
Firebird® Version 2.0

Release Notes v.200.20 Second Alpha
26 April 2005

C O N T E N T S
General Notes: IMPORTANT!

New features
API changes

Language Enhancements

Data Types❍

Metadata Definition (DDL)❍

Data Manipulation (DML)❍

Procedural Language (PSQL)❍

Reserved Words❍

Indexing Enhancements
Optimizations
Character Set Enhancements

Security
Configuration
Utilities
User-defined Functions
Developer Teams
Installation Notes

Linux❍

Windows❍

Further Information
Tools & Drivers
Documentation
Bugs Fixed
 Alpha 1 bugs fixed

Firebird v.200.20 Release Notes, Second Alpha

http://rusty/fb2/rnotes0200_20.html [2/05/2005 6:41:06 PM]

General Notes
The software in this early distribution of Firebird 2 is an alpha version.
Test it till it chokes, but do not put it into production use and do not try it
out on any databases that you care about!

All new changes and new features are subject to further change and/or
withdrawal in subsequent alpha and beta releases, leading up to final
release. Do not assume that databases created by or upgraded to the on-disk
structure of this alpha will be upwardly compatible with subsequent test
builds/releases.

Bug Reporting and Support

The aim of this alpha is to find bugs and "gotchas". Please make a point of
reading the instructions for bug-reporting in the article How to Report Bugs
Effectively, at the Firebird Project website.

Follow these guidelines as you test this software:

Write detailed bug reports, supplying the exact server model and
build number of your Firebird kit. Also provide details of the OS
platform. Include reproducible test data in your report and post it to
our Field Test Tracker. Don't post reports to the main Bug Tracker,
which is for stable releases ONLY.

1.

If you want to start a discussion thread about a bug or an
implementation, do so by subscribing and posting to the Testers' list
or directly to the firebird-devel list.

2.

If you are a novice with Firebird and need "newbie" advice, we
recommend that you don't start your experience here. Download a
stable v.1.5 release kit for self-teaching and use the Firebird 1.5
Quick Start Guide and the firebird-support list to help you get started.

3.

Don't use the regular bug-tracker or the firebird-support list to report
bugs in the alpha or to ask for expanded details about how a new
feature works.

4.

Consider joining up with your regional (language) group of formal
field-testers. Details and contacts are in the QA section of the
Firebird Developers' Corner.

5.

Firebird v.200.20 Release Notes, Second Alpha

http://rusty/fb2/general_notes.html (1 of 2) [2/05/2005 6:41:07 PM]

http://firebird.sourceforge.net/index.php?op=devel&sub=qa&id=bugreport_howto
http://firebird.sourceforge.net/index.php?op=devel&sub=qa&id=bugreport_howto
http://sourceforge.net/tracker/?atid=593943&group_id=9028&func=browse
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
http://firebird.sourceforge.net/index.php?op=devel&sub=qa
http://firebird.sourceforge.net/index.php?op=devel&sub=qa

H A P P Y T E S T I N G !

--The Firebird Project

Firebird v.200.20 Release Notes, Second Alpha

http://rusty/fb2/general_notes.html (2 of 2) [2/05/2005 6:41:07 PM]

New Features and Enhancements

Derived tables A. Brinkman
Implemented support for derived tables in DSQL (subqueries in FROM clause) as defined by SQL200X. A derived table is
a set, derived from a dynamic SELECT statement. Derived tables can be nested, if required, to build complex queries and
they can be involved in joins as though they were normal tables or views.

Syntax Pattern

 SELECT
 <select list>
 FROM
 <table reference list>

 <table reference list> ::= <table reference> [{<comma> <table reference>}...]

 <table reference> ::=
 <table primary>
 | <joined table>

 <table primary> ::=
 <table> [[AS] <correlation name>]
 | <derived table>

 <derived table> ::=
 <query expression> [[AS] <correlation name>]
 [<left paren> <derived column list> <right paren>]

 <derived column list> ::= <column name> [{<comma> <column name>}...]

Examples

a) Simple derived table:

 SELECT
 *
 FROM
 (SELECT
 RDB$RELATION_NAME, RDB$RELATION_ID
 FROM
 RDB$RELATIONS) AS R (RELATION_NAME, RELATION_ID)

b) Aggregate on a derived table which also contains an aggregate

 SELECT
 DT.FIELDS,
 Count(*)
 FROM
 (SELECT
 R.RDB$RELATION_NAME,
 Count(*)
 FROM
 RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF ON (RF.RDB$RELATION_NAME = R.RDB$RELATION_NAME)
 GROUP BY
 R.RDB$RELATION_NAME) AS DT (RELATION_NAME, FIELDS)
 GROUP BY
 DT.FIELDS

c) UNION and ORDER BY example:

 SELECT
 DT.*
 FROM

Firebird v.200.20 New Features/Enhancements, Second Alpha

http://rusty/fb2/new_features.html (1 of 3) [2/05/2005 6:41:07 PM]

 (SELECT
 R.RDB$RELATION_NAME,
 R.RDB$RELATION_ID
 FROM
 RDB$RELATIONS R
 UNION ALL
 SELECT
 R.RDB$OWNER_NAME,
 R.RDB$RELATION_ID
 FROM
 RDB$RELATIONS R
 ORDER BY
 2) AS DT
 WHERE
 DT.RDB$RELATION_ID <= 4

Points to Note:

Every column in the derived table must have a name. Unnamed expressions like constants should be added with an
alias or the column list should be used.

●

The number of columns in the column list should be the same as the number of columns from the query expression.●

The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an inner join
and contains a subquery, then no join order can be made.

●

Win32 local protocol is re-implemented D. Yemanov
XNET is now used as the default local protocol for Windows and is supported also for connecting to a Classic server.
More information to come.

Garbage Collection has been reworked V. Horsun
New GC thread implementation and combined cooperative + background activity. More information to come.

Store databases on raw devices
E. Kunze,
N.Samofatov

You can now store databases on raw devices and refer to the devices using database aliases. More information to come.

Classic now supports full Services API N. Samofatov
Porting of the Services API to Classic architecture is now complete. All Services API functions are now available on both
Linux and Windows Classic servers. . More information to come.

Constraint checking logic has been reworked V. Horsun
More precise checks for PK/UK/FK constraints. More information to come.

Lock timeouts for WAIT transactions
A. Karyakin,
D. Yemanov

Added lock timeouts for WAIT transactions (see new TPB value isc_tpb_lock_timeout). More information to come.

Re-implementation of LIKE/CONTAINING/STARTING WITH operators N. Samofatov
The operators now work correctly with BLOBs1.

Pattern matching now uses a single-pass Knuth-Morris-Pratt algorithm2.

The engine no longer crashes when NULL is used as ESCAPE character for LIKE.3.

More information to come.

Updatable views logic has been reworked D. Yemanov
This solves problems with views that are implicitly updatable, but still have update triggers. More information to come.

New database shutdown modes N. Samofatov
Single-user and full shutdown modes are implemented. More information to come.

Firebird v.200.20 New Features/Enhancements, Second Alpha

http://rusty/fb2/new_features.html (2 of 3) [2/05/2005 6:41:07 PM]

ODS Changes Various contributors
Firebird 2 Alpha creates databases with an ODS (On-Disk Structure) version of 11.●

Maximum size of exception messages raised from 78 to 1021 bytes. (V. Horsun)●

Added RDB$DESCRIPTION to RDB$GENERATORS, so now you can include description text when creating
generators. (C. Valderrama)

●

Added RDB$DESCRIPTION and RDB$SYSTEM_FLAG to RDB$ROLES to allow description text and to flag
user-defined roles, respectively. (C. Valderrama)

●

Introduced a concept of ODS type to be able to distinguish between InterBase databases, Firebird databases,
databases created by debug builds of Firebird and private forks. (N. Samofatov)

●

More information to come.●

UDF Enhancements C. Valderrama
Ability to signal SQL NULL via a NULL pointer (more information to come).●

External function library ib_udf upgraded to allow the string functions ASCII_CHAR, LOWER, LPAD, LTRIM,
RPAD, RTIM, SUBSTR and SUBSTRLEN to return NULL and have it interpreted correctly. The script
ib_udf_upgrade.sql can be applied to pre-v.2 databases that have these functions declared, to upgrade them to work
with the upgraded library. This script should be used only when you are using the new ib_udf library with Firebird
v2 and operation requests are modified to anticipate nulls.

●

More information...

Changes to WNET protocol D. Yemanov
WNET (aka NetBEUI) protocol no longer performs client impersonation. More information to come.

More effective checking for concatenation overflow
O. Loa,
D. Yemanov

Compile-time checking for concatenation overflow has been replaced by run-time checking. More information to come.

Changes to synchronization logic N. Samofatov
Lock contention in the lock manager and in the SuperServer thread pool manager has been reduced significantly1.

A rare race condition was detected and fixed, that could cause Superserver to hang during request processing until
the arrival of the next request

2.

Lock manager memory dumps have been made more informative and OWN_hung is detected correctly3.

Decoupling of lock manager synchronization objects for different engine instances was implemented4.

Miscellaneous
64-bit platform support, including detection of on-disk structure. (N. Samofatov)●

Introduced 40-bit (64-bit internally) record numbers to avoid ~30GB table size limit. (N. Samofatov)●

BUGCHECK log messages now include file name and line number. (A. Brinkman)●

Thread-safe and signal-safe debug logging facilities have been implemented. (N. Samofatov)●

Routines that print out various internal structures (DSQL node tree, BLR, DYN, etc) have been updated. (N.
Samofatov)

●

Invariant tracking in PSQL and request cloning logic were reworked to fix a number of issues with recursive
procedures, for example SF bug #627057. (N. Samofatov)

●

Posix SS builds now handle SIGTERM and SIGINT to shutdown all connections gracefully. (A. Peshkov)●

More information to come.●

Firebird v.200.20 New Features/Enhancements, Second Alpha

http://rusty/fb2/new_features.html (3 of 3) [2/05/2005 6:41:07 PM]

API Changes in Firebird 2
Extended isc_dsql_info() API call D. Yemanov

The function call isc_dsql_info() has been extended to enable relation
aliases to be retrieved, if required.

API identifies client version N. Samofatov

C/C++ client interface version FB_API_VER is defined as 20 for Firebird
2.0 in ibase.h. More information to come.

Firebird v.200.20 API Changes, Second Alpha

http://rusty/fb2/fb2_api.html [2/05/2005 6:41:07 PM]

Data Definition Language (DDL)

CREATE SEQUENCE D. Yemanov
SEQUENCE has been introduced as a synonym for GENERATOR, in accordance with SQL-99.
SEQUENCE is a syntax term described in the SQL specification, whereas GENERATOR is a
legacy InterBase syntax term. Use of the standard SEQUENCE syntax in your applications is
recommended.

A sequence generator is a mechanism for generating successive exact numeric values, one at a
time. A sequence generator is a named schema object. In dialect 3 it is a BIGINT, in dialect 1 it is
an INTEGER.

Syntax patterns:

 CREATE { SEQUENCE | GENERATOR } <name>
 DROP { SEQUENCE | GENERATOR } <name>
 SET GENERATOR <name> TO <start_value>
 ALTER SEQUENCE RESTART WITH <start_value>
 GEN_ID (<name>, <increment_value>)
 NEXT VALUE FOR <name>

Examples

1.
 CREATE SEQUENCE S_EMPLOYEE;

2.
 ALTER SEQUENCE S_EMPLOYEE RESTART WITH 0;

See also notes about NEXT VALUE FOR.

REVOKE ADMIN OPTION FROM D. Yemanov
SYSDBA, the database creator or the owner of an object can grant rights on that object to other
users. However, those rights can be made inheritable, too. By using WITH GRANT OPTION, the
grantor gives the grantee the right to become a grantor of the same rights in turn. This ability can
be removed by the original grantor with REVOKE GRANT OPTION FROM user.

However, there's a second form that involves roles. Instead of specifying the same rights for many
users (soon it becomes a maintenance nightmare) you can create a role, assign a package of rights
to that role and then grant the role to one or more users. Any change to the role's rights affect all
those users.

By using WITH ADMIN OPTION, the grantor (typically the role creator) gives the
grantee the right to become a grantor of the same role in turn. Until FB v2, this
ability couldn't be removed unless the original grantor fiddled with system tables
directly. Now, the ability to grant the role can be removed by the original grantor
with REVOKE ADMIN OPTION FROM user.

Firebird v.200.20 SQL Data Definition, Second Alpha

http://rusty/fb2/ddl.html (1 of 3) [2/05/2005 6:41:08 PM]

Changed view updates logic D. Yemanov
Apply NOT NULL constraints to base tables only, ignoring the ones inherited by view columns
from domain definitions.

RECREATE EXCEPTION and CREATE OR ALTER EXCEPTION D. Yemanov
Implemented the DDL statements RECREATE EXCEPTION and CREATE OR ALTER
EXCEPTION (feature request SF #1167973), allowing either creating, recreating or altering an
exception, depending on whether it exists:

RECREATE EXCEPTION is exactly like CREATE EXCEPTION if the exception does not
already exist. If it does exist, its definition will be completely replaced, if there are no
dependencies on it.

●

CREATE OR ALTER EXCEPTION will create the exception if it does not already exist, or
will alter the definition if it does, without affecting dependencies.

●

Known "friendly names" (mnemonics) can now be used for declaring
BLOB filter sub_types A. Peshkov

Previously, the only allowed syntax for declaring a blob filter was:

declare filter <name> input_type <number> output_type <number>
 entry_point <function_in_library> module_name <library_name>;

The alternative new syntax is:

declare filter <name> input_type <mnemonic> output_type <mnemonic>
 entry_point <function_in_library> module_name <library_name>;

where <mnemonic> refers to a subtype known to the engine.

Initially they are binary, text and others mostly for internal usage, but an adventurous user could
write a new mnemonic in rdb$types and use it, since it is parsed only at declaration time. The
engine keeps the numerical value. Remember, only negative subtype values are meant to be
defined by users.

To get the predefined types, do

 select RDB$TYPE, RDB$TYPE_NAME, RDB$SYSTEM_FLAG
 from rdb$types
 where rdb$field_name = 'RDB$FIELD_SUB_TYPE';

RDB$TYPE RDB$TYPE_NAME RDB$SYSTEM_FLAG
========= ============================ =================

 0 BINARY 1
 1 TEXT 1
 2 BLR 1
 3 ACL 1
 4 RANGES 1
 5 SUMMARY 1
 6 FORMAT 1
 7 TRANSACTION_DESCRIPTION 1
 8 EXTERNAL_FILE_DESCRIPTION 1

Firebird v.200.20 SQL Data Definition, Second Alpha

http://rusty/fb2/ddl.html (2 of 3) [2/05/2005 6:41:08 PM]

Examples

Original declaration:

 declare filter pesh input_type 0 output_type 3
 entry_point 'f' module_name 'p';

Alternative declaration:

 declare filter pesh input_type binary output_type acl
 entry_point 'f' module_name 'p';

Declaring a name for a user defined blob subtype (remember to commit after the insertion):

SQL> insert into rdb$types
CON> values('RDB$FIELD_SUB_TYPE', -100, 'XDR', 'test type', 0);
SQL> commit;
SQL> declare filter pesh2 input_type xdr output_type text
CON> entry_point 'p2' module_name 'p';
SQL> show filter pesh2;
BLOB Filter: PESH2
 Input subtype: -100 Output subtype: 1
 Filter library is p
 Entry point is p2

Data Types

BLOB SUB_TYPE BINARY C. Valderrama
Introduced as a synonym for SUB_TYPE 0.

Firebird v.200.20 SQL Data Definition, Second Alpha

http://rusty/fb2/ddl.html (3 of 3) [2/05/2005 6:41:08 PM]

Data Manipulation Language (DML)

EXECUTE BLOCK statement V. Horsun

The SQL language extension EXECUTE BLOCK makes "dynamic PSQL" available to SELECT specifications. It has the effect of
allowing a self-contained block of PSQL code to be executed in dynamic SQL as if it were a stored procedure.

Syntax pattern:

 EXECUTE BLOCK [(param datatype = ?, param datatype = ?, ...)]
 [RETURNS (param datatype, param datatype, ...) }
 AS
 [DECLARE VARIABLE var datatype; ...]
 BEGIN
 ...
 END

For the client, the call isc_dsql_sql_info with parameter isc_info_sql_stmt_type returns

isc_info_sql_stmt_select if the block has output parameters. The semantics of a call is similar to a SELECT query: the client
has a cursor open, can fetch data from it, and must close it after use.

●

isc_info_sql_stmt_exec_procedure if the block has no output parameters. The semantics of a call is similar to an EXECUTE
query: the client has no cursor and execution continues until it reaches the end of the block or is terminated by a SUSPEND.

The client should preprocess only the head of the SQL statement or use '?' instead of ':' as the parameter indicator because, in
the body of the block, there may be references to local variables or arguments with a colon prefixed.

Example

The user SQL is

EXECUTE BLOCK (X INTEGER = :X)
 RETURNS (Y VARCHAR)
AS
DECLARE V INTEGER;
BEGIN
 INSERT INTO T(...) VALUES (... :X ...);
 SELECT ... FROM T INTO :Y;
 SUSPEND;
END

The preprocessed SQL is

EXECUTE BLOCK (X INTEGER = ?)
 RETURNS (Y VARCHAR)
AS
DECLARE V INTEGER;
BEGIN
 INSERT INTO T(...) VALUES (... :X ...);
 SELECT ... FROM T INTO :Y;
 SUSPEND;
END

●

ROWS syntax D. Yemanov

ROWS syntax is used to limit the number of rows retrieved from a select expression. For an uppermost-level select statement, it
would specify the number of rows to be returned to the host program. A more understandable alternative to the FIRST/SKIP clauses,
the ROWS syntax accords with the latest SQL standard and brings some extra benefits. It can be used in unions, any kind subquery
and in UPDATE or DELETE statements.

It is available in both DSQL and PSQL.

Syntax Pattern

 SELECT ...
 [ORDER BY <expr_list>]
 ROWS <expr1> [TO <expr2>]

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (1 of 9) [2/05/2005 6:41:08 PM]

Examples

1.

 SELECT * FROM T1
 UNION ALL
 SELECT * FROM T2
 ORDER BY COL
 ROWS 10 TO 100

2.

 SELECT COL1, COL2,
 (SELECT COL3 FROM T3 ORDER BY COL4 DESC ROWS 1)
 FROM T4

3.

 DELETE FROM T5
 ORDER BY COL5
 ROWS 1

Points to Note

When <expr2> is omitted, then ROWS <expr1> is semantically equivalent to FIRST <expr1>. When both
<expr1> and <expr2> are used, then
 ROWS <expr1> TO <expr2>
means the same as:
 FIRST (<expr2> - <expr1> + 1) SKIP (<expr1> - 1)

1.

There is nothing that is semantically equivalent to a SKIP clause used without a FIRST clause.2.

UNION DISTINCT syntax enabled D. Yemanov

UNION DISTINCT is now allowed as a synonym for simple UNION, in accordance with theSQL-99 specification. More information
to come.

New DISTINCT equivalence predicate treats (NULL=NULL) as True O. Loa,
D. Yemanov

A new equivalence predicate behaves exactly like the equality/inequality predicates, but tests whether one value is distinct from the
other. Thus, it treats (NULL = NULL) as TRUE. It is available in both DSQL and PSQL.

Syntax Pattern

 <value> IS [NOT] DISTINCT FROM <value>

Examples

1.

 SELECT * FROM T1
 JOIN T2
 ON T1.NAME IS NOT DISTINCT FROM T2.NAME;

2.

 SELECT * FROM T
 WHERE T.MARK IS DISTINCT FROM 'test';

Points to note

Because the DISTINCT predicate considers that two NULL values are not distinct, it never evaluates to the truth value
UNKNOWN. Like the IS [NOT] NULL predicate, it can only be True or False.

1.

The NOT DISTINCT predicate can be optimized using an index, if one is available.2.

NULL can now be a value for syntactic purposes D. Yemanov

You may now specify A = NULL, B > NULL, etc. (all of them evaluate to FALSE). More information to come.

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (2 of 9) [2/05/2005 6:41:08 PM]

View specification language extended D. Yemanov

FIRST/SKIP and ROWS syntaxes and PLAN and ORDER BY clauses can now be used in view specifications. More information to
come.

CROSS JOIN implemented D. Yemanov

CROSS JOIN is now supported. Logically, this syntax pattern:

 A CROSS JOIN B

is equivalent to either of the following:

 A INNER JOIN B ON 1 = 1

or, simply:

 FROM A, B

More information to come.

Subqueries and INSERT statements can now take union sets D. Yemanov

SELECT specifications used in subqueries and in INSERT INTO SELECT.. statements can now specify a UNION set. More
information to come.

Improved type coercion logic in unions A. Brinkman

Automatic type coercion logic between subsets of a union is now more intelligent. Resolution of the data type of the result of an
aggregation over values of compatible data types, such as case expressions and columns at the same position in a union query
expression, now uses smarter rules.

Syntax Rules

Let DTS be the set of data types over which we must determine the final result data type.1.

All of the data types in DTS shall be comparable.2.

Case:

If any of the data types in DTS is character string, then:

If any of the data types in DTS is variable-length character string, then the result data type is variable-length
character string with maximum length in characters equal to the largest maximum amongst the data types in DTS.

i.

Otherwise, the result data type is fixed-length character string with length in characters equal to the maximum of
the lengths in characters of the data types in DTS.

ii.

The characterset/collation is used from the first character string data type in DTS.iii.

a.

If all of the data types in DTS are exact numeric, then the result data type is exact numeric with scale equal to the
maximum of the scales of the data types in DTS and the maximum precision of all data types in DTS.

NOTE :: Checking for precision overflows is done at run-time only. The developer should take measures to avoid the
aggregation resolving to a precision overflow.

b.

If any data type in DTS is approximate numeric, then each data type in DTS shall be numeric else an error is thrown.c.

If some data type in DTS is a datetime data type, then every data type in DTS shall be a datetime data type having the
same datetime type.

d.

If any data type in DTS is BLOB, then each data type in DTS shall be BLOB and all with the same sub-type.e.

3.

UPDATE and DELETE statement syntax extended O. Loa

ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and DELETE statements. More information
to come.

Context variable ROW_COUNT returns select count D. Yemanov

ROW_COUNT can now return the number of rows returned by a SELECT statement. More information to come.

N. Samofatov

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (3 of 9) [2/05/2005 6:41:08 PM]

Get context variables via system functions

Values of context variables can now be obtained using the system functions RDB$GET_CONTEXT and RDB$SET_CONTEXT.
These new built-in functions give access through SQL to some information about the current connection and current transaction. They
also provide a mechanism to retrieve user context data and associate it with the transaction or connection.

Syntax Pattern

 RDB$SET_CONTEXT(<namespace>, <variable>, <value>)
 RDB$GET_CONTEXT(<namespace>, <variable>)

These functions are really a form of external function that exists inside the database intead of being called from a dynamically loaded
library. The following declarations are made automatically by the engine at database creation time:

Declaration

 DECLARE EXTERNAL FUNCTION RDB$GET_CONTEXT
 VARCHAR(80),
 VARCHAR(80)
 RETURNS VARCHAR(255) FREE_IT;

 DECLARE EXTERNAL FUNCTION RDB$SET_CONTEXT
 VARCHAR(80),
 VARCHAR(80),
 VARCHAR(255)
 RETURNS INTEGER BY VALUE;

Usage RDB$SET_CONTEXT and RDB$GET_CONTEXT set and retrieve the current value of a context variable. Groups of context
variables with similar properties are identified by Namespace identifiers. The namespace determines the usage rules, such as whether
the variables may be read and written to, and by whom.

Namespace and variable names are case-sensitive.

RDB$GET_CONTEXT retrieves current value of a variable. If the variable does not exist in namespace, the function returns
NULL.

●

RDB$SET_CONTEXT sets a value for specific variable, if it is writable. The function returns a value of 1 if the variable
existed before the call and 0 otherwise.

●

To delete a variable from a context, set its value to NULL.●

Pre-defined Namespaces

A fixed number of pre-defined namespaces is available:

USER_SESSION is a namespace that offers access to session-specific user-defined variables. You can define and set values for
variables with any name in this context.

●

USER_TRANSACTION is a namespace offering similar possibilities for individual transactions.●

The SYSTEM namespace provides read-only access to the following variables:

Variable Name Value

NETWORK_PROTOCOL The network protocol used by client to connect. Currently-used values: "TCPv4", "WNET",
"XNET" and NULL

CLIENT_ADDRESS The wire protocol address of the remote client, represented as a string. The value is an IP address
in form "xxx.xxx.xxx.xxx" for TCPv4 protocol; the local process ID for XNET protocol; and
NULL for any other protocol.

DB_NAME Canonical name of the current database. It is either the alias name (if connection via file names is
disallowed DatabaseAccess = NONE) or, otherwise, the fully expanded database file name.

ISOLATION_LEVEL The isolation level of the current transaction. The returned value will be one of "READ
COMMITTED", "CONSISTENCY", "SNAPSHOT"

TRANSACTION_ID The numeric ID of the current transaction. The returned value is the same as would be returned
by the CURRENT_TRANSACTION pseudo-variable

SESSION_ID The numeric ID of the current session. The returned value is the same as would be returned by
the CURRENT_CONNECTION pseudo-variable

CURRENT_USER The current user. The returned value is the same as would be returned by the CURRENT_USER
pseudo-variable or the predefined variable USER.

CURRENT_ROLE Current role for the connection. Returns the same value as the CURRENT_ROLE
pseudo-variable

●

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (4 of 9) [2/05/2005 6:41:08 PM]

Notes

To avoid DoS attacks against the Firebird Server, the number of variables stored for each transaction or session context is
limited to 1000.

Example of Use

create procedure set_context(User_ID varchar(40), Trn_ID integer) as
begin
 RDB$SET_CONTEXT('USER_TRANSACTION', 'Trn_ID', Trn_ID);
 RDB$SET_CONTEXT('USER_TRANSACTION', 'User_ID', User_ID);
end;

create table journal (
 jrn_id integer not null primary key,
 jrn_lastuser varchar(40),
 jrn_lastaddr varchar(255),
 jrn_lasttransaction integer
);

CREATE TRIGGER UI_JOURNAL FOR JOURNAL AFTER INSERT OR UPDATE
as
begin
 new.jrn_lastuser = rdb$get_context('USER_TRANSACTION', 'User_ID');
 new.jrn_lastaddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');
 new.jrn_lasttransaction = rdb$get_context('USER_TRANSACTION', 'Trn_ID');
end;

execute procedure set_context('skidder', 1);

insert into journal(jrn_id) values(0);

commit;

Since rdb$set_context returns 1 or zero, it can be made to work with a simple SELECT statement. More information to come.

CURRENT_TIMESTAMP and 'NOW' now return milliseconds D. Yemanov

The context variable CURRENT_TIMESTAMP and the date/time literal 'NOW' will now return the sub-second time part in
milliseconds. More information to come.

Built-in function IIF() added O. Loa

The function

 IIF (<search_condition>, <value1>, <value2>)

is implemented as a shortcut for

 CASE
 WHEN <search_condition> THEN <value1>
 ELSE <value2>
 END

It returns the value of the first sub-expression if the given search condition evaluates to TRUE, otherwise it returns a value of the
second sub-expression.

Example

 SELECT IIF(VAL > 0, VAL, -VAL) FROM OPERATION

Built-in function SUBSTRING() enhanced O. Loa,
D. Yemanov

The built-in function SUBSTRING() can now take arbitrary expressions in its parameters. More information to come.

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (5 of 9) [2/05/2005 6:41:08 PM]

GROUP BY arbitrary expressions A. Brinkman

A GROUP BY condition can now be any valid expression.

Example

 ...
 GROUP BY
 SUBSTRING(CAST((A * B) / 2 AS VARCHAR(15)) FROM 1 FOR 2)

Nulls ordering changed N. Samofatov

Placement of nulls in an ordered set has been changed to accord with the SQL standard that null ordering be consistent, i.e. if
ASC[ENDING] order puts them at the bottom, then DESC[ENDING] puts them at the top; or vice-versa. This applies only to
databases created under the new on-disk structure, since it needs to use the index changes in order to work. More information to
come.

Improvements in user-specified query plans D. Yemanov

Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex outer joins1.

A user-supplied plan will be checked for correctness in outer joins2.

Short-circuit optimization for user-supplied plans has been added3.

A user-specified access path can be supplied for any SELECT-based statement or clause

Syntax rules

The following schema describing the syntax rules should be helpful when composing plans.

PLAN ({ <stream_retrieval> | <sorted_streams> | <joined_streams> })

<stream_retrieval> ::= { <natural_scan> | <indexed_retrieval> | <navigational_scan> }

<natural_scan> ::= <stream_alias> NATURAL
<indexed_retrieval> ::= <stream_alias> INDEX (<index_name> [, <index_name> ...])
<navigational_scan> ::= <stream_alias> ORDER <index_name> [INDEX (<index_name> [,
<index_name> ...])]

<sorted_streams> ::= SORT (<stream_retrieval>)

<joined_streams> ::= JOIN (<stream_retrieval>, <stream_retrieval> [,
<stream_retrieval> ...])
 | [SORT] MERGE (<sorted_streams>, <sorted_streams>)

Details

Natural scan means that all rows are fetched in their natural storage order. Thus, all pages must be read before search criteria
are validated.

Indexed retrieval uses an index range scan to find row ids that match the given search criteria. The found matches are combined
in a sparse bitmap which is sorted by page numbers, so every data page will be read only once. After that the table pages are
read and required rows are fetched from them.

Navigational scan uses an index to return rows in the given order, if such an operation is appropriate.

The index b-tree is walked from the leftmost node to the rightmost one.❍

If any search criterion is used on a column specified in an ORDER BY clause, the navigation is limited to some subtree
path, depending on a predicate.

❍

If any search criterion is used on other columns which are indexed, then a range index scan is performed in advance and
every fetched key has its row id validated against the resulting bitmap. Then a data page is read and the required row is
fetched.

❍

Note that a navigational scan incurs random page I/O, as reads are not optimized.

A sort operation performs an external sort of the given stream retrieval.

A join can be performed either via the nested loops algorithm (JOIN plan) or via the sort merge algorithm (MERGE plan).

An inner nested loop join may contain as many streams as are required to be joined. All of them are equivalent.❍

An outer nested loops join always operates with two streams, so you'll see nested JOIN clauses in the case of 3 or more
outer streams joined.

❍

A sort merge operates with two input streams which are sorted beforehand, then merged in a single run.

4.

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (6 of 9) [2/05/2005 6:41:08 PM]

Examples

 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 WHERE RDB$RELATION_NAME LIKE 'RDB$%'
 PLAN (RDB$RELATIONS NATURAL)
 ORDER BY RDB$RELATION_NAME

 SELECT R.RDB$RELATION_NAME, RF.RDB$FIELD_NAME
 FROM RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF
 ON R.RDB$RELATION_NAME = RF.RDB$RELATION_NAME
 PLAN MERGE (SORT (R NATURAL), SORT (RF NATURAL))

Notes

A PLAN clause may be used in all select expressions, including subqueries, derived tables and view definitions.
It can be also used in UPDATE and DELETE statements, because they're implicitly based on select expressions.

a.

If a PLAN clause contains some invalid retrieval description, then either an error will be returned or this bad
clause will be silently ignored, depending on severity of the issue.

b.

ORDER <navigational_index> INDEX (<filter_indices>) kind of plan is reported by the engine and can be used
in the user-supplied plans starting with FB 2.0.

c.

DSQL parsing of table aliases is stricter A. Brinkman

Alias handling and ambiguous field detecting have been improved. In summary:

When a table alias is provided for a table, either that alias, or no alias, must be used. It is no longer valid to supply only the
table name.

a.

Ambiguity checking now checks first for ambiguity at the current level of scope, making it valid in some conditions for
columns to be used without qualifiers at a higher scope level.

b.

Examples

When an alias is present it must be used; or no alias at all is allowed.

This query was allowed in FB1.5 and earlier versions:

 SELECT
 RDB$RELATIONS.RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R

but will now correctly report an error that the field "RDB$RELATIONS.RDB$RELATION_NAME" could not be
found.

Use this (preferred):

 SELECT
 R.RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R

or this statement:

 SELECT
 RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R

The statement below will now correctly use the FieldID from the subquery and from the updating table:

 UPDATE
 TableA
 SET
 FieldA = (SELECT SUM(A.FieldB) FROM TableA A
 WHERE A.FieldID = TableA.FieldID)

Note :: In Firebird it is possible to provide an alias in an update statement, but many other database vendors do not
support it. These SQL statements will improve the interchangeability of Firebird's SQL with other SQL database
products.

a.

1.

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (7 of 9) [2/05/2005 6:41:08 PM]

This example did not run correctly in Firebird 1.5 and earlier:

 SELECT
 RDB$RELATIONS.RDB$RELATION_NAME,
 R2.RDB$RELATION_NAME
 FROM
 RDB$RELATIONS
 JOIN RDB$RELATIONS R2 ON
 (R2.RDB$RELATION_NAME = RDB$RELATIONS.RDB$RELATION_NAME)

If RDB$RELATIONS contained 90 records, it would return 90 * 90 = 8100 records, but in Firebird 2 it will correctly
return 90 records.

b.

This failed in Firebird 1.5, but is possible in Firebird 2:

 SELECT
 (SELECT RDB$RELATION_NAME FROM RDB$DATABASE)
 FROM
 RDB$RELATIONS

a.

Ambiguity checking in subqueries: the query below would run in Firebird 1.5 without reporting an ambiguity, but will
report it in Firebird 2:

 SELECT
 (SELECT
 FIRST 1 RDB$RELATION_NAME
 FROM
 RDB$RELATIONS R1
 JOIN RDB$RELATIONS R2 ON
 (R2.RDB$RELATION_NAME = R1.RDB$RELATION_NAME))
 FROM
 RDB$DATABASE

b.

2.

Improved GROUP BY and ORDER BY clauses A. Brinkman

Column aliases are now allowed in both these clauses.

Examples:

 SELECT RDB$RELATION_ID AS ID
 FROM RDB$RELATIONS
 ORDER BY ID

1.

 SELECT RDB$RELATION_NAME AS ID, COUNT(*)
 FROM RDB$RELATION_FIELDS
 GROUP BY ID

2.

Improved ORDER BY clause A. Brinkman

Order by degree (ordinal column position) now works on a select * list.

Example

 SELECT *
 FROM RDB$RELATIONS
 ORDER BY 9

NEXT VALUE FOR expression D. Yemanov
Added SQL-99 compliant NEXT VALUE FOR expression as a synonym for GEN_ID(<generator-name>, 1), complementing the
introduction of CREATE SEQUENCE syntax as the SQL standard equivalent of CREATE GENERATOR.

Examples

1.

 SELECT GEN_ID(S_EMPLOYEE, 1) FROM RDB$DATABASE;

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (8 of 9) [2/05/2005 6:41:08 PM]

2.

 INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (NEXT VALUE FOR S_EMPLOYEE, 'John Smith');

Points to note

Currently, increment ("step"> values not equal to 1 (one) can be used only by calling the GEN_ID function.
Future versions are expected to provide full support for SQL-99 sequence generators, which allows the required
increment values to be specified at the DDL level. Unless there is a vital need to use a step value that is not 1, use
of a NEXT VALUE FOR value expression instead of the GEN_ID function is recommended.

1.

GEN_ID(<name>, 0) allows you to retrieve the current sequence value, but it should be never used in
insert/update statements, as it produces a high risk of uniqueness violations in a concurrent environment.

2.

Firebird v.200.20 SQL Data Manipulation, Second Alpha

http://rusty/fb2/dml.html (9 of 9) [2/05/2005 6:41:08 PM]

Stored Procedure Language (PSQL)

Explicit cursors in PSQL D. Yemanov
It is now possible to declare and use multiple cursors in PSQL. Explicit cursors are available in a DSQL
EXECUTE BLOCK structure as well as in stored procedures and triggers.
Syntax pattern:

 DECLARE [VARIABLE] <cursor_name> CURSOR FOR (<select_statement>);
 OPEN <cursor_name>;
 FETCH <cursor_name> INTO [, ...];
 CLOSE <cursor_name>;

Examples

1.

 DECLARE RNAME CHAR(31);
 DECLARE C CURSOR FOR (SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
 BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
 END

2.

 DECLARE RNAME CHAR(31);
 DECLARE FNAME CHAR(31);
 DECLARE C CURSOR FOR (SELECT RDB$FIELD_NAME
 FROM RDB$RELATION_FIELDS
 WHERE RDB$RELATION_NAME = :RNAME
 ORDER BY RDB$FIELD_POSITION);
 BEGIN
 FOR
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 INTO :RNAME
 DO
 BEGIN
 OPEN C;
 FETCH C INTO :FNAME;
 CLOSE C;
 SUSPEND;
 END
 END

Cursor declaration is allowed only in the declaration section of a PSQL block/procedure/trigger, as
with any regular local variable declaration.

●

Cursor names are required to be unique in the given context. They must not conflict with the name●

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (1 of 6) [2/05/2005 6:41:09 PM]

of another cursor that is "announced", via the AS CURSOR clause, by a FOR SELECT cursor.
However, a cursor can share its name with any other type of variable within the same context, since
the operations available to each are different.

Positioned updates and deletes with cursors using the WHERE CURRENT OF clause are allowed.●

Attempts to fetch from or close a FOR SELECT cursor are prohibited.●

Attempts to open a cursor that is already open, or to fetch from or close a cursor that is already
closed, will fail.

●

All cursors which were not explicitly closed will be closed automatically on exit from the current
PSQL block/procedure/trigger.

●

The ROW_COUNT system variable can be used after each FETCH statement to check whether any
row was returned.

●

Defaults for Stored Procedure arguments V. Horsun

Defaults can now be declared for stored procedure arguments.

The syntax is the same as a default value definition for a column or domain, except that you can use '=' in
place of 'DEFAULT' keyword.

Arguments with default values must be last in the argument list; that is, you cannot declare an argument
that has no default value after any arguments that have been declared with default values. The caller must
supply the values for all of the arguments preceding any that are to use their defaults. For example, it is
illegal to do something like this: supply arg1, arg2, miss arg3, set arg4...

Substitution of default values occurs at run-time. If you define a procedure with defaults (say P1), call it
from another procedure (say P2) and skip some final, defaulted arguments, then the default values for P1
will be substituted by the engine at time execution P1 starts. This means that, if you change the default
values for P1, it is not necessary to recompile P2.

However, it is still necessary to disconnect all client connections, as discussed in the Borland InterBase 6
beta "Data Definition Guide" (DataDef.pdf), in the section "Altering and dropping procedures in use".

Examples

CONNECT ... ;

CREATE PROCEDURE P1 (X INTEGER = 123)
RETURNS (Y INTEGER)
AS
BEGIN
 Y = X;
 SUSPEND;
END;
COMMIT;

 SELECT * FROM P1;

 Y
============

 123

EXECUTE PROCEDURE P1;

 Y
============

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (2 of 6) [2/05/2005 6:41:09 PM]

 123

CREATE PROCEDURE P2
RETURNS (Y INTEGER)
AS
BEGIN
 FOR SELECT Y FROM P1 INTO :Y
 DO SUSPEND;
END;
COMMIT;

SELECT * FROM P2;

 Y
============

 123

ALTER PROCEDURE P1 (X INTEGER = CURRENT_TRANSACTION)
 RETURNS (Y INTEGER)
AS
BEGIN
 Y = X;
 SUSPEND;
END;
COMMIT;

SELECT * FROM P1;

 Y
============

 5875

SELECT * FROM P2;

 Y
============

 123

COMMIT;

CONNECT ... ;

SELECT * FROM P2;

 Y
============

 5880

Note, the source and BLR for the argument defaults are stored in RDB$FIELDS.

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (3 of 6) [2/05/2005 6:41:09 PM]

LEAVE <label> syntax support
D. Yemanov

New LEAVE syntax now allows PSQL loops now to be marked with labels and terminated in Java style.
The purpose is to stop execution of the current block and unwind back to the specified label. After that
execution resumes at the statement following the terminated loop.

Syntax pattern:

 <label_name>: <loop_statement>
 ...
 LEAVE [<label_name>]

Where <loop_statement> is one of: WHILE, FOR SELECT, FOR EXECUTE STATEMENT

Examples

1.

 FOR
 SELECT COALESCE(RDB$SYSTEM_FLAG, 0), RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY 1
 INTO :RTYPE, :RNAME
 DO
 BEGIN
 IF (RTYPE = 0) THEN
 SUSPEND;
 ELSE
 LEAVE; -- exits current loop
 END

2.

 CNT = 100;
 L1:
 WHILE (CNT >= 0) DO
 BEGIN
 IF (CNT < 50) THEN
 LEAVE L1; -- exists WHILE loop
 CNT = CNT - l;
 END

3.

 STMT1 = 'SELECT RDB$RELATION_NAME FROM RDB$RELATIONS';
 L1:
 FOR
 EXECUTE STATEMENT :STMT1 INTO :RNAME
 DO
 BEGIN
 STMT2 = 'SELECT RDB$FIELD_NAME FROM RDB$RELATION_FIELDS
 WHERE RDB$RELATION_NAME = ';
 L2:
 FOR
 EXECUTE STATEMENT :STMT2 || :RNAME INTO :FNAME
 DO
 BEGIN

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (4 of 6) [2/05/2005 6:41:09 PM]

 IF (RNAME = 'RDB$DATABASE') THEN
 LEAVE L1; -- exits the outer loop
 ELSE IF (RNAME = 'RDB$RELATIONS') THEN
 LEAVE L2; -- exits the inner loop
 ELSE
 SUSPEND;
 END
 END

Note that LEAVE without an explicit label means interrupting the current (most inner) loop.

OLD context variables now read-only D. Yemanov
The set of OLD context variables available in trigger modules is now read-only. An attempt to assign a
value to OLD.something will be rejected. More information to come.

PSQL stack trace V. Horsun
The API client can now extract a simple stack trace Error Status Vector when an exception occurs during
PSQL execution (stored procedures or triggers). A stack trace is represented by one string (2048 bytes
max.) and consists of all the stored procedure and trigger names, starting from the point where the
exception occurred, out to the outermost caller. If the actual trace is longer than 2Kb, it is truncated.

Additional items are appended to the status vector as follows:

 isc_stack_trace, isc_arg_string, <string length>, <string>

isc_stack_trace is a new error code with value of 335544842L.

Examples

Metadata creation

CREATE TABLE ERR (
 ID INT NOT NULL PRIMARY KEY,
 NAME VARCHAR(16));

CREATE EXCEPTION EX '!';

CREATE OR ALTER PROCEDURE ERR_1 AS
BEGIN
 EXCEPTION EX 'ID = 3';
END;

CREATE OR ALTER TRIGGER ERR_BI FOR ERR
 BEFORE INSERT AS
BEGIN
 IF (NEW.ID = 2)
 THEN EXCEPTION EX 'ID = 2';

 IF (NEW.ID = 3)
 THEN EXECUTE PROCEDURE ERR_1;

 IF (NEW.ID = 4)
 THEN NEW.ID = 1 / 0;
END;

CREATE OR ALTER PROCEDURE ERR_2 AS
BEGIN
 INSERT INTO ERR VALUES (3, '333');

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (5 of 6) [2/05/2005 6:41:09 PM]

END;

1. User exception from a trigger:

SQL> INSERT INTO ERR VALUES (2, '2');
Statement failed, SQLCODE = -836
exception 3
-ID = 2
-At trigger 'ERR_BI'

2. User exception from a procedure called by a trigger:

SQL> INSERT INTO ERR VALUES (3, '3');
Statement failed, SQLCODE = -836
exception 3
-ID = 3
-At procedure 'ERR_1'
At trigger 'ERR_BI'

3. Run-time exception occurring in trigger (division by zero):

SQL> INSERT INTO ERR VALUES (4, '4');
Statement failed, SQLCODE = -802
arithmetic exception, numeric overflow, or string truncation
-At trigger 'ERR_BI'

4. User exception from procedure:

SQL> EXECUTE PROCEDURE ERR_1;
Statement failed, SQLCODE = -836
exception 3
-ID = 3
-At procedure 'ERR_1'

5. User exception from a procedure with a deeper call stack:

SQL> EXECUTE PROCEDURE ERR_2;
Statement failed, SQLCODE = -836
exception 3
-ID = 3
-At procedure 'ERR_1'
At trigger 'ERR_BI'
At procedure 'ERR_2'

Call a UDF as a void function N. Samofatov
In PSQL, supported UDFs, e.g. RDB$SET_CONTEXT, can be called as though they were void functions
(a.k.a "procedures" in Object Pascal). More information to come.

Firebird v.200.20 SQL Procedure Language, Second Alpha

http://rusty/fb2/psql.html (6 of 6) [2/05/2005 6:41:09 PM]

New Reserved Words & Changes
The following keywords have been added, or have changed status, since
Firebird 1.5. Those marked with an asterisk (*) are not present in the SQL
standard.
Added as reserved words

CLOSE
OPEN

CROSS
ROWS

FETCH

Changed from non-reserved words to reserved

USING

Added as non-reserved words

BACKUP *
IIF *
SCALAR_ARRAY *

BLOCK *
NEXT
SEQUENCE

DIFFERENCE *
RESTART

Changed from reserved words to non-reserved

ACTION
RESTRICT
WEEKDAY *

CASCADE
ROLE
YEARDAY *

FREE_IT *
TYPE

No longer reserved words

BASENAME *
GROUP_COMMIT_WAIT *
NUM_LOG_BUFS *

CACHE *
LOGFILE *
RAW_PARTITIONS *

CHECK_POINT_LEN *
LOG_BUF_SIZE *

Firebird v.200.20 Reserved Words, Second Alpha

http://rusty/fb2/reserved_words.html [2/05/2005 6:41:09 PM]

Indexing Enhancements

252-byte index length limit is gone A. Brinkman
New and reworked index code is very fast and tolerant of large numbers of duplicates. The old aggregate key
length limit of 252 bytes is removed. Now the limit depends on page size. Actual numbers and more
information to come.

Expression Indexes
O. Loa,
D. Yemanov,
A. Karyakin

Arbitrary expressions applied to values in a row in dynamic DDL can now be indexed, allowing indexed
access paths to be available for search predicates that are based on expressions.

Syntax Pattern:

 CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index name>
 ON <table name>
 COMPUTED BY (<value expression>)

Examples

1.

 CREATE INDEX IDX1 ON T1
 COMPUTED BY (UPPER(COL1 COLLATE PXW_CYRL));
 COMMIT;
 /**/
 SELECT * FROM T1
 WHERE UPPER(COL1 COLLATE PXW_CYRL) = 'ÔÛÂÀ'
 -- PLAN (T1 INDEX (IDX1))

2.

 CREATE INDEX IDX2 ON T2
 COMPUTED BY (EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2));
 COMMIT;
 /**/
 SELECT * FROM T2
 ORDER BY EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2)
 -- PLAN (T2 ORDER IDX2)

Points to Note

The expression used in the predicate must match exactly the expression used in the index declaration,
in order to allow the engine to choose an indexed access path. The given index will not be available for
any retrieval or sorting operation if the expressions do not match.

1.

Expression indices have exactly the same features and limitations as regular indices, except that, by
definition, they cannot be composite (multi-segment).

2.

Null keys handling V. Horsun,
A. Brinkman

Null keys are now bypassed for uniqueness checks. (V. Horsun)●

NULLs are ignored during the index scan, when it makes sense to ignore them. (A. Brinkman).●

More information to come.

Firebird v.200.20 Indexing, Second Alpha

http://rusty/fb2/indexes.html (1 of 5) [2/05/2005 6:41:09 PM]

More effective index compression A. Brinkman
Information to come.

Per-segment index selectivity maintenance D. Yemanov,
A. Brinkman

Per-segment selectivity information is now available to the optimizer, opening more possibilities for clever
access path decisions. More information to come.

Firebird Index Structure ODS11 and higher
The reason for a new structure is :
- better support for deleting a index-key out of many duplicates (caused slow garbage collection)
- support bigger recordnumbers than 32-bits (40 bits)
- increase index-key size (1/4 page-size)

Existing structure (ODS10 and lower):
header node node node node node node

node node node node node node node ... end
marker

header =
typedef struct btr {
 struct pag btr_header;
 SLONG btr_sibling; // right sibling page
 SLONG btr_left_sibling; // left sibling page
 SLONG btr_prefix_total; // sum of all prefixes on page
 USHORT btr_relation; // relation id for consistency
 USHORT btr_length; // length of data in bucket
 UCHAR btr_id; // index id for consistency
 UCHAR btr_level; // index level (0 = leaf)
 struct btn btr_nodes[1];
};

node =
struct btn {
 UCHAR btn_prefix; // size of compressed prefix
 UCHAR btn_length; // length of data in node
 UCHAR btn_number[4]; // page or record number
 UCHAR btn_data[1];
};

end marker = END_BUCKET or END_LEVEL
These are in place of record-number for leaf nodes and in place of page-number for non-leaf nodes.
If the node is a END_BUCKET marker then it should contain the same data as the first node on the
next sibling page.
By a END_LEVEL marker prefix and length are zero, thus contains no data.
Also every first node on a level (except leaf pages) contains a degeneration zero-length node.

New ODS11 structure:

header jump
info

jump
nodes ... node

[*] node node

node node node node node node node ... end
marker

Firebird v.200.20 Indexing, Second Alpha

http://rusty/fb2/indexes.html (2 of 5) [2/05/2005 6:41:09 PM]

jump info =
struct IndexJumpInfo {
 USHORT firstNodeOffset; // offset to first node in page [*]
 USHORT jumpAreaSize; // size area before a new jumpnode is made
 UCHAR jumpers; // nr of jump-nodes in page, with a maximum
of 255
};

jump node =
struct IndexJumpNode {
 UCHAR* nodePointer; // pointer to where this node can be read from
the page
 USHORT prefix; // length of prefix against previous jump node
 USHORT length; // length of data in jump node (together with
prefix this
 is prefix for pointing node)
 USHORT offset; // offset to node in page
 UCHAR* data; // Data can be read from here
};

New flag for the new index structure:
New flags are added to the header->pag_flags.
The flag btr_large_keys (32) is for storing compressed length/prefix and record-number. This meant
also that length and prefix can be up to 1/4 of page-size (1024 for 4096 page-size) and is easy
extensible in the future without changing disk-structure again. Also the record-number can be easy
extended to for example 40 bits. Those numbers are stored per 7-bits with 1 bit (highest) as marker
(variable length encoding). Every new byte that needs to be stored is shifted by 7. Examples: 25 is
stored as 1 byte 0x19, 130 = 2 bytes 0x82 0x01, 65535 = 3 bytes 0xFF 0xFF 0x03.

Duplicate nodes:
Also a new flag is added for storing record-number on every node (non-leaf pages). This speed up
index-retrieval on many duplicates. The flag is btr_all_recordnumber (16). With this added
information key-lookup on inserts/deletes with many duplicates (NULLs in foreign keys e.g.) become
much faster (such as the garbage collection!). Beside that duplicate nodes (length = 0) don't store
their length information, 3 bits from first stored byte are used to determine if this nodes is a
duplicate. Beside the ZERO_LENGTH (4) there is also END_LEVEL (1), END_BUCKET (2),
ZERO_PREFIX_ZERO_LENGTH (3) and ONE_LENGTH (5) marker. Number 6 and 7 are reserved
for future use.

Jump nodes:
A jump node is a reference to a node somewhere in the page.
It contains offset information about the specific node and the prefix data from the referenced node,
but on the jump-nodes self is also prefix compression done.
Ideally a new jump node is generated after the first node that is found after every jumpAreaSize, but
that's only the case on deactivate/active a index or inserting nodes in the same order as they will be
stored in the index.
If nodes are inserted between two jump node references only the offsets are updated, but only if the
offsets don't exceed a specific threshold (+/-10 %).
When a node is deleted only offsets are updated or a jump node is removed. This means a little
hole can exists between the last jump node and the first node, so we don't waste time on generating
new jump-nodes.
The prefix and length are also stored by variable length encoding.

Example data:

(x) = size in x bytes
header (34)

52 (2) 256 (2) 2 (1) 30 (2) 0 (1)

Firebird v.200.20 Indexing, Second Alpha

http://rusty/fb2/indexes.html (3 of 5) [2/05/2005 6:41:09 PM]

2 (1) 260 (2) FI (2) 1 (1) 1 (1)

514 (2) U (1) 0 (1) 1 (1) 0 (1)

A (1) ...

2 (1) 6 (1) 21386 (3) REBIRD (6) ...

2 (1) 2 (1) 1294 (2) EL (2) ...

Pointer after fixed header = 0x22
Pointer after jump info = 0x29
Pointer to first jump node = 0x29 + 6 (jump node 1) + 5 (jump node 2) = 0x34
Jump node 1 is referencing to the node that represents FIREBIRD as data, because this node has a
prefix of 2 the first 2 characters FI are stored also on the jump node.
Our next jump node points to a node that represents FUEL with also a prefix of 2. Thus jump node 2
should contain FU, but our previous node contained already the F so due prefix compression this
one is ignored and only U is stored.

NULL state:
The data that needs to be stored is determined in the procedure compress() in btr.cpp.
For ASC (ascending) indexes no data will be stored (key is zero length). This will automaticly put
them as first entry in the index and thus correct order (For single field index node length and prefix
is zero).
DESC (descending) indexes will store a single byte with the value 0xFF (255). To distinguish
between a value (empty string can be 255) and an NULL state we insert a byte of 0xFE (254) at the
front of the data. This is only done for values that begin with 0xFF (255) or 0xFE (254), so we keep
the right order

Examples:
nodes ASC index, 1 segment
prefix length stored data real value/state
0 0 NULL
0 0 NULL
0 1 x65 (A) A
1 1 x65 (A) AA
...

nodes DESC index, 1 segment
prefix length stored data real value/state
...
0 2 xFE xFE (þ) x4A (J) 0xFE 0x4A
1 1 xFF (ÿ) 0xFF
0 1 xFF NULL
1 0 xFF NULL

END_LEVEL

nodes ASC index, 3 segment
prefix length stored data real value/state
0 0 NULL, NULL, NULL

0 10 x01(1) x70(F) x73(I) x82(R) x69(E)
x01(1) x66(B) x73(I) x82(R) x68(D)

NULL, NULL,
FIREBIRD

0 10 x02(2) x70(F) x73(I) x82(R) x69(E)
x02(2) x66(B) x73(I) x82(R) x68(D)

NULL, FIREBIRD,
NULL

Firebird v.200.20 Indexing, Second Alpha

http://rusty/fb2/indexes.html (4 of 5) [2/05/2005 6:41:09 PM]

0 10 x03(3) x70(F) x73(I) x82(R) x69(E)
x03(3) x66(B) x73(I) x82(R) x68(D)

FIREBIRD, NULL,
NULL

3 9 x00(0) x00(0) x02(2) x65(A) x00(0)
x00(0) x00(0) x01(1) x66(B) FI, A, B

...

nodes DESC index, 3 segment
prefix length stored data real value/state

0 12 xFC xB9 xB6 xFF xFF xFD xBE
xFF xFF xFF xFE xBD FI, A, B

3 17
xAD xBA xFC xBD xB6 xAD xBB
xFD xFF xFF xFF xFF xFE xFF
xFF xFF xFF

FIREBIRD, NULL,
NULL

1 19
xFF xFF xFF xFF xFD xB9 xB6
xAD xBA xFD xBD xB6 xAD xBB
xFE xFF xFF xFF xFF

NULL, FIREBIRD,
NULL

6 14 xFF xFF xFF xFF xFE xB9 xB6
xAD xBA xFE xBD xB6 xAD xBB

NULL, NULL,
FIREBIRD

11 4 xFF xFF xFF xFF NULL, NULL, NULL
END_LEVEL

© ABVisie 2005, Arno Brinkman

Firebird v.200.20 Indexing, Second Alpha

http://rusty/fb2/indexes.html (5 of 5) [2/05/2005 6:41:09 PM]

Optimizations

Optimizer improvements A. Brinkman,
D. Yemanov

Distribute HAVING clause conjunctions to the WHERE clause when
possible

●

Distribute UNION conjunctions to the inner streams when possible●

Improved cross join and merge/sort handling●

Better optimization of mixed AND/OR predicates●

Let's choose a reasonable join order for intermixed inner and outer joins●

MERGE PLAN may now be generated for joins using equality
comparsion on expressions

●

Better logic regarding unique indices handling●

Improved logic for OR expressions●

Available in ODS 11.0 only:

Usage of segment-level selectivities●

Better support for IS NULL●

Better support for STARTING WITH●

Matching both OR and AND nodes to indices●

Better cost estimations and hence better join orders●

Allowed indexed order (navigational walk) for outer joins●

Improved PLAN clause D. Yemanov

A PLAN clause optionally allows you to provide your own instructions to the
engine and have it ignore the plan supplied by the optimizer. Firebird 2
enhancements allow you to specify more possible paths for the engine. For
example:

 PLAN (A ORDER IDX1 INDEX (IDX2, IDX3))

For more details, please refer to the topic in the DML section, Improvements in
user-specified query plans.

Firebird v.200.20 Optimizations, Second Alpha

http://rusty/fb2/optimization.html (1 of 2) [2/05/2005 6:41:10 PM]

Buffer cache improvements O. Loa,
D. Yemanov

Better choice of streams order in joins and better index usage in general
(D. Yemanov)

●

Much faster algorithms to process the dirty pages tree●

Increased maximum page cache size to 128K pages (2GB for 16K page
size).

●

More information to come.

Faster evaluation of IN and OR O. Loa

Constant IN predicate or multiple OR booleans are now evaluated faster. More
information to come.

Firebird v.200.20 Optimizations, Second Alpha

http://rusty/fb2/optimization.html (2 of 2) [2/05/2005 6:41:10 PM]

Security

Summary of Changes

Better password encryption
A. Peshkov

Password encryption/decryption now uses a more secure password hash calculation algorithm.

Users can modify their own passwords A. Peshkov
Users can now modify their own passwords.

GSEC now uses the Services API A. Peshkov

Non-server access to security database is rejected A. Peshkov
The server now rejects any access to security2.fdb except through the Services Manager.

Protection from brute-force attack A. Peshkov
Attempts to get access to the server using brute-force techniques on accounts and passwords are now detected
and locked out.

API Vulnerabilities closed
C.
Valderrama,
A. Peshkov

Several known vulnerabilities in the API have been closed. More information to come.

Details of the Security Changes in Firebird 2.0 A. Peshkov

Several changes have been implemented to improve security. Aspects that have received special attention
include:

the lack of brute-force resistant passwords encryption in the security database●

the ability for any remote user with a valid account to open the security database and read hashes from
it (especially interesting in combination with the first point)

●

the inability for users to change their own passwords●

the lack of protection against remote brute-forcing of passwords on the server directly●

Firebird 1.5 Authentication

In Firebird 1.5 the DES algorithm is used twice to hash the password: first by the client, then by the server,
before comparing it with the hash stored in security database. However, this sequence becomes completely
broken when the SYSDBA changes a password. The client performs the hash calculation twice and stores the
resulting hash directly in the security database. Therefore, hash management is completely client-dependent
(or, actually, client-defined).

Firebird 2: Server-side Hashing

To be able to use stronger hashes, another approach was called for. The hash to be stored on the server should
always be calculated on the server side. Such a schema already exists in Firebird -- in the Services API. This
led to the decision to use the Services API for any client activity related to user management. Now, gsec and
the isc_user_add(modify, delete) API functions all use services to access the security database. (Embedded
access to Classic server on POSIX is the exception --see below).

It became quite easy to make any changes to the way passwords are hashed - it is always performed by the
server. It is no longer gsec's problem to calculate the hash for the security database: it simply asks services to
do the work!

It is worth noting that the new gsec works successfully with older Firebird versions, as long as the server's
architecture supports services.

Firebird v.200.20 Security, Second Alpha

http://rusty/fb2/security.html (1 of 4) [2/05/2005 6:41:10 PM]

The Hashing Algorithm - SHA-1

The hashing algorithm selected for Firebird 2.0 is SHA-1. Data stored in the PASSWORD field of the
USERS table in the security database contains two parts - a random number, used as salt for calculating this
particular hash and the hash itself. It is calculated as SHA1 (salt || username || password)).

This method leads to the situation where

a hash valid for user A is invalid for user B1.

when a user changes his password -- even to exactly the same string as before -- the data stored in
USERS.PASSWORD is new.

2.

Although this situation does not increase resistance to a brute-force attempt to crack the password, it does
make "visual" analysis of a stolen password database much harder.

GSEC in Firebird 2

One of the problems addressed during the security review was gsec, the utility for maintaining user profiles
and authentication passwords. Though nobody can change data in the security database without knowing the
correct password, the old gsec is relatively easy to use. It will write the bad old DES hash in
USERS.PASSWORD field and, if THE LegacyHash parameter IN firebird.conf is set to 0, as it should be,
once the security database is upgraded, it becomes impossible to log in to the server. Special measures were
thus taken to make remote connection to the security database completely impossible. Don't be surprised if
some old program fails on attempting direct access: this is by design. Users information may now be accessed
only through the Services API and the equivalent internal access to services now implemented in the
isc_user_* API functions.

The structure of security database was changed. In general, now it contains a patch by Ivan Prenosil,
enabling any user to change his/her own password, with some minor differences.

In firebird 1.5 the table USERS has to be readable by PUBLIC, an engine requirement without
which the password validation process would fail. Ivan's patch solution used a view, with the
condition "WHERE USER = ''". That worked due to another bug in the engine that left the SQL
variable USER empty, not 'authenticator', as it might seem from engine's code.

Once that bug was fixed, it was certainly possible to add the condition "USER = 'authenticator'".
For the short term, that was OK, because the username is always converted to upper case.

❍

A better solution was found, that avoids making user authentication depend on SQL trick. The
result is that the non-SYSDBA user can see only his own login in any user-management tool
(gsec, or any graphical interface that use the Services API). SYSDBA continues to have full
access to manage users' accounts.

❍

●

The syntax for invoking GSEC has changed.

Because GSEC now uses the Services API, the switch

 -database <security database name>

has been removed. In its place is a new switch,

 -server <server to manage>

was added. For most purposes, the new switch is much more convenient: it is not necessary to supply
the exact path and name of the security database on a remote server in order to manage it.

Examples

TCP/IP:

 gsec -user sysdba -password masterkey -server firebird.company.com:

(Notice the colon suffixed to the hostname argument of the server switch.)

●

Firebird v.200.20 Security, Second Alpha

http://rusty/fb2/security.html (2 of 4) [2/05/2005 6:41:10 PM]

Win32 Named Pipes:

 gsec -user sysdba -password masterkey -server \\nt_srv\

(Notice the Named Pipes terminator suffixed to the hostname argument of the server switch.)

● Given the 8-byte maximum length of the traditional Firebird password, the hacker had a
reasonable chance to break into the firebird installation by way of a brute-force attack. Version
2.0 has some protection from this. After too many attempts to access the server using a wrong
password, the authentication process is locked for a period, minimizing the opportunity for a
hacker to find the correct password in time.

Classic Server on POSIX

For reasons both technical and historical, a Classic server on POSIX with embedded clients is
especially vulnerable to security exposure. Users having embedded access to databases MUST
be given at least read access to the security database. This is the main reason that made
implementing enhanced password hashes an absolute requirement. A malicious user with
user-level access to Firebird could easily steal a copy of the security database, take it home and
quietly brute-force the old DES hashes! Afterwards, he could change data in critical databases
stored on that server. Firebird 2 is much less vulnerable to this kind of compromise.

But the embedded POSIX server had one more problem with security: its implementation of the
Services API calls the command-line gsec, as normal users do. Therefore, an embedded
user-maintenance utility must have full access to security database.

The main reason to restrict direct access to the security database was to protect it from access
by old versions of client software. Fortuitously, it also minimizes the exposure of the embedded
Classic on POSIX at the same time, since it is quite unlikely that the combination of an old
client and the new server would be present on the production box.

==============================

However, the level of Firebird security is still not satisfactory in one serious respect, so please
read this section carefully before opening port 3050 to the Internet.

An important security problem with Firebird still remains unresolved: the transmission of
poorly encrypted passwords "in clear" across the network. It is not possible to resolve this
problem without breaking old clients. To put it another way, a user who has set his/her
password using a new secure method would be unable to use an older client to attach to the
server. Taking this into account with plans to upgrade some aspects of the API in the next
version, the decision was made not to change the password transmission method in Firebird
2.0.

The immediate problem can be solved easily by using any IP-tunneling software (such as
ZeBeDee) to move data to and from a Firebird server, for both 1.5 and 2.0. It remains the
recommended way to access your remote Firebird server across the Internet.

Dealing with the new security database A. Peshkov

If you try to put a pre-Firebird 2 security database -- security.fdb or a renamed isc4.gdb -- into Firebird's new
home directory and then try to connect to the server, you will get the message "Cannot attach to password
database". It is not a bug: it is by design. A security database from an earlier Firebird version cannot be used
directly in Firebird 2.0 or higher. The newly structured security database is named security2.fdb.

In order to be able to use an old security database, it is necessary to run the upgrade script
security_database.sql, that is in the ../misc/upgrade sub-directory of your Firebird server installation. (It is
currently in the ../src/misc/upgrade/v2 directory of the firebird2 CVS tree at Sourceforge.)

Firebird v.200.20 Security, Second Alpha

http://rusty/fb2/security.html (3 of 4) [2/05/2005 6:41:10 PM]

To do the upgrade, follow these steps:

Put your old security database in some place known to you, but not in Firebird's new home directory.
Keep a copy available at all times!

1.

Start Firebird 2, using its new, native security2.fdb.2.

Connect to your old security database as SYSDBA and run the script.3.

Stop the Firebird service.4.

Copy the upgraded database to the Firebird 2 home directory.5.

Open firebird.conf and set the parameter LegacyHash to 1 (remembering to erase the "#" comment
marker). TAKE NOTE OF THE CAUTION BELOW!

6.

Restart Firebird.7.

Now you should be able to connect to the Firebird 2 server using your old logins and passwords.

CAUTION As long as you have LegacyHash = 1, Firebird's security does not work completely. To set this
right, it is necessary to do as follows:

Change the SYSDBA password1.

Have the users change their passwords (in 2.0 each user can change his or her own password).2.

Set LegacyHash back to default value of 0, or comment it out.3.

Stop and restart Firebird for the configuration change to take effect.4.

Firebird v.200.20 Security, Second Alpha

http://rusty/fb2/security.html (4 of 4) [2/05/2005 6:41:10 PM]

New Configuration Parameters and
Changes

ExternalFileAccess A. Peshkov
Modified in Firebird 2, to allow the first path cited in ExternalFilesAccess to be
used as the default when a new external file is created.

LegacyHash A. Peshkov
This parameter enables you to temporarily configure Firebird 2's new security
to run with your old passwords in an upgraded security database (security.fdb).
Refer to the Security section for instructions on upgrading your existing
Firebird 1.5 security.fdb (or a renamed isc4.gdb) to the new security database
layout.

GCPolicy V. Horsun
Garbage collection policy. It is now possible to choose the policy for garbage
collection on SuperServer. The possible settings are cooperative, background
and combined, as explained in firebird.conf. Classic supports only cooperative.
More detail to come.

UsePriorityScheduler A. Peshkov
Setting this parameter to zero disables switching of thread priorities
completely. It affects only the Win32 SuperServer.

DeadThreadsCollection is no longer used A. Peshkov
Dead threads are now efficiently released "on the fly", making configuration
unnecessary. Firebird 2.0 silently ignores this parameter.

TCPNoNagle default has changed K. Kuznetzov
The default value for TcpNoNagle is now TCP_NODELAY.

Firebird v.200.20 Configuration, Second Alpha

http://rusty/fb2/configuration.html [2/05/2005 6:41:11 PM]

Utilities

On-line incremental backup
(NBak/NBackup)

N. Samofatov

Fast, on-line, page-level incremental backup facilities have been implemented. The backup
engine comprises two parts:

NBAK, the engine support module●

NBACKUP, the tool that does the actual backups●

NBAK

The functional responsibilities of NBAK are:

to redirect writes to difference files when asked (ALTER DATABASE BEGIN
BACKUP statement)

1.

to produce a GUID for the database snapshot and write it into the database header
before the ALTER DATABASE BEGIN BACKUP statement returns

2.

to merge differences into the database when asked (ALTER DATABASE END
BACKUP statement)

3.

to mark pages written by the engine with the current SCN [page scan] counter value
for the database

4.

to increment SCN on each change of backup state5.

The backup state cycle is:

nbak_state_normal -> nbak_state_stalled -> nbak_state_merge ->
nbak_state_normal
In normal state writes go directly to the main database files.■

In stalled state writes go to the difference file only and the main files are read only.■

In merge state new pages are not allocated from difference files. Writes go to the
main database files. Reads of mapped pages compare both page versions and return
the version which is fresher, because we don't know if it is merged or not.

■

This merge state logic has one quirky part. Both Microsoft and Linux define the contents
of file growth as "undefined" i.e., garbage, and both zero-initialize them.

This is why we don't read mapped pages beyond the original end of the main database file
and keep them current in difference file until the end of a merge. This is almost half of
nbak fetch and write logic, tested by using modified PIO on existing files containing
garbage.

NBACKUP

The functional responsibilities of NBACKUP are

to provide a convenient way to issue ALTER DATABASE BEGIN/END BACKUP1.

to fix up the database after filesystem copy (physically change nbak_state_diff to
nbak_state_normal in the database header)

2.

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (1 of 7) [2/05/2005 6:41:11 PM]

to create and restore incremental backups.
Incremental backups are multi-level. That means if you do a Level 2 backup every
day and a Level 3 backup every hour, each Level 3 backup contains all pages
changed from the beginning of the day till the hour when the Level 3 backup is
made.

3.

Creating incremental backups has the following algorithm:

Issue ALTER DATABASE BEGIN BACKUP to redirect writes to the difference
file

1.

Look up the SCN and GUID of the most recent backup at the previous level2.

Stream database pages having SCN larger than was found at step 2 to the backup
file.

3.

Write the GUID of the previous-level backup to the header, to enable the
consistency of the backup chain to be checked during restore.

4.

Issue ALTER DATABASE END BACKUP5.

Add a record of this backup operation to RDB$BACKUP_HISTORY. Record
current level, SCN, snapshot GUID and some miscellaneous stuff for user
consumption.

6.

Restore

Restore is simple: we reconstruct the physical database image for the chain of backup files,
checking that the backup_guid of each file matches prev_guid of the next one, then fix it
up (change its state in header to nbak_state_normal).

Usage

 nbackup <options>

Valid options

-L <database> Lock database for filesystem copy

-U <database> Unlock previously locked database

-F <database> Fixup database after filesystem copy

-B <level> <database> [<filename>] Create incremental backup

-R <database> [<file0> [<file1>...]] Restore incremental backup

Notes
● <database> may specify a database alias

● incremental backups of multi-file databases are not supported yet

● "stdout" may be used as a value of <filename> for the -B option

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (2 of 7) [2/05/2005 6:41:11 PM]

ISQL improvements Various developers

-b[ail]

Command line switch -b to instruct isql to bail out on error when used in
non-interactive mode, returning an error code to the operating system. (D. Ivanov,
C. Valderrama)

When using scripts as input in the command line, it may be totally unappropriate to
let isql continue executing a batch of commands after an error has happened.
Therefore, the "-b[ail]" option will cause script execution to stop at the first error it
detects. No further statements in the input script will be executed and isql will return
an error code to the operating system.

Most cases have been covered, but if you find some error that's not recognized
by isql, you should inform the project, as this is a feature in progress.

❍

Currently there is no differentiation by error code---any non-zero return code
should be interpreted as failure. Depending on other options (like -o, -m and
-m2) , isql will show the error message on screen or will send it to a file.

❍

Some features

Even if isql is executing nested scripts, it will cease all execution and will
return to the operating system when it detects an error. Nested scripts happen
when a script A is used as isql input but in turn A contains an INPUT
command to load script B an so on. Isql doesn't check for direct or indirect
recursion, thus if the programmer makes a mistake and script A loads itself or
loads script B that in turn loads script A again, isql will run until it exhaust
memory or an error is returned from the database, at whose point -bail if
activated will stop all activity.

❍

The line number of the failure is not yet known. It has been a private test
feature for some years but needs more work to be included in the official isql.

❍

DML errors will be caught when being prepared or executed, depending on
the type of error.

❍

DDL errors will be caught when being prepared or executed by default, since
isql uses AUTODDL ON by default. However, if AUTO DLL is OFF, the
server only complains when the script does an explicit COMMIT and this
may involve several SQL statements.

❍

The feature can be enabled/disabled interactively or from a script by means of
the SET BAIL [ON | OFF] command. As it's the case with other SET
commands, simply using SET BAIL will toggle the state between activated
and deactivated. Using SET will display the state of the switch among many

❍

●

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (3 of 7) [2/05/2005 6:41:11 PM]

others.

Even if BAIL is activated, it doesn't mean it will change isql behavior. An
additional requirement should be met: the session should be non-interactive.
A non-interactive session happens when the user calls isql in batch mode,
giving it a script as input.

Example

 isql -b -i my_fb.sql -o results.log -m -m2

However, if the user loads isql interactively and later executes a script with
the input command, this is considered an interactive session even though isql
knows it is executing a script.

Example

isql
Use CONNECT or CREATE DATABASE to specify a database
SQL> set bail;
SQL> input my_fb.sql;
SQL> ^Z

Whatever contents the script has, it will be executed completely, errors and
all, even if the BAIL option is enabled.

❍

New -m2 command-line switch to output Stats and Plans

Command-line option -M2 to send the statistics and plans to the same output file as
the other output (via the -o[utput] switch). (C. Valderrama)

When the user specifies that the output should be sent to a file, two possibilities
have existed for years: either

at the command line, the switch -o followed by a file name is used
or

❍

the command OUTput followed by a file name is used, either in a batch
session or in the interactive isql shell. (In either case, simply passing the
command OUTput is enough to have the output returned to the console).
However, although error messages are shown in the console, they are not
output to the file.

❍

The -m command line switch was added, to meld (mix) the error messages with the
normal output to wherever the output was being redirected.

This left still another case: statistics about operations (SET STATs command) and
SQL plans as the server returns them. SET PLAN and SET PLANONLY commands
have been treated as diagnostic messages and, as such, were always sent to the
console.

●

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (4 of 7) [2/05/2005 6:41:11 PM]

What the -m2 command line switch does is to ensure that stats and plans
information go to the same file the output has been redirected to.
Note: neither -m nor -m2 has an interactive counterpart through a SET command.
They are for use only as command-line isql options.

ODS version is now returned in the SHOW DATABASE command (C. Valderrama)●

New command SET HEADING ON/OFF toggle

Some people consider it useful to be able to do a SELECT inside isql and have the
output sent to a file, for additional processing later, especially if the number of
columns makes isql display impracticable. However, isql by default prints column
headers and in this scenario, they are a nuisance. Therefore, printing the column
headers -- previously a fixed feature -- can now be enabled/disabled interactively or
from a script by means of the

 SET HEADing [ON | OFF]

command in the isql shell. As is the case with other SET commands, simply using
SET HEAD will toggle the state between activated and deactivated.
Note: this switch cannot be deactivated with a command line parameter.

Using SET will display the state of SET HEAD, along with other switches that can
be toggled on/off in the isql shell.

●

Ability to show the line number where an error happened in a script

In previous versions, the only reasonable way to know where a script had caused an
error was using the switched -e for echoing commands, -o to send the output to a file
and -m to merge the error output to the same file. This way, you could observe the
commands isql executed and the errors if they exist. The script continued executing
to the end. The server only gives a line number related to the single command
(statement) that it's executing, for some DSQL failures. For other errors, you only
know the statement caused problems.

With the addition of -b for bail as described in (1), the user is given the power to tell
isql to stop executing scripts when an error happens, but you still need to echo the
commands to the output file to discover which statement caused the failure.

Now, the ability to signal a script-related line number of a failure enables the user to
go to the script directly and find the offending statement. When the server provides
line and column information, you will be told the exact line in the script that caused
the problem. When the server only indicates a failure, you will be told the starting
line of the statement that caused the failure, related to the whole script.

This feature works even if there are nested scripts, namely, if script SA includes
script SB and SB causes a failure, the line number is related to SB. When SB is read
completely, isql continues executing SA and then isql continues counting lines
related to SA, since each file gets a separate line counter. A script SA includes SB
when SA uses the INPUT command to load SB.

Lines are counted according to what the underlying IO layer considers separate

●

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (5 of 7) [2/05/2005 6:41:11 PM]

lines. For ports using EDITLINE, a line is what readline() provides in a single call.
The line length limit of 32767 bytes remains unchanged.

SHOW SYSTEM command shows predefined UDFs

The SHOW <object_type> command is meant to show user objects of that type. The
SHOW SYSTEM commmand is meant to show system objects but, until now, it
only showed system tables. Now it lists the predefined, system UDFs incorporated
into FB 2. It may be enhanced to list system views if we create some of them in the
future.

●

ISQL Bugs fixed

SF #910430 - ISQL and database dialect (C. Valderrama, B. Rodriguez Somoza)

When ISQL disconnected from a database, either by dropping it or by trying to
connect to a non-existent database, it remembered the SQL dialect of the previous
connection, which could lead to some inappropriate warning messages.

●

SF #223126 - Misplaced collation when extracting metadadata with ISQL (B.
Rodriguez Somoza)

●

SF #223513 - Ambiguity between tables and views (B. Rodriguez Somoza)●

SF #518349 - ISQL show mangles relationship (B. Rodriguez Somoza)●

Stopped possible crashes with long terminators (C. Valderrama)●

Made SET SQLDA_DISPLAY work in release versions (C. Valderrama)●

Avoided several SQL> prompts when using the INPUT command interactively (C.
Valderrama)

●

Stopped some memory leaks●

(Better descriptions expected.)

GBAK Enhancements

New Restore Switches V. Horsun
The new GBAK switch -RECREATE_DATABASE [OVERWRITE] replaces the old
-R[EPLACE_DATABASE] switch and makes it harder for the unsuspecting to overwrite a
database accidentally.

gbak -R[ECREATE_DATABASE] and gbak -C[REATE_DATABASE] are now
equivalent

●

gbak -R[ECREATE_DATABASE] O[VERWRITE] is equivalent to the old gbak
-R[EPLACE_DATABASE]

●

That is to say, now you won't be able to have gbak restore over an existing database unless
you include the O[VERWRITE] flag.

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (6 of 7) [2/05/2005 6:41:11 PM]

GSEC

GSEC return code C. Valderrama
GSEC now returns an error code when used as a non-interactive utility. Zero indicates
success; any other code indicates failure.

Firebird v.200.20 Utilities, Second Alpha

http://rusty/fb2/utilities.html (7 of 7) [2/05/2005 6:41:11 PM]

External Functions (UDFs)
Ability to signal SQL NULL via a NULL
pointer

C. Valderrama C.

Previous to Firebird 2, UDF authors only could guess that their UDFs might
return a null, but they had no way to ascertain it. This led to several problems
with UDFs. It would often be assumed that a null string would be passed as an
empty string, a null numeric would be equivalent to zero and a null date would
mean the base date used by the engine. For a numeric value, the author could
not always assume null if the UDF was compiled for an environment where it
was known that null was not normally recognized.

Several UDFs, including the ib_udf library distributed with Firebird, assumed
that an empty string was more likely to signal a null parameter than a string of
length zero. The trick may work with CHAR type, since the minimum
declared CHAR length is one and would contain a blank character normally:
hence, binary zero in the first position would have the effect of signalling
NULL. However, but it is not applicable to VARCHAR or CSTRING, where a
length of zero is valid.

The other solution was to rely on raw descriptors, but this imposes a lot more
things to check than they would want to tackle. The biggest problem is that the
engine won't obey the declared type for a parameter; it will simply send
whatever data it has for that parameter, so the UDF is left to decide whether to
reject the result or to try to convert the parameter to the expected data type.
Since UDFs have no formal mechanism to signal errors, the returned value
would have to be used as an indicator.

The basic problem was to keep the simplicity of the typical declarations (no
descriptors) while at the same time being able to signal null.

The engine normally passed UDF parameters by reference. In practical terms,
that means passing a pointer to the data to tell the UDF that we have SQL
NULL. However, we could not impose the risk of crashing an unknown
number of different, existing public and private UDFs that do nt expect
NULL. The syntax had to be enhanced to enable NULL handling to be
requested explicitly.

The solution, therefore, is to restrict a request for SQL NULL signaling to
UDFs that are known to be capable of dealing with the new scenario. To avoid
adding more keywords, the NULL keyword is appended to the UDF parameter
type and no other change is required.

Example

Firebird v.200.20 UDFs/External Functions, Second Alpha

http://rusty/fb2/udf.html (1 of 2) [2/05/2005 6:41:12 PM]

 declare external function sample
 int null
 returns int by value...;

If you are already using functions from ib_udf and want to take advantage of
null signaling (and null recognition) in some functions, you should connect to
your desired database, run the script ../misc/upgrade/ib_udf_upgrade.sql that is
in the Firebird directory, and commit afterwards. It is recommended to do this
when no other users are connected to the database.

The code in the listed functions in that script has been modified to recognize
null only when NULL is signaled by the engine. Therefore, starting with FB
v2, rtrim, ltrim and several other string functions no longer assume that an
empty string means a NULL string.

The functions won't crash if you don't upgrade: they will simply be unable to
detect NULL.

If you have never used ib_udf in your database and want to do so, you should
connect to the database, run the script ../udf/ib_udf2.sql, preferably when no
other users are connected, and commit afterwards.

Note the "2" at the end of the name.●

The original script for FB v1.5 is still available in the same directory.●

UDF library diagnostic messages improved A. Peshkov

Diagnostics regarding a missing/unusable UDF module have previously made
it hard to tell whether a module was missing or access to it was being denied
due to the UDFAccess setting in firebird.conf. Now we have separate,
understandable messages for each case.

Firebird v.200.20 UDFs/External Functions, Second Alpha

http://rusty/fb2/udf.html (2 of 2) [2/05/2005 6:41:12 PM]

Bugs Fixed

Unregistered bug C. Valderrama
The engine would fail to parse the SQL ROLE keyword properly.

Unregistered bug D. Yemanov
An overflow in the plan buffer would cause the server to crash.

Unregistered A. Peshkov
Several buffer overflows were fixed.

Unregistered bug
A. dos Santos Fernandes,
V. Horsun

The system transaction was being reported as dead.

Unregistered bug C. Valderrama
The UDF AddMonth() in the UDF library FBUDF had a bug that displayed
itself when the calculation rolled the month past the end of the year.

Unregistered bug D. Yemanov
EXECUTE PROCEDURE did not check SQL permissions at the prepare stage.

Unregistered bug D. Yemanov
Privileges granted to procedures/triggers/views were being preserved after the
object had been dropped.

Unregistered bug
D. Yemanov,
C. Valderrama

The server would lock up after an unsuccessful attach to the security database.

Unregistered bug V. Horsun
GBAK would stall when used via the Services Manager and an invalid
command line was passed.

Bug ID: SF #1155520 A. dos Santos Fernandes
Fixed a vulnerability that could make it possible for a user who was neither
SYSDBA nor owner to create a database that would overwrite an existing
database.

Unregistered bug D. Yemanov
A computed column of a blob or array type would zero values in the first
column of the table being restored.

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (1 of 7) [2/05/2005 6:41:12 PM]

Bug ID: SF #1124720 A. Peshkov
Problem with "FOR EXECUTE STATEMENT ... DO SUSPEND;"

Bug ID: SF #1076858 V. Horsun
Possible corruption in classic server

Bug ID: SF #1116809 A. dos Santos Fernandes
Incorrect data type conversion

Bug ID: SF #1111570 C. Valderrama
Problem dropping a table having a check constraint referencing more than one
column.

Bug ID: Not registered N. Samofatov
Possible server lockup/crash when 'RELEASE SAVEPOINT xxx ONLY'
syntax is used or when existing savepoint name is reused in transaction context

Bug ID: SF #217042 (part fix) C. Valderrama
IB doesn't validate weird constructions

Bug ID: SF #1108909 C. Valderrama
View can be created w/o rights on table name like "a b"

Bug ID: Not registered D. Yemanov
Rare client crashes caused by improperly cleaned XDR packets

Bug ID: Not registered C. Valderrama
Usage of an invalid index in an explicit plan causes garbage to be shown in the
error message instead of the rejected index name.

Bug ID: SF #504978 C. Valderrama
GPRE variable names being truncated

Bug ID: SF #527677 C. Valderrama
"ANSI85 compatible COBOL" switch broken

Bug ID: SF #1103666 C. Valderrama
GPRE uses inconsistent lengths

Bug ID: SF #1103670 C. Valderrama
GPRE invalidates a quoted cursor name after it's opened

Bug ID: SF #1103683 C. Valderrama
GPRE doesn't check the length of the db alias

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (2 of 7) [2/05/2005 6:41:12 PM]

Bug ID: SF #1103740 C. Valderrama
GPRE doesn't detect duplicate quoted cursors names

Bug ID: SF #512975 C. Valderrama
Embed spaces and CR+LF before DEFAULT

Bug ID: Not registered A. Peshkov
Server crash during SuperServer shutdown

Bug ID: not registered D. Yemanov
Column-level SQL privileges were being preserved after the affected column
was dropped.

Bug ID: not registered N. Samofatov
Memory leakage was occurring when selectable stored procedures were called
from PSQL or in subqueries.

Bug ID: not registered N. Samofatov
Fixed some backup issues with stream BLOBs that caused them to be truncated
under some conditions.

Bug ID: not registered A. Peshkov
Diagnostics about missing/unusable UDF module needed improvement. Details
in the UDF section.

Bug ID: SF #1065511 N. Samofatov
Clients on Windows XP SP2 were slow connecting to a Linux server.

Bug ID: SF #459059 D. Yemanov
Index breaks = ANY result. MORE INFO REQUIRED.

Bug ID: SF #543106 D. Yemanov
Bug with ALL keyword. MORE INFO REQUIRED

Bug ID: SF #1057538 C. Valderrama
The server would crash if the output parameter of a UDF was not the last
parameter.

Bug ID: not registered A. Peshkov
System users "AUTHENTICATOR" and "SWEEPER" were lost, causing
"SQL SERVER" to be reported instead.

Bug ID: not registered A. Brinkman
Ambiguous queries were still possible under some conditions.

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (3 of 7) [2/05/2005 6:41:12 PM]

Bug ID: not registered V. Horsun
Don't rollback prepared 2PC sub-transaction. Vlad, it is very unclear what you
mean here.

Bug ID: SF #571026 D. Yemanov
INET/INET_connect: gethostbyname was not working properly.

Bug ID: SF #223058 D. Yemanov
Multi-hop server capability was broken.

Bug ID: not registered N. Samofatov
A number of possible server crash conditions had been reported by Valgrind.
(This report needs some explanation.)

Bug ID: SF #735720 A. Brinkman
SELECT ... STARTING WITH :v was wrong when :v = ''

Bug ID: not registered N. Samofatov
Server would crash when a wrong type or domain name was specified when
changing the data type for a column. More info: what is meant by "wrong
type"?

Bug ID: not cited N. Samofatov
Memory consumption became exorbitant when blobs were converted from
strings during request processing. For example, the problem would appear
when running a script with a series of statements like

 insert into t(a,b)
 values(N, <literal_string>);

when b was blob and the engine was performing the conversion internally.

Bug ID: not cited N. Samofatov
Materialization of BLOBs was not invalidating temporary BLOB IDs soon
enough.
A blob is created as an orphan. This blob has a blob id of {0,slot}. It is volatile,
meaning that, if the connection terminates, it will become eligible for garbage
collection. Once a blob is assigned to field in a table, it is said to be
materialized. If the transaction that did the assignment commits, the blob has
an anchor in the table and will be considered permanent. Its blob id is
{relation_id,slot}.

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (4 of 7) [2/05/2005 6:41:12 PM]

In situations where internal code is referencing the blob by its old, volatile blob
id, the references are "routed" to the materialized blob, until the session is
closed. Now, the references to a volatile blob are checked and, when there are
no more references to it, it is invalidated.

Bug ID: not registered N. Samofatov
There were some problems with the mapping of UDF arguments to parameters.

Bug ID: not registered N. Samofatov
Incorrect accounting of attachment pointers used inside the lock structure was
causing the server to crash.

Bug ID: SF #910423 C. Valderrama
Anomaly with ALTER TABLE altering a column's type to VARCHAR, when
determining valid length of the string.

SQL> CREATE TABLE tab (i INTEGER);
SQL> INSERT INTO tab VALUES (2000000000);
SQL> COMMIT;

SQL> ALTER TABLE tab ALTER i TYPE VARCHAR(5);
Statement failed, SQLCODE = -607
unsuccessful metadata update
-New size specified for column I must be at least 11
characters.

i.e. it would need potentially 10 characters for the numerals and one for the
negative sign.

SQL> ALTER TABLE tab ALTER i TYPE VARCHAR(9);

This command should fail with the same error, but it did not, which could later
lead to unreadable data:

SQL> SELECT * FROM tab;
I
=========
Statement failed, SQLCODE = -413
conversion error from string "2000000000"

Bug ID: not registered N. Samofatov
There were some rounding problems in date/time arithmetic.

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (5 of 7) [2/05/2005 6:41:12 PM]

Bug ID: not registered N. Samofatov
Line numbers in DSQL parser were being miscounted when multi-line literals
and identifiers were used.

Bug ID: not registered J. Starkey
In v.1.5, random crashes would occur during a restore.

Bug ID: not registered N. Samofatov
Crash/lock-up with multiple calls of isc_dsql_prepare for a single statement
(like IBO does). Since IBO does not make multiple calls to isc_dsql_prepare
per statement, some more sensible description is required here.

Bug ID: not registered D. Yemanov
Server would crash when the system year was set too high or too low.

Bug ID: not registered D. Yemanov
Server would crash when the stream number exceeded the limit.

Bug ID: not registered A. Peshkov
EXECUTE STATEMENT had a memory leak.

Bug ID: not registered D. Yemanov
UDF arguments were being prepared/optimized twice.

Bug ID: not registered N. Samofatov
Conversion from string to blob had a memory leak.

Bug ID: not registered A. Brinkman
Interdependent views caused problems during the restore process.

Bug ID: SF #750664 N. Samofatov
Issues with read-only databases and transactions. WHAT ISSUES?

Bug ID: not registered N. Samofatov
Fixed memory leak from connection pool in isc_database_info. WHAT DOES
THIS ACTUALLY MEAN TO SAY?

Bug ID: not registered D. Yemanov
Server would crash when outer aggregation was performed and explicit plans
were used in subqueries.

Bug ID: not registered A. Peshkov
DECLARE FILTER would cause the server to crash.

Bug ID: not registered A. Brinkman
There were issues with dates below Julian date [zero?] stored in indices.

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (6 of 7) [2/05/2005 6:41:12 PM]

Bug ID: SF #781610
J. Bellardo,
B. Rodriguez Somoza

Comments in ISQL using '--' were causing problems.

Bug ID: SF #544132, #728839 C. Valderrama
Nulls handling in UDFs was causing problems.

Bug ID: SF #784121 C. Valderrama
Some expressions in outer join conditions were causing problems.

Bug ID: SF #750659 C. Valderrama
If you want to start a fresh db, you should be able to restore a backup done with
the metadata-only option. Generator values were resisting metadata-only
backup and retaining latest values from the live database, instead of resetting
the generators to zero.

NOTE :: The patch posted to the Firebird 2 branch may not have fully fixed the
bug. The same patch in Firebird 1.5.1 caused garbage numbers to be stored in
the generators, not zero. Testers please report.

Code Cleanup

-L[ocal] command-line switch for SS on
Win32 is gone D. Yemanov

Command line switch L for SuperServer on Windows is no longer recognized,
since the old local protocol was deleted.

Assorted cleanup
C. Valderrama

Extensive, ongoing code cleanup and style standardization●

Broken write-ahead logging (WAL) and journalling code is fully cleaned
out

●

Firebird v.200.20 Bugs Fixed, Second Alpha

http://rusty/fb2/fixes.html (7 of 7) [2/05/2005 6:41:12 PM]

Alpha 1 Bugs Fixed
This section records fixes to enhanced or new features that showed up during
Alpha 1 field-testing. This section will be removed from the final release notes.

Unregistered bug D. Yemanov
Bbackup/restore via the service manager (gbak -se[rvice_mgr] was not
working.

Unregistered bug A. Brinkman
The server would crash during SQL optimization.

Unregistered bug D. Yemanov
Loopback connections via XNET were broken.

Unregistered bug D. Yemanov
Sort nodes were getting lost, resulting in unsorted data being returned from an
ordered query.

Bug ID: SF #1168910 D. Sibiryakov
ISQL would stop executing a script if it encountered the Russian 'ya' character
in a comment.

Bug ID: SF #1169707 D. Yemanov
Several testers had reported reproducible database corruption (database file
appears corrupt () wrong page type, page 0 is of wrong type (expected 5, found
1) after restoring a v.1.0 database under the v.2. 0 server.

Bug ID: SF #1169708 D. Yemanov
Select from a selectable SP was taking MUCH longer than previously.

Bug ID: SF #1169723 D. Yemanov
The Alpha 1 engine was creating databases that could not be restored.

Bug ID: SF #1169728 A. Brinkman
On an ODS 11 database, SELECT FIRST 1 * ... ORDER BY queries were
causing huge numbers of reads compared to the same query submitted using an
explict PLAN clause that used the same indexes as the plan reported by the
optimizer.

Firebird v.200.20 Alpha 1 Bugs Fixed, Second Alpha

http://rusty/fb2/post_fixes.html (1 of 3) [2/05/2005 6:41:13 PM]

Bug ID: SF #1169730 V. Horsun
Database corruption was being caused by the new garbage collection code,
manifested as a "Cannot find record fragment" bugcheck while backing out old
record versions produced by the system transaction.

Bug ID: SF #1169884 A. Brinkman
When a compound index contained null in a key column, an IS NULL search
on that column was failing to return any rows.

Bug ID: SF #1188734 D. Yemanov
Fixed a bug that prevented the WHERE CURRENT OF <cursor-name> from
working properly.

Bug ID: SF #1168898 A. Brinkman
Fixed a bug that caused a BLR error when attempting to defined a CHECK
constraint containing a SELECT expression.

Unregistered bug A. Brinkman
Inconsistencies resolved that had been occurring when the VALUE keyword
was used in a CHECK constraint and the column referred to was defined with
the word "VALUE" as its identifier.

Unregistered bug A. Brinkman
A bug with ORDER BY involving DISTINCT on OUTER JOIN was fixed.

Unregistered bug A. Brinkman
An alias in a select-list would hide the data type of an expression result.

Unregistered bug
A. dos Santos Fernandes,
D. Yemanov

The server would crash if SUBSTRING was used in an expression index.

Unregistered bugs concerning index
selectivity

A. Brinkman,
D. Yemanov

Bad optimization for tables with zero selectivities1.

Wrong choice of index in cases where there were multiple indices of the
same selectivity

2.

The total selectivity being calculated for compound non-equality
comparisons was wrong

3.

Firebird v.200.20 Alpha 1 Bugs Fixed, Second Alpha

http://rusty/fb2/post_fixes.html (2 of 3) [2/05/2005 6:41:13 PM]

Unregistered bug D. Yemanov
Database corruption would occur when a row was deleted in a BEFORE
UPDATE trigger.

Unregistered bug D. Yemanov
The server would crash during validation of broken ODS11 indices.

Bug ID: SF #1173948 C. Valderrama
Fixed an ISQL command-line bug that caused the isql shell prompt to appear
when using -i switch.

Unregistered bug D. Yemanov
An expression index was unable to be be used for navigation.

Firebird v.200.20 Alpha 1 Bugs Fixed, Second Alpha

http://rusty/fb2/post_fixes.html (3 of 3) [2/05/2005 6:41:13 PM]

	rusty
	Firebird v.200.20 Release Notes, Second Alpha
	Firebird v.200.20 Release Notes, Second Alpha
	Firebird v.200.20 New Features/Enhancements, Second Alpha
	Firebird v.200.20 API Changes, Second Alpha
	Firebird v.200.20 SQL Data Definition, Second Alpha
	Firebird v.200.20 SQL Data Manipulation, Second Alpha
	Firebird v.200.20 SQL Procedure Language, Second Alpha
	Firebird v.200.20 Reserved Words, Second Alpha
	Firebird v.200.20 Indexing, Second Alpha
	Firebird v.200.20 Optimizations, Second Alpha
	Firebird v.200.20 Security, Second Alpha
	Firebird v.200.20 Configuration, Second Alpha
	Firebird v.200.20 Utilities, Second Alpha
	Firebird v.200.20 UDFs/External Functions, Second Alpha
	Firebird v.200.20 Bugs Fixed, Second Alpha
	Firebird v.200.20 Alpha 1 Bugs Fixed, Second Alpha

