
JBoss Enterprise Application Platform

4.2.0

Configuration Guide
ISBN: N/A

Publication date:

This book is a guide to the configuration of the Jboss Application Server.

JBoss Enterprise Application ...

JBoss Enterprise Application Platform : Configuration Guide
Copyright © 2007 Red Hat, Inc.

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the
copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://www.opencontent.org/openpub/

JBoss Enterprise Application ...

What this Book Covers ... xiii
About JBoss ... xv
About Open Source .. xvii
About Professional Open Source .. xix
I. Java EE 5 Application Configuration ... 1

1. Enterprise Applications with EJB3 Services ... 3
1. Session Beans ... 3
2. Entity Beans (a.k.a. Java Persistence API) .. 5

2.1. The persistence.xml file ... 8
2.2. Use Alternative Databases ... 9
2.3. Default Hibernate options ...10

3. Message Driven Beans ...11
4. Package and Deploy EJB3 Services ...12

4.1. Deploy the EJB3 JAR ...12
4.2. Deploy EAR with EJB3 JAR ..13

2. Deployment ..17
1. Deployable Application Types ..17
2. Standard Server Configurations ...18

2.1. The production Configuration ..18
2.2. Further Tuning from the production Configuration19

II. JBoss AS Infrastructure ...21
3. The JBoss JMX Microkernel ..23

1. An Introduction to JMX ..23
1.1. Instrumentation Level ...25
1.2. Agent Level ...25
1.3. Distributed Services Level ...26
1.4. JMX Component Overview ...27

2. JBoss JMX Implementation Architecture ...30
2.1. The JBoss ClassLoader Architecture ...30
2.2. Class Loading and Types in Java ..30
2.3. JBoss XMBeans ...51

3. Connecting to the JMX Server ...59
3.1. Inspecting the Server - the JMX Console Web Application59
3.2. Connecting to JMX Using RMI ..64
3.3. Command Line Access to JMX ..67
3.4. Connecting to JMX Using Any Protocol ..72

4. Using JMX as a Microkernel ..72
4.1. The Startup Process ...72
4.2. JBoss MBean Services ...74
4.3. Writing JBoss MBean Services ..84
4.4. Deployment Ordering and Dependencies99

5. JBoss Deployer Architecture ..110
5.1. Deployers and ClassLoaders ..111

6. Remote Access to Services, Detached Invokers113
6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor
Service ..115

v

6.2. Detached Invoker Reference ...121
4. Naming on JBoss ..129

1. An Overview of JNDI ...129
1.1. Names ...129
1.2. Contexts ..130

2. The JBossNS Architecture ...132
3. The Naming InitialContext Factories ...134

3.1. The standard naming context factory ...134
3.2. The org.jboss.naming.NamingContextFactory136
3.3. Naming Discovery in Clustered Environments136
3.4. The HTTP InitialContext Factory Implementation137
3.5. The Login InitialContext Factory Implementation138
3.6. The ORBInitialContextFactory ...138

4. JNDI over HTTP ...139
4.1. Accessing JNDI over HTTP ...139
4.2. Accessing JNDI over HTTPS ..143
4.3. Securing Access to JNDI over HTTP ...145
4.4. Securing Access to JNDI with a Read-Only Unsecured Context ..147

5. Additional Naming MBeans ..149
5.1. JNDI Binding Manager ..149
5.2. The org.jboss.naming.NamingAlias MBean151
5.3. org.jboss.naming.ExternalContext MBean151
5.4. The org.jboss.naming.JNDIView MBean154

6. J2EE and JNDI - The Application Component Environment156
6.1. ENC Usage Conventions ..158

5. Connectors on JBoss ..171
1. JCA Overview ...171
2. An Overview of the JBossCX Architecture ..174

2.1. BaseConnectionManager2 MBean ..174
2.2. RARDeployment MBean ...175
2.3. JBossManagedConnectionPool MBean176
2.4. CachedConnectionManager MBean ..177
2.5. A Sample Skeleton JCA Resource Adaptor177

3. Configuring JDBC DataSources ...184
4. Configuring Generic JCA Adaptors ...196

6. Transactions on JBoss ..201
1. Transaction/JTA Overview ...201

1.1. Pessimistic and optimistic locking ..202
1.2. The components of a distributed transaction202
1.3. The two-phase XA protocol ...203
1.4. Heuristic exceptions ...204
1.5. Transaction IDs and branches ...204

2. JTS support ..205
3. Web Services Transactions ...205
4. Configuring JBoss Transactions ...205
5. Local versus distributed transactions ..206

7. Messaging on JBoss ...207

JBoss Enterprise Application ...

vi

1. JMS Examples ..207
1.1. A Point-To-Point Example ...207
1.2. A Pub-Sub Example ...210
1.3. A Pub-Sub With Durable Topic Example216
1.4. A Point-To-Point With MDB Example ...219

2. JBoss MQ Overview ..226
2.1. Invocation Layer ...226
2.2. Security Manager ...227
2.3. Destination Manager ..227
2.4. Message Cache ...227
2.5. State Manager ...227
2.6. Persistence Manager ..227
2.7. Destinations ...228

3. JBoss MQ Configuration and MBeans ..228
3.1. org.jboss.mq.il.jvm.JVMServerILService229
3.2. org.jboss.mq.il.uil2.UILServerILService230
3.3. org.jboss.mq.il.http.HTTPServerILService233
3.4. org.jboss.mq.server.jmx.Invoker ..233
3.5. org.jboss.mq.server.jmx.InterceptorLoader234
3.6. org.jboss.mq.sm.jdbc.JDBCStateManager234
3.7. org.jboss.mq.security.SecurityManager234
3.8. org.jboss.mq.server.jmx.DestinationManager235
3.9. org.jboss.mq.server.MessageCache ..236
3.10. org.jboss.mq.pm.jdbc2.PersistenceManager238
3.11. Destination MBeans ...240

4. Specifying the MDB JMS Provider ..244
4.1. org.jboss.jms.jndi.JMSProviderLoader MBean245
4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean247
4.3. Integrating non-JBoss JMS Providers ..247

8. Security on JBoss ...249
1. J2EE Declarative Security Overview ...249

1.1. Security References ...249
1.2. Security Identity ...251
1.3. Security roles ...253
1.4. EJB method permissions ..254
1.5. Web Content Security Constraints ...258
1.6. Enabling Declarative Security in JBoss260

2. An Introduction to JAAS ..261
2.1. What is JAAS? ...261

3. The JBoss Security Model ...265
3.1. Enabling Declarative Security in JBoss Revisited268

4. The JBoss Security Extension Architecture ...273
4.1. How the JaasSecurityManager Uses JAAS275
4.2. The JaasSecurityManagerService MBean278
4.3. The JaasSecurityDomain MBean ..281

5. Defining Security Domains ...282
5.1. Loading Security Domains ..284

vii

5.2. The DynamicLoginConfig service ..286
5.3. Using JBoss Login Modules ..287
5.4. Writing Custom Login Modules ..301

6. The Secure Remote Password (SRP) Protocol310
6.1. Providing Password Information for SRP314
6.2. Inside of the SRP algorithm ...316

7. Running JBoss with a Java 2 security manager322
8. Using SSL with JBoss using JSSE ...324
9. Configuring JBoss for use Behind a Firewall ...329
10. How to Secure the JBoss Server ..329

10.1. The JMX Console ...330
10.2. The Web Console ...330
10.3. The HTTP Invokers ..330
10.4. The JMX Invoker ..330

9. Web Services ...331
1. JAX-RPC Service Endpoints ..331
2. EJB Endpoints ..336
3. Web Services Clients ..339

3.1. A JAX-RPC client ...339
3.2. Service references ...341

10. Additional Services ..347
1. Memory and Thread Monitoring ...347
2. The Log4j Service ...347
3. System Properties Management ..348
4. Property Editor Management ...349
5. Services Binding Management ...349

5.1. AttributeMappingDelegate ...351
5.2. XSLTConfigDelegate ..352
5.3. XSLTFileDelegate ..353
5.4. The Sample Bindings File ...355

6. RMI Dynamic Class Loading ..356
7. Scheduling Tasks ..356

7.1. org.jboss.varia.scheduler.Scheduler ..357
8. The Timer Service ...359
9. The BarrierController Service ...362
10. Exposing MBean Events via SNMP ..365

III. Clustering Configuration ...367
11. Quick Tutorial to Setup a Clustered Web Application369

1. Setup the simple web cluster ...369
1.1. Setup the load balancer ..370
1.2. Configure JBoss AS nodes ...373
1.3. Shared Database ...374

2. Optional improvements to the simple cluster ...374
2.1. Failover support ...374
2.2. Database cache ...375

3. Basic optimization ...376
12. JBossCache and JGroups Services ..379

JBoss Enterprise Application ...

viii

1. JGroups Configuration ...379
1.1. Transport Protocols ..380
1.2. Discovery Protocols ..383
1.3. Failure Detection Protocols ...386
1.4. Reliable Delivery Protocols ...388
1.5. Other Configuration Options ..389

2. JBossCache Configuration ..392
13. Clustering ...397

1. Introduction ..397
1.1. Cluster Definition ..397
1.2. Service Architectures ..400
1.3. Load-Balancing Policies ..402
1.4. Farming Deployment ..403
1.5. Distributed state replication services ..405

2. Clustered JNDI Services ..406
2.1. How it works ..406
2.2. Client configuration ...408
2.3. JBoss configuration ..409

3. Clustered Session EJBs ..411
3.1. Stateless Session Bean in EJB 2.x ..412
3.2. Stateful Session Bean in EJB 2.x ..414
3.3. Stateless Session Bean in EJB 3.0 ..416
3.4. Stateful Session Bean in EJB 3.0 ..417

4. Clustered Entity EJBs ..419
4.1. Entity Bean in EJB 2.x ..419
4.2. Entity Bean in EJB 3.0 ..420

5. HTTP Services ...423
5.1. Download the software ...424
5.2. Configure Apache to load mod_jk ..424
5.3. Configure worker nodes in mod_jk ...426
5.4. Configure JBoss ...428
5.5. Configure HTTP session state replication429
5.6. Enabling session replication in your application431
5.7. Use FIELD level replication ...432
5.8. Monitoring session replication ...434
5.9. Using Single Sign On ...435

6. Clustered JMS Services ..435
6.1. High Availability Singleton Fail-over ...435

IV. Legacy EJB Support ..439
14. EJBs on JBoss ..441

1. The EJB Client Side View ..441
1.1. Specifying the EJB Proxy Configuration444

2. The EJB Server Side View ...450
2.1. Detached Invokers - The Transport Middlemen450
2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport453
2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport454

3. The EJB Container ..455

ix

3.1. EJBDeployer MBean ..455
3.2. Container Plug-in Framework ..470

4. Entity Bean Locking and Deadlock Detection ..482
4.1. Why JBoss Needs Locking ...482
4.2. Entity Bean Lifecycle ..482
4.3. Default Locking Behavior ..483
4.4. Pluggable Interceptors and Locking Policy483
4.5. Deadlock ...484
4.6. Advanced Configurations and Optimizations487
4.7. Running Within a Cluster ..489
4.8. Troubleshooting ...489

5. EJB Timer Configuration ..490
15. The CMP Engine ...493

1. Example Code ..493
1.1. Enabling CMP Debug Logging ..494
1.2. Running the examples ..495

2. The jbosscmp-jdbc Structure ...497
3. Entity Beans ...498

3.1. Entity Mapping ...501
4. CMP Fields ...505

4.1. CMP Field Declaration ..505
4.2. CMP Field Column Mapping ...505
4.3. Read-only Fields ..508
4.4. Auditing Entity Access ..509
4.5. Dependent Value Classes (DVCs) ...510

5. Container Managed Relationships ..515
5.1. CMR-Field Abstract Accessors ..515
5.2. Relationship Declaration ...516
5.3. Relationship Mapping ...517

6. Queries ..524
6.1. Finder and select Declaration ..525
6.2. EJB-QL Declaration ..525
6.3. Overriding the EJB-QL to SQL Mapping526
6.4. JBossQL ..528
6.5. DynamicQL ..529
6.6. DeclaredSQL ...530
6.7. EJBQL 2.1 and SQL92 queries ...535
6.8. BMP Custom Finders ...535

7. Optimized Loading ..536
7.1. Loading Scenario ...536
7.2. Load Groups ..538
7.3. Read-ahead ...539

8. Loading Process ...546
8.1. Commit Options ...546
8.2. Eager-loading Process ...547
8.3. Lazy loading Process ...548
8.4. Lazy loading result sets ..552

JBoss Enterprise Application ...

x

9. Transactions ...553
10. Optimistic Locking ...555
11. Entity Commands and Primary Key Generation560

11.1. Existing Entity Commands ..560
12. Defaults ..563

12.1. A sample jbosscmp-jdbc.xml defaults declaration565
13. Datasource Customization ...567

13.1. Type Mapping ..567
13.2. Function Mapping ...570
13.3. Mapping ..571
13.4. User Type Mappings ..572

A. Book Example Installation ...575
B. Use Alternative Databases with JBoss AS ..577

1. How to Use Alternative Databases ...577
2. Install JDBC Drivers ..577

2.1. Special notes on Sybase ..578
3. Creating a DataSource for the External Database ...579
4. Change Database for the JMS Services ...580
5. Support Foreign Keys in CMP Services ..581
6. Specify Database Dialect for Java Persistence API581
7. Change Other JBoss AS Services to Use the External Database582

7.1. The Easy Way ...582
7.2. The More Flexible Way ...583

8. A Special Note About Oracle DataBases ..584

xi

xii

What this Book Covers

The primary focus of this book is the presentation of the standard JBoss 4.2 architecture
components from both the perspective of their configuration and architecture. As a user of a
standard JBoss distribution you will be given an understanding of how to configure the standard
components. Note that this book is not an introduction to J2EE or how to use J2EE in
applications. It focuses on the internal details of the JBoss server architecture and how our
implementation of a given J2EE container can be configured and extended.

As a JBoss developer, you will be given a good understanding of the architecture and
integration of the standard components to enable you to extend or replace the standard
components for your infrastructure needs. We also show you how to obtain the JBoss source
code, along with how to build and debug the JBoss server.

xiii

xiv

About JBoss

JBoss, a division of Red Hat, is the global leader in open source middleware software,
combining enterprise-class JEMS open source software with the industry’s leading services and
tools to provide simply a better way to transform your business to Service-Oriented Architecture
(SOA).

JBoss, pioneered the disruptive Professional Open Source model, which combines the best of
the open source and proprietary software worlds to make open source a safe choice for the
enterprise and give CIOs peace of mind. This includes the royalty-free software, transparent
development and active community inherent in open source and the accountability and
professional support services expected of a traditional software vendor. The company finds
innovative open source projects and professionalizes the project from a hobby into a livelihood
by hiring the lead developer(s), often the founders themselves. JBoss provides the resources,
core development and support services to enable popular open source projects to scale into
enterprise-class software.

Coverage: North America and Europe on a direct basis. JBoss provides coverage worldwide via
our extensive authorized partner network.

Mission Statement: JBoss' mission is to revolutionize the way enterprise middleware software is
built, distributed, and supported through the Professional Open Source model. We are
committed to delivering innovative and high quality technology and services that make JBoss
the safe choice for enterprises and software providers.

Customers: Enterprise customers deploying JBoss technologies in mission-critical applications
with professional services support from JBoss include Aviva Canada, Continental Airlines, La
Quinta, NLG, MCI, Nielsen Media Research and Travelocity. For a current list of customer
success stories, please visit the Customers [http://www.jboss.com/customers/index] section of
our website.

Partners: JBoss works with software and hardware vendors, systems integrators and OEMs to
deliver implementation services, frontline support, and certification for products embedded with
JBoss technologies. For more information on the JBoss Certified Partner Program, please visit
the Partners [http://www.jboss.com/partners/index] section of our website.

Professional Open Source(tm) from JBoss Inc. offers you:

• Standards-based and stable Java Middleware technology

• No cost open source product licenses

• Backed by a professional and expert support staff

• Comprehensive services including Professional Support
[http://www.jboss.com/services/profsupport], Training
[http://www.jboss.com/services/certification], and Consulting
[http://www.jboss.com/services/consulting]

xv

http://www.jboss.com/customers/index
http://www.jboss.com/customers/index
http://www.jboss.com/partners/index
http://www.jboss.com/partners/index
http://www.jboss.com/services/profsupport
http://www.jboss.com/services/profsupport
http://www.jboss.com/services/certification
http://www.jboss.com/services/certification
http://www.jboss.com/services/consulting
http://www.jboss.com/services/consulting

• A very large and active community of developers

• An extensive worldwide network of authorized and certified partners
[http://www.jboss.com/partners/index]

Benefits of Professional Open Source from JBoss Inc.:

• Lowest possible total cost of ownership

• Reliable and safe technology

• Support, accountability, and trust from a stable company

• Expedited problem resolution compared to commercial software vendors

About JBoss

xvi

http://www.jboss.com/partners/index
http://www.jboss.com/partners/index

About Open Source

The basic idea behind open source is very simple: When programmers can read, redistribute,
and modify the source code for a piece of software, the software evolves. People improve it,
people adapt it, people fix bugs. And this can happen at a speed that, if one is used to the slow
pace of conventional software development, seems astonishing. Open Source is an
often-misunderstood term relating to free software. The Open Source Initiative (OSI) web site
provides a number of resources that define the various aspects of Open Source including an
Open Source Definition at: http://www.opensource.org/docs/definition.html. The following quote
from the OSI home page summarizes the key aspects as they relate to JBoss nicely:

We in the open source community have learned that this rapid evolutionary
process produces better software than the traditional closed model, in which
only very few programmers can see the source and everybody else must blindly
use an opaque block of bits.

Open Source Initiative exists to make this case to the commercial world.

Open source software is an idea whose time has finally come. For twenty years
it has been building momentum in the technical cultures that built the Internet
and the World Wide Web. Now it's breaking out into the commercial world, and
that's changing all the rules. Are you ready?

—The Open Source Initiative

xvii

http://www.opensource.org/docs/definition.html

xviii

About Professional Open Source

JBoss is the leader in the second generation of open source, which we have termed
Professional Open Source. The Professional Open Source methodology is based on the
following:

1. We hire and pay experts in the open source community to write exceptional and innovative
software full-time.

2. We only use open source licenses that are friendly to end-user IT shops, independent
software vendors, and the community itself.

3. Directly and through our authorized partners, we deliver the best support services available;
all of which are backed up by the real product experts.

4. Unlike first generation open source providers, we control the direction and source code for
our projects. We can ensure that all bug fixes and patches are rolled into future versions of
our products.

5. By combining enterprise-proven technology, business-friendly open source licenses, and
world-class support services, we have made Professional Open Source the safe choice for
end-user enterprises and independent software vendors alike.

xix

xx

Part I. Java EE 5 Application
Configuration

Enterprise Applications with EJB3
Services
In the previous chapter, we discussed how to write simple web applications packaged in WAR
files. Using JavaServer Faces (JSF), you can write web applications that conform to strict
MVC-based component models. However, for most JBoss platform users, the web applcation in
the WAR is just the UI frontend. The real business logic of the application, such as database
access, transactions, secuirty etc., is handled by enterprise business components such as
Enterprise JavaBeans (EJBs).

EJB3 (Enterprise JavaBean 3.0) provides the core component model for Java EE 5
applications. An EJB3 bean is a managed component that is automatically wired to take
advantage of all services the J2EE server container provides, such as transaction, security,
persistence, naming, dependency injection, etc. The managed component allows developers to
focus on the business logic, and leave the cross-cutting concerns to the container as
configurations. As an application developer, you need not create or destroy the components
yourself. You only need to ask for an EJB3 bean from the Java EE container by its name, and
then you can call its methods with all configured container services applied. You can get access
to an EJB3 bean from either inside or outside of the J2EE container.

JBoss AS 4.2 supports EJB3 out of the box. For JBoss AS 4.0.x, you can add support for EJB3
by manually installing the JBoss EJB3 deployer, or installing the server from a JEMS GUI
installer and select a EJB3 profile.

The details of the EJB3 component programming model is beyond the scope of this guide. Most
EJB3 interfaces and annotations are part of the Java EE 5 standard and hence they are the
same for all Java EE 5 compliant application servers. Interested readers should refer to the
EJB3 specification or numerous EJB3 books to learn more about EJB3 programming.

In this chapter, we only cover EJB3 configuration issues that are specific to the JBoss AS. For
instance, we discuss the JNDI naming conventions for EJB3 components inside the JBoss AS,
the optional configurations for the Hibernate persistence engine for entity beans, as well as
custom options in the JBoss EJB3 deployer.

1. Session Beans

Session beans are widely used to provide transactional services for local and remote clients. To
write a session bean, you need an interface and an implementation class.

@Local
public interface MyBeanInt {
public String doSomething (String para1, int para2);

}

@Stateless

Chapter 1.

3

public class MyBean implements MyBeanInt {

public String doSomething (String para1, int para2) {
... implement the logic ...

}

}

When you invoke a session bean method, the method execution is automatically managed by
the transaction manager and the security manager in the server. You can specify the
transactional or security properties for each method using annotations on the method. A session
bean instance can be reused by many clients. Depending on whether the server maintains the
bean's internal state between two clients, the session bean can be stateless or stateful.
Depending on whether the bean is available to remote clients (i.e., clients outside of the current
JVM for the server), the session bean can be local or remote. All these are configurable via
standard annotations on the beans.

After you define a session bean, how does the client get access to it? As we discussed, the
client does not create or destroy EJB3 components, it merely asks the server for a reference of
an existing instance managed by the server. That is done via JNDI. In JBoss AS, the default
local JNDI name for a session bean is dependent on the deployment packaging of the bean
class.

• If the bean is deployed in a standalone JAR file in the jboss-as/production/deploy

directory, the bean is accessible via local JNDI name MyBean/local, where MyBean is the
implementation class name of the bean as we showed earlier. The "local" JNDI in JBoss AS
means that the JNDI name is relative to java:comp/env/.

• If the JAR file containing the bean is packaged in an EAR file, the local JNDI name for the
bean is myapp/MyBean/local, where myapp is the root name of the EAR archive file (e.g.,
myapp.ear, see later for the EAR packaging of EJB3 beans).

Of course, you should change local to remote if the bean interface is annotated with @Remote

and the bean is accessed from outside of the server it is deployed on. Below is the code snippet
to get a reference of the MyBean bean in a web application (e.g., in a servlet or a JSF backing
bean) packaged in myapp.ear, and then invoke a managed method.

try {
InitialContext ctx = new InitialContext();
MyBeanInt bean = (MyBeanInt) ctx.lookup("myapp/MyBean/local");

} catch (Exception e) {
e.printStackTrace ();

}

Chapter 1. Enterprise Applica...

4

... ...

String result = bean.doSomething("have fun", 1);

... ...

What the client gets from the JNDI is essentially a "stub" or "proxy" of the bean instance. When
the client invokes a method, the proxy figures out how to route the request to the server and
marshal together the response.

If you do not like the default JNDI names, you can always specify your own JNDI binding for any
bean via the @LocalBinding annotation on the bean implementation class. The JNDI binding is
always "local" under the java:comp/env/ space. For instance, the following bean class
definition results in the bean instances available under JNDI name
java:comp/env/MyService/MyOwnName.

@Stateless
@LocalBinding (jndiBinding="MyService/MyOwnName")
public class MyBean implements MyBeanInt {

public String doSomething (String para1, int para2) {
... implement the logic ...

}

}

Injecting EJB3 Beans into the Web Tier

Java EE 5 allows you to inject EJB3 bean instances directly into the web
application via annotations without explicit JNDI lookup. This behavior is not yet
supported in JBoss AS 4.2. However, the JBoss Enterprise Platform provides an
integration framework called JBoss Seam. JBoss Seam brings EJB3 / JSF
integration to new heights far beyond what Java EE 5 provides. Please see more
details in the JBoss Seam reference guide bundled with the platform.

2. Entity Beans (a.k.a. Java Persistence API)

EJB3 session beans allow you to implement data accessing business logic in transactional
methods. To actually access the database, you will need EJB3 entity beans and the entity
manager API. They are collectively called the Java Persistence API (JPA).

Entity Beans (a.k.a. Java Persistence API)

5

EJB3 Entity Beans are Plain Old Java Objects (POJOs) that map to relational database tables.
For instance, the following entity bean class maps to a relational table named customer. The
table has three columns: name, age, and signupdate. Each instance of the bean corresponds to
a row of data in the table.

@Entity
public class Customer {

String name;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

int age;

public int getAge () {
return age;

}

public void setAge (int age) {
this.age = age;

}

Date signupdate;

public Date getSignupdate () {
return signupdate;

}

public void setSignupdate (Date signupdate) {
this.signupdate = signupdate;

}
}

Besides simple data properties, the entity bean can also contain references to other entity
beans with relational mapping annotations such as @OneToOne, @OneToMany,
@ManyToMany etc. The relationships of those entity objects will be automatically set up in the
database as foreign keys. For instance, the following example shows that each record in the
Customer table has one corresponding record in the Account table, multiple corresponding
records in the Order table, and each record in the Employee table has multiple corresponding
records in the Customer table.

Chapter 1. Enterprise Applica...

6

@Entity
public class Customer {

... ...

Account account;

@OneToOne
public Account getAccount () {

return account;
}

public void setAccount (Accout account) {
this.account = account;

}

Employee salesRep;

@ManyToOne
public Employee getSalesRep () {

return salesRep;
}

public void setSalesRep (Employee salesRep) {
this.salesRep = salesRep;

}

Vector <Order> orders;

@OneToMany
public Vector <Order> getOrders () {

return orders;
}

public void setOrders (Vector <Order> orders) {
this.orders = orders;

}

Using the EntityManager API, you can create, update, delete, and query entity objects. The
EntityManager transparently updates the underlying database tables in the process. You can
obtain an EntityManager object in your EJB3 session bean via the @PersistenceContext
annotation.

@PersistenceContext
EntityManager em;

Customer customer = new Cutomer ();
// populate data in customer

Entity Beans (a.k.a. Java Persistence API)

7

// Save the newly created customer object to DB
em.persist (customer);

// Increase age by 1 and auto save to database
customer.setAge (customer.getAge() + 1);

// delete the customer and its related objects from the DB
em.remove (customer);

// Get all customer records with age > 30 from the DB
List <Customer> customers = em.query (

"select c from Customer where c.age > 30");

The detailed use of the EntityManager API is beyond the scope of this book. Interested readers
should refer to the JPA documentation or Hibernate EntityManager documentation.

2.1. The persistence.xml file

The EntityManager API is great, but how does the server know which database it is supposed to
save / update / query the entity objects? How do we configure the underlying
object-relational-mapping engine and cache for better performance and trouble shooting? The
persistence.xml file gives you complete flexibility to configure the EntityManager.

The persistence.xml file is a standard configuration file in JPA. It has to be included in the
META-INF directory inside the JAR file that contains the entity beans. The persistence.xml file
must define a persistence-unit with a unique name in the current scoped classloader. The
provider attribute specifies the underlying implementation of the JPA EntityManager. In JBoss
AS, the default and only supported / recommended JPA provider is Hibernate. The
jta-data-source points to the JNDI name of the database this persistence unit maps to. The
java:/DefaultDS here points to the HSQL DB embedded in the JBoss AS. Please refer to
Appendix B, Use Alternative Databases with JBoss AS on how to setup alternative databases
for JBoss AS.

<persistence>
<persistence-unit name="myapp">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

... ...
</properties>

</persistence-unit>
</persistence>

Chapter 1. Enterprise Applica...

8

Inject EntityManager by persistence-unit name

Since you might have multiple instances of persistence-unit defined in the same
application, you typically need to explicitly tell the @PersistenceContext
annotation which unit you want to inject. For instance,
@PersistenceContext(name="myapp") injects the EntityManager from the
persistence-unit named "myapp".

However, if you deploy your EAR application in its own scoped classloader and
have only one persistence-unit defined in the whole application, you can omit the
"name" on @PersistenceContext. See later in this chapter for EAR packaging
and deployment.

The properties element in the persistence.xml can contain any configuration properties for the
underlying persistence provider. Since JBoss AS uses Hibernate as the EJB3 persistence
provider, you can pass in any Hibernate options here. Please refer to the Hibernate and
Hibernate EntityManager documentation for more details. Here we will just give an example to
set the SQL dialect of the persistence engine to HSQL, and to create tables from the entity
beans when the application starts and drop those tables when the application stops.

<persistence>
<persistence-unit name="myapp">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>

<property name="hibernate.hbm2ddl.auto" value="create-drop"/>
</properties>

</persistence-unit>
</persistence>

2.2. Use Alternative Databases

To use an alternative database other than the built-in HSQL DB to back your entity beans, you
need to first define the data source for the database and register it in the JNDI. This is done via
the *-ds.xml files in the deploy directory. Please see Section 3, “Configuring JDBC
DataSources” for more details. Examples of *-ds.xml files for various databases are available in
jboss-as/docs/examples/jca directory in the server.

Then, in the persistence.xml, you need to change the jta-data-source attribute to point to the
new data source in JNDI (e.g., java:/MysqlDS if you are using the default mysql-ds.xml to setup

Use Alternative Databases

9

a MySQL external database).

In most cases, Hibernate tries to automatically detect the database it connects to and then
automatically selects an appropriate SQL dialect for the database. However, we have found that
this detection does not always work, especially for less used database servers. We recommend
you to set the hibernate.dialect property explicitly in persistence.xml. Here are the Hibernate
dialect for database servers officially supported on the JBoss platform.

• Oracle 9i and 10g: org.hibernate.dialect.Oracle9Dialect

• Microsoft SQL Server 2005: org.hibernate.dialect.SQLServerDialect

• PostgresSQL 8.1: org.hibernate.dialect.PostgreSQLDialect

• MySQL 5.0: org.hibernate.dialect.MySQL5Dialect

• DB2 8.0: org.hibernate.dialect.DB2Dialect

• Sybase ASE 12.5: org.hibernate.dialect.SybaseDialect

2.3. Default Hibernate options

Hibernate has many configuration properties. For the properties that you do not specify in the
persistence.xml file, JBoss AS will provide a reasonable set of default values. The default
Hibernate property values are specified in the
jboss-as/server/production/deploy/ejb3.deployer/MEAT-INF/persistence.properties

file. Below is the persistence.properties file bundled in JBoss AS 4.2. Notice the options
that are commented out. They give you an idea of available properties in your
persistence.xml file.

hibernate.transaction.manager_lookup_class=org.hibernate.transaction.JBossTransactionManagerLookup
#hibernate.connection.release_mode=after_statement
#hibernate.transaction.flush_before_completion=false
#hibernate.transaction.auto_close_session=false
#hibernate.query.factory_class=org.hibernate.hql.ast.ASTQueryTranslatorFactory
#hibernate.hbm2ddl.auto=create-drop
#hibernate.hbm2ddl.auto=create
hibernate.cache.provider_class=org.hibernate.cache.HashtableCacheProvider
Clustered cache with TreeCache
#hibernate.cache.provider_class=org.jboss.ejb3.entity.TreeCacheProviderHook
#hibernate.treecache.mbean.object_name=jboss.cache:service=EJB3EntityTreeCache
#hibernate.dialect=org.hibernate.dialect.HSQLDialect
hibernate.jndi.java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
hibernate.jndi.java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
hibernate.bytecode.use_reflection_optimizer=false
I don't think this is honored, but EJB3Deployer uses it
hibernate.bytecode.provider=javassist

Chapter 1. Enterprise Applica...

10

3. Message Driven Beans

Messaging driven beans are specialized EJB3 beans that receive service requests via JMS
messages instead of proxy method calls from the "stub". So, a crucial configuration parameter
for the message driven bean is to specify which JMS message queue its listens to. When there
is an incoming message in the queue, the server invokes the beans's onMessage() method,
and passes in the message itself for processing. The bean class specifies the JMS queue it
listens to in the @MessageDriven annotation. The queue is registered under the local JNDI
java:comp/env/ name space.

@MessageDriven(activationConfig =
{
@ActivationConfigProperty(propertyName="destinationType",

propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="destination",

propertyValue="queue/MyQueue")
})
public class MyJmsBean implements MessageListener {

public void onMessage (Message msg) {
// ... do something with the msg ...

}

//
}

When a message driven bean is deployed, its incoming message queue is automatically
created if it does not exist already. To send a message to the bean, you can use the standard
JMS API.

try {
InitialContext ctx = new InitialContext();
queue = (Queue) ctx.lookup("queue/MyQueue");
QueueConnectionFactory factory =

(QueueConnectionFactory) ctx.lookup("ConnectionFactory");
cnn = factory.createQueueConnection();
sess = cnn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);

} catch (Exception e) {
e.printStackTrace ();

}

TextMessage msg = sess.createTextMessage(...);

Message Driven Beans

11

sender = sess.createSender(queue);
sender.send(msg);

Please refer to the JMS specification or books to learn how to program in the JMS API.

4. Package and Deploy EJB3 Services

EJB3 bean classes are packaged in regular JAR files. The standard configuration files, such as
ejb-jar.xml for session beans, and persistence.xml for entity beans, are in the META-INF
directory inside the JAR. You can deploy EJB3 beans as standalone services in JBoss AS or as
part of an enterprise application (i.e., in an EAR archive). In this section, we discuss those two
deployment options.

4.1. Deploy the EJB3 JAR

When you drop JAR files into the jboss-as/server/production/deploy/ directory, it will be
automatically picked up and processed by the server. All the EJB3 beans defined in the JAR file
will then be available to other applications deployed inside or outside of the server via JNDI
names like MyBean/local, where MyBean is the implementation class name for the session
bean. The deployment is done via the JBoss EJB3 deployer in
jboss-as/server/production/ejb3.deployer/. The META-INF/persistence.properties file we
discussed earlier to configure the default behavior of EJB3 entity manager is located in the
EJB3 deployer.

The EJB3 deployer automatically scans JARs on the classpath to look for EJB3 annotations.
When it finds classes with EJB3 annotations, it would deploy them as EJB3 services. However,
scanning all JARs on the classpath could be very time-consuming if you have large applications
with many JARs deployed. In the
jboss-as/server/production/ejb3.deployer/META-INF/jboss-service.xml file, you can tell the EJB3
deployer to ignore JARs you know do not contain EJB3 beans. The non-EJB3 JAR files shipped
with the JBoss AS are already listed in the jboss.ejb3:service=JarsIgnoredForScanning MBean
service:

... ...
<mbean code="org.jboss.ejb3.JarsIgnoredForScanning"

name="jboss.ejb3:service=JarsIgnoredForScanning">
<attribute name="IgnoredJars">

snmp-adaptor.jar,
otherimages.jar,
applet.jar,
jcommon.jar,
console-mgr-classes.jar,
jfreechart.jar,
juddi-service.jar,

Chapter 1. Enterprise Applica...

12

wsdl4j.jar,
... ...
servlets-webdav.jar

</attribute>
</mbean>

... ...

You can add any non-EJB3 JARs from your application to this list so that the server do not have
to waste time scanning them. This could significantly improve the application startup time in
some cases.

4.2. Deploy EAR with EJB3 JAR

Most Java EE applications are deployed as EAR archives. An EAR archive is a JAR file that
typically contains a WAR archive for the web pages, servlets, and other web-related
components, one or several EJB3 JARs that provide services (e.g., data access and
transaction) to the WAR components, and some other support library JARs required by the
application. An EAR file also have deployment descriptors such as application.xml and
jboss-app.xml. Below is the basic structure of a typical EAR application.

myapp.ear
|+ META-INF

|+ applications.xml and jboss-app.xml
|+ myapp.war

|+ web pages and JSP /JSF pages
|+ WEB-INF

|+ web.xml, jboss-web.xml, faces-config.xml etc.
|+ lib

|+ tag library JARs
|+ classes

|+ servlets and other classes used by web pages
|+ myapp.jar

|+ EJB3 bean classes
|+ META-INF

|+ ejb-jar.xml and persistence.xml
|+ lib

|+ Library JARs for the EAR

Notice that in JBoss AS, unlike in many other application servers, you do not need to declare
EJB references in the web.xml file in order for the components in the WAR file to access EJB3
services. You can obtain the references directly via JNDI as we discussed earlier in the chapter.

A typical application.xml file is as follows. It declares the WAR and EJB3 JAR archives in the
EAR, and defines the web content root for the application. Of course, you can have multiple

Deploy EAR with EJB3 JAR

13

EJB3 modules in the same EAR application. The application.xml file could also optionally define
a shared classpath for JAR files used in this application. The JAR file location defaults to lib in
JBoss AS -- but it might be different in other application servers.

<application>
<display-name>My Application</display-name>

<module>
<web>
<web-uri>myapp.war</web-uri>
<context-root>/myapp</context-root>

</web>
</module>

<module>
<ejb>myapp.jar</ejb>

</module>

<library-directory>lib</library-directory>

</application>

The jboss-app.xml file provides JBoss-specific deployment configuration for the EAR
application. For instance, it can specify the deployment order of modules in the EAR, deploy
JBoss-specific application modules in the EAR, such as SARs (Service ARchive for MBeans)
and HARs (Hibernate ARchive for Hibernate objects), provide security domain and JMX
MBeans that can be used with this application, etc. You can lear more about the possible
attributes in jboss-app.xml in its DTD: http://www.jboss.org/j2ee/dtd/jboss-app_4_2.dtd.

A common use case for jboss-app.xml is to configure whether this EAR file should be deployed
in its own scoped classloader to avoid naming conflicts with other applications. If your EAR
application is deployed in its own scoped classloader and it only has one persistence-unit
defined in its EJB3 JARs, you will be able to use @PersistenceContext EntotyManager em to
inject EntityManager to session beans without worrying about passing the persistence unit
name to the @PersistenceContext annotation. The following jboss-app.xml specifies a scoped
classloader myapp:archive=myapp.ear for the EAR application.

<jboss-app>
<loader-repository>
myapp:archive=myapp.ear
</loader-repository>

</jboss-app>

Chapter 1. Enterprise Applica...

14

The EAR deployment is configured by the jboss-as/server/production/deploy/ear-deploy.xml file.
This file contains three attributes as follows.

<server>
<mbean code="org.jboss.deployment.EARDeployer"

name="jboss.j2ee:service=EARDeployer">
<!--

A flag indicating if ear deployments should
have their own scoped class loader to isolate
their classes from other deployments.

-->
<attribute name="Isolated">false</attribute>

<!--
A flag indicating if the ear components should
have in VM call optimization disabled.

-->
<attribute name="CallByValue">false</attribute>

<!--
A flag the enables the default behavior of
the ee5 library-directory. If true, the lib
contents of an ear are assumed to be the default
value for library-directory in the absence of
an explicit library-directory. If false, there
must be an explicit library-directory.

-->
<attribute name="EnablelibDirectoryByDefault">true</attribute>

</mbean>
</server>

If you set the Isolated parameter to true, all EAR deployment will have scoped classloaders by
default. There will be no need to define the classloader in jboss-app.xml. The CallByValue
attribute specifies whether we should treat all EJB calls as remote calls. Remote calls have a
large additional performance penalty compared with local call-by-reference calls, because
objects involved in remote calls have to be serialized and de-serialized. For most of our
applications, the WAR and EJB3 JARs are deployed on the same server, hence this value
should be default to false and the server uses local call-by-reference calls to invoke EJB
methods in the same JVM. The EnablelibDirectoryByDefault attribute specifies whether the lib
directory in the EAR archive should be the default location for shared library JARs.

Deploy EAR with EJB3 JAR

15

16

Deployment
Deploying applications on JBoss AS is very easy. You just need to copy the application into the
jboss-as/server/production/deploy directory. You can replace default with different server
profiles such as all or minimal or production. We will cover those later in this chapter. JBoss AS
constantly scans the deploy directory to pick up new applications or any changes to existing
applications. So, you can "hot deploy" application on the fly while JBoss AS is still running.

1. Deployable Application Types

You can deploy several different types of enterprise applications in JBoss AS:

• The WAR application archive (e.g., myapp.war) packages a Java EE web application in a
JAR file. It contains servlet classes, view pages, libraries, and deployment descriptors such
as web.xml, faces-config.xml, and jboss-web.xml etc..

• The EAR application archive (e.g., myapp.ear) packages a Java EE enterprise application in
a JAR file. It typically contains a WAR file for the web module, JAR files for EJB modules, as
well as deployment descriptors such as application.xml and jboss-app.xml etc..

• The SAR application archive (e.g., myservice.sar) packages a JBoss service in a JAR file. It is
mostly used by JBoss internal services. Please see more in Chapter 3, The JBoss JMX
Microkernel.

• The *-ds.xml file defines connections to external databases. The data source can then be
reused by all applications and services in JBoss AS via the internal JNDI.

• You can deploy XML files with MBean service definitions. If you have the appropriate JAR
files available in the deploy or lib directories, the MBeans specified in the XML files will be
started. This is the way how you start many JBoss AS internal services, such as the JMS
queues.

• You can also deploy JAR files containing EJBs or other service objects directly in JBoss AS.

Exploded Deployment

The WAR, EAR, and SAR deployment packages are really just JAR files with
special XML deployment descriptors in directories like META-INF and WEB-INF.
JBoss AS allows you to deploy those archives as expanded directories instead of
JAR files. That allows you to make changes to web pages etc on the fly without
re-deploying the entire application. If you do need to re-deploy the exploded
directory without re-start the server, you can just "touch" the deployment
descriptors (e.g., the WEB-INF/web.xml in a WAR and the
META-INF/application.xml in an EAR) to update their timestamps.

Chapter 2.

17

2. Standard Server Configurations

The JBoss Enterprise Platform ships with four server configurations. You can choose which
configuration to start by passing the -c parameter to the server startup script. For instance,
command run.sh -c all would start the server in the all configuration. Each configuration is
contained in a directory named jboss-as/server/[config name]/. You can look into each server
configuration's directory to see the default services, applications, and libraries supported in the
configuration.

• The minimal configuration starts the core server container without any of the enterprise
services. It is a good starting point if you want to build a customized version of JBoss AS that
only contains the servers you need.

• The default configuration is the mostly common used configuration for application developers.
It supports the standard J2EE 1.4 and most of the Java EE 5.0 programming APIs (e.g., JSF
and EJB3).

• The all configuration is the default configuration with clustering support and other enterprise
extensions.

• The production configuration is based on the all configuration but with key parameters
pre-tuned for production deployment.

The detailed services and APIs supported in each of those configurations will be discussed
throughout this book. In this section, we focus on the optimization we did for the production
configuration.

2.1. The production Configuration

To start the server in the production configuration, you can use the following command under
Linux / Unix:

cd /path/to/jboss-as
RUN_CONF=server/production/run.conf bin/run.sh -c production

Or, you can simply copy the jboss-as/server/production/run.conf file to jboss-as/bin directory
and start the server with run.sh -c production command. Below is a list of optimizations we
specifically did for the production configuration:

• In the jboss-as/server/production/run.conf file, we expanded the memory size of the server to
1.7 GB. We added the -server tag to JVM startup command on all platforms except for Darwin
(Mac OS X). If the JVM is BEA jRockit, the -Xgc:gencon parameter is also added.

• We configured the key generation algorithm to use the database to generate HiLo keys in

Chapter 2. Deployment

18

order to generate the correct keys in a cluster environment (see
deploy/uuid-key-generator.sar/META-INF/jboss-service.xml).

• We removed the test JMS queues from
deploy-hasingleton/jms/jbossmq-destinations-service.xml. Those queues are setup primarily
for ease of application development. Production applications should configure their own JMS
queues.

• We set the ScanPeriod parameter to 60000 in conf/jboss-minimal.xml and
conf/jboss-service.xml, so that JBoss AS does not spend too much time constantly scanning
the deploy directory for new or updated deployments.

• We removed the connection monitoring in deploy/jbossjca-service.xml. The connection
monitoring feature helps catch unclosed connections that would otherwise cause leaks in the
connection pools in development. However, it is a global point of contention that should be
turned off (false) in production.

• Logging is a big contention point in many production applications. In the production
configuration, we removed the console logging and increased the logging level to WARN and
ERROR for most packages. Please see details in conf/jboss-log4j.xml.

2.2. Further Tuning from the production Configuration

In addition to the standard optimization in the production configuration, there are a couple of
simple techniques you can use to improve the performance and stability of your server.

The production configuration increases the JVM heap memory size to 1.7 GB. You should
probably change it to fit your own server. For instance, if have a 64 bit server with several GBs
of RAM, you can probably increase this value as long as you also use a 64 bit JVM. If your
server has less than 2 GB RAM, you should decrease that value accordingly. In the
production/run.conf file, the -Xmx and -Xms parameters specify the maximum and minimum
heap sizes respectively. It is recommended that you set the -Xmx and -Xms to the same value
to avoid dynamic re-sizing of the heap, which is a source of instability in many JVMs. You could
also consider turing on parallel GC options if you are using the Sun JVM on a multi-core
machine. The following is an example setup you might use a reference. Please see the Sun
JVM documentation for more details on this startup parameters.

JAVA_OPTS="-Xms1740m -Xmx1740m -XX:PermSize=256m -XX:MaxPermSize=512
-XX:+UseConcMarkSweepGC -XX:+CMSPermGenSweepingEnabled
-XX:+CMSClassUnloadingEnabled"

In the embedded Tomcat module, you can turn off the development mode so that the server
does not constantly monitor the changes in JSP files. To do that, edit the
deploy/jboss-web.deployer/conf/web.xml file and add the development attribute to the
JspServlet.

Further Tuning from the production

19

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
... ...
<init-param>
<param-name>development</param-name>
<param-value>false</param-value>

</init-param>
... ...

In Tomcat, you could adjust the size of the thread pool. If you have multi-core CPUs or more
than one CPUs on your server, it might be beneficial to increase the thread pool beyond the
default 250. On the other hand, if you have a slow server, decreasing the thread pool will
decrease the overhead on the server. The thread pool size can be adjusted via the
deploy/jboss-web.deployer/server.xml file.

... ...
<Connector port="8080" address="${jboss.bind.address}"

maxThreads="250" maxHttpHeaderSize="8192"
emptySessionPath="true" protocol="HTTP/1.1"
enableLookups="false" redirectPort="8443" acceptCount="100"
connectionTimeout="20000" disableUploadTimeout="true" />

... ...

In addition, JBoss AS needs to use a relational database to store runtime data. In a production
environment, you should use a production quality database to replace the embedded HSQL
database. Please see Appendix B, Use Alternative Databases with JBoss AS for more
information on how to setup alternative databases for the JBoss AS.

Chapter 2. Deployment

20

Part II. JBoss AS Infrastructure

The JBoss JMX Microkernel
Modularly developed from the ground up, the JBoss server and container are completely
implemented using component-based plug-ins. The modularization effort is supported by the
use of JMX, the Java Management Extension API. Using JMX, industry-standard interfaces help
manage both JBoss/Server components and the applications deployed on it. Ease of use is still
the number one priority, and the JBoss Server architecture sets a new standard for modular,
plug-in design as well as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The already
tight code can be further trimmed down to support applications that must have a small footprint.
For example, if EJB passivation is unnecessary in your application, simply take the feature out
of the server. If you later decide to deploy the same application under an Application Service
Provider (ASP) model, simply enable the server's passivation feature for that web-based
deployment. Another example is the freedom you have to drop your favorite object to relational
database (O-R) mapping tool, such as TOPLink, directly into the container.

This chapter will introduce you to JMX and its role as the JBoss server component bus. You will
also be introduced to the JBoss MBean service notion that adds life cycle operations to the
basic JMX management component.

1. An Introduction to JMX

The success of the full Open Source J2EE stack lies with the use of JMX (Java Management
Extension). JMX is the best tool for integration of software. It prov ides a common spine that
allows the user to integrate modules, containers, and plug-ins. Figure 3.1, “The JBoss JMX
integration bus and the standard JBoss components” shows the role of JMX as an integration
spine or bus into which components plug. Components are declared as MBean services that are
then loaded into JBoss. The components may subsequently be administered using JMX.

Chapter 3.

23

Figure 3.1. The JBoss JMX integration bus and the standard JBoss
components

Before looking at how JBoss uses JMX as its component bus, it would help to get a basic
overview what JMX is by touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent
Specification, v1.2, which is available from the JSR003 Web page at
http://jcp.org/en/jsr/detail?id=3. The material in this JMX overview section is derived from the
JMX instrumentation specification, with a focus on the aspects most used by JBoss. A more
comprehensive discussion of JMX and its application can be found in JMX: Managing J2EE with
Java Management Extensions written by Juha Lindfors (Sams, 2002).

JMX is a standard for managing and monitoring all varieties of software and hardware
components from Java. Further, JMX aims to provide integration with the large number of
existing management standards. Figure 3.2, “The Relationship between the components of the
JMX architecture” shows examples of components found in a JMX environment, and illustrates
the relationship between them as well as how they relate to the three levels of the JMX model.
The three levels are:

• Instrumentation, which are the resources to manage

• Agents, which are the controllers of the instrumentation level objects

• Distributed services, the mechanism by which administration applications interact with
agents and their managed objects

Chapter 3. The JBoss JMX Micr...

24

http://jcp.org/en/jsr/detail?id=3

Figure 3.2. The Relationship between the components of the JMX
architecture

1.1. Instrumentation Level

The instrumentation level defines the requirements for implementing JMX manageable
resources. A JMX manageable resource can be virtually anything, including applications,
service components, devices, and so on. The manageable resource exposes a Java object or
wrapper that describes its manageable features, which makes the resource instrumented so
that it can be managed by JMX-compliant applications.

The user provides the instrumentation of a given resource using one or more managed beans,
or MBeans. There are four varieties of MBean implementations: standard, dynamic, model, and
open. The differences between the various MBean types is discussed in Managed Beans or
MBeans.

The instrumentation level also specifies a notification mechanism. The purpose of the
notification mechanism is to allow MBeans to communicate changes with their environment.
This is similar to the JavaBean property change notification mechanism, and can be used for
attribute change notifications, state change notifications, and so on.

1.2. Agent Level

Instrumentation Level

25

The agent level defines the requirements for implementing agents. Agents are responsible for
controlling and exposing the managed resources that are registered with the agent. By default,
management agents are located on the same hosts as their resources. This collocation is not a
requirement.

The agent requirements make use of the instrumentation level to define a standard
MBeanServer management agent, supporting services, and a communications connector.
JBoss provides both an html adaptor as well as an RMI adaptor.

The JMX agent can be located in the hardware that hosts the JMX manageable resources when
a Java Virtual Machine (JVM) is available. This is how the JBoss server uses the MBeanServer.
A JMX agent does not need to know which resources it will serve. JMX manageable resources
may use any JMX agent that offers the services it requires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as
described in the Section 1.3, “Distributed Services Level” in the next section. The agent does
not need to know anything about the connectors or management applications that interact with
the agent and its MBeans.

1.3. Distributed Services Level

The JMX specification notes that a complete definition of the distributed services level is beyond
the scope of the initial version of the JMX specification. This was indicated by the component
boxes with the horizontal lines in Figure 3.2, “The Relationship between the components of the
JMX architecture”. The general purpose of this level is to define the interfaces required for
implementing JMX management applications or managers. The following points highlight the
intended functionality of the distributed services level as discussed in the current JMX
specification.

• Provide an interface for management applications to interact transparently with an agent and
its JMX manageable resources through a connector

• Exposes a management view of a JMX agent and its MBeans by mapping their semantic
meaning into the constructs of a data-rich protocol (for example HTML or SNMP)

• Distributes management information from high-level management platforms to numerous JMX
agents

• Consolidates management information coming from numerous JMX agents into logical views
that are relevant to the end user's business operations

• Provides security

It is intended that the distributed services level components will allow for cooperative
management of networks of agents and their resources. These components can be expanded
to provide a complete management application.

Chapter 3. The JBoss JMX Micr...

26

1.4. JMX Component Overview

This section offers an overview of the instrumentation and agent level components. The
instrumentation level components include the following:

• MBeans (standard, dynamic, open, and model MBeans)
• Notification model elements
• MBean metadata classes

The agent level components include:

• MBean server
• Agent services

1.4.1. Managed Beans or MBeans

An MBean is a Java object that implements one of the standard MBean interfaces and follows
the associated design patterns. The MBean for a resource exposes all necessary information
and operations that a management application needs to control the resource.

The scope of the management interface of an MBean includes the following:

• Attribute values that may be accessed by name
• Operations or functions that may be invoked
• Notifications or events that may be emitted
• The constructors for the MBean's Java class

JMX defines four types of MBeans to support different instrumentation needs:

• Standard MBeans: These use a simple JavaBean style naming convention and a statically
defined management interface. This is the most common type of MBean used by JBoss.

• Dynamic MBeans: These must implement the javax.management.DynamicMBean interface,
and they expose their management interface at runtime when the component is instantiated
for the greatest flexibility. JBoss makes use of Dynamic MBeans in circumstances where the
components to be managed are not known until runtime.

• Open MBeans: These are an extension of dynamic MBeans. Open MBeans rely on basic,
self-describing, user-friendly data types for universal manageability.

• Model MBeans: These are also an extension of dynamic MBeans. Model MBeans must
implement the javax.management.modelmbean.ModelMBean interface. Model MBeans
simplify the instrumentation of resources by providing default behavior. JBoss XMBeans are
an implementation of Model MBeans.

We will present an example of a Standard and a Model MBean in the section that discusses

JMX Component Overview

27

extending JBoss with your own custom services.

1.4.2. Notification Model

JMX Notifications are an extension of the Java event model. Both the MBean server and
MBeans can send notifications to provide information. The JMX specification defines the
javax.management package Notification event object, NotificationBroadcaster event
sender, and NotificationListener event receiver interfaces. The specification also defines
the operations on the MBean server that allow for the registration of notification listeners.

1.4.3. MBean Metadata Classes

There is a collection of metadata classes that describe the management interface of an MBean.
Users can obtain a common metadata view of any of the four MBean types by querying the
MBean server with which the MBeans are registered. The metadata classes cover an MBean's
attributes, operations, notifications, and constructors. For each of these, the metadata includes
a name, a description, and its particular characteristics. For example, one characteristic of an
attribute is whether it is readable, writable, or both. The metadata for an operation contains the
signature of its parameter and return types.

The different types of MBeans extend the metadata classes to be able to provide additional
information as required. This common inheritance makes the standard information available
regardless of the type of MBean. A management application that knows how to access the
extended information of a particular type of MBean is able to do so.

1.4.4. MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed
through an instance of the javax.management.MBeanServer. An MBean server is a registry for
MBeans that makes the MBean management interface available for use by management
applications. The MBean never directly exposes the MBean object itself; rather, its management
interface is exposed through metadata and operations available in the MBean server interface.
This provides a loose coupling between management applications and the MBeans they
manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

• Another MBean
• The agent itself
• A remote management application (through the distributed services)

When you register an MBean, you must assign it a unique object name. The object name then
becomes the unique handle by which management applications identify the object on which to
perform management operations. The operations available on MBeans through the MBean
server include the following:

• Discovering the management interface of MBeans

Chapter 3. The JBoss JMX Micr...

28

• Reading and writing attribute values
• Invoking operations defined by MBeans
• Registering for notifications events
• Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the
agent's JVM. Each adaptor provides a view via its protocol of all MBeans registered in the
MBean server the adaptor connects to. An example adaptor is an HTML adaptor that allows for
the inspection and editing of MBeans using a Web browser. As was indicated in Figure 3.2,
“The Relationship between the components of the JMX architecture”, there are no protocol
adaptors defined by the current JMX specification. Later versions of the specification will
address the need for remote access protocols in standard ways.

A connector is an interface used by management applications to provide a common API for
accessing the MBean server in a manner that is independent of the underlying communication
protocol. Each connector type provides the same remote interface over a different protocol. This
allows a remote management application to connect to an agent transparently through the
network, regardless of the protocol. The specification of the remote management interface will
be addressed in a future version of the JMX specification.

Adaptors and connectors make all MBean server operations available to a remote management
application. For an agent to be manageable from outside of its JVM, it must include at least one
protocol adaptor or connector. JBoss currently includes a custom HTML adaptor implementation
and a custom JBoss RMI adaptor.

1.4.5. Agent Services

The JMX agent services are objects that support standard operations on the MBeans registered
in the MBean server. The inclusion of supporting management services helps you build more
powerful management solutions. Agent services are often themselves MBeans, which allow the
agent and their functionality to be controlled through the MBean server. The JMX specification
defines the following agent services:

• A dynamic class loading MLet (management applet) service: This allows for the retrieval
and instantiation of new classes and native libraries from an arbitrary network location.

• Monitor services: These observe an MBean attribute's numerical or string value, and can
notify other objects of several types of changes in the target.

• Timer services: These provide a scheduling mechanism based on a one-time alarm-clock
notification or on a repeated, periodic notification.

• The relation service: This service defines associations between MBeans and enforces
consistency on the relationships.

Any JMX-compliant implementation will provide all of these agent services. However, JBoss
does not rely on any of these standard agent services.

JBoss JMX Implementation Architecture

29

2. JBoss JMX Implementation Architecture

2.1. The JBoss ClassLoader Architecture

JBoss employs a class loading architecture that facilitates sharing of classes across deployment
units and hot deployment of services and applications. Before discussing the JBoss specific
class loading model, we need to understand the nature of Java's type system and how class
loaders fit in.

2.2. Class Loading and Types in Java

Class loading is a fundamental part of all server architectures. Arbitrary services and their
supporting classes must be loaded into the server framework. This can be problematic due to
the strongly typed nature of Java. Most developers know that the type of a class in Java is a
function of the fully qualified name of the class. However the type is also a function of the
java.lang.ClassLoader that is used to define that class. This additional qualification of type is
necessary to ensure that environments in which classes may be loaded from arbitrary locations
would be type-safe.

However, in a dynamic environment like an application server, and especially JBoss with its
support for hot deployment are that class cast exceptions, linkage errors and illegal access
errors can show up in ways not seen in more static class loading contexts. Let's take a look at
the meaning of each of these exceptions and how they can happen.

2.2.1. ClassCastExceptions - I'm Not Your Type

A java.lang.ClassCastException results whenever an attempt is made to cast an instance to
an incompatible type. A simple example is trying to obtain a String from a List into which a
URL was placed:

ArrayList array = new ArrayList();
array.add(new URL("file:/tmp"));
String url = (String) array.get(0);

java.lang.ClassCastException: java.net.URL
at org.jboss.book.jmx.ex0.ExCCEa.main(Ex1CCE.java:16)

The ClassCastException tells you that the attempt to cast the array element to a String failed
because the actual type was URL. This trivial case is not what we are interested in however.
Consider the case of a JAR being loaded by different class loaders. Although the classes
loaded through each class loader are identical in terms of the bytecode, they are completely
different types as viewed by the Java type system. An example of this is illustrated by the code
shown in Example 3.1, “The ExCCEc class used to demonstrate ClassCastException due to
duplicate class loaders”.

package org.jboss.book.jmx.ex0;

Chapter 3. The JBoss JMX Micr...

30

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of a ClassCastException that
* results from classes loaded through
* different class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class ExCCEc
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExCCEc.class);

String chapDir = System.getProperty("j2eechapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);
Class objClass = ucl0.loadClass("org.jboss.book.jmx.ex0.ExObj");
StringBuffer buffer = new

StringBuffer("ExObj Info");
Debug.displayClassInfo(objClass, buffer, false);
ucl0Log.info(buffer.toString());
Object value = objClass.newInstance();

File jar1 = new File(chapDir+"/j0.jar");
Logger ucl1Log = Logger.getLogger("UCL1");
ucl1Log.info("jar1 path: "+jar1.toString());
URL[] cp1 = {jar1.toURL()};
URLClassLoader ucl1 = new URLClassLoader(cp1);
Thread.currentThread().setContextClassLoader(ucl1);
Class ctxClass2 = ucl1.loadClass("org.jboss.book.jmx.ex0.ExCtx");
buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass2, buffer, false);
ucl1Log.info(buffer.toString());
Object ctx2 = ctxClass2.newInstance();

try {
Class[] types = {Object.class};
Method useValue =

ctxClass2.getMethod("useValue", types);
Object[] margs = {value};
useValue.invoke(ctx2, margs);

Class Loading and Types in Java

31

} catch(Exception e) {
ucl1Log.error("Failed to invoke ExCtx.useValue", e);
throw e;

}
}

}

Example 3.1. The ExCCEc class used to demonstrate ClassCastException
due to duplicate class loaders

package org.jboss.book.jmx.ex0;

import java.io.IOException;
import org.apache.log4j.Logger;
import org.jboss.util.Debug;

/**
* A classes used to demonstrate various class
* loading issues
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class ExCtx
{

ExObj value;

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

public Object getValue()
{

return value;
}

public void useValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new

Chapter 3. The JBoss JMX Micr...

32

StringBuffer("useValue2.arg class");
Debug.displayClassInfo(obj.getClass(), buffer, false);
log.info(buffer.toString());
buffer.setLength(0);
buffer.append("useValue2.ExObj class");
Debug.displayClassInfo(ExObj.class, buffer, false);
log.info(buffer.toString());
ExObj ex = (ExObj) obj;

}

void pkgUseValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);
log.info("In pkgUseValue");

}
}

package org.jboss.book.jmx.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class ExObj
implements Serializable

{
public ExObj2 ivar = new ExObj2();

}

package org.jboss.book.jmx.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class ExObj2
implements Serializable

{
}

Example 3.2. The ExCtx, ExObj, and ExObj2 classes used by the examples

The ExCCEc.main method uses reflection to isolate the classes that are being loaded by the
class loaders ucl0 and ucl1 from the application class loader. Both are setup to load classes

Class Loading and Types in Java

33

from the output/jmx/j0.jar, the contents of which are:

[examples]$ jar -tf output/jmx/j0.jar
...
org/jboss/book/jmx/ex0/ExCtx.class
org/jboss/book/jmx/ex0/ExObj.class
org/jboss/book/jmx/ex0/ExObj2.class

We will run an example that demonstrates how a class cast exception can occur and then look
at the specific issue with the example. See Appendix A, Book Example Installation for
instructions on installing the examples accompanying the book, and then run the example from
within the examples directory using the following command:

[examples]$ ant -Dchap=jmx -Dex=0c run-example
...

[java] java.lang.reflect.InvocationTargetException
[java] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native

Method)
[java] at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
[java] at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl
.java:25)

[java] at java.lang.reflect.Method.invoke(Method.java:585)
[java] at org.jboss.book.jmx.ex0.ExCCEc.main(ExCCEc.java:58)
[java] Caused by: java.lang.ClassCastException:

org.jboss.book.jmx.ex0.ExObj
[java] at org.jboss.book.jmx.ex0.ExCtx.useValue(ExCtx.java:44)
[java] ... 5 more

Only the exception is shown here. The full output can be found in the logs/jmx-ex0c.log file.
At line 55 of ExCCEc.java we are invoking ExcCCECtx.useValue(Object) on the instance
loaded and created in lines 37-48 using ucl1. The ExObj passed in is the one loaded and
created in lines 25-35 via ucl0. The exception results when the ExCtx.useValue code attempts
to cast the argument passed in to a ExObj. To understand why this fails consider the debugging
output from the jmx-ex0c.log file shown in Example 3.3, “The jmx-ex0c.log debugging output
for the ExObj classes seen”.

[INFO,UCL0] ExObj Info
org.jboss.book.jmx.ex0.ExObj(f8968f).ClassLoader=java.net.URLClassLoader@2611a7
..java.net.URLClassLoader@2611a7
....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/jmx/j0.jar
++++CodeSource:
(file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/

jmx/j0.jar <no signer certificates>)
Implemented Interfaces:
++interface java.io.Serializable(41b571)
++++ClassLoader: null
++++Null CodeSource
[INFO,ExCtx] useValue2.ExObj class
org.jboss.book.jmx.ex0.ExObj(bc8e1e).ClassLoader=java.net.URLClassLoader@6bd8ea

Chapter 3. The JBoss JMX Micr...

34

..java.net.URLClassLoader@6bd8ea

....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/jmx/j0.jar
++++CodeSource:
(file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/

jmx/j0.jar <no signer certificates>)
Implemented Interfaces:
++interface java.io.Serializable(41b571)
++++ClassLoader: null
++++Null CodeSource

Example 3.3. The jmx-ex0c.log debugging output for the ExObj classes
seen

The first output prefixed with [INFO,UCL0] shows that the ExObj class loaded at line
ExCCEc.java:31 has a hash code of f8968f and an associated URLClassLoader instance with
a hash code of 2611a7, which corresponds to ucl0. This is the class used to create the instance
passed to the ExCtx.useValue method. The second output prefixed with [INFO,ExCtx] shows
that the ExObj class as seen in the context of the ExCtx.useValue method has a hash code of
bc8e1e and a URLClassLoader instance with an associated hash code of 6bd8ea, which
corresponds to ucl1. So even though the ExObj classes are the same in terms of actual
bytecode since it comes from the same j0.jar, the classes are different as seen by both the
ExObj class hash codes, and the associated URLClassLoader instances. Hence, attempting to
cast an instance of ExObj from one scope to the other results in the ClassCastException.

This type of error is common when redeploying an application to which other applications are
holding references to classes from the redeployed application. For example, a standalone WAR
accessing an EJB. If you are redeploying an application, all dependent applications must flush
their class references. Typically this requires that the dependent applications themselves be
redeployed.

An alternate means of allowing independent deployments to interact in the presence of
redeployment would be to isolate the deployments by configuring the EJB layer to use the
standard call-by-value semantics rather than the call-by-reference JBoss will default to for
components collocated in the same VM. An example of how to enable call-by-value semantics
is presented in Chapter 14, EJBs on JBoss

2.2.2. IllegalAccessException - Doing what you should not

A java.lang.IllegalAccessException is thrown when one attempts to access a method or
member that visibility qualifiers do not allow. Typical examples are attempting to access private
or protected methods or instance variables. Another common example is accessing package
protected methods or members from a class that appears to be in the correct package, but is
really not due to caller and callee classes being loaded by different class loaders. An example
of this is illustrated by the code shown in Example 3.4, “The ExIAEd class used to demonstrate
IllegalAccessException due to duplicate class loaders”.

Class Loading and Types in Java

35

package org.jboss.book.jmx.ex0;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of IllegalAccessExceptions due to
* classes loaded by two class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class ExIAEd
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExIAEd.class);

String chapDir = System.getProperty("j2eechapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);

StringBuffer buffer = new
StringBuffer("ExIAEd Info");

Debug.displayClassInfo(ExIAEd.class, buffer, false);
ucl0Log.info(buffer.toString());

Class ctxClass1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExCtx");
buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass1, buffer, false);
ucl0Log.info(buffer.toString());
Object ctx0 = ctxClass1.newInstance();

try {
Class[] types = {Object.class};
Method useValue =

ctxClass1.getDeclaredMethod("pkgUseValue", types);
Object[] margs = {null};
useValue.invoke(ctx0, margs);

} catch(Exception e) {
ucl0Log.error("Failed to invoke ExCtx.pkgUseValue", e);

}
}

}

Chapter 3. The JBoss JMX Micr...

36

Example 3.4. The ExIAEd class used to demonstrate
IllegalAccessException due to duplicate class loaders

The ExIAEd.main method uses reflection to load the ExCtx class via the ucl0 class loader
while the ExIEAd class was loaded by the application class loader. We will run this example to
demonstrate how the IllegalAccessException can occur and then look at the specific issue
with the example. Run the example using the following command:

[examples]$ ant -Dchap=jmx -Dex=0d run-example
Buildfile: build.xml
...
[java] java.lang.IllegalAccessException: Class org.jboss.book.jmx.ex0.ExIAEd
can not access a member of class org.jboss.book.jmx.ex0.ExCtx with

modifiers ""
[java] at sun.reflect.Reflection.ensureMemberAccess(Reflection.java:65)
[java] at java.lang.reflect.Method.invoke(Method.java:578)
[java] at org.jboss.book.jmx.ex0.ExIAEd.main(ExIAEd.java:48)

The truncated output shown here illustrates the IllegalAccessException. The full output can
be found in the logs/jmx-ex0d.log file. At line 48 of ExIAEd.java the
ExCtx.pkgUseValue(Object) method is invoked via reflection. The pkgUseValue method has
package protected access and even though both the invoking class ExIAEd and the ExCtx class
whose method is being invoked reside in the org.jboss.book.jmx.ex0 package, the
invocation is seen to be invalid due to the fact that the two classes are loaded by different class
loaders. This can be seen by looking at the debugging output from the jmx-ex0d.log file.

[INFO,UCL0] ExIAEd Info
org.jboss.book.jmx.ex0.ExIAEd(7808b9).ClassLoader=sun.misc.Launcher$AppClassLoader@a9c85c
..sun.misc.Launcher$AppClassLoader@a9c85c
...
[INFO,UCL0] ExCtx Info
org.jboss.book.jmx.ex0.ExCtx(64c34e).ClassLoader=java.net.URLClassLoader@a9c85c
..java.net.URLClassLoader@5d88a
...

The ExIAEd class is seen to have been loaded via the default application class loader instance
sun.misc.Launcher$AppClassLoader@a9c85c, while the ExCtx class was loaded by the
java.net.URLClassLoader@a9c85c instance. Because the classes are loaded by different
class loaders, access to the package protected method is seen to be a security violation. So,
not only is type a function of both the fully qualified class name and class loader, the package
scope is as well.

An example of how this can happen in practice is to include the same classes in two different
SAR deployments. If classes in the deployment have a package protected relationship, users of
the SAR service may end up loading one class from SAR class loading at one point, and then
load another class from the second SAR at a later time. If the two classes in question have a

Class Loading and Types in Java

37

protected access relationship an IllegalAccessError will result. The solution is to either
include the classes in a separate jar that is referenced by the SARs, or to combine the SARs
into a single deployment. This can either be a single SAR, or an EAR that includes both SARs.

2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are

Loading constraints validate type expectations in the context of class loader scopes to ensure
that a class X is consistently the same class when multiple class loaders are involved. This is
important because Java allows for user defined class loaders. Linkage errors are essentially an
extension of the class cast exception that is enforced by the VM when classes are loaded and
used.

To understand what loading constraints are and how they ensure type-safety we will first
introduce the nomenclature of the Liang and Bracha paper along with an example from this
paper. There are two type of class loaders, initiating and defining. An initiating class loader is
one that a ClassLoader.loadClass method has been invoked on to initiate the loading of the
named class. A defining class loader is the loader that calls one of the
ClassLoader.defineClass methods to convert the class byte code into a Class instance. The
most complete expression of a class is given by <C,Ld>

Li, where C is the fully qualified class
name, Ld is the defining class loader, and Li is the initiating class loader. In a context where the
initiating class loader is not important the type may be represented by <C,Ld>, while when the
defining class loader is not important, the type may be represented by C

Li. In the latter case,
there is still a defining class loader, it's just not important what the identity of the defining class
loader is. Also, a type is completely defined by <C,Ld>. The only time the initiating loader is
relevant is when a loading constraint is being validated. Now consider the classes shown in
Example 3.5, “Classes demonstrating the need for loading constraints”.

class <C,L1> {
void f() {

<Spoofed, L1>L1x = <Delegated, L2>L2

x.secret_value = 1; // Should not be allowed
}

}

class <Delegated,L2> {
static <Spoofed, L2>L3 g() {...}
}

}

class <Spoofed, L1> {
public int secret_value;

}

class <Spoofed, L2> {
private int secret_value;

}

Chapter 3. The JBoss JMX Micr...

38

Example 3.5. Classes demonstrating the need for loading constraints

The class C is defined by L1 and so L1 is used to initiate loading of the classes Spoofed and
Delegated referenced in the C.f() method. The Spoofed class is defined by L1, but Delegated
is defined by L2 because L1 delegates to L2. Since Delegated is defined by L2, L2 will be used
to initiate loading of Spoofed in the context of the Delegated.g() method. In this example both
L1 and L2 define different versions of Spoofed as indicated by the two versions shown at the
end of Example 3.5, “Classes demonstrating the need for loading constraints”. Since C.f()

believes x is an instance of <Spoofed,L1> it is able to access the private field secret_value of
<Spoofed,L2> returned by Delegated.g() due to the 1.1 and earlier Java VM's failure to take
into account that a class type is determined by both the fully qualified name of the class and the
defining class loader.

Java addresses this problem by generating loader constraints to validate type consistency when
the types being used are coming from different defining class loaders. For the Example 3.5,
“Classes demonstrating the need for loading constraints” example, the VM generates a
constraint SpoofedL1=SpoofedL2 when the first line of method C.f() is verified to indicate that
the type Spoofed must be the same regardless of whether the load of Spoofed is initiated by L1

or L2. It does not matter if L1 or L2, or even some other class loader defines Spoofed. All that
matters is that there is only one Spoofed class defined regardless of whether L1 or L2 was used
to initiate the loading. If L1 or L2 have already defined separate versions of Spoofed when this
check is made a LinkageError will be generated immediately. Otherwise, the constraint will be
recorded and when Delegated.g() is executed, any attempt to load a duplicate version of
Spoofed will result in a LinkageError.

Now let's take a look at how a LinkageError can occur with a concrete example. Example 3.6,
“A concrete example of a LinkageError” gives the example main class along with the custom
class loader used.

package org.jboss.book.jmx.ex0;
import java.io.File;
import java.net.URL;

import org.apache.log4j.Logger;
import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of a LinkageError due to classes being defined by more
* than one class loader in a non-standard class loading environment.
*
* @author Scott.Stark@jboss.orgn
* @version $Revision: 1.9 $
*/

public class ExLE
{

Class Loading and Types in Java

39

public static void main(String[] args)
throws Exception

{
ChapterExRepository.init(ExLE.class);

String chapDir = System.getProperty("j2eechapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
Ex0URLClassLoader ucl0 = new Ex0URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);
Class ctxClass1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExCtx");
Class obj2Class1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExObj2");
StringBuffer buffer = new StringBuffer("ExCtx Info");
Debug.displayClassInfo(ctxClass1, buffer, false);
ucl0Log.info(buffer.toString());
buffer.setLength(0);
buffer.append("ExObj2 Info, UCL0");
Debug.displayClassInfo(obj2Class1, buffer, false);
ucl0Log.info(buffer.toString());

File jar1 = new File(chapDir+"/j1.jar");
Logger ucl1Log = Logger.getLogger("UCL1");
ucl1Log.info("jar1 path: "+jar1.toString());
URL[] cp1 = {jar1.toURL()};
Ex0URLClassLoader ucl1 = new Ex0URLClassLoader(cp1);
Class obj2Class2 = ucl1.loadClass("org.jboss.book.jmx.ex0.ExObj2");
buffer.setLength(0);
buffer.append("ExObj2 Info, UCL1");
Debug.displayClassInfo(obj2Class2, buffer, false);
ucl1Log.info(buffer.toString());

ucl0.setDelegate(ucl1);
try {

ucl0Log.info("Try ExCtx.newInstance()");
Object ctx0 = ctxClass1.newInstance();
ucl0Log.info("ExCtx.ctor succeeded, ctx0: "+ctx0);

} catch(Throwable e) {
ucl0Log.error("ExCtx.ctor failed", e);

}
}

}

package org.jboss.book.jmx.ex0;

import java.net.URLClassLoader;
import java.net.URL;

import org.apache.log4j.Logger;

/**
* A custom class loader that overrides the standard parent delegation
* model

Chapter 3. The JBoss JMX Micr...

40

*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class Ex0URLClassLoader extends URLClassLoader
{

private static Logger log = Logger.getLogger(Ex0URLClassLoader.class);
private Ex0URLClassLoader delegate;

public Ex0URLClassLoader(URL[] urls)
{

super(urls);
}

void setDelegate(Ex0URLClassLoader delegate)
{

this.delegate = delegate;
}

protected synchronized Class loadClass(String name, boolean resolve)
throws ClassNotFoundException

{
Class clazz = null;
if (delegate != null) {

log.debug(Integer.toHexString(hashCode()) +
"; Asking delegate to loadClass: " + name);

clazz = delegate.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Delegate returned: "+clazz);
} else {

log.debug(Integer.toHexString(hashCode()) +
"; Asking super to loadClass: "+name);

clazz = super.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
}
return clazz;

}

protected Class findClass(String name)
throws ClassNotFoundException

{
Class clazz = null;
log.debug(Integer.toHexString(hashCode()) +

"; Asking super to findClass: "+name);
clazz = super.findClass(name);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
return clazz;

}
}

Example 3.6. A concrete example of a LinkageError

Class Loading and Types in Java

41

The key component in this example is the URLClassLoader subclass Ex0URLClassLoader. This
class loader implementation overrides the default parent delegation model to allow the ucl0 and
ucl1 instances to both load the ExObj2 class and then setup a delegation relationship from
ucl0 to ucl1. At lines 30 and 31. the ucl0Ex0URLClassLoader is used to load the ExCtx and
ExObj2 classes. At line 45 of ExLE.main the ucl1Ex0URLClassLoader is used to load the
ExObj2 class again. At this point both the ucl0 and ucl1 class loaders have defined the ExObj2

class. A delegation relationship from ucl0 to ucl1 is then setup at line 51 via the
ucl0.setDelegate(ucl1) method call. Finally, at line 54 of ExLE.main an instance of ExCtx is
created using the class loaded via ucl0. The ExCtx class is the same as presented in
Example 3.4, “The ExIAEd class used to demonstrate IllegalAccessException due to duplicate
class loaders”, and the constructor was:

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

Now, since the ExCtx class was defined by the ucl0 class loader, and at the time the ExCtx

constructor is executed, ucl0 delegates to ucl1, line 24 of the ExCtx constructor involves the
following expression which has been rewritten in terms of the complete type expressions:

<ExObj2,ucl0>ucl0 obj2 = <ExObj,ucl1>ucl0 value * ivar

This generates a loading constraint of ExObj2ucl0 = ExObj2
ucl1 since the ExObj2 type must be

consistent across the ucl0 and ucl1 class loader instances. Because we have loaded ExObj2

using both ucl0 and ucl1 prior to setting up the delegation relationship, the constraint will be
violated and should generate a LinkageError when run. Run the example using the following
command:

[examples]$ ant -Dchap=jmx -Dex=0e run-example
Buildfile: build.xml
...
[java] java.lang.LinkageError: loader constraints violated when linking

org/jboss/book/jmx/ex0/ExObj2 class
[java] at org.jboss.book.jmx.ex0.ExCtx.<init>(ExCtx.java:24)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native
Method)
[java] at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessor

Impl.java:39)
[java] at

Chapter 3. The JBoss JMX Micr...

42

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructor
AccessorImpl.java:27)

[java] at
java.lang.reflect.Constructor.newInstance(Constructor.java:494)
[java] at java.lang.Class.newInstance0(Class.java:350)
[java] at java.lang.Class.newInstance(Class.java:303)
[java] at org.jboss.book.jmx.ex0.ExLE.main(ExLE.java:53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24
of the ExCtx constructor.

2.2.3.1. Debugging Class Loading Issues

Debugging class loading issues comes down to finding out where a class was loaded from. A
useful tool for this is the code snippet shown in Example 3.7, “Obtaining debugging information
for a Class” taken from the org.jboss.util.Debug class of the book examples.

Class clazz =...;
StringBuffer results = new StringBuffer();

ClassLoader cl = clazz.getClassLoader();
results.append("\n" + clazz.getName() + "(" +

Integer.toHexString(clazz.hashCode()) + ").ClassLoader=" +
cl);
ClassLoader parent = cl;

while (parent != null) {
results.append("\n.."+parent);
URL[] urls = getClassLoaderURLs(parent);

int length = urls != null ? urls.length : 0;
for(int u = 0; u < length; u ++) {

results.append("\n...."+urls[u]);
}

if (showParentClassLoaders == false) {
break;

}
if (parent != null) {

parent = parent.getParent();
}

}

CodeSource clazzCS = clazz.getProtectionDomain().getCodeSource();
if (clazzCS != null) {

results.append("\n++++CodeSource: "+clazzCS);
} else {

results.append("\n++++Null CodeSource");
}

Example 3.7. Obtaining debugging information for a Class

Class Loading and Types in Java

43

The key items are shown in bold. The first is that every Class object knows its defining
ClassLoader and this is available via the getClassLoader() method. The defines the scope in
which the Class type is known as we have just seen in the previous sections on class cast
exceptions, illegal access exceptions and linkage errors. From the ClassLoader you can view
the hierarchy of class loaders that make up the parent delegation chain. If the class loader is a
URLClassLoader you can also see the URLs used for class and resource loading.

The defining ClassLoader of a Class cannot tell you from what location that Class was loaded.
To determine this you must obtain the java.security.ProtectionDomain and then the
java.security.CodeSource. It is the CodeSource that has the URL p location from which the
class originated. Note that not every Class has a CoPdeSource. If a class is loaded by the
bootstrap class loader then its CodeSource will be null. This will be the case for all classes in the
java.* and javax.* packages, for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server.
You can enable verbose logging of the JBoss class loading layer using a Log4j configuration
fragment like that shown in Example 3.8, “An example log4j.xml configuration fragment for
enabling verbose class loading logging”.

<appender name="UCL" class="org.apache.log4j.FileAppender">
<param name="File" value="${jboss.server.home.dir}/log/ucl.log"/>
<param name="Append" value="false"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="[%r,%c{1},%t] %m%n"/>
</layout>

</appender>

<category name="org.jboss.mx.loading" additivity="false">
<priority value="TRACE" class="org.jboss.logging.XLevel"/>
<appender-ref ref="UCL"/>

</category>

Example 3.8. An example log4j.xml configuration fragment for enabling
verbose class loading logging

This places the output from the classes in the org.jboss.mx.loading package into the
ucl.log file of the server configurations log directory. Although it may not be meaningful if you
have not looked at the class loading code, it is vital information needed for submitting bug
reports or questions regarding class loading problems.

2.2.4. Inside the JBoss Class Loading Architecture

Now that we have the role of class loaders in the Java type system defined, let's take a look at
the JBoss class loading architecture. Figure 3.3, “The core JBoss class loading components”.

Chapter 3. The JBoss JMX Micr...

44

Figure 3.3. The core JBoss class loading components

The central component is the org.jboss.mx.loading.UnifiedClassLoader3 (UCL) class
loader. This is an extension of the standard java.net.URLClassLoader that overrides the
standard parent delegation model to use a shared repository of classes and resources. This
shared repository is the org.jboss.mx.loading.UnifiedLoaderRepository3. Every UCL is
associated with a single UnifiedLoaderRepository3, and a UnifiedLoaderRepository3

typically has many UCLs. A UCL may have multiple URLs associated with it for class and
resource loading. Deployers use the top-level deployment's UCL as a shared class loader and
all deployment archives are assigned to this class loader. We will talk about the JBoss
deployers and their interaction with the class loading system in more detail later in Section 4.2,
“JBoss MBean Services”.

When a UCL is asked to load a class, it first looks to the repository cache it is associated with to
see if the class has already been loaded. Only if the class does not exist in the repository will it
be loaded into the repository by the UCL. By default, there is a single
UnifiedLoaderRepository3 shared across all UCL instances. This means the UCLs form a
single flat class loader namespace. The complete sequence of steps that occur when a
UnfiedClassLoader3.loadClass(String, boolean) method is called is:

1. Check the UnifiedLoaderRepository3 classes cache associated with the
UnifiedClassLoader3. If the class is found in the cache it is returned.

2. Else, ask the UnfiedClassLoader3 if it can load the class. This is essentially a call to the
superclass URLClassLoader.loadClass(String, boolean) method to see if the class is
among the URLs associated with the class loader, or visible to the parent class loader. If the
class is found it is placed into the repository classes cache and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on
the repository package name to UCL map. When a UCL is added to a repository an

Class Loading and Types in Java

45

association between the package names available in the URLs associated with the UCL is
made, and a mapping from package names to the UCLs with classes in the package is
updated. This allows for a quick determination of which UCLs are capable of loading the
class. The UCLs are then queried for the requested class in the order in which the UCLs
were added to the repository. If a UCL is found that can load the class it is returned, else a
java.lang.ClassNotFoundException is thrown.

2.2.4.1. Viewing Classes in the Loader Repository

Another useful source of information on classes is the UnifiedLoaderRepository itself. This is an
MBean that contains operations to display class and package information. The default
repository is located under a standard JMX name of
JMImplementation:name=Default,service=LoaderRepository, and its MBean can be
accessed via the JMX console by following its link from the front page. The JMX console view of
this MBean is shown in Figure 3.4, “The default class LoaderRepository MBean view in the JMX
console”.

Chapter 3. The JBoss JMX Micr...

46

Figure 3.4. The default class LoaderRepository MBean view in the JMX
console

Two useful operations you will find here are getPackageClassLoaders(String) and
displayClassInfo(String). The getPackageClassLoaders operation returns a set of class
loaders that have been indexed to contain classes or resources for the given package name.
The package name must have a trailing period. If you type in the package name
org.jboss.ejb., the following information is displayed:

[org.jboss.mx.loading.UnifiedClassLoader3@e26ae7{
url=file:/private/tmp/jboss-4.2.0/server/production/tmp/deploy/tmp11895jboss-service.xml,
addedOrder=2}]

This is the string representation of the set. It shows one UnifiedClassLoader3 instance with a
primary URL pointing to the jboss-service.xml descriptor. This is the second class loader
added to the repository (shown by addedOrder=2). It is the class loader that owns all of the
JARs in the lib directory of the server configuration (e.g., server/production/lib).

The view the information for a given class, use the displayClassInfo operation, passing in the
fully qualified name of the class to view. For example, if we use
org.jboss.jmx.adaptor.html.HtmlAdaptorServlet which is from the package we just
looked at, the following description is displayed:

Class Loading and Types in Java

47

The information is a dump of the information for the Class instance in the loader repository if
one has been loaded, followed by the class loaders that are seen to have the class file
available. If a class is seen to have more than one class loader associated with it, then there is
the potential for class loading related errors.

2.2.4.2. Scoping Classes

If you need to deploy multiple versions of an application you need to use deployment based
scoping. With deployment based scoping, each deployment creates its own class loader
repository in the form of a HeirarchicalLoaderRepository3 that looks first to the
UnifiedClassLoader3 instances of the deployment units included in the EAR before delegating
to the default UnifiedLoaderRepository3. To enable an EAR specific loader repository, you
need to create a META-INF/jboss-app.xml descriptor as shown in Example 3.9, “An example
jboss-app.xml descriptor for enabled scoped class loading at the EAR level.”.

<jboss-app>
<loader-repository>some.dot.com:loader=webtest.ear</loader-repository>

</jboss-app>

Chapter 3. The JBoss JMX Micr...

48

Example 3.9. An example jboss-app.xml descriptor for enabled scoped
class loading at the EAR level.

The value of the loader-repository element is the JMX object name to assign to the
repository created for the EAR. This must be unique and valid JMX ObjectName, but the actual
name is not important.

2.2.4.3. The Complete Class Loading Model

The previous discussion of the core class loading components introduced the custom
UnifiedClassLoader3 and UnifiedLoaderRepository3 classes that form a shared class
loading space. The complete class loading picture must also include the parent class loader
used by UnifiedClassLoader3s as well as class loaders introduced for scoping and other
specialty class loading purposes. Figure 3.5, “A complete class loader view” shows an outline of
the class hierarchy that would exist for an EAR deployment containing EJBs and WARs.

Class Loading and Types in Java

49

Figure 3.5. A complete class loader view

The following points apply to this figure:

• System ClassLoaders: The System ClassLoaders node refers to either the thread context
class loader (TCL) of the VM main thread or of the thread of the application that is loading the
JBoss server if it is embedded.

• ServerLoader: The ServerLoader node refers to the a URLClassLoader that delegates to the
System ClassLoaders and contains the following boot URLs:

• All URLs referenced via the jboss.boot.library.list system property. These are path
specifications relative to the libraryURL defined by the jboss.lib.url property. If there is
no jboss.lib.url property specified, it defaults to jboss.home.url + /lib/. If there is
no jboss.boot.library property specified, it defaults to jaxp.jar, log4j-boot.jar,
jboss-common.jar, and jboss-system.jar.

• The JAXP JAR which is either crimson.jar or xerces.jar depending on the -j option to
the Main entry point. The default is crimson.jar.

• The JBoss JMX jar and GNU regex jar, jboss-jmx.jar and gnu-regexp.jar.

• Oswego concurrency classes JAR, concurrent.jar

• Any JARs specified as libraries via -L command line options

• Any other JARs or directories specified via -C command line options

• Server: The Server node represent a collection of UCLs created by the
org.jboss.system.server.Server interface implementation. The default implementation
creates UCLs for the patchDir entries as well as the server conf directory. The last UCL
created is set as the JBoss main thread context class loader. This will be combined into a
single UCL now that multiple URLs per UCL are supported.

• All UnifiedClassLoader3s: The All UnifiedClassLoader3 node represents the UCLs created
by deployers. This covers EARs, jars, WARs, SARs and directories seen by the deployment
scanner as well as JARs referenced by their manifests and any nested deployment units they
may contain. This is a flat namespace and there should not be multiple instances of a class in
different deployment JARs. If there are, only the first loaded will be used and the results may
not be as expected. There is a mechanism for scoping visibility based on EAR deployment
units that we discussed in Section 2.2.4.2, “Scoping Classes”. Use this mechanism if you
need to deploy multiple versions of a class in a given JBoss server.

• EJB DynClassLoader: The EJB DynClassLoader node is a subclass of URLClassLoader
that is used to provide RMI dynamic class loading via the simple HTTP WebService. It
specifies an empty URL[] and delegates to the TCL as its parent class loader. If the
WebService is configured to allow system level classes to be loaded, all classes in the

Chapter 3. The JBoss JMX Micr...

50

UnifiedLoaderRepository3 as well as the system classpath are available via HTTP.

• EJB ENCLoader: The EJB ENCLoader node is a URLClassLoader that exists only to provide
a unique context for an EJB deployment's java:comp JNDI context. It specifies an empty
URL[] and delegates to the EJB DynClassLoader as its parent class loader.

• Web ENCLoader: The Web ENCLoader node is a URLClassLoader that exists only to provide
a unique context for a web deployment's java:comp JNDI context. It specifies an empty
URL[] and delegates to the TCL as its parent class loader.

• WAR Loader: The WAR Loader is a servlet container specific classloader that delegates to
the Web ENCLoader as its parent class loader. The default behavior is to load from its parent
class loader and then the WAR WEB-INFclasses and lib directories. If the servlet 2.3 class
loading model is enabled it will first load from the its WEB-INF directories and then the parent
class loader.

In its current form there are some advantages and disadvantages to the JBoss class loading
architecture. Advantages include:

• Classes do not need to be replicated across deployment units in order to have access to
them.

• Many future possibilities including novel partitioning of the repositories into domains,
dependency and conflict detection, etc.

Disadvantages include:

• Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of
classes in a loader repository can lead to class cast exceptions and linkage errors depending
on how the classes are loaded.

• Deployments that depend on different versions of a given class need to be isolated in
separate EARs and a unique HeirarchicalLoaderRepository3 defined using a
jboss-app.xml descriptor.

2.3. JBoss XMBeans

XMBeans are the JBoss JMX implementation version of the JMX model MBean. XMBeans have
the richness of the dynamic MBean metadata without the tedious programming required by a
direct implementation of the DynamicMBean interface. The JBoss model MBean implementation
allows one to specify the management interface of a component through a XML descriptor,
hence the X in XMBean. In addition to providing a simple mechanism for describing the
metadata required for a dynamic MBean, XMBeans also allow for the specification of attribute
persistence, caching behavior, and even advanced customizations like the MBean
implementation interceptors. The high level elements of the jboss_xmbean_1_2.dtd for the
XMBean descriptor is given in Figure 3.6, “The JBoss 1.0 XMBean DTD Overview

JBoss XMBeans

51

(jboss_xmbean_1_2.dtd)”.

Figure 3.6. The JBoss 1.0 XMBean DTD Overview (jboss_xmbean_1_2.dtd)

The mbean element is the root element of the document containing the required elements for
describing the management interface of one MBean (constructors, attributes, operations and
notifications). It also includes an optional description element, which can be used to describe
the purpose of the MBean, as well as an optional descriptors element which allows for
persistence policy specification, attribute caching, etc.

2.3.1. Descriptors

The descriptors element contains all the descriptors for a containing element, as subelements.
The descriptors suggested in the JMX specification as well as those used by JBoss have
predefined elements and attributes, whereas custom descriptors have a generic descriptor
element with name and value attributes as show in Figure 3.7, “ The descriptors element
content model”.

Chapter 3. The JBoss JMX Micr...

52

Figure 3.7. The descriptors element content model

The key descriptors child elements include:

• interceptors: The interceptors element specifies a customized stack of interceptors that
will be used in place of the default stack. Currently this is only used when specified at the
MBean level, but it could define a custom attribute or operation level interceptor stack in the
future. The content of the interceptors element specifies a custom interceptor stack. If no
interceptors element is specified the standard ModelMBean interceptors will be used. The
standard interceptors are:
• org.jboss.mx.interceptor.PersistenceInterceptor
• org.jboss.mx.interceptor.MBeanAttributeInterceptor
• org.jboss.mx.interceptor.ObjectReferenceInterceptor

When specifying a custom interceptor stack you would typically include the standard
interceptors along with your own unless you are replacing the corresponding standard
interceptor.

Each interceptor element content value specifies the fully qualified class name of the
interceptor implementation. The class must implement the

JBoss XMBeans

53

org.jboss.mx.interceptor.Interceptor interface. The interceptor class must also have
either a no-arg constructor, or a constructor that accepts a javax.management.MBeanInfo.

The interceptor elements may have any number of attributes that correspond to JavaBean
style properties on the interceptor class implementation. For each interceptor element
attribute specified, the interceptor class is queried for a matching setter method. The attribute
value is converted to the true type of the interceptor class property using the
java.beans.PropertyEditor associated with the type. It is an error to specify an attribute
for which there is no setter or PropertyEditor.

• persistence: The persistence element allows the specification of the persistPolicy,
persistPeriod, persistLocation, and persistName persistence attributes suggested by
the JMX specification. The persistence element attributes are:

• persistPolicy: The persistPolicy attribute defines when attributes should be persisted
and its value must be one of

• Never: attribute values are transient values that are never persisted

• OnUpdate: attribute values are persisted whenever they are updated

• OnTimer: attribute values are persisted based on the time given by the persistPeriod.

• NoMoreOftenThan: attribute values are persisted when updated but no more often than
the persistPeriod.

• persistPeriod: The persistPeriod attribute gives the update frequency in milliseconds if
the perisitPolicy attribute is NoMoreOftenThan or OnTimer.

• persistLocation: The persistLocation attribute specifies the location of the persistence
store. Its form depends on the JMX persistence implementation. Currently this should refer
to a directory into which the attributes will be serialized if using the default JBoss
persistence manager.

• persistName: The persistName attribute can be used in conjunction with the
persistLocation attribute to further qualify the persistent store location. For a directory
persistLocation the persistName specifies the file to which the attributes are stored
within the directory.

• currencyTimeLimit: The currencyTimeLimit element specifies the time in seconds that a
cached value of an attribute remains valid. Its value attribute gives the time in seconds. A
value of 0 indicates that an attribute value should always be retrieved from the MBean and
never cached. A value of -1 indicates that a cache value is always valid.

• display-name: The display-name element specifies the human friendly name of an item.

• default: The default element specifies a default value to use when a field has not been set.
Note that this value is not written to the MBean on startup as is the case with the
jboss-service.xml attribute element content value. Rather, the default value is used only if
there is no attribute accessor defined, and there is no value element defined.

Chapter 3. The JBoss JMX Micr...

54

• value: The value element specifies a management attribute's current value. Unlike the
default element, the value element is written through to the MBean on startup provided
there is a setter method available.

• persistence-manager: The persistence-manager element gives the name of a class to use
as the persistence manager. The value attribute specifies the class name that supplies the
org.jboss.mx.persistence.PersistenceManager interface implementation. The only
implementation currently supplied by JBoss is the
org.jboss.mx.persistence.ObjectStreamPersistenceManager which serializes the
ModelMBeanInfo content to a file using Java serialization.

• descriptor: The descriptor element specifies an arbitrary descriptor not known to JBoss. Its
name attribute specifies the type of the descriptor and its value attribute specifies the
descriptor value. The descriptor element allows for the attachment of arbitrary management
metadata.

• injection: The injection element describes an injection point for receiving information from
the microkernel. Each injection point specifies the type and the set method to use to inject the
information into the resource. The injection element supports type attributes:

• id: The id attribute specifies the injection point type. The current injection point types are:

• MBeanServerType: An MBeanServerType injection point receives a reference to the
MBeanServer that the XMBean is registered with.

• MBeanInfoType: An MBeanInfoType injection point receives a reference to the XMBean
ModelMBeanInfo metadata.

• ObjectNameType: The ObjectName injection point receives the ObjectName that the
XMBean is registered under.

• setMethod: The setMethod attribute gives the name of the method used to set the injection
value on the resource. The set method should accept values of the type corresponding to the
injection point type.

Note that any of the constructor, attribute, operation or notification elements may have a
descriptors element to specify the specification defined descriptors as well as arbitrary
extension descriptor settings.

2.3.2. The Management Class

The class element specifies the fully qualified name of the managed object whose
management interface is described by the XMBean descriptor.

2.3.3. The Constructors

The constructor element(s) specifies the constructors available for creating an instance of the
managed object. The constructor element and its content model are shown in Figure 3.8, “The
XMBean constructor element and its content model”.

JBoss XMBeans

55

Figure 3.8. The XMBean constructor element and its content model

The key child elements are:

• description: A description of the constructor.

• name: The name of the constructor, which must be the same as the implementation class.

• parameter: The parameter element describes a constructor parameter. The parameter
element has the following attributes:

• description: An optional description of the parameter.

• name: The required variable name of the parameter.

• type: The required fully qualified class name of the parameter type.

• descriptors: Any descriptors to associate with the constructor metadata.

2.3.4. The Attributes

The attribute element(s) specifies the management attributes exposed by the MBean. The
attribute element and its content model are shown in Figure 3.9, “The XMBean attribute element
and its content model”.

Chapter 3. The JBoss JMX Micr...

56

Figure 3.9. The XMBean attribute element and its content model

The attribute element supported attributes include:

• access: The optional access attribute defines the read/write access modes of an attribute. It
must be one of:

• read-only: The attribute may only be read.

• write-only: The attribute may only be written.

• read-write: The attribute is both readable and writable. This is the implied default.

• getMethod: The getMethod attribute defines the name of the method which reads the named
attribute. This must be specified if the managed attribute should be obtained from the MBean
instance.

• setMethod: The setMethod attribute defines the name of the method which writes the named
attribute. This must be specified if the managed attribute should be obtained from the MBean
instance.

The key child elements of the attribute element include:

• description: A description of the attribute.

• name: The name of the attribute as would be used in the MBeanServer.getAttribute()

operation.

• type: The fully qualified class name of the attribute type.

• descriptors: Any additional descriptors that affect the attribute persistence, caching, default
value, etc.

JBoss XMBeans

57

2.3.5. The Operations

The management operations exposed by the XMBean are specified via one or more operation
elements. The operation element and its content model are shown in Figure 3.10, “The XMBean
operation element and its content model”.

Figure 3.10. The XMBean operation element and its content model

The impact attribute defines the impact of executing the operation and must be one of:

• ACTION: The operation changes the state of the MBean component (write operation)

• INFO: The operation should not alter the state of the MBean component (read operation).

• ACTION_INFO: The operation behaves like a read/write operation.

The child elements are:

• description: This element specifies a human readable description of the operation.

• name: This element contains the operation's name

• parameter: This element describes the operation's signature.

• return-type: This element contains a fully qualified class name of the return type from this
operation. If not specified, it defaults to void.

Chapter 3. The JBoss JMX Micr...

58

• descriptors: Any descriptors to associate with the operation metadata.

2.3.6. Notifications

The notification element(s) describes the management notifications that may be emitted by
the XMBean. The notification element and its content model is shown in Figure 3.11, “The
XMBean notification element and content model”.

Figure 3.11. The XMBean notification element and content model

The child elements are:

• description: This element gives a human readable description of the notification.

• name: This element contains the fully qualified name of the notification class.

• notification-type: This element contains the dot-separated notification type string.

• descriptors: Any descriptors to associate with the notification metadata.

3. Connecting to the JMX Server

JBoss includes adaptors that allow access to the JMX MBeanServer from outside of the JBoss
server VM. The current adaptors include HTML, an RMI interface, and an EJB.

3.1. Inspecting the Server - the JMX Console Web Application

JBoss comes with its own implementation of a JMX HTML adaptor that allows one to view the
server's MBeans using a standard web browser. The default URL for the console web
application is http://localhost:8080/jmx-console/. If you browse this location you will see
something similar to that presented in Figure 3.12, “The JBoss JMX console web application
agent view”.

Connecting to the JMX Server

59

http://localhost:8080/jmx-console/

Figure 3.12. The JBoss JMX console web application agent view

The top view is called the agent view and it provides a listing of all MBeans registered with the
MBeanServer sorted by the domain portion of the MBean's ObjectName. Under each domain are
the MBeans under that domain. When you select one of the MBeans you will be taken to the
MBean view. This allows one to view and edit an MBean's attributes as well as invoke
operations. As an example, Figure 3.13, “The MBean view for the "jboss.system:type=Server"
MBean” shows the MBean view for the jboss.system:type=Server MBean.

Chapter 3. The JBoss JMX Micr...

60

Figure 3.13. The MBean view for the "jboss.system:type=Server" MBean

The source code for the JMX console web application is located in the varia module under the
src/main/org/jboss/jmx directory. Its web pages are located under
varia/src/resources/jmx. The application is a simple MVC servlet with JSP views that utilize
the MBeanServer.

3.1.1. Securing the JMX Console

Since the JMX console web application is just a standard servlet, it may be secured using
standard J2EE role based security. The jmx-console.war that is deployed as an unpacked
WAR that includes template settings for quickly enabling simple username and password based

Inspecting the Server - the JMX Console

61

access restrictions. If you look at the jmx-console.war in the server/production/deploy

directory you will find the web.xml and jboss-web.xml descriptors in the WEB-INF directory.
The jmx-console-roles.properties and jmx-console-users.properties files are located
in the server/production/conf/props directory.

By uncommenting the security sections of the web.xml and jboss-web.xml descriptors as
shown in Example 3.10, “The jmx-console.war web.xml descriptors with the security elements
uncommented.”, you enable HTTP basic authentication that restricts access to the JMX Console
application to the user admin with password admin. The username and password are
determined by the admin=admin line in the jmx-console-users.properties file.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ... -->

<!-- A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want

and
uncomment the WEB-INF/jboss-web.xml/security-domain element to

enable
secured access to the HTML JMX console.

-->
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description> An example security config that only allows users

with
the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Example 3.10. The jmx-console.war web.xml descriptors with the security
elements uncommented.

Chapter 3. The JBoss JMX Micr...

62

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss-web

PUBLIC "-//JBoss//DTD Web Application 2.3//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_3_0.dtd">

<jboss-web>
<!--

Uncomment the security-domain to enable security. You will
need to edit the htmladaptor login configuration to setup the
login modules used to authentication users.

-->
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Example 3.11. The jmx-console.war jboss-web.xml descriptors with the
security elements uncommented.

Make these changes and then when you try to access the JMX Console URL. You will see a
dialog similar to that shown in Figure 3.14, “The JMX Console basic HTTP login dialog.”.

Figure 3.14. The JMX Console basic HTTP login dialog.

You probably to use the properties files for securing access to the JMX console application. To
see how to properly configure the security settings of web applications see Chapter 8, Security
on JBoss.

Web Application

63

3.2. Connecting to JMX Using RMI

JBoss supplies an RMI interface for connecting to the JMX MBeanServer. This interface is
org.jboss.jmx.adaptor.rmi.RMIAdaptor. The RMIAdaptor interface is bound into JNDI in
the default location of jmx/invoker/RMIAdaptor as well as jmx/rmi/RMIAdaptor for
backwards compatibility with older clients.

Example 3.12, “ A JMX client that uses the RMIAdaptor” shows a client that makes use of the
RMIAdaptor interface to query the MBeanInfo for the JNDIView MBean. It also invokes the
MBean's list(boolean) method and displays the result.

public class JMXBrowser
{

/**
* @param args the command line arguments
*/

public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor)

ic.lookup("jmx/invoker/RMIAdaptor");

// Get the MBeanInfo for the JNDIView MBean
ObjectName name = new ObjectName("jboss:service=JNDIView");
MBeanInfo info = server.getMBeanInfo(name);
System.out.println("JNDIView Class: " + info.getClassName());

MBeanOperationInfo[] opInfo = info.getOperations();
System.out.println("JNDIView Operations: ");
for(int o = 0; o < opInfo.length; o ++) {

MBeanOperationInfo op = opInfo[o];

String returnType = op.getReturnType();
String opName = op.getName();
System.out.print(" + " + returnType + " " + opName + "(");

MBeanParameterInfo[] params = op.getSignature();
for(int p = 0; p < params.length; p++) {

MBeanParameterInfo paramInfo = params[p];

String pname = paramInfo.getName();
String type = paramInfo.getType();

if (pname.equals(type)) {
System.out.print(type);

} else {
System.out.print(type + " " + name);

}

if (p < params.length-1) {
System.out.print(',');

}
}
System.out.println(")");

}

Chapter 3. The JBoss JMX Micr...

64

// Invoke the list(boolean) op
String[] sig = {"boolean"};
Object[] opArgs = {Boolean.TRUE};
Object result = server.invoke(name, "list", opArgs, sig);

System.out.println("JNDIView.list(true) output:\n"+result);
}

}

Example 3.12. A JMX client that uses the RMIAdaptor

To test the client access using the RMIAdaptor, run the following:

[examples]$ ant -Dchap=jmx -Dex=4 run-example
...

run-example4:
[java] JNDIView Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIView Operations:
[java] + java.lang.String list(boolean jboss:service=JNDIView)
[java] + java.lang.String listXML()
[java] + void create()
[java] + void start()
[java] + void stop()
[java] + void destroy()
[java] + void jbossInternalLifecycle(java.lang.String

jboss:service=JNDIView)
[java] + java.lang.String getName()
[java] + int getState()
[java] + java.lang.String getStateString()
[java] JNDIView.list(true) output:
[java] <h1>java: Namespace</h1>
[java] <pre>
[java] +- XAConnectionFactory (class:

org.jboss.mq.SpyXAConnectionFactory)
[java] +- DefaultDS (class: javax.sql.DataSource)
[java] +- SecurityProxyFactory (class:

org.jboss.security.SubjectSecurityProxyFactory)
[java] +- DefaultJMSProvider (class:

org.jboss.jms.jndi.JNDIProviderAdapter)
[java] +- comp (class: javax.naming.Context)
[java] +- JmsXA (class:

org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
[java] +- ConnectionFactory (class:

org.jboss.mq.SpyConnectionFactory)
[java] +- jaas (class: javax.naming.Context)
[java] | +- JmsXARealm (class:

org.jboss.security.plugins.SecurityDomainContext)
[java] | +- jbossmq (class:

org.jboss.security.plugins.SecurityDomainContext)
[java] | +- HsqlDbRealm (class:

Connecting to JMX Using RMI

65

org.jboss.security.plugins.SecurityDomainContext)
[java] +- timedCacheFactory (class: javax.naming.Context)
[java] Failed to lookup: timedCacheFactory, errmsg=null
[java] +- TransactionPropagationContextExporter (class:

org.jboss.tm.TransactionPropag
ationContextFactory)

[java] +- StdJMSPool (class:
org.jboss.jms.asf.StdServerSessionPoolFactory)

[java] +- Mail (class: javax.mail.Session)
[java] +- TransactionPropagationContextImporter (class:

org.jboss.tm.TransactionPropag
ationContextImporter)

[java] +- TransactionManager (class: org.jboss.tm.TxManager)
[java] </pre>
[java] <h1>Global JNDI Namespace</h1>
[java] <pre>
[java] +- XAConnectionFactory (class:

org.jboss.mq.SpyXAConnectionFactory)
[java] +- UIL2ConnectionFactory[link -> ConnectionFactory] (class:

javax.naming.Lin
kRef)

[java] +- UserTransactionSessionFactory (proxy: $Proxy11 implements
interface org.jbos
s.tm.usertx.interfaces.UserTransactionSessionFactory)

[java] +- HTTPConnectionFactory (class:
org.jboss.mq.SpyConnectionFactory)

[java] +- console (class: org.jnp.interfaces.NamingContext)
[java] | +- PluginManager (proxy: $Proxy36 implements interface

org.jboss.console.ma
nager.PluginManagerMBean)

[java] +- UIL2XAConnectionFactory[link -> XAConnectionFactory]
(class: javax.naming
.LinkRef)

[java] +- UUIDKeyGeneratorFactory (class:
org.jboss.ejb.plugins.keygenerator.uuid.UUID
KeyGeneratorFactory)

[java] +- HTTPXAConnectionFactory (class:
org.jboss.mq.SpyXAConnectionFactory)

[java] +- topic (class: org.jnp.interfaces.NamingContext)
[java] | +- testDurableTopic (class: org.jboss.mq.SpyTopic)
[java] | +- testTopic (class: org.jboss.mq.SpyTopic)
[java] | +- securedTopic (class: org.jboss.mq.SpyTopic)
[java] +- queue (class: org.jnp.interfaces.NamingContext)
[java] | +- A (class: org.jboss.mq.SpyQueue)
[java] | +- testQueue (class: org.jboss.mq.SpyQueue)
[java] | +- ex (class: org.jboss.mq.SpyQueue)
[java] | +- DLQ (class: org.jboss.mq.SpyQueue)
[java] | +- D (class: org.jboss.mq.SpyQueue)
[java] | +- C (class: org.jboss.mq.SpyQueue)
[java] | +- B (class: org.jboss.mq.SpyQueue)
[java] +- ConnectionFactory (class:

org.jboss.mq.SpyConnectionFactory)
[java] +- UserTransaction (class:

org.jboss.tm.usertx.client.ClientUserTransaction)
[java] +- jmx (class: org.jnp.interfaces.NamingContext)
[java] | +- invoker (class: org.jnp.interfaces.NamingContext)
[java] | | +- RMIAdaptor (proxy: $Proxy35 implements interface

Chapter 3. The JBoss JMX Micr...

66

org.jboss.jmx.adapt
or.rmi.RMIAdaptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)

[java] | +- rmi (class: org.jnp.interfaces.NamingContext)
[java] | | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class:

javax.naming.L
inkRef)

[java] +- HiLoKeyGeneratorFactory (class:
org.jboss.ejb.plugins.keygenerator.hilo.HiLo
KeyGeneratorFactory)

[java] +- UILXAConnectionFactory[link -> XAConnectionFactory] (class:
javax.naming.
LinkRef)

[java] +- UILConnectionFactory[link -> ConnectionFactory] (class:
javax.naming.Link
Ref)

[java] </pre>

3.3. Command Line Access to JMX

JBoss provides a simple command line tool that allows for interaction with a remote JMX server
instance. This tool is called twiddle (for twiddling bits via JMX) and is located in the bin directory
of the distribution. Twiddle is a command execution tool, not a general command shell. It is run
using either the twiddle.sh or twiddle.bat scripts, and passing in a -h(--help) argument
provides the basic syntax, and --help-commands shows what you can do with the tool:

[bin]$./twiddle.sh -h
A JMX client to 'twiddle' with a remote JBoss server.

usage: twiddle.sh [options] <command> [command_arguments]

options:
-h, --help Show this help message

--help-commands Show a list of commands
-H=<command> Show command specific help
-c=command.properties Specify the command.properties file to use
-D<name>[=<value>] Set a system property
-- Stop processing options
-s, --server=<url> The JNDI URL of the remote server
-a, --adapter=<name> The JNDI name of the RMI adapter to use
-q, --quiet Be somewhat more quiet

3.3.1. Connecting twiddle to a Remote Server

By default the twiddle command will connect to the localhost at port 1099 to lookup the default
jmx/rmi/RMIAdaptor binding of the RMIAdaptor service as the connector for communicating
with the JMX server. To connect to a different server/port combination you can use the -s

(--server) option:

[bin]$./twiddle.sh -s toki serverinfo -d jboss
[bin]$./twiddle.sh -s toki:1099 serverinfo -d jboss

Command Line Access to JMX

67

To connect using a different RMIAdaptor binding use the -a (--adapter) option:

[bin]$./twiddle.sh -s toki -a jmx/rmi/RMIAdaptor serverinfo -d jboss

3.3.2. Sample twiddle Command Usage

To access basic information about a server, use the serverinfo command. This currently
supports:

[bin]$./twiddle.sh -H serverinfo
Get information about the MBean server

usage: serverinfo [options]

options:
-d, --domain Get the default domain
-c, --count Get the MBean count
-l, --list List the MBeans
-- Stop processing options

[bin]$./twiddle.sh --server=toki serverinfo --count
460
[bin]$./twiddle.sh --server=toki serverinfo --domain
jboss

To query the server for the name of MBeans matching a pattern, use the query command. This
currently supports:

[bin]$./twiddle.sh -H query
Query the server for a list of matching MBeans

usage: query [options] <query>
options:

-c, --count Display the matching MBean count
-- Stop processing options

Examples:
query all mbeans: query '*:*'
query all mbeans in the jboss.j2ee domain: query 'jboss.j2ee:*'

[bin]$./twiddle.sh -s toki query 'jboss:service=invoker,*'
jboss:readonly=true,service=invoker,target=Naming,type=http
jboss:service=invoker,type=jrmp
jboss:service=invoker,type=local
jboss:service=invoker,type=pooled
jboss:service=invoker,type=http
jboss:service=invoker,target=Naming,type=http

To get the attributes of an MBean, use the get command:

[bin]$./twiddle.sh -H get
Get the values of one or more MBean attributes

usage: get [options] <name> [<attr>+]

Chapter 3. The JBoss JMX Micr...

68

If no attribute names are given all readable attributes are retrieved
options:

--noprefix Do not display attribute name prefixes
-- Stop processing options

[bin]$./twiddle.sh get jboss:service=invoker,type=jrmp RMIObjectPort
StateString
RMIObjectPort=4444
StateString=Started
[bin]$./twiddle.sh get jboss:service=invoker,type=jrmp
ServerAddress=0.0.0.0
RMIClientSocketFactoryBean=null
StateString=Started
State=3
RMIServerSocketFactoryBean=org.jboss.net.sockets.DefaultSocketFactory@ad093076
EnableClassCaching=false
SecurityDomain=null
RMIServerSocketFactory=null
Backlog=200
RMIObjectPort=4444
Name=JRMPInvoker
RMIClientSocketFactory=null

To query the MBeanInfo for an MBean, use the info command:

[bin]$./twiddle.sh -H info
Get the metadata for an MBean

usage: info <mbean-name>
Use '*' to query for all attributes

[bin]$ Description: Management Bean.
+++ Attributes:
Name: ServerAddress
Type: java.lang.String
Access: rw
Name: RMIClientSocketFactoryBean
Type: java.rmi.server.RMIClientSocketFactory
Access: rw
Name: StateString
Type: java.lang.String
Access: r-
Name: State
Type: int
Access: r-
Name: RMIServerSocketFactoryBean
Type: java.rmi.server.RMIServerSocketFactory
Access: rw
Name: EnableClassCaching
Type: boolean
Access: rw
Name: SecurityDomain
Type: java.lang.String
Access: rw
Name: RMIServerSocketFactory
Type: java.lang.String
Access: rw

Command Line Access to JMX

69

Name: Backlog
Type: int
Access: rw
Name: RMIObjectPort
Type: int
Access: rw
Name: Name
Type: java.lang.String
Access: r-
Name: RMIClientSocketFactory
Type: java.lang.String
Access: rw

+++ Operations:
void start()
void jbossInternalLifecycle(java.lang.String java.lang.String)
void create()
void stop()
void destroy()

To invoke an operation on an MBean, use the invoker command:

[bin]$./twiddle.sh -H invoke
Invoke an operation on an MBean

usage: invoke [options] <query> <operation> (<arg>)*

options:
-q, --query-type[=<type>] Treat object name as a query
-- Stop processing options

query type:
f[irst] Only invoke on the first matching name [default]
a[ll] Invoke on all matching names

[bin]$./twiddle.sh invoke jboss:service=JNDIView list true
<h1>java: Namespace</h1>
<pre>
+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- DefaultDS (class: javax.sql.DataSource)
+- SecurityProxyFactory (class:

org.jboss.security.SubjectSecurityProxyFactory)
+- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
+- comp (class: javax.naming.Context)
+- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| +- JmsXARealm (class:

org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsqlDbRealm (class:

org.jboss.security.plugins.SecurityDomainContext)
+- timedCacheFactory (class: javax.naming.Context)

Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class:

org.jboss.tm.TransactionPropagationContext
Factory)

Chapter 3. The JBoss JMX Micr...

70

+- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
+- Mail (class: javax.mail.Session)
+- TransactionPropagationContextImporter (class:

org.jboss.tm.TransactionPropagationContext
Importer)
+- TransactionManager (class: org.jboss.tm.TxManager)

</pre>
<h1>Global JNDI Namespace</h1>
<pre>
+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- UIL2ConnectionFactory[link -> ConnectionFactory] (class:

javax.naming.LinkRef)
+- UserTransactionSessionFactory (proxy: $Proxy11 implements interface

org.jboss.tm.usertx.
interfaces.UserTransactionSessionFactory)
+- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- console (class: org.jnp.interfaces.NamingContext)
| +- PluginManager (proxy: $Proxy36 implements interface

org.jboss.console.manager.Plugin
ManagerMBean)
+- UIL2XAConnectionFactory[link -> XAConnectionFactory] (class:

javax.naming.LinkRef)
+- UUIDKeyGeneratorFactory (class:

org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGenerator
Factory)
+- HTTPXAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- topic (class: org.jnp.interfaces.NamingContext)
| +- testDurableTopic (class: org.jboss.mq.SpyTopic)
| +- testTopic (class: org.jboss.mq.SpyTopic)
| +- securedTopic (class: org.jboss.mq.SpyTopic)
+- queue (class: org.jnp.interfaces.NamingContext)
| +- A (class: org.jboss.mq.SpyQueue)
| +- testQueue (class: org.jboss.mq.SpyQueue)
| +- ex (class: org.jboss.mq.SpyQueue)
| +- DLQ (class: org.jboss.mq.SpyQueue)
| +- D (class: org.jboss.mq.SpyQueue)
| +- C (class: org.jboss.mq.SpyQueue)
| +- B (class: org.jboss.mq.SpyQueue)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- UserTransaction (class:

org.jboss.tm.usertx.client.ClientUserTransaction)
+- jmx (class: org.jnp.interfaces.NamingContext)
| +- invoker (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor (proxy: $Proxy35 implements interface

org.jboss.jmx.adaptor.rmi.RMIAd
aptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)
| +- rmi (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class:

javax.naming.LinkRef)
+- HiLoKeyGeneratorFactory (class:

org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGenerator
Factory)
+- UILXAConnectionFactory[link -> XAConnectionFactory] (class:

javax.naming.LinkRef)
+- UILConnectionFactory[link -> ConnectionFactory] (class:

javax.naming.LinkRef)
</pre>

Command Line Access to JMX

71

3.4. Connecting to JMX Using Any Protocol

With the detached invokers and a somewhat generalized proxy factory capability, you can really
talk to the JMX server using the InvokerAdaptorService and a proxy factory service to expose
an RMIAdaptor or similar interface over your protocol of choice. We will introduce the detached
invoker notion along with proxy factories in Section 6, “Remote Access to Services, Detached
Invokers”. See Section 6.1, “A Detached Invoker Example, the MBeanServer Invoker Adaptor
Service” for an example of an invoker service that allows one to access the MBean server using
to the RMIAdaptor interface over any protocol for which a proxy factory service exists.

4. Using JMX as a Microkernel

When JBoss starts up, one of the first steps performed is to create an MBean server instance
(javax.management.MBeanServer). The JMX MBean server in the JBoss architecture plays the
role of a microkernel. All other manageable MBean components are plugged into JBoss by
registering with the MBean server. The kernel in that sense is only an framework, and not a
source of actual functionality. The functionality is provided by MBeans, and in fact all major
JBoss components are manageable MBeans interconnected through the MBean server.

4.1. The Startup Process

In this section we will describe the JBoss server startup process. A summary of the steps that
occur during the JBoss server startup sequence is:

1. The run start script initiates the boot sequence using the org.jboss.Main.main(String[])

method entry point.

2. The Main.main method creates a thread group named jboss and then starts a thread
belonging to this thread group. This thread invokes the Main.boot method.

3. The Main.boot method processes the Main.main arguments and then creates an
org.jboss.system.server.ServerLoader using the system properties along with any
additional properties specified as arguments.

4. The XML parser libraries, jboss-jmx.jar, concurrent.jar and extra libraries and
classpaths given as arguments are registered with the ServerLoader .

5. The JBoss server instance is created using the ServerLoader.load(ClassLoader) method
with the current thread context class loader passed in as the ClassLoader argument. The
returned server instance is an implementation of the org.jboss.system.server.Server

interface. The creation of the server instance entails:

• Creating a java.net.URLClassLoader with the URLs of the jars and directories registered
with the ServerLoader . This URLClassLoader uses the ClassLoader passed in as its

Chapter 3. The JBoss JMX Micr...

72

parent and it is pushed as the thread context class loader.

• The class name of the implementation of the Server interface to use is determined by the
jboss.server.type property. This defaults to org.jboss.system.server.ServerImpl.

• The Server implementation class is loaded using the URLClassLoader created in step 6
and instantiated using its no-arg constructor. The thread context class loader present on
entry into the ServerLoader.load method is restored and the server instance is returned.

6. The server instance is initialized with the properties passed to the ServerLoader constructor
using the Server.init(Properties) method.

7. The server instance is then started using the Server.start() method. The default
implementation performs the following steps:

• Set the thread context class loader to the class loader used to load the ServerImpl class.

• Create an MBeanServer under the jboss domain using the
MBeanServerFactory.createMBeanServer(String) method.

• Register the ServerImpl and ServerConfigImpl MBeans with the MBean server.

• Initialize the unified class loader repository to contain all JARs in the optional patch
directory as well as the server configuration file conf directory, for example,
server/production/conf. For each JAR and directory an
org.jboss.mx.loading.UnifiedClassLoader is created and registered with the unified
repository. One of these UnifiedClassLoader is then set as the thread context class
loader. This effectively makes all UnifiedClassLoaders available through the thread
context class loader.

• The org.jboss.system.ServiceController MBean is created. The ServiceController

manages the JBoss MBean services life cycle. We will discuss the JBoss MBean services
notion in detail in Section 4.2, “JBoss MBean Services”.

• The org.jboss.deployment.MainDeployer is created and started. The MainDeployer

manages deployment dependencies and directing deployments to the correct deployer.

• The org.jboss.deployment.JARDeployer is created and started. The JARDeployer

handles the deployment of JARs that are simple library JARs.

• The org.jboss.deployment.SARDeployer is created and started. The SARDeployer
handles the deployment of JBoss MBean services.

• The MainDeployer is invoked to deploy the services defined in the
conf/jboss-service.xml of the current server file set.

• Restore the thread context class loader.

The JBoss server starts out as nothing more than a container for the JMX MBean server, and
then loads its personality based on the services defined in the jboss-service.xml MBean

The Startup Process

73

configuration file from the named configuration set passed to the server on the command line.
Because MBeans define the functionality of a JBoss server instance, it is important to
understand how the core JBoss MBeans are written, and how you should integrate your existing
services into JBoss using MBeans. This is the topic of the next section.

4.2. JBoss MBean Services

As we have seen, JBoss relies on JMX to load in the MBean services that make up a given
server instance's personality. All of the bundled functionality provided with the standard JBoss
distribution is based on MBeans. The best way to add services to the JBoss server is to write
your own JMX MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that
are dependent on JBoss services. MBeans that are independent of JBoss services are the
trivial case. They can be written per the JMX specification and added to a JBoss server by
adding an mbean tag to the deploy/user-service.xml file. Writing an MBean that relies on a
JBoss service such as naming requires you to follow the JBoss service pattern. The JBoss
MBean service pattern consists of a set of life cycle operations that provide state change
notifications. The notifications inform an MBean service when it can create, start, stop, and
destroy itself. The management of the MBean service life cycle is the responsibility of three
JBoss MBeans: SARDeployer, ServiceConfigurator and ServiceController.

4.2.1. The SARDeployer MBean

JBoss manages the deployment of its MBean services via a custom MBean that loads an XML
variation of the standard JMX MLet configuration file. This custom MBean is implemented in the
org.jboss.deployment.SARDeployer class. The SARDeployer MBean is loaded when JBoss
starts up as part of the bootstrap process. The SAR acronym stands for service archive.

The SARDeployer handles services archives. A service archive can be either a jar that ends
with a .sar suffix and contains a META-INF/jboss-service.xml descriptor, or a standalone
XML descriptor with a naming pattern that matches *-service.xml. The DTD for the service
descriptor is jboss-service_4.2.dtd and is shown in Figure 3.15, “The DTD for the MBean
service descriptor parsed by the SARDeployer”.

Chapter 3. The JBoss JMX Micr...

74

Figure 3.15. The DTD for the MBean service descriptor parsed by the
SARDeployer

The elements of the DTD are:

• loader-repository: This element specifies the name of the UnifiedLoaderRepository

MBean to use for the SAR to provide SAR level scoping of classes deployed in the sar. It is a
unique JMX ObjectName string. It may also specify an arbitrary configuration by including a
loader-repository-config element. The optional loaderRepositoryClass attribute
specifies the fully qualified name of the loader repository implementation class. It defaults to
org.jboss.mx.loading.HeirachicalLoaderRepository3.

• loader-repository-config: This optional element specifies an arbitrary configuration that
may be used to configure the loadRepositoryClass. The optional configParserClass
attribute gives the fully qualified name of the
org.jboss.mx.loading.LoaderRepositoryFactory.LoaderRepositoryConfigParser

implementation to use to parse the loader-repository-config content.

• local-directory: This element specifies a path within the deployment archive that should be
copied to the server/<config>/db directory for use by the MBean. The path attribute is the
name of an entry within the deployment archive.

JBoss MBean Services

75

• classpath: This element specifies one or more external JARs that should be deployed with
the MBean(s). The optional archives attribute specifies a comma separated list of the JAR
names to load, or the * wild card to signify that all jars should be loaded. The wild card only
works with file URLs, and http URLs if the web server supports the WEBDAV protocol. The
codebase attribute specifies the URL from which the JARs specified in the archive attribute
should be loaded. If the codebase is a path rather than a URL string, the full URL is built by
treating the codebase value as a path relative to the JBoss distribution server/<config>

directory. The order of JARs specified in the archives as well as the ordering across multiple
classpath element is used as the classpath ordering of the JARs. Therefore, if you have
patches or inconsistent versions of classes that require a certain ordering, use this feature to
ensure the correct ordering.

• mbean: This element specifies an MBean service. The required code attribute gives the fully
qualified name of the MBean implementation class. The required name attribute gives the
JMX ObjectName of the MBean. The optional xmbean-dd attribute specifies the path to the
XMBean resource if this MBean service uses the JBoss XMBean descriptor to define a Model
MBean management interface.

• constructor: The constructor element defines a non-default constructor to use when
instantiating the MBean The arg element specify the constructor arguments in the order of
the constructor signature. Each arg has a type and value attribute.

• attribute: Each attribute element specifies a name/value pair of the attribute of the MBean.
The name of the attribute is given by the name attribute, and the attribute element body
gives the value. The body may be a text representation of the value, or an arbitrary element
and child elements if the type of the MBean attribute is org.w3c.dom.Element. For text
values, the text is converted to the attribute type using the JavaBean
java.beans.PropertyEditor mechanism.

• server/mbean/depends and server/mbean/depends-list: these elements specify a
dependency from the MBean using the element to the MBean(s) named by the depends or
depends-list elements. Section 4.2.4, “Specifying Service Dependencies”. Note that the
dependency value can be another mbean element which defines a nested mbean.

MBean attribute values don't need to be hardcoded literal strings. Service files may contain
references to system properties using the ${name} notation, where name is the name of a Java
system property. The value of this system property, as would be returned from the call
System.getProperty("name"). Multiple properties can be specified separated by commas like
${name1,name2,name3}. If there is no system property named name1, name2 will be tried and
then name3. This allows multiple levels of substitution to be used. Finally, a default value can be
added using a colon separator. The substitution ${name:default value} would substitute the
the text "default value" if the system property name didn't exist. If none of the listed properties
exist and no default value is given, no substitution will occur.

When the SARDeployer is asked to deploy a service performs several steps. Figure 3.16, “A
sequence diagram highlighting the main activities performed by the SARDeployer to start a
JBoss MBean service” is a sequence diagram that shows the init through start phases of a
service.

Chapter 3. The JBoss JMX Micr...

76

Figure 3.16. A sequence diagram highlighting the main activities
performed by the SARDeployer to start a JBoss MBean service

In Figure 3.16, “A sequence diagram highlighting the main activities performed by the
SARDeployer to start a JBoss MBean service” the following is illustrated:

• Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.

• Methods prefixed with 1.2 correspond to processing each classpath element in the service
descriptor to create an independent deployment that makes the jar or directory available
through a UnifiedClassLoader registered with the unified loader repository.

• Methods prefixed with 1.3 correspond to processing each local-directory element in the
service descriptor. This does a copy of the SAR elements specified in the path attribute to the
server/<config>/db directory.

• Method 1.4. Process each deployable unit nested in the service a child deployment is created

JBoss MBean Services

77

and added to the service deployment info subdeployment list.

• Method 2.1. The UnifiedClassLoader of the SAR deployment unit is registered with the
MBean Server so that is can be used for loading of the SAR MBeans.

• Method 2.2. For each MBean element in the descriptor, create an instance and initialize its
attributes with the values given in the service descriptor. This is done by calling the
ServiceController.install method.

• Method 2.4.1. For each MBean instance created, obtain its JMX ObjectName and ask the
ServiceController to handle the create step of the service life cycle. The ServiceController

handles the dependencies of the MBean service. Only if the service's dependencies are
satisfied is the service create method invoked.

• Methods prefixed with 3.1 correspond to the start of each MBean service defined in the
service descriptor. For each MBean instance created, obtain its JMX ObjectName and ask the
ServiceController to handle the start step of the service life cycle. The
ServiceController handles the dependencies of the MBean service. Only if the service's
dependencies are satisfied is the service start method invoked.

4.2.2. The Service Life Cycle Interface

The JMX specification does not define any type of life cycle or dependency management for
MBeans. The JBoss ServiceController MBean introduces this notion. A JBoss MBean is an
extension of the JMX MBean in that an MBean is expected to decouple creation from the life
cycle of its service duties. This is necessary to implement any type of dependency
management. For example, if you are writing an MBean that needs a JNDI naming service to be
able to function, your MBean needs to be told when its dependencies are satisfied. This ranges
from difficult to impossible to do if the only life cycle event is the MBean constructor. Therefore,
JBoss introduces a service life cycle interface that describes the events a service can use to
manage its behavior. The following listing shows the org.jboss.system.Service interface:

package org.jboss.system;
public interface Service
{

public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

The ServiceController MBean invokes the methods of the Service interface at the
appropriate times of the service life cycle. We'll discuss the methods in more detail in the
ServiceController section.

4.2.3. The ServiceController MBean

JBoss manages dependencies between MBeans via the

Chapter 3. The JBoss JMX Micr...

78

org.jboss.system.ServiceController custom MBean. The SARDeployer delegates to the
ServiceController when initializing, creating, starting, stopping and destroying MBean services.
Figure 3.17, “The interaction between the SARDeployer and ServiceController to start a service”
shows a sequence diagram that highlights interaction between the SARDeployer and
ServiceController.

Figure 3.17. The interaction between the SARDeployer and
ServiceController to start a service

The ServiceController MBean has four key methods for the management of the service life
cycle: create, start, stop and destroy.

4.2.3.1. The create(ObjectName) method

The create(ObjectName) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDeployer, a
notification of a new class, or another service reaching its created state.

When a service's create method is called, all services on which the service depends have also
had their create method invoked. This gives an MBean an opportunity to check that required
MBeans or resources exist. A service cannot utilize other MBean services at this point, as most
JBoss MBean services do not become fully functional until they have been started via their

JBoss MBean Services

79

start method. Because of this, service implementations often do not implement create in favor
of just the start method because that is the first point at which the service can be fully
functional.

4.2.3.2. The start(ObjectName) method

The start(ObjectName) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDeployer, a
notification of a new class, or another service reaching its started state.

When a service's start method is called, all services on which the service depends have also
had their start method invoked. Receipt of a start method invocation signals a service to
become fully operational since all services upon which the service depends have been created
and started.

4.2.3.3. The stop(ObjectName) method

The stop(ObjectName) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDeployer, notification
of a class removal, or a service on which other services depend reaching its stopped state.

4.2.3.4. The destroy(ObjectName) method

The destroy(ObjectName) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDeployer, notification
of a class removal, or a service on which other services depend reaching its destroyed state.

Service implementations often do not implement destroy in favor of simply implementing the
stop method, or neither stop nor destroy if the service has no state or resources that need
cleanup.

4.2.4. Specifying Service Dependencies

To specify that an MBean service depends on other MBean services you need to declare the
dependencies in the mbean element of the service descriptor. This is done using the depends

and depends-list elements. One difference between the two elements relates to the
optional-attribute-name attribute usage. If you track the ObjectNames of dependencies
using single valued attributes you should use the depends element. If you track the
ObjectNames of dependencies using java.util.List compatible attributes you would use the
depends-list element. If you only want to specify a dependency and don't care to have the
associated service ObjectName bound to an attribute of your MBean then use whatever element
is easiest. The following listing shows example service descriptor fragments that illustrate the
usage of the dependency related elements.

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jms.topic:service=Topic,name=testTopic">

<!-- Declare a dependency on the "jboss.mq:service=DestinationManager"
and

bind this name to the DestinationManager attribute -->
<depends optional-attribute-name="DestinationManager">

Chapter 3. The JBoss JMX Micr...

80

jboss.mq:service=DestinationManager
</depends>

<!-- Declare a dependency on the "jboss.mq:service=SecurityManager" and
bind this name to the SecurityManager attribute -->

<depends optional-attribute-name="SecurityManager">
jboss.mq:service=SecurityManager

</depends>

<!-- ... -->

<!-- Declare a dependency on the
"jboss.mq:service=CacheManager" without
any binding of the name to an attribute-->

<depends>jboss.mq:service=CacheManager</depends>
</mbean>

<mbean code="org.jboss.mq.server.jmx.TopicMgr"
name="jboss.mq.destination:service=TopicMgr">

<!-- Declare a dependency on the given topic destination mbeans and
bind these names to the Topics attribute -->

<depends-list optional-attribute-name="Topics">
<depends-list-element>jms.topic:service=Topic,name=A</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=B</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=C</depends-list-element>

</depends-list>
</mbean>

Another difference between the depends and depends-list elements is that the value of the
depends element may be a complete MBean service configuration rather than just the
ObjectName of the service. Example 3.13, “An example of using the depends element to specify
the complete configuration of a depended on service.” shows an example from the
hsqldb-service.xml descriptor. In this listing the
org.jboss.resource.connectionmanager.RARDeployment service configuration is defined
using a nested mbean element as the depends element value. This indicates that the
org.jboss.resource.connectionmanager.LocalTxConnectionManager MBean depends on
this service. The jboss.jca:service=LocalTxDS,name=hsqldbDSObjectName will be bound to
the ManagedConnectionFactoryName attribute of the LocalTxConnectionManager class.

<mbean code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"
name="jboss.jca:service=LocalTxCM,name=hsqldbDS">

<depends optional-attribute-name="ManagedConnectionFactoryName">
<!--embedded mbean-->
<mbean code="org.jboss.resource.connectionmanager.RARDeployment"

name="jboss.jca:service=LocalTxDS,name=hsqldbDS">
<attribute name="JndiName">DefaultDS</attribute>
<attribute name="ManagedConnectionFactoryProperties">

<properties>
<config-property name="ConnectionURL"

type="java.lang.String">
jdbc:hsqldb:hsql://localhost:1476

</config-property>

JBoss MBean Services

81

<config-property name="DriverClass"
type="java.lang.String">

org.hsqldb.jdbcDriver
</config-property>
<config-property name="UserName"

type="java.lang.String">
sa

</config-property>
<config-property name="Password"

type="java.lang.String"/>
</properties>

</attribute>
<!-- ... -->

</mbean>
</depends>
<!-- ... -->

</mbean>

Example 3.13. An example of using the depends element to specify the
complete configuration of a depended on service.

4.2.5. Identifying Unsatisfied Dependencies

The ServiceController MBean supports two operations that can help determine which
MBeans are not running due to unsatisfied dependencies. The first operation is
listIncompletelyDeployed. This returns a java.util.List of
org.jboss.system.ServiceContext objects for the MBean services that are not in the
RUNNING state.

The second operation is listWaitingMBeans. This operation returns a java.util.List of the
JMX ObjectNames of MBean services that cannot be deployed because the class specified by
the code attribute is not available.

4.2.6. Hot Deployment of Components, the URLDeploymentScanner

The URLDeploymentScanner MBean service provides the JBoss hot deployment capability. This
service watches one or more URLs for deployable archives and deploys the archives as they
appear or change. It also undeploys previously deployed applications if the archive from which
the application was deployed is removed. The configurable attributes include:

• URLs: A comma separated list of URL strings for the locations that should be watched for
changes. Strings that do not correspond to valid URLs are treated as file paths. Relative file
paths are resolved against the server home URL, for example,
JBOSS_DIST/server/production for the production config file set. If a URL represents a file
then the file is deployed and watched for subsequent updates or removal. If a URL ends in /

Chapter 3. The JBoss JMX Micr...

82

to represent a directory, then the contents of the directory are treated as a collection of
deployables and scanned for content that are to be watched for updates or removal. The
requirement that a URL end in a / to identify a directory follows the RFC2518 convention and
allows discrimination between collections and directories that are simply unpacked archives.

The default value for the URLs attribute is deploy/ which means that any SARs, EARs,
JARs, WARs, RARs, etc. dropped into the server/<name>/deploy directory will be
automatically deployed and watched for updates.

Example URLs include:

• deploy/ scans ${jboss.server.url}/deploy/, which is local or remote depending on the
URL used to boot the server

• ${jboss.server.home.dir}/deploy/ scans ${jboss.server.home.dir)/deploy, which is always
local

• file:/var/opt/myapp.ear deploys myapp.ear from a local location

• file:/var/opt/apps/ scans the specified directory

• http://www.test.com/netboot/myapp.ear deploys myapp.ear from a remote location

• http://www.test.com/netboot/apps/ scans the specified remote location using WebDAV.
This will only work if the remote http server supports the WebDAV PROPFIND command.

• ScanPeriod: The time in milliseconds between runs of the scanner thread. The default is
5000 (5 seconds).

• URLComparator: The class name of a java.util.Comparator implementation used to
specify a deployment ordering for deployments found in a scanned directory. The
implementation must be able to compare two java.net.URL objects passed to its compare
method. The default setting is the org.jboss.deployment.DeploymentSorter class which
orders based on the deployment URL suffix. The ordering of suffixes is: deployer,
deployer.xml, sar, rar, ds.xml, service.xml, har, jar, war, wsr, ear, zip, bsh, last.

An alternate implementation is the
org.jboss.deployment.scanner.PrefixDeploymentSorter class. This orders the URLs
based on numeric prefixes. The prefix digits are converted to an int (ignoring leading zeroes),
smaller prefixes are ordered ahead of larger numbers. Deployments that do not start with any
digits will be deployed after all numbered deployments. Deployments with the same prefix
value are further sorted by the DeploymentSorter logic.

• Filter: The class name of a java.io.FileFilter implementation that is used to filter the
contents of scanned directories. Any file not accepted by this filter will not be deployed. The
default is org.jboss.deployment.scanner.DeploymentFilter which is an implementation
that rejects the following patterns:

"#*", "%*", ",*", ".*", "_$*", "*#", "*$", "*%", "*.BAK", "*.old", "*.orig", "*.rej", "*.bak",
"*.sh", "*,v", "*~", ".make.state", ".nse_depinfo", "CVS", "CVS.admin", "RCS", "RCSLOG",

JBoss MBean Services

83

SCCS", "TAGS", "core", "tags"

• RecursiveSearch: This property indicates whether or not deploy subdirectories are seen to
be holding deployable content. If this is false, deploy subdirectories that do not contain a dot
(.) in their name are seen to be unpackaged JARs with nested subdeployments. If true, then
deploy subdirectories are just groupings of deployable content. The difference between the
two views shows is related to the depth first deployment model JBoss supports. The false
setting which treats directories as unpackaged JARs with nested content triggers the
deployment of the nested content as soon as the JAR directory is deployed. The true setting
simply ignores the directory and adds its content to the list of deployable packages and
calculates the order based on the previous filter logic. The default is true.

• Deployer: The JMX ObjectName string of the MBean that implements the
org.jboss.deployment.Deployer interface operations. The default setting is to use the
MainDeployer created by the bootstrap startup process.

4.3. Writing JBoss MBean Services

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org.jboss.system.Service interface pattern if the custom service is dependent on other
services. When a custom MBean depends on other MBean services you cannot perform any
service dependent initialization in any of the javax.management.MBeanRegistration interface
methods since JMX has no dependency notion. Instead, you must manage dependency state
using the Service interface create and/or start methods. You can do this using any one of
the following approaches:

• Add any of the Service methods that you want called on your MBean to your MBean
interface. This allows your MBean implementation to avoid dependencies on JBoss specific
interfaces.

• Have your MBean interface extend the org.jboss.system.Service interface.

• Have your MBean interface extend the org.jboss.system.ServiceMBean interface. This is a
subinterface of org.jboss.system.Service that adds getName(), getState(),
getStateString() methods.

Which approach you choose depends on whether or not you want your code to be coupled to
JBoss specific code. If you don't, then you would use the first approach. If you don't care about
dependencies on JBoss classes, the simplest approach is to have your MBean interface extend
from org.jboss.system.ServiceMBean and your MBean implementation class extend from the
abstract org.jboss.system.ServiceMBeanSupport class. This class implements the
org.jboss.system.ServiceMBean interface. ServiceMBeanSupport provides implementations
of the create, start, stop, and destroy methods that integrate logging and JBoss service
state management tracking. Each method delegates any subclass specific work to
createService, startService, stopService, and destroyService methods respectively.
When subclassing ServiceMBeanSupport, you would override one or more of the

Chapter 3. The JBoss JMX Micr...

84

createService, startService, stopService, and destroyService methods as required

4.3.1. A Standard MBean Example

This section develops a simple MBean that binds a HashMap into the JBoss JNDI namespace at
a location determined by its JndiName attribute to demonstrate what is required to create a
custom MBean. Because the MBean uses JNDI, it depends on the JBoss naming service
MBean and must use the JBoss MBean service pattern to be notified when the naming service
is available.

Version one of the classes, shown in Example 3.14, “JNDIMapMBean interface and
implementation based on the service interface method pattern”, is based on the service
interface method pattern. This version of the interface declares the start and stop methods
needed to start up correctly without using any JBoss-specific classes.

package org.jboss.book.jmx.ex1;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;
public void start() throws Exception;
public void stop() throws Exception;

}

package org.jboss.book.jmx.ex1;

// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap implements JNDIMapMBean
{

private String jndiName;
private HashMap contextMap = new HashMap();
private boolean started;

public String getJndiName()
{

return jndiName;
}
public void setJndiName(String jndiName) throws NamingException
{

String oldName = this.jndiName;
this.jndiName = jndiName;
if (started) {

unbind(oldName);

Writing JBoss MBean Services

85

try {
rebind();

} catch(Exception e) {
NamingException ne = new NamingException("Failedto update

jndiName");
ne.setRootCause(e);
throw ne;

}
}

}

public void start() throws Exception
{

started = true;
rebind();

}

public void stop()
{

started = false;
unbind(jndiName);

}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
System.out.println("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
e.printStackTrace();

}
}

}

Example 3.14. JNDIMapMBean interface and implementation based on the
service interface method pattern

Version two of the classes, shown in Example 3.14, “JNDIMapMBean interface and
implementation based on the service interface method pattern”, use the JBoss ServiceMBean

interface and ServiceMBeanSupport class. In this version, the implementation class extends
the ServiceMBeanSupport class and overrides the startService and stopService methods.
JNDIMapMBean also implements the abstract getName method to return a descriptive name for

Chapter 3. The JBoss JMX Micr...

86

the MBean. The JNDIMapMBean interface extends the org.jboss.system.ServiceMBean

interface and only declares the setter and getter methods for the JndiName attribute because it
inherits the service life cycle methods from ServiceMBean. This is the third approach mentioned
at the start of the Section 4.2, “JBoss MBean Services”.

package org.jboss.book.jmx.ex2;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean extends org.jboss.system.ServiceMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;

}

package org.jboss.book.jmx.ex2;
// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap extends org.jboss.system.ServiceMBeanSupport
implements JNDIMapMBean

{
private String jndiName;
private HashMap contextMap = new HashMap();

public String getJndiName()
{

return jndiName;
}

public void setJndiName(String jndiName)
throws NamingException

{
String oldName = this.jndiName;
this.jndiName = jndiName;
if (super.getState() == STARTED) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failed to update
jndiName");

ne.setRootCause(e);
throw ne;

}
}

}

public void startService() throws Exception

Writing JBoss MBean Services

87

{
rebind();

}

public void stopService()
{

unbind(jndiName);
}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
log.info("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
log.error("Failed to unbind map", e);

}
}

}

Example 3.15. JNDIMap MBean interface and implementation based on the
ServiceMBean interface and ServiceMBeanSupport class

The source code for these MBeans along with the service descriptors is located in the
examples/src/main/org/jboss/book/jmx/{ex1,ex2} directories.

The jboss-service.xml descriptor for the first version is shown below.

<!-- The SAR META-INF/jboss-service.xml descriptor -->
<server>

<mbean code="org.jboss.book.jmx.ex1.JNDIMap"
name="j2eechap2.ex1:service=JNDIMap">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
</server>

The JNDIMap MBean binds a HashMap object under the inmemory/maps/MapTest JNDI name
and the client code fragment demonstrates retrieving the HashMap object from the
inmemory/maps/MapTest location. The corresponding client code is shown below.

Chapter 3. The JBoss JMX Micr...

88

// Sample lookup code
InitialContext ctx = new InitialContext();
HashMap map = (HashMap) ctx.lookup("inmemory/maps/MapTest");

4.3.2. XMBean Examples

In this section we will develop a variation of the JNDIMap MBean introduced in the preceding
section that exposes its management metadata using the JBoss XMBean framework. Our core
managed component will be exactly the same core code from the JNDIMap class, but it will not
implement any specific management related interface. We will illustrate the following capabilities
not possible with a standard MBean:

• The ability to add rich descriptions to attribute and operations

• The ability to expose notification information

• The ability to add persistence of attributes

• The ability to add custom interceptors for security and remote access through a typed
interface

4.3.2.1. Version 1, The Annotated JNDIMap XMBean

Let's start with a simple XMBean variation of the standard MBean version of the JNDIMap that
adds the descriptive information about the attributes and operations and their arguments. The
following listing shows the jboss-service.xml descriptor and the jndimap-xmbean1.xml

XMBean descriptor. The source can be found in the src/main/org/jboss/book/jmx/xmbean

directory of the book examples.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE server PUBLIC

"-//JBoss//DTD MBean Service 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-service_3_2.dtd">

<server>
<mbean code="org.jboss.book.jmx.xmbean.JNDIMap"

name="j2eechap2.xmbean:service=JNDIMap"
xmbean-dd="META-INF/jndimap-xmbean.xml">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
</server>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 1</description>

Writing JBoss MBean Services

89

<descriptors>
<persistence persistPolicy="Never" persistPeriod="10"

persistLocation="data/JNDIMap.data" persistName="JNDIMap"/>
<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>

</descriptors>
<class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName"

setMethod="setJndiName">
<description>

The location in JNDI where the Map we manage will be bound
</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into

the
map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values. The
"[Ljava.lang.String;" type signature is the VM representation of

the
java.lang.String[] type. </description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the map</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

Chapter 3. The JBoss JMX Micr...

90

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>
<parameter>

<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the
map

managed by the service</description>
<name>javax.management.Notification</name>

<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.get</notification-type>
</notification>
<notification>

<description>The notification sent whenever a value is put into the
map

managed by the service</description>
<name>javax.management.Notification</name>

<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.put</notification-type>
</notification>

</mbean>

You can build, deploy and test the XMBean as follows:

[examples]$ ant -Dchap=jmx -Dex=xmbean1 run-example
...
run-examplexmbean1:

[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object

chap2.xmbean:service=JNDIMap,java.lang.Object
chap2.xmbean:service=JNDIMap)

[java] + java.lang.Object get(java.lang.Object
chap2.xmbean:service=JNDIMap)

[java] name=chap2.xmbean:service=JNDIMap
[java] listener=org.jboss.book.jmx.xmbean.TestXMBean1$Listener@f38cf0
[java] key=key0, value=value0
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:
service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.put][message=]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:

Writing JBoss MBean Services

91

service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.get][message=]
[java] JNDIMap.get(key0): null
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:
service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.get][message=]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:
service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.put][message=]

[java] handleNotification, event:
javax.management.AttributeChangeNotification[source
=chap2.xmbean:service=JNDIMap][type=jmx.attribute.change][message=InitialValues

changed from javax.management.Attribute@82a72a to
javax.management.Attribute@acdb96]

The functionality is largely the same as the Standard MBean with the notable exception of the
JMX notifications. A Standard MBean has no way of declaring that it will emit notifications. An
XMBean may declare the notifications it emits using notification elements as is shown in the
version 1 descriptor. We see the notifications from the get and put operations on the test client
console output. Note that there is also an jmx.attribute.change notification emitted when
the InitialValues attribute was changed. This is because the ModelMBean interface extends
the ModelMBeanNotificationBroadcaster which supports
AttributeChangeNotificationListeners.

The other major difference between the Standard and XMBean versions of JNDIMap is the
descriptive metadata. Look at the chap2.xmbean:service=JNDIMap in the JMX Console, and
you will see the attributes section as shown in Figure 3.18, “The Version 1 JNDIMapXMBean
jmx-console view”.

Chapter 3. The JBoss JMX Micr...

92

Figure 3.18. The Version 1 JNDIMapXMBean jmx-console view

Notice that the JMX Console now displays the full attribute description as specified in the
XMBean descriptor rather than MBean Attribute text seen in standard MBean
implementations. Scroll down to the operations and you will also see that these now also have
nice descriptions of their function and parameters.

4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

In version 2 of the XMBean we add support for persistence of the XMBean attributes. The
updated XMBean deployment descriptor is given below.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 2</description>
<descriptors>

<persistence persistPolicy="OnUpdate" persistPeriod="10"

Writing JBoss MBean Services

93

persistLocation="${jboss.server.data.dir}"
persistName="JNDIMap.ser"/>

<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>
<persistence-manager

value="org.jboss.mx.persistence.ObjectStreamPersistenceManager"/>
</descriptors> <class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName"

setMethod="setJndiName">
<description>

The location in JNDI where the Map we manage will be bound
</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into

the
map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values</description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the nap</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

Chapter 3. The JBoss JMX Micr...

94

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>
<parameter>

<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the
map

managed by the service</description>
<name>javax.management.Notification</name>

<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.get</notification-type>
</notification>
<notification>

<description>The notification sent whenever a value is put into the
map

managed by the service</description>
<name>javax.management.Notification</name>

<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.put</notification-type>
</notification>

</mbean>

Build, deploy and test the version 2 XMBean as follows:

[examples]$ ant -Dchap=jmx -Dex=xmbean2 -Djboss.deploy.conf=rmi-adaptor
run-example
...
run-examplexmbean2:

[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object

chap2.xmbean:service=JNDIMap,java.lang.Object cha
p2.xmbean:service=JNDIMap)

[java] + java.lang.Object get(java.lang.Object
chap2.xmbean:service=JNDIMap)

[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String

chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String;

chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986326

Writing JBoss MBean Services

95

93716,message=null,userData=null]
[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=8,timeStamp=10986326
93857,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=9,timeStamp=10986326
93896,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=10,timeStamp=1098632
693925,message=null,userData=null]

There is nothing manifestly different about this version of the XMBean at this point because we
have done nothing to test that changes to attribute value are actually persisted. Perform this test
by running example xmbean2a several times:

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

[java] InitialValues.length=2
[java] key=key10, value=value10

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

[java] InitialValues.length=4
[java] key=key10, value=value10
[java] key=key2, value=value2

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

[java] InitialValues.length=6
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3

The org.jboss.book.jmx.xmbean.TestXMBeanRestart used in this example obtains the
current InitialValues attribute setting, and then adds another key/value pair to it. The client
code is shown below.

package org.jboss.book.jmx.xmbean;

import javax.management.Attribute;
import javax.management.ObjectName;

Chapter 3. The JBoss JMX Micr...

96

import javax.naming.InitialContext;

import org.jboss.jmx.adaptor.rmi.RMIAdaptor;

/**
* A client that demonstrates the persistence of the xmbean
* attributes. Every time it run it looks up the InitialValues
* attribute, prints it out and then adds a new key/value to the
* list.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class TestXMBeanRestart
{

/**
* @param args the command line arguments
*/

public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/rmi/RMIAdaptor");

// Get the InitialValues attribute
ObjectName name = new

ObjectName("j2eechap2.xmbean:service=JNDIMap");
String[] initialValues = (String[])

server.getAttribute(name, "InitialValues");
System.out.println("InitialValues.length="+initialValues.length);
int length = initialValues.length;
for (int n = 0; n < length; n += 2) {

String key = initialValues[n];
String value = initialValues[n+1];

System.out.println("key="+key+", value="+value);
}
// Add a new key/value pair
String[] newInitialValues = new String[length+2];
System.arraycopy(initialValues, 0, newInitialValues,

0, length);
newInitialValues[length] = "key"+(length/2+1);
newInitialValues[length+1] = "value"+(length/2+1);

Attribute ivalues = new
Attribute("InitialValues", newInitialValues);

server.setAttribute(name, ivalues);
}

}

At this point you may even shutdown the JBoss server, restart it and then rerun the initial
example to see if the changes are persisted across server restarts:

[examples]$ ant -Dchap=jmx -Dex=xmbean2 run-example
...

Writing JBoss MBean Services

97

run-examplexmbean2:
[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object

chap2.xmbean:service=JNDIMap,java.lang.Object cha
p2.xmbean:service=JNDIMap)

[java] + java.lang.Object get(java.lang.Object
chap2.xmbean:service=JNDIMap)

[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String

chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String;

chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3
[java] key=key4, value=value4
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=3,timeStamp=10986
33664712,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.get,sequenceNumber=4,timeStamp=10986
33664821,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.get,sequenceNumber=5,timeStamp=10986
33664860,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event:

javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=6,timeStamp=10986
33664877,message=null,userData=null]

[java] handleNotification, event:
javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986
33664895,message=null,userData=null]

[java] handleNotification, event:
javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=8,timeStamp=10986
33664899,message=null,userData=null]

[java] handleNotification, event:
javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=9,timeStamp=10986
33665614,message=null,userData=null]

You see that the last InitialValues attribute setting is in fact visible.

Chapter 3. The JBoss JMX Micr...

98

4.4. Deployment Ordering and Dependencies

We have seen how to manage dependencies using the service descriptor depends and
depends-list tags. The deployment ordering supported by the deployment scanners provides
a coarse-grained dependency management in that there is an order to deployments. If
dependencies are consistent with the deployment packages then this is a simpler mechanism
than having to enumerate the explicit MBean-MBean dependencies. By writing your own filters
you can change the coarse grained ordering performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth
first ordering. Structuring of components into an archive hierarchy is yet another way to manage
deployment ordering.You will need to explicitly state your MBean dependencies if your
packaging structure does not happen to resolve the dependencies. Let's consider an example
component deployment that consists of an MBean that uses an EJB. Here is the structure of the
example EAR.

output/jmx/jmx-ex3.ear
+- META-INF/MANIFEST.MF
+- META-INF/jboss-app.xml
+- jmx-ex3.jar (archive) [EJB jar]
| +- META-INF/MANIFEST.MF
| +- META-INF/ejb-jar.xml
| +- org/jboss/book/jmx/ex3/EchoBean.class
| +- org/jboss/book/jmx/ex3/EchoLocal.class
| +- org/jboss/book/jmx/ex3/EchoLocalHome.class
+- jmx-ex3.sar (archive) [MBean sar]
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- org/jboss/book/jmx/ex3/EjbMBeanAdaptor.class
+- META-INF/application.xml

The EAR contains a jmx-ex3.jar and jmx-ex3.sar. The jmx-ex3.jar is the EJB archive and
the jmx-ex3.sar is the MBean service archive. We have implemented the service as a
Dynamic MBean to provide an illustration of their use.

package org.jboss.book.jmx.ex3;

import java.lang.reflect.Method;
import javax.ejb.CreateException;
import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.AttributeNotFoundException;
import javax.management.DynamicMBean;
import javax.management.InvalidAttributeValueException;
import javax.management.JMRuntimeException;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanConstructorInfo;
import javax.management.MBeanInfo;
import javax.management.MBeanNotificationInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanException;
import javax.management.MBeanServer;

Deployment Ordering and Dependencies

99

import javax.management.ObjectName;
import javax.management.ReflectionException;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.system.ServiceMBeanSupport;

/**
* An example of a DynamicMBean that exposes select attributes and
* operations of an EJB as an MBean.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class EjbMBeanAdaptor extends ServiceMBeanSupport
implements DynamicMBean

{
private String helloPrefix;
private String ejbJndiName;
private EchoLocalHome home;

/** These are the mbean attributes we expose
*/

private MBeanAttributeInfo[] attributes = {
new MBeanAttributeInfo("HelloPrefix", "java.lang.String",

"The prefix message to append to the session
echo reply",

true, // isReadable
true, // isWritable
false), // isIs

new MBeanAttributeInfo("EjbJndiName", "java.lang.String",
"The JNDI name of the session bean local

home",
true, // isReadable
true, // isWritable
false) // isIs

};

/**
* These are the mbean operations we expose
*/

private MBeanOperationInfo[] operations;

/**
* We override this method to setup our echo operation info. It
* could also be done in a ctor.
*/

public ObjectName preRegister(MBeanServer server,
ObjectName name)

throws Exception
{

log.info("preRegister notification seen");

operations = new MBeanOperationInfo[5];

Class thisClass = getClass();
Class[] parameterTypes = {String.class};
Method echoMethod =

Chapter 3. The JBoss JMX Micr...

100

thisClass.getMethod("echo", parameterTypes);
String desc = "The echo op invokes the session bean echo method and"

+ " returns its value prefixed with the helloPrefix attribute
value";

operations[0] = new MBeanOperationInfo(desc, echoMethod);

// Add the Service interface operations from our super class
parameterTypes = new Class[0];
Method createMethod =

thisClass.getMethod("create", parameterTypes);
operations[1] = new MBeanOperationInfo("The

JBoss Service.create", createMethod);
Method startMethod =

thisClass.getMethod("start", parameterTypes);
operations[2] = new MBeanOperationInfo("The

JBoss Service.start", startMethod);
Method stopMethod =

thisClass.getMethod("stop", parameterTypes);
operations[3] = new MBeanOperationInfo("The

JBoss Service.stop", startMethod);
Method destroyMethod =

thisClass.getMethod("destroy", parameterTypes);
operations[4] = new MBeanOperationInfo("The

JBoss Service.destroy", startMethod);
return name;

}

// --- Begin ServiceMBeanSupport overides
protected void createService() throws Exception
{

log.info("Notified of create state");
}

protected void startService() throws Exception
{

log.info("Notified of start state");
InitialContext ctx = new InitialContext();
home = (EchoLocalHome) ctx.lookup(ejbJndiName);

}

protected void stopService()
{

log.info("Notified of stop state");
}

// --- End ServiceMBeanSupport overides

public String getHelloPrefix()
{

return helloPrefix;
}
public void setHelloPrefix(String helloPrefix)
{

this.helloPrefix = helloPrefix;
}

Deployment Ordering and Dependencies

101

public String getEjbJndiName()
{

return ejbJndiName;
}
public void setEjbJndiName(String ejbJndiName)
{

this.ejbJndiName = ejbJndiName;
}

public String echo(String arg)
throws CreateException, NamingException

{
log.debug("Lookup EchoLocalHome@"+ejbJndiName);
EchoLocal bean = home.create();
String echo = helloPrefix + bean.echo(arg);
return echo;

}

// --- Begin DynamicMBean interface methods
/**
* Returns the management interface that describes this dynamic
* resource. It is the responsibility of the implementation to
* make sure the description is accurate.
*
* @return the management interface descriptor.
*/

public MBeanInfo getMBeanInfo()
{

String classname = getClass().getName();
String description = "This is an MBean that uses a session bean in

the"
+ " implementation of its echo operation.";

MBeanInfo[] constructors = null;
MBeanNotificationInfo[] notifications = null;
MBeanInfo mbeanInfo = new MBeanInfo(classname,

description, attributes,
constructors, operations,
notifications);

// Log when this is called so we know when in the
lifecycle this is used

Throwable trace = new Throwable("getMBeanInfo trace");
log.info("Don't panic, just a stack

trace", trace);
return mbeanInfo;

}

/**
* Returns the value of the attribute with the name matching the
* passed string.
*
* @param attribute the name of the attribute.
* @return the value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception MBeanException wraps any error thrown by the
* resource when
* getting the attribute.

Chapter 3. The JBoss JMX Micr...

102

* @exception ReflectionException wraps any error invoking the
* resource.
*/

public Object getAttribute(String attribute)
throws AttributeNotFoundException,

MBeanException,
ReflectionException

{
Object value = null;
if (attribute.equals("HelloPrefix")) {

value = getHelloPrefix();
} else if(attribute.equals("EjbJndiName")) {

value = getEjbJndiName();
} else {

throw new AttributeNotFoundException("Unknown
attribute("+attribute+") requested");

}
return value;

}

/**
* Returns the values of the attributes with names matching the
* passed string array.
*
* @param attributes the names of the attribute.
* @return an {@link AttributeList AttributeList} of name
* and value pairs.
*/

public AttributeList getAttributes(String[] attributes)
{

AttributeList values = new AttributeList();
for (int a = 0; a < attributes.length; a++) {

String name = attributes[a];
try {

Object value = getAttribute(name);
Attribute attr = new Attribute(name, value);
values.add(attr);

} catch(Exception e) {
log.error("Failed to find attribute: "+name, e);

}
}
return values;

}

/**
* Sets the value of an attribute. The attribute and new value
* are passed in the name value pair {@link Attribute
* Attribute}.
*
* @see javax.management.Attribute
*
* @param attribute the name and new value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception InvalidAttributeValueException when the new value
* cannot be converted to the type of the attribute.
* @exception MBeanException wraps any error thrown by the

Deployment Ordering and Dependencies

103

* resource when setting the new value.
* @exception ReflectionException wraps any error invoking the
* resource.
*/

public void setAttribute(Attribute attribute)
throws AttributeNotFoundException,

InvalidAttributeValueException,
MBeanException,
ReflectionException

{
String name = attribute.getName();
if (name.equals("HelloPrefix")) {

String value = attribute.getValue().toString();
setHelloPrefix(value);

} else if(name.equals("EjbJndiName")) {
String value = attribute.getValue().toString();
setEjbJndiName(value);

} else {
throw new AttributeNotFoundException("Unknown

attribute("+name+") requested");
}

}

/**
* Sets the values of the attributes passed as an
* {@link AttributeList AttributeList} of name and new
* value pairs.
*
* @param attributes the name an new value pairs.
* @return an {@link AttributeList AttributeList} of name and
* value pairs that were actually set.
*/

public AttributeList setAttributes(AttributeList attributes)
{

AttributeList setAttributes = new AttributeList();
for(int a = 0; a < attributes.size(); a++) {

Attribute attr = (Attribute) attributes.get(a);
try {

setAttribute(attr);
setAttributes.add(attr);

} catch(Exception ignore) {
}

}
return setAttributes;

}

/**
* Invokes a resource operation.
*
* @param actionName the name of the operation to perform.
* @param params the parameters to pass to the operation.
* @param signature the signartures of the parameters.
* @return the result of the operation.
* @exception MBeanException wraps any error thrown by the
* resource when performing the operation.
* @exception ReflectionException wraps any error invoking the
* resource.

Chapter 3. The JBoss JMX Micr...

104

*/
public Object invoke(String actionName, Object[] params,

String[] signature)
throws MBeanException,

ReflectionException
{

Object rtnValue = null;
log.debug("Begin invoke, actionName="+actionName);
try {

if (actionName.equals("echo")) {
String arg = (String) params[0];
rtnValue = echo(arg);
log.debug("Result: "+rtnValue);

} else if (actionName.equals("create")) {
super.create();

} else if (actionName.equals("start")) {
super.start();

} else if (actionName.equals("stop")) {
super.stop();

} else if (actionName.equals("destroy")) {
super.destroy();

} else {
throw new JMRuntimeException("Invalid state,
don't know about op="+actionName);

}
} catch(Exception e) {

throw new ReflectionException(e, "echo failed");
}

log.debug("End invoke, actionName="+actionName);
return rtnValue;

}

// --- End DynamicMBean interface methods

}

Believe it or not, this is a very trivial MBean. The vast majority of the code is there to provide the
MBean metadata and handle the callbacks from the MBean Server. This is required because a
Dynamic MBean is free to expose whatever management interface it wants. A Dynamic MBean
can in fact change its management interface at runtime simply by returning different metadata
from the getMBeanInfo method. Of course, some clients may not be happy with such a
dynamic object, but the MBean Server will do nothing to prevent a Dynamic MBean from
changing its interface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB
for some of its functionality and second, how to create MBeans with dynamic management
interfaces. If we were to write a standard MBean with a static interface for this example it would
look like the following.

public interface EjbMBeanAdaptorMBean
{

Deployment Ordering and Dependencies

105

public String getHelloPrefix();
public void setHelloPrefix(String prefix);
public String getEjbJndiName();
public void setEjbJndiName(String jndiName);
public String echo(String arg) throws CreateException, NamingException;
public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The
echo(String), create(), start(), stop() and destroy() operations are defined by obtaining
the corresponding java.lang.reflect.Method object and adding a description. Let's go through the
code and discuss where this interface implementation exists and how the MBean uses the EJB.
Beginning with lines 40-51, the two MBeanAttributeInfo instances created define the
attributes of the MBean. These attributes correspond to the getHelloPrefix/setHelloPrefix
and getEjbJndiName/setEjbJndiName of the static interface. One thing to note in terms of why
one might want to use a Dynamic MBean is that you have the ability to associate descriptive
text with the attribute metadata. This is not something you can do with a static interface.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the
ServiceMBeanSupport utility class, we override the createService, startService, and
stopService template callbacks rather than the create, start, and stop methods of the
service interface. Note that we cannot attempt to lookup the EchoLocalHome interface of the
EJB we make use of until the startService method. Any attempt to access the home interface
in an earlier life cycle method would result in the name not being found in JNDI because the
EJB container had not gotten to the point of binding the home interfaces. Because of this
dependency we will need to specify that the MBean service depends on the EchoLocal EJB
container to ensure that the service is not started before the EJB container is started. We will
see this dependency specification when we look at the service descriptor.

Lines 105-121 are the HelloPrefix and EjbJndiName attribute accessors implementations.
These are invoked in response to getAttribute/setAttribute invocations made through the
MBean Server.

Lines 123-130 correspond to the echo(String) operation implementation. This method invokes
the EchoLocal.echo(String) EJB method. The local bean interface is created using the
EchoLocalHome that was obtained in the startService method.

The remainder of the class makes up the Dynamic MBean interface implementation. Lines
133-152 correspond to the MBean metadata accessor callback. This method returns a
description of the MBean management interface in the form of the
javax.management.MBeanInfo object. This is made up of a description, the
MBeanAttributeInfo and MBeanOperationInfo metadata created earlier, as well as
constructor and notification information. This MBean does not need any special constructors or
notifications so this information is null.

Chapter 3. The JBoss JMX Micr...

106

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code
so a toolkit or infrastructure that helps generate these methods should be used. A Model MBean
framework based on XML called XBeans is currently being investigated in JBoss. Other than
this, no other Dynamic MBean frameworks currently exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request
operation action name is checked against those the MBean handles and the appropriate
method is invoked.

The jboss-service.xml descriptor for the MBean is given below. The dependency on the EJB
container MBean is highlighted in bold. The format of the EJB container MBean ObjectName is:
"jboss.j2ee:service=EJB,jndiName=" + <home-jndi-name> where the <home-jndi-name>
is the EJB home interface JNDI name.

<server>
<mbean code="org.jboss.book.jmx.ex3.EjbMBeanAdaptor"

name="jboss.book:service=EjbMBeanAdaptor">
<attribute name="HelloPrefix">AdaptorPrefix</attribute>
<attribute name="EjbJndiName">local/j2ee_chap2.EchoBean</attribute>

<depends>jboss.j2ee:service=EJB,jndiName=local/j2ee_chap2.EchoBean</depends>
</mbean>

</server>

Deploy the example ear by running:

[examples]$ ant -Dchap=jmx -Dex=3 run-example

On the server console there will be messages similar to the following:

14:57:12,906 INFO [EARDeployer] Init J2EE application:
file:/private/tmp/jboss-4.2.0/server/

production/deploy/j2ee_chap2-ex3.ear
14:57:13,044 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,088 INFO [EjbMBeanAdaptor] preRegister notification seen
14:57:13,093 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,117 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,140 WARN [EjbMBeanAdaptor] Unexcepted error accessing MBeanInfo
for null
java.lang.NullPointerException

Deployment Ordering and Dependencies

107

at
org.jboss.system.ServiceMBeanSupport.postRegister(ServiceMBeanSupport.java:418)
...
14:57:13,203 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,232 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,420 INFO [EjbModule] Deploying Chap2EchoInfoBean
14:57:13,443 INFO [EjbModule] Deploying chap2.EchoBean
14:57:13,488 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,542 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,558 INFO [EjbMBeanAdaptor] Begin invoke, actionName=create
14:57:13,560 INFO [EjbMBeanAdaptor] Notified of create state
14:57:13,562 INFO [EjbMBeanAdaptor] End invoke, actionName=create
14:57:13,604 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,621 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
at

org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
14:57:13,641 INFO [EjbMBeanAdaptor] Begin invoke, actionName=getState
14:57:13,942 INFO [EjbMBeanAdaptor] Begin invoke, actionName=start
14:57:13,944 INFO [EjbMBeanAdaptor] Notified of start state
14:57:13,951 INFO [EjbMBeanAdaptor] Testing Echo
14:57:13,983 INFO [EchoBean] echo, info=echo info, arg=, arg=startService
14:57:13,986 INFO [EjbMBeanAdaptor] echo(startService) = startService
14:57:13,988 INFO [EjbMBeanAdaptor] End invoke, actionName=start
14:57:13,991 INFO [EJBDeployer] Deployed:
file:/tmp/jboss-4.2.0.GA/server/production/tmp/deploy
/tmp60550jmx-ex3.ear-contents/jmx-ex3.jar
14:57:14,075 INFO [EARDeployer] Started J2EE application: ...

The stack traces are not exceptions. They are traces coming from the EjbMBeanAdaptor code
to demonstrate that clients ask for the MBean interface when they want to discover the MBean's
capabilities. Notice that the EJB container (lines with [EjbModule]) is started before the example
MBean (lines with [EjbMBeanAdaptor]).

Chapter 3. The JBoss JMX Micr...

108

Now, let's invoke the echo method using the JMX console web application. Go to the JMX
Console (http://localhost:8080/jmx-console) and find the service=EjbMBeanAdaptor in the
jboss.book domain. Click on the link and scroll down to the echo operation section. The view
should be like that shown in Figure 3.19, “The EjbMBeanAdaptor MBean operations JMX
console view”.

Figure 3.19. The EjbMBeanAdaptor MBean operations JMX console view

As shown, we have already entered an argument string of -echo-arg into the ParamValue text
field. Press the Invoke button and a result string of AdaptorPrefix-echo-arg is displayed on
the results page. The server console will show several stack traces from the various metadata
queries issues by the JMX console and the MBean invoke method debugging lines:

10:51:48,671 INFO [EjbMBeanAdaptor] Begin invoke, actionName=echo
10:51:48,671 INFO [EjbMBeanAdaptor] Lookup
EchoLocalHome@local/j2ee_chap2.EchoBean
10:51:48,687 INFO [EchoBean] echo, info=echo info, arg=, arg=-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] Result: AdaptorPrefix-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] End invoke, actionName=echo

JBoss Deployer Architecture

109

http://localhost:8080/jmx-console

5. JBoss Deployer Architecture

JBoss has an extensible deployment architecture that allows one to incorporate components
into the bare JBoss JMX microkernel. The MainDeployer is the deployment entry point.
Requests to deploy a component are sent to the MainDeployer and it determines if there is a
subdeployer capable of handling the deployment, and if there is, it delegates the deployment to
the subdeployer. We saw an example of this when we looked at how the MainDeployer used
the SARDeployer to deploy MBean services. Among the deployers provided with JBoss are:

• AbstractWebDeployer: This subdeployer handles web application archives (WARs). It
accepts deployment archives and directories whose name ends with a war suffix. WARs must
have a WEB-INF/web.xml descriptor and may have a WEB-INF/jboss-web.xml descriptor.

• EARDeployer: This subdeployer handles enterprise application archives (EARs). It accepts
deployment archives and directories whose name ends with an ear suffix. EARs must have a
META-INF/application.xml descriptor and may have a META-INF/jboss-app.xml

descriptor.

• EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment
archives and directories whose name ends with a jar suffix. EJB jars must have a
META-INF/ejb-jar.xml descriptor and may have a META-INF/jboss.xml descriptor.

• JARDeployer: This subdeployer handles library JAR archives. The only restriction it places
on an archive is that it cannot contain a WEB-INF directory.

• RARDeployer: This subdeployer handles JCA resource archives (RARs). It accepts
deployment archives and directories whose name ends with a rar suffix. RARs must have a
META-INF/ra.xml descriptor.

• SARDeployer: This subdeployer handles JBoss MBean service archives (SARs). It accepts
deployment archives and directories whose name ends with a sar suffix, as well as
standalone XML files that end with service.xml. SARs that are jars must have a
META-INF/jboss-service.xml descriptor.

• XSLSubDeployer: This subdeployer deploys arbitrary XML files. JBoss uses the
XSLSubDeployer to deploy ds.xml files and transform them into service.xml files for the
SARDeployer. However, it is not limited to just this task.

• HARDeployer: This subdeployer deploys hibernate archives (HARs). It accepts deployment
archives and directories whose name ends with a har suffix. HARs must have a
META-INF/hibernate-service.xml descriptor.

• AspectDeployer: This subdeployer deploys AOP archives. It accepts deployment archives
and directories whose name ends with an aop suffix as well as aop.xml files. AOP archives
must have a META-INF/jboss-aop.xml descriptor.

• ClientDeployer: This subdeployer deploys J2EE application clients. It accepts deployment
archives and directories whose name ends with a jar suffix. J2EE clients must have a

Chapter 3. The JBoss JMX Micr...

110

META-INF/application-client.xml descriptor and may have a
META-INF/jboss-client.xml descriptor.

• BeanShellSubDeployer: This subdeployer deploys bean shell scripts as MBeans. It accepts
files whose name ends with a bsh suffix.

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss
server core. All other deployers are MBean services that register themselves as deployers with
the MainDeployer using the addDeployer(SubDeployer) operation.

The MainDeployer communicates information about the component to be deployed the
SubDeployer using a DeploymentInfo object. The DeploymentInfo object is a data structure
that encapsulates the complete state of a deployable component.

When the MainDeployer receives a deployment request, it iterates through its registered
subdeployers and invokes the accepts(DeploymentInfo) method on the subdeployer. The first
subdeployer to return true is chosen. The MainDeployer will delegate the init, create, start, stop
and destroy deployment life cycle operations to the subdeployer.

5.1. Deployers and ClassLoaders

Deployers are the mechanism by which components are brought into a JBoss server. Deployers
are also the creators of the majority of UCL instances, and the primary creator is the
MainDeployer. The MainDeployer creates the UCL for a deployment early on during its init
method. The UCL is created by calling the DeploymentInfo.createClassLoaders() method. Only
the topmost DeploymentInfo will actually create a UCL. All subdeployments will add their class
paths to their parent DeploymentInfo UCL. Every deployment does have a standalone
URLClassLoader that uses the deployment URL as its path. This is used to localize the loading
of resources such as deployment descriptors. Figure 3.20, “An illustration of the class loaders
involved with an EAR deployment” provides an illustration of the interaction between Deployers,
DeploymentInfos and class loaders.

Deployers and ClassLoaders

111

Figure 3.20. An illustration of the class loaders involved with an EAR
deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB
deployment references the lib/util.jar utility jar via its manifest. The WAR includes classes
in its WEB-INF/classes directory as well as the WEB-INF/lib/jbosstest-web-util.jar. Each
deployment has a DeploymentInfo instance that has a URLClassLoader pointing to the
deployment archive. The DeploymentInfo associated with some.ear is the only one to have a
UCL created. The ejbs.jar and web.warDeploymentInfos add their deployment archive to the
some.ear UCL classpath, and share this UCL as their deployment UCL. The EJBDeployer also
adds any manifest jars to the EAR UCL.

The WARDeployer behaves differently than other deployers in that it only adds its WAR archive
to the DeploymentInfo UCL classpath. The loading of classes from the WAR
WEB-INF/classes and WEB-INF/lib locations is handled by the servlet container class loader.
The servlet container class loaders delegate to the WAR DeploymentInfo UCL as their parent

Chapter 3. The JBoss JMX Micr...

112

class loader, but the server container class loader is not part of the JBoss class loader
repository. Therefore, classes inside of a WAR are not visible to other components. Classes that
need to be shared between web application components and other components such as EJBs,
and MBeans need to be loaded into the shared class loader repository either by including the
classes into a SAR or EJB deployment, or by referencing a jar containing the shared classes
through a manifest Class-Path entry. In the case of a SAR, the SAR classpath element in the
service deployment serves the same purpose as a JAR manifest Class-Path.

6. Remote Access to Services, Detached Invokers

In addition to the MBean services notion that allows for the ability to integrate arbitrary
functionality, JBoss also has a detached invoker concept that allows MBean services to expose
functional interfaces via arbitrary protocols for remote access by clients. The notion of a
detached invoker is that remoting and the protocol by which a service is accessed is a functional
aspect or service independent of the component. Thus, one can make a naming service
available for use via RMI/JRMP, RMI/HTTP, RMI/SOAP, or any arbitrary custom transport.

Let's begin our discussion of the detached invoker architecture with an overview of the
components involved. The main components in the detached invoker architecture are shown in
Figure 3.21, “The main components in the detached invoker architecture”.

Figure 3.21. The main components in the detached invoker architecture

Remote Access to Services, Detached

113

On the client side, there exists a client proxy which exposes the interface(s) of the MBean
service. This is the same smart, compile-less dynamic proxy that we use for EJB home and
remote interfaces. The only difference between the proxy for an arbitrary service and the EJB is
the set of interfaces exposed as well as the client side interceptors found inside the proxy. The
client interceptors are represented by the rectangles found inside of the client proxy. An
interceptor is an assembly line type of pattern that allows for transformation of a method
invocation and/or return values. A client obtains a proxy through some lookup mechanism,
typically JNDI. Although RMI is indicated in Figure 3.21, “The main components in the detached
invoker architecture”, the only real requirement on the exposed interface and its types is that
they are serializable between the client server over JNDI as well as the transport layer.

The choice of the transport layer is determined by the last interceptor in the client proxy, which
is referred to as the Invoker Interceptor in Figure 3.21, “The main components in the detached
invoker architecture”. The invoker interceptor contains a reference to the transport specific stub
of the server side Detached Invoker MBean service. The invoker interceptor also handles the
optimization of calls that occur within the same VM as the target MBean. When the invoker
interceptor detects that this is the case the call is passed to a call-by-reference invoker that
simply passes the invocation along to the target MBean.

The detached invoker service is responsible for making a generic invoke operation available via
the transport the detached invoker handles. The Invoker interface illustrates the generic invoke
operation.

package org.jboss.invocation;

import java.rmi.Remote;
import org.jboss.proxy.Interceptor;
import org.jboss.util.id.GUID;

public interface Invoker
extends Remote

{
GUID ID = new GUID();

String getServerHostName() throws Exception;

Object invoke(Invocation invocation) throws Exception;
}

The Invoker interface extends Remote to be compatible with RMI, but this does not mean that an
invoker must expose an RMI service stub. The detached invoker service simply acts as a
transport gateway that accepts invocations represented as the
org.jboss.invocation.Invocation object over its specific transport, unmarshalls the
invocation, forwards the invocation onto the destination MBean service, represented by the
Target MBean in Figure 3.21, “The main components in the detached invoker architecture”, and
marshalls the return value or exception resulting from the forwarded call back to the client.

Chapter 3. The JBoss JMX Micr...

114

The Invocation object is just a representation of a method invocation context. This includes
the target MBean name, the method, the method arguments, a context of information
associated with the proxy by the proxy factory, and an arbitrary map of data associated with the
invocation by the client proxy interceptors.

The configuration of the client proxy is done by the server side proxy factory MBean service,
indicated by the Proxy Factory component in Figure 3.21, “The main components in the
detached invoker architecture”. The proxy factory performs the following tasks:

• Create a dynamic proxy that implements the interface the target MBean wishes to expose.

• Associate the client proxy interceptors with the dynamic proxy handler.

• Associate the invocation context with the dynamic proxy. This includes the target MBean,
detached invoker stub and the proxy JNDI name.

• Make the proxy available to clients by binding the proxy into JNDI.

The last component in Figure 3.21, “The main components in the detached invoker architecture”
is the Target MBean service that wishes to expose an interface for invocations to remote clients.
The steps required for an MBean service to be accessible through a given interface are:

• Define a JMX operation matching the signature: public Object

invoke(org.jboss.invocation.Invocation) throws Exception

• Create a HashMap<Long, Method> mapping from the exposed interface
java.lang.reflect.Methods to the long hash representation using the
org.jboss.invocation.MarshalledInvocation.calculateHash method.

• Implement the invoke(Invocation) JMX operation and use the interface method hash
mapping to transform from the long hash representation of the invoked method to the
java.lang.reflect.Method of the exposed interface. Reflection is used to perform the
actual invocation on the object associated with the MBean service that actually implements
the exposed interface.

6.1. A Detached Invoker Example, the MBeanServer Invoker
Adaptor Service

In the section on connecting to the JMX server we mentioned that there was a service that
allows one to access the javax.management.MBeanServer via any protocol using an invoker
service. In this section we present the
org.jboss.jmx.connector.invoker.InvokerAdaptorService and its configuration for
access via RMI/JRMP as an example of the steps required to provide remote access to an
MBean service.

The InvokerAdaptorService is a simple MBean service that only exists to fulfill the target

Invokers

115

MBean role in the detached invoker pattern.

package org.jboss.jmx.connector.invoker;
public interface InvokerAdaptorServiceMBean

extends org.jboss.system.ServiceMBean
{

Class getExportedInterface();
void setExportedInterface(Class exportedInterface);

Object invoke(org.jboss.invocation.Invocation invocation)
throws Exception;

}

package org.jboss.jmx.connector.invoker;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.UndeclaredThrowableException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;
import org.jboss.mx.server.ServerConstants;
import org.jboss.system.ServiceMBeanSupport;
import org.jboss.system.Registry;

public class InvokerAdaptorService
extends ServiceMBeanSupport
implements InvokerAdaptorServiceMBean, ServerConstants

{
private static ObjectName mbeanRegistry;

static {
try {

mbeanRegistry = new ObjectName(MBEAN_REGISTRY);
} catch (Exception e) {

throw new RuntimeException(e.toString());
}

}

private Map marshalledInvocationMapping = new HashMap();
private Class exportedInterface;

public Class getExportedInterface()
{

return exportedInterface;
}

public void setExportedInterface(Class exportedInterface)
{

this.exportedInterface = exportedInterface;
}

Chapter 3. The JBoss JMX Micr...

116

protected void startService()
throws Exception

{
// Build the interface method map
Method[] methods = exportedInterface.getMethods();
HashMap tmpMap = new HashMap(methods.length);
for (int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new

Long(MarshalledInvocation.calculateHash(method));
tmpMap.put(hash, method);

}

marshalledInvocationMapping = Collections.unmodifiableMap(tmpMap);
// Place our ObjectName hash into the Registry so invokers can
// resolve it
Registry.bind(new Integer(serviceName.hashCode()), serviceName);

}

protected void stopService()
throws Exception

{
Registry.unbind(new Integer(serviceName.hashCode()));

}

public Object invoke(Invocation invocation)
throws Exception

{
// Make sure we have the correct classloader before unmarshalling
Thread thread = Thread.currentThread();
ClassLoader oldCL = thread.getContextClassLoader();

// Get the MBean this operation applies to
ClassLoader newCL = null;
ObjectName objectName = (ObjectName)

invocation.getValue("JMX_OBJECT_NAME");
if (objectName != null) {

// Obtain the ClassLoader associated with the MBean deployment
newCL = (ClassLoader)

server.invoke(mbeanRegistry, "getValue",
new Object[] { objectName, CLASSLOADER },
new String[] { ObjectName.class.getName(),

"java.lang.String" });
}

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(newCL);

}

try {
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

A Detached Invoker Example, the

117

}

// Invoke the MBeanServer method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

String name = method.getName();
Class[] sig = method.getParameterTypes();
Method mbeanServerMethod =

MBeanServer.class.getMethod(name, sig);
value = mbeanServerMethod.invoke(server, args);

} catch(InvocationTargetException e) {
Throwable t = e.getTargetException();
if (t instanceof Exception) {

throw (Exception) t;
} else {

throw new UndeclaredThrowableException(t,
method.toString());

}
}

return value;
} finally {

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(oldCL);

}
}

}
}

Example 3.16. The InvokerAdaptorService MBean

Let's go through the key details of this service. The InvokerAdaptorServiceMBean Standard
MBean interface of the InvokerAdaptorService has a single ExportedInterface attribute
and a single invoke(Invocation) operation. The ExportedInterface attribute allows
customization of the type of interface the service exposes to clients. This has to be compatible
with the MBeanServer class in terms of method name and signature. The invoke(Invocation)

operation is the required entry point that target MBean services must expose to participate in
the detached invoker pattern. This operation is invoked by the detached invoker services that
have been configured to provide access to the InvokerAdaptorService.

Lines 54-64 of the InvokerAdaptorService build the HashMap<Long, Method> of the
ExportedInterface Class using the
org.jboss.invocation.MarshalledInvocation.calculateHash(Method) utility method.
Because java.lang.reflect.Method instances are not serializable, a MarshalledInvocation

version of the non-serializable Invocation class is used to marshall the invocation between the
client and server. The MarshalledInvocation replaces the Method instances with their
corresponding hash representation. On the server side, the MarshalledInvocation must be

Chapter 3. The JBoss JMX Micr...

118

told what the hash to Method mapping is.

Line 64 creates a mapping between the InvokerAdaptorService service name and its hash
code representation. This is used by detached invokers to determine what the target MBean
ObjectName of an Invocation is. When the target MBean name is store in the Invocation, its
store as its hashCode because ObjectNames are relatively expensive objects to create. The
org.jboss.system.Registry is a global map like construct that invokers use to store the hash
code to ObjectName mappings in.

Lines 77-93 obtain the name of the MBean on which the MBeanServer operation is being
performed and lookup the class loader associated with the MBean's SAR deployment. This
information is available via the org.jboss.mx.server.registry.BasicMBeanRegistry, a
JBoss JMX implementation specific class. It is generally necessary for an MBean to establish
the correct class loading context because the detached invoker protocol layer may not have
access to the class loaders needed to unmarshall the types associated with an invocation.

Lines 101-105 install the ExposedInterface class method hash to method mapping if the
invocation argument is of type MarshalledInvocation. The method mapping calculated
previously at lines 54-62 is used here.

Lines 107-114 perform a second mapping from the ExposedInterface Method to the matching
method of the MBeanServer class. The InvokerServiceAdaptor decouples the
ExposedInterface from the MBeanServer class in that it allows an arbitrary interface. This is
needed on one hand because the standard java.lang.reflect.Proxy class can only proxy
interfaces. It also allows one to only expose a subset of the MBeanServer methods and add
transport specific exceptions like java.rmi.RemoteException to the ExposedInterface

method signatures.

Line 115 dispatches the MBeanServer method invocation to the MBeanServer instance to which
the InvokerAdaptorService was deployed. The server instance variable is inherited from the
ServiceMBeanSupport superclass.

Lines 117-124 handle any exceptions coming from the reflective invocation including the
unwrapping of any declared exception thrown by the invocation.

Line 126 is the return of the successful MBeanServer method invocation result.

Note that the InvokerAdaptorService MBean does not deal directly with any transport specific
details. There is the calculation of the method hash to Method mapping, but this is a transport
independent detail.

Now let's take a look at how the InvokerAdaptorService may be used to expose the same
org.jboss.jmx.adaptor.rmi.RMIAdaptor interface via RMI/JRMP as seen in Connecting to
JMX Using RMI. We will start by presenting the proxy factory and InvokerAdaptorService

configurations found in the default setup in the jmx-invoker-adaptor-service.sar

deployment. Example 3.17, “The default jmx-invoker-adaptor-server.sar jboss-service.xml
deployment descriptor” shows the jboss-service.xml descriptor for this deployment.

<server>

MBeanServer Invoker Adaptor Service

119

<!-- The JRMP invoker proxy configuration for the InvokerAdaptorService
-->

<mbean code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"
name="jboss.jmx:type=adaptor,name=Invoker,protocol=jrmp,service=proxyFactory">

<!-- Use the standard JRMPInvoker from conf/jboss-service.xml -->
<attribute

name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<!-- The target MBean is the InvokerAdaptorService configured below

-->
<attribute

name="TargetName">jboss.jmx:type=adaptor,name=Invoker</attribute>
<!-- Where to bind the RMIAdaptor proxy -->
<attribute name="JndiName">jmx/invoker/RMIAdaptor</attribute>
<!-- The RMI compabitle MBeanServer interface -->
<attribute

name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>
<attribute name="ClientInterceptors">

<iterceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>

<interceptor>
org.jboss.jmx.connector.invoker.client.InvokerAdaptorClientInterceptor

</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</iterceptors>
</attribute>
<depends>jboss:service=invoker,type=jrmp</depends>

</mbean>
<!-- This is the service that handles the RMIAdaptor invocations by

routing
them to the MBeanServer the service is deployed under. -->

<mbean code="org.jboss.jmx.connector.invoker.InvokerAdaptorService"
name="jboss.jmx:type=adaptor,name=Invoker">

<attribute
name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>

</mbean>
</server>

Example 3.17. The default jmx-invoker-adaptor-server.sar
jboss-service.xml deployment descriptor

The first MBean, org.jboss.invocation.jrmp.server.JRMPProxyFactory, is the proxy
factory MBean service that creates proxies for the RMI/JRMP protocol. The configuration of this
service as shown in Example 3.17, “The default jmx-invoker-adaptor-server.sar
jboss-service.xml deployment descriptor” states that the JRMPInvoker will be used as the
detached invoker, the InvokerAdaptorService is the target mbean to which requests will be
forwarded, that the proxy will expose the RMIAdaptor interface, the proxy will be bound into
JNDI under the name jmx/invoker/RMIAdaptor, and the proxy will contain 3 interceptors:
ClientMethodInterceptor, InvokerAdaptorClientInterceptor, InvokerInterceptor. The
configuration of the InvokerAdaptorService simply sets the RMIAdaptor interface that the

Chapter 3. The JBoss JMX Micr...

120

service is exposing.

The last piece of the configuration for exposing the InvokerAdaptorService via RMI/JRMP is
the detached invoker. The detached invoker we will use is the standard RMI/JRMP invoker used
by the EJB containers for home and remote invocations, and this is the
org.jboss.invocation.jrmp.server.JRMPInvoker MBean service configured in the
conf/jboss-service.xml descriptor. That we can use the same service instance emphasizes
the detached nature of the invokers. The JRMPInvoker simply acts as the RMI/JRMP endpoint
for all RMI/JRMP proxies regardless of the interface(s) the proxies expose or the service the
proxies utilize.

6.2. Detached Invoker Reference

6.2.1. The JRMPInvoker - RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvoker class is an MBean service that
provides the RMI/JRMP implementation of the Invoker interface. The JRMPInvoker exports itself
as an RMI server so that when it is used as the Invoker in a remote client, the JRMPInvoker
stub is sent to the client instead and invocations use the RMI/JRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JRMP transport
layer. Its configurable attributes are:

• RMIObjectPort: sets the RMI server socket listening port number. This is the port RMI clients
will connect to when communicating through the proxy interface. The default setting in the
jboss-service.xml descriptor is 4444, and if not specified, the attribute defaults to 0 to
indicate an anonymous port should be used.

• RMIClientSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIClientSocketFactory interface to use during export of the proxy
interface.

• RMIServerSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIServerSocketFactory interface to use during export of the proxy
interface.

• ServerAddress: specifies the interface address that will be used for the RMI server socket
listening port. This can be either a DNS hostname or a dot-decimal Internet address. Since
the RMIServerSocketFactory does not support a method that accepts an InetAddress
object, this value is passed to the RMIServerSocketFactory implementation class using
reflection. A check for the existence of a public void

setBindAddress(java.net.InetAddress addr) method is made, and if one exists the
RMIServerSocketAddr value is passed to the RMIServerSocketFactory implementation. If
the RMIServerSocketFactory implementation does not support such a method, the
ServerAddress value will be ignored.

• SecurityDomain: specifies the JNDI name of an org.jboss.security.SecurityDomain

Detached Invoker Reference

121

interface implementation to associate with the RMIServerSocketFactory implementation.
The value will be passed to the RMIServerSocketFactory using reflection to locate a method
with a signature of public void

setSecurityDomain(org.jboss.security.SecurityDomain d). If no such method exists
the SecurityDomain value will be ignored.

6.2.2. The PooledInvoker - RMI/Socket Transport

The org.jboss.invocation.pooled.server.PooledInvoker is an MBean service that
provides RMI over a custom socket transport implementation of the Invoker interface. The
PooledInvoker exports itself as an RMI server so that when it is used as the Invoker in a
remote client, the PooledInvoker stub is sent to the client instead and invocations use the
custom socket protocol.

The PooledInvoker MBean supports a number of attribute to configure the socket transport
layer. Its configurable attributes are:

• NumAcceptThreads: The number of threads that exist for accepting client connections. The
default is 1.

• MaxPoolSize: The number of server threads for processing client. The default is 300.

• SocketTimeout: The socket timeout value passed to the Socket.setSoTimeout() method.
The default is 60000.

• ServerBindPort: The port used for the server socket. A value of 0 indicates that an
anonymous port should be chosen.

• ClientConnectAddress: The address that the client passes to the Socket(addr, port)

constructor. This defaults to the server InetAddress.getLocalHost() value.

• ClientConnectPort: The port that the client passes to the Socket(addr, port) constructor.
The default is the port of the server listening socket.

• ClientMaxPoolSize: The client side maximum number of threads. The default is 300.

• Backlog: The backlog associated with the server accept socket. The default is 200.

• EnableTcpNoDelay: A boolean flag indicating if client sockets will enable the TcpNoDelay

flag on the socket. The default is false.

• ServerBindAddress: The address on which the server binds its listening socket. The default
is an empty value which indicates the server should be bound on all interfaces.

• TransactionManagerService: The JMX ObjectName of the JTA transaction manager
service.

6.2.3. The IIOPInvoker - RMI/IIOP Transport

Chapter 3. The JBoss JMX Micr...

122

The org.jboss.invocation.iiop.IIOPInvoker class is an MBean service that provides the
RMI/IIOP implementation of the Invoker interface. The IIOPInvoker routes IIOP requests to
CORBA servants. This is used by the org.jboss.proxy.ejb.IORFactory proxy factory to
create RMI/IIOP proxies. However, rather than creating Java proxies (as the JRMP proxy
factory does), this factory creates CORBA IORs. An IORFactory is associated to a given
enterprise bean. It registers with the IIOP invoker two CORBA servants:
anEjbHomeCorbaServant for the bean's EJBHome and an EjbObjectCorbaServant for the
bean's EJBObjects.

The IIOPInvoker MBean has no configurable properties, since all properties are configured from
the conf/jacorb.properties property file used by the JacORB CORBA service.

6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP
Proxies

The org.jboss.invocation.jrmp.server.JRMPProxyFactory MBean service is a proxy
factory that can expose any interface with RMI compatible semantics for access to remote
clients using JRMP as the transport.

The JRMPProxyFactory supports the following attributes:

• InvokerName: The server side JRMPInvoker MBean service JMX ObjectName string that will
handle the RMI/JRMP transport.

• TargetName: The server side MBean that exposes the invoke(Invocation) JMX operation
for the exported interface. This is used as the destination service for any invocations done
through the proxy.

• JndiName: The JNDI name under which the proxy will be bound.

• ExportedInterface: The fully qualified class name of the interface that the proxy implements.
This is the typed view of the proxy that the client uses for invocations.

• ClientInterceptors: An XML fragment of interceptors/interceptor elements with each
interceptor element body specifying the fully qualified class name of an
org.jboss.proxy.Interceptor implementation to include in the proxy interceptor stack.
The ordering of the interceptors/interceptor elements defines the order of the interceptors.

6.2.5. The HttpInvoker - RMI/HTTP Transport

The org.jboss.invocation.http.server.HttpInvoker MBean service provides support for
making invocations into the JMX bus over HTTP. Unlike the JRMPInvoker, the HttpInvoker is
not an implementation of Invoker, but it does implement the Invoker.invoke method. The
HttpInvoker is accessed indirectly by issuing an HTTP POST against the
org.jboss.invocation.http.servlet.InvokerServlet. The HttpInvoker exports a client
side proxy in the form of the org.jboss.invocation.http.interfaces.HttpInvokerProxy

class, which is an implementation of Invoker, and is serializable. The HttpInvoker is a drop in

Detached Invoker Reference

123

replacement for the JRMPInvoker as the target of the bean-invoker and home-invoker EJB
configuration elements. The HttpInvoker and InvokerServlet are deployed in the
http-invoker.sar discussed in the JNDI chapter in the section entitled Accessing JNDI over
HTTP

The HttpInvoker supports the following attributes:

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a
system property that will be resolved inside the client VM to obtain the http URL to the
InvokerServlet.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the
concatenation of invokerURLPrefix + the local host + invokerURLSuffix. The default prefix
is http://.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the
concatenation of invokerURLPrefix + the local host + invokerURLSuffix. The default suffix
is :8080/invoker/JMXInvokerServlet.

• UseHostName: A boolean flag if the InetAddress.getHostName() or getHostAddress()
method should be used as the host component of invokerURLPrefix + host +
invokerURLSuffix. If true getHostName() is used, otherwise getHostAddress() is used.

6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.proxy.generic.ProxyFactoryHA service is an extension of the
ProxyFactoryHA that is a cluster aware factory. The ProxyFactoryHA fully supports all of the
attributes of the JRMPProxyFactory. This means that customized bindings of the port, interface
and socket transport are available to clustered RMI/JRMP as well. In addition, the following
cluster specific attributes are supported:

• PartitionObjectName: The JMX ObjectName of the cluster service to which the proxy is to be
associated with.

• LoadBalancePolicy: The class name of the
org.jboss.ha.framework.interfaces.LoadBalancePolicy interface implementation to
associate with the proxy.

6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered
environment. The HA capable extension of the HTTP invoker borrows much of its functionality
from the HA-RMI/JRMP clustering. To enable HA-RMI/HTTP you need to configure the invokers
for the EJB container. This is done through either a jboss.xml descriptor, or the
standardjboss.xml descriptor.

Chapter 3. The JBoss JMX Micr...

124

6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies

The org.jboss.invocation.http.server.HttpProxyFactory MBean service is a proxy
factory that can expose any interface with RMI compatible semantics for access to remote
clients using HTTP as the transport.

The HttpProxyFactory supports the following attributes:

• InvokerName: The server side MBean that exposes the invoke operation for the exported
interface. The name is embedded into the HttpInvokerProxy context as the target to which
the invocation should be forwarded by the HttpInvoker.

• JndiName: The JNDI name under which the HttpInvokerProxy will be bound. This is the
name clients lookup to obtain the dynamic proxy that exposes the service interfaces and
marshalls invocations over HTTP. This may be specified as an empty value to indicate that
the proxy should not be bound into JNDI.

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a
system property that will be resolved inside the client VM to obtain the http URL to the
InvokerServlet.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the
concatenation of invokerURLPrefix + the local host + invokerURLSuffix. The default prefix
is http://.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the
concatenation of invokerURLPrefix + the local host + invokerURLSuffix. The default suffix
is :8080/invoker/JMXInvokerServlet.

• UseHostName: A boolean flag indicating if the InetAddress.getHostName() or
getHostAddress() method should be used as the host component of invokerURLPrefix +
host + invokerURLSuffix. If true getHostName() is used, otherwise getHostAddress() is
used.

• ExportedInterface: The name of the RMI compatible interface that the HttpInvokerProxy

implements.

6.2.9. Steps to Expose Any RMI Interface via HTTP

Using the HttpProxyFactory MBean and JMX, you can expose any interface for access using
HTTP as the transport. The interface to expose does not have to be an RMI interface, but it
does have to be compatible with RMI in that all method parameters and return values are
serializable. There is also no support for converting RMI interfaces used as method parameters
or return values into their stubs.

The three steps to making your object invocable via HTTP are:

Detached Invoker Reference

125

• Create a mapping of longs to the RMI interface methods using the
MarshalledInvocation.calculateHash method. Here for example, is the procedure for an
RMI SRPRemoteServerInterface interface:

import java.lang.reflect.Method;
import java.util.HashMap;
import org.jboss.invocation.MarshalledInvocation;

HashMap marshalledInvocationMapping = new HashMap();

// Build the Naming interface method map
Method[] methods = SRPRemoteServerInterface.class.getMethods();
for(int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new Long(MarshalledInvocation.calculateHash(method));
marshalledInvocationMapping.put(hash, method);

}

• Either create or extend an existing MBean to support an invoke operation. Its signature is
Object invoke(Invocation invocation) throws Exception, and the steps it performs
are as shown here for the SRPRemoteServerInterface interface. Note that this uses the
marshalledInvocationMapping from step 1 to map from the Long method hashes in the
MarshalledInvocation to the Method for the interface.

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;

public Object invoke(Invocation invocation)
throws Exception

{
SRPRemoteServerInterface theServer = <the_actual_rmi_server_object>;
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

}

// Invoke the Naming method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

value = method.invoke(theServer, args);
} catch(InvocationTargetException e) {

Throwable t = e.getTargetException();
if (t instanceof Exception) {

throw (Exception) e;
} else {

throw new UndeclaredThrowableException(t, method.toString());
}

}

return value;

Chapter 3. The JBoss JMX Micr...

126

}

• Create a configuration of the HttpProxyFactory MBean to make the RMI/HTTP proxy
available through JNDI. For example:

<!-- Expose the SRP service interface via HTTP -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss.security.tests:service=SRP/HTTP">
<attribute

name="InvokerURL">http://localhost:8080/invoker/JMXInvokerServlet</attribute>
<attribute

name="InvokerName">jboss.security.tests:service=SRPService</attribute>
<attribute name="ExportedInterface">

org.jboss.security.srp.SRPRemoteServerInterface
</attribute>
<attribute name="JndiName">srp-test-http/SRPServerInterface</attribute>

</mbean>

Any client may now lookup the RMI interface from JNDI using the name specified in the
HttpProxyFactory (e.g., srp-test-http/SRPServerInterface) and use the obtain proxy in
exactly the same manner as the RMI/JRMP version.

Detached Invoker Reference

127

128

Naming on JBoss
The JNDI Naming Service

The naming service plays a key role in enterprise Java applications, providing the core
infrastructure that is used to locate objects or services in an application server. It is also the
mechanism that clients external to the application server use to locate services inside the
application server. Application code, whether it is internal or external to the JBoss instance,
need only know that it needs to talk to the a message queue named queue/IncomingOrders

and would not need to worry about any of the details of how the queue is configured. In a
clustered environment, naming services are even more valuable. A client of a service would
desire to look up the ProductCatalog session bean from the cluster without worrying which
machine the service is residing. Whether it is a big clustered service, a local resource or just a
simple application component that is needed, the JNDI naming service provides the glue that
lets code find the objects in the system by name.

1. An Overview of JNDI

JNDI is a standard Java API that is bundled with JDK1.3 and higher. JNDI provides a common
interface to a variety of existing naming services: DNS, LDAP, Active Directory, RMI registry,
COS registry, NIS, and file systems. The JNDI API is divided logically into a client API that is
used to access naming services, and a service provider interface (SPI) that allows the user to
create JNDI implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the
core JNDI classes to expose the naming service using the common JNDI client interface. An
implementation of JNDI for a naming service is referred to as a JNDI provider. JBoss naming is
an example JNDI implementation, based on the SPI classes. Note that the JNDI SPI is not
needed by J2EE component developers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service
provider APIs, see the Sun tutorial at http://java.sun.com/products/jndi/tutorial/.

The main JNDI API package is the javax.naming package. It contains five interfaces, 10
classes, and several exceptions. There is one key class, InitialContext, and two key
interfaces, Context and Name

1.1. Names

The notion of a name is of fundamental importance in JNDI. The naming system determines the
syntax that the name must follow. The syntax of the naming system allows the user to parse
string representations of names into its components. A name is used with a naming system to
locate objects. In the simplest sense, a naming system is just a collection of objects with unique
names. To locate an object in a naming system you provide a name to the naming system, and
the naming system returns the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its

Chapter 4.

129

http://java.sun.com/products/jndi/tutorial/

path relative to the root of the file system, with each component in the path separated by the
forward slash character ("/"). The file's path is ordered from left to right. The
pathname/usr/jboss/readme.txt, for example, names a file readme.txt in the directory
jboss, under the directory usr, located in the root of the file system. JBoss naming uses a
UNIX-style namespace as its naming convention.

The javax.naming.Name interface represents a generic name as an ordered sequence of
components. It can be a composite name (one that spans multiple namespaces), or a
compound name (one that is used within a single hierarchical naming system). The components
of a name are numbered. The indexes of a name with N components range from 0 up to, but
not including, N. The most significant component is at index 0. An empty name has no
components.

A composite name is a sequence of component names that span multiple namespaces. An
example of a composite name would be the hostname and file combination commonly used with
UNIX commands like scp. For example, the following command copies localfile.txt to the
file remotefile.txt in the tmp directory on host ahost.someorg.org:

scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound
name is an atomic name, meaning a string that cannot be parsed into smaller components. A
file pathname in the UNIX file system is an example of a compound name.
ahost.someorg.org:/tmp/remotefile.txt is a composite name that spans the DNS and
UNIX file system namespaces. The components of the composite name are
ahost.someorg.org and /tmp/remotefile.txt. A component is a string name from the
namespace of a naming system. If the component comes from a hierarchical namespace, that
component can be further parsed into its atomic parts by using the
javax.naming.CompoundName class. The JNDI API provides the
javax.naming.CompositeName class as the implementation of the Name interface for composite
names.

1.2. Contexts

The javax.naming.Context interface is the primary interface for interacting with a naming
service. The Context interface represents a set of name-to-object bindings. Every context has
an associated naming convention that determines how the context parses string names into
javax.naming.Name instances. To create a name to object binding you invoke the bind method
of a Context and specify a name and an object as arguments. The object can later be retrieved
using its name using the Context lookup method. A Context will typically provide operations for
binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object
bindings. The object you bind into a Context can itself be of type Context . The Context object
that is bound is referred to as a subcontext of the Context on which the bind method was
invoked.

As an example, consider a file directory with a pathname /usr, which is a context in the UNIX

Chapter 4. Naming on JBoss

130

file system. A file directory named relative to another file directory is a subcontext (commonly
referred to as a subdirectory). A file directory with a pathname /usr/jboss names a jboss

context that is a subcontext of usr. In another example, a DNS domain, such as org, is a
context. A DNS domain named relative to another DNS domain is another example of a
subcontext. In the DNS domain jboss.org, the DNS domain jboss is a subcontext of org
because DNS names are parsed right to left.

1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Context interface.
Therefore, you need a way to obtain a Context for the naming service you are interested in
using. The javax.naming.IntialContext class implements the Context interface, and
provides the starting point for interacting with a naming service.

When you create an InitialContext, it is initialized with properties from the environment. JNDI
determines each property's value by merging the values from the following two sources, in
order.

• The first occurrence of the property from the constructor's environment parameter and (for
appropriate properties) the applet parameters and system properties.

• All jndi.properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as
follows. If the property is one of the standard JNDI properties that specify a list of JNDI factories,
all of the values are concatenated into a single colon-separated list. For other properties, only
the first value found is used. The preferred method of specifying the JNDI environment
properties is through a jndi.properties file, which allows your code to externalize the JNDI
provider specific information so that changing JNDI providers will not require changes to your
code or recompilation.

The Context implementation used internally by the InitialContext class is determined at
runtime. The default policy uses the environment property java.naming.factory.initial,
which contains the class name of the javax.naming.spi.InitialContextFactory

implementation. You obtain the name of the InitialContextFactory class from the naming
service provider you are using.

Example 4.1, “A sample jndi.properties file” gives a sample jndi.properties file a client
application would use to connect to a JBossNS service running on the local host at port 1099.
The client application would need to have the jndi.properties file available on the application
classpath. These are the properties that the JBossNS JNDI implementation requires. Other
JNDI providers will have different properties and values.

JBossNS properties
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Contexts

131

Example 4.1. A sample jndi.properties file

2. The JBossNS Architecture

The JBossNS architecture is a Java socket/RMI based implementation of the
javax.naming.Context interface. It is a client/server implementation that can be accessed
remotely. The implementation is optimized so that access from within the same VM in which the
JBossNS server is running does not involve sockets. Same VM access occurs through an object
reference available as a global singleton. Figure 4.1, “Key components in the JBossNS
architecture.” illustrates some of the key classes in the JBossNS implementation and their
relationships.

Figure 4.1. Key components in the JBossNS architecture.

We will start with the NamingService MBean. The NamingService MBean provides the JNDI
naming service. This is a key service used pervasively by the J2EE technology components.
The configurable attributes for the NamingService are as follows.

Chapter 4. Naming on JBoss

132

• Port: The jnp protocol listening port for the NamingService. If not specified default is 1099,
the same as the RMI registry default port.

• RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not
specified the default is 0 which means use any available port.

• BindAddress: The specific address the NamingService listens on. This can be used on a
multi-homed host for a java.net.ServerSocket that will only accept connect requests on
one of its addresses.

• RmiBindAddress: The specific address the RMI server portion of the NamingService listens
on. This can be used on a multi-homed host for a java.net.ServerSocket that will only
accept connect requests on one of its addresses. If this is not specified and the BindAddress

is, the RmiBindAddress defaults to the BindAddress value.

• Backlog: The maximum queue length for incoming connection indications (a request to
connect) is set to the backlog parameter. If a connection indication arrives when the queue is
full, the connection is refused.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory

implementation class name. If not specified the default RMIClientSocketFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory

implementation class name. If not specified the default RMIServerSocketFactory is used.

• JNPServerSocketFactory: An optional custom javax.net.ServerSocketFactory

implementation class name. This is the factory for the ServerSocket used to bootstrap the
download of the JBossNS Naming interface. If not specified the
javax.net.ServerSocketFactory.getDefault() method value is used.

The NamingService also creates the java:comp context such that access to this context is
isolated based on the context class loader of the thread that accesses the java:comp context.
This provides the application component private ENC that is required by the J2EE specs. This
segregation is accomplished by binding a javax.naming.Reference to a context that uses the
org.jboss.naming.ENCFactory as its javax.naming.ObjectFactory. When a client performs
a lookup of java:comp, or any subcontext, the ENCFactory checks the thread context
ClassLoader, and performs a lookup into a map using the ClassLoader as the key.

If a context instance does not exist for the class loader instance, one is created and associated
with that class loader in the ENCFactory map. Thus, correct isolation of an application
component's ENC relies on each component receiving a unique ClassLoader that is associated
with the component threads of execution.

The NamingService delegates its functionality to an org.jnp.server.Main MBean. The
reason for the duplicate MBeans is because JBossNS started out as a stand-alone JNDI
implementation, and can still be run as such. The NamingService MBean embeds the Main

instance into the JBoss server so that usage of JNDI with the same VM as the JBoss server
does not incur any socket overhead. The configurable attributes of the NamingService are really
the configurable attributes of the JBossNS Main MBean. The setting of any attributes on the

The JBossNS Architecture

133

NamingService MBean simply set the corresponding attributes on the Main MBean the
NamingService contains. When the NamingService is started, it starts the contained Main

MBean to activate the JNDI naming service.

In addition, the NamingService exposes the Naming interface operations through a JMX
detyped invoke operation. This allows the naming service to be accessed via JMX adaptors for
arbitrary protocols. We will look at an example of how HTTP can be used to access the naming
service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won't be explored here, but the JNDI
tutorial provides a concise discussion that is applicable. See
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html for the details.

When the Main MBean is started, it performs the following tasks:

• Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM
server instance. This is used by any org.jnp.interfaces.NamingContext instances that
are created within the JBoss server VM to avoid RMI calls over TCP/IP.

• Exports the NamingServer instance's org.jnp.naming.interfaces.Naming RMI interface
using the configured RmiPort, ClientSocketFactory, ServerSocketFactoryattributes.

• Creates a socket that listens on the interface given by the BindAddress and Port attributes.

• Spawns a thread to accept connections on the socket.

3. The Naming InitialContext Factories

The JBoss JNDI provider currently supports several different InitialContext factory
implementations.

3.1. The standard naming context factory

The most commonly used factory is the org.jnp.interfaces.NamingContextFactory

implementation. Its properties include:

• java.naming.factory.initial: The name of the environment property for specifying the initial
context factory to use. The value of the property should be the fully qualified class name of
the factory class that will create an initial context. If it is not specified, a
javax.naming.NoInitialContextException will be thrown when an InitialContext

object is created.

• java.naming.provider.url: The name of the environment property for specifying the location
of the JBoss JNDI service provider the client will use. The NamingContextFactory class uses
this information to know which JBossNS server to connect to. The value of the property
should be a URL string. For JBossNS the URL format is jnp://host:port/[jndi_path].
The jnp: portion of the URL is the protocol and refers to the socket/RMI based protocol used

Chapter 4. Naming on JBoss

134

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

by JBoss. The jndi_path portion of the URL is an optional JNDI name relative to the root
context, for example, apps or apps/tmp. Everything but the host component is optional. The
following examples are equivalent because the default port value is 1099.
• jnp://www.jboss.org:1099/

• www.jboss.org:1099

• www.jboss.org

• java.naming.factory.url.pkgs: The name of the environment property for specifying the list
of package prefixes to use when loading in URL context factories. The value of the property
should be a colon-separated list of package prefixes for the class name of the factory class
that will create a URL context factory. For the JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:

and java: URL context factories of the JBoss JNDI provider.

• jnp.socketFactory: The fully qualified class name of the javax.net.SocketFactory

implementation to use to create the bootstrap socket. The default value is
org.jnp.interfaces.TimedSocketFactory. The TimedSocketFactory is a simple
SocketFactory implementation that supports the specification of a connection and read
timeout. These two properties are specified by:

• jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the
connection will block until the VM TCP/IP layer times out.

• jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0
which means reads will block. This is the value passed to the Socket.setSoTimeout on the
newly connected socket.

When a client creates an InitialContext with these JBossNS properties available, the
org.jnp.interfaces.NamingContextFactory object is used to create the Context instance
that will be used in subsequent operations. The NamingContextFactory is the JBossNS
implementation of the javax.naming.spi.InitialContextFactory interface. When the
NamingContextFactory class is asked to create a Context, it creates an
org.jnp.interfaces.NamingContext instance with the InitialContext environment and
name of the context in the global JNDI namespace. It is the NamingContext instance that
actually performs the task of connecting to the JBossNS server, and implements the Context

interface. The Context.PROVIDER_URL information from the environment indicates from which
server to obtain a NamingServer RMI reference.

The association of the NamingContext instance to a NamingServer instance is done in a lazy
fashion on the first Context operation that is performed. When a Context operation is
performed and the NamingContext has no NamingServer associated with it, it looks to see if its
environment properties define a Context.PROVIDER_URL. A Context.PROVIDER_URL defines
the host and port of the JBossNS server the Context is to use. If there is a provider URL, the
NamingContext first checks to see if a Naming instance keyed by the host and port pair has
already been created by checking a NamingContext class static map. It simply uses the existing
Naming instance if one for the host port pair has already been obtained. If no Naming instance
has been created for the given host and port, the NamingContext connects to the host and port
using a java.net.Socket, and retrieves a Naming RMI stub from the server by reading a

The standard naming context factory

135

java.rmi.MarshalledObject from the socket and invoking its get method. The newly obtained
Naming instance is cached in the NamingContext server map under the host and port pair. If no
provider URL was specified in the JNDI environment associated with the context, the
NamingContext simply uses the in VM Naming instance set by the Main MBean.

The NamingContext implementation of the Context interface delegates all operations to the
Naming instance associated with the NamingContext. The NamingServer class that implements
the Naming interface uses a java.util.Hashtable as the Context store. There is one unique
NamingServer instance for each distinct JNDI Name for a given JBossNS server. There are
zero or more transient NamingContext instances active at any given moment that refers to a
NamingServer instance. The purpose of the NamingContext is to act as a Context to the
Naming interface adaptor that manages translation of the JNDI names passed to the
NamingContext . Because a JNDI name can be relative or a URL, it needs to be converted into
an absolute name in the context of the JBossNS server to which it refers. This translation is a
key function of the NamingContext.

3.2. The org.jboss.naming.NamingContextFactory

This version of the InitialContextFactory implementation is a simple extension of the jnp
version which differs from the jnp version in that it stores the last configuration passed to its
InitialContextFactory.getInitialContext(Hashtable env) method in a public thread
local variable. This is used by EJB handles and other JNDI sensitive objects like the
UserTransaction factory to keep track of the JNDI context that was in effect when they were
created. If you want this environment to be bound to the object even after its serialized across
vm boundaries, then you should the org.jboss.naming.NamingContextFactory. If you want
the environment that is defined in the current VM jndi.properties or system properties, then
you should use the org.jnp.interfaces.NamingContextFactory version.

3.3. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a
Context.PROVIDER_URL value and let the client query the network for available naming
services. This only works with JBoss servers running with the all configuration, or an
equivalent configuration that has org.jboss.ha.framework.server.ClusterPartition and
org.jboss.ha.jndi.HANamingService services deployed. The discovery process consists of
sending a multicast request packet to the discovery address/port and waiting for any node to
respond. The response is a HA-RMI version of the Naming interface. The following
InitialContext properties affect the discovery configuration:

• jnp.partitionName: The cluster partition name discovery should be restricted to. If you are
running in an environment with multiple clusters, you may want to restrict the naming
discovery to a particular cluster. There is no default value, meaning that any cluster response
will be accepted.

• jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The
default is 230.0.0.4.

Chapter 4. Naming on JBoss

136

• jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

• jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The
default value is 5000 (5 seconds).

• jnp.disableDiscovery: A flag indicating if the discovery process should be avoided.
Discovery occurs when either no Context.PROVIDER_URL is specified, or no valid naming
service could be located among the URLs specified. If the jnp.disableDiscovery flag is
true, then discovery will not be attempted.

3.4. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is
a transparent change as they continue to use the JNDI Context interface. Operations through
the Context interface are translated into HTTP posts to a servlet that passes the request to the
NamingService using its JMX invoke operation. Advantages of using HTTP as the access
protocol include better access through firewalls and proxies setup to allow HTTP, as well as the
ability to secure access to the JNDI service using standard servlet role based security.

To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as
the factory implementation. The complete set of support InitialContext environment
properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be org.jboss.naming.HttpNamingContextFactory.

• java.naming.provider.url (or Context.PROVIDER_URL): This must be set to the HTTP URL of
the JNDI factory. The full HTTP URL would be the public URL of the JBoss servlet container
plus /invoker/JNDIFactory. Examples include:
• http://www.jboss.org:8080/invoker/JNDIFactory

• http://www.jboss.org/invoker/JNDIFactory

• https://www.jboss.org/invoker/JNDIFactory

The first example accesses the servlet using the port 8080. The second uses the standard
HTTP port 80, and the third uses an SSL encrypted connection to the standard HTTPS port
443.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:

and java: URL context factories of the JBoss JNDI provider.

The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy that
delegates invocations made on it to a bridge servlet which forwards the invocation to the
NamingService through the JMX bus and marshalls the reply back over HTTP. The proxy
needs to know what the URL of the bridge servlet is in order to operate. This value may have
been bound on the server side if the JBoss web server has a well known public interface. If the
JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot know what

The HTTP InitialContext Factory

137

URL is required. In this case, the proxy will be associated with a system property value that
must be set in the client VM. For more information on the operation of JNDI over HTTP see
Section 4.1, “Accessing JNDI over HTTP”.

3.5. The Login InitialContext Factory Implementation

JAAS is the preferred method for authenticating a remote client to JBoss. However, for
simplicity and to ease the migration from other application server environment that do not use
JAAS, JBoss allows you the security credentials to be passed through the InitialContext.
JAAS is still used under the covers, but there is no manifest use of the JAAS interfaces in the
client application.

The factory class that provides this capability is the
org.jboss.security.jndi.LoginInitialContextFactory. The complete set of support
InitialContext environment properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be org.jboss.security.jndi.LoginInitialContextFactory.

• java.naming.provider.url: This must be set to a NamingContextFactory provider URL. The
LoginIntialContext is really just a wrapper around the NamingContextFactory that adds a
JAAS login to the existing NamingContextFactory behavior.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:

and java: URL context factories of the JBoss JNDI provider.

• java.naming.security.principal (or Context.SECURITY_PRINCIPAL): The principal to
authenticate. This may be either a java.security.Principal implementation or a string
representing the name of a principal.

• java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials
that should be used to authenticate the principal, e.g., password, session key, etc.

• java.naming.security.protocol: (Context.SECURITY_PROTOCOL) This gives the name of the
JAAS login module to use for the authentication of the principal and credentials.

3.6. The ORBInitialContextFactory

When using Sun's CosNaming it is necessary to use a different naming context factory from the
default. CosNaming looks for the ORB in JNDI instead of using the the ORB configured in
deploy/iiop-service.xml?. It is necessary to set the global context factory to
org.jboss.iiop.naming.ORBInitialContextFactory, which sets the ORB to JBoss's ORB.
This is done in the conf/jndi.properties file:

DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING
#
java.naming.factory.initial=org.jboss.iiop.naming.ORBInitialContextFactory

Chapter 4. Naming on JBoss

138

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

It is also necessary to use ORBInitialContextFactory when using CosNaming in an
application client.

4. JNDI over HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for
accessing its JNDI naming service over HTTP.

4.1. Accessing JNDI over HTTP

This capability is provided by http-invoker.sar. The structure of the http-invoker.sar is:

http-invoker.sar
+- META-INF/jboss-service.xml
+- invoker.war
| +- WEB-INF/jboss-web.xml
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/InvokerServlet.class
| +-
WEB-INF/classes/org/jboss/invocation/http/servlet/NamingFactoryServlet.class
| +-
WEB-INF/classes/org/jboss/invocation/http/servlet/ReadOnlyAccessFilter.class
| +- WEB-INF/classes/roles.properties
| +- WEB-INF/classes/users.properties
| +- WEB-INF/web.xml
| +- META-INF/MANIFEST.MF
+- META-INF/MANIFEST.MF

The jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA MBeans.
These services handle the routing of methods invocations that are sent via HTTP to the
appropriate target MBean on the JMX bus.

The http-invoker.war web application contains servlets that handle the details of the HTTP
transport. The NamingFactoryServlet handles creation requests for the JBoss JNDI naming
service javax.naming.Context implementation. The InvokerServlet handles invocations
made by RMI/HTTP clients. The ReadOnlyAccessFilter allows one to secure the JNDI naming
service while making a single JNDI context available for read-only access by unauthenticated
clients.

Implementation

139

Figure 4.2. The HTTP invoker proxy/server structure for a JNDI Context

Before looking at the configurations let's look at the operation of the http-invoker services.
Figure 4.2, “The HTTP invoker proxy/server structure for a JNDI Context” shows a logical view
of the structure of a JBoss JNDI proxy and its relationship to the JBoss server side components
of the http-invoker. The proxy is obtained from the NamingFactoryServlet using an
InitialContext with the Context.INITIAL_CONTEXT_FACTORY property set to
org.jboss.naming.HttpNamingContextFactory, and the Context.PROVIDER_URL property
set to the HTTP URL of the NamingFactoryServlet. The resulting proxy is embedded in an
org.jnp.interfaces.NamingContext instance that provides the Context interface
implementation.

The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvokerProxy,
and implements the org.jnp.interfaces.Naming interface. Internally the HttpInvokerProxy

contains an invoker that marshalls the Naming interface method invocations to the
InvokerServlet via HTTP posts. The InvokerServlet translates these posts into JMX
invocations to the NamingService, and returns the invocation response back to the proxy in the
HTTP post response.

There are several configuration values that need to be set to tie all of these components
together and Figure 4.3, “The relationship between configuration files and JNDI/HTTP
component” illustrates the relationship between configuration files and the corresponding
components.

Chapter 4. Naming on JBoss

140

Figure 4.3. The relationship between configuration files and JNDI/HTTP
component

The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the
HttpProxyFactory that creates the HttpInvokerProxy for the NamingService. The attributes
that need to be configured for the HttpProxyFactory include:

• InvokerName: The JMX ObjectName of the NamingService defined in the
conf/jboss-service.xml descriptor. The standard setting used in the JBoss distributions is
jboss:service=Naming.

• InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify
the full HTTP URL to the InvokerServlet using the InvokerURL attribute, or you can specify
the hostname independent parts of the URL and have the HttpProxyFactory fill them in. An
example InvokerURL value would be
http://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet. This can be broken
down into:

Accessing JNDI over HTTP

141

• InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http:// or
https:// if SSL is to be used.

• InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of
the web server as well as the deployed path to the InvokerServlet . For the example
InvokerURL value the InvokerURLSuffix would be :8080/invoker/JMXInvokerServlet

without the quotes. The port number is determined by the web container service settings.
The path to the InvokerServlet is specified in the
http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.

• UseHostName: a flag indicating if the hostname should be used in place of the host IP
address when building the hostname portion of the full InvokerURL. If true,
InetAddress.getLocalHost().getHostName method will be used. Otherwise, the
InetAddress.getLocalHost().getHostAddress() method is used.

• ExportedInterface: The org.jnp.interfaces.Naming interface the proxy will expose to
clients. The actual client of this proxy is the JBoss JNDI implementation NamingContext

class, which JNDI client obtain from InitialContext lookups when using the JBoss JNDI
provider.

• JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a
blank/empty string to indicate the interface should not be bound into JNDI. We can't use the
JNDI to bootstrap itself. This is the role of the NamingFactoryServlet.

The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of
the NamingFactoryServlet and InvokerServlet along with their initialization parameters. The
configuration of the NamingFactoryServlet relevant to JNDI/HTTP is the JNDIFactory entry
which defines:

• A namingProxyMBean initialization parameter that maps to the HttpProxyFactory MBean
name. This is used by the NamingFactoryServlet to obtain the Naming proxy which it will
return in response to HTTP posts. For the default
http-invoker.sar/META-INF/jboss-service.xml settings the name
jboss:service=invoker,type=http,target=Naming.

• A proxy initialization parameter that defines the name of the namingProxyMBean attribute to
query for the Naming proxy value. This defaults to an attribute name of Proxy.

• The servlet mapping for the JNDIFactory configuration. The default setting for the unsecured
mapping is /JNDIFactory/*. This is relative to the context root of the
http-invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.

The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet

which defines:

Chapter 4. Naming on JBoss

142

• The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping
is /JMXInvokerServlet/*. This is relative to the context root of the
http-invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.

4.2. Accessing JNDI over HTTPS

To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web
container. The details of this are covered in the Integrating Servlet Containers for Tomcat. We
will demonstrate the use of HTTPS with a simple example client that uses an HTTPS URL as
the JNDI provider URL. We will provide an SSL connector configuration for the example, so
unless you are interested in the details of the SSL connector setup, the example is self
contained.

We also provide a configuration of the HttpProxyFactory setup to use an HTTPS URL. The
following example shows the section of the http-invoker.sarjboss-service.xml descriptor
that the example installs to provide this configuration. All that has changed relative to the
standard HTTP configuration are the InvokerURLPrefix and InvokerURLSuffix attributes,
which setup an HTTPS URL using the 8443 port.

<!-- Expose the Naming service interface via HTTPS -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss:service=invoker,type=https,target=Naming">
<!-- The Naming service we are proxying -->
<attribute name="InvokerName">jboss:service=Naming</attribute>
<!-- Compose the invoker URL from the cluster node address -->
<attribute name="InvokerURLPrefix">https://</attribute>
<attribute name="InvokerURLSuffix">:8443/invoker/JMXInvokerServlet

</attribute>
<attribute name="UseHostName">true</attribute>
<attribute name="ExportedInterface">org.jnp.interfaces.Naming

</attribute>
<attribute name="JndiName"/>
<attribute name="ClientInterceptors">

<interceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor

</interceptor>
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor

</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor

</interceptor>
</interceptors>

</attribute>
</mbean>

At a minimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler.
We will be using the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE
documentation does a good job of describing what is necessary to use HTTPS, and the
following steps were needed to configure the example client shown in Example 4.2, “A JNDI

Accessing JNDI over HTTPS

143

client that uses HTTPS as the transport”:

• A protocol handler for HTTPS URLs must be made available to Java. The JSSE release
includes an HTTPS handler in the com.sun.net.ssl.internal.www.protocol package. To
enable the use of HTTPS URLs you include this package in the standard URL protocol
handler search property, java.protocol.handler.pkgs. We set the
java.protocol.handler.pkgs property in the Ant script.

• The JSSE security provider must be installed in order for SSL to work. This can be done
either by installing the JSSE jars as an extension package, or programatically. We use the
programatic approach in the example since this is less intrusive. Line 18 of the ExClient

code demonstrates how this is done.

• The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the ExClient code
specify an HTTP/SSL connection to the localhost on port 8443. The hostname and port are
defined by the web container SSL connector.

• The validation of the HTTPS URL hostname against the server certificate must be disabled.
By default, the JSSE HTTPS protocol handler employs a strict validation of the hostname
portion of the HTTPS URL against the common name of the server certificate. This is the
same check done by web browsers when you connect to secured web site. We are using a
self-signed server certificate that uses a common name of "Chapter 8 SSL Example" rather
than a particular hostname, and this is likely to be common in development environments or
intranets. The JBoss HttpInvokerProxy will override the default hostname checking if a
org.jboss.security.ignoreHttpsHost system property exists and has a value of true. We
set the org.jboss.security.ignoreHttpsHost property to true in the Ant script.

package org.jboss.chap3.ex1;

import java.security.Security;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;

public class ExClient
{

public static void main(String args[]) throws Exception
{

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"https://localhost:8443/invoker/JNDIFactorySSL");

Context ctx = new InitialContext(env);
System.out.println("Created InitialContext, env=" + env);

Object data = ctx.lookup("jmx/invoker/RMIAdaptor");
System.out.println("lookup(jmx/invoker/RMIAdaptor): " + data);

}

Chapter 4. Naming on JBoss

144

}

Example 4.2. A JNDI client that uses HTTPS as the transport

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

[examples]$ ant -Dchap=naming config

Next, start the JBoss server using the naming configuration fileset:

[bin]$ sh run.sh -c naming

And finally, run the ExClient using:

[examples]$ ant -Dchap=naming -Dex=1 run-example
...
run-example1:

[java] Created InitialContext, env={java.naming. \
provider.url=https://localhost:8443/invoker/JNDIFactorySSL, java.naming. \
factory.initial=org.jboss.naming.HttpNamingContextFactory}

[java] lookup(jmx/invoker/RMIAdaptor): org.jboss.invocation.jrmp. \
interfaces.JRMPInvokerP

roxy@cac3fa

4.3. Securing Access to JNDI over HTTP

One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI
InitialContext factory as well as the naming operations using standard web declarative
security. This is possible because the server side handling of the JNDI/HTTP transport is
implemented with two servlets. These servlets are included in the
http-invoker.sar/invoker.war directory found in the default and all configuration deploy
directories as shown previously. To enable secured access to JNDI you need to edit the
invoker.war/WEB-INF/web.xml descriptor and remove all unsecured servlet mappings. For
example, the web.xml descriptor shown in Example 4.3, “An example web.xml descriptor for
secured access to the JNDI servlets” only allows access to the invoker.war servlets if the user
has been authenticated and has a role of HttpInvoker.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

Securing Access to JNDI over HTTP

145

<!-- ### Servlets -->
<servlet>

<servlet-name>JMXInvokerServlet</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.InvokerServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet> <servlet>
<servlet-name>JNDIFactory</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.NamingFactoryServlet
</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>jboss:service=invoker,type=http,target=Naming</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
<!-- ### Servlet Mappings -->
<servlet-mapping>

<servlet-name>JNDIFactory</servlet-name>
<url-pattern>/restricted/JNDIFactory/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>

</servlet-mapping> <security-constraint>
<web-resource-collection>

<web-resource-name>HttpInvokers</web-resource-name>
<description>An example security config that only allows users

with
the role HttpInvoker to access the HTTP invoker servlets

</description>
<url-pattern>/restricted/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>HttpInvoker</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>JBoss HTTP Invoker</realm-name>

</login-config> <security-role>
<role-name>HttpInvoker</role-name>

</security-role>
</web-app>

Chapter 4. Naming on JBoss

146

Example 4.3. An example web.xml descriptor for secured access to the
JNDI servlets

The web.xml descriptor only defines which sevlets are secured, and which roles are allowed to
access the secured servlets. You must additionally define the security domain that will handle
the authentication and authorization for the war. This is done through the jboss-web.xml

descriptor, and an example that uses the http-invoker security domain is given below.

<jboss-web>
<security-domain>java:/jaas/http-invoker</security-domain>

</jboss-web>

The security-domain element defines the name of the security domain that will be used for the
JAAS login module configuration used for authentication and authorization. See Section 1.6,
“Enabling Declarative Security in JBoss” for additional details on the meaning and configuration
of the security domain name.

4.4. Securing Access to JNDI with a Read-Only Unsecured
Context

Another feature available for the JNDI/HTTP naming service is the ability to define a context that
can be accessed by unauthenticated users in read-only mode. This can be important for
services used by the authentication layer. For example, the SRPLoginModule needs to lookup
the SRP server interface used to perform authentication. We'll now walk through how read-only
JNDI works in JBoss.

First, the ReadOnlyJNDIFactory is declared in invoker.sar/WEB-INF/web.xml. It will be
mapped to /invoker/ReadOnlyJNDIFactory.

<servlet>
<servlet-name>ReadOnlyJNDIFactory</servlet-name>
<description>A servlet that exposes the JBoss JNDI Naming service stub

through http, but only for a single read-only context. The return
content

is serialized MarshalledValue containing the
org.jnp.interfaces.Naming

stub.
</description>

<servlet-class>org.jboss.invocation.http.servlet.NamingFactoryServlet</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>jboss:service=invoker,type=http,target=Naming,readonly=true</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

Securing Access to JNDI with a Read-Only

147

</servlet>

<!-- ... -->

<servlet-mapping>
<servlet-name>ReadOnlyJNDIFactory</servlet-name>
<url-pattern>/ReadOnlyJNDIFactory/*</url-pattern>

</servlet-mapping>

The factory only provides a JNDI stub which needs to be connected to an invoker. Here the
invoker is jboss:service=invoker,type=http,target=Naming,readonly=true. This invoker
is declared in the http-invoker.sar/META-INF/jboss-service.xml file.

<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
name="jboss:service=invoker,type=http,target=Naming,readonly=true">
<attribute name="InvokerName">jboss:service=Naming</attribute>
<attribute name="InvokerURLPrefix">http://</attribute>
<attribute

name="InvokerURLSuffix">:8080/invoker/readonly/JMXInvokerServlet</attribute>
<attribute name="UseHostName">true</attribute>
<attribute

name="ExportedInterface">org.jnp.interfaces.Naming</attribute>
<attribute name="JndiName"></attribute>
<attribute name="ClientInterceptors">

<interceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>

<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</interceptors>
</attribute>

</mbean>

The proxy on the client side needs to talk back to a specific invoker servlet on the server side.
The configuration here has the actual invocations going to
/invoker/readonly/JMXInvokerServlet. This is actually the standard JMXInvokerServlet

with a read-only filter attached.

<filter>
<filter-name>ReadOnlyAccessFilter</filter-name>

<filter-class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</filter-class>
<init-param>

<param-name>readOnlyContext</param-name>
<param-value>readonly</param-value>
<description>The top level JNDI context the filter will enforce

read-only access on. If specified only Context.lookup
operations

will be allowed on this context. Another other operations or
lookups on any other context will fail. Do not associate

this
filter with the JMXInvokerServlets if you want unrestricted
access. </description>

</init-param>

Chapter 4. Naming on JBoss

148

<init-param>
<param-name>invokerName</param-name>
<param-value>jboss:service=Naming</param-value>
<description>The JMX ObjectName of the naming service mbean

</description>
</init-param>

</filter>

<filter-mapping>
<filter-name>ReadOnlyAccessFilter</filter-name>
<url-pattern>/readonly/*</url-pattern>

</filter-mapping>

<!-- ... -->
<!-- A mapping for the JMXInvokerServlet that only allows invocations

of lookups under a read-only context. This is enforced by the
ReadOnlyAccessFilter
-->

<servlet-mapping>
<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>

</servlet-mapping>

The readOnlyContext parameter is set to readonly which means that when you access JBoss
through the ReadOnlyJNDIFactory, you will only be able to access data in the readonly

context. Here is a code fragment that illustrates the usage:

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"http://localhost:8080/invoker/ReadOnlyJNDIFactory");

Context ctx2 = new InitialContext(env);
Object data = ctx2.lookup("readonly/data");

Attempts to look up any objects outside of the readonly context will fail. Note that JBoss doesn't
ship with any data in the readonly context, so the readonly context won't be bound usable
unless you create it.

5. Additional Naming MBeans

In addition to the NamingService MBean that configures an embedded JBossNS server within
JBoss, there are several additional MBean services related to naming that ship with JBoss.
They are JndiBindingServiceMgr, NamingAlias, ExternalContext, and JNDIView.

5.1. JNDI Binding Manager

The JNDI binding manager service allows you to quickly bind objects into JNDI for use by
application code. The MBean class for the binding service is

Unsecured Context

149

org.jboss.naming.JNDIBindingServiceMgr. It has a single attribute, BindingsConfig, which
accepts an XML document that conforms to the jndi-binding-service_1_0.xsd schema. The
content of the BindingsConfig attribute is unmarshalled using the JBossXB framework. The
following is an MBean definition that shows the most basic form usage of the JNDI binding
manager service.

<mbean code="org.jboss.naming.JNDIBindingServiceMgr"
name="jboss.tests:name=example1">

<attribute name="BindingsConfig" serialDataType="jbxb">
<jndi:bindings xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jndi="urn:jboss:jndi-binding-service"
xs:schemaLocation="urn:jboss:jndi-binding-service \
resource:jndi-binding-service_1_0.xsd">

<jndi:binding name="bindexample/message">
<jndi:value trim="true">

Hello, JNDI!
</jndi:value>

</jndi:binding>
</jndi:bindings>

</attribute>
</mbean>

This binds the text string "Hello, JNDI!" under the JNDI name bindexample/message. An
application would look up the value just as it would for any other JNDI value. The trim attribute
specifies that leading and trailing whitespace should be ignored. The use of the attribute here is
purely for illustrative purposes as the default value is true.

InitialContext ctx = new InitialContext();
String text = (String) ctx.lookup("bindexample/message");

String values themselves are not that interesting. If a JavaBeans property editor is available, the
desired class name can be specified using the type attribute

<jndi:binding name="urls/jboss-home">
<jndi:value type="java.net.URL">http://www.jboss.org</jndi:value>

</jndi:binding>

The editor attribute can be used to specify a particular property editor to use.

<jndi:binding name="hosts/localhost">
<jndi:value editor="org.jboss.util.propertyeditor.InetAddressEditor">

127.0.0.1
</jndi:value>

</jndi:binding>

For more complicated structures, any JBossXB-ready schema may be used. The following
example shows how a java.util.Properties object would be mapped.

<jndi:binding name="maps/testProps">

Chapter 4. Naming on JBoss

150

<java:properties xmlns:java="urn:jboss:java-properties"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
xs:schemaLocation="urn:jboss:java-properties \
resource:java-properties_1_0.xsd">

<java:property>
<java:key>key1</java:key>
<java:value>value1</java:value>

</java:property>
<java:property>

<java:key>key2</java:key>
<java:value>value2</java:value>

</java:property>
</java:properties>

</jndi:binding>

For more information on JBossXB, see the JBossXB wiki page
[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB].

5.2. The org.jboss.naming.NamingAlias MBean

The NamingAlias MBean is a simple utility service that allows you to create an alias in the form
of a JNDI javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic
link in the UNIX file system. To an alias you add a configuration of the NamingAlias MBean to
the jboss-service.xml configuration file. The configurable attributes of the NamingAlias

service are as follows:

• FromName: The location where the LinkRef is bound under JNDI.

• ToName: The to name of the alias. This is the target name to which the LinkRef refers. The
name is a URL, or a name to be resolved relative to the InitialContext, or if the first
character of the name is a dot (.), the name is relative to the context in which the link is
bound.

The following example provides a mapping of the JNDI name QueueConnectionFactory to the
name ConnectionFactory.

<mbean code="org.jboss.naming.NamingAlias"
name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">

<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">QueueConnectionFactory</attribute>

</mbean>

5.3. org.jboss.naming.ExternalContext MBean

The ExternalContext MBean allows you to federate external JNDI contexts into the JBoss
server JNDI namespace. The term external refers to any naming service external to the
JBossNS naming service running inside of the JBoss server VM. You can incorporate LDAP

The org.jboss.naming.NamingAlias MBean

151

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB

servers, file systems, DNS servers, and so on, even if the JNDI provider root context is not
serializable. The federation can be made available to remote clients if the naming service
supports remote access.

To incorporate an external JNDI naming service, you have to add a configuration of the
ExternalContext MBean service to the jboss-service.xml configuration file. The
configurable attributes of the ExternalContext service are as follows:

• JndiName: The JNDI name under which the external context is to be bound.

• RemoteAccess: A boolean flag indicating if the external InitialContext should be bound
using a Serializable form that allows a remote client to create the external
InitialContext . When a remote client looks up the external context via the JBoss JNDI
InitialContext, they effectively create an instance of the external InitialContext using
the same env properties passed to the ExternalContext MBean. This will only work if the
client can do a new InitialContext(env) remotely. This requires that the
Context.PROVIDER_URL value of env is resolvable in the remote VM that is accessing the
context. This should work for the LDAP example. For the file system example this most likely
won't work unless the file system path refers to a common network path. If this property is not
given it defaults to false.

• CacheContext: The cacheContext flag. When set to true, the external Context is only
created when the MBean is started and then stored as an in memory object until the MBean
is stopped. If cacheContext is set to false, the external Context is created on each lookup
using the MBean properties and InitialContext class. When the uncached Context is looked
up by a client, the client should invoke close() on the Context to prevent resource leaks.

• InitialContext: The fully qualified class name of the InitialContext implementation to use.
Must be one of: javax.naming.InitialContext,
javax.naming.directory.InitialDirContext or
javax.naming.ldap.InitialLdapContext. In the case of the InitialLdapContext a null
Controls array is used. The default is javax.naming.InitialContex.

• Properties: The Properties attribute contains the JNDI properties for the external
InitialContext. The input should be the text equivalent to what would go into a
jndi.properties file.

• PropertiesURL: This set the jndi.properties information for the external InitialContext
from an external properties file. This is either a URL, string or a classpath resource name.
Examples are as follows:
• file:///config/myldap.properties
• http://config.mycompany.com/myldap.properties
• /conf/myldap.properties
• myldap.properties

The MBean definition below shows a binding to an external LDAP context into the JBoss JNDI
namespace under the name external/ldap/jboss.

Chapter 4. Naming on JBoss

152

<!-- Bind a remote LDAP server -->
<mbean code="org.jboss.naming.ExternalContext"
name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">

<attribute name="JndiName">external/ldap/jboss</attribute>
<attribute name="Properties">

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
java.naming.security.principal=cn=Directory Manager
java.naming.security.authentication=simple
java.naming.security.credentials=secret

</attribute>
<attribute name="InitialContext"> javax.naming.ldap.InitialLdapContext

</attribute>
<attribute name="RemoteAccess">true</attribute>

</mbean>

With this configuration, you can access the external LDAP context located at
ldap://ldaphost.jboss.org:389/o=jboss.org from within the JBoss VM using the following
code fragment:

InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because
the RemoteAccess property was set to true. If it were set to false, it would not work because the
remote client would receive a Reference object with an ObjectFactory that would not be able
to recreate the external InitialContext

<!-- Bind the /usr/local file system directory -->
<mbean code="org.jboss.naming.ExternalContext"
name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local">

<attribute name="JndiName">external/fs/usr/local</attribute>
<attribute name="Properties">

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:///usr/local

</attribute>
<attribute name="InitialContext">javax.naming.IntialContext</attribute>

</mbean>

This configuration describes binding a local file system directory /usr/local into the JBoss
JNDI namespace under the name external/fs/usr/local.

With this configuration, you can access the external file system context located at
file:///usr/local from within the JBoss VM using the following code fragment:

InitialContext iniCtx = new InitialContext();
Context ldapCtx = iniCtx.lookup("external/fs/usr/local");

org.jboss.naming.ExternalContext MBean

153

Note that the use the Sun JNDI service providers, which must be downloaded from
http://java.sun.com/products/jndi/serviceproviders.html. The provider JARs should be placed in
the server configuration lib directory.

5.4. The org.jboss.naming.JNDIView MBean

The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss
server using the JMX agent view interface. To view the JBoss JNDI namespace using the
JNDIView MBean, you connect to the JMX Agent View using the http interface. The default
settings put this at http://localhost:8080/jmx-console/. On this page you will see a
section that lists the registered MBeans sorted by domain. It should look something like that
shown in Figure 4.4, “The JMX Console view of the configured JBoss MBeans”.

Figure 4.4. The JMX Console view of the configured JBoss MBeans

Chapter 4. Naming on JBoss

154

http://java.sun.com/products/jndi/serviceproviders.html

Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the
JNDIView MBean operations. This view should look similar to that shown in Figure 4.5, “The
JMX Console view of the JNDIView MBean”.

Figure 4.5. The JMX Console view of the JNDIView MBean

The list operation dumps out the JBoss server JNDI namespace as an HTML page using a
simple text view. As an example, invoking the list operation produces the view shown in
Figure 4.6, “The JMX Console view of the JNDIView list operation output”.

The org.jboss.naming.JNDIView MBean

155

Figure 4.6. The JMX Console view of the JNDIView list operation output

6. J2EE and JNDI - The Application Component
Environment

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE
component code from the environment in which the code is deployed. Use of the application
component's environment allows the application component to be customized without the need
to access or change the application component's source code. The application component
environment is referred to as the ENC, the enterprise naming context. It is the responsibility of
the application component container to make an ENC available to the container components in
the form of JNDI Context. The ENC is utilized by the participants involved in the life cycle of a
J2EE component in the following ways.

Chapter 4. Naming on JBoss

156

• Application component business logic should be coded to access information from its ENC.
The component provider uses the standard deployment descriptor for the component to
specify the required ENC entries. The entries are declarations of the information and
resources the component requires at runtime.

• The container provides tools that allow a deployer of a component to map the ENC
references made by the component developer to the deployment environment entity that
satisfies the reference.

• The component deployer utilizes the container tools to ready a component for final
deployment.

• The component container uses the deployment package information to build the complete
component ENC at runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in
section 5 of the J2EE 1.4 specification. The J2EE specification is available at
http://java.sun.com/j2ee/download.html.

An application component instance locates the ENC using the JNDI API. An application
component instance creates a javax.naming.InitialContext object by using the no
argument constructor and then looks up the naming environment under the name
java:comp/env. The application component's environment entries are stored directly in the
ENC, or in its subcontexts. Example 4.4, “ENC access sample code” illustrates the prototypical
lines of code a component uses to access its ENC.

// Obtain the application component's ENC
Context iniCtx = new InitialContext();
Context compEnv = (Context) iniCtx.lookup("java:comp/env");

Example 4.4. ENC access sample code

An application component environment is a local environment that is accessible only by the
component when the application server container thread of control is interacting with the
application component. This means that an EJB Bean1 cannot access the ENC elements of EJB
Bean2, and vice versa. Similarly, Web application Web1 cannot access the ENC elements of
Web application Web2 or Bean1 or Bean2 for that matter. Also, arbitrary client code, whether it is
executing inside of the application server VM or externally cannot access a component's
java:comp JNDI context. The purpose of the ENC is to provide an isolated, read-only
namespace that the application component can rely on regardless of the type of environment in
which the component is deployed. The ENC must be isolated from other components because
each component defines its own ENC content. Components A and B, for example, may define
the same name to refer to different objects. For example, EJB Bean1 may define an
environment entry java:comp/env/red to refer to the hexadecimal value for the RGB color for
red, while Web application Web1 may bind the same name to the deployment environment

J2EE and JNDI - The Application

157

http://java.sun.com/j2ee/download.html

language locale representation of red.

There are three commonly used levels of naming scope in JBoss: names under java:comp,
names under java:, and any other name. As discussed, the java:comp context and its
subcontexts are only available to the application component associated with that particular
context. Subcontexts and object bindings directly under java: are only visible within the JBoss
server virtual machine and not to remote clients. Any other context or object binding is available
to remote clients, provided the context or object supports serialization. You'll see how the
isolation of these naming scopes is achieved in the Section 2, “The JBossNS Architecture”.

An example of where the restricting a binding to the java: context is useful would be a
javax.sql.DataSource connection factory that can only be used inside of the JBoss server
where the associated database pool resides. On the other hand, an EJB home interface would
be bound to a globally visible name that should accessible by remote client.

6.1. ENC Usage Conventions

JNDI is used as the API for externalizing a great deal of information from an application
component. The JNDI name that the application component uses to access the information is
declared in the standard ejb-jar.xml deployment descriptor for EJB components, and the
standard web.xml deployment descriptor for Web components. Several different types of
information may be stored in and retrieved from JNDI including:

• Environment entries as declared by the env-entry elements

• EJB references as declared by ejb-ref and ejb-local-ref elements.

• Resource manager connection factory references as declared by the resource-ref elements

• Resource environment references as declared by the resource-env-ref elements

Each type of deployment descriptor element has a JNDI usage convention with regard to the
name of the JNDI context under which the information is bound. Also, in addition to the standard
deploymentdescriptor element, there is a JBoss server specific deployment descriptor element
that maps the JNDI name as used by the application component to the deployment environment
JNDI name.

6.1.1. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are
similar to operating system environment variables like those found on UNIX or Windows.
Environment entries are a name-to-value binding that allows a component to externalize a value
and refer to the value using a name.

An environment entry is declared using an env-entry element in the standard deployment
descriptors. The env-entry element contains the following child elements:

Chapter 4. Naming on JBoss

158

• An optional description element that provides a description of the entry

• An env-entry-name element giving the name of the entry relative to java:comp/env

• An env-entry-type element giving the Java type of the entry value that must be one of:
• java.lang.Byte

• java.lang.Boolean

• java.lang.Character

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• An env-entry-value element giving the value of entry as a string

An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given in
Example 4.5, “An example ejb-jar.xml env-entry fragment”. There is no JBoss specific
deployment descriptor element because an env-entry is a complete name and value
specification. Example 4.6, “ENC env-entry access code fragment” shows a sample code
fragment for accessing the maxExemptions and taxRateenv-entry values declared in the
deployment descriptor.

<!-- ... -->
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<env-entry>

<description>The maximum number of tax exemptions allowed
</description>

<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>The tax rate </description>
<env-entry-name>taxRate</env-entry-name>
<env-entry-type>java.lang.Float</env-entry-type>
<env-entry-value>0.23</env-entry-value>

</env-entry>
</session>
<!-- ... -->

Example 4.5. An example ejb-jar.xml env-entry fragment

InitialContext iniCtx = new InitialContext();

Component Environment

159

Context envCtx = (Context) iniCtx.lookup("java:comp/env");
Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
Float taxRate = (Float) envCtx.lookup("taxRate");

Example 4.6. ENC env-entry access code fragment

6.1.2. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI
name under which an EJB home interface is bound is a deployment time decision, there needs
to be a way for a component developer to declare a reference to an EJB that will be linked by
the deployer. EJB references satisfy this requirement.

An EJB reference is a link in an application component naming environment that points to a
deployed EJB home interface. The name used by the application component is a logical link
that isolates the component from the actual name of the EJB home in the deployment
environment. The J2EE specification recommends that all references to enterprise beans be
organized in the java:comp/env/ejb context of the application component's environment.

An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each
ejb-ref element describes the interface requirements that the referencing application
component has for the referenced enterprise bean. The ejb-ref element contains the following
child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the
java:comp/env context. To place the reference under the recommended
java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or
Session.

• A home element that gives the fully qualified class name of the EJB home interface.

• A remote element that gives the fully qualified class name of the EJB remote interface.

• An optional ejb-link element that links the reference to another enterprise bean in the same
EJB JAR or in the same J2EE application unit. The ejb-link value is the ejb-name of the
referenced bean. If there are multiple enterprise beans with the same ejb-name, the value
uses the path name specifying the location of the ejb-jar file that contains the referenced
component. The path name is relative to the referencing ejb-jar file. The Application
Assembler appends the ejb-name of the referenced bean to the path name separated by #.
This allows multiple beans with the same name to be uniquely identified.

Chapter 4. Naming on JBoss

160

An EJB reference is scoped to the application component whose declaration contains the
ejb-ref element. This means that the EJB reference is not accessible from other application
components at runtime, and that other application components may define ejb-ref elements
with the same ejb-ref-name without causing a name conflict. Example 4.7, “An example
ejb-jar.xml ejb-ref descriptor fragment” provides an ejb-jar.xml fragment that illustrates the
use of the ejb-ref element. A code sample that illustrates accessing the ShoppingCartHome

reference declared in Example 4.7, “An example ejb-jar.xml ejb-ref descriptor fragment” is given
in Example 4.8, “ENC ejb-ref access code fragment”.

<!-- ... -->
<session>

<ejb-name>ShoppingCartBean</ejb-name>
<!-- ...-->

</session>

<session>
<ejb-name>ProductBeanUser</ejb-name>
<!--...-->
<ejb-ref>

<description>This is a reference to the store products entity
</description>

<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>org.jboss.store.ejb.ProductHome</home>
<remote> org.jboss.store.ejb.Product</remote>

</ejb-ref>

</session>

<session>
<ejb-ref>

<ejb-name>ShoppingCartUser</ejb-name>
<!--...-->
<ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.store.ejb.ShoppingCartHome</home>
<remote> org.jboss.store.ejb.ShoppingCart</remote>
<ejb-link>ShoppingCartBean</ejb-link>

</ejb-ref>
</session>

<entity>
<description>The Product entity bean </description>
<ejb-name>ProductBean</ejb-name>
<!--...-->

</entity>

<!--...-->

Example 4.7. An example ejb-jar.xml ejb-ref descriptor fragment

ENC Usage Conventions

161

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ShoppingCartHome home = (ShoppingCartHome)
ejbCtx.lookup("ShoppingCartHome");

Example 4.8. ENC ejb-ref access code fragment

6.1.3. EJB References with jboss.xml and jboss-web.xml

The JBoss specific jboss.xml EJB deployment descriptor affects EJB references in two ways.
First, the jndi-name child element of the session and entity elements allows the user to
specify the deployment JNDI name for the EJB home interface. In the absence of a jboss.xml

specification of the jndi-name for an EJB, the home interface is bound under the
ejb-jar.xmlejb-name value. For example, the session EJB with the ejb-name of
ShoppingCartBean in Example 4.7, “An example ejb-jar.xml ejb-ref descriptor fragment” would
have its home interface bound under the JNDI name ShoppingCartBean in the absence of a
jboss.xmljndi-name specification.

The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the
destination to which a component's ENC ejb-ref refers. The ejb-link element cannot be
used to refer to EJBs in another enterprise application. If your ejb-ref needs to access an
external EJB, you can specify the JNDI name of the deployed EJB home using the
jboss.xmlejb-ref/jndi-name element.

The jboss-web.xml descriptor is used only to set the destination to which a Web application
ENC ejb-ref refers. The content model for the JBoss ejb-ref is as follows:

• An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or
web.xml standard descriptor

• A jndi-name element that specifies the JNDI name of the EJB home interface in the
deployment environment

Example 4.9, “An example jboss.xml ejb-ref fragment” provides an example jboss.xml

descriptor fragment that illustrates the following usage points:

• The ProductBeanUserejb-ref link destination is set to the deployment name of
jboss/store/ProductHome

• The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome

<!-- ... -->
<session>

Chapter 4. Naming on JBoss

162

<ejb-name>ProductBeanUser</ejb-name>
<ejb-ref>

<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<jndi-name>jboss/store/ProductHome</jndi-name>

</ejb-ref>
</session>

<entity>
<ejb-name>ProductBean</ejb-name>
<jndi-name>jboss/store/ProductHome</jndi-name>
<!-- ... -->

</entity>
<!-- ... -->

Example 4.9. An example jboss.xml ejb-ref fragment

6.1.4. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces
use a call by reference semantic and therefore do not incur any RMI serialization overhead. An
EJB local reference is a link in an application component naming environment that points to a
deployed EJB local home interface. The name used by the application component is a logical
link that isolates the component from the actual name of the EJB local home in the deployment
environment. The J2EE specification recommends that all references to enterprise beans be
organized in the java:comp/env/ejb context of the application component's environment.

An EJB local reference is declared using an ejb-local-ref element in the deployment
descriptor. Each ejb-local-ref element describes the interface requirements that the
referencing application component has for the referenced enterprise bean. The ejb-local-ref

element contains the following child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the
java:comp/env context. To place the reference under the recommended
java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or
Session.

• A local-home element that gives the fully qualified class name of the EJB local home
interface.

• A local element that gives the fully qualified class name of the EJB local interface.

• An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or

ENC Usage Conventions

163

in the same J2EE application unit. The ejb-link value is the ejb-name of the referenced
bean. If there are multiple enterprise beans with the same ejb-name, the value uses the path
name specifying the location of the ejb-jar file that contains the referenced component. The
path name is relative to the referencing ejb-jar file. The Application Assembler appends the
ejb-name of the referenced bean to the path name separated by #. This allows multiple
beans with the same name to be uniquely identified. An ejb-link element must be specified
in JBoss to match the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the
ejb-local-ref element. This means that the EJB local reference is not accessible from other
application components at runtime, and that other application components may define
ejb-local-ref elements with the same ejb-ref-name without causing a name conflict.
Example 4.10, “An example ejb-jar.xml ejb-local-ref descriptor fragment” provides an
ejb-jar.xml fragment that illustrates the use of the ejb-local-ref element. A code sample
that illustrates accessing the ProbeLocalHome reference declared in Example 4.10, “An
example ejb-jar.xml ejb-local-ref descriptor fragment” is given in Example 4.11, “ENC
ejb-local-ref access code fragment”.

<!-- ... -->
<session>

<ejb-name>Probe</ejb-name>
<home>org.jboss.test.perf.interfaces.ProbeHome</home>
<remote>org.jboss.test.perf.interfaces.Probe</remote>

<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>
<session>

<ejb-name>PerfTestSession</ejb-name>
<home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
<remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
<ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>

<ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.test.perf.interfaces.SessionHome</home>
<remote>org.jboss.test.perf.interfaces.Session</remote>
<ejb-link>Probe</ejb-link>

</ejb-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>

<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-link>Probe</ejb-link>

</ejb-local-ref>
</session>
<!-- ... -->

Chapter 4. Naming on JBoss

164

Example 4.10. An example ejb-jar.xml ejb-local-ref descriptor fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup("ProbeLocalHome");

Example 4.11. ENC ejb-local-ref access code fragment

6.1.5. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to
resource factories using logical names called resource manager connection factory references.
Resource manager connection factory references are defined by the resource-ref elements in
the standard deployment descriptors. The Deployer binds the resource manager connection
factory references to the actual resource manager connection factories that exist in the target
operational environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-ref element describes a single resource manager connection factory
reference. The resource-ref element consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A res-ref-name element that specifies the name of the reference relative to the
java:comp/env context. The resource type based naming convention for which subcontext to
place the res-ref-name into is discussed in the next paragraph.

• A res-type element that specifies the fully qualified class name of the resource manager
connection factory.

• A res-auth element that indicates whether the application component code performs resource
signon programmatically, or whether the container signs on to the resource based on the
principal mapping information supplied by the Deployer. It must be one of Application or
Container.

• An optional res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references
be organized in the subcontexts of the application component's environment, using a different
subcontext for each resource manager type. The recommended resource manager type to
subcontext name is as follows:

ENC Usage Conventions

165

• JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.

• JMS connection factories should be declared in the java:comp/env/jms subcontext.

• JavaMail connection factories should be declared in the java:comp/env/mail subcontext.

• URL connection factories should be declared in the java:comp/env/url subcontext.

Example 4.12, “A web.xml resource-ref descriptor fragment” shows an example web.xml

descriptor fragment that illustrates the resource-ref element usage. Example 4.13, “ENC
resource-ref access sample code fragment” provides a code fragment that an application
component would use to access the DefaultMail resource declared by the resource-ref.

<web>
<!-- ... -->
<servlet>

<servlet-name>AServlet</servlet-name>
<!-- ... -->

</servlet>
<!-- ... -->
<!-- JDBC DataSources (java:comp/env/jdbc) -->
<resource-ref>

<description>The default DS</description>
<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JavaMail Connection Factories (java:comp/env/mail) -->
<resource-ref>

<description>Default Mail</description>
<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JMS Connection Factories (java:comp/env/jms) -->
<resource-ref>

<description>Default QueueFactory</description>
<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<web>

Example 4.12. A web.xml resource-ref descriptor fragment

Context initCtx = new InitialContext();
javax.mail.Session s = (javax.mail.Session)
initCtx.lookup("java:comp/env/mail/DefaultMail");

Chapter 4. Naming on JBoss

166

Example 4.13. ENC resource-ref access sample code fragment

6.1.6. Resource Manager Connection Factory References with
jboss.xml and jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web
application deployment descriptor is to provide the link from the logical name defined by the
res-ref-name element to the JNDI name of the resource factory as deployed in JBoss. This is
accomplished by providing a resource-ref element in the jboss.xml or jboss-web.xml
descriptor. The JBoss resource-ref element consists of the following child elements:

• A res-ref-name element that must match the res-ref-name of a corresponding
resource-ref element from the ejb-jar.xml or web.xml standard descriptors

• An optional res-type element that specifies the fully qualified class name of the resource
manager connection factory

• A jndi-name element that specifies the JNDI name of the resource factory as deployed in
JBoss

• A res-url element that specifies the URL string in the case of a resource-ref of type
java.net.URL

Example 4.14, “A sample jboss-web.xml resource-ref descriptor fragment” provides a sample
jboss-web.xml descriptor fragment that shows sample mappings of the resource-ref

elements given in Example 4.12, “A web.xml resource-ref descriptor fragment”.

<jboss-web>
<!-- ... -->
<resource-ref>

<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<jndi-name>java:/Mail</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<jndi-name>QueueConnectionFactory</jndi-name>

</resource-ref>
<!-- ... -->

</jboss-web>

ENC Usage Conventions

167

Example 4.14. A sample jboss-web.xml resource-ref descriptor fragment

6.1.7. Resource Environment References

Resource environment references are elements that refer to administered objects that are
associated with a resource (for example, JMS destinations) using logical names. Resource
environment references are defined by the resource-env-ref elements in the standard
deployment descriptors. The Deployer binds the resource environment references to the actual
administered objects location in the target operational environment using the jboss.xml and
jboss-web.xml descriptors.

Each resource-env-ref element describes the requirements that the referencing application
component has for the referenced administered object. The resource-env-ref element
consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A resource-env-ref-name element that specifies the name of the reference relative to the
java:comp/env context. Convention places the name in a subcontext that corresponds to the
associated resource factory type. For example, a JMS queue reference named MyQueue

should have a resource-env-ref-name of jms/MyQueue.

• A resource-env-ref-type element that specifies the fully qualified class name of the
referenced object. For example, in the case of a JMS queue, the value would be
javax.jms.Queue.

Example 4.15, “An example ejb-jar.xml resource-env-ref fragment” provides an example
resource-ref-env element declaration by a session bean. Example 4.16, “ENC
resource-env-ref access code fragment” gives a code fragment that illustrates how to look up
the StockInfo queue declared by the resource-env-ref.

<session>
<ejb-name>MyBean</ejb-name>
<!-- ... -->
<resource-env-ref>

<description>This is a reference to a JMS queue used in the
processing of Stock info

</description>
<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
<!-- ... -->

</session>

Example 4.15. An example ejb-jar.xml resource-env-ref fragment

Chapter 4. Naming on JBoss

168

InitialContext iniCtx = new InitialContext();
javax.jms.Queue q = (javax.jms.Queue)
envCtx.lookup("java:comp/env/jms/StockInfo");

Example 4.16. ENC resource-env-ref access code fragment

6.1.8. Resource Environment References and jboss.xml,
jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web
application deployment descriptor is to provide the link from the logical name defined by the
resource-env-ref-name element to the JNDI name of the administered object deployed in
JBoss. This is accomplished by providing a resource-env-ref element in the jboss.xml or
jboss-web.xml descriptor. The JBoss resource-env-ref element consists of the following
child elements:

• A resource-env-ref-name element that must match the resource-env-ref-name of a
corresponding resource-env-ref element from the ejb-jar.xml or web.xml standard
descriptors

• A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss

Example 4.17, “A sample jboss.xml resource-env-ref descriptor fragment” provides a sample
jboss.xml descriptor fragment that shows a sample mapping for the
StockInforesource-env-ref.

<session>
<ejb-name>MyBean</ejb-name>
<!-- ... -->
<resource-env-ref>

<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<jndi-name>queue/StockInfoQueue</jndi-name>

</resource-env-ref>
<!-- ... -->

</session>

Example 4.17. A sample jboss.xml resource-env-ref descriptor fragment

ENC Usage Conventions

169

170

Connectors on JBoss
The JCA Configuration and Architecture

This chapter discusses the JBoss server implementation of the J2EE Connector Architecture
(JCA). JCA is a resource manager integration API whose goal is to standardize access to
non-relational resources in the same way the JDBC API standardized access to relational data.
The purpose of this chapter is to introduce the utility of the JCA APIs and then describe the
architecture of JCA in JBoss

1. JCA Overview

J2EE 1.4 contains a connector architecture (JCA) specification that allows for the integration of
transacted and secure resource adaptors into a J2EE application server environment. The JCA
specification describes the notion of such resource managers as Enterprise Information
Systems (EIS). Examples of EIS systems include enterprise resource planning packages,
mainframe transaction processing, non-Java legacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and
scalability are requirements in enterprise software systems. However, the JCA is applicable to
any resource that needs to integrate into JBoss in a secure, scalable and transacted manner. In
this introduction we will focus on resource adapters as a generic notion rather than something
specific to the EIS environment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating
the transaction, security and connection management facilities of an application server with
those of a resource manager. The SPI defines the system level contract between the resource
adaptor and the application server.

The connector architecture also defines a Common Client Interface (CCI) for accessing
resources. The CCI is targeted at EIS development tools and other sophisticated users of
integrated resources. The CCI provides a way to minimize the EIS specific code required by
such tools. Typically J2EE developers will access a resource using such a tool, or a resource
specific interface rather than using CCI directly. The reason is that the CCI is not a type specific
API. To be used effectively it must be used in conjunction with metadata that describes how to
map from the generic CCI API to the resource manager specific data types used internally by
the resource manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard
adaptor for its product. A resource adaptor is a system-level software driver that is used by a
Java application to connect to resource. The resource adaptor plugs into an application server
and provides connectivity between the resource manager, the application server, and the
enterprise application. A resource vendor need only implement a JCA compliant adaptor once to
allow use of the resource manager in any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture
and is then assured of seamless connectivity to multiple resource managers. Likewise, a

Chapter 5.

171

resource manager vendor provides one standard resource adaptor and it has the capability to
plug in to any application server that supports the connector architecture.

Figure 5.1. The relationship between a J2EE application server and a JCA
resource adaptor

Figure 5.1, “The relationship between a J2EE application server and a JCA resource adaptor”
illustrates that the application server is extended to provide support for the JCA SPI to allow a
resource adaptor to integrate with the server connection pooling, transaction management and
security management facilities. This integration API defines a three-part system contract.

• Connection management: a contract that allows the application server to pool resource
connections. The purpose of the pool management is to allow for scalability. Resource
connections are typically expense objects to create and pooling them allows for more
effective reuse and management.

• Transaction Management: a contract that allows the application server transaction manager
to manage transactions that engage resource managers.

• Security Management: a contract that enables secured access to resource managers.

The resource adaptor implements the resource manager side of the system contract. This
entails using the application server connection pooling, providing transaction resource
information and using the security integration information. The resource adaptor also exposes

Chapter 5. Connectors on JBoss

172

the resource manager to the application server components. This can be done using the CCI
and/or a resource adaptor specific API.

The application component integrates into the application server using a standard J2EE
container to component contract. For an EJB component this contract is defined by the EJB
specification. The application component interacts with the resource adaptor in the same way as
it would with any other standard resource factory, for example, a javax.sql.DataSource JDBC
resource factory. The only difference with a JCA resource adaptor is that the client has the
option of using the resource adaptor independent CCI API if the resource adaptor supports this.

Figure 5.2, “The JCA 1.0 specification class diagram for the connection management
architecture.” (from the JCA 1.5 specification) illustrates the relationship between the JCA
architecture participants in terms of how they relate to the JCA SPI, CCI and JTA packages.

Figure 5.2. The JCA 1.0 specification class diagram for the connection
management architecture.

The JBossCX architecture provides the implementation of the application server specific
classes. Figure 5.2, “The JCA 1.0 specification class diagram for the connection management
architecture.” shows that this comes down to the implementation of the
javax.resource.spi.ConnectionManager and

JCA Overview

173

javax.resource.spi.ConnectionEventListener interfaces. The key aspects of this
implementation are discussed in the following section on the JBossCX architecture.

2. An Overview of the JBossCX Architecture

The JBossCX framework provides the application server architecture extension required for the
use of JCA resource adaptors. This is primarily a connection pooling and management
extension along with a number of MBeans for loading resource adaptors into the JBoss server.

There are three coupled MBeans that make up a RAR deployment. These are the
org.jboss.resource.deployment.RARDeployment,
org.jboss.resource.connectionmanager.RARDeployment, and
org.jboss.resource.connectionmanager.BaseConnectionManager2. The
org.jboss.resource.deployment.RARDeployment is simply an encapsulation of the metadata
of a RAR META-INF/ra.xml descriptor. It exposes this information as a DynamicMBean simply
to make it available to the org.jboss.resource.connectionmanager.RARDeployment MBean.

The RARDeployer service handles the deployment of archives files containing resource
adaptors (RARs). It creates the org.jboss.resource.deployment.RARDeployment MBeans
when a RAR file is deployed. Deploying the RAR file is the first step in making the resource
adaptor available to application components. For each deployed RAR, one or more connection
factories must be configured and bound into JNDI. This task performed using a JBoss service
descriptor that sets up a
org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean implementation
with a org.jboss.resource.connectionmgr.RARDeployment dependent.

2.1. BaseConnectionManager2 MBean

The org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean is a base
class for the various types of connection managers required by the JCA spec. Subclasses
include NoTxConnectionManager, LocalTxConnectionManager and XATxConnectionManager.
These correspond to resource adaptors that support no transactions, local transaction and XA
transaction respectively. You choose which subclass to use based on the type of transaction
semantics you want, provided the JCA resource adaptor supports the corresponding transaction
capability.

The common attributes supported by the BaseConnectionManager2 MBean are:

• ManagedConnectionPool: This specifies the ObjectName of the MBean representing the
pool for this connection manager. The MBean must have an ManagedConnectionPool

attribute that is an implementation of the
org.jboss.resource.connectionmanager.ManagedConnectionPool interface. Normally it
will be an embedded MBean in a depends tag rather than an ObjectName reference to an
existing MBean. The default MBean for use is the
org.jboss.resource.connectionmanager.JBossManagedConnectionPool. Its configurable
attributes are discussed below.

Chapter 5. Connectors on JBoss

174

• CachedConnectionManager: This specifies the ObjectName of the
CachedConnectionManager MBean implementation used by the connection manager.
Normally this is specified using a depends tag with the ObjectName of the unique
CachedConnectionManager for the server. The name
jboss.jca:service=CachedConnectionManager is the standard setting to use.

• SecurityDomainJndiName: This specifies the JNDI name of the security domain to use for
authentication and authorization of resource connections. This is typically of the form
java:/jaas/<domain> where the <domain> value is the name of an entry in the
conf/login-config.xml JAAS login module configuration file. This defines which JAAS
login modules execute to perform authentication.

• JaasSecurityManagerService: This is the ObjectName of the security manager service. This
should be set to the security manager MBean name as defined in the
conf/jboss-service.xml descriptor, and currently this is
jboss.security:service=JaasSecurityManager. This attribute will likely be removed in the
future.

2.2. RARDeployment MBean

The org.jboss.resource.connectionmanager.RARDeployment MBean manages
configuration and instantiation ManagedConnectionFactory instance. It does this using the
resource adaptor metadata settings from the RAR META-INF/ra.xml descriptor along with the
RARDeployment attributes. The configurable attributes are:

• OldRarDeployment: This is the ObjectName of the org.jboss.resource.RarDeployment

MBean that contains the resource adaptor metadata. The form of this name is
jboss.jca:service=RARDeployment,name=<ra-display-name> where the
<ra-display-name> is the ra.xml descriptor display-name attribute value. The
RARDeployer creates this when it deploys a RAR file. This attribute will likely be removed in
the future.

• ManagedConnectionFactoryProperties: This is a collection of (name, type, value) triples
that define attributes of the ManagedConnectionFactory instance. Therefore, the names of
the attributes depend on the resource adaptor ManagedConnectionFactory instance. The
following example shows the structure of the content of this attribute.

<properties>
<config-property>

<config-property-name>Attr0Name</config-property-name>
<config-property-type>Attr0Type</config-property-type>
<config-property-value>Attr0Value</config-property-value>

</config-property>
<config-property>

<config-property-name>Attr1Name</config-property-name>
<config-property-type>Attr2Type</config-property-type>
<config-property-value>Attr2Value</config-property-value>

</config-property>

RARDeployment MBean

175

...
</properties>

AttrXName is the Xth attribute name, AttrXType is the fully qualified Java type of the
attribute, and AttrXValue is the string representation of the value. The conversion from string
to AttrXType is done using the java.beans.PropertyEditor class for the AttrXType.

• JndiName: This is the JNDI name under which the resource adaptor will be made available.
Clients of the resource adaptor use this name to obtain either the
javax.resource.cci.ConnectionFactory or resource adaptor specific connection factory.
The full JNDI name will be java:/<JndiName> meaning that the JndiName attribute value will
be prefixed with java:/. This prevents use of the connection factory outside of the JBoss
server VM. In the future this restriction may be configurable.

2.3. JBossManagedConnectionPool MBean

The org.jboss.resource.connectionmanager.JBossManagedConnectionPool MBean is a
connection pooling MBean. It is typically used as the embedded MBean value of the
BaseConnectionManager2ManagedConnectionPool attribute. When you setup a connection
manager MBean you typically embed the pool configuration in the connection manager
descriptor. The configurable attributes of the JBossManagedConnectionPool are:

• ManagedConnectionFactoryName: This specifies the ObjectName of the MBean that
creates javax.resource.spi.ManagedConnectionFactory instances. Normally this is
configured as an embedded MBean in a depends element rather than a separate MBean
reference using the RARDeployment MBean. The MBean must provide an appropriate
startManagedConnectionFactory operation.

• MinSize: This attribute indicates the minimum number of connections this pool should hold.
These are not created until a Subject is known from a request for a connection. MinSize
connections will be created for each sub-pool.

• MaxSize: This attribute indicates the maximum number of connections for a pool. No more
than MaxSize connections will be created in each sub-pool.

• BlockingTimeoutMillis: This attribute indicates the maximum time to block while waiting for
a connection before throwing an exception. Note that this blocks only while waiting for a
permit for a connection, and will never throw an exception if creating a new connection takes
an inordinately long time.

• IdleTimeoutMinutes: This attribute indicates the maximum time a connection may be idle
before being closed. The actual maximum time depends also on the idle remover thread scan
time, which is 1/2 the smallest idle timeout of any pool.

• NoTxSeparatePools: Setting this to true doubles the available pools. One pool is for

Chapter 5. Connectors on JBoss

176

connections used outside a transaction the other inside a transaction. The actual pools are
lazily constructed on first use. This is only relevant when setting the pool parameters
associated with the LocalTxConnectionManager and XATxConnectionManager. Its use case
is for Oracle (and possibly other vendors) XA implementations that don't like using an XA
connection with and without a JTA transaction.

• Criteria: This attribute indicates if the JAAS javax.security.auth.Subject from security
domain associated with the connection, or app supplied parameters (such as from
getConnection(user, pw)) are used to distinguish connections in the pool. The allowed
values are:
• ByContainer: use Subject

• ByApplication: use application supplied parameters only
• ByContainerAndApplication: use both
• ByNothing: all connections are equivalent, usually if adapter supports reauthentication

2.4. CachedConnectionManager MBean

The org.jboss.resource.connectionmanager.CachedConnectionManager MBean manages
associations between meta-aware objects (those accessed through interceptor chains) and
connection handles, as well as between user transactions and connection handles. Normally
there should only be one such MBean, and this is configured in the core jboss-service.xml

descriptor. It is used by CachedConnectionInterceptor, JTA UserTransaction

implementation and all BaseConnectionManager2 instances. The configurable attributes of the
CachedConnectionManager MBean are:

• SpecCompliant: Enable this boolean attribute for spec compliant non-shareable connections
reconnect processing. This allows a connection to be opened in one call and used in another.
Note that specifying this behavior disables connection close processing.

• Debug: Enable this boolean property for connection close processing. At the completion of an
EJB method invocation, unclosed connections are registered with a transaction
synchronization. If the transaction ends without the connection being closed, an error is
reported and JBoss closes the connection. This is a development feature that should be
turned off in production for optimal performance.

• TransactionManagerServiceName: This attribute specifies the JMX ObjectName of the JTA
transaction manager service. Connection close processing is now synchronized with the
transaction manager and this attribute specifies the transaction manager to use.

2.5. A Sample Skeleton JCA Resource Adaptor

To conclude our discussion of the JBoss JCA framework we will create and deploy a single
non-transacted resource adaptor that simply provides a skeleton implementation that stubs out
the required interfaces and logs all method calls. We will not discuss the details of the
requirements of a resource adaptor provider as these are discussed in detail in the JCA
specification. The purpose of the adaptor is to demonstrate the steps required to create and

CachedConnectionManager MBean

177

deploy a RAR in JBoss, and to see how JBoss interacts with the adaptor.

The adaptor we will create could be used as the starting point for a non-transacted file system
adaptor. The source to the example adaptor can be found in the
src/main/org/jboss/book/jca/ex1 directory of the book examples. A class diagram that
shows the mapping from the required javax.resource.spi interfaces to the resource adaptor
implementation is given in Figure 5.3, “The file system RAR class diagram”.

Figure 5.3. The file system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against
an EJB that uses the resource adaptor to demonstrate the basic steps in a complete context.
We'll then take a look at the JBoss server log to see how the JBoss JCA framework interacts
with the resource adaptor to help you better understand the components in the JCA system
level contract.

To build the example and deploy the RAR to the JBoss server deploy/lib directory, execute
the following Ant command in the book examples directory.

[examples]$ ant -Dchap=jca build-chap

The deployed files include a jca-ex1.sar and a notxfs-service.xml service descriptor. The
example resource adaptor deployment descriptor is shown in Example 5.1, “The
nontransactional file system resource adaptor deployment descriptor.”.

<?xml version="1.0" encoding="UTF-8"?>
<connector
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

Chapter 5. Connectors on JBoss

178

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"
version="1.5">

<display-name>File System Adapter</display-name>
<vendor-name>JBoss</vendor-name>
<eis-type>FileSystem</eis-type>
<resourceadapter-version>1.0</resourceadapter-version>
<license>

<description>LGPL</description>
<license-required>false</license-required>

</license>
<resourceadapter>

<resourceadapter-class>
org.jboss.resource.deployment.DummyResourceAdapter

</resourceadapter-class>
<outbound-resourceadapter>

<connection-definition>
<managedconnectionfactory-class>

org.jboss.book.jca.ex1.ra.FSManagedConnectionFactory
</managedconnectionfactory-class>

<config-property>
<config-property-name>FileSystemRootDir</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>/tmp/db/fs_store</config-property-value>

</config-property>
<config-property>

<config-property-name>UserName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

<config-property-value/>
</config-property>
<config-property>

<config-property-name>Password</config-property-name>
<config-property-type>java.lang.String</config-property-type>

<config-property-value/>
</config-property>
<connectionfactory-interface>

org.jboss.book.jca.ex1.ra.DirContextFactory </connectionfactory-interface>
<connectionfactory-impl-class>
org.jboss.book.jca.ex1.ra.DirContextFactoryImpl
</connectionfactory-impl-class> <connection-interface>
javax.naming.directory.DirContext </connection-interface>
<connection-impl-class> org.jboss.book.jca.ex1.ra.FSDirContext
</connection-impl-class>

</connection-definition>
<transaction-support>NoTransaction</transaction-support>
<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>

javax.resource.spi.security.PasswordCredential
</credential-interface>

</authentication-mechanism>
<reauthentication-support>true</reauthentication-support>

</outbound-resourceadapter>
<security-permission>

<description> Read/Write access is required to the contents of
the

FileSystemRootDir </description>

A Sample Skeleton JCA Resource Adaptor

179

<security-permission-spec> permission java.io.FilePermission
"/tmp/db/fs_store/*", "read,write";

</security-permission-spec>
</security-permission>

</resourceadapter>
</connector>

Example 5.1. The nontransactional file system resource adaptor
deployment descriptor.

The key items in the resource adaptor deployment descriptor are highlighted in bold. These
define the classes of the resource adaptor, and the elements are:

• managedconnectionfactory-class: The implementation of the ManagedConnectionFactory

interface, org.jboss.book.jca.ex1.ra.FSManagedConnectionFactory

• connectionfactory-interface: This is the interface that clients will obtain when they lookup
the connection factory instance from JNDI, here a proprietary resource adaptor value,
org.jboss.book.jca.ex1.ra.DirContextFactory. This value will be needed when we
create the JBoss ds.xml to use the resource.

• connectionfactory-impl-class: This is the class that provides the implementation of the
connectionfactory-interface, org.jboss.book.jca.ex1.ra.DirContextFactoryImpl.

• connection-interface: This is the interface for the connections returned by the resource
adaptor connection factory, here the JNDI javax.naming.directory.DirContext interface.

• connection-impl-class: This is he class that provides the connection-interface

implementation, org.jboss.book.jca.ex1.ra.FSDirContext.

• transaction-support: The level of transaction support, here defined as NoTransaction,
meaning the file system resource adaptor does not do transactional work.

The RAR classes and deployment descriptor only define a resource adaptor. To use the
resource adaptor it must be integrated into the JBoss application server using a ds.xml

descriptor file. An example of this for the file system adaptor is shown in Example 5.2, “The
notxfs-ds.xml resource adaptor MBeans service descriptor.”.

<!DOCTYPE connection-factories PUBLIC
"-//JBoss//DTD JBOSS JCA Config 1.5//EN"
"http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<!--
The non-transaction FileSystem resource adaptor service configuration

-->
<connection-factories>

<no-tx-connection-factory>

Chapter 5. Connectors on JBoss

180

<jndi-name>NoTransFS</jndi-name>
<rar-name>jca-ex1.rar</rar-name>
<connection-definition>

org.jboss.book.jca.ex1.ra.DirContextFactory
</connection-definition>
<config-property name="FileSystemRootDir"

type="java.lang.String">/tmp/db/fs_store</config-property>
</no-tx-connection-factory>

</connection-factories>

Example 5.2. The notxfs-ds.xml resource adaptor MBeans service
descriptor.

The main attributes are:

• jndi-name: This specifies where the connection factory will be bound into JNDI. For this
deployment that binding will be java:/NoTransFS.

• rar-name: This is the name of the RAR file that contains the definition for the resource we
want to provide. For nested RAR files, the name would look like
myapplication.ear#my.rar. In this example, it is simply jca-ex1.rar.

• connection-definition: This is the connection factory interface class. It should match the
connectionfactory-interface in the ra.xml file. Here our connection factory interface is
org.jboss.book.jca.ex1.ra.DirContextFactory.

• config-property: This can be used to provide non-default settings to the resource adaptor
connection factory. Here the FileSystemRootDir is being set to /tmp/db/fs_store. This
overrides the default value in the ra.xml file.

To deploy the RAR and connection manager configuration to the JBoss server, run the
following:

[examples]$ ant -Dchap=jca config

The server console will display some logging output indicating that the resource adaptor has
been deployed.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have
created a trivial stateless session bean that has a single method called echo. Inside of the echo

method the EJB accesses the resource adaptor connection factory, creates a connection, and
then immediately closes the connection. The echo method code is shown below.

public String echo(String arg)

A Sample Skeleton JCA Resource Adaptor

181

{
log.info("echo, arg="+arg);
try {

InitialContext ctx = new InitialContext();
Object ref =

ctx.lookup("java:comp/env/ra/DirContextFactory");
log.info("echo, ra/DirContextFactory=" + ref);

DirContextFactory dcf = (DirContextFactory) ref;
log.info("echo, found dcf=" + dcf);

DirContext dc = dcf.getConnection();
log.info("echo, lookup dc=" + dc);

dc.close();
} catch(NamingException e) {

log.error("Failed during JNDI access", e);
}
return arg;

}

Example 5.3. The stateless session bean echo method code that shows
the access of the resource adaptor connection factory.

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the
resource adaptor specific API based on the proprietary DirContextFactory interface that
returns a JNDI DirContext object as the connection object. The example EJB is simply
exercising the system contract layer by looking up the resource adaptor connection factory,
creating a connection to the resource and closing the connection. The EJB does not actually do
anything with the connection, as this would only exercise the resource adaptor implementation
since this is a non-transactional resource.

Run the test client which calls the EchoBean.echo method by running Ant as follows from the
examples directory:

[examples]$ ant -Dchap=jca -Dex=1 run-example

You'll see some output from the bean in the system console, but much more detailed logging
output can be found in the server/production/log/server.log file. Don't worry if you see
exceptions. They are just stack traces to highlight the call path into parts of the adaptor. To help
understand the interaction between the adaptor and the JBoss JCA layer, we'll summarize the
events seen in the log using a sequence diagram. Figure 5.4, “A sequence diagram illustrating
the key interactions between the JBossCX framework and the example resource adaptor that
result when the EchoBean accesses the resource adaptor connection factory.” is a sequence
diagram that summarizes the events that occur when the EchoBean accesses the resource
adaptor connection factory from JNDI and creates a connection.

Chapter 5. Connectors on JBoss

182

Figure 5.4. A sequence diagram illustrating the key interactions between
the JBossCX framework and the example resource adaptor that result
when the EchoBean accesses the resource adaptor connection factory.

The starting point is the client's invocation of the EchoBean.echo method. For the sake of
conciseness of the diagram, the client is shown directly invoking the EchoBean.echo method
when in reality the JBoss EJB container handles the invocation. There are three distinct
interactions between the EchoBean and the resource adaptor; the lookup of the connection
factory, the creation of a connection, and the close of the connection.

The lookup of the resource adaptor connection factory is illustrated by the 1.1 sequences of
events. The events are:

• 1, the echo method invokes the getConnection method on the resource adaptor connection
factory obtained from the JNDI lookup on the java:comp/env/ra/DirContextFactory name
which is a link to the java:/NoTransFS location.

• 1.1, the DirContextFactoryImpl class asks its associated ConnectionManager to allocate a
connection. It passes in the ManagedConnectionFactory and FSRequestInfo that were
associated with the DirContextFactoryImpl during its construction.

• 1.1.1, the ConnectionManager invokes its getManagedConnection method with the current
Subject and FSRequestInfo.

• 1.1.1.1, the ConnectionManager asks its object pool for a connection object. The
JBossManagedConnectionPool$BasePool is get the key for the connection and then asks the
matching InternalPool for a connection.

A Sample Skeleton JCA Resource Adaptor

183

• 1.1.1.1.1, Since no connections have been created the pool must create a new connection.
This is done by requesting a new managed connection from the
ManagedConnectionFactory. The Subject associated with the pool as well as the
FSRequestInfo data are passed as arguments to the createManagedConnection method
invocation.

• 1.1.1.1.1.1, the ConnectionFactory creates a new FSManagedConnection instance and
passes in the Subject and FSRequestInfo data.

• 1.1.1.2, a javax.resource.spi.ConnectionListener instance is created. The type of
listener created is based on the type of ConnectionManager. In this case it is an
org.jboss.resource.connectionmgr.BaseConnectionManager2$NoTransactionListener

instance.

• 1.1.1.2.1, the listener registers as a javax.resource.spi.ConnectionEventListener with
the ManagedConnection instance created in 1.2.1.1.

• 1.1.2, the ManagedConnection is asked for the underlying resource manager connection. The
Subject and FSRequestInfo data are passed as arguments to the getConnection method
invocation.

• The resulting connection object is cast to a javax.naming.directory.DirContext instance
since this is the public interface defined by the resource adaptor.

• After the EchoBean has obtained the DirContext for the resource adaptor, it simply closes
the connection to indicate its interaction with the resource manager is complete.

This concludes the resource adaptor example. Our investigation into the interaction between the
JBossCX layer and a trivial resource adaptor should give you sufficient understanding of the
steps required to configure any resource adaptor. The example adaptor can also serve as a
starting point for the creation of your own custom resource adaptors if you need to integrate
non-JDBC resources into the JBoss server environment.

3. Configuring JDBC DataSources

Rather than configuring the connection manager factory related MBeans discussed in the
previous section via a mbean services deployment descriptor, JBoss provides a simplified
datasource centric descriptor. This is transformed into the standard jboss-service.xml

MBean services deployment descriptor using a XSL transform applied by the
org.jboss.deployment.XSLSubDeployer included in the jboss-jca.sar deployment. The
simplified configuration descriptor is deployed the same as other deployable components. The
descriptor must be named using a *-ds.xml pattern in order to be recognized by the
XSLSubDeployer.

The schema for the top-level datasource elements of the *-ds.xml configuration deployment
file is shown in Figure 5.5, “The simplified JCA DataSource configuration descriptor top-level
schema elements”.

Chapter 5. Connectors on JBoss

184

Figure 5.5. The simplified JCA DataSource configuration descriptor
top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child
elements of the datasources root are:

• mbean: Any number mbean elements may be specified to define MBean services that should
be included in the jboss-service.xml descriptor that results from the transformation. This
may be used to configure services used by the datasources.

• no-tx-datasource: This element is used to specify the
(org.jboss.resource.connectionmanager) NoTxConnectionManager service configuration.
NoTxConnectionManager is a JCA connection manager with no transaction support. The
no-tx-datasource child element schema is given in Figure 5.6, “The non-transactional
DataSource configuration schema”.

• local-tx-datasource: This element is used to specify the
(org.jboss.resource.connectionmanager) LocalTxConnectionManager service
configuration. LocalTxConnectionManager implements a ConnectionEventListener that
implements XAResource to manage transactions through the transaction manager. To ensure
that all work in a local transaction occurs over the same ManagedConnection, it includes a xid
to ManagedConnection map. When a Connection is requested or a transaction started with a
connection handle in use, it checks to see if a ManagedConnection already exists enrolled in
the global transaction and uses it if found. Otherwise, a free ManagedConnection has its
LocalTransaction started and is used. The local-tx-datasource child element schema is
given in Figure 5.7, “The non-XA DataSource configuration schema”

• xa-datasource: This element is used to specify the

Configuring JDBC DataSources

185

org.jboss.resource.connectionmanager) XATxConnectionManager service configuration.
XATxConnectionManager implements a ConnectionEventListener that obtains the
XAResource to manage transactions through the transaction manager from the adaptor
ManagedConnection. To ensure that all work in a local transaction occurs over the same
ManagedConnection, it includes a xid to ManagedConnection map. When a Connection is
requested or a transaction started with a connection handle in use, it checks to see if a
ManagedConnection already exists enrolled in the global transaction and uses it if found.
Otherwise, a free ManagedConnection has its LocalTransaction started and is used. The
xa-datasource child element schema is given in Figure 5.8, “The XA DataSource
configuration schema”.

• ha-local-tx-datasource: This element is identical to local-tx-datasource, with the addition
of the experimental datasource failover capability allowing JBoss to failover to an alternate
database in the event of a database failure.

• ha-xa-datasource: This element is identical to xa-datasource, with the addition of the
experimental datasource failover capability allowing JBoss to failover to an alternate database
in the event of a database failure.

Chapter 5. Connectors on JBoss

186

Figure 5.6. The non-transactional DataSource configuration schema

Configuring JDBC DataSources

187

Figure 5.7. The non-XA DataSource configuration schema

Chapter 5. Connectors on JBoss

188

Figure 5.8. The XA DataSource configuration schema

Configuring JDBC DataSources

189

Figure 5.9. The schema for the experimental non-XA DataSource with
failover

Chapter 5. Connectors on JBoss

190

Figure 5.10. The schema for the experimental XA Datasource with failover

Elements that are common to all datasources include:

• jndi-name: The JNDI name under which the DataSource wrapper will be bound. Note that

Configuring JDBC DataSources

191

this name is relative to the java:/ context, unless use-java-context is set to false.
DataSource wrappers are not usable outside of the server VM, so they are normally bound
under the java:/, which isn't shared outside the local VM.

• use-java-context: If this is set to false the the datasource will be bound in the global JNDI
context rather than the java: context.

• user-name: This element specifies the default username used when creating a new
connection. The actual username may be overridden by the application code getConnection

parameters or the connection creation context JAAS Subject.

• password: This element specifies the default password used when creating a new
connection. The actual password may be overridden by the application code getConnection

parameters or the connection creation context JAAS Subject.

• application-managed-security: Specifying this element indicates that connections in the
pool should be distinguished by application code supplied parameters, such as from
getConnection(user, pw).

• security-domain: Specifying this element indicates that connections in the pool should be
distinguished by JAAS Subject based information. The content of the security-domain is the
name of the JAAS security manager that will handle authentication. This name correlates to
the JAAS login-config.xml descriptor application-policy/name attribute.

• security-domain-and-application: Specifying this element indicates that connections in the
pool should be distinguished both by application code supplied parameters and JAAS Subject
based information. The content of the security-domain is the name of the JAAS security
manager that will handle authentication. This name correlates to the JAAS
login-config.xml descriptor application-policy/name attribute.

• min-pool-size: This element specifies the minimum number of connections a pool should
hold. These pool instances are not created until an initial request for a connection is made.
This default to 0.

• max-pool-size: This element specifies the maximum number of connections for a pool. No
more than the max-pool-size number of connections will be created in a pool. This defaults
to 20.

• blocking-timeout-millis: This element specifies the maximum time in milliseconds to block
while waiting for a connection before throwing an exception. Note that this blocks only while
waiting for a permit for a connection, and will never throw an exception if creating a new
connection takes an inordinately long time. The default is 5000.

• idle-timeout-minutes: This element specifies the maximum time in minutes a connection
may be idle before being closed. The actual maximum time depends also on the
IdleRemover scan time, which is 1/2 the smallest idle-timeout-minutes of any pool.

• new-connection-sql: This is a SQL statement that should be executed when a new
connection is created. This can be used to configure a connection with database specific

Chapter 5. Connectors on JBoss

192

settings not configurable via connection properties.

• check-valid-connection-sql: This is a SQL statement that should be run on a connection
before it is returned from the pool to test its validity to test for stale pool connections. An
example statement could be: select count(*) from x.

• exception-sorter-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ExceptionSorter interface to examine database
exceptions to determine whether or not the exception indicates a connection error. Current
implementations include:
• org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.InformixExceptionSorte

• valid-connection-checker-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ValidConnectionChecker interface to provide a
SQLException isValidConnection(Connection e) method that is called with a connection
that is to be returned from the pool to test its validity. This overrides the
check-valid-connection-sql when present. The only provided implementation is
org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker.

• track-statements: This boolean element specifies whether to check for unclosed statements
when a connection is returned to the pool. If true, a warning message is issued for each
unclosed statement. If the log4j category
org.jboss.resource.adapter.jdbc.WrappedConnection has trace level enabled, a stack
trace of the connection close call is logged as well. This is a debug feature that can be turned
off in production.

• prepared-statement-cache-size: This element specifies the number of prepared statements
per connection in an LRU cache, which is keyed by the SQL query. Setting this to zero
disables the cache.

• depends: The depends element specifies the JMX ObjectName string of a service that the
connection manager services depend on. The connection manager service will not be started
until the dependent services have been started.

• type-mapping: This element declares a default type mapping for this datasource. The type
mapping should match a type-mapping/name element from standardjbosscmp-jdbc.xml.

Additional common child elements for both no-tx-datasource and local-tx-datasource

include:

• connection-url: This is the JDBC driver connection URL string, for example,
jdbc:hsqldb:hsql://localhost:1701.

• driver-class: This is the fully qualified name of the JDBC driver class, for example,

Configuring JDBC DataSources

193

org.hsqldb.jdbcDriver.

• connection-property: The connection-property element allows you to pass in arbitrary
connection properties to the java.sql.Driver.connect(url, props) method. Each
connection-property specifies a string name/value pair with the property name coming
from the name attribute and the value coming from the element content.

Elements in common to the local-tx-datasource and xa-datasource are:

• transaction-isolation: This element specifies the java.sql.Connection transaction
isolation level to use. The constants defined in the Connection interface are the possible
element content values and include:
• TRANSACTION_READ_UNCOMMITTED
• TRANSACTION_READ_COMMITTED
• TRANSACTION_REPEATABLE_READ
• TRANSACTION_SERIALIZABLE
• TRANSACTION_NONE

• no-tx-separate-pools: The presence of this element indicates that two connection pools are
required to isolate connections used with JTA transaction from those used without a JTA
transaction. The pools are lazily constructed on first use. Its use case is for Oracle (and
possibly other vendors) XA implementations that don't like using an XA connection with and
without a JTA transaction.

The unique xa-datasource child elements are:

• track-connection-by-tx: Specifying a true value for this element makes the connection
manager keep an xid to connection map and only put the connection back in the pool when
the transaction completes and all the connection handles are closed or disassociated (by the
method calls returning). As a side effect, we never suspend and resume the xid on the
connection's XAResource. This is the same connection tracking behavior used for local
transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for
that transaction at any time from any thread (suspending other transactions if necessary). The
original JCA implementation assumed this and aggressively delisted connections and put
them back in the pool as soon as control left the EJB they were used in or handles were
closed. Since some other transaction could be using the connection the next time work
needed to be done on the original transaction, there is no way to get the original connection
back. It turns out that most XADataSource driver vendors do not support this, and require that
all work done under a particular xid go through the same connection.

• xa-datasource-class: The fully qualified name of the javax.sql.XADataSource

implementation class, for example, com.informix.jdbcx.IfxXADataSource.

• xa-datasource-property: The xa-datasource-property element allows for specification of

Chapter 5. Connectors on JBoss

194

the properties to assign to the XADataSource implementation class. Each property is
identified by the name attribute and the property value is given by the
xa-datasource-property element content. The property is mapped onto the XADataSource

implementation by looking for a JavaBeans style getter method for the property name. If
found, the value of the property is set using the JavaBeans setter with the element text
translated to the true property type using the java.beans.PropertyEditor for the type.

• isSameRM-override-value: A boolean flag that allows one to override the behavior of the
javax.transaction.xa.XAResource.isSameRM(XAResource xaRes) method behavior on
the XA managed connection. If specified, this value is used unconditionally as the
isSameRM(xaRes) return value regardless of the xaRes parameter.

The failover options common to ha-xa-datasource and ha-local-tx-datasource are:

• url-delimeter: This element specifies a character used to separate multiple JDBC URLs.

• url-property: In the case of XA datasources, this property specifies the name of the
xa-datasource-property that contains the list of JDBC URLs to use.

Example configurations for many third-party JDBC drivers are included in the
JBOSS_DIST/docs/examples/jca directory. Current example configurations include:

• asapxcess-jb3.2-ds.xml
• cicsr9s-service.xml
• db2-ds.xml
• db2-xa-ds.xml
• facets-ds.xml
• fast-objects-jboss32-ds.xml
• firebird-ds.xml
• firstsql-ds.xml
• firstsql-xa-ds.xml
• generic-ds.xml
• hsqldb-ds.xml
• informix-ds.xml
• informix-xa-ds.xml
• jdatastore-ds.xml
• jms-ds.xml
• jsql-ds.xml
• lido-versant-service.xml
• mimer-ds.xml
• mimer-xa-ds.xml
• msaccess-ds.xml
• mssql-ds.xml
• mssql-xa-ds.xml
• mysql-ds.xml

Configuring JDBC DataSources

195

• oracle-ds.xml
• oracle-xa-ds.xml
• postgres-ds.xml
• sapdb-ds.xml
• sapr3-ds.xml
• solid-ds.xml
• sybase-ds.xml

4. Configuring Generic JCA Adaptors

The XSLSubDeployer also supports the deployment of arbitrary non-JDBC JCA resource
adaptors. The schema for the top-level connection factory elements of the *-ds.xml

configuration deployment file is shown in Figure 5.11, “The simplified JCA adaptor connection
factory configuration descriptor top-level schema elements”.

Figure 5.11. The simplified JCA adaptor connection factory configuration
descriptor top-level schema elements

Multiple connection factory configurations may be specified in a configuration deployment file.
The child elements of the connection-factories root are:

• mbean: Any number mbean elements may be specified to define MBean services that should
be included in the jboss-service.xml descriptor that results from the transformation. This
may be used to configure additional services used by the adaptor.

• no-tx-connection-factory: this element is used to specify the
(org.jboss.resource.connectionmanager) NoTxConnectionManager service configuration.
NoTxConnectionManager is a JCA connection manager with no transaction support. The
no-tx-connection-factory child element schema is given in Figure 5.12, “The
no-tx-connection-factory element schema”.

• tx-connection-factory: this element is used to specify the
(org.jboss.resource.connectionmanager) TxConnectionManager service configuration.
The tx-connection-factory child element schema is given in Figure 5.13, “The
tx-connection-factory element schema”.

Chapter 5. Connectors on JBoss

196

Figure 5.12. The no-tx-connection-factory element schema

Configuring Generic JCA Adaptors

197

Figure 5.13. The tx-connection-factory element schema

The majority of the elements are the same as those of the datasources configuration. The
element unique to the connection factory configuration include:

• adaptor-display-name: A human readable display name to assign to the connection
manager MBean.

Chapter 5. Connectors on JBoss

198

• local-transaction: This element specifies that the tx-connection-factory supports local
transactions.

• xa-transaction: This element specifies that the tx-connection-factory supports XA
transactions.

• track-connection-by-tx: This element specifies that a connection should be used only on a
single transaction and that a transaction should only be associated with one connection.

• rar-name: This is the name of the RAR file that contains the definition for the resource we
want to provide. For nested RAR files, the name would look like
myapplication.ear#my.rar.

• connection-definition: This is the connection factory interface class. It should match the
connectionfactory-interface in the ra.xml file.

• config-property: Any number of properties to supply to the ManagedConnectionFactory

(MCF) MBean service configuration. Each config-property element specifies the value of a
MCF property. The config-property element has two required attributes:

• name: The name of the property

• type: The fully qualified type of the property

The content of the config-property element provides the string representation of the
property value. This will be converted to the true property type using the associated type
PropertyEditor.

Configuring Generic JCA Adaptors

199

200

Transactions on JBoss
The JTA Transaction Service

This chapter discusses transaction management in JBoss and the JBossTX architecture. The
JBossTX architecture allows for any Java Transaction API (JTA) transaction manager
implementation to be used. JBossTX includes a fast in-VM implementation of a JTA compatible
transaction manager that is used as the default transaction manager. We will first provide an
overview of the key transaction concepts and notions in the JTA to provide sufficient
background for the JBossTX architecture discussion. We will then discuss the interfaces that
make up the JBossTX architecture and conclude with a discussion of the MBeans available for
integration of alternate transaction managers.

1. Transaction/JTA Overview

For the purpose of this discussion, we can define a transaction as a unit of work containing one
or more operations involving one or more shared resources having ACID properties. ACID is an
acronym for atomicity, consistency, isolation and durability, the four important properties of
transactions. The meanings of these terms is:

• Atomicity: A transaction must be atomic. This means that either all the work done in the
transaction must be performed, or none of it must be performed. Doing part of a transaction is
not allowed.

• Consistency: When a transaction is completed, the system must be in a stable and
consistent condition.

• Isolation: Different transactions must be isolated from each other. This means that the partial
work done in one transaction is not visible to other transactions until the transaction is
committed, and that each process in a multi-user system can be programmed as if it was the
only process accessing the system.

• Durability: The changes made during a transaction are made persistent when it is committed.
When a transaction is committed, its changes will not be lost, even if the server crashes
afterwards.

To illustrate these concepts, consider a simple banking account application. The banking
application has a database with a number of accounts. The sum of the amounts of all accounts
must always be 0. An amount of money M is moved from account A to account B by subtracting
M from account A and adding M to account B. This operation must be done in a transaction,
and all four ACID properties are important.

The atomicity property means that both the withdrawal and deposit is performed as an
indivisible unit. If, for some reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of all

Chapter 6.

201

accounts must still be 0.

The isolation property is important when more than one bank clerk uses the system at the same
time. A withdrawal or deposit could be implemented as a three-step process: First the amount of
the account is read from the database; then something is subtracted from or added to the
amount read from the database; and at last the new amount is written to the database. Without
transaction isolation several bad things could happen. For example, if two processes read the
amount of account A at the same time, and each independently added or subtracted something
before writing the new amount to the database, the first change would be incorrectly overwritten
by the last.

The durability property is also important. If a money transfer transaction is committed, the bank
must trust that some subsequent failure cannot undo the money transfer.

1.1. Pessimistic and optimistic locking

Transactional isolation is usually implemented by locking whatever is accessed in a transaction.
There are two different approaches to transactional locking: Pessimistic locking and optimistic
locking.

The disadvantage of pessimistic locking is that a resource is locked from the time it is first
accessed in a transaction until the transaction is finished, making it inaccessible to other
transactions during that time. If most transactions simply look at the resource and never change
it, an exclusive lock may be overkill as it may cause lock contention, and optimistic locking may
be a better approach. With pessimistic locking, locks are applied in a fail-safe way. In the
banking application example, an account is locked as soon as it is accessed in a transaction.
Attempts to use the account in other transactions while it is locked will either result in the other
process being delayed until the account lock is released, or that the process transaction will be
rolled back. The lock exists until the transaction has either been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a
transaction. Instead, the state of the resource at the time when it would have been locked with
the pessimistic locking approach is saved. Other transactions are able to concurrently access to
the resource and the possibility of conflicting changes is possible. At commit time, when the
resource is about to be updated in persistent storage, the state of the resource is read from
storage again and compared to the state that was saved when the resource was first accessed
in the transaction. If the two states differ, a conflicting update was made, and the transaction will
be rolled back.

In the banking application example, the amount of an account is saved when the account is first
accessed in a transaction. If the transaction changes the account amount, the amount is read
from the store again just before the amount is about to be updated. If the amount has changed
since the transaction began, the transaction will fail itself, otherwise the new amount is written to
persistent storage.

1.2. The components of a distributed transaction

There are a number of participants in a distributed transaction. These include:

Chapter 6. Transactions on JBoss

202

• Transaction Manager: This component is distributed across the transactional system. It
manages and coordinates the work involved in the transaction. The transaction manager is
exposed by the javax.transaction.TransactionManager interface in JTA.

• Transaction Context: A transaction context identifies a particular transaction. In JTA the
corresponding interface is javax.transaction.Transaction.

• Transactional Client: A transactional client can invoke operations on one or more
transactional objects in a single transaction. The transactional client that started the
transaction is called the transaction originator. A transaction client is either an explicit or
implicit user of JTA interfaces and has no interface representation in the JTA.

• Transactional Object: A transactional object is an object whose behavior is affected by
operations performed on it within a transactional context. A transactional object can also be a
transactional client. Most Enterprise Java Beans are transactional objects.

• Recoverable Resource: A recoverable resource is a transactional object whose state is
saved to stable storage if the transaction is committed, and whose state can be reset to what
it was at the beginning of the transaction if the transaction is rolled back. At commit time, the
transaction manager uses the two-phase XA protocol when communicating with the
recoverable resource to ensure transactional integrity when more than one recoverable
resource is involved in the transaction being committed. Transactional databases and
message brokers like JBossMQ are examples of recoverable resources. A recoverable
resource is represented using the javax.transaction.xa.XAResource interface in JTA.

1.3. The two-phase XA protocol

When a transaction is about to be committed, it is the responsibility of the transaction manager
to ensure that either all of it is committed, or that all of is rolled back. If only a single recoverable
resource is involved in the transaction, the task of the transaction manager is simple: It just has
to tell the resource to commit the changes to stable storage.

When more than one recoverable resource is involved in the transaction, management of the
commit gets more complicated. Simply asking each of the recoverable resources to commit
changes to stable storage is not enough to maintain the atomic property of the transaction. The
reason for this is that if one recoverable resource has committed and another fails to commit,
part of the transaction would be committed and the other part rolled back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an
extra prepare phase before the actual commit phase. Before asking any of the recoverable
resources to commit the changes, the transaction manager asks all the recoverable resources
to prepare to commit. When a recoverable resource indicates it is prepared to commit the
transaction, it has ensured that it can commit the transaction. The resource is still able to
rollback the transaction if necessary as well.

So the first phase consists of the transaction manager asking all the recoverable resources to
prepare to commit. If any of the recoverable resources fails to prepare, the transaction will be
rolled back. But if all recoverable resources indicate they were able to prepare to commit, the

The two-phase XA protocol

203

second phase of the XA protocol begins. This consists of the transaction manager asking all the
recoverable resources to commit the transaction. Because all the recoverable resources have
indicated they are prepared, this step cannot fail.

1.4. Heuristic exceptions

In a distributed environment communications failures can happen. If communication between
the transaction manager and a recoverable resource is not possible for an extended period of
time, the recoverable resource may decide to unilaterally commit or rollback changes done in
the context of a transaction. Such a decision is called a heuristic decision. It is one of the worst
errors that may happen in a transaction system, as it can lead to parts of the transaction being
committed while other parts are rolled back, thus violating the atomicity property of transaction
and possibly leading to data integrity corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic
decision is required to maintain all information about the decision in stable storage until the
transaction manager tells it to forget about the heuristic decision. The actual data about the
heuristic decision that is saved in stable storage depends on the type of recoverable resource
and is not standardized. The idea is that a system manager can look at the data, and possibly
edit the resource to correct any data integrity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The
javax.transaction.HeuristicCommitException is thrown when a recoverable resource is
asked to rollback to report that a heuristic decision was made and that all relevant updates have
been committed. On the opposite end is the
javax.transaction.HeuristicRollbackException, which is thrown by a recoverable
resource when it is asked to commit to indicate that a heuristic decision was made and that all
relevant updates have been rolled back.

The javax.transaction.HeuristicMixedException is the worst heuristic exception. It is
thrown to indicate that parts of the transaction were committed, while other parts were rolled
back. The transaction manager throws this exception when some recoverable resources did a
heuristic commit, while other recoverable resources did a heuristic rollback.

1.5. Transaction IDs and branches

In JTA, the identity of transactions is encapsulated in objects implementing the
javax.transaction.xa.Xid interface. The transaction ID is an aggregate of three parts:

• The format identifier indicates the transaction family and tells how the other two parts should
be interpreted.

• The global transaction id identified the global transaction within the transaction family.

• The branch qualifier denotes a particular branch of the global transaction.

Transaction branches are used to identify different parts of the same global transaction.

Chapter 6. Transactions on JBoss

204

Whenever the transaction manager involves a new recoverable resource in a transaction it
creates a new transaction branch.

2. JTS support

JBoss Transactions is a 100% Java implementation of a distributed transaction management
system based on the Sun Microsystems J2EE Java Transaction Service (JTS) standard. Our
implementation of the JTS utilizes the Object Management Group's (OMG) Object Transaction
Service (OTS) model for transaction interoperability as recommended in the J2EE and EJB
standards and leads the market in providing many advanced features such as fully distributed
transactions and ORB portability with POA support.

3. Web Services Transactions

In traditional ACID transaction systems, transactions are short lived, resources (such as
databases) are locked for the duration of the transaction and participants have a high degree of
trust with each other. With the advent of the Internet and Web services, the scenario that is now
emerging requires involvement of participants unknown to each other in distributed transactions.
These transactions have the following characteristics:

• Transactions may be of a long duration, sometimes lasting hours, days, or more.

• Participants may not allow their resources to be locked for long durations.

• The communication infrastructure between participants may not be reliable.

• Some of the ACID properties of traditional transactions are not mandatory.

• A transaction may succeed even if only some of the participants choose to confirm and others
cancel.

• All participants may choose to have their own coordinator (Transaction Manager), because of
lack of trust.

• All activities are logged.

• Transactions that have to be rolled back have the concept of compensation.

JBoss Transactions adds native support for Web services transactions by providing all of the
components necessary to build interoperable, reliable, multi-party, Web services-based
applications with the minimum of effort. The programming interfaces are based on the Java API
for XML Transactioning (JAXTX) and the product includes protocol support for the
WS-AtomicTransaction and WS-BusinessActivity specifications. JBossTS 4.2 is designed to
support multiple coordination protocols and therefore helps to future-proof transactional
applications.

4. Configuring JBoss Transactions

JTS support

205

JBossTS is configured through the jbossjts-properties.xml property file. You should consult the
JBossTS documentation for all of the configurable options it supports.

5. Local versus distributed transactions

JBossTS supports both local and distributed transactions. A transaction is considered to be
distributed if it spans multiple process instances, i.e., VMs. Typically a distributed transaction
will contain participants (e.g., XAResources) that are located within multiple VMs but the
transaction is coordinated in a separate VM (or co-located with one of the participants). If your
architecture requires distributed transactions then you should consider using either the JTS
implementation from JBossTS, which uses CORBA for communication, or the Web Services
transactions component, which uses SOAP/HTTP.

Chapter 6. Transactions on JBoss

206

Messaging on JBoss
JMS Configuration and Architecture

The JMS API stands for Java Message Service Application Programming Interface, and it is
used by applications to send asynchronous business-quality messages to other applications. In
the messaging world, messages are not sent directly to other applications. Instead, messages
are sent to destinations, known as queues or topics. Applications sending messages do not
need to worry if the receiving applications are up and running, and conversely, receiving
applications do not need to worry about the sending application's status. Both senders, and
receivers only interact with the destinations.

The JMS API is the standardized interface to a JMS provider, sometimes called a Message
Oriented Middleware (MOM) system. JBoss comes with a JMS 1.1 compliant JMS provider
called JBoss Messaging or JBossMQ. When you use the JMS API with JBoss, you are using
the JBoss Messaging engine transparently. JBoss Messaging fully implements the JMS
specification; therefore, the best JBoss Messaging user guide is the JMS specification. For
more information about the JMS API please visit the JMS Tutorial or JMS Downloads &
Specifications.

This chapter focuses on the JBoss specific aspects of using JMS and message driven beans as
well as the JBoss Messaging configuration and MBeans.

1. JMS Examples

In this section we discuss the basics needed to use the JBoss JMS implementation. JMS leaves
the details of accessing JMS connection factories and destinations as provider specific details.
What you need to know to use the JBoss Messaging layer is:

• The location of the queue and topic connect factories: In JBoss both connection factory
implementations are located under the JNDI name ConnectionFactory.

• How to lookup JMS destinations (queues and topics): Destinations are configured via MBeans
as we will see when we discuss the messaging MBeans. JBoss comes with a few queues and
topics preconfigured. You can find them under the jboss.mq.destination domain in the
JMX Console..

• Which JARS JMS requires: These include concurrent.jar, jbossmq-client.jar,
jboss-common-client.jar, jboss-system-client.jar, jnp-client.jar and log4j.jar.

In the following sections we will look at examples of the various JMS messaging models and
message driven beans. The chapter example source is located under the
src/main/org/jboss/book/jms directory of the book examples.

1.1. A Point-To-Point Example

Chapter 7.

207

Let's start out with a point-to-point (P2P) example. In the P2P model, a sender delivers
messages to a queue and a single receiver pulls the message off of the queue. The receiver
does not need to be listening to the queue at the time the message is sent. Example 7.1, “A
P2P JMS client example” shows a complete P2P example that sends a
javax.jms.TextMessage to the queue queue/testQueue and asynchronously receives the
message from the same queue.

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;
import org.apache.log4j.Logger;
import org.jboss.util.ChapterExRepository;

/**
* A complete JMS client example program that sends a
* TextMessage to a Queue and asynchronously receives the
* message from the same Queue.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class SendRecvClient
{

static Logger log;
static CountDown done = new CountDown(1);

QueueConnection conn;
QueueSession session;
Queue que;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

log.info("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();

Chapter 7. Messaging on JBoss

208

}
}

}

public void setupPTP()
throws JMSException,

NamingException
{

InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
que = (Queue) iniCtx.lookup("queue/testQueue");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String text)
throws JMSException,

NamingException
{

log.info("Begin sendRecvAsync");
// Setup the PTP connection, session
setupPTP();

// Set the async listener
QueueReceiver recv = session.createReceiver(que);
recv.setMessageListener(new ExListener());

// Send a text msg
QueueSender send = session.createSender(que);
TextMessage tm = session.createTextMessage(text);
send.send(tm);
log.info("sendRecvAsync, sent text=" + tm.getText());
send.close();
log.info("End sendRecvAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
ChapterExRepository.init(SendRecvClient.class);
log = Logger.getLogger("SendRecvClient");

log.info("Begin SendRecvClient, now=" + System.currentTimeMillis());
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");

A Point-To-Point Example

209

client.done.acquire();
client.stop();
log.info("End SendRecvClient");
System.exit(0);

}
}

Example 7.1. A P2P JMS client example

The client may be run using the following command line:

[examples]$ ant -Dchap=jms -Dex=1p2p run-example
...
run-example1p2p:

[java] [INFO,SendRecvClient] Begin SendRecvClient, now=1102808673386
[java] [INFO,SendRecvClient] Begin sendRecvAsync
[java] [INFO,SendRecvClient] onMessage, recv text=A text msg
[java] [INFO,SendRecvClient] sendRecvAsync, sent text=A text msg
[java] [INFO,SendRecvClient] End sendRecvAsync
[java] [INFO,SendRecvClient] End SendRecvClient

1.2. A Pub-Sub Example

The JMS publish/subscribe (Pub-Sub) message model is a one-to-many model. A publisher
sends a message to a topic and all active subscribers of the topic receive the message.
Subscribers that are not actively listening to the topic will miss the published message. shows a
complete JMS client that sends a javax.jms.TextMessage to a topic and asynchronously
receives the message from the same topic.

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends a TextMessage to

Chapter 7. Messaging on JBoss

210

* a Topic and asynchronously receives the message from the same
* Topic.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class TopicSendRecvClient
{

static CountDown done = new CountDown(1);
TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public static class ExListener implements MessageListener
{

public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendRecvAsync");
// Setup the PubSub connection, session
setupPubSub();
// Set the async listener

TopicSubscriber recv = session.createSubscriber(topic);
recv.setMessageListener(new ExListener());
// Send a text msg
TopicPublisher send = session.createPublisher(topic);
TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());

A Pub-Sub Example

211

send.close();
System.out.println("End sendRecvAsync");

}

public void stop() throws JMSException
{

conn.stop();
session.close();
conn.close();

}

public static void main(String args[]) throws Exception
{

System.out.println("Begin TopicSendRecvClient, now=" +
System.currentTimeMillis());

TopicSendRecvClient client = new TopicSendRecvClient();
client.sendRecvAsync("A text msg, now="+System.currentTimeMillis());
client.done.acquire();
client.stop();
System.out.println("End TopicSendRecvClient");
System.exit(0);

}

}

Example 7.2. A Pub-Sub JMS client example

The client may be run using the following command line:

[examples]$ ant -Dchap=jms -Dex=1ps run-example
...
run-example1ps:

[java] Begin TopicSendRecvClient, now=1102809427043
[java] Begin sendRecvAsync
[java] onMessage, recv text=A text msg, now=1102809427071
[java] sendRecvAsync, sent text=A text msg, now=1102809427071
[java] End sendRecvAsync
[java] End TopicSendRecvClient

Now let's break the publisher and subscribers into separate programs to demonstrate that
subscribers only receive messages while they are listening to a topic. Example 7.3, “A JMS
publisher client” shows a variation of the previous pub-sub client that only publishes messages
to the topic/testTopic topic. The subscriber only client is shown in Example 7.4, “A JMS
subscriber client”.

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;

Chapter 7. Messaging on JBoss

212

import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSlistubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that sends a TextMessage to a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class TopicSendClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendAsync");
// Setup the pub/sub connection, session
setupPubSub();
// Send a text msg
TopicPublisher send = session.createPublisher(topic);
TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();

A Pub-Sub Example

213

conn.close();
}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicSendClient, now=" +

System.currentTimeMillis());
TopicSendClient client = new TopicSendClient();

client.sendAsync("A text msg, now="+System.currentTimeMillis());
client.stop();
System.out.println("End TopicSendClient");
System.exit(0);

}

}

Example 7.3. A JMS publisher client

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a

Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class TopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();

Chapter 7. Messaging on JBoss

214

Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();

// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createSubscriber(topic);
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

System.out.println("TopicSubscriber.recv, msgt="+msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicRecvClient, now=" +

System.currentTimeMillis());
TopicRecvClient client = new TopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End TopicRecvClient");
System.exit(0);

}

}

Example 7.4. A JMS subscriber client

Run the TopicSendClient followed by the TopicRecvClient as follows:

A Pub-Sub Example

215

[examples]$ ant -Dchap=jms -Dex=1ps2 run-example
...
run-example1ps2:

[java] Begin TopicSendClient, now=1102810007899
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1102810007909
[java] End sendAsync
[java] End TopicSendClient
[java] Begin TopicRecvClient, now=1102810011524
[java] Begin recvSync
[java] Timed out waiting for msg
[java] End TopicRecvClient

The output shows that the topic subscriber client (TopicRecvClient) fails to receive the
message sent by the publisher due to a timeout.

1.3. A Pub-Sub With Durable Topic Example

JMS supports a messaging model that is a cross between the P2P and pub-sub models. When
a pub-sub client wants to receive all messages posted to the topic it subscribes to even when it
is not actively listening to the topic, the client may achieve this behavior using a durable topic.
Let's look at a variation of the preceding subscriber client that uses a durable topic to ensure
that it receives all messages, include those published when the client is not listening to the
topic. Example 7.5, “A durable topic JMS client example” shows the durable topic client with the
key differences between the Example 7.4, “A JMS subscriber client” client highlighted in bold.

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a

Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class DurableTopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;

Chapter 7. Messaging on JBoss

216

Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");

TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection("john", "needle");
topic = (Topic) iniCtx.lookup("topic/testTopic");

session = conn.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);

conn.start();
}

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();
// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createDurableSubscriber(topic,

"jms-ex1dtps");
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

System.out.println("DurableTopicRecvClient.recv, msgt=" + msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin DurableTopicRecvClient, now=" +

System.currentTimeMillis());
DurableTopicRecvClient client = new DurableTopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End DurableTopicRecvClient");
System.exit(0);

}

}

A Pub-Sub With Durable Topic Example

217

Example 7.5. A durable topic JMS client example

Now run the previous topic publisher with the durable topic subscriber as follows:

[examples]$ ant -Dchap=jms -Dex=1psdt run-example
...
run-example1psdt:

[java] Begin DurableTopicSetup
[java] End DurableTopicSetup
[java] Begin TopicSendClient, now=1102899834273
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1102899834345
[java] End sendAsync
[java] End TopicSendClient
[java] Begin DurableTopicRecvClient, now=1102899840043
[java] Begin recvSync
[java] DurableTopicRecvClient.recv, msgt=SpyTextMessage {
[java] Header {
[java] jmsDestination : TOPIC.testTopic.DurableSubscription[

clientId=DurableSubscriberExample name=jms-ex1dtps
selector=null]

[java] jmsDeliveryMode : 2
[java] jmsExpiration : 0
[java] jmsPriority : 4
[java] jmsMessageID : ID:3-11028998375501
[java] jmsTimeStamp : 1102899837550
[java] jmsCorrelationID: null
[java] jmsReplyTo : null
[java] jmsType : null
[java] jmsRedelivered : false
[java] jmsProperties : {}
[java] jmsPropReadWrite: false
[java] msgReadOnly : true
[java] producerClientId: ID:3
[java] }
[java] Body {
[java] text :A text msg, now=1102899834345
[java] }
[java] }
[java] End DurableTopicRecvClient

Items of note for the durable topic example include:

• The TopicConnectionFactory creation in the durable topic client used a username and
password, and the TopicSubscriber creation was done using the
createDurableSubscriber(Topic, String) method. This is a requirement of durable topic
subscribers. The messaging server needs to know what client is requesting the durable topic
and what the name of the durable topic subscription is. We will discuss the details of durable
topic setup in the configuration section.

Chapter 7. Messaging on JBoss

218

• An org.jboss.book.jms.DurableTopicSetup client was run prior to the TopicSendClient.
The reason for this is a durable topic subscriber must have registered a subscription at some
point in the past in order for the messaging server to save messages. JBoss supports
dynamic durable topic subscribers and the DurableTopicSetup client simply creates a
durable subscription receiver and the exits. This leaves an active durable topic subscriber on
the topic/testTopic and the messaging server knows that any messages posted to this
topic must be saved for latter delivery.

• The TopicSendClient does not change for the durable topic. The notion of a durable topic is
a subscriber only notion.

• The DurableTopicRecvClient sees the message published to the topic/testTopic even
though it was not listening to the topic at the time the message was published.

1.4. A Point-To-Point With MDB Example

Example 7.6, “A TextMessage processing MDB” shows an message driven bean (MDB) that
transforms the TextMessages it receives and sends the transformed messages to the queue
found in the incoming message JMSReplyTo header.

package org.jboss.book.jms.ex2;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.ejb.EJBException;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* An MDB that transforms the TextMessages it receives and send the
* transformed messages to the Queue found in the incoming message
* JMSReplyTo header.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class TextMDB
implements MessageDrivenBean, MessageListener

{
private MessageDrivenContext ctx = null;
private QueueConnection conn;
private QueueSession session;

A Point-To-Point With MDB Example

219

public TextMDB()
{

System.out.println("TextMDB.ctor, this="+hashCode());
}

public void setMessageDrivenContext(MessageDrivenContext ctx)
{

this.ctx = ctx;
System.out.println("TextMDB.setMessageDrivenContext, this=" +

hashCode());
}

public void ejbCreate()
{

System.out.println("TextMDB.ejbCreate, this="+hashCode());
try {

setupPTP();
} catch (Exception e) {

throw new EJBException("Failed to init TextMDB", e);
}

}

public void ejbRemove()
{

System.out.println("TextMDB.ejbRemove, this="+hashCode());
ctx = null;
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch(JMSException e) {
e.printStackTrace();

}
}

public void onMessage(Message msg)
{

System.out.println("TextMDB.onMessage, this="+hashCode());
try {

TextMessage tm = (TextMessage) msg;
String text = tm.getText() + "processed by: "+hashCode();
Queue dest = (Queue) msg.getJMSReplyTo();
sendReply(text, dest);

} catch(Throwable t) {
t.printStackTrace();

}
}

private void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("java:comp/env/jms/QCF");

Chapter 7. Messaging on JBoss

220

QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

private void sendReply(String text, Queue dest)
throws JMSException

{
System.out.println("TextMDB.sendReply, this=" +

hashCode() + ", dest="+dest);
QueueSender sender = session.createSender(dest);
TextMessage tm = session.createTextMessage(text);
sender.send(tm);
sender.close();

}
}

Example 7.6. A TextMessage processing MDB

The MDB ejb-jar.xml and jboss.xml deployment descriptors are shown in Example 7.7,
“The MDB ejb-jar.xml descriptor” and Example 7.8, “The MDB jboss.xml descriptor”.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>

<message-driven>
<ejb-name>TextMDB</ejb-name>
<ejb-class>org.jboss.book.jms.ex2.TextMDB</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<res-ref-name>jms/QCF</res-ref-name>
<resource-ref>

<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

Example 7.7. The MDB ejb-jar.xml descriptor

A Point-To-Point With MDB Example

221

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<message-driven>

<ejb-name>TextMDB</ejb-name>
<destination-jndi-name>queue/B</destination-jndi-name>
<resource-ref>

<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>ConnectionFactory</jndi-name>

</resource-ref>
</message-driven>

</enterprise-beans>
</jboss>

Example 7.8. The MDB jboss.xml descriptor

Example 7.9, “A JMS client that interacts with the TextMDB” shows a variation of the P2P client
that sends several messages to the queue/B destination and asynchronously receives the
messages as modified by TextMDB from queue A.

package org.jboss.book.jms.ex2;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends N TextMessages to
* a Queue B and asynchronously receives the messages as modified by
* TextMDB from Queue A.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.9 $
*/

public class SendRecvClient
{

static final int N = 10;
static CountDown done = new CountDown(N);

QueueConnection conn;

Chapter 7. Messaging on JBoss

222

QueueSession session;
Queue queA;
Queue queB;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text="+tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
queA = (Queue) iniCtx.lookup("queue/A");
queB = (Queue) iniCtx.lookup("queue/B");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String textBase)
throws JMSException, NamingException, InterruptedException

{
System.out.println("Begin sendRecvAsync");

// Setup the PTP connection, session
setupPTP();

// Set the async listener for queA
QueueReceiver recv = session.createReceiver(queA);
recv.setMessageListener(new ExListener());

// Send a few text msgs to queB
QueueSender send = session.createSender(queB);

for(int m = 0; m < 10; m ++) {
TextMessage tm = session.createTextMessage(textBase+"#"+m);
tm.setJMSReplyTo(queA);
send.send(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());

}
System.out.println("End sendRecvAsync");

}

A Point-To-Point With MDB Example

223

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin SendRecvClient,now=" +

System.currentTimeMillis());
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");
client.done.acquire();
client.stop();
System.exit(0);
System.out.println("End SendRecvClient");

}

}

Example 7.9. A JMS client that interacts with the TextMDB

Run the client as follows:

[examples]$ ant -Dchap=jms -Dex=2 run-example
...
run-example2:
...

[java] Begin SendRecvClient, now=1102900541558
[java] Begin sendRecvAsync
[java] sendRecvAsync, sent text=A text msg#0
[java] sendRecvAsync, sent text=A text msg#1
[java] sendRecvAsync, sent text=A text msg#2
[java] sendRecvAsync, sent text=A text msg#3
[java] sendRecvAsync, sent text=A text msg#4
[java] sendRecvAsync, sent text=A text msg#5
[java] sendRecvAsync, sent text=A text msg#6
[java] sendRecvAsync, sent text=A text msg#7
[java] sendRecvAsync, sent text=A text msg#8
[java] sendRecvAsync, sent text=A text msg#9
[java] End sendRecvAsync
[java] onMessage, recv text=A text msg#0processed by: 12855623
[java] onMessage, recv text=A text msg#5processed by: 9399816
[java] onMessage, recv text=A text msg#9processed by: 6598158
[java] onMessage, recv text=A text msg#3processed by: 8153998
[java] onMessage, recv text=A text msg#4processed by: 10118602
[java] onMessage, recv text=A text msg#2processed by: 1792333
[java] onMessage, recv text=A text msg#7processed by: 14251014

Chapter 7. Messaging on JBoss

224

[java] onMessage, recv text=A text msg#1processed by: 10775981
[java] onMessage, recv text=A text msg#8processed by: 6056676
[java] onMessage, recv text=A text msg#6processed by: 15679078

The corresponding JBoss server console output is:

19:15:40,232 INFO [EjbModule] Deploying TextMDB
19:15:41,498 INFO [EJBDeployer] Deployed:

file:/jboss-4.2.0.GA/server/production/deploy/
jms-ex2.jar

19:15:45,606 INFO [TextMDB] TextMDB.ctor, this=10775981
19:15:45,620 INFO [TextMDB] TextMDB.ctor, this=1792333
19:15:45,627 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=10775981
19:15:45,638 INFO [TextMDB] TextMDB.ejbCreate, this=10775981
19:15:45,640 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=1792333
19:15:45,640 INFO [TextMDB] TextMDB.ejbCreate, this=1792333
19:15:45,649 INFO [TextMDB] TextMDB.ctor, this=12855623
19:15:45,658 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=12855623
19:15:45,661 INFO [TextMDB] TextMDB.ejbCreate, this=12855623
19:15:45,742 INFO [TextMDB] TextMDB.ctor, this=8153998
19:15:45,744 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=8153998
19:15:45,744 INFO [TextMDB] TextMDB.ejbCreate, this=8153998
19:15:45,763 INFO [TextMDB] TextMDB.ctor, this=10118602
19:15:45,764 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=10118602
19:15:45,764 INFO [TextMDB] TextMDB.ejbCreate, this=10118602
19:15:45,777 INFO [TextMDB] TextMDB.ctor, this=9399816
19:15:45,779 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=9399816
19:15:45,779 INFO [TextMDB] TextMDB.ejbCreate, this=9399816
19:15:45,792 INFO [TextMDB] TextMDB.ctor, this=15679078
19:15:45,798 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=15679078
19:15:45,799 INFO [TextMDB] TextMDB.ejbCreate, this=15679078
19:15:45,815 INFO [TextMDB] TextMDB.ctor, this=14251014
19:15:45,816 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=14251014
19:15:45,817 INFO [TextMDB] TextMDB.ejbCreate, this=14251014
19:15:45,829 INFO [TextMDB] TextMDB.ctor, this=6056676
19:15:45,831 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=6056676
19:15:45,864 INFO [TextMDB] TextMDB.ctor, this=6598158
19:15:45,903 INFO [TextMDB] TextMDB.ejbCreate, this=6056676
19:15:45,906 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=6598158
19:15:45,906 INFO [TextMDB] TextMDB.ejbCreate, this=6598158
19:15:46,236 INFO [TextMDB] TextMDB.onMessage, this=12855623
19:15:46,238 INFO [TextMDB] TextMDB.sendReply, this=12855623, dest=QUEUE.A
19:15:46,734 INFO [TextMDB] TextMDB.onMessage, this=9399816
19:15:46,736 INFO [TextMDB] TextMDB.onMessage, this=8153998
19:15:46,737 INFO [TextMDB] TextMDB.onMessage, this=6598158
19:15:46,768 INFO [TextMDB] TextMDB.sendReply, this=9399816, dest=QUEUE.A
19:15:46,768 INFO [TextMDB] TextMDB.sendReply, this=6598158, dest=QUEUE.A
19:15:46,774 INFO [TextMDB] TextMDB.sendReply, this=8153998, dest=QUEUE.A
19:15:46,903 INFO [TextMDB] TextMDB.onMessage, this=10118602
19:15:46,904 INFO [TextMDB] TextMDB.sendReply, this=10118602, dest=QUEUE.A
19:15:46,927 INFO [TextMDB] TextMDB.onMessage, this=1792333
19:15:46,928 INFO [TextMDB] TextMDB.sendReply, this=1792333, dest=QUEUE.A
19:15:47,002 INFO [TextMDB] TextMDB.onMessage, this=14251014
19:15:47,007 INFO [TextMDB] TextMDB.sendReply, this=14251014, dest=QUEUE.A
19:15:47,051 INFO [TextMDB] TextMDB.onMessage, this=10775981

A Point-To-Point With MDB Example

225

19:15:47,051 INFO [TextMDB] TextMDB.sendReply, this=10775981, dest=QUEUE.A
19:15:47,060 INFO [TextMDB] TextMDB.onMessage, this=6056676
19:15:47,061 INFO [TextMDB] TextMDB.sendReply, this=6056676, dest=QUEUE.A
19:15:47,064 INFO [TextMDB] TextMDB.onMessage, this=15679078
19:15:47,065 INFO [TextMDB] TextMDB.sendReply, this=15679078, dest=QUEUE.A

Items of note in this example include:

• The JMS client has no explicit knowledge that it is dealing with an MDB. The client simply
uses the standard JMS APIs to send messages to a queue and receive messages from
another queue.

• The MDB declares whether it will listen to a queue or topic in the ejb-jar.xml descriptor.
The name of the queue or topic must be specified using a jboss.xml descriptor. In this
example the MDB also sends messages to a JMS queue. MDBs may act as queue senders
or topic publishers within their onMessage callback.

• The messages received by the client include a "processed by: NNN" suffix, where NNN is the
hashCode value of the MDB instance that processed the message. This shows that many
MDBs may actively process messages posted to a destination. Concurrent processing is one
of the benefits of MDBs.

2. JBoss MQ Overview

JBossMQ is composed of several services working together to provide JMS API level services
to client applications. The services that make up the JBossMQ JMS implementation are
introduced in this section.

2.1. Invocation Layer

The Invocation Layer (IL) services are responsible for handling the communication protocols
that clients use to send and receive messages. JBossMQ can support running different types of
Invocation Layers concurrently. All Invocation Layers support bidirectional communication which
allows clients to send and receive messages concurrently. ILs only handle the transport details
of messaging. They delegate messages to the JMS server JMX gateway service known as the
invoker. This is similar to how the detached invokers expose the EJB container via different
transports.

Each IL service binds a JMS connection factory to a specific location in the JNDI tree. Clients
choose the protocol they wish to use by the JNDI location used to obtain the JMS connection
factory. JBossMQ currently has several different invocation layers.

• UIL2 IL: The Unified Invocation Layer version 2(UIL2) is the preferred invocation layer for
remote messaging. A multiplexing layer is used to provide bidirectional communication. The
multiplexing layer creates two virtual sockets over one physical socket. This allows

Chapter 7. Messaging on JBoss

226

communication with clients that cannot have a connection created from the server back to the
client due to firewall or other restrictions. Unlike the older UIL invocation layer which used a
blocking round-trip message at the socket level, the UIL2 protocol uses true asynchronous
send and receive messaging at the transport level, providing for improved throughput and
utilization.

• JVM IL: The Java Virtual Machine (JVM) Invocation Layer was developed to cut out the
TCP/IP overhead when the JMS client is running in the same JVM as the server. This IL uses
direct method calls for the server to service the client requests. This increases efficiency since
no sockets are created and there is no need for the associated worker threads. This is the IL
that should be used by Message Driven Beans (MDB) or any other component that runs in
the same virtual machine as the server such as servlets, MBeans, or EJBs.

• HTTP IL: The HTTP Invocation Layer (HTTPIL) allows for accessing the JBossMQ service
over the HTTP or HTTPS protocols. This IL relies on the servlet deployed in the
deploy/jms/jbossmq-httpil.sar to handle the http traffic. This IL is useful for access to
JMS through a firewall when the only port allowed requires HTTP.

2.2. Security Manager

The JBossMQ SecurityManager is the service that enforces an access control list to guard
access to your destinations. This subsystem works closely with the StateManager service.

2.3. Destination Manager

The DestinationManager can be thought as being the central service in JBossMQ. It keeps
track of all the destinations that have been created on the server. It also keeps track of the other
key services such as the MessageCache, StateManager, and PersistenceManager.

2.4. Message Cache

Messages created in the server are passed to the MessageCache for memory management.
JVM memory usage goes up as messages are added to a destination that does not have any
receivers. These messages are held in the main memory until the receiver picks them up. If the
MessageCache notices that the JVM memory usage starts passing the defined limits, the
MessageCache starts moving those messages from memory to persistent storage on disk. The
MessageCache uses a least recently used (LRU) algorithm to determine which messages should
go to disk.

2.5. State Manager

The StateManager (SM) is in charge of keeping track of who is allowed to log into the server
and what their durable subscriptions are.

2.6. Persistence Manager

The PersistenceManager (PM) is used by a destination to store messages marked as being

Security Manager

227

persistent. JBossMQ has several different implementations of the persistent manager, but only
one can be enabled per server instance. You should enable the persistence manager that best
matches your requirements.

• JDBC2 persistence manager: The JDBC2 persistence manager allows you to store
persistent messages to a relational database using JDBC. The performance of this PM is
directly related to the performance that can be obtained from the database. This PM has a
very low memory overhead compared to the other persistence managers. Furthermore it is
also highly integrated with the MessageCache to provide efficient persistence on a system that
has a very active MessageCache.

• Null Persistence Manager: A wrapper persistence manager that can delegate to a real
persistence manager. Configuration on the destinations decide whether persistence and
caching is actually performed. The example configuration can be found in
docs/examples/jms. To use the null persistence manager backed by a real persistence
manager, you need to change the ObjectName of the real persistence manager and link the
new name to the null persistence manager.

2.7. Destinations

A destination is the object on the JBossMQ server that clients use to send and receive
messages. There are two types of destination objects, Queues and Topics. References to the
destinations created by JBossMQ are stored in JNDI.

2.7.1. Queues

Clients that are in the point-to-point paradigm typically use queues. They expect that message
sent to a queue will be receive by only one other client once and only once. If multiple clients
are receiving messages from a single queue, the messages will be load balanced across the
receivers. Queue objects, by default, will be stored under the JNDI queue/ sub context.

2.7.2. Topics

Topics are used in the publish-subscribe paradigm. When a client publishes a message to a
topic, he expects that a copy of the message will be delivered to each client that has subscribed
to the topic. Topic messages are delivered in the same manner a television show is delivered.
Unless you have the TV on and are watching the show, you will miss it. Similarly, if the client is
not up, running and receiving messages from the topics, it will miss messages published to the
topic. To get around this problem of missing messages, clients can start a durable subscription.
This is like having a VCR record a show you cannot watch at its scheduled time so that you can
see what you missed when you turn your TV back on.

3. JBoss MQ Configuration and MBeans

This section defines the MBean services that correspond to the components introduced in the
previous section along with their MBean attributes. The configuration and service files that make
up the JBossMQ system include:

Chapter 7. Messaging on JBoss

228

• deploy/hsqldb-jdbc-state-service.xml: This configures the JDBC state service for storing
state in the embedded Hypersonic database.

• deploy/jms/hsqldb-jdbc2-service.xml: This service descriptor configures the
DestinationManager, MessageCache, and jdbc2 PersistenceManager for the embedded
Hypersonic database.

• deploy/jms/jbossmq-destinations-service.xml: This service describes defines default JMS
queue and topic destination configurations used by the testsuite unit tests. You can
add/remove destinations to this file, or deploy another *-service.xml descriptor with the
destination configurations.

• jbossmq-httpil.sar: This SAR file configures the HTTP invocation layer.

• deploy/jms/jbossmq-service.xml: This service descriptor configures the core JBossMQ
MBeans like the Invoker, SecurityManager, DynamicStateManager, and core interceptor
stack. It also defines the MDB default dead letter queue DLQ.

• deploy/jms/jms-ds.xml: This is a JCA connection factory and JMS provider MDB integration
services configuration which sets JBossMQ as the JMS provider.

• deploy/jms/jms-ra.rar: This is a JCA resource adaptor for JMS providers.

• deploy/jms/jvm-il-service.xml: This service descriptor configures the JVMServerILService

which provides the JVM IL transport.

• deploy/jms/rmi-il-service.xml: This service descriptor configures the RMIServerILService

which provides the RMI IL. The queue and topic connection factory for this IL is bound under
the name RMIConnectionFactory.

• deploy/jms/uil2-service.xml: This service descriptor configures the UILServerILService

which provides the UIL2 transport. The queue and topic connection factory for this IL is bound
under the name UIL2ConnectionFactory as well as UILConnectionFactory to replace the
deprecated version 1 UIL service.

We will discuss the associated MBeans in the following subsections.

3.1. org.jboss.mq.il.jvm.JVMServerILService

The org.jboss.mq.il.jvm.JVMServerILService MBean is used to configure the JVM IL. The
configurable attributes are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used
to pass incoming requests to the JMS server. This is not something you would typically
change from the jboss.mq:service=Invoker setting unless you change the entry point
service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory

org.jboss.mq.il.jvm.JVMServerILService

229

setup to use this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a
XAConnectionFactory setup to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent. Since it is impossible for JVM IL connection to go bad, it is recommended that you keep
this set to 0.

3.2. org.jboss.mq.il.uil2.UILServerILService

The org.jboss.mq.il.uil2.UILServerILService is used to configure the UIL2 IL. The
configurable attributes are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used
to pass incoming requests to the JMS server. This is not something you would typically
change from the jboss.mq:service=Invoker setting unless you change the entry point
service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory

setup to use this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a
XAConnectionFactory setup to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent.

• ReadTimeout: The period in milliseconds is passed onto as the SoTimeout value of the UIL2
socket. This allows detection of dead sockets that are not responsive and are not capable of
receiving ping messages. Note that this setting should be longer in duration than the
PingPeriod setting.

• BufferSize: The size in bytes used as the buffer over the basic socket streams. This
corresponds to the java.io.BufferedOutputStream buffer size.

• ChunkSize: The size in bytes between stream listener notifications. The UIL2 layer uses the
org.jboss.util.stream.NotifyingBufferedOutputStream and
NotifyingBufferedInputStream implementations that support the notion of a heartbeat that
is triggered based on data read/written to the stream. Whenever ChunkSize bytes are
read/written to a stream. This allows serves as a ping or keepalive notification when large
reads or writes require a duration greater than the PingPeriod.

• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which
means that a random port will be chosen.

Chapter 7. Messaging on JBoss

230

• BindAddress: The specific address this IL listens on. This can be used on a multi-homed
host for a java.net.ServerSocket that will only accept connection requests on one of its
addresses.

• EnableTcpNoDelay: TcpNoDelay causes TCP/IP packets to be sent as soon as the request
is flushed. This may improve request response times. Otherwise request packets may be
buffered by the operating system to create larger IP packets.

• ServerSocketFactory: The javax.net.ServerSocketFactory implementation class name
to use to create the service java.net.ServerSocket. If not specified the default factory will
be obtained from javax.net.ServerSocketFactory.getDefault().

• ClientAddress: The address passed to the client as the address that should be used to
connect to the server.

• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on
the client. If not specified the default factory will be obtained from
javax.net.SocketFactory.getDefault().

• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket
factories. This is the JNDI name of the security manager implementation as described for the
security-domain element of the jboss.xml and jboss-web.xml descriptors.

3.2.1. Configuring UIL2 for SSL

The UIL2 service support the use of SSL through custom socket factories that integrate JSSE
using the security domain associated with the IL service. An example UIL2 service descriptor
fragment that illustrates the use of the custom JBoss SSL socket factories is shown in
Example 7.10, “An example UIL2 config fragment for using SSL”.

<mbean code="org.jboss.mq.il.uil2.UILServerILService"
name="jboss.mq:service=InvocationLayer,type=HTTPSUIL2">
<depends

optional-attribute-name="Invoker">jboss.mq:service=Invoker</depends>
<attribute

name="ConnectionFactoryJNDIRef">SSLConnectionFactory</attribute>
<attribute

name="XAConnectionFactoryJNDIRef">SSLXAConnectionFactory</attribute>

<!-- ... -->

<!-- SSL Socket Factories -->
<attribute name="ClientSocketFactory">

org.jboss.security.ssl.ClientSocketFactory
</attribute>
<attribute name="ServerSocketFactory">

org.jboss.security.ssl.DomainServerSocketFactory
</attribute>
<!-- Security domain - see below -->
<attribute name="SecurityDomain">java:/jaas/SSL</attribute>

</mbean>

org.jboss.mq.il.uil2.UILServerILService

231

<!-- Configures the keystore on the "SSL" security domain
This mbean is better placed in conf/jboss-service.xml where it
can be used by other services, but it will work from anywhere.
Use keytool from the sdk to create the keystore. -->

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=JaasSecurityDomain,domain=SSL">

<!-- This must correlate with the java:/jaas/SSL above -->
<constructor>

<arg type="java.lang.String" value="SSL"/>
</constructor>
<!-- The location of the keystore resource: loads from the

classpath and the server conf dir is a good default -->
<attribute name="KeyStoreURL">resource:uil2.keystore</attribute>
<attribute name="KeyStorePass">changeme</attribute>

</mbean>

Example 7.10. An example UIL2 config fragment for using SSL

3.2.2. JMS client properties for the UIL2 transport

There are several system properties that a JMS client using the UIL2 transport can set to control
the client connection back to the server

• org.jboss.mq.il.uil2.useServerHost: This system property allows a client to connect to the
server InetAddress.getHostName rather than theInetAddress.getHostAddress value. This
will only make a difference if name resolution differs between the server and client
environments.

• org.jboss.mq.il.uil2.localAddr: This system property allows a client to define the local
interface to which its sockets should be bound.

• org.jboss.mq.il.uil2.localPort: This system property allows a client to define the local port to
which its sockets should be bound

• org.jboss.mq.il.uil2.serverAddr: This system property allows a client to override the
address to which it attempts to connect to. This is useful for networks where NAT is occurring
between the client and JMS server.

• org.jboss.mq.il.uil2.serverPort: This system property allows a client to override the port to
which it attempts to connect. This is useful for networks where port forwarding is occurring
between the client and jms server.

• org.jboss.mq.il.uil2.retryCount: This system property controls the number of attempts to
retry connecting to the JMS server. Retries are only made for java.net.ConnectException

Chapter 7. Messaging on JBoss

232

failures. A value <= 0 means no retry attempts will be made.

• org.jboss.mq.il.uil2.retryDelay: This system property controls the delay in milliseconds
between retries due to ConnectException failures.

3.3. org.jboss.mq.il.http.HTTPServerILService

The org.jboss.mq.il.http.HTTPServerILService is used to manage the HTTP/S IL. This IL
allows for the use of the JMS service over HTTP or HTTPS connections. The relies on the
servlet deployed in the deploy/jms/jbossmq-httpil.sar to handle the HTTP traffic. The
configurable attributes are as follows:

• TimeOut: The default timeout in seconds that the client HTTP requests will wait for
messages. This can be overridden on the client by setting the system property
org.jboss.mq.il.http.timeout to the number of seconds.

• RestInterval: The number of seconds the client will sleep after each request. The default is 0,
but you can set this value in conjunction with the TimeOut value to implement a pure timed
based polling mechanism. For example, you could simply do a short lived request by setting
the TimeOut value to 0 and then setting the RestInterval to 60. This would cause the client
to send a single non-blocking request to the server, return any messages if available, then
sleep for 60 seconds, before issuing another request. Like the TimeOut value, this can be
explicitly overridden on a given client by specifying the
org.jboss.mq.il.http.restinterval with the number of seconds you wish to wait
between requests.

• URL: Set the servlet URL. This value takes precedence over any individual values set (i.e. the
URLPrefix, URLSuffix, URLPort, etc.) It my be a actual URL or a property name which will
be used on the client side to resolve the proper URL by calling
System.getProperty(propertyname). If not specified the URL will be formed from
URLPrefix + URLHostName + ":" + URLPort + "/" + URLSuffix.

• URLPrefix: The prefix portion of the servlet URL.

• URLHostName: The hostname portion of the servlet URL.

• URLPort: The port portion of the URL.

• URLSuffix: The trailing path portion of the URL.

• UseHostName: A flag that if set to true the default setting for the URLHostName attribute will
be taken from InetAddress.getLocalHost().getHostName(). If false the default setting for
the URLHostName attribute will be taken from
InetAddress.getLocalHost().getHostAddress().

3.4. org.jboss.mq.server.jmx.Invoker

org.jboss.mq.il.http.HTTPServerILService

233

The org.jboss.mq.server.jmx.Invoker is used to pass IL requests down to the destination
manager service through an interceptor stack. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used
by all the interceptors to create the interceptor stack. The last interceptor in the chain should
be the DestinationManager.

3.5. org.jboss.mq.server.jmx.InterceptorLoader

The org.jboss.mq.server.jmx.InterceptorLoader is used to load a generic interceptor and
make it part of the interceptor stack. This MBean is typically used to load custom interceptors
like org.jboss.mq.server.TracingInterceptor, which is can be used to efficiently log all
client requests via trace level log messages. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used
by all the interceptors to create the interceptor stack. The last interceptor in the chain should
be the DestinationManager. This attribute should be setup via a <depends

optional-attribute-name="NextInterceptor"> XML tag.

• InterceptorClass: The class name of the interceptor that will be loaded and made part of the
interceptor stack. This class specified here must extend the
org.jboss.mq.server.JMSServerInterceptor class.

3.6. org.jboss.mq.sm.jdbc.JDBCStateManager

The JDBCStateManager MBean is used as the default state manager assigned to the
DestinationManager service. It stores user and durable subscriber information in the database.
The configurable attributes are as follows:

• ConnectionManager: This is the ObjectName of the datasource that the JDBC state
manager will write to. For Hypersonic, it is
jboss.jca:service=DataSourceBinding,name=DefaultDS.

• SqlProperties: The SqlProperties define the SQL statements to be used to persist JMS
state data. If the underlying database is changed, the SQL statements used may need to
change.

3.7. org.jboss.mq.security.SecurityManager

If the org.jboss.mq.security.SecurityManager is part of the interceptor stack, then it will
enforce the access control lists assigned to the destinations. The SecurityManager uses JAAS,
and as such requires that at application policy be setup for in the JBoss login-config.xml file.
The default configuration is shown below.

Chapter 7. Messaging on JBoss

234

<application-policy name="jbossmq">
<authentication>

<login-module
code="org.jboss.security.auth.spi.DatabaseServerLoginModule"

flag="required">
<module-option

name="unauthenticatedIdentity">guest</module-option>
<module-option name="dsJndiName">java:/DefaultDS</module-option>
<module-option name="principalsQuery">SELECT PASSWD FROM

JMS_USERS
WHERE USERID=?</module-option>

<module-option name="rolesQuery">SELECT ROLEID, 'Roles' FROM
JMS_ROLES WHERE USERID=?</module-option>

</login-module>
</authentication>

</application-policy>

The configurable attributes of the SecurityManager are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used
by all the interceptors to create the interceptor stack. The last interceptor in the chain should
be the DestinationManager.

• SecurityDomain: Specify the security domain name to use for authentication and role based
authorization. This is the JNDI name of the JAAS domain to be used to perform
authentication and authorization against.

• DefaultSecurityConfig: This element specifies the default security configuration settings for
destinations. This applies to temporary queues and topics as well as queues and topics that
do not specifically specify a security configuration. The DefaultSecurityConfig should
declare some number of role elements which represent each role that is allowed access to a
destination. Each role should have the following attributes:

• name: The name attribute defines the name of the role.

• create: The create attribute is a true/false value that indicates whether the role has the
ability to create durable subscriptions on the topic.

• read: The read attribute is a true/false value that indicates whether the role can receive
messages from the destination.

• write: The write attribute is a true/false value that indicates whether the role can send
messages to the destination.

3.8. org.jboss.mq.server.jmx.DestinationManager

The org.jboss.mq.server.jmx.DestinationManager must be the last interceptor in the
interceptor stack. The configurable attributes are as follows:

org.jboss.mq.server.jmx.DestinationManager

235

• PersistenceManager: The JMX ObjectName of the persistence manager service the server
should use.

• StateManager: The JMX ObjectName of the state manager service the server should use.

• MessageCache: The JMX ObjectName of the message cache service the server should use.

Additional read-only attributes and operations that support monitoring include:

• ClientCount: The number of clients connected to the server.

• Clients: A java.util.Map<org.jboss.mq.ConnectionToken,

org.jboss.mq.server.ClientConsumer> instances for the clients connected to the server.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide
statistics for a JMS destination.

• listMessageCounter(): This operation generates an HTML table that contains:

• Type: Either Queue or Topic indicating the destination type.

• Name: The name of the destination.

• Subscription: The subscription ID for a topic.

• Durable: A boolean indicating if the topic subscription is durable.

• Count: The number of message delivered to the destination.

• CountDelta: The change in message count since the previous access of count.

• Depth: The number of messages in the destination.

• DepthDelta: The change in the number of messages in the destination since the previous
access of depth.

• Last Add: The date/time string in DateFormat.SHORT/DateFormat.MEDIUM format of the
last time a message was added to the destination.

• resetMessageCounter(): This zeros all destination counts and last added times.

Queues and topics can be created and destroyed at runtime through the DestinationManager

MBean. The DestinationManager provides createQueue and createTopic operations for this.
Both methods have a one argument version which takes the destination name and a two
argument version which takes the destination and the JNDI name of the destination. Queues
and topics can be removed using the destroyQueue and destroyTopic operations, both of
which take a destination name is input.

3.9. org.jboss.mq.server.MessageCache

Chapter 7. Messaging on JBoss

236

The server determines when to move messages to secondary storage by using the
org.jboss.mq.server.MessageCache MBean. The configurable attributes are as follows:

• CacheStore: The JMX ObjectName of the service that will act as the cache store. The cache
store is used by the MessageCache to move messages to persistent storage. The value you
set here typically depends on the type of persistence manager you are using.

• HighMemoryMark: The amount of JVM heap memory in megabytes that must be reached
before the MessageCache starts to move messages to secondary storage.

• MaxMemoryMark: The maximum amount of JVM heap memory in megabytes that the
MessageCache considers to be the max memory mark. As memory usage approaches the
max memory mark, the MessageCache will move messages to persistent storage so that the
number of messages kept in memory approaches zero.

• MakeSoftReferences: This controls whether or not the message cache will keep soft
references to messages that need to be removed. The default is true.

• MinimumHard: The minimum number of the in memory cache. JBoss won't try to go below
this number of messages in the cache. The default value is 1.

• MaximumHard: The upper bound on the number of hard references to messages in the
cache. JBoss will soften messages to reduce the number of hard references to this level. A
value of 0 means that there is no size based upper bound. The default is 0.

• SoftenWaitMillis: The maximum wait time before checking whether messages need
softening. The default is 1000 milliseconds (1 second).

• SoftenNoMoreOftenThanMillis: The minimum amount of time between checks to soften
messages. A value of 0 means that this check should be skipped. The default is 0
milliseconds.

• SoftenAtLeastEveryMillis: The maximum amount of time between checks to soften
messages. A value of 0 means that this check should be skipped. The default is 0.

Additional read-only cache attribute that provide statistics include:

• CacheHits: The number of times a hard referenced message was accessed

• CacheMisses: The number of times a softened message was accessed.

• HardRefCacheSize: The number of messages in the cache that are not softened.

• SoftRefCacheSize: The number of messages that are currently softened.

• SoftenedSize: The total number of messages softened since the last boot.

• TotalCacheSize: The total number of messages that are being managed by the cache.

org.jboss.mq.pm.jdbc2.PersistenceManager

237

3.10. org.jboss.mq.pm.jdbc2.PersistenceManager

The org.jboss.mq.pm.jdbc.PersistenceManager should be used as the persistence
manager assigned to the DestinationManager if you wish to store messages in a database.
This PM has been tested against the HypersonSQL, MS SQL, Oracle, MySQL and Postgres
databases. The configurable attributes are as follows:

• MessageCache: The JMX ObjectName of the MessageCache that has been assigned to the
DestinationManager..

• ConnectionManager: The JMX ObjectName of the JCA data source that will be used to
obtain JDBC connections.

• ConnectionRetryAttempts: An integer count used to allow the PM to retry attempts at
getting a connection to the JDBC store. There is a 1500 millisecond delay between each
connection failed connection attempt and the next attempt. This must be greater than or equal
to 1 and defaults to 5.

• SqlProperties: A property list is used to define the SQL Queries and other JDBC2
Persistence Manager options. You will need to adjust these properties if you which to run
against another database other than Hypersonic. Example 7.11, “Default JDBC2
PersistenceManager SqlProperties” shows default setting for this attribute for the Hypersonic
database.

<attribute name="SqlProperties">
CREATE_TABLES_ON_STARTUP = TRUE
CREATE_USER_TABLE = CREATE TABLE JMS_USERS \

(USERID VARCHAR(32) NOT NULL, PASSWD VARCHAR(32) NOT NULL, \
CLIENTID VARCHAR(128), PRIMARY KEY(USERID))

CREATE_ROLE_TABLE = CREATE TABLE JMS_ROLES \
(ROLEID VARCHAR(32) NOT NULL, USERID VARCHAR(32) NOT NULL, \

PRIMARY KEY(USERID, ROLEID))
CREATE_SUBSCRIPTION_TABLE = CREATE TABLE JMS_SUBSCRIPTIONS \

(CLIENTID VARCHAR(128) NOT NULL, \
SUBNAME VARCHAR(128) NOT NULL, TOPIC VARCHAR(255) NOT NULL, \
SELECTOR VARCHAR(255), PRIMARY KEY(CLIENTID, SUBNAME))

GET_SUBSCRIPTION = SELECT TOPIC, SELECTOR FROM JMS_SUBSCRIPTIONS \
WHERE CLIENTID=? AND SUBNAME=?

LOCK_SUBSCRIPTION = SELECT TOPIC, SELECTOR FROM JMS_SUBSCRIPTIONS \
WHERE CLIENTID=? AND SUBNAME=?

GET_SUBSCRIPTIONS_FOR_TOPIC =
SELECT CLIENTID, SUBNAME, SELECTOR FROM JMS_SUBSCRIPTIONS WHERE

TOPIC=?
INSERT_SUBSCRIPTION = \

INSERT INTO JMS_SUBSCRIPTIONS (CLIENTID, SUBNAME, TOPIC,
SELECTOR) VALUES(?,?,?,?)

UPDATE_SUBSCRIPTION = \
UPDATE JMS_SUBSCRIPTIONS SET TOPIC=?, SELECTOR=? WHERE CLIENTID=?

AND SUBNAME=?
REMOVE_SUBSCRIPTION = DELETE FROM JMS_SUBSCRIPTIONS WHERE CLIENTID=?

AND SUBNAME=?

Chapter 7. Messaging on JBoss

238

GET_USER_BY_CLIENTID = SELECT USERID, PASSWD, CLIENTID FROM JMS_USERS
WHERE CLIENTID=?

GET_USER = SELECT PASSWD, CLIENTID FROM JMS_USERS WHERE USERID=?
POPULATE.TABLES.01 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('guest', 'guest')
POPULATE.TABLES.02 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('j2ee', 'j2ee')
POPULATE.TABLES.03 = INSERT INTO JMS_USERS (USERID, PASSWD, CLIENTID)

\
VALUES ('john', 'needle', 'DurableSubscriberExample')

POPULATE.TABLES.04 = INSERT INTO JMS_USERS (USERID, PASSWD) \
VALUES ('nobody', 'nobody')

POPULATE.TABLES.05 = INSERT INTO JMS_USERS (USERID, PASSWD) \
VALUES ('dynsub', 'dynsub')

POPULATE.TABLES.06 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('guest','guest')

POPULATE.TABLES.07 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('j2ee','guest')

POPULATE.TABLES.08 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('john','guest')

POPULATE.TABLES.09 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('subscriber','john')

POPULATE.TABLES.10 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('publisher','john')

POPULATE.TABLES.11 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('publisher','dynsub')

POPULATE.TABLES.12 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('durpublisher','john')

POPULATE.TABLES.13 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('durpublisher','dynsub')

POPULATE.TABLES.14 = INSERT INTO JMS_ROLES (ROLEID, USERID) \
VALUES ('noacc','nobody')

</attribute>

Example 7.11. Default JDBC2 PersistenceManager SqlProperties

Example 7.12, “A sample JDBC2 PersistenceManager SqlProperties for Oracle” shows an
alternate setting for Oracle.

<attribute name="SqlProperties">
BLOB_TYPE=BINARYSTREAM_BLOB
INSERT_TX = INSERT INTO JMS_TRANSACTIONS (TXID) values(?)
INSERT_MESSAGE = \

INSERT INTO JMS_MESSAGES (MESSAGEID, DESTINATION, MESSAGEBLOB,
TXID, TXOP) \

VALUES(?,?,?,?,?)
SELECT_ALL_UNCOMMITED_TXS = SELECT TXID FROM JMS_TRANSACTIONS
SELECT_MAX_TX = SELECT MAX(TXID) FROM JMS_MESSAGES
SELECT_MESSAGES_IN_DEST = \

SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE
DESTINATION=?

org.jboss.mq.pm.jdbc2.PersistenceManager

239

SELECT_MESSAGE = \
SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE MESSAGEID=?

AND DESTINATION=?
MARK_MESSAGE = \

UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE MESSAGEID=? AND
DESTINATION=?

UPDATE_MESSAGE = \
UPDATE JMS_MESSAGES SET MESSAGEBLOB=? WHERE MESSAGEID=? AND

DESTINATION=?
UPDATE_MARKED_MESSAGES = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE

TXOP=?
UPDATE_MARKED_MESSAGES_WITH_TX = \

UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE TXOP=? AND TXID=?
DELETE_MARKED_MESSAGES_WITH_TX = \

DELETE FROM JMS_MESSAGES MESS WHERE TXOP=:1 AND EXISTS \
(SELECT TXID FROM JMS_TRANSACTIONS TX WHERE TX.TXID = MESS.TXID)

DELETE_TX = DELETE FROM JMS_TRANSACTIONS WHERE TXID = ?
DELETE_MARKED_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXID=? AND

TXOP=?
DELETE_TEMPORARY_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXOP='T'
DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEID=? AND

DESTINATION=?
CREATE_MESSAGE_TABLE = CREATE TABLE JMS_MESSAGES (MESSAGEID INTEGER

NOT NULL, \
DESTINATION VARCHAR(255) NOT NULL, TXID INTEGER, TXOP CHAR(1), \
MESSAGEBLOB BLOB, PRIMARY KEY (MESSAGEID, DESTINATION))

CREATE_IDX_MESSAGE_TXOP_TXID = \
CREATE INDEX JMS_MESSAGES_TXOP_TXID ON JMS_MESSAGES (TXOP, TXID)

CREATE_IDX_MESSAGE_DESTINATION = \
CREATE INDEX JMS_MESSAGES_DESTINATION ON JMS_MESSAGES (DESTINATION)

CREATE_TX_TABLE = CREATE TABLE JMS_TRANSACTIONS (TXID INTEGER,
PRIMARY KEY (TXID))

CREATE_TABLES_ON_STARTUP = TRUE
</attribute>

Example 7.12. A sample JDBC2 PersistenceManager SqlProperties for
Oracle

Additional examples can be found in the docs/examples/jms directory of the distribution.

3.11. Destination MBeans

This section describes the destination MBeans used in the
jbossmq-destinations-service.xml and jbossmq-service.xml descriptors.

3.11.1. org.jboss.mq.server.jmx.Queue

The Queue is used to define a queue destination in JBoss. The following shows the
configuration of one of the default JBoss queues.

Chapter 7. Messaging on JBoss

240

<mbean code="org.jboss.mq.server.jmx.Queue"
name="jboss.mq.destination:service=Queue,name=testQueue">

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>
<depends optional-attribute-name="SecurityManager">

jboss.mq:service=SecurityManager
</depends>
<attribute name="MessageCounterHistoryDayLimit">-1</attribute>
<attribute name="SecurityConf">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true"

create="false"/>
<role name="noacc" read="false" write="false"

create="false"/>
</security>

</attribute>
</mbean>

The name attribute of the JMX object name of this MBean is used to determine the destination
name. For example. In the case of the queue we just looked at, the name of the queue is
testQueue. The configurable attributes are as follows:

• DestinationManager: The JMX ObjectName of the destination manager service for the
server. This attribute should be set via a <depends

optional-attribute-name="DestinationManager"> XML tag.

• SecurityManager: The JMX ObjectName of the security manager service that is being used
to validate client requests.

• SecurityConf: This element specifies a XML fragment which describes the access control list
to be used by the SecurityManager to authorize client operations against the destination.
The content model is the same as for the SecurityManagerSecurityConf attribute.

• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it
will be bound under the queue context using the name of the queue. For the testQueue

shown above, the JNDI name would be queue/testQueue.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a
destination. If exceeded, attempts to add new messages will result in a
org.jboss.mq.DestinationFullException. The MaxDepth can still be exceeded in a
number of situations, e.g. when a message is placed back into the queue. Also transactions
performing read committed processing, look at the current size of queue, ignoring any
messages that may be added as a result of the current transaction or other transactions. This
is because we don't want the transaction to fail during the commit phase when the message
is physically added to the queue.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit

Destination MBeans

241

with a value less than 0 indicating unlimited history, a 0 value disabling history and a value
greater than 0 giving the history days count.

Additional read-only attributes that provide statistics information include:

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that
provide statistics for this destination.

• QueueDepth: The current backlog of waiting messages.

• ReceiversCount: The number of receivers currently associated with the queue.

• ScheduledMessageCount: The number of messages waiting in the queue for their
scheduled delivery time to arrive.

The following are some of the operations available on queues.

• listMessageCounter(): This operation generates an HTML table that contains the same data
we as the listMessageCounter operation on the DestinationManager, but only for this one
queue.

• resetMessageCounter(): This zeros all destination counts and last added times.

• listMessageCounterHistory(): This operation display an HTML table showing the hourly
message counts per hour for each day in the history.

• resetMessageCounterHistory(): This operation resets the day history message counts.

• removeAllMessages(): This method removes all the messages on the queue.

3.11.2. org.jboss.mq.server.jmx.Topic

The org.jboss.mq.server.jmx.Topic is used to define a topic destination in JBoss. The
following shows the configuration of one of the default JBoss topics.

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jboss.mq.destination:service=Topic,name=testTopic">

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>
<depends optional-attribute-name="SecurityManager">

jboss.mq:service=SecurityManager
</depends>
<attribute name="SecurityConf">

<security>
<role name="guest" read="true" write="true" />
<role name="publisher" read="true" write="true"

create="false" />
<role name="durpublisher" read="true" write="true" create="true"

/>

Chapter 7. Messaging on JBoss

242

</security>
</attribute>

</mbean>

The name attribute of the JMX object name of this MBean is used to determine the destination
name. For example, in the case of the topic we just looked at, the name of the topic is
testTopic. The configurable attributes are as follows:

• DestinationManager: The JMX object name of the destination manager configured for the
server.

• SecurityManager: The JMX object name of the security manager that is being used to
validate client requests.

• SecurityConf: This element specifies a XML fragment which describes the access control list
to be used by the SecurityManager to authorize client operations against the destination.
The content model is the same as that for the SecurityManagerSecurityConf attribute.

• JNDIName: The location in JNDI to which the topic object will be bound. If this is not set it will
be bound under the topic context using the name of the queue. For the testTopic shown
above, the JNDI name would be topic/testTopic.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a
destination, and if exceeded, attempts to add new messages will result in a
org.jboss.mq.DestinationFullException. The MaxDepth can still be exceeded in a
number of situations, e.g. when a message is knacked back into the queue. Also transactions
performing read committed processing, look at the current size of queue, ignoring any
messages that may be added as a result of the current transaction or other transactions. This
is because we don't want the transaction to fail during the commit phase when the message
is physically added to the topic.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit
with a value < 0 indicating unlimited history, a 0 value disabling history, and a value > 0 giving
the history days count.

Additional read-only attributes that provide statistics information include:

• AllMessageCount: The message count across all queue types associated with the topic.

• AllSubscriptionsCount: The count of durable and non-durable subscriptions.

• DurableMessageCount: The count of messages in durable subscription queues.

• d DurableSubscriptionsCount: The count of durable subscribers.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that

Destination MBeans

243

provide statistics for this destination.

• NonDurableMessageCount: The count on messages in non-durable subscription queues.

• NonDurableSubscriptionsCount: The count of non-durable subscribers.

The following are some of the operations available on topics.

• listMessageCounter(): This operation generates an HTML table that contains the same data
we as the listMessageCounter operation on the DestinationManager, but only for this one
topic. Message counters are only maintained for each active subscription, durable or
otherwise.

• resetMessageCounter(): This zeros all destination counts and last added times.

• listMessageCounterHistory(): This operation display an HTML table showing the hourly
message counts per hour for each day of history.

• resetMessageCounterHistory(): This operation resets the day history message counts.

4. Specifying the MDB JMS Provider

Up to this point we have looked at the standard JMS client/server architecture. The JMS
specification defines an advanced set of interfaces that allow for concurrent processing of a
destination's messages, and collectively this functionality is referred to as application server
facilities (ASF). Two of the interfaces that support concurrent message processing,
javax.jms.ServerSessionPool and javax.jms.ServerSession, must be provided by the
application server in which the processing will occur. Thus, the set of components that make up
the JBossMQ ASF involves both JBossMQ components as well as JBoss server components.
The JBoss server MDB container utilizes the JMS service's ASF to concurrently process
messages sent to MDBs.

The responsibilities of the ASF domains are well defined by the JMS specification and so we
won't go into a discussion of how the ASF components are implemented. Rather, we want to
discuss how ASF components used by the JBoss MDB layer are integrated using MBeans that
allow either the application server interfaces, or the JMS provider interfaces to be replaced with
alternate implementations.

Let's start with the org.jboss.jms.jndi.JMSProviderLoader MBean. This MBean is
responsible for loading an instance of the org.jboss.jms.jndi.JMSProviderAdaptor

interface into the JBoss server and binding it into JNDI. The JMSProviderAdaptor interface is
an abstraction that defines how to get the root JNDI context for the JMS provider, and an
interface for getting and setting the JNDI names for the Context.PROVIDER_URL for the root
InitialContext, and the QueueConnectionFactory and TopicConnectionFactory locations
in the root context. This is all that is really necessary to bootstrap use of a JMS provider. By
abstracting this information into an interface, alternate JMS ASF provider implementations can
be used with the JBoss MDB container. The org.jboss.jms.jndi.JBossMQProvider is the

Chapter 7. Messaging on JBoss

244

default implementation of JMSProviderAdaptor interface, and provides the adaptor for the
JBossMQ JMS provider. To replace the JBossMQ provider with an alternate JMS ASF
implementation, simply create an implementation of the JMSProviderAdaptor interface and
configure the JMSProviderLoader with the class name of the implementation. We'll see an
example of this in the configuration section.

In addition to being able to replace the JMS provider used for MDBs, you can also replace the
javax.jms.ServerSessionPool interface implementation. This is possible by configuring the class
name of the org.jboss.jms.asf.ServerSessionPoolFactory implementation using the
org.jboss.jms.asf.ServerSessionPoolLoader MBean PoolFactoryClass attribute. The
default ServerSessionPoolFactory factory implementation is the JBoss
org.jboss.jms.asf.StdServerSessionPoolFactory class.

4.1. org.jboss.jms.jndi.JMSProviderLoader MBean

The JMSProviderLoader MBean service creates a JMS provider adaptor and binds it into JNDI.
A JMS provider adaptor is a class that implements the
org.jboss.jms.jndi.JMSProviderAdapter interface. It is used by the message driven bean
container to access a JMS service provider in a provider independent manner. The configurable
attributes of the JMSProviderLoader service are:

• ProviderName: A unique name for the JMS provider. This will be used to bind the
JMSProviderAdapter instance into JNDI under java:/<ProviderName> unless overridden
by the AdapterJNDIName attribute.

• ProviderAdapterClass: The fully qualified class name of the
org.jboss.jms.jndi.JMSProviderAdapter interface to create an instance of.

• FactoryRef: The JNDI name under which the provider javax.jms.ConnectionFactory will
be bound.

• QueueFactoryRef: The JNDI name under which the provider
javax.jms.QueueConnectionFactory will be bound.

• TopicFactoryRef: The JNDI name under which the javax.jms.TopicConnectionFactory

will be bound.

• Properties: The JNDI properties of the initial context used to look up the factories.

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=RemoteJBossMQProvider">

<attribute name="ProviderName">RemoteJMSProvider</attribute>
<attribute name="ProviderUrl"></attribute>
<attribute name="ProviderAdapterClass">

org.jboss.jms.jndi.JBossMQProvider
</attribute>
<attribute name="FactoryRef">XAConnectionFactory</attribute>
<attribute name="QueueFactoryRef">XAConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XAConnectionFactory</attribute>

org.jboss.jms.jndi.JMSProviderLoader

245

<attribute name="Properties>
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=jnp://remotehost:1099

</attribute>
</mbean>

Example 7.13. A JMSProviderLoader for accessing a remote JBossMQ
server

The RemoteJMSProvider can be referenced on the MDB invoker config as shown in the
jboss.xml fragment given in Example 7.14, “ A jboss.xml fragment for specifying the MDB JMS
provider adaptor”.

<proxy-factory-config>
<JMSProviderAdapterJNDI>RemoteJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MaximumSize>15</MaximumSize>
<MaxMessages>1</MaxMessages>
<MDBConfig>

<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

Example 7.14. A jboss.xml fragment for specifying the MDB JMS provider
adaptor

Incidentally, because one can specify multiple invoker-proxy-binding elements, this allows
an MDB to listen to the same queue/topic on multiple servers by configuring multiple bindings
with different JMSProviderAdapterJNDI settings.

Alternatively, one can integrate the JMS provider using JCA configuration like that shown in
Example 7.15, “A jms-ds.xml descriptor for integrating a JMS provider adaptor via JCA”.

<tx-connection-factory>
<jndi-name>RemoteJmsXA</jndi-name>
<xa-transaction/>
<adapter-display-name>JMS Adapter</adapter-display-name>
<config-property name="JMSProviderAdapterJNDI"

Chapter 7. Messaging on JBoss

246

type="java.lang.String">RemoteJMSProvider</config-property>
<config-property name="SessionDefaultType"

type="java.lang.String">javax.jms.Topic</config-property>

<security-domain-and-application>JmsXARealm</security-domain-and-application>
</tx-connection-factory>

Example 7.15. A jms-ds.xml descriptor for integrating a JMS provider
adaptor via JCA

4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean

The ServerSessionPoolLoader MBean service manages a factory for
javax.jms.ServerSessionPool objects used by the message driven bean container. The
configurable attributes of the ServerSessionPoolLoader service are:

• PoolName: A unique name for the session pool. This will be used to bind the
ServerSessionPoolFactory instance into JNDI under java:/PoolName.

• PoolFactoryClass: The fully qualified class name of the
org.jboss.jms.asf.ServerSessionPoolFactory interface to create an instance of.

• XidFactory: The JMX ObjectName of the service to use for generating
javax.transaction.xa.Xid values for local transactions when two phase commit is not
required. The XidFactory MBean must provide an Instance operation which returns a
org.jboss.tm.XidFactoryMBean instance.

4.3. Integrating non-JBoss JMS Providers

We have mentioned that one can replace the JBossMQ JMS implementation with a foreign
implementation. Here we summarize the various approaches one can take to do the
replacement:

• Replace the JMSProviderLoader JBossMQProvider class with one that instantiates the
correct JNDI context for communicating with the foreign JMS providers managed objects.

• Use the ExternalContext MBean to federate the foreign JMS providers managed objects
into the JBoss JNDI tree.

• Use MBeans to instantiate the foreign JMS objects into the JBoss JNDI tree. An example of
this approach can be found for Websphere MQ at
http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereMQSeries.

MBean

247

http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereMQSeries

248

Security on JBoss
J2EE Security Configuration and Architecture

Security is a fundamental part of any enterprise application. You need to be able to restrict who
is allowed to access your applications and control what operations application users may
perform. The J2EE specifications define a simple role-based security model for EJBs and web
components. The JBoss component framework that handles security is the JBossSX extension
framework. The JBossSX security extension provides support for both the role-based
declarative J2EE security model and integration of custom security via a security proxy layer.
The default implementation of the declarative security model is based on Java Authentication
and Authorization Service (JAAS) login modules and subjects. The security proxy layer allows
custom security that cannot be described using the declarative model to be added to an EJB in
a way that is independent of the EJB business object. Before getting into the JBoss security
implementation details, we will review EJB and servlet specification security models, as well as
JAAS to establish the foundation for these details.

1. J2EE Declarative Security Overview

The J2EE security model declarative in that you describe the security roles and permissions in a
standard XML descriptor rather than embedding security into your business component. This
isolates security from business-level code because security tends to be more a function of
where the component is deployed than an inherent aspect of the component's business logic.
For example, consider an ATM component that is to be used to access a bank account. The
security requirements, roles and permissions will vary independently of how you access the
bank account, based on what bank is managing the account, where the ATM is located, and so
on.

Securing a J2EE application is based on the specification of the application security
requirements via the standard J2EE deployment descriptors. You secure access to EJBs and
web components in an enterprise application by using the ejb-jar.xml and web.xml

deployment descriptors. The following sections look at the purpose and usage of the various
security elements.

1.1. Security References

Both EJBs and servlets can declare one or more security-role-ref elements as shown in
Figure 8.1, “The security-role-ref element”. This element declares that a component is using the
role-name value as an argument to the isCallerInRole(String) method. By using the
isCallerInRole method, a component can verify whether the caller is in a role that has been
declared with a security-role-ref/role-name element. The role-name element value must
link to a security-role element through the role-link element. The typical use of
isCallerInRole is to perform a security check that cannot be defined by using the role-based
method-permissions elements.

Chapter 8.

249

Figure 8.1. The security-role-ref element

Example 8.1, “An ejb-jar.xml descriptor fragment that illustrates the security-role-ref element
usage.” shows the use of security-role-ref in an ejb-jar.xml.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>ASessionBean</ejb-name>
...
<security-role-ref>

<role-name>TheRoleICheck</role-name>
<role-link>TheApplicationRole</role-link>

</security-role-ref>
</session>

</enterprise-beans>
...

</ejb-jar>

Example 8.1. An ejb-jar.xml descriptor fragment that illustrates the
security-role-ref element usage.

Example 8.2, “An example web.xml descriptor fragment that illustrates the security-role-ref
element usage.” shows the use of security-role-ref in a web.xml.

<web-app>
<servlet>

<servlet-name>AServlet</servlet-name>
...
<security-role-ref>

<role-name>TheServletRole</role-name>
<role-link>TheApplicationRole</role-link>

Chapter 8. Security on JBoss

250

</security-role-ref>
</servlet>
...

</web-app>

Example 8.2. An example web.xml descriptor fragment that illustrates the
security-role-ref element usage.

1.2. Security Identity

An EJB has the capability to specify what identity an EJB should use when it invokes methods
on other components using the security-identity element, shown in Figure 8.2, “The
security-identity element”

Figure 8.2. The security-identity element

The invocation identity can be that of the current caller, or it can be a specific role. The
application assembler uses the security-identity element with a use-caller-identity

child element to indicate that the current caller's identity should be propagated as the security
identity for method invocations made by the EJB. Propagation of the caller's identity is the
default used in the absence of an explicit security-identity element declaration.

Alternatively, the application assembler can use the run-as/role-name child element to specify
that a specific security role given by the role-name value should be used as the security identity
for method invocations made by the EJB. Note that this does not change the caller's identity as
seen by the EJBContext.getCallerPrincipal() method. Rather, the caller's security roles
are set to the single role specified by the run-as/role-name element value. One use case for
the run-as element is to prevent external clients from accessing internal EJBs. You accomplish
this by assigning the internal EJB method-permission elements that restrict access to a role
never assigned to an external client. EJBs that need to use internal EJB are then configured

Security Identity

251

with a run-as/role-name equal to the restricted role. The following descriptor fragment that
illustrates security-identity element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<enterprise-beans>
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<security-identity>

<use-caller-identity/>
</security-identity>

</session>
<session>

<ejb-name>RunAsBean</ejb-name>
<!-- ... -->
<security-identity>

<run-as>
<description>A private internal role</description>
<role-name>InternalRole</role-name>

</run-as>
</security-identity>

</session>
</enterprise-beans>
<!-- ... -->

</ejb-jar>

When you use run-as to assign a specific role to outgoing calls, JBoss associates a principal
named anonymous. If you want another principal to be associated with the call, you need to
associate a run-as-principal with the bean in the jboss.xml file. The following fragment
associates a principal named internal with RunAsBean from the prior example.

<session>
<ejb-name>RunAsBean</ejb-name>
<security-identity>

<run-as-principal>internal</run-as-principal>
</security-identity>

</session>

The run-as element is also available in servlet definitions in a web.xml file. The following
example shows how to assign the role InternalRole to a servlet:

<servlet>
<servlet-name>AServlet</servlet-name>
<!-- ... -->
<run-as>

<role-name>InternalRole</role-name>
</run-as>

</servlet>

Calls from this servlet will be associated with the anonymous principal. The

Chapter 8. Security on JBoss

252

run-as-principal element is available in the jboss-web.xml file to assign a specific principal
to go along with the run-as role. The following fragment shows how to associate a principal
named internal to the servlet in the prior example.

<servlet>
<servlet-name>AServlet</servlet-name>
<run-as-principal>internal</run-as-principal>

</servlet>

1.3. Security roles

The security role name referenced by either the security-role-ref or security-identity
element needs to map to one of the application's declared roles. An application assembler
defines logical security roles by declaring security-role elements. The role-name value is a
logical application role name like Administrator, Architect, SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the
deployment descriptor are used to define the logical security view of an application. Roles
defined in the J2EE deployment descriptors should not be confused with the user groups, users,
principals, and other concepts that exist in the target enterprise's operational environment. The
deployment descriptor roles are application constructs with application domain-specific names.
For example, a banking application might use role names such as BankManager, Teller, or
Customer.

Figure 8.3. The security-role element

In JBoss, a security-role element is only used to map security-role-ref/role-name

values to the logical role that the component role references. The user's assigned roles are a
dynamic function of the application's security manager, as you will see when we discuss the
JBossSX implementation details. JBoss does not require the definition of security-role
elements in order to declare method permissions. However, the specification of security-role
elements is still a recommended practice to ensure portability across application servers and for
deployment descriptor maintenance. Example 8.3, “An ejb-jar.xml descriptor fragment that
illustrates the security-role element usage.” shows the usage of the security-role in an
ejb-jar.xml file.

Security roles

253

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<!-- ... -->
<assembly-descriptor>

<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</assembly-descriptor>

</ejb-jar>

Example 8.3. An ejb-jar.xml descriptor fragment that illustrates the
security-role element usage.

Example 8.4, “An example web.xml descriptor fragment that illustrates the security-role element
usage.” shows the usage of the security-role in an web.xml file.

<!-- A sample web.xml fragment -->
<web-app>

<!-- ... -->
<security-role>

<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</web-app>

Example 8.4. An example web.xml descriptor fragment that illustrates the
security-role element usage.

1.4. EJB method permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and
remote interface methods through method-permission element declarations.

Chapter 8. Security on JBoss

254

Figure 8.4. The method-permissions element

Each method-permission element contains one or more role-name child elements that define
the logical roles that are allowed to access the EJB methods as identified by method child
elements. You can also specify an unchecked element instead of the role-name element to
declare that any authenticated user can access the methods identified by method child
elements. In addition, you can declare that no one should have access to a method that has the
exclude-list element. If an EJB has methods that have not been declared as accessible by a
role using a method-permission element, the EJB methods default to being excluded from use.
This is equivalent to defaulting the methods into the exclude-list.

EJB method permissions

255

Figure 8.5. The method element

There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named
enterprise bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

The second style is used for referring to a specified method of the home or component interface
of the named enterprise bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

If there are multiple methods with the same overloaded name, this style refers to all of the
overloaded methods.

The third style is used to refer to a specified method within a set of methods with an overloaded
name:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAMETER_1</method-param>
<!-- ... -->
<method-param>PARAMETER_N</method-param>

</method-params>
</method>

The method must be defined in the specified enterprise bean's home or remote interface. The
method-param element values are the fully qualified name of the corresponding method
parameter type. If there are multiple methods with the same overloaded signature, the
permission applies to all of the matching overloaded methods.

The optional method-intf element can be used to differentiate methods with the same name
and signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 8.5, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element
usage.” provides complete examples of the method-permission element usage.

Chapter 8. Security on JBoss

256

<ejb-jar>
<assembly-descriptor>

<method-permission>
<description>The employee and temp-employee roles may access any

method of the EmployeeService bean </description>
<role-name>employee</role-name>
<role-name>temp-employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<description>The employee role may access the findByPrimaryKey,
getEmployeeInfo, and the updateEmployeeInfo(String) method

of
the AardvarkPayroll bean </description>

<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</method-permission>
<method-permission>

<description>The admin role may access any method of the
EmployeeServiceAdmin bean </description>

<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<description>Any authenticated user may access any method of the
EmployeeServiceHelp bean</description>

<unchecked/>
<method>

<ejb-name>EmployeeServiceHelp</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<exclude-list>

<description>No fireTheCTO methods of the EmployeeFiring bean
may be

used in this deployment</description>

EJB method permissions

257

<method>
<ejb-name>EmployeeFiring</ejb-name>
<method-name>fireTheCTO</method-name>

</method>
</exclude-list>

</assembly-descriptor>
</ejb-jar>

Example 8.5. An ejb-jar.xml descriptor fragment that illustrates the
method-permission element usage.

1.5. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a
URL pattern that identifies the protected content. This set of information is declared by using the
web.xmlsecurity-constraint element.

Chapter 8. Security on JBoss

258

Figure 8.6. The security-constraint element

The content to be secured is declared using one or more web-resource-collection elements.
Each web-resource-collection element contains an optional series of url-pattern
elements followed by an optional series of http-method elements. The url-pattern element
value specifies a URL pattern against which a request URL must match for the request to
correspond to an attempt to access secured content. The http-method element value specifies
a type of HTTP request to allow.

The optional user-data-constraint element specifies the requirements for the transport layer
of the client to server connection. The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing reading while in
transit). The transport-guarantee element value specifies the degree to which communication
between the client and server should be protected. Its values are NONE, INTEGRAL, and
CONFIDENTIAL. A value of NONE means that the application does not require any transport
guarantees. A value of INTEGRAL means that the application requires the data sent between the
client and server to be sent in such a way that it can't be changed in transit. A value of
CONFIDENTIAL means that the application requires the data to be transmitted in a fashion that
prevents other entities from observing the contents of the transmission. In most cases, the
presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is required.

The optional login-config element is used to configure the authentication method that should
be used, the realm name that should be used for rhw application, and the attributes that are
needed by the form login mechanism.

Figure 8.7. The login-config element

The auth-method child element specifies the authentication mechanism for the web application.
As a prerequisite to gaining access to any web resources that are protected by an authorization

Web Content Security Constraints

259

constraint, a user must have authenticated using the configured mechanism. Legal
auth-method values are BASIC, DIGEST, FORM, and CLIENT-CERT. The realm-name child
element specifies the realm name to use in HTTP basic and digest authorization. The
form-login-config child element specifies the log in as well as error pages that should be
used in form-based login. If the auth-method value is not FORM, then form-login-config and
its child elements are ignored.

As an example, the web.xml descriptor fragment given in Example 8.6, “ A web.xml descriptor
fragment which illustrates the use of the security-constraint and related elements.” indicates that
any URL lying under the web application's /restricted path requires an AuthorizedUser role.
There is no required transport guarantee and the authentication method used for obtaining the
user identity is BASIC HTTP authentication.

<web-app>
<!-- ... -->
<security-constraint>

<web-resource-collection>
<web-resource-name>Secure Content</web-resource-name>
<url-pattern>/restricted/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>AuthorizedUser</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<!-- ... -->
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>The Restricted Zone</realm-name>

</login-config>
<!-- ... -->
<security-role>

<description>The role required to access restricted content
</description>

<role-name>AuthorizedUser</role-name>
</security-role>

</web-app>

Example 8.6. A web.xml descriptor fragment which illustrates the use of
the security-constraint and related elements.

1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered so far describe the security requirements
only from the application's perspective. Because J2EE security elements declare logical roles,
the application deployer maps the roles from the application domain onto the deployment
environment. The J2EE specifications omit these application server-specific details. In JBoss,

Chapter 8. Security on JBoss

260

mapping the application roles onto the deployment environment entails specifying a security
manager that implements the J2EE security model using JBoss server specific deployment
descriptors. The details behind the security configuration are discussed in Section 3, “The
JBoss Security Model”.

2. An Introduction to JAAS

The JBossSX framework is based on the JAAS API. It is important that you understand the
basic elements of the JAAS API to understand the implementation details of JBossSX. The
following sections provide an introduction to JAAS to prepare you for the JBossSX architecture
discussion later in this chapter.

2.1. What is JAAS?

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and
authorization. It implements a Java version of the standard Pluggable Authentication Module
(PAM) framework and compatibly extends the Java 2 Platform's access control architecture to
support user-based authorization. JAAS was first released as an extension package for JDK 1.3
and is bundled with JDK 1.4+. Because the JBossSX framework uses only the authentication
capabilities of JAAS to implement the declarative role-based J2EE security model, this
introduction focuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to
remain independent from underlying authentication technologies and allows the JBossSX
security manager to work in different security infrastructures. Integration with a security
infrastructure can be achieved without changing the JBossSX security manager implementation.
All that needs to change is the configuration of the authentication stack that JAAS uses.

2.1.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and
authorization. The following list presents only the common and authentication classes because
these are the specific classes used to implement the functionality of JBossSX covered in this
chapter.

The are the common classes:

• Subject (javax.security.auth.Subject)
• Principal (java.security.Principal)

These are the authentication classes:

• Callback (javax.security.auth.callback.Callback)
• CallbackHandler (javax.security.auth.callback.CallbackHandler)
• Configuration (javax.security.auth.login.Configuration)
• LoginContext (javax.security.auth.login.LoginContext)

An Introduction to JAAS

261

• LoginModule (javax.security.auth.spi.LoginModule)

2.1.1.1. The Subject and Principal Classes

To authorize access to resources, applications first need to authenticate the request's source.
The JAAS framework defines the term subject to represent a request's source. The Subject

class is the central class in JAAS. A Subject represents information for a single entity, such as
a person or service. It encompasses the entity's principals, public credentials, and private
credentials. The JAAS APIs use the existing Java 2 java.security.Principal interface to
represent a principal, which is essentially just a typed name.

During the authentication process, a subject is populated with associated identities, or
principals. A subject may have many principals. For example, a person may have a name
principal (John Doe), a social security number principal (123-45-6789), and a username
principal (johnd), all of which help distinguish the subject from other subjects. To retrieve the
principals associated with a subject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Class c) {...}

The first method returns all principals contained in the subject. The second method returns only
those principals that are instances of class c or one of its subclasses. An empty set is returned if
the subject has no matching principals. Note that the java.security.acl.Group interface is a
subinterface of java.security.Principal, so an instance in the principals set may represent
a logical grouping of other principals or groups of principals.

2.1.1.2. Authentication of a Subject

Authentication of a subject requires a JAAS login. The login procedure consists of the following
steps:

1. An application instantiates a LoginContext and passes in the name of the login configuration
and a CallbackHandler to populate the Callback objects, as required by the configuration
LoginModules.

2. The LoginContext consults a Configuration to load all the LoginModules included in the
named login configuration. If no such named configuration exists the other configuration is
used as a default.

3. The application invokes the LoginContext.login method.

4. The login method invokes all the loaded LoginModules. As each LoginModule attempts to
authenticate the subject, it invokes the handle method on the associated CallbackHandler

to obtain the information required for the authentication process. The required information is
passed to the handle method in the form of an array of Callback objects. Upon success, the
LoginModules associate relevant principals and credentials with the subject.

Chapter 8. Security on JBoss

262

5. The LoginContext returns the authentication status to the application. Success is
represented by a return from the login method. Failure is represented through a
LoginException being thrown by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the
LoginContext.getSubject method.

7. After the scope of the subject authentication is complete, all principals and related
information associated with the subject by the login method can be removed by invoking the
LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a
way to develop an application that is independent of the underlying authentication technology.
The LoginContext consults a Configuration to determine the authentication services
configured for a particular application. LoginModule classes represent the authentication
services. Therefore, you can plug different login modules into an application without changing
the application itself. The following code shows the steps required by an application to
authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext("some-config", handler);

try {
lc.login();
Subject subject = lc.getSubject();

} catch(LoginException e) {
System.out.println("authentication failed");
e.printStackTrace();

}

// Perform work as authenticated Subject
// ...

// Scope of work complete, logout to remove authentication info
try {

lc.logout();
} catch(LoginException e) {

System.out.println("logout failed");
e.printStackTrace();

}

// A sample MyHandler class
class MyHandler

implements CallbackHandler
{

public void handle(Callback[] callbacks) throws
IOException, UnsupportedCallbackException

{
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {
NameCallback nc = (NameCallback)callbacks[i];
nc.setName(username);

} else if (callbacks[i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks[i];

What is JAAS?

263

pc.setPassword(password);
} else {

throw new UnsupportedCallbackException(callbacks[i],
"Unrecognized

Callback");
}

}
}

}

Developers integrate with an authentication technology by creating an implementation of the
LoginModule interface. This allows an administrator to plug different authentication
technologies into an application. You can chain together multiple LoginModules to allow for
more than one authentication technology to participate in the authentication process. For
example, one LoginModule may perform username/password-based authentication, while
another may interface to hardware devices such as smart card readers or biometric
authenticators.

The life cycle of a LoginModule is driven by the LoginContext object against which the client
creates and issues the login method. The process consists of two phases. The steps of the
process are as follows:

• The LoginContext creates each configured LoginModule using its public no-arg constructor.

• Each LoginModule is initialized with a call to its initialize method. The Subject argument is
guaranteed to be non-null. The signature of the initialize method is: public void

initialize(Subject subject, CallbackHandler callbackHandler, Map

sharedState, Map options).

• The login method is called to start the authentication process. For example, a method
implementation might prompt the user for a username and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
LoginModule is considered phase 1 of JAAS authentication. The signature of the login

method is boolean login() throws LoginException. A LoginException indicates failure.
A return value of true indicates that the method succeeded, whereas a return valueof false
indicates that the login module should be ignored.

• If the LoginContext's overall authentication succeeds, commit is invoked on each
LoginModule. If phase 1 succeeds for a LoginModule, then the commit method continues
with phase 2 and associates the relevant principals, public credentials, and/or private
credentials with the subject. If phase 1 fails for a LoginModule, then commit removes any
previously stored authentication state, such as usernames or passwords. The signature of the
commit method is: boolean commit() throws LoginException. Failure to complete the
commit phase is indicated by throwing a LoginException. A return of true indicates that the
method succeeded, whereas a return of false indicates that the login module should be

Chapter 8. Security on JBoss

264

ignored.

• If the LoginContext's overall authentication fails, then the abort method is invoked on each
LoginModule. The abort method removes or destroys any authentication state created by
the login or initialize methods. The signature of the abort method is boolean abort()

throws LoginException. Failure to complete the abort phase is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

• To remove the authentication state after a successful login, the application invokes logout on
the LoginContext. This in turn results in a logout method invocation on each LoginModule.
The logout method removes the principals and credentials originally associated with the
subject during the commit operation. Credentials should be destroyed upon removal. The
signature of the logout method is: boolean logout() throws LoginException. Failure to
complete the logout process is indicated by throwing a LoginException. A return of true
indicates that the method succeeded, whereas a return of false indicates that the login
module should be ignored.

When a LoginModule must communicate with the user to obtain authentication information, it
uses a CallbackHandler object. Applications implement the CallbackHandler interface and
pass it to the LoginContext, which forwards it directly to the underlying login modules. Login
modules use the CallbackHandler both to gather input from users, such as a password or
smart card PIN, and to supply information to users, such as status information. By allowing the
application to specify the CallbackHandler, underlying LoginModules remain independent
from the different ways applications interact with users. For example, a CallbackHandler's
implementation for a GUI application might display a window to solicit user input. On the other
hand, a callbackhandler's implementation for a non-GUI environment, such as an application
server, might simply obtain credential information by using an application server API. The
callbackhandler interface has one method to implement:

void handle(Callback[] callbacks)
throws java.io.IOException,

UnsupportedCallbackException;

The Callback interface is the last authentication class we will look at. This is a tagging interface
for which several default implementations are provided, including the NameCallback and
PasswordCallback used in an earlier example. A LoginModule uses a Callback to request
information required by the authentication mechanism. LoginModules pass an array of
Callbacks directly to the CallbackHandler.handle method during the authentication's login
phase. If a callbackhandler does not understand how to use a Callback object passed into
the handle method, it throws an UnsupportedCallbackException to abort the login call.

3. The JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of
interfaces for which alternate implementations may be provided. Three basic interfaces define

The JBoss Security Model

265

the JBoss server security layer: org.jboss.security.AuthenticationManager,
org.jboss.security.RealmMapping, and org.jboss.security.SecurityProxy. Figure 8.8,
“The key security model interfaces and their relationship to the JBoss server EJB container
elements.” shows a class diagram of the security interfaces and their relationship to the EJB
container architecture.

Figure 8.8. The key security model interfaces and their relationship to the
JBoss server EJB container elements.

The light blue classes represent the security interfaces while the yellow classes represent the
EJB container layer. The two interfaces required for the implementation of the J2EE security
model are org.jboss.security.AuthenticationManager and
org.jboss.security.RealmMapping. The roles of the security interfaces presented in
Figure 8.8, “The key security model interfaces and their relationship to the JBoss server EJB
container elements.” are summarized in the following list.

• AuthenticationManager: This interface is responsible for validating credentials associated
with principals. Principals are identities, such as usernames, employee numbers, and social
security numbers. Credentials are proof of the identity, such as passwords, session keys, and
digital signatures. The isValid method is invoked to determine whether a user identity and
associated credentials as known in the operational environment are valid proof of the user's
identity.

Chapter 8. Security on JBoss

266

• RealmMapping: This interface is responsible for principal mapping and role mapping. The
getPrincipal method takes a user identity as known in the operational environment and
returns the application domain identity. The doesUserHaveRole method validates that the
user identity in the operation environment has been assigned the indicated role from the
application domain.

• SecurityProxy: This interface describes the requirements for a custom
SecurityProxyInterceptor plugin. A SecurityProxy allows for the externalization of
custom security checks on a per-method basis for both the EJB home and remote interface
methods.

• SubjectSecurityManager: This is a subinterface of AuthenticationManager that adds
accessor methods for obtaining the security domain name of the security manager and the
current thread's authenticated Subject.

• SecurityDomain: This is an extension of the AuthenticationManager, RealmMapping, and
SubjectSecurityManager interfaces. It is a move to a comprehensive security interface
based on the JAAS Subject, a java.security.KeyStore, and the JSSE
com.sun.net.ssl.KeyManagerFactory and com.sun.net.ssl.TrustManagerFactory

interfaces. This interface is a work in progress that will be the basis of a multi-domain security
architecture that will better support ASP style deployments of applications and resources.

Note that the AuthenticationManager, RealmMapping and SecurityProxy interfaces have no
association to JAAS related classes. Although the JBossSX framework is heavily dependent on
JAAS, the basic security interfaces required for implementation of the J2EE security model are
not. The JBossSX framework is simply an implementation of the basic security plug-in interfaces
that are based on JAAS. The component diagram presented in Figure 8.9, “The relationship
between the JBossSX framework implementation classes and the JBoss server EJB container
layer.” illustrates this fact. The implication of this plug-in architecture is that you are free to
replace the JAAS-based JBossSX implementation classes with your own custom security
manager implementation that does not make use of JAAS, if you so desire. You'll see how to do
this when you look at the JBossSX MBeans available for the configuration of JBossSX in
Figure 8.9, “The relationship between the JBossSX framework implementation classes and the
JBoss server EJB container layer.”.

The JBoss Security Model

267

Figure 8.9. The relationship between the JBossSX framework
implementation classes and the JBoss server EJB container layer.

3.1. Enabling Declarative Security in JBoss Revisited

Earlier in this chapter, the discussion of the J2EE standard security model ended with a
requirement for the use of JBoss server-specific deployment descriptor to enable security. The
details of this configuration are presented here. Figure 8.10, “The security element subsets of
the JBoss server jboss.xml and jboss-web.xml deployment descriptors.” shows the
JBoss-specific EJB and web application deployment descriptor's security-related elements.

Chapter 8. Security on JBoss

268

Figure 8.10. The security element subsets of the JBoss server jboss.xml
and jboss-web.xml deployment descriptors.

The value of a security-domain element specifies the JNDI name of the security manager
interface implementation that JBoss uses for the EJB and web containers. This is an object that
implements both of the AuthenticationManager and RealmMapping interfaces. When specified
as a top-level element it defines what security domain in effect for all EJBs in the deployment
unit. This is the typical usage because mixing security managers within a deployment unit
complicates inter-component operation and administration.

To specify the security domain for an individual EJB, you specify the security-domain at the
container configuration level. This will override any top-level security-domain element.

The unauthenticated-principal element specifies the name to use for the Principal object

Enabling Declarative Security in JBoss

269

returned by the EJBContext.getUserPrincipal method when an unauthenticated user
invokes an EJB. Note that this conveys no special permissions to an unauthenticated caller. Its
primary purpose is to allow unsecured servlets and JSP pages to invoke unsecured EJBs and
allow the target EJB to obtain a non-null Principal for the caller using the getUserPrincipal

method. This is a J2EE specification requirement.

The security-proxy element identifies a custom security proxy implementation that allows
per-request security checks outside the scope of the EJB declarative security model without
embedding security logic into the EJB implementation. This may be an implementation of the
org.jboss.security.SecurityProxy interface, or just an object that implements methods in
the home, remote, local home or local interfaces of the EJB to secure without implementing any
common interface. If the given class does not implement the SecurityProxy interface, the
instance must be wrapped in a SecurityProxy implementation that delegates the method
invocations to the object. The org.jboss.security.SubjectSecurityProxy is an example
SecurityProxy implementation used by the default JBossSX installation.

Take a look at a simple example of a custom SecurityProxy in the context of a trivial stateless
session bean. The custom SecurityProxy validates that no one invokes the bean's echo

method with a four-letter word as its argument. This is a check that is not possible with
role-based security; you cannot define a FourLetterEchoInvoker role because the security
context is the method argument, not a property of the caller. The code for the custom
SecurityProxy is given in Example 8.7, “The example 1 custom EchoSecurityProxy
implementation that enforces the echo argument-based security constraint.”, and the full source
code is available in the src/main/org/jboss/book/security/ex1 directory of the book
examples.

package org.jboss.book.security.ex1;

import java.lang.reflect.Method;
import javax.ejb.EJBContext;

import org.apache.log4j.Category;

import org.jboss.security.SecurityProxy;

/** A simple example of a custom SecurityProxy implementation
* that demonstrates method argument based security checks.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.12 $
*/

public class EchoSecurityProxy implements SecurityProxy
{

Category log = Category.getInstance(EchoSecurityProxy.class);
Method echo;

public void init(Class beanHome, Class beanRemote,
Object securityMgr)

throws InstantiationException
{

log.debug("init, beanHome="+beanHome
+ ", beanRemote="+beanRemote
+ ", securityMgr="+securityMgr);

Chapter 8. Security on JBoss

270

// Get the echo method for equality testing in invoke
try {

Class[] params = {String.class};
echo = beanRemote.getDeclaredMethod("echo", params);

} catch(Exception e) {
String msg = "Failed to finde an echo(String) method";
log.error(msg, e);
throw new InstantiationException(msg);

}
}

public void setEJBContext(EJBContext ctx)
{

log.debug("setEJBContext, ctx="+ctx);
}

public void invokeHome(Method m, Object[] args)
throws SecurityException

{
// We don't validate access to home methods

}

public void invoke(Method m, Object[] args, Object bean)
throws SecurityException

{
log.debug("invoke, m="+m);
// Check for the echo method
if (m.equals(echo)) {

// Validate that the msg arg is not 4 letter word
String arg = (String) args[0];
if (arg == null || arg.length() == 4)

throw new SecurityException("No 4 letter words");
}
// We are not responsible for doing the invoke

}
}

Example 8.7. The example 1 custom EchoSecurityProxy implementation
that enforces the echo argument-based security constraint.

The EchoSecurityProxy checks that the method to be invoked on the bean instance
corresponds to the echo(String) method loaded the init method. If there is a match, the
method argument is obtained and its length compared against 4 or null. Either case results in a
SecurityException being thrown. Certainly this is a contrived example, but only in its
application. It is a common requirement that applications must perform security checks based
on the value of method arguments. The point of the example is to demonstrate how custom
security beyond the scope of the standard declarative security model can be introduced
independent of the bean implementation. This allows the specification and coding of the security
requirements to be delegated to security experts. Since the security proxy layer can be done

Revisited

271

independent of the bean implementation, security can be changed to match the deployment
environment requirements.

The associated jboss.xml descriptor that installs the EchoSecurityProxy as the custom proxy
for the EchoBean is given in Example 8.8, “The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.”.

<jboss>
<security-domain>java:/jaas/other</security-domain>

<enterprise-beans>
<session>

<ejb-name>EchoBean</ejb-name>
<security-proxy>org.jboss.book.security.ex1.EchoSecurityProxy</security-proxy>

</session>
</enterprise-beans>

</jboss>

Example 8.8. The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.

Now test the custom proxy by running a client that attempts to invoke the EchoBean.echo

method with the arguments Hello and Four as illustrated in this fragment:

public class ExClient
{

public static void main(String args[])
throws Exception

{
Logger log = Logger.getLogger("ExClient");
log.info("Looking up EchoBean");

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

log.info("Created Echo");
log.info("Echo.echo('Hello') = "+echo.echo("Hello"));
log.info("Echo.echo('Four') = "+echo.echo("Four"));

}
}

The first call should succeed, while the second should fail due to the fact that Four is a
four-letter word. Run the client as follows using Ant from the examples directory:

[examples]$ ant -Dchap=security -Dex=1 run-example
run-example1:
...

Chapter 8. Security on JBoss

272

[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Looking up EchoBean
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello
[java] Exception in thread "main" java.rmi.AccessException:

SecurityException; nested exception is:
[java] java.lang.SecurityException: No 4 letter words

...
[java] Caused by: java.lang.SecurityException: No 4 letter words

...

The result is that the echo('Hello') method call succeeds as expected and the echo('Four')

method call results in a rather messy looking exception, which is also expected. The above
output has been truncated to fit in the book. The key part to the exception is that the
SecurityException("No 4 letter words") generated by the EchoSecurityProxy was
thrown to abort the attempted method invocation as desired.

4. The JBoss Security Extension Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX
security extension framework is an implementation of the security layer interfaces. This is the
primary purpose of the JBossSX framework. The details of the implementation are interesting in
that it offers a great deal of customization for integration into existing security infrastructures. A
security infrastructure can be anything from a database or LDAP server to a sophisticated
security software suite. The integration flexibility is achieved using the pluggable authentication
model available in the JAAS framework.

The heart of the JBossSX framework is
org.jboss.security.plugins.JaasSecurityManager. This is the default implementation of
the AuthenticationManager and RealmMapping interfaces. Figure 8.11, “The relationship
between the security-domain component deployment descriptor value, the component container
and the JaasSecurityManager.” shows how the JaasSecurityManager integrates into the EJB
and web container layers based on the security-domain element of the corresponding
component deployment descriptor.

The JBoss Security Extension Architecture

273

Figure 8.11. The relationship between the security-domain component
deployment descriptor value, the component container and the
JaasSecurityManager.

Chapter 8. Security on JBoss

274

Figure 8.11, “The relationship between the security-domain component deployment descriptor
value, the component container and the JaasSecurityManager.” depicts an enterprise
application that contains both EJBs and web content secured under the security domain
jwdomain. The EJB and web containers have a request interceptor architecture that includes a
security interceptor, which enforces the container security model. At deployment time, the
security-domain element value in the jboss.xml and jboss-web.xml descriptors is used to
obtain the security manager instance associated with the container. The security interceptor
then uses the security manager to perform its role. When a secured component is requested,
the security interceptor delegates security checks to the security manager instance associated
with the container.

The JBossSX JaasSecurityManager implementation performs security checks based on the
information associated with the Subject instance that results from executing the JAAS login
modules configured under the name matching the security-domain element value. We will drill
into the JaasSecurityManager implementation and its use of JAAS in the following section.

4.1. How the JaasSecurityManager Uses JAAS

The JaasSecurityManager uses the JAAS packages to implement the
AuthenticationManager and RealmMapping interface behavior. In particular, its behavior
derives from the execution of the login module instances that are configured under the name
that matches the security domain to which the JaasSecurityManager has been assigned. The
login modules implement the security domain's principal authentication and role-mapping
behavior. Thus, you can use the JaasSecurityManager across different security domains
simply by plugging in different login module configurations for the domains.

To illustrate the details of the JaasSecurityManager's usage of the JAAS authentication
process, you will walk through a client invocation of an EJB home method invocation. The
prerequisite setting is that the EJB has been deployed in the JBoss server and its home
interface methods have been secured using method-permission elements in the ejb-jar.xml

descriptor, and it has been assigned a security domain named jwdomain using the jboss.xml

descriptor security-domain element.

How the JaasSecurityManager Uses JAAS

275

Figure 8.12. An illustration of the steps involved in the authentication and
authorization of a secured EJB home method invocation.

Figure 8.12, “An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.” provides a view of the client to server communication

Chapter 8. Security on JBoss

276

we will discuss. The numbered steps shown are:

1. The client first has to perform a JAAS login to establish the principal and credentials for
authentication, and this is labeled Client Side Login in the figure. This is how clients establish
their login identities in JBoss. Support for presenting the login information via JNDI
InitialContext properties is provided via an alternate configuration. A JAAS login entails
creating a LoginContext instance and passing the name of the configuration to use. The
configuration name is other. This one-time login associates the login principal and
credentials with all subsequent EJB method invocations. Note that the process might not
authenticate the user. The nature of the client-side login depends on the login module
configuration that the client uses. In this example, the other client-side login configuration
entry is set up to use the ClientLoginModule module (an
org.jboss.security.ClientLoginModule). This is the default client side module that
simply binds the username and password to the JBoss EJB invocation layer for later
authentication on the server. The identity of the client is not authenticated on the client.

2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is
labeled as Home Method Invocation. This results in a home interface method invocation
being sent to the JBoss server. The invocation includes the method arguments passed by the
client along with the user identity and credentials from the client-side JAAS login performed in
step 1.

3. On the server side, the security interceptor first requires authentication of the user invoking
the call, which, as on the client side, involves a JAAS login.

4. The security domain under which the EJB is secured determines the choice of login modules.
The security domain name is used as the login configuration entry name passed to the
LoginContext constructor. The EJB security domain is jwdomain. If the JAAS login
authenticates the user, a JAAS Subject is created that contains the following in its
PrincipalsSet:

• A java.security.Principal that corresponds to the client identity as known in the
deployment security environment.

• A java.security.acl.Group named Roles that contains the role names from the
application domain to which the user has been assigned.
org.jboss.security.SimplePrincipal objects are used to represent the role names;
SimplePrincipal is a simple string-based implementation of Principal. These roles are
used to validate the roles assigned to methods in ejb-jar.xml and the
EJBContext.isCallerInRole(String) method implementation.

• An optional java.security.acl.Group named CallerPrincipal, which contains a single
org.jboss.security.SimplePrincipal that corresponds to the identity of the application
domain's caller. The CallerPrincipal sole group member will be the value returned by
the EJBContext.getCallerPrincipal() method. The purpose of this mapping is to allow
a Principal as known in the operational security environment to map to a Principal with
a name known to the application. In the absence of a CallerPrincipal mapping the

How the JaasSecurityManager Uses JAAS

277

deployment security environment principal is used as the getCallerPrincipal method
value. That is, the operational principal is the same as the application domain principal.

5. The final step of the security interceptor check is to verify that the authenticated user has
permission to invoke the requested method This is labeled as Server Side Authorization in
Figure 8.12, “An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.”. Performing the authorization this entails the
following steps:

• Obtain the names of the roles allowed to access the EJB method from the EJB container.
The role names are determined by ejb-jar.xml descriptor role-name elements of all
method-permission elements containing the invoked method.

• If no roles have been assigned, or the method is specified in an exclude-list element,
then access to the method is denied. Otherwise, the doesUserHaveRole method is invoked
on the security manager by the security interceptor to see if the caller has one of the
assigned role names. This method iterates through the role names and checks if the
authenticated user's Subject Roles group contains a SimplePrincipal with the assigned
role name. Access is allowed if any role name is a member of the Roles group. Access is
denied if none of the role names are members.

• If the EJB was configured with a custom security proxy, the method invocation is delegated
to it. If the security proxy wants to deny access to the caller, it will throw a
java.lang.SecurityException. If no SecurityException is thrown, access to the EJB
method is allowed and the method invocation passes to the next container interceptor.
Note that the SecurityProxyInterceptor handles this check and this interceptor is not
shown.

Every secured EJB method invocation, or secured web content access, requires the
authentication and authorization of the caller because security information is handled as a
stateless attribute of the request that must be presented and validated on each request. This
can be an expensive operation if the JAAS login involves client-to-server communication.
Because of this, the JaasSecurityManager supports the notion of an authentication cache that
is used to store principal and credential information from previous successful logins. You can
specify the authentication cache instance to use as part of the JaasSecurityManager

configuration as you will see when the associated MBean service is discussed in following
section. In the absence of any user-defined cache, a default cache that maintains credential
information for a configurable period of time is used.

4.2. The JaasSecurityManagerService MBean

The JaasSecurityManagerService MBean service manages security managers. Although its
name begins with Jaas, the security managers it handles need not use JAAS in their
implementation. The name arose from the fact that the default security manager implementation
is the JaasSecurityManager. The primary role of the JaasSecurityManagerService is to
externalize the security manager implementation. You can change the security manager
implementation by providing an alternate implementation of the AuthenticationManager and

Chapter 8. Security on JBoss

278

RealmMapping interfaces.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free management
of the JNDI name to security manager implementation mapping. It has been mentioned that
security is enabled by specifying the JNDI name of the security manager implementation via the
security-domain deployment descriptor element. When you specify a JNDI name, there has to
be an object-binding there to use. To simplify the setup of the JNDI name to security manager
bindings, the JaasSecurityManagerService manages the association of security manager
instances to names by binding a next naming system reference with itself as the JNDI
ObjectFactory under the name java:/jaas. This allows one to use a naming convention of the
form java:/jaas/XYZ as the value for the security-domain element, and the security
manager instance for the XYZ security domain will be created as needed for you. The security
manager for the domain XYZ is created on the first lookup against the java:/jaas/XYZ binding
by creating an instance of the class specified by the SecurityManagerClassName attribute
using a constructor that takes the name of the security domain. For example, consider the
following container security configuration snippet:

<jboss>
<!-- Configure all containers to be secured under the "hades" security

domain -->
<security-domain>java:/jaas/hades</security-domain>
<!-- ... -->

</jboss>

Any lookup of the name java:/jaas/hades will return a security manager instance that has
been associated with the security domain named hades. This security manager will implement
the AuthenticationManager and RealmMapping security interfaces and will be of the type
specified by the JaasSecurityManagerServiceSecurityManagerClassName attribute.

The JaasSecurityManagerService MBean is configured by default for use in the standard
JBoss distribution, and you can often use the default configuration as is. The configurable
attributes of the JaasSecurityManagerService include:

• SecurityManagerClassName: The name of the class that provides the security manager
implementation. The implementation must support both the
org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping

interfaces. If not specified this defaults to the JAAS-based
org.jboss.security.plugins.JaasSecurityManager.

• CallbackHandlerClassName: The name of the class that provides the
javax.security.auth.callback.CallbackHandler implementation used by the
JaasSecurityManager. You can override the handler used by the JaasSecurityManager if
the default implementation
(org.jboss.security.auth.callback.SecurityAssociationHandler) does not meet your
needs. This is a rather deep configuration that generally should not be set unless you know
what you are doing.

The JaasSecurityManagerService MBean

279

• SecurityProxyFactoryClassName: The name of the class that provides the
org.jboss.security.SecurityProxyFactory implementation. If not specified this defaults
to org.jboss.security.SubjectSecurityProxyFactory.

• AuthenticationCacheJndiName: Specifies the location of the security credential cache
policy. This is first treated as an ObjectFactory location capable of returning CachePolicy

instances on a per-security-domain basis. This is done by appending the name of the security
domain to this name when looking up the CachePolicy for a domain. If this fails, the location
is treated as a single CachePolicy for all security domains. As a default, a timed cache policy
is used.

• DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The
default value is 1800 seconds (30 minutes). The value you use for the timeout is a tradeoff
between frequent authentication operations and how long credential information may be out
of sync with respect to the security information store. If you want to disable caching of security
credentials, set this to 0 to force authentication to occur every time. This has no affect if the
AuthenticationCacheJndiName has been changed from the default value.

• DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds.
This controls the interval at which the cache current timestamp is updated and should be less
than the DefaultCacheTimeout in order for the timeout to be meaningful. The default
resolution is 60 seconds(1 minute). This has no affect if the AuthenticationCacheJndiName

has been changed from the default value.

• DefaultUnauthenticatedPrincipal: Specifies the principal to use for unauthenticated users.
This setting makes it possible to set default permissions for users who have not been
authenticated.

The JaasSecurityManagerService also supports a number of useful operations. These
include flushing any security domain authentication cache at runtime, getting the list of active
users in a security domain authentication cache, and any of the security manager interface
methods.

Flushing a security domain authentication cache can be used to drop all cached credentials
when the underlying store has been updated and you want the store state to be used
immediately. The MBean operation signature is: public void

flushAuthenticationCache(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
server.invoke(jaasMgr, "flushAuthenticationCache", params, signature);

Getting the list of active users provides a snapshot of the Principals keys in a security domain

Chapter 8. Security on JBoss

280

authentication cache that are not expired. The MBean operation signature is: public List

getAuthenticationCachePrincipals(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
List users = (List) server.invoke(jaasMgr,
"getAuthenticationCachePrincipals",

params, signature);

The security manager has a few additional access methods.

public boolean isValid(String securityDomain, Principal principal, Object
credential);
public Principal getPrincipal(String securityDomain, Principal principal);
public boolean doesUserHaveRole(String securityDomain, Principal principal,

Object credential, Set roles);
public Set getUserRoles(String securityDomain, Principal principal, Object
credential);

They provide access to the corresponding AuthenticationManager and RealmMapping

interface method of the associated security domain named by the securityDomain argument.

4.3. The JaasSecurityDomain MBean

The org.jboss.security.plugins.JaasSecurityDomain is an extension of
JaasSecurityManager that adds the notion of a KeyStore, a JSSE KeyManagerFactory and a
TrustManagerFactory for supporting SSL and other cryptographic use cases. The additional
configurable attributes of the JaasSecurityDomain include:

• KeyStoreType: The type of the KeyStore implementation. This is the type argument passed
to the java.security.KeyStore.getInstance(String type) factory method. The default
is JKS.

• KeyStoreURL: A URL to the location of the KeyStore database. This is used to obtain an
InputStream to initialize the KeyStore. If the string is not a value URL, it is treated as a file.

• KeyStorePass: The password associated with the KeyStore database contents. The
KeyStorePass is also used in combination with the Salt and IterationCount attributes to
create a PBE secret key used with the encode/decode operations. The KeyStorePass

attribute value format is one of the following:

• The plaintext password for the KeyStore The toCharArray() value of the string is used
without any manipulation.

The JaasSecurityDomain MBean

281

• A command to execute to obtain the plaintext password. The format is {EXT}... where the
... is the exact command line that will be passed to the Runtime.exec(String) method
to execute a platform-specific command. The first line of the command output is used as
the password.

• A class to create to obtain the plaintext password. The format is
{CLASS}classname[:ctorarg] where the [:ctorarg] is an optional string that will be
passed to the constructor when instantiating the classname. The password is obtained
from classname by invoking a toCharArray() method if found, otherwise, the toString()

method is used.

• Salt: The PBEParameterSpec salt value.

• IterationCount: The PBEParameterSpec iteration count value.

• TrustStoreType: The type of the TrustStore implementation. This is the type argument
passed to the java.security.KeyStore.getInstance(String type) factory method. The
default is JKS.

• TrustStoreURL: A URL to the location of the TrustStore database. This is used to obtain an
InputStream to initialize the KeyStore. If the string is not a value URL, it is treated as a file.

• TrustStorePass: The password associated with the trust store database contents. The
TrustStorePass is a simple password and doesn't have the same configuration options as
the KeyStorePass.

• ManagerServiceName: Sets the JMX object name string of the security manager service
MBean. This is used to register the defaults to register the JaasSecurityDomain as a the
security manager under java:/jaas/<domain> where <domain> is the name passed to the
MBean constructor. The name defaults to
jboss.security:service=JaasSecurityManager.

5. Defining Security Domains

The standard way of configuring security domains for authentication and authorization in JBoss
is to use the XML login configuration file. The login configuration policy defines a set of named
security domains that each define a stack of login modules that will be called upon to
authenticate and authorize users.

The XML configuration file conforms to the DTD given by Figure 8.13, “The XMLLoginConfig
DTD”. This DTD can be found in docs/dtd/security_config.dtd.

Chapter 8. Security on JBoss

282

Figure 8.13. The XMLLoginConfig DTD

The following example shows a simple configuration named jmx-console that is backed by a
single login module. The login module is configured by a simple set of name/value configuration
pairs that have meaning to the login module in question. We'll see what these options mean
later, for now we'll just be concerned with the structure of the configuration file.

<application-policy name="jmx-console">
<authentication>

<login-module
code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">

<module-option
name="usersProperties">props/jmx-console-users.properties</module-option>

<module-option
name="rolesProperties">props/jmx-console-roles.properties</module-option>

</login-module>
</authentication>

</application-policy>

The name attribute of the application-policy is the login configuration name. Applications
policy elements will be bound by that name in JNDI under the the java:/jaas context.
Applications will link to security domains through this JNDI name in their deployment
descriptors. (See the security-domain elements in jboss.xml, jboss-web.xml and
jboss-service.xml files for examples)

The code attribute of the login-module element specifies the class name of the login module
implementation. The required flag attribute controls the overall behavior of the authentication
stack. The allowed values and meanings are:

• required: The login module is required to succeed for the authentication to be successful. If
any required module fails, the authentication will fail. The remaining login modules in the
stack will be called regardless of the outcome of the authentication.

• requisite: The login module is required to succeed. If it succeeds, authentication continues
down the login stack. If it fails, control immediately returns to the application.

• sufficient: The login module is not required to succeed. If it does succeed, control
immediately returns to the application. If it fails, authentication continues down the login stack.

Defining Security Domains

283

• optional: The login module is not required to succeed. Authentication still continues to
proceed down the login stack regardless of whether the login module succeeds or fails.

The following example shows the definition of a security domain that uses multiple login
modules. Since both modules are marked as sufficient, only one of them need to succeed for
login to proceed.

<application-policy name="todo">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="sufficient">

<!-- LDAP configuration -->
</login-module>
<login-module

code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="sufficient">

<!-- database configuration -->
</login-module>

</authentication>
</application-policy>

Each login module has its own set of configuration options. These are set as name/value pairs
using the module-option elements. We'll cover module options in more depth when we look at
the individual login modules available in JBoss AS.

5.1. Loading Security Domains

Authentication security domains are configured statically in the conf/login-config.xml file.
The XMLLoginConfig MBean is responsible for loading security configurations from this
configurations from a local configuration file. The MBean is defined as shown below.

<mbean code="org.jboss.security.auth.login.XMLLoginConfig"
name="jboss.security:service=XMLLoginConfig">

<attribute name="ConfigResource">login-config.xml</attribute>
</mbean>

The MBean supports the following attributes:

• ConfigURL: specifies the URL of the XML login configuration file that should be loaded by
this MBean on startup. This must be a valid URL string representation.

• ConfigResource: specifies the resource name of the XML login configuration file that should
be loaded by this MBean on startup. The name is treated as a classpath resource for which a
URL is located using the thread context class loader.

• ValidateDTD: a flag indicating if the XML configuration should be validated against its DTD.
This defaults to true.

Chapter 8. Security on JBoss

284

The MBean also supports the following operations that allow one to dynamically extend the
login configurations at runtime. Note that any operation that attempts to alter login configuration
requires a javax.security.auth.AuthPermission("refreshLoginConfiguration") when
running with a security manager. The org.jboss.book.security.service.SecurityConfig

service demonstrates how this can be used to add/remove a deployment specific security
configuration dynamically.

• void addAppConfig(String appName, AppConfigurationEntry[] entries): this adds
the given login module configuration stack to the current configuration under the given
appName. This replaces any existing entry under that name.

• void removeAppConfig(String appName): this removes the login module configuration
registered under the given appName.

• String[] loadConfig(URL configURL) throws Exception: this loads one or more login
configurations from a URL representing either an XML or legacy Sun login configuration file.
Note that all login configurations must be added or none will be added. It returns the names of
the login configurations that were added.

• void removeConfigs(String[] appNames): this removes the login configurations specified
appNames array.

• String displayAppConfig(String appName): this operation displays a simple string format
of the named configuration if it exists.

The SecurityConfig MBean is responsible for selecting the
javax.security.auth.login.Configuration to be used. The default configuration simply
references the XMLLoginConfig MBean.

<mbean code="org.jboss.security.plugins.SecurityConfig"
name="jboss.security:service=SecurityConfig">

<attribute
name="LoginConfig">jboss.security:service=XMLLoginConfig</attribute>

</mbean>

There is one configurable attribute:

• LoginConfig: Specifies the JMX ObjectName string of the MBean that provides the default
JAAS login configuration. When the SecurityConfig is started, this MBean is queried for its
javax.security.auth.login.Configuration by calling its
getConfiguration(Configuration currentConfig) operation. If the LoginConfig

attribute is not specified then the default Sun Configuration implementation described in the
Configuration class JavaDocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service allows

Loading Security Domains

285

configurations to be chained together in a stack at runtime. This allows one to push a login
configuration onto the stack and latter pop it. This is a feature used by the security unit tests to
install custom login configurations into a default JBoss installation. Pushing a new configuration
is done using:

public void pushLoginConfig(String objectName) throws
JMException, MalformedObjectNameException;

The objectName parameters specifies an MBean similar to the LoginConfig attribute. The
current login configuration may be removed using:

public void popLoginConfig() throws JMException;

5.2. The DynamicLoginConfig service

Security domains defined in the login-config.xml file are essentially static. They are read
when JBoss starts up, but there is no easy way to add a new security domain or change the
definition for an existing one. The DynamicLoginConfig service allows you to dynamically
deploy security domains. This allows you to specify JAAS login configuration as part of a
deployment (or just as a standalone service) rather than having to edit the static
login-config.xml file.

The service supports the following attributes:

• AuthConfig: The resource path to the JAAS login configuration file to use. This defaults to
login-config.xml

• LoginConfigService: the XMLLoginConfig service name to use for loading. This service
must support a String loadConfig(URL) operation to load the configurations.

• SecurityManagerService: The SecurityManagerService name used to flush the registered
security domains. This service must support a flushAuthenticationCache(String)

operation to flush the case for the argument security domain. Setting this triggers the flush of
the authentication caches when the service is stopped.

Here is an example MBean definition using the DynamicLoginConfig service.

<server>
<mbean code="org.jboss.security.auth.login.DynamicLoginConfig"

name="...">
<attribute name="AuthConfig">login-config.xml</attribute>

<!-- The service which supports dynamic processing of
login-config.xml

configurations.
-->
<depends optional-attribute-name="LoginConfigService">

Chapter 8. Security on JBoss

286

jboss.security:service=XMLLoginConfig </depends>

<!-- Optionally specify the security mgr service to use when
this service is stopped to flush the auth caches of the domains
registered by this service.

-->
<depends optional-attribute-name="SecurityManagerService">

jboss.security:service=JaasSecurityManager </depends>
</mbean>

</server>

This will load the specified AuthConfig resource using the specified LoginConfigService

MBean by invoking loadConfig with the appropriate resource URL. When the service is
stopped the configurations are removed. The resource specified may be either an XML file, or a
Sun JAAS login configuration.

5.3. Using JBoss Login Modules

JBoss includes several bundled login modules suitable for most user management needs.
JBoss can read user information from a relational database, an LDAP server or flat files. In
addition to these core login modules, JBoss provides several other login modules that provide
user information for very customized needs in JBoss. Before we explore the individual login
modules, let's take a look at a few login module configuration options that are common to
multiple modules.

5.3.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing
both the authentication and authorization components. This works for many use cases, but
sometimes authentication and authorization are split across multiple user management stores.
A previous example showed how to combine LDAP and a relational database, allowing a user
to be authenticated by either system. However, consider the case where users are managed in
a central LDAP server but application-specific roles are stored in the application's relational
database. The password-stacking module option captures this relationship.

• password-stacking: When password-stacking option is set to useFirstPass, this module
first looks for a shared username and password under the property names
javax.security.auth.login.name and javax.security.auth.login.password

respectively in the login module shared state map. If found these are used as the principal
name and password. If not found the principal name and password are set by this login
module and stored under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively.

To use password stacking, each login module should set password-stacking to
useFirstPass. If a previous module configured for password stacking has authenticated the
user, all the other stacking modules will consider the user authenticated and only attempt to

Using JBoss Login Modules

287

provide a set of roles for the authorization step.

The following listing shows how password stacking could be used:

<application-policy name="todo">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="required">

<!-- LDAP configuration -->
<module-option

name="password-stacking">useFirstPass</module-option>
</login-module>
<login-module

code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">

<!-- database configuration -->
<module-option

name="password-stacking">useFirstPass</module-option>
</login-module>

</authentication>
</application-policy>

When using password stacking, it is usually appropriate to set all modules to be required to
make sure that all modules are considered and have chance to contribute roles to the
authorization process.

5.3.2. Password Hashing

Most of the login modules need to compare a client-supplied password to a password stored in
a user management system. These modules generally work with plain text passwords, but can
also be configured to support hashed passwords to prevent plain text passwords from being
stored on the server side.

• hashAlgorithm: The name of the java.security.MessageDigest algorithm to use to hash
the password. There is no default so this option must be specified to enable hashing. Typical
values are MD5 and SHA.

• hashEncoding: The string format for the hashed pass and must be either base64, hex or
rfc2617. The default is base64.

• hashCharset: The encoding used to convert the clear text password to a byte array. The
platform default encoding is the default.

• hashUserPassword: This indicates that the hashing algorithm should be applied to the
password the user submits. The hashed user password will be compared against the value in
the login module, which is expected to be a hash of the password. The default is true.

• hashStorePassword: This indicates that the hashing algorithm should be applied to the
password stored on the server side. This is used for digest authentication where the user
submits a hash of the user password along with a request-specific tokens from the server to

Chapter 8. Security on JBoss

288

be comare. JBoss uses the hash algorithm (for digest, this would be rfc2617) to compute a
server-side hash that should match the hashed value sent from the client.

The following is an login module configuration that assigns unauthenticated users the principal
name nobody and contains based64-encoded, MD5 hashes of the passwords in a
usersb64.properties file.

<policy>
<application-policy name="testUsersRoles">

<authentication>
<login-module

code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">

<module-option name="hashAlgorithm">MD5</module-option>
<module-option name="hashEncoding">base64</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

If you need to generate passwords in code, the org.jboss.security.Util class provides a
static helper method that will hash a password using a given encoding.

String hashedPassword = Util.createPasswordHash("MD5",
Util.BASE64_ENCODING,
null,
null,
"password");

OpenSSL provides an alternative way to quickly generate hashed passwords.

echo -n password | openssl dgst -md5 -binary | openssl base64

In both cases, the text password should hash to "X03MO1qnZdYdgyfeuILPmQ==". This is the
value that would need to be stored in the user store.

5.3.3. Unauthenticated Identity

Not all requests come in authenticated. The unauthenticated identity is a login module
configuration option that assigns a specific identity (guest, for example) to requests that are
made with no associated authentication information. This can be used to allow unprotected
servlets to invoke methods on EJBs that do not require a specific role. Such a principal has no
associated roles and so can only access either unsecured EJBs or EJB methods that are
associated with the unchecked permission constraint.

• unauthenticatedIdentity: This defines the principal name that should be assigned to

Using JBoss Login Modules

289

requests that contain no authentication information.

5.3.4. UsersRolesLoginModule

The UsersRolesLoginModule is a simple login module that supports multiple users and user
roles loaded from Java properties files. The username-to-password mapping file is called
users.properties and the username-to-roles mapping file is called roles.properties. The
properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed into the J2EE deployment JAR, the JBoss
configuration directory, or any directory on the JBoss server or system classpath. The primary
purpose of this login module is to easily test the security settings of multiple users and roles
using properties files deployed with the application.

The users.properties file uses a username=password format with each user entry on a
separate line as show here:

username1=password1
username2=password2
...

The roles.properties file uses as username=role1,role2,... format with an optional group
name value. For example:

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

The username.XXX form of property name is used to assign the username roles to a particular
named group of roles where the XXX portion of the property name is the group name. The
username=... form is an abbreviation for username.Roles=..., where the Roles group name
is the standard name the JaasSecurityManager expects to contain the roles which define the
users permissions.

The following would be equivalent definitions for the jduke username:

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

The supported login module configuration options include the following:

• usersProperties: The name of the properties resource containing the username to password
mappings. This defaults to users.properties.

• rolesProperties: The name of the properties resource containing the username to roles
mappings. This defaults to roles.properties.

Chapter 8. Security on JBoss

290

This login module supports password stacking, password hashing and unauthenticated identity.

5.3.5. LdapLoginModule

The LdapLoginModule is a LoginModule implementation that authenticates against an LDAP
server. You would use the LdapLoginModule if your username and credentials are stored in an
LDAP server that is accessible using a JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through
to the environment object used to create JNDI initial context. The standard LDAP JNDI
properties used include the following:

• java.naming.factory.initial: The classname of the InitialContextFactory implementation.
This defaults to the Sun LDAP provider implementation
com.sun.jndi.ldap.LdapCtxFactory.

• java.naming.provider.url: The LDAP URL for the LDAP server

• java.naming.security.authentication: The security level to use. This defaults to simple.

• java.naming.security.protocol: The transport protocol to use for secure access, such as,
SSL.

• java.naming.security.principal: The principal for authenticating the caller to the service.
This is built from other properties as described below.

• java.naming.security.credentials: The value of the property depends on the authentication
scheme. For example, it could be a hashed password, clear-text password, key, certificate,
and so on.

The supported login module configuration options include the following:

• principalDNPrefix: A prefix to add to the username to form the user distinguished name. See
principalDNSuffix for more info.

• principalDNSuffix: A suffix to add to the username when forming the user distinguished
name. This is useful if you prompt a user for a username and you don't want the user to have
to enter the fully distinguished name. Using this property and principalDNSuffix the userDN

will be formed as principalDNPrefix + username + principalDNSuffix

• useObjectCredential: A true/false value that indicates that the credential should be obtained
as an opaque Object using the org.jboss.security.auth.callback.ObjectCallback

type of Callback rather than as a char[] password using a JAAS PasswordCallback. This
allows for passing non-char[] credential information to the LDAP server.

• rolesCtxDN: The fixed distinguished name to the context to search for user roles.

Using JBoss Login Modules

291

• userRolesCtxDNAttributeName: The name of an attribute in the user object that contains
the distinguished name to the context to search for user roles. This differs from rolesCtxDN

in that the context to search for a user's roles can be unique for each user.

• roleAttributeID: The name of the attribute that contains the user roles. If not specified this
defaults to roles.

• roleAttributeIsDN: A flag indicating whether the roleAttributeID contains the fully
distinguished name of a role object, or the role name. If false, the role name is taken from the
value of roleAttributeID. If true, the role attribute represents the distinguished name of a
role object. The role name is taken from the value of the roleNameAttributeId attribute of
the context name by the distinguished name. In certain directory schemas (e.g., MS
ActiveDirectory), role attributes in the user object are stored as DNs to role objects instead of
as simple names, in which case, this property should be set to true. The default is false.

• roleNameAttributeID: The name of the attribute of the context pointed to by the roleCtxDN

distinguished name value which contains the role name. If the roleAttributeIsDN property
is set to true, this property is used to find the role object's name attribute. The default is
group.

• uidAttributeID: The name of the attribute in the object containing the user roles that
corresponds to the userid. This is used to locate the user roles. If not specified this defaults to
uid.

• matchOnUserDN: A true/false flag indicating if the search for user roles should match on the
user's fully distinguished name. If false, just the username is used as the match value against
the uidAttributeName attribute. If true, the full userDN is used as the match value.

• unauthenticatedIdentity: The principal name that should be assigned to requests that
contain no authentication information. This behavior is inherited from the
UsernamePasswordLoginModule superclass.

• allowEmptyPasswords: A flag indicating if empty (length 0) passwords should be passed to
the LDAP server. An empty password is treated as an anonymous login by some LDAP
servers and this may not be a desirable feature. Set this to false to reject empty passwords or
true to have the LDAP server validate the empty password. The default is true.

The authentication of a user is performed by connecting to the LDAP server based on the login
module configuration options. Connecting to the LDAP server is done by creating an
InitialLdapContext with an environment composed of the LDAP JNDI properties described
previously in this section. The Context.SECURITY_PRINCIPAL is set to the distinguished name
of the user as obtained by the callback handler in combination with the principalDNPrefix

and principalDNSuffix option values, and the Context.SECURITY_CREDENTIALS property is
either set to the String password or the Object credential depending on the
useObjectCredential option.

Once authentication has succeeded by virtue of being able to create an InitialLdapContext

instance, the user's roles are queried by performing a search on the rolesCtxDN location with
search attributes set to the roleAttributeName and uidAttributeName option values. The

Chapter 8. Security on JBoss

292

roles names are obtaining by invoking the toString method on the role attributes in the search
result set.

The following is a sample login-config.xml entry.

<application-policy name="testLDAP">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="required">

<module-option name="java.naming.factory.initial">
com.sun.jndi.ldap.LdapCtxFactory
</module-option>

<module-option name="java.naming.provider.url">
ldap://ldaphost.jboss.org:1389/

</module-option>
<module-option name="java.naming.security.authentication">

simple
</module-option>
<module-option name="principalDNPrefix">uid=</module-option>
<module-option name="principalDNSuffix">

,ou=People,dc=jboss,dc=org
</module-option>

<module-option name="rolesCtxDN">
ou=Roles,dc=jboss,dc=org

</module-option>
<module-option name="uidAttributeID">member</module-option>
<module-option name="matchOnUserDN">true</module-option>

<module-option name="roleAttributeID">cn</module-option>
<module-option name="roleAttributeIsDN">false

</module-option>
</login-module>

</authentication>
</application-policy>

An LDIF file representing the structure of the directory this data operates against is shown
below.

dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jboss
o: JBoss

dn: ou=People,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,dc=jboss,dc=org
objectclass: top
objectclass: uidObject

Using JBoss Login Modules

293

objectclass: person
uid: jduke
cn: Java Duke
sn: Duke
userPassword: theduke

dn: ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: groupOfNames
cn: JBossAdmin
member: uid=jduke,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

Looking back at the testLDAP login module configuration, the java.naming.factory.initial,
java.naming.factory.url and java.naming.security options indicate the Sun LDAP JNDI
provider implementation will be used, the LDAP server is located on host ldaphost.jboss.org
on port 1389, and that the LDAP simple authentication method will be use to connect to the
LDAP server.

The login module attempts to connect to the LDAP server using a DN representing the user it is
trying to authenticate. This DN is constructed from the principalDNPrefix, passed in, the
username of the user and the principalDNSuffix as described above. In this example, the
username jduke would map to uid=jduke,ou=People,dc=jboss,dc=org. We've assumed the
LDAP server authenticates users using the userPassword attribute of the user's entry (theduke
in this example). This is the way most LDAP servers work, however, if your LDAP server
handles authentication differently you will need to set the authentication credentials in a way
that makes sense for your server.

Once authentication succeeds, the roles on which authorization will be based are retrieved by
performing a subtree search of the rolesCtxDN for entries whose uidAttributeID match the
user. If matchOnUserDN is true the search will be based on the full DN of the user. Otherwise the
search will be based on the actual user name entered. In this example, the search is under
ou=Roles,dc=jboss,dc=org for any entries that have a member attribute equal to
uid=jduke,ou=People,dc=jboss,dc=org. The search would locate cn=JBossAdmin under the
roles entry.

The search returns the attribute specified in the roleAttributeID option. In this example, the
attribute is cn. The value returned would be JBossAdmin, so the jduke user is assigned to the
JBossAdmin role.

It's often the case that a local LDAP server provides identity and authentication services but is
unable to use the authorization services. This is because application roles don't always map
well onto LDAP groups, and LDAP administrators are often hesitant to allow external
application-specific data in central LDAP servers. For this reason, the LDAP authentication

Chapter 8. Security on JBoss

294

module is often paired with another login module, such as the database login module, that can
provide roles more suitable to the application being developed.

This login module also supports unauthenticated identity and password stacking.

5.3.6. DatabaseServerLoginModule

The DatabaseServerLoginModule is a JDBC based login module that supports authentication
and role mapping. You would use this login module if you have your username, password and
role information relational database. The DatabaseServerLoginModule is based on two logical
tables:

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

The Principals table associates the user PrincipalID with the valid password and the Roles

table associates the user PrincipalID with its role sets. The roles used for user permissions
must be contained in rows with a RoleGroup column value of Roles. The tables are logical in
that you can specify the SQL query that the login module uses. All that is required is that the
java.sql.ResultSet has the same logical structure as the Principals and Roles tables
described previously. The actual names of the tables and columns are not relevant as the
results are accessed based on the column index. To clarify this notion, consider a database with
two tables, Principals and Roles, as already declared. The following statements build the
tables to contain a PrincipalIDjava with a Password of echoman in the Principals table, a
PrincipalIDjava with a role named Echo in the RolesRoleGroup in the Roles table, and a
PrincipalIDjava with a role named caller_java in the CallerPrincipalRoleGroup in the
Roles table:

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

The supported login module configuration options include the following:

• dsJndiName: The JNDI name for the DataSource of the database containing the logical
Principals and Roles tables. If not specified this defaults to java:/DefaultDS.

• principalsQuery: The prepared statement query equivalent to: select Password from

Principals where PrincipalID=?. If not specified this is the exact prepared statement that
will be used.

• rolesQuery: The prepared statement query equivalent to: select Role, RoleGroup from

Roles where PrincipalID=?. If not specified this is the exact prepared statement that will
be used.

• ignorePasswordCase: A boolean flag indicating if the password comparison should ignore

Using JBoss Login Modules

295

case. This can be useful for hashed password encoding where the case of the hashed
password is not significant.

• principalClass: An option that specifies a Principal implementation class. This must
support a constructor taking a string argument for the principal name.

As an example DatabaseServerLoginModule configuration, consider a custom table schema
like the following:

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

A corresponding login-config.xml entry would be:

<policy>
<application-policy name="testDB">

<authentication>
<login-module

code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">

<module-option
name="dsJndiName">java:/MyDatabaseDS</module-option>

<module-option name="principalsQuery">
select passwd from Users username where

username=?</module-option>
<module-option name="rolesQuery">

select userRoles, 'Roles' from UserRoles where
username=?</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

This module supports password stacking, password hashing and unathenticated identity.

5.3.7. BaseCertLoginModule

This is a login module which authenticates users based on X509 certificates. A typical use case
for this login module is CLIENT-CERT authentication in the web tier. This login module only
performs authentication. You need to combine it with another login module capable of acquiring
the authorization roles to completely define access to a secured web or EJB component. Two
subclasses of this login module, CertRolesLoginModule and DatabaseCertLoginModule

extend the behavior to obtain the authorization roles from either a properties file or database.

The BaseCertLoginModule needs a KeyStore to perform user validation. This is obtained
through a org.jboss.security.SecurityDomain implementation. Typically, the
SecurityDomain implementation is configured using the
org.jboss.security.plugins.JaasSecurityDomain MBean as shown in this
jboss-service.xml configuration fragment:

Chapter 8. Security on JBoss

296

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.ch8:service=SecurityDomain">

<constructor>
<arg type="java.lang.String" value="jmx-console"/>

</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute name="KeyStorePass">unit-tests-server</attribute>

</mbean>

This creates a security domain with the name jmx-console whose SecurityDomain

implementation is available via JNDI under the name java:/jaas/jmx-console following the
JBossSX security domain naming pattern. To secure a web application such as the
jmx-console.war using client certs and role based authorization, one would first modify the
web.xml to declare the resources to be secured, along with the allowed roles and security
domain to be used for authentication and authorization.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
...
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>An example security config that only allows users

with
the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>CLIENT-CERT</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Next we, need to specify the JBoss security domain in jboss-web.xml:

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Using JBoss Login Modules

297

Finally, you need to define the login module configuration for the jmx-console security domain
you just specified. This is done in the conf/login-config.xml file.

<application-policy name="jmx-console">
<authentication>

<login-module code="org.jboss.security.auth.spi.BaseCertLoginModule"
flag="required">

<module-option
name="password-stacking">useFirstPass</module-option>

<module-option
name="securityDomain">java:/jaas/jmx-console</module-option>

</login-module>
<login-module

code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">

<module-option
name="password-stacking">useFirstPass</module-option>

<module-option
name="usersProperties">jmx-console-users.properties</module-option>

<module-option
name="rolesProperties">jmx-console-roles.properties</module-option>

</login-module>
</authentication>

</application-policy>

Here the BaseCertLoginModule is used for authentication of the client cert, and the
UsersRolesLoginModule is only used for authorization due to the
password-stacking=useFirstPass option. Both the localhost.keystore and the
jmx-console-roles.properties need an entry that maps to the principal associated with the
client cert. By default, the principal is created using the client certificate distinguished name.
Consider the following certificate:

[starksm@banshee9100 conf]$ keytool -printcert -file
unit-tests-client.export
Owner: CN=unit-tests-client, OU=JBoss Inc., O=JBoss Inc., ST=Washington,
C=US
Issuer: CN=jboss.com, C=US, ST=Washington, L=Snoqualmie Pass,
EMAILADDRESS=admin
@jboss.com, OU=QA, O=JBoss Inc.
Serial number: 100103
Valid from: Wed May 26 07:34:34 PDT 2004 until: Thu May 26 07:34:34 PDT 2005
Certificate fingerprints:

MD5: 4A:9C:2B:CD:1B:50:AA:85:DD:89:F6:1D:F5:AF:9E:AB
SHA1: DE:DE:86:59:05:6C:00:E8:CC:C0:16:D3:C2:68:BF:95:B8:83:E9:58

The localhost.keystore would need this cert stored with an alias of CN=unit-tests-client,
OU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US and the
jmx-console-roles.properties would also need an entry for the same entry. Since the DN
contains many characters that are normally treated as delimiters, you will need to escape the
problem characters using a backslash ('\') as shown here:

Chapter 8. Security on JBoss

298

A sample roles.properties file for use with the UsersRolesLoginModule
CN\=unit-tests-client,\ OU\=JBoss\ Inc.,\ O\=JBoss\ Inc.,\ ST\=Washington,\
C\=US=JBossAdmin
admin=JBossAdmin

5.3.8. IdentityLoginModule

The IdentityLoginModule is a simple login module that associates a hard-coded user name a
to any subject authenticated against the module. It creates a SimplePrincipal instance using
the name specified by the principal option. This login module is useful when you need to
provide a fixed identity to a service and in development environments when you want to test the
security associated with a given principal and associated roles.

The supported login module configuration options include:

• principal: This is the name to use for the SimplePrincipal all users are authenticated as.
The principal name defaults to guest if no principal option is specified.

• roles: This is a comma-delimited list of roles that will be assigned to the user.

A sample XMLLoginConfig configuration entry that would authenticate all users as the principal
named jduke and assign role names of TheDuke, and AnimatedCharacter is:

<policy>
<application-policy name="testIdentity">

<authentication>
<login-module

code="org.jboss.security.auth.spi.IdentityLoginModule"
flag="required">

<module-option name="principal">jduke</module-option>
<module-option

name="roles">TheDuke,AnimatedCharater</module-option>
</login-module>

</authentication>
</application-policy>

</policy>

This module supports password stacking.

5.3.9. RunAsLoginModule

JBoss has a helper login module called RunAsLoginModule that pushes a run as role for the
duration of the login phase of authentication, and pops the run as role in either the commit or
abort phase. The purpose of this login module is to provide a role for other login modules that
need to access secured resources in order to perform their authentication. An example would
be a login module that accesses an secured EJB. This login module must be configured ahead
of the login module(s) that need a run as role established.

Using JBoss Login Modules

299

The only login module configuration option is:

• roleName: the name of the role to use as the run as role during login phase. If not specified a
default of nobody is used.

5.3.10. ClientLoginModule

The ClientLoginModule is an implementation of LoginModule for use by JBoss clients for the
establishment of the caller identity and credentials. This simply sets the
org.jboss.security.SecurityAssociation.principal to the value of the NameCallback

filled in by the callbackhandler, and the
org.jboss.security.SecurityAssociation.credential to the value of the
PasswordCallback filled in by the callbackhandler. This is the only supported mechanism for
a client to establish the current thread's caller. Both stand-alone client applications and server
environments, acting as JBoss EJB clients where the security environment has not been
configured to use JBossSX transparently, need to use the ClientLoginModule. Of course, you
could always set the org.jboss.security.SecurityAssociation information directly, but this
is considered an internal API that is subject to change without notice.

Note that this login module does not perform any authentication. It merely copies the login
information provided to it into the JBoss server EJB invocation layer for subsequent
authentication on the server. If you need to perform client-side authentication of users you
would need to configure another login module in addition to the ClientLoginModule.

The supported login module configuration options include the following:

• multi-threaded: When the multi-threaded option is set to true, each login thread has its own
principal and credential storage. This is useful in client environments where multiple user
identities are active in separate threads. When true, each separate thread must perform its
own login. When set to false the login identity and credentials are global variables that apply
to all threads in the VM. The default for this option is false.

• password-stacking: When password-stacking option is set to useFirstPass, this module
first looks for a shared username and password using javax.security.auth.login.name

and javax.security.auth.login.password respectively in the login module shared state
map. This allows a module configured prior to this one to establish a valid username and
password that should be passed to JBoss. You would use this option if you want to perform
client-side authentication of clients using some other login module such as the
LdapLoginModule.

• restore-login-identity: When restore-login-identity is true, the SecurityAssociation

principal and credential seen on entry to the login() method are saved and restored on
either abort or logout. When false (the default), the abort and logout simply clear the
SecurityAssociation. A restore-login-identity of true is needed if one need to change
identities and then restore the original caller identity.

Chapter 8. Security on JBoss

300

A sample login configuration for ClientLoginModule is the default configuration entry found in
the JBoss distribution client/auth.conf file. The configuration is:

other {
// Put your login modules that work without jBoss here

// jBoss LoginModule
org.jboss.security.ClientLoginModule required;

// Put your login modules that need jBoss here
};

5.4. Writing Custom Login Modules

If the login modules bundled with the JBossSX framework do not work with your security
environment, you can write your own custom login module implementation that does. Recall
from the section on the JaasSecurityManager architecture that the JaasSecurityManager

expected a particular usage pattern of the Subject principals set. You need to understand the
JAAS Subject class's information storage features and the expected usage of these features to
be able to write a login module that works with the JaasSecurityManager. This section
examines this requirement and introduces two abstract base LoginModule implementations that
can help you implement your own custom login modules.

You can obtain security information associated with a Subject in six ways in JBoss using the
following methods:

java.util.Set getPrincipals()
java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

For Subject identities and roles, JBossSX has selected the most natural choice: the principals
sets obtained via getPrincipals() and getPrincipals(java.lang.Class). The usage
pattern is as follows:

• User identities (username, social security number, employee ID, and so on) are stored as
java.security.Principal objects in the SubjectPrincipals set. The Principal

implementation that represents the user identity must base comparisons and equality on the
name of the principal. A suitable implementation is available as the
org.jboss.security.SimplePrincipal class. Other Principal instances may be added to
the SubjectPrincipals set as needed.

• The assigned user roles are also stored in the Principals set, but they are grouped in
named role sets using java.security.acl.Group instances. The Group interface defines a

Writing Custom Login Modules

301

collection of Principals and/or Groups, and is a subinterface of java.security.Principal.
Any number of role sets can be assigned to a Subject. Currently, the JBossSX framework
uses two well-known role sets with the names Roles and CallerPrincipal. The Roles

Group is the collection of Principals for the named roles as known in the application domain
under which the Subject has been authenticated. This role set is used by methods like the
EJBContext.isCallerInRole(String), which EJBs can use to see if the current caller
belongs to the named application domain role. The security interceptor logic that performs
method permission checks also uses this role set. The CallerPrincipalGroup consists of
the single Principal identity assigned to the user in the application domain. The
EJBContext.getCallerPrincipal() method uses the CallerPrincipal to allow the
application domain to map from the operation environment identity to a user identity suitable
for the application. If a Subject does not have a CallerPrincipalGroup, the application
identity is the same as operational environment identity.

5.4.1. Support for the Subject Usage Pattern

To simplify correct implementation of the Subject usage patterns described in the preceding
section, JBossSX includes two abstract login modules that handle the population of the
authenticated Subject with a template pattern that enforces correct Subject usage. The most
generic of the two is the org.jboss.security.auth.spi.AbstractServerLoginModule class.
It provides a concrete implementation of the javax.security.auth.spi.LoginModule

interface and offers abstract methods for the key tasks specific to an operation environment
security infrastructure. The key details of the class are highlighted in the following class
fragment. The JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;
/**
* This class implements the common functionality required for a JAAS
* server-side LoginModule and implements the JBossSX standard
* Subject usage pattern of storing identities and roles. Subclass
* this module to create your own custom LoginModule and override the
* login(), getRoleSets(), and getIdentity() methods.
*/

public abstract class AbstractServerLoginModule
implements javax.security.auth.spi.LoginModule

{
protected Subject subject;
protected CallbackHandler callbackHandler;
protected Map sharedState;
protected Map options;
protected Logger log;

/** Flag indicating if the shared credential should be used */
protected boolean useFirstPass;
/**
* Flag indicating if the login phase succeeded. Subclasses that
* override the login method must set this to true on successful
* completion of login
*/

protected boolean loginOk;

Chapter 8. Security on JBoss

302

// ...
/**
* Initialize the login module. This stores the subject,
* callbackHandler and sharedState and options for the login
* session. Subclasses should override if they need to process
* their own options. A call to super.initialize(...) must be
* made in the case of an override.
*
* <p>
* The options are checked for the password-stacking

parameter.
* If this is set to "useFirstPass", the login identity will be taken

from the
* <code>javax.security.auth.login.name</code> value of the sharedState

map,
* and the proof of identity from the
* <code>javax.security.auth.login.password</code> value of the

sharedState map.
*
* @param subject the Subject to update after a successful login.
* @param callbackHandler the CallbackHandler that will be used to

obtain the
* the user identity and credentials.
* @param sharedState a Map shared between all configured login module

instances
* @param options the parameters passed to the login module.
*/

public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
// ...

}

/**
* Looks for javax.security.auth.login.name and
* javax.security.auth.login.password values in the sharedState
* map if the useFirstPass option was true and returns true if
* they exist. If they do not or are null this method returns
* false.
* Note that subclasses that override the login method
* must set the loginOk var to true if the login succeeds in
* order for the commit phase to populate the Subject. This
* implementation sets loginOk to true if the login() method
* returns true, otherwise, it sets loginOk to false.
*/

public boolean login()
throws LoginException

{
// ...

}

/**
* Overridden by subclasses to return the Principal that
* corresponds to the user primary identity.

Writing Custom Login Modules

303

*/
abstract protected Principal getIdentity();

/**
* Overridden by subclasses to return the Groups that correspond
* to the role sets assigned to the user. Subclasses should
* create at least a Group named "Roles" that contains the roles
* assigned to the user. A second common group is
* "CallerPrincipal," which provides the application identity of
* the user rather than the security domain identity.
*
* @return Group[] containing the sets of roles
*/

abstract protected Group[] getRoleSets() throws LoginException;
}

You'll need to pay attention to the loginOk instance variable. This must be set to true if the login
succeeds, false otherwise by any subclasses that override the login method. Failure to set this
variable correctly will result in the commit method either not updating the subject when it should,
or updating the subject when it should not. Tracking the outcome of the login phase was added
to allow login modules to be chained together with control flags that do not require that the login
module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule. This login module further
simplifies custom login module implementation by enforcing a string-based username as the
user identity and a char[] password as the authentication credentials. It also supports the
mapping of anonymous users (indicated by a null username and password) to a principal with
no roles. The key details of the class are highlighted in the following class fragment. The
JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;

/**
* An abstract subclass of AbstractServerLoginModule that imposes a
* an identity == String username, credentials == String password
* view on the login process. Subclasses override the
* getUsersPassword() and getUsersRoles() methods to return the
* expected password and roles for the user.
*/

public abstract class UsernamePasswordLoginModule
extends AbstractServerLoginModule

{
/** The login identity */
private Principal identity;
/** The proof of login identity */
private char[] credential;
/** The principal to use when a null username and password are seen */
private Principal unauthenticatedIdentity;

/**
* The message digest algorithm used to hash passwords. If null then

Chapter 8. Security on JBoss

304

* plain passwords will be used. */
private String hashAlgorithm = null;

/**
* The name of the charset/encoding to use when converting the
* password String to a byte array. Default is the platform's
* default encoding.
*/
private String hashCharset = null;

/** The string encoding format to use. Defaults to base64. */
private String hashEncoding = null;

// ...

/**
* Override the superclass method to look for an
* unauthenticatedIdentity property. This method first invokes
* the super version.
*
* @param options,
* @option unauthenticatedIdentity: the name of the principal to
* assign and authenticate when a null username and password are
* seen.
*/

public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
super.initialize(subject, callbackHandler, sharedState,

options);
// Check for unauthenticatedIdentity option.
Object option = options.get("unauthenticatedIdentity");
String name = (String) option;
if (name != null) {

unauthenticatedIdentity = new SimplePrincipal(name);
}

}

// ...

/**
* A hook that allows subclasses to change the validation of the
* input password against the expected password. This version
* checks that neither inputPassword or expectedPassword are null
* and that inputPassword.equals(expectedPassword) is true;
*
* @return true if the inputPassword is valid, false otherwise.
*/

protected boolean validatePassword(String inputPassword,
String expectedPassword)

{
if (inputPassword == null || expectedPassword == null) {

return false;
}
return inputPassword.equals(expectedPassword);

Writing Custom Login Modules

305

}

/**
* Get the expected password for the current username available
* via the getUsername() method. This is called from within the
* login() method after the CallbackHandler has returned the
* username and candidate password.
*
* @return the valid password String
*/

abstract protected String getUsersPassword()
throws LoginException;

}

The choice of subclassing the AbstractServerLoginModule versus
UsernamePasswordLoginModule is simply based on whether a string-based username and
credentials are usable for the authentication technology you are writing the login module for. If
the string-based semantic is valid, then subclass UsernamePasswordLoginModule, otherwise
subclass AbstractServerLoginModule.

The steps you are required to perform when writing a custom login module are summarized in
the following depending on which base login module class you choose. When writing a custom
login module that integrates with your security infrastructure, you should start by subclassing
AbstractServerLoginModule or UsernamePasswordLoginModule to ensure that your login
module provides the authenticated Principal information in the form expected by the JBossSX
security manager.

When subclassing the AbstractServerLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to
parse.

• boolean login(): to perform the authentication activity. Be sure to set the loginOk instance
variable to true if login succeeds, false if it fails.

• Principal getIdentity(): to return the Principal object for the user authenticated by the
log() step.

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

When subclassing the UsernamePasswordLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to
parse.

Chapter 8. Security on JBoss

306

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

• String getUsersPassword(): to return the expected password for the current username
available via the getUsername() method. The getUsersPassword() method is called from
within login() after the callbackhandler returns the username and candidate password.

5.4.2. A Custom LoginModule Example

In this section we will develop a custom login module example. It will extend the
UsernamePasswordLoginModule and obtains a user's password and role names from a JNDI
lookup. The idea is that there is a JNDI context that will return a user's password if you perform
a lookup on the context using a name of the form password/<username> where <username> is
the current user being authenticated. Similarly, a lookup of the form roles/<username> returns
the requested user's roles.

The source code for the example is located in the src/main/org/jboss/book/security/ex2

directory of the book examples. Example 8.9, “ A JndiUserAndPass custom login module”
shows the source code for the JndiUserAndPass custom login module. Note that because this
extends the JBoss UsernamePasswordLoginModule, all the JndiUserAndPass does is obtain
the user's password and roles from the JNDI store. The JndiUserAndPass does not concern
itself with the JAAS LoginModule operations.

package org.jboss.book.security.ex2;

import java.security.acl.Group;
import java.util.Map;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;

import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;

/**
* An example custom login module that obtains passwords and roles
* for a user from a JNDI lookup.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.12 $

*/
public class JndiUserAndPass

extends UsernamePasswordLoginModule
{

/** The JNDI name to the context that handles the password/username
lookup */

Writing Custom Login Modules

307

private String userPathPrefix;
/** The JNDI name to the context that handles the roles/ username lookup

*/
private String rolesPathPrefix;

/**
* Override to obtain the userPathPrefix and rolesPathPrefix options.
*/

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{
super.initialize(subject, callbackHandler, sharedState, options);
userPathPrefix = (String) options.get("userPathPrefix");
rolesPathPrefix = (String) options.get("rolesPathPrefix");

}

/**
* Get the roles the current user belongs to by querying the
* rolesPathPrefix + '/' + super.getUsername() JNDI location.
*/

protected Group[] getRoleSets() throws LoginException
{

try {
InitialContext ctx = new InitialContext();
String rolesPath = rolesPathPrefix + '/' + super.getUsername();

String[] roles = (String[]) ctx.lookup(rolesPath);
Group[] groups = {new SimpleGroup("Roles")};
log.info("Getting roles for user="+super.getUsername());
for(int r = 0; r < roles.length; r ++) {

SimplePrincipal role = new SimplePrincipal(roles[r]);
log.info("Found role="+roles[r]);
groups[0].addMember(role);

}
return groups;

} catch(NamingException e) {
log.error("Failed to obtain groups for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

/**
* Get the password of the current user by querying the
* userPathPrefix + '/' + super.getUsername() JNDI location.
*/

protected String getUsersPassword()
throws LoginException

{
try {

InitialContext ctx = new InitialContext();
String userPath = userPathPrefix + '/' + super.getUsername();
log.info("Getting password for user="+super.getUsername());
String passwd = (String) ctx.lookup(userPath);
log.info("Found password="+passwd);
return passwd;

Chapter 8. Security on JBoss

308

} catch(NamingException e) {
log.error("Failed to obtain password for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

}

Example 8.9. A JndiUserAndPass custom login module

The details of the JNDI store are found in the
org.jboss.book.security.ex2.service.JndiStore MBean. This service binds an
ObjectFactory that returns a javax.naming.Context proxy into JNDI. The proxy handles
lookup operations done against it by checking the prefix of the lookup name against password
and roles. When the name begins with password, a user's password is being requested. When
the name begins with roles the user's roles are being requested. The example implementation
always returns a password of theduke and an array of roles names equal to {"TheDuke",

"Echo"} regardless of what the username is. You can experiment with other implementations
as you wish.

The example code includes a simple session bean for testing the custom login module. To build,
deploy and run the example, execute the following command in the examples directory.

[examples]$ ant -Dchap=security -Dex=2 run-example
...
run-example2:

[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Login with username=jduke, password=theduke
[java] [INFO,ExClient] Looking up EchoBean2
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello

The choice of using the JndiUserAndPass custom login module for the server side
authentication of the user is determined by the login configuration for the example security
domain. The EJB JAR META-INF/jboss.xml descriptor sets the security domain

<?xml version="1.0"?>
<jboss>

<security-domain>java:/jaas/security-ex2</security-domain>
</jboss>

The SAR META-INF/login-config.xml descriptor defines the login module configuration.

<application-policy name = "security-ex2">
<authentication>

<login-module code="org.jboss.book.security.ex2.JndiUserAndPass"

Writing Custom Login Modules

309

flag="required">
<module-option name =

"userPathPrefix">/security/store/password</module-option>
<module-option name =

"rolesPathPrefix">/security/store/roles</module-option>
</login-module>

</authentication>
</application-policy>

6. The Secure Remote Password (SRP) Protocol

The SRP protocol is an implementation of a public key exchange handshake described in the
Internet standards working group request for comments 2945(RFC2945). The RFC2945
abstract states:

This document describes a cryptographically strong network authentication mechanism known
as the Secure Remote Password (SRP) protocol. This mechanism is suitable for negotiating
secure connections using a user-supplied password, while eliminating the security problems
traditionally associated with reusable passwords. This system also performs a secure key
exchange in the process of authentication, allowing security layers (privacy and/or integrity
protection) to be enabled during the session. Trusted key servers and certificate infrastructures
are not required, and clients are not required to store or manage any long-term keys. SRP offers
both security and deployment advantages over existing challenge-response techniques, making
it an ideal drop-in replacement where secure password authentication is needed.

Note: The complete RFC2945 specification can be obtained from
http://www.rfc-editor.org/rfc.html. Additional information on the SRP algorithm and its history can
be found at http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as
Diffie-Hellman and RSA. SRP is based on simple string passwords in a way that does not
require a clear text password to exist on the server. This is in contrast to other public key-based
algorithms that require client certificates and the corresponding certificate management
infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The
concept of public key algorithms is that you have two keys, one public that is available to
everyone, and one that is private and known only to you. When someone wants to send
encrypted information to you, then encrpyt the information using your public key. Only you are
able to decrypt the information using your private key. Contrast this with the more traditional
shared password based encryption schemes that require the sender and receiver to know the
shared password. Public key algorithms eliminate the need to share passwords.

The JBossSX framework includes an implementation of SRP that consists of the following
elements:

Chapter 8. Security on JBoss

310

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/

• An implementation of the SRP handshake protocol that is independent of any particular
client/server protocol

• An RMI implementation of the handshake protocol as the default client/server SRP
implementation

• A client side JAAS LoginModule implementation that uses the RMI implementation for use in
authenticating clients in a secure fashion

• A JMX MBean for managing the RMI server implementation. The MBean allows the RMI
server implementation to be plugged into a JMX framework and externalizes the configuration
of the verification information store. It also establishes an authentication cache that is bound
into the JBoss server JNDI namespace.

• A server side JAAS LoginModule implementation that uses the authentication cache
managed by the SRP JMX MBean.

Figure 8.14, “The JBossSX components of the SRP client-server framework.” gives a diagram
of the key components involved in the JBossSX implementation of the SRP client/server
framework.

Figure 8.14. The JBossSX components of the SRP client-server

The Secure Remote Password (SRP)

311

framework.

On the client side, SRP shows up as a custom JAAS LoginModule implementation that
communicates to the authentication server through an
org.jboss.security.srp.SRPServerInterface proxy. A client enables authentication using
SRP by creating a login configuration entry that includes the
org.jboss.security.srp.jaas.SRPLoginModule. This module supports the following
configuration options:

• principalClassName: This option is no longer supported. The principal class is now always
org.jboss.security.srp.jaas.SRPPrincipal.

• srpServerJndiName: The JNDI name of the SRPServerInterface object to use for
communicating with the SRP authentication server. If both srpServerJndiName and
srpServerRmiUrl options are specified, the srpServerJndiName is tried before
srpServerRmiUrl.

• srpServerRmiUrl: The RMI protocol URL string for the location of the SRPServerInterface

proxy to use for communicating with the SRP authentication server.

• externalRandomA: A true/false flag indicating if the random component of the client public
key A should come from the user callback. This can be used to input a strong cryptographic
random number coming from a hardware token for example.

• hasAuxChallenge: A true/false flag indicating that a string will be sent to the server as an
additional challenge for the server to validate. If the client session supports an encryption
cipher then a temporary cipher will be created using the session private key and the challenge
object sent as a javax.crypto.SealedObject.

• multipleSessions: a true/false flag indicating if a given client may have multiple SRP login
sessions active simultaneously.

Any other options passed in that do not match one of the previous named options is treated as
a JNDI property to use for the environment passed to the InitialContext constructor. This is
useful if the SRP server interface is not available from the default InitialContext.

The SRPLoginModule needs to be configured along with the standard ClientLoginModule to
allow the SRP authentication credentials to be used for validation of access to security J2EE
components. An example login configuration entry that demonstrates such a setup is:

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="SRPServerInterface"
;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"

Chapter 8. Security on JBoss

312

;
};

On the JBoss server side, there are two MBeans that manage the objects that collectively make
up the SRP server. The primary service is the org.jboss.security.srp.SRPService MBean,
and it is responsible for exposing an RMI accessible version of the SRPServerInterface as well
as updating the SRP authentication session cache. The configurable SRPService MBean
attributes include the following:

• JndiName: The JNDI name from which the SRPServerInterface proxy should be available.
This is the location where the SRPService binds the serializable dynamic proxy to the
SRPServerInterface. If not specified it defaults to srp/SRPServerInterface.

• VerifierSourceJndiName: The JNDI name of the SRPVerifierSource implementation that
should be used by the SRPService. If not set it defaults to srp/DefaultVerifierSource.

• AuthenticationCacheJndiName: The JNDI name under which the authentication
org.jboss.util.CachePolicy implementation to be used for caching authentication
information is bound. The SRP session cache is made available for use through this binding.
If not specified it defaults to srp/AuthenticationCache.

• ServerPort: RMI port for the SRPRemoteServerInterface. If not specified it defaults to
10099.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory

implementation class name used during the export of the SRPServerInterface. If not
specified the default RMIClientSocketFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory

implementation class name used during the export of the SRPServerInterface. If not
specified the default RMIServerSocketFactory is used.

• AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not
specified this defaults to 1800 seconds(30 minutes).

• AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds.
This controls the interval between checks for timeouts. If not specified this defaults to 60
seconds(1 minute).

• RequireAuxChallenge: Set if the client must supply an auxiliary challenge as part of the
verify phase. This gives control over whether the SRPLoginModule configuration used by the
client must have the useAuxChallenge option enabled.

• OverwriteSessions: A flag indicating if a successful user auth for an existing session should
overwrite the current session. This controls the behavior of the server SRP session cache
when clients have not enabled the multiple session per user mode. The default is false
meaning that the second attempt by a user to authentication will succeed, but the resulting

Protocol

313

SRP session will not overwrite the previous SRP session state.

The one input setting is the VerifierSourceJndiName attribute. This is the location of the SRP
password information store implementation that must be provided and made available through
JNDI. The org.jboss.security.srp SRPVerifierStoreService is an example MBean
service that binds an implementation of the SRPVerifierStore interface that uses a file of
serialized objects as the persistent store. Although not realistic for a production environment, it
does allow for testing of the SRP protocol and provides an example of the requirements for an
SRPVerifierStore service. The configurable SRPVerifierStoreService MBean attributes
include the following:

• JndiName: The JNDI name from which the SRPVerifierStore implementation should be
available. If not specified it defaults to srp/DefaultVerifierSource.

• StoreFile: The location of the user password verifier serialized object store file. This can be
either a URL or a resource name to be found in the classpath. If not specified it defaults to
SRPVerifierStore.ser.

The SRPVerifierStoreService MBean also supports addUser and delUser operations for
addition and deletion of users. The signatures are:

public void addUser(String username, String password) throws IOException;
public void delUser(String username) throws IOException;

An example configuration of these services is presented in Example 8.10, “The
SRPVerifierStore interface”.

6.1. Providing Password Information for SRP

The default implementation of the SRPVerifierStore interface is not likely to be suitable for
your production security environment as it requires all password hash information to be
available as a file of serialized objects. You need to provide an MBean service that provides an
implementation of the SRPVerifierStore interface that integrates with your existing security
information stores. The SRPVerifierStore interface is shown in.

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{

public static class VerifierInfo implements Serializable
{

/**
* The username the information applies to. Perhaps redundant

Chapter 8. Security on JBoss

314

* but it makes the object self contained.
*/

public String username;

/** The SRP password verifier hash */
public byte[] verifier;
/** The random password salt originally used to verify the password

*/
public byte[] salt;
/** The SRP algorithm primitive generator */
public byte[] g;
/** The algorithm safe-prime modulus */
public byte[] N;

}

/**
* Get the indicated user's password verifier information.
*/

public VerifierInfo getUserVerifier(String username)
throws KeyException, IOException;

/**
* Set the indicated users' password verifier information. This
* is equivalent to changing a user's password and should
* generally invalidate any existing SRP sessions and caches.
*/

public void setUserVerifier(String username, VerifierInfo info)
throws IOException;

/**
* Verify an optional auxiliary challenge sent from the client to
* the server. The auxChallenge object will have been decrypted
* if it was sent encrypted from the client. An example of a
* auxiliary challenge would be the validation of a hardware token
* (SafeWord, SecureID, iButton) that the server validates to
* further strengthen the SRP password exchange.
*/
public void verifyUserChallenge(String username, Object auxChallenge)

throws SecurityException;
}

The primary function of a SRPVerifierStore implementation is to provide access to the
SRPVerifierStore.VerifierInfo object for a given username. The
getUserVerifier(String) method is called by the SRPService at that start of a user SRP
session to obtain the parameters needed by the SRP algorithm. The elements of the
VerifierInfo objects are:

• username: The user's name or id used to login.

• verifier: This is the one-way hash of the password or PIN the user enters as proof of their
identity. The org.jboss.security.Util class has a calculateVerifier method that
performs that password hashing algorithm. The output password H(salt | H(username |

Providing Password Information for SRP

315

':' | password)) as defined by RFC2945. Here H is the SHA secure hash function. The
username is converted from a string to a byte[] using the UTF-8 encoding.

• salt: This is a random number used to increase the difficulty of a brute force dictionary attack
on the verifier password database in the event that the database is compromised. It is a value
that should be generated from a cryptographically strong random number algorithm when the
user's existing clear-text password is hashed.

• g: The SRP algorithm primitive generator. In general this can be a well known fixed parameter
rather than a per-user setting. The org.jboss.security.srp.SRPConf utility class provides
several settings for g including a good default which can obtained via
SRPConf.getDefaultParams().g().

• N: The SRP algorithm safe-prime modulus. In general this can be a well known fixed
parameter rather than a per-user setting. The org.jboss.security.srp.SRPConf utility
class provides several settings for N including a good default which can obtained via
SRPConf.getDefaultParams().N().

So, step 1 of integrating your existing password store is the creation of a hashed version of the
password information. If your passwords are already store in an irreversible hashed form, then
this can only be done on a per-user basis as part of an upgrade procedure for example. Note
that the setUserVerifier(String, VerifierInfo) method is not used by the current
SRPSerivce and may be implemented as no-op method, or even one that throws an exception
stating that the store is read-only.

Step 2 is the creation of the custom SRPVerifierStore interface implementation that knows
how to obtain the VerifierInfo from the store you created in step 1. The
verifyUserChallenge(String, Object) method of the interface is only called if the client
SRPLoginModule configuration specifies the hasAuxChallenge option. This can be used to
integrate existing hardware token based schemes like SafeWord or Radius into the SRP
algorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the
SRPVerifierStore interface available via JNDI, and exposes any configurable parameters you
need. In addition to the default org.jboss.security.srp.SRPVerifierStoreService
example, the SRP example presented later in this chapter provides a Java properties file based
SRPVerifierStore implementation. Between the two examples you should have enough to
integrate your security store.

Example 8.10. The SRPVerifierStore interface

6.2. Inside of the SRP algorithm

The appeal of the SRP algorithm is that is allows for mutual authentication of client and server
using simple text passwords without a secure communication channel. You might be wondering
how this is done. If you want the complete details and theory behind the algorithm, refer to the
SRP references mentioned in a note earlier. There are six steps that are performed to complete

Chapter 8. Security on JBoss

316

authentication:

1. The client side SRPLoginModule retrieves the SRPServerInterface instance for the remote
authentication server from the naming service.

2. The client side SRPLoginModule next requests the SRP parameters associated with the
username attempting the login. There are a number of parameters involved in the SRP
algorithm that must be chosen when the user password is first transformed into the verifier
form used by the SRP algorithm. Rather than hard-coding the parameters (which could be
done with minimal security risk), the JBossSX implementation allows a user to retrieve this
information as part of the exchange protocol. The getSRPParameters(username) call
retrieves the SRP parameters for the given username.

3. The client side SRPLoginModule begins an SRP session by creating an SRPClientSession

object using the login username, clear-text password, and SRP parameters obtained from
step 2. The client then creates a random number A that will be used to build the private SRP
session key. The client then initializes the server side of the SRP session by invoking the
SRPServerInterface.init method and passes in the username and client generated
random number A. The server returns its own random number B. This step corresponds to the
exchange of public keys.

4. The client side SRPLoginModule obtains the private SRP session key that has been
generated as a result of the previous messages exchanges. This is saved as a private
credential in the login Subject. The server challenge response M2 from step 4 is verified by
invoking the SRPClientSession.verify method. If this succeeds, mutual authentication of
the client to server, and server to client have been completed. The client side
SRPLoginModule next creates a challenge M1 to the server by invoking
SRPClientSession.response method passing the server random number B as an argument.
This challenge is sent to the server via the SRPServerInterface.verify method and
server's response is saved as M2. This step corresponds to an exchange of challenges. At
this point the server has verified that the user is who they say they are.

5. The client side SRPLoginModule saves the login username and M1 challenge into the
LoginModule sharedState map. This is used as the Principal name and credentials by the
standard JBoss ClientLoginModule. The M1 challenge is used in place of the password as
proof of identity on any method invocations on J2EE components. The M1 challenge is a
cryptographically strong hash associated with the SRP session. Its interception via a third
partly cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the
SRPService authentication cache for subsequent use by the SRPCacheLoginModule.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX
framework and has some limitations of which you should be aware. Issues of note include the
following:

Inside of the SRP algorithm

317

• Because of how JBoss detaches the method transport protocol from the component container
where authentication is performed, an unauthorized user could snoop the SRP M1 challenge
and effectively use the challenge to make requests as the associated username. Custom
interceptors that encrypt the challenge using the SRP session key can be used to prevent this
issue.

• The SRPService maintains a cache of SRP sessions that time out after a configurable period.
Once they time out, any subsequent J2EE component access will fail because there is
currently no mechanism for transparently renegotiating the SRP authentication credentials.
You must either set the authentication cache timeout very long (up to 2,147,483,647 seconds,
or approximately 68 years), or handle re-authentication in your code on failure.

• By default there can only be one SRP session for a given username. Because the negotiated
SRP session produces a private session key that can be used for encryption/decryption
between the client and server, the session is effectively a stateful one. JBoss supports for
multiple SRP sessions per user, but you cannot encrypt data with one session key and then
decrypt it with another.

To use end-to-end SRP authentication for J2EE component calls, you need to configure the
security domain under which the components are secured to use the
org.jboss.security.srp.jaas.SRPCacheLoginModule. The SRPCacheLoginModule has a
single configuration option named cacheJndiName that sets the JNDI location of the SRP
authentication CachePolicy instance. This must correspond to the
AuthenticationCacheJndiName attribute value of the SRPService MBean. The
SRPCacheLoginModule authenticates user credentials by obtaining the client challenge from the
SRPServerSession object in the authentication cache and comparing this to the challenge
passed as the user credentials. Figure 8.15, “A sequence diagram illustrating the interaction of
the SRPCacheLoginModule with the SRP session cache.” illustrates the operation of the
SRPCacheLoginModule.login method implementation.

Chapter 8. Security on JBoss

318

Figure 8.15. A sequence diagram illustrating the interaction of the
SRPCacheLoginModule with the SRP session cache.

6.2.1. An SRP example

We have covered quite a bit of material on SRP and now its time to demonstrate SRP in
practice with an example. The example demonstrates client side authentication of the user via
SRP as well as subsequent secured access to a simple EJB using the SRP session challenge
as the user credential. The test code deploys an EJB JAR that includes a SAR for the
configuration of the server side login module configuration and SRP services. As in the previous
examples we will dynamically install the server side login module configuration using the
SecurityConfig MBean. In this example we also use a custom implementation of the
SRPVerifierStore interface that uses an in memory store that is seeded from a Java
properties file rather than a serialized object store as used by the SRPVerifierStoreService.
This custom service is org.jboss.book.security.ex3.service.PropertiesVerifierStore.
The following shows the contents of the JAR that contains the example EJB and SRP services.

[examples]$ jar tf output/security/security-ex3.jar
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
META-INF/jboss.xml
org/jboss/book/security/ex3/Echo.class
org/jboss/book/security/ex3/EchoBean.class
org/jboss/book/security/ex3/EchoHome.class
roles.properties
users.properties
security-ex3.sar

Inside of the SRP algorithm

319

The key SRP related items in this example are the SRP MBean services configuration, and the
SRP login module configurations. The jboss-service.xml descriptor of the
security-ex3.sar is given in Example 8.11, “The security-ex3.sar jboss-service.xml descriptor
for the SRP services”, while Example 8.12, “The client side standard JAAS configuration” and
Example 8.13, “The server side XMLLoginConfig configuration” give the example client side and
server side login module configurations.

<server>
<!-- The custom JAAS login configuration that installs

a Configuration capable of dynamically updating the
config settings -->

<mbean code="org.jboss.book.security.service.SecurityConfig"
name="jboss.docs.security:service=LoginConfig-EX3">

<attribute name="AuthConfig">META-INF/login-config.xml</attribute>
<attribute

name="SecurityConfigName">jboss.security:name=SecurityConfig</attribute>
</mbean>

<!-- The SRP service that provides the SRP RMI server and server side
authentication cache -->

<mbean code="org.jboss.security.srp.SRPService"
name="jboss.docs.security:service=SRPService">

<attribute
name="VerifierSourceJndiName">srp-test/security-ex3</attribute>

<attribute name="JndiName">srp-test/SRPServerInterface</attribute>
<attribute

name="AuthenticationCacheJndiName">srp-test/AuthenticationCache</attribute>
<attribute name="ServerPort">0</attribute>

<depends>jboss.docs.security:service=PropertiesVerifierStore</depends>
</mbean>

<!-- The SRP store handler service that provides the user password
verifier

information -->
<mbean code="org.jboss.security.ex3.service.PropertiesVerifierStore"

name="jboss.docs.security:service=PropertiesVerifierStore">
<attribute name="JndiName">srp-test/security-ex3</attribute>

</mbean>
</server>

Example 8.11. The security-ex3.sar jboss-service.xml descriptor for the
SRP services

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="srp-test/SRPServerInterface"

Chapter 8. Security on JBoss

320

;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

Example 8.12. The client side standard JAAS configuration

<application-policy name="security-ex3">
<authentication>

<login-module code="org.jboss.security.srp.jaas.SRPCacheLoginModule"
flag = "required">

<module-option
name="cacheJndiName">srp-test/AuthenticationCache</module-option>

</login-module>
<login-module

code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag = "required">

<module-option
name="password-stacking">useFirstPass</module-option>

</login-module>
</authentication>

</application-policy>

Example 8.13. The server side XMLLoginConfig configuration

The example services are the ServiceConfig and the PropertiesVerifierStore and
SRPService MBeans. Note that the JndiName attribute of the PropertiesVerifierStore is
equal to the VerifierSourceJndiName attribute of the SRPService, and that the SRPService

depends on the PropertiesVerifierStore. This is required because the SRPService needs
an implementation of the SRPVerifierStore interface for accessing user password verification
information.

The client side login module configuration makes use of the SRPLoginModule with a
srpServerJndiName option value that corresponds to the JBoss server component SRPService
JndiName attribute value(srp-test/SRPServerInterface). Also needed is the
ClientLoginModule configured with the password-stacking="useFirstPass" value to
propagate the user authentication credentials generated by the SRPLoginModule to the EJB
invocation layer.

There are two issues to note about the server side login module configuration. First, note the
cacheJndiName=srp-test/AuthenticationCache configuration option tells the
SRPCacheLoginModule the location of the CachePolicy that contains the SRPServerSession

Inside of the SRP algorithm

321

for users who have authenticated against the SRPService. This value corresponds to the
SRPServiceAuthenticationCacheJndiName attribute value. Second, the configuration includes
a UsersRolesLoginModule with the password-stacking=useFirstPass configuration option. It
is required to use a second login module with the SRPCacheLoginModule because SRP is only
an authentication technology. A second login module needs to be configured that accepts the
authentication credentials validated by the SRPCacheLoginModule to set the principal's roles
that determines the principal's permissions. The UsersRolesLoginModule is augmenting the
SRP authentication with properties file based authorization. The user's roles are coming the
roles.properties file included in the EJB JAR.

Now, run the example 3 client by executing the following command from the book examples
directory:

[examples]$ ant -Dchap=security -Dex=3 run-example
...
run-example3:

[echo] Waiting for 5 seconds for deploy...
[java] Logging in using the 'srp' configuration
[java] Created Echo
[java] Echo.echo()#1 = This is call 1
[java] Echo.echo()#2 = This is call 2

In the examples/logs directory you will find a file called ex3-trace.log. This is a detailed trace
of the client side of the SRP algorithm. The traces show step-by-step the construction of the
public keys, challenges, session key and verification.

Note that the client has taken a long time to run relative to the other simple examples. The
reason for this is the construction of the client's public key. This involves the creation of a
cryptographically strong random number, and this process takes quite a bit of time the first time
it occurs. If you were to log out and log in again within the same VM, the process would be
much faster. Also note that Echo.echo()#2 fails with an authentication exception. The client
code sleeps for 15 seconds after making the first call to demonstrate the behavior of the
SRPService cache expiration. The SRPService cache policy timeout has been set to a mere 10
seconds to force this issue. As stated earlier, you need to make the cache timeout very long, or
handle re-authentication on failure.

7. Running JBoss with a Java 2 security manager

By default the JBoss server does not start with a Java 2 security manager. If you want to restrict
privileges of code using Java 2 permissions you need to configure the JBoss server to run
under a security manager. This is done by configuring the Java VM options in the run.bat or
run.sh scripts in the JBoss server distribution bin directory. The two required VM options are as
follows:

• java.security.manager: This is used without any value to specify that the default security
manager should be used. This is the preferred security manager. You can also pass a value
to the java.security.manager option to specify a custom security manager implementation.

Chapter 8. Security on JBoss

322

The value must be the fully qualified class name of a subclass of
java.lang.SecurityManager. This form specifies that the policy file should augment the
default security policy as configured by the VM installation.

• java.security.policy: This is used to specify the policy file that will augment the default
security policy information for the VM. This option takes two forms:
java.security.policy=policyFileURL and java.security.policy==policyFileURL.
The first form specifies that the policy file should augment the default security policy as
configured by the VM installation. The second form specifies that only the indicated policy file
should be used. The policyFileURL value can be any URL for which a protocol handler
exists, or a file path specification.

Both the run.bat and run.sh start scripts reference an JAVA_OPTS variable which you can
use to set the security manager properties.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the
allowed permissions. If you look at the server.policy file that is contained in the default
configuration file set, you'll see that it contains the following permission grant statement:

grant {
// Allow everything for now
permission java.security.AllPermission;

};

This effectively disables security permission checking for all code as it says any code can do
anything, which is not a reasonable default. What is a reasonable set of permissions is entirely
up to you.

The current set of JBoss specific java.lang.RuntimePermissions that are required include:

TargetName What the permission allows Risks

org.jboss.security.SecurityAssociation.getPrincipalInfoAccess to the
org.jboss.security.SecurityAssociation
getPrincipal() and
getCredentials() methods.

The ability to see the current
thread caller and credentials.

org.jboss.security.SecurityAssociation.setPrincipalInfoAccess to the
org.jboss.security.SecurityAssociation
setPrincipal() and
setCredentials() methods.

The ability to set the current
thread caller and credentials.

org.jboss.security.SecurityAssociation.setServerAccess to the
org.jboss.security.SecurityAssociation
setServer method.

The ability to enable or
disable multithread storage of
the caller principal and
credential.

org.jboss.security.SecurityAssociation.setRunAsRoleAccess to the
org.jboss.security.SecurityAssociation
pushRunAsRole and

The ability to change the
current caller run-as role
principal.

Running JBoss with a Java 2 security

323

TargetName What the permission allows Risks

popRunAsRole methods.

To conclude this discussion, here is a little-known tidbit on debugging security policy settings.
There are various debugging flag that you can set to determine how the security manager is
using your security policy file as well as what policy files are contributing permissions. Running
the VM as follows shows the possible debugging flag settings:

[bin]$ java -Djava.security.debug=help

all turn on all debugging
access print all checkPermission results
combiner SubjectDomainCombiner debugging
jar jar verification
logincontext login context results
policy loading and granting
provider security provider debugging
scl permissions SecureClassLoader assigns

The following can be used with access:

stack include stack trace
domain dumps all domains in context
failure before throwing exception, dump stack

and domain that didn't have permission

Note: Separate multiple options with a comma

Running with -Djava.security.debug=all provides the most output, but the output volume is
torrential. This might be a good place to start if you don't understand a given security failure at
all. A less verbose setting that helps debug permission failures is to use
-Djava.security.debug=access,failure. This is still relatively verbose, but not nearly as
bad as the all mode as the security domain information is only displayed on access failures.

8. Using SSL with JBoss using JSSE

JBoss uses JSEE, the Java Secure Socket Extension (JSSE), for SSL. JSSE is bundled with
JDK 1.4. To get started with JSSE you need a public key/private key pair in the form of an X509
certificate for use by the SSL server sockets. For the purpose of this example we have created
a self-signed certificate using the JDK keytool and included the resulting keystore file,
example.keystore. It was created using the following command and input:

keytool -genkey -keystore example.keystore -storepass rmi+ssl -keypass
rmi+ssl -keyalg RSA -alias example -validity 3650 -dname
"cn=example,ou=admin book,dc=jboss,dc=org"

This produces a keystore file called example.keystore. A keystore is a database of security

Chapter 8. Security on JBoss

324

keys. There are two different types of entries in a keystore:

• key entries: each entry holds very sensitive cryptographic key information, which is stored in
a protected format to prevent unauthorized access. Typically, a key stored in this type of entry
is a secret key, or a private key accompanied by the certificate chain for the corresponding
public key. The keytool and jarsigner tools only handle the later type of entry, that is
private keys and their associated certificate chains.

• trusted certificate entries: each entry contains a single public key certificate belonging to
another party. It is called a trusted certificate because the keystore owner trusts that the
public key in the certificate indeed belongs to the identity identified by the subject (owner) of
the certificate. The issuer of the certificate vouches for this, by signing the certificate.

Listing the src/main/org/jboss/book/security/example.keystore examples file contents
using the keytool shows one self-signed certificate:

[examples]$ keytool -list -v -keystore
src/main/org/jboss/book/security/example.keystore
Enter keystore password: rmi+ssl

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: example
Creation date: Oct 31, 2006
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=example, OU=admin book, DC=jboss, DC=org
Issuer: CN=example, OU=admin book, DC=jboss, DC=org
Serial number: 45481c1b
Valid from: Tue Oct 31 22:01:31 CST 2006 until: Fri Oct 28 23:01:31 CDT 2016
Certificate fingerprints:

MD5: C2:CA:CA:D3:00:71:3E:32:CB:B3:C8:A8:4E:68:9A:BB
SHA1: A6:44:EF:66:2A:49:14:B0:A4:14:74:8B:64:61:E4:E6:AF:E3:70:41

With JSSE working and a keystore with the certificate you will use for the JBoss server, your are
ready to configure JBoss to use SSL for EJB access. This is done by configuring the EJB
invoker RMI socket factories. The JBossSX framework includes implementations of the
java.rmi.server.RMIServerSocketFactory and
java.rmi.server.RMIClientSocketFactory interfaces that enable the use of RMI over SSL
encrypted sockets. The implementation classes are
org.jboss.security.ssl.RMISSLServerSocketFactory and
org.jboss.security.ssl.RMISSLClientSocketFactory respectively. There are two steps to

manager

325

enable the use of SSL for RMI access to EJBs. The first is to enable the use of a keystore as
the database for the SSL server certificate, which is done by configuring an
org.jboss.security.plugins.JaasSecurityDomain MBean. The jboss-service.xml

descriptor in the book/security/ex4 directory includes the JaasSecurityDomain definition
shown in Example 8.14, “A sample JaasSecurityDomain config for RMI/SSL”.

<!-- The SSL domain setup -->
<mbean code="org.jboss.security.plugins.JaasSecurityDomain"

name="jboss.security:service=JaasSecurityDomain,domain=RMI+SSL">
<constructor>

<arg type="java.lang.String" value="RMI+SSL"/>
</constructor>
<attribute name="KeyStoreURL">example.keystore</attribute>
<attribute name="KeyStorePass">rmi+ssl</attribute>

</mbean>

Example 8.14. A sample JaasSecurityDomain config for RMI/SSL

The JaasSecurityDomain is a subclass of the standard JaasSecurityManager class that adds
the notions of a keystore as well JSSE KeyManagerFactory and TrustManagerFactory

access. It extends the basic security manager to allow support for SSL and other cryptographic
operations that require security keys. This configuration simply loads the example.keystore from
the example 4 MBean SAR using the indicated password.

The second step is to define an EJB invoker configuration that uses the JBossSX RMI socket
factories that support SSL. To do this you need to define a custom configuration for the
JRMPInvoker we saw in Chapter 14, EJBs on JBoss as well as an EJB setup that makes use of
this invoker. The top of the listing shows the jboss-service.xml descriptor that defines the
custom JRMPInovker

<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
name="jboss:service=invoker,type=jrmp,socketType=SSL">

<attribute name="RMIObjectPort">14445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.security.ssl.RMISSLClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.security.ssl.RMISSLServerSocketFactory
</attribute>
<attribute name="SecurityDomain">java:/jaas/RMI+SSL</attribute>

<depends>jboss.security:service=JaasSecurityDomain,domain=RMI+SSL</depends>
</mbean>

To set up an SSL invoker, we will create an invoker binding named stateless-ssl-invoker

that uses our custom JRMPInvoker. We can declare the invoker binding and connect it to
EchoBean4 as shown in the following jboss.xml file.

<?xml version="1.0"?>

Chapter 8. Security on JBoss

326

<jboss>
<enterprise-beans>

<session>
<ejb-name>EchoBean4</ejb-name>
<configuration-name>Standard Stateless

SessionBean</configuration-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-ssl-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-ssl-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp,socketType=SSL</invoker-mbean>

<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>
<client-interceptors>

<home>
<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>
</proxy-factory-config>

</invoker-proxy-binding>
</invoker-proxy-bindings>

</jboss>

The example 4 code is located under the src/main/org/jboss/book/security/ex4 directory
of the book examples. This is another simple stateless session bean with an echo method that
returns its input argument. It is hard to tell when SSL is in use unless it fails, so we'll run the
example 4 client in two different ways to demonstrate that the EJB deployment is in fact using
SSL. Start the JBoss server using the default configuration and then run example 4b as follows:

[examples]$ ant -Dchap=security -Dex=4b run-example
...
run-example4b:
...

[java] Exception in thread "main" java.rmi.ConnectIOException: error
during JRMP connect
ion establishment; nested exception is:

Using SSL with JBoss using JSSE

327

[java] javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorExceptio
n: No trusted certificate found
...

The resulting exception is expected, and is the purpose of the 4b version of the example. Note
that the exception stack trace has been edited to fit into the book format, so expect some
difference. The key item to notice about the exception is it clearly shows you are using the Sun
JSSE classes to communicate with the JBoss EJB container. The exception is saying that the
self-signed certificate you are using as the JBoss server certificate cannot be validated as
signed by any of the default certificate authorities. This is expected because the default
certificate authority keystore that ships with the JSSE package only includes well known
certificate authorities such as VeriSign, Thawte, and RSA Data Security. To get the EJB client to
accept your self-signed certificate as valid, you need to tell the JSSE classes to use your
example.keystore as its truststore. A truststore is just a keystore that contains public key
certificates used to sign other certificates. To do this, run example 4 using -Dex=4 rather than
-Dex=4b to pass the location of the correct truststore using the javax.net.ssl.trustStore

system property:

[examples]$ ant -Dchap=security -Dex=4 run-example
...
run-example4:

[copy] Copying 1 file to /tmp/jboss-4.2.0/server/production/deploy
[echo] Waiting for 5 seconds for deploy...

...
[java] Created Echo
[java] Echo.echo()#1 = This is call 1

This time the only indication that an SSL socket is involved is because of the SSL

handshakeCompleted message. This is coming from the RMISSLClientSocketFactory class
as a debug level log message. If you did not have the client configured to print out log4j debug
level messages, there would be no direct indication that SSL was involved. If you note the run
times and the load on your system CPU, there definitely is a difference. SSL, like SRP, involves
the use of cryptographically strong random numbers that take time to seed the first time they are
used. This shows up as high CPU utilization and start up times.

One consequence of this is that if you are running on a system that is slower than the one used
to run the examples for the book, such as when running example 4b, you may seen an
exception similar to the following:

javax.naming.NameNotFoundException: EchoBean4 not bound
at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer

...

The problem is that the JBoss server has not finished deploying the example EJB in the time
the client allowed. This is due to the initial setup time of the secure random number generator

Chapter 8. Security on JBoss

328

used by the SSL server socket. If you see this issue, simply rerun the example again or
increase the deployment wait time in the build-security.xml Ant script.

9. Configuring JBoss for use Behind a Firewall

JBoss comes with many socket based services that open listening ports. In this section we list
the services that open ports that might need to be configured to work when accessing JBoss
behind a firewall. The following table shows the ports, socket type, associated service for the
services in the default configuration file set. Table 8.2, “Additional ports in the all configuration”
shows the same information for the additional ports that exist in the all configuration file set.

Port Type Service

1098 TCP org.jboss.naming.NamingService

1099 TCP org.jboss.naming.NamingService

4444 TCP org.jboss.invocation.jrmp.server.JRMPInvoker

4445 TCP org.jboss.invocation.pooled.server.PooledInvoker

8009 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8080 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8083 TCP org.jboss.web.WebService

8093 TCP org.jboss.mq.il.uil2.UILServerILService

Table 8.1. The ports found in the default configuration

Port Type Service

1100 TCP org.jboss.ha.jndi.HANamingService

1101 TCP org.jboss.ha.jndi.HANamingService

1102 UDP org.jboss.ha.jndi.HANamingService

1161 UDP org.jboss.jmx.adaptor.snmp.agent.SnmpAgentService

1162 UDP org.jboss.jmx.adaptor.snmp.trapd.TrapdService

3528 TCP org.jboss.invocation.iiop.IIOPInvoker

4447 TCP org.jboss.invocation.jrmp.server.JRMPInvokerHA

45566a UDP org.jboss.ha.framework.server.ClusterPartition

a Plus two additional anonymous UDP ports, one can be set using the rcv_port, and the other cannot be set.

Table 8.2. Additional ports in the all configuration

10. How to Secure the JBoss Server

JBoss comes with several admin access points that need to be secured or removed to prevent

Configuring JBoss for use Behind a Firewall

329

unauthorized access to administrative functions in a deployment. This section describes the
various admin services and how to secure them.

10.1. The JMX Console

The jmx-console.war found in the deploy directory provides an html view into the JMX
microkernel. As such, it provides access to arbitrary admin type access like shutting down the
server, stopping services, deploying new services, etc. It should either be secured like any other
web application, or removed.

10.2. The Web Console

The web-console.war found in the deploy/management directory is another web application
view into the JMX microkernel. This uses a combination of an applet and a HTML view and
provides the same level of access to admin functionality as the jmx-console.war. As such, it
should either be secured or removed. The web-console.war contains commented out
templates for basic security in its WEB-INF/web.xml as well as commented out setup for a
security domain in WEB-INF/jboss-web.xml.

10.3. The HTTP Invokers

The http-invoker.sar found in the deploy directory is a service that provides RMI/HTTP
access for EJBs and the JNDI Naming service. This includes a servlet that processes posts of
marshalled org.jboss.invocation.Invocation objects that represent invocations that should
be dispatched onto the MBeanServer. Effectively this allows access to MBeans that support the
detached invoker operation via HTTP since one could figure out how to format an appropriate
HTTP post. To security this access point you would need to secure the JMXInvokerServlet

servlet found in the http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor. There is a
secure mapping defined for the /restricted/JMXInvokerServlet path by default, one would
simply have to remove the other paths and configure the http-invoker security domain setup
in the http-invoker.sar/invoker.war/WEB-INF/jboss-web.xml descriptor.

10.4. The JMX Invoker

The jmx-invoker-adaptor-server.sar is a service that exposes the JMX MBeanServer
interface via an RMI compatible interface using the RMI/JRMP detached invoker service. The
only way for this service to be secured currently would be to switch the protocol to RMI/HTTP
and secure the http-invoker.sar as described in the previous section. In the future this
service will be deployed as an XMBean with a security interceptor that supports role based
access checks.

Chapter 8. Security on JBoss

330

Web Services
The biggest new feature of J2EE 1.4 is the ability of J2EE components to act both as web
service providers and consumers. J2EE applications can expose a web service from the EJB
tier using a stateless session bean or from the web tier using a plain Java object.
Additionally,J2EE components have a standard way of declaring references to external web
services.

1. JAX-RPC Service Endpoints

JAX-RPC service endpoints (JSEs) provide web services from the web tier. They take the form
of a simple Java objects that masquerade as servlets. To show how simple they are, we'll jump
right in with a trivial hello web service implementation class.

package org.jboss.ws.hello;

public class HelloPojo
{

public String hello(String name)
{

return "Hello " + name + "!";
}

}

There is nothing remarkable about HelloPojo. It doesn't implement any special interfaces nor
does it need any methods besides the business methods it decides to provide. The hello

method is the operation that we will expose as a web service, and it does nothing but respond
with a friendly greeting to the person passed in.

That is our web service implementation. In addition to this, we need a service endpoint interface
(SEI) that defines the interface of the web service. That is shown here as the Hello interface.

package org.jboss.ws.hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello
extends Remote

{
public String hello(String name)

throws RemoteException;
}

The service endpoint interface is declared Remote and the methods must throw
RemoteException. Beyond this, it is a simple expression of the interface to our web service.
This is all the code we need to write to expose a J2EE web service. Deploying it, however, does
require a few additional deployment descriptors.

Chapter 9.

331

Although a JSE doesn't bears any direct resemblance to a servlet, it is nonetheless deployed as
a servlet in the web.xml file. We'll need to declare the web service implementation class as a
servlet and provide a servlet mapping that will respond to the web service invocations. Here is
the definition required to deploy the hello web service.

<?xml version="1.0" encoding="UTF-8"?>
<web-app
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<servlet>
<servlet-name>HelloWorldWS</servlet-name>
<servlet-class>org.jboss.ws.hello.HelloPojo</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>HelloWorldWS</servlet-name>
<url-pattern>/Hello</url-pattern>

</servlet-mapping>
</web-app>

The URL pattern in the servlet mapping is the only externally visible configuration element. It
controls what URL the web service lives at. This will be primarily noticed as the location of the
WSDL file for this service.

The web.xml file doesn't contain any web service related configuration. A new deployment
descriptor, webservices.xml, is needed to instruct JBoss to treat this servlet as a web service
and not as a normal servlet. We'll need two additional configuration files, a WSDL file and a
JAX-RPC mapping file. All of these files can be generated using the wstool generator that
ships with JBoss.

wstool can be run from from the command line or as an Ant task. The JBossWS guide explains
in more detail how to run the tool. In both cases, wstool needs to be pointed to the code and to
a configuration file which describes the files to generate and the endpoint to generate them for.
Here is the configuration file for the hello web service.

<configuration xmlns="http://www.jboss.org/jbossws-tools">
<java-wsdl>

<service name="HelloService"
style="rpc"
endpoint="org.jboss.ws.hello.Hello"/>

<namespaces target-namespace="http://hello.ws.jboss.org/"
type-namespace="http://hello.ws.jboss.org/types"/>

<mapping file="jaxrpc-mapping.xml"/>
<webservices servlet-link="HelloWorldWS"/>

</java-wsdl>
</configuration>

Chapter 9. Web Services

332

For a complete description of this file, see the JBossWS documentation.

The WSDL file that wscompile generated for our config.xml file is shown below. Note that the
SOAP address isn't provided in the WSDL file. JBoss will insert the correct URL for the WSDL
when it deploys the web service.

<definitions name="HelloService"
targetNamespace="http://hello.ws.jboss.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://hello.ws.jboss.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types/>
<message name="Hello_hello">

<part name="String_1" type="xsd:string"/>
</message>
<message name="Hello_helloResponse">

<part name="result" type="xsd:string"/>
</message>
<portType name="Hello">

<operation name="hello" parameterOrder="String_1">
<input message="tns:Hello_hello"/>
<output message="tns:Hello_helloResponse"/>

</operation>
</portType>
<binding name="HelloBinding" type="tns:Hello">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="hello">
<soap:operation soapAction=""/>
<input>

<soap:body namespace="http://hello.ws.jboss.org/"
use="literal"/>

</input>
<output>

<soap:body namespace="http://hello.ws.jboss.org/"
use="literal"/>

</output>
</operation>

</binding>
<service name="HelloService">

<port binding="tns:HelloBinding" name="HelloPort">
<soap:address location="REPLACE_WITH_ACTUAL_URL"/>

</port>
</service>

</definitions>

We also asked wscompile to generate a JAX-RPC mapping file. This is shown below.

<?xml version='1.0' encoding='UTF-8'?>
<java-wsdl-mapping version="1.1"
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

JAX-RPC Service Endpoints

333

http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd">
<package-mapping>
<package-type>org.jboss.ws.hello</package-type>
<namespaceURI>http://hello.ws.jboss.org/types</namespaceURI>
</package-mapping>
<service-interface-mapping>
<service-interface>org.jboss.ws.hello.HelloService</service-interface>
<wsdl-service-name xmlns:serviceNS="http://hello.ws.jboss.org/">

serviceNS:HelloService
</wsdl-service-name>
<port-mapping>
<port-name>HelloPort</port-name>
<java-port-name>HelloPort</java-port-name>

</port-mapping>
</service-interface-mapping>
<service-endpoint-interface-mapping>

<service-endpoint-interface>org.jboss.ws.hello.Hello</service-endpoint-interface>
<wsdl-port-type xmlns:portTypeNS="http://hello.ws.jboss.org/">

portTypeNS:Hello
</wsdl-port-type>
<wsdl-binding xmlns:bindingNS="http://hello.ws.jboss.org/">

bindingNS:HelloBinding
</wsdl-binding>
<service-endpoint-method-mapping>
<java-method-name>hello</java-method-name>
<wsdl-operation>hello</wsdl-operation>
<method-param-parts-mapping>
<param-position>0</param-position>
<param-type>java.lang.String</param-type>
<wsdl-message-mapping>
<wsdl-message xmlns:wsdlMsgNS="http://hello.ws.jboss.org/">

wsdlMsgNS:Hello_hello
</wsdl-message>
<wsdl-message-part-name>String_1</wsdl-message-part-name>
<parameter-mode>IN</parameter-mode>

</wsdl-message-mapping>
</method-param-parts-mapping>
<wsdl-return-value-mapping>
<method-return-value>java.lang.String</method-return-value>
<wsdl-message xmlns:wsdlMsgNS="http://hello.ws.jboss.org/">
wsdlMsgNS:Hello_helloResponse

</wsdl-message>
<wsdl-message-part-name>result</wsdl-message-part-name>

</wsdl-return-value-mapping>
</service-endpoint-method-mapping>
</service-endpoint-interface-mapping>

</java-wsdl-mapping>

Finally, we generates a webservices.xml file. This file links to our WSDL file with the
wsdl-file element and to the mapping file using the jaxrpc-mapping-file element.

In addition to this, a port-component element is needed that maps a port in the WSDL file to a
particular service implementation. For our JSE, this is done with a servlet-link inside the
service-impl-bean element. The servlet link must be the same as the name of the

Chapter 9. Web Services

334

pseudo-servlet we declared in the web.xml file.

<webservices version="1.1"
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"
xmlns:impl="http://hello.ws.jboss.org/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd">
<webservice-description>

<webservice-description-name>HelloService</webservice-description-name>
<wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>WEB-INF/jaxrpc-mapping.xml</jaxrpc-mapping-file>
<port-component>

<port-component-name>HelloPort</port-component-name>
<wsdl-port>impl:HelloPort</wsdl-port>

<service-endpoint-interface>org.jboss.ws.hello.Hello</service-endpoint-interface>
<service-impl-bean>

<servlet-link>HelloWorldWS</servlet-link>
</service-impl-bean>

</port-component>
</webservice-description>

</webservices>

With these completed we can deploy the WAR file containing our web service. All the
deployment descriptors go in the WEB-INF directory, as shown in Figure 9.1, “The structure of
hello-servlet.war”. It's important to note that the WSDL file is required to be in the wsdl
subdirectory.

Figure 9.1. The structure of hello-servlet.war

To deploy and test the hello web service, run the following from the examples directory:

[examples]$ ant -Dchap=ws -Dex=1 run-example
...

JAX-RPC Service Endpoints

335

run-example1:
[echo] Waiting for 5 seconds for deploy...
[java] Contacting webservice at

http://localhost:8080/hello-servlet/Hello?wsdl
[java] hello.hello(JBoss user)
[java] output:Hello JBoss user!

The server log will contain information about the deployment including the temporary location of
the generated WSDL and wsdd files. It also shows the full URL of the web service.

Note the URL the JBoss publishes the WSDL file at. Our web application name is
hello-servlet and we mapped the servlet to /Hello in the web.xml file so the web service is
mappend to /hello-servlet/Hello. The ?wsdl query returns the WSDL file.

If you aren't sure what the URL of the WSDL file will be, JBoss provides a way to list the web
services available on the system at /jbossws/services. Figure 9.2, “The web services list”
shows a view of the services list.

Figure 9.2. The web services list

The services list shows all of the deployed web services along with the name of the deployment
unit and a link to the WSDL file for that service.

2. EJB Endpoints

Web services can also be provided from the EJB tier. Any stateless session bean can serve as
the endpoint for a web service in almost the same way as the JAX-RPC endpoints. To see how
this works, we will adapt the HelloServlet example into a session bean. Here is the code:

package org.jboss.ws.hello;

import javax.ejb.EJBException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

Chapter 9. Web Services

336

public class HelloBean
implements SessionBean

{
public String hello(String name)
{

return "Hello " + name + "!";
}

public void ejbCreate() {};
public void ejbRemove() {};

public void ejbActivate() {}
public void ejbPassivate() {}

public void setSessionContext(SessionContext ctx) {}
}

This is a very trivial session bean. Session beans normally require a home interface and either a
local or remote interface. However, it is possible to omit them if the session bean is only serving
as a web services endpoint. However, we do still need the Hello service endpoint interface that
we used in the JSE example.

The ejb-jar.xml file is very standard for a session bean. The normal session bean parameters
are explained in Chapter 14, EJBs on JBoss. The only new element is the service-endpoint

element, which declares the service endpoint interface for the web service.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"
version="2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
<display-name>chapter 12 EJB JAR</display-name>
<enterprise-beans>

<session>
<ejb-name>HelloBean</ejb-name>
<service-endpoint>org.jboss.ws.hello.Hello</service-endpoint>
<ejb-class>org.jboss.ws.hello.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
<assembly-descriptor>

<method-permission>
<unchecked/>
<method>

<ejb-name>HelloBean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<container-transaction>

<method>

EJB Endpoints

337

<ejb-name>HelloBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

The accompanying deployment descriptor files can again be generated by the wstool program.
The configuration file is nearly identical, except that instaead of linking to the pseudo-servlet, we
link to the HelloBean EJB.

<configuration xmlns="http://www.jboss.org/jbossws-tools">
<java-wsdl>

<service name="HelloService"
style="rpc"
endpoint="org.jboss.ws.hello.Hello"/>

<namespaces target-namespace="http://hello.ws.jboss.org/"
type-namespace="http://hello.ws.jboss.org/types"/>

<mapping file="jaxrpc-mapping.xml"/>
<webservices ejb-link="HelloBean"/>

</java-wsdl>
</configuration>

The generated files are nearly identical to the ones for the previous example, except for the
webservice.xml file webservices.xml. The file, shown below, contains configuration options
appropriate to the EJB endpoint.

<webservices version="1.1"
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"

xmlns:impl="http://hello.ws.jboss.org/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd">
<webservice-description>

<webservice-description-name>HelloService</webservice-description-name>
<wsdl-file>META-INF/wsdl/HelloService.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/jaxrpc-mapping.xml</jaxrpc-mapping-file>
<port-component>

<port-component-name>HelloPort</port-component-name>
<wsdl-port>impl:HelloPort</wsdl-port>

<service-endpoint-interface>org.jboss.ws.hello.Hello</service-endpoint-interface>
<service-impl-bean>

<ejb-link>HelloBean</ejb-link>
</service-impl-bean>

</port-component>
</webservice-description>

</webservices>

The first difference is that the WSDL file should be in the META-INF/wsdl directory instead of
the WEB-INF/wsdl directory. The second difference is that the service-impl-bean element

Chapter 9. Web Services

338

contains an ejb-link that refers to the ejb-name of the session bean.

To package and deploy the application, run the following command in the examples directory:

[examples]$ ant -Dchap=ws -Dex=2 run-example
...
run-example2:

[echo] Waiting for 5 seconds for deploy...
[java] Contacting webservice at

http://localhost:8080/hello-ejb/HelloBean?wsdl
[java] hello.hello(JBoss user)
[java] output:Hello JBoss user!

The test program run here is the same as with the servlet example, except that we use a
different URL for the WSDL. JBoss composes the WSDL using the base name of the EJB JAR
file and the name of the service interface. However, as with all web services in JBoss, you can
use the http://localhost:8080/jbossws/services service view shown in Figure 9.2, “The
web services list” to verify the deployed URL of the WSDL.

3. Web Services Clients

We will now turn our attention from providing web services to consuming them.

3.1. A JAX-RPC client

The full JAX-RPC programming model is available to J2EE applications and clients. We won't
cover the full range of client programming techniques, but we swill look briefly at the client we've
used so far to test the web services we've deployed. The client, shown in the following listing,
illustrates the dynamic proxy invocation mechanism.

package org.jboss.ws.client;

import org.jboss.ws.hello.Hello;

import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;

import javax.xml.namespace.QName;

import java.net.URL;

public class HelloClient
{

public static void main(String[] args)
throws Exception

{
String urlstr = args[0];
String argument = args[1];

System.out.println("Contacting webservice at " + urlstr);

URL url = new URL(urlstr);

Web Services Clients

339

QName qname = new QName("http://hello.ws.jboss.org/",
"HelloService");

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(url, qname);

Hello hello = (Hello) service.getPort(Hello.class);

System.out.println("hello.hello(" + argument + ")");
System.out.println("output:" + hello.hello(argument));

}
}

This JAX-RPC client uses the Hello service endpoint interface and creates a dynamic proxy to
speak to the service advertised by the WSDL at the URL that is passed in as a command line
argument. For illustrative purposes, we'll show another variation of web services invocation that
doesn't use the service endpoint interface. This is known as the Dynamic Invocation Interface
(DII). Using DII, it is possible to refer to a specific port and operation by name. Think of it as
reflection for web services. The client code is shown in the following listing.

package org.jboss.ws.client;

import org.jboss.ws.hello.Hello;

import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Call;

import javax.xml.namespace.QName;

import java.net.URL;

public class HelloClientDII
{

public static void main(String[] args)
throws Exception

{
String urlstr = args[0];
String argument = args[1];

System.out.println("Contacting webservice at " + urlstr);

URL url = new URL(urlstr);

String ns = "http://hello.ws.jboss.org/";
QName qname = new QName(ns, "HelloService");
QName port = new QName(ns, "HelloPort");
QName operation = new QName(ns, "hello");

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(url, qname);
Call call = service.createCall(port, operation);

Chapter 9. Web Services

340

System.out.println("hello.hello(" + argument + ")");
System.out.println("output:" + call.invoke(new Object[]

{argument}));
}

}

The following two commands can be used to run the DII client against both the JSE and EJB
web services we have created.

[examples]$ ant -Dchap=ws -Dex=1b run-example

[examples]$ ant -Dchap=ws -Dex=2b run-example

Note: When accessing a remote client using the JBossWS client code, is is necessary to set the
java.endorsed.dirs system property to the lib/endorsed directory under your JBoss
installation. For example: -Djava.endorsed.dirs=/path/to/jboss-4.0.4/lib/endorsed.

3.2. Service references

The JAX-RPC examples in Section 3.1, “A JAX-RPC client” all required manual configuration of
the WSDL URL and knowledge of the XML nature of the web services in question. This can be
a configuration nightmare, but if your code is a J2EE component there is another option. J2EE
components can declare service references and look up preconfigured Service objects in JNDI
without needing to hardcode any web service references in the code.

To show how this works, let's first look at a session bean that needs to make a call to the hello
web service:

package org.jboss.ws.example;

import javax.ejb.*;
import javax.naming.*;
import java.rmi.RemoteException;

import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceException;

import org.jboss.ws.hello.Hello;

public class ExampleBean
implements SessionBean

{
public String doWork()
{

try {
Context ctx = new InitialContext();

Service service = (Service)
ctx.lookup("java:comp/env/services/hello");

Service references

341

Hello hello = (Hello) service.getPort(Hello.class);

return hello.hello("example bean");
} catch (NamingException e) {

throw new EJBException(e);

} catch (ServiceException e) {
throw new EJBException(e);

} catch (RemoteException e) {
throw new EJBException(e);

}
}

public void ejbCreate() {};
public void ejbRemove() {};

public void ejbActivate() {}
public void ejbPassivate() {}

public void setSessionContext(SessionContext ctx) {}
}

ExampleBean invokes the hello web service in its doWork method. We've used the dynamic
proxy invocation method here, but any of the JAX-RPC supported invocation methods would be
fine. The interesting point here is that the bean has obtained the Service reference from a JNDI
lookup in its ENC.

Web service references are declared using a service-ref element in inside an ejb-jar.xml

file.

Chapter 9. Web Services

342

Figure 9.3. The service-ref content model

The following elements are supported by the service-ref:

• service-ref-name: This is the JNDI name that the service object will be bound under in the
bean's ENC. It is relative to java:comp/env/.

• service-interface: This is the name of JAX-RPC service interface the client will use. Normally
this is javax.xml.rpc.Service, but it's possible to provide your own service class.

• wsdl-file: This is the location of the WSDL file. The WSDL file should be under
META-INF/wsdl.

• jaxrpc-mapping-file: This is the location of the JAX-RPC mapping file. It must be under the
META-INF directory.

• service-qname: This element specifies the name of the service in the web services file. It is
only mandatory if the WSDL file defines multiple services. The value must by a QName,
which means it needs to be a namespace qualified value such as ns:ServiceName where ns

Service references

343

is an XML namespace valid at the scope of the service-qname element.

• port-component-ref: This element provides the mapping between a service endpoint
interface and a port in a web service.

• handler: This allows the specification of handlers, which act like filters or interceptors on the
current request or response.

The following service-ref declares a reference to the hello web service for the Example

session bean.

<session>
<ejb-name>Example</ejb-name>
<home>org.jboss.ws.example.ExampleHome</home>
<remote>org.jboss.ws.example.Example</remote>
<ejb-class>org.jboss.ws.example.ExampleBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<service-ref>

<service-ref-name>services/hello</service-ref-name>
<service-interface>javax.xml.rpc.Service</service-interface>
<wsdl-file>META-INF/wsdl/hello.wsdl</wsdl-file>
<jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>
<service-qname xmlns:hello="http://hello.ws.jboss.org">

hello:HelloService
</service-qname>

</service-ref>
</session>

This instructs the EJB deployer to make a Service object available for the bean in JNDI under
the name java:comp/env/services/hello that talks to our hello web service. The session
bean can then invoke normal web services operations on the service.

Since most of the web services configuration options are completely standard, there's little need
to go into great depths here. However, JBoss does provide several additional web services
configuration options through the service-ref element in the jboss.xml deployment
descriptor. The content model for the service-ref element is shown in Figure 9.4, “The jboss.xml
service-ref content model”.

Chapter 9. Web Services

344

Figure 9.4. The jboss.xml service-ref content model

The configurable elements are:

• service-ref-name: This element should match the service-ref-name in the ejb-jar.xml

file that is being configured.

• port-component-ref: The port-component-ref element provides additional information for a
specific port. This includes properties that should be associated with the JAX-RPC stub for
the port.

• wsdl-override: This provides an alternate location for the WSDL file. The value can be any
valid URL. This can be used in co-ordination with the wsdl-publish-location to get the
final WSDL file for a locally published web service. It could also be the URL of a remotely
published WSDL that you don't want duplicated in the deployment file.

• call-property: This sets properties on the JAX-RPC stub.

Since the WSDL file generated by wscompile doesn't contain the SOAP address of our web
service, we'll use the WSDL override feature to dynamically download the correct WSDL file
from the server. While this might not be the best technique to use in a production application, it
does illustrate the WSDL override functionality very well. The following jboss.xml file links the
published URL for the hello-servlet version of the hello web service..

<!DOCTYPE jboss PUBLIC
"-//JBoss//DTD JBOSS 4.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">

<jboss>
<enterprise-beans>

<session>
<ejb-name>Example</ejb-name>
<service-ref>

<service-ref-name>services/hello</service-ref-name>
<wsdl-override>http://localhost:8080/hello-servlet/Hello?wsdl</wsdl-override>

</service-ref>

Service references

345

</session>
</enterprise-beans>

</jboss>

This example can be run as shown below:

[examples]$ ant -Dchap=ws -Dex=3 run-example
...
run-example3:

[echo] Waiting for 5 seconds for deploy...
[copy] Copying 1 file to /tmp/jboss-4.0.4/server/production/deploy
[echo] Waiting for 5 seconds for deploy...
[java] output:Hello example bean!

The service-ref element is not limited to the ejb-jar.xml file. It's available to any J2EE
component. A service reference can be placed in the web.xml file for use by web tier
components or in the application-client.xml file for use by J2EE client applications.

Chapter 9. Web Services

346

Additional Services
This chapter discusses useful MBean services that are not discussed elsewhere either because
they are utility services not necessary for running JBoss, or they don't fit into a current section of
the book.

1. Memory and Thread Monitoring

The jboss.system:type=ServerInfo MBean provides several attributes that can be used to
monitor the thread and memory usage in a JBoss instance. These attributes can be monitored
in many ways: through the JMX Console, from a third-party JMX management tool, from shell
scripts using the twiddle command, etc... The most interesting attributes are shown below.

FreeMemory
This is the current free memory available in the JVM.

ActiveThreadCount
This is the number of active threads in the JVM.

ActiveThreadGroupCount
This is the number of active thread groups in the JVM.

These are useful metrics for monitoring and alerting, but developers and administrators need a
little more insite than this. The Java 5 JVMs from Sun provide more detailed information about
the current state of the JVM. Some of these details are exposed by JBoss through operations
on the SystemInfo MBean.

listMemoryPools
This operations shows the size and current usage of all JVM memory pools. This operation
is only available when using Java 5.

listThreadDump
This operations shows all threads currently running in the JVM. When using Java 5, JBoss
will display a complete stack trace for each thread, showing you exactly what code each
thread is executing.

listThreadCpuUtilization
This operations shows all threads currently running in the JVM along with the total CPU
time each thread has used. The operation is only available in Java 5.

2. The Log4j Service

The Log4jService MBean configures the Apache log4j system. JBoss uses the log4j
framework as its internal logging API.

Chapter 10.

347

• ConfigurationURL: The URL for the log4j configuration file. This can refer to either a XML
document parsed by the org.apache.log4j.xml.DOMConfigurator or a Java properties file
parsed by the org.apache.log4j.PropertyConfigurator. The type of the file is determined
by the URL content type, or if this is null, the file extension. The default setting of
resource:log4j.xml refers to the conf/log4j.xml file of the active server configuration file
set.

• RefreshPeriod: The time in seconds between checks for changes in the log4 configuration
specified by the ConfigurationURL attribute. The default value is 60 seconds.

• CatchSystemErr: This boolean flag if true, indicates if the System.err stream should be
redirected onto a log4j category called STDERR. The default is true.

• CatchSystemOut: This boolean flag if true, indicates if the System.out stream should be
redirected onto a log4j category called STDOUT. The default is true.

• Log4jQuietMode: This boolean flag if true, sets the
org.apache.log4j.helpers.LogLog.setQuiteMode. As of log4j1.2.8 this needs to be set to
avoid a possible deadlock on exception at the appender level. See bug#696819.

3. System Properties Management

The management of system properties can be done using the system properties service. It
supports setting of the VM global property values just as java.lang.System.setProperty

method and the VM command line arguments do.

Its configurable attributes include:

• Properties: a specification of multiple property name=value pairs using the
java.util.Properites.load(java.io.InputStream) method format. Each
property=value statement is given on a separate line within the body of the Properties

attribute element.

• URLList: a comma separated list of URL strings from which to load properties file formatted
content. If a component in the list is a relative path rather than a URL it will be treated as a file
path relative to the <jboss-dist>/server/<config> directory. For example, a component of
conf/local.properties would be treated as a file URL that points to the
<jboss-dist>/server/production/conf/local.properties file when running with the
default configuration file set.

The following illustrates the usage of the system properties service with an external properties
file.

<mbean code="org.jboss.varia.property.SystemPropertiesService"
name="jboss.util:type=Service,name=SystemProperties">

<!-- Load properties from each of the given comma separated URLs -->
<attribute name="URLList">

Chapter 10. Additional Services

348

http://somehost/some-location.properties,
./conf/somelocal.properties

</attribute>
</mbean>

The following illustrates the usage of the system properties service with an embedded
properties list.

<mbean code="org.jboss.varia.property.SystemPropertiesService"
name="jboss.util:type=Service,name=SystemProperties">

<!-- Set properties using the properties file style. -->
<attribute name="Properties">

property1=This is the value of my property
property2=This is the value of my other property

</attribute>

</mbean>

4. Property Editor Management

In JBoss, JavaBean property editors are used for reading data types from service files and for
editing values in the JMX console. The java.bean.PropertyEditorManager class controls the
java.bean.PropertyEditor instances in the system. The property editor manager can be
managed in JBoss using the org.jboss.varia.property.PropertyEditorManagerService

MBean. The property editor manager service is configured in
deploy/properties-service.xml and supports the following attributes:

• BootstrapEditors: This is a listing of property_editor_class=editor_value_type_class
pairs defining the property editor to type mappings that should be preloaded into the property
editor manager. The value type of this attribute is a string so that it may be set from a string
without requiring a custom property editor.

• Editors: This serves the same function as the BootstrapEditors attribute, but its type is
java.util.Properties. Setting it from a string value in a service file requires a custom
property editor for properties objects already be loaded. JBoss provides a suitable property
editor.

• EditorSearchPath: This attribute allows one to set the editor packages search path on the
PropertyEditorManager editor packages search path. Since there can be only one search
path, setting this value overrides the default search path established by JBoss. If you set this,
make sure to add the JBoss search path, org.jboss.util.propertyeditor and
org.jboss.mx.util.propertyeditor, to the front of the new search path.

5. Services Binding Management

With all of the independently deployed services available in JBoss, running multiple instances

Property Editor Management

349

on a given machine can be a tedious exercise in configuration file editing to resolve port
conflicts. The binding service allows you centrally configure the ports for multiple JBoss
instances. After the service is normally loaded by JBoss, the ServiceConfigurator queries the
service binding manager to apply any overrides that may exist for the service. The service
binding manager is configured in conf/jboss-service.xml. The set of configurable attributes it
supports include:

• ServerName: This is the name of the server configuration this JBoss instance is associated
with. The binding manager will apply the overrides defined for the named configuration.

• StoreFactoryClassName: This is the name of the class that implements the
ServicesStoreFactory interface. You may provide your own implementation, or use the
default XML based store org.jboss.services.binding.XMLServicesStoreFactory. The
factory provides a ServicesStore instance responsible for providing the names configuration
sets.

• StoreURL: This is the URL of the configuration store contents, which is passed to the
ServicesStore instance to load the server configuration sets from. For the XML store, this is
a simple service binding file.

The following is a sample service binding manager configuration that uses the ports-01

configuration from the sample-bindings.xml file provided in the JBoss examples directory.

<mbean code="org.jboss.services.binding.ServiceBindingManager"
name="jboss.system:service=ServiceBindingManager">

<attribute name="ServerName">ports-01</attribute>
<attribute name="StoreURL">

../docs/examples/binding-manager/sample-bindings.xml
</attribute>
<attribute name="StoreFactoryClassName">

org.jboss.services.binding.XMLServicesStoreFactory
</attribute>

</mbean>

The structure of the binding file is shown in Figure 10.1, “The binding service file structure”.

Chapter 10. Additional Services

350

Figure 10.1. The binding service file structure

The elements are:

• service-bindings: The root element of the configuration file. It contains one or more server
elements.

• server: This is the base of a JBoss server instance configuration. It has a required name

attribute that defines the JBoss instance name to which it applies. This is the name that
correlates with the ServiceBindingManagerServerName attribute value. The server element
content consists of one or more service-config elements.

• service-config: This element represents a configuration override for an MBean service. It has
a required name attribute that is the JMX ObjectName string of the MBean service the
configuration applies to. It also has a required delegateClass name attribute that specifies
the class name of the ServicesConfigDelegate implementation that knows how to handle
bindings for the target service. Its contents consists of an optional delegate-config element
and one or more binding elements.

• binding: A binding element specifies a named port and address pair. It has an optional name
that can be used to provide multiple binding for a service. An example would be multiple
virtual hosts for a web container. The port and address are specified via the optional port and
host attributes respectively. If the port is not specified it defaults to 0 meaning choose an
anonymous port. If the host is not specified it defaults to null meaning any address.

• delegate-config: The delegate-config element is an arbitrary XML fragment for use by the
ServicesConfigDelegate implementation. The hostName and portName attributes only
apply to the AttributeMappingDelegate of the example and are there to prevent DTD
aware editors from complaining about their existence in the AttributeMappingDelegate

configurations. Generally both the attributes and content of the delegate-config are
arbitrary, but there is no way to specify and a element can have any number of attributes with
a DTD.

The three ServicesConfigDelegate implementations are AttributeMappingDelegate,
XSLTConfigDelegate, and XSLTFileDelegate.

5.1. AttributeMappingDelegate

The AttributeMappingDelegate class is an implementation of the ServicesConfigDelegate

that expects a delegate-config element of the form:

<delegate-config portName="portAttrName" hostName="hostAttrName">
<attribute name="someAttrName">someHostPortExpr</attribute>
<!-- ... -->

</delegate-config>

AttributeMappingDelegate

351

The portAttrName is the attribute name of the MBean service to which the binding port value
should be applied, and the hostAttrName is the attribute name of the MBean service to which
the binding host value should be applied. If the portName attribute is not specified then the
binding port is not applied. Likewise, if the hostName attribute is not specified then the binding
host is not applied. The optional attribute element(s) specify arbitrary MBean attribute names
whose values are a function of the host and/or port settings. Any reference to ${host} in the
attribute content is replaced with the host binding and any ${port} reference is replaced with
the port binding. The portName, hostName attribute values and attribute element content may
reference system properties using the ${x} syntax that is supported by the JBoss services
descriptor.

The sample listing illustrates the usage of AttributeMappingDelegate.

<service-config name="jboss:service=Naming"
delegateClass="org.jboss.services.binding.AttributeMappingDelegate">

<delegate-config portName="Port"/>
<binding port="1099" />

</service-config>

Here the jboss:service=Naming MBean service has its Port attribute value overridden to
1099. The corresponding setting from the jboss1 server configuration overrides the port to 1199.

5.2. XSLTConfigDelegate

The XSLTConfigDelegate class is an implementation of the ServicesConfigDelegate that
expects a delegate-config element of the form:

<delegate-config>
<xslt-config configName="ConfigurationElement"><![CDATA[

Any XSL document contents...
]]>

</xslt-config>
<xslt-param name="param-name">param-value</xslt-param>
<!-- ... -->

</delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be
applied to the MBean service attribute named by the configName attribute. The named attribute
must be of type org.w3c.dom.Element. The optional xslt-param elements specify XSL script
parameter values for parameters used in the script. There are two XSL parameters defined by
default called host and port, and their values are set to the configuration host and port
bindings.

The XSLTConfigDelegate is used to transform services whose port/interface configuration
is specified using a nested XML fragment. The following example maps the port number on
hypersonic datasource:

Chapter 10. Additional Services

352

<service-config
name="jboss.jca:service=ManagedConnectionFactory,name=DefaultDS"
delegateClass="org.jboss.services.binding.XSLTConfigDelegate">

<delegate-config>
<xslt-config

configName="ManagedConnectionFactoryProperties"><![CDATA[
<xsl:stylesheet

xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

<xsl:output method="xml" />
<xsl:param name="host"/>
<xsl:param name="port"/>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="config-property[@name='ConnectionURL']">
<config-property type="java.lang.String" name="ConnectionURL">

jdbc:hsqldb:hsql://<xsl:value-of select='$host'/>:<xsl:value-of
select='$port'/>

</config-property>
</xsl:template>

<xsl:template match="*|@*">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>
]]>

</xslt-config>
</delegate-config>
<binding host="localhost" port="1901"/>

</service-config>

5.3. XSLTFileDelegate

The XSLTFileDelegate class works similarly to the XSLTConfigDelegate except that instead
of transforming an embedded XML fragment, the XSLT script transforms a file read in from the
file system. The delegate-config takes exactly the same form:

<delegate-config>
<xslt-config configName="ConfigurationElement"><![CDATA[

Any XSL document contents...
]]>

</xslt-config>
<xslt-param name="param-name">param-value</xslt-param>
<!-- ... -->

</delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be

XSLTFileDelegate

353

applied to the MBean service attribute named by the configName attribute. The named attribute
must be a String value corresponding to an XML file that will be transformed. The optional
xslt-param elements specify XSL script parameter values for parameters used in the script.
There are two XSL parameters defined by default called host and port, and their values are set
to the configuration host and port bindings.

The following example maps the host and port values for the Tomcat connectors:

<service-config name="jboss.web:service=WebServer"
delegateClass="org.jboss.services.binding.XSLTFileDelegate">

<delegate-config>
<xslt-config configName="ConfigFile"><![CDATA[

<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

<xsl:output method="xml" />
<xsl:param name="port"/>

<xsl:variable name="portAJP" select="$port - 71"/>
<xsl:variable name="portHttps" select="$port + 363"/>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "Connector">
<Connector>

<xsl:for-each select="@*">
<xsl:choose>

<xsl:when test="(name() = 'port' and . = '8080')">
<xsl:attribute name="port">

<xsl:value-of select="$port" />
</xsl:attribute>

</xsl:when>
<xsl:when test="(name() = 'port' and . = '8009')">

<xsl:attribute name="port">
<xsl:value-of select="$portAJP" />

</xsl:attribute>
</xsl:when>
<xsl:when test="(name() = 'redirectPort')">

<xsl:attribute name="redirectPort">
<xsl:value-of select="$portHttps" />

</xsl:attribute>
</xsl:when>
<xsl:when test="(name() = 'port' and . = '8443')">

<xsl:attribute name="port">
<xsl:value-of select="$portHttps" />

</xsl:attribute>
</xsl:when>
<xsl:otherwise>

<xsl:attribute name="{name()}"><xsl:value-of select="."
/></xsl:attribute>

</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

Chapter 10. Additional Services

354

<xsl:apply-templates/>
</Connector>

</xsl:template>

<xsl:template match="*|@*">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>
</xsl:stylesheet>
]]>

</xslt-config>
</delegate-config>
<binding port="8280"/>

</service-config>

5.4. The Sample Bindings File

JBoss ships with service binding configuration file for starting up to three separate JBoss
instances on one host. Here we will walk through the steps to bring up the two instances and
look at the sample configuration. Start by making two server configuration file sets called
jboss0 and jboss1 by running the following command from the book examples directory:

[examples]$ ant -Dchap=misc -Dex=1 run-example

This creates duplicates of the server/production configuration file sets as server/jboss0

and server/jboss1, and then replaces the conf/jboss-service.xml descriptor with one that
has the ServiceBindingManager configuration enabled as follows:

<mbean code="org.jboss.services.binding.ServiceBindingManager"
name="jboss.system:service=ServiceBindingManager">

<attribute name="ServerName">${jboss.server.name}</attribute>
<attribute

name="StoreURL">${jboss.server.base.dir}/misc-ex1-bindings.xml</attribute>
<attribute name="StoreFactoryClassName">

org.jboss.services.binding.XMLServicesStoreFactory
</attribute>

</mbean>

Here the configuration name is ${jboss.server.name}. JBoss will replace that with name of
the actual JBoss server configuration that we pass to the run script with the -c option. That will
be either jboss0 or jboss1, depending on which configuration is being run. The binding
manager will find the corresponding server configuration section from the
misc-ex1-bindings.xml and apply the configured overrides. The jboss0 configuration uses
the default settings for the ports, while the jboss1 configuration adds 100 to each port number.

To test the sample configuration, start two JBoss instances using the jboss0 and jboss1

configuration file sets created previously. You can observe that the port numbers in the console

The Sample Bindings File

355

log are different for the jboss1 server. To test out that both instances work correctly, try
accessing the web server of the first JBoss on port 8080 and then try the second JBoss
instance on port 8180.

6. RMI Dynamic Class Loading

The WebService MBean provides dynamic class loading for RMI access to the server EJBs.
The configurable attributes for the service are as follows:

• Port: the WebService listening port number. A port of 0 will use any available port.

• Host: Set the name of the public interface to use for the host portion of the RMI codebase
URL.

• BindAddress: the specific address the WebService listens on. This can be used on a
multi-homed host for a java.net.ServerSocket that will only accept connect requests to one
of its addresses.

• Backlog: The maximum queue length for incoming connection indications (a request to
connect) is set to the backlog parameter. If a connection indication arrives when the queue is
full, the connection is refused.

• DownloadServerClasses: A flag indicating if the server should attempt to download classes
from thread context class loader when a request arrives that does not have a class loader key
prefix.

• DownloadResources: A flag indicating whether the server should attempt to download
non-class file resources using the thread context class loader. Note that allowing this is
generally a security risk as it allows access to server configuration files which may contain
security settings.

• ThreadPool: The org.jboss.util.threadpool.BasicThreadPoolMBean instance thread
pool used for the class loading.

7. Scheduling Tasks

Java includes a simple timer based capability through the java.util.Timer and
java.util.TimerTask utility classes. JMX also includes a mechanism for scheduling JMX
notifications at a given time with an optional repeat interval as the
javax.management.timer.TimerMBean agent service.

JBoss includes two variations of the JMX timer service in the
org.jboss.varia.scheduler.Scheduler and
org.jboss.varia.scheduler.ScheduleManager MBeans. Both MBeans rely on the JMX timer
service for the basic scheduling. They extend the behavior of the timer service as described in
the following sections.

Chapter 10. Additional Services

356

7.1. org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the TimerMBean in that the Scheduler directly invokes a callback on
an instance of a user defined class, or an operation of a user specified MBean.

• InitialStartDate: Date when the initial call is scheduled. It can be either:

• NOW: date will be the current time plus 1 seconds

• A number representing the milliseconds since 1/1/1970

• Date as String able to be parsed by SimpleDateFormat with default format pattern "M/d/yy
h:mm a". If the date is in the past the Scheduler will search a start date in the future with
respect to the initial repetitions and the period between calls. This means that when you
restart the MBean (restarting JBoss etc.) it will start at the next scheduled time. When no
start date is available in the future the Scheduler will not start.

For example, if you start your Schedulable everyday at Noon and you restart your JBoss
server then it will start at the next Noon (the same if started before Noon or the next day if
start after Noon).

• InitialRepetitions: The number of times the scheduler will invoke the target's callback. If -1
then the callback will be repeated until the server is stopped.

• StartAtStartup: A flag that determines if the Scheduler will start when it receives its
startService life cycle notification. If true the Scheduler starts on its startup. If false, an
explicit startSchedule operation must be invoked on the Scheduler to begin.

• SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be
bigger than 0.

• SchedulableClass: The fully qualified class name of the
org.jboss.varia.scheduler.Schedulable interface implementation that is to be used by
the Scheduler . The SchedulableArguments and SchedulableArgumentTypes must be
populated to correspond to the constructor of the Schedulable implementation.

• SchedulableArguments: A comma separated list of arguments for the Schedulable

implementation class constructor. Only primitive data types, String and classes with a
constructor that accepts a String as its sole argument are supported.

• SchedulableArgumentTypes: A comma separated list of argument types for the
Schedulable implementation class constructor. This will be used to find the correct
constructor via reflection. Only primitive data types, String and classes with a constructor
that accepts a String as its sole argument are supported.

• SchedulableMBean: Specifies the fully qualified JMX ObjectName name of the schedulable
MBean to be called. If the MBean is not available it will not be called but the remaining
repetitions will be decremented. When using SchedulableMBean the
SchedulableMBeanMethod must also be specified.

org.jboss.varia.scheduler.Scheduler

357

• SchedulableMBeanMethod: Specifies the operation name to be called on the schedulable
MBean. It can optionally be followed by an opening bracket, a comma separated list of
parameter keywords, and a closing bracket. The supported parameter keywords include:

• NOTIFICATION which will be replaced by the timers notification instance
(javax.management.Notification)

• DATE which will be replaced by the date of the notification call (java.util.Date)

• REPETITIONS which will be replaced by the number of remaining repetitions (long)

• SCHEDULER_NAME which will be replaced by the ObjectName of the Scheduler

• Any fully qualified class name which the Scheduler will set to null.

A given Scheduler instance only support a single schedulable instance. If you need to configure
multiple scheduled events you would use multiple Scheduler instances, each with a unique
ObjectName. The following is an example of configuring a Scheduler to call a Schedulable

implementation as well as a configuration for calling a MBean.

<server>

<mbean code="org.jboss.varia.scheduler.Scheduler"
name="jboss.docs:service=Scheduler">

<attribute name="StartAtStartup">true</attribute>
<attribute

name="SchedulableClass">org.jboss.book.misc.ex2.ExSchedulable</attribute>
<attribute name="SchedulableArguments">TheName,123456789</attribute>
<attribute

name="SchedulableArgumentTypes">java.lang.String,long</attribute>

<attribute name="InitialStartDate">NOW</attribute>
<attribute name="SchedulePeriod">60000</attribute>
<attribute name="InitialRepetitions">-1</attribute>

</mbean>

</server>

The SchedulableClassorg.jboss.book.misc.ex2.ExSchedulable example class is given
below.

package org.jboss.book.misc.ex2;

import java.util.Date;
import org.jboss.varia.scheduler.Schedulable;

import org.apache.log4j.Logger;

/**
* A simple Schedulable example.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.4 $
*/

Chapter 10. Additional Services

358

public class ExSchedulable implements Schedulable
{

private static final Logger log = Logger.getLogger(ExSchedulable.class);

private String name;
private long value;

public ExSchedulable(String name, long value)
{

this.name = name;
this.value = value;
log.info("ctor, name: " + name + ", value: " + value);

}

public void perform(Date now, long remainingRepetitions)
{

log.info("perform, now: " + now +
", remainingRepetitions: " + remainingRepetitions +
", name: " + name + ", value: " + value);

}
}

Deploy the timer SAR by running:

[examples]$ ant -Dchap=misc -Dex=2 run-example

The server console shows the following which includes the first two timer invocations, separated
by 60 seconds:

21:09:27,716 INFO [ExSchedulable] ctor, name: TheName, value: 123456789
21:09:28,925 INFO [ExSchedulable] perform, now: Mon Dec 20 21:09:28 CST
2004,
remainingRepetitions: -1, name: TheName, value: 123456789

21:10:28,899 INFO [ExSchedulable] perform, now: Mon Dec 20 21:10:28 CST
2004,
remainingRepetitions: -1, name: TheName, value: 123456789

21:11:28,897 INFO [ExSchedulable] perform, now: Mon Dec 20 21:11:28 CST
2004,
remainingRepetitions: -1, name: TheName, value: 123456789

8. The Timer Service

The JMX standard defines a timer MBean (javax.management.timer.Timer) which can send
notifications at predetermined times. The a timer MBean can be instantiated within JBoss as
any other MBean.

<mbean code="javax.management.timer.Timer"
name="jboss.monitor:name=Heartbeat,type=Timer"/>

The Timer Service

359

A standard JMX timer doesn't produce any timer events unless it is asked to. To aid in the
configuration of the timer MBean, JBoss provides a complementary TimerService MBean. It
interacts with the timer MBean to configure timer events at regular intervals and to transform
them into JMX notifications more suitable for other services. The TimerService MBean takes
the following attributes:

• NotificationType: This is the type of the notification to be generated.

• NotificationMessage: This is the message that should be associated with the generated
notification.

• TimerPeriod: This is the time period between notification. The time period is in milliseconds,
unless otherwise specified with a unit like "30min" or "4h". Valid time suffixes are msec, sec,
min and h.

• Repeatitions: This is the number of times the alert should be generated. A value of 0
indicates the alert should repeat indefinitely.

• TimerMbean: This is the ObjectName of the time MBean that this TimerService instance
should configure notifications for.

The following sample illustrates the the use of the TimerService MBean.

<mbean code="org.jboss.monitor.services.TimerService"
name="jboss.monitor:name=Heartbeat,type=TimerService">

<attribute name="NotificationType">jboss.monitor.heartbeat</attribute>
<attribute name="NotificationMessage">JBoss is alive!</attribute>
<attribute name="TimerPeriod">60sec</attribute>
<depends optional-attribute-name="TimerMBean">

jboss.monitor:name=Heartbeat,type=Timer
</depends>

</mbean>

This MBean configuration configures the jboss.monitor:name=Heartbeat,type=Timer timer
to generate a jboss.monitor.heartbeat notification every 60 seconds. Any service that that
wants to receive this periodic notifications can subscribe to the notification.

As an example, JBoss provides a simple NotificationListener MBean that can listen for a
particular notification and log a log message when an event is generated. This MBean is very
useful for debugging or manually observing notifications. The following MBean definition listens
for any events generated by the heartbeat timer used in the previous examples.

<mbean code="org.jboss.monitor.services.NotificationListener"
name="jboss.monitor:service=NotificationListener">

<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.monitor:name=Heartbeat,type=Timer" />
</subscription-list>

</attribute>

Chapter 10. Additional Services

360

</mbean>

The subscription-list element lists which MBeans the listener should listen to. Notice that
the MBean we are listening to is the name of the actual timer MBean and not the TimerService

MBean. Because the timer might generate multiple events, configured by multiple
TimerService instances, you may need to filter by notification type. The filter element can
be used to create notification filters that select only the notification types desired. The following
listing shows how we can limit notifications to only the jboss.monitor.heartbeat type the
timer service configured.

<mbean code="org.jboss.monitor.services.NotificationListener"
name="jboss.monitor:service=NotificationListener">

<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.monitor:name=Heartbeat,type=Timer">
<filter factory="NotificationFilterSupportFactory">

<enable type="jboss.monitor.heartbeat"/>
</filter>

</mbean>
</subscription-list>

</attribute>
</mbean>

As an example of a slightly more interesting listener, we'll look at the ScriptingListener. This
listener listens for particular events and then executes a specified script when events are
received. The script can be written in any bean shell scripting language. The ScriptingListener
accepts has the following parameters.

• ScriptLanguage: This is the language the script is written in. This should be beanshell,
unless you have loaded libraries for another beanshell compatible language.

• Script: This is the text of the script to evaluate. It is good practice to enclose the script in a
CDATA section to minimize conflicts between scripting language syntax and XML syntax.

• SubscriptionList: This is the list of MBeans that this MBean will listen to for events that will
trigger the script.

The following example illustrates the use of the ScriptingListener. When the previously
configured timer generates a heartbeat notification, the beanshell script will execute, printing the
current memory values to STDOUT. (This output will be redirected to the log files) Notice that
the beanshell script has a reference to the MBean server and can execute operations against
other MBeans.

<mbean code="org.jboss.monitor.services.ScriptingListener"
name="jboss.monitor:service=ScriptingListener">

<attribute name="SubscriptionList">
<subscription-list>

The Timer Service

361

<mbean name="jboss.monitor:name=Heartbeat,type=Timer"/>
</subscription-list>

</attribute>
<attribute name="ScriptLanguage">beanshell</attribute>
<attribute name="Script">

<![CDATA[
import javax.management.ObjectName;

/* poll free memory and thread count */
ObjectName target = new ObjectName("jboss.system:type=ServerInfo");

long freeMemory = server.getAttribute(target, "FreeMemory");
long threadCount = server.getAttribute(target, "ActiveThreadCount");

log.info("freeMemory" + freeMemory + ", threadCount" + threadCount);
]]>

</attribute>
</mbean>

Of course, you are not limited to these JBoss-provided notification listeners. Other services such
as the barrier service (see Section 9, “The BarrierController Service”) receive and act on
notifications that could be generated from a timer. Additionally, any MBean can be coded to
listen for timer-generated notifications.

9. The BarrierController Service

Expressing dependencies between services using the <depends> tag is a convenient way to
make the lifecycle of one service depend on the lifecycle of another. For example, when
serviceA depends on serviceB JBoss will ensure the serviceB.create() is called before
serviceA.create() and serviceB.start() is called before serviceA.start().

However, there are cases where services do not conform to the JBoss lifecycle model, i.e. they
don't expose create/start/stop/destroy lifecycle methods). This is the case for
jboss.system:type=Server MBean, which represents the JBoss server itself. No lifecycle
operations are exposed so you cannot simply express a dependency like: if JBoss is fully
started then start my own service.

Or, even if they do conform to the JBoss lifecycle model, the completion of a lifecycle method
(e.g. the start method) may not be sufficient to describe a dependency. For example the
jboss.web:service=WebServer MBean that wraps the embedded Tomcat server in JBoss
does not start the Tomcat connectors until after the server is fully started. So putting a
dependency on this MBean, if we want to hit a webpage through Tomcat, will do no good.

Resolving such non-trivial dependencies is currently performed using JMX notifications. For
example the jboss.system:type=Server MBean emits a notification of type
org.jboss.system.server.started when it has completed startup, and a notification of type
org.jboss.system.server.stopped when it shuts down. Similarly,
jboss.web:service=WebServer emits a notification of type
jboss.tomcat.connectors.started when it starts up. Services can subscribe to those

Chapter 10. Additional Services

362

notifications in order to implement more complex dependencies. This technique has been
generalized with the barrier controller service.

The barrier controller is a relatively simple MBean service that extends
ListenerServiceMBeanSupport and thus can subscribe to any notification in the system. It
uses the received notifications to control the lifecycle of a dynamically created MBean called the
barrier.

The barrier is instantiated, registered and brought to the create state when the barrier controller
is deployed. After that, the barrier is started and stopped when matching notifications are
received. Thus, other services need only depend on the barrier MBean using the usual
<depends> tag, without having to worry about complex lifecycle issues. They will be started and
stopped in tandem with the Barrier. When the barrier controller is undeployed the barrier is
destroyed.

The notifications of interest are configured in the barrier controller using the SubscriptionList

attribute. In order to identify the starting and stopping notifications we associate with each
subscription a handback string object. Handback objects, if specified, are passed back along
with the delivered notifications at reception time (i.e. when handleNotification() is called) to
qualify the received notifications, so that you can identify quickly from which subscription a
notification is originating (because your listener can have many active subscriptions).

So we tag the subscriptions that produce the starting/stopping notifications of interest using any
handback strings, and we configure this same string to the StartBarrierHandback (and
StopBarrierHandback correspondingly) attribute of the barrier controller. Thus we can have
more than one notifications triggering the starting or stopping of the barrier.

The following example shows a service that depends on the Tomcat connectors. In fact, this is a
very common pattern for services that want to hit a servlet inside tomcat. The service that
depends on the Barrier in the example, is a simple memory monitor that creates a background
thread and monitors the memory usage, emitting notifications when thresholds get crossed, but
it could be anything. We've used this because it prints out to the console starting and stopping
messages, so we know when the service gets activated/deactivated.

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id: J2EE_Additional_Services.xml,v 1.4 2007/06/22 08:38:25 skittoli
Exp $ -->

<server>
<!--

In this example we have the BarrierController controlling a Barrier
that is started when we receive the "jboss.tomcat.connectors.started"
notification from the Tomcat mbean, and stopped when we receive the
"org.jboss.system.server.stopped" notification from the server mbean.

The dependent services need only define a dependency on the Barrier
mbean!
-->
<mbean code="org.jboss.system.BarrierController"

name="jboss:service=BarrierController">

<!-- Whether to have the Barrier initially started or not -->

The BarrierController Service

363

<attribute name="BarrierEnabledOnStartup">false</attribute>

<!-- Whether to subscribe for notifications after startup -->
<attribute name="DynamicSubscriptions">true</attribute>

<!-- Dependent services will depend on this mbean -->
<attribute

name="BarrierObjectName">jboss:name=TomcatConnector,type=Barrier</attribute>

<!-- The notification subscription handback that starts the barrier -->
<attribute name="StartBarrierHandback">start</attribute>

<!-- The notification subscription handback that stops the barrier -->
<attribute name="StopBarrierHandback">stop</attribute>

<!-- The notifications to subscribe for, along with their handbacks -->
<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.web:service=WebServer" handback="start">
<filter factory="NotificationFilterSupportFactory">

<enable type="jboss.tomcat.connectors.started"/>
</filter>

</mbean>
<mbean name="jboss.system:type=Server" handback="stop">

<filter factory="NotificationFilterSupportFactory">
<enable type="org.jboss.system.server.stopped"/>

</filter>
</mbean>

</subscription-list>
</attribute>

</mbean>

<!--
An example service that depends on the Barrier we declared above.
This services creates a background thread and monitors the memory
usage. When it exceeds the defined thresholds it emits notifications

-->
<mbean code="org.jboss.monitor.services.MemoryMonitor"

name="jboss.monitor:service=MemoryMonitor">

<attribute name="FreeMemoryWarningThreshold">20m</attribute>
<attribute name="FreeMemoryCriticalThreshold">15m</attribute>

<!-- The BarrierObjectName configured in the BarrierController -->
<depends>jboss:name=TomcatConnector,type=Barrier</depends>

</mbean>

</server>

If you hot-deploy this on a running server the Barrier will be stopped because by the time the
barrier controller is deployed the starting notification is already seen. (There are ways to
overcome this.) However, if you re-start the server, the barrier will be started just after the
Tomcat connectors get activated. You can also manually start or stop the barrier by using the
startBarrier() and stopBarrier() operations on the barrier controller. The attribute

Chapter 10. Additional Services

364

BarrierStateString indicates the status of the barrier.

10. Exposing MBean Events via SNMP

JBoss has an SNMP adaptor service that can be used to intercept JMX notifications emitted by
MBeans, convert them to traps and send them to SNMP managers. In this respect the
snmp-adaptor acts as a SNMP agent. Future versions may offer support for full agent get/set
functionality that maps onto MBean attributes or operations.

This service can be used to integrate JBoss with higher order system/network management
platforms (HP OpenView, for example), making the MBeans visible to those systems. The
MBean developer can instrument the MBeans by producing notifications for any significant
event (e.g. server coldstart), and adaptor can then be configured to intercept the notification and
map it onto an SNMP traps. The adaptor uses the JoeSNMP package from OpenNMS as the
SNMP engine.

The SNMP service is configured in snmp-adaptor.sar. This service is only available in the all

configuration, so you'll need to copy it to your configuration if you want to use it. Inside the
snmp-adaptor.sar directory, there are two configuration files that control the SNMP service.

• managers.xml: configures where to send traps. The content model for this file is shown in
Figure 10.2, “The schema for the SNMP managers file”.

• notifications.xml: specifies the exact mapping of each notification type to a corresponding
SNMP trap. The content model for this file is shown in Figure 10.3, “The schema for the
notification to trap mapping file”.

The SNMPAgentService MBean is configured in
snmp-adaptor.sar/META-INF/jboss-service.xml. The configurable parameters are:

• HeartBeatPeriod: The period in seconds at which heartbeat notifications are generated.

• ManagersResName: Specifies the resource name of the managers.xml file.

• NotificationMapResName: Specifies the resource name of the notications.xml file.

• TrapFactoryClassName: The org.jboss.jmx.adaptor.snmp.agent.TrapFactory

implementation class that takes care of translation of JMX Notifications into SNMP V1 and V2
traps.

• TimerName: Specifies the JMX ObjectName of the JMX timer service to use for heartbeat
notifications.

• SubscriptionList: Specifies which MBeans and notifications to listen for.

Exposing MBean Events via SNMP

365

Figure 10.2. The schema for the SNMP managers file

Figure 10.3. The schema for the notification to trap mapping file

TrapdService is a simple MBean that acts as an SNMP Manager. It listens to a configurable
port for incoming traps and logs them as DEBUG messages using the system logger. You can
modify the log4j configuration to redirect the log output to a file. SnmpAgentService and
TrapdService are not dependent on each other.

Chapter 10. Additional Services

366

Part III. Clustering Configuration

Quick Tutorial to Setup a Clustered
Web Application
Web server clustering is to use multiple JBoss AS server instances to serve the same web
address (e.g., http://www.jboss.com/). It is one of the most common clustering architectures
JBoss AS users deploy. In this tutorial, we discuss the basic architecture of a web cluster and
give step-by-step instructions on how to setup the cluster. A very simple web cluster looks like
Figure 11.1, “A very simple web cluster”.

Figure 11.1. A very simple web cluster

A lightweight web server, known as the load balancer, receives all HTTP requests from that web
address and dispatches them to JBoss AS nodes in the cluster. The JBoss AS node does the
heavy lifting of processing the request and generating the response. All the JBoss AS nodes
share the same database server for persistent data in the application. Notice that each node
contains the entire JBoss AS stack, including the web server, servlet container, EJB container,
persistence manager etc. Breaking the JBoss AS stack to different physical servers would
substantially complicate the architecture but without much scalability benefit.

1. Setup the simple web cluster

In our simple cluster depicted in Figure 11.1, “A very simple web cluster”, every JBoss AS node
is independent of each other. The load balancer "remembers" the user sessions and always
forwards requests from the same session to the same JBoss AS node (a.k.a sticky session). So,
each JBoss AS node stores its own set of HTTP session data. There is no information sharing
between JBoss AS nodes, besides the persistent data in the shared database.

Chapter 11.

369

Assuming that the load balancer and the shared database are not performance bottlenecks, this
cluster can scale linearly with the number of JBoss AS nodes. Of course, the simplicity and
scalability has their price. The most obvious shortcomings of the this simple architecture are the
lack of support for failover and database cache. We will look at solutions for those problems in
Section 2.2, “Database cache”.

1.1. Setup the load balancer

The easiest way to setup a load balancer is to use the Apache web server with the mod_jk
module to interact with JBoss AS. After installing the Apache web server, you should download
the mod_jk 1.2.x binary from http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/
[http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/]. Rename the downloaded file
to mod_jk.so and copy it under APACHE_HOME/modules/ directory.

Use mod_jk 1.2.x

We strongly advise you to use mod_jk 1.2.x, as both mod_jk and mod_jk2 are
deprecated, unsupported and no further developments are going on in the
community.

Note

Aside from loading balancing, using Apache mod_jk to front JBoss AS servers
have other benefits. The most important one is that Apache serves static content
(e.g., images) much faster than Tomcat (i.e., the embedded servlet server in
JBoss AS). Apache also handles SSL and keep-alive connections much more
efficiently than Tomcat. In addition, Apache provides modules for access control,
URL rewriting, CGI/PHP execution. So, we recommend fronting JBoss AS with
Apache mod_jk even if you have only one JBoss AS node.

To tell the Apache server to use mod_jk, you need to add the following line to the
APACHE_HOME/conf/httpd.conf file.

Include mod_jk's specific configuration file
Include conf/mod_jk.conf

Example 11.1. Add this to the httpd.conf file

Chapter 11. Quick Tutorial to...

370

http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/
http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/

Next, you should configure the interaction between Apache server and mod_jk by creating the
APACHE_HOME/conf/mod_jk.conf file as follows. The LoadModule directive must reference the
mod_jk library you have downloaded in the previous section. You must indicate the exact same
name with the "modules" file path prefix. The JkMount directive tells Apache which URLs it
should forward to the mod_jk module (and, in turn, to the JBoss AS instances). In the above file,
all requests with URL path /application/* are sent to the mod_jk load-balancer. This way, you
can configure Apache to server static contents (or PHP contents) directly and only use the
loadbalancer for Java applications. If you only use mod_jk as a loadbalancer, you can also
forward all URLs (i.e., /*) to mod_jk.

Load mod_jk module
Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkRequestLogFormat
JkRequestLogFormat "%w %V %T"

Mount your applications
JkMount /application/* loadbalancer

Add shared memory.
This directive is present with 1.2.10 and
later versions of mod_jk, and is needed for
for load balancing to work properly
JkShmFile logs/jk.shm

Add jkstatus for managing runtime data
<Location /jkstatus/>

JkMount status
Order deny,allow
Deny from all
Allow from 127.0.0.1

</Location>

Example 11.2. The mod_jk.conf file

Setup the load balancer

371

Then, you need to configure mod_jk itself to load balance the JBoss AS cluster. The workers file
conf/workers.properties specifies the locations of JBoss AS server nodes and how calls should
be load-balanced across them. For a two nodes setup, the file could look like the following.

Define list of workers that will be used
for mapping requests
worker.list=loadbalancer,status

Define Node1
modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.lbfactor=1
worker.node1.cachesize=10

Define Node2
modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host= node2.mydomain.com
worker.node2.type=ajp13
worker.node2.lbfactor=1
worker.node2.cachesize=10

Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1
#worker.list=loadbalancer

Status worker for managing load balancer
worker.status.type=status

Example 11.3. The workers.properties file

The above file configures mod_jk to perform weighted round-robin load balancing between two
JBoss AS instances, node1 and node2, listening on port 8009. In the works.properties file, each
node is defined using the worker.XXX naming convention where XXX represents an arbitrary
name you choose for one of the target JBoss AS node. For each worker, you must give the host
name (or IP address) and port number of the AJP13 connector (the port 8009 is default). The
lbfactor attribute is the load-balancing factor for this specific worker. It is used to define the
priority (or weight) a node should have over other nodes. The higher this number is, the more
HTTP requests it will receive. This setting can be used to differentiate servers with different
processing power. The cachesize attribute defines the size of the thread pools associated to the
JBoss AS node (i.e. the number of concurrent requests it will forward to the node). Make sure
this number does not outnumber the number of threads configured on the AJP13 connector of
the node. The last part of the conf/workers.properties file defines the loadbalancer worker. The

Chapter 11. Quick Tutorial to...

372

worker.loadbalancer.balanced_workers line must list all workers previously defined in the same
file, and then load-balancing will happen over these workers.

Sticky sessions

In mod_jk, you almost always configure the load balancer to use "sticky
sessions". With sticky sessions, mod_jk forwards requests in the same web
session to the same JBoss AS node. The sticky session ensures that the user is
always served by the JBoss AS instance that has the correct session state.
Sticky session is required for our simple cluster setup.

1.2. Configure JBoss AS nodes

The JBoss AS nodes in the cluster are almost identical to each other. They must run the same
version of JBoss AS, the same applications, and have the same configuration except for few
clustering related configuration options. In this section, we cover two JBoss AS configuration
options required for the web cluster. One of them is universal for all nodes and the other is
unique for each node.

The clustering profile for JBoss AS

For this simple clustering architecture, you do not even need the "clustering"
profile of JBoss AS -- you can just use the default JBoss AS profile since there is
no communication (i.e., clustering) between JBoss AS nodes.

First, we must configure all JBoss AS nodes to add an "identifier" of itself to all HTTP session
IDs it serves. This way, the load balancer would know which JBoss AS node to forward each
request just by checking at the session ID of the request. To do that, edit the
JBOSS_HOME/server/all/deploy/jboss-web.deploy/META-INF/jboss-service.xml file (replace all
with your own server configuration name). Locate the <attribute> element with a name of
UseJK, and set its value to true as follows.

<attribute name="UseJK">true</attribute>

Example 11.4. Configure jboss-service.xml to support JBoss AS node
identity in HTTP session IDs

Second, you need to actually give an identity to each JBoss AS node. On each clustered JBoss

Configure JBoss AS nodes

373

node, you need to name the node according to the name specified in workers.properties. For
instance, on JBoss instance node1, edit the
JBOSS_HOME/server/all/deploy/jboss-web.deployer/server.xml file (replace all with your own
server configuration name if necessary). Locate the <Engine> element and add an attribute
jvmRoute as follows.

<Engine name="jboss.web"
defaultHost="localhost" jvmRoute="node1">

... ...
</Engine>

Example 11.5. Add node information to the server.xml file

Each JBoss AS instance appends its own jvmRoute value to its HTTP session IDs so that
mod_jk can route incoming requests. That's all you need on the JBoss AS node.

1.3. Shared Database

By default, JBoss AS uses an embedded HSQL database for persistence data storage. For a
web cluster to work properly, you must use a shared database for all server nodes. We
recommend you setup a separate MySQL database server and then configure it as the
DataSource for applications deployed on all nodes. Please see Appendix B, Use Alternative
Databases with JBoss AS for more information on how to setup external databases as
DataSources.

2. Optional improvements to the simple cluster

The simple web cluster we discussed above is simply a load balanced architecture for servers
that only share information at the database level. This architecture is highly scalable but it does
not provide crucial clustering features such as failover and distributed caching. With some
simple optional steps, you can easily add those features to your cluster.

Please note that you need to install a clustering enabled JBoss AS profile (i.e., the all or
ejb3-cluster profiles) on all your server nodes for the optional setups.

2.1. Failover support

The simple web cluster does not support failover if one of the server nodes crashes. Since each
JBoss AS node stores its own HTTP session state data -- the users on the crashed server
would lose their sessions when the load balancer forwards their requests to another node. The
solution is for each node in the cluster to replicate its HTTP session data to other nodes in the
cluster, so that when the node crashes, there is another node node to pick up all users it left off
without any session loss.

Chapter 11. Quick Tutorial to...

374

When you start multiple clustering enabled JBoss AS instances on the same network, they
automatically form a cluster. Therefore, all you need to do is to enable HTTP session replication
in your web application. That is by adding a <distributable/> tag in your web.xml file.

<web-app ...>
<distributable/>
<!-- ... -->

</web-app>

However, failover does not come free. Since extra object serialization (CPU intensive) and
communication between server nodes (network intensive) are required, the cluster can no
longer scale linearly with the number of nodes. With the default setup, the HTTP sessions on
each node are replicated to all other nodes in the cluster. So the clustering workload increases
geometrically with the number of server nodes. The cluster would not scale beyond 8 to 10
servers with the default setup. For a truly scalable failover solution, we need to setup buddy
replication in the cluster so that each node only replicates its HTTP session data to another
"buddy" failover node.

2.2. Database cache

Database cache is very useful for improving performance of ORM solutions like Hibernate and
EJB 3.0. It stores frequently accessed data objects in the application server's memory and
hence reduces the round trips to the database server. However, the challenge is to keep the
cache on all server nodes in sync. For instance, data object O might be cached on both server
nodes A and B. Now, node A updates object O and flushes the change back to the database. If
A and B are not correlated, there is no way for B to know that object O already has an updated
value in the database -- so users on server B would continue to access the expired value of O
and get errors.

The solution here is to use a distributed database cache. The cache is "shared" by all server
nodes. So, if one node adds / updates / removes, any object into / from the cache, all other
nodes get the updated cache instantly as well. Here we give an example configuration for EJB
3.0 entity bean, which is supported by Hibernate 3.2+.

The distributed database cache is supported out of the box in the ejb3-cluster profile of JBoss
AS. As the case with HTTP session replication, all you need is to enable this feature in your
application. First, you need to specify JBoss TreeCache as your database cache provider in
your persistence.xml file.

<!-- Clustered cache with TreeCache -->
<property name="cache.provider_class">

org.jboss.ejb3.entity.TreeCacheProviderHook
</property>

<property name="treecache.mbean.object_name">
jboss.cache:service=EJB3EntityTreeCache

Database cache

375

</property>

The on each entity bean class you want to cache, add the @Cache annotation.

@Entity
@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class Product implements Serializable {
//

}

That's it. Now the Product data objects are cached in the shared cache across all JBoss AS
server nodes in the cluster.

3. Basic optimization

In this section, we will give a few optimization tips to improve the performance of the cluster.
Details of those optimization techniques will be covered later in this book.

The first tip is to balance the connection pools in JBoss AS server nodes and the load balancer.
The goal is to make the Apache connection poll 80% the size of the combined connection pools
of the JBoss AS nodes. In addition, to optimize thread performance in the load balancer, we
highly recommend you install the "worker" MPM for Apache on Unix / Linux servers and the
"winnt" MPM for Windows servers.

Second, we need to understand that HTTP session replication is very expensive and should be
minimized when possible. Choosing the right replication trigger and granularity is an important
step. For instance, setting the replication trigger to SET might require you to write more code to
push changed data back into the session. But it can drastically reduce the replication work load
for a mostly read-only application. Setting the granularity level to ATTRIBUTE would be much
more efficient than SESSION if the session size is large. However, setting the granularity level
to FIELD may not have a great benefit due to the AOP overhead associated with dirty checking
on fields.

In addition, as we discussed before, the default "replicate-to-all-nodes" approach for HTTP
session replication does scale for large clusters.

At the network level, it is important to make sure that you use an asynchronous communication
mechanism to replicate HTTP sessions. Since the replicated HTTP sessions are only used
when a rare failover happens, it is not essential for the failover node to always have the exact
same state as the primary node at real time.

It also worth noting that the choice of underlying network protocols for the inter-node
communication also affects performance. In general, on a small network (i.e., 4 or less nodes)

Chapter 11. Quick Tutorial to...

376

the node-to-node TCP/IP protocol would out perform the broadcast-based UDP protocol. It is
the opposite when the cluster size grows larger.

Basic optimization

377

378

JBossCache and JGroups Services
JGroups and JBossCache provide the underlying communication, node replication and caching
services, for JBoss AS clusters. Those services are configured as MBeans. There is a set of
JBossCache and JGroups MBeans for each type of clustering applications (e.g., the Stateful
Session EJBs, the distributed entity EJBs etc.).

The JBoss AS ships with a reasonable set of default JGroups and JBossCache MBean
configurations. Most applications just work out of the box with the default MBean configurations.
You only need to tweak them when you are deploying an application that has special network or
performance requirements.

1. JGroups Configuration

The JGroups framework provides services to enable peer-to-peer communications between
nodes in a cluster. It is built on top a stack of network communication protocols that provide
transport, discovery, reliability and failure detection, and cluster membership management
services. Figure 12.1, “Protocol stack in JGroups” shows the protocol stack in JGroups.

Figure 12.1. Protocol stack in JGroups

JGroups configurations often appear as a nested attribute in cluster related MBean services,
such as the PartitionConfig attribute in the ClusterPartition MBean or the
ClusterConfig attribute in the TreeCache MBean. You can configure the behavior and

Chapter 12.

379

properties of each protocol in JGroups via those MBean attributes. Below is an example
JGroups configuration in the ClusterPartition MBean.

<mbean code="org.jboss.ha.framework.server.ClusterPartition"
name="jboss:service=DefaultPartition">

... ...

<attribute name="PartitionConfig">
<Config>

<UDP mcast_addr="228.1.2.3" mcast_port="45566"
ip_ttl="8" ip_mcast="true"
mcast_send_buf_size="800000" mcast_recv_buf_size="150000"
ucast_send_buf_size="800000" ucast_recv_buf_size="150000"
loopback="false"/>

<PING timeout="2000" num_initial_members="3"
up_thread="true" down_thread="true"/>

<MERGE2 min_interval="10000" max_interval="20000"/>
<FD shun="true" up_thread="true" down_thread="true"

timeout="2500" max_tries="5"/>
<VERIFY_SUSPECT timeout="3000" num_msgs="3"

up_thread="true" down_thread="true"/>
<pbcast.NAKACK gc_lag="50"

retransmit_timeout="300,600,1200,2400,4800"
max_xmit_size="8192"
up_thread="true" down_thread="true"/>

<UNICAST timeout="300,600,1200,2400,4800"
window_size="100" min_threshold="10"
down_thread="true"/>

<pbcast.STABLE desired_avg_gossip="20000"
up_thread="true" down_thread="true"/>

<FRAG frag_size="8192"
down_thread="true" up_thread="true"/>

<pbcast.GMS join_timeout="5000" join_retry_timeout="2000"
shun="true" print_local_addr="true"/>

<pbcast.STATE_TRANSFER up_thread="true" down_thread="true"/>
</Config>

</attribute>
</mbean>

All the JGroups configuration data is contained in the <Config> element under the JGroups
config MBean attribute. In the next several sections, we will dig into the options in the <Config>

element and explain exactly what they mean.

1.1. Transport Protocols

The transport protocols send messages from one cluster node to another (unicast) or from
cluster node to all other nodes in the cluster (mcast). JGroups supports UDP, TCP, and
TUNNEL as transport protocols.

Chapter 12. JBossCache and JG...

380

Note

The UDP, TCP, and TUNNEL elements are mutually exclusive. You can only have
one transport protocol in each JGroups Config element

1.1.1. UDP configuration

UDP is the preferred protocol for JGroups. UDP uses multicast or multiple unicasts to send and
receive messages. If you choose UDP as the transport protocol for your cluster service, you
need to configure it in the UDP sub-element in the JGroups Config element. Here is an example.

<UDP mcast_send_buf_size="32000"
mcast_port="45566"
ucast_recv_buf_size="64000"
mcast_addr="228.8.8.8"
bind_to_all_interfaces="true"
loopback="true"
mcast_recv_buf_size="64000"
max_bundle_size="30000"
max_bundle_timeout="30"
use_incoming_packet_handler="false"
use_outgoing_packet_handler="false"
ucast_send_buf_size="32000"
ip_ttl="32"
enable_bundling="false"/>

The available attributes in the above JGroups configuration are listed below.

• ip_mcast specifies whether or not to use IP multicasting. The default is true.

• mcast_addr specifies the multicast address (class D) for joining a group (i.e., the cluster).
The default is 228.8.8.8.

• mcast_port specifies the multicast port number. The default is 45566.

• bind_addr specifies the interface on which to receive and send multicasts (uses the
bind.address system property, if present). If you have a multihomed machine, set the
bind_addr attribute to the appropriate NIC IP address. Ignored if the ignore.bind.address

property is true.

• bind_to_all_interfaces specifies whether this node should listen on all interfaces for
multicasts. The default is false. It overrides the bind_addr property for receiving multicasts.
However, bind_addr (if set) is still used to send multicasts.

Transport Protocols

381

• ip_ttl specifies the TTL for multicast packets.

• use_incoming_packet_handler specifies whether to use a separate thread to process
incoming messages.

• use_outgoing_packet_handler specifies whether to use a separate thread to process
outgoing messages.

• enable_bundling specifies whether to enable bundling. If it is true, the node would queue
outgoing messages until max_bundle_size bytes have accumulated, or max_bundle_time
milliseconds have elapsed, whichever occurs first. Then bundle queued messages into a
large message and send it. The messages are unbundled at the receiver. The default is
false.

• loopback specifies whether to loop outgoing message back up the stack. In unicast mode,
the messages are sent to self. In mcast mode, a copy of the mcast message is sent.

• discard_incompatibe_packets specifies whether to discard packets from different JGroups
versions. Each message in the cluster is tagged with a JGroups version. When a message
from a different version of JGroups is received, it will be discarded if set to true, otherwise a
warning will be logged.

• mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size,
ucast_recv_buf_size define receive and send buffer sizes. It is good to have a large receiver
buffer size, so packets are less likely to get dropped due to buffer overflow.

Note

On Windows 2000 machines, because of the media sense feature being broken
with multicast (even after disabling media sense), you need to set the UDP
protocol's loopback attribute to true.

1.1.2. TCP configuration

Alternatively, a JGroups-based cluster can also work over TCP connections. Compared with
UDP, TCP generates more network traffic when the cluster size increases but TCP is more
reliable. TCP is fundamentally a unicast protocol. To send multicast messages, JGroups uses
multiple TCP unicasts. To use TCP as a transport protocol, you should define a TCP element in
the JGroups Config element. Here is an example of the TCP element.

<TCP start_port="7800"
bind_addr="192.168.5.1"
loopback="true"/>

Chapter 12. JBossCache and JG...

382

Below are the attributes available in the TCP element.

• bind_addr specifies the binding address. It can also be set with the -Dbind.address

command line option at server startup.

• start_port, end_port define the range of TCP ports the server should bind to. The server
socket is bound to the first available port from start_port. If no available port is found (e.g.,
because of a firewall) before the end_port, the server throws an exception.

• loopback specifies whether to loop outgoing message back up the stack. In unicast mode,
the messages are sent to self. In mcast mode, a copy of the mcast message is sent.

• mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size,
ucast_recv_buf_size define receive and send buffer sizes. It is good to have a large receiver
buffer size, so packets are less likely to get dropped due to buffer overflow.

• conn_expire_time specifies the time (in milliseconds) after which a connection can be closed
by the reaper if no traffic has been received.

• reaper_interval specifies interval (in milliseconds) to run the reaper. If both values are 0, no
reaping will be done. If either value is > 0, reaping will be enabled.

1.1.3. TUNNEL configuration

The TUNNEL protocol uses an external router to send messages. The external router is known
as a GossipRouter. Each node has to register with the router. All messages are sent to the
router and forwarded on to their destinations. The TUNNEL approach can be used to setup
communication with nodes behind firewalls. A node can establish a TCP connection to the
GossipRouter through the firewall (you can use port 80). The same connection is used by the
router to send messages to nodes behind the firewall. The TUNNEL configuration is defined in
the TUNNEL element in the JGroups Config element. Here is an example.

<TUNNEL router_port="12001"
router_host="192.168.5.1"/>

The available attributes in the TUNNEL element are listed below.

• router_host specifies the host on which the GossipRouter is running.

• router_port specifies the port on which the GossipRouter is listening.

• loopback specifies whether to loop messages back up the stack. The default is true.

1.2. Discovery Protocols

Discovery Protocols

383

The cluster need to maintain a list of current member nodes at all times so that the load
balancer and client interceptor know how to route their requests. The discovery protocols are
used to discover active nodes in the cluster. All initial nodes are discovered when the cluster
starts up. When a new node joins the cluster later, it is only discovered after the group
membership protocol (GMS, see Section 1.5.1, “Group Membership”) admits it into the group.

Since the discovery protocols sit on top of the transport protocol. You can choose to use
different discovery protocols based on your transport protocol. The discovery protocols are also
configured as sub-elements in the JGroups MBean Config element.

1.2.1. PING

The PING discovery protocol normally sits on top of the UDP transport protocol. Each node
responds with a unicast UDP datagram back to the sender. Here is an example PING
configuration under the JGroups Config element.

<PING timeout="2000"
num_initial_members="2"/>

The available attributes in the PING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

• num_initial_members specifies the maximum number of responses to wait for.

• gossip_host specifies the host on which the GossipRouter is running.

• gossip_port specifies the port on which the GossipRouter is listening on.

• gossip_refresh specifies the interval (in milliseconds) for the lease from the GossipRouter.

• initial_hosts is a comma-separated list of addresses (e.g., host1[12345],host2[23456]),
which are pinged for discovery.

If both gossip_host and gossip_port are defined, the cluster uses the GossipRouter for the
initial discovery. If the initial_hosts is specified, the cluster pings that static list of addresses
for discovery. Otherwise, the cluster uses IP multicasting for discovery.

Note

The discovery phase returns when the timeout ms have elapsed or the
num_initial_members responses have been received.

Chapter 12. JBossCache and JG...

384

1.2.2. TCPGOSSIP

The TCPGOSSIP protocol only works with a GossipRouter. It works essentially the same way
as the PING protocol configuration with valid gossip_host and gossip_port attributes. It works
on top of both UDP and TCP transport protocols. Here is an example.

<PING timeout="2000"
initial_hosts="192.168.5.1[12000],192.168.0.2[12000]"
num_initial_members="3"/>

The available attributes in the TCPGOSSIP element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

• num_initial_members specifies the maximum number of responses to wait for.

• initial_hosts is a comma-separated list of addresses (e.g., host1[12345],host2[23456])
for GossipRouters to register with.

1.2.3. TCPPING

The TCPPING protocol takes a set of known members and ping them for discovery. This is
essentially a static configuration. It works on top of TCP. Here is an example of the TCPPING

configuration element in the JGroups Config element.

<TCPPING timeout="2000"
initial_hosts="192.168.5.1[7800],192.168.0.2[7800]"
port_range="2"
num_initial_members="3"/>

The available attributes in the TCPPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

• num_initial_members specifies the maximum number of responses to wait for.

• initial_hosts is a comma-separated list of addresses (e.g., host1[12345],host2[23456])
for pinging.

• port_range specifies the range of ports to ping on each host in the initial_hosts list. That
is because multiple nodes can run on the same host. In the above example, the cluster would
ping ports 7800, 7801, and 7802 on both hosts.

Discovery Protocols

385

1.2.4. MPING

The MPING protocol is a multicast ping over TCP. It works almost the same way as PING works
on UDP. It does not require external processes (GossipRouter) or static configuration (initial
host list). Here is an example of the MPING configuration element in the JGroups Config

element.

<MPING timeout="2000"
bind_to_all_interfaces="true"
mcast_addr="228.8.8.8"
mcast_port="7500"
ip_ttl="8"
num_initial_members="3"/>

The available attributes in the MPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses.

• num_initial_members specifies the maximum number of responses to wait for.

• bind_addr specifies the interface on which to send and receive multicast packets.

• bind_to_all_interfaces overrides the bind_addr and uses all interfaces in multihome nodes.

• mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in the UDP
protocol configuration.

1.3. Failure Detection Protocols

The failure detection protocols are used to detect failed nodes. Once a failed node is detected,
the cluster updates its view so that the load balancer and client interceptors know to avoid the
dead node. The failure detection protocols are configured as sub-elements in the JGroups
MBean Config element.

1.3.1. FD

The FD discovery protocol requires each node periodically sends are-you-alive messages to its
neighbor. If the neighbor fails to respond, the calling node sends a SUSPECT message to the
cluster. The current group coordinator double checks that the suspect node is indeed dead and
updates the cluster's view. Here is an example FD configuration.

<FD timeout="2000"
max_tries="3"
shun="true"/>

Chapter 12. JBossCache and JG...

386

The available attributes in the FD element are listed below.

• timeout specifies the maximum number of milliseconds to wait for the responses to the
are-you-alive messages.

• max_tries specifies the number of missed are-you-alive messages from a node before the
node is suspected.

• shun specifies whether a failed node will be shunned. Once shunned, the node will be
expelled from the cluster even if it comes back later. The shunned node would have to re-join
the cluster through the discovery process.

Note

Regular traffic from a node counts as if it is a live. So, the are-you-alive
messages are only sent when there is no regular traffic to the node for sometime.

1.3.2. FD_SOCK

The are-you-alive messages in the FD protocol could increase the network load when there are
many nodes. It could also produce false suspicions. For instance, if the network is too busy and
the timeout is too short, nodes could be falsely suspected. Also, if one node is suspended in a
debugger or profiler, it could also be suspected and shunned. The FD_SOCK protocol
addresses the above issues by suspecting node failures only when a regular TCP connection to
the node fails. However, the problem with such passive detection is that hung nodes will not be
detected until it is accessed and the TCP timeouts after several minutes. FD_SOCK works best
in high load networks where all nodes are frequently accessed. The simplest FD_SOCK
configuration does not take any attribute. You can just declare an empty FD_SOCK element in
JGroups's Config element.

<FD_SOCK/>

There is only one optional attribute in the FD_SOCK element.

• srv_sock_bind_addr specifies the interface to which the server socket should bind to. If it is
omitted, the -D bind.address property from the server startup command line is used.

1.3.3. FD_SIMPLE

The FD_SIMPLE protocol is a more tolerant (less false suspicions) protocol based on

Failure Detection Protocols

387

are-you-alive messages. Each node periodically sends are-you-alive messages to a randomly
chosen node and wait for a response. If a response has not been received within a certain
timeout time, a counter associated with that node will be incremented. If the counter exceeds a
certain value, that node will be suspected. When a response to an are-you-alive message is
received, the counter resets to zero. Here is an example configuration for the FD_SIMPLE

protocol.

<FD_SIMPLE timeout="2000"
max_missed_hbs="10"/>

The available attributes in the FD_SIMPLE element are listed below.

• timeout specifies the timeout (in milliseconds) for the are-you-alive message. If a response is
not received within timeout, the counter for the target node is increased.

• max_missed_hbs specifies maximum number of are-you-alive messages (i.e., the counter
value) a node can miss before it is suspected failure.

1.4. Reliable Delivery Protocols

The reliable delivery protocols in the JGroups stack ensure that data pockets are actually
delivered in the right order (FIFO) to the destination node. The basis for reliable message
delivery is positive and negative delivery acknowledgments (ACK and NAK). In the ACK mode,
the sender resends the message until the acknowledgment is received from the receiver. In the
NAK mode, the receiver requests retransmission when it discovers a gap.

1.4.1. UNICAST

The UNICAST protocol is used for unicast messages. It uses ACK. It is configured as a
sub-element under the JGroups Config element. Here is an example configuration for the
UNICAST protocol.

<UNICAST timeout="100,200,400,800"/>

There is only one configurable attribute in the UNICAST element.

• timeout specifies the retransmission timeout (in milliseconds). For instance, if the timeout is
"100,200,400,800", the sender resends the message if it hasn't received an ACK after 100 ms
the first time, and the second time it waits for 200 ms before resending, and so on.

Chapter 12. JBossCache and JG...

388

1.4.2. NAKACK

The NAKACK protocol is used for multicast messages. It uses NAK. Under this protocol, each
message is tagged with a sequence number. The receiver keeps track of the sequence
numbers and deliver the messages in order. When a gap in the sequence number is detected,
the receiver asks the sender to retransmit the missing message. The NAKACK protocol is
configured as the pbcast.NAKACK sub-element under the JGroups Config element. Here is an
example configuration.

<pbcast.NAKACK
max_xmit_size="8192"
use_mcast_xmit="true"
retransmit_timeout="600,1200,2400,4800"/>

The configurable attributes in the pbcast.NAKACK element are as follows.

• retransmit_timeout specifies the retransmission timeout (in milliseconds). It is the same as
the timeout attribute in the UNICAST protocol.

• use_mcast_xmit determines whether the sender should send the retransmission to the entire
cluster rather than just the node requesting it. This is useful when the sender drops the
pocket -- so we do not need to retransmit for each node.

• max_xmit_size specifies maximum size for a bundled retransmission, if multiple packets are
reported missing.

• discard_delivered_msgs specifies whether to discard delivery messages on the receiver
nodes. By default, we save all delivered messages. However, if we only ask the sender to
resend their messages, we can enable this option and discard delivered messages.

1.5. Other Configuration Options

In addition to the protocol stacks, you can also configure JGroups network services in the
Config element.

1.5.1. Group Membership

The group membership service in the JGroups stack maintains a list of active nodes. It handles
the requests to join and leave the cluster. It also handles the SUSPECT messages sent by
failure detection protocols. All nodes in the cluster, as well as the load balancer and client side
interceptors, are notified if the group membership changes. The group membership service is
configured in the pbcast.GMS sub-element under the JGroups Config element. Here is an
example configuration.

Other Configuration Options

389

<pbcast.GMS print_local_addr="true"
join_timeout="3000"
down_thread="false"
join_retry_timeout="2000"
shun="true"/>

The configurable attributes in the pbcast.GMS element are as follows.

• join_timeout specifies the maximum number of milliseconds to wait for a new node JOIN
request to succeed. Retry afterwards.

• join_retry_timeout specifies the maximum number of milliseconds to wait after a failed JOIN
to re-submit it.

• print_local_addr specifies whether to dump the node's own address to the output when
started.

• shun specifies whether a node should shun itself if it receives a cluster view that it is not a
member node.

• disable_initial_coord specifies whether to prevent this node as the cluster coordinator.

1.5.2. Flow Control

The flow control service tries to adapt the sending data rate and the receiving data among
nodes. If a sender node is too fast, it might overwhelm the receiver node and result in dropped
packets that have to be retransmitted. In JGroups, the flow control is implemented via a
credit-based system. The sender and receiver nodes have the same number of credits (bytes)
to start with. The sender subtracts credits by the number of bytes in messages it sends. The
receiver accumulates credits for the bytes in the messages it receives. When the sender's credit
drops to a threshold, the receivers sends some credit to the sender. If the sender's credit is
used up, the sender blocks until it receives credits from the receiver. The flow control service is
configured in the FC sub-element under the JGroups Config element. Here is an example
configuration.

<FC max_credits="1000000"
down_thread="false"
min_threshold="0.10"/>

The configurable attributes in the FC element are as follows.

• max_credits specifies the maximum number of credits (in bytes). This value should be

Chapter 12. JBossCache and JG...

390

smaller than the JVM heap size.

• min_credits specifies the threshold credit on the sender, below which the receiver should
send in more credits.

• min_threshold specifies percentage value of the threshold. It overrides the min_credits

attribute.

1.5.3. State Transfer

The state transfer service transfers the state from an existing node (i.e., the cluster coordinator)
to a newly joining node. It is configured in the pbcast.STATE_TRANSFER sub-element under the
JGroups Config element. It does not have any configurable attribute. Here is an example
configuration.

<pbcast.STATE_TRANSFER
down_thread="false"
up_thread="false"/>

1.5.4. Distributed Garbage Collection

In a JGroups cluster, all nodes have to store all messages received for potential retransmission
in case of a failure. However, if we store all messages forever, we will run out of memory. So,
the distributed garbage collection service in JGroups periodically purges messages that have
seen by all nodes from the memory in each node. The distributed garbage collection service is
configured in the pbcast.STABLE sub-element under the JGroups Config element. Here is an
example configuration.

<pbcast.STABLE stability_delay="1000"
desired_avg_gossip="5000"
down_thread="false"
max_bytes="250000"/>

The configurable attributes in the pbcast.STABLE element are as follows.

• desired_avg_gossip specifies intervals (in milliseconds) of garbage collection runs. Value 0

disables this service.

• max_bytes specifies the maximum number of bytes received before the cluster triggers a
garbage collection run. Value 0 disables this service.

• max_gossip_runs specifies the maximum garbage collections runs before any changes.
After this number is reached, there is no garbage collection until the message is received.

Other Configuration Options

391

Note

Set the max_bytes attribute when you have a high traffic cluster.

1.5.5. Merging

When a network error occurs, the cluster might be partitioned into several different partitions.
JGroups has a MERGE service that allows the coordinators in partitions to communicate with
each other and form a single cluster back again. The flow control service is configured in the
MERGE2 sub-element under the JGroups Config element. Here is an example configuration.

<MERGE2 max_interval="10000"
min_interval="2000"/>

The configurable attributes in the FC element are as follows.

• max_interval specifies the maximum number of milliseconds to send out a MERGE
message.

• min_interval specifies the minimum number of milliseconds to send out a MERGE message.

JGroups chooses a random value between min_interval and max_interval to send out the
MERGE message.

Note

The cluster states are not merged in a merger. This has to be done by the
application.

2. JBossCache Configuration

JBoss Cache provides distributed cache and state replication services for the JBoss cluster. A
JBoss cluster can have multiple JBoss Cache MBeans (known as the TreeCache MBean), one
for HTTP session replication, one for stateful session beans, one for cached entity beans, etc. A
generic TreeCache MBean configuration is listed below. Application specific TreeCache MBean
configurations are covered in later chapters when those applications are discussed.

<mbean code="org.jboss.cache.TreeCache"
name="jboss.cache:service=TreeCache">

Chapter 12. JBossCache and JG...

392

<depends>jboss:service=Naming</depends>
<depends>jboss:service=TransactionManager</depends>

<! -- Configure the TransactionManager -->
<attribute name="TransactionManagerLookupClass">

org.jboss.cache.DummyTransactionManagerLookup
</attribute>

<! --
Node locking level : SERIALIZABLE

REPEATABLE_READ (default)
READ_COMMITTED
READ_UNCOMMITTED
NONE

-->
<attribute name="IsolationLevel">REPEATABLE_READ</attribute>

<! -- Valid modes are LOCAL
REPL_ASYNC
REPL_SYNC

-->
<attribute name="CacheMode">LOCAL</attribute>

<! -- Name of cluster. Needs to be the same for all clusters, in order
to find each other -->

<attribute name="ClusterName">TreeCache-Cluster</attribute>

<! -- The max amount of time (in milliseconds) we wait until the
initial state (ie. the contents of the cache) are
retrieved from existing members in a clustered environment

-->
<attribute name="InitialStateRetrievalTimeout">5000</attribute>

<! -- Number of milliseconds to wait until all responses for a
synchronous call have been received.

-->
<attribute name="SyncReplTimeout">10000</attribute>

<! -- Max number of milliseconds to wait for a lock acquisition -->
<attribute name="LockAcquisitionTimeout">15000</attribute>

<! -- Name of the eviction policy class. -->
<attribute name="EvictionPolicyClass">

org.jboss.cache.eviction.LRUPolicy
</attribute>

<! -- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">

<config>
<attribute name="wakeUpIntervalSeconds">5</attribute>
<!-- Cache wide default -->
<region name="/_default_">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>

JBossCache Configuration

393

<region name="/org/jboss/data">
<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>

<region name="/org/jboss/test/data">
<attribute name="maxNodes">5</attribute>
<attribute name="timeToLiveSeconds">4</attribute>

</region>
</config>

</attribute>

<attribute name="CacheLoaderClass">
org.jboss.cache.loader.bdbje.BdbjeCacheLoader

</attribute>

<attribute name="CacheLoaderConfig">
location=c:\\tmp

</attribute>
<attribute name="CacheLoaderShared">true</attribute>
<attribute name="CacheLoaderPreload">

/a/b/c,/all/my/objects
</attribute>
<attribute name="CacheLoaderFetchTransientState">false</attribute>
<attribute name="CacheLoaderFetchPersistentState">true</attribute>

<attribute name="ClusterConfig">
... JGroups config for the cluster ...

</attribute>
</mbean>

The JGroups configuration element (i.e., the ClusterConfig attribute) is omitted from the
above listing. You have learned how to configure JGroups earlier in this chapter (Section 1,
“JGroups Configuration”). The TreeCache MBean takes the following attributes.

• CacheLoaderClass specifies the fully qualified class name of the CacheLoader

implementation.

• CacheLoaderConfig contains a set of properties from which the specific CacheLoader
implementation can configure itself.

• CacheLoaderFetchPersistentState specifies whether to fetch the persistent state from
another node. The persistence is fetched only if CacheLoaderShared is false. This attribute
is only used if FetchStateOnStartup is true.

• CacheLoaderFetchTransientState specifies whether to fetch the in-memory state from
another node. This attribute is only used if FetchStateOnStartup is true.

• CacheLoaderPreload contains a list of comma-separate nodes that need to be preloaded
(e.g., /aop, /productcatalogue).

Chapter 12. JBossCache and JG...

394

• CacheLoaderShared specifies whether we want to shared a datastore, or whether each
node wants to have its own local datastore.

• CacheMode specifies how to synchronize cache between nodes. The possible values are
LOCAL, REPL_SYNC, or REPL_ASYNC.

• ClusterName specifies the name of the cluster. This value needs to be the same for all nodes
in a cluster in order for them to find each other.

• ClusterConfig contains the configuration of the underlying JGroups stack (see Section 1,
“JGroups Configuration”.

• EvictionPolicyClass specifies the name of a class implementing EvictionPolicy. You can
use a JBoss Cache provided EvictionPolicy class or provide your own policy
implementation. If this attribute is empty, no eviction policy is enabled.

• EvictionPolicyConfig contains the configuration parameter for the specified eviction policy.
Note that the content is provider specific.

• FetchStateOnStartup specifies whether or not to acquire the initial state from existing
members. It allows for warm/hot caches (true/false). This can be further defined by
CacheLoaderFetchTransientState and CacheLoaderFetchPersistentState.

• InitialStateRetrievalTimeout specifies the time in milliseconds to wait for initial state
retrieval.

• IsolationLevel specifies the node locking level. Possible values are SERIALIZABLE,
REPEATABLE_READ (default), READ_COMMITTED, READ_UNCOMMITTED, and NONE.

• LockAcquisitionTimeout specifies the time in milliseconds to wait for a lock to be acquired.
If a lock cannot be acquired an exception will be thrown.

• ReplQueueInterval specifies the time in milliseconds for elements from the replication queue
to be replicated.

• SyncReplTimeout specifies the time in milliseconds to wait until replication ACKs have been
received from all nodes in the cluster. This attribute applies to synchronous replication mode
only (i.e., CacheMode attribute is REPL_SYNC).

• UseReplQueue specifies whether or not to use a replication queue (true/false). This
attribute applies to synchronous replication mode only (i.e., CacheMode attribute is
REPL_ASYNC).

• ReplQueueMaxElements specifies the maximum number of elements in the replication
queue until replication kicks in.

• TransactionManagerLookupClass specifies the fully qualified name of a class implementing
TransactionManagerLookup. The default is JBossTransactionManagerLookup for the
transaction manager inside the JBoss AS. There is also an option of
DummyTransactionManagerLookup for simple standalone examples.

JBossCache Configuration

395

396

Clustering
High Availability Enterprise Services via JBoss Clusters

1. Introduction

Clustering allows us to run an applications on several parallel servers (a.k.a cluster nodes). The
load is distributed across different servers, and even if any of the servers fails, the application is
still accessible via other cluster nodes. Clustering is crucial for scalable enterprise applications,
as you can improve performance by simply adding more nodes to the cluster.

The JBoss Application Server (AS) comes with clustering support out of the box. The simplest
way to start a JBoss server cluster is to start several JBoss instances on the same local
network, using the run -c all command for each instance. Those server instances, all started
in the all configuration, detect each other and automatically form a cluster.

In the first section of this chapter, I discuss basic concepts behind JBoss's clustering services. It
is important that you understand those concepts before reading the rest of the chapter.
Clustering configurations for specific types of applications are covered after this section.

1.1. Cluster Definition

A cluster is a set of nodes. In a JBoss cluster, a node is a JBoss server instance. Thus, to build
a cluster, several JBoss instances have to be grouped together (known as a "partition"). On a
same network, we may have different clusters. In order to differentiate them, each cluster must
have an individual name.

Figure 13.1, “Clusters and server nodes” shows an example network of JBoss server instances
divided into three clusters, with each cluster only having one node. Nodes can be added to or
removed from clusters at any time.

Chapter 13.

397

Figure 13.1. Clusters and server nodes

Note

While it is technically possible to put a JBoss server instance into multiple
clusters at the same time, this practice is generally not recommended, as it
increases the management complexity.

Each JBoss server instance (node) specifies which cluster (i.e., partition) it joins in the
ClusterPartition MBean in the deploy/cluster-service.xml file. All nodes that have the
same ClusterPartition MBean configuration join the same cluster. Hence, if you want to
divide JBoss nodes in a network into two clusters, you can just come up with two different
ClusterPartition MBean configurations, and each node would have one of the two
configurations depending on which cluster it needs to join. If the designated cluster does not
exist when the node is started, the cluster would be created. Likewise, a cluster is removed
when all its nodes are removed.

The following example shows the MBean definition packaged with the standard JBoss AS
distribution. So, if you simply start JBoss servers with their default clustering settings on a local
network, you would get a default cluster named DefaultPartition that includes all server
instances as its nodes.

Chapter 13. Clustering

398

<mbean code="org.jboss.ha.framework.server.ClusterPartition"
name="jboss:service=DefaultPartition">

<! -- Name of the partition being built -->
<attribute name="PartitionName">

${jboss.partition.name:DefaultPartition}
</attribute>

<! -- The address used to determine the node name -->
<attribute name="NodeAddress">${jboss.bind.address}</attribute>

<! -- Determine if deadlock detection is enabled -->
<attribute name="DeadlockDetection">False</attribute>

<! -- Max time (in ms) to wait for state transfer to complete.
Increase for large states -->

<attribute name="StateTransferTimeout">30000</attribute>

<! -- The JGroups protocol configuration -->
<attribute name="PartitionConfig">

... ...
</attribute>

</mbean>

Here, we omitted the detailed JGroups protocol configuration for this cluster. JGroups handles
the underlying peer-to-peer communication between nodes, and its configuration is discussed in
Section 1, “JGroups Configuration”. The following list shows the available configuration
attributes in the ClusterPartition MBean.

• PartitionName is an optional attribute to specify the name of the cluster. Its default value is
DefaultPartition.

• NodeAddress is an optional attribute to specify the binding IP address of this node.

• DeadlockDetection is an optional boolean attribute that tells JGroups to run message
deadlock detection algorithms with every request. Its default value is false.

• StateTransferTimeout is an optional attribute to specify the timeout for state replication
across the cluster (in milliseconds). Its default value is 30000.

• PartitionConfig is an element to specify JGroup configuration options for this cluster (see
Section 1, “JGroups Configuration”).

In order for nodes to form a cluster, they must have the exact same PartitionName and the
ParitionConfig elements. Changes in either element on some but not all nodes would cause
the cluster to split. It is generally easier to change the ParitionConfig (i.e., the address/port)
to run multiple cluster rather than changing the PartitionName due to the mulititude of places
the former needs to be changed in other configuration files. However, changing the

Cluster Definition

399

PartitionName is made easier in 4.2 due to the use of the ${jboss.partition.name}

property which allows the name to be change via a single jboss.partition.name system
property

You can view the current cluster information by pointing your browser to the JMX console of any
JBoss instance in the cluster (i.e., http://hostname:8080/jmx-console/) and then clicking on the
jboss:service=DefaultPartition MBean (change the MBean name to reflect your cluster
name if this node does not join DefaultPartition). A list of IP addresses for the current cluster
members is shown in the CurrentView field.

Note

A cluster (partition) contains a set of nodes that work toward a same goal. Some
clustering features require to sub-partition the cluster to achieve a better
scalability. For example, let's imagine that we have a 10-node cluster and we
want to replicate in memory the state of stateful session beans on all 10 different
nodes to provide for fault-tolerant behaviour. It would mean that each node has
to store a backup of the 9 other nodes. This would not scale at all (each node
would need to carry the whole state cluster load). It is probably much better to
have some kind of sub-partitions inside a cluster and have beans state
exchanged only between nodes that are part of the same sub-partition. The
future JBoss clustering implementation will support sub-partitions and it will allow
the cluster administrator to determine the optimal size of a sub-partition. The
sub-partition topology computation will be done dynamically by the cluster.

1.2. Service Architectures

The clustering topography defined by the ClusterPartition MBean on each node is of great
importance to system administrators. But for most application developers, you are probably
more concerned about the cluster architecture from a client application's point of view. JBoss
AS supports two types of clustering architectures: client-side interceptors (a.k.a proxies or
stubs) and load balancers.

1.2.1. Client-side interceptor

Most remote services provided by the JBoss application server, including JNDI, EJB, RMI and
JBoss Remoting, require the client to obtain (e.g., to look up and download) a stub (or proxy)
object. The stub object is generated by the server and it implements the business interface of
the service. The client then makes local method calls against the stub object. The call is
automatically routed across the network and invoked against service objects managed in the
server. In a clustering environment, the server-generated stub object is also an interceptor that
understand how to route calls to nodes in the cluster. The stub object figures out how to find the
appropriate server node, marshal call parameters, un-marshall call results, return the results to
the caller client.

The stub interceptors have updated knowledge about the cluster. For instance, they know the IP

Chapter 13. Clustering

400

http://hostname:8080/jmx-console/

addresses of all available server nodes, the algorithm to distribute load across nodes (see next
section), and how to failover the request if the target node not available. With every service
request, the server node updates the stub interceptor with the latest changes in the cluster. For
instance, if a node drops out of the cluster, each of the client stub interceptor is updated with the
new configuration the next time it connects to any active node in the cluster. All the
manipulations on the service stub are transparent to the client application. The client-side
interceptor clustering architecture is illustrated in Figure 13.2, “The client-side interceptor (proxy)
architecture for clustering”.

Figure 13.2. The client-side interceptor (proxy) architecture for clustering

Note

Section 3.1.1, “Handle Cluster Restart” describes how to enable the client proxy
to handle the entire cluster restart.

Service Architectures

401

1.2.2. Load balancer

Other JBoss services, in particular the HTTP web services, do not require the client to download
anything. The client (e.g., a web browser) sends in requests and receives responses directly
over the wire according to certain communication protocols (e.g., the HTTP protocol). In this
case, a load balancer is required to process all requests and dispatch them to server nodes in
the cluster. The load balancer is typically part of the cluster. It understands the cluster
configuration as well as failover policies. The client only needs to know about the load balancer.
The load balancer clustering architecture is illustrated in Figure 13.3, “The load balancer
architecture for clustering”.

Figure 13.3. The load balancer architecture for clustering

A potential problem with the load balancer solution is that the load balancer itself is a single
point of failure. It needs to be monitored closely to ensure high availability of the entire cluster
services.

1.3. Load-Balancing Policies

Both the JBoss client-side interceptor (stub) and load balancer use load balancing policies to
determine which server node to send a new request to. In this section, let's go over the load
balancing policies available in JBoss AS.

Chapter 13. Clustering

402

1.3.1. JBoss AS 3.0.x

In JBoss 3.0.x, the following two load balancing options are available.

• Round-Robin (org.jboss.ha.framework.interfaces.RoundRobin): each call is dispatched
to a new node. The first target node is randomly selected from the list.

• First Available (org.jboss.ha.framework.interfaces.FirstAvailable): one of the
available target nodes is elected as the main target and is used for every call: this elected
member is randomly chosen from the list of members in the cluster. When the list of target
nodes changes (because a node starts or dies), the policy will re-elect a target node unless
the currently elected node is still available. Each client-side interceptor or load balancer elects
its own target node independently of the other proxies.

1.3.2. JBoss AS 3.2+

In JBoss 3.2+, three load balancing options are available. The Round-Robin and First Available
options have the same meaning as the ones in JBoss AS 3.0.x.

The new load balancing option in JBoss 3.2 is "First AvailableIdenticalAllProxies"
(org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies). It has the
same behaviour as the "First Available" policy but the elected target node is shared by all
client-side interceptors of the same "family".

In JBoss 3.2 (and later), the notion of "Proxy Family" is defined. A Proxy Family is a set of stub
interceptors that all make invocations against the same replicated target. For EJBs for example,
all stubs targeting the same EJB in a given cluster belong to the same proxy family. All
interceptors of a given family share the same list of target nodes. Each interceptor also has the
ability to share arbitrary information with other interceptors of the same family. A use case for
the proxy family is give in Section 3.1, “Stateless Session Bean in EJB 2.x”.

1.4. Farming Deployment

The easiest way to deploy an application into the cluster is to use the farming service. That is to
hot-deploy the application archive file (e.g., the EAR, WAR or SAR file) in
theall/farm/directory of any of the cluster member and the application is automatically
duplicated across all nodes in the same cluster. If node joins the cluster later, it will pull in all
farm deployed applications in the cluster and deploy them locally at start-up time. If you delete
the application from one of the running cluster server node's farm/ folder, the application will be
undeployed locally and then removed from all other cluster server nodes farm folder (triggers
undeployment.) You should manually delete the application from the farm folder of any server
node not currently connected to the cluster.

Farming Deployment

403

Note

You can only put archive files, not exploded directories, in the farm directory.
This way, the application on a remote node is only deployed when the entire
archive file is copied over. Otherwise, the application might be deployed (and
failed) when the directory is only partially copied.

Farming is enabled by default in the all configuration in JBoss AS distributions, so you will not
have to set it up yourself. The configuration file is located in the deploy/deploy.last directory.
If you want to enable farming in your custom configuration, simply create the XML file shown
below (named it farm-service.xml) and copy it to the JBoss deploy directory
$JBOSS_HOME/server/your_own_config/deploy. Make sure that you custom configuration
has clustering enabled.

<?xml version="1.0" encoding="UTF-8"?>
<server>

<mbean code="org.jboss.ha.framework.server.FarmMemberService"
name="jboss:service=FarmMember,partition=DefaultPartition">

...
<attribute name="PartitionName">DefaultPartition</attribute>
<attribute name="ScanPeriod">5000</attribute>
<attribute name="URLs">farm/</attribute>

</mbean>
</server>

After deploying farm-service.xml you are ready to rumble. The required FarmMemberService

MBean attributes for configuring a farm are listed below.

• PartitionName specifies the name of the cluster for this deployed farm. Its default value is
DefaultPartition.

• URLs points to the directory where deployer watches for files to be deployed. This MBean will
create this directory is if does not already exist. Also, "." pertains to the configuration directory
(i.e., $JBOSS_HOME/server/all/).

• ScanPeriod specifies the interval at which the folder must be scanned for changes.. Its
default value is 5000.

The Farming service is an extension of the URLDeploymentScanner, which scans for hot
deployments in deploy/ directory. So, you can use all the attributes defined in the
URLDeploymentScanner MBean in the FarmMemberService MBean. In fact, the URLs and
ScanPeriod attributes listed above are inherited from the URLDeploymentScanner MBean.

Chapter 13. Clustering

404

Frequently Asked Questions on JBossFarm Deployment

1.4.1.
I have multiple nodes running in a cluster. On one of the nodes that were down, I copied a
new application archive to the farm deployment directory and then started the server. Why
didn't the new application deploy to other cluster server nodes?

The new application is not supposed to deploy while the server is down. You have to start
the server before updating the farm deployment directory. After starting the server, copy
the application archive again to the farm deployment directory (or touch it). The application
will then be deployed on the cluster as mentioned above.

1.4.2.
I deleted an application from the farm deployment directory and then started the server.
Why didn't the application get deleted from other cluster server nodes?

Applications will not be undeployed when a server is down. You have to start the server
before updating the farm deployment directory. After starting the server, delete the
application archive from the farm deployment directory. The application will then be
removed from other cluster server nodes.

1.4.3.
I deleted an application from the cluster but one of the server nodes was down at the time,
when I started that node, the application was still on it. How do I delete the application
from that node?

You have to manually delete the application from the node(s) that were down when the
application was removed from the cluster. Delete the application archive from the farm
deployment directory on the node(s) that were down.

1.5. Distributed state replication services

In a clustered server environment, distributed state management is a key service the cluster
must provide. For instance, in a stateful session bean application, the session state must be
synchronized among all bean instances across all nodes, so that the client application reaches
the same session state no matter which node serves the request. In an entity bean application,
the bean object sometimes needs to be cached across the cluster to reduce the database load.
Currently, the state replication and distributed cache services in JBoss AS are provided via two
ways: the HASessionState MBean and the JBoss Cache framework.

• The HASessionState MBean provides session replication and distributed cache services for
EJB 2.x stateful session beans and HTTP load balancers in JBoss 3.x and 4.x. The MBean is
defined in the all/deploy/cluster-service.xml file. We will show its configuration options
in the EJB 2.x stateful session bean section later.

Distributed state replication services

405

• JBoss Cache is a fully featured distributed cache framework that can be used in any
application server environment and standalone. It gradually replaces the HASessionState

service. JBoss AS integrates JBoss Cache to provide cache services for HTTP sessions, EJB
3.0 session and entity beans, as well as Hibernate persistence objects. Each of these cache
services is defined in a separate MBean. We will cover those MBeans when we discuss
specific services in the next several sections.

2. Clustered JNDI Services

JNDI is one of the most important services provided by the application server. The JBoss
clustered JNDI service is based on the client-side interceptor architecture. The client must
obtain a JNDI stub object (via the InitialContext object) and invoke JNDI lookup services on
the remote server through the stub. Furthermore, JNDI is the basis for many other
interceptor-based clustering services: those services register themselves with the JNDI so that
the client can lookup their stubs and make use of their services.

2.1. How it works

The JBoss HA-JNDI (High Availability JNDI) service maintains a cluster-wide context tree. The
cluster wide tree is always available as long as there is one node left in the cluster. Each JNDI
node in the cluster also maintains its own local JNDI context. The server side application can
bind its objects to either trees. In this section, you will learn the distinctions of the two trees and
the best practices in application development. The design rational of this architecture is as
follows.

• We didn't want any migration issues with applications already assuming that their JNDI
implementation was local. We wanted clustering to work out-of-the-box with just a few tweaks
of configuration files.

• We needed a clean distinction between locally bound objects and cluster-wide objects.

• In a homogeneous cluster, this configuration actually cuts down on the amount of network
traffic.

• Designing it in this way makes the HA-JNDI service an optional service since all underlying
cluster code uses a straight new InitialContext() to lookup or create bindings.

On the server side, new InitialContext(), will be bound to a local-only, non-cluster-wide
JNDI Context (this is actually basic JNDI). So, all EJB homes and such will not be bound to the
cluster-wide JNDI Context, but rather, each home will be bound into the local JNDI. When a
remote client does a lookup through HA-JNDI, HA-JNDI will delegate to the local JNDI Context
when it cannot find the object within the global cluster-wide Context. The detailed lookup rule is
as follows.

• If the binding is available in the cluster-wide JNDI tree and it returns it.

Chapter 13. Clustering

406

• If the binding is not in the cluster-wide tree, it delegates the lookup query to the local JNDI
service and returns the received answer if available.

• If not available, the HA-JNDI services asks all other nodes in the cluster if their local JNDI
service owns such a binding and returns the an answer from the set it receives.

• If no local JNDI service owns such a binding, a NameNotFoundException is finally raised.

So, an EJB home lookup through HA-JNDI, will always be delegated to the local JNDI instance.
If different beans (even of the same type, but participating in different clusters) use the same
JNDI name, it means that each JNDI server will have a different "target" bound (JNDI on node 1
will have a binding for bean A and JNDI on node 2 will have a binding, under the same name,
for bean B). Consequently, if a client performs a HA-JNDI query for this name, the query will be
invoked on any JNDI server of the cluster and will return the locally bound stub. Nevertheless, it
may not be the correct stub that the client is expecting to receive!

Note

You cannot currently use a non-JNP JNDI implementation (i.e. LDAP) for your
local JNDI implementation if you want to use HA-JNDI. However, you can use
JNDI federation using the ExternalContext MBean to bind non-JBoss JNDI
trees into the JBoss JNDI namespace. Furthermore, nothing prevents you
though of using one centralized JNDI server for your whole cluster and scrapping
HA-JNDI and JNP.

Note

If a binding is only made available on a few nodes in the cluster (for example
because a bean is only deployed on a small subset of nodes in the cluster), the
probability to lookup a HA-JNDI server that does not own this binding is higher
and the lookup will need to be forwarded to all nodes in the cluster.
Consequently, the query time will be longer than if the binding would have been
available locally. Moral of the story: as much as possible, cache the result of your
JNDI queries in your client.

If you want to access HA-JNDI from the server side, you must explicitly get an InitialContext

by passing in JNDI properties. The following code shows how to access the HA-JNDI.

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory");
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
p.put(Context.PROVIDER_URL, "localhost:1100"); // HA-JNDI port.

How it works

407

return new InitialContext(p);

The Context.PROVIDER_URL property points to the HA-JNDI service configured in the
HANamingService MBean (see Section 2.3, “JBoss configuration”).

2.2. Client configuration

The JNDI client needs to be aware of the HA-JNDI cluster. You can pass a list of JNDI servers
(i.e., the nodes in the HA-JNDI cluster) to the java.naming.provider.url JNDI setting in the
jndi.properties file. Each server node is identified by its IP address and the JNDI port
number. The server nodes are separated by commas (see Section 2.3, “JBoss configuration” on
how to configure the servers and ports).

java.naming.provier.url=server1:1100,server2:1100,server3:1100,server4:1100

When initialising, the JNP client code will try to get in touch with each server node from the list,
one after the other, stopping as soon as one server has been reached. It will then download the
HA-JNDI stub from this node.

Note

There is no load balancing behavior in the JNP client lookup process. It just goes
through the provider list and use the first available server. The HA-JNDI provider
list only needs to contain a subset of HA-JNDI nodes in the cluster.

The downloaded smart stub contains the logic to fail-over to another node if necessary and the
updated list of currently running nodes. Furthermore, each time a JNDI invocation is made to
the server, the list of targets in the stub interceptor is updated (only if the list has changed since
the last call).

If the property string java.naming.provider.url is empty or if all servers it mentions are not
reachable, the JNP client will try to discover a bootstrap HA-JNDI server through a multicast call
on the network (auto-discovery). See Section 2.3, “JBoss configuration” on how to configure
auto-discovery on the JNDI server nodes. Through auto-discovery, the client might be able to
get a valid HA-JNDI server node without any configuration. Of course, for the auto-discovery to
work, the client must reside in the same LAN as the server cluster (e.g., the web servlets using
the EJB servers). The LAN or WAN must also be configured to propagate such multicast
datagrams.

Chapter 13. Clustering

408

Note

The auto-discovery feature uses multicast group address 230.0.0.4:1102.

In addition to the java.naming.provier.url property, you can specify a set of other
properties. The following list shows all client side properties you can specify, when creating a
new InitialContext.

• java.naming.provier.url: Provides a list of IP addresses and port numbers for HA-JNDI
provider nodes in the cluster. The client tries those providers one by one and uses the first
one that responds.

• jnp.disableDiscovery: When set to true, this property disables the automatic discovery
feature. Default is false.

• jnp.partitionName: In an environment where multiple HA-JNDI services, which are bound
to distinct clusters (i.e., partitions), are started, this property allows you to configure which
cluster you broadcast to when the automatic discovery feature is used. If you do not use the
automatic discovery feature (e.g., you could explicitly provide a list of valid JNDI nodes in
java.naming.provider.url), this property is not used. By default, this property is not set
and the automatic discovery select the first HA-JNDI server that responds, independently of
the cluster partition name.

• jnp.discoveryTimeout: Determines how much time the context will wait for a response to its
automatic discovery packet. Default is 5000 ms.

• jnp.discoveryGroup: Determines which multicast group address is used for the automatic
discovery. Default is 230.0.0.4.

• jnp.discoveryPort: Determines which multicast group port is used for the automatic
discovery. Default is 1102.

2.3. JBoss configuration

The cluster-service.xml file in the all/deploy directory includes the following MBean to
enable HA-JNDI services.

<mbean code="org.jboss.ha.jndi.HANamingService"
name="jboss:service=HAJNDI">

<depends>jboss:service=DefaultPartition</depends>
</mbean>

You can see that this MBean depends on the DefaultPartition MBean defined above it

JBoss configuration

409

(discussed in an earlier section in this chapter). In other configurations, you can put that
element in the jboss-services.xml file or any other JBoss configuration files in the /deploy

directory to enable HA-JNDI services. The available attributes for this MBean are listed below.

• PartitionName is an optional attribute to specify the name of the cluster for the different
nodes of the HA-JNDI service to communicate. The default value is DefaultPartition.

• BindAddress is an optional attribute to specify the address to which the HA-JNDI server will
bind waiting for JNP clients. Only useful for multi-homed computers.

• Port is an optional attribute to specify the port to which the HA-JNDI server will bind waiting
for JNP clients. The default value is 1100.

• Backlog is an optional attribute to specify the backlog value used for the TCP server socket
waiting for JNP clients. The default value is 50.

• RmiPort determines which port the server should use to communicate with the downloaded
stub. This attribute is optional. If it is missing, the server automatically assigns a RMI port.

• AutoDiscoveryAddress is an optional attribute to specify the multicast address to listen to
for JNDI automatic discovery. The default value is 230.0.0.4.

• AutoDiscoveryGroup is an optional attribute to specify the multicast group to listen to for
JNDI automatic discovery.. The default value is 1102.

• LookupPool specifies the thread pool service used to control the bootstrap and auto
discovery lookups.

• DiscoveryDisabled is a boolean flag that disables configuration of the auto discovery
multicast listener.

• AutoDiscoveryBindAddress sets the auto-discovery bootstrap multicast bind address. If this
attribute is not specified and a BindAddress is specified, the BindAddress will be used..

• AutoDiscoveryTTL specifies the TTL (time-to-live) for autodiscovery IP multicast packets.

The full default configuration of the HANamingService MBean is as follows.

<mbean code="org.jboss.ha.jndi.HANamingService"
name="jboss:service=HAJNDI">

<depends>
jboss:service=${jboss.partition.name:DefaultPartition}

</depends>
<! -- Name of the partition to which the service is linked -->
<attribute name="PartitionName">

${jboss.partition.name:DefaultPartition}
</attribute>
<! -- Bind address of bootstrap and HA-JNDI RMI endpoints -->
<attribute name="BindAddress">${jboss.bind.address}</attribute>
<! -- Port on which the HA-JNDI stub is made available -->
<attribute name="Port">1100</attribute>

Chapter 13. Clustering

410

<! -- RmiPort to be used by the HA-JNDI service once bound.
0 is for auto. -->

<attribute name="RmiPort">1101</attribute>
<! -- Accept backlog of the bootstrap socket -->
<attribute name="Backlog">50</attribute>
<! -- The thread pool service used to control the bootstrap and
auto discovery lookups -->

<depends optional-attribute-name="LookupPool"
proxy-type="attribute">jboss.system:service=ThreadPool</depends>

<! -- A flag to disable the auto discovery via multicast -->
<attribute name="DiscoveryDisabled">false</attribute>
<! -- Set the auto-discovery bootstrap multicast bind address. -->
<attribute name="AutoDiscoveryBindAddress">

${jboss.bind.address}
</attribute>

<! -- Multicast Address and group port used for auto-discovery -->
<attribute name="AutoDiscoveryAddress">

${jboss.partition.udpGroup:230.0.0.4}
</attribute>
<attribute name="AutoDiscoveryGroup">1102</attribute>
<! -- The TTL (time-to-live) for autodiscovery IP multicast packets -->
<attribute name="AutoDiscoveryTTL">16</attribute>

<! -- Client socket factory to be used for client-server
RMI invocations during JNDI queries

<attribute name="ClientSocketFactory">custom</attribute>
-->
<! -- Server socket factory to be used for client-server

RMI invocations during JNDI queries
<attribute name="ServerSocketFactory">custom</attribute>
-->

</mbean>

It is possible to start several HA-JNDI services that use different clusters. This can be used, for
example, if a node is part of many clusters. In this case, make sure that you set a different port
or IP address for both services. For instance, if you wanted to hook up HA-JNDI to the example
cluster you set up and change the binding port, the Mbean descriptor would look as follows.

<mbean code="org.jboss.ha.jndi.HANamingService"
name="jboss:service=HAJNDI">

<depends>jboss:service=MySpecialPartition</depends>
<attribute name="PartitionName">MySpecialPartition</attribute>
<attribute name="Port">56789</attribute>

</mbean>

3. Clustered Session EJBs

Clustered Session EJBs

411

Session EJBs provide remote invocation services. They are clustered based on the client-side
interceptor architecture. The client application for a clustered session bean is exactly the same
as the client for the non-clustered version of the session bean, except for a minor change to the
java.naming.provier.url system property to enable HA-JNDI lookup (see previous section).
No code change or re-compilation is needed on the client side. Now, let's check out how to
configure clustered session beans in EJB 2.x and EJB 3.0 server applications respectively.

3.1. Stateless Session Bean in EJB 2.x

Clustering stateless session beans is most probably the easiest case: as no state is involved,
calls can be load-balanced on any participating node (i.e. any node that has this specific bean
deployed) of the cluster. To make a bean clustered, you need to modify its jboss.xml

descriptor to contain a <clustered> tag.

<jboss>
<enterprise-beans>

<session>
<ejb-name>nextgen.StatelessSession</ejb-name>
<jndi-name>nextgen.StatelessSession</jndi-name>
<clustered>True</clustered>
<cluster-config>

<partition-name>DefaultPartition</partition-name>
<home-load-balance-policy>

org.jboss.ha.framework.interfaces.RoundRobin
</home-load-balance-policy>
<bean-load-balance-policy>

org.jboss.ha.framework.interfaces.RoundRobin
</bean-load-balance-policy>

</cluster-config>
</session>

</enterprise-beans>
</jboss>

Note

The <clustered>True</clustered> element is really just an alias for the
<configuration-name>Clustered Stateless

SessionBean</configuration-name> element.

In the bean configuration, only the <clustered> element is mandatory. It indicates that the
bean works in a cluster. The <cluster-config> element is optional and the default values of its
attributes are indicated in the sample configuration above. Below is a description of the
attributes in the <cluster-config> element.

Chapter 13. Clustering

412

• partition-name specifies the name of the cluster the bean participates in. The default value is
DefaultPartition. The default partition name can also be set system-wide using the
jboss.partition.name system property.

• home-load-balance-policy indicates the class to be used by the home stub to balance calls
made on the nodes of the cluster. By default, the proxy will load-balance calls in a
RoundRobin fashion. You can also implement your own load-balance policy class or use the
class FirstAvailable that persists to use the first node available that it meets until it fails.

• bean-load-balance-policy Indicates the class to be used by the bean stub to balance calls
made on the nodes of the cluster. Comments made for the home-load-balance-policy

attribute also apply.

In JBoss 3.0.x, each client-side stub has its own list of available target nodes. Consequently,
some side-effects can occur. For example, if you cache your home stub and re-create a remote
stub for a stateless session bean (with the Round-Robin policy) each time you need to make an
invocation, a new remote stub, containing the list of available targets, will be downloaded for
each invocation. Consequently, as the first target node is always the first in the list, calls will not
seemed to be load-balanced because there is no usage-history between different stubs. In
JBoss 3.2+, the proxy families (i.e., the "First AvailableIdenticalAllProxies" load balancing policy,
see Section 1.3.2, “JBoss AS 3.2+”) remove this side effect as the home and remote stubs of a
given EJB are in two different families.

3.1.1. Handle Cluster Restart

We have covered the HA smart client architecture in Section 1.2.1, “Client-side interceptor”. The
default HA smart proxy client can only failover as long as one node in the cluster exists. If there
is a complete cluster shutdown, the proxy becomes orphanned and looses knowledge of the
available nodes in the cluster. There is no way for the proxy to recover from this. The proxy
needs to be looked up out of JNDI/HAJNDI when the nodes are restarted.

The 3.2.7+/4.2+ releases contain a RetryInterceptor that can be added to the proxy client
side interceptor stack to allow for a transparent recovery from such a restart failure. To enable it
for an EJB, setup an invoker-proxy-binding that includes the RetryInterceptor. Below is
an example jboss.xml configuration.

<jboss>
<session>

<ejb-name>nextgen_RetryInterceptorStatelessSession</ejb-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

clustered-retry-stateless-rmi-invoker
</invoker-proxy-binding-name>
<jndi-name>

nextgen_RetryInterceptorStatelessSession
</jndi-name>

</invoker>
</invoker-bindings>

Stateless Session Bean in EJB 2.x

413

<clustered>true</clustered>
</session>

<invoker-proxy-binding>
<name>clustered-retry-stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmpha</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>
org.jboss.proxy.ejb.HomeInterceptor

</interceptor>
<interceptor>

org.jboss.proxy.SecurityInterceptor
</interceptor>
<interceptor>

org.jboss.proxy.TransactionInterceptor
</interceptor>
<interceptor>

org.jboss.proxy.ejb.RetryInterceptor
</interceptor>
<interceptor>

org.jboss.invocation.InvokerInterceptor
</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>

org.jboss.proxy.SecurityInterceptor
</interceptor>
<interceptor>

org.jboss.proxy.TransactionInterceptor
</interceptor>
<interceptor>

org.jboss.proxy.ejb.RetryInterceptor
</interceptor>
<interceptor>

org.jboss.invocation.InvokerInterceptor
</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

3.2. Stateful Session Bean in EJB 2.x

Clustering stateful session beans is more complex than clustering their stateless counterparts
since JBoss needs to manage the state information. The state of all stateful session beans are
replicated and synchronized across the cluster each time the state of a bean changes. The
JBoss AS uses the HASessionState MBean to manage distributed session states for clustered

Chapter 13. Clustering

414

EJB 2.x stateful session beans. In this section, we cover both the session bean configuration
and the HASessionState MBean configuration.

3.2.1. The EJB application configuration

In the EJB application, you need to modify the jboss.xml descriptor file for each stateful
session bean and add the <clustered> tag.

<jboss>
<enterprise-beans>

<session>
<ejb-name>nextgen.StatefulSession</ejb-name>
<jndi-name>nextgen.StatefulSession</jndi-name>
<clustered>True</clustered>
<cluster-config>

<partition-name>DefaultPartition</partition-name>
<home-load-balance-policy>

org.jboss.ha.framework.interfaces.RoundRobin
</home-load-balance-policy>
<bean-load-balance-policy>

org.jboss.ha.framework.interfaces.FirstAvailable
</bean-load-balance-policy>
<session-state-manager-jndi-name>

/HASessionState/Default
</session-state-manager-jndi-name>

</cluster-config>
</session>

</enterprise-beans>
</jboss>

In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean
works in a cluster. The <cluster-config> element is optional and its default attribute values
are indicated in the sample configuration above.

The <session-state-manager-jndi-name> tag is used to give the JNDI name of the
HASessionState service to be used by this bean.

The description of the remaining tags is identical to the one for stateless session bean. Actions
on the clustered stateful session bean's home interface are by default load-balanced,
round-robin. Once the bean's remote stub is available to the client, calls will not be
load-balanced round-robin any more and will stay "sticky" to the first node in the list.

3.2.2. Optimize state replication

As the replication process is a costly operation, you can optimise this behaviour by optionally
implementing in your bean class a method with the following signature:

public boolean isModified ();

Stateful Session Bean in EJB 2.x

415

Before replicating your bean, the container will detect if your bean implements this method. If
your bean does, the container calls the isModified() method and it only replicates the bean
when the method returns true. If the bean has not been modified (or not enough to require
replication, depending on your own preferences), you can return false and the replication
would not occur. This feature is available on JBoss AS 3.0.1+ only.

3.2.3. The HASessionState service configuration

The HASessionState service MBean is defined in theall/deploy/cluster-service.xmlfile.

<mbean code="org.jboss.ha.hasessionstate.server.HASessionStateService"
name="jboss:service=HASessionState">

<depends>
jboss:service=${jboss.partition.name:DefaultPartition}

</depends>
<!-- Name of the partition to which the service is linked -->
<attribute name="PartitionName">

${jboss.partition.name:DefaultPartition}
</attribute>
<!-- JNDI name under which the service is bound -->
<attribute name="JndiName">/HASessionState/Default</attribute>
<!-- Max delay before cleaning unreclaimed state.

Defaults to 30*60*1000 => 30 minutes -->
<attribute name="BeanCleaningDelay">0</attribute>

</mbean>

The configuration attributes in the HASessionState MBean are listed below.

• JndiName is an optional attribute to specify the JNDI name under which this
HASessionState service is bound. The default value is /HAPartition/Default.

• PartitionName is an optional attribute to specify the name of the cluster in which the current
HASessionState protocol will work. The default value is DefaultPartition.

• BeanCleaningDelay is an optional attribute to specify the number of miliseconds after which
the HASessionState service can clean a state that has not been modified. If a node, owning
a bean, crashes, its brother node will take ownership of this bean. Nevertheless, the container
cache of the brother node will not know about it (because it has never seen it before) and will
never delete according to the cleaning settings of the bean. That is why the HASessionState

service needs to do this cleanup sometimes. The default value is 30*60*1000 milliseconds
(i.e., 30 minutes).

3.3. Stateless Session Bean in EJB 3.0

Chapter 13. Clustering

416

To cluster a stateless session bean in EJB 3.0, all you need to do is to annotate the bean class
withe the @Cluster annotation. You can pass in the load balance policy and cluster partition as
parameters to the annotation. The default load balance policy is
org.jboss.ha.framework.interfaces.RandomRobin and the default cluster is
DefaultPartition. Below is the definition of the @Cluster annotation.

public @interface Clustered {
Class loadBalancePolicy() default LoadBalancePolicy.class;
String partition() default "DefaultPartition";

}

Here is an example of a clustered EJB 3.0 stateless session bean implementation.

@Stateless
@Clustered
public class MyBean implements MySessionInt {

public void test() {
// Do something cool

}
}

3.4. Stateful Session Bean in EJB 3.0

To cluster stateful session beans in EJB 3.0, you need to tag the bean implementation class
with the @Cluster annotation, just as we did with the EJB 3.0 stateless session bean earlier.

@Stateful
@Clustered
public class MyBean implements MySessionInt {

private int state = 0;

public void increment() {
System.out.println("counter: " + (state++));

}
}

JBoss Cache provides the session state replication service for EJB 3.0 stateful session beans.
The related MBean service is defined in the ejb3-clustered-sfsbcache-service.xml file in
the deploy directory. The contents of the file are as follows.

Stateful Session Bean in EJB 3.0

417

<server>
<mbean code="org.jboss.ejb3.cache.tree.PassivationTreeCache"

name="jboss.cache:service=EJB3SFSBClusteredCache">

<attribute name="IsolationLevel">READ_UNCOMMITTED</attribute>
<attribute name="CacheMode">REPL_SYNC</attribute>
<attribute name="ClusterName">SFSB-Cache</attribute>
<attribute name="ClusterConfig">

... ...
</attribute>

<!-- Number of milliseconds to wait until all responses for a
synchronous call have been received.

-->
<attribute name="SyncReplTimeout">10000</attribute>

<!-- Max number of milliseconds to wait for a lock acquisition -->
<attribute name="LockAcquisitionTimeout">15000</attribute>

<!-- Name of the eviction policy class. -->
<attribute name="EvictionPolicyClass">

org.jboss.ejb3.cache.tree.StatefulEvictionPolicy
</attribute>

<!-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">

<config>
<attribute name="wakeUpIntervalSeconds">1</attribute>
<name>statefulClustered</name>
<region name="/_default_">

<attribute name="maxNodes">1000000</attribute>
<attribute name="timeToIdleSeconds">300</attribute>

</region>
</config>

</attribute>

<attribute name="CacheLoaderFetchPersistentState">false</attribute>
<attribute name="CacheLoaderFetchTransientState">true</attribute>
<attribute name="FetchStateOnStartup">true</attribute>
<attribute name="CacheLoaderClass">

org.jboss.ejb3.cache.tree.StatefulCacheLoader
</attribute>
<attribute name="CacheLoaderConfig">

location=statefulClustered
</attribute>

</mbean>
</server>

The configuration attributes in the PassivationTreeCache MBean are essentially the same as
the attributes in the standard JBoss Cache TreeCache MBean discussed in Chapter 12,
JBossCache and JGroups Services. Again, we omitted the JGroups configurations in the
ClusterConfig attribute (see more in Section 1, “JGroups Configuration”).

Chapter 13. Clustering

418

4. Clustered Entity EJBs

In a JBoss AS cluster, the entity bean instances need to replicated across all nodes. If an entity
bean provides remote services, the service methods need to be load balanced as well.

To use a clustered entity bean, the application does not need to do anything special, except for
looking up bean references from the clustered HA-JNDI.

4.1. Entity Bean in EJB 2.x

First of all, it is worth to note that clustering 2.x entity beans is a bad thing to do. Its exposes
elements that generally are too fine grained for use as remote objects to clustered remote
objects and introduces data synchronization problems that are non-trivial. Do NOT use EJB 2.x
entity bean clustering unless you fit into the sepecial case situation of read-only, or one
read-write node with read-only nodes synched with the cache invalidation services.

To cluster EJB 2.x entity beans, you need to add the <clustered> element to the application's
jboss.xml descriptor file. Below is a typical jboss.xml file.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>nextgen.EnterpriseEntity</ejb-name>
<jndi-name>nextgen.EnterpriseEntity</jndi-name>
<clustered>True</clustered>
<cluster-config>

<partition-name>DefaultPartition</partition-name>
<home-load-balance-policy>

org.jboss.ha.framework.interfaces.RoundRobin
</home-load-balance-policy>
<bean-load-balance-policy>

org.jboss.ha.framework.interfaces.FirstAvailable
</bean-load-balance-policy>

</cluster-config>
</entity>

</enterprise-beans>
</jboss>

The EJB 2.x entity beans are clustered for load balanced remote invocations. All the bean
instances are synchronized to have the same contents on all nodes.

However, clustered EJB 2.x Entity Beans do not have a distributed locking mechanism or a
distributed cache. They can only be synchronized by using row-level locking at the database
level (see <row-lock> in the CMP specification) or by setting the Transaction Isolation Level of
your JDBC driver to be TRANSACTION_SERIALIZABLE. Because there is no supported distributed
locking mechanism or distributed cache Entity Beans use Commit Option "B" by default (See
standardjboss.xml and the container configurations Clustered CMP 2.x EntityBean, Clustered
CMP EntityBean, or Clustered BMP EntityBean). It is not recommended that you use Commit

Entity Bean in EJB 2.x

419

Option "A" unless your Entity Bean is read-only. (There are some design patterns that allow you
to use Commit Option "A" with read-mostly beans. You can also take a look at the Seppuku
pattern http://dima.dhs.org/misc/readOnlyUpdates.html. JBoss may incorporate this pattern into
later versions.)

Note

If you are using Bean Managed Persistence (BMP), you are going to have to
implement synchronization on your own. The MVCSoft CMP 2.0 persistence
engine (see http://www.jboss.org/jbossgroup/partners.jsp) provides different
kinds of optimistic locking strategies that can work in a JBoss cluster.

4.2. Entity Bean in EJB 3.0

In EJB 3.0, the entity beans primarily serve as a persistence data model. They do not provide
remote services. Hence, the entity bean clustering service in EJB 3.0 primarily deals with
distributed caching and replication, instead of load balancing.

4.2.1. Configure the distributed cache

To avoid round trips to the database, you can use a cache for your entities. JBoss EJB 3.0 is
implemented by Hibernate, which has support for a second-level cache. The Hibernate setup
used for the JBoss EJB 3.0 implementation uses JBoss Cache as its underlying cache
implementation. The cache provides the following functionalities.

• If you persist a cache enabled entity bean instance to the database via the entity manager the
entity will inserted into the cache.

• If you update an entity bean instance and save the changes to the database via the entity
manager the entity will updated in the cache.

• If you remove an entity bean instance from the database via the entity manager the entity will
removed from the cache.

• If loading a cached entity from the database via the entity manager, and that entity does not
exist in the database, it will be inserted into the cache.

JBoss Cache service for EJB 3.0 entity beans is configured in a TreeCache MBean (see
Section 2, “JBossCache Configuration”) in the deploy/ejb3-entity-cache-service.xml file.
The name of the cache MBean service is jboss.cache:service=EJB3EntityTreeCache.
Below is the contents of the ejb3-entity-cache-service.xml file in the standard JBoss
distribution. Again, we omitted the JGroups configuration element ClusterConfig.

<server>
<mbean code="org.jboss.cache.TreeCache"

Chapter 13. Clustering

420

http://dima.dhs.org/misc/readOnlyUpdates.html
http://www.jboss.org/jbossgroup/partners.jsp

name="jboss.cache:service=EJB3EntityTreeCache">

<depends>jboss:service=Naming</depends>
<depends>jboss:service=TransactionManager</depends>

<!-- Configure the TransactionManager -->
<attribute name="TransactionManagerLookupClass">

org.jboss.cache.JBossTransactionManagerLookup
</attribute>

<attribute name="IsolationLevel">REPEATABLE_READ</attribute>
<attribute name="CacheMode">REPL_SYNC</attribute>

<!--Name of cluster. Needs to be the same for all clusters,
in order to find each other -->

<attribute name="ClusterName">EJB3-entity-cache</attribute>

<attribute name="ClusterConfig">
... ...

</attribute>

<attribute name="InitialStateRetrievalTimeout">5000</attribute>
<attribute name="SyncReplTimeout">10000</attribute>
<attribute name="LockAcquisitionTimeout">15000</attribute>

<attribute name="EvictionPolicyClass">
org.jboss.cache.eviction.LRUPolicy

</attribute>

<!-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">

<config>
<attribute name="wakeUpIntervalSeconds">5</attribute>
<!-- Cache wide default -->
<region name="/_default_">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
</config>

</attribute>
</mbean>

</server>

As we discussed in Section 2, “JBossCache Configuration”, JBoss Cache allows you to specify
timeouts to cached entities. Entities not accessed within a certain amount of time are dropped
from the cache in order to save memory. If running within a cluster, and the cache is updated,
changes to the entries in one node will be replicated to the corresponding entries in the other
nodes in the cluster.

Now, we have JBoss Cache configured to support distributed caching of EJB 3.0 entity beans.
We still have to configure individual entity beans to use the cache service.

Entity Bean in EJB 3.0

421

4.2.2. Configure the entity beans for cache

You define your entity bean classes the normal way. Future versions of JBoss EJB 3.0 will
support annotating entities and their relationship collections as cached, but for now you have to
configure the underlying hibernate engine directly. Take a look at the persistence.xml file,
which configures the caching options for hibernate via its optional property elements. The
following element in persistence.xml defines that caching should be enabled:

<!-- Clustered cache with TreeCache -->
<property name="cache.provider_class">

org.jboss.ejb3.entity.TreeCacheProviderHook
</property>

The following property element defines the object name of the cache to be used, and the
MBean name.

<property name="treecache.mbean.object_name">
jboss.cache:service=EJB3EntityTreeCache

</property>

Next we need to configure what entities be cached. The default is to not cache anything, even
with the settings shown above. We use the @Cache annotation to tag entity beans that needs to
be cached.

@Entity
@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class Customer implements Serializable {
//

}

A very simplified rule of thumb is that you will typically want to do caching for objects that rarely
change, and which are frequently read. You can fine tune the cache for each entity bean in the
ejb3-entity-cache-service.xml configuration file. For instance, you can specify the size of
the cache. If there are too many objects in the cache, the cache could evict oldest objects (or
least used objects, depending on configuration) to make room for new objects. The cache for
the mycompany.Customer entity bean is /mycompany/Customer cache region.

<server>
<mbean code="org.jboss.cache.TreeCache"

name="jboss.cache:service=EJB3EntityTreeCache">
<depends>jboss:service=Naming

Chapter 13. Clustering

422

<depends>jboss:service=TransactionManager
... ...
<attribute name="EvictionPolicyConfig">
<config>

<attribute name="wakeUpIntervalSeconds">5</attribute>
<region name="/_default_">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>

</region>
<region name="/mycompany/Customer">

<attribute name="maxNodes">10</attribute>
<attribute name="timeToLiveSeconds">5000</attribute>

</region>
... ...

</config>
</attribute>

</mbean>
</server>

If you do not specify a cache region for an entity bean class, all instances of this class will be
cached in the /_default region as defined above. The EJB3 Query API provides means for
you to save to load query results (i.e., collections of entity beans) from specified cache regions.

5. HTTP Services

HTTP session replication is used to replicate the state associated with your web clients on other
nodes of a cluster. Thus, in the event one of your node crashes, another node in the cluster will
be able to recover. Two distinct functions must be performed:

• Session state replication

• Load-balance of incoming invocations

State replication is directly handled by JBoss. When you run JBoss in the all configuration,
session state replication is enabled by default. Just deploy your web application and its session
state is already replicated across all JBoss instances in the cluster.

However, Load-balancing is a different story, it is not handled by JBoss itself and requires
additional software. As a very common scenario, we will demonstrate how to setup Apache and
mod_jk. This activity could be either performed by specialized hardware switches or routers
(Cisco LoadDirector for example) or any other dedicated software though.

Note

A load-balancer tracks the HTTP requests and, depending on the session to
which is linked the request, it dispatches the request to the appropriate node.

HTTP Services

423

This is called a load-balancer with sticky-sessions: once a session is created on
a node, every future request will also be processed by the same node. Using a
load-balancer that supports sticky-sessions without replicating the sessions
allows you to scale very well without the cost of session state replication: each
query will always be handled by the same node. But in the case a node dies, the
state of all client sessions hosted by this node are lost (the shopping carts, for
example) and the clients will most probably need to login on another node and
restart with a new session. In many situations, it is acceptable not to replicate
HTTP sessions because all critical state is stored in the database. In other
situations, loosing a client session is not acceptable and, in this case, session
state replication is the price one has to pay.

Apache is a well-known web server which can be extended by plugging modules. One of these
modules, mod_jk (and the newest mod_jk2) has been specifically designed to allow forward
requests from Apache to a Servlet container. Furthermore, it is also able to load-balance HTTP
calls to a set of Servlet containers while maintaining sticky sessions, and this is what is actually
interesting for us.

5.1. Download the software

First of all, make sure that you have Apache installed. You can download Apache directly from
Apache web site at http://httpd.apache.org/. Its installation is pretty straightforward and
requires no specific configuration. As several versions of Apache exist, we advise you to use
version 2.0.x. We will consider, for the next sections, that you have installed Apache in the
APACHE_HOME directory.

Next, download mod_jk binaries. Several versions of mod_jk exist as well. We strongly advise
you to use mod_jk 1.2.x, as both mod_jk and mod_jk2 are deprecated, unsupported and no
further developments are going on in the community. The mod_jk 1.2.x binary can be
downloaded from
http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/. Rename the
downloaded file to mod_jk.so and copy it under APACHE_HOME/modules/.

5.2. Configure Apache to load mod_jk

Modify APACHE_HOME/conf/httpd.conf and add a single line at the end of the file:

Include mod_jk's specific configuration file
Include conf/mod-jk.conf

Next, create a new file named APACHE_HOME/conf/mod-jk.conf:

Chapter 13. Clustering

424

Load mod_jk module
Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkOptions indicates to send SSK KEY SIZE
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat
JkRequestLogFormat "%w %V %T"

Mount your applications
JkMount /application/* loadbalancer

You can use external file for mount points.
It will be checked for updates each 60 seconds.
The format of the file is: /url=worker
/examples/*=loadbalancer
JkMountFile conf/uriworkermap.properties

Add shared memory.
This directive is present with 1.2.10 and
later versions of mod_jk, and is needed for
for load balancing to work properly
JkShmFile logs/jk.shm

Add jkstatus for managing runtime data
<Location /jkstatus/>

JkMount status
Order deny,allow
Deny from all
Allow from 127.0.0.1

</Location>

Please note that two settings are very important:

• The LoadModule directive must reference the mod_jk library you have downloaded in the
previous section. You must indicate the exact same name with the "modules" file path prefix.

• The JkMount directive tells Apache which URLs it should forward to the mod_jk module (and,

Configure Apache to load mod_jk

425

in turn, to the Servlet containers). In the above file, all requests with URL path
/application/* are sent to the mod_jk load-balancer. This way, you can configure Apache
to server static contents (or PHP contents) directly and only use the loadbalancer for Java
applications. If you only use mod_jk as a loadbalancer, you can also forward all URLs (i.e.,
/*) to mod_jk.

In addition to the JkMount directive, you can also use the JkMountFile directive to specify a
mount points configuration file, which contains multiple Tomcat forwarding URL mappings. You
just need to create a uriworkermap.properties file in the APACHE_HOME/conf directory. The
format of the file is /url=worker_name. To get things started, paste the following example into
the file you created:

Simple worker configuration file

Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/web-console=loadbalancer
/web-console/*=loadbalancer

This will configure mod_jk to forward requests to /jmx-console and /web-console to Tomcat.

You will most probably not change the other settings in mod_jk.conf. They are used to tell
mod_jk where to put its logging file, which logging level to use and so on.

5.3. Configure worker nodes in mod_jk

Next, you need to configure mod_jk workers file conf/workers.properties. This file specify
where are located the different Servlet containers and how calls should be load-balanced
across them. The configuration file contains one section for each target servlet container and
one global section. For a two nodes setup, the file could look like this:

Define list of workers that will be used
for mapping requests
worker.list=loadbalancer,status

Define Node1
modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.lbfactor=1
worker.node1.cachesize=10

Define Node2
modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host= node2.mydomain.com

Chapter 13. Clustering

426

worker.node2.type=ajp13
worker.node2.lbfactor=1
worker.node2.cachesize=10

Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1
#worker.list=loadbalancer

Status worker for managing load balancer
worker.status.type=status

Basically, the above file configures mod_jk to perform weighted round-robin load balancing with
sticky sessions between two servlet containers (JBoss Tomcat) node1 and node2 listening on
port 8009.

In the works.properties file, each node is defined using the worker.XXX naming convention
where XXX represents an arbitrary name you choose for one of the target Servlet container. For
each worker, you must give the host name (or IP address) and port number of the AJP13
connector running in the Servlet container.

The lbfactor attribute is the load-balancing factor for this specific worker. It is used to define
the priority (or weight) a node should have over other nodes. The higher this number is, the
more HTTP requests it will receive. This setting can be used to differentiate servers with
different processing power.

The cachesize attribute defines the size of the thread pools associated to the Servlet container
(i.e. the number of concurrent requests it will forward to the Servlet container). Make sure this
number does not outnumber the number of threads configured on the AJP13 connector of the
Servlet container. Please review
http://jakarta.apache.org/tomcat/connectors-doc/config/workers.html for comments
on cachesize for Apache 1.3.x.

The last part of the conf/workers.properties file defines the loadbalancer worker. The only
thing you must change is the worker.loadbalancer.balanced_workers line: it must list all
workers previously defined in the same file: load-balancing will happen over these workers.

The sticky_session property specifies the cluster behavior for HTTP sessions. If you specify
worker.loadbalancer.sticky_session=0, each request will be load balanced between node1
and node2. But when a user opens a session on one server, it is a good idea to always forward
this user's requests to the same server. This is called a "sticky session", as the client is always
using the same server he reached on his first request. Otherwise the user's session data would
need to be synchronized between both servers (session replication, see Section 5.5, “Configure
HTTP session state replication”). To enable session stickiness, you need to set
worker.loadbalancer.sticky_session to 1.

Configure worker nodes in mod_jk

427

Note

A non-loadbalanced setup with a single node required the worker.list=node1

entry before mod_jk would function correctly.

5.4. Configure JBoss

Finally, we must configure the JBoss Tomcat instances on all clustered nodes so that they can
expect requests forwarded from the mod_jk loadbalancer.

On each clustered JBoss node, we have to name the node according to the name specified in
workers.properties. For instance, on JBoss instance node1, edit the
JBOSS_HOME/server/all/deploy/jboss-web.deployer/server.xml file (replace /all with
your own server name if necessary). Locate the <Engine> element and add an attribute
jvmRoute:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
... ...
</Engine>

Then, for each JBoss Tomcat instance in the cluster, we need to tell it to add the jvmRoute

value to its session cookies so that mod_jk can route incoming requests. Edit the
JBOSS_HOME/server/all/deploy/jboss-web.deployer/META-INF/jboss-service.xml file
(replace /all with your own server name). Locate the <attribute> element with a name of
UseJK, and set its value to true:

<attribute name="UseJK">true</attribute>

At this point, you have a fully working Apache+mod_jk load-balancer setup that will balance call
to the Servlet containers of your cluster while taking care of session stickiness (clients will
always use the same Servlet container).

Note

For more updated information on using mod_jk 1.2 with JBoss Tomcat, please
refer to the JBoss wiki page at
http://wiki.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss.

Chapter 13. Clustering

428

5.5. Configure HTTP session state replication

In Section 5.3, “Configure worker nodes in mod_jk”, we covered how to use sticky sessions to
make sure that a client in a session always hits the same server node in order to maintain the
session state. However, that is not an ideal solution. The load might be unevenly distributed
over the nodes over time and if a node goes down, all its session data is lost. A better and more
reliable solution is to replicate session data across all nodes in the cluster. This way, the client
can hit any server node and obtain the same session states.

The jboss.cache:service=TomcatClusteringCache MBean makes use of JBoss Cache to
provide HTTP session replication service to the HTTP load balancer in a JBoss Tomcat cluster.
This MBean is defined in the
deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file.

Note

Before AS 4.0.4 CR2, the HTTP session cache configuration file is the
deploy/tc5-cluster-service.xml file. Please see AS 4.2 documentation for
more details.

Below is a typical deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file. The
configuration attributes in the TomcatClusteringCache MBean is very similar to those in
Section 2, “JBossCache Configuration”.

<mbean code="org.jboss.cache.aop.TreeCacheAop"
name="jboss.cache:service=TomcatClusteringCache">

<depends>jboss:service=Naming</depends>
<depends>jboss:service=TransactionManager</depends>
<depends>jboss.aop:service=AspectDeployer</depends>

<attribute name="TransactionManagerLookupClass">
org.jboss.cache.BatchModeTransactionManagerLookup

</attribute>

<attribute name="IsolationLevel">REPEATABLE_READ</attribute>

<attribute name="CacheMode">REPL_ASYNC</attribute>

<attribute name="ClusterName">
Tomcat-${jboss.partition.name:Cluster}

</attribute>

<attribute name="UseMarshalling">false</attribute>

<attribute name="InactiveOnStartup">false</attribute>

<attribute name="ClusterConfig">
... ...

Configure HTTP session state replication

429

</attribute>

<attribute name="LockAcquisitionTimeout">15000</attribute>
</mbean>

The detailed configuration for the TreeCache MBean is covered in Section 2, “JBossCache
Configuration”. Below, we will just discuss several attributes that are most relevant to the HTTP
cluster session replication.

• TransactionManagerLookupClass sets the transaction manager factory. The default value
is org.jboss.cache.BatchModeTransactionManagerLookup. It tells the cache NOT to
participate in JTA-specific transactions. Instead, the cache manages its own transaction to
support finely grained replications.

• IsolationLevel sets the isolation level for updates to the transactional distributed cache. The
valid values are SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED,
and NONE. These isolation levels mean the same thing as isolation levels on the database.
The default isolation of REPEATABLE_READ makes sense for most web applications.

• CacheMode controls how the cache is replicated. The valid values are REPL_SYNC and
REPL_ASYNC, which determine whether changes are made synchronously or asynchronously.
Using synchronous replication makes sure changes propagated to the cluster before the web
request completes. However, synchronous replication is much slower. For asyncrhonous
access, you will want to enable and tune the replication queue.

• ClusterName specifies the name of the cluster that the cache works within. The default
cluster name is the the word "Tomcat-" appended by the current JBoss partition name. All the
nodes should use the same cluster name. Although session replication can share the same
channel (multicast address and port) with other clustered services in JBoss, replication should
have it's own cluster name.

• The UseMarshalling and InactiveOnStartup attributes must have the same value. They
must be true if FIELD level session replication is needed (see later). Otherwise, they are
default to false.

• ClusterConfig configures the underlying JGroups stack. The most import configuration
elements are the muliticast adress and port, mcast_addr and mcast_port respectively, to
use for clustered communication. These values should make sense for your network. Please
refer to Section 1, “JGroups Configuration” for more information.

• LockAcquisitionTimeout sets the maximum number of milliseconds to wait for a lock
acquisition. The default value is 15000.

• UseReplQueue determines whether to enable the replication queue when using
asynchronous replication. This allows multiple cache updates to be bundled together to
improve performance. The replication queue properties are controlled by the

Chapter 13. Clustering

430

ReplQueueInterval and ReplQueueMaxElements properties.

• ReplQueueInterval specifies the time in milliseconds JBoss Cache will wait before sending
items in the replication queue.

• ReplQueueMaxElements: specifies the maximum number of elements allowed in the
replication queue before JBoss Cache will send an update.

5.6. Enabling session replication in your application

To enable clustering of your web application you must it as distributable in the web.xml

descriptor. Here's an example:

<?xml version="1.0"?>
<web-app
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<distributable/>
<!-- ... -->

</web-app>

You can futher configure session replication using the replication-config element in the
jboss-web.xml file. Here is an example:

<jboss-web>
<replication-config>

<replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-trigger>
<replication-granularity>SESSION</replication-granularity>
<replication-field-batch-mode>true</replication-field-batch-mode>

</replication-config>
</jboss-web>

The replication-trigger element determines what triggers a session replication (or when is
a session is considered dirty). It has 4 options:

• SET: With this policy, the session is considered dirty only when an attribute is set in the
session. If your application always writes changed value back into the session, this option will
be most optimized in term of performance. If an object is retrieved from the session and
modified without being written back into the session, the change to that object will not be
replicated.

• SET_AND_GET: With this policy, any attribute that is get or set will be marked as dirty. If an
object is retrieved from the session and modified without being written back into the session,
the change to that object will be replicated. This option can have significant performance

Enabling session replication in your

431

implications.

• SET_AND_NON_PRIMITIVE_GET: This policy is similar to the SET_AND_GET policy except
that only non-primitive get operations are considered dirty. For example, the http session
request may retrieve a non-primitive object instance from the attribute and then modify the
instance. If we don't specify that non-primitive get is considered dirty, then the modification
will not be replication properly. This is the default value.

• ACCESS: This option causes the session to be marked as dirty whenever it is accessed.
Since a the session is accessed during each HTTP request, it will be replicated with each
request. The access time stamp in the session instance will be updated as well. Since the
time stamp may not be updated in other clustering nodes because of no replication, the
session in other nodes may expire before the active node if the HTTP request does not
retrieve or modify any session attributes. When this option is set, the session timestamps will
be synchronized throughout the cluster nodes. Note that use of this option can have a
significant performance impact, so use it with caution.

The replication-granularity element controls the size of the replication units. The
supported values are:

• SESSION: Replication is per session instance. As long as it is considered modified when the
snapshot manager is called, the whole session object will be serialized.

• ATTRIBUTE: Replication is only for the dirty attributes in the session plus some session data,
like, lastAccessTime. For session that carries large amount of data, this option can increase
replication performance.

• FIELD: Replication is only for data fields inside session attribute objects (see more later).

The replication-field-batch-mode element indicates whether you want to have batch
update between each http request or not. Default is true.

If your sessions are generally small, SESSION is the better policy. If your session is larger and
some parts are infrequently accessed, ATTRIBUTE replication will be more effective. If your
application has very big data objects in session attributes and only fields in those objects are
frequently modified, the FIELD policy would be the best. In the next section, let's discuss exactly
how the FIELD level replication works.

5.7. Use FIELD level replication

FIELD-level replication only replicates modified data fields inside objects stored in the session. It
could potentially drastically reduce the data traffic between clustered nodes, and hence improve
the performance of the whole cluster. To use FIELD-level replication, you only need to
annotated your POJOs the same way you do for EJB3 beans.

When you annotate your class with @org.jboss.cache.aop.annotation.PojoCacheable, you
indicate that instances of this class will be used in FIELD-level replication. For exmaple,

Chapter 13. Clustering

432

@org.jboss.cache.aop.annotation.PojoCacheable
public class Address
{
...
}

If you annotate it with @org.jboss.cache.aop.annotation.InstanceOfPojoCacheable

instead, then all of its sub-class will be automatically annotated as well. For example,

@org.jboss.cache.aop.annotation.InstanceOfPojoCacheable
public class Person
{
...
}

then when you have a sub-class like

public class Student extends Person
{
...
}

there will be no need to annotate Student. It will be annotated automatically because it is a
sub-class of Person.

Use POJO Cache in JDK 1.4

The POJO cache annotations discussed in this chapter are JDK 5 annotations.
JDK 5 is required for JBoss AS 4.2.0 and above. However, for earlier JBoss AS
4.0.x versions under JDK 1.4, you can still use POJO cache by embedding
annotations in JavaDoc comments and then pre-process the class with
annotation compiler. Please see the JBoss Cache documentation for more
details.

You can see a complete example on how to build, deploy, and validate a
FIELD-level replicated web application in JDK 1.4 from this page:
http://wiki.jboss.org/wiki/Wiki.jsp?page=Http_session_field_level_example.

When you deploy the web application into JBoss AS, make sure that the following
configurations are correct:

application

433

• In the server's deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file, the
inactiveOnStartup and useMarshalling attributes must both be true.

• In the application's jboss-web.xml file, the replication-granularity attribute must be
FIELD.

Finally, let's see an example on how to use FIELD-level replication on those data classes.
Notice that there is no need to call session.setAttribute() after you make changes to the
data object, and all changes to the fields are automatically replicated across the cluster.

// Do this only once. So this can be in init(), e.g.
if(firstTime)
{
Person joe = new Person("Joe", 40);
Person mary = new Person("Mary", 30);
Address addr = new Address();
addr.setZip(94086);

joe.setAddress(addr);
mary.setAddress(addr); // joe and mary share the same address!

session.setAttribute("joe", joe); // that's it.
session.setAttribute("mary", mary); // that's it.

}

Person mary = (Person)session.getAttribute("mary");
mary.getAddress().setZip(95123); // this will update and replicate the zip
code.

Besides plain objects, you can also use regular Java collections of those objects as session
attributes. JBoss cache automatically figures out how to handle those collections and replicate
field changes in their member objects.

5.8. Monitoring session replication

If you have deployed and accessed your application, go to the
jboss.cache:service=TomcatClusteringCache MBean and invoke the printDetails

operation. You should see output resembling the following.

/JSESSION

/quote

/FB04767C454BAB3B2E462A27CB571330
VERSION: 6
FB04767C454BAB3B2E462A27CB571330:
org.jboss.invocation.MarshalledValue@1f13a81c

/AxCI8Ovt5VQTfNyYy9Bomw**
VERSION: 4

Chapter 13. Clustering

434

AxCI8Ovt5VQTfNyYy9Bomw**: org.jboss.invocation.MarshalledValue@e076e4c8

This output shows two separate web sessions, in one application named quote, that are being
shared via JBossCache. This example uses a replication-granularity of session. Had
attribute level replication been used, there would be additional entries showing each
replicated session attribute. In either case, the replicated values are stored in an opaque
MarshelledValue container. There aren't currently any tools that allow you to inspect the
contents of the replicated session values. If you don't see any output, either the application was
not correctly marked as distributable or you haven't accessed a part of application that
places values in the HTTP session. The org.jboss.cache and org.jboss.web logging
categories provide additional insight into session replication useful for debugging purposes.

5.9. Using Single Sign On

JBoss supports clustered single sign-on, allowing a user to authenticate to one application on a
JBoss server and to be recognized on all applications, on that same machine or on another
node in the cluster, that are deployed on the same virtual host. Authentication replication is
handled by the HTTP session replication service. Although session replication does not need to
be explicitly enabled for the applications in question, the jboss-web-cluster.sar application
does need to be deployed (e.g., in the all configuration).

To enable single sign-on, you must add the ClusteredSingleSignOn valve to the appropriate
Host elements of the tomcat server.xml file. The valve configuration is shown here:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" />

6. Clustered JMS Services

JBoss AS 3.2.4 and above support high availability JMS (HA-JMS) services in the all server
configuration. In the current production release of JBoss AS, the HA-JMS service is
implemented as a clustered singleton fail-over service.

Note

If you are willing to configure HA-JMS yourself, you can get it to work with earlier
versions of JBoss AS. We have a customer who uses HA-JMS successfully in
JBoss AS 3.0.7. Please contact JBoss support for more questions.

6.1. High Availability Singleton Fail-over

The JBoss HA-JMS service (i.e., message queues and topics) only runs on a single node (i.e.,
the master node) in the cluster at any given time. If that node fails, the cluster simply elects
another node to run the JMS service (fail-over). This setup provides redundancy against server

Using Single Sign On

435

failures but does not reduce the work load on the JMS server node.

Note

While you cannot load balance HA-JMS queues (there is only one master node
that runs the queues), you can load balance the MDBs that process messages
from those queues (see Section 6.1.3, “Load Balanced HA-JMS MDBs”).

6.1.1. Server Side Configuration

To use the singleton fail-over HA-JMS service, you must configure JMS services identically on
all nodes in the cluster. That includes all JMS related service MBeans and all deployed JMS
applications.

The JMS server is configured to persist its data in the DefaultDS. By default, that is the
embedded HSQLDB. In most cluster environments, however, all nodes need to persist data
against a shared database. So, the first thing to do before you start clustered JMS is to setup a
shared database for JMS. You need to do the following:

• Configure DefaultDS to point to the database server of your choice. That is to replace the
deploy/hsqlsb-ds.xml file with the xxx-ds.xml file in the docs/examples/jca directory,
where xxx is the name of the target shared database (e.g., mysql-ds.xml, see Section 3,
“Configuring JDBC DataSources”).

• Replace the hsqldb-jdbc2-service.xml file under the
server/all/deploy-hasingleton/jms directory with one tuned to the specific database.
For example if you use MySQL the file is mysql-jdbc2-service.xml. Configuration files for a
number of RDBMS are bundled with the JBoss AS distribution. They can be found under
docs/examples/jms.

Note

There is no need to replace the hsqldb-jdbc-state-service.xml file under the
server/all/deploy-hasingleton/jms directory. Despite the hsql in its name,
it works with all SQL92 compliant databases, including HSQL, MySQL, SQL
Server, and more. It automatically uses the DefaultDS for storage, as we
configured above.

6.1.2. HA-JMS Client

The HA-JMS client is different from regular JMS clients in two important aspects.

Chapter 13. Clustering

436

• The HA-JMS client must obtain JMS connection factories from the HA-JNDI (the default port
is 1100).

• The client connection must listens for server exceptions. When the cluster fail-over to a
different master node, all client operations on the current connection fails with exceptions.
The client must know to re-connect.

Note

While the HA-JMS connection factory knows the current master node that runs
JMS services, there is no smart client side interceptor. The client stub only
knows the fixed master node and cannot adjust to server topography changes.

6.1.3. Load Balanced HA-JMS MDBs

While the HA-JMS queues and topics only run on a single node at a time, MDBs on multiple
nodes can receive and process messages from the HA-JMS master node. The contested
queues and topics result in load balancing behavior for MDBs. To enable loading balancing for
MDBs, you can specify a receiver for the queue. The receiver records which node is waiting for
a message and in which order the messages should be processed. JBoss provides three
receiver implementations.

• The org.jboss.mq.server.ReceiversImpl is the default implementation using a HashSet.

• The org.jboss.mq.server.ReceiversImplArrayList is theimplementation using an
ArrayList.

• The org.jboss.mq.server.ReceiversImplLinkedList is the implementation using a
LinkedList.

You can specify the receiver implementation class name as an attribute in the MBean that
defines the permanent JMS Queue or DestinationManager on each node (see Chapter 7,
Messaging on JBoss). For best load balancing performance, we suggest you to use the
ReceiversImplArrayList or ReceiversImplArrayList implementations due to an
undesirable implementation detail of HashSet in the JVM.

High Availability Singleton Fail-over

437

438

Part IV. Legacy EJB Support

EJBs on JBoss
The EJB Container Configuration and Architecture

The JBoss EJB container architecture employs a modular plug-in approach. All key aspects of
the EJB container may be replaced by custom versions of a plug-in and/or an interceptor by a
developer. This approach allows for fine tuned customization of the EJB container behavior to
optimally suite your needs. Most of the EJB container behavior is configurable through the EJB
JAR META-INF/jboss.xml descriptor and the default server-wide equivalent
standardjboss.xml descriptor. We will look at various configuration capabilities throughout this
chapter as we explore the container architecture.

1. The EJB Client Side View

We will begin our tour of the EJB container by looking at the client view of an EJB through the
home and remote proxies. It is the responsibility of the container provider to generate the
javax.ejb.EJBHome and javax.ejb.EJBObject for an EJB implementation. A client never
references an EJB bean instance directly, but rather references the EJBHome which implements
the bean home interface, and the EJBObject which implements the bean remote interface.
Figure 14.1, “The composition of an EJBHome proxy in JBoss.” shows the composition of an
EJB home proxy and its relation to the EJB deployment.

Figure 14.1. The composition of an EJBHome proxy in JBoss.

The numbered items in the figure are:

Chapter 14.

441

1. The EJBDeployer (org.jboss.ejb.EJBDeployer) is invoked to deploy an EJB JAR. An
EJBModule (org.jboss.ejb.EJBModule) is created to encapsulate the deployment
metadata.

2. The create phase of the EJBModule life cycle creates an EJBProxyFactory

(org.jboss.ejb.EJBProxyFactory) that manages the creation of EJB home and remote
interface proxies based on the EJBModuleinvoker-proxy-bindings metadata. There can be
multiple proxy factories associated with an EJB and we will look at how this is defined shortly.

3. The ProxyFactory constructs the logical proxies and binds the homes into JNDI. A logical
proxy is composed of a dynamic Proxy (java.lang.reflect.Proxy), the home interfaces of
the EJB that the proxy exposes, the ProxyHandler

(java.lang.reflect.InvocationHandler) implementation in the form of the
ClientContainer (org.jboss.proxy.ClientContainer), and the client side interceptors.

4. The proxy created by the EJBProxyFactory is a standard dynamic proxy. It is a serializable
object that proxies the EJB home and remote interfaces as defined in the EJBModule

metadata. The proxy translates requests made through the strongly typed EJB interfaces into
a detyped invocation using the ClientContainer handler associated with the proxy. It is the
dynamic proxy instance that is bound into JNDI as the EJB home interface that clients
lookup. When a client does a lookup of an EJB home, the home proxy is transported into the
client VM along with the ClientContainer and its interceptors. The use of dynamic proxies
avoids the EJB specific compilation step required by many other EJB containers.

5. The EJB home interface is declared in the ejb-jar.xml descriptor and available from the
EJBModule metadata. A key property of dynamic proxies is that they are seen to implement
the interfaces they expose. This is true in the sense of Java's strong type system. A proxy
can be cast to any of the home interfaces and reflection on the proxy provides the full details
of the interfaces it proxies.

6. The proxy delegates calls made through any of its interfaces to the ClientContainer

handler. The single method required of the handler is: public Object invoke(Object

proxy, Method m, Object[] args) throws Throwable. The EJBProxyFactory creates a
ClientContainer and assigns this as the ProxyHandler. The ClientContainer's state
consists of an InvocationContext (org.jboss.invocation.InvocationContext) and a
chain of interceptors (org.jboss.proxy.Interceptor). The InvocationContext contains:
• the JMX ObjectName of the EJB container MBean the Proxy is associated with
• the javax.ejb.EJBMetaData for the EJB
• the JNDI name of the EJB home interface
• the transport specific invoker (org.jboss.invocation.Invoker)

The interceptor chain consists of the functional units that make up the EJB home or remote
interface behavior. This is a configurable aspect of an EJB as we will see when we discuss
the jboss.xml descriptor, and the interceptor makeup is contained in the EJBModule

metadata. Interceptors (org.jboss.proxy.Interceptor) handle the different EJB types,
security, transactions and transport. You can add your own interceptors as well.

7. The transport specific invoker associated with the proxy has an association to the server side

Chapter 14. EJBs on JBoss

442

detached invoker that handles the transport details of the EJB method invocation. The
detached invoker is a JBoss server side component.

The configuration of the client side interceptors is done using the
jboss.xmlclient-interceptors element. When the ClientContainer invoke method is
called it creates an untyped Invocation (org.jboss.invocation.Invocation) to encapsulate
request. This is then passed through the interceptor chain. The last interceptor in the chain will
be the transport handler that knows how to send the request to the server and obtain the reply,
taking care of the transport specific details.

As an example of the client interceptor configuration usage, consider the default stateless
session bean configuration found in the server/production/standardjboss.xml descriptor.
Example 14.1, “The client-interceptors from the Standard Stateless SessionBean configuration.”
shows the stateless-rmi-invoker client interceptors configuration referenced by the
Standard Stateless SessionBean.

<invoker-proxy-binding>
<name>stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>

<proxy-factory-config>
<client-interceptors>

<home>
<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>

<interceptor call-by-value="false">
org.jboss.invocation.InvokerInterceptor

</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>

<interceptor call-by-value="false">
org.jboss.invocation.InvokerInterceptor

</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

<container-configuration>
<container-name>Standard Stateless SessionBean</container-name>
<call-logging>false</call-logging>

The EJB Client Side View

443

<invoker-proxy-binding-name>stateless-rmi-invoker</invoker-proxy-binding-name>
<!-- ... -->

</container-configuration>

Example 14.1. The client-interceptors from the Standard Stateless
SessionBean configuration.

This is the client interceptor configuration for stateless session beans that is used in the
absence of an EJB JAR META-INF/jboss.xml configuration that overrides these settings. The
functionality provided by each client interceptor is:

• org.jboss.proxy.ejb.HomeInterceptor: handles the getHomeHandle, getEJBMetaData, and
remove methods of the EJBHome interface locally in the client VM. Any other methods are
propagated to the next interceptor.

• org.jboss.proxy.ejb.StatelessSessionInterceptor: handles the toString, equals,
hashCode, getHandle, getEJBHome and isIdentical methods of the EJBObject interface
locally in the client VM. Any other methods are propagated to the next interceptor.

• org.jboss.proxy.SecurityInterceptor: associates the current security context with the
method invocation for use by other interceptors or the server.

• org.jboss.proxy.TransactionInterceptor: associates any active transaction with the
invocation method invocation for use by other interceptors.

• org.jboss.invocation.InvokerInterceptor: encapsulates the dispatch of the method
invocation to the transport specific invoker. It knows if the client is executing in the same VM
as the server and will optimally route the invocation to a by reference invoker in this situation.
When the client is external to the server VM, this interceptor delegates the invocation to the
transport invoker associated with the invocation context. In the case of the Example 14.1,
“The client-interceptors from the Standard Stateless SessionBean configuration.”
configuration, this would be the invoker stub associated with the
jboss:service=invoker,type=jrmp, the JRMPInvoker service.

org.jboss.invocation.MarshallingInvokerInterceptor: extends the InvokerInterceptor to
not optimize in-VM invocations. This is used to force call-by-value semantics for method
calls.

1.1. Specifying the EJB Proxy Configuration

To specify the EJB invocation transport and the client proxy interceptor stack, you need to
define an invoker-proxy-binding in either the EJB JAR META-INF/jboss.xml descriptor,
or the server standardjboss.xml descriptor. There are several default
invoker-proxy-bindings defined in the standardjboss.xml descriptor for the various default

Chapter 14. EJBs on JBoss

444

EJB container configurations and the standard RMI/JRMP and RMI/IIOP transport protocols.
The current default proxy configurations are:

• entity-rmi-invoker: a RMI/JRMP configuration for entity beans

• clustered-entity-rmi-invoker: a RMI/JRMP configuration for clustered entity beans

• stateless-rmi-invoker: a RMI/JRMP configuration for stateless session beans

• clustered-stateless-rmi-invoker: a RMI/JRMP configuration for clustered stateless session
beans

• stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

• clustered-stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session
beans

• message-driven-bean: a JMS invoker for message driven beans

• singleton-message-driven-bean: a JMS invoker for singleton message driven beans

• message-inflow-driven-bean: a JMS invoker for message inflow driven beans

• jms-message-inflow-driven-bean: a JMS inflow invoker for standard message driven beans

• iiop: a RMI/IIOP for use with session and entity beans.

To introduce a new protocol binding, or customize the proxy factory, or the client side
interceptor stack, requires defining a new invoker-proxy-binding. The full
invoker-proxy-binding DTD fragment for the specification of the proxy configuration is given
in Figure 14.2, “The invoker-proxy-binding schema”.

Specifying the EJB Proxy Configuration

445

Figure 14.2. The invoker-proxy-binding schema

The invoker-proxy-binding child elements are:

• name: The name element gives a unique name for the invoker-proxy-binding. The name is
used to reference the binding from the EJB container configuration when setting the default
proxy binding as well as the EJB deployment level to specify addition proxy bindings. You will
see how this is done when we look at the jboss.xml elements that control the server side
EJB container configuration.

• invoker-mbean: The invoker-mbean element gives the JMX ObjectName string of the
detached invoker MBean service the proxy invoker will be associated with.

• proxy-factory: The proxy-factory element specifies the fully qualified class name of the

Chapter 14. EJBs on JBoss

446

proxy factory, which must implement the org.jboss.ejb.EJBProxyFactory interface. The
EJBProxyFactory handles the configuration of the proxy and the association of the protocol
specific invoker and context. The current JBoss implementations of the EJBProxyFactory

interface include:

• org.jboss.proxy.ejb.ProxyFactory: The RMI/JRMP specific factory.

• org.jboss.proxy.ejb.ProxyFactoryHA: The cluster RMI/JRMP specific factory.

• org.jboss.ejb.plugins.jms.JMSContainerInvoker: The JMS specific factory.

• org.jboss.proxy.ejb.IORFactory: The RMI/IIOP specific factory.

• proxy-factory-config: The proxy-factory-config element specifies additional information
for the proxy-factory implementation. Unfortunately, its currently an unstructured collection
of elements. Only a few of the elements apply to each type of proxy factory. The child
elements break down into the three invocation protocols: RMI/RJMP, RMI/IIOP and JMS.

For the RMI/JRMP specific proxy factories, org.jboss.proxy.ejb.ProxyFactory and
org.jboss.proxy.ejb.ProxyFactoryHA the following elements apply:

• client-interceptors: The client-interceptors define the home, remote and optionally the
multi-valued proxy interceptor stacks.

• web-class-loader: The web class loader defines the instance of the
org.jboss.web.WebClassLoader that should be associated with the proxy for dynamic class
loading.

The following proxy-factory-config is for an entity bean accessed over RMI.

<proxy-factory-config>
<client-interceptors>

<home>
<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>

<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.EntityInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>

<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

Specifying the EJB Proxy Configuration

447

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</bean>
<list-entity>

<interceptor>org.jboss.proxy.ejb.ListEntityInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>

<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</list-entity>
</client-interceptors>

</proxy-factory-config>

For the RMI/IIOP specific proxy factory, org.jboss.proxy.ejb.IORFactory, the following
elements apply:

• web-class-loader: The web class loader defines the instance of the
org.jboss.web.WebClassLoader that should be associated with the proxy for dynamic class
loading.

• poa: The portable object adapter usage. Valid values are per-servant and shared.

• register-ejbs-in-jnp-context: A flag indicating if the EJBs should be register in JNDI.

• jnp-context: The JNDI context in which to register EJBs.

• interface-repository-supported: This indicates whether or not a deployed EJB has its own
CORBA interface repository.

The following shows a proxy-factory-config for EJBs accessed over IIOP.

<proxy-factory-config>
<web-class-loader>org.jboss.iiop.WebCL</web-class-loader>
<poa>per-servant</poa>
<register-ejbs-in-jnp-context>true</register-ejbs-in-jnp-context>
<jnp-context>iiop</jnp-context>

</proxy-factory-config>

For the JMS specific proxy factory, org.jboss.ejb.plugins.jms.JMSContainerInvoker, the
following elements apply:

• MinimumSize: This specifies the minimum pool size for MDBs processing . This defaults to 1.

• MaximumSize: This specifies the upper limit to the number of concurrent MDBs that will be

Chapter 14. EJBs on JBoss

448

allowed for the JMS destination. This defaults to 15.

• MaxMessages: This specifies the maxMessages parameter value for the
createConnectionConsumer method of javax.jms.QueueConnection and
javax.jms.TopicConnection interfaces, as well as the maxMessages parameter value for
the createDurableConnectionConsumer method of javax.jms.TopicConnection. It is the
maximum number of messages that can be assigned to a server session at one time. This
defaults to 1. This value should not be modified from the default unless your JMS provider
indicates this is supported.

• KeepAliveMillis: This specifies the keep alive time interval in milliseconds for sessions in the
session pool. The default is 30000 (30 seconds).

• MDBConfig: Configuration for the MDB JMS connection behavior. Among the elements
supported are:

• ReconnectIntervalSec: The time to wait (in seconds) before trying to recover the
connection to the JMS server.

• DeliveryActive: Whether or not the MDB is active at startup. The default is true.

• DLQConfig: Configuration for an MDB's dead letter queue, used when messages are
redelivered too many times.

• JMSProviderAdapterJNDI: The JNDI name of the JMS provider adapter in the java:/

namespace. This is mandatory for an MDB and must implement
org.jboss.jms.jndi.JMSProviderAdapter.

• ServerSessionPoolFactoryJNDI: The JNDI name of the session pool in the java:/

namespace of the JMS provider's session pool factory. This is mandatory for an MDB and
must implement org.jboss.jms.asf.ServerSessionPoolFactory.

Example 14.2, “A sample JMSContainerInvoker proxy-factory-config” gives a sample
proxy-factory-config fragment taken from the standardjboss.xml descriptor.

<proxy-factory-config>
<JMSProviderAdapterJNDI>DefaultJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MinimumSize>1</MinimumSize>
<MaximumSize>15</MaximumSize>
<KeepAliveMillis>30000</KeepAliveMillis>
<MaxMessages>1</MaxMessages>
<MDBConfig>

<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

Specifying the EJB Proxy Configuration

449

Example 14.2. A sample JMSContainerInvoker proxy-factory-config

2. The EJB Server Side View

Every EJB invocation must end up at a JBoss server hosted EJB container. In this section we
will look at how invocations are transported to the JBoss server VM and find their way to the
EJB container via the JMX bus.

2.1. Detached Invokers - The Transport Middlemen

We looked at the detached invoker architecture in the context of exposing RMI compatible
interfaces of MBean services earlier. Here we will look at how detached invokers are used to
expose the EJB container home and bean interfaces to clients. The generic view of the invoker
architecture is presented in Figure 14.3, “The transport invoker server side architecture”.

Figure 14.3. The transport invoker server side architecture

For each type of home proxy there is a binding to an invoker and its associated transport
protocol. A container may have multiple invocation protocols active simultaneously. In the
jboss.xml file, an invoker-proxy-binding-name maps to an invoker-proxy-binding/name

element. At the container-configuration level this specifies the default invoker that will be
used for EJBs deployed to the container. At the bean level, the invoker-bindings specify one
or more invokers to use with the EJB container MBean.

When one specifies multiple invokers for a given EJB deployment, the home proxy must be
given a unique JNDI binding location. This is specified by the invoker/jndi-name element

Chapter 14. EJBs on JBoss

450

value. Another issue when multiple invokers exist for an EJB is how to handle remote homes or
interfaces obtained when the EJB calls other beans. Any such interfaces need to use the same
invoker used to call the outer EJB in order for the resulting remote homes and interfaces to be
compatible with the proxy the client has initiated the call through. The invoker/ejb-ref

elements allow one to map from a protocol independent ENC ejb-ref to the home proxy
binding for ejb-ref target EJB home that matches the referencing invoker type.

An example of using a custom JRMPInvoker MBean that enables compressed sockets for
session beans can be found in the org.jboss.test.jrmp package of the testsuite. The
following example illustrates the custom JRMPInvoker configuration and its mapping to a
stateless session bean.

<server>
<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"

name="jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory">
<attribute name="RMIObjectPort">4445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.test.jrmp.ejb.CompressionClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.test.jrmp.ejb.CompressionServerSocketFactory
</attribute>

</mbean>
</server>

Here the default JRMPInvoker has been customized to bind to port 4445 and to use custom
socket factories that enable compression at the transport level.

<?xml version="1.0"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<!-- The jboss.xml descriptor for the jrmp-comp.jar ejb unit -->
<jboss>

<enterprise-beans>
<session>

<ejb-name>StatelessSession</ejb-name>
<configuration-name>Standard Stateless

SessionBean</configuration-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-compression-invoker
</invoker-proxy-binding-name>
<jndi-name>jrmp-compressed/StatelessSession</jndi-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-compression-invoker</name>
<invoker-mbean>

Detached Invokers - The Transport

451

jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

The StatelessSession EJB invoker-bindings settings specify that the
stateless-compression-invoker will be used with the home interface bound under the JNDI
name jrmp-compressed/StatelessSession. The stateless-compression-invoker is linked
to the custom JRMP invoker we just declared.

The following example, org.jboss.test.hello testsuite package, is an example of using the
HttpInvoker to configure a stateless session bean to use the RMI/HTTP protocol.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaHTTP</ejb-name>
<jndi-name>helloworld/HelloHTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-http-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<!-- A custom invoker for RMI/HTTP -->
<invoker-proxy-binding>

Chapter 14. EJBs on JBoss

452

<name>stateless-http-invoker</name>
<invoker-mbean>jboss:service=invoker,type=http</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Here a custom invoker-proxy-binding named stateless-http-invoker is defined. It uses the
HttpInvoker MBean as the detached invoker. The jboss:service=invoker,type=http name
is the default name of the HttpInvoker MBean as found in the
http-invoker.sar/META-INF/jboss-service.xml descriptor, and its service descriptor
fragment is show here:

<!-- The HTTP invoker service configuration -->
<mbean code="org.jboss.invocation.http.server.HttpInvoker"

name="jboss:service=invoker,type=http">
<!-- Use a URL of the form

http://<hostname>:8080/invoker/EJBInvokerServlet
where <hostname> is InetAddress.getHostname value on which the

server
is running. -->

<attribute name="InvokerURLPrefix">http://</attribute>
<attribute

name="InvokerURLSuffix">:8080/invoker/EJBInvokerServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

The client proxy posts the EJB invocation content to the EJBInvokerServlet URL specified in
the HttpInvoker service configuration.

2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvokerHA service is an extension of the

Middlemen

453

JRMPInvoker that is a cluster aware invoker. The JRMPInvokerHA fully supports all of the
attributes of the JRMPInvoker. This means that customized bindings of the port, interface and
socket transport are available to clustered RMI/JRMP as well. For additional information on the
clustering architecture and the implementation of the HA RMI proxies see the JBoss Clustering
docs.

2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered
environment. An HA capable extension of the HTTP invoker has been added that borrows much
of its functionality from the HA-RMI/JRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done
through either a jboss.xml descriptor, or the standardjboss.xml descriptor. Example 14.3, “A
jboss.xml stateless session configuration for HA-RMI/HTTP” shows is an example of a stateless
session configuration taken from the org.jboss.test.hello testsuite package.

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaClusteredHTTP</ejb-name>
<jndi-name>helloworld/HelloHA-HTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-httpHA-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>
<clustered>true</clustered>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<invoker-proxy-binding>
<name>stateless-httpHA-invoker</name>
<invoker-mbean>jboss:service=invoker,type=httpHA</invoker-mbean>

<proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

Chapter 14. EJBs on JBoss

454

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Example 14.3. A jboss.xml stateless session configuration for
HA-RMI/HTTP

The stateless-httpHA-invoker invoker-proxy-binding references the
jboss:service=invoker,type=httpHA invoker service. This service would be configured as
shown below.

<mbean code="org.jboss.invocation.http.server.HttpInvokerHA"
name="jboss:service=invoker,type=httpHA">

<!-- Use a URL of the form
http://<hostname>:8080/invoker/EJBInvokerHAServlet
where <hostname> is InetAddress.getHostname value on which the

server
is running.

-->
<attribute name="InvokerURLPrefix">http://</attribute>
<attribute

name="InvokerURLSuffix">:8080/invoker/EJBInvokerHAServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

The URL used by the invoker proxy is the EJBInvokerHAServlet mapping as deployed on the
cluster node. The HttpInvokerHA instances across the cluster form a collection of candidate
http URLs that are made available to the client side proxy for failover and/or load balancing.

3. The EJB Container

An EJB container is the component that manages a particular class of EJB. In JBoss there is
one instance of the org.jboss.ejb.Container created for each unique configuration of an
EJB that is deployed. The actual object that is instantiated is a subclass of Container and the
creation of the container instance is managed by the EJBDeployer MBean.

3.1. EJBDeployer MBean

The org.jboss.ejb.EJBDeployer MBean is responsible for the creation of EJB containers.
Given an EJB JAR that is ready for deployment, the EJBDeployer will create and initialize the
necessary EJB containers, one for each type of EJB. The configurable attributes of the
EJBDeployer are:

The EJB Container

455

• VerifyDeployments: a boolean flag indicating if the EJB verifier should be run. This validates
that the EJBs in a deployment unit conform to the EJB 2.1 specification. Setting this to true is
useful for ensuring your deployments are valid.

• VerifierVerbose: A boolean that controls the verboseness of any verification
failures/warnings that result from the verification process.

• StrictVerifier: A boolean that enables/disables strict verification. When strict verification is
enable an EJB will deploy only if verifier reports no errors.

• CallByValue: a boolean flag that indicates call by value semantics should be used by default.

• ValidateDTDs: a boolean flag that indicates if the ejb-jar.xml and jboss.xml descriptors
should be validated against their declared DTDs. Setting this to true is useful for ensuring
your deployment descriptors are valid.

• MetricsEnabled: a boolean flag that controls whether container interceptors marked with an
metricsEnabled=true attribute should be included in the configuration. This allows one to
define a container interceptor configuration that includes metrics type interceptors that can be
toggled on and off.

• WebServiceName: The JMX ObjectName string of the web service MBean that provides
support for the dynamic class loading of EJB classes.

• TransactionManagerServiceName: The JMX ObjectName string of the JTA transaction
manager service. This must have an attribute named TransactionManager that returns that
javax.transaction.TransactionManager instance.

The deployer contains two central methods: deploy and undeploy. The deploy method takes a
URL, which either points to an EJB JAR, or to a directory whose structure is the same as a valid
EJB JAR (which is convenient for development purposes). Once a deployment has been made,
it can be undeployed by calling undeploy on the same URL. A call to deploy with an already
deployed URL will cause an undeploy, followed by deployment of the URL. JBoss has support
for full re-deployment of both implementation and interface classes, and will reload any changed
classes. This will allow you to develop and update EJBs without ever stopping a running server.

During the deployment of the EJB JAR the EJBDeployer and its associated classes perform
three main functions, verify the EJBs, create a container for each unique EJB, initialize the
container with the deployment configuration information. We will talk about each function in the
following sections.

3.1.1. Verifying EJB deployments

When the VerifyDeployments attribute of the EJBDeployer is true, the deployer performs a
verification of EJBs in the deployment. The verification checks that an EJB meets EJB
specification compliance. This entails validating that the EJB deployment unit contains the
required home and remote, local home and local interfaces. It will also check that the objects
appearing in these interfaces are of the proper types and that the required methods are present
in the implementation class. This is a useful behavior that is enabled by default since there are

Chapter 14. EJBs on JBoss

456

a number of steps that an EJB developer and deployer must perform correctly to construct a
proper EJB JAR, and it is easy to make a mistake. The verification stage attempts to catch any
errors and fail the deployment with an error that indicates what needs to be corrected.

Probably the most problematic aspect of writing EJBs is the fact that there is a disconnection
between the bean implementation and its remote and home interfaces, as well as its
deployment descriptor configuration. It is easy to have these separate elements get out of
synch. One tool that helps eliminate this problem is XDoclet. It allows you to use custom
JavaDoc-like tags in the EJB bean implementation class to generate the related bean
interfaces, deployment descriptors and related objects. See the XDoclet home page,
http://sourceforge.net/projects/xdoclet for additional details.

3.1.2. Deploying EJBs Into Containers

The most important role performed by the EJBDeployer is the creation of an EJB container and
the deployment of the EJB into the container. The deployment phase consists of iterating over
EJBs in an EJB JAR, and extracting the bean classes and their metadata as described by the
ejb-jar.xml and jboss.xml deployment descriptors. For each EJB in the EJB JAR, the
following steps are performed:

• Create subclass of org.jboss.ejb.Container depending on the type of the EJB: stateless,
stateful, BMP entity, CMP entity, or message driven. The container is assigned a unique
ClassLoader from which it can load local resources. The uniqueness of the ClassLoader is
also used to isolate the standard java:comp JNDI namespace from other J2EE components.

• Set all container configurable attributes from a merge of the jboss.xml and
standardjboss.xml descriptors.

• Create and add the container interceptors as configured for the container.

• Associate the container with an application object. This application object represents a J2EE
enterprise application and may contain multiple EJBs and web contexts.

If all EJBs are successfully deployed, the application is started which in turn starts all containers
and makes the EJBs available to clients. If any EJB fails to deploy, a deployment exception is
thrown and the deployment module is failed.

3.1.3. Container configuration information

JBoss externalizes most if not all of the setup of the EJB containers using an XML file that
conforms to the jboss_4_0.dtd. The section DTD that relates to container configuration
information is shown in Figure 14.4, “The jboss_4_0 DTD elements related to container
configuration.”.

EJBDeployer MBean

457

http://sourceforge.net/projects/xdoclet

Figure 14.4. The jboss_4_0 DTD elements related to container

Chapter 14. EJBs on JBoss

458

configuration.

The container-configuration element and its subelements specify container configuration
settings for a type of container as given by the container-name element. Each configuration
specifies information such as the default invoker type, the container interceptor makeup,
instance caches/pools and their sizes, persistence manager, security, and so on. Because this
is a large amount of information that requires a detailed understanding of the JBoss container
architecture, JBoss ships with a standard configuration for the four types of EJBs. This
configuration file is called standardjboss.xml and it is located in the conf directory of any
configuration file set that uses EJBs. The following is a sample of container-configuration
from standardjboss.xml.

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<call-logging>false</call-logging>

<invoker-proxy-binding-name>entity-rmi-invoker</invoker-proxy-binding-name>
<sync-on-commit-only>false</sync-on-commit-only>
<insert-after-ejb-post-create>false</insert-after-ejb-post-create>
<call-ejb-store-on-clean>true</call-ejb-store-on-clean>
<container-interceptors>

<interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>

<interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
<interceptor metricsEnabled="true">

org.jboss.ejb.plugins.MetricsInterceptor
</interceptor>

<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>

<interceptor>
org.jboss.resource.connectionmanager.CachedConnectionInterceptor

</interceptor>
<interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>

</container-interceptors>
<instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>

<instance-cache>org.jboss.ejb.plugins.InvalidableEntityInstanceCache</instance-cache>
<persistence-manager>org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</persistence-manager>
<locking-policy>org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock</locking-policy>

<container-cache-conf>
<cache-policy>org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</cache-policy>

<cache-policy-conf>
<min-capacity>50</min-capacity>
<max-capacity>1000000</max-capacity>
<overager-period>300</overager-period>
<max-bean-age>600</max-bean-age>
<resizer-period>400</resizer-period>
<max-cache-miss-period>60</max-cache-miss-period>
<min-cache-miss-period>1</min-cache-miss-period>
<cache-load-factor>0.75</cache-load-factor>

EJBDeployer MBean

459

</cache-policy-conf>
</container-cache-conf>
<container-pool-conf>

<MaximumSize>100</MaximumSize>
</container-pool-conf>
<commit-option>B</commit-option>

</container-configuration>

These two examples demonstrate how extensive the container configuration options are. The
container configuration information can be specified at two levels. The first is in the
standardjboss.xml file contained in the configuration file set directory. The second is at the
EJB JAR level. By placing a jboss.xml file in the EJB JAR META-INF directory, you can specify
either overrides for container configurations in the standardjboss.xml file, or entirely new
named container configurations. This provides great flexibility in the configuration of containers.
As you have seen, all container configuration attributes have been externalized and as such are
easily modifiable. Knowledgeable developers can even implement specialized container
components, such as instance pools or caches, and easily integrate them with the standard
container configurations to optimize behavior for a particular application or environment.

How an EJB deployment chooses its container configuration is based on the explicit or implict
jboss/enterprise-beans/<type>/configuration-name element. The configuration-name

element is a link to a container-configurations/container-configuration element. It
specifies which container configuration to use for the referring EJB. The link is from a
configuration-name element to a container-name element.

You are able to specify container configurations per class of EJB by including a
container-configuration element in the EJB definition. Typically one does not define
completely new container configurations, although this is supported. The typical usage of a
jboss.xml level container-configuration is to override one or more aspects of a
container-configuration coming from the standardjboss.xml descriptor. This is done by
specifying container-configuration that references the name of an existing
standardjboss.xmlcontainer-configuration/container-name as the value for the
container-configuration/extends attribute. The following example shows an example of
defining a new Secured Stateless SessionBean configuration that is an extension of the
Standard Stateless SessionBean configuration.

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<session>

<ejb-name>EchoBean</ejb-name>
<configuration-name>Secured Stateless

SessionBean</configuration-name>
<!-- ... -->

</session>
</enterprise-beans>
<container-configurations>

<container-configuration extends="Standard Stateless SessionBean">
<container-name>Secured Stateless SessionBean</container-name>
<!-- Override the container security domain -->

Chapter 14. EJBs on JBoss

460

<security-domain>java:/jaas/my-security-domain</security-domain>
</container-configuration>

</container-configurations>
</jboss>

If an EJB does not provide a container configuration specification in the deployment unit EJB
JAR, the container factory chooses a container configuration from the standardjboss.xml

descriptor based on the type of the EJB. So, in reality there is an implicit configuration-name
element for every type of EJB, and the mappings from the EJB type to default container
configuration name are as follows:

• container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean

• container-managed persistence entity version 1.1 = Standard CMP EntityBean

• bean-managed persistence entity = Standard BMP EntityBean

• stateless session = Standard Stateless SessionBean

• stateful session = Standard Stateful SessionBean

• message driven = Standard Message Driven Bean

It is not necessary to indicate which container configuration an EJB is using if you want to use
the default based on the bean type. It probably provides for a more self-contained descriptor to
include the configuration-name element, but this is purely a matter of style.

Now that you know how to specify which container configuration an EJB is using and can define
a deployment unit level override, we now will look at the container-configuration child
elements in the following sections. A number of the elements specify interface class
implementations whose configuration is affected by other elements, so before starting in on the
configuration elements you need to understand the org.jboss.metadata.XmlLoadable

interface.

The XmlLoadable interface is a simple interface that consists of a single method. The interface
definition is:

import org.w3c.dom.Element;
public interface XmlLoadable
{

public void importXml(Element element) throws Exception;
}

Classes implement this interface to allow their configuration to be specified via an XML
document fragment. The root element of the document fragment is what would be passed to the
importXml method. You will see a few examples of this as the container configuration elements
are described in the following sections.

EJBDeployer MBean

461

3.1.3.1. The container-name element

The container-name element specifies a unique name for a given configuration. EJBs link to a
particular container configuration by setting their configuration-name element to the value of
the container-name for the container configuration.

3.1.3.2. The call-logging element

The call-logging element expects a boolean (true or false) as its value to indicate whether or
not the LogInterceptor should log method calls to a container. This is somewhat obsolete with
the change to log4j, which provides a fine-grained logging API.

3.1.3.3. The invoker-proxy-binding-name element

The invoker-proxy-binding-name element specifies the name of the default invoker to use. In
the absence of a bean level invoker-bindings specification, the invoker-proxy-binding

whose name matches the invoker-proxy-binding-name element value will be used to create
home and remote proxies.

3.1.3.4. The sync-on-commit-only element

This configures a performance optimization that will cause entity bean state to be synchronized
with the database only at commit time. Normally the state of all the beans in a transaction would
need to be synchronized when an finder method is called or when an remove method is called,
for example.

3.1.3.5. insert-after-ejb-post-create

This is another entity bean optimization which cause the database insert command for a new
entity bean to be delayed until the ejbPostCreate method is called. This allows normal CMP
fields as well as CMR fields to be set in a single insert, instead of the default insert followed by
an update, which allows removes the requirement for relation ship fields to allow null values.

3.1.3.6. call-ejb-store-on-clean

By the specification the container is required to call ejbStore method on an entity bean
instance when transaction commits even if the instance was not modified in the transaction.
Setting this to false will cause JBoss to only call ejbStore for dirty objects.

3.1.3.7. The container-interceptors Element

The container-interceptors element specifies one or more interceptor elements that are to
be configured as the method interceptor chain for the container. The value of the interceptor
element is a fully qualified class name of an org.jboss.ejb.Interceptor interface
implementation. The container interceptors form a linked-list structure through which EJB
method invocations pass. The first interceptor in the chain is invoked when the MBeanServer

passes a method invocation to the container. The last interceptor invokes the business method
on the bean. We will discuss the Interceptor interface latter in this chapter when we talk about

Chapter 14. EJBs on JBoss

462

the container plugin framework. Generally, care must be taken when changing an existing
standard EJB interceptor configuration as the EJB contract regarding security, transactions,
persistence, and thread safety derive from the interceptors.

3.1.3.8. The instance-pool element

The instance-pool element specifies the fully qualified class name of an
org.jboss.ejb.InstancePool interface implementation to use as the container
InstancePool. We will discuss the InstancePool interface in detail latter in this chapter when
we talk about the container plugin framework.

3.1.3.9. The container-pool-conf element

The container-pool-conf is passed to the InstancePool implementation class given by the
instance-pool element if it implements the XmlLoadable interface. All current JBoss
InstancePool implementations derive from the
org.jboss.ejb.plugins.AbstractInstancePool class which provides support for elements
shown in Figure 14.5, “The container-pool-conf element DTD”.

Figure 14.5. The container-pool-conf element DTD

• MinimumSize: The MinimumSize element gives the minimum number of instances to keep in
the pool, although JBoss does not currently seed an InstancePool to the MinimumSize

value.

• MaximumSize: The MaximumSize specifies the maximum number of pool instances that are
allowed. The default use of MaximumSize may not be what you expect. The pool
MaximumSize is the maximum number of EJB instances that are kept available, but additional
instances can be created if the number of concurrent requests exceeds the MaximumSize

value.

• strictMaximumSize: If you want to limit the maximum concurrency of an EJB to the pool
MaximumSize, you need to set the strictMaximumSize element to true. When
strictMaximumSize is true, only MaximumSize EJB instances may be active. When there are

EJBDeployer MBean

463

MaximumSize active instances, any subsequent requests will be blocked until an instance is
freed back to the pool. The default value for strictMaximumSize is false.

• strictTimeout: How long a request blocks waiting for an instance pool object is controlled by
the strictTimeout element. The strictTimeout defines the time in milliseconds to wait for
an instance to be returned to the pool when there are MaximumSize active instances. A value
less than or equal to 0 will mean not to wait at all. When a request times out waiting for an
instance a java.rmi.ServerException is generated and the call aborted. This is parsed as
a Long so the maximum possible wait time is 9,223,372,036,854,775,807 or about
292,471,208 years, and this is the default value.

3.1.3.10. The instance-cache element

The instance-cache element specifies the fully qualified class name of the
org.jboss.ejb.InstanceCache interface implementation. This element is only meaningful for
entity and stateful session beans as these are the only EJB types that have an associated
identity. We will discuss the InstanceCache interface in detail latter in this chapter when we talk
about the container plugin framework.

3.1.3.11. The container-cache-conf element

The container-cache-conf element is passed to the InstanceCache implementation if it
supports the XmlLoadable interface. All current JBoss InstanceCache implementations derive
from the org.jboss.ejb.plugins.AbstractInstanceCache class which provides support for
the XmlLoadable interface and uses the cache-policy child element as the fully qualified class
name of an org.jboss.util.CachePolicy implementation that is used as the instance cache
store. The cache-policy-conf child element is passed to the CachePolicy implementation if it
supports the XmlLoadable interface. If it does not, the cache-policy-conf will silently be
ignored.

There are two JBoss implementations of CachePolicy used by the standardjboss.xml

configuration that support the current array of cache-policy-conf child elements. The classes
are org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy and
org.jboss.ejb.plugins.LRUStatefulContextCachePolicy. The
LRUEnterpriseContextCachePolicy is used by entity bean containers while the
LRUStatefulContextCachePolicy is used by stateful session bean containers. Both cache
policies support the following cache-policy-conf child elements, shown in Figure 14.6, “The
container-cache-conf element DTD”.

Chapter 14. EJBs on JBoss

464

Figure 14.6. The container-cache-conf element DTD

• min-capacity: specifies the minimum capacity of this cache

• max-capacity: specifies the maximum capacity of the cache, which cannot be less than
min-capacity.

• overager-period: specifies the period in seconds between runs of the overager task. The
purpose of the overager task is to see if the cache contains beans with an age greater than
the max-bean-age element value. Any beans meeting this criterion will be passivated.

• max-bean-age: specifies the maximum period of inactivity in seconds a bean can have
before it will be passivated by the overager process.

• resizer-period: specifies the period in seconds between runs of the resizer task. The purpose
of the resizer task is to contract or expand the cache capacity based on the remaining three
element values in the following way. When the resizer task executes it checks the current
period between cache misses, and if the period is less than the min-cache-miss-period

value the cache is expanded up to the max-capacity value using the cache-load-factor. If
instead the period between cache misses is greater than the max-cache-miss-period value
the cache is contracted using the cache-load-factor.

EJBDeployer MBean

465

• max-cache-miss-period: specifies the time period in seconds in which a cache miss should
signal that the cache capacity be contracted. It is equivalent to the minimum miss rate that will
be tolerated before the cache is contracted.

• min-cache-miss-period: specifies the time period in seconds in which a cache miss should
signal that the cache capacity be expanded. It is equivalent to the maximum miss rate that will
be tolerated before the cache is expanded.

• cache-load-factor: specifies the factor by which the cache capacity is contracted and
expanded. The factor should be less than 1. When the cache is contracted the capacity is
reduced so that the current ratio of beans to cache capacity is equal to the cache-load-factor
value. When the cache is expanded the new capacity is determined as current-capacity *

1/cache-load-factor. The actual expansion factor may be as high as 2 based on an
internal algorithm based on the number of cache misses. The higher the cache miss rate the
closer the true expansion factor will be to 2.

The LRUStatefulContextCachePolicy also supports the remaining child elements:

• remover-period: specifies the period in seconds between runs of the remover task. The
remover task removes passivated beans that have not been accessed in more than
max-bean-life seconds. This task prevents stateful session beans that were not removed by
users from filling up the passivation store.

• max-bean-life: specifies the maximum period of inactivity in seconds that a bean can exist
before being removed from the passivation store.

An alternative cache policy implementation is the
org.jboss.ejb.plugins.NoPassivationCachePolicy class, which simply never passivates
instances. It uses an in-memory HashMap implementation that never discards instances unless
they are explicitly removed. This class does not support any of the cache-policy-conf

configuration elements.

3.1.3.12. The persistence-manager element

The persistence-manager element value specifies the fully qualified class name of the
persistence manager implementation. The type of the implementation depends on the type of
EJB. For stateful session beans it must be an implementation of the
org.jboss.ejb.StatefulSessionPersistenceManager interface. For BMP entity beans it
must be an implementation of the org.jboss.ejb.EntityPersistenceManager interface,
while for CMP entity beans it must be an implementation of the
org.jboss.ejb.EntityPersistenceStore interface.

3.1.3.13. The web-class-loader Element

The web-class-loader element specifies a subclass of org.jboss.web.WebClassLoader that
is used in conjunction with the WebService MBean to allow dynamic loading of resources and
classes from deployed ears, EJB JARs and WARs. A WebClassLoader is associated with a

Chapter 14. EJBs on JBoss

466

Container and must have an org.jboss.mx.loading.UnifiedClassLoader as its parent. It
overrides the getURLs() method to return a different set of URLs for remote loading than what
is used for local loading.

WebClaossLoader has two methods meant to be overridden by subclasses: getKey() and
getBytes(). The latter is a no-op in this implementation and should be overridden by
subclasses with bytecode generation ability, such as the classloader used by the iiop module.

WebClassLoader subclasses must have a constructor with the same signature as the
WebClassLoader(ObjectName containerName, UnifiedClassLoader parent) constructor.

3.1.3.14. The locking-policy element

The locking-policy element gives the fully qualified class name of the EJB lock
implementation to use. This class must implement the org.jboss.ejb.BeanLock interface. The
current JBoss versions include:

• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock: an implementation that holds
threads awaiting the transactional lock to be freed in a fair FIFO queue. Non-transactional
threads are also put into this wait queue as well. This class pops the next waiting transaction
from the queue and notifies only those threads waiting associated with that transaction. The
QueuedPessimisticEJBLock is the current default used by the standard configurations.

• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLockNoADE: This behaves the same
as the QueuedPessimisticEJBLock except that deadlock detection is disabled.

• org.jboss.ejb.plugins.lock.SimpleReadWriteEJBLock: This lock allows multiple read locks
concurrently. Once a writer has requested the lock, future read-lock requests whose
transactions do not already have the read lock will block until all writers are done; then all the
waiting readers will concurrently go (depending on the reentrant setting / methodLock). A
reader who promotes gets first crack at the write lock, ahead of other waiting writers. If there
is already a reader that is promoting, we throw an inconsistent read exception. Of course,
writers have to wait for all read-locks to release before taking the write lock.

• org.jboss.ejb.plugins.lock.NoLock: an anti-locking policy used with the instance per
transaction container configurations.

Locking and deadlock detection will be discussed in more detail in Section 4, “Entity Bean
Locking and Deadlock Detection”.

3.1.3.15. The commit-option and optiond-refresh-rate elements

The commit-option value specifies the EJB entity bean persistent storage commit option. It must
be one of A, B, C or D.

• A: the container caches the beans state between transactions. This option assumes that the
container is the only user accessing the persistent store. This assumption allows the

EJBDeployer MBean

467

container to synchronize the in-memory state from the persistent storage only when
absolutely necessary. This occurs before the first business method executes on a found bean
or after the bean is passivated and reactivated to serve another business method. This
behavior is independent of whether the business method executes inside a transaction
context.

• B: the container caches the bean state between transactions. However, unlike option A the
container does not assume exclusive access to the persistent store. Therefore, the container
will synchronize the in-memory state at the beginning of each transaction. Thus, business
methods executing in a transaction context don't see much benefit from the container caching
the bean, whereas business methods executing outside a transaction context (transaction
attributes Never, NotSupported or Supports) access the cached (and potentially invalid) state
of the bean.

• C: the container does not cache bean instances. The in-memory state must be synchronized
on every transaction start. For business methods executing outside a transaction the
synchronization is still performed, but the ejbLoad executes in the same transaction context
as that of the caller.

• D: is a JBoss-specific commit option which is not described in the EJB specification. It is a
lazy read scheme where bean state is cached between transactions as with option A, but the
state is periodically resynchronized with that of the persistent store. The default time between
reloads is 30 seconds, but may configured using the optiond-refresh-rate element.

3.1.3.16. The security-domain element

The security-domain element specifies the JNDI name of the object that implements the
org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping

interfaces. It is more typical to specify the security-domain under the jboss root element so
that all EJBs in a given deployment are secured in the same manner. However, it is possible to
configure the security domain for each bean configuration. The details of the security manager
interfaces and configuring the security layer are discussed in Chapter 8, Security on JBoss.

3.1.3.17. cluster-config

The cluster-config element allows to specify cluster specific settings for all EJBs that use the
container configuration. Specification of the cluster configuration may be done at the container
configuration level or at the individual EJB deployment level.

Chapter 14. EJBs on JBoss

468

Figure 14.7. The cluster-config and related elements

• partition-name: The partition-name element indicates where to find the
org.jboss.ha.framework.interfaces.HAPartition interface to be used by the container
to exchange clustering information. This is not the full JNDI name under which HAPartition

is bound. Rather, it should correspond to the PartitionName attribute of the
ClusterPartitionMBean service that is managing the desired cluster. The actual JNDI name
of the HAPartition binding will be formed by appending /HASessionState/ to the
partition-name value. The default value is DefaultPartition.

• home-load-balance-policy: The home-load-balance-policy element indicates the Java
class name to be used to load balance calls made on the home proxy. The class must
implement the org.jboss.ha.framework.interface.LoadBalancePolicy interface. The
default policy is org.jboss.ha.framework.interfaces.RoundRobin.

• bean-load-balance-policy: The bean-load-balance-policy element indicates the java
class name to be used to load balance calls in the bean proxy. The class must implement the
org.jboss.ha.framework.interface.LoadBalancePolicy interface. For entity beans and
stateful session beans, the default is
org.jboss.ha.framework.interfaces.FirstAvailavble. For stateless session beans,
org.jboss.ha.framework.interfaces.RoundRobin.

• session-state-manager-jndi-name: The session-state-manager-jndi-name element
indicates the name of the org.jboss.ha.framework.interfaces.HASessionState to be
used by the container as a backend for state session management in the cluster. Unlike the
partition-name element, this is a JNDI name under which the HASessionState

implementation is bound. The default location used is /HASessionState/Default.

3.1.3.18. The depends element

The depends element gives a JMX ObjectName of a service on which the container or EJB
depends. Specification of explicit dependencies on other services avoids having to rely on the
deployment order being after the required services are started.

Container Plug-in Framework

469

3.2. Container Plug-in Framework

The JBoss EJB container uses a framework pattern that allows one to change implementations
of various aspects of the container behavior. The container itself does not perform any
significant work other than connecting the various behavioral components together.
Implementations of the behavioral components are referred to as plugins, because you can plug
in a new implementation by changing a container configuration. Examples of plug-in behavior
you may want to change include persistence management, object pooling, object caching,
container invokers and interceptors. There are four subclasses of the
org.jboss.ejb.Container class, each one implementing a particular bean type:

• org.jboss.ejb.EntityContainer: handles javax.ejb.EntityBean types

• org.jboss.ejb.StatelessSessionContainer: handles Stateless javax.ejb.SessionBean

types

• org.jboss.ejb.StatefulSessionContainer: handles Stateful javax.ejb.SessionBean types

• org.jboss.ejb.MessageDrivenContainer handles javax.ejb.MessageDrivenBean types

The EJB containers delegate much of their behavior to components known as container
plug-ins. The interfaces that make up the container plugin points include the following:

• org.jboss.ejb.ContainerPlugin
• org.jboss.ejb.ContainerInvoker
• org.jboss.ejb.Interceptor
• org.jboss.ejb.InstancePool
• org.jboss.ejb.InstanceCache
• org.jboss.ejb.EntityPersistanceManager
• org.jboss.ejb.EntityPersistanceStore
• org.jboss.ejb.StatefulSessionPersistenceManager

The container's main responsibility is to manage its plug-ins. This means ensuring that the
plug-ins have all the information they need to implement their functionality.

3.2.1. org.jboss.ejb.ContainerPlugin

The ContainerPlugin interface is the parent interface of all container plug-in interfaces. It
provides a callback that allows a container to provide each of its plug-ins a pointer to the
container the plug-in is working on behalf of. The ContainerPlugin interface is given below.

public interface ContainerPlugin
extends Service, AllowedOperationsFlags

{
/** co
* This callback is set by the container so that the plugin
* may access its container
*

Chapter 14. EJBs on JBoss

470

* @param con the container which owns the plugin
*/

public void setContainer(Container con);
}

Example 14.4. The org.jboss.ejb.ContainerPlugin interface

3.2.2. org.jboss.ejb.Interceptor

The Interceptor interface enables one to build a chain of method interceptors through which
each EJB method invocation must pass. The Interceptor interface is given below.

import org.jboss.invocation.Invocation;

public interface Interceptor
extends ContainerPlugin

{
public void setNext(Interceptor interceptor);
public Interceptor getNext();
public Object invokeHome(Invocation mi) throws Exception;
public Object invoke(Invocation mi) throws Exception;

}

Example 14.5. The org.jboss.ejb.Interceptor interface

All interceptors defined in the container configuration are created and added to the container
interceptor chain by the EJBDeployer. The last interceptor is not added by the deployer but
rather by the container itself because this is the interceptor that interacts with the EJB bean
implementation.

The order of the interceptor in the chain is important. The idea behind ordering is that
interceptors that are not tied to a particular EnterpriseContext instance are positioned before
interceptors that interact with caches and pools.

Implementers of the Interceptor interface form a linked-list like structure through which the
Invocation object is passed. The first interceptor in the chain is invoked when an invoker
passes a Invocation to the container via the JMX bus. The last interceptor invokes the
business method on the bean. There are usually on the order of five interceptors in a chain
depending on the bean type and container configuration. Interceptor semantic complexity
ranges from simple to complex. An example of a simple interceptor would be
LoggingInterceptor, while a complex example is EntitySynchronizationInterceptor.

One of the main advantages of an interceptor pattern is flexibility in the arrangement of
interceptors. Another advantage is the clear functional distinction between different interceptors.

Container Plug-in Framework

471

For example, logic for transaction and security is cleanly separated between the
TXInterceptor and SecurityInterceptor respectively.

If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of
semantic. For example, if a secured EJB is accessed without proper permissions, the call will
fail as the SecurityInterceptor before any transactions are started or instances caches are
updated.

3.2.3. org.jboss.ejb.InstancePool

An InstancePool is used to manage the EJB instances that are not associated with any
identity. The pools actually manage subclasses of the org.jboss.ejb.EnterpriseContext

objects that aggregate unassociated bean instances and related data.

public interface InstancePool
extends ContainerPlugin

{
/**
* Get an instance without identity. Can be used
* by finders and create-methods, or stateless beans
*
* @return Context /w instance
* @exception RemoteException
*/

public EnterpriseContext get() throws Exception;

/** Return an anonymous instance after invocation.
*
* @param ctx
*/

public void free(EnterpriseContext ctx);

/**
* Discard an anonymous instance after invocation.
* This is called if the instance should not be reused,
* perhaps due to some exception being thrown from it.
*
* @param ctx
*/

public void discard(EnterpriseContext ctx);

/**
* Return the size of the pool.
*
* @return the size of the pool.
*/

public int getCurrentSize();

/**
* Get the maximum size of the pool.
*
* @return the size of the pool.
*/

public int getMaxSize();

Chapter 14. EJBs on JBoss

472

}

Example 14.6. The org.jboss.ejb.InstancePool interface

Depending on the configuration, a container may choose to have a certain size of the pool
contain recycled instances, or it may choose to instantiate and initialize an instance on demand.

The pool is used by the InstanceCache implementation to acquire free instances for activation,
and it is used by interceptors to acquire instances to be used for Home interface methods
(create and finder calls).

3.2.4. org.jboss.ebj.InstanceCache

The container InstanceCache implementation handles all EJB-instances that are in an active
state, meaning bean instances that have an identity attached to them. Only entity and stateful
session beans are cached, as these are the only bean types that have state between method
invocations. The cache key of an entity bean is the bean primary key. The cache key for a
stateful session bean is the session id.

public interface InstanceCache
extends ContainerPlugin

{
/**
* Gets a bean instance from this cache given the identity.
* This method may involve activation if the instance is not
* in the cache.
* Implementation should have O(1) complexity.
* This method is never called for stateless session beans.
*
* @param id the primary key of the bean
* @return the EnterpriseContext related to the given id
* @exception RemoteException in case of illegal calls
* (concurrent / reentrant), NoSuchObjectException if
* the bean cannot be found.
* @see #release
*/

public EnterpriseContext get(Object id)
throws RemoteException, NoSuchObjectException;

/**
* Inserts an active bean instance after creation or activation.
* Implementation should guarantee proper locking and O(1) complexity.
*
* @param ctx the EnterpriseContext to insert in the cache
* @see #remove
*/

public void insert(EnterpriseContext ctx);

/**

Container Plug-in Framework

473

* Releases the given bean instance from this cache.
* This method may passivate the bean to get it out of the cache.
* Implementation should return almost immediately leaving the
* passivation to be executed by another thread.
*
* @param ctx the EnterpriseContext to release
* @see #get
*/

public void release(EnterpriseContext ctx);

/**
* Removes a bean instance from this cache given the identity.
* Implementation should have O(1) complexity and guarantee
* proper locking.
*
* @param id the primary key of the bean
* @see #insert
*/

public void remove(Object id);

/**
* Checks whether an instance corresponding to a particular
* id is active
*
* @param id the primary key of the bean
* @see #insert
*/

public boolean isActive(Object id);
}

Example 14.7. The org.jboss.ejb.InstanceCache interface

In addition to managing the list of active instances, the InstanceCache is also responsible for
activating and passivating instances. If an instance with a given identity is requested, and it is
not currently active, the InstanceCache must use the InstancePool to acquire a free instance,
followed by the persistence manager to activate the instance. Similarly, if the InstanceCache

decides to passivate an active instance, it must call the persistence manager to passivate it and
release the instance to the InstancePool.

3.2.5. org.jboss.ejb.EntityPersistenceManager

The EntityPersistenceManager is responsible for the persistence of EntityBeans. This
includes the following:

• Creating an EJB instance in a storage
• Loading the state of a given primary key into an EJB instance
• Storing the state of a given EJB instance
• Removing an EJB instance from storage

Chapter 14. EJBs on JBoss

474

• Activating the state of an EJB instance
• Passivating the state of an EJB instance

public interface EntityPersistenceManager
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the
* bean class.
*
* @return the new instance
*/

Object createBeanClassInstance() throws Exception;

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbCreate method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/

void createEntity(Method m,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbPostCreate

method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/

void postCreateEntity(Method m,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance is
* available in the persistence store, and if so it shall use the
* ContainerInvoker plugin to create an EJBObject to the instance, which
* is to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called

Container Plug-in Framework

475

* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject representing the found entity
*/

Object findEntity(Method finderMethod,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* shall use the ContainerInvoker plugin to create EJBObjects to
* the instances, which are to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject collection representing the found
* entities
*/

Collection findEntities(Method finderMethod,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated. The
* persistence manager must call the ejbActivate method on the
* instance.
*
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/

void activateEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the
* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/

void loadEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*

Chapter 14. EJBs on JBoss

476

* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs
*/

boolean isModified(EntityEnterpriseContext instance) throws Exception;

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/

void storeEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/

void passivateEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*
* @throws RemoteException thrown if some system exception occurs
* @throws RemoveException thrown if the instance could not be removed
*/

void removeEntity(EntityEnterpriseContext instance)
throws RemoteException, RemoveException;

}

Example 14.8. The org.jboss.ejb.EntityPersistenceManager interface

3.2.6. The org.jboss.ejb.EntityPersistenceStore interface

As per the EJB 2.1 specification, JBoss supports two entity bean persistence semantics:

Container Plug-in Framework

477

container managed persistence (CMP) and bean managed persistence (BMP). The CMP
implementation uses an implementation of the org.jboss.ejb.EntityPersistanceStore

interface. By default this is the org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager which
is the entry point for the CMP2 persistence engine. The EntityPersistanceStore interface is
shown below.

public interface EntityPersistenceStore
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the
* bean class.
*
* @return the new instance
*
* @throws Exception
*/

Object createBeanClassInstance()
throws Exception;

/**
* Initializes the instance context.
*
* <p>This method is called before createEntity, and should
* reset the value of all cmpFields to 0 or null.
*
* @param ctx
*
* @throws RemoteException
*/

void initEntity(EntityEnterpriseContext ctx);

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for handling the results
* properly wrt the persistent store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
* @return The primary key computed by CMP PM or null for BMP
*
* @throws Exception
*/

Object createEntity(Method m,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance
* is available in the persistence store, if so it returns the
* primary key of the object.

Chapter 14. EJBs on JBoss

478

*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return a primary key representing the found entity
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/

Object findEntity(Method finderMethod,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* must return a collection of primaryKeys.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an primary key collection representing the found
* entities
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/

Collection findEntities(Method finderMethod,
Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated.
*
* <p>With the PersistenceManager factorization most EJB
* calls should not exists However this calls permits us to
* introduce optimizations in the persistence store. Particularly
* the context has a "PersistenceContext" that a PersistenceStore
* can use (JAWS does for smart updates) and this is as good a
* callback as any other to set it up.
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/

void activateEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the

Container Plug-in Framework

479

* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/

void loadEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*
* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs
*/

boolean isModified(EntityEnterpriseContext instance)
throws Exception;

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/

void storeEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* <p>See the activate discussion for the reason for
* exposing EJB callback * calls to the store.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/

void passivateEntity(EntityEnterpriseContext instance)
throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*
* @throws RemoteException thrown if some system exception occurs

Chapter 14. EJBs on JBoss

480

* @throws RemoveException thrown if the instance could not be removed
*/

void removeEntity(EntityEnterpriseContext instance)
throws RemoteException, RemoveException;

}

Example 14.9. The org.jboss.ejb.EntityPersistanceStore interface

The default BMP implementation of the EntityPersistenceManager interface is
org.jboss.ejb.plugins.BMPPersistenceManager. The BMP persistence manager is fairly
simple since all persistence logic is in the entity bean itself. The only duty of the persistence
manager is to perform container callbacks.

3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

The StatefulSessionPersistenceManager is responsible for the persistence of stateful
SessionBeans. This includes the following:

• Creating stateful sessions in a storage
• Activating stateful sessions from a storage
• Passivating stateful sessions to a storage
• Removing stateful sessions from a storage

The StatefulSessionPersistenceManager interface is shown below.

public interface StatefulSessionPersistenceManager
extends ContainerPlugin

{
public void createSession(Method m, Object[] args,

StatefulSessionEnterpriseContext ctx)
throws Exception;

public void activateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void passivateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void removeSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException, RemoveException;

public void removePassivated(Object key);
}

Example 14.10. The org.jboss.ejb.StatefulSessionPersistenceManager

Container Plug-in Framework

481

interface

The default implementation of the StatefulSessionPersistenceManager interface is
org.jboss.ejb.plugins.StatefulSessionFilePersistenceManager. As its name implies,
StatefulSessionFilePersistenceManager utilizes the file system to persist stateful session
beans. More specifically, the persistence manager serializes beans in a flat file whose name is
composed of the bean name and session id with a .ser extension. The persistence manager
restores a bean's state during activation and respectively stores its state during passivation from
the bean's .ser file.

4. Entity Bean Locking and Deadlock Detection

This section provides information on what entity bean locking is and how entity beans are
accessed and locked within JBoss. It also describes the problems you may encounter as you
use entity beans within your system and how to combat these issues. Deadlocking is formally
defined and examined. And, finally, we walk you through how to fine tune your system in terms
of entity bean locking.

4.1. Why JBoss Needs Locking

Locking is about protecting the integrity of your data. Sometimes you need to be sure that only
one user can update critical data at one time. Sometimes, access to sensitive objects in your
system need to be serialized so that data is not corrupted by concurrent reads and writes.
Databases traditionally provide this sort of functionality with transactional scopes and table and
row locking facilities.

Entity beans are a great way to provide an object-oriented interface to relational data. Beyond
that, they can improve performance by taking the load off of the database through caching and
delaying updates until absolutely needed so that the database efficiency can be maximized.
But, with caching, data integrity is a problem, so some form of application server level locking is
needed for entity beans to provide the transaction isolation properties that you are used to with
traditional databases.

4.2. Entity Bean Lifecycle

With the default configuration of JBoss there is only one active instance of a given entity bean in
memory at one time. This applies for every cache configuration and every type of
commit-option. The lifecycle for this instance is different for every commit-option though.

• For commit option A, this instance is cached and used between transactions.

• For commit option B, this instance is cached and used between transactions, but is marked
as dirty at the end of a transaction. This means that at the start of a new transaction ejbLoad

must be called.

Chapter 14. EJBs on JBoss

482

• For commit option C, this instance is marked as dirty, released from the cache, and marked
for passivation at the end of a transaction.

• For commit option D, a background refresh thread periodically calls ejbLoad on stale beans
within the cache. Otherwise, this option works in the same way as A.

When a bean is marked for passivation, the bean is placed in a passivation queue. Each entity
bean container has a passivation thread that periodically passivates beans that have been
placed in the passivation queue. A bean is pulled out of the passivation queue and reused if the
application requests access to a bean of the same primary key.

On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely.
It is not put into the passivation queue and is not reused by an instance pool. Except for the
passivation queue, there is no entity bean instance pooling.

4.3. Default Locking Behavior

Entity bean locking is totally decoupled from the entity bean instance. The logic for locking is
totally isolated and managed in a separate lock object. Because there is only one allowed
instance of a given entity bean active at one time, JBoss employs two types of locks to ensure
data integrity and to conform to the EJB spec.

• Method Lock: The method lock ensures that only one thread of execution at a time can
invoke on a given Entity Bean. This is required by the EJB spec.

• Transaction Lock: A transaction lock ensures that only one transaction at a time has access
to a give Entity Bean. This ensures the ACID properties of transactions at the application
server level. Since, by default, there is only one active instance of any given Entity Bean at
one time, JBoss must protect this instance from dirty reads and dirty writes. So, the default
entity bean locking behavior will lock an entity bean within a transaction until it completes.
This means that if any method at all is invoked on an entity bean within a transaction, no
other transaction can have access to this bean until the holding transaction commits or is
rolled back.

4.4. Pluggable Interceptors and Locking Policy

We saw that the basic entity bean lifecycle and behavior is defined by the container
configuration defined in standardjboss.xml descriptor. Let's look at the
container-interceptors definition for the Standard CMP 2.x EntityBean configuration.

<container-interceptors>
<interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>

<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>

<interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
<interceptor

metricsEnabled="true">org.jboss.ejb.plugins.MetricsInterceptor</interceptor>

Default Locking Behavior

483

<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>

<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
<interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>
</container-interceptors>

The interceptors shown above define most of the behavior of the entity bean. Below is an
explanation of the interceptors that are relevant to this section.

• EntityLockInterceptor: This interceptor's role is to schedule any locks that must be acquired
before the invocation is allowed to proceed. This interceptor is very lightweight and delegates
all locking behavior to a pluggable locking policy.

• EntityInstanceInterceptor: The job of this interceptor is to find the entity bean within the
cache or create a new one. This interceptor also ensures that there is only one active
instance of a bean in memory at one time.

• EntitySynchronizationInterceptor: The role of this interceptor is to synchronize the state of
the cache with the underlying storage. It does this with the ejbLoad and ejbStore semantics
of the EJB specification. In the presence of a transaction this is triggered by transaction
demarcation. It registers a callback with the underlying transaction monitor through the JTA
interfaces. If there is no transaction the policy is to store state upon returning from invocation.
The synchronization polices A, B and C of the specification are taken care of here as well as
the JBoss specific commit-option D.

4.5. Deadlock

Finding deadlock problems and resolving them is the topic of this section. We will describe what
deadlocking MBeans, how you can detect it within your application, and how you can resolve
deadlocks. Deadlock can occur when two or more threads have locks on shared resources.
Figure 14.8, “Deadlock definition example” illustrates a simple deadlock scenario. Here, Thread
1 has the lock for Bean A, and Thread 2 has the lock for Bean B. At a later time, Thread 1 tries
to lock Bean B and blocks because Thread 2 has it. Likewise, as Thread 2 tries to lock A it
also blocks because Thread 1 has the lock. At this point both threads are deadlocked waiting
for access to the resource already locked by the other thread.

Chapter 14. EJBs on JBoss

484

Figure 14.8. Deadlock definition example

The default locking policy of JBoss is to lock an Entity bean when an invocation occurs in the
context of a transaction until the transaction completes. Because of this, it is very easy to
encounter deadlock if you have long running transactions that access many entity beans, or if
you are not careful about ordering the access to them. Various techniques and advanced
configurations can be used to avoid deadlocking problems. They are discussed later in this
section.

4.5.1. Deadlock Detection

Fortunately, JBoss is able to perform deadlock detection. JBoss holds a global internal graph of
waiting transactions and what transactions they are blocking on. Whenever a thread determines
that it cannot acquire an entity bean lock, it figures out what transaction currently holds the lock
on the bean and add itself to the blocked transaction graph. An example of what the graph may
look like is given in Table 14.1, “An example blocked transaction table”.

Blocking TX Tx that holds needed lock

Tx1 Tx2

Tx3 Tx4

Tx4 Tx1

Table 14.1. An example blocked transaction table

Before the thread actually blocks it tries to detect whether there is deadlock problem. It does
this by traversing the block transaction graph. As it traverses the graph, it keeps track of what
transactions are blocked. If it sees a blocked node more than once in the graph, then it knows
there is deadlock and will throw an ApplicationDeadlockException. This exception will cause
a transaction rollback which will cause all locks that transaction holds to be released.

Deadlock

485

4.5.2. Catching ApplicationDeadlockException

Since JBoss can detect application deadlock, you should write your application so that it can
retry a transaction if the invocation fails because of the ApplicationDeadlockException.
Unfortunately, this exception can be deeply embedded within a RemoteException, so you have
to search for it in your catch block. For example:

try {
// ...

} catch (RemoteException ex) {
Throwable cause = null;
RemoteException rex = ex;
while (rex.detail != null) {

cause = rex.detail;
if (cause instanceof ApplicationDeadlockException) {

// ... We have deadlock, force a retry of the transaction.
break;

}
if (cause instanceof RemoteException) {

rex = (RemoteException)cause;
}

}
}

4.5.3. Viewing Lock Information

The EntityLockMonitor MBean service allows one to view basic locking statistics as well as
printing out the state of the transaction locking table. To enable this monitor uncomment its
configuration in the conf/jboss-service.xml:

<mbean code="org.jboss.monitor.EntityLockMonitor"
name="jboss.monitor:name=EntityLockMonitor"/>

The EntityLockMonitor has no configurable attributes. It does have the following read-only
attributes:

• MedianWaitTime: The median value of all times threads had to wait to acquire a lock.

• AverageContenders: The ratio of the total number of contentions to the sum of all threads
that had to wait for a lock.

• TotalContentions: The total number of threads that had to wait to acquire the transaction
lock. This happens when a thread attempts to acquire a lock that is associated with another
transaction

• MaxContenders: The maximum number of threads that were waiting to acquire the
transaction lock.

Chapter 14. EJBs on JBoss

486

It also has the following operations:

• clearMonitor: This operation resets the lock monitor state by zeroing all counters.

• printLockMonitor: This operation prints out a table of all EJB locks that lists the ejbName of
the bean, the total time spent waiting for the lock, the count of times the lock was waited on
and the number of transactions that timed out waiting for the lock.

4.6. Advanced Configurations and Optimizations

The default locking behavior of entity beans can cause deadlock. Since access to an entity
bean locks the bean into the transaction, this also can present a huge performance/throughput
problem for your application. This section walks through various techniques and configurations
that you can use to optimize performance and reduce the possibility of deadlock.

4.6.1. Short-lived Transactions

Make your transactions as short-lived and fine-grained as possible. The shorter the transaction
you have, the less likelihood you will have concurrent access collisions and your application
throughput will go up.

4.6.2. Ordered Access

Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means
making sure that the entity beans in your system are always accessed in the same exact order.
In most cases, user applications are just too complicated to use this approach and more
advanced configurations are needed.

4.6.3. Read-Only Beans

Entity beans can be marked as read-only. When a bean is marked as read-only, it never takes
part in a transaction. This means that it is never transactionally locked. Using commit-option D
with this option is sometimes very useful when your read-only bean's data is sometimes
updated by an external source.

To mark a bean as read-only, use the read-only flag in the jboss.xml deployment descriptor.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyEntityBean</ejb-name>
<jndi-name>MyEntityHomeRemote</jndi-name>
<read-only>True</read-only>

</entity>
</enterprise-beans>

</jboss>

Advanced Configurations and Optimizations

487

Example 14.11. Marking an entity bean read-only using jboss.xml

4.6.4. Explicitly Defining Read-Only Methods

After reading and understanding the default locking behavior of entity beans, you're probably
wondering, "Why lock the bean if its not modifying the data?" JBoss allows you to define what
methods on your entity bean are read only so that it will not lock the bean within the transaction
if only these types of methods are called. You can define these read only methods within a
jboss.xml deployment descriptor. Wildcards are allowed for method names. The following is an
example of declaring all getter methods and the anotherReadOnlyMethod as read-only.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>nextgen.EnterpriseEntity</ejb-name>
<jndi-name>nextgen.EnterpriseEntity</jndi-name>
<method-attributes>

<method>
<method-name>get*</method-name>
<read-only>true</read-only>

</method>
<method>

<method-name>anotherReadOnlyMethod</method-name>
<read-only>true</read-only>

</method>
</method-attributes>

</entity>
</enterprise-beans>

</jboss>

Example 14.12. Defining entity bean methods as read only

4.6.5. Instance Per Transaction Policy

The Instance Per Transaction policy is an advanced configuration that can totally wipe away
deadlock and throughput problems caused by JBoss's default locking policy. The default Entity
Bean locking policy is to only allow one active instance of a bean. The Instance Per Transaction
policy breaks this requirement by allocating a new instance of a bean per transaction and
dropping this instance at the end of the transaction. Because each transaction has its own copy
of the bean, there is no need for transaction based locking.

This option does sound great but does have some drawbacks right now. First, the transactional
isolation behavior of this option is equivalent to READ_COMMITTED. This can create repeatable
reads when they are not desired. In other words, a transaction could have a copy of a stale
bean. Second, this configuration option currently requires commit-option B or C which can be a
performance drain since an ejbLoad must happen at the beginning of the transaction. But, if

Chapter 14. EJBs on JBoss

488

your application currently requires commit-option B or C anyways, then this is the way to go.
The JBoss developers are currently exploring ways to allow commit-option A as well (which
would allow the use of caching for this option).

JBoss has container configurations named Instance Per Transaction CMP 2.x EntityBean

and Instance Per Transaction BMP EntityBean defined in the standardjboss.xml that
implement this locking policy. To use this configuration, you just have to reference the name of
the container configuration to use with your bean in the jboss.xml deployment descriptor as
show below.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyCMP2Bean</ejb-name>
<jndi-name>MyCMP2</jndi-name>
<configuration-name>

Instance Per Transaction CMP 2.x EntityBean
</configuration-name>

</entity>
<entity>

<ejb-name>MyBMPBean</ejb-name>
<jndi-name>MyBMP</jndi-name>
<configuration-name>

Instance Per Transaction BMP EntityBean
</configuration-name>

</entity>
</enterprise-beans>

</jboss>

Example 14.13. An example of using the Instance Per Transaction policy.

4.7. Running Within a Cluster

Currently there is no distributed locking capability for entity beans within the cluster. This
functionality has been delegated to the database and must be supported by the application
developer. For clustered entity beans, it is suggested to use commit-option B or C in
combination with a row locking mechanism. For CMP, there is a row-locking configuration
option. This option will use a SQL select for update when the bean is loaded from the
database. With commit-option B or C, this implements a transactional lock that can be used
across the cluster. For BMP, you must explicitly implement the select for update invocation
within the BMP's ejbLoad method.

4.8. Troubleshooting

This section will describe some common locking problems and their solution.

4.8.1. Locking Behavior Not Working

Running Within a Cluster

489

Many JBoss users observe that locking does not seem to be working and see concurrent
access to their beans, and thus dirty reads. Here are some common reasons for this:

• If you have custom container-configurations, make sure you have updated these
configurations.

• Make absolutely sure that you have implemented equals and hashCode correctly from
custom/complex primary key classes.

• Make absolutely sure that your custom/complex primary key classes serialize correctly. One
common mistake is assuming that member variable initializations will be executed when a
primary key is unmarshalled.

4.8.2. IllegalStateException

An IllegalStateException with the message "removing bean lock and it has tx set!" usually
means that you have not implemented equals and/or hashCode correctly for your
custom/complex primary key class, or that your primary key class is not implemented correctly
for serialization.

4.8.3. Hangs and Transaction Timeouts

One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only
marked for a rollback and not actually rolled back. This responsibility is delegated to the
invocation thread. This can cause major problems if the invocation thread hangs indefinitely
since things like entity bean locks will never be released. The solution to this problem is not a
good one. You really just need to avoid doing stuff within a transaction that could hang
indefinitely. One common mistake is making connections across the internet or running a
web-crawler within a transaction.

5. EJB Timer Configuration

The J2EE timer service allows for any EJB object to register for a timer callback either at a
designated time in the future. Timer events can be used for auditing, reporting or other cleanup
tasks that need to need to happen at some given time in the future. Timer events are intended
to be persistent and should be executed even in the event of a server failure. Coding to EJB
timers is a standard part of the J2EE specification, so we won't explore the programming model.
We will, instead, look at the configuration of the timer service in JBoss so that you can
understand how to make timers work best in your environment

The EJB timer service is configure by several related MBeans in the ejb-deployer.xml file.
The primary MBean is the EJBTimerService MBean.

<mbean code="org.jboss.ejb.txtimer.EJBTimerServiceImpl"
name="jboss.ejb:service=EJBTimerService">

<attribute
name="RetryPolicy">jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay</attribute>

Chapter 14. EJBs on JBoss

490

<attribute
name="PersistencePolicy">jboss.ejb:service=EJBTimerService,persistencePolicy=database</attribute>

<attribute
name="TimerIdGeneratorClassName">org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator</attribute>

<attribute
name="TimedObjectInvokerClassName">org.jboss.ejb.txtimer.TimedObjectInvokerImpl</attribute>
</mbean>

The EJBTimerService has the following configurable attributes:

• RetryPolicy: This is name of the MBean that implements the retry policy. The MBean must
support the org.jboss.ejb.txtimer.RetryPolicy interface. JBoss provides one
implementation, FixedDelayRetryPolicy, which will be described later.

• PersistencePolicy: This is the name of the MBean that implements the the persistence
strategy for saving timer events. The MBean must support the
org.jboss.ejb.txtimer.PersistencePolicy interface. JBoss provides two
implementations, NoopPersistencePolicy and DatabasePersistencePolicy, which will be
described later.

• TimerIdGeneratorClassName: This is the name of a class that provides the timer ID
generator strategy. This class must implement the
org.jboss.ejb.txtimer.TimerIdGenerator interface. JBoss provides the
org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator implementation.

• TimedObjectInvokerClassname: This is the name of a class that provides the timer method
invocation strategy. This class must implement the
org.jboss.ejb.txtimer.TimedObjectInvoker interface. JBoss provides the
org.jboss.ejb.txtimer.TimedObjectInvokerImpl implementation.

The retry policy MBean definition used is shown here:

<mbean code="org.jboss.ejb.txtimer.FixedDelayRetryPolicy"
name="jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay">

<attribute name="Delay">100</attribute>
</mbean>

The retry policy takes one configuration value:

• Delay: This is the delay (ms) before retrying a failed timer execution. The default delay is
100ms.

If EJB timers do not need to be persisted, the NoopPersistence policy can be used. This
MBean is commented out by default, but when enabled will look like this:

<mbean code="org.jboss.ejb.txtimer.NoopPersistencePolicy"

EJB Timer Configuration

491

name="jboss.ejb:service=EJBTimerService,persistencePolicy=noop"/>

Most applications that use timers will want timers to be persisted. For that the
DatabasePersitencePolicy MBean should be used.

<mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"
name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">

<!-- DataSource JNDI name -->
<depends

optional-attribute-name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
<!-- The plugin that handles database persistence -->
<attribute

name="DatabasePersistencePlugin">org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin</attribute>
</mbean>

• DataSource: This is the MBean for the DataSource that timer data will be written to.

• DatabasePersistencePlugin: This is the name of the class the implements the persistence
strategy. This should be
org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin.

Chapter 14. EJBs on JBoss

492

The CMP Engine
This chapter will explore the use of container managed persistence (CMP) in JBoss. We will
assume a basic familiarity the EJB CMP model and focus on the operation of the JBoss CMP
engine. Specifically, we will look at how to configure and optimize CMP applications on JBoss.
For more introductory coverage of basic CMP concepts, we recommend Enterprise Java Beans,
Fourth Edition (O'Reilly 2004).

1. Example Code

This chapter is example-driven. We will work with the crime portal application which stores
information about imaginary criminal organizations. The data model we will be working with is
shown in Figure 15.1, “The crime portal example classes”.

Figure 15.1. The crime portal example classes

The source code for the crime portal is available in the src/main/org/jboss/cmp2 directory of
the example code. To build the example code, run Ant as shown below

Chapter 15.

493

[examples]$ ant -Dchap=cmp2 config

This command builds and deploys the application to the JBoss server. When you start yours
JBoss server, or if it is already running, you should see the following deployment messages:

15:46:36,704 INFO [OrganizationBean$Proxy] Creating organization Yakuza,
Japanese Gangsters
15:46:36,790 INFO [OrganizationBean$Proxy] Creating organization Mafia,
Italian Bad Guys
15:46:36,797 INFO [OrganizationBean$Proxy] Creating organization Triads,
Kung Fu Movie Extras
15:46:36,877 INFO [GangsterBean$Proxy] Creating Gangster 0 'Bodyguard'
Yojimbo
15:46:37,003 INFO [GangsterBean$Proxy] Creating Gangster 1 'Master' Takeshi
15:46:37,021 INFO [GangsterBean$Proxy] Creating Gangster 2 'Four finger'
Yuriko
15:46:37,040 INFO [GangsterBean$Proxy] Creating Gangster 3 'Killer' Chow
15:46:37,106 INFO [GangsterBean$Proxy] Creating Gangster 4 'Lightning'
Shogi
15:46:37,118 INFO [GangsterBean$Proxy] Creating Gangster 5 'Pizza-Face'
Valentino
15:46:37,133 INFO [GangsterBean$Proxy] Creating Gangster 6 'Toohless' Toni
15:46:37,208 INFO [GangsterBean$Proxy] Creating Gangster 7 'Godfather'
Corleone
15:46:37,238 INFO [JobBean$Proxy] Creating Job 10th Street Jeweler Heist
15:46:37,247 INFO [JobBean$Proxy] Creating Job The Greate Train Robbery
15:46:37,257 INFO [JobBean$Proxy] Creating Job Cheap Liquor Snatch and Grab

Since the beans in the examples are configured to have their tables removed on undeployment,
anytime you restart the JBoss server you need to rerun the config target to reload the example
data and re-deploy the application.

1.1. Enabling CMP Debug Logging

In order to get meaningful feedback from the chapter tests, you will want to increase the log
level of the CMP subsystem before running running the test. To enable debug logging add the
following category to your log4j.xml file:

<category name="org.jboss.ejb.plugins.cmp">
<priority value="DEBUG"/>

</category>

In addition to this, it is necessary to decrease the threshold on the CONSOLE appender to allow
debug level messages to be logged to the console. The following changes also need to be
applied to the log4j.xml file.

<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="Target" value="System.out"/>

Chapter 15. The CMP Engine

494

<param name="Threshold" value="DEBUG" />

<layout class="org.apache.log4j.PatternLayout">
<!-- The default pattern: Date Priority [Category] Message\n -->
<param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}]

%m%n"/>
</layout>

</appender>

To see the full workings of the CMP engine you would need to enable the custom TRACE level
priority on the org.jboss.ejb.plugins.cmp category as shown here:

<category name="org.jboss.ejb.plugins.cmp">
<priority value="TRACE" class="org.jboss.logging.XLevel"/>

</category>

1.2. Running the examples

The first test target illustrates a number of the customization features that will be discussed
throughout this chapter. To run these tests execute the following ant target:

[examples]$ ant -Dchap=cmp2 -Dex=test run-example

22:30:09,862 DEBUG [OrganizationEJB#findByPrimaryKey] Executing SQL: SELECT
t0_OrganizationEJ
B.name FROM ORGANIZATION t0_OrganizationEJB WHERE t0_OrganizationEJB.name=?
22:30:09,927 DEBUG [OrganizationEJB] Executing SQL: SELECT desc, the_boss
FROM ORGANIZATION W
HERE (name=?)
22:30:09,931 DEBUG [OrganizationEJB] load relation SQL: SELECT id FROM
GANGSTER WHERE (organi
zation=?)
22:30:09,947 DEBUG [StatelessSessionContainer] Useless invocation of
remove() for stateless s
ession bean
22:30:10,086 DEBUG [GangsterEJB#findBadDudes_ejbql] Executing SQL: SELECT
t0_g.id FROM GANGST
ER t0_g WHERE (t0_g.badness > ?)
22:30:10,097 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT
t0_GangsterEJB.id FRO
M GANGSTER t0_GangsterEJB WHERE t0_GangsterEJB.id=?
22:30:10,102 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT
t0_GangsterEJB.id FRO
M GANGSTER t0_GangsterEJB WHERE t0_GangsterEJB.id=?

These tests exercise various finders, selectors and object to table mapping issues. We will refer
to the tests throughout the chapter.

Running the examples

495

The other main target runs a set of tests to demonstrate the optimized loading configurations
presented in Section 7, “Optimized Loading”. Now that the logging is setup correctly, the
read-ahead tests will display useful information about the queries performed. Note that you do
not have to restart the JBoss server for it to recognize the changes to the log4j.xml file, but it
may take a minute or so. The following shows the actual execution of the readahead client:

[examples]$ ant -Dchap=cmp2 -Dex=readahead run-example

When the readahead client is executed, all of the SQL queries executed during the test are
displayed in the JBoss server console. The important items of note when analyzing the output
are the number of queries executed, the columns selected, and the number of rows loaded. The
following shows the read-ahead none portion of the JBoss server console output from
readahead:

22:44:31,570 INFO [ReadAheadTest]
##
read-ahead none
###
22:44:31,582 DEBUG [GangsterEJB#findAll_none] Executing SQL: SELECT t0_g.id
FROM GANGSTER t0_
g ORDER BY t0_g.id ASC
22:44:31,604 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,615 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,622 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,628 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,635 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,644 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,649 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,658 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name,
badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,670 INFO [ReadAheadTest]
###
##
...

We will revisit this example and explore the output when we discuss the settings for optimized

Chapter 15. The CMP Engine

496

loading.

2. The jbosscmp-jdbc Structure

The jbosscmp-jdbc.xml descriptor is used to control the behavior of the JBoss engine. This
can be done globally through the conf/standardjbosscmp-jdbc.xml descriptor found in the
server configuration file set, or per EJB JAR deployment via a META-INF/jbosscmp-jdbc.xml

descriptor.

The DTD for the jbosscmp-jdbc.xml descriptor can be found in
JBOSS_DIST/docs/dtd/jbosscmp-jdbc_4_0.dtd. The public doctype for this DTD is:

<!DOCTYPE jbosscmp-jdbc PUBLIC
"-//JBoss//DTD JBOSSCMP-JDBC 4.0//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_4_0.dtd">

The top level elements are shown in Figure 15.2, “The jbosscmp-jdbc content model.”.

Figure 15.2. The jbosscmp-jdbc content model.

• defaults: The defaults section allows for the specification of default behavior/settings for
behavior that controls entity beans. Use of this section simplifies the amount of information

The jbosscmp-jdbc Structure

497

needed for the common behaviors found in the entity beans section. See Section 12,
“Defaults” for the details of the defaults content.

• enterprise-beans: The enterprise-beans element allows for customization of entity beans
defined in the ejb-jar.xmlenterprise-beans descriptor. This is described in detail in
Section 3, “Entity Beans”.

• relationships: The relationships element allows for the customization of tables and the
loading behavior of entity relationships. This is described in detail in Section 5, “Container
Managed Relationships”.

• dependent-value-classes: The dependent-value-classes element allows for the
customization of the mapping of dependent value classes to tables. Dependent value classes
are described in detail in Section 4.5, “Dependent Value Classes (DVCs)” (DVCs).

• type-mappings: The type-mappings element defines the Java to SQL type mappings for a
database, along with SQL templates, and function mappings. This is described in detail in
Section 13, “Datasource Customization”.

• entity-commands: The entity-commands element allows for the definition of the entity
creation command instances that know how to create an entity instance in a persistent store.
This is described in detail in Section 11, “Entity Commands and Primary Key Generation”.

• user-type-mappings: The user-type-mappings elements defines a mapping of a user types
to a column using a mapper class. A mapper is like a mediator. When storing, it takes an
instance of the user type and translates it to a column value. When loading, it takes a column
value and translates it to an instance of the user type. Details of the user type mappings are
described in Section 13.4, “User Type Mappings”.

• reserved-words: The reserved-words element defines one or more reserved words that
should be escaped when generating tables. Each reserved word is specified as the content of
a word element.

3. Entity Beans

We'll start our look at entity beans in JBoss by examining one of the CMP entity beans in the
crime portal. We'll look at the gangster bean, which is implemented as local CMP entity bean.
Although JBoss can provide remote entity beans with pass-by-reference semantics for calls in
the same VM to get the performance benefit as from local entity beans, the use of local entity
beans is strongly encouraged.

We'll start with the required home interface. Since we're only concerned with the CMP fields at
this point, we'll show only the methods dealing with the CMP fields.

// Gangster Local Home Interface
public interface GangsterHome

extends EJBLocalHome
{

Gangster create(Integer id, String name, String nickName)
throws CreateException;

Chapter 15. The CMP Engine

498

Gangster findByPrimaryKey(Integer id)
throws FinderException;

}

The local interface is what clients will use to talk. Again, it contains only the CMP field
accessors.

// Gangster Local Interface
public interface Gangster

extends EJBLocalObject
{

Integer getGangsterId();

String getName();

String getNickName();
void setNickName(String nickName);

int getBadness();
void setBadness(int badness);

}

Finally, we have the actual gangster bean. Despite it's size, very little code is actually required.
The bulk of the class is the create method.

// Gangster Implementation Class
public abstract class GangsterBean

implements EntityBean
{

private EntityContext ctx;
private Category log = Category.getInstance(getClass());
public Integer ejbCreate(Integer id, String name, String nickName)

throws CreateException
{

log.info("Creating Gangster " + id + " '" + nickName + "' "+ name);
setGangsterId(id);
setName(name);
setNickName(nickName);
return null;

}

public void ejbPostCreate(Integer id, String name, String nickName) {
}

// CMP field accessors ---
public abstract Integer getGangsterId();
public abstract void setGangsterId(Integer gangsterId);
public abstract String getName();
public abstract void setName(String name);
public abstract String getNickName();
public abstract void setNickName(String nickName);
public abstract int getBadness();
public abstract void setBadness(int badness);

Entity Beans

499

public abstract ContactInfo getContactInfo();
public abstract void setContactInfo(ContactInfo contactInfo);
//...

// EJB callbacks ---
public void setEntityContext(EntityContext context) { ctx = context; }
public void unsetEntityContext() { ctx = null; }
public void ejbActivate() { }
public void ejbPassivate() { }
public void ejbRemove() { log.info("Removing " + getName()); }
public void ejbStore() { }
public void ejbLoad() { }

}

The only thing missing now is the ejb-jar.xml deployment descriptor. Although the actual
bean class is named GangsterBean, we've called the entity GangsterEJB.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance"
version="2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_\2_1.xsd">
<display-name>Crime Portal</display-name>

<enterprise-beans>
<entity>

<display-name>Gangster Entity Bean</display-name>
<ejb-name>GangsterEJB</ejb-name>
<local-home>org.jboss.cmp2.crimeportal.GangsterHome</local-home>
<local>org.jboss.cmp2.crimeportal.Gangster</local>

<ejb-class>org.jboss.cmp2.crimeportal.GangsterBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>gangster</abstract-schema-name>

<cmp-field>
<field-name>gangsterId</field-name>

</cmp-field>
<cmp-field>

<field-name>name</field-name>
</cmp-field>
<cmp-field>

<field-name>nickName</field-name>
</cmp-field>
<cmp-field>

<field-name>badness</field-name>
</cmp-field>
<cmp-field>

<field-name>contactInfo</field-name>
</cmp-field>

Chapter 15. The CMP Engine

500

<primkey-field>gangsterId</primkey-field>

<!-- ... -->
</entity>

</enterprise-beans>
</ejb-jar>

Note that we've specified a CMP version of 2.x to indicate that this is EJB 2.x CMP entity bean.
The abstract schema name was set to gangster. That will be important when we look at
EJB-QL queries in Section 6, “Queries”.

3.1. Entity Mapping

The JBoss configuration for the entity is declared with an entity element in the
jbosscmp-jdbc.xml file. This file is located in the META-INF directory of the EJB JAR and
contains all of the optional configuration information for configuring the CMP mapping. The
entity elements for each entity bean are grouped together in the enterprise-beans element
under the top level jbosscmp-jdbc element. A stubbed out entity configuration is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jbosscmp-jdbc PUBLIC

"-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">

<jbosscmp-jdbc>
<defaults>

<!-- application-wide CMP defaults -->
</defaults>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- overrides to defaults section -->
<table-name>gangster</table-name>
<!-- CMP Fields (see CMP-Fields) -->
<!-- Load Groups (see Load Groups)-->
<!-- Queries (see Queries) -->

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The ejb-name element is required to match the entity specification here with the one in the
ejb-jar.xml file. The remainder of the elements specify either overrides the global or
application-wide CMP defaults and CMP mapping details specific to the bean. The application
defaults come from the defaults section of the jbosscmp-jdbc.xml file and the global defaults
come from the defaults section of the standardjbosscmp-jdbc.xml file in the conf directory
for the current server configuration file set. The defaults section is discussed in Section 12,
“Defaults”. Figure 15.3, “The entity element content model” shows the full entity content
model.

Entity Mapping

501

Chapter 15. The CMP Engine

502

Figure 15.3. The entity element content model

A detailed description of each entity element follows:

• ejb-name: This required element is the name of the EJB to which this configuration applies.
This element must match an ejb-name of an entity in the ejb-jar.xml file.

• datasource: This optional element is the jndi-name used to look up the datasource. All
database connections used by an entity or relation-table are obtained from the datasource.
Having different datasources for entities is not recommended, as it vastly constrains the
domain over which finders and ejbSelects can query. The default is java:/DefaultDS unless
overridden in the defaults section.

• datasource-mapping: This optional element specifies the name of the type-mapping, which
determines how Java types are mapped to SQL types, and how EJB-QL functions are
mapped to database specific functions. Type mappings are discussed in Section 13.3,
“Mapping”. The default is Hypersonic SQL unless overridden in the defaults section.

• create-table: This optional element when true, specifies that JBoss should attempt to create
a table for the entity. When the application is deployed, JBoss checks if a table already exists
before creating the table. If a table is found, it is logged, and the table is not created. This
option is very useful during the early stages of development when the table structure changes
often. The default is false unless overridden in the defaults section.

• alter-table: If create-table is used to automatically create the schema, alter-table can
be used to keep the schema current with changes to the entity bean. Alter table will perform
the following specific tasks:
• new fields will be created
• fields which are no longer used will be removed
• string fields which are shorter than the declared length will have their length increased to

the declared length. (not supported by all databases)

• remove-table: This optional element when true, JBoss will attempt to drop the table for each
entity and each relation table mapped relationship. When the application is undeployed,
JBoss will attempt to drop the table. This option is very useful during the early stages of
development when the table structure changes often. The default is false unless overridden in
the defaults section.

• post-table-create: This optional element specifies an arbitrary SQL statement that should be
executed immediately after the database table is created. This command is only executed if
create-table is true and the table did not previously exist.

• read-only: This optional element when true specifies that the bean provider will not be
allowed to change the value of any fields. A field that is read-only will not be stored in, or
inserted into, the database. If a primary key field is read-only, the create method will throw a
CreateException. If a set accessor is called on a read-only field, it throws an EJBException.

Entity Mapping

503

Read-only fields are useful for fields that are filled in by database triggers, such as last
update. The read-only option can be overridden on a per cmp-field basis, and is discussed
in Section 4.3, “Read-only Fields”. The default is false unless overridden in the defaults

section.

• read-time-out: This optional element is the amount of time in milliseconds that a read on a
read-only field is valid. A value of 0 means that the value is always reloaded at the start of a
transaction, and a value of -1 means that the value never times out. This option can also be
overridden on a per cmp-field basis. If read-only is false, this value is ignored. The default
is -1 unless overridden in the defaults section.

• row-locking: This optional element if true specifies that JBoss will lock all rows loaded in a
transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when
loading the entity, but the actual syntax is determined by the row-locking-template in the
datasource-mapping used by this entity. The default is false unless overridden in the
defaults section.

• pk-constraint: This optional element if true specifies that JBoss will add a primary key
constraint when creating tables. The default is true unless overridden in the defaults section.

• read-ahead: This optional element controls caching of query results and cmr-fields for the
entity. This option is discussed in Section 7.3, “Read-ahead”.

• fetch-size: This optional element specifies the number of entities to read in one round-trip to
the underlying datastore. The default is 0 unless overridden in the defaults section.

• list-cache-max: This optional element specifies the number of read-lists that can be tracked
by this entity. This option is discussed in on-load. The default is 1000 unless overridden in
the defaults section.

• clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can
remove the data used from the read ahead cache. The default is false.

• table-name: This optional element is the name of the table that will hold data for this entity.
Each entity instance will be stored in one row of this table. The default is the ejb-name.

• cmp-field: The optional element allows one to define how the ejb-jar.xmlcmp-field is
mapped onto the persistence store. This is discussed in Section 4, “CMP Fields”.

• load-groups: This optional element specifies one or more groupings of CMP fields to declare
load groupings of fields. This is discussed in Section 7.2, “Load Groups”.

• eager-load-groups: This optional element defines one or more load grouping as eager load
groups. This is discussed in Section 8.2, “Eager-loading Process”.

• lazy-load-groups: This optional element defines one or more load grouping as lazy load
groups. This is discussed in Section 8.3, “Lazy loading Process”.

• query: This optional element specifies the definition of finders and selectors. This is
discussed in Section 6, “Queries”.

Chapter 15. The CMP Engine

504

• unknown-pk: This optional element allows one to define how an unknown primary key type
of java.lang.Object maps to the persistent store.

• entity-command: This optional element allows one to define the entity creation command
instance. Typically this is used to define a custom command instance to allow for primary key
generation. This is described in detail in Section 11, “Entity Commands and Primary Key
Generation”.

• optimistic-locking: This optional element defines the strategy to use for optimistic locking.
This is described in detail in Section 10, “Optimistic Locking”.

• audit: This optional element defines the CMP fields that will be audited. This is described in
detail in Section 4.4, “Auditing Entity Access”.

4. CMP Fields

CMP fields are declared on the bean class as abstract getter and setter methods that follow the
JavaBean property accessor conventions. Our gangster bean, for example, has a getName()

and a setName() method for accessing the name CMP field. In this section we will look at how
the configure these declared CMP fields and control the persistence and behavior.

4.1. CMP Field Declaration

The declaration of a CMP field starts in the ejb-jar.xml file. On the gangster bean, for
example, the gangsterId, name, nickName and badness would be declared in the ejb-jar.xml

file as follows:

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<cmp-field><field-name>gangsterId</field-name></cmp-field>
<cmp-field><field-name>name</field-name></cmp-field>
<cmp-field><field-name>nickName</field-name></cmp-field>
<cmp-field><field-name>badness</field-name></cmp-field>

</entity>
</enterprise-beans>

</ejb-jar>

Note that the J2EE deployment descriptor doesn't declare any object-relational mapping details
or other configuration. It is nothing more than a simple declaration of the CMP fields.

4.2. CMP Field Column Mapping

The relational mapping configuration of a CMP field is done in the jbosscmp-jdbc.xml file. The
structure is similar to the ejb-jar.xml with an entity element that has cmp-field elements
under it with the additional configuration details.

The following is shows the basic column name and data type mappings for the gangster bean.

CMP Fields

505

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<table-name>gangster</table-name>

<cmp-field>
<field-name>gangsterId</field-name>
<column-name>id</column-name>

</cmp-field>
<cmp-field>

<field-name>name</field-name>
<column-name>name</column-name>
<not-null/>

</cmp-field>
<cmp-field>

<field-name>nickName</field-name>
<column-name>nick_name</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(64)</sql-type>

</cmp-field>
<cmp-field>

<field-name>badness</field-name>
<column-name>badness</column-name>

</cmp-field>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

The full content model of the cmp-field element of the jbosscmp-jdbc.xml is shown below.

Chapter 15. The CMP Engine

506

Figure 15.4. The JBoss entity element content model

A detailed description of each element follows:

• field-name: This required element is the name of the cmp-field that is being configured. It
must match the field-name element of a cmp-field declared for this entity in the
ejb-jar.xml file.

• read-only: This declares that field in question is read-only. This field will not be written to the
database by JBoss. Read-only fields are discussed in Section 4.3, “Read-only Fields”.

• read-only-timeout: This is the time in milliseconds that a read-only field value will be

CMP Field Column Mapping

507

considered valid.

• column-name: This optional element is the name of the column to which the cmp-field is
mapped. The default is to use the field-name value.

• not-null: This optional element indicates that JBoss should add a NOT NULL to the end of
the column declaration when automatically creating the table for this entity. The default for
primary key fields and primitives is not null.

• jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC prepared
statement or loading data from a JDBC result set. The valid types are defined in
java.sql.Types. This is only required if sql-type is specified. The default JDBC type will be
based on the database type in the datasourcemapping.

• sql-type: This is the SQL type that is used in create table statements for this field. Valid SQL
types are only limited by your database vendor. This is only required if jdbc-type is
specified. The default SQL type will be base on the database type in the datasourcemapping

• property: This optional element allows one to define how the properties of a dependent value
class CMP field should be mapped to the persistent store. This is discussed further in
Section 4.5, “Dependent Value Classes (DVCs)”.

• auto-increment: The presence of this optional field indicates that it is automatically
incremented by the database layer. This is used to map a field to a generated column as well
as to an externally manipulated column.

• dbindex: The presence of this optional field indicates that the server should create an index
on the corresponding column in the database. The index name will be fieldname_index.

• check-dirty-after-get: This value defaults to false for primitive types and the basic java.lang
immutable wrappers (Integer, String, etc...). For potentially mutable objects, JBoss will
mark they field as potentially dirty after a get operation. If the dirty check on an object is too
expensive, you can optimize it away by setting check-dirty-after-get to false.

• state-factory: This specifies class name of a state factory object which can perform dirty
checking for this field. State factory classes must implement the CMPFieldStateFactory

interface.

4.3. Read-only Fields

JBoss allows for read-only CMP fields by setting the read-only and read-time-out elements
in the cmp-field declaration. These elements work the same way as they do at the entity level.
If a field is read-only, it will never be used in an INSERT or UPDATE statement. If a primary key
field is read-only, the create method will throw a CreateException. If a set accessor is called
for a read-only field, it throws an EJBException. Read-only fields are useful for fields that are
filled in by database triggers, such as last update. A read-only CMP field declaration example
follows:

<jbosscmp-jdbc>

Chapter 15. The CMP Engine

508

<enterprise-beans>
<entity>

<ejb-name>GangsterEJB</ejb-name>
<cmp-field>

<field-name>lastUpdated</field-name>
<read-only>true</read-only>
<read-time-out>1000</read-time-out>

</cmp-field>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

4.4. Auditing Entity Access

The audit element of the entity section allows one to specify how access to and entity bean is
audited. This is only allowed when an entity bean is accessed under a security domain so that
this is a caller identity established. The content model of the audit element is given Figure 15.5,
“The jbosscmp-jdbc.xml audit element content model”.

Figure 15.5. The jbosscmp-jdbc.xml audit element content model

• created-by: This optional element indicates that the caller who created the entity should be
saved to either the indicated column-name or cmp field-name.

• created-time: This optional element indicates that the time of entity creation should be saved
to either the indicated column-name or cmp field-name.

• updated-by: This optional element indicates that the caller who last modified the entity should
be saved to either the indicated column-name or CMP field-name.

• updated-time: This optional element indicates that the last time of entity modification should
be saved to either the indicated column-name or CMP field-name.

For each element, if a field-name is given, the corresponding audit information should be

Auditing Entity Access

509

stored in the specified CMP field of the entity bean being accessed. Note that there does not
have to be an corresponding CMP field declared on the entity. In case there are matching field
names, you will be able to access audit fields in the application using the corresponding CMP
field abstract getters and setters. Otherwise, the audit fields will be created and added to the
entity internally. You will be able to access audit information in EJB-QL queries using the audit
field names, but not directly through the entity accessors.

If, on the other hand, a column-name is specified, the corresponding audit information should be
stored in the indicated column of the entity table. If JBoss is creating the table the jdbc-type

and sql-type element can then be used to define the storage type.

The declaration of audit information with given column names is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>AuditChangedNamesEJB</ejb-name>
<table-name>cmp2_audit_changednames</table-name>
<audit>

<created-by>
<column-name>createdby</column-name>

</created-by>
<created-time>

<column-name>createdtime</column-name>
</created-time>
<updated-by>

<column-name>updatedby</column-name></updated-by>
<updated-time>

<column-name>updatedtime</column-name>
</updated-time>

</audit>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

4.5. Dependent Value Classes (DVCs)

A dependent value class (DVC) is a fancy term used to identity any Java class that is the type of
a cmp-field other than the automatically recognized types core types such as strings and
number values. By default, a DVC is serialized, and the serialized form is stored in a single
database column. Although not discussed here, there are several known issues with the
long-term storage of classes in serialized form.

JBoss also supports the storage of the internal data of a DVC into one or more columns. This is
useful for supporting legacy JavaBeans and database structures. It is not uncommon to find a
database with a highly flattened structure (e.g., a PURCHASE_ORDER table with the fields
SHIP_LINE1, SHIP_LINE2, SHIP_CITY, etc. and an additional set of fields for the billing
address). Other common database structures include telephone numbers with separate fields
for area code, exchange, and extension, or a person's name spread across several fields. With
a DVC, multiple columns can be mapped to one logical field.

Chapter 15. The CMP Engine

510

JBoss requires that a DVC to be mapped must follow the JavaBeans naming specification for
simple properties, and that each property to be stored in the database must have both a getter
and a setter method. Furthermore, the bean must be serializable and must have a no argument
constructor. A property can be any simple type, an unmapped DVC or a mapped DVC, but
cannot be an EJB. A DVC mapping is specified in a dependent-value-class element within
the dependent-value-classes element.

Figure 15.6. The jbosscmp-jdbc dependent-value-class element model.

Here is an example of a simple ContactInfo DVC class.

public class ContactInfo
implements Serializable

{
/** The cell phone number. */
private PhoneNumber cell;

/** The pager number. */
private PhoneNumber pager;

/** The email address */
private String email;

/**
* Creates empty contact info.
*/

public ContactInfo() {
}

public PhoneNumber getCell() {
return cell;

}

Dependent Value Classes (DVCs)

511

public void setCell(PhoneNumber cell) {
this.cell = cell;

}

public PhoneNumber getPager() {
return pager;

}

public void setPager(PhoneNumber pager) {
this.pager = pager;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email.toLowerCase();

}

// ... equals, hashCode, toString
}

The contact info includes a phone number, which is represented by another DVC class.

public class PhoneNumber
implements Serializable

{
/** The first three digits of the phone number. */
private short areaCode;

/** The middle three digits of the phone number. */
private short exchange;

/** The last four digits of the phone number. */
private short extension;

// ... getters and setters

// ... equals, hashCode, toString
}

The DVC mappings for these two classes are relatively straight forward.

<dependent-value-classes>
<dependent-value-class>

<description>A phone number</description>
<class>org.jboss.cmp2.crimeportal.PhoneNumber</class>
<property>

<property-name>areaCode</property-name>
<column-name>area_code</column-name>

</property>

Chapter 15. The CMP Engine

512

<property>
<property-name>exchange</property-name>
<column-name>exchange</column-name>

</property>
<property>

<property-name>extension</property-name>
<column-name>extension</column-name>

</property>
</dependent-value-class>

<dependent-value-class>
<description>General contact info</description>
<class>org.jboss.cmp2.crimeportal.ContactInfo</class>
<property>

<property-name>cell</property-name>
<column-name>cell</column-name>

</property>
<property>

<property-name>pager</property-name>
<column-name>pager</column-name>

</property>
<property>

<property-name>email</property-name>
<column-name>email</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(128)</sql-type>

</property>
</dependent-value-class>

</dependent-value-classes>

Each DVC is declared with a dependent-value-class element. A DVC is identified by the Java
class type declared in the class element. Each property to be persisted is declared with a
property element. This specification is based on the cmp-field element, so it should be
self-explanatory. This restriction will also be removed in a future release. The current proposal
involves storing the primary key fields in the case of a local entity and the entity handle in the
case of a remote entity.

The dependent-value-classes section defines the internal structure and default mapping of
the classes. When JBoss encounters a field that has an unknown type, it searches the list of
registered DVCs, and if a DVC is found, it persists this field into a set of columns, otherwise the
field is stored in serialized form in a single column. JBoss does not support inheritance of DVCs;
therefore, this search is only based on the declared type of the field. A DVC can be constructed
from other DVCs, so when JBoss runs into a DVC, it flattens the DVC tree structure into a set of
columns. If JBoss finds a DVC circuit during startup, it will throw an EJBException. The default
column name of a property is the column name of the base cmp-field followed by an
underscore and then the column name of the property. If the property is a DVC, the process is
repeated. For example, a cmp-field named info that uses the ContactInfo DVC would have
the following columns:

info_cell_area_code
info_cell_exchange

Dependent Value Classes (DVCs)

513

info_cell_extension
info_pager_area_code
info_pager_exchange
info_pager_extension
info_email

The automatically generated column names can quickly become excessively long and awkward.
The default mappings of columns can be overridden in the entity element as follows:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<cmp-field>

<field-name>contactInfo</field-name>
<property>

<property-name>cell.areaCode</property-name>
<column-name>cell_area</column-name>

</property>
<property>

<property-name>cell.exchange</property-name>
<column-name>cell_exch</column-name>

</property>
<property>

<property-name>cell.extension</property-name>
<column-name>cell_ext</column-name>

</property>

<property>
<property-name>pager.areaCode</property-name>
<column-name>page_area</column-name>

</property>
<property>

<property-name>pager.exchange</property-name>
<column-name>page_exch</column-name>

</property>
<property>

<property-name>pager.extension</property-name>
<column-name>page_ext</column-name>

</property>

<property>
<property-name>email</property-name>
<column-name>email</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(128)</sql-type>

</property>
</cmp-field>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

When overriding property info for the entity, you need to refer to the property from a flat

Chapter 15. The CMP Engine

514

perspective as in cell.areaCode.

5. Container Managed Relationships

Container Managed Relationships (CMRs) are a powerful new feature of CMP 2.0.
Programmers have been creating relationships between entity objects since EJB 1.0 was
introduced (not to mention since the introduction of databases), but before CMP 2.0 the
programmer had to write a lot of code for each relationship in order to extract the primary key of
the related entity and store it in a pseudo foreign key field. The simplest relationships were
tedious to code, and complex relationships with referential integrity required many hours to
code. With CMP 2.0 there is no need to code relationships by hand. The container can manage
one-to-one, one-to-many and many-to-many relationships, with referential integrity. One
restriction with CMRs is that they are only defined between local interfaces. This means that a
relationship cannot be created between two entities in separate applications, even in the same
application server.

There are two basic steps to create a container managed relationship: create the cmr-field

abstract accessors and declare the relationship in the ejb-jar.xml file. The following two
sections describe these steps.

5.1. CMR-Field Abstract Accessors

CMR-Field abstract accessors have the same signatures as cmp-fields, except that
single-valued relationships must return the local interface of the related entity, and multi-valued
relationships can only return a java.util.Collection (or java.util.Set) object. For
example, to declare a one-to-many relationship between organization and gangster, we declare
the relationship from organization to gangster in the OrganizationBean class:

public abstract class OrganizationBean
implements EntityBean

{
public abstract Set getMemberGangsters();
public abstract void setMemberGangsters(Set gangsters);

}

We also can declare the relationship from gangster to organization in the GangsterBean class:

public abstract class GangsterBean
implements EntityBean

{
public abstract Organization getOrganization();
public abstract void setOrganization(Organization org);

}

Although each bean declared a CMR field, only one of the two beans in a relationship must
have a set of accessors. As with CMP fields, a CMR field is required to have both a getter and a
setter method.

Container Managed Relationships

515

5.2. Relationship Declaration

The declaration of relationships in the ejb-jar.xml file is complicated and error prone.
Although we recommend using a tool like XDoclet to manage the deployment descriptors for
CMR fields, it's still important to understand how the descriptor works. The following illustrates
the declaration of the organization/gangster relationship:

<ejb-jar>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters
</ejb-relationship-role-name>

<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>OrganizationEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>memberGangsters</cmr-field-name>
<cmr-field-type>java.util.Set</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
gangster-belongs-to-org

</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>GangsterEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>organization</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</ejb-jar>

As you can see, each relationship is declared with an ejb-relation element within the top
level relationships element. The relation is given a name in the ejb-relation-name

element. This is important because we will need to refer to the role by name in the
jbosscmp-jdbc.xml file. Each ejb-relation contains two ejb-relationship-role elements
(one for each side of the relationship). The ejb-relationship-role tags are as follows:

• ejb-relationshiprole-name: This optional element is used to identify the role and match the
database mapping the jbosscmp-jdbc.xml file. The relationship role names for each side of
a relationship must be different.

• multiplicity: This indicates the multiplicity of this side of the relationship. The valid values are

Chapter 15. The CMP Engine

516

One or Many. In this example, the multiplicity of the organization is One and the multiplicity of
the gangster is Many because the relationship is from one organization to many gangsters.
Note, as with all XML elements, this element is case sensitive.

• cascade-delete: When this optional element is present, JBoss will delete the child entity
when the parent entity is deleted. Cascade deletion is only allowed for a role where the other
side of the relationship has a multiplicity of one. The default is to not cascade delete.

• relationship-role-source

• ejb-name: This required element gives the name of the entity that has the role.

• cmr-field

• cmr-field-name: This is the name of the CMR field of the entity has one, if it has one.

• cmr-field-type: This is the type of the CMR field, if the field is a collection type. It must be
java.util.Collection or java.util.Set.

After adding the CMR field abstract accessors and declaring the relationship, the relationship
should be functional. The next section discusses the database mapping of the relationship.

5.3. Relationship Mapping

Relationships can be mapped using either a foreign key or a separate relation table. One-to-one
and one-to-many relationships use the foreign key mapping style by default, and many-to-many
relationships use only the relation table mapping style. The mapping of a relationship is
declared in the relationships section of the jbosscmp-jdbc.xml descriptor via
ejb-relation elements. Relationships are identified by the ejb-relation-name from the
ejb-jar.xml file. The jbosscmp-jdbc.xmlejb-relation element content model is shown in
Figure 15.7, “The jbosscmp-jdbc.xml ejb-relation element content model”.

Relationship Mapping

517

Figure 15.7. The jbosscmp-jdbc.xml ejb-relation element content model

The basic template of the relationship mapping declaration for Organization-Gangster
relationship follows:

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>name</field-name>
<column-name>organization</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
<key-fields/>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

After the ejb-relation-name of the relationship being mapped is declared, the relationship can
be declared as read only using the read-only and read-time-out elements. They have the

Chapter 15. The CMP Engine

518

same semantics as their counterparts in the entity element.

The ejb-relation element must contain either a foreign-key-mapping element or a
relation-table-mapping element, which are described in Section 5.3.2, “Foreign Key
Mapping” and Section 5.3.3, “Relation table Mapping”. This element may also contain a pair of
ejb-relationship-role elements as described in the following section.

5.3.1. Relationship Role Mapping

Each of the two ejb-relationship-role elements contains mapping information specific to an
entity in the relationship. The content model of the ejb-relationship-role element is shown
in Figure 15.8, “The jbosscmp-jdbc ejb-relationship-role element content model” .

Figure 15.8. The jbosscmp-jdbc ejb-relationship-role element content
model

A detailed description of the main elements follows:

• ejb-relationship-role-name: This required element gives the name of the role to which this
configuration applies. It must match the name of one of the roles declared for this relationship
in the ejb-jar.xml file.

• fk-constraint: This optional element is a true/false value that indicates whether JBoss should
add a foreign key constraint to the tables for this side of the relationship. JBoss will only add
generate the constraint if both the primary table and the related table were created by JBoss
during deployment.

• key-fields: This optional element specifies the mapping of the primary key fields of the

Relationship Mapping

519

current entity, whether it is mapped in the relation table or in the related object. The
key-fields element must contain a key-field element for each primary key field of the
current entity. The key-fields element can be empty if no foreign key mapping is needed for
this side of the relation. An example of this would be the many side of a one-to-many
relationship. The details of this element are described below.

• read-ahead: This optional element controls the caching of this relationship. This option is
discussed in Section 8.3.1, “Relationships”.

• batch-cascade-delete: This indicates that a cascade delete on this relationship should be
performed with a single SQL statement. This requires that the relationship be marked as
batch-delete in the ejb-jar.xml.

As noted above, the key-fields element contains a key-field for each primary key field of
the current entity. The key-field element uses the same syntax as the cmp-field element of
the entity, except that key-field does not support the not-null option. Key fields of a
relation-table are automatically not null, because they are the primary key of the table. On
the other hand, foreign key fields must be nullable by default. This is because the CMP
specification requires an insert into the database after the ejbCreate method and an update to
it after to pick up CMR changes made in ejbPostCreate. Since the EJB specification does not
allow a relationship to be modified until ejbPostCreate, a foreign key will be initially set to null.
There is a similar problem with removal. You can change this insert behavior using the
jboss.xmlinsert-after-ejb-post-create container configuration flag. The following
example illustrates the creation of a new bean configuration that uses
insert-after-ejb-post-create by default.

<jboss>
<!-- ... -->
<container-configurations>

<container-configuration extends="Standard CMP 2.x EntityBean">
<container-name>INSERT after ejbPostCreate

Container</container-name>
<insert-after-ejb-post-create>true</insert-after-ejb-post-create>

</container-configuration>
</container-configurations>

</jboss>

An alternate means of working around the non-null foreign key issue is to map the foreign key
elements onto non-null CMP fields. In this case you simply populate the foreign key fields in
ejbCreate using the associated CMP field setters.

The content model of the key-fields element is Figure 15.9, “The jbosscmp-jdbc key-fields
element content model”.

Chapter 15. The CMP Engine

520

Figure 15.9. The jbosscmp-jdbc key-fields element content model

A detailed description of the elements contained in the key-field element follows:

• field-name: This required element identifies the field to which this mapping applies. This
name must match a primary key field of the current entity.

• column-name: Use this element to specify the column name in which this primary key field
will be stored. If this is relationship uses foreign-key-mapping, this column will be added to
the table for the related entity. If this relationship uses relation-table-mapping, this column
is added to the relation-table. This element is not allowed for mapped dependent value
class; instead use the property element.

• jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC
PreparedStatement or loading data from a JDBC ResultSet. The valid types are defined in
java.sql.Types.

• sql-type: This is the SQL type that is used in create table statements for this field. Valid types
are only limited by your database vendor.

• property: Use this element for to specify the mapping of a primary key field which is a
dependent value class.

• dbindex: The presence of this optional field indicates that the server should create an index
on the corresponding column in the database, and the index name will be fieldname_index.

5.3.2. Foreign Key Mapping

Foreign key mapping is the most common mapping style for one-to-one and one-to-many

Relationship Mapping

521

relationships, but is not allowed for many-to many relationships. The foreign key mapping
element is simply declared by adding an empty foreign key-mapping element to the
ejb-relation element.

As noted in the previous section, with a foreign key mapping the key-fields declared in the
ejb-relationship-role are added to the table of the related entity. If the key-fields element
is empty, a foreign key will not be created for the entity. In a one-to-many relationship, the many
side (Gangster in the example) must have an empty key-fields element, and the one side
(Organization in the example) must have a key-fields mapping. In one-to-one relationships,
one or both roles can have foreign keys.

The foreign key mapping is not dependent on the direction of the relationship. This means that
in a one-to-one unidirectional relationship (only one side has an accessor) one or both roles can
still have foreign keys. The complete foreign key mapping for the Organization-Gangster

relationship is shown below with the foreign key elements highlighted in bold:

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
<key-fields> <key-field> <field-name>name</field-name>

<column-name>organization</column-name> </key-field> </key-fields>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
<key-fields/>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

5.3.3. Relation table Mapping

Relation table mapping is less common for one-to-one and one-to-many relationships, but is the
only mapping style allowed for many-to-many relationships. Relation table mapping is defined
using the relation-table-mapping element, the content model of which is shown below.

Chapter 15. The CMP Engine

522

Figure 15.10. The jbosscmp-jdbc relation-table-mapping element content
model

The relation-table-mapping for the Gangster-Job relationship is shown in with table mapping
elements highlighted in bold:

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Gangster-Jobs</ejb-relation-name>
<relation-table-mapping>

<table-name>gangster_job</table-name>
</relation-table-mapping>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-has-jobs</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>gangsterId</field-name>
<column-name>gangster</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>job-has-gangsters</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>name</field-name>
<column-name>job</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
</ejb-relation>

Relationship Mapping

523

</relationships>
</jbosscmp-jdbc>

Example 15.1. The jbosscmp-jdbc.xml Relation-table Mapping

The relation-table-mapping element contains a subset of the options available in the
entity element. A detailed description of these elements is reproduced here for convenience:

• table-name: This optional element gives the name of the table that will hold data for this
relationship. The default table name is based on the entity and cmr-field names.

• datasource: This optional element gives the jndi-name used to look up the datasource. All
database connections are obtained from the datasource. Having different datasources for
entities is not recommended, as it vastly constrains the domain over which finders and
ejbSelects can query.

• datasourcemapping: This optional element allows one to specify the name of the
type-mapping to use.

• create-table: This optional element if true indicates JBoss should attempt to create a table for
the relationship. When the application is deployed, JBoss checks if a table already exists
before creating the table. If a table is found, it is logged, and the table is not created. This
option is very useful during the early stages of development when the table structure changes
often.

• post-table-create: This optional element specifies an arbitrary SQL statement that should be
executed immediately after the database table is created. This command is only executed if
create-table is true and the table did not previously exist.

• remove-table: This optional element if true indicates JBoss should attempt to drop the
relation-table when the application is undeployed. This option is very useful during the
early stages of development when the table structure changes often.

• row-locking: This optional element if true indicates JBoss should lock all rows loaded in a
transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when
loading the entity, but the actual syntax is determined by the row-locking-template in the
datasource-mapping used by this entity.

• pk-constraint: This optional element if true indicates JBoss should add a primary key
constraint when creating tables.

6. Queries

Entity beans allow for two types of queries: finders and selects. A finder provides queries on an

Chapter 15. The CMP Engine

524

entity bean to clients of the bean. The select method is designed to provide private query
statements to an entity implementation. Unlike finders, which are restricted to only return entities
of the same type as the home interface on which they are defined, select methods can return
any entity type or just one field of the entity. EJB-QL is the query language used to specify
finders and select methods in a platform independent way.

6.1. Finder and select Declaration

The declaration of finders has not changed in CMP 2.0. Finders are still declared in the home
interface (local or remote) of the entity. Finders defined on the local home interface do not throw
a RemoteException. The following code declares the findBadDudes_ejbql finder on the
GangsterHome interface. The ejbql suffix here is not required. It is simply a naming convention
used here to differentiate the different types of query specifications we will be looking at.

public interface GangsterHome
extends EJBLocalHome

{
Collection findBadDudes_ejbql(int badness) throws FinderException;

}

Select methods are declared in the entity implementation class, and must be public and abstract
just like CMP and CMR field abstract accessors and must throw a FinderException. The
following code declares an select method:

public abstract class GangsterBean
implements EntityBean

{
public abstract Set ejbSelectBoss_ejbql(String name)

throws FinderException;
}

6.2. EJB-QL Declaration

Every select or finder method (except findByPrimaryKey) must have an EJB-QL query defined
in the ejb-jar.xml file. The EJB-QL query is declared in a query element, which is contained in
the entity element. The following are the declarations for findBadDudes_ejbql and
ejbSelectBoss_ejbql queries:

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findBadDudes_ejbql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>

Finder and select Declaration

525

</query-method>
<ejb-ql><![CDATA[
SELECT OBJECT(g) FROM gangster g WHERE g.badness > ?1
]]></ejb-ql>

</query>
<query>

<query-method>
<method-name>ejbSelectBoss_ejbql</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql><![CDATA[
SELECT DISTINCT underling.organization.theBoss FROM

gangster underling WHERE underling.name = ?1 OR underling.nickName = ?1
]]></ejb-ql>

</query>
</entity>

</enterprise-beans>
</ejb-jar>

EJB-QL is similar to SQL but has some surprising differences. The following are some important
things to note about EJB-QL:

• EJB-QL is a typed language, meaning that it only allows comparison of like types (i.e., strings
can only be compared with strings).

• In an equals comparison a variable (single valued path) must be on the left hand side. Some
examples follow:

g.hangout.state = 'CA' Legal
'CA' = g.shippingAddress.state NOT Legal
'CA' = 'CA' NOT Legal
(r.amountPaid * .01) > 300 NOT Legal
r.amountPaid > (300 / .01) Legal

• Parameters use a base 1 index like java.sql.PreparedStatement.

• Parameters are only allowed on the right hand side of a comparison. For example:

gangster.hangout.state = ?1 Legal
?1 = gangster.hangout.state NOT Legal

6.3. Overriding the EJB-QL to SQL Mapping

The EJB-QL query can be overridden in the jbosscmp-jdbc.xml file. The finder or select is still
required to have an EJB-QL declaration, but the ejb-ql element can be left empty. Currently

Chapter 15. The CMP Engine

526

the SQL can be overridden with JBossQL, DynamicQL, DeclaredSQL or a BMP style custom
ejbFind method. All EJB-QL overrides are non-standard extensions to the EJB specification, so
use of these extensions will limit portability of your application. All of the EJB-QL overrides,
except for BMP custom finders, are declared using a query element in the jbosscmp-jdbc.xml
file. Tthe content model is shown in Figure 15.11, “The jbosscmp-jdbc query element content
model”.

Figure 15.11. The jbosscmp-jdbc query element content model

• description: An optional description for the query.

• query-method: This required element specifies the query method that being configured. This
must match a query-method declared for this entity in the ejb-jar.xml file.

• jboss-ql: This is a JBossQL query to use in place of the EJB-QL query. JBossQL is

Overriding the EJB-QL to SQL Mapping

527

discussed in Section 6.4, “JBossQL”.

• dynamic-ql: This indicated that the method is a dynamic query method and not an EJB-QL
query. Dynamic queries are discussed in Section 6.5, “DynamicQL”.

• declared-sql: This query uses declared SQL in place of the EJB-QL query. Declared SQL is
discussed in Section 6.6, “DeclaredSQL”.

• read-ahead: This optional element allows one to optimize the loading of additional fields for
use with the entities referenced by the query. This is discussed in detail in Section 7,
“Optimized Loading”.

6.4. JBossQL

JBossQL is a superset of EJB-QL that is designed to address some of the inadequacies of
EJB-QL. In addition to a more flexible syntax, new functions, key words, and clauses have been
added to JBossQL. At the time of this writing, JBossQL includes support for an ORDER BY,
OFFSET and LIMIT clauses, parameters in the IN and LIKE operators, the COUNT, MAX, MIN, AVG,
SUM, UCASE and LCASE functions. Queries can also include functions in the SELECT clause for
select methods.

JBossQL is declared in the jbosscmp-jdbc.xml file with a jboss-ql element containing the
JBossQL query. The following example provides an example JBossQL declaration.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findBadDudes_jbossql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(g) FROM gangster g WHERE

g.badness > ?1 ORDER BY g.badness DESC]]></jboss-ql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The corresponding generated SQL is straightforward.

SELECT t0_g.id
FROM gangster t0_g
WHERE t0_g.badness > ?
ORDER BY t0_g.badness DESC

Another capability of JBossQL is the ability to retrieve finder results in blocks using the LIMIT

Chapter 15. The CMP Engine

528

and OFFSET functions. For example, to iterate through the large number of jobs performed, the
following findManyJobs_jbossql finder may be defined.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findManyJobs_jbossql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>
<method-params>

<method-param>int</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(j) FROM jobs j OFFSET ?1

LIMIT ?2]]></jboss-ql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

6.5. DynamicQL

DynamicQL allows the runtime generation and execution of JBossQL queries. A DynamicQL
query method is an abstract method that takes a JBossQL query and the query arguments as
parameters. JBoss compiles the JBossQL and executes the generated SQL. The following
generates a JBossQL query that selects all the gangsters that have a hangout in any state in
the states set:

public abstract class GangsterBean
implements EntityBean

{
public Set ejbHomeSelectInStates(Set states)

throws FinderException
{

// generate JBossQL query
StringBuffer jbossQl = new StringBuffer();
jbossQl.append("SELECT OBJECT(g) ");
jbossQl.append("FROM gangster g ");
jbossQl.append("WHERE g.hangout.state IN (");

for (int i = 0; i < states.size(); i++) {
if (i > 0) {

jbossQl.append(", ");
}

jbossQl.append("?").append(i+1);
}

jbossQl.append(") ORDER BY g.name");

DynamicQL

529

// pack arguments into an Object[]
Object[] args = states.toArray(new Object[states.size()]);

// call dynamic-ql query
return ejbSelectGeneric(jbossQl.toString(), args);

}
}

The DynamicQL select method may have any valid select method name, but the method must
always take a string and an object array as parameters. DynamicQL is declared in the
jbosscmp-jdbc.xml file with an empty dynamic-ql element. The following is the declaration for
ejbSelectGeneric.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectGeneric</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.Object[]</method-param>

</method-params>
</query-method>
<dynamic-ql/>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

6.6. DeclaredSQL

DeclaredSQL is based on the legacy JAWS CMP 1.1 engine finder declaration, but has been
updated for CMP 2.0. Commonly this declaration is used to limit a query with a WHERE clause
that cannot be represented in q EJB-QL or JBossQL. The content model for the declared-sql
element is given in Figure 15.12, “The jbosscmp-jdbc declared-sql element content model.>”.

Chapter 15. The CMP Engine

530

Figure 15.12. The jbosscmp-jdbc declared-sql element content model.>

• select: The select element specifies what is to be selected and consists of the following
elements:

• distinct: If this empty element is present, JBoss will add the DISTINCT keyword to the
generated SELECT clause. The default is to use DISTINCT if method returns a
java.util.Set

• ejb-name: This is the ejb-name of the entity that will be selected. This is only required if the
query is for a select method.

• field-name: This is the name of the CMP field that will be selected from the specified entity.
The default is to select entire entity.

• alias: This specifies the alias that will be used for the main select table. The default is to
use the ejb-name.

• additional-columns: Declares other columns to be selected to satisfy ordering by arbitrary
columns with finders or to facilitate aggregate functions in selects.

DeclaredSQL

531

• from: The from element declares additional SQL to append to the generated FROM clause.

• where: The where element declares the WHERE clause for the query.

• order: The order element declares the ORDER clause for the query.

• other: The other element declares additional SQL that is appended to the end of the query.

The following is an example DeclaredSQL declaration.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findBadDudes_declaredsql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>

</query-method>
<declared-sql>

<where><![CDATA[badness > {0}]]></where>
<order><![CDATA[badness DESC]]></order>

</declared-sql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The generated SQL would be:

SELECT id
FROM gangster
WHERE badness > ?
ORDER BY badness DESC

As you can see, JBoss generates the SELECT and FROM clauses necessary to select the primary
key for this entity. If desired an additional FROM clause can be specified that is appended to the
end of the automatically generated FROM clause. The following is example DeclaredSQL
declaration with an additional FROM clause.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectBoss_declaredsql</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

Chapter 15. The CMP Engine

532

</query-method>
<declared-sql>

<select>
<distinct/>
<ejb-name>GangsterEJB</ejb-name>
<alias>boss</alias>

</select>
<from><![CDATA[, gangster g, organization o]]></from>
<where><![CDATA[
(LCASE(g.name) = {0} OR LCASE(g.nick_name) = {0}) AND
g.organization = o.name AND o.the_boss = boss.id
]]></where>

</declared-sql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The generated SQL would be:

SELECT DISTINCT boss.id
FROM gangster boss, gangster g, organization o
WHERE (LCASE(g.name) = ? OR LCASE(g.nick_name) = ?) AND

g.organization = o.name AND o.the_boss = boss.id

Notice that the FROM clause starts with a comma. This is because the container appends the
declared FROM clause to the end of the generated FROM clause. It is also possible for the FROM

clause to start with a SQL JOIN statement. Since this is a select method, it must have a select

element to declare the entity that will be selected. Note that an alias is also declared for the
query. If an alias is not declared, the table-name is used as the alias, resulting in a SELECT

clause with the table_name.field_name style column declarations. Not all database vendors
support the that syntax, so the declaration of an alias is preferred. The optional empty distinct

element causes the SELECT clause to use the SELECT DISTINCT declaration. The DeclaredSQL
declaration can also be used in select methods to select a CMP field.

Now we well see an example which overrides a select to return all of the zip codes an
Organization operates in.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>OrganizationEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectOperatingZipCodes_declaredsql</method-name>

<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<declared-sql> <select> <distinct/>

<ejb-name>LocationEJB</ejb-name> <field-name>zipCode</field-name>

DeclaredSQL

533

<alias>hangout</alias> </select> <from><![CDATA[, organization o, gangster
g]]></from> <where><![CDATA[LCASE(o.name) = {0} AND o.name =
g.organization AND g.hangout = hangout.id]]></where> <order><![CDATA[
hangout.zip]]></order> </declared-sql>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

The corresponding SQL would be:

SELECT DISTINCT hangout.zip
FROM location hangout, organization o, gangster g
WHERE LCASE(o.name) = ? AND o.name = g.organization AND g.hangout =

hangout.id
ORDER BY hangout.zip

6.6.1. Parameters

DeclaredSQL uses a completely new parameter handling system, which supports entity and
DVC parameters. Parameters are enclosed in curly brackets and use a zero-based index, which
is different from the one-based EJB-QL parameters. There are three categories of parameters:
simple, DVC, and entity.

• simple: A simple parameter can be of any type except for a known (mapped) DVC or an
entity. A simple parameter only contains the argument number, such as {0}. When a simple
parameter is set, the JDBC type used to set the parameter is determined by the
datasourcemapping for the entity. An unknown DVC is serialized and then set as a
parameter. Note that most databases do not support the use of a BLOB value in a WHERE
clause.

• DVC: A DVC parameter can be any known (mapped) DVC. A DVC parameter must be
dereferenced down to a simple property (one that is not another DVC). For example, if we
had a CVS property of type ContactInfo, valid parameter declarations would be {0.email}

and {0.cell.areaCode} but not {0.cell}. The JDBC type used to set a parameter is based
on the class type of the property and the datasourcemapping of the entity. The JDBC type
used to set the parameter is the JDBC type that is declared for that property in the
dependent-value-class element.

• entity: An entity parameter can be any entity in the application. An entity parameter must be
dereferenced down to a simple primary key field or simple property of a DVC primary key
field. For example, if we had a parameter of type Gangster, a valid parameter declaration
would be {0.gangsterId}. If we had some entity with a primary key field named info of type
ContactInfo, a valid parameter declaration would be {0.info.cell.areaCode}. Only
fields that are members of the primary key of the entity can be dereferenced (this restriction
may be removed in later versions). The JDBC type used to set the parameter is the JDBC
type that is declared for that field in the entity declaration.

Chapter 15. The CMP Engine

534

6.7. EJBQL 2.1 and SQL92 queries

The default query compiler doesn't fully support EJB-QL 2.1 or the SQL92 standard. If you need
either of these functions, you can replace the query compiler. The default compiler is specified
in standardjbosscmp-jdbc.xml.

<defaults>
...

<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.JDBCEJBQLCompiler</ql-compiler>
...

</defaults>

To use the SQL92 compiler, simply specify the SQL92 compiler in ql-compiler element.

<defaults>
...

<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>
...

</defaults>

This changes the query compiler for all beans in the entire system. You can also specify the
ql-compiler for each element in jbosscmp-jdbc.xml. Here is an example using one of our
earlier queries.

<query>
<query-method>

<method-name>findBadDudes_ejbql</method-name>
<method-params>

lt;method-param>int</method-param>
</method-params>

</query-method>
<ejb-ql><![CDATA[

SELECT OBJECT(g)
FROM gangster g
WHERE g.badness > ?1]]>

</ejb-ql>
<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>

</query>

One important limitation of SQL92 query compiler is that it always selects all the fields of an
entity regardless the read-ahead strategy in use. For example, if a query is configured with the
on-loadread-ahead strategy, the first query will include all the fields, not just primary key fields
but only the primary key fields will be read from the ResultSet. Then, on load, other fields will
be actually loaded into the read-ahead cache. The on-findread-ahead with the default load
group * works as expected.

6.8. BMP Custom Finders

JBoss also supports bean managed persistence custom finders. If a custom finder method

BMP Custom Finders

535

matches a finder declared in the home or local home interface, JBoss will always call the
custom finder over any other implementation declared in the ejb-jar.xml or
jbosscmp-jdbc.xml files. The following simple example finds the entities by a collection of
primary keys:

public abstract class GangsterBean
implements EntityBean

{
public Collection ejbFindByPrimaryKeys(Collection keys)
{

return keys;
}

}

This is a very useful finder because it quickly coverts primary keys into real Entity objects
without contacting the database. One drawback is that it can create an Entity object with a
primary key that does not exist in the database. If any method is invoked on the bad Entity, a
NoSuchEntityException will be thrown. Another drawback is that the resulting entity bean
violates the EJB specification in that it implements a finder, and the JBoss EJB verifier will fail
the deployment of such an entity unless the StrictVerifier attribute is set to false.

7. Optimized Loading

The goal of optimized loading is to load the smallest amount of data required to complete a
transaction in the fewest number of queries. The tuning of JBoss depends on a detailed
knowledge of the loading process. This section describes the internals of the JBoss loading
process and its configuration. Tuning of the loading process really requires a holistic
understanding of the loading system, so this chapter may have to be read more than once.

7.1. Loading Scenario

The easiest way to investigate the loading process is to look at a usage scenario. The most
common scenario is to locate a collection of entities and iterate over the results performing
some operation. The following example generates an html table containing all of the gangsters:

public String createGangsterHtmlTable_none()
throws FinderException

{
StringBuffer table = new StringBuffer();
table.append("<table>");

Collection gangsters = gangsterHome.findAll_none();
for (Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster) iter.next();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());

Chapter 15. The CMP Engine

536

table.append("</td>");
table.append("</tr>");

}

return table.toString();
}

Assume this code is called within a single transaction and all optimized loading has been
disabled. At the findAll_none call, JBoss will execute the following query:

SELECT t0_g.id
FROM gangster t0_g
ORDER BY t0_g.id ASC

Then as each of the eight gangster in the sample database is accessed, JBoss will execute the
following eight queries:

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=0)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=1)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=2)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=3)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=4)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=5)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=6)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=7)

There are two problems with this scenario. First, an excessive number of queries are executed
because JBoss executes one query for the findAll and one query to access each element
found. The reason for this behavior has to do with the handling of query results inside the JBoss
container. Although it appears that the actual entity beans selected are returned when a query
is executed, JBoss really only returns the primary keys of the matching entities, and does not
load the entity until a method is invoked on it. This is known as the n+1 problem and is
addressed with the read-ahead strategies described in the following sections.

Second, the values of unused fields are loaded needlessly. JBoss loads the hangout and
organization fields, which are never accessed. (we have disabled the complex contactInfo

field for the sake of clarity)

The following table shows the execution of the queries:

Loading Scenario

537

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

Table 15.1. Unoptimized Query Execution

7.2. Load Groups

The configuration and optimization of the loading system begins with the declaration of named
load groups in the entity. A load group contains the names of CMP fields and CMR Fields that
have a foreign key (e.g., Gangster in the Organization-Gangster example) that will be loaded in
a single operation. An example configuration is shown below:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

<load-group>
<load-group-name>basic</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>

</load-group>
<load-group>

<load-group-name>contact info</load-group-name>
<field-name>nickName</field-name>
<field-name>contactInfo</field-name>
<field-name>hangout</field-name>

</load-group>
</load-groups>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

In this example, two load groups are declared: basic and contact info. Note that the load
groups do not need to be mutually exclusive. For example, both of the load groups contain the
nickName field. In addition to the declared load groups, JBoss automatically adds a group
named * (the star group) that contains every CMP field and CMR field with a foreign key in the

Chapter 15. The CMP Engine

538

entity.

7.3. Read-ahead

Optimized loading in JBoss is called read-ahead. This refers to the technique of reading the row
for an entity being loaded, as well as the next several rows; hence the term read-ahead. JBoss
implements two main strategies (on-find and on-load) to optimize the loading problem
identified in the previous section. The extra data loaded during read-ahead is not immediately
associated with an entity object in memory, as entities are not materialized in JBoss until
actually accessed. Instead, it is stored in the preload cache where it remains until it is loaded
into an entity or the end of the transaction occurs. The following sections describe the
read-ahead strategies.

7.3.1. on-find

The on-find strategy reads additional columns when the query is invoked. If the query is
on-find optimized, JBoss will execute the following query when the query is executed.

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

All of the required data would be in the preload cache, so no additional queries would need to
be executed while iterating through the query results. This strategy is effective for queries that
return a small amount of data, but it becomes very inefficient when trying to load a large result
set into memory. The following table shows the execution of this query:

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

Table 15.2. on-find Optimized Query Execution

The read-ahead strategy and load-group for a query is defined in the query element. If a
read-ahead strategy is not declared in the query element, the strategy declared in the entity

element or defaults element is used. The on-find configuration follows:

<jbosscmp-jdbc>

Read-ahead

539

<enterprise-beans>
<entity>

<ejb-name>GangsterEJB</ejb-name>
<!--...-->
<query>

<query-method>
<method-name>findAll_onfind</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
ORDER BY g.gangsterId
]]></jboss-ql>

<read-ahead>
<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>

</read-ahead>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

One problem with the on-find strategy is that it must load additional data for every entity
selected. Commonly in web applications only a fixed number of results are rendered on a page.
Since the preloaded data is only valid for the length of the transaction, and a transaction is
limited to a single web HTTP hit, most of the preloaded data is not used. The on-load strategy
discussed in the next section does not suffer from this problem.

7.3.1.1. Left join read ahead

Left join read ahead is an enhanced on-findread-ahead strategy. It allows you to preload in
one SQL query not only fields from the base instance but also related instances which can be
reached from the base instance by CMR navigation. There are no limitation for the depth of
CMR navigations. There are also no limitations for cardinality of CMR fields used in navigation
and relationship type mapping, i.e. both foreign key and relation-table mapping styles are
supported. Let's look at some examples. Entity and relationship declarations can be found
below.

7.3.1.2. D#findByPrimaryKey

Suppose we have an entity D. A typical SQL query generated for the findByPrimaryKey would
look like this:

SELECT t0_D.id, t0_D.name FROM D t0_D WHERE t0_D.id=?

Suppose that while executing findByPrimaryKey we also want to preload two collection-valued
CMR fields bs and cs.

Chapter 15. The CMP Engine

540

<query>
<query-method>

<method-name>findByPrimaryKey</method-name>
<method-params>

<method-param>java.lang.Long</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM D AS o WHERE o.id =

?1]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>
<left-join cmr-field="bs" eager-load-group="basic"/>
<left-join cmr-field="cs" eager-load-group="basic"/>

</read-ahead>
</query>

The left-join declares the relations to be eager loaded. The generated SQL would look like
this:

SELECT t0_D.id, t0_D.name,
t1_D_bs.id, t1_D_bs.name,
t2_D_cs.id, t2_D_cs.name

FROM D t0_D
LEFT OUTER JOIN B t1_D_bs ON t0_D.id=t1_D_bs.D_FK
LEFT OUTER JOIN C t2_D_cs ON t0_D.id=t2_D_cs.D_FK

WHERE t0_D.id=?

For the D with the specific id we preload all its related B's and C's and can access those instance
loading them from the read ahead cache, not from the database.

7.3.1.3. D#findAll

In the same way, we could optimize the findAll method on D selects all the D's. A normal
findAll query would look like this:

SELECT DISTINCT t0_o.id, t0_o.name FROM D t0_o ORDER BY t0_o.id DESC

To preload the relations, we simply need to add the left-join elements to the query.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[SELECT DISTINCT OBJECT(o) FROM D AS o ORDER BY o.id

DESC]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>

Read-ahead

541

<eager-load-group>basic</eager-load-group>
<left-join cmr-field="bs" eager-load-group="basic"/>
<left-join cmr-field="cs" eager-load-group="basic"/>

</read-ahead>
</query>

And here is the generated SQL:

SELECT DISTINCT t0_o.id, t0_o.name,
t1_o_bs.id, t1_o_bs.name,
t2_o_cs.id, t2_o_cs.name

FROM D t0_o
LEFT OUTER JOIN B t1_o_bs ON t0_o.id=t1_o_bs.D_FK
LEFT OUTER JOIN C t2_o_cs ON t0_o.id=t2_o_cs.D_FK

ORDER BY t0_o.id DESC

Now the simple findAll query now preloads the related B and C objects for each D object.

7.3.1.4. A#findAll

Now let's look at a more complex configuration. Here we want to preload instance A along with
several relations.

• its parent (self-relation) reached from A with CMR field parent

• the B reached from A with CMR field b, and the related C reached from B with CMR field c

• B reached from A but this time with CMR field b2 and related to it C reached from B with CMR
field c.

For reference, the standard query would be:

SELECT t0_o.id, t0_o.name FROM A t0_o ORDER BY t0_o.id DESC FOR UPDATE

The following metadata describes our preloading plan.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o ORDER BY o.id

DESC]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>
<left-join cmr-field="parent" eager-load-group="basic"/>
<left-join cmr-field="b" eager-load-group="basic">

Chapter 15. The CMP Engine

542

<left-join cmr-field="c" eager-load-group="basic"/>
</left-join>
<left-join cmr-field="b2" eager-load-group="basic">

<left-join cmr-field="c" eager-load-group="basic"/>
</left-join>

</read-ahead>
</query>

The SQL query generated would be:

SELECT t0_o.id, t0_o.name,
t1_o_parent.id, t1_o_parent.name,
t2_o_b.id, t2_o_b.name,
t3_o_b_c.id, t3_o_b_c.name,
t4_o_b2.id, t4_o_b2.name,
t5_o_b2_c.id, t5_o_b2_c.name

FROM A t0_o
LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
LEFT OUTER JOIN B t2_o_b ON t0_o.B_FK=t2_o_b.id
LEFT OUTER JOIN C t3_o_b_c ON t2_o_b.C_FK=t3_o_b_c.id
LEFT OUTER JOIN B t4_o_b2 ON t0_o.B2_FK=t4_o_b2.id
LEFT OUTER JOIN C t5_o_b2_c ON t4_o_b2.C_FK=t5_o_b2_c.id

ORDER BY t0_o.id DESC FOR UPDATE

With this configuration, you can navigate CMRs from any found instance of A without an
additional database load.

7.3.1.5. A#findMeParentGrandParent

Here is another example of self-relation. Suppose, we want to write a method that would
preload an instance, its parent, grand-parent and its grand-grand-parent in one query. To do
this, we would used nested left-join declaration.

<query>
<query-method>

<method-name>findMeParentGrandParent</method-name>
<method-params>

<method-param>java.lang.Long</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o WHERE o.id =

?1]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>*</eager-load-group>
<left-join cmr-field="parent" eager-load-group="basic">

<left-join cmr-field="parent" eager-load-group="basic">
<left-join cmr-field="parent" eager-load-group="basic"/>

</left-join>
</left-join>

</read-ahead>

Read-ahead

543

</query>

The generated SQL would be:

SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B_FK, t0_o.B2_FK,
t0_o.PARENT,

t1_o_parent.id, t1_o_parent.name,
t2_o_parent_parent.id, t2_o_parent_parent.name,
t3_o_parent_parent_parent.id, t3_o_parent_parent_parent.name

FROM A t0_o
LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
LEFT OUTER JOIN A t2_o_parent_parent ON

t1_o_parent.PARENT=t2_o_parent_parent.id
LEFT OUTER JOIN A t3_o_parent_parent_parent

ON t2_o_parent_parent.PARENT=t3_o_parent_parent_parent.id
WHERE (t0_o.id = ?) FOR UPDATE

Note, if we remove left-join metadata we will have only

SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B2_FK, t0_o.PARENT FOR
UPDATE

7.3.2. on-load

The on-load strategy block-loads additional data for several entities when an entity is loaded,
starting with the requested entity and the next several entities in the order they were selected.
This strategy is based on the theory that the results of a find or select will be accessed in
forward order. When a query is executed, JBoss stores the order of the entities found in the list
cache. Later, when one of the entities is loaded, JBoss uses this list to determine the block of
entities to load. The number of lists stored in the cache is specified with the list-cachemax

element of the entity. This strategy is also used when faulting in data not loaded in the on-find

strategy.

As with the on-find strategy, on-load is declared in the read-ahead element. The on-load

configuration for this example is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findAll_onload</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[

SELECT OBJECT(g)
FROM gangster g

Chapter 15. The CMP Engine

544

ORDER BY g.gangsterId
]]></jboss-ql>

<read-ahead>
<strategy>on-load</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>

</read-ahead>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

With this strategy, the query for the finder method in remains unchanged.

SELECT t0_g.id
FROM gangster t0_g
ORDER BY t0_g.id ASC

However, the data will be loaded differently as we iterate through the result set. For a page size
of four, JBoss will only need to execute the following two queries to load the name, nickName
and badness fields for the entities:

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=4) OR (id=5) OR (id=6) OR (id=7)

The following table shows the execution of these queries:

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

Table 15.3. on-load Optimized Query Execution

Read-ahead

545

7.3.3. none

The none strategy is really an anti-strategy. This strategy causes the system to fall back to the
default lazy-load code, and specifically does not read-ahead any data or remember the order of
the found entities. This results in the queries and performance shown at the beginning of this
chapter. The none strategy is declared with a read-ahead element. If the read-ahead element
contains a page-size element or eager-load-group, it is ignored. The none strategy is
declared the following example.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findAll_none</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
ORDER BY g.gangsterId
]]></jboss-ql>

<read-ahead>
<strategy>none</strategy>

</read-ahead>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

8. Loading Process

In the previous section several steps use the phrase "when the entity is loaded." This was
intentionally left vague because the commit option specified for the entity and the current state
of the transaction determine when an entity is loaded. The following section describes the
commit options and the loading processes.

8.1. Commit Options

Central to the loading process are the commit options, which control when the data for an entity
expires. JBoss supports four commit options A, B, C and D. The first three are described in the
Enterprise JavaBeans Specification, but the last one is specific to JBoss. A detailed description
of each commit option follows:

• A: JBoss assumes it is the sole user of the database; therefore, JBoss can cache the current
value of an entity between transactions, which can result is substantial performance gains. As

Chapter 15. The CMP Engine

546

a result of this assumption, no data managed by JBoss can be changed outside of JBoss. For
example, changing data in another program or with the use of direct JDBC (even within
JBoss) will result in an inconsistent database state.

• B: JBoss assumes that there is more than one user of the database but keeps the context
information about entities between transactions. This context information is used for
optimizing loading of the entity. This is the default commit option.

• C: JBoss discards all entity context information at the end of the transaction.

• D: This is a JBoss specific commit option. This option is similar to commit option A, except
that the data only remains valid for a specified amount of time.

The commit option is declared in the jboss.xml file. For a detailed description of this file see
Chapter 14, EJBs on JBoss. The following example changes the commit option to A for all entity
beans in the application:

<jboss>
<container-configurations>

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<commit-option>A</commit-option>

</container-configuration>
</container-configurations>

</jboss>

Example 15.2. The jboss.xml Commit Option Declaration

8.2. Eager-loading Process

When an entity is loaded, JBoss must determine the fields that need to be loaded. By default,
JBoss will use the eager-load-group of the last query that selected this entity. If the entity has
not been selected in a query, or the last query used the none read-ahead strategy, JBoss will
use the default eager-load-group declared for the entity. In the following example
configuration, the basic load group is set as the default eager-load-group for the gangster
entity bean:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

<load-group>
<load-group-name>most</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>

Eager-loading Process

547

<field-name>hangout</field-name>
<field-name>organization</field-name>

</load-group>
</load-groups>
<eager-load-group>most</eager-load-group>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The eager loading process is initiated the first time a method is called on an entity in a
transaction. A detailed description of the load process follows:

1. If the entity context is still valid, no loading is necessary, and therefore the loading process is
done. The entity context will be valid when using commit option A, or when using commit
option D, and the data has not timed out.

2. Any residual data in the entity context is flushed. This assures that old data does not bleed
into the new load.

3. The primary key value is injected back into the primary key fields. The primary key object is
actually independent of the fields and needs to be reloaded after the flush in step 2.

4. All data in the preload cache for this entity is loaded into the fields.

5. JBoss determines the additional fields that still need to be loaded. Normally the fields to load
are determined by the eager-load group of the entity, but can be overridden if the entity was
located using a query or CMR field with an on-find or on-load read ahead strategy. If all of
the fields have already been loaded, the load process skips to step 7.

6. A query is executed to select the necessary column. If this entity is using the on-load

strategy, a page of data is loaded as described in Section 7.3.2, “on-load”. The data for the
current entity is stored in the context and the data for the other entities is stored in the
preload cache.

7. The ejbLoad method of the entity is called.

8.3. Lazy loading Process

Lazy loading is the other half of eager loading. If a field is not eager loaded, it must be lazy
loaded. When an access to an unloaded field of a bean is made, JBoss loads the field and all
the fields of any lazy-load-group the field belong to. JBoss performs a set join and then
removes any field that is already loaded. An example configuration is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

Chapter 15. The CMP Engine

548

<load-group>
<load-group-name>basic</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>

</load-group>
<load-group>

<load-group-name>contact info</load-group-name>
<field-name>nickName</field-name>
<field-name>contactInfo</field-name>
<field-name>hangout</field-name>

</load-group>
</load-groups>
<!-- ... -->
<lazy-load-groups>

<load-group-name>basic</load-group-name>
<load-group-name>contact info</load-group-name>

</lazy-load-groups>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

When the bean provider calls getName() with this configuration, JBoss loads name, nickName
and badness, assuming they are not already loaded. When the bean provider calls
getNickName(), the name, nickName, badness, contactInfo, and hangout are loaded. A
detailed description of the lazy loading process follows:

1. All data in the preload cache for this entity is loaded into the fields.

2. If the field value was loaded by the preload cache the lazy load process is finished.

3. JBoss finds all of the lazy load groups that contain this field, performs a set join on the
groups, and removes any field that has already been loaded.

4. A query is executed to select the necessary columns. As in the basic load process, JBoss
may load a block of entities. The data for the current entity is stored in the context and the
data for the other entities is stored in the preload cache.

8.3.1. Relationships

Relationships are a special case in lazy loading because a CMR field is both a field and query.
As a field it can be on-load block loaded, meaning the value of the currently sought entity and
the values of the CMR field for the next several entities are loaded. As a query, the field values
of the related entity can be preloaded using on-find.

Again, the easiest way to investigate the loading is to look at a usage scenario. In this example,
an HTML table is generated containing each gangster and their hangout. The example code
follows:

Lazy loading Process

549

public String createGangsterHangoutHtmlTable()
throws FinderException

{
StringBuffer table = new StringBuffer();
table.append("<table>");
Collection gangsters = gangsterHome.findAll_onfind();
for (Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster)iter.next();

Location hangout = gangster.getHangout();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());
table.append("</td>");
table.append("<td>").append(hangout.getCity());
table.append("</td>");
table.append("<td>").append(hangout.getState());
table.append("</td>");
table.append("<td>").append(hangout.getZipCode());
table.append("</td>");
table.append("</tr>");

}

table.append("</table>");return table.toString();
}

Example 15.3. Relationship Lazy Loading Example Code

For this example, the configuration of the gangster's findAll_onfind query is unchanged from
the on-find section. The configuration of the Location entity and Gangster-Hangout

relationship follows:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>LocationEJB</ejb-name>
<load-groups>

<load-group>
<load-group-name>quick info</load-group-name>
<field-name>city</field-name>
<field-name>state</field-name>
<field-name>zipCode</field-name>

</load-group>
</load-groups>
<eager-load-group/>

</entity>
</enterprise-beans>
<relationships>

Chapter 15. The CMP Engine

550

<ejb-relation>
<ejb-relation-name>Gangster-Hangout</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>
gangster-has-a-hangout

</ejb-relationship-role-name>
<key-fields/>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>quick info</eager-load-group>

</read-ahead>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
hangout-for-a-gangster

</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>locationID</field-name>
<column-name>hangout</column-name>

</key-field>
</key-filaelds>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

Example 15.4. The jbosscmp-jdbc.xml Relationship Lazy Loading
Configuration

JBoss will execute the following query for the finder:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

Then when the hangout is accessed, JBoss executes the following two queries to load the city,
state, and zip fields of the hangout:

SELECT gangster.id, gangster.hangout,
location.city, location.st, location.zip

FROM gangster, location
WHERE (gangster.hangout=location.id) AND

((gangster.id=0) OR (gangster.id=1) OR
(gangster.id=2) OR (gangster.id=3))

SELECT gangster.id, gangster.hangout,
location.city, location.st, location.zip

FROM gangster, location

Lazy loading Process

551

WHERE (gangster.hangout=location.id) AND
((gangster.id=4) OR (gangster.id=5) OR
(gangster.id=6) OR (gangster.id=7))

The following table shows the execution of the queries:

id name nick_name badness hangout id city st zip

0 Yojimbo Bodyguard 7 0 0 San
Fran

CA 94108

1 Takeshi Master 10 1 1 San
Fran

CA 94133

2 Yuriko Four finger 4 2 2 San
Fran

CA 94133

3 Chow Killer 9 3 3 San
Fran

CA 94133

4 Shogi Lightning 8 4 4 San
Fran

CA 94133

5 Valentino Pizza-Face 4 5 5 New
York

NY 10017

6 Toni Toothless 2 6 6 Chicago IL 60661

7 Corleone Godfather 6 7 7 Las
Vegas

NV 89109

Table 15.4. on-find Optimized Relationship Query Execution

8.4. Lazy loading result sets

By default, when a multi-object finder or select method is executed the JDBC result set is read
to the end immediately. The client receives a collection of EJBLocalObject or CMP field values
which it can then iterate through. For big result sets this approach is not efficient. In some cases
it is better to delay reading the next row in the result set until the client tries to read the
corresponding value from the collection. You can get this behavior for a query using the
lazy-resultset-loading element.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[select object(o) from A o]]></jboss-ql>
<lazy-resultset-loading>true</lazy-resultset-loading>

</query>

Chapter 15. The CMP Engine

552

The are some issues you should be aware of when using lazy result set loading. Special care
should be taken when working with a Collection associated with a lazily loaded result set. The
first call to iterator() returns a special Iterator that reads from the ResultSet. Until this
Iterator has been exhausted, subsequent calls to iterator() or calls to the add() method
will result in an exception. The remove() and size() methods work as would be expected.

9. Transactions

All of the examples presented in this chapter have been defined to run in a transaction.
Transaction granularity is a dominating factor in optimized loading because transactions define
the lifetime of preloaded data. If the transaction completes, commits, or rolls back, the data in
the preload cache is lost. This can result in a severe negative performance impact.

The performance impact of running without a transaction will be demonstrated with an example
that uses an on-find optimized query that selects the first four gangsters (to keep the result set
small), and it is executed without a wrapper transaction. The example code follows:

public String createGangsterHtmlTable_no_tx() throws FinderException
{

StringBuffer table = new StringBuffer();
table.append("<table>");

Collection gangsters = gangsterHome.findFour();
for(Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster)iter.next();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());
table.append("</td>");
table.append("</tr>");

}

table.append("</table>");
return table.toString();

}

The finder results in the following query being executed:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
WHERE t0_g.id < 4
ORDER BY t0_g.id ASC

Normally this would be the only query executed, but since this code is not running in a
transaction, all of the preloaded data is thrown away as soon as finder returns. Then when the
CMP field is accessed JBoss executes the following four queries (one for each loop):

Transactions

553

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=2) OR (id=3)

SELECT name, nick_name, badness
FROM gangster
WHERE (id=3)

It's actually worse than this. JBoss executes each of these queries three times; once for each
CMP field that is accessed. This is because the preloaded values are discarded between the
CMP field accessor calls.

The following figure shows the execution of the queries:

Figure 15.13. No Transaction on-find optimized query execution

This performance is much worse than read ahead none because of the amount of data loaded
from the database. The number of rows loaded is determined by the following equation:

This all happens because the transaction in the example is bounded by a single call on the
entity. This brings up the important question "How do I run my code in a transaction?" The
answer depends on where the code runs. If it runs in an EJB (session, entity, or message
driven), the method must be marked with the Required or RequiresNewtrans-attribute in
the assembly-descriptor. If the code is not running in an EJB, a user transaction is
necessary. The following code wraps a call to the declared method with a user transaction:

Chapter 15. The CMP Engine

554

public String createGangsterHtmlTable_with_tx()
throws FinderException

{
UserTransaction tx = null;
try {

InitialContext ctx = new InitialContext();
tx = (UserTransaction) ctx.lookup("UserTransaction");
tx.begin();

String table = createGangsterHtmlTable_no_tx();

if (tx.getStatus() == Status.STATUS_ACTIVE) {
tx.commit();

}
return table;

} catch (Exception e) {
try {

if (tx != null) tx.rollback();
} catch (SystemException unused) {

// eat the exception we are exceptioning out anyway
}
if (e instanceof FinderException) {

throw (FinderException) e;
}
if (e instanceof RuntimeException) {

throw (RuntimeException) e;
}

throw new EJBException(e);
}

}

10. Optimistic Locking

JBoss has supports for optimistic locking of entity beans. Optimistic locking allows multiple
instances of the same entity bean to be active simultaneously. Consistency is enforced based
on the optimistic locking policy choice. The optimistic locking policy choice defines the set of
fields that are used in the commit time write of modified data to the database. The optimistic
consistency check asserts that the values of the chosen set of fields has the same values in the
database as existed when the current transaction was started. This is done using a select for

UPDATE WHERE ... statement that contains the value assertions.

You specify the optimistic locking policy choice using an optimistic-locking element in the
jbosscmp-jdbc.xml descriptor. The content model of the optimistic-locking element is
shown below and the description of the elements follows.

Optimistic Locking

555

Figure 15.14. The jbosscmp-jdbc optimistic-locking element content
model

• group-name: This element specifies that optimistic locking is based on the fields of a
load-group. This value of this element must match one of the entity's load-group-name. The
fields in this group will be used for optimistic locking.

• modified-strategy: This element specifies that optimistic locking is based on the modified
fields. This strategy implies that the fields that were modified during transaction will be used
for optimistic locking.

• read-strategy: This element specifies that optimistic locking is based on the fields read. This
strategy implies that the fields that were read/changed in the transaction will be used for
optimistic locking.

• version-column: This element specifies that optimistic locking is based on a version column
strategy. Specifying this element will add an additional version field of type java.lang.Long

to the entity bean for optimistic locking. Each update of the entity will increase the value of
this field. The field-name element allows for the specification of the name of the CMP field

Chapter 15. The CMP Engine

556

while the column-name element allows for the specification of the corresponding table
column.

• timestamp-column: This element specifies that optimistic locking is based on a timestamp
column strategy. Specifying this element will add an additional version field of type
java.util.Date to the entity bean for optimistic locking. Each update of the entity will set the
value of this field to the current time. The field-name element allows for the specification of
the name of the CMP field while the column-name element allows for the specification of the
corresponding table column.

• key-generator-factory: This element specifies that optimistic locking is based on key
generation. The value of the element is the JNDI name of a
org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory implementation. Specifying
this element will add an additional version field to the entity bean for optimistic locking. The
type of the field must be specified via the field-type element. Each update of the entity will
update the key field by obtaining a new value from the key generator. The field-name

element allows for the specification of the name of the CMP field while the column-name

element allows for the specification of the corresponding table column.

A sample jbosscmp-jdbc.xml descriptor illustrating all of the optimistic locking strategies is
given below.

<!DOCTYPE jbosscmp-jdbc PUBLIC
"-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>

</defaults>
<enterprise-beans>

<entity>
<ejb-name>EntityGroupLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitygrouplocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<load-groups>

<load-group>
<load-group-name>string</load-group-name>
<field-name>stringField</field-name>

</load-group>
<load-group>

<load-group-name>all</load-group-name>
<field-name>stringField</field-name>

Optimistic Locking

557

<field-name>dateField</field-name>
</load-group>

</load-groups>
<optimistic-locking>

<group-name>string</group-name>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityModifiedLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitymodifiedlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<modified-strategy/>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityReadLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entityreadlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<read-strategy/>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityVersionLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entityversionlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>

Chapter 15. The CMP Engine

558

<optimistic-locking>
<version-column/>
<field-name>versionField</field-name>
<column-name>ol_version</column-name>
<jdbc-type>INTEGER</jdbc-type>
<sql-type>INTEGER(5)</sql-type>

</optimistic-locking>
</entity>
<entity>

<ejb-name>EntityTimestampLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitytimestamplocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<timestamp-column/>
<field-name>versionField</field-name>
<column-name>ol_timestamp</column-name>
<jdbc-type>TIMESTAMP</jdbc-type>
<sql-type>DATETIME</sql-type>

</optimistic-locking>
</entity>
<entity>

<ejb-name>EntityKeyGeneratorLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitykeygenlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<key-generator-factory>UUIDKeyGeneratorFactory</key-generator-factory>
<field-type>java.lang.String</field-type>
<field-name>uuidField</field-name>
<column-name>ol_uuid</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(32)</sql-type>

</optimistic-locking>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

Entity Commands and Primary Key

559

11. Entity Commands and Primary Key Generation

Support for primary key generation outside of the entity bean is available through custom
implementations of the entity creation command objects used to insert entities into a persistent
store. The list of available commands is specified in entity-commands element of the
jbosscmp-jdbc.xml descriptor. The default entity-command may be specified in the
jbosscmp-jdbc.xml in defaults element. Each entity element can override the entity-command

in defaults by specifying its own entity-command. The content model of the entity-commands

and child elements is given below.

Figure 15.15. The jbosscmp-jdbc.xml entity-commands element model

Each entity-command element specifies an entity generation implementation. The name

attribute specifies a name that allows the command defined in an entity-commands section to
be referenced in the defaults and entity elements. The class attribute specifies the
implementation of the org.jboss.ejb.plugins.cmp.jdbc. JDBCCreateEntityCommand that
supports the key generation. Database vendor specific commands typically subclass the
org.jboss.ejb.plugins.cmp.jdbc. JDBCIdentityColumnCreateCommand if the database
generates the primary key as a side effect of doing an insert, or the
org.jboss.ejb.plugins.cmp.jdbc.JDBCInsertPKCreateCommand if the command must
insert the generated key.

The optional attribute element(s) allows for the specification of arbitrary name/value property
pairs that will be available to the entity command implementation class. The attribute element
has a required name attribute that specifies the name property, and the attribute element
content is the value of the property. The attribute values are accessible through the
org.jboss.ejb.plugins.cmp.jdbc.metadata.JDBCEntityCommandMetaData.getAttribute(String)
method.

11.1. Existing Entity Commands

The following are the current entity-command definitions found in the
standardjbosscmp-jdbc.xml descriptor:

• default: (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand) The
JDBCCreateEntityCommand is the default entity creation as it is the entity-command

referenced in the standardjbosscmp-jdbc.xml defaults element. This entity-command
executes an INSERT INTO query using the assigned primary key value.

• no-select-before-insert: (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand)

Chapter 15. The CMP Engine

560

This is a variation on default that skips select before insert by specifying an attribute
name="SQLExceptionProcessor" that points to the
jboss.jdbc:service=SQLExceptionProcessor service. The SQLExceptionProcessor

service provides a boolean isDuplicateKey(SQLException e) operation that allows a for
determination of any unique constraint violation.

• pk-sql (org.jboss.ejb.plugins.cmp.jdbc.JDBCPkSqlCreateCommand) The
JDBCPkSqlCreateCommand executes an INSERT INTO query statement provided by the
pk-sql attribute to obtain the next primary key value. Its primary target usage are databases
with sequence support.

• mysql-get-generated-keys:
(org.jboss.ejb.plugins.cmp.jdbc.mysql.JDBCMySQLCreateCommand) The
JDBCMySQLCreateCommand executes an INSERT INTO query using the getGeneratedKeys

method from MySQL native java.sql.Statement interface implementation to fetch the
generated key.

• oracle-sequence:
(org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCOracleCreateCommand) The
JDBCOracleCreateCommand is a create command for use with Oracle that uses a sequence in
conjunction with a RETURNING clause to generate keys in a single statement. It has a required
sequence element that specifies the name of the sequence column.

• hsqldb-fetch-key:
(org.jboss.ejb.plugins.cmp.jdbc.hsqldb.JDBCHsqldbCreateCommand) The
JDBCHsqldbCreateCommand executes an INSERT INTO query after executing a CALL

IDENTITY() statement to fetch the generated key.

• sybase-fetch-key:
(org.jboss.ejb.plugins.cmp.jdbc.sybase.JDBCSybaseCreateCommand) The
JDBCSybaseCreateCommand executes an INSERT INTO query after executing a SELECT

@@IDENTITY statement to fetch the generated key.

• mssql-fetch-key:
(org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCSQLServerCreateCommand) The
JDBCSQLServerCreateCommand for Microsoft SQL Server that uses the value from an
IDENTITY columns. By default uses SELECT SCOPE_IDENTITY() to reduce the impact of
triggers; can be overridden with pk-sql attribute e.g. for V7.

• informix-serial:
(org.jboss.ejb.plugins.cmp.jdbc.informix.JDBCInformixCreateCommand) The
JDBCInformixCreateCommand executes an INSERT INTO query after using the getSerial

method from Informix native java.sql.Statement interface implementation to fetch the
generated key.

• postgresql-fetch-seq:
(org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCPostgreSQLCreateCommand) The
JDBCPostgreSQLCreateCommand for PostgreSQL that fetches the current value of the

Generation

561

sequence. The optional sequence attribute can be used to change the name of the sequence,
with the default being table_pkColumn_seq.

• key-generator: (org.jboss.ejb.plugins.cmp.jdbc.JDBCKeyGeneratorCreateCommand)
The JDBCKeyGeneratorCreateCommand executes an INSERT INTO query after obtaining a
value for the primary key from the key generator referenced by the key-generator-factory.
The key-generator-factory attribute must provide the name of a JNDI binding of the
org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory implementation.

• get-generated-keys:
(org.jboss.ejb.plugins.cmp.jdbc.jdbc3.JDBCGetGeneratedKeysCreateCommand) The
JDBCGetGeneratedKeysCreateCommand executes an INSERT INTO query using a statement
built using the JDBC3 prepareStatement(String, Statement.RETURN_GENERATED_KEYS)

that has the capability to retrieve the auto-generated key. The generated key is obtained by
calling the PreparedStatement.getGeneratedKeys method. Since this requires JDBC3
support it is only available in JDK1.4.1+ with a supporting JDBC driver.

An example configuration using the hsqldb-fetch-keyentity-command with the generated key
mapped to a known primary key cmp-field is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>LocationEJB</ejb-name>
<pk-constraint>false</pk-constraint>
<table-name>location</table-name>

<cmp-field>
<field-name>locationID</field-name>
<column-name>id</column-name>
<auto-increment/>

</cmp-field>
<!-- ... -->
<entity-command name="hsqldb-fetch-key"/>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

An alternate example using an unknown primary key without an explicit cmp-field is shown
below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>LocationEJB</ejb-name>
<pk-constraint>false</pk-constraint>
<table-name>location</table-name>
<unknown-pk>

<unknown-pk-class>java.lang.Integer</unknown-pk-class>
<field-name>locationID</field-name>

Chapter 15. The CMP Engine

562

<column-name>id</column-name>
<jdbc-type>INTEGER</jdbc-type>
<sql-type>INTEGER</sql-type>
<auto-increment/>

</unknown-pk>
<!--...-->
<entity-command name="hsqldb-fetch-key"/>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

12. Defaults

JBoss global defaults are defined in the standardjbosscmp-jdbc.xml file of the
server/<server-name>/conf/ directory. Each application can override the global defaults in
the jbosscmp-jdbc.xml file. The default options are contained in a defaults element of the
configuration file, and the content model is shown below.

Defaults

563

Chapter 15. The CMP Engine

564

Figure 15.16. The jbosscmp-jdbc.xml defaults content model

An example of the defaults section follows:

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>
<create-table>true</create-table>
<remove-table>false</remove-table>
<read-only>false</read-only>
<read-time-out>300000</read-time-out>
<pk-constraint>true</pk-constraint>
<fk-constraint>false</fk-constraint>
<row-locking>false</row-locking>
<preferred-relation-mapping>foreign-key</preferred-relation-mapping>
<read-ahead>

<strategy>on-load</strategy>
<page-size>1000</page-size>
<eager-load-group>*</eager-load-group>

</read-ahead>
<list-cache-max>1000</list-cache-max>

</defaults>
</jbosscmp-jdbc>

12.1. A sample jbosscmp-jdbc.xml defaults declaration

Each option can apply to entities, relationships, or both, and can be overridden in the specific
entity or relationship. A detailed description of each option follows:

• datasource: This optional element is the jndi-name used to look up the datasource. All
database connections used by an entity or relation-table are obtained from the
datasource. Having different datasources for entities is not recommended, as it vastly
constrains the domain over which finders and ejbSelects can query.

• datasource-mapping: This optional element specifies the name of the type-mapping, which
determines how Java types are mapped to SQL types, and how EJB-QL functions are
mapped to database specific functions. Type mappings are discussed in Section 13.3,
“Mapping”.

• create-table: This optional element when true, specifies that JBoss should attempt to create
a table for the entity. When the application is deployed, JBoss checks if a table already exists
before creating the table. If a table is found, it is logged, and the table is not created. This
option is very useful during the early stages of development when the table structure changes
often. The default is false.

• alter-table: If create-table is used to automatically create the schema, alter-table can

A sample jbosscmp-jdbc.xml defaults

565

be used to keep the schema current with changes to the entity bean. Alter table will perform
the following specific tasks:
• new fields will be created
• fields which are no longer used will be removed
• string fields which are shorter than the declared length will have their length increased to

the declared length. (not supported by all databases)

• remove-table: This optional element when true, JBoss will attempt to drop the table for each
entity and each relation table mapped relationship. When the application is undeployed,
JBoss will attempt to drop the table. This option is very useful during the early stages of
development when the table structure changes often. The default is false.

• read-only: This optional element when true specifies that the bean provider will not be
allowed to change the value of any fields. A field that is read-only will not be stored in, or
inserted into, the database. If a primary key field is read-only, the create method will throw a
CreateException. If a set accessor is called on a read-only field, it throws an
EJBException. Read only fields are useful for fields that are filled in by database triggers,
such as last update. The read-only option can be overridden on a per field basis. The
default is false.

• read-time-out: This optional element is the amount of time in milliseconds that a read on a
read only field is valid. A value of 0 means that the value is always reloaded at the start of a
transaction, and a value of -1 means that the value never times out. This option can also be
overridden on a per CMP field basis. If read-only is false, this value is ignored. The default is
-1.

• row-locking: This optional element if true specifies that JBoss will lock all rows loaded in a
transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when
loading the entity, but the actual syntax is determined by the row-locking-template in the
datasource-mapping used by this entity. The default is false.

• pk-constraint: This optional element if true specifies that JBoss will add a primary key
constraint when creating tables. The default is true.

• preferred-relation-mapping: This optional element specifies the preferred mapping style for
relationships. The preferred-relation-mapping element must be either foreign-key or
relation-table.

• read-ahead: This optional element controls caching of query results and CMR fields for the
entity. This option is discussed in Section 7.3, “Read-ahead”.

• list-cache-max: This optional element specifies the number of read-lists that can be
tracked by this entity. This option is discussed in Section 7.3.2, “on-load”. The default is 1000.

• clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can
remove the data used from the read ahead cache. The default is false.

• fetch-size: This optional element specifies the number of entities to read in one round-trip to
the underlying datastore. The default is 0.

Chapter 15. The CMP Engine

566

• unknown-pk: This optional element allows one to define the default mapping of an unknown
primary key type of java.lang.Object maps to the persistent store.

• entity-command: This optional element allows one to define the default command for entity
creation. This is described in detail in Section 11, “Entity Commands and Primary Key
Generation”.

• ql-compiler: This optional elements allows a replacement query compiler to be specified.
Alternate query compilers were discussed in Section 6.7, “EJBQL 2.1 and SQL92 queries”.

• throw-runtime-exceptions: This attribute, if set to true, indicates that an error in connecting
to the database should be seen in the application as runtime EJBException rather than as a
checked exception.

13. Datasource Customization

JBoss includes predefined type-mappings for many databases including: Cloudscape, DB2,
DB2/400, Hypersonic SQL, InformixDB, InterBase, MS SQLSERVER, MS SQLSERVER2000,
mySQL, Oracle7, Oracle8, Oracle9i, PointBase, PostgreSQL, PostgreSQL 7.2, SapDB, SOLID,
and Sybase. If you do not like the supplied mapping, or a mapping is not supplied for your
database, you will have to define a new mapping. If you find an error in one of the supplied
mappings, or if you create a new mapping for a new database, please consider posting a patch
at the JBoss project page on SourceForge.

13.1. Type Mapping

Customization of a database is done through the type-mapping section of the
jbosscmp-jdbc.xml descriptor. The content model for the type-mapping element is given in
Figure 15.17, “The jbosscmp-jdbc type-mapping element content model.”.

declaration

567

Figure 15.17. The jbosscmp-jdbc type-mapping element content model.

Chapter 15. The CMP Engine

568

The elements are:

• name: This required element provides the name identifying the database customization. It is
used to refer to the mapping by the datasource-mapping elements found in defaults and
entity.

• row-locking-template: This required element gives the PreparedStatement template used
to create a row lock on the selected rows. The template must support three arguments:

1. the select clause

2. the from clause. The order of the tables is currently not guaranteed

3. the where clause

If row locking is not supported in select statement this element should be empty. The most
common form of row locking is select for update as in: SELECT ?1 FROM ?2 WHERE ?3 FOR

UPDATE.

• pk-constraint-template: This required element gives the PreparedStatement template used
to create a primary key constraint in the create table statement. The template must support
two arguments
1. Primary key constraint name; which is always pk_{table-name}

2. Comma separated list of primary key column names

If a primary key constraint clause is not supported in a create table statement this element
should be empty. The most common form of a primary key constraint is: CONSTRAINT ?1

PRIMARY KEY (?2)

• fk-constraint-template: This is the template used to create a foreign key constraint in
separate statement. The template must support five arguments:
1. Table name
2. Foreign key constraint name; which is always fk_{table-name}_{cmr-field-name}

3. Comma separated list of foreign key column names
4. References table name
5. Comma separated list of the referenced primary key column names

If the datasource does not support foreign key constraints this element should be empty. The
most common form of a foreign key constraint is: ALTER TABLE ?1 ADD CONSTRAINT ?2

FOREIGN KEY (?3) REFERENCES ?4 (?5).

• auto-increment-template: This declares the SQL template for specifying auto increment
columns.

• add-column-template: When alter-table is true, this SQL template specifies the syntax for
adding a column to an existing table. The default value is ALTER TABLE ?1 ADD ?2 ?3. The
parameters are:
1. the table name

Type Mapping

569

2. the column name
3. the column type

• alter-column-template: When alter-table is true, this SQL template specifies the syntax
for dropping a column to from an existing table. The default value is ALTER TABLE ?1 ALTER

?2 TYPE ?3. The parameters are:
1. the table name
2. the column name
3. the column type

• drop-column-template: When alter-table is true, this SQL template specifies the syntax
for dropping a column to from an existing table. The default value is ALTER TABLE ?1 DROP

?2. The parameters are:
1. the table name
2. the column name

• alias-header-prefix: This required element gives the prefix used in creating the alias header.
An alias header is prepended to a generated table alias by the EJB-QL compiler to prevent
name collisions. The alias header is constructed as follows: alias-header-prefix + int_counter
+ alias-header-suffix. An example alias header would be t0_ for an alias-header-prefix of "t"
and an alias-header-suffix of "_".

• alias-header-suffix: This required element gives the suffix portion of the generated alias
header.

• alias-max-length: This required element gives the maximum allowed length for the
generated alias header.

• subquery-supported: This required element specifies if this type-mapping subqueries as
either true or false. Some EJB-QL operators are mapped to exists subqueries. If
subquery-supported is false, the EJB-QL compiler will use a left join and is null.

• true-mapping: This required element defines true identity in EJB-QL queries. Examples
include TRUE, 1, and (1=1).

• false-mapping: This required element defines false identity in EJB-QL queries. Examples
include FALSE, 0, and (1=0).

• function-mapping: This optional element specifies one or more the mappings from an
EJB-QL function to an SQL implementation. See Section 13.2, “Function Mapping” for the
details.

• mapping: This required element specifies the mappings from a Java type to the
corresponding JDBC and SQL type. See Section 13.3, “Mapping” for the details.

13.2. Function Mapping

The function-mapping element model is show below.

Chapter 15. The CMP Engine

570

Figure 15.18. The jbosscmp-jdbc function-mapping element content model

The allowed child elements are:

• function-name: This required element gives the EJB-QL function name, e.g., concat,
substring.

• function-sql: This required element gives the SQL for the function as appropriate for the
underlying database. Examples for a concat function include: (?1 || ?2), concat(?1, ?2),
(?1 + ?2).

13.3. Mapping

A type-mapping is simply a set of mappings between Java class types and database types. A
set of type mappings is defined by a set of mapping elements, the content model for which is
shown in Figure 15.19, “The jbosscmp-jdbc mapping element content model.”.

Figure 15.19. The jbosscmp-jdbc mapping element content model.

If JBoss cannot find a mapping for a type, it will serialize the object and use the
java.lang.Object mapping. The following describes the three child elements of the mapping
element:

Mapping

571

• java-type: This required element gives the fully qualified name of the Java class to be
mapped. If the class is a primitive wrapper class such as java.lang.Short, the mapping also
applies to the primitive type.

• jdbc-type: This required element gives the JDBC type that is used when setting parameters
in a JDBC PreparedStatement or loading data from a JDBC ResultSet. The valid types are
defined in java.sql.Types.

• sql-type: This required element gives the SQL type that is used in create table statements.
Valid types are only limited by your database vendor.

• param-setter: This optional element specifies the fully qualified name of the
JDBCParameterSetter implementation for this mapping.

• result-reader: This option element specifies the fully qualified name of the
JDBCResultSetReader implementation for this mapping.

An example mapping element for a short in Oracle9i is shown below.

<jbosscmp-jdbc>
<type-mappings>

<type-mapping>
<name>Oracle9i</name>
<!--...-->
<mapping>

<java-type>java.lang.Short</java-type>
<jdbc-type>NUMERIC</jdbc-type>
<sql-type>NUMBER(5)</sql-type>

</mapping>
</type-mapping>

</type-mappings>
</jbosscmp-jdbc>

13.4. User Type Mappings

User type mappings allow one to map from JDBC column types to custom CMP fields types by
specifying an instance of org.jboss.ejb.plugins.cmp.jdbc.Mapper interface, the definition
of which is shown below.

public interface Mapper
{

/**
* This method is called when CMP field is stored.
* @param fieldValue - CMP field value
* @return column value.
*/

Object toColumnValue(Object fieldValue);

/**
* This method is called when CMP field is loaded.
* @param columnValue - loaded column value.
* @return CMP field value.

Chapter 15. The CMP Engine

572

*/
Object toFieldValue(Object columnValue);

}

A prototypical use case is the mapping of an integer type to its type-safe Java enumeration
instance. The content model of the user-type-mappings element consists of one or more
user-type-mapping elements, the content model of which is shown in Figure 15.20, “The
user-type-mapping content model >”.

Figure 15.20. The user-type-mapping content model >

• java-type: the fully qualified name of the CMP field type in the mapping.

• mapped-type: the fully qualified name of the database type in the mapping.

• mapper: the fully qualified name of the Mapper interface implementation that handles the
conversion between the java-type and mapped-type.

User Type Mappings

573

574

Appendix A. Book Example
Installation
The book comes with the source code for the examples discussed in the book. You can
download the examples zip file from here [http://www.redhat.com/docs/jboss]. Unzipping the
example code archive creates a JBoss jboss4guide directory that contains an examples

subdirectory. This is the examples directory referred to by the book.

The only customization needed before the examples may be used is to set the location of the
JBoss server distribution. This may be done by editing the examples/build.xml file and
changing the jboss.dist property value. This is shown in bold below:

<project name="JBoss book examples" default="build-all" basedir=".">
<!-- Allow override from local properties file -->
<property file="ant.properties"/>

<!-- Override with your JBoss server bundle dist location -->
<property name="jboss.dist" value="/tmp/jboss-4.2"/>
<property name="jboss.deploy.conf" value="default"/>
...

or by creating an .ant.properties file in the examples directory that contains a definition for
the jboss.dist property. For example:

jboss.dist=/usr/local/jboss/jboss-4.2

Part of the verification process validates that the version you are running the examples against
matches what the book examples were tested against. If you have a problem running the
examples first look for the output of the validate target such as the following:

validate:
[java] ImplementationTitle: JBoss [Zion]
[java] ImplementationVendor: JBoss Inc.
[java] ImplementationVersion: 4.2.0 (build: CVSTag=JBoss_4_2_0

date=200704070944)
[java] SpecificationTitle: JBoss
[java] SpecificationVendor: JBoss (http://www.jboss.org/)
[java] SpecificationVersion: 4.2.0
[java] JBoss version is: 4.2.0

575

http://www.redhat.com/docs/jboss
http://www.redhat.com/docs/jboss

576

Appendix B. Use Alternative
Databases with JBoss AS

1. How to Use Alternative Databases

JBoss utilizes the Hypersonic database as its default database. While this is good for
development and prototyping, you or your company will probably require another database to
be used for production. This chapter covers configuring JBoss AS to use alternative databases.
We cover the procedures for all officially supported databases on the JBoss Enterprise
Application Platform 4.2. They include: MySQL 5.0, PostgreSQL 8.1, Oracle 9i and 10g R2,
DB2 7.2 and 8, Sybase ASE 12.5, as well as MS SQL 2005.

Please note that in this chapter, we explain how to use alternative databases to support all
services in JBoss AS. This includes all the system level services such as EJB and JMS. For
individual applications (e.g., WAR or EAR) deployed in JBoss AS, you can still use any backend
database by setting up the appropriate data source connection as described in Section 3,
“Configuring JDBC DataSources”.

We assume that you have already installed the external database server, and have it running.
You should create an empty database named jboss, accessible via the username / password
pair jbossuser / jbosspass. The jboss database is used to store JBoss AS internal data --
JBoss AS will automatically create tables and data in it.

2. Install JDBC Drivers

For the JBoss Application Server and our applications to use the external database, we also
need to install the database's JDBC driver. The JDBC driver is a JAR file, which you'll need to
copy into your JBoss AS's jboss-as/server/production/lib directory. Replace production

with the server configuration you are using if needed. This file is loaded when JBoss starts up.
So if you have the JBoss AS running, you'll need to shut down and restart. The availability of
JDBC drivers for different databases are as follows.

• MySQL JDBC drivers can be obtained from
http://dev.mysql.com/downloads/connector/j/5.0.html. The download contains documentation,
etc. for the JDBC connector, but you really only need the
mysql-connector-java-5.0.4-bin.jar file to get MySQL to work with and be used by
JBoss AS.

• PostgreSQL JDBC drivers can be obtained from: http://jdbc.postgresql.org/. For 8.2.3 version,
we need the JDBC3 driver 8.2-504 JDBC 3. The download is just the JDBC driver
postgresql-8.2-504.jdbc3.jar file.

• Oracle thin JDBC drivers can be obtained from:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html for your Oracle DB

577

http://dev.mysql.com/downloads/connector/j/5.0.html
http://jdbc.postgresql.org/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

versions.

• IBM DB2 JDBC drivers can be downloaded from the IBM web site
http://www-306.ibm.com/software/data/db2/java/.

• Sybase JDBC drivers can be downloaded from the Sybase jConnect product page
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

• MS SQL Server JDBC drivers can be downloaded from the MSDN web site
http://msdn.microsoft.com/data/jdbc/.

2.1. Special notes on Sybase

Some of the services in JBoss uses null values for the default tables that are created. Sybase
Adaptive Server should be configured to allow nulls by default.

sp_dboption db_name, "allow nulls by default", true

Refer the sybase manuals for more options.

Enable JAVA services. To use any java service like JMS, CMP, timers etc. configured with
Sybase, java should be enabled on Sybase Adaptive Server. To do this use:

sp_configure "enable java",1

Refer the sybase manuals for more information.

If java is not enabled you might see this exception being thrown when you try to use any of the
above services.

com.sybase.jdbc2.jdbc.SybSQLException: Cannot run this command because Java
services are not enabled. A user with System Administrator (SA) role must
reconfigure the system to enable Java

CMP Configuration. To use Container Managed Persistence for user defined Java objects
with Sybase Adaptive Server Enterprise the java classes should be installed in the database.
The system table 'sysxtypes' contains one row for each extended, Java-SQL datatype.This table
is only used for Adaptive Servers enabled for Java. Install java classes using the installjava
program.

installjava -f <jar-file-name> -S<sybase-server> -U<super-user>
-P<super-pass> -D<db-name>

Refer the installjava manual in Sybase for more options.

Appendix B. Use Alternative D...

578

http://www-306.ibm.com/software/data/db2/java/
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://msdn.microsoft.com/data/jdbc/

Installing Java Classes

1. You have to be a super-user with required privileges to install java classes.

2. The jar file you are trying to install should be created without compression.

3. Java classes that you install and use in the server must be compiled with JDK
1.2.2. If you compile a class with a later JDK, you will be able to install it in the
server using the installjava utility, but you will get a
java.lang.ClassFormatError exception when you attempt to use the class. This
is because Sybase Adaptive Server uses an older JVM internally, and hence
requires the java classes to be compiled with the same.

3. Creating a DataSource for the External Database

JBoss AS connects to relational databases via datasources. These datasource definitions can
be found in the jboss-as/server/production/deploy directory. The datasource definitions
are deployable just like WAR and EAR files. The datasource files can be recognized by looking
for the XML files that end in *-ds.xml.

The datasource definition files for all supported external databases can be found in the
jboss-as/docs/examples/jca directory.

• MySQL: mysql-ds.xml

• PostgreSQL: postgres-ds.xml

• Oracle: oracle-ds.xml

• DB2: db2-ds.xml

• Sybase: sybase-ds.xml

• MS SQL Server: mssql-ds.xml

The following code snippet shows the mysql-ds.xml file as an example. All the other *-ds.xml
files are very similiar. You will need to change the connection-url, as well as the user-name /
password, to fit your own database server installation.

<datasources>
<local-tx-datasource>

<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/jboss</connection-url>

Creating a DataSource for the External

579

<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>jbossuser</user-name>
<password>jbosspass</password>
<exception-sorter-class-name>

org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
</exception-sorter-class-name>

<!-- should only be used on drivers after 3.22.1 with "ping" support
<valid-connection-checker-class-name>

org.jboss.resource.adapter.jdbc.vendor.MySQLValidConnectionChecker
</valid-connection-checker-class-name>

-->
<!-- sql to call when connection is created
<new-connection-sql>some arbitrary sql</new-connection-sql>
-->

<!-- sql to call on an existing pooled connection when it is obtained
from pool -

MySQLValidConnectionChecker is preferred for newer drivers
<check-valid-connection-sql>some arbitrary

sql</check-valid-connection-sql>
-->

<!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml
(optional) -->

<metadata>
<type-mapping>mySQL</type-mapping>

</metadata>
</local-tx-datasource>

</datasources>

Once you customized the *-ds.xml file to connect to your external database, you need to copy
it to the jboss-as/server/production/deploy directory. The database connection is now
available through the JNDI name specified in the *-ds.xml file.

4. Change Database for the JMS Services

The JMS service in the JBoss AS uses relational databases to persist its messages. For
improved performance, we should change the JMS service to take advantage of the external
database. To do that, we need to replace the file
jboss-as/server/production/deploy/jms-singleton/hsqldb-jdbc2-service.xml with a
file in jboss-as/docs/examples/jms/ depending on your external database. Notice that if you
are using the default server profile, the file path is
jboss-as/server/default/deploy/jms/hsqldb-jdbc2-service.xml.

• MySQL: mysql-jdbc2-service.xml

• PostgreSQL: postgres-jdbc2-service.xml

Appendix B. Use Alternative D...

580

• Oracle: oracle-jdbc2-service.xml

• DB2: db2-jdbc2-service.xml

• Sybase: sybase-jdbc2-service.xml

• MS SQL Server: mssql-jdbc2-service.xml

What about the hsqldb-jdbc-state-service.xml file?

Despite its name, the hsqldb-jdbc-state-service.xml file applies to all
databases. So, there is no need to use a special jdbc-state-service.xml for
each database.

5. Support Foreign Keys in CMP Services

Next, we need to go change the
jboss-as/server/production/conf/standardjbosscmp-jdbc.xml file so that the
fk-constraint property is true. That is needed for all external databases we support on the
JBoss Enterprise Application Platform. This file configures the database connection settings for
the EJB2 CMP beans deployed in the JBoss AS.

<fk-constraint>true</fk-constraint>

6. Specify Database Dialect for Java Persistence API

The Java Persistence API (JPA) entity manager can save EJB3 entity beans to any backend
database. Hibernate provides the JPA implementation in JBoss AS. In order for Hibernate to
work correctly with alternative databases, we recommend you configure the database dialect in
the
jboss-as/server/production/deploy/ejb3.deployer/META-INF/persistence.properties

file. You need to un-comment the hibernate.dialect property and change its value to the
following based on the database you setup.

• Oracle 9i: org.hibernate.dialect.Oracle9iDialect

• Oracle 10g: org.hibernate.dialect.Oracle10gDialect

• Microsoft SQL Server 2005: org.hibernate.dialect.SQLServerDialect

Database

581

• PostgresSQL 8.1: org.hibernate.dialect.PostgreSQLDialect

• MySQL 5.0: org.hibernate.dialect.MySQL5Dialect

• DB2 8.0: org.hibernate.dialect.DB2Dialect

• Sybase ASE 12.5: org.hibernate.dialect.SybaseDialect

DB2 7.2 with Universal JDBC Driver (Type 4)

Large Objects (LOBs) are supported only with DB2 Version 8 servers and above
with the universal JDBC driver. Hence JMS services which stores messages as
BLOBS and Timer services which uses BLOB fields for storing objects do not
work with the JDBC Type 4 driver and DB2 7.2.

DB2 7.2 with JDBC Type 2 driver

All JBoss services work with the JDBC Type 2 driver and DB2 Version 7.2
servers.

7. Change Other JBoss AS Services to Use the External
Database

Besides JMS, CMP, and JPA, we still need to hook up the rest of JBoss services with the
external database. There are two ways to do it. One is easy but inflexible. The other is flexible
but requires more steps. Now, let's discuss those two approaches respectively.

7.1. The Easy Way

The easy way is just to change the JNDI name for the external database to DefaultDS. Most
JBoss services are hard-wired to use the DefaultDS by default. So, by changing the datasource
name, we do not need to change the configuration for each service individually.

To change the JNDI name, just open the *-ds.xml file for your external database, and change
the value of the jndi-name property to DefaultDS. For instance, in mysql-ds.xml, you'd
change MySqlDS to DefaultDS and so on. You will need to remove the
jboss-as/server/production/deploy/hsqldb-ds.xml file after you are done to avoid
duplicated DefaultDS definition.

In the jms/*-jdbc2-service.xml file, you should also change the datasource name in the
depends tag for the PersistenceManagers MBean to DefaultDS. For instance, for
mysql-jdbc2-service.xml file, we change the MySqlDS to DefaultDS.

Appendix B. Use Alternative D...

582

... ...
<mbean code="org.jboss.mq.pm.jdbc2.PersistenceManager"

name="jboss.mq:service=PersistenceManager">
<depends optional-attribute-name="ConnectionManager">

jboss.jca:service=DataSourceBinding,name=DefaultDS
</depends>
... ...

7.2. The More Flexible Way

Changing the external datasource to DefaultDS is convenient. But if you have applications that
assume the DefaultDS always points to the factory-default HSQL DB, that approach could
break your application. Also, changing DefaultDS destination forces all JBoss services to use
the external database. What if you want to use the external database only on some services?

A safer and more flexible way to hook up JBoss AS services with the external datasource is to
manually change the DefaultDS in all standard JBoss services to the datasource JNDI name
defined in your *-ds.xml file (e.g., the MySqlDS in mysql-ds.xml etc.). Below is a complete list
of files that contain DefaultDS. You can update them all to use the external database on all
JBoss services or update some of them to use different combination of datasources for different
services.

• jboss-as/server/production/conf/login-config.xml: This file is used in Java EE
container managed security services.

• jboss-as/server/production/conf/standardjbosscmp-jdbc.xml: This file configures the
CMP beans in the EJB container.

• jboss-as/server/production/deploy/ejb-deployer.xml: This file configures the JBoss
EJB deployer.

• jboss-as/server/production/deploy/schedule-manager-service.xml: This file
configures the EJB timer services.

• jboss-as/server/production/deploy/snmp-adaptor.sar/attributes.xml: This file is
used by the SNMP service.

• jboss-as/server/production/deploy/juddi-service.sar/META-INF/jboss-service.xml:
This file configures the UUDI service.

• jboss-as/server/production/deploy/juddi-service.sar/juddi.war/WEB-INF/jboss-web.xml:
This file configures the UUDI service.

• jboss-as/server/production/deploy/juddi-service.sar/juddi.war/WEB-INF/juddi.properties:

The More Flexible Way

583

This file configures the UUDI service.

• jboss-as/server/production/deploy/uuid-key-generator.sar/META-INF/jboss-service.xml:
This file configures the UUDI service.

• jboss-as/server/production/jms/hsqldb-jdbc-state-service.xml and
jboss-as/server/all/deploy-hasingleton/jms/hsqldb-jdbc-state-service.xml:
Those files configure the JMS persistence service as we discussed earlier.

8. A Special Note About Oracle DataBases

In our setup discussed in this chapter, we rely on the JBoss AS to automatically create needed
tables in the external database upon server startup. That works most of the time. But for
databases like Oracle, there might be some minor issues if you try to use the same database
server to back more than one JBoss AS instance.

The Oracle database creates tables of the form schemaname.tablename. The TIMERS and
HILOSEQUENCES tables needed by JBoss AS would not get created on a schema if the table
already exists on a different schema. To work around this issue, you need to edit the
jboss-as/server/production/deploy/ejb-deployer.xml file to change the table name from
TIMERS to something like schemaname2.tablename.

... ...
<mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"

name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
<!-- DataSourceBinding ObjectName -->
<depends optional-attribute-name="DataSource">
jboss.jca:service=DataSourceBinding,name=DefaultDS

</depends>
<!-- The plugin that handles database persistence -->
<attribute name="DatabasePersistencePlugin">
org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin

</attribute>
<!-- The timers table name -->
<attribute name="TimersTable">TIMERS</attribute>

</mbean>

Similarly, you need to change the
jboss-as/server/production/deploy/uuid-key-generator.sar/META-INF/jboss-service.xml

file to change the table name from HILOSEQUENCES to something like schemaname2.tablename

as well.

... ...
<!-- HiLoKeyGeneratorFactory -->
<mbean

Appendix B. Use Alternative D...

584

code="org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory"
name="jboss:service=KeyGeneratorFactory,type=HiLo">

<depends>jboss:service=TransactionManager</depends>

<!-- Attributes common to HiLo factory instances -->

<!-- DataSource JNDI name -->
<depends

optional-attribute-name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

<!-- table name -->
<attribute name="TableName">HILOSEQUENCES</attribute>

... ...

A Special Note About Oracle DataBases

585

586

	JBoss Enterprise Application Platform
	Table of Contents
	What this Book Covers
	About JBoss
	About Open Source
	About Professional Open Source
	Part I. Java EE 5 Application Configuration
	Chapter 1. Enterprise Applications with EJB3 Services
	1. Session Beans
	2. Entity Beans (a.k.a. Java Persistence API)
	2.1. The persistence.xml file
	2.2. Use Alternative Databases
	2.3. Default Hibernate options

	3. Message Driven Beans
	4. Package and Deploy EJB3 Services
	4.1. Deploy the EJB3 JAR
	4.2. Deploy EAR with EJB3 JAR

	Chapter 2. Deployment
	1. Deployable Application Types
	2. Standard Server Configurations
	2.1. The production Configuration
	2.2. Further Tuning from the production Configuration

	Part II. JBoss AS Infrastructure
	Chapter 3. The JBoss JMX Microkernel
	1. An Introduction to JMX
	1.1. Instrumentation Level
	1.2. Agent Level
	1.3. Distributed Services Level
	1.4. JMX Component Overview
	1.4.1. Managed Beans or MBeans
	1.4.2. Notification Model
	1.4.3. MBean Metadata Classes
	1.4.4. MBean Server
	1.4.5. Agent Services

	2. JBoss JMX Implementation Architecture
	2.1. The JBoss ClassLoader Architecture
	2.2. Class Loading and Types in Java
	2.2.1. ClassCastExceptions - I'm Not Your Type
	2.2.2. IllegalAccessException - Doing what you should not
	2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are
	2.2.3.1. Debugging Class Loading Issues

	2.2.4. Inside the JBoss Class Loading Architecture
	2.2.4.1. Viewing Classes in the Loader Repository
	2.2.4.2. Scoping Classes
	2.2.4.3. The Complete Class Loading Model

	2.3. JBoss XMBeans
	2.3.1. Descriptors
	2.3.2. The Management Class
	2.3.3. The Constructors
	2.3.4. The Attributes
	2.3.5. The Operations
	2.3.6. Notifications

	3. Connecting to the JMX Server
	3.1. Inspecting the Server - the JMX Console Web Application
	3.1.1. Securing the JMX Console

	3.2. Connecting to JMX Using RMI
	3.3. Command Line Access to JMX
	3.3.1. Connecting twiddle to a Remote Server
	3.3.2. Sample twiddle Command Usage

	3.4. Connecting to JMX Using Any Protocol

	4. Using JMX as a Microkernel
	4.1. The Startup Process
	4.2. JBoss MBean Services
	4.2.1. The SARDeployer MBean
	4.2.2. The Service Life Cycle Interface
	4.2.3. The ServiceController MBean
	4.2.3.1. The create(ObjectName) method
	4.2.3.2. The start(ObjectName) method
	4.2.3.3. The stop(ObjectName) method
	4.2.3.4. The destroy(ObjectName) method

	4.2.4. Specifying Service Dependencies
	4.2.5. Identifying Unsatisfied Dependencies
	4.2.6. Hot Deployment of Components, the URLDeploymentScanner

	4.3. Writing JBoss MBean Services
	4.3.1. A Standard MBean Example
	4.3.2. XMBean Examples
	4.3.2.1. Version 1, The Annotated JNDIMap XMBean
	4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

	4.4. Deployment Ordering and Dependencies

	5. JBoss Deployer Architecture
	5.1. Deployers and ClassLoaders

	6. Remote Access to Services, Detached Invokers
	6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service
	6.2. Detached Invoker Reference
	6.2.1. The JRMPInvoker - RMI/JRMP Transport
	6.2.2. The PooledInvoker - RMI/Socket Transport
	6.2.3. The IIOPInvoker - RMI/IIOP Transport
	6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies
	6.2.5. The HttpInvoker - RMI/HTTP Transport
	6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport
	6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies
	6.2.9. Steps to Expose Any RMI Interface via HTTP

	Chapter 4. Naming on JBoss
	1. An Overview of JNDI
	1.1. Names
	1.2. Contexts
	1.2.1. Obtaining a Context using InitialContext

	2. The JBossNS Architecture
	3. The Naming InitialContext Factories
	3.1. The standard naming context factory
	3.2. The org.jboss.naming.NamingContextFactory
	3.3. Naming Discovery in Clustered Environments
	3.4. The HTTP InitialContext Factory Implementation
	3.5. The Login InitialContext Factory Implementation
	3.6. The ORBInitialContextFactory

	4. JNDI over HTTP
	4.1. Accessing JNDI over HTTP
	4.2. Accessing JNDI over HTTPS
	4.3. Securing Access to JNDI over HTTP
	4.4. Securing Access to JNDI with a Read-Only Unsecured Context

	5. Additional Naming MBeans
	5.1. JNDI Binding Manager
	5.2. The org.jboss.naming.NamingAlias MBean
	5.3. org.jboss.naming.ExternalContext MBean
	5.4. The org.jboss.naming.JNDIView MBean

	6. J2EE and JNDI - The Application Component Environment
	6.1. ENC Usage Conventions
	6.1.1. Environment Entries
	6.1.2. EJB References
	6.1.3. EJB References with jboss.xml and jboss-web.xml
	6.1.4. EJB Local References
	6.1.5. Resource Manager Connection Factory References
	6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
	6.1.7. Resource Environment References
	6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

	Chapter 5. Connectors on JBoss
	1. JCA Overview
	2. An Overview of the JBossCX Architecture
	2.1. BaseConnectionManager2 MBean
	2.2. RARDeployment MBean
	2.3. JBossManagedConnectionPool MBean
	2.4. CachedConnectionManager MBean
	2.5. A Sample Skeleton JCA Resource Adaptor

	3. Configuring JDBC DataSources
	4. Configuring Generic JCA Adaptors

	Chapter 6. Transactions on JBoss
	1. Transaction/JTA Overview
	1.1. Pessimistic and optimistic locking
	1.2. The components of a distributed transaction
	1.3. The two-phase XA protocol
	1.4. Heuristic exceptions
	1.5. Transaction IDs and branches

	2. JTS support
	3. Web Services Transactions
	4. Configuring JBoss Transactions
	5. Local versus distributed transactions

	Chapter 7. Messaging on JBoss
	1. JMS Examples
	1.1. A Point-To-Point Example
	1.2. A Pub-Sub Example
	1.3. A Pub-Sub With Durable Topic Example
	1.4. A Point-To-Point With MDB Example

	2. JBoss MQ Overview
	2.1. Invocation Layer
	2.2. Security Manager
	2.3. Destination Manager
	2.4. Message Cache
	2.5. State Manager
	2.6. Persistence Manager
	2.7. Destinations
	2.7.1. Queues
	2.7.2. Topics

	3. JBoss MQ Configuration and MBeans
	3.1. org.jboss.mq.il.jvm.JVMServerILService
	3.2. org.jboss.mq.il.uil2.UILServerILService
	3.2.1. Configuring UIL2 for SSL
	3.2.2. JMS client properties for the UIL2 transport

	3.3. org.jboss.mq.il.http.HTTPServerILService
	3.4. org.jboss.mq.server.jmx.Invoker
	3.5. org.jboss.mq.server.jmx.InterceptorLoader
	3.6. org.jboss.mq.sm.jdbc.JDBCStateManager
	3.7. org.jboss.mq.security.SecurityManager
	3.8. org.jboss.mq.server.jmx.DestinationManager
	3.9. org.jboss.mq.server.MessageCache
	3.10. org.jboss.mq.pm.jdbc2.PersistenceManager
	3.11. Destination MBeans
	3.11.1. org.jboss.mq.server.jmx.Queue
	3.11.2. org.jboss.mq.server.jmx.Topic

	4. Specifying the MDB JMS Provider
	4.1. org.jboss.jms.jndi.JMSProviderLoader MBean
	4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean
	4.3. Integrating non-JBoss JMS Providers

	Chapter 8. Security on JBoss
	1. J2EE Declarative Security Overview
	1.1. Security References
	1.2. Security Identity
	1.3. Security roles
	1.4. EJB method permissions
	1.5. Web Content Security Constraints
	1.6. Enabling Declarative Security in JBoss

	2. An Introduction to JAAS
	2.1. What is JAAS?
	2.1.1. The JAAS Core Classes
	2.1.1.1. The Subject and Principal Classes
	2.1.1.2. Authentication of a Subject

	3. The JBoss Security Model
	3.1. Enabling Declarative Security in JBoss Revisited

	4. The JBoss Security Extension Architecture
	4.1. How the JaasSecurityManager Uses JAAS
	4.2. The JaasSecurityManagerService MBean
	4.3. The JaasSecurityDomain MBean

	5. Defining Security Domains
	5.1. Loading Security Domains
	5.2. The DynamicLoginConfig service
	5.3. Using JBoss Login Modules
	5.3.1. Password Stacking
	5.3.2. Password Hashing
	5.3.3. Unauthenticated Identity
	5.3.4. UsersRolesLoginModule
	5.3.5. LdapLoginModule
	5.3.6. DatabaseServerLoginModule
	5.3.7. BaseCertLoginModule
	5.3.8. IdentityLoginModule
	5.3.9. RunAsLoginModule
	5.3.10. ClientLoginModule

	5.4. Writing Custom Login Modules
	5.4.1. Support for the Subject Usage Pattern
	5.4.2. A Custom LoginModule Example

	6. The Secure Remote Password (SRP) Protocol
	6.1. Providing Password Information for SRP
	6.2. Inside of the SRP algorithm
	6.2.1. An SRP example

	7. Running JBoss with a Java 2 security manager
	8. Using SSL with JBoss using JSSE
	9. Configuring JBoss for use Behind a Firewall
	10. How to Secure the JBoss Server
	10.1. The JMX Console
	10.2. The Web Console
	10.3. The HTTP Invokers
	10.4. The JMX Invoker

	Chapter 9. Web Services
	1. JAX-RPC Service Endpoints
	2. EJB Endpoints
	3. Web Services Clients
	3.1. A JAX-RPC client
	3.2. Service references

	Chapter 10. Additional Services
	1. Memory and Thread Monitoring
	2. The Log4j Service
	3. System Properties Management
	4. Property Editor Management
	5. Services Binding Management
	5.1. AttributeMappingDelegate
	5.2. XSLTConfigDelegate
	5.3. XSLTFileDelegate
	5.4. The Sample Bindings File

	6. RMI Dynamic Class Loading
	7. Scheduling Tasks
	7.1. org.jboss.varia.scheduler.Scheduler

	8. The Timer Service
	9. The BarrierController Service
	10. Exposing MBean Events via SNMP

	Part III. Clustering Configuration
	Chapter 11. Quick Tutorial to Setup a Clustered Web Application
	1. Setup the simple web cluster
	1.1. Setup the load balancer
	1.2. Configure JBoss AS nodes
	1.3. Shared Database

	2. Optional improvements to the simple cluster
	2.1. Failover support
	2.2. Database cache

	3. Basic optimization

	Chapter 12. JBossCache and JGroups Services
	1. JGroups Configuration
	1.1. Transport Protocols
	1.1.1. UDP configuration
	1.1.2. TCP configuration
	1.1.3. TUNNEL configuration

	1.2. Discovery Protocols
	1.2.1. PING
	1.2.2. TCPGOSSIP
	1.2.3. TCPPING
	1.2.4. MPING

	1.3. Failure Detection Protocols
	1.3.1. FD
	1.3.2. FD_SOCK
	1.3.3. FD_SIMPLE

	1.4. Reliable Delivery Protocols
	1.4.1. UNICAST
	1.4.2. NAKACK

	1.5. Other Configuration Options
	1.5.1. Group Membership
	1.5.2. Flow Control
	1.5.3. State Transfer
	1.5.4. Distributed Garbage Collection
	1.5.5. Merging

	2. JBossCache Configuration

	Chapter 13. Clustering
	1. Introduction
	1.1. Cluster Definition
	1.2. Service Architectures
	1.2.1. Client-side interceptor
	1.2.2. Load balancer

	1.3. Load-Balancing Policies
	1.3.1. JBoss AS 3.0.x
	1.3.2. JBoss AS 3.2+

	1.4. Farming Deployment
	1.5. Distributed state replication services

	2. Clustered JNDI Services
	2.1. How it works
	2.2. Client configuration
	2.3. JBoss configuration

	3. Clustered Session EJBs
	3.1. Stateless Session Bean in EJB 2.x
	3.1.1. Handle Cluster Restart

	3.2. Stateful Session Bean in EJB 2.x
	3.2.1. The EJB application configuration
	3.2.2. Optimize state replication
	3.2.3. The HASessionState service configuration

	3.3. Stateless Session Bean in EJB 3.0
	3.4. Stateful Session Bean in EJB 3.0

	4. Clustered Entity EJBs
	4.1. Entity Bean in EJB 2.x
	4.2. Entity Bean in EJB 3.0
	4.2.1. Configure the distributed cache
	4.2.2. Configure the entity beans for cache

	5. HTTP Services
	5.1. Download the software
	5.2. Configure Apache to load mod_jk
	5.3. Configure worker nodes in mod_jk
	5.4. Configure JBoss
	5.5. Configure HTTP session state replication
	5.6. Enabling session replication in your application
	5.7. Use FIELD level replication
	5.8. Monitoring session replication
	5.9. Using Single Sign On

	6. Clustered JMS Services
	6.1. High Availability Singleton Fail-over
	6.1.1. Server Side Configuration
	6.1.2. HA-JMS Client
	6.1.3. Load Balanced HA-JMS MDBs

	Part IV. Legacy EJB Support
	Chapter 14. EJBs on JBoss
	1. The EJB Client Side View
	1.1. Specifying the EJB Proxy Configuration

	2. The EJB Server Side View
	2.1. Detached Invokers - The Transport Middlemen
	2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

	3. The EJB Container
	3.1. EJBDeployer MBean
	3.1.1. Verifying EJB deployments
	3.1.2. Deploying EJBs Into Containers
	3.1.3. Container configuration information
	3.1.3.1. The container-name element
	3.1.3.2. The call-logging element
	3.1.3.3. The invoker-proxy-binding-name element
	3.1.3.4. The sync-on-commit-only element
	3.1.3.5. insert-after-ejb-post-create
	3.1.3.6. call-ejb-store-on-clean
	3.1.3.7. The container-interceptors Element
	3.1.3.8. The instance-pool element
	3.1.3.9. The container-pool-conf element
	3.1.3.10. The instance-cache element
	3.1.3.11. The container-cache-conf element
	3.1.3.12. The persistence-manager element
	3.1.3.13. The web-class-loader Element
	3.1.3.14. The locking-policy element
	3.1.3.15. The commit-option and optiond-refresh-rate elements
	3.1.3.16. The security-domain element
	3.1.3.17. cluster-config
	3.1.3.18. The depends element

	3.2. Container Plug-in Framework
	3.2.1. org.jboss.ejb.ContainerPlugin
	3.2.2. org.jboss.ejb.Interceptor
	3.2.3. org.jboss.ejb.InstancePool
	3.2.4. org.jboss.ebj.InstanceCache
	3.2.5. org.jboss.ejb.EntityPersistenceManager
	3.2.6. The org.jboss.ejb.EntityPersistenceStore interface
	3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

	4. Entity Bean Locking and Deadlock Detection
	4.1. Why JBoss Needs Locking
	4.2. Entity Bean Lifecycle
	4.3. Default Locking Behavior
	4.4. Pluggable Interceptors and Locking Policy
	4.5. Deadlock
	4.5.1. Deadlock Detection
	4.5.2. Catching ApplicationDeadlockException
	4.5.3. Viewing Lock Information

	4.6. Advanced Configurations and Optimizations
	4.6.1. Short-lived Transactions
	4.6.2. Ordered Access
	4.6.3. Read-Only Beans
	4.6.4. Explicitly Defining Read-Only Methods
	4.6.5. Instance Per Transaction Policy

	4.7. Running Within a Cluster
	4.8. Troubleshooting
	4.8.1. Locking Behavior Not Working
	4.8.2. IllegalStateException
	4.8.3. Hangs and Transaction Timeouts

	5. EJB Timer Configuration

	Chapter 15. The CMP Engine
	1. Example Code
	1.1. Enabling CMP Debug Logging
	1.2. Running the examples

	2. The jbosscmp-jdbc Structure
	3. Entity Beans
	3.1. Entity Mapping

	4. CMP Fields
	4.1. CMP Field Declaration
	4.2. CMP Field Column Mapping
	4.3. Read-only Fields
	4.4. Auditing Entity Access
	4.5. Dependent Value Classes (DVCs)

	5. Container Managed Relationships
	5.1. CMR-Field Abstract Accessors
	5.2. Relationship Declaration
	5.3. Relationship Mapping
	5.3.1. Relationship Role Mapping
	5.3.2. Foreign Key Mapping
	5.3.3. Relation table Mapping

	6. Queries
	6.1. Finder and select Declaration
	6.2. EJB-QL Declaration
	6.3. Overriding the EJB-QL to SQL Mapping
	6.4. JBossQL
	6.5. DynamicQL
	6.6. DeclaredSQL
	6.6.1. Parameters

	6.7. EJBQL 2.1 and SQL92 queries
	6.8. BMP Custom Finders

	7. Optimized Loading
	7.1. Loading Scenario
	7.2. Load Groups
	7.3. Read-ahead
	7.3.1. on-find
	7.3.1.1. Left join read ahead
	7.3.1.2. D#findByPrimaryKey
	7.3.1.3. D#findAll
	7.3.1.4. A#findAll
	7.3.1.5. A#findMeParentGrandParent

	7.3.2. on-load
	7.3.3. none

	8. Loading Process
	8.1. Commit Options
	8.2. Eager-loading Process
	8.3. Lazy loading Process
	8.3.1. Relationships

	8.4. Lazy loading result sets

	9. Transactions
	10. Optimistic Locking
	11. Entity Commands and Primary Key Generation
	11.1. Existing Entity Commands

	12. Defaults
	12.1. A sample jbosscmp-jdbc.xml defaults declaration

	13. Datasource Customization
	13.1. Type Mapping
	13.2. Function Mapping
	13.3. Mapping
	13.4. User Type Mappings

	Appendix A. Book Example Installation
	Appendix B. Use Alternative Databases with JBoss AS
	1. How to Use Alternative Databases
	2. Install JDBC Drivers
	2.1. Special notes on Sybase

	3. Creating a DataSource for the External Database
	4. Change Database for the JMS Services
	5. Support Foreign Keys in CMP Services
	6. Specify Database Dialect for Java Persistence API
	7. Change Other JBoss AS Services to Use the External Database
	7.1. The Easy Way
	7.2. The More Flexible Way

	8. A Special Note About Oracle DataBases

