
JBoss Enterprise Application Platform

4.2.0

Getting Started Guide
ISBN:

Publication date:

The Getting Started Guide provides post-installation information about JBoss Enterprise
Application Platform. Use this guide to familiarise yourself with the platform and the sample
applications that demonstrate application development and deployment.

JBoss Enterprise Application ...

JBoss Enterprise Application Platform: Getting Started Guide
Copyright © 2007 Red Hat, Inc.

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the
copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://www.opencontent.org/openpub/

JBoss Enterprise Application ...

About this book ... vii
1. Introduction ... 1

1. Feedback .. 1
2. Other Manuals ... 1

2. The JBoss Server - A Quick Tour .. 3
1. Directory Structure ... 3

1.1. JBoss Top Level Directory Structure ... 3
1.2. JBOSS_DIST/jboss-as Directory Structure .. 4

2. Server Configurations ... 5
2.1. Server Configuration Directory Structure ... 6
2.2. The "default" Server Configuration File Set ... 7
2.3. The "all" Server Configuration File Set ...13
2.4. EJB3 Services ...13
2.5. Adding Your Own Configuration ..14

3. Starting and Stopping the Server ..14
3.1. Start the Server ..14
3.2. Start the Server With Alternate Configuration15
3.3. Using run.sh ..16
3.4. Stopping the Server ..16
3.5. Running as a Service under Microsoft Windows17

4. The JMX Console ...17
5. Hot-deployment of services in JBoss ..19
6. Basic Configuration Issues ..19

6.1. Core Services ..19
6.2. Logging Service ...20
6.3. Security Service ...21
6.4. Additional Services ...23

7. The Web Container - Tomcat ...23
3. EJB3 Caveats in JBoss Enterprise Application Platform 4.225

1. Unimplemented features ..25
2. Referencing EJB3 Session Beans from non-EJB3 Beans25

4. About the Example Applications ...27
1. Install Ant ...27

5. Sample JSF-EJB3 Application ...29
1. Data Model ...29
2. JSF Web Pages ..30
3. EJB3 Session Beans ...34
4. Configuration and Packaging ...36

4.1. Building The Application ...36
4.2. Configuration Files ...37

5. The Database ...39
5.1. Creating the Database Schema ...39
5.2. The HSQL Database Manager Tool ...39

6. Deploying the Application ..40
6. Using Seam ..43

1. Data Model ...43

v

2. JSF Web Pages - index.xhtml and create.xhtml ..44
3. Data Access using a Session Bean ..46
4. JSF Web Pages - todos.xhtml and edit.xhtml ..47
5. Xml Files ..49
6. Further Information ..50

7. Using other Databases ..51
1. DataSource Configuration Files ..51
2. Using MySQL as the Default DataSource ...51

2.1. Creating a Database and User ..51
2.2. Installing the JDBC Driver and Deploying the DataSource52
2.3. Testing the MySQL DataSource ..53

3. Setting up an XADataSource with Oracle 9i ..53
3.1. Padding Xid Values for Oracle Compatibility ..54
3.2. Installing the JDBC Driver and Deploying the DataSource54
3.3. Testing the Oracle DataSource ...55

A. Further Information Sources ..57

JBoss Enterprise Application ...

vi

About this book

The goal of this book is to give you an overview of JBoss Enterprise Application Platform, and
demonstrate some of its features and capability to provide a rapid application development and
deployment environment for Enterprise Java Applications. At the time of writing, the latest
release is version 4.2. You should use this version or later with the example applications. The
example applications described in this book illustrate the development and deployment of
Enterprise Java applications in JBoss Enterprise Application Platform. While the book is not
intended to teach you Enterprise Java development, we will be covering the subject from quite a
basic standpoint, so it will still be useful if you are new to Enterprise Java Application
Development.

We provide you a quick tour of the JBoss Directory Structure, basic Server Configuration, key
configuration files and the JMX and Web Consoles. As we move on to the example applications,
you will see JBoss Enterprise Application Platform in action and get some exposure in simple
configuration and deployment issues. We will introduce the Seam framework and demonstrate
the significant difference that Seam makes to application development.

Of course, that barely scratches the surface of what you can do with JBoss Enterprise
Application Platform. Once you feel comfortable with the information here, the JBoss Enterprise
Application Platform: Server Configuration Guide can take you through the rest of the way to
total mastery of JBoss Enterprise Application Platform.

vii

viii

Introduction
JBoss Enterprise Application Platform is easy to install and you can have it running in a few
easy steps. Refer to the JBoss Enterprise Application Platform: Installation Guide for information
on pre-requisites for installation and the detailed installation steps.

Once you have JBoss Enterprise Application Platform installed, use this guide to familiarize
yourself with its layout and the example applications that demonstrate application development
and deployment.

1. Feedback

If you spot a typo in the JBoss Enterprise Application Platform: Getting Started Guide, or if you
have thought of a way to make this manual better, we would love to hear from you! Submit a
report in Bugzilla [http://bugzilla.redhat.com/bugzilla/] against the Product: JBoss Enterprise
Application Platform, Version: 4.2.0, Component: Getting_Started_Guide. If you have a
suggestion for improving the documentation, try to be as specific as possible. If you have found
an error, include the section number and some of the surrounding text so we can find it easily.

2. Other Manuals

If you are looking for detailed product information refer to the manuals available online at
http://www.redhat.com/docs/jboss.

Chapter 1.

1

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/
http://www.redhat.com/docs/jboss

2

The JBoss Server - A Quick Tour
Lets explores the JBoss Enterprise Application Platform directory structure and help you
understand how the installation is laid out and what goes where. It’s worth familiarizing yourself
with the layout, locations of the key configuration files, log files, deployment and so on. It will
help you understand the JBoss service architecture so that you’ll be able to find your way
around when it comes to deploying your own applications.

1. Directory Structure

1.1. JBoss Top Level Directory Structure

Installing JBoss Enterprise Application Platform creates a top level directory, which will be
named jboss-eap-4.2 if you used the zip installation method, and will be named according to
your specification if you used the GUI installer. Throughout this guide we refer to this top-level
directory as the JBOSS_DIST directory. There are four sub-directories immediately below this:

• doc: contains the product documentation.

• jboss-as: contains sub directories that contain server start scripts, JARs, server configuration
sets and working directories. You need to know your way around the distribution layout to
locate JARs for compiling code, updating configurations, deploying your code, etc.

• seam: contains the files for Hibernate and the JBoss Seam Framework.

• Uninstaller: contains the uninstaller program uninstaller.jar.

Below is the layout of the installation directory of JBoss Enterprise Application Platform. In the
figure, the default server configuration file set is shown expanded. In a clean installation,
within the server/default directory only the conf, deploy, and lib directories exist. The
data, log, tmp and work sub-directories are created by JBoss and won’t exist until you’ve run
the server at least once. Section 3, “Starting and Stopping the Server” will teach you to run the
server.

jboss-eap-4.2 // jboss.home_url
|+ doc
|+ jboss-as
|+ bin
|+ client
|+ docs
|+ icons
|+ lib // jboss.lib.url
|+ scripts
|+ server

|+ all // jboss.server.name
|+ default // jboss.server.home.url
|+ conf // jboss.server.config.url
|+ deploy
|+ lib // jboss.server.lib.url

Chapter 2.

3

|+ data
|+ log
|+ tmp
|+ work
|+ minimal
|+ production

|+ seam
|+ Uninstaller // jboss.uninstaller.url

Several of the locations may be overridden. For these locations, the
org.jboss.system.server.ServerConfig interface constant and its corresponding system
property string are shown in the figure. The names ending in URL correspond to locations that
can be specified using a URL to access remote locations, for example, HTTP URLs against a
web server.

1.2. JBOSS_DIST/jboss-as Directory Structure

The table below illustrates the contents of the jboss-as directory.

Directory Description

bin Contains startup, shutdown and other
system-specific scripts. Basically all the entry
point JARs and start scripts included with the
JBoss distribution are located in the bin

directory.

client Stores configuration files and JAR files that
may be used by a Java client application
(running outside JBoss) or an external web
container. You can select archives as
required or use jbossall-client.jar.

docs Contains the XML DTDs used in JBoss for
reference (these are also a useful source of
documentation on JBoss configuration
specifics). There are also example JCA (Java
Connector Architecture) configuration files for
setting up datasources for different databases
(such as MySQL, Oracle, Postgres).

lib Contains startup JARs used by JBoss. Do not
place your own JAR files in this directory.

server Contains the JBoss server configuration sets.
Each of the subdirectories in here is a
different server configuration. JBoss ships
with minimal, default, production, and all

configuration sets. The subdirectories and key
configuration files contained in the default

Chapter 2. The JBoss Server -...

4

Directory Description

configuration set are discussed in more detail
in subsequent sections.

Table 2.1. Contents of JBOSS_DIST/jboss-as directory

2. Server Configurations

Fundamentally, the JBoss architecture consists of the JMX MBean server, the microkernel, and
a set of pluggable component services - the MBeans. This makes it easy to assemble different
configurations and gives you the flexibility to tailor them to meet your requirements.

You don’t have to run a large, monolithic server all the time; you can remove the components
you don’t need (which can also reduce the server startup time considerably) and you can also
integrate additional services into JBoss by writing your own MBeans. You certainly don’t need to
do this to be able to run standard J2EE applications though. Everything you need is already
there.

You don’t need a detailed understanding of JMX to use JBoss, but it’s worth keeping a picture
of this basic architecture in mind as it is central to the way JBoss works.

The JBoss Enterprise Application Platform ships with four different server configurations. Within
the JBOSS_DIST/jboss-as/server directory, you will find four subdirectories: minimal,
default, production and all - one for each server configuration. Each of these configurations
provide a different set of services. The production configuration is the one used if you don’t
specify another one when starting up the server.

minimal
has a minimal configuration—the bare minimum services required to start JBoss. It starts
the logging service, a JNDI server and a URL deployment scanner to find new deployments.
This is what you would use if you want to use JMX/JBoss to start your own services without
any other J2EE technologies. This is just the bare server. There is no web container, no
EJB or JMS support. This is not a J2EE 1.4 compatible configuration.

default
is a base J2EE 1.4 server profile containing a default set of services. It has the most
frequently used services required to deploy a J2EE application. It does not include the
JAXR service, the IIOP service, or any of the clustering services. Please note that although
this configuration is called "default", the actual default configuration for the server is the
"production" configuration.

all
on the other hand has all the services configured to launch every single component. This is
a full J2EE 1.4 server profile with enterprise extensions such as Clustering and RMI/IIOP.

Server Configurations

5

production
is based on the "all" profile, tuned for production; with log verbosity reduced, deployment
scanning every 60 seconds, and memory usage tuned to accomodate production
deployment requirements, among other things. This is the configuration that will be used by
the server when it is started, if no other configuration is specified.

If you want to know which services are configured in each of these instances, look at the
jboss-service.xml file in the JBOSS_DIST/jboss-as/server/<instance-name>/conf/

directory and also the configuration files in the
JBOSS_DIST/jboss-as/server/<instance-name>/deploy directory.

[vsr]$ls server/default/conf
jbossjta-properties.xml jndi.properties standardjbosscmp-jdbc.xml
jboss-log4j.xml login-config.xml standardjboss.xml
jboss-minimal.xml props xmdesc
jboss-service.xml standardjaws.xml

Note

The production configuration is the one used if you don’t specify another one
when starting up the server.

To start the server using an alternate configuration refer to Section 3.2, “Start the
Server With Alternate Configuration”.

2.1. Server Configuration Directory Structure

The directory server configuration you’re using, is effectively the server root while JBoss is
running. It contains all the code and configuration information for the services provided by the
particular server configuration. It’s where the log output goes, and it’s where you deploy your
applications. Table 2.2, “Server Configuration Directory Structure” shows the directories inside
the default server configuration directory (JBOSS_DIST/jboss-as/server/default) and their
functions.

Directory Description

conf The conf directory contains the jboss-service.xml bootstrap descriptor
file for a given server configuration. This defines the core services that are
fixed for the lifetime of the server.

data The data directory is available for use by services that want to store
content in the file system. It holds persistent data for services intended to
survive a server restart. Serveral JBoss services, such as the embedded
Hypersonic database instance, store data here.

Chapter 2. The JBoss Server -...

6

Directory Description

deploy The deploy directory contains the hot-deployable services (those which
can be added to or removed from the running server). It also contains
applications for the current server configuration. You deploy your
application code by placing application packages (JAR, WAR and EAR
files) in the deploy directory. The directory is constantly scanned for
updates, and any modified components will be re-deployed automatically.
This may be overridden through the URLDeploymentScanner URLs
attribute.

lib This directory contains JAR files (Java libraries that should not be hot
deployed) needed by this server configuration. You can add required
library files here for JDBC drivers etc. All JARs in this directory are loaded
into the shared classpath at startup.

log This is where the log files are written. JBoss uses the Jakarta log4j

package for logging and you can also use it directly in your own
applications from within the server. This may be overridden through the
conf/log4j.xml configuration file.

tmp The tmp directory is used for temporary storage by JBoss services. The
deployer, for example, expands application archives in this directory.

work This directory is used by Tomcat for compilation of JSPs.

Table 2.2. Server Configuration Directory Structure

2.2. The "default" Server Configuration File Set

The "default" server configuration file set is located in the
JBOSS_DIST/jboss-as/server/default directory. Let's take a look at the contents of the
default server configuration file set:

jboss-eap-4.2 // jboss.home_url
|+ doc
|+ jboss-as
|+ bin
|+ client
|+ docs
|+ icons
|+ lib // jboss.lib.url
|+ scripts
|+ server

|+ all // jboss.server.name
|+ default // jboss.server.home.url
|+ conf // jboss.server.config.url

|+ props
|+ xmdesc
- jbossjta-properties.xml
- jboss-minimal.xml

The "default" Server Configuration File Set

7

- jndi.properties
- standardjboss.xml
- jboss-log4j.xml
- jboss-service.xml
- login-config.xml
- standardjbosscmp-jdbc.xml

|+ deploy
|+ ejb3.deployer
|+ http-invoker.sar
|+ jboss-aop-jdk50.deployer
|+ jboss-bean.deployer
|+ jboss-web.deployer
|+ jbossws.sar
|+ jms
|+ jmx-console.war
|+ management
|+ uuid-key-generator.sar
- bsh-deployer.xml
- cache-invalidation-service.xml
- client-deployer-service.xml
- ear-deployer.xml
- ejb3-interceptors-aop.xml
- ejb-deployer.xml
- hsqldb-ds.xml
- jboss-ha-local-jdbc.rar
- jboss-ha-xa-jdbc.rar
- jbossjca-service.xml
- jboss-local-jdbc.rar
- jboss-xa-jdbc.rar
- jmx-invoker-service.xml
- jsr88-service.xml
- mail-service.xml
- monitoring-service.xml
- properties-service.xml
- quartz-ra.rar
- schedule-manager-service.xml
- scheduler-service.xml
- sqlexception-service.xml

|+ lib // jboss.server.lib.url
|+ minimal
|+ production

|+ seam
|+ Uninstaller // jboss.uninstaller.url

2.2.1. Contents of "conf" directory

The files in the conf directory are explained in the following table.

File Description

jboss-minimal.xml This is a minimalist example of the
jboss-service.xml configuration file. (This

Chapter 2. The JBoss Server -...

8

File Description

is the jboss-service.xml file used in the
minimal configuration file set)

jboss-service.xml jboss-service.xml defines the core
services and their configurations.

jndi.properties The jndi.properties file specifies the JNDI
InitialContext properties that are used
within the JBoss server when an
InitialContext is created using the no-arg
constructor.

jboss-log4j.xml This file configures the Apache log4j
framework category priorities and appenders
used by the JBoss server code.

login-config.xml This file contains sample server side
authentication configurations that are
applicable when using JAAS based security.

props/* The props directory contains the users and
roles property files for the jmx-console.

standardjaws.xml This file provides the default configuration for
the legacy EJB 1.1 CMP engine.

standardjboss.xml This file provides the default container
configurations.

standardjbosscmp-jdbc.xml This file provides a default configuration file
for the JBoss CMP engine.

xmdesc/*-mbean.xml The xmdesc directory contains XMBean
descriptors for several services configured in
the jboss-service.xml file.

Table 2.3. Contents of "conf" directory

2.2.2. Contents of "deploy" directory

The files in the deploy directory are explained in the following table.

File Description

bsh-deployer.xml This file configures the bean shell deployer,
which deploys bean shell scripts as JBoss
services.

cache-invalidation-service.xml This is a service that allows for custom
invalidation of the EJB caches via JMS
notifications. It is disabled by default.

The "default" Server Configuration File Set

9

File Description

client-deployer-service.xml This is a service that provides support for
J2EE application clients. It manages the
java:comp/env enterprise naming context for
client applications based on the
application-client.xml descriptor.

ear-deployer.xml The EAR deployer is the service responsible
for deploying J2EE EAR files.

ejb-deployer.xml The EJB deployer is the service responsible
for deploying J2EE EJB JAR files.

hsqldb-ds.xml hsqldb-ds.xml configures the Hypersonic
embedded database service configuration file.
It sets up the embedded database and related
connection factories.

http-invoker.sar http-invoker.sar contains the detached
invoker that supports RMI over HTTP. It also
contains the proxy bindings for accessing
JNDI over HTTP.

jboss-aop-jdk50.deployer This service configure the
AspectManagerService and deploys JBoss
AOP applications.

jboss-bean.deployer jboss-bean.deployer provides the JBoss
microcontainer, which deploys POJO services
wrapped in .beans files.

jboss-ha-local-jdbc.rar jboss-ha-local-jdbc.rar is an
experimental version of
jboss-local-jdbc.rar that supports
datasource failover.

jboss-ha-xa-jdbc.rar jboss-ha-xa-jdbc.rar is an experimental
version of jboss-xa-jdbc.rar that supports
datasource failover.

jboss-local-jdbc.rar jboss-local-jdbc.rar is a JCA resource
adaptor that implements the JCA
ManagedConnectionFactory interface for
JDBC drivers that support the DataSource

interface but not JCA.

jboss-xa-jdbc.rar jboss-xa-jdbc.rar is a JCA resource
adaptor that implements the JCA
ManagedConnectionFactory interface for
JDBC drivers that support the XADataSource

interface.

jbossjca-service.xml jbossjca-service.xml is the application

Chapter 2. The JBoss Server -...

10

File Description

server implementation of the JCA
specification. It provides the connection
management facilities for integrating resource
adaptors into the JBoss server.

jboss-web.deployer The jboss-web.deployer directory provides
the Tomcat servlet engine.

jbossws.sar jbossws.sar provides J2EE web services
support.

jms/hsqldb-jdbc-state-service.xml hsqldb-jdbc-state-service.xml provides
JMS state management using Hypersonic.

jms/hsqldb-jdbc2-service.xml hsqldb-jdbc2-service.xml configures JMS
persistence and caching using Hypersonic. It
also contains the DestinationManager

MBean, which is the core service for the JMS
implementation.

jms/jbossmq-destinations-service.xml jbossmq-destinations-service.xml

configures a number of JMS queues and
topics used by the JMS unit tests.

jms/jbossmq-httpil.sar jbossmq-httpil.sar provides a JMS
invocation layer that allows the use of JMS
over HTTP.

jms/jbossmq-service.xml The jbossmq-service.xml file configures the
core JBossMQ JMS service.

jms/jms-ds.xml The jms-ds.xml file configures the JBossMQ
JMS provider for use with the jms-ra.rar

JCA resource adaptor.

jms/jms-ra.rar jms-ra.rar is a JCA resource adaptor that
implements the JCA
ManagedConnectionFactory interface for
JMS connection factories.

jms/jvm-il-service.xml jvm-il-service.xml configures the in-JVM
JMS transport invocation layer.

jms/uil2-service.xml uil2-service.xml configures the JMS
version 2 unified invocation layer. Its a fast
and reliable custom socket based transport
that should be used for messaging between
JVMs.

jmx-console.war The jmx-console.war directory provides the
JMX Console. The JMX Console provides a
simple web interface for managing the the
MBean server.

The "default" Server Configuration File Set

11

File Description

jmx-invoker-service.sar jmx-invoker-service.sar is an unpacked
MBean service archive that exposes a subset
of the JMX MBeanServer interface methods
as an RMI interface to enable remote access
to the JMX core functionality. This is similar to
the legacy jmx-rmi-adaptor.sar, with the
difference that the transport is handled by the
detached invoker architecture.

jsr-88-service.xml jsr-88-service.xml provides the JSR 88
remote deployment service.

mail-ra.rar mail-ra.rar is a resource adaptor that
provides a JavaMail connector.

mail-service.xml The mail-service.xml file is an MBean
service descriptor that provides JavaMail
sessions for use inside the JBoss server.

management/console-mgr.sar console-mgr.sar provides the Web Console.
It is a web application/applet that provide a
richer view of the JMX server management
data than the JMX console. You may view the
console using the URL
http://localhost:8080/web-console/.

monitoring-service.xml The monitoring-service.xml file configures
alert monitors like the console listener and
email listener used by JMX notifications.

properties-service.xml The properties-service.xml file is an
MBean service descriptor that allows for
customization of the JavaBeans
PropertyEditors as well as the definition of
system properties.

scheduler-service.xml The scheduler-service.xml and
schedule-manager-service.xml files are
MBean service descriptors that provide a
scheduling type of service.

sqlexception-service.xml The sqlexception-service.xml file is an
MBean service descriptor for the handling of
vendor specific SQLExceptions.

uuid-key-generator.sar The uuid-key-generator.sar service
provides a UUID-based key generation
facility.

Table 2.4. Contents of "deploy" directory

Chapter 2. The JBoss Server -...

12

2.3. The "all" Server Configuration File Set

The "all" server configuration file set is located in the JBOSS_DIST/jboss-as/server/all

directory. In addition to the services in the "default" set, the all configuration contains several
other services in the conf/ directory as shown below.

File Description

cluster-service.xml This service configures clustering
communication for most clustered services in
JBoss.

deploy-hasingleton-service.xml This provides the HA singleton service,
allowing JBoss to manage services that must
be active on only one node of a cluster.

deploy.last/farm-service.xml farm-service.xml provides the farm service,
which allows for cluster-wide deployment and
undeployment of services.

httpha-invoker.sar This service provides HTTP tunneling support
for clustered environments.

iiop-service.xml This provides IIOP invocation support.

juddi-service.sar This service provides UDDI lookup services.

snmp-adaptor.sar This is a JMX to SNMP adaptor. It allows for
the mapping of JMX notifications onto SNMP
traps.

tc5-cluster.sar Provides AOP support for field-level HTTP
session replication.

Table 2.5. Additional Services in "conf" directory for "all" configuration

2.4. EJB3 Services

The following table explains the files providing ejb3 services.

File Description

ejb3-interceptors-aop.xml This service provides the AOP interceptor
stack configurations for EJB3 bean types.

ejb3.deployer This service deploys EJB3 applications into
JBoss.

jboss-aop-jdk50.deployer This is a Java 5 version of the AOP deployer.
The AOP deployer configures the
AspectManagerService and deploys JBoss

The "all" Server Configuration File Set

13

File Description

AOP applications.

jbossws.sar This provides Java EE 5 web services
support.

Table 2.6. EJB3 Services

Finally, in the EJB3 "all" configuration there are two additional services.

File Description

ejb3-clustered-sfsbcache-service.xml This provides replication and failover for EJB3
stateful session beans.

ejb3-entity-cache-service.xml This provides a clustered cache for EJB3
entity beans.

Table 2.7. Additional Services in EJB3 "all" Configuration

2.5. Adding Your Own Configuration

You can add your own configurations too. The best way to do this is to copy an existing one that
is closest to your needs and modify the contents. For example, if you weren’t interested in using
messaging, you could copy the production directory, renaming it as myconfig, remove the jms

subdirectory and then start JBoss with the new configuration.

run -c myconfig

3. Starting and Stopping the Server

3.1. Start the Server

Move to JBOSS_DIST/jboss-as/bin directory and execute the run.bat (for Windows) or
run.sh (for Linux) script, as appropriate for your operating system. Your output should look like
the following (accounting for installation directory differences) and contain no error or exception
messages:

[jwulf@thinkpad bin]$./run.sh
===

JBoss Bootstrap Environment

JBOSS_HOME: /home/jwulf/jboss-eap-4.2/jboss-as

Chapter 2. The JBoss Server -...

14

JAVA: java

JAVA_OPTS: -Dprogram.name=run.sh -server -Xms1503m -Xmx1503m
-Dsun.rmi.dgc.client.
gcInterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000
-Djava.net.preferIPv4Stack=true

CLASSPATH: /home/jwulf/jboss-eap-4.2/jboss-as/bin/run.jar

===

13:11:46,215 INFO [Server] Starting JBoss (MX MicroKernel)...
13:11:46,217 INFO [Server] Release ID: JBoss [EAP] 4.2.0.GA (build:
SVNTag=JBoss_4_2_0_GA date=200706111042)
13:11:46,218 INFO [Server] Home Dir: /home/jwulf/jboss-eap-4.2/jboss-as
13:11:46,219 INFO [Server] Home URL:
file:/home/jwulf/jboss-eap-4.2/jboss-as/
13:11:46,220 INFO [Server] Patch URL: null
13:11:46,225 INFO [Server] Server Name: production
13:11:46,225 INFO [Server] Server Home Dir:
/home/jwulf/jboss-eap-4.2/jboss-as/server/production
13:11:46,225 INFO [Server] Server Home URL:
file:/home/jwulf/jboss-eap-4.2/jboss-as/server/production/
13:11:46,225 INFO [Server] Server Log Dir:
/home/jwulf/jboss-eap-4.2/jboss-as/server/production/log
13:11:46,226 INFO [Server] Server Temp Dir:
/home/jwulf/jboss-eap-4.2/jboss-as/server/production/tmp
13:11:46,226 INFO [Server] Root Deployment Filename: jboss-service.xml
13:11:47,071 INFO [ServerInfo] Java version: 1.5.0_11,Sun Microsystems Inc.
13:11:47,071 INFO [ServerInfo] Java VM:
Java HotSpot(TM) Server VM 1.5.0_11-b03,Sun Microsystems Inc.
13:11:47,072 INFO [ServerInfo] OS-System: Linux 2.6.21-1.3228.rhel5,i386
13:11:48,558 INFO [Server] Core system initialized
13:11:56,934 INFO [WebService] Using RMI server codebase:
http://127.0.0.1:8083/
13:11:56,940 INFO [Log4jService$URLWatchTimerTask]
Configuring from URL: resource:jboss-log4j.xml

Note

Note that there is no "Server Started" message shown at the console when the
server is started using the production profile, which is the default profile used
when no other is specified. This message may be observed in the server.log

file located in the server/production/log subdirectory.

3.2. Start the Server With Alternate Configuration

Using run.sh without any arguments starts the server using the production server
configuration file set. To start with an alternate configuration file set, pass the name of the

Start the Server With Alternate

15

server configuration file set [same as the name of the server configuration directory under
JBOSS_DIST/jboss-as/server] that you want to use as the value to the -c command line
option. For example, to start with the minimal configuration file set you should specify:

[bin]$./run.sh -c minimal
...
...
...
15:05:40,301 INFO [Server] JBoss (MX MicroKernel) [4.2.0.GA (build:
SVNTag=JBoss_4_2_0_GA date=200706111042)] Started in 5s:75ms

3.3. Using run.sh

The run script supports the following options:

usage: run.sh [options]
-h, --help Show help message
-V, --version Show version information
-- Stop processing options
-D<name>[=<value>] Set a system property
-d, --bootdir=<dir> Set the boot patch directory; Must be absolute
or url
-p, --patchdir=<dir> Set the patch directory; Must be absolute or
url
-n, --netboot=<url> Boot from net with the given url as base
-c, --configuration=<name> Set the server configuration name
-B, --bootlib=<filename> Add an extra library to the front
bootclasspath
-L, --library=<filename> Add an extra library to the loaders classpath
-C, --classpath=<url> Add an extra url to the loaders classpath
-P, --properties=<url> Load system properties from the given url
-b, --host=<host or ip> Bind address for all JBoss services
-g, --partition=<name> HA Partition name (default=DefaultDomain)
-u, --udp=<ip> UDP multicast address
-l, --log=<log4j|jdk> Specify the logger plugin type

3.4. Stopping the Server

To shutdown the server, you simply issue a Ctrl-C sequence in the console in which JBoss was
started. Alternatively, you can use the shutdown.sh command.

[bin]$./shutdown.sh -S

The shutdown script supports the following options:

A JMX client to shutdown (exit or halt) a remote JBoss server.

usage: shutdown [options] <operation>

Chapter 2. The JBoss Server -...

16

options:
-h, --help Show this help message (default)
-D<name>[=<value>] Set a system property
-- Stop processing options
-s, --server=<url> Specify the JNDI URL of the remote server
-n, --serverName=<url> Specify the JMX name of the ServerImpl
-a, --adapter=<name> Specify JNDI name of the MBeanServerConnection to
use
-u, --user=<name> Specify the username for authentication
-p, --password=<name> Specify the password for authentication

operations:
-S, --shutdown Shutdown the server
-e, --exit=<code> Force the VM to exit with a status code
-H, --halt=<code> Force the VM to halt with a status code

Using the shutdown command requires a server configuration that contains the
jmx-invoker-service.xml service. Hence you cannot use the shutdown command with the
minimal configuration.

3.5. Running as a Service under Microsoft Windows

You can configure the server to run as a service under Microsoft Windows, and configure it to
start automatically if desired.

Download the JavaService package from http://forge.objectweb.org/projects/javaservice/.

Unzip the package and use the JBossInstall.bat file to install the JBoss service. You must
set the JAVA_HOME and JBOSS_HOME environment variables to point to the jdk and jboss-as

directories before running JBossInstall.bat. Run JBossInstall.bat with the following
syntax:

JBossInstall.bat <depends> [-auto | -manual]

Where <depends> is the name of any service that the JBoss AS server depends on, such as the
mysql database service.

Once the service is installed the server can be started by using the command net start

JBoss, and stopped with the command net stop JBoss.

Please refer to the documentation included in the JavaService package for further information.

4. The JMX Console

When the JBoss Server is running, you can get a live view of the server by going to the JMX
console application at http://localhost:8080/jmx-console. You should see something similar to
Figure 2.1, “View of the JMX Management Console Web Application”.

The JMX Console is the JBoss Management Console which provides a raw view of the JMX

Configuration

17

http://forge.objectweb.org/projects/javaservice/
http://localhost:8080/jmx-console

MBeans which make up the server. They can provide a lot of information about the running
server and allow you to modify its configuration, start and stop components and so on.

For example, find the service=JNDIView link and click on it. This particular MBean provides a
service to allow you to view the structure of the JNDI namespaces within the server. Now find
the operation called list near the bottom of the MBean view page and click the invoke button.
The operation returns a view of the current names bound into the JNDI tree, which is very useful
when you start deploying your own applications and want to know why you can’t resolve a
particular EJB name.

Figure 2.1. View of the JMX Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the
configuration attributes and see what happens. With a very few exceptions, none of the
changes made through the console are persistent. The original configuration will be reloaded
when you restart JBoss, so you can experiment freely without doing any permanent damage.

If you secured your JMX Console with a username and password, it will prompt you for a
username and password before you can access it.

Chapter 2. The JBoss Server -...

18

Note

If you installed using the graphical installer, your JMX Console is already
protected with the given username and password. If you installed using other
modes, you can still configure JMX Security manually. You will learn to secure
your console in Section 6.3, “Security Service”.

5. Hot-deployment of services in JBoss

Let’s have a look at a practical example of hot-deployment of services in JBoss before we go on
to look at server configuration issues in more detail. Start JBoss if it isn’t already running and
take a look in the server/production/deploy directory again. Remove the mail-service.xml

file and watch the output from the server:

13:10:05,235 INFO [MailService] Mail service 'java:/Mail' removed from JNDI

Then replace the file and watch JBoss re-install the service:

13:58:54,331 INFO [MailService] Mail Service bound to java:/Mail

This is hot-deployment in action.

6. Basic Configuration Issues

Now that we’ve examined the JBoss server, we’ll take a look at some of the main configuration
files and what they’re used for. All paths are relative to the server configuration directory
(server/production, for example).

6.1. Core Services

The core services specified in the conf/jboss-service.xml file are started first when the
server starts up. If you have a look at this file in an editor you'll see MBeans for various services
including logging, security, JNDI, JNDIView etc. Try commenting out the entry for the JNDIView

service.

Note that because the mbeans definition had nested comments, we had to comment out the
mbean in two sections, leaving the original comment as it was.

<!-- Section 1 commented out
<mbean code="org.jboss.naming.JNDIView"

name="jboss:service=JNDIView"
xmbean-dd="resource:xmdesc/JNDIView-xmbean.xml">

-->
<!-- The HANamingService service name -->

Hot-deployment of services in JBoss

19

<!-- Section two commented out
<attribute

name="HANamingService">jboss:service=HAJNDI</attribute></mbean>
-->

If you then restart JBoss, you’ll see that the JNDIView service no longer appears in the JMX
Management Console (JMX Console) listing. In practice, you should rarely, if ever, need to
modify this file, though there is nothing to stop you adding extra MBean entries in here if you
want to. The alternative is to use a separate file in the deploy directory, which allows your
service to be hot deployable.

6.2. Logging Service

In JBoss log4j is used for logging. If you're not familiar with the log4j package and would like to
use it in your applications, you can read more about it at the Jakarta web site
(http://jakarta.apache.org/log4j/).

Logging is controlled from a central conf/log4j.xml file. This file defines a set of appenders,
specifying the log files, what categories of messages should go there, the message format and
the level of filtering. By default, JBoss produces output to both the console and a log file
(server.log in the log directory).

There are 5 basic log levels used: DEBUG, INFO, WARN, ERROR and FATAL. The logging threshold
on the console is INFO, which means that you will see informational messages, warning
messages and error messages on the console but not general debug messages. In contrast,
there is no threshold set for the server.log file, so all generated logging messages will be
logged there.

If things are going wrong and there doesn’t seem to be any useful information in the console,
always check the server.log file to see if there are any debug messages which might help you
track down the problem. However, be aware that just because the logging threshold allows
debug messages to be displayed, that doesn't mean that all of JBoss will produce detailed
debug information for the log file. You will also have to boost the logging limits set for individual
categories. Take the following category for example.

<!-- Limit JBoss categories to INFO -->
<category name="org.jboss">

<priority value="INFO"/>
</category>

This limits the level of logging to INFO for all JBoss classes, apart from those which have more
specific overrides provided. If you were to change this to DEBUG, it would produce much more
detailed logging output.

As another example, let’s say you wanted to set the output from the container-managed
persistence engine to DEBUG level and to redirect it to a separate file, cmp.log, in order to

Chapter 2. The JBoss Server -...

20

http://jakarta.apache.org/log4j/

1 The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication modules.
You can use the ones that are provided or write your own if have more specific requirements.
2 If you had installed JBoss using the Graphical Installer and set the JMX Security up, then you will not have to
uncomment the sections, because they are already uncommented. Additionally, the admin password will be set up to
whatever you had specified.

analyze the generated SQL commands. You would add the following code to the log4j.xml

file:

<appender name="CMP" class="org.jboss.logging.appender.RollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.home.dir}/log/cmp.log"/>
<param name="Append" value="false"/>
<param name="MaxFileSize" value="500KB"/>
<param name="MaxBackupIndex" value="1"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>

</layout>
</appender>

<category name="org.jboss.ejb.plugins.cmp">
<priority value="DEBUG" />
<appender-ref ref="CMP"/>

</category>

This creates a new file appender and specifies that it should be used by the logger (or category)
for the package org.jboss.ejb.plugins.cmp.

The file appender is set up to produce a new log file every day rather than producing a new one
every time you restart the server or writing to a single file indefinitely. The current log file is
cmp.log. Older files have the date they were written added to the name. You will notice that the
log directory also contains HTTP request logs which are produced by the web container.

6.3. Security Service

The security domain information is stored in the file login-config.xml as a list of named
security domains, each of which specifies a number of JAAS 1 login modules which are used for
authentication purposes in that domain. When you want to use security in an application, you
specify the name of the domain you want to use in the application’s JBoss-specific deployment
descriptors, jboss.xml and/or jboss-web.xml. We'll quickly look at how to do this to secure the
JMX Console application.

Almost every aspect of the JBoss server can be controlled through the JMX Console, so it is
important to make sure that, at the very least, the application is password protected. Otherwise,
any remote user could completely control your server. To protect it, we will add a security
domain to cover the application. 2 This can be done in the jboss-web.xml file for the JMX
Console, which can be found in deploy/jmx-console.war/WEB-INF/ directory. Uncomment
the security-domain in that file, as shown below.

Security Service

21

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

This links the security domain to the web application, but it doesn't tell the web application what
security policy to enforce, what URLs are we trying to protect, and who is allowed to access
them. To configure this, go to the web.xml file in the same directory and uncomment the
security-constraint that is already there. This security constraint will require a valid user
name and password for a user in the JBossAdmin group.

<!--
A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.

-->
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>

An example security config that only allows users with the
role JBossAdmin to access the HTML JMX console web application

</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>

That's great, but where do the user names and passwords come from? They come from the
jmx-console security domain we linked the application to. We've provided the configuration for
this in the conf/login-config.xml.

<application-policy name="jmx-console">
<authentication>

<login-module
code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag="required">
<module-option name="usersProperties">

props/jmx-console-users.properties
</module-option>
<module-option name="rolesProperties">

props/jmx-console-roles.properties
</module-option>

</login-module>
</authentication>

</application-policy>

Chapter 2. The JBoss Server -...

22

3 Since the username and password are session variables in the web browser you may need to shut down your browser
and come back in to see the login dialog come back up.

This configuration uses a simple file based security policy. The configuration files are found in
the conf/props directory of your server configuration. The usernames and passwords are
stored in jmx-console-users.properties in the directory and take the form
"username=password". To assign a user to the JBossAdmin group add "username=JBossAdmin"
to the jmx-console-roles.properties file. The existing file creates an admin user with the
password admin. For security, please either remove the user or change the password to a
stronger one.

JBoss will re-deploy the JMX Console whenever you update its web.xml. You can check the
server console to verify that JBoss has seen your changes. If you've configured everything
correctly and re-deployed the application, the next time you try to access the JMX Console,
JBoss will ask you for a name and password. 3

The JMX Console isn't the only web based management interface to JBoss. There is also the
Web Console. Although it's a Java applet, the corresponding web application can be secured in
the same way as the JMX Console. The Web Console is in
deploy/management/web-console.war. The only difference is that the Web Console is
provided as a simple WAR file instead of using the exploded directory structure that the JMX
Console did. The only real difference between the two is that editing the files inside the WAR file
is a bit more cumbersome.

6.4. Additional Services

The non-core, hot-deployable services are added to the deploy directory. They can be either
XML descriptor files, *-service.xml, or JBoss Service Archive (SAR) files. SARs contain both
the XML descriptor and additional resources the service requires (e.g. classes, library JAR files
or other archives), all packaged up into a single archive.

Detailed information on all these services can be found in the JBoss Enterprise Application
Platform: Server Configuration Guide, which also provides comprehensive information on server
internals and the implementation of services such as JTA and the J2EE Connector Architecture
(JCA).

7. The Web Container - Tomcat

JBoss Enterprise Application Platform comes with Tomcat as the default web container. The
embedded Tomcat service is found in the deploy/jboss-web.deployer directory. All the
necessary jar files needed by Tomcat can be found in there, as well as a web.xml file which
provides a default configuration set for web applications.

If you are already familiar with configuring Tomcat, have a look at the server.xml, which
contains a subset of the standard Tomcat format configuration information. As it stands, this

Additional Services

23

includes setting up the HTTP connector on the default port 8080, an AJP connector on port
8009 (can be used if you want to connect via a web server such as Apache) and an example of
how to configure an SSL connector (commented out by default).

You shouldn’t need to modify any of this other than for advanced use. If you’ve used Tomcat
before as a stand-alone server you should be aware that things are a bit different when using
the embedded service. JBoss is in charge and you shouldn’t need to access the Tomcat
directory at all. Web applications are deployed by putting them in the JBoss deploy directory
and logging output from Tomcat can be found in the JBoss log directory.

Chapter 2. The JBoss Server -...

24

EJB3 Caveats in JBoss Enterprise
Application Platform 4.2
There are a number of implementation features that you should be aware of when developing
applications for JBoss Enterprise Application Platform 4.2.

1. Unimplemented features

The Release Notes for JBoss Enterprise Application Platform 4.2 contain information on EJB3
features that are not yet implemented, or partially implemented. The Release Notes include
links to issues in JIRA for information on workarounds and further details.

2. Referencing EJB3 Session Beans from non-EJB3
Beans

JBoss Enterprise Application Platform 5 will fully support the entire Java 5 Enterprise Edition
specification. In the meantime JBoss Enterprise Application Platform 4.2 implements EJB3
functionality by way of an EJB MBean container running as a plugin in the JBoss Application
Server. This has certain implications for application development.

The EJB3 plugin injects references to an EntityManager and @EJB references from one EJB
object to another. However this support is limited to the EJB3 MBean and the JAR files it
manages. Any JAR files which are loaded from a WAR (such as Servlets, JSF backing beans,
and so forth) do not undergo this processing. The Java 5 Enterprise Edition standard specifies
that a Servlet can reference a Session Bean through an @EJB annotated reference, however
this is not implemented in JBoss Enterprise Application Platform 4.2.

In order to access an EJB3 Session Bean from a Servlet or JSF Backing Bean you will need to
do one of two things:

1. Without Seam - JNDI Lookup . Without utilizing the Seam framework that is part of JBoss
Enterprise Application Platform you will need to use an explicit JNDI lookup to access the
EJB3 Session Bean. You can see an example of this being done in the TodoBean.java file in
the jsfejb3 example application, described in Chapter 5, Sample JSF-EJB3 Application.

private TodoDaoInt getDao () {
try {
InitialContext ctx = new InitialContext();
return (TodoDaoInt) ctx.lookup("jsfejb3/TodoDao/local");
} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException("couldn't lookup Dao", e);
}
}

Chapter 3.

25

ctx.lookup("jsfejb3/TodoDao/local"); is the method used to reference the EJB3
Session Bean. The form is: AppName/SessionBeanName/local.

2. With Seam - Leave it to the Seam Framework . When you are using the Seam Framework
you don't need to worry about this. Because the Seam framework manages the interaction of
Beans anyway, it already automates this type of interaction.

Refer to Chapter 6, Using Seam for a more detailed explanation of achieving this using the
Seam framework.

Chapter 3. EJB3 Caveats in J...

26

About the Example Applications
In this guide, we make use of a simple web application to illustrate the use of JSF-EJB3
components. We then illustrate how to use Seam to integrate the JSF and EJB3 components.
The example applications (source code) come with this guide and you can find them located in
the JBOSS_DIST/doc/examples directory. You can also download the sample applications from
here [http://www.redhat.com/docs/jboss]. We use two examples in this book:

• A simple "TODO" application to create, view and edit tasks - implemented using JSF and
EJB3;

• The same application using the SEAM framework.

If you installed the documentation on your hard drive, then the first example can be found in the
JBOSS_DIST/doc/examples/jsfejb3 directory. We will see how to build this example using the
build.xml file present here and also how to deploy the application. We will also cover in detail
the working of the .java, .xml and .properties files.

The second example used in this guide can be found in the
JBOSS_DIST/doc/examples/seamejb3 directory. Using a simple "TODO" application we will
illustrate how Seam ties together the database, the web interface and the EJB3 business logic
in a web application. We will use the build.xml file present here to compile and build our Seam
application.

Within the JBOSS_DIST/doc/examples/<seamejb3|jsfejb3> directory, you will find the
following sub-directories:

• src: contains the Java source code files.

• view: contains the web pages.

• resources: contains all the configuration files used.

1. Install Ant

To compile and package the examples, you must have Apache Ant 1.6+ installed in your
machine. You can download it from http://ant.apache.org. You can have Ant installed in few
steps:

• Unzip the downloaded file to the directory of your choice.

• Create an environment variable called ANT_HOME pointing to the Ant installation directory. You
can do this by adding the a line similar to the following to your .bashrc file, substituting the
actual location of the ant directory on your system:

Chapter 4.

27

http://www.redhat.com/docs/jboss
http://www.redhat.com/docs/jboss
http://ant.apache.org

export ANT_HOME=/home/user/apache-ant-1.7.0

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then opening System/Advanced/Environment Variables. Create a
new variable, call it ANT_HOME and set it to be the ant directory.

• Add $ANT_HOME/bin to the system path to be able to run ant from the command line. You
can do this by adding the following line to your .bashrc file:

export PATH=$PATH:$ANT_HOME/bin

On Windows you do this by opening the Control Panel from the Start Menu, switching it to
classic view if necessary, then editing the PATH environment variable found in
System/Advanced/Environment Variables/System Variables/Path. Add a semicolon and the
path to the ant bin directory.

• Verify your Ant installation. To do this type ant -version at the command prompt. Your
output should look something like this:

Apache Ant version 1.7.0 compiled on December 13 2006

Chapter 4. About the Example ...

28

Sample JSF-EJB3 Application
We use a simple "TODO" application to show how JSF and EJB3 work together in a web
application. The "TODO" application works like this: You can create a new 'todo' task item using
the "Create" web form. Each task item has a 'title' and a 'description'. When you submit the
form, the application saves your task to a relational database. Using the application, you can
view all 'todo' items, edit/delete an existing 'todo' item and update the task in the database.

The sample application comprises the following components:

• Entity objects - These objects represent the data model; the properties in the object are
mapped to column values in relational database tables.

• JSF web pages - The web interface used to capture input data and display result data. The
data fields on these web pages are mapped to the data model via the JSF Expression
Language (EL).

• EJB3 Session Bean - This is where the functionality is implemented. We make use of a
Stateless Session Bean.

1. Data Model

Lets take a look at the contents of the Data Model represented by the Todo class in the
Todo.java file. Each instance of the Todo class corresponds to a row in the relational database
table. The 'Todo' class has three properties: id, title and description. Each of these correspond
to a column in the database table.

The 'Entity class' to 'Database Table' mapping information is specified using EJB3 Annotations
in the 'Todo' class. This eliminates the need for XML configuration and makes it a lot clearer.
The @Entity annotation defines the Todo class as an Entity Bean. The @Id and
@GeneratedValue annotations on the id property indicate that the id column is the primary key
and that the server automatically generates its value for each Todo object saved into the
database.

@Entity
public class Todo implements Serializable {

private long id;
private String title;
private String description;

public Todo () {
title ="";
description ="";

}

@Id @GeneratedValue

Chapter 5.

29

public long getId() { return id;}
public void setId(long id) { this.id = id; }

public String getTitle() { return title; }
public void setTitle(String title) {this.title = title;}

public String getDescription() { return description; }
public void setDescription(String description) {

this.description = description;
}

}

2. JSF Web Pages

In this section we will show you how the web interface is defined using JSF pages. We will also
see how the data model is mapped to the web form using JSF EL. Using the #{...} notation to
reference Java objects is called JSF EL (JSF Expression Language). Lets take a look at the
pages used in our application:

• index.xhtml: This page displays two options: 1. Create New Todo 2. Show all Todos. When
you click on the Submit button the corresponding action is invoked.

<h:form>

<h:commandLink type="submit" value="Create New Todo"

action="create"/>
<h:commandLink type="submit" value="Show All Todos"

action="todos"/>

</h:form>

• create.xhtml: When you try to create a new task, this JSF page captures the input data. We
use the todoBean to back the form input text fields. The #{todoBean.todo.title} symbol refers
to the "title" property of the "todo" object in the "TodoBean" class. The
#{todoBean.todo.description} symbol refers to the "description" property of the "todo" object in
the "TodoBean" class. The #{todoBean.persist} symbol refers to the "persist" method in the
"TodoBean" class. This method creates the "Todo" instance with the input data (title and
description) and persists the data.

<h:form id="create">
<table>
<tr>

<td>Title:</td>
<td>

Chapter 5. Sample JSF-EJB3 Ap...

30

<h:inputText id="title" value="#{todoBean.todo.title}" size="15">
<f:validateLength minimum="2"/>

</h:inputText>
</td>

</tr>
<tr>

<td>Description:</td>
<td>
<h:inputTextarea id="description"

value="#{todoBean.todo.description}">
<f:validateLength minimum="2" maximum="250"/>

</h:inputTextarea>
</td>

</tr>
</table>
<h:commandButton type="submit" id="create" value="Create"

action="#{todoBean.persist}"/>
</h:form>

Figure 5.1, “The "Create Todo" web page ” shows the "Create Todo" web page with the input
fields mapped to the data model.

Figure 5.1. The "Create Todo" web page

• todos.xhtml: This page displays the list of all "todos" created. There is also an option to
choose a "todo" item for 'edit' or 'delete'.

The list of all 'todos' is fetched by #{todoBean.todos} symbol referring to the 'getTodos()'
property in the 'TodoBean' class. The JSF dataTable iterates through the list and displays

JSF Web Pages

31

each Todo object in a row. The 'Edit' option is available across each row. The #{todo.id}
symbol represents the "id" property of the "todo" object.

<h:form>
<h:dataTable value="#{todoBean.todos}" var="todo">
<h:column>

<f:facet name="header">Title</f:facet>
#{todo.title}

</h:column>
<h:column>

<f:facet name="header">Description</f:facet>
#{todo.description}

</h:column>
<h:column>

Edit
</h:column>

</h:dataTable>
<center>
<h:commandButton action="create"

value="Create New Todo" type="submit"/>
</center>
</h:form>

Figure 5.2, “The "Show All Todos" web page ” shows the "Show All Todos" web page with the
data fields mapped to the data model.

Chapter 5. Sample JSF-EJB3 Ap...

32

Figure 5.2. The "Show All Todos" web page

• edit.xhtml: This page allows you to edit the "todo" item's 'title' and 'description' properties.
The #{todoBean.update} and #{todoBean.delete} symbols represent the "update" and "delete"
methods in the "TodoBean" class.

<h2>Edit #{todoBean.todo.title}</h2>
<h:form id="edit">
<input type="hidden" name="tid" value="#{todoBean.todo.id}"/>
<table>
<tr>

<td>Title:</td>
<td>
<h:inputText id="title" value="#{todoBean.todo.title}" size="15">

<f:validateLength minimum="2"/>
</h:inputText>

</td>
</tr>
<tr>

<td>Description:</td>
<td>
<h:inputTextarea id="description"

value="#{todoBean.todo.description}">
<f:validateLength minimum="2" maximum="250"/>

</h:inputTextarea>
</td>

</tr>
</table>
<h:commandButton type="submit" id="update" value="Update"

action="#{todoBean.update}"/>
<h:commandButton type="submit" id="delete" value="Delete"

action="#{todoBean.delete}"/>
</h:form>

Figure 5.3, “The "Edit Todo" web page ” shows the "Edit Todo" web page with the mapping to
the data model.

JSF Web Pages

33

Figure 5.3. The "Edit Todo" web page

Note

We have used XHTML pages in the sample applications because we
recommend using Facelets instead of JSP to render JSF view pages.

3. EJB3 Session Beans

EJB 3.0 is one of the major improvements introduced with Java EE 5.0. It aims at reducing the
complexity of older versions of EJB and simplifies Enterprise Java development and
deployment. You will notice that to declare a class as a 'Session Bean' you simply have to
annotate it. Using annotations eliminates the complexity involved with too many deployment
descriptors. Also the only interface an EJB3 Session Bean requires is a business interface that
declares all the business methods that must be implemented by the bean.

Chapter 5. Sample JSF-EJB3 Ap...

34

We will explore the two important source files associated with the Bean implementation in our
application: TodoDaoInt.java and TodoDao.java.

• Business interface: TodoDaoInt.java

We define here the methods that need to be implemented by the bean implementation class.
Basically, the business methods that will be used in our application are defined here.

public interface TodoDaoInt {

public void persist (Todo todo);
public void delete (Todo todo);
public void update (Todo todo);

public List <Todo> findTodos ();
public Todo findTodo (String id);

}

• Stateless Session Bean: TodoDao.java

The @Stateless annotation marks the bean as a stateless session bean. In this class, we
need to access the Entity bean Todo defined earlier. For this we need an EntityManager.
The @PersistenceContext annotation tells the JBoss Server to inject an entity manager
during deployment.

@Stateless
public class TodoDao implements TodoDaoInt {

@PersistenceContext
private EntityManager em;

public void persist (Todo todo) {
em.persist (todo);

}

public void delete (Todo todo) {
Todo t = em.merge (todo);
em.remove(t);

}

public void update (Todo todo) {
em.merge (todo);

}

public List <Todo> findTodos () {
return (List <Todo>) em.createQuery("select t from Todo t")

.getResultList();
}

public Todo findTodo (String id) {

EJB3 Session Beans

35

return (Todo) em.find(Todo.class, Long.parseLong(id));
}

}

4. Configuration and Packaging

We will build the sample application using Ant and explore the configuration and packaging
details. If you haven't installed Ant yet, do so now.

4.1. Building The Application

Let's look at building the example application and then explore the configuration files in detail.

In Chapter 4, About the Example Applications, we looked at the directory structure of the
jsfejb3 sample application. At the command line, go to the jsfejb3 directory. There you will
see a build.xml file. This is our Ant build script for compiling and packaging the archives. To
build the application, you need to first of all edit the build.xml file and edit the value of
jboss-dist to reflect the location where the JBoss Application Server is installed. Once you
have done this, just type the command ant and your output should look like this:

[vrenish@vinux jsfejb3]$ ant
Buildfile: build.xml

compile:
[mkdir] Created dir:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/build/classes
[javac] Compiling 4 source files to

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3
/build/classes
[javac] Note:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/src/TodoDao.java uses
unchecked or unsafe operations.
[javac] Note: Recompile with -Xlint:unchecked for details.

war:
[mkdir] Created dir:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/build/jars
[war] Building war:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/build/jars/
app.war

ejb3jar:
[jar] Building jar:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/build/jars/
app.jar

ear:
[ear] Building ear:

/home/vrenish/jboss-eap-4.2/doc/examples/jsfejb3/build/jars/

Chapter 5. Sample JSF-EJB3 Ap...

36

jsfejb3.ear

main:

BUILD SUCCESSFUL
Total time: 2 seconds
(vrenish@vinux jsfejb3)$

If you get the BUILD SUCCESSFUL message, you will find a newly created build directory with
2 sub-directories in it:

• classes: containing the compiled class files.

• jars: containing three archives - app.jar, app.war and jsfejb3.ear.

• app.jar : EJB code and descriptors.

• app.war : web application which provides the front end to allow users to interact with the
business components (the EJBs). The web source (HTML, images etc.) contained in the
jsfejb3/view directory is added unmodified to this archive. The Ant task also adds the
WEB-INF directory that contains the files which aren’t meant to be directly accessed by a
web browser but are still part of the web application. These include the deployment
descriptors (web.xml) and extra jars required by the web application.

• jsfejb3.ear : The EAR file is the complete application, containing the EJB modules and the
web module. It also contains an additional descriptor, application.xml. It is also possible
to deploy EJBs and web application modules individually but the EAR provides a
convenient single unit.

4.2. Configuration Files

Now that we have built the application, lets take a closer look at some of the important
Configuration files. We have built the final archive ready for deployment - jsfejb3.ear. The
contents of your EAR file should look like this:

jsfejb3.ear
|+ app.jar // contains the EJB code

|+ import.sql
|+ Todo.class
|+ TodoDao.class
|+ TodoDaoInt.class
|+ META-INF

|+ persistence.xml
|+ app.war // contains web UI

|+ index.html
|+ index.xhtml
|+ create.xhtml
|+ edit.xhtml

Configuration Files

37

|+ todos.xhtml
|+ TodoBean.class
|+ style.css
|+ META-INF
|+ WEB-INF

|+ faces-config.xml
|+ navigation.xml
|+ web.xml

|+ META-INF // contains the descriptors
|+ application.xml
|+ jboss-app.xml

• application.xml: This file lists the JAR files in the EAR (in our case app.jar) and tells the
JBoss server what files to look for and where. The root URL for the application is also
specified in this file as 'context-root'.

<application>
<display-name>Sample Todo</display-name>
<module>

<web>
<web-uri>app.war</web-uri>
<context-root>/jsfejb3</context-root>

</web>
</module>
<module>

<ejb>app.jar</ejb>
</module>

</application>

• jboss-app.xml: Every EAR application should specify a unique string name for the class
loader. In our case, we use the application name 'jsfejb3' as the class loader name.

<jboss-app>
<loader-repository>

jsfejb3:archive=jsfejb3.ear
</loader-repository>

</jboss-app>

• app.jar: This contains EJB3 Session Bean and Entity Bean classes and the related
configuration files. In addition, the persistence.xml file configures the back-end data source
(in our case the default HSQL database) for the EntityManager.

<persistence>
<persistence-unit name="helloworld">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>

Chapter 5. Sample JSF-EJB3 Ap...

38

<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

</properties>
</persistence-unit>

</persistence>

• app.war: This contains the Web UI files packaged according to the Web Application aRchive
(WAR) specification. It contains all the web pages and the required configuration files. The
web.xml file is an important file for all JAVA EE web applications. It is the web deployment
descriptor file. The faces-config.xml file is the configuration file for JSF. The
navigation.xml file contains the rules for JSF page navigation.

//faces-config.xml
<faces-config>
<application>

<view-handler>
com.sun.facelets.FaceletViewHandler

</view-handler>
</application>
<managed-bean>

<description>Dao</description>
<managed-bean-name>todoBean</managed-bean-name>
<managed-bean-class>TodoBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>
</faces-config>

5. The Database

5.1. Creating the Database Schema

To pre-populate the database, we have supplied SQL Code (import.sql) to run with HSQL in
the examples/jsfejb3/resources directory. When you build the application using Ant, this is
packaged in the app.jar file within the jsfejb3.ear file. When the application is deployed, you
should be able to view the pre-populated data.

5.2. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the JMX console application and click on the
service=Hypersonic link which you’ll find under the section jboss. If you can’t find this, make
sure the Hypersonic service is enabled in the hsqldb-ds.xml file.

This will take you to the information for the Hypersonic service MBean. Scroll down to the
bottom of the page and click the invoke button for the startDatabaseManager() operation.

The Database

39

This starts up the HSQL Manager, a Java GUI application which you can use to manipulate the
database directly.

Figure 5.4. The HSQL Database Manger

6. Deploying the Application

Deploying an application in JBoss is simple and easy. You just have to copy the EAR file to the
deploy directory in the 'server configuration' directory of your choice. Here, we will deploy it to
the 'default' configuration, so we copy the EAR file to the
JBOSS_DIST/jboss-as/server/default/deploy directory.

You should see something close to the following output from the server:

15:32:23,997 INFO [EARDeployer] Init J2EE application:
file:/home/vrenish/jboss-eap-4.2
/jboss-as/server/default/deploy/jsfejb3.ear
15:32:24,212 INFO [JmxKernelAbstraction] creating wrapper delegate for:
org.jboss.ejb3.
entity.PersistenceUnitDeployment
15:32:24,213 INFO [JmxKernelAbstraction] installing MBean:
persistence.units:ear=
jsfejb3.ear,jar=app.jar,unitName=helloworld with dependencies:
15:32:24,213 INFO [JmxKernelAbstraction]
jboss.jca:name=DefaultDS,service=

Chapter 5. Sample JSF-EJB3 Ap...

40

DataSourceBinding
15:32:24,275 INFO [PersistenceUnitDeployment] Starting persistence unit
persistence.
units:ear=jsfejb3.ear,jar=app.jar,unitName=helloworld
15:32:24,392 INFO [Ejb3Configuration] found EJB3 Entity bean: Todo
15:32:24,450 WARN [Ejb3Configuration] Persistence provider caller does not
implements
the EJB3 spec correctly. PersistenceUnitInfo.getNewTempClassLoader() is
null.
15:32:24,512 INFO [Configuration] Reading mappings from resource :
META-INF/orm.xml
15:32:24,512 INFO [Ejb3Configuration] [PersistenceUnit: helloworld] no
META-INF/orm.xml
found
15:32:24,585 INFO [AnnotationBinder] Binding entity from annotated class:
Todo
15:32:24,586 INFO [EntityBinder] Bind entity Todo on table Todo
.
.
.
.
15:32:26,311 INFO [SchemaExport] Running hbm2ddl schema export
15:32:26,312 INFO [SchemaExport] exporting generated schema to database
15:32:26,314 INFO [SchemaExport] Executing import script: /import.sql
15:32:26,418 INFO [SchemaExport] schema export complete
15:32:26,454 INFO [NamingHelper] JNDI InitialContext
properties:{java.naming.factory.
initial=org.jnp.interfaces.NamingContextFactory,
java.naming.factory.url.pkgs=org.jboss.
naming:org.jnp.interfaces}
15:32:26,484 INFO [JmxKernelAbstraction] creating wrapper delegate for:
org.jboss.ejb3.
stateless.StatelessContainer
15:32:26,485 INFO [JmxKernelAbstraction] installing MBean:
jboss.j2ee:ear=jsfejb3.ear,
jar=app.jar,name=TodoDao,service=EJB3 with dependencies:
15:32:26,513 INFO [JmxKernelAbstraction]
persistence.units:ear=jsfejb3.ear,
jar=app.jar,unitName=helloworld
15:32:26,557 INFO [EJBContainer] STARTED EJB: TodoDao ejbName: TodoDao
15:32:26,596 INFO [EJB3Deployer] Deployed:
file:/home/vrenish/jboss-eap-4.2/jboss-as/
server/default/tmp/deploy/
tmp33761jsfejb3.ear-contents/app.jar
15:32:26,625 INFO [TomcatDeployer] deploy, ctxPath=/jsfejb3,
warUrl=.../tmp/deploy/
tmp33761jsfejb3.ear-contents/app-exp.war/
15:32:26,914 INFO [EARDeployer] Started J2EE application:
file:/home/vrenish/jboss-eap-
4.2/jboss-as/server/default/deploy/jsfejb3.ear

If there are any errors or exceptions, make a note of the error message. Check that the EAR is
complete and inspect the WAR file and the EJB jar files to make sure they contain all the
necessary components (classes, descriptors etc.).

Deploying the Application

41

You can safely redeploy the application if it is already deployed. To undeploy it you just have to
remove the archive from the deploy directory. There’s no need to restart the server in either
case. If everything seems to have gone OK, then point your browser at the application URL.

http://localhost:8080/jsfejb3

You will be forwarded to the application main page. Figure 5.5, “Sample TODO” shows the
sample application in action.

Figure 5.5. Sample TODO

Chapter 5. Sample JSF-EJB3 Ap...

42

http://localhost:8080/jsfejb3

Using Seam
JBoss Seam is a framework that provides the glue between the new EJB3 and JSF frameworks
that are part of the Java EE 5.0 standard. In fact, the name Seam refers to the seamless
manner in which it enables developers to use these two frameworks in an integrated manner.
Seam automates many of the common tasks, and makes extensive use of annotations to
reduce the amount of xml code that needs to be written. The overall effect is to significantly
reduce the total amount of coding that needs to be done.

We have included two versions of the example application, one coded using EJB3 / JSF without
using Seam, and one using Seam, to demonstrate clearly the difference in application
development using the Seam framework.

1. Data Model

In the previous chapter we looked at the Data Model used in the EJB3/JSF implementation of
this sample application. Let's start off our examination of the Seam implementation in the same
way, by examining how the Data Model is implemented. This is done in the Todo.java file.

@Entity
@Name("todo")
public class Todo implements Serializable {

private long id;
private String title;
private String description;

public Todo () {
title ="";
description ="";

}

@Id @GeneratedValue
public long getId() { return id;}
public void setId(long id) { this.id = id; }

@NotNull
public String getTitle() { return title; }
public void setTitle(String title) {this.title = title;}

@NotNull
@Length(max=250)
public String getDescription() { return description; }
public void setDescription(String description) {

this.description = description;
}

}

The @Entity annotation defines the class as an EJB3 session bean, and tells the container to

Chapter 6.

43

map the Todo class to a relational database table. Each property of the class will become a
column in the table. Each instance of the class will become a row in this table. Since we have
not used the @Table annotation, Seam's "configuration by exception" default will name the table
after the class.

@Entity and @Table are both EJB3 annotations, and are not specific to Seam. It is possible to
use Seam completely with POJOs (Plain Old Java Objects) without any EJB3-specific
annotations. However, EJB3 brings a lot of advantages to the table, including container
managed security, message-driven components, transaction and component level persistence
context, and @PersistenceContext injection, which we will encounter a little further on.

The @Name annotation is specific to Seam, and defines the string name for Seam to use to
register the Entity Bean. This will be the default name for the relational database table. Each
component in a Seam application must have a unique name. In the other components in the
Seam framework, such as JSF web pages and session beans, you can reference the managed
Todo bean using this name. If no instance of this class exists when it is referenced from another
component, then Seam will instantiate one.

The @Id annotation defines a primary key id field for the component. @GeneratedValue
specifies that the server will automatically generate this value for the component when it is
saved to the database.

Seam provides support for model-based constraints defined using Hibernate Validator, although
Hibernate does not have to be the object persister used. The @NotNull annotation is a
validation constraint that requires this property to have a value before the component can be
persisted into the database. Using this annotation allows the validation to be enforced by the
JSF code at the view level, without having to specify the exact validation constraint in the JSF
code.

At this point the only apparent difference between the Seam version and the EJB3/JSF version
of the app is the inclusion of the validator annotation @NotNull, and the @Name annotation.
However, while the EJB3/JSF version of this application requires a further TodoBean class to be
manually coded and managed in order to handle the interaction between the Todo class and the
web interface, when using Seam the Seam framework takes care of this work for us. We'll see
how this is done in practice as we examine the implementation of the user interface.

2. JSF Web Pages - index.xhtml and create.xhtml

The index.xhtml file used is the same as in the EJB3/JSF example.

create.xhtml begins to reveal the difference that coding using the Seam framework makes.

<h:form id="create">

<f:facet name="beforeInvalidField">
<h:graphicImage styleClass="errorImg" value="error.png"/>

</f:facet>
<f:facet name="afterInvalidField">
<s:message styleClass="errorMsg" />

</f:facet>

Chapter 6. Using Seam

44

<f:facet name="aroundInvalidField">
<s:div styleClass="error"/>

</f:facet>

<s:validateAll>

<table>

<tr>
<td>Title:</td>
<td>
<s:decorate>

<h:inputText id="title" value="#{todo.title}" size="15"/>
</s:decorate>

</td>
</tr>

<tr>
<td>Description:</td>
<td>
<s:decorate>

<h:inputTextarea id="description" value="#{todo.description}"/>
</s:decorate>

</td>
</tr>

</table>

</s:validateAll>

<h:commandButton type="submit" id="create" value="Create"
action="#{todoDao.persist}"/>

</h:form>

The first thing that is different here is the Java Server Facelet code at the beginning, which
works with the @NotNull validation constraint of our todo class to enforce and indicate invalid
input to the user.

Also notice here that rather than requiring the use of a TodoBean class as we did in the
EJB3/JSF example we back the form directly with a Todo entity bean. When this page is called,
JSF asks Seam to resolve the variable todo due to JSF EL references such as #{todo.title}.
Since there is no value already bound to that variable name, Seam will instantiate an entity
bean of the todo class and return it to JSF, after storing it in the Seam context. The Seam
context replaces the need for an intermediary bean.

The form input values are validated against the Hibernate Validator constraints specified in the
todo class. JSF will redisplay the page if the constraints are violated, or it will bind the form
input values to the Todo entity bean.

Entity beans shouldn't do database access or transaction management, so we can't use the
Todo entity bean as a JSF action listener. Instead, creation of a new todo item in the database is

JSF Web Pages - index.xhtml and

45

accomplished by calling the persist method of a TodoDao session bean. When JSF requests
Seam to resolve the variable todoDao through the JSF EL expression #{todoDao.persist},
Seam will either instantiate an object if one does not already exist, or else pass the existing
stateful todoDao object from the Seam context. Seam will intercept the persist method call
and inject the todo entity from the session context.

Let's have a look at the TodoDao class (defined in TodoDao.java) to see how this injection
capability is implemented.

3. Data Access using a Session Bean

Let's go through a listing of the code for the TodoDao class.

@Stateful
@Name("todoDao")
public class TodoDao implements TodoDaoInt {

@In (required=false) @Out (required=false)
private Todo todo;

@PersistenceContext (type=EXTENDED)
private EntityManager em;

// Injected from pages.xml
Long id;

public String persist () {
em.persist (todo);
return "persisted";

}

@DataModel
private List <Todo> todos;

@Factory("todos")
public void findTodos () {

todos = em.createQuery("select t from Todo t")
.getResultList();

}

public void setId (Long id) {
this.id = id;

if (id != null) {
todo = (Todo) em.find(Todo.class, id);

} else {
todo = new Todo ();

}
}

public Long getId () {
return id;

}

public String delete () {

Chapter 6. Using Seam

46

em.remove(todo);
return "removed";

}

public String update () {
return "updated";

}

@Remove @Destroy
public void destroy() {}

}

First of all notice that this is a stateful session bean. Seam can use both stateful and stateless
session beans, the two most common types of EJB3 beans.

The @In and @Out annotations define an attribute that is injected by Seam. The attribute is
injected to this object or from this object to another via a Seam context variable named todo, a
reference to the Seam registered name of our Todo class defined in Todo.java.

The @PersistenceContext annotation injects the EJB3 Entity manager, allowing this object to
persist objects to the database. Because this is a stateful session bean and the
PersistenceContext type is set to EXTENDED, the same Entity Manager instance is used until
the Remove method of the session bean is called. The database to be used (a
persistence-unit) is defined in the file resources/META-INF/persistence.xml

Note that this session bean has simultaneous access to context associated with web request
(the form values of the todo object), and state held in transactional resources (the
EntityManager). This is a break from traditional J2EE architectures, but Seam does not force
you to work this way. You can use more traditional forms of application layering if you wish.

The @DataModel annotation initializes the todos property, which will be outjected or "exposed"
to the view. The @Factory annotated method performs the work of generating the todos list,
and is called by Seam if it attempts to access the exposed DataModel property and finds it to be
null. Notice the absence of property access methods for the todos property. Seam takes care of
this for you automatically.

Let's take a look at the JSF code that we use for displaying and editing the list of todos, to get
an idea of how to use these interfaces in practice.

4. JSF Web Pages - todos.xhtml and edit.xhtml

Using the DataModel exposed property of the Session Bean it becomes trivial to produce a list
of todos:

<h:form>

<h:dataTable value="#{todos}" var="todo">
<h:column>

<f:facet name="header">Title</f:facet>

create.xhtml

47

#{todo.title}
</h:column>
<h:column>

<f:facet name="header">Description</f:facet>
#{todo.description}

</h:column>
<h:column>

Edit
</h:column>

</h:dataTable>

<center>
<h:commandButton action="create"

value="Create New Todo" type="submit"/>
</center>

</h:form>

When the JSF variable resolver encounters {#todos} and requests todos, Seam finds that
there is no "todos" component in the current scope, so it calls the @Factory("todos") method to
make one. The todos object is then outjected once the factory method is done since it is
annotated with the @DataModel annotation.

Constructing the view for the edit page is similarly straight forward:

<h:form id="edit">

<f:facet name="beforeInvalidField">
<h:graphicImage styleClass="errorImg" value="error.png"/>

</f:facet>
<f:facet name="afterInvalidField">
<s:message styleClass="errorMsg" />

</f:facet>
<f:facet name="aroundInvalidField">
<s:div styleClass="error"/>

</f:facet>

<s:validateAll>

<table>

<tr>
<td>Title:</td>
<td>
<s:decorate>

<h:inputText id="title" value="#{todo.title}" size="15"/>
</s:decorate>

</td>
</tr>

<tr>
<td>Description:</td>
<td>
<s:decorate>

Chapter 6. Using Seam

48

<h:inputTextarea id="description" value="#{todo.description}"/>
</s:decorate>

</td>
</tr>

</table>

</s:validateAll>

<h:commandButton type="submit" id="update" value="Update"
action="#{todoDao.update}"/>

<h:commandButton type="submit" id="delete" value="Delete"
action="#{todoDao.delete}"/>

</h:form>

Here we see the same factors in play. JSF validation code taking advantage of the validation
constraints defined in our Entity Bean, and the use of the todoDao Session Bean's update and
delete methods to update the database.

The call from todos.xhtml: edit.seam?tid=#{todo.id} causes Seam to create a todoDao

and set it's id property to tid. Setting its id property causes the todoDao to retrieve the
appropriate record from the database.

The functionality that allows the edit page to be called with a parameter in this way is
implemented through pages.xml. Let's have a look at the pages.xml file and how it is used by
Seam applications.

5. Xml Files

Seam drastically reduces the amount of xml coding that needs to be done. One file that is of
interest is the pages.xml, packaged in the app.war file's WEB-INF directory. This file is available
in the resources/WEB-INF directory in the source code bundle. The pages.xml file is used to
define page descriptions including Seam page parameters (HTTP GET parameters), page
actions, page navigation rules, error pages etc. Among other things it can be used in a Seam
application to define exception handlers and redirections.

In the case of our sample application we are using it to define a Seam page parameter. The
pages.xml in this example contains the following code:

<page view-id="/edit.xhtml">
<param name="tid" value="#{todoDao.id}"

converterId="javax.faces.Long"/>
</page>

This defines a parameter named tid for the edit.xhtml page. When the edit.xhtml page is
loaded, the HTTP GET request parameter tid is converted to a Long value and assigned to the
id property of the todoDao object. You can have as many page parameters as required to bind

Xml Files

49

HTTP GET request parameters to the back-end components in your application.

6. Further Information

This completes our walkthrough of the sample Seam application. For further, detailed
information on developing applications using the Seam framework, please refer to the "Seam
Reference Guide".

Chapter 6. Using Seam

50

Using other Databases
In the previous chapters, we’ve just been using the JBoss default datasource in our
applications. This is provided by the embedded HSQL database instance and is bound to the
JNDI name java:/DefaultDS. Having a database included with JBoss is very convenient for
running examples and HSQL is adequate for many purposes. However, at some stage you will
want to use another database, either to replace the default datasource or to access multiple
databases from within the server.

1. DataSource Configuration Files

DataSource configuration file names end with the suffix -ds.xml so that they will be recognized
correctly by the JCA deployer. The docs/example/jca directory contains sample files for a
wide selection of databases and it is a good idea to use one of these as a starting point. For a
full description of the configuration format the best place to look is the DTD file
docs/dtd/jboss-ds_1_5.dtd. Additional documentation on the files and the JBoss JCA
implementation can also be found in the JBoss 4 Application Server Guide.

Local transaction datasources are configured using the local-tx-datasource element and
XA-compliant ones using xa-tx-datasource. The example file generic-ds.xml shows how to
use both types and also some of the other elements that are available for things like connection
pool configuration. Examples of both local and XA configurations are available for Oracle, DB2
and Informix.

If you look at the example files firebird-ds.xml, facets-ds.xml and sap3-ds.xml, you’ll
notice that they have a completely different format, with the root element being
connection-factories rather than datasources. These use an alternative, more generic JCA
configuration syntax used with a pre-packaged JCA resource adapter. The syntax is not specific
to datasource configuration and is used, for example, in the jms-ds.xml file to configure the
JMS resource adapter.

Next, we’ll work through some step-by-step examples to illustrate what’s involved setting up a
datasource for a specific database.

2. Using MySQL as the Default DataSource

MySQL is a one of the most popular open source databases around and is used by many
prominent organizations from Yahoo to NASA. The official JDBC driver for it is called
Connector/J. For this example we’ve used MySQL 4.1.7 and Connector/J 3.0.15. You can
download them both from http://www.mysql.com .

2.1. Creating a Database and User

We’ll assume that you’ve already installed MySQL and that you have it running and are familiar
with the basics. Run the mysql client program from the command line so we can execute some
administration commands. You should make sure that you are connected as a user with
sufficient privileges (e.g. by specifying the -u root option to run as the MySQL root user).

Chapter 7.

51

http://www.mysql.com

First create a database called jboss within MySQL for use by JBoss.

mysql> CREATE DATABASE jboss;
Query OK, 1 row affected (0.05 sec)

Then check that it has been created.

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| jboss |
| mysql |
| test |
+----------+
3 rows in set (0.00 sec)

Next, create a user called jboss with password password to access the database.

mysql> GRANT ALL PRIVILEGES ON jboss.* TO jboss@localhost IDENTIFIED BY
'password';
Query OK, 0 rows affected (0.06 sec)

Again, you can check that everything has gone smoothly.

mysql> select User,Host,Password from mysql.User;
+-------+-----------+------------------+
| User | Host | Password |
+-------+-----------+------------------+
root	localhost	
root	%	
	localhost	
	%	
jboss	localhost	5d2e19393cc5ef67
+-------+-----------+------------------+
5 rows in set (0.02 sec)

2.2. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to JBoss, copy the file
mysql-connector-java-3.0.15-ga-bin.jar from the Connector/J distribution to the lib

directory in the default server configuration (assuming that is the configuration you’re running,
of course). Then create a file in the deploy directory called mysql-ds.xml with the following
datasource configuration. The database user name and password corresponds the MySql user
we created in the previous section.

<datasources>
<local-tx-datasource>

Chapter 7. Using other Databases

52

<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/jboss</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>jboss</user-name>
<password>password</password>

</local-tx-datasource>
</datasources>

Because we have added a new JAR file to the lib directory, you will need to make sure that the
server is able to find the MySQL driver classes.

2.3. Testing the MySQL DataSource

We’ll use the CMP roster application to test the new database connection. In order to use MySql
in our application, we'll need to set the datasource name a nd type-mapping in the
jbosscmp-jdbc.xml file in the dd/team directory of the CMP roster application. Edit the file and
add the following datasource and datasource-mapping elements to the defaults element.

<jbosscmp-jdbc>
<defaults>

<datasource>java:/MySqlDS</datasource>
<datasource-mapping>mySQL</datasource-mapping>

</defaults>

<enterprise-beans>
...

</enterprise-beans>
</jbosscmp-jdbc>

After restarting JBoss, you should be able to deploy the application and see the tables being
created. . The tables should be visible from the MySQL client.

mysql> show tables;
+-----------------------------------+
| Tables_in_jboss |
+-----------------------------------+
| LeagueBean |
| PlayerBean |
| PlayerBean_teams_TeamBean_players |
| TeamBean |
+-----------------------------------+
4 rows in set (0.00 sec)

You can see the JMS persistence tables in there too since we’re using MySQL as the default
datasource.

3. Setting up an XADataSource with Oracle 9i

Testing the MySQL DataSource

53

Oracle is one of the main players in the commercial database field and most readers will
probably have come across it at some point. You can download it freely for non-commercial
purposes from http://www.oracle.com

Installing and configuring Oracle is not for the faint of heart. It isn’t really just a simple database,
but it is heavy on extra features and technologies which you may not actually want (another
Apache web server, multiple JDKs, Orbs etc.) but which are usually installed anyway. So we’ll
assume you already have an Oracle installation available. For this example, we’ve used Oracle
10g.

3.1. Padding Xid Values for Oracle Compatibility

If you look in the jboss-service.xml file in the default/conf directory, you’ll find the following
service MBean.

<!-- The configurable Xid factory. For use with Oracle, set pad to true -->
<mbean code="org.jboss.tm.XidFactory"

name="jboss:service=XidFactory">
<!--attribute name="Pad">true</attribute-->

</mbean>

The transaction service uses this to create XA transactions identifiers. The comment explains
the situation: for use with Oracle you have to include the line which sets the attribute Pad to true.
This activates padding the identifiers out to their maximum length of 64 bytes. Remember that
you’ll have to restart JBoss for this change to be put into effect, but wait until you’ve installed the
JDBC driver classes which we’ll talk about next.

3.2. Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOME/jdbc/lib. Older
versions, which may be more familiar to some users, had rather uninformative names like
classes12.zip but at the time of writing the latest driver version can be found in the file
ojdbc14.jar. There is also a debug version of the classes with _g appended to the name
which may be useful if you run into problems. Again, you should copy one of these to the lib

directory of the JBoss default configuration. The basic driver class you would use for the
non-XA setup is called oracle.jdbc.driver.OracleDriver. The XADataSource class, which
we’ll use here, is called oracle.jdbc.xa.client.OracleXADataSource.

For the configuration file, make a copy of the oracle-xa-ds.xml example file and edit it to set
the correct URL, username and password.

<datasources>
<xa-datasource>

<jndi-name>XAOracleDS</jndi-name>
<track-connection-by-tx>true</track-connection-by-tx>
<isSameRM-override-value>false</isSameRM-override-value>

<xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
<xa-datasource-property name="URL">

jdbc:oracle:thin:@monkeymachine:1521:jboss

Chapter 7. Using other Databases

54

http://www.oracle.com

</xa-datasource-property>
<xa-datasource-property name="User">jboss</xa-datasource-property>
<xa-datasource-property

name="Password">password</xa-datasource-property>
<exception-sorter-class-name>

org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
</exception-sorter-class-name>
<no-tx-separate-pools/>

</xa-datasource>

<mbean
code="org.jboss.resource.adapter.jdbc.vender.oracle.OracleXAExceptionFormatter"

name="jboss.jca:service=OracleXAExceptionFormatter">
<depends optional-attribute-name="TransactionManagerService">

jboss:service=TransactionManager
</depends>

</mbean>
</datasources>

We’ve used the Oracle thin (pure java) driver here and assumed the database is running on the
host monkeymachine and that the database name (or SID in Oracle terminology) is jboss.
We’ve also assumed that you’ve created a user jboss with all the sufficient privileges. You can
just use dba privileges for this example.

SQL> connect / as sysdba
Connected.
SQL> create user jboss identified by password;
User created.
SQL> grant dba to jboss;
Grant succeeded.

Now copy the file to the deploy directory. You should get the following output.

11:33:45,174 INFO [WrapperDataSourceService] Bound connection factory for
resource adapter
for ConnectionManager 'jboss.jca:name=XAOracleDS,service=DataSourceBinding
to JNDI name
'java:XAOracleDS'

If you use the JNDIView service from the JMX console as before, you should see the name
java:/XAOracleDS listed.

3.3. Testing the Oracle DataSource

Again we’ll use the CMP example to test out the new database connection. The
jbosscmp-jdbc.xml file should contain the following.

<jbosscmp-jdbc>
<defaults>

<datasource>java:/XAOracleDS</datasource>

Testing the Oracle DataSource

55

<datasource-mapping>Oracle9i</datasource-mapping>
</defaults>

</jbosscmp-jdbc>

There are other Oracle type-mappings available too. If you’re using an earlier version, have a
look in the conf/standardjbosscmp-jdbc.xml file to find the correct name

Deploy the application as before, check the output for errors and then check that the tables
have been created using Oracle SQLPlus again from the command line.

SQL> select table_name from user_tables;

TABLE_NAME

TEAMBEAN
LEAGUEBEAN
PLAYERBEAN
PLAYERBEAN_TEAMS_TEAM_1OFLZV8

Chapter 7. Using other Databases

56

Appendix A. Further Information
Sources
For a longer introduction to JBoss, see JBoss: A Developer's Notebook. (O'Reilly, 2005.
Norman Richards, Sam Griffith).

For more comprehensive JBoss documentation covering advanced JBoss topics, refer to the
manuals available online at http://www.redhat.com/docs/jboss.

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th
Edition. (O'Reilly, 2004. Richard Monson-Haeful, Bill Burke, Sacha Labourey)

To learn more about Hibernate, see Java Persistence With Hibernate. (Manning, 2007.
Christian Bauer, Gavin King)

For complete coverage of the JBoss Seam framework, we recommend JBoss Seam: Simplicity
And Power Beyond Java EE. (Prentice Hall, 2007. Michael Yuan, Thomas Heute).

57

http://www.redhat.com/docs/jboss

58

	JBoss Enterprise Application Platform
	Table of Contents
	About this book
	Chapter 1. Introduction
	1. Feedback
	2. Other Manuals

	Chapter 2. The JBoss Server - A Quick Tour
	1. Directory Structure
	1.1. JBoss Top Level Directory Structure
	1.2. JBOSS_DIST/jboss-as Directory Structure

	2. Server Configurations
	2.1. Server Configuration Directory Structure
	2.2. The "default" Server Configuration File Set
	2.2.1. Contents of "conf" directory
	2.2.2. Contents of "deploy" directory

	2.3. The "all" Server Configuration File Set
	2.4. EJB3 Services
	2.5. Adding Your Own Configuration

	3. Starting and Stopping the Server
	3.1. Start the Server
	3.2. Start the Server With Alternate Configuration
	3.3. Using run.sh
	3.4. Stopping the Server
	3.5. Running as a Service under Microsoft Windows

	4. The JMX Console
	5. Hot-deployment of services in JBoss
	6. Basic Configuration Issues
	6.1. Core Services
	6.2. Logging Service
	6.3. Security Service
	6.4. Additional Services

	7. The Web Container - Tomcat

	Chapter 3. EJB3 Caveats in JBoss Enterprise Application Platform 4.2
	1. Unimplemented features
	2. Referencing EJB3 Session Beans from non-EJB3 Beans

	Chapter 4. About the Example Applications
	1. Install Ant

	Chapter 5. Sample JSF-EJB3 Application
	1. Data Model
	2. JSF Web Pages
	3. EJB3 Session Beans
	4. Configuration and Packaging
	4.1. Building The Application
	4.2. Configuration Files

	5. The Database
	5.1. Creating the Database Schema
	5.2. The HSQL Database Manager Tool

	6. Deploying the Application

	Chapter 6. Using Seam
	1. Data Model
	2. JSF Web Pages - index.xhtml and create.xhtml
	3. Data Access using a Session Bean
	4. JSF Web Pages - todos.xhtml and edit.xhtml
	5. Xml Files
	6. Further Information

	Chapter 7. Using other Databases
	1. DataSource Configuration Files
	2. Using MySQL as the Default DataSource
	2.1. Creating a Database and User
	2.2. Installing the JDBC Driver and Deploying the DataSource
	2.3. Testing the MySQL DataSource

	3. Setting up an XADataSource with Oracle 9i
	3.1. Padding Xid Values for Oracle Compatibility
	3.2. Installing the JDBC Driver and Deploying the DataSource
	3.3. Testing the Oracle DataSource

	Appendix A. Further Information Sources

