/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "apr.h" #include "apr_atomic.h" #include "apr_thread_mutex.h" #include "apr_private.h" #include #if defined(__GNUC__) && defined(__STRICT_ANSI__) && !defined(USE_GENERIC_ATOMICS) /* force use of generic atomics if building e.g. with -std=c89, which * doesn't allow inline asm */ #define USE_GENERIC_ATOMICS #endif #if (defined(__i386__) || defined(__x86_64__)) \ && defined(__GNUC__) && !defined(USE_GENERIC_ATOMICS) APR_DECLARE(apr_uint32_t) apr_atomic_cas32(volatile apr_uint32_t *mem, apr_uint32_t with, apr_uint32_t cmp) { apr_uint32_t prev; asm volatile ("lock; cmpxchgl %1, %2" : "=a" (prev) : "r" (with), "m" (*(mem)), "0"(cmp) : "memory", "cc"); return prev; } #define APR_OVERRIDE_ATOMIC_CAS32 static apr_uint32_t inline intel_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val) { asm volatile ("lock; xaddl %0,%1" : "=r"(val), "=m"(*mem) /* outputs */ : "0"(val), "m"(*mem) /* inputs */ : "memory", "cc"); return val; } APR_DECLARE(apr_uint32_t) apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val) { return intel_atomic_add32(mem, val); } #define APR_OVERRIDE_ATOMIC_ADD32 APR_DECLARE(void) apr_atomic_sub32(volatile apr_uint32_t *mem, apr_uint32_t val) { asm volatile ("lock; subl %1, %0" : : "m" (*(mem)), "r" (val) : "memory", "cc"); } #define APR_OVERRIDE_ATOMIC_SUB32 APR_DECLARE(int) apr_atomic_dec32(volatile apr_uint32_t *mem) { unsigned char prev; asm volatile ("lock; decl %1;\n\t" "setnz %%al" : "=a" (prev) : "m" (*(mem)) : "memory", "cc"); return prev; } #define APR_OVERRIDE_ATOMIC_DEC32 APR_DECLARE(apr_uint32_t) apr_atomic_inc32(volatile apr_uint32_t *mem) { return intel_atomic_add32(mem, 1); } #define APR_OVERRIDE_ATOMIC_INC32 APR_DECLARE(void) apr_atomic_set32(volatile apr_uint32_t *mem, apr_uint32_t val) { *mem = val; } #define APR_OVERRIDE_ATOMIC_SET32 APR_DECLARE(apr_uint32_t) apr_atomic_xchg32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t prev = val; asm volatile ("lock; xchgl %0, %1" : "=r" (prev) : "m" (*(mem)), "0"(prev) : "memory"); return prev; } #define APR_OVERRIDE_ATOMIC_XCHG32 /*#define apr_atomic_init(pool) APR_SUCCESS*/ #endif /* (__linux__ || __EMX__ || __FreeBSD__) && __i386__ */ #if (defined(__PPC__) || defined(__ppc__)) && defined(__GNUC__) \ && !defined(USE_GENERIC_ATOMICS) APR_DECLARE(apr_uint32_t) apr_atomic_cas32(volatile apr_uint32_t *mem, apr_uint32_t swap, apr_uint32_t cmp) { apr_uint32_t prev; asm volatile ("0:\n\t" /* retry local label */ "lwarx %0,0,%1\n\t" /* load prev and reserve */ "cmpw %0,%3\n\t" /* does it match cmp? */ "bne- 1f\n\t" /* ...no, bail out */ "stwcx. %2,0,%1\n\t" /* ...yes, conditionally store swap */ "bne- 0b\n\t" /* start over if we lost the reservation */ "1:" /* exit local label */ : "=&r"(prev) /* output */ : "b" (mem), "r" (swap), "r"(cmp) /* inputs */ : "memory", "cc"); /* clobbered */ return prev; } #define APR_OVERRIDE_ATOMIC_CAS32 APR_DECLARE(apr_uint32_t) apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t delta) { apr_uint32_t prev, temp; asm volatile ("0:\n\t" /* retry local label */ "lwarx %0,0,%2\n\t" /* load prev and reserve */ "add %1,%0,%3\n\t" /* temp = prev + delta */ "stwcx. %1,0,%2\n\t" /* conditionally store */ "bne- 0b" /* start over if we lost the reservation */ /*XXX find a cleaner way to define the temp * it's not an output */ : "=&r" (prev), "=&r" (temp) /* output, temp */ : "b" (mem), "r" (delta) /* inputs */ : "memory", "cc"); /* clobbered */ return prev; } #define APR_OVERRIDE_ATOMIC_ADD32 #endif /* __PPC__ && __GNUC__ */ #if !defined(APR_OVERRIDE_ATOMIC_INIT) #if APR_HAS_THREADS #define NUM_ATOMIC_HASH 7 /* shift by 2 to get rid of alignment issues */ #define ATOMIC_HASH(x) (unsigned int)(((unsigned long)(x)>>2)%(unsigned int)NUM_ATOMIC_HASH) static apr_thread_mutex_t **hash_mutex; #endif /* APR_HAS_THREADS */ apr_status_t apr_atomic_init(apr_pool_t *p) { #if APR_HAS_THREADS int i; apr_status_t rv; hash_mutex = apr_palloc(p, sizeof(apr_thread_mutex_t*) * NUM_ATOMIC_HASH); for (i = 0; i < NUM_ATOMIC_HASH; i++) { rv = apr_thread_mutex_create(&(hash_mutex[i]), APR_THREAD_MUTEX_DEFAULT, p); if (rv != APR_SUCCESS) { return rv; } } #endif /* APR_HAS_THREADS */ return APR_SUCCESS; } #endif /* !defined(APR_OVERRIDE_ATOMIC_INIT) */ /* abort() if 'x' does not evaluate to APR_SUCCESS. */ #define CHECK(x) do { if ((x) != APR_SUCCESS) abort(); } while (0) #if !defined(APR_OVERRIDE_ATOMIC_ADD32) #if defined(APR_OVERRIDE_ATOMIC_CAS32) apr_uint32_t apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t old_value, new_value; do { old_value = *mem; new_value = old_value + val; } while (apr_atomic_cas32(mem, new_value, old_value) != old_value); return old_value; } #else apr_uint32_t apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t old_value; #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); old_value = *mem; *mem += val; CHECK(apr_thread_mutex_unlock(lock)); #else old_value = *mem; *mem += val; #endif /* APR_HAS_THREADS */ return old_value; } #endif /* defined(APR_OVERRIDE_ATOMIC_CAS32) */ #endif /* !defined(APR_OVERRIDE_ATOMIC_ADD32) */ #if !defined(APR_OVERRIDE_ATOMIC_SUB32) #if defined(APR_OVERRIDE_ATOMIC_CAS32) void apr_atomic_sub32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t old_value, new_value; do { old_value = *mem; new_value = old_value - val; } while (apr_atomic_cas32(mem, new_value, old_value) != old_value); } #else void apr_atomic_sub32(volatile apr_uint32_t *mem, apr_uint32_t val) { #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); *mem -= val; CHECK(apr_thread_mutex_unlock(lock)); #else *mem -= val; #endif /* APR_HAS_THREADS */ } #endif /* defined(APR_OVERRIDE_ATOMIC_CAS32) */ #endif /* !defined(APR_OVERRIDE_ATOMIC_SUB32) */ #if !defined(APR_OVERRIDE_ATOMIC_SET32) void apr_atomic_set32(volatile apr_uint32_t *mem, apr_uint32_t val) { #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); *mem = val; CHECK(apr_thread_mutex_unlock(lock)); #else *mem = val; #endif /* APR_HAS_THREADS */ } #endif /* !defined(APR_OVERRIDE_ATOMIC_SET32) */ #if !defined(APR_OVERRIDE_ATOMIC_INC32) apr_uint32_t apr_atomic_inc32(volatile apr_uint32_t *mem) { return apr_atomic_add32(mem, 1); } #endif /* !defined(APR_OVERRIDE_ATOMIC_INC32) */ #if !defined(APR_OVERRIDE_ATOMIC_DEC32) #if defined(APR_OVERRIDE_ATOMIC_CAS32) int apr_atomic_dec32(volatile apr_uint32_t *mem) { apr_uint32_t old_value, new_value; do { old_value = *mem; new_value = old_value - 1; } while (apr_atomic_cas32(mem, new_value, old_value) != old_value); return old_value != 1; } #else int apr_atomic_dec32(volatile apr_uint32_t *mem) { #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; apr_uint32_t new; CHECK(apr_thread_mutex_lock(lock)); (*mem)--; new = *mem; CHECK(apr_thread_mutex_unlock(lock)); return new; #else (*mem)--; return *mem; #endif /* APR_HAS_THREADS */ } #endif /* defined(APR_OVERRIDE_ATOMIC_CAS32) */ #endif /* !defined(APR_OVERRIDE_ATOMIC_DEC32) */ #if !defined(APR_OVERRIDE_ATOMIC_CAS32) apr_uint32_t apr_atomic_cas32(volatile apr_uint32_t *mem, apr_uint32_t with, apr_uint32_t cmp) { apr_uint32_t prev; #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); prev = *mem; if (prev == cmp) { *mem = with; } CHECK(apr_thread_mutex_unlock(lock)); #else prev = *mem; if (prev == cmp) { *mem = with; } #endif /* APR_HAS_THREADS */ return prev; } #endif /* !defined(APR_OVERRIDE_ATOMIC_CAS32) */ #if !defined(APR_OVERRIDE_ATOMIC_XCHG32) #if defined(APR_OVERRIDE_ATOMIC_CAS32) apr_uint32_t apr_atomic_xchg32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t prev; do { prev = *mem; } while (apr_atomic_cas32(mem, val, prev) != prev); return prev; } #else apr_uint32_t apr_atomic_xchg32(volatile apr_uint32_t *mem, apr_uint32_t val) { apr_uint32_t prev; #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); prev = *mem; *mem = val; CHECK(apr_thread_mutex_unlock(lock)); #else prev = *mem; *mem = val; #endif /* APR_HAS_THREADS */ return prev; } #endif /* defined(APR_OVERRIDE_ATOMIC_CAS32) */ #endif /* !defined(APR_OVERRIDE_ATOMIC_XCHG32) */ #if !defined(APR_OVERRIDE_ATOMIC_CASPTR) void *apr_atomic_casptr(volatile void **mem, void *with, const void *cmp) { void *prev; #if APR_HAS_THREADS apr_thread_mutex_t *lock = hash_mutex[ATOMIC_HASH(mem)]; CHECK(apr_thread_mutex_lock(lock)); prev = *(void **)mem; if (prev == cmp) { *mem = with; } CHECK(apr_thread_mutex_unlock(lock)); #else prev = *(void **)mem; if (prev == cmp) { *mem = with; } #endif /* APR_HAS_THREADS */ return prev; } #endif /* !defined(APR_OVERRIDE_ATOMIC_CASPTR) */ #if !defined(APR_OVERRIDE_ATOMIC_READ32) APR_DECLARE(apr_uint32_t) apr_atomic_read32(volatile apr_uint32_t *mem) { return *mem; } #endif