with names that
begin with “S.”

6. Select the Execution Plan tab.

7. How did SQL Server retrieve this query? (Hint: Point to the movie.CL_
title node to determine the action SQL Server performed with this
object.)

It used a seek of the table’s clustered index. The clustered index on the
movie table is already in order by movie_num, so using this index to retrieve
the query’s results set is the fastest method for retrieving the data.

8. Highlight and execute the query that retrieves all PG-rated movies.
Look at the execution plan.

9. What steps does SQL Server perform to retrieve this query’s results set?

SQL Server first performs a scan of the movie table’s clustered index to find
rows. It then used a filter operation to restrict the rows so that the results set
contains only those movies with a PG rating.

10. Highlight and execute the query that displays all category descriptions
and their numbers. Look at the execution plan.

Lesson 15: Optimizing Queries 367

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

11. How does SQL Server retrieve this query’s results set?

SQL Server first performs a scan of the category table. It uses a table scan
because no indexes are available to help optimize this query. Next, it sorts
the results set to display the categories in order by description.

12. Open a new Query window, and then close the window containing the
graphplan.sql script.

TOPIC 15B
Using Indexes to Optimize Queries
Now that we’ve examined how SQL Server goes about selecting a query’s execu-
tion plan, let’s take a look at some of the techniques you can use to improve a
query’s performance. One technique you can use to improve a query’s perfor-
mance is to create a covering index. A covering index is a nonclustered index
where the index key contains all of the columns necessary to satisfy a query.

But why do we say that the covering index has to be nonclustered? Well, let’s
think about how SQL Server goes about retrieving data to satisfy a query. In this
scenario, let’s assume that you’re querying the movie table and that you’ve
defined the indexes we show you in Figure 15-6. This figure shows you that we
have a clustered index on the movie table’s title column, and nonclustered
indexes on the category_num and movie_num columns respectively. If you
execute a query where SQL Server retrieves data based on the clustered index, it
accesses the data pages for the movie table directly—but it must retrieve all of a
row’s data and then filter out the columns that satisfy your query. On the other
hand, let’s say that you execute a query such as the following:

SELECT movie_num, title
FROM movie
WHERE category_num = 1

In this example, SQL Server uses the NC_category_num nonclustered index to
first identify the rows it must retrieve, and then retrieves the rows by performing
a bookmark lookup on the clustered index (which is the movie table itself). As
you can see, SQL Server is performing more I/O operations, so this execution
plan will take longer to process than one which uses only the clustered index.

But what if we created a nonclustered index that contained the movie_num, title,
and category_num columns? In this scenario, the nonclustered index’s keys would
contain all of the necessary information to satisfy our query. This means that
SQL Server would need to use only the nonclustered index to retrieve the query’s
results set and wouldn’t have to access the movie table at all. And, because the
nonclustered index key is smaller than the size of each row in the movie table,
this means that more of the nonclustered index key rows can fit on a data page as
compared to that of the movie table’s rows. So, retrieving the data to satisfy a
query from a nonclustered index’s pages requires less I/O than retrieving the data
from the table’s actual data pages.

covering index:
A nonclustered index where
the index key consists of all
of the values you select in a

query. For example, if you
execute the query SELECT

movie_num, title, rating
FROM movie, a covering
index for this query must
use the movie_num, title,
and rating columns as its

index key.

368

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 15-6: The movie table’s indexes.

You can determine whether an index covers a query or not by analyzing both the
execution plan for a query and the output generated by STATISTICS IO. If a
nonclustered index covers a query, you’ll see that SQL Server reads fewer pages
as compared to other indexes. You should try to keep the index key for a
nonclustered index that covers a query as small as possible in order to take
advantage of the reduced I/O.

Let’s take a look at some examples.

APPLY YOUR KNOWLEDGE 15-2

Determining if an Index Covers a Query
Objective: To create indexes based on the NewCustomer table to deter-

mine the difference in performance with an index that covers a
query.

Setup: You created the NewCustomer table.

1. In SQL Query Analyzer, open the C:\Data\cleanindex.sql script. This script
creates a stored procedure named CleanIndex that you can use to drop all
statistics and indexes for a given table in the Northwind database.

2. Execute the cleanindex.sql script file to create the CleanIndex stored
procedure.

3. Open a new Query window, and then close the window containing the
cleanindex.sql script file.

4. Open the C:\Data\indexcovers.sql script file.

5. Highlight and execute the query to delete the indexes and statistics for the
NewCustomer table.

6. Configure SQL Query Analyzer to display the query execution plan. (Choose
Query→Show Execution Plan.) Highlight and execute the query to create a
clustered index on the NewCustomer table.

7. Highlight and execute the query to turn on STATISTICS IO.

8. Highlight and execute the query to retrieve all rows with the CustomerID of
“ernsh1.”

Suggested time:
30 minutes

Lesson 15: Optimizing Queries 369

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

9. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed the query by using the clus-
tered index.

Statistic Value
Scan Count 1
Logical Reads 3
Index or Table Scan Index
Type of Index Operation Clustered Index Seek

10. Highlight and execute the next query to delete all statistics and indexes for
the NewCustomer table.

11. Now let’s create a nonclustered index and execute the same query so that we
can compare the statistics. Highlight and execute the query to create a
nonclustered index on the CustomerID column of the NewCustomer table.

12. Next, execute the same query to retrieve all rows with the CustomerID of
“ernsh1.”

13. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed the query using the
nonclustered index.

Statistic Value
Scan Count 1
Logical Reads 7
Index or Table Scan Index
Type of Index Operation Nonclustered Index Seek

14. Given the statistics you see in steps 9 and 13, which index is more efficient
for this query? Why?

The clustered index is more effıcient because SQL Server uses less I/O (fewer
logical reads) to retrieve the query’s results set.

15. Now let’s try both a clustered and a nonclustered index with a different
query. In SQL Query Analyzer, highlight and execute the query to remove
the statistics and indexes from the NewCustomer table.

16. Next, execute the query to create the clustered index on the CustomerID col-
umn again.

17. Highlight and execute the query to retrieve only the CustomerID column for
the CustomerID of “ernsh1.”

370

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

18. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed this new query using the
clustered index.

Statistic Value
Scan Count 1
Logical Reads 3
Index or Table Scan Index
Type of Index Operation Clustered Index Seek

19. Let’s generate the same statistics but by using a nonclustered index. Execute
the query to delete the NewCustomer table’s indexes and statistics and then
re-create the nonclustered index.

20. Highlight and execute the query to retrieve only the CustomerID column for
the CustomerID of “ernsh1.”

21. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed this new query using the
nonclustered index.

Statistic Value
Scan Count 1
Logical Reads 2
Index or Table Scan Index
Type of Index Operation Nonclustered Index Seek

22. Given the statistics you see in steps 18 and 21, which index is more efficient
for this query? Why?

For this new query, the nonclustered index is more effıcient. The
nonclustered index requires fewer I/Os to retrieve the results set because
SQL Server can satisfy the requirements of the query by using the
nonclustered index keys instead of accessing the table’s data pages directly.

23. Now let’s see which index provides us with better performance when we
retrieve a range of rows. In SQL Query Analyzer, execute the query to
remove all statistics and indexes, and then re-create the clustered index.

24. Highlight and execute the query to retrieve all CustomerID columns for cus-
tomers with IDs between “ernsh1” and “folig1.”

Lesson 15: Optimizing Queries 371

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Statistic Value

Logical Reads 50
Index or Table Scan Index
Type of Index Operation Clustered Index Seek

26. Let’s generate the same statistics but by using the nonclustered index.
Execute the query to delete the NewCustomer table’s indexes and statistics
and then re-create the nonclustered index.

27. Next, highlight and execute the query to retrieve all CustomerID columns for
customers with IDs between “ernsh1” and “folig1.”

28. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed this third query using the
nonclustered index.

Statistic Value
Scan Count 1
Logical Reads 10
Index or Table Scan Index
Type of Index Operation Nonclustered Index Seek

29. Given the statistics you see in steps 25 and 28, which index is more efficient
for this query? Why?

For this third query, the nonclustered index is significantly more effıcient.
The nonclustered index requires fewer I/Os to retrieve the results set because
SQL Server can satisfy the requirements of the query by using the
nonclustered index keys instead of accessing the table’s data pages directly.

Because this query retrieves a greater number of rows, the advantage to
having a nonclustered index that covers the query becomes clearer: the
nonclustered index contains all of the information SQL Server needs to sat-
isfy the query (the CustomerID column, in this scenario). Because the
nonclustered index contains only the index key values on its pages, SQL
Server can fit more rows per page. In contrast, the clustered index can’t fit
as many rows per page (because each row contains all of the table’s
columns). As a result, SQL Server must retrieve and process more pages in
order to retrieve the query’s results set.

30. Open a new Query window, and then close the Query window containing the
indexcovers.sql script file.

372

Scan Count 1

25. In the table below, use the information you see on the Messages and Execu-
tion Plan tabs in the Results pane to record the query’s statistics. This
information tells you how SQL Server executed this third query using the
clustered index.

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Designing Indexing to Optimize Queries
If you’ve been given the task to design the indexing for a database, one of the
first things you should do is to get as familiar with the data as possible—
including the queries your users will execute, along with the priorities for each
query. By reviewing the data and the queries, you can develop an idea of what
types of indexes will help speed up those queries. Next, you should evaluate how
selective the WHERE clauses are for the queries. WHERE clauses that are more
selective are better candidates for indexing.

You should next decide whether or not you want to create an index. If you recall
from the “Implementing Indexes” lesson, your server does incur a certain amount
of overhead for maintaining each index. For this reason, you shouldn’t create an
index unless its benefits outweigh its overhead. Don’t create an index on a col-
umn that isn’t highly selective (meaning it contains very few unique values). You
also shouldn’t create indexes on columns that are very wide.

After you’ve decided to create an index, your next decision is to select the
index’s key column (or columns). You should create indexes on columns that you
use in table joins (typically foreign keys). In addition, you should consider creat-
ing indexes on columns that your users query frequently. If you’ve decided to
create a composite index (consisting of multiple columns), make sure that you
index the columns in the order that you query them.

Your last task when designing indexing is to monitor the performance of your
indexes and queries. It’s possible that an index you thought would improve your
server’s performance doesn’t, so it’s important that you periodically analyze
performance. You can analyze index performance by using commands such as
SET SHOWPLAN_ALL ON, SET STATISTICS IO ON, and SET
STATISTICS TIME ON.

TASK 15B-1:
Designing Indexing

1. After analyzing your users’ queries, you’ve determined that the majority
of the queries retrieve the Contact Name and Phone columns from the
Customers table. You’ve defined a clustered index on the customers
table’s SalesRepID column. Should you create an index to improve the
performance of these queries? If yes, what factors should you consider
when selecting the index’s key?

I should create a composite index to improve the performance of these
queries. The order of the columns in the composite index’s key should reflect
the order the columns are queried.

2. You have created an index to help improve the performance of a query.
You’d like to determine whether SQL Server is using the index and its
impact on performance. What should you do?

I should use theSET SHOWPLAN_ALL ON statement to verify that SQL
Server is using the index to retrieve the query’s results set. I could also use
theSET STATISTICS IO ON statement to see the I/O operations SQL
Server must perform when processing the query.

Lesson 15: Optimizing Queries 373

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Overriding the Query Optimizer
If necessary, you can use hints to help the query optimizer choose the most effi-
cient query execution plan. Although Microsoft refers to these tips as “hints,” the
query optimizer doesn’t have much choice in the matter: it must use the index
you specify in your hint. For example, if you use a hint to specify that you want
SQL Server to use a specific index in a query, the query optimizer will always
use that index—even if you later add a more efficient index that would make the
query run faster.

Because of the improvements in the query optimizer in SQL Server 2000,
Microsoft recommends that you limit the use of hints. Instead, let the query
optimizer find the best possible execution plan for you. If you suspect that the
query optimizer isn’t selecting the best possible execution plan, you should
double-check the following before you use hints to override the query optimizer:

• Are the index statistics current? You should either enable the auto-update
statistics option for the database or manually force SQL Server to update the
statistics.

• Recompile your stored procedures.

• Evaluate your indexes to determine if they’re effective.

• Review your queries and rewrite them if necessary.

You use table hints to force SQL Server to perform a table scan, use a specific
index, or use a specific locking method. For example, you can use the following
syntax to specify an index hint:

USE database_name
GO
SELECT column_list
FROM table_name
WITH (INDEX(index_name or index_id))
WHERE condition

You can use either the index’s name or ID number in the INDEX() clause. For
example, you could use the following query to specify that you want SQL Server
to use the CL_title index to retrieve the results set:

USE movies
GO
SELECT title, movie_num
FROM movie
WITH (INDEX(CL_title))
WHERE title LIKE 'S%'

374

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 15-3

Using Query Hints

1. Design and execute a query to use the movies database and list each movie’s
title, rating, and category from the movie table in order by category. Include
the SET SHOWPLAN_ALL ON statement so that you can see how SQL
Server will process this query. What query did you use? How will SQL
Server retrieve this query’s results set?

USE movies
GO
SET SHOWPLAN_ALL ON
GO
SELECT title, rating, category_num
FROM movie
ORDER BY category_num

SQL Server will retrieve this query’s results set by using a clustered index
scan of the CL_title index.

2. Write a query to list each movie’s title, rating, and category from the movie
table in order by category; include a hint in your query. (You can use
sp_helpindex movie to identify the name of the index you want to
use.) What query did you use?

SELECT title, rating, category_num
FROM movie WITH (INDEX(NC_category_num))
ORDER BY category_num

SQL Server will now retrieve this query’s results set by performing a
nonclustered index scan of the NC_category_num index.

3. Turn off the display of the query execution plan.

SET SHOWPLAN_ALL OFF

4. Close all open windows.

Summary
In this lesson, you learned the role of the query optimizer in processing que-
ries: it’s responsible for selecting the lowest-cost query execution plan. You
also learned how to analyze a query’s execution plan, and how to design
indexes to improve query performance.

Suggested time:
5 minutes

Script file: hints.sql.

Lesson 15: Optimizing Queries 375

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

LESSON 15 REVIEW
15A You would like to determine how many I/O operations SQL Server must

perform to retrieve the results set for a complex query. What should you
do?

I should execute theSET STATISTICS IO ON statement and then
execute my query. SQL Query Analyzer will then display the number of logi-
cal reads and physical reads my server performs to retrieve the query’s
results set.

15B What steps should you take before you resort to adding table hints to a
query?

I should first make sure that my index statistics are current. In addition, I
should recompile my stored procedures. I should also consider the design of
my queries and evaluate the effectiveness of my indexes.

376

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Analyzing Queries

Overview
In this lesson, you’ll learn how to analyze in detail the queries that use the
AND and OR keywords and how to optimize such queries. You’ll also learn
the steps SQL Server uses to perform table joins and how to optimize them.

Objectives
To analyze queries, you will:

16A Analyze and optimize the steps performed by SQL Server in AND, OR,
and table join queries.

In this topic, you’ll learn how the query optimizer selects an execution
plan when you use complex search conditions with the AND and OR
keywords. You’ll also examine the strategies the query optimizer can use
when joining tables.

Data Files:
gen_labcustomer.sql
cleanindexmovie.sql
and_queries.sql
or_queries.sql
invoices.sql
gen_labinvoice
joinlab.sql

Lesson Time:
2 hours

LESSON

16

Lesson 16: Analyzing Queries 377

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TOPIC 16A
Analyzing the Performance of Queries
You’ll sometimes hear the WHERE clause of a query referred to as a search condi-
tion because you use the WHERE clause of a query to search for only specific
rows instead of all rows from a table. You can specify multiple search criteria in
the WHERE clause by using the AND or OR keywords. In order for you to analyze
and optimize the performance of AND queries, it’s important that you understand
the tasks the query optimizer performs when it encounters such queries. First of
all, the query optimizer returns all of the rows that meet the criteria you specify
in the WHERE clause. For example, if you execute the following query, the query
optimizer selects all movies that have a rating of PG and a category_num of 1:

SELECT title, rating
FROM movie
WHERE rating = 'PG' AND category_num = 1

As the query optimizer selects the rows from the table, it progressively filters
them based on the values in the WHERE clause. So in the preceding statement, the
first thing the query optimizer does is to select all movies with a rating of PG.
Then from this set of rows, it selects those movies that also have a category_num
of 1.

In order to optimize the performance of processing a query with a WHERE clause
consisting of multiple search conditions, the query optimizer can use an index for
each search condition. In fact, if you have multiple indexes, the query optimizer
can use those indexes to optimize retrieving the rows for each search condition.
Depending on the search conditions, the query optimizer can use one index or
multiple indexes to optimize retrieving the data. If the query optimizer uses mul-
tiple indexes, it will retrieve the results set by performing the following steps:

1. The query optimizer will search for the rows that meet each search condition
by using the appropriate index for that column.

2. Next, the query optimizer sorts the index keys it retrieves for each search
condition.

3. The query optimizer combines the index keys from each search condition.

4. Finally, the query uses the index keys to retrieve the data from the table by
performing a bookmark lookup.

When it comes to optimizing queries that use multiple search conditions by using
the AND keyword, your best bet is to try to use at least one search condition
that’s highly selective—and define an index on that column. Another strategy you
can implement is to experiment with creating several different types of indexes
and generating query statistics in each scenario. For example, you might first try
creating several single-column indexes and record your query statistics. Then, try
creating a single composite index and record your query statistics with only the
one index. This strategy will enable you to determine which indexing strategy
works best for your data.

You’ll typically find that you
get better performance by

implementing multiple
indexes if the search

conditions you specify with
the AND keyword aren’t very

selective.

378

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 16-1

Analyzing AND Queries
Objective: To create a variety of indexes and then execute queries to

determine which types of indexes improve each query’s
performance. You’ll also see which types of queries use your
indexes more efficiently.

Setup: You’re logged on to Windows 2000 as student#. You’ve cre-
ated a database named movies and tables within it named
movie, category, customer, rental, and rental_detail. You’ve
defined primary key, foreign key, default, and check con-
straints on the tables and created nonclustered indexes based
on your primary keys. You have imported data into the tables.
You have created database diagrams for both the movies and
pubs databases.

1. In SQL Query Analyzer, open and execute each of the following script files:

• C:\Data\gen_labcustomer.sql. This script file creates a new table within
the movies database named LabCustomer. This table consists of 10,000
rows. Here’s the structure of the LabCustomer table:

• C:\Data\cleanindexmovie.sql. This script file creates the CleanIndex
stored procedure in the movies database. (You will use the CleanIndex
stored procedure to drop all statistics and indexes on the LabCustomer
table.)

2. Open a new Query window, and close any Query windows you have open
that contain script files.

Suggested time:
30 minutes

The student data directory
contains the and_queries.
sql script file. This script
file has all of the
commands students
execute throughout this lab.
If you’re running short on
time, have students open
this script file and highlight
and execute the appropriate
queries.

Lesson 16: Analyzing Queries 379

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

3. Execute the following queries to delete all indexes and statistics and then
create nonclustered indexes on the LabCustomer table:

EXEC CleanIndex LabCustomer
GO
CREATE NONCLUSTERED INDEX NC_Lname

ON LabCustomer(LName)
CREATE NONCLUSTERED INDEX NC_SalesRepID

ON LabCustomer(SalesRepID)
CREATE NONCLUSTERED INDEX NC_CustomerID

ON LabCustomer(CustomerID)
GO

You’re creating three single-columned indexes on the LabCustomer table.

4. Turn on STATISTICS IO by executing the following query:

SET STATISTICS IO ON

5. Configure SQL Query Analyzer to display the graphical execution plan for a
query. (Choose Query→Show Execution Plan.)

6. Execute the following query:

SELECT *
FROM LabCustomer
WHERE LName LIKE 'e%'
AND SalesRepID > 350
AND CustomerID > 6500

You use this query to retrieve customers from the LabCustomer table with
last names that begin with E, and whose SalesRepID is greater than 350, and
whose CustomerID is greater than 6500.

7. Select the Execution Plan tab and take a look at your query’s execution plan.
This plan tells you that SQL Server used the NC_LName and
NC_SalesRepID nonclustered indexes to retrieve the index key values. After
retrieving the information from the two indexes, the query optimizer com-
bined the index key values (this is the step performed by the Hash Match/
Inner Join node). Next, it used the index key values to perform a bookmark
lookup on the LabCustomer table to retrieve the rows indicated by the index
keys. Finally, it applied a filter to those rows to select only those rows with
a CustomerID greater than 6500.

380

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Record the information you see in the Results pane’s Execution Plan and
Messages tabs in the following table.

Statistic Value
Number of Rows Retrieved 9
Scan Count 2
Logical Reads 15
Number of Indexes Used (if any) 2
Names of Indexes Used (if any) NC_LName; and NC_SalesRepID

9. Now let’s take a look at how SQL Server would process a query that uses
only one of the search conditions instead of all three. Execute the following
query:

SELECT LName
FROM LabCustomer
WHERE LName LIKE 'e%'

This query enables you to see how the query optimizer chooses to retrieve
the data when your WHERE clause specifies only the Name column.

10. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this new query in the following table.

Statistic Value
Number of Rows Retrieved 374
Scan Count 1
Logical Reads 3
Number of Indexes Used (if any) 1
Names of Indexes Used (if any) NC_LName
Does this Index Cover the Query? Yes

11. Next, execute the following query to retrieve only those rows with a
SalesRepID greater than 350:

SELECT SalesRepID
FROM LabCustomer
WHERE SalesRepID > 350

12. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this new query in the following table.

Statistic Value
Number of Rows Retrieved 149
Scan Count 1
Logical Reads 3
Number of Indexes Used (if any) 1
Names of Indexes Used (if any) NC_SalesRepID
Does this Index Cover the Query? Yes

The number of rows your
query retrieves will vary
depending on the last names
generated when you created
the LabCustomer table. Your
statistics should be similar
to the ones you see in this
table. This applies
throughout the lab.

Lesson 16: Analyzing Queries 381

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

13. Execute the following query to see how SQL Server retrieves the rows when
you use a WHERE clause that’s based on the CustomerID column:

SELECT CustomerID
FROM LabCustomer
WHERE CustomerID > 6500

14. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this new query in the following table.

Statistic Value
Number of Rows Retrieved 3500
Scan Count 1
Logical Reads 8
Number of Indexes Used (if any) 1
Names of Indexes Used (if any) NC_CustomerID
Does this Index Cover the Query? Yes

15. In the following table, summarize the results of each of the queries so that
you can compare your results.

Statistic
Complete
Query LName Only

SalesRepID
Only

CustomerID
Only

Number of Rows
Retrieved

9 374 149 3500

Scan Count 2 1 1 1
Logical Reads 15 3 3 8
Names of
Indexes Used

NC_LName;
and NC_
SalesRepID

NC_LName NC_
SalesRepID

NC_
CustomerID

Number of
Indexes Used

2 1 1 1

Given these statistics, why do you think the query optimizer didn’t use the
NC_CustomerID index when it selected the execution plan for the complete
query (the query consisting of three search conditions)?

SQL Server doesn’t use the NC_CustomerID index for this query because the
search condition isn’t selective enough. The search condition returns 3,500
rows.

Compare the number of logical reads SQL Server performs for the queries
with only one search condition to the query with all three search conditions.
Why is the I/O higher for the query with all three search conditions?

The I/O is higher for the query with all three search conditions because SQL
Server had to access the table directly by using a bookmark lookup. In other
words, SQL Server couldn’t retrieve the rows by accessing the nonclustered
indexes’ pages. Instead, SQL Server accessed the table directly. In contrast,
with each of the queries that used only one search condition, SQL Server
could retrieve the data by using only the relevant nonclustered index’s
pages.

382

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

16. Now let’s take a look at what happens when you execute a query that
searches both the LName and SalesRepID columns. Execute the following
query:

SELECT LName
FROM LabCustomer
WHERE LName LIKE 'e%'
AND SalesRepID > 350

17. In the following table, record the information you see in the results pane’s
Execution Plan and Messages tabs for this new query. In addition, record the
information for the original three search condition query so that you can
compare the results.

Statistic
Value for New
Query

Value for Query with All Three
Search Conditions

Number of Rows
Retrieved

9 9

Scan Count 2 2
Logical Reads 6 15
Number of Indexes
Used (if any)

2 2

Names of Indexes
Used (if any)

NC_LName; and
NC_SalesRepID

NC_LName; NC_SalesRepID

Why does this new query use less I/O than the original query?

SQL Server doesn’t use as much I/O for the new query because it can
retrieve this query’s results set by using only the two indexes; it doesn’t have
to access the LabCustomer table directly. In contrast, for the query with the
three search conditions, SQL Server must first use the indexes and then
query the LabCustomer table directly to retrieve the query’s results set.

18. Let’s try a new query. Execute the following query:

SELECT *
FROM LabCustomer
WHERE LName LIKE 'e%'
AND SalesRepID > 350
AND CustomerID > 9500

19. Select the Execution Plan tab and take a look at this new query’s execution
plan. (You might want to compare it to the execution plan you see in step
7.) This plan tells you that it used all three nonclustered indexes to retrieve
the query’s results set.

Lesson 16: Analyzing Queries 383

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

20. In the following table, record the information you see in the results pane’s
Execution Plan and Messages tabs for this new query.

Statistic Value
Number of Rows Retrieved 1
Scan Count 3
Logical Reads 10
Number of Indexes Used (if any) 3
Names of Indexes Used (if any) NC_SalesRepID; NC_LName; and NC_

CustomerID
Do the Indexes Cover the Query? Yes

Why does SQL Server use all three indexes to retrieve this query’s results
set?

SQL Server uses all three indexes because the CustomerID search condition
is much more selective in this query. The CustomerID > 9500 eliminates
9500 of the rows in the LabCustomer table.

21. Execute the following query to drop the NC_CustomerID index and replace
it with a clustered index:

DROP INDEX LabCustomer.NC_CustomerID
GO
CREATE CLUSTERED INDEX CL_CustomerID
ON LabCustomer(CustomerID)

You now have three indexes on the LabCustomer table: a clustered index on
the CustomerID column and nonclustered indexes on the SalesRepID and
Name columns respectively.

22. Execute the following query so that you can analyze the execution plan with
a clustered index:

SELECT *
FROM LabCustomer
WHERE LName LIKE 'e%'
AND SalesRepID > 350
AND CustomerID > 9500

23. In the following table, record the information you see in the results pane’s
Execution Plan and Messages tabs for this new query. In addition, record the
information for the three search condition query from step 20 so that you
can compare the results.

Statistic
Value for New
Query

Value for Query with All Three
Search Conditions

Number of Rows
Retrieved

1 1

Scan Count 1 3
Logical Reads 4 10
Number of Indexes
Used (if any)

1 3

384

Names of Indexes
Used (if any)

CL_CustomerID NC_SalesRepID; NC_LName; and NC_
CustomerID

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Did creating a clustered index improve the performance of this query? How
can you tell?

The clustered index improved the performance of this query. I can tell
because SQL Server used fewer I/O operations to retrieve the results set for
this query.

24. Clear the Query window.

Analyzing OR Queries
In contrast to the AND keyword, the query optimizer returns the rows that meet
any of the search conditions in the WHERE clause when you use the OR keyword.
This means that the query optimizer progressively increases the number of rows it
returns as it processes each search condition. For example, in the following query,
the query optimizer will first select all movies that have a rating of PG and then
select all movies that have a rating of G:

SELECT title, rating
FROM movie
WHERE rating = 'PG' OR rating = 'G'

You should be aware that with an OR query, the query optimizer will always per-
form a table scan or a clustered index scan if you don’t have an index for one of
the search conditions (or if none of the indexes are useful). Depending on the
search conditions, the query optimizer can use one index or multiple indexes to
optimize retrieving the data. As you saw with the AND keyword, if the query
optimizer uses multiple indexes, it will retrieve the results set by performing the
following steps:

1. The query optimizer will search for the rows that meet each search condition
by using the appropriate index for that column.

2. Next, the query optimizer sorts the index keys it retrieves for each search
condition.

3. The query optimizer combines the index keys from each search condition.

4. Finally, the query uses the index keys to retrieve the data from the table by
performing a bookmark lookup.

SQL Server’s query optimizer
automatically converts a
query that uses the IN key-
word into an OR query.

Lesson 16: Analyzing Queries 385

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 16-2

Analyzing OR Queries
Objective: To analyze the execution plans and statistics for queries that

use the IN and OR keywords.

Setup: You’ve created the LabCustomer table and the CleanIndex
stored procedure in the movies database.

1. In SQL Query Analyzer, execute the following query to delete all statistics
and indexes on the LabCustomer table:

EXEC CleanIndex LabCustomer

2. Execute the following query to create a unique nonclustered index on the
CustomerID column:

CREATE UNIQUE NONCLUSTERED INDEX NC_CustomerID
ON LabCustomer (CustomerID)

3. Turn on STATISTICS IO by executing the following query:

SET STATISTICS IO ON

4. If necessary, configure SQL Query Analyzer to display the graphical execu-
tion plan for a query. (Choose Query→Show Execution Plan.)

5. Execute the following query:

SELECT *
FROM LabCustomer
WHERE CustomerID = 1575
OR TerritoryID = 5

6. Look at the graphical execution plan. How did SQL Server retrieve this que-
ry’s results set? Why does the query optimizer select this method?

SQL Server retrieved the query’s results set by performing a table scan
because I haven’t defined an index for one of the search conditions
(TerritoryID). With anOR query, SQL Server always performs a table scan if
no index is available for one of the search conditions.

7. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this OR query in the following table.

Statistic Value
Number of Rows Retrieved 1000
Scan Count 1
Logical Reads 44
Number of Indexes Used (if any) 0
Names of Indexes Used (if any) None
Does the Index Cover the Query? No

Suggested time:
30 minutes

Script file: or_queries.sql.

The number of rows your
query retrieves will vary

depending on the last names
generated when you created

the LabCustomer table. Your
statistics should be similar
to the ones you see in this

table. This applies
throughout the lab.

386

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Execute the following query:

SELECT *
FROM LabCustomer
WHERE CustomerID = 1575
OR SalesRepID = 22

9. Look at the graphical execution plan. How did SQL Server retrieve this que-
ry’s results set? Why does the query optimizer select this method?

Even though this query is more selective, SQL Server still retrieved the que-
ry’s results set by performing a table scan because I haven’t defined an
index for one of the search conditions (SalesRepID).

10. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this OR query in the following table.

Statistic Value
Number of Rows Retrieved 2
Scan Count 1
Logical Reads 44
Number of Indexes Used (if any) 0
Names of Indexes Used (if any) None
Does the Index Cover the Query? No

11. Compare the values you see in the tables in step 7 and step 10. Do you see
any difference in these queries’ execution plans? Why or why not?

No. Both queries used the same number of logical reads to retrieve the
results set even though one query returns 1,000 rows and the other returns
only a few rows. This is because I haven’t created an index that covers one
of the search conditions in both queries.

12. Execute the following queries to drop the indexes on the LabCustomer table
and then create new indexes:

SET STATISTICS IO OFF
GO
EXEC CleanIndex LabCustomer
CREATE UNIQUE NONCLUSTERED INDEX NC_CustomerID
ON LabCustomer(CustomerID)
CREATE CLUSTERED INDEX CL_SalesRepID
ON LabCustomer(SalesRepID)

13. Now execute a new query to see if SQL Server uses these indexes:

SET STATISTICS IO ON
GO
SELECT *
FROM LabCustomer
WHERE CustomerID = 1575
OR SalesRepID = 22

Lesson 16: Analyzing Queries 387

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

14. Look at the graphical execution plan. How did SQL Server retrieve this que-
ry’s results set? Why does the query optimizer select this method?

SQL Server retrieved the query’s results set by using both the
NC_CustomerID and CL_SalesRepID indexes.

15. In the following table, record the information you see in the results pane’s
Execution Plan and Messages tabs for this OR query.

Statistic Value
Number of Rows Retrieved 2
Scan Count 2
Logical Reads 8
Number of Indexes Used (if any) 2
Names of Indexes Used (if any) NC_CustomerID; and CL_SalesRepID
Does the Index Cover the Query? Yes

16. Compare the values you see in the tables in step 10 and step 15. (These are
the results for the same query but with different indexes.) Do you see any
difference in these queries’ execution plans? Why or why not?

Yes. The second query (where I have indexes on the CustomerID and
SalesRepID columns) uses much less I/O than the query for which I have
only one index. That’s because the query optimizer can’t use an index that
covers only one of the search conditions in anOR clause.

17. Execute the following query to drop the existing indexes and create new
ones:

EXEC CleanIndex LabCustomer
CREATE UNIQUE NONCLUSTERED INDEX NC_CustomerID
ON LabCustomer(CustomerID)

18. Now let’s try a query that uses the IN keyword to see how the query
optimizer processes it. Execute the following query:

SELECT *
FROM LabCustomer
WHERE CustomerID IN (1001,1002,1003,1004,1005,1101,1102,

1103,1104,1105,1106,1107,1108,1109,1110,
1200,1201,1202,1203,1204,1205,1206,1207,
1300,1301,1302,1303,1304,1305,1306,1307,
1308,1400,1401,1402)

19. Record the information you see in the results pane’s Execution Plan and
Messages tabs for this query in the following table.

Statistic Value
Number of Rows Retrieved 35
Scan Count 35
Logical Reads 105
Number of Indexes Used (if any) 1
Names of Indexes Used (if any) NC_CustomerID
Do the Indexes Cover the Query? Yes

388

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

20. Select the Execution Plan tab and take a look at the query execution plan.

The values generated by STATISTICS IO indicate that SQL Server used a
total of 105 logical reads to retrieve the data. What steps do you think gener-
ated this I/O on your server?

SQL Server first scanned the table once for each of the values in theIN
clause of my query (for a total of 35 I/O). Next, it read the leaf-level pages
of the nonclustered index to find the row identifier (RID) for each row
(which generated another 35 I/O operations). Finally, SQL Server used a
bookmark lookup operation to retrieve the rows (which generated the final
35 I/O operations).

21. How would the execution plan change if you created an index that covered
this query?

SQL Server would eliminate the bookmark lookup step in the query’s execu-
tion plan if I created an index that covers this query.

22. Clear the Query window.

Analyzing Table Join Queries
Now that we’ve looked at how you go about analyzing and optimizing AND and
OR queries, let’s move on to how you perform those same tasks on JOIN
queries. The query optimizer evaluates the following when you execute a table
join query:

• How selective is your join clause?

• What’s the density of your join clause?

• Do you have any relevant indexes?

• What kind of search conditions (if any) are you using in a WHERE clause?

The query optimizer determines how selective your join clause is by analyzing
what percentage of rows in one table are joined to a single row in the other table.
The query optimizer considers a join clause highly selective if it returns only a
few rows. Likewise, a join clause has low selectivity if it returns many rows.
Next, the query optimizer identifies the density of your join clause by calculating
the average percentage of duplicates in the joined tables. The query optimizer
considers a join to have high density if there are a large number of duplicates in
both tables (which also means that the join isn’t highly selective). In contrast, a
join has low density if there are few duplicates between the tables (which means
that the join is highly selective). You can think of selectivity and join density as
being inversely proportional: a join has high selectivity if it has a low join den-
sity, and it has low selectivity if it has a high join density.

So what does all this mean? If a query has a low join density, the query
optimizer can retrieve the data by using either a clustered or a nonclustered
index. On the other hand, if a query has a high join density, the query optimizer
will typically use only a clustered index to retrieve the data.

Lesson 16: Analyzing Queries 389

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

When the query optimizer encounters a join in a query, it can use one of three
strategies for joining the tables:

• A nested loop join

• A merge join

• A hash join

Let’s take a look at each of these strategies in more detail.

Nested Loop Joins
With a nested loop join, SQL Server processes your query as a loop. This means
that it takes one row from the first table (also called the outer table), and then
uses that row to scan the second table (called the inner table) for matching rows.
On the next iteration, SQL Server then takes the next row from the outer table
and uses it to scan the inner table again for matching rows, and so on. Because
SQL Server selects a row from one table and then finds the matching rows in the
second table, you’ll sometimes hear a nested loop join referred to as a one-to-
many join. SQL Server doesn’t necessarily perform a table scan to retrieve these
rows—instead, it typically uses an index. In fact, if the query optimizer doesn’t
find a useful index, it typically uses a hash join strategy instead of the nested
loop join strategy. In general, a nested loop join strategy provides you with the
best performance as compared to the other join strategies if your query operates
on a small number of rows. Figure 16-1 shows an example of the graphical query
execution plan when SQL Server uses the nested loop join strategy.

Figure 16-1: The graphical execution plan for a query that uses the nested loop join
strategy.

You’ll find that the query optimizer uses a nested loop join strategy when both of
the following conditions are met: your outer table contains a small number of
rows, and the inner table contains a larger number of rows and is indexed. Given
the choice between the two tables in a join condition, the query optimizer will
always use the table with fewer rows as the outer table.

Merge Joins
With a merge join, SQL Server retrieves a row from each table in the table join
and evaluates whether or not the rows meet the join condition. For example, let’s
say that you execute the following query:

SELECT columns
FROM rental JOIN rental_detail
ON rental.invoice_num = rental_detail.invoice_num

If SQL Server uses a merge join strategy to process this join, it begins by select-
ing the first row from the rental table and the first row from the rental_detail
table. Next, it checks to see if the rental table row’s invoice_num column equals
the rental_detail row’s invoice_num column. If these columns are equal, SQL
Server moves to the next row in both tables. But, if the rental table’s invoice_

390

num is less than the rental_detail table’s invoice_num, SQL Server retrieves the

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

next row in the rental table. On the other hand, if the rental_detail table’s
invoice_num is less than the rental table’s invoice_num, SQL Server retrieves the
next row in the rental_detail table. SQL Server uses a temporary table to store the
output of the merge join during processing. As you can see, for a merge join to
work, both tables must be sorted in order by the column you specify in the join
condition. (In our example, the join condition is
ON rental.invoice_num = rental_detail.invoice_num.) If the
tables aren’t sorted in order by the join condition, but the query optimizer deter-
mines that the merge join strategy will give the best performance, it will sort the
tables first and then use a merge join.

Other than cross joins and full joins, the query optimizer can use a merge join for
all types of join operations including those you specify with the UNION keyword.
The query optimizer can select a merge join for one-to-one, one-to-many, and
many-to-many joins. You’ll find that you see very fast performance with a merge
join. If the query optimizer must first sort the join tables, this performance can
come at a high cost. The query optimizer typically uses a merge join when you
have two tables with large amounts of data that are sorted by the column you
specify in the join condition. We show you a query execution plan where SQL
Server chose the merge join strategy in Figure 16-2.

Figure 16-2: The graphical execution plan for a query that uses the merge join strategy.

Hash Joins
SQL Server uses a hash join for processing a table join whenever it doesn’t find
any useful indexes on either of the tables. The query optimizer will also choose a
hash join, shown in Figure 16-3, if it determines that it’s the most efficient table
join strategy as compared to the nested loop and merge joins strategies. With a
hash join, SQL Server designates the smaller of the tables as the build input, and
the larger table as the probe input. SQL Server determines which table is smaller
by analyzing column and index statistics for both tables. Next, it stores the build
input table (the smaller table) into memory; at this point, the build input is called
the hash table. SQL Server then stores the relevant columns from the build input
table into a portion of the hash table called the hash bucket. SQL Server places
these rows into the hash buckets based on a hash key value. This value enables
SQL Server to essentially index the rows within the hash bucket.

built input:
The smaller of two tables in
a hash join.

probe input:
The larger of two tables in a
hash join.

Lesson 16: Analyzing Queries 391

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure 16-3: The graphical execution plan for a query that uses the hash join strategy.

After all of this prep work, SQL Server is now ready to process the table join.
The first thing it does is to read a row from the probe input table (the larger of
the tables). Next, it performs a hash algorithm against this row to generate a hash
key value. SQL Server then uses this hash key value to find the appropriate hash
bucket for that value and then looks to see if there is a matching row from the
build input table within that hash bucket. Finally, it returns the row only if it
finds a match between the row from the probe input table and a row in the hash
bucket.

Just as you saw with merge joins, you’ll find that you see very fast performance
with a hash join. This is because it uses hash buckets along with hash keys to
dynamically index the build input table’s rows. Also like a merge join, SQL
Server can use a hash join for all types of joins including those that use the
UNION keyword, but not for cross and full joins. A hash join can also perform
such tasks as grouping data and removing duplicates.

If both tables in your JOIN statement are similar in size, the performance of a
hash join is equivalent to that of a merge join. On the other hand, if the size of
the two tables are different, you’ll see a significant performance improvement
with a hash join as compared to a merge join. SQL Server uses hash joins to effi-
ciently process large amounts of rows that aren’t sorted and for which you
haven’t defined any indexes.

Forcing a Join Strategy with Hints
As you saw with table hints, you can force SQL Server to use a specific join
strategy instead of letting the query optimizer select for you. You use the follow-
ing syntax to force SQL Server to use a specific join strategy:

SELECT column list
FROM table1 join_type [MERGE | LOOP | HASH] JOIN table2
ON join condition

For example, you can use the following statement to force SQL Server to use the
merge join strategy:

SELECT m.movie_num, c.description
FROM movie AS m INNER MERGE JOIN category AS c
ON m.category_num = c.category_num

If you use a join hint, you must specify the join type (such as INNER or
OUTER). Microsoft recommends that you not specify join hints. Instead, you
should let the query optimizer select the appropriate join strategy based on the
volume of data in all tables, the available indexes, and the statistics SQL Server
generates.

392

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

APPLY YOUR KNOWLEDGE 16-3

Analyzing Table Joins
Objective: To analyze the join strategies the query optimizer selects for

different table join queries.

1. In SQL Query Analyzer, open the C:\Data\invoices.sql script. This script cre-
ates a table named LabInvoice along with several stored procedures we use
to automatically generate rows in this table. Execute this script.

2. Open the C:\Data\gen_labinvoice.sql script. This script creates 25,000 rows
in the LabInvoice table. Execute the script file. Because this script file gener-
ates a large amount of data, it will take several minutes to complete. Wait
until this script is done before continuing.

3. Open the C:\Data\joinlab.sql script. You’re going to use this script file to
perform the remaining steps of this lab.

4. Highlight and execute the lines in the script file to remove all statistics and
indexes from the LabCustomer and LabInvoice tables. (These are the lines
that begin with EXEC CleanIndex.)

5. You’re going to build new indexes on both the LabCustomer and the
LabInvoice tables. But before you do, you must increase the size of the
movies database’s transaction log file. (Otherwise, because the LabInvoice
table is so big, you’ll run out of transaction log space when you attempt to
index the table.) Highlight and execute the query to configure the movies
transaction log file to support unlimited file growth.

6. Highlight and execute the queries to create indexes on both the LabCustomer
and the LabInvoice tables. This query enables you to create the following
indexes:

• A clustered index on the LName and FName columns in the
LabCustomer table.

• A nonclustered index on the CustomerID column in the LabCustomer
table.

• A clustered index on the CustomerID column in the LabInvoice table.

• A nonclustered index on the Invoice_num column in the LabInvoice
table.

The last part of this query backs up the movies database’s transaction log
using the WITH TRUNCATE_ONLY option. This statement clears the inac-
tive portion of the transaction log.

7. Highlight and execute the SET STATISTICS IO ON query to turn on the
statistics information. Choose Query→Show Execution Plan to configure
SQL Query Analyzer to display the graphical execution plan for your
queries.

Suggested time:
15 minutes

Depending on the invoices
generated in this lab, your
students might not see any
rows in the results set for
the different table joins.
You should emphasize to
the students that the point
of this lab is for them to
analyze the query plans and
not the results of the
queries. The query
execution plans are the
same whether or not SQL
Server returns any rows.

Lesson 16: Analyzing Queries 393

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

8. Highlight and execute the query to display the last name for the customer
with a CustomerID of 4575. (The script you ran to create the LabCustomer
table’s data generates eight random characters for each customer’s last name.
For this reason, each time you run the gen_labcustomer.sql script you’ll get
a different last name for customer 4575.)

9. Highlight and execute the table join query. Make sure that you edit the query
to insert a valid value for the customer’s last name in the WHERE clause for
this query. Don’t worry if your query doesn’t show any rows in the results
set. The focus of this lab is on the query execution plan and statistics for
table joins. The query execution plan is the same regardless of whether your
query returns any rows.

10. Look at the execution plan for the table join query. What join strategy did
the query optimizer select for this query? Why do you think it selected this
strategy?

The query optimizer used a nested loop join strategy to retrieve the results
set. It chose the nested loop join strategy because the LabCustomer table is
much smaller than the LabInvoice table. SQL Server finds only one row in
the LabCustomer table and then looks for matching rows in the LabInvoice
table.

11. In the following table, record the statistics generated for this query.

Statistic Value
Join Strategy Nested Loop
Scan Count for the LabInvoice Table 1
Scan Count for the LabCustomer Table 1
Logical Reads for LabInvoice Table 2
Logical Reads for LabCustomer Table 2
Total I/O Generated (add the values for all
logical reads)

4

Number of Indexes Used (if any) 2
Names of Indexes Used (if any) CL_Name; and CL_CustomerID

12. Edit the table join query in the script file so that you can force SQL Server
to use the merge join strategy. (Change the join clause to INNER MERGE
JOIN.) Your query should look like the following:

SELECT LabCustomer.CustomerID, LabCustomer.LName,
LabInvoice.Invoice_num
FROM LabCustomer INNER MERGE JOIN LabInvoice
ON LabCustomer.CustomerID = LabInvoice.CustomerID
WHERE LabCustomer.lname = 'last_name'

Highlight and execute this query to force SQL Server to use a merge join
strategy for the table join.

13. In the following table, record the statistics SQL Server generated when you
forced it to use the merge join strategy.

The number of rows your
query retrieves will vary

depending on the invoices
generated when you created

the LabInvoice table. Your
statistics should be similar
to the ones you see in this

table. This applies
throughout the lab.

394

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Statistic Value

Scan Count for the Worktable 1
Scan Count for the LabInvoice Table 1
Scan Count for the LabCustomer Table 1
Logical Reads for the Worktable 1
Logical Reads for LabInvoice Table 18
Logical Reads for LabCustomer Table 2
Total I/O Generated (add the values for all
logical reads)

21

Number of Indexes Used (if any) 2
Names of Indexes Used (if any) CL_Name, and CL_CustomerID

14. Edit the table join query in the script file so that you can force SQL Server
to use the hash join strategy. (Change the join clause to INNER HASH
JOIN.) Your query should look like the following:

SELECT LabCustomer.CustomerID, LabCustomer.LName,
LabInvoice.Invoice_num
FROM LabCustomer INNER HASH JOIN LabInvoice
ON LabCustomer.CustomerID = LabInvoice.CustomerID
WHERE LabCustomer.lname = 'last_name'

Highlight and execute this query to force SQL Server to use a hash join
strategy for the table join.

15. In the following table, record the statistics SQL Server generated when you
forced it to use the hash join strategy.

Statistic Value
Join Strategy Hash
Scan Count for the LabInvoice Table 1
Scan Count for the LabCustomer Table 1
Logical Reads for LabInvoice Table 63
Logical Reads for LabCustomer Table 2
Total I/O Generated (add the values for all
logical reads)

65

Number of Indexes Used (if any) 2
Names of Indexes Used (if any) CL_Name; and CL_CustomerID

16. Based on the values you see for the total logical reads for each join strategy,
which join strategy is most efficient? Did the query optimizer select the most
efficient strategy?

The most effıcient join strategy is the nested loop join. Yes, the query
optimizer selected the most effıcient join strategy.

17. Close all open windows.

Lesson 16: Analyzing Queries 395

Join Strategy Merge

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Summary
In this lesson, you examined the different execution plans the query
optimizer selects given the type of query you’re executing and the types of
indexes you’ve defined on your tables. For example, you saw that SQL
Server can’t use any of a table’s indexes if you don’t have an index on all
of the columns you specify in search conditions with the OR keyword. You
also examined the three types of join strategies that SQL Server can imple-
ment: nested loop, merge, and hash, and why the query optimizer chooses
one strategy over the other.

LESSON 16 REVIEW
16A You’ve created a table for storing your company’s parts inventory.

You’ve created only one index on this table: a clustered index on the
parts_num column. Given this information, how do you think SQL
Server will retrieve the rows to satisfy the following query?

SELECT parts_num, description
FROM parts
WHERE description LIKE 'e%' OR parts_num > 1500

Because I haven’t created an index on the description column, SQL Server
will use a table scan to retrieve the results set for this query.

396

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

TheMovies Database
Structure

Table Design
The movies database consists of the following tables: movie, category, customer,
rental, and rental_detail. The following figures display the column names, data
types, and any default values or identity columns for each of these tables.

Figure A-1: Movie table.

Figure A-2: Category table.

Figure A-3: Customer table.

APPENDIX

A

Appendix A: TheMovies Database Structure 397

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Figure A-4: Rental table.

Figure A-5: Rental_detail table.

Figure A-6: Primary key to foreign key relationships.

398

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Course Script Files

Using the Course SQL Script Files
In the following table, we list the hands-on activities in this course along with the
script files you can use to complete these activities. You’ll find that most of these
script files consist of multiple queries. We’ve added inline comments to each
query file to identify where each query corresponds to a step in the hands-on
activity. In order to run the scripts properly, you should highlight the appropriate
query for a given step, and then execute that query by pressing [Ctrl]E or click-
ing the Run Query button on the toolbar in SQL Query Analyzer. Don’t simply
open the script file and execute the entire file. In many cases, executing the entire
script file will generate an error.

Hands-on Activity Script File
Task 2B-1 create_table.sql
Task 2B-2 insert.sql
Task 2B-3 select.sql
Task 2B-4 permissions.sql
Task 2C-1 variables.sql
Apply Your Knowledge 2-1 select_lab.sql
Apply Your Knowledge 2-2 update_delete_lab.sql
Apply Your Knowledge 2-3 deny_revoke_lab.sql
Apply Your Knowledgw 2-5 execute_lab.sql
Apply Your Knowledge 2-6 statement.sql
Task 3B-1 set_options.sql
Apply Your Knowledge 3-1 create_database.sql
Apply Your Knowledge 3-2 filegroup.sql
Apply Your Knowledge 3-3 increase_size.sql
Apply Your Knowledge 4-2 data_types.sql
Apply Your Knowledge 4-3 movie_tables.sql
Apply Your Knowledge 4-4 modify_table.sql
Task 5B-1 pk_movie.sql
Task 5B-2 fk_movie.sql
Task 5B-3 df_movie.sql
Task 5B-4 ck_movie.sql
Apply Your Knowledge 5-2 pk_constraints.sql
Apply Your Knowledge 5-3 fk_constraints.sql
Apply Your Knowledge 5-4 df_constraints.sql
Apply Your Knowledge 5-5 disable_constraint.sql
Task 6B-1 cl_movie.sql
Task 6B-2 sysindexes.sql
Task 6C-1 rebuild.sql

APPENDIX

B

Appendix B: Course Script Files 399

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Hands-on Activity Script File
Task 6C-2 drop_existing.sql
Apply Your Knowledge 6-2 indexes.sql
Apply Your Knowledge 6-3 dropindex.sql
Task 7A-1 cross_joins.sql
Task 7B-1 multiple.sql
Task 7B-2 self_joins.sql
Task 7B-3 union.sql
Task 7B-4 select_into.sql
Apply Your Knowledge 7-1 inner_joins.sql
Apply Your Knowledge 7-2 outer_joins.sql
Apply Your Knowledge 7-3 multi_table.sql
Apply Your Knowledge 7-4 temp_tables.sql
Task 8A-1 single_value.sql
Task 8B-1 insert_data.sql
Task 8B-2 delete_rows.sql
Apply Your Knowledge 8-1 subqueries.sql
Apply Your Knowledge 8-2 correlated.sql
Apply Your Knowledge 8-3 update_queries.sql
Task 9A-1 create_view.sql
Task 9A-3 drop_view.sql
Task 9A-4 indexed_view.sql
Task 9A-4 partitioned_view.sql
Apply Your Knowledge 9-1 join_views.sql
Apply Your Knowledge 9-2 modify_view.sql
Apply Your Knowledge 9-3 view_change.sql
Task 10A-2 extended_proc.sql
Task 10B-1 create_proc.sql
Task 10C-1 input.sql
Task 10C-2 output.sql
Apply Your Knowledge 10-1 createproc_lab.sql
Apply Your Knowledge 10-4 return_codes.sql
Apply Your Knowledge 10-5 custom_errors.sql
Apply Your Knowledge 10-6 showmovie.sql
Task 11A-1 functions.sql
Task 11A-2 groupby.sql
Apply Your Knowledge 11-1 agg_functions_lab.sql
Apply Your Knowledge 11-2 groupbylab.sql
Apply Your Knowledge 11-3 topvalues.sql
Apply Your Knowledge 11-4 scalar.sql
Apply Your Knowledge 11-5 multi-statement.sql
Apply Your Knowledge 11-6 in-line.sql
Task 12A-2 insert-trigger.sql
Task 12A-3 delete-trigger.sql
Task 12A-4 instead-trigger.sql
Apply Your Knowledge 12-1 insert-trigger-lab.sql

400

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Hands-on Activity Script File
Apply Your Knowledge 12-2 update-trigger.sql
Apply Your Knowledge 12-3 manage-triggers.sql
Task 13A-1 transactions.sql
Task 13B-2 locking.sql
Task 13B-2 customer.sql
Task 13B-3 lock1.sql
Task 13B-3 lock2.sql
Task 13B-4 tablock.sql
Task 13B-4 tablock2.sql
Apply Your Knowledge 13-1 transactions.sql
Task 14A-1 linked.sql
Apply Your Knowledge 14-1 distqueries.sql
Apply Your Knowledge 14-2 linkedprocs.sql
Apply Your Knowledge 14-3 modify.sql
Task 15A-1 querygovernor.sql
Task 15A-2 showplan.sql
Task 15A-3 graphplan.sql
Apply Your Knowledge 15-1 newcustomer.sql
Apply Your Knowledge 15-1 statslab.sql
Apply Your Knowledge 15-2 cleanindex.sql
Apply Your Knowledge 15-2 indexcovers.sql
Apply Your Knowledge 15-3 hints.sql
Apply Your Knowledge 16-1 gen_labcustomer.sql
Apply Your Knowledge 16-1 cleanindexmovie.sql
Apply Your Knowledge 16-1 and_queries.sql
Apply Your Knowledge 16-2 or_queries.sql
Apply Your Knowledge 16-3 invoices.sql
Apply Your Knowledge 16-3 gen_labinvoice.sql
Apply Your Knowledge 16-3 joinlab.sql

Appendix B: Course Script Files 401

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

INTRODUCTION

Introduction
If you’re teaching this course immediately after teaching course 77-461, “Microsoft SQL Server 2000: System
Administration,” you can prepare the instructor’s computer by using the following steps:

• In Active Directory Users And Computers, delete the mailboxes for all users. If necessary, start the Exchange
Server services before attempting to delete any mailboxes.

— Right-click on each user with a mailbox and choose Exchange Tasks.

— In the list of Exchange Tasks, select Delete Mailbox and then click Next.

— Click Finish.

• In the Control Panel, use Add/Remove Programs to remove Microsoft Exchange 2000 Server from the instruc-
tor’s computer. Note: You’re going to need the Exchange 2000 Server CD-ROM during the uninstall process.

• Use Add/Remove Programs to remove Microsoft Outlook 2000 from the instructor’s computer.

• Use Add/Remove Programs to remove Microsoft SQL Server 2000 from the instructor’s computer.

— When you’re prompted to remove shared files, click No To All.

— In Windows Explorer, delete the C:\Program Files\Microsoft SQL Server folder (and its subfolders).

• Install SQL Server 2000 Enterprise Edition on the computer.

— Click SQL Server 2000 Components, and then click Install Database Server.

— Install SQL Server to your local computer.

— Create a new instance of SQL Server.

— If necessary, enter your name and company name on the User Information page.

— Agree to the Software License Agreement.

— Install the Server and Client Tools.

— Create a default instance of SQL Server 2000.

— Choose the Typical Installation Type.

— Configure the SQL Server services to use the domain user account named SQLService with a password of
password.

— Choose Windows Authentication Mode.

— Configure the server to use Per-Processor licensing with one processor.

— When the installation is complete, start the SQL Server services.

• From the Microsoft SQL Server program group, choose Service Manager.

• Verify that the SQL Server service is selected, and then click Start/Continue.

• Copy the student data files from the course CD-ROM to C:\Data.

ADDITIONAL INSTRUCTOR NOTES

Additional Instructor Notes 403

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

Introduction
If you’re teaching this course immediately after teaching course 77-461, “Microsoft SQL Server 2000: System
Administration,” you can prepare the students’ computers by using the following steps:

• Use Add/Remove Programs to remove Microsoft Outlook 2000 from each computer.

• Use Add/Remove Programs to remove Microsoft SQL Server 2000 from each computer.

— When you’re prompted to remove shared files, click No To All.

— In Windows Explorer, delete the C:\Program Files\Microsoft SQL Server folder (and its subfolders).

• Install SQL Server 2000 Enterprise Edition on the computer.

— Click SQL Server 2000 Components, and then click Install Database Server.

— Install SQL Server to your local computer.

— Create a new instance of SQL Server.

— If necessary, enter your name and company name on the User Information page.

— Agree to the Software License Agreement.

— Install the Server and Client Tools.

— Create a default instance of SQL Server 2000.

— Choose the Typical Installation Type.

— Configure the SQL Server services to use the domain user account named SQLService with a password of
password.

— Choose Windows Authentication Mode.

— Configure the server to use Per-Processor licensing with one processor.

— When the installation is complete, start the SQL Server services.

• From the Microsoft SQL Server program group, choose Service Manager.

• Verify that the SQL Server service is selected, and then click Start/Continue.

• Copy the student data files from the course CD-ROM to C:\Data.

LESSON 2

Task 2B-2
We feel that your students will get the most out of this course by typing the SQL statements in themselves. For
this reason, we recommend that you have the students type in the SQL statements in the tasks and labs
throughout the course; however, if you run into students that are very slow typists, you might find it difficult to
cover all of the material in this course. If you do, please walk the students through opening the script file associ-
ated with that task or lab. Where appropriate, you’ll find the name of the script file in an Instructor Note at the
beginning of each hands-on activity.

404

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

aggregate functions
Functions that enable you to summarize
data. The result of these functions is a
single value.

atomicity
A state in which SQL Server either per-
forms all of a transaction’s modifications or
none of them.

batch
A series of SQL statements you send to the
server so that the server can process them
together.

built input
The smaller of two tables in a hash join.

check constraint
A range of values that you define for a col-
umn to force users to enter only those
values into the column.

clustered index
An index that changes the way SQL Server
stores the rows in a table. This index isn’t
a separate database object. Instead, SQL
Server uses this index to determine the
order in which it stores the rows that make
up a table. You can define only one clus-
tered index per table.

covering index
A nonclustered index where the index key
consists of all of the values you select in a
query. For example, if you execute the
query SELECT movie_num, title, rating
FROM movie, a covering index for this
query must use the movie_num, title, and
rating columns as its index key.

data integrity
The state in which all of the information
stored in a database is accurate. If a table
contains inaccurate data, your database has
lost its data integrity.

database
A collection of related database objects
such as tables, views, and indexes. Each
database in SQL Server consists of at least
one data file and a transaction log file.

declarative data integrity
The process of enforcing data integrity
through an object’s definition. For example,
you can use constraints, defaults, and rules
to enforce declarative data integrity.

default constraint
A value that you assign to a column. SQL
Server automatically fills in the column
with this value during data entry. You can
always override the default value by enter-
ing another value into the column.

dirty read
Occurs when one transaction reads another
transaction’s uncommitted changes. As
you’ll see in this lesson, you can configure
SQL Server’s locking such that it’s pos-
sible for this scenario to occur.

extent
An allocation of disk space made up of
eight contiguous 8 KB pages for a total of
64 KB.

File Header page
The first page in the first extent of a file.
SQL Server uses this page to store infor-
mation about the file, including the name
of the database to which it belongs, the
filegroup, and sizing information.

filegroup
A collection of one or more database data
files. You use filegroups to group data files
together so that you can administer them as
a single unit.

foreign key
The column or group of columns in one
table that match the primary key column or
columns of another table.

GLOSSARY

Glossary 405

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

fully qualified name
An object name that contains the server,
database, owner, and object names.
Because this name consists of four compo-
nents, you’ll sometimes hear the fully
qualified name for an object referred to as
the four-part object name.

Global Allocation Map (GAM) page
SQL Server uses this page to keep track of
all extents within a file and identifies
whether or not each extent is allocated.

heap
A table without a clustered index.

inconsistent analysis (nonrepeatable
read)
Occurs when a transaction reads a row
multiple times and retrieves different
values.

input parameter
A value that you pass into a stored
procedure.

keys
The column (or columns) on which you’ve
indexed a table.

lost updates
An update that gets lost when one user’s
update overwrites another user’s update.

materializing
The process of retrieving the rows and col-
umns from one or more tables to display
the results set for a view.

Net-Library
A Dynamic Link Library (DLL) that
enables a client and a SQL server to com-
municate over a specific network protocol.

nonclustered index
A separate database object that contains the
key columns on which you want to index a
table, along with a value to identify each
row in the table. A nonclustered index
doesn’t change the order of the actual rows
in the table.

normalization
The process of organizing the information
in tables within a relational database in
order to minimize the duplication of data
across those tables.

output parameter
A value SQL Server passes out of a stored
procedure. This value is typically generated
by a statement within the stored procedure.

page
The minimum block of disk space that
SQL Server copies from your server’s hard
disk to RAM, and vice versa. In SQL
Server 2000, SQL Server uses 8 KB pages.

Page Free Space (PFS) page
SQL Server keeps track of the available
space in the file’s pages within the PFS
page. Each PFS page can keep track of a
maximum of 8,000 contiguous pages in the
file. If necessary, SQL Server adds multiple
PFS pages to keep track of free space.

parameter
A programming entity that enables you to
send information to or retrieve information
from a stored procedure.

partitioning column
The column in each table you reference in
a partitioned view that you use to ensure
that each table’s data is mutually exclusive.

phantom
Occurs when one transaction adds a new
row while another transaction is in the
midst of updating several rows.

GLOSSARY

406

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

primary key
One or more columns that you use to
uniquely identify each row in a table.

probe input
The larger of two tables in a hash join.

procedural data integrity
The process of enforcing data integrity
through programming techniques. Triggers
and stored procedures are examples of pro-
cedural integrity techniques.

procedure cache
The memory in which SQL Server stores
compiled query execution plans.

row density
A measure of the number of rows stored on
a data page. A high row density means that
you have a greater number of rows per
page. In contrast, a low row density means
that you have only a few rows per page.

Secondary Global Allocation Map (SGAM)
page
SQL Server uses the SGAM page to keep
track of all mixed extents, along with
whether or not each mixed extent has at
least one free page.

SQL
Structured Query Language is a language
you use to add, modify, retrieve, and delete
data from a relational database manage-
ment system.

system stored procedures
Stored procedures written by Microsoft that
are installed when you install SQL Server
2000. You can use these stored procedures
to perform most of the administrative tasks
on your server.

table
An object within a database that contains
rows and columns of information.

Transact-SQL
Microsoft’s enhanced version of ANSI
SQL-92.

variable
A programming entity to which you assign
a value.

virtual directory
A virtual directory is an alias to a folder
that can be accessed through your IIS
server.

GLOSSARY

Glossary 407

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

A
administrative tools, 7-9

advanced queries

changing data, 222-223

deleting rows, 223-224

designing, 216-218

subqueries, 216-218

updating rows, 224-226

aggregate function

using GROUP BY with HAVING,
285-287

WHERE clause, 284

aggregate functions

data types, 281

displaying TOP n rows, 287-288

GROUP BY, 283-285

null values, 281

working with, 280-283

approximate numeric data types,
127

architecture, 31-34

Balanced-tree, 169-170

choosing one, 35-36

client, 32-33

client/server communications,
33-34

designing a database application,
34-36

server, 33

Tabular Data Stream Protocol

See:TDS protocol

atomicity, 318-323

automating tasks, 5

B
Balanced-tree Architecture, 169-170

batch, 78-79

binary data types, 124

Books Online

using, 73-75

built input, 391-392

C
case-sensitivity, 63

centralized management, 5

character data types, 124

check constraints, 158-160

client architecture, 32-33

client/server communications,
33-34

clustered index, 17-18

clustered indexes, 170-171

collation settings, 129

command-line utilities, 8

components, 2-3, 6-7

administrative tools, 7-9

command-line utilities, 8

graphical tools, 7-8

services, 6

utilities, 8-9

wizards, 8

conditional operators, 62

precedence, 63

constraint checkign

disabling on existing data, 160

constraint checking

disabling when loading data, 161

constraints

check, 158-160

default, 156-158

defining foreign key, 152-156

defining primary key, 148-149

defining unique, 149

deleting, 160

Managing, 160-163

viewing, 148

contraints

implementing, 147-152

covering index, 368-372

D
Data Control Language Statements

See:DCL statements

Data Definition Language Statements

See:DDL statements

data integrity

cascading integrity, 153-154

declarative, 144-147

procedural, 144-147

selecting techniques, 145

Data Manipulation Language State-
ments

See:DML statements

data transformation services

See:DTS

data types

approximate numeric, 127

binary, 124

character, 124

date and time, 125-126

exact numeric, 126

integer, 127-128

monetary, 128

special, 128-129

text and image, 128

unicode character, 124-125

user-defined, 129

database, 16-22

database application

designing, 34-36

database diagrams

creating, 26-31

database structure

indexes, 17-18

stored procedures, 19

tables, 16-17

triggers, 19

views, 18

database structures, 16-22

databases

adding filegroups, 104-105

adding files, 104-105

automatically expanding, 111-112

changing size, 111

configuring options, 106-109

configuring the default filegroup,
105

creaing muliple data filegroups,
97

creating, 99-100

creating multiple data filegroups,
103-106

INDEX

Index 409

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

creating multiple data files, 97,
103-106

creating using Transact-SQL,
100-103

deleting, 116

displaying information, 109-110

drive arrays, 97-98

estimating space requirements,
93-96

files, 92

identifying design issues, 92-93

managing, 111-113

manually expanding, 112

monitoring transaction log size,
113-114

optimizing, 96-99

shrinking, 114-115

transaction logs, 92-93

using separate hard disks, 98

viewing file/filegroup information,
105

viewing option settings, 107-108

date and time data types, 125-126

DCL statements, 69-71

DDL statements, 56-59

declarative data integrity, 144-147

default constraints, 156-158

default databases, 12-13

default object

creating, 157

designing a cross join, 205

dirty read, 324-328

disk space

managing, 95-96

measuring, 94

distributed queries

configuring linked server security,
341-345

configuring linked server settings,
345-346

creating, 346-347

defining linked servers, 338-339

establishing linked servers, 338-341

executing stored procedures, 348

implementing distributed partitioned
views, 352

managing, 346-347

modifying data, 348-350

permission considerations, 342-343

using ad hoc queries, 350-352

viewing linked servers, 339

which server processes the query?,
346

DML statements, 59-60

sorting the results, 61

drive arrays

implementing, 97-98

DTS

components, 163

using, 163-165

using to import data, 164

E
exact numeric data types, 126

extent, 94

F
features, 3-6

integration with .Net Enterprise
Servers, 4

integration with Windows 2000,
4

support for multiple platforms,
3

File Header page, 95-96

filegroup, 97

foreign key constraints

defining, 152-156

fully qualified name, 19-20

functions, 289-293

aggregate functions, 280-283

G
GAM page, 95-96

Global Allocation Map page

See:GAM page

graphical tools, 7-8

H
heap, 168-172

heaps, 170

I
implementing self joins, 208

inconsistent analysis (nonrepeatable
read), 324-328

Index Tuning Wizar

using, 192-194

Index Tuning Wizard, 190-192

indexes, 194

changing, 188-190

clustered, 17-18, 170-171

configuring the fill factor option,
176-177

configuring the pad index option,
177-178

creating, 171-172

creating a unique index, 180-181

creating composit indexes, 179-180

DBCC INDEXDEFRAG, 189

deframenting, 189

designing, 168-172

determining when statistics were last
updated, 195

displaying fragmentation statistics,
184-186

dropping, 180-181

DROP_EXISTING, 188-190

guidelines for defining, 172-175

implementing, 175-178

maintaining, 183-188

managing statistics, 194-197

nonclustered, 17-18, 171

rebuilding, 186

sysindexes table, 181-183

turning off statistics, 195-196

updating statistics, 194-195

viewing information, 178

input parameter, 261-262

integer data types, 127-128

integration

with .Net Enterprise Servers, 4

INDEX

410

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

with Windows 2000, 4

K
keys, 168-172

L
locks

basic, 324

coexistence of locks, 325

configuring a lock timeout, 333-334

deadlocks, 335-336

managing, 324-328, 329-333

session-level, 329-330

special use, 325

table-level locking, 334-335

viewing current, 326

login accounts

creating, 40-42

lost updates, 324-328

M
management tasks, 36-37

Microsoft Distributed Transaction
Coordinator

See:MSDTC

monetary data types, 128

MSDTC, 349

N
naming conventions

designing, 57

Net-Library, 32-33

nonclustered index, 17-18

nonclustered indexes, 171

normalization, 120-121

O
object permissions, 70

objects

identifying, 19-20

naming, 56-57

optimizing queries

designing indexing to optimize,
373

using indexes, 368-372

Osql, 53-55

output parameter, 261-262

P
page, 94

Page Free Space page

See:PFS page

parameter, 261-262

partitioning column, 243-245

permissions

configuring, 42-46

validating, 44

PFS page, 95-96

phantom, 324-328

primary key constraints

defining, 148-149

probe input, 391-392

procedural data integrity, 144-147

procedure cache, 248-250

programming

local variables, 76

Transact-SQL, 75-76

variables, 75-76

Q
queries

analyzing OR queries, 385-389

analyzing performance, 378-385

analyzing table join queries, 389-395

forcing a join strategy with hints,
392

hash joins, 391-392

merge joins, 390-391

nested loop joins, 390

query optimizer

displaying query statistics, 357-359

exploring, 356-360

limiting long-running queries,
361-362

overriding, 374-375

SHOWPLAN_ALL, 362-364

SHOWPLAN_TEXT, 362-364

understanding, 356-357

using the graphical execution plan,
364-368

R
registering servers, 9-11

reliability, 5

replication, 4-5

results

sorting, 61

retrieving metadata, 23-24

row density, 183-188

rules

creating, 159

S
scalability, 4

scripts, 80

Secondary Global Allocation Map
page

See:SGAM page

security, 37-40

server achitecture, 33

SGAM page, 95-96

sotred procedures

modifying, 259-260

running the first time, 251-253

special data types, 128-129

SQL, 2-3

SQL Profiler, 190-192

SQL Query Analyzer, 12-16, 50

SQL scripts

comments, 84

creating, 84-85

SQL statements

batches, 78-79

BEGIN...END, 81

CASE, 82

combing results of multiple
SELECT, 208-209

control-of-flow, 81-83

dynamic, 77-78

executing, 77-80

INDEX

Index 411

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

IF...ELSE, 81

WHILE, 82

statement permissions, 69-70

stored procedure

dropping, 260

executing with output parameters,
264-265

stored procedures, 19

checking for valid input parameter
values, 263-264

compile, 252

creaing custom error messages,
269-270

creating, 253-256

creating custom error messages,
269-273

deleting custom error messages,
270

designing, 248-250

executing, 256-257, 348

executing extended, 250-251

executing with input parameters,
262

extended, 248-249, 252

input parameters, 261

limitations, 254

managing, 275-276

managing errors, 266-269

managing performance, 276

output parameters, 264-266

parse, 251

permissions, 254

preventing users from reading text,
257-259

procedure cache, 248-250

recommendations, 255

RETURN statement, 266-268

running the second time, 252

system, 248-249

user-defined, 249

using custom error messages,
269-273

using @@Error, 274

using parameters, 261-262

using to insert data, 256-257

viewing the text, 255

Structured Query Language

See:SQL

subqueries

designing, 216-218

designing correlated, 220-221

using EXISTS, 220-221

using NOT EXISTS, 220-221

subquery

using to return list of values,
218-219

using to return single value, 216-217

sysindexes table

using, 181-183

system stored procedures, 23-24

system tables, 22-26

T
table, 16-22

dropping, 139

tables, 16-17

addinga column, 137

automatically generating column
values, 134-135

creating, 120-122, 133-137

creating from data in other
databases, 211

creating table based on a results set,
210-212

defining an inner join, 201

defining an outer join, 203-204

defining columns, 123-131

designing, 120-122, 129

displaying, 121

dropping a column, 138

implementing advanced joins,
206-207

maintaining, 137-139

modifying a column, 137

querying multiple tables, 200-203

scripting, 139-142

using table joins in SELECT INTO
statement, 210

TDS protocol, 33

text and image data types, 128

tiggers

considerations, 301

UPDATE trigger, 309-310

tirggers

DELETE trigger, 306-308

Transact-SQL, 2-3, 50-53

aggregate functions, 64

creating databases, 100-103

DELETE, 68-69

DENY, 72

functions, 63-68

GRANT, 70-71

INSERT, 59-60

object permissions, 70

programming, 75-76

REVOKE, 72-73

rowset functions, 64

scalar functions, 64-66

SELECT, 60-62

statement permissions, 69-70

statements, 56-59

UPDATE, 68

using WHERE clause with SELECT
statement, 62-63

transaction log

automatically expanding, 111-112

manually expanding, 112

monitoring size, 113-114

transactions, 79-80

creating explicit transactions, 320

designing, 318-323

enabling implicit transactions,
323

how they work, 319

implementing, 318-323

types, 318

triggers, 19

creating, 301-306

deleting, 313

designing, 300-301

disabling and enabling, 313

implementing, 300-301

implementing complex triggers,
314-315

INSERT trigger, 303

INDEX

412

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

INSTEAD trigger, 310-313

managing, 313-314

nested, 314-315

recursive, 315

viewing information, 302-303

why use?, 300

U
unicode character data types, 124-125

unique constraints

defining, 149

user-defined, 289-293

user-defined data types, 129

deleting, 132

implementing, 131-133

user-defined functions, 19

creating, 289-293

creating a scalar function, 290-291

creating inline table-valued function,
294-296

creating multi-statement table-valued
function, 293-294

designing, 289-293

managing, 296

setting SCHEMABINDING option,
291-292

utilities, 8-9

V
variable, 75-76

local, 76

views, 18

creating, 230-233

creating based on joined tables,
233-235

creating indexed views, 241-242

displaying definitions, 235-236

dropping, 237-238

managing, 230-233

modifying, 237

ownership, 231-232

partitioned, 243-245

permissions, 231

preventing users from displaying
definitions, 235

restrictions, 231

using to work with data, 238-240

why use?, 230

viwes

nested, 232

W
wizards, 8

X
XML

designing a query, 86-89

working with, 86-89

INDEX

Index 413

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

DO
 N

O
T

DU
PL

IC
AT

E

In
st

ru
ct

or
 E

di
tio

n

