JBoss Enterprise Application Platform

4.2.0

Getting Started Guide

ISBN:
Publication date:

JBoss Enterprise Application ...

The Getting Started Guide provides post-installation information about JBoss Enterprise
Application Platform. Use this guide to familiarise yourself with the platform and the sample
applications that demonstrate application development and deployment.

JBoss Enterprise Application Platform: Getting Started Guide
Copyright © 2007 Red Hat, Inc.

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the
copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 2086 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://www.opencontent.org/openpub/

JBoss Enterprise Application ...

ADOUL ThIS DOOK ...eiieieieii ettt e et e e e e e e e enanaes vii

I 11 o T [T 4o o I PP 1
L FEEADACK ..uiiiiii e 1

2. Other MANUAIS ... e e 1

2. The JB0ss Server - A QUICK TOUP ...oiiueii e ees 3
I B 1= Tox (0 VS 1 £ U1 U TP 3

1.1. JBoss Top Level DireCtory StrUCtUIeco.uviiuiiiiiieiieeei e 3

1.2. JIBOSS_DIST/jboss-as Directory StruCturecceeeveeievnneeieiinneeeiinnnn. 4

2. Server ConfiQUIatioNSco.iiiiiii e 5

2.1. Server Configuration Directory StruCturecccoveeeeviiiinieiiiiineeeeeinnnn. 6

2.2. The "default" Server Configuration File Setcccooeviiiviiiiiiincee, 7

2.3. The "all" Server Configuration File Setcccoooiiiiiiiiiiie 13

A N S e TR 7= Vo = 13

2.5. Adding Your Own Configurationcccoeieiuieeiiiieiiiieeii e eeaieens 14

3. Starting and StoppiNg the SEIVEN ... 14

3.1, StArt the SEIVEN ..oviieie e 14

3.2. Start the Server With Alternate Configurationcccocevviiiiiiinnennns 15

3.3 USING FUNLSN oo 16

3.4, StoppiNg the SEIVETcccvi i 16

3.5. Running as a Service under Microsoft WIindowsccccoeeiiiiineiinnnes 17

o I TSI 1V @ =T] - 17

5. Hot-deployment of SErviCes iN JBOSSicvuiiiiiiiiiiiieiee e 19

6. Basic Configuration ISSUESiiiiuiiiiiei e 19

6.1, COIE SEIVICES ..iiuuiieieiieii e e e et et e e e et e e e e et e e e e et e e et s eeanneeeneees 19

oI oo o |1 o TRST=T Y/ o] T 20

6.3, SECUIMLY SEIVICE ...uuniiiiiiii e 21

6.4. AddItiONal SEIVICES ...cievviiiiiie e 23

7. The Web Container - TOMCALoieuuiiiiieiiieee e e eenas 23

3. EJB3 Caveats in JBoss Enterprise Application Platform 4.2cccoooviiiiiiniiiinnnn. 25
1. Unimplemented fEALUIESuiiiiii e e a e 25

2. Referencing EJB3 Session Beans from non-EJB3 Beanscccoccoiveevieennnn. 25

4. About the Example APPlICALIONSuiiiiiii e 27
L. INSTAIL AT e e eaas 27

5. Sample JSF-EJB3 APPIICALIONcoeviiieiiiiiei et 29
T = 1Y o T [PP 29

2. JSF WED PAJES ... ittt 30

3. EJB3 SESSION BEANSuciiiiiiii ettt e e 34

4. Configuration and PacKagingceeiuiiiiiiiieiiiiece e e e 36

4.1. Building The Applicationoooouiiiiiii e 36

4.2, Configuration FileSiiiiiiiie e 37

5. The DAtabasec..iiiiiiii e 39

5.1. Creating the Database Schemaccccooooiiiiiiii 39

5.2. The HSQL Database Manager TOO!cccocvuiieiiiieiiiiiiiiieeic e 39

6. Deploying the APPlCALIONoiiiiii e 40

B. USING SEAM ..ttt ettt 43

I = = T 1Y, o 1o [43

JBoss Enterprise Application ...

2. JSF Web Pages - index.xhtml and create.xhtmlcccoooviiiiiiiiiiiiinni, 44

3. Data Access using a SesSioN BeaNccuviviiiiiiiicii e 46

4. JSF Web Pages - todos.xhtml and edit.xhtml ... 47

D XMl IS e e 49

6. FUrther INfOrmMationoiiiiiiiii e 50

7. Using other Databasescouuiiiiiii e 51
1. DataSource Configuration FileSoviiiiiiiiiiiiii e 51

2. Using MySQL as the Default DataSourceccoovvviiiiiiieiiiieeie e 51

2.1. Creating a Database and USErcccuiiiiiiiiiiiiiiiineecie e 51

2.2. Installing the JDBC Driver and Deploying the DataSource 52

2.3. Testing the MySQL DataSOUICEcceuuiiiiniiiiiieii e eeie e 53

3. Setting up an XADataSource with Oracle 9iccovviiviiiiiiiii e, 53

3.1. Padding Xid Values for Oracle Compatibilitycccooeeviiiiiiiiiiiiinnnnn, 54

3.2. Installing the JDBC Driver and Deploying the DataSource 54

3.3. Testing the Oracle DataSOUICEocoeuuiiiiiiiinieiiiieee e 55

A. Further INfOrmation SOUICESoiiiiiiiiiiii e e 57

vi

About this book

The goal of this book is to give you an overview of JBoss Enterprise Application Platform, and
demonstrate some of its features and capability to provide a rapid application development and
deployment environment for Enterprise Java Applications. At the time of writing, the latest
release is version 4.2. You should use this version or later with the example applications. The
example applications described in this book illustrate the development and deployment of
Enterprise Java applications in JBoss Enterprise Application Platform. While the book is not
intended to teach you Enterprise Java development, we will be covering the subject from quite a
basic standpoint, so it will still be useful if you are new to Enterprise Java Application
Development.

We provide you a quick tour of the JBoss Directory Structure, basic Server Configuration, key
configuration files and the JMX and Web Consoles. As we move on to the example applications,
you will see JBoss Enterprise Application Platform in action and get some exposure in simple
configuration and deployment issues. We will introduce the Seam framework and demonstrate
the significant difference that Seam makes to application development.

Of course, that barely scratches the surface of what you can do with JBoss Enterprise
Application Platform. Once you feel comfortable with the information here, the JBoss Enterprise
Application Platform: Server Configuration Guide can take you through the rest of the way to
total mastery of JBoss Enterprise Application Platform.

Vii

viii

Chapter 1.

Introduction

JBoss Enterprise Application Platform is easy to install and you can have it running in a few
easy steps. Refer to the JBoss Enterprise Application Platform: Installation Guide for information
on pre-requisites for installation and the detailed installation steps.

Once you have JBoss Enterprise Application Platform installed, use this guide to familiarize
yourself with its layout and the example applications that demonstrate application development
and deployment.

1. Feedback

If you spot a typo in the JBoss Enterprise Application Platform: Getting Started Guide, or if you
have thought of a way to make this manual better, we would love to hear from you! Submit a
report in Bugzilla [http://bugzilla.redhat.com/bugzilla/] against the Product: JBoss Enterprise
Application Platform, Version: 4.2.0, Component: Getting_Started_Guide. If you have a
suggestion for improving the documentation, try to be as specific as possible. If you have found
an error, include the section number and some of the surrounding text so we can find it easily.

2. Other Manuals

If you are looking for detailed product information refer to the manuals available online at
http://www.redhat.com/docs/jboss.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/
http://www.redhat.com/docs/jboss

Chapter 2.

The JBoss Server - A Quick Tour

Lets explores the JBoss Enterprise Application Platform directory structure and help you
understand how the installation is laid out and what goes where. It's worth familiarizing yourself
with the layout, locations of the key configuration files, log files, deployment and so on. It will
help you understand the JBoss service architecture so that you'll be able to find your way
around when it comes to deploying your own applications.

1. Directory Structure

1.1. JBoss Top Level Directory Structure

Installing JBoss Enterprise Application Platform creates a top level directory, which will be
named j boss- eap- 4. 2 if you used the zip installation method, and will be named according to
your specification if you used the GUI installer. Throughout this guide we refer to this top-level
directory as the JBOSS_DiI ST directory. There are four sub-directories immediately below this:

e doc: contains the product documentation.

» jboss-as: contains sub directories that contain server start scripts, JARS, server configuration
sets and working directories. You need to know your way around the distribution layout to
locate JARs for compiling code, updating configurations, deploying your code, etc.

* seam: contains the files for Hibernate and the JBoss Seam Framework.

Uninstaller: contains the uninstaller program uni nstal l er. j ar.

Below is the layout of the installation directory of JBoss Enterprise Application Platform. In the
figure, the def aul t server configuration file set is shown expanded. In a clean installation,
within the ser ver/ def aul t directory only the conf, depl oy, and | i b directories exist. The

dat a, | og, t np and wor k sub-directories are created by JBoss and won't exist until you've run
the server at least once. Section 3, “Starting and Stopping the Server” will teach you to run the
server.

j boss-eap-4.2 /1 jboss. hone_url

| + doc

| + j boss-as

| + bin

| + client

| + docs

| + icons

|+ lib /] jboss.lib.url

| + scripts

| + server
| + all /] jboss.server. name
| + default /'l jboss.server. home. url
| + conf /] jboss.server.config.url
| + depl oy
[+ 1ib /'l jboss.server.lib.url

Chapter 2. The JBoss Server -...

| + data
| + 1 og
|+ tnp
| + wor k
| + mi ni mal
| + production
| + seam
| + Uninstaller /] jboss.uninstaller.url

Several of the locations may be overridden. For these locations, the

org. j boss. system server. Server Conf i g interface constant and its corresponding system
property string are shown in the figure. The names ending in URL correspond to locations that
can be specified using a URL to access remote locations, for example, HTTP URLs against a
web server.

1.2. JBOSS_DIST/jboss-as Directory Structure

The table below illustrates the contents of the j boss- as directory.

Directory Description

bi n Contains startup, shutdown and other
system-specific scripts. Basically all the entry
point JARs and start scripts included with the
JBoss distribution are located in the bi n
directory.

client Stores configuration files and JAR files that
may be used by a Java client application
(running outside JBoss) or an external web
container. You can select archives as
required or use j bossal | -client.jar.

docs Contains the XML DTDs used in JBoss for
reference (these are also a useful source of
documentation on JBoss configuration
specifics). There are also example JCA (Java
Connector Architecture) configuration files for
setting up datasources for different databases
(such as MySQL, Oracle, Postgres).

lib Contains startup JARs used by JBoss. Do not
place your own JAR files in this directory.

server Contains the JBoss server configuration sets.
Each of the subdirectories in here is a
different server configuration. JBoss ships
with mi ni mal , def aul t, producti on, and al |
configuration sets. The subdirectories and key
configuration files contained in the def aul t

Server Configurations

Directory Description

configuration set are discussed in more detail
in subsequent sections.

Table 2.1. Contents of JBosS DI ST/ j boss- as directory

2. Server Configurations

Fundamentally, the JBoss architecture consists of the JMX MBean server, the microkernel, and
a set of pluggable component services - the MBeans. This makes it easy to assemble different
configurations and gives you the flexibility to tailor them to meet your requirements.

You don’t have to run a large, monolithic server all the time; you can remove the components
you don't need (which can also reduce the server startup time considerably) and you can also
integrate additional services into JBoss by writing your own MBeans. You certainly don’t need to
do this to be able to run standard J2EE applications though. Everything you need is already
there.

You don't need a detailed understanding of JMX to use JBoss, but it's worth keeping a picture
of this basic architecture in mind as it is central to the way JBoss works.

The JBoss Enterprise Application Platform ships with four different server configurations. Within
the JBOSS_DI ST/ j boss- as/ server directory, you will find four subdirectories: ni ni mal ,

def aul t, producti on and al I - one for each server configuration. Each of these configurations
provide a different set of services. The product i on configuration is the one used if you don’t
specify another one when starting up the server.

minimal
has a minimal configuration—the bare minimum services required to start JBoss. It starts
the logging service, a JNDI server and a URL deployment scanner to find new deployments.
This is what you would use if you want to use JMX/JBoss to start your own services without
any other J2EE technologies. This is just the bare server. There is no web container, no
EJB or JMS support. This is not a J2EE 1.4 compatible configuration.

default
is a base J2EE 1.4 server profile containing a default set of services. It has the most
frequently used services required to deploy a J2EE application. It does not include the
JAXR service, the IIOP service, or any of the clustering services. Please note that although
this configuration is called "default", the actual default configuration for the server is the
"production” configuration.

all
on the other hand has all the services configured to launch every single component. This is
a full J2EE 1.4 server profile with enterprise extensions such as Clustering and RMI/IIOP.

Chapter 2. The JBoss Server -...

production
is based on the "all" profile, tuned for production; with log verbosity reduced, deployment
scanning every 60 seconds, and memory usage tuned to accomodate production
deployment requirements, among other things. This is the configuration that will be used by
the server when it is started, if no other configuration is specified.

If you want to know which services are configured in each of these instances, look at the
j boss-servi ce. xnl file in the JBOSS DI ST/ j boss- as/ server/ <i nst ance- nane>/ conf/
directory and also the configuration files in the

JBOSS DI ST/ j boss- as/ server/ <i nst ance- nane>/ depl oy directory.

[vsr]$ls server/defaul t/conf
j bossjta-properties.xm jndi.properties st andar dj bosscnp-j dbc. xm

j boss-1 0g4j . xm | ogi n-config.xm standardj boss. xni
j boss-m ni mal . xm pr ops xndesc
j boss-servi ce. xm st andar dj aws. xmi

Note

The production configuration is the one used if you don’t specify another one

when starting up the server.

To start the server using an alternate configuration refer to Section 3.2, “Start the
Server With Alternate Configuration”.

2.1. Server Configuration Directory Structure

The directory server configuration you're using, is effectively the server root while JBoss is
running. It contains all the code and configuration information for the services provided by the
particular server configuration. It's where the log output goes, and it's where you deploy your
applications. Table 2.2, “Server Configuration Directory Structure” shows the directories inside
the def aul t server configuration directory (JBOSS_DI ST/ j boss- as/ ser ver/ def aul t) and their
functions.

Directory Description

conf The conf directory contains the j boss- servi ce. xml bootstrap descriptor
file for a given server configuration. This defines the core services that are
fixed for the lifetime of the server.

dat a The dat a directory is available for use by services that want to store
content in the file system. It holds persistent data for services intended to
survive a server restart. Serveral JBoss services, such as the embedded
Hypersonic database instance, store data here.

The "default" Server Configuration File Set

Directory Description

depl oy The depl oy directory contains the hot-deployable services (those which
can be added to or removed from the running server). It also contains
applications for the current server configuration. You deploy your
application code by placing application packages (JAR, WAR and EAR
files) in the depl oy directory. The directory is constantly scanned for
updates, and any modified components will be re-deployed automatically.
This may be overridden through the URLDeploymentScanner URLs
attribute.

lib This directory contains JAR files (Java libraries that should not be hot
deployed) needed by this server configuration. You can add required
library files here for JDBC drivers etc. All JARs in this directory are loaded
into the shared classpath at startup.

| og This is where the log files are written. JBoss uses the Jakarta | og4j
package for logging and you can also use it directly in your own
applications from within the server. This may be overridden through the
conf /| og4j . xnl configuration file.

tnp The t np directory is used for temporary storage by JBoss services. The
deployer, for example, expands application archives in this directory.

wor k This directory is used by Tomcat for compilation of JSPs.

Table 2.2. Server Configuration Directory Structure

2.2. The "default" Server Configuration File Set

The "def aul t " server configuration file set is located in the
JBOSS DI ST/ j boss- as/ server/ def aul t directory. Let's take a look at the contents of the
def aul t server configuration file set:

j boss-eap-4.2 /1 jboss. hone_url
| + doc
| + j boss-as
| + bin
| + client
| + docs
| + icons
|+ lib [/ jboss.lib.url
| + scripts
| + server
| + all /'l jboss. server. nane
| + default /'l jboss.server. home. url
| + conf [/ jboss.server.config.url
| + props
| + xndesc

- jbossjta-properties.xn
- jboss-m ni mal . xm

Chapter 2. The JBoss Server -...

- jndi.properties
- standardj boss. xn
- jboss-1o0g4j.xm
- jboss-service. xm
- login-config.xn
- standar dj bosscnp-j dbc. xni
| + depl oy
| + ej b3. depl oyer
| + http-invoker. sar
| + j boss-aop-j dk50. depl oyer
j boss- bean. depl oyer
j boss- web. depl oyer
j bossws. sar
j ms
j mx- consol e. war
managenent
uui d- key- gener at or . sar
bsh- depl oyer . xn
- cache-invalidation-service. xm
- client-depl oyer-service.xn
- ear-depl oyer. xn
- ej b3-interceptors-aop. xn
- ej b-depl oyer. xn
- hsqgl db-ds. xm
- jboss-ha-local -jdbc.rar
-] boss-ha-xa-jdbc.rar
-] bossjca-service. xm
- jboss-local -jdbc.rar
- jboss-xa-jdbc.rar
- jnmx-invoker-service. xn
-] sr88-service.xm
- mail-service. xn
- nonitoring-service. xm
- properties-service. xmn
- quartz-ra.rar
- schedul e- manager - servi ce. xm
- schedul er-servi ce. xm
- sql exception-service. xmn

+ + + + + + +

+ lib /'l jboss.server.lib.url
J
| + m nimal
| + production
| + seam
+ Uninstaller /] jboss.uninstaller.url
J

2.2.1. Contents of "conf" directory

The files in the conf directory are explained in the following table.

Description

j boss- i ni mal . xni This is a minimalist example of the
j boss-servi ce. xnml configuration file. (This

The "default" Server Configuration File Set

File Description

is the j boss-servi ce. xnl file used in the
mi ni mal configuration file set)

j boss-service. xm j boss-service. xnl defines the core
services and their configurations.

jndi . properties The j ndi . properti es file specifies the JINDI
I nitial Context properties that are used
within the JBoss server when an
I nitial Context is created using the no-arg
constructor.

j boss-10g4j . xm This file configures the Apache log4j
framework category priorities and appenders
used by the JBoss server code.

| ogi n-config. xm This file contains sample server side
authentication configurations that are
applicable when using JAAS based security.

props/ * The pr ops directory contains the users and
roles property files for the j nx- consol e.

st andar dj aws. xm This file provides the default configuration for
the legacy EJB 1.1 CMP engine.

st andar dj boss. xm This file provides the default container
configurations.
st andar dj bosscnp-j dbc. xm This file provides a default configuration file

for the JBoss CMP engine.

xmdesc/ * - mbean. xni The xndesc directory contains XMBean
descriptors for several services configured in
the j boss-servi ce. xn file.

Table 2.3. Contents of "conf" directory

2.2.2. Contents of "deploy" directory

The files in the depl oy directory are explained in the following table.

File Description

bsh- depl oyer . xm This file configures the bean shell deployer,
which deploys bean shell scripts as JBoss
services.

cache-inval i dati on-service. xm This is a service that allows for custom

invalidation of the EJB caches via JMS
notifications. It is disabled by default.

Chapter 2. The JBoss Server -...

File Description

client-depl oyer-service. xm This is a service that provides support for
J2EE application clients. It manages the
j ava: conp/ env enterprise naming context for
client applications based on the
appl i cation-client.xnl descriptor.

ear - depl oyer . xm The EAR deployer is the service responsible
for deploying J2EE EAR files.

ej b- depl oyer . xm The EJB deployer is the service responsible
for deploying J2EE EJB JAR files.

hsgl db- ds. xmi hsgl db- ds. xnl configures the Hypersonic
embedded database service configuration file.
It sets up the embedded database and related
connection factories.

htt p-i nvoker. sar htt p-i nvoker. sar contains the detached
invoker that supports RMI over HTTP. It also
contains the proxy bindings for accessing
JNDI over HTTP.

j boss- aop-j dk50. depl oyer This service configure the
Aspect Manager Ser vi ce and deploys JBoss
AOP applications.

j boss- bean. depl oyer j boss- bean. depl oyer provides the JBoss
microcontainer, which deploys POJO services
wrapped in . beans files.

j boss-ha-1ocal -j dbc. rar j boss-ha-l ocal -jdbc. rar is an
experimental version of
j boss-1ocal -j dbc. rar that supports
datasource failover.

j boss- ha- xa-j dbc. rar j boss- ha- xa-j dbc. rar is an experimental
version of j boss- xa-j dbc. rar that supports
datasource failover.

j boss-local -jdbc. rar j boss-1local -jdbc. rar is a JCA resource
adaptor that implements the JCA
ManagedConnect i onFact ory interface for
JDBC drivers that support the Dat aSour ce
interface but not JCA.

j boss-xa-jdbc.rar j boss-xa-j dbc. rar is a JCA resource
adaptor that implements the JCA
ManagedConnect i onFact ory interface for
JDBC drivers that support the XADat aSour ce
interface.

j bossj ca-service. xn j bossj ca-servi ce. xnl is the application

10

The "default" Server Configuration File Set

File Description

server implementation of the JCA
specification. It provides the connection
management facilities for integrating resource
adaptors into the JBoss server.

j boss-web. depl oyer The j boss- web. depl oyer directory provides
the Tomcat servlet engine.

j bossws. sar j bossws. sar provides J2EE web services
support.
j ms/ hsql db-j dbc- st at e- servi ce. xni hsql db-j dbc- st at e- servi ce. xnl provides

JMS state management using Hypersonic.

j ms/ hsql db-j dbc2-servi ce. xn hsql db-j dbc2-servi ce. xm configures IMS
persistence and caching using Hypersonic. It
also contains the Dest i nat i onManager
MBean, which is the core service for the IMS
implementation.

j ms/ j bossng- desti nati ons-servi ce. xm j bossnyg-desti nati ons-service. xm
configures a number of JIMS queues and
topics used by the JMS unit tests.

j s/ j bossny-httpil.sar j bossng- httpil.sar provides a JMS
invocation layer that allows the use of IMS
over HTTP.

j ms/ j bossny- servi ce. xni The j bossng- servi ce. xnl file configures the

core JBossMQ JMS service.

jms/jms-ds. xm The j ns-ds. xn file configures the JBossMQ
JMS provider for use with the j ms-ra. rar
JCA resource adaptor.

jms/jme-ra.rar jms-ra.rar is a JCA resource adaptor that
implements the JCA
ManagedConnect i onFact ory interface for
JMS connection factories.

jms/jvmil-service. xm jvmil-service.xm configures the in-JVM
JMS transport invocation layer.

j s/ uil 2-service. xnl ui | 2-servi ce. xm configures the JIMS
version 2 unified invocation layer. Its a fast
and reliable custom socket based transport
that should be used for messaging between
JVMs.

j mx- consol e. war The j mx- consol e. war directory provides the
JMX Console. The JMX Console provides a
simple web interface for managing the the
MBean server.

11

Chapter 2. The JBoss Server -...

File Description

j mx-i nvoker - servi ce. sar j mx-i nvoker - servi ce. sar is an unpacked
MBean service archive that exposes a subset
of the IMX MBeanSer ver interface methods
as an RMl interface to enable remote access
to the JMX core functionality. This is similar to
the legacy j nx-r i - adapt or . sar, with the
difference that the transport is handled by the
detached invoker architecture.

j sr-88-service.xn j sr-88-service.xm provides the JSR 88
remote deployment service.

mai |l -ra.rar mai | -ra.rar is aresource adaptor that
provides a JavaMail connector.

mai | - servi ce. xn The mai | -servi ce. xnl file is an MBean
service descriptor that provides JavaMail
sessions for use inside the JBoss server.

managenent / consol e- ngr . sar consol e- ngr. sar provides the Web Console.
It is a web application/applet that provide a
richer view of the JMX server management
data than the JMX console. You may view the
console using the URL
http://1 ocal host: 8080/ web- consol e/ .

noni t ori ng-servi ce. xm The noni t ori ng-servi ce. xn file configures
alert monitors like the console listener and
email listener used by JMX notifications.

properties-service. xm The properties-service. xn fileis an
MBean service descriptor that allows for
customization of the JavaBeans
Proper t yEdi t or s as well as the definition of
system properties.

schedul er - servi ce. xm The schedul er-servi ce. xm and
schedul e- manager - servi ce. xnl files are
MBean service descriptors that provide a
scheduling type of service.

sql excepti on-servi ce. xm The sql excepti on-service. xm file is an
MBean service descriptor for the handling of
vendor specific SQLExcept i ons.

uui d- key- gener at or. sar The uui d- key- gener at or. sar service
provides a UUID-based key generation
facility.

Table 2.4. Contents of "deploy" directory

12

The "all" Server Configuration File Set

2.3. The "all" Server Configuration File Set

The "all" server configuration file set is located in the JBOSS_DI ST/ j boss- as/ server/ al |
directory. In addition to the services in the "default” set, the all configuration contains several
other services in the conf/ directory as shown below.

File Description

cl ust er-service. xm This service configures clustering
communication for most clustered services in
JBoss.

depl oy- hasi ngl et on-servi ce. xm This provides the HA singleton service,

allowing JBoss to manage services that must
be active on only one node of a cluster.

depl oy. | ast/farmservice. xn farm servi ce. xml provides the farm service,
which allows for cluster-wide deployment and
undeployment of services.

htt pha-i nvoker . sar This service provides HTTP tunneling support
for clustered environments.

i i op-service.xmn This provides IIOP invocation support.

j uddi - service. sar This service provides UDDI lookup services.

snnp- adapt or . sar This is a JMX to SNMP adaptor. It allows for
the mapping of JMX notifications onto SNMP
traps.

tc5-cluster. sar Provides AOP support for field-level HTTP

session replication.

Table 2.5. Additional Services in "conf" directory for "all" configuration

2.4. EJB3 Services

The following table explains the files providing ejb3 services.

File Description

ej b3-intercept ors-aop. xn This service provides the AOP interceptor
stack configurations for EJB3 bean types.

ej b3. depl oyer This service deploys EJB3 applications into
JBoss.
j boss- aop-j dk50. depl oyer This is a Java 5 version of the AOP deployer.

The AOP deployer configures the
Aspect Manager Ser vi ce and deploys JBoss

13

Chapter 2. The JBoss Server -...

Description

AOP applications.

j bossws. sar This provides Java EE 5 web services
support.

Table 2.6. EJB3 Services

Finally, in the EJB3 "all" configuration there are two additional services.

Description

ej b3-cl ust er ed- sf shcache-servi ce. xm This provides replication and failover for EJB3
stateful session beans.

ej b3-entity-cache-service. xm This provides a clustered cache for EJB3
entity beans.

Table 2.7. Additional Services in EJB3 "all" Configuration

2.5. Adding Your Own Configuration

You can add your own configurations too. The best way to do this is to copy an existing one that
is closest to your needs and modify the contents. For example, if you weren't interested in using
messaging, you could copy the pr oduct i on directory, renaming it as myconf i g, remove the j ns
subdirectory and then start JBoss with the new configuration.

run -c nyconfig

3. Starting and Stopping the Server

3.1. Start the Server

Move to JBCSS_DI ST/ j boss- as/ bi n directory and execute the r un. bat (for Windows) or

run. sh (for Linux) script, as appropriate for your operating system. Your output should look like
the following (accounting for installation directory differences) and contain no error or exception
messages:

[jwul f @hinkpad bin]$./run.sh

JBoss Bootstrap Environnment

JBOSS_HOVE: [/ hone/jwil f/jboss-eap-4.2/jboss-as

14

Start the Server With Alternate

JAVA: java

JAVA OPTS: - Dprogram nanme=run.sh -server -Xms1503m - Xmx1503m
-Dsun.rm.dgc.client.
gcl nt er val =3600000 - Dsun. rm . dgc. server. gcl nt er val =3600000
-D ava. net. preferl Pv4St ack=t rue

CLASSPATH: /home/jwul f/] boss-eap-4. 2/] boss-as/bin/run.jar

13: 11: 46,215 INFO [Server] Starting JBoss (MX M croKernel). ..

13: 11: 46,217 INFO [Server] Release |ID: JBoss [EAP] 4.2.0.GA (build:
SVNTag=JBoss_4_2_0_GA dat e=200706111042)

13:11: 46,218 INFO [Server] Hone Dir: /home/jwilf/jboss-eap-4.2/jboss-as
13:11: 46,219 INFO [Server] Home URL:
file:/hone/jwlf/jboss-eap-4.2/jboss-as/

13:11: 46,220 INFO [Server] Patch URL: null

13:11: 46,225 INFO [Server] Server Nane: production

13:11: 46,225 INFO [Server] Server Hone Dir:

[/ hone/jwul f/jboss-eap-4. 2/jboss-as/server/production

13:11: 46, 225 INFO [Server] Server Honme URL:
file:/honme/jwlf/jboss-eap-4.2/jboss-as/server/production/

13:11: 46,225 INFO [Server] Server Log Dir:

[/ hone/ jwul f/jboss-eap-4. 2/ jboss-as/server/production/| og

13:11: 46, 226 INFO [Server] Server Tenp Dir:

[/ hone/ jwul f/jboss-eap-4. 2/ jboss-as/ server/production/tnp

13:11: 46, 226 INFO [Server] Root Depl oyment Filenane: jboss-service.xn
13:11: 47,071 INFO [Serverlnfo] Java version: 1.5.0_ 11, Sun M crosystens |nc.
13:11: 47,071 INFO [Serverlnfo] Java VM

Java Hot Spot (TM Server VM 1.5.0_11-b03, Sun M crosystens |nc.

13:11: 47,072 INFO [Serverlnfo] OS-System Linux 2.6.21-1.3228.rhel5,i 386
13:11: 48,558 INFO [Server] Core systeminitialized

13:11: 56,934 INFO [WebService] Using RM server codebase:
http://127.0.0. 1: 8083/

13:11: 56, 940 I NFO [Log4j Servi ceSURLWAt chTi mer Task]

Configuring from URL: resource:jboss-1og4j.xmn

Note

Note that there is no "Server Started" message shown at the console when the

server is started using the pr oduct i on profile, which is the default profile used
when no other is specified. This message may be observed in the server. | og
file located in the server/ producti on/ | og subdirectory.

3.2. Start the Server With Alternate Configuration

Using r un. sh without any arguments starts the server using the pr oduct i on server
configuration file set. To start with an alternate configuration file set, pass the name of the

15

Chapter 2. The JBoss Server -...

server configuration file set [same as the name of the server configuration directory under

JBOSS DI ST/ j boss- as/ ser ver] that you want to use as the value to the - c command line

option. For example, to start with the ni ni mal configuration file set you should specify:
[bin]$./run.sh -c mninal

15: 05: 40,301 INFO [Server] JBoss (MX McroKernel) [4.2.0.GA (build:
SVNTag=JBoss_4 2 0_GA dat e=200706111042)] Started in 5s: 75ms

3.3. Using run.sh

The r un script supports the following options:

usage: run.sh [options]

-h, --help Show hel p nmessage

-V, --version Show versi on i nfornmation

-- St op processing options

- D<nane>[=<val ue>] Set a system property

-d, --bootdir=<dir> Set the boot patch directory; Mist be absol ute
or url

-p, --patchdir=<dir> Set the patch directory; Mist be absol ute or
url

-n, --netboot=<url> Boot fromnet with the given url as base

-c, --configuration=<nane> Set the server configuration name

-B, --bootlib=<fil ename> Add an extra library to the front

boot cl asspat h

-L, --library=<fil ename> Add an extra library to the | oaders cl asspath
-C, --classpath=<url> Add an extra url to the | oaders classpath

-P, --properties=<url> Load system properties fromthe given url

-b, --host=<host or ip> Bi nd address for all JBoss services

-g, --partition=<nane> HA Partition nane (defaul t =Def aul t Domai n)

-u, --udp=<ip> UDP mul ti cast address

-1, --1og=<lo0g4j|jdk> Specify the | ogger plugin type

3.4. Stopping the Server

To shutdown the server, you simply issue a Ctrl-C sequence in the console in which JBoss was
started. Alternatively, you can use the shut down. sh command.

[bin]$./shutdown.sh -S

The shut down script supports the following options:

A JMX client to shutdown (exit or halt) a renote JBoss server.

usage: shutdown [options] <operation>

16

Configuration

opti ons:
-h, --help
- D<nane>[=<val ue>]

Show this hel p nessage (default)

Set a system property

St op processing options

-s, --server=<url> Specify the JNDI URL of the renote server

-n, --serverNanme=<url > Speci fy the JMX nane of the Serverl npl

-a, --adapter=<nane> Speci fy JNDI nane of the MBeanServer Connection to
use

-u, --user=<nanme> Speci fy the usernane for authentication

-p, --password=<nanme> Speci fy the password for authentication

operati ons:

-S, --shutdown Shut down t he server

-e, --exit=<code> Force the VMto exit with a status code

-H, --hal t=<code> Force the VMto halt with a status code

Using the shutdown command requires a server configuration that contains the
j mx-i nvoker-service. xm service. Hence you cannot use the shutdown command with the
mi ni mal configuration.

3.5. Running as a Service under Microsoft Windows

You can configure the server to run as a service under Microsoft Windows, and configure it to
start automatically if desired.

Download the JavaSer vi ce package from http://forge.objectweb.org/projects/javaservice/.

Unzip the package and use the JBossl nst al | . bat file to install the JBoss service. You must
set the JAVA_HOVE and JBOSS_HQVE environment variables to point to the j dk and j boss- as
directories before running JBossl nst al | . bat . Run JBossl nst al | . bat with the following
syntax:

JBosslnstal |l . bat <depends> [-auto | -nanual]

Where <depends> is the name of any service that the JBoss AS server depends on, such as the
nysqgl database service.

Once the service is installed the server can be started by using the command net start
JBoss, and stopped with the command net st op JBoss.

Please refer to the documentation included in the JavaSer vi ce package for further information.

4. The JMX Console

When the JBoss Server is running, you can get a live view of the server by going to the JIMX
console application at http://localhost:8080/jmx-console. You should see something similar to
Figure 2.1, “View of the JIMX Management Console Web Application”.

The JMX Console is the JBoss Management Console which provides a raw view of the IMX

17

http://forge.objectweb.org/projects/javaservice/
http://localhost:8080/jmx-console

Chapter 2. The JBoss Server -...

MBeans which make up the server. They can provide a lot of information about the running
server and allow you to modify its configuration, start and stop components and so on.

For example, find the ser vi ce=JNDI Vi ewlink and click on it. This particular MBean provides a
service to allow you to view the structure of the JINDI namespaces within the server. Now find
the operation called | i st near the bottom of the MBean view page and click the i nvoke button.
The operation returns a view of the current names bound into the JNDI tree, which is very useful
when you start deploying your own applications and want to know why you can't resolve a
particular EJB name.

W JRoss [MX Management Console — Mozilla Firefox ===
Eile Edit ‘iew Qo Bookmarks Tools Help
: § “';:' ‘o hitp:/ /localhost:BOBO fjmx - console / |: Dco (Gl

Ml engineering Services Ml Engineering Services a... & RT at a glance M index of Jdocbot/rhel... Ml CvsDetalls - RHDS72... un

o
..

‘Boss JMX Agent View vrenish.users.redhat.com
o

ObjactMame Filter (e.g. *jboss:"*, **:service=invoker,™) 3 ApplyFilter

Catalina

® type=Server
#® type=StringCache

JMIimplementation

® name=Default service=LoaderRepository
® type=MBeanRegistry
#® type=MBeanServerDelegaie

com.arjuna.ats.properties
® module=arjuna
® modulesjia
* module=txo

jboss

N TR WU TR | Y SR JUP | Wp——— -
[+] »

Dane

=

Figure 2.1. View of the JMX Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the
configuration attributes and see what happens. With a very few exceptions, none of the
changes made through the console are persistent. The original configuration will be reloaded
when you restart JBoss, so you can experiment freely without doing any permanent damage.

If you secured your JIMX Console with a username and password, it will prompt you for a
username and password before you can access it.

18

Hot-deployment of services in JBoss

Note

If you installed using the graphical installer, your JIMX Console is already

protected with the given username and password. If you installed using other
modes, you can still configure IMX Security manually. You will learn to secure
your console in Section 6.3, “Security Service”.

5. Hot-deployment of services in JBoss

Let's have a look at a practical example of hot-deployment of services in JBoss before we go on
to look at server configuration issues in more detail. Start JBoss if it isn’'t already running and
take a look in the ser ver/ product i on/ depl oy directory again. Remove the mai | - ser vi ce. xni
file and watch the output from the server:

13:10: 05,235 INFO [Mail Service] Mail service 'java:/Miil' renoved from JNDI

Then replace the file and watch JBoss re-install the service:
13:58: 54,331 INFO [Mail Service] Miil Service bound to java:/ Mail

This is hot-deployment in action.

6. Basic Configuration Issues

Now that we’ve examined the JBoss server, we’ll take a look at some of the main configuration
files and what they're used for. All paths are relative to the server configuration directory
(server/ producti on, for example).

6.1. Core Services

The core services specified in the conf/ j boss-servi ce. xni file are started first when the
server starts up. If you have a look at this file in an editor you'll see MBeans for various services
including logging, security, JNDI, INDIView etc. Try commenting out the entry for the JNDI Vi ew
service.

Note that because the mbeans definition had nested comments, we had to comment out the
mbean in two sections, leaving the original comment as it was.

<l-- Section 1 conmented out
<mbean code="org.j boss. nam ng. JNDI Vi ew"

nanme="j boss: servi ce=JNDI Vi ew"'

xmbean- dd="r esour ce: xndesc/ JNDI Vi ew xmbean. xm " >
-->

<! -- The HANam ngServi ce service nane -->

19

Chapter 2. The JBoss Server -...

<l-- Section tw commented out

<attribute
name="HANam ngSer vi ce" >j boss: servi ce=HAINDI </ at t r i but e></ nbean>
-->

If you then restart JBoss, you'll see that the JNDI Vi ew service no longer appears in the IMX
Management Console (JMX Console) listing. In practice, you should rarely, if ever, need to
modify this file, though there is nothing to stop you adding extra MBean entries in here if you
want to. The alternative is to use a separate file in the depl oy directory, which allows your
service to be hot deployable.

6.2. Logging Service

In JBoss | og4j is used for logging. If you're not familiar with the log4j package and would like to
use it in your applications, you can read more about it at the Jakarta web site
(http://jakarta.apache.org/log4j/).

Logging is controlled from a central conf /| og4j . xni file. This file defines a set of appenders,
specifying the log files, what categories of messages should go there, the message format and
the level of filtering. By default, JBoss produces output to both the console and a log file
(server. | og in the | og directory).

There are 5 basic log levels used: DEBUG, | NFO, WARN, ERROR and FATAL. The logging threshold
on the console is | NFO, which means that you will see informational messages, warning
messages and error messages on the console but not general debug messages. In contrast,
there is no threshold set for the ser ver. | og file, so all generated logging messages will be
logged there.

If things are going wrong and there doesn’t seem to be any useful information in the console,
always check the server. | og file to see if there are any debug messages which might help you
track down the problem. However, be aware that just because the logging threshold allows
debug messages to be displayed, that doesn't mean that all of JBoss will produce detailed
debug information for the log file. You will also have to boost the logging limits set for individual
categories. Take the following category for example.

<I-- Limt JBoss categories to INFO -->
<cat egory nane="org.j boss">

<priority val ue="INFO'/>
</ cat egory>

This limits the level of logging to | NFOfor all JBoss classes, apart from those which have more
specific overrides provided. If you were to change this to DEBUG, it would produce much more
detailed logging output.

As another example, let's say you wanted to set the output from the container-managed
persistence engine to DEBUG level and to redirect it to a separate file, cnp. | og, in order to

20

http://jakarta.apache.org/log4j/

Security Service

analyze the generated SQL commands. You would add the following code to the | og4j . xm
file:

<appender nane="CMP" cl ass="org.jboss. | oggi ng. appender. Rol | i ngFi | eAppender " >
<errorHandl er class="org.]jboss. | ogging.util.Onl yOnceErrorHandl er"/>
<param nanme="Fi | e" val ue="${j boss. server. hone.dir}/| og/cnp.|og"/>
<par am nanme="Append" val ue="fal se"/>
<par am nane="MaxFi | eSi ze" val ue="500KB"/ >
<par am name=" MaxBackupl ndex" val ue="1"/>

<l ayout cl ass="org. apache. | og4j . PatternLayout">
<par am nane="Conver si onPattern” val ue="%l % 5p [%] %&"/>
</l ayout >
</ appender >

<cat egory nane="org. | boss. ej b. pl ugi ns. cnmp" >
<priority val ue="DEBUG' />
<appender -ref ref="CwW"/>

</ cat egory>

This creates a new file appender and specifies that it should be used by the logger (or category)
for the package or g. j boss. ej b. pl ugi ns. cnp.

The file appender is set up to produce a new log file every day rather than producing a new one
every time you restart the server or writing to a single file indefinitely. The current log file is

cnp. | og. Older files have the date they were written added to the name. You will notice that the
| og directory also contains HTTP request logs which are produced by the web container.

6.3. Security Service

The security domain information is stored in the file | ogi n-confi g. xnml as a list of named
security domains, each of which specifies a number of JAAS ! login modules which are used for
authentication purposes in that domain. When you want to use security in an application, you
specify the name of the domain you want to use in the application’s JBoss-specific deployment
descriptors, j boss. xm and/or j boss- web. xnl . We'll quickly look at how to do this to secure the
JMX Console application.

Almost every aspect of the JBoss server can be controlled through the IMX Console, so it is
important to make sure that, at the very least, the application is password protected. Otherwise,
any remote user could completely control your server. To protect it, we will add a security
domain to cover the application. 2 This can be done in the j boss-web. xni file for the IMX
Console, which can be found in depl oy/ j nx- consol e. war / WEB- | NF/ directory. Uncomment
the securi t y- domai n in that file, as shown below.

1 The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication modules.
You can use the ones that are provided or write your own if have more specific requirements.

2f you had installed JBoss using the Graphical Installer and set the IMX Security up, then you will not have to
uncomment the sections, because they are already uncommented. Additionally, the admin password will be set up to
whatever you had specified.

21

Chapter 2. The JBoss Server -...

<j boss- web>
<security-donmai n>j ava: /j aas/j nx- consol e</ security-donmai n>
</ j boss- web>

This links the security domain to the web application, but it doesn't tell the web application what
security policy to enforce, what URLS are we trying to protect, and who is allowed to access
them. To configure this, go to the web. xn file in the same directory and uncomment the
security-constraint thatis already there. This security constraint will require a valid user
name and password for a user in the JBossAdni n group.

<l--
A security constraint that restricts access to the HTM. JMX consol e
to users with the role JBossAdnm n. Edit the roles to what you want and
uncoment the WEB- | NF/j boss-web. xm / security-domain el ement to enabl e
secured access to the HTM. JMX consol e.
-->
<security-constraint>
<web- resour ce-col | ecti on>
<web- r esour ce- nane>Ht m Adapt or </ web- r esour ce- nane>
<descri ption>
An exanpl e security config that only allows users with the
rol e JBossAdnmin to access the HTM. JMX consol e web application
</ descri pti on>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h- constrai nt >
<r ol e- name>JBossAdni n</r ol e- name>
</ aut h-constrai nt >
</ security-constraint>

That's great, but where do the user names and passwords come from? They come from the
j mx- consol e security domain we linked the application to. We've provided the configuration for
this in the conf /1 ogi n-confi g. xm .

<applicati on-policy nanme="j nx-consol e">
<aut henti cati on>
<l ogi n- modul e
code="org. j boss. security. auth. spi.User sRol esLogi nMbdul e"
flag="required">
<nmodul e- opti on name="user sProperties">
props/j nk- consol e-users. properties
</ modul e- opti on>
<nmodul e- opti on name="rol esProperties">
props/ j nk- consol e-rol es. properties
</ modul e- opti on>
</l ogi n- nodul e>
</ aut henti cati on>
</ application-policy>

22

Additional Services

This configuration uses a simple file based security policy. The configuration files are found in
the conf/ pr ops directory of your server configuration. The usernames and passwords are
stored in j nx- consol e- users. properti es in the directory and take the form

"user name=passwor d". To assign a user to the JBossAdni n group add "user nane=JBossAdmni n"
to the j mx- consol e-rol es. properti es file. The existing file creates an adnmi n user with the
password adni n. For security, please either remove the user or change the password to a
stronger one.

JBoss will re-deploy the JIMX Console whenever you update its web. xm . You can check the
server console to verify that JBoss has seen your changes. If you've configured everything
correctly and re-deployed the application, the next time you try to access the JMX Console,
JBoss will ask you for a name and password. 3

The JMX Console isn't the only web based management interface to JBoss. There is also the
Web Console. Although it's a Java applet, the corresponding web application can be secured in
the same way as the JMX Console. The Web Console is in

depl oy/ management / web- consol e. war . The only difference is that the Web Console is
provided as a simple WAR file instead of using the exploded directory structure that the JIMX
Console did. The only real difference between the two is that editing the files inside the WAR file
is a bit more cumbersome.

6.4. Additional Services

The non-core, hot-deployable services are added to the depl oy directory. They can be either
XML descriptor files, *- ser vi ce. xm , or JBoss Service Archive (SAR) files. SARs contain both
the XML descriptor and additional resources the service requires (e.g. classes, library JAR files
or other archives), all packaged up into a single archive.

Detailed information on all these services can be found in the JBoss Enterprise Application
Platform: Server Configuration Guide, which also provides comprehensive information on server
internals and the implementation of services such as JTA and the J2EE Connector Architecture
(JCA).

7. The Web Container - Tomcat

JBoss Enterprise Application Platform comes with Tomcat as the default web container. The
embedded Tomcat service is found in the depl oy/ j boss- web. depl oyer directory. All the
necessary jar files needed by Tomcat can be found in there, as well as a web. xni file which
provides a default configuration set for web applications.

If you are already familiar with configuring Tomcat, have a look at the server . xnl , which
contains a subset of the standard Tomcat format configuration information. As it stands, this

3 Since the username and password are session variables in the web browser you may need to shut down your browser
and come back in to see the login dialog come back up.

23

Chapter 2. The JBoss Server -...

includes setting up the HTTP connector on the default port 8080, an AJP connector on port
8009 (can be used if you want to connect via a web server such as Apache) and an example of
how to configure an SSL connector (commented out by default).

You shouldn’t need to modify any of this other than for advanced use. If you've used Tomcat
before as a stand-alone server you should be aware that things are a bit different when using
the embedded service. JBoss is in charge and you shouldn’t need to access the Tomcat
directory at all. Web applications are deployed by putting them in the JBoss depl oy directory
and logging output from Tomcat can be found in the JBoss | og directory.

24

Chapter 3.

EJB3 Caveats in JBoss Enterprise
Application Platform 4.2

There are a number of implementation features that you should be aware of when developing
applications for JBoss Enterprise Application Platform 4.2.

1. Unimplemented features

The Release Notes for JBoss Enterprise Application Platform 4.2 contain information on EJB3
features that are not yet implemented, or partially implemented. The Release Notes include
links to issues in JIRA for information on workarounds and further details.

2. Referencing EJB3 Session Beans from non-EJB3
Beans

JBoss Enterprise Application Platform 5 will fully support the entire Java 5 Enterprise Edition
specification. In the meantime JBoss Enterprise Application Platform 4.2 implements EJB3
functionality by way of an EJB MBean container running as a plugin in the JBoss Application
Server. This has certain implications for application development.

The EJB3 plugin injects references to an EntityManager and @EJB references from one EJB
object to another. However this support is limited to the EJB3 MBean and the JAR files it
manages. Any JAR files which are loaded from a WAR (such as Servlets, JSF backing beans,
and so forth) do not undergo this processing. The Java 5 Enterprise Edition standard specifies
that a Servlet can reference a Session Bean through an @EJB annotated reference, however
this is not implemented in JBoss Enterprise Application Platform 4.2.

In order to access an EJB3 Session Bean from a Servlet or JSF Backing Bean you will need to
do one of two things:

1. Without Seam - JNDI Lookup . Without utilizing the Seam framework that is part of JBoss
Enterprise Application Platform you will need to use an explicit INDI lookup to access the
EJB3 Session Bean. You can see an example of this being done in the TodoBean. j ava file in
the j sf ej b3 example application, described in Chapter 5, Sample JSF-EJB3 Application.

private TodoDaol nt getDao () {
try {
Initial Context ctx = new Initial Context();
return (TodoDaol nt) ctx.|ookup("jsfejb3/ TodoDao/l ocal ");
} catch (Exception e) {
e.print StackTrace();
t hrow new Runti neException("coul dn't | ookup Dao", e);
}
}

25

Chapter 3. EJB3 Caveats in J...

ctx. | ookup("j sfej b3/ TodoDao/ | ocal ") ; is the method used to reference the EJB3
Session Bean. The form is: AppNane/Sessi onBeanNane/local.

. With Seam - Leave it to the Seam Framework . When you are using the Seam Framework

you don't need to worry about this. Because the Seam framework manages the interaction of
Beans anyway, it already automates this type of interaction.

Refer to Chapter 6, Using Seam for a more detailed explanation of achieving this using the
Seam framework.

26

Chapter 4.

About the Example Applications

In this guide, we make use of a simple web application to illustrate the use of JSF-EJB3
components. We then illustrate how to use Seam to integrate the JSF and EJB3 components.
The example applications (source code) come with this guide and you can find them located in
the JBOSS_DI ST/ doc/ exanpl es directory. You can also download the sample applications from
here [http://www.redhat.com/docs/jboss]. We use two examples in this book:

* A simple "TODO" application to create, view and edit tasks - implemented using JSF and
EJB3;

« The same application using the SEAM framework.

If you installed the documentation on your hard drive, then the first example can be found in the
JBOSS_DI ST/ doc/ exanpl es/ j sf ej b3 directory. We will see how to build this example using the
bui | d. xnl file present here and also how to deploy the application. We will also cover in detalil
the working of the .java, .xml and .properties files.

The second example used in this guide can be found in the

JBOSS_DI ST/ doc/ exanpl es/ seangj b3 directory. Using a simple "TODO" application we will
illustrate how Seam ties together the database, the web interface and the EJB3 business logic
in a web application. We will use the bui I d. xn file present here to compile and build our Seam
application.

Within the JBOSS_DI ST/ doc/ exanpl es/ <seanej b3| j sf ej b3> directory, you will find the
following sub-directories:

* src: contains the Java source code files.
e view: contains the web pages.

* resources: contains all the configuration files used.

1. Install Ant

To compile and package the examples, you must have Apache Ant 1.6+ installed in your
machine. You can download it from http://ant.apache.org. You can have Ant installed in few
steps:

» Unzip the downloaded file to the directory of your choice.

« Create an environment variable called ANT_HOME pointing to the Ant installation directory. You
can do this by adding the a line similar to the following to your .bashrc file, substituting the
actual location of the ant directory on your system:

27

http://www.redhat.com/docs/jboss
http://www.redhat.com/docs/jboss
http://ant.apache.org

Chapter 4. About the Example ...

export ANT_HOVE=/ hone/ user/apache-ant-1.7.0

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then opening System/Advanced/Environment Variables. Create a
new variable, call it ANT_HOME and set it to be the ant directory.

» Add $ANT_HOWVE/ bi n to the system path to be able to run ant from the command line. You
can do this by adding the following line to your .bashrc file:

export PATH=$PATH: $ANT_HOVE/ bi n

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then editing the PATH environment variable found in
System/Advanced/Environment Variables/System Variables/Path. Add a semicolon and the
path to the ant bin directory.

 Verify your Ant installation. To do this type ant -ver si on at the command prompt. Your
output should look something like this:

Apache Ant version 1.7.0 conpiled on Decenber 13 2006

28

Chapter 5.

Sample JSF-EJB3 Application

We use a simple "TODQO" application to show how JSF and EJB3 work together in a web
application. The "TODQO" application works like this: You can create a new 'todo’' task item using
the "Create" web form. Each task item has a 'title' and a 'description’. When you submit the
form, the application saves your task to a relational database. Using the application, you can
view all 'todo’ items, edit/delete an existing 'todo’ item and update the task in the database.

The sample application comprises the following components:

« Entity objects - These objects represent the data model; the properties in the object are
mapped to column values in relational database tables.

« JSF web pages - The web interface used to capture input data and display result data. The
data fields on these web pages are mapped to the data model via the JSF Expression
Language (EL).

« EJB3 Session Bean - This is where the functionality is implemented. We make use of a
Stateless Session Bean.

1. Data Model

Lets take a look at the contents of the Data Model represented by the Todo class in the

Todo. j ava file. Each instance of the Todo class corresponds to a row in the relational database
table. The 'Todo' class has three properties: id, title and description. Each of these correspond
to a column in the database table.

The 'Entity class' to 'Database Table' mapping information is specified using EJB3 Annotations
in the 'Todo' class. This eliminates the need for XML configuration and makes it a lot clearer.
The @nt i t y annotation defines the Todo class as an Entity Bean. The @ d and

@z=ner at edVal ue annotations on the i d property indicate that the i d column is the primary key
and that the server automatically generates its value for each Todo object saved into the
database.

@ntity
public class Todo inplenments Serializable {

private |long id;
private String title;
private String description;

public Todo () {
title ="";
description ="";

}

@d @cener at edVal ue

29

Chapter 5. Sample JSF-EJB3 Ap...

public long getld() { return id;}
public void setld(long id) { this.id =id; }

public String getTitle() { return title; }
public void setTitle(String title) {this.title =title;}

public String getDescription() { return description; }
public void setDescription(String description) {
this.description = description;

2. JSF Web Pages

In this section we will show you how the web interface is defined using JSF pages. We will also
see how the data model is mapped to the web form using JSF EL. Using the #{...} notation to
reference Java objects is called JSF EL (JSF Expression Language). Lets take a look at the
pages used in our application:

« index.xhtml: This page displays two options: 1. Create New Todo 2. Show all Todos. When
you click on the Submit button the corresponding action is invoked.

<h: f or n»

<l i ><h: commandLi nk type="subm t" val ue="Create New Todo"
action="create"/></1i>

<l i ><h: commandLi nk type="subnmit" val ue="Show Al l Todos"
action="todos"/></1i>
</ ul >
</ h: fornm

e create.xhtml: When you try to create a new task, this JSF page captures the input data. We
use the t odoBean to back the form input text fields. The #{todoBean.todo.title} symbol refers
to the "title" property of the "todo" object in the "TodoBean" class. The
#{todoBean.todo.description} symbol refers to the "description” property of the "todo" object in
the "TodoBean" class. The #{todoBean.persist} symbol refers to the "persist" method in the
"TodoBean" class. This method creates the "Todo" instance with the input data (title and
description) and persists the data.

<h:formid="create">
<t abl e>
<tr>
<td>Title:</td>
<t d>

30

JSF Web Pages

<h:input Text id="title" val ue="#{todoBean.todo.title}" size="15">
<f:validateLength mi ni mum="2"/>
</ h:i nput Text >
</td>
</tr>
<tr>
<t d>Description: </td>
<td>
<h: i nput Text area i d="descri pti on"
val ue="#{t odoBean. t odo. descri pti on}">
<f:validateLength nini mum="2" maxi num="250"/>
</ h:i nput Text ar ea>
</td>
</tr>
</t abl e>
<h: commandButt on type="submit" id="create" val ue="Create"
acti on="#{t odoBean. persist}"/>
</ h: form

Figure 5.1, “The "Create Todo" web page " shows the "Create Todo" web page with the input

fields mapped to the data model.

Mozilla Firefox

File Edit View Go Bookmarks Tools Help

@-o -8 0 D[hyny] Oco G

DataModel, Validation and Restful Page Demo

#todobean.todo.titl
Title: I'I'itle Example {todobean.todo.title}

#Htodobean.todo.description}

itle Descripticn

Description:

Croate | #todobean.persist}

Done E’_]

Figure 5.1. The "Create Todo" web page

« todos.xhtml: This page displays the list of all "todos" created. There is also an option to
choose a "todo" item for 'edit' or 'delete’.

The list of all 'todos' is fetched by #{todoBean.todos} symbol referring to the 'getTodos()'
property in the 'TodoBean' class. The JSF dat aTabl e iterates through the list and displays

31

Chapter 5. Sample JSF-EJB3 Ap...

each Todo object in a row. The 'Edit' option is available across each row. The #{todo.id}

symbol represents the "id" property of the "todo" object.

<h: f or mp>
<h: dat aTabl e val ue="#{t odoBean. todos}" var="todo">
<h: col um>
<f:facet name="header">Title</f:facet>
#{todo.title}
</ h: col um>
<h: col utMm>
<f:facet nane="header">Description</f:facet>
#{t odo. descri pti on}
</ h: col utm>
<h: col um>
Edit
</ h: col um>
</ h: dat aTabl e>
<cent er>
<h: commandButt on acti on="cr eat e"
val ue="Create New Todo" type="submit"/>
</ center>
</ h: for m>

Figure 5.2, “The "Show All Todos" web page " shows the "Show All Todos" web page with the

data fields mapped to the data model.

Mozilla Firefox

File Edit View Go Bookmarks Tools Help

@-o-& 0O W v ocld
The Todo List

Title Description
Title Example | Title Description | Edit
Title Example 2 Title Description 2 Edit

Create New Todo |

Done

#todobean.todos}

32

JSF Web Pages

Figure 5.2. The "Show All Todos" web page

edit.xhtml: This page allows you to edit the "todo" item's 'title' and 'description’ properties.
The #{todoBean.update} and #{todoBean.delete} symbols represent the "update" and "delete"
methods in the "TodoBean" class.

<h2>Edit #{todoBean.todo.title}</h2>
<h:formid="edit">
<i nput type="hi dden" nane="tid" val ue="#{todoBean.todo.id}"/>
<t abl e>
<tr>
<td>Title:</td>
<t d>
<h:input Text id="title" val ue="#{todoBean.todo.title}" size="15">
<f:validateLength mi ni mum="2"/>
</ h: i nput Text >
</td>
</tr>
<tr>
<t d>Descri ption: </td>
<t d>
<h:i nput Text area i d="descri pti on"
val ue="#{t odoBean. t odo. descri pti on}">
<f:validateLength mini mum="2" maxi num="250"/>
</ h: i nput Text ar ea>
</td>
</tr>
</t abl e>
<h: commandButt on type="submit" id="update" val ue="Update"
acti on="#{t odoBean. update}"/ >
<h: commandButt on type="submit" id="del ete" val ue="Del et e"
action="#{todoBean. del ete}"/ >
</ h: for nm>

Figure 5.3, “The "Edit Todo" web page ” shows the "Edit Todo" web page with the mapping to
the data model.

33

Chapter 5. Sample JSF-EJB3 Ap...

L Y

hd Mozilla Firefox - | E]] %

File Edit WView Go Bookmarks Tools Help

@ -0 R [Yoew[d

Edit Title Example 1

Title: Title Example 1 #todobean.todo.title

Title Description 1 w0 dobean.todo.description}

Description:

Update | Delete |

Dong

#Htodobean.delete}
#todobean.update}

Figure 5.3. The "Edit Todo" web page

Note

We have used XHTML pages in the sample applications because we
recommend using Facelets instead of JSP to render JSF view pages.

3. EJB3 Session Beans

EJB 3.0 is one of the major improvements introduced with Java EE 5.0. It aims at reducing the
complexity of older versions of EJB and simplifies Enterprise Java development and
deployment. You will notice that to declare a class as a 'Session Bean' you simply have to
annotate it. Using annotations eliminates the complexity involved with too many deployment
descriptors. Also the only interface an EJB3 Session Bean requires is a business interface that
declares all the business methods that must be implemented by the bean.

34

EJB3 Session Beans

We will explore the two important source files associated with the Bean implementation in our
application: TodoDaol nt. j ava and TodoDao. j ava.

» Business interface: TodoDaol nt . j ava

We define here the methods that need to be implemented by the bean implementation class.

Basically, the business methods that will be used in our application are defined here.

public interface TodoDaol nt {

public void persist (Todo todo);
public void delete (Todo todo);
public void update (Todo todo);

public List <Todo> findTodos ();
public Todo findTodo (String id);

» Stateless Session Bean: TodoDao. j ava

The @5t at el ess annotation marks the bean as a stateless session bean. In this class, we
need to access the Entity bean Todo defined earlier. For this we need an Ent i t yManager .
The @er si st enceCont ext annotation tells the JBoss Server to inject an entity manager
during deployment.

@t at el ess
public class TodoDao i npl enments TodoDaol nt {

@Per si st enceCont ext
private EntityManager em

public void persist (Todo todo) ({
em persi st (todo);

}

public void delete (Todo todo) {
Todo t = em nerge (todo);
emrenove(t);

}

public void update (Todo todo) {
em nerge (todo);

}

public List <Todo> findTodos () {
return (List <Todo>) emcreateQuery("select t from Todo t")
.get Resul tList();

}

public Todo findTodo (String id) {

35

Ch

apter 5. Sample JSF-EJB3 Ap...

4.

return (Todo) em find(Todo. cl ass, Long. parseLong(id));

}

Configuration and Packaging

We will build the sample application using Ant and explore the configuration and packaging
details. If you haven't installed Ant yet, do so now.

4.

1. Building The Application

Let's look at building the example application and then explore the configuration files in detail.

In Chapter 4, About the Example Applications, we looked at the directory structure of the

j sf ej b3 sample application. At the command line, go to the j sf ej b3 directory. There you will
see abuil d. xm file. This is our Ant build script for compiling and packaging the archives. To
build the application, you need to first of all edit the bui | d. xni1 file and edit the value of

j boss-di st to reflect the location where the JBoss Application Server is installed. Once you
have done this, just type the command ant and your output should look like this:

[vreni sh@inux jsfejb3]$ ant
Bui | dfile: build.xm

conpi | e:
[mkdir] Created dir:
[horre/ vr eni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sf ej b3/ bui | d/ cl asses
[javac] Conpiling 4 source files to
/ hone/ vr eni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sf ej b3
[bui | d/ cl asses
[javac] Note:
[horre/ vr eni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sfej b3/ src/ TodoDao. j ava uses
unchecked or unsafe operations.
[javac] Note: Reconpile with -Xint:unchecked for details.

war :
[mkdir] Created dir:
/ hone/ vr eni sh/ j boss- eap- 4. 2/ doc/ exanpl es/j sfejb3/build/jars
[war] Buil di ng war:
/ hone/ vreni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sfej b3/ bui | d/j ars/
app. war

ej b3j ar:
[jar] Building jar:

/ horre/ vr eni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sfej b3/ buil d/jars/
app.j ar

ear:
[ear] Building ear:
/ hone/ vreni sh/ j boss- eap- 4. 2/ doc/ exanpl es/ j sfej b3/ bui | d/jars/

36

Configuration Files

j sfej b3. ear
mai n:

BUI LD SUCCESSFUL
Total tinme: 2 seconds
(vreni sh@inux jsfejb3)$

If you get the BUILD SUCCESSFUL message, you will find a newly created bui | d directory with
2 sub-directories in it:

» classes: containing the compiled class files.
 jars: containing three archives - app. j ar, app. war and j sf ej b3. ear.
» app.jar : EJB code and descriptors.

» app.war : web application which provides the front end to allow users to interact with the
business components (the EJBs). The web source (HTML, images etc.) contained in the
j sf ej b3/ vi ewdirectory is added unmodified to this archive. The Ant task also adds the
VEB- | NF directory that contains the files which aren’t meant to be directly accessed by a
web browser but are still part of the web application. These include the deployment
descriptors (web. xm) and extra jars required by the web application.

* jsfejb3.ear : The EAR file is the complete application, containing the EJB modules and the
web module. It also contains an additional descriptor, appl i cati on. xni . Itis also possible
to deploy EJBs and web application modules individually but the EAR provides a
convenient single unit.

4.2. Configuration Files

Now that we have built the application, lets take a closer look at some of the important
Configuration files. We have built the final archive ready for deployment - j sf ej b3. ear. The
contents of your EAR file should look like this:

j sfej b3. ear
| + app.j ar /1 contains the EJB code
| + i mport. sql
| + Todo. cl ass
| + TodoDao. cl ass
| + TodoDaol nt . cl ass
| + META-I NF
| + persi stence. xm
| + app. war /1 contains web U
| + i ndex. ht m
| + i ndex. xht m
| + create. xhtm
| + edit.xhtm

37

Chapter 5. Sample JSF-EJB3 Ap...

t odos. xht m
TodoBean. cl ass
styl e.css
META- | NF
VEB- | NF
| + faces-config. xm
| + navi gati on. xni
| + web. xm
| + META-INF // contains the descriptors
| + application. xni
| + j boss-app. xni

+ + + + +

e application. xn : This file lists the JAR files in the EAR (in our case app. j ar) and tells the
JBoss server what files to look for and where. The root URL for the application is also
specified in this file as 'context-root'.

<appl i cati on>
<di spl ay- name>Sanpl e Todo</ di spl ay- nane>
<nmodul e>
<web>
<web- uri >app. war </ web- uri >
<cont ext - r oot >/ j sf ej b3</ cont ext - r oot >
</ web>
</ nodul e>
<modul e>
<ej b>app. j ar </ ej b>
</ modul e>
</ applicati on>

* j boss-app. xn : Every EAR application should specify a unique string name for the class
loader. In our case, we use the application name ‘jsfejb3' as the class loader name.

<j boss- app>
<l oader - reposi tory>
j sfej b3: archi ve=j sf ej b3. ear
</'| oader - r eposi t ory>
</ j boss- app>

e app.j ar: This contains EJB3 Session Bean and Entity Bean classes and the related
configuration files. In addition, the per si st ence. xnl file configures the back-end data source
(in our case the default HSQL database) for the Ent i t yManager .

<per si st ence>
<per si stence-unit nane="hel | owor| d">
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j ta- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>

38

The Database

<properties>
<property nane="hi bernate. di al ect”
val ue="org. hi bernat e. di al ect. HSQLDi al ect"/ >
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="creat e-drop"/>
</ properties>
</ per si st ence-uni t >
</ per si st ence>

* app. war : This contains the Web Ul files packaged according to the Web Application aRchive
(WAR) specification. It contains all the web pages and the required configuration files. The
web. xni file is an important file for all JAVA EE web applications. It is the web deployment
descriptor file. The f aces- confi g. xni file is the configuration file for JSF. The
navi gati on. xm file contains the rules for JSF page navigation.

I/ faces-config. xni
<faces-confi g>
<appl i cati on>
<vi ew handl er >
com sun. f acel et s. Facel et Vi ewHandl er
</ vi ew handl er >
</ applicati on>
<managed- bean>
<descri pti on>Dao</ descri pti on>
<managed- bean- nane>t odoBean</ managed- bean- nanme>
<managed- bean- cl ass>TodoBean</ managed- bean- cl ass>
<managed- bean- scope>r equest </ managed- bean- scope>
</ managed- bean>
</ faces-config>

5. The Database

5.1. Creating the Database Schema

To pre-populate the database, we have supplied SQL Code (i nport. sql) to run with HSQL in
the exanpl es/ j sf ej b3/ r esour ces directory. When you build the application using Ant, this is
packaged in the app.jar file within the jsfejb3.ear file. When the application is deployed, you
should be able to view the pre-populated data.

5.2. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the JMX console application and click on the
servi ce=Hyper soni c link which you'll find under the section j boss. If you can’t find this, make
sure the Hypersonic service is enabled in the hsql db- ds. xni file.

This will take you to the information for the Hypersonic service MBean. Scroll down to the
bottom of the page and click the i nvoke button for the st art Dat abaseManager () operation.

39

Chapter 5. Sample JSF-EJB3 Ap...

This starts up the HSQL Manager, a Java GUI application which you can use to manipulate the

dat

abase directly.

-

7 HS5QL Database Manager = =] %

File View Command FRecent Options Tools Schemas Help

[i Clear sQL F Execute 50L

= jdbc:hsgldb:/home/vrenish/Enter||+ || SEESSSIEI0RRSIRI

> PUELIC.TIMERS 52|Description Example 2 [Title Example 2
> PUELIC.TODO

[> PUBLIC, CHAFZECHOIMFOBEAM
[> PUBLIC.HILOSEQUEMCES

[} PUBLIC. JMS _MESSACES

[[; PUBLIC.JMS_ROLES < i o]
P

PUBLIC. M5 _SUBSCRIFTIONS
PUBLIC.JMS_TRAMSACTIONS D DESCRIFTION TITLE
[> PUBLIC. JMS5 _USERS S1|Description example 1 [Title Example 1

PUBLIC
P ID

> DESCRIPTION
P TITLE

P Indice

b o :

L] 1

[+ I [*]

@ Ready [2 rows retrieved

Figure 5.4. The HSQL Database Manger

6.

Deploying the Application

Deploying an application in JBoss is simple and easy. You just have to copy the EAR file to the
depl oy directory in the 'server configuration' directory of your choice. Here, we will deploy it to
the 'default’' configuration, so we copy the EAR file to the

JBOSS DI ST/ j boss- as/ server/ def aul t/ depl oy directory.

Yo

u should see something close to the following output from the server:

15: 32: 23,997 I NFO [EARDepl oyer] Init J2EE applicati on:
file:/home/vrenish/jboss-eap-4.2

/j boss-as/ server/defaul t/depl oy/ | sfejb3. ear

15: 32: 24,212 | NFO [JnxKernel Abstraction] creating w apper del egate for:
org. j boss. ej b3.

entity. PersistenceUnit Depl oynent

15: 32: 24,213 INFO [JnxKernel Abstraction] installing MBean:
persi stence. units: ear=

j sfej b3. ear,jar=app.jar,unitName=hel |l oworl d with dependenci es:
15: 32: 24, 213 I NFO [JnxKer nel Abstracti on]

j boss. j ca: nane=Def aul t DS, servi ce=

40

Deploying the Application

Dat aSour ceBi ndi ng

15: 32: 24, 275 I NFO [PersistenceUnitDepl oynent] Starting persistence unit
per si st ence.

uni t s: ear =j sf ej b3. ear, j ar=app. j ar, uni t Name=hel | owor | d

15: 32: 24,392 INFO [Ej b3Configuration] found EIJB3 Entity bean: Todo

15: 32: 24, 450 WARN [Ej b3Confi gurati on] Persistence provi der caller does not
i mpl enent s

the EJB3 spec correctly. PersistenceUnitlnfo.get NewlenpCl assLoader () is
nul | .

15: 32: 24,512 INFO [Configuration] Reading nmappi ngs fromresource :

META- | NF/ or m xmi

15: 32: 24,512 INFO [Ej b3Configuration] [PersistenceUnit: helloworld] no
META- | NF/ or m xm

f ound

15: 32: 24,585 INFO [AnnotationBi nder] Binding entity from annotated cl ass:
Todo

15:32: 24,586 INFO [EntityBinder] Bind entity Todo on table Todo

15: 32: 26, 311 I NFO [SchenmaExport] Runni ng hbnRddl schema export

15: 32: 26, 312 I NFO [SchenmaExport] exporting generated schema to dat abase
15: 32: 26, 314 I NFO [SchenmaExport] Executing inmport script: /inport.sql
15: 32: 26,418 I NFO [SchemaExport] schema export conplete

15: 32: 26, 454 I NFO [Nam ngHel per] JNDI 1niti al Cont ext

properties: {java. nam ng. factory.

initial=org.jnp.interfaces. Nam ngCont ext Factory,

j ava. nam ng. factory. url . pkgs=org.j boss.

nam ng: org. j np. i nterfaces}

15: 32: 26, 484 I NFO [JnxKernel Abstraction] creating w apper del egate for:
org. j boss. ej b3.

st at el ess. St at el essCont ai ner

15: 32: 26, 485 I NFO [JnxKernel Abstraction] installing MBean:

j boss. j 2ee: ear =j sf ej b3. ear,

j ar=app. j ar, name=TodoDao, servi ce=EJB3 wi t h dependenci es:

15: 32: 26,513 I NFO [JnxKernel Abstracti on]

persi stence. uni ts: ear=j sf ej b3. ear,

j ar=app. j ar, uni t Name=hel | owor | d

15: 32: 26, 557 I NFO [EJBCont ai ner] STARTED EJB: TodoDao ej bNane: TodoDao
15: 32: 26,596 | NFO [EJB3Depl oyer] Depl oyed:

fil e:/hone/vrenish/jboss-eap-4.2/jboss-as/

server/ def aul t/t np/ depl oy/

t np33761j sf ej b3. ear - cont ent s/ app. j ar

15: 32: 26, 625 | NFO [Tontat Depl oyer] depl oy, ctxPath=/]j sfej b3,

war Ur |l =. ../t np/depl oy/

t mp33761j sf ej b3. ear - cont ent s/ app- exp. war /

15: 32: 26,914 I NFO [EARDepl oyer] Started J2EE applicati on:
file:/hone/vrenish/jboss-eap-

4.2/ j boss-as/server/def aul t/depl oy/j sfej b3. ear

If there are any errors or exceptions, make a note of the error message. Check that the EAR is
complete and inspect the WAR file and the EJB jar files to make sure they contain all the
necessary components (classes, descriptors etc.).

41

Chapter 5. Sample JSF-EJB3 Ap...

You can safely redeploy the application if it is already deployed. To undeploy it you just have to
remove the archive from the depl oy directory. There’s no need to restart the server in either
case. If everything seems to have gone OK, then point your browser at the application URL.

http://localhost:8080/jsfejb3

You will be forwarded to the application main page. Figure 5.5, “Sample TODO” shows the
sample application in action.

Mozilla Firefox

File Edit WView Go Bookmarks Tools Help

J':u - |:> - %] @ *.. http:/ /localhost:B080 /jsfejb3 findex.faces

Seam POJO

Actions:

® Create New Todo
® Show All Todos

Done

Figure 5.5. Sample TODO

42

http://localhost:8080/jsfejb3

Chapter 6.

Using Seam

JBoss Seam is a framework that provides the glue between the new EJB3 and JSF frameworks
that are part of the Java EE 5.0 standard. In fact, the name Seam refers to the seamless
manner in which it enables developers to use these two frameworks in an integrated manner.
Seam automates many of the common tasks, and makes extensive use of annotations to
reduce the amount of xml code that needs to be written. The overall effect is to significantly
reduce the total amount of coding that needs to be done.

We have included two versions of the example application, one coded using EJB3 / JSF without
using Seam, and one using Seam, to demonstrate clearly the difference in application
development using the Seam framework.

1. Data Model

In the previous chapter we looked at the Data Model used in the EJB3/JSF implementation of
this sample application. Let's start off our examination of the Seam implementation in the same
way, by examining how the Data Model is implemented. This is done in the Todo. j ava file.

@ntity
@\Nane("t odo")

public class Todo inplements Serializable {

private |long id;
private String title;
private String description;

public Todo () {
title =""
description ="";

}

@d @ener at edVal ue
public long getld() { return id;}
public void setld(long id) { this.id =id; }

@Not Nul |
public String getTitle() { return title; }
public void setTitle(String title) {this.title =title;}

@\ot Nul |

@.engt h(max=250)

public String getDescription() { return description; }

public void setDescription(String description) {
this.description = description;

}

The @nt ity annotation defines the class as an EJB3 session bean, and tells the container to

43

Chapter 6. Using Seam

map the Todo class to a relational database table. Each property of the class will become a
column in the table. Each instance of the class will become a row in this table. Since we have
not used the @rabl e annotation, Seam's "configuration by exception" default will name the table
after the class.

@ntity and @rabl e are both EJB3 annotations, and are not specific to Seam. It is possible to
use Seam completely with POJOs (Plain Old Java Objects) without any EJB3-specific
annotations. However, EJB3 brings a lot of advantages to the table, including container
managed security, message-driven components, transaction and component level persistence
context, and @er si st enceCont ext injection, which we will encounter a little further on.

The @ane annotation is specific to Seam, and defines the string name for Seam to use to
register the Entity Bean. This will be the default name for the relational database table. Each
component in a Seam application must have a unique name. In the other components in the
Seam framework, such as JSF web pages and session beans, you can reference the managed
Todo bean using this name. If no instance of this class exists when it is referenced from another
component, then Seam will instantiate one.

The @ d annotation defines a primary key i d field for the component. @xener at edVal ue
specifies that the server will automatically generate this value for the component when it is
saved to the database.

Seam provides support for model-based constraints defined using Hibernate Validator, although
Hibernate does not have to be the object persister used. The @t Nul | annotation is a
validation constraint that requires this property to have a value before the component can be
persisted into the database. Using this annotation allows the validation to be enforced by the
JSF code at the view level, without having to specify the exact validation constraint in the JSF
code.

At this point the only apparent difference between the Seam version and the EJB3/JSF version
of the app is the inclusion of the validator annotation @iot Nul | , and the @lane annotation.
However, while the EJB3/JSF version of this application requires a further TodoBean class to be
manually coded and managed in order to handle the interaction between the Todo class and the
web interface, when using Seam the Seam framework takes care of this work for us. We'll see
how this is done in practice as we examine the implementation of the user interface.

2. JSF Web Pages - index.xhtml and create.xhtml

The index.xhtml file used is the same as in the EJB3/JSF example.

create.xhtml begins to reveal the difference that coding using the Seam framework makes.

<h:formid="create">

<f:facet name="beforelnnvalidField">
<h: graphi cl nage styl eC ass="errorlng" val ue="error. png"/>
</f:facet>
<f:facet name="afterlnvalidField">
<s: message styl ed ass="error Msg" />
</f:facet>

44

JSF Web Pages - index.xhtml and

<f:facet nanme="aroundl nval i dFi el d">
<s:div styled ass="error"/>
</f:facet>

<s:validateAll >
<t abl e>

<tr>
<td>Title:</td>
<t d>
<s: decor at e>
<h:input Text id="title" value="#{todo.title}" size="15"/>
</ s: decor at e>
</td>
</tr>

<tr>
<t d>Descri ption: </td>
<t d>
<s: decor at e>
<h:i nput Text area i d="descri ption" val ue="#{todo. description}"/>
</ s: decor at e>
</td>
</tr>

</t abl e>
</s:validateAll>

<h: commandButt on type="submit" id="create" val ue="Create"
acti on="#{t odoDao. persist}"/>
</ h: form

The first thing that is different here is the Java Server Facelet code at the beginning, which
works with the @ot Nul | validation constraint of our t odo class to enforce and indicate invalid
input to the user.

Also notice here that rather than requiring the use of a TodoBean class as we did in the
EJB3/JSF example we back the form directly with a Todo entity bean. When this page is called,
JSF asks Seam to resolve the variable t odo due to JSF EL references such as #{todo. title}.
Since there is no value already bound to that variable name, Seam will instantiate an entity
bean of the t odo class and return it to JSF, after storing it in the Seam context. The Seam
context replaces the need for an intermediary bean.

The form input values are validated against the Hibernate Validator constraints specified in the
t odo class. JSF will redisplay the page if the constraints are violated, or it will bind the form
input values to the Todo entity bean.

Entity beans shouldn't do database access or transaction management, so we can't use the
Todo entity bean as a JSF action listener. Instead, creation of a new todo item in the database is

45

Chapter 6. Using Seam

accomplished by calling the per si st method of a TodoDao session bean. When JSF requests
Seam to resolve the variable t odoDao through the JSF EL expression #{t odoDao. persi st},
Seam will either instantiate an object if one does not already exist, or else pass the existing
stateful t odoDao object from the Seam context. Seam will intercept the per si st method call

and inject the t odo entity from the session context.

Let's have a look at the TodoDao class (defined in TodoDao. j ava) to see how this injection

capability is implemented.

3.

Data Access using a Session Bean

Let's go through a listing of the code for the TodoDao class.

@5t at ef ul
@\ane("t odoDao")
public class TodoDao i npl ements TodoDaol nt {

@n (required=fal se) @ut (required=false)
private Todo todo;

@er si st enceCont ext (type=EXTENDED)
private EntityManager em

/1 Injected from pages. xm
Long i d;

public String persist () {
em persi st (todo);
return "persisted";

}

@at aMbdel
private List <Todo> todos;

@actory("todos")
public void findTodos () {
todos = emcreateQuery("select t from Todo t")
.get Resul tList();

}

public void setld (Long id) {
this.id = id;

if (id!=null) {

todo = (Todo) em find(Todo.class, id);
} else {
todo = new Todo ();

}
}

public Long getld () {
return id;

}

public String delete () {

46

create.xhtml

em renove(todo);
return "renoved";

}

public String update () {
return "updated";

}

@Renpve @estroy
public void destroy() {}

First of all notice that this is a stateful session bean. Seam can use both stateful and stateless
session beans, the two most common types of EJB3 beans.

The @ n and @ut annotations define an attribute that is injected by Seam. The attribute is
injected to this object or from this object to another via a Seam context variable named t odo, a
reference to the Seam registered name of our Todo class defined in Todo. j ava.

The @er si st enceCont ext annotation injects the EJB3 Entity manager, allowing this object to
persist objects to the database. Because this is a stateful session bean and the

Per si st enceCont ext type is set to EXTENDED, the same Entity Manager instance is used until
the Remove method of the session bean is called. The database to be used (a

per si st ence- uni t) is defined in the file r esour ces/ META- | NF/ per si st ence. xni

Note that this session bean has simultaneous access to context associated with web request
(the form values of the t odo object), and state held in transactional resources (the

Enti t yManager). This is a break from traditional J2EE architectures, but Seam does not force
you to work this way. You can use more traditional forms of application layering if you wish.

The @at aMbdel annotation initializes the t odos property, which will be outjected or "exposed"”
to the view. The @ act or y annotated method performs the work of generating the t odos list,
and is called by Seam if it attempts to access the exposed Dat aMbdel property and finds it to be
null. Notice the absence of property access methods for the t odos property. Seam takes care of
this for you automatically.

Let's take a look at the JSF code that we use for displaying and editing the list of todos, to get
an idea of how to use these interfaces in practice.

4. JSF Web Pages - todos.xhtml and edit.xhtml

Using the Dat aMbdel exposed property of the Session Bean it becomes trivial to produce a list
of todos:

<h: fornp>

<h: dat aTabl e val ue="#{todos}" var="todo">
<h: col um>
<f:facet nane="header">Titl e</f:facet>

47

Chapter 6. Using Seam

#{todo.titl e}
</ h: col utm>
<h: col um>
<f:facet nane="header">Description</f:facet>
#{t odo. descri pti on}
</ h: col utm>
<h: col um>
Edit
</ h: col um>
</ h: dat aTabl e>

<cent er >
<h: commandButt on acti on="cr eat e"
val ue="Create New Todo" type="subnmit"/>
</ center >

</ h: fornr

When the JSF variable resolver encounters { #t odos} and requests t odos, Seam finds that

there is no "todos" component in the current scope, so it calls the @Factory("todos") method to

make one. The todos object is then outjected once the factory method is done since it is
annotated with the @DataModel annotation.

Constructing the view for the edit page is similarly straight forward:

<h:formid="edit">

<f:facet nane="beforel nval i dFi el d">
<h: gr aphi cl mage styl eCl ass="errorlng" val ue="error.png"/>
</f:facet>
<f:facet name="afterlnvalidFiel d">
<s: message styl ed ass="error Msg" />
</f:facet>
<f:facet nanme="aroundl nvalidFi el d">
<s:div styledass="error"/>
</f:facet>

<s:validateAll >
<t abl e>

<tr>
<td>Title:</td>
<t d>
<s: decor at e>
<h:input Text id="title" value="#{todo.title}" size="15"/>
</ s: decor at e>
</td>
</tr>

<tr>
<t d>Descri ption: </td>
<t d>
<s: decor at e>

48

Xml Files

<h:i nput Text area i d="descri ption" val ue="#{todo. descri ption}"/>
</ s: decor at e>
</td>
</[tr>

</t abl e>
</s:validateAll>

<h: commandButt on type="submit" id="update" val ue="Update"
acti on="#{t odoDao. update}"/ >

<h: commandButt on type="submit" id="del ete" val ue="Del et e"
acti on="#{t odoDao. del ete}"/ >
</ h: for >

Here we see the same factors in play. JSF validation code taking advantage of the validation
constraints defined in our Entity Bean, and the use of the t odoDao Session Bean's updat e and
del et e methods to update the database.

The call from t odos. xht nl : edi t. sean?t i d=#{t odo. i d} causes Seam to create at odoDao
and set it'si d property to ti d. Setting its i d property causes the t odoDao to retrieve the
appropriate record from the database.

The functionality that allows the edit page to be called with a parameter in this way is
implemented through pages. xni . Let's have a look at the pages. xm file and how it is used by
Seam applications.

5. Xml Files

Seam drastically reduces the amount of xml coding that needs to be done. One file that is of
interest is the pages. xm , packaged in the app. war file's WEB- | NF directory. This file is available
in the r esour ces/ EB- | NF directory in the source code bundle. The pages. xm file is used to
define page descriptions including Seam page parameters (HTTP GET parameters), page
actions, page navigation rules, error pages etc. Among other things it can be used in a Seam
application to define exception handlers and redirections.

In the case of our sample application we are using it to define a Seam page parameter. The
pages. xn in this example contains the following code:

<page viewid="/edit.xhtm ">
<param nane="ti d" val ue="#{todoDao.i d}"
converterld="javax. faces. Long"/ >
</ page>

This defines a parameter named ti d for the edi t . xht M page. When the edi t. xht nl page is
loaded, the HTTP GET request parameter ti d is converted to a Long value and assigned to the
i d property of the t odoDao object. You can have as many page parameters as required to bind

49

Chapter 6. Using Seam

HTTP GET request parameters to the back-end components in your application.

6. Further Information

This completes our walkthrough of the sample Seam application. For further, detailed
information on developing applications using the Seam framework, please refer to the "Seam
Reference Guide".

50

Chapter 7.

Using other Databases

In the previous chapters, we've just been using the JBoss default datasource in our
applications. This is provided by the embedded HSQL database instance and is bound to the
JNDI name j ava: / Def aul t DS. Having a database included with JBoss is very convenient for
running examples and HSQL is adequate for many purposes. However, at some stage you will
want to use another database, either to replace the default datasource or to access multiple
databases from within the server.

1. DataSource Configuration Files

DataSource configuration file names end with the suffix - ds. xml so that they will be recognized
correctly by the JCA deployer. The docs/ exanpl e/ j ca directory contains sample files for a
wide selection of databases and it is a good idea to use one of these as a starting point. For a
full description of the configuration format the best place to look is the DTD file

docs/ dtd/j boss-ds_1 5. dtd. Additional documentation on the files and the JBoss JCA
implementation can also be found in the JBoss 4 Application Server Guide.

Local transaction datasources are configured using the | ocal -t x- dat asour ce element and
XA-compliant ones using xa- t x- dat asour ce. The example file generi c- ds. xm shows how to
use both types and also some of the other elements that are available for things like connection
pool configuration. Examples of both local and XA configurations are available for Oracle, DB2
and Informix.

If you look at the example files fi rebi rd-ds. xm , facet s-ds. xml and sap3-ds. xni , you'l
notice that they have a completely different format, with the root element being

connecti on-f act ori es rather than dat asour ces. These use an alternative, more generic JCA
configuration syntax used with a pre-packaged JCA resource adapter. The syntax is not specific
to datasource configuration and is used, for example, in the j ns- ds. xnm file to configure the
JMS resource adapter.

Next, we'll work through some step-by-step examples to illustrate what's involved setting up a
datasource for a specific database.

2. Using MySQL as the Default DataSource

MySQL is a one of the most popular open source databases around and is used by many
prominent organizations from Yahoo to NASA. The official JDBC driver for it is called
Connector/J. For this example we've used MySQL 4.1.7 and Connector/J 3.0.15. You can
download them both from http://www.mysgl.com .

2.1. Creating a Database and User

We’'ll assume that you've already installed MySQL and that you have it running and are familiar
with the basics. Run the nysqgl client program from the command line so we can execute some
administration commands. You should make sure that you are connected as a user with
sufficient privileges (e.g. by specifying the - u r oot option to run as the MySQL root user).

51

http://www.mysql.com

Chapter 7. Using other Databases

First create a database called j boss within MySQL for use by JBoss.

nysqgl > CREATE DATABASE | boss;
Query OK, 1 row affected (0.05 sec)

Then check that it has been created.

nysql > SHOW DATABASES;

focccocoooo +
| Dat abase |
dfmcoccoco=oo +
| jboss |
| nysaql I
| test |
ococccooooo +

3 rows in set (0.00 sec)

Next, create a user called j boss with password passwor d to access the database.

nmysql > GRANT ALL PRI VI LEGES ON j boss.* TO j boss@ ocal host | DENTI FI ED BY
' password' ;
Query OK, 0 rows affected (0.06 sec)

Again, you can check that everything has gone smoothly.

nysql > sel ect User, Host, Password from nysql . User;

S Fommmeeaaaa Fomm e +
| User | Host | Password |
docooooo ococoocooos dococoocoocccosoocan +
root	Iocal host	
root	%	
	I ocal host	
I	% I I	
jboss		ocal host
oo ooo fecocooooooo R +

5 rows in set (0.02 sec)

2.2. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to JBoss, copy the file
nysql - connect or - j ava- 3. 0. 15- ga- bi n. j ar from the Connector/J distributionto the li b

directory in the def aul t server configuration (assuming that is the configuration you're running,

of course). Then create a file in the depl oy directory called nysql - ds. xm with the following

datasource configuration. The database user name and password corresponds the MySql user

we created in the previous section.

<dat asour ces>
<l ocal -t x- dat asour ce>

52

Testing the MySQL DataSource

<j ndi - name>MySqgl DS</ j ndi - nanme>
<connection-url >j dbc: mysql :/ /1 ocal host : 3306/ j boss</ connecti on-url >
<dri ver-cl ass>com nysql . j dbc. Dri ver</dri ver-cl ass>
<user - name>j boss</ user - name>
<passwor d>passwor d</ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

Because we have added a new JAR file to the | i b directory, you will need to make sure that the
server is able to find the MySQL driver classes.

2.3. Testing the MySQL DataSource

We’'ll use the CMP roster application to test the new database connection. In order to use MySq|l
in our application, we'll need to set the datasource name a nd type-mapping in the

j bosscnp-j dbc. xni file in the dd/ t eamdirectory of the CMP roster application. Edit the file and
add the following dat asour ce and dat asour ce- nappi ng elements to the def aul t s element.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / MySql DS</ dat asour ce>
<dat asour ce- mappi ng>ny SQL</ dat asour ce- mappi ng>
</ def aul t s>

<ent er pri se- beans>

</ enterprise-beans>
</ j bosscnp-j dbc>

After restarting JBoss, you should be able to deploy the application and see the tables being
created. . The tables should be visible from the MySQL client.

nysql > show t abl es;

| Tabl es_in_jboss |
LeagueBean [
Pl ayer Bean [

Pl ayer Bean_t eans_TeanBean_pl ayers |
TeanBean |

I
I
I
I
4 rows in set (0.00 sec)

You can see the JMS persistence tables in there too since we're using MySQL as the default
datasource.

3. Setting up an XADataSource with Oracle 9i

53

Chapter 7. Using other Databases

Oracle is one of the main players in the commercial database field and most readers will
probably have come across it at some point. You can download it freely for non-commercial
purposes from http://www.oracle.com

Installing and configuring Oracle is not for the faint of heart. It isn't really just a simple database,
but it is heavy on extra features and technologies which you may not actually want (another
Apache web server, multiple JDKs, Orbs etc.) but which are usually installed anyway. So we’ll
assume you already have an Oracle installation available. For this example, we've used Oracle
10g.

3.1. Padding Xid Values for Oracle Compatibility

If you look in the j boss- servi ce. xnl file in the def aul t/ conf directory, you'll find the following
service MBean.

<I-- The configurable Xid factory. For use with Oracle, set pad to true -->
<mbean code="org.jboss.tm Xi dFact ory"
nane="j boss: servi ce=Xi dFact ory" >
<I--attribute name="Pad">true</attribute-->
</ mbean>

The transaction service uses this to create XA transactions identifiers. The comment explains
the situation: for use with Oracle you have to include the line which sets the attribute Pad to true.
This activates padding the identifiers out to their maximum length of 64 bytes. Remember that
you'll have to restart JBoss for this change to be put into effect, but wait until you've installed the
JDBC driver classes which we’ll talk about next.

3.2. Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOVE/ j dbc/ | i b. Older
versions, which may be more familiar to some users, had rather uninformative names like

cl asses12. zi p but at the time of writing the latest driver version can be found in the file

oj dbc14. j ar. There is also a debug version of the classes with _g appended to the name
which may be useful if you run into problems. Again, you should copy one of thesetothe li b
directory of the JBoss def aul t configuration. The basic driver class you would use for the
non-XA setup is called or acl e. j dbc. dri ver. Or acl eDri ver . The XADat aSour ce class, which
we’ll use here, is called or acl e. j dbc. xa. cl i ent. Or acl eXADat aSour ce.

For the configuration file, make a copy of the or acl e- xa- ds. xml example file and edit it to set
the correct URL, username and password.

<dat asour ces>
<xa- dat asour ce>

<j ndi - name>XA0r acl eDS</ j ndi - name>
<track- connecti on- by-tx>true</track-connection-by-tx>
<i sSaneRM over ri de- val ue>f al se</i sSameRM overri de-val ue>

<xa- dat asour ce- cl ass>or acl e. j dbc. xa. cl i ent. O acl eXADat aSour ce</ xa- dat asour ce- cl ass>
<xa- dat asour ce- property nane="URL">

j dbc: or acl e: t hi n: @onkeynmachi ne: 1521: j boss

54

http://www.oracle.com

Testing the Oracle DataSource

</ xa- dat asour ce- pr operty>
<xa- dat asour ce- property nane="User" >j boss</ xa- dat asour ce- property>
<xa- dat asour ce- property
name="Passwor d" >passwor d</ xa- dat asour ce- pr operty>
<excepti on-sorter-cl ass- name>
org.j boss. resource. adapt er. j dbc. vendor . Or acl eExcepti onSort er
</ exception-sorter-class-nane>
<no-t x- separ at e- pool s/ >
</ xa- dat asour ce>

<mbean
code="org. j boss. resour ce. adapt er. j dbc. vender . or acl e. Or acl eXAExcept i onFor mat ter"
nane="j boss. j ca: servi ce=0r acl eXAExcept i onFormatter" >
<depends optional -attri but e- nane="Transacti onManager Ser vi ce" >
j boss: servi ce=Tr ansact i onManager
</ depends>
</ nbean>
</ dat asour ces>

We've used the Oracle thin (pure java) driver here and assumed the database is running on the
host nonkeynmachi ne and that the database name (or SID in Oracle terminology) is j boss.
We've also assumed that you've created a user j boss with all the sufficient privileges. You can
just use dba privileges for this example.

SQL> connect / as sysdba

Connect ed.

SQL> create user jboss identified by password;
User created.

SQL> grant dba to jboss;

Grant succeeded.

Now copy the file to the depl oy directory. You should get the following output.

11: 33: 45,174 I NFO [W apper Dat aSour ceServi ce] Bound connection factory for

resour ce adapter
for Connecti onManager 'jboss.jca: name=XAOr acl eDS, ser vi ce=Dat aSour ceBi ndi ng

to JNDI nane
' j ava: XAOr acl eDS'

If you use the JNDI Vi ew service from the JMX console as before, you should see the name
j ava: / XAOr acl eDsS listed.

3.3. Testing the Oracle DataSource

Again we'll use the CMP example to test out the new database connection. The
j bosscnp-j dbc. xni file should contain the following.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / XAOr acl eDS</ dat asour ce>

55

Chapter 7. Using other Databases

<dat asour ce- mappi ng>Or acl e9i </ dat asour ce- mappi ng>
</ def aul t s>
</ j bosscnp-j dbc>

There are other Oracle type-mappings available too. If you're using an earlier version, have a
look in the conf/ st andar dj bosscnp-j dbc. xni file to find the correct name

Deploy the application as before, check the output for errors and then check that the tables
have been created using Oracle SQLPIlus again from the command line.

SQ.> sel ect table nane from user tabl es;

TEANVBEAN

LEAGUEBEAN

PLAYERBEAN

PLAYERBEAN TEAVS_TEAM 10OFLZV8

56

Appendix A. Further Information
Sources

For a longer introduction to JBoss, see JBoss: A Developer's Notebook. (O'Reilly, 2005.
Norman Richards, Sam Griffith).

For more comprehensive JBoss documentation covering advanced JBoss topics, refer to the
manuals available online at http://www.redhat.com/docs/jboss.

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th
Edition. (O'Reilly, 2004. Richard Monson-Haeful, Bill Burke, Sacha Labourey)

To learn more about Hibernate, see Java Persistence With Hibernate. (Manning, 2007.
Christian Bauer, Gavin King)

For complete coverage of the JBoss Seam framework, we recommend JBoss Seam: Simplicity

And Power Beyond Java EE. (Prentice Hall, 2007. Michael Yuan, Thomas Heute).

57

http://www.redhat.com/docs/jboss

58

	JBoss Enterprise Application Platform
	Table of Contents
	About this book
	Chapter 1. Introduction
	1. Feedback
	2. Other Manuals

	Chapter 2. The JBoss Server - A Quick Tour
	1. Directory Structure
	1.1. JBoss Top Level Directory Structure
	1.2. JBOSS_DIST/jboss-as Directory Structure

	2. Server Configurations
	2.1. Server Configuration Directory Structure
	2.2. The "default" Server Configuration File Set
	2.2.1. Contents of "conf" directory
	2.2.2. Contents of "deploy" directory

	2.3. The "all" Server Configuration File Set
	2.4. EJB3 Services
	2.5. Adding Your Own Configuration

	3. Starting and Stopping the Server
	3.1. Start the Server
	3.2. Start the Server With Alternate Configuration
	3.3. Using run.sh
	3.4. Stopping the Server
	3.5. Running as a Service under Microsoft Windows

	4. The JMX Console
	5. Hot-deployment of services in JBoss
	6. Basic Configuration Issues
	6.1. Core Services
	6.2. Logging Service
	6.3. Security Service
	6.4. Additional Services

	7. The Web Container - Tomcat

	Chapter 3. EJB3 Caveats in JBoss Enterprise Application Platform 4.2
	1. Unimplemented features
	2. Referencing EJB3 Session Beans from non-EJB3 Beans

	Chapter 4. About the Example Applications
	1. Install Ant

	Chapter 5. Sample JSF-EJB3 Application
	1. Data Model
	2. JSF Web Pages
	3. EJB3 Session Beans
	4. Configuration and Packaging
	4.1. Building The Application
	4.2. Configuration Files

	5. The Database
	5.1. Creating the Database Schema
	5.2. The HSQL Database Manager Tool

	6. Deploying the Application

	Chapter 6. Using Seam
	1. Data Model
	2. JSF Web Pages - index.xhtml and create.xhtml
	3. Data Access using a Session Bean
	4. JSF Web Pages - todos.xhtml and edit.xhtml
	5. Xml Files
	6. Further Information

	Chapter 7. Using other Databases
	1. DataSource Configuration Files
	2. Using MySQL as the Default DataSource
	2.1. Creating a Database and User
	2.2. Installing the JDBC Driver and Deploying the DataSource
	2.3. Testing the MySQL DataSource

	3. Setting up an XADataSource with Oracle 9i
	3.1. Padding Xid Values for Oracle Compatibility
	3.2. Installing the JDBC Driver and Deploying the DataSource
	3.3. Testing the Oracle DataSource

	Appendix A. Further Information Sources

