We will discuss today those aspects of programming models, which are specific to interoperability and integration. Let me talk to you now about road to integration. And if you would be so kind as to look at my slide, I really want to answer this question what .NET is or is not a road to integration; that is something that I will hopefully reveal within one and half hours from now.

Objectives

The objectives that I want to fulfill are primarily to convince you that the world is evolving its software development and software architecture paradigm to service-based computing. I want to tell you how that solves the big problem of integration. I will spend most of my time talking about standards, which are part of WSA or Web-services Architecture as Microsoft calls it and which are part of the world of WSI or Web-services Interoperability organization. First I want to get you excited how good it is.

Pervasive Integration

Let’s talk about pervasive integration. Pervasive. I wonder how could you translate this word. Anyone? Pervasive is integration that’s everywhere, automatically, but you don’t have to create. Is that what we have today? No.

Today’s Trend

Today’s situation is that everybody wants to integrate with everybody else so we create a network of white dotted lines, which you see on this diagram. And every single white dotted line cost you money and cost you time as you are creating a purpose built integration solution for just this company and just this application. How many such lines there are? Of course the curve is exponential and as a result businesses, governments and academics tell us that this is probably the world biggest and costliest problem in terms of IT. People want to integrate but it costs too much and takes too much effort.

So how do we solve the problem?

The ultimate vision

Let me tell you about the future. The future where I talk about an ultimate vision of pervasive integration. Where any two computers integrate, any two devices integrate, any two software applications integrate without you having to do anything. You just put one computer next to each other and they know why they should integrate. Let me give you an example. Actually, I have very good metaphor. There’s the science fiction television program, it’s American. It is very old, it has been running for 35 year, it is called Star Trek. Have you seen it? There’s a spaceship which goes in space and it meets new civilizations. The job of Starship Enterprise is to meet new civilizations for the first time. They call it ‘first contact’. If you have ever seen this program you could notice something amazing. Whenever Starship Enterprise meets a new civilization for the first time... so they have never ever met before, they are meeting for the first time... The computer systems on Starship Enterprise already fully integrate with the computer systems of the new civilization. They have never ever met before. How is it possible? Well, Microsoft says they use .NET. I am not sure about that. But I am certainly sure that the reason that that vision is possible is because they understood a set of simple basic interoperability protocols, in other words, interoperability standards. SMTP – simple mail transport protocol, is a bad protocol. But we have email that works around the world and spam. What I want to create is a set of such simple simple protocols, which are not necessarily the best, but which give us this pervasive integration, that’s the goal. That’s what I want to achieve in this session in the <NN> minutes that I have remaining.

The .NET Evolution #1

So first of all you maybe thinking oh yes, .NET is the answer isn’t it? After all, .NET changed the world. Well, in the old old days of mainframe computers there was interoperability. Interoperability was called the beautiful woman that took the tape from one computer and she put it on another computer.

The .NET Evolution #2

Thanks to CORBA, COM and RMI the beautiful ladies that take tapes from one computer to the other were eliminated. One of them was my mom. Actually, she not only brought the tapes, but also wiped disk drives heads with the spirit as a part of their service. And all men of the local University computer center idolize her. Because of spirit of course. (
Some people say that all those ladies now are hopefully applied in better places in better ways, maybe that’s true maybe that’s not, but certainly the subject of today’s session concerned with elimination of all of those purple bits on the screen. With .NET we have eliminated the need for programmers to create special interoperability solutions.

The .NET Evolution #3

So that inside .NET all software beautifully integrates with each other. So, end of story, is that it?

Low-Level vs. High-Level

No. To explain why not and probably to contradict many of you in this room I must introduce a new concept (well, not new to you but new to this session), which I will introduce in a very bad and informal way. I want to introduce a level of abstraction that distinguishes certain low-level of abstraction integration and integration of high levels of abstraction. What is my level? My level is a level of a meaningful process. Oh, that means nothing. Let me be a little more precise. A process that can be described reasonably well using human language such as process an invoice, receive a payment, check if I am allergic to penicillin by verifying my healthcare data. I’m talking here informally about a layer at which programmers are not necessary but business people require the help of some business analysts. A very informal layer. I will come back to formalize it a little more at the end of my session, right now I must apologize, but that’s as much as I will say about what is that layer of abstraction. What is clear to us immediately is that .NET is extremely useful for integration on that low level of abstraction where we have good formalisms, where we can describe the contracts, where we can be explicit in semantics. However we immediately notice that .NET is not good at all for integration on the higher level where we have ambiguity, we have different options, where we don’t know exactly if we can integrate hundred percent and we talk about eighty percent of integration which on this lower level is a stupid statement to make – you either integrate or you don’t. So what can we do on this higher level of integration? A lot. Quite a lot. That is exactly where the technology of Web-services suddenly provide an imprecise but useful answer.

Web Services

Web-service is commonly defined as a programmable application component which you can access using standard open web protocols that performs a useful operation. Useful is being defined in the language of a business process, government process or educational process. Of course this is a Pandora’s Box of questions. What do I mean by standard open web protocols? You can call everything a Web-service as long as you use HTTP! That’s the problem I want to solve by giving us a set of standards that hopefully you will be excited about at the end of this session. More about it quite shortly but first I want to show you the goal – interoperability nirvana.

Interoperability Nirvana

In this world it doesn’t matter where you are – on Oracle, on Sun, on IBM and DB2, at .NET application or a Linux solution, it doesn’t matter, it all works together, it all respects each other. This nirvana of Web-services will only be possible if it is language-independent, platform-independent, device-independent and, if possible, both independent inside its architecture and on the outside of its interfaces and contracts. That’s the goal. How do we get them? We must define the standards. Before I tell you about the standards however I must introduce one more important concept as a requirement of this nirvana.

Loose Coupling

It is of course loose coupling and I’m not going to teach you about loose coupling, you should have heard a lot from Odintsov’s lections.
What is currently not obvious however is that the world of business people, the world of government software architects also realizes for the first time the importance of loose coupling because they suddenly realize that doing traditional transactions on this new platform is not possible using the old style tightly coupled ACID transactions, suddenly we realize that such a simple operation as booking a holiday online requires several operations, some of them may not be reversible, for example when I come to a travel agent and I want to go to some beautiful but very small island on the Mediterranean sea, I instruct the agent to buy me the cheapest flight and book the cheapest hotel, fine, the agents says, I will book you on RyanAir, it is one of the cheapest airlines of Europe. Hm, this is a last seat available, nevermind, I will buy this seat. The travel agent buys me this seat and then when the travel agent looks for a hotel… but this is a very small island and there’re no more rooms available in the hotel. So the agent calls me and says: “I am sorry, there’re no hotel rooms available, you will not go on your holiday, please pay me one hundred euros for the non-refundable ticket which you will not use and which I booked for you”. Well, of course that’s exactly the problem of today. Booking that RyanAir ticket is a non-reversible operation. What do you do? How do you represent the semantic of that transaction? Of course by using the new concept of so-called compensating transactions, they are not quite transactions but we call them transactions, and there’s this wonderful idea that even if you cannot undo this operation, the higher abstraction balance of this system will be consistent, for example, in case you will refund the money to the client and claim it from RyanAir or claim it from your little insurance fund which you keep inside you company safe box for such situations. Clearly, a loosely coupled approach that provides for those issues is a necessity to build an interoperable set of standards.

Where is the World Going?

So without any doubt the world is growing in the directions of XML (I’m not going to talk much about it), in the direction of Web-services for interoperability, in the direction of loose coupling and in the direction of simple standards that allow for interoperability. At this point from now until the end of my session I will only talk about standards. And I divided my talk about standards into two parts – one part on one slide and the other part in all the rest slides.

Basic Web Services Standards

The first part which will be presented right now tells you about those interoperability standards which you already know, so only one slide. The remaining slides will describe those that hopefully not all of you yet know and hopefully you will be excited by. So first of all one slide we know that we use the internet for communication and we know that we have decided that Cyrillic alphabet is the only alphabet to use in the world, we call it XML. Of course it is nothing more than just ASCII for the 21 century, and it doesn’t solve really any interesting problems, we still need the language, the Esperanto, so we have simple object access protocol, or SOAP, which provides a very simple, as the name suggests, protocol for interaction between a Web-service and consumer of that service. It’s just a communication protocol, primitive, and it doesn’t solve yet the bigger problems of meaning, so we also insist on a protocol called WSDL or web-services description language in order to describe the API or the application programming interface of the Web-services syntax. WSDL does a lot of things it should do and a lot of things it shouldn’t do. It’s a dirty little protocol, but like SMTP it does the job so we use it. However WSDL still doesn’t solve the huge question of how do I find my web-service if I have a need. So comes UDDI or universal description discovery and integration which is an even dirtier protocol than WSDL and it smells and it’s not ready and it’s awful but it works. UDDI version 2 with data structure 2.04 and API version 2.03 is a very imperfect way to do it but the one the world agreed upon. What does it do? It allows you to build a simple telephone book of needs and web-services that solve them. It’s very imprecise and it needs a lot of work to be done on it, but in the meantime we are already using it because that is of course the best way to learn how to improve it. You have heard about those protocols in the previous session. So my apologies for repeating it today. From now I will talk about the things that hopefully you don’t know yet and hopefully you will.
.NET – Road to integration

.NET – is it road to integration? Well, of course we agreed that the .NET Framework it the heart of low-level integration and that’s nice and it’s based on standards and we love it, we like it or we accept it depending on whether you Windows or Unix guy but more importantly it’s those Web-services based high-level integration mechanisms that we want to use. Of course if you use Microsoft’s technologies, that immediately puts you in a space of a technology that is proprietary to Microsoft. ASP.NET is a good example of a technology for which you pay money to Microsoft (oh, you should pay), but let me make it quite clear to you that you don’t need ASP.NET to create interoperable Web-services because the standards are independent and opened. What the ASP.NET allows us to do is to build them quickly, rapidly which is what the business people wants to do, however if you are interested in an interoperability of a pure nature, without using any proprietary technologies, stay in your seats, I will talk about the actual protocols that do it.

Web Services Interoperability Organization

They come from this organization. Web-services interoperability organization is not a standards organization; don’t think that they are standardization company, no. They are a pressure group. They put pressure on behalf of the software industry on standards companies. Who is a member? Everybody who is anybody. Microsoft, HP, Sun Microsystems, Oracle is the treasurer of the company, IONA, BEA Systems, hundred and fifty members. So what’s special about that, you may ask. For the first time in the history of computing all of those companies signed a contract, which says, I, Microsoft, will implement those standards exactly as specified, that means, for example, no, I will not improve the standards, I will not extend the standard of the benefit of my customer. I hope you understand what we are talking about. Good. What interesting is that that happened for the first time in the history of IT which is why are you think Web-services Interoperability organization is likely to create something really good.

Web Services Interoperability Organization #2

Microsoft has a name (Microsoft always has a name), Microsoft has a name for the output of WSI work, they called it WSA or Web-services architecture, this used to be called GXA* by Microsoft in case you heard it, but as you know, Microsoft changes its names frequently to make our lives easier. Web-services architecture is what the rest of my presentation is about.

* Global XML Web Services Architecture

Brief Overview of Web Services Architecture

We begin that discussion now with a reminder that that is the road to integration.

XML Infrastructure Evolution

It all begins with XML. You may say XML here, XML there, what’s the problem. Actually, we don’t use XML anymore. Well, OK, we use it, but not just XML. What is today is XML Infoset. XML Infoset is a very small but very important change to XML. XML doesn’t have meaning. XML Infoset has meaning. Why? XML Infoset is basically XML plus schema definitions. It is small but important difference. Coupling XML with XSD (or XML schema definitions) gives us the basic for interoperability and we call it the XML Infoset.

Foundation Protocols – the “Real” interoperability

On top of that we must solve a lot of other problems. Let me be а devil’s advocate for a second. There’re people on the internet, there’re very prominent academics who say, no, we don’t need anything other than just HTTP, no, HTTP GET and POST is everything we need. Some people are not so clear cut and some people perhaps in a less fundamentalist way , say that OK, I’m prepared to use SOAP, WSDL and UDDI, but I want nothing more. I disagree with them. And let me presented the case. Security.
Foundation Protocols – the “Real” interoperability #2

For example, I want to establish a connection with your system, I want to encrypt it. Which encryption standard should I use? The best, of course. But which one is that? Should I use ГОСТ, DES, Blowfish, triple-DES, RSA, Rijndael, elliptic curves cryptography? But the answer is that whichever one I consider to be the best, I can guarantee, you don’t have. So you know what happens in the world today? We use the lowest common denominator; it’s called DES, Data Encryption Standard. United States government officially advises you not to use Data Encryption Standard because it is considered unsafe, you should be using the current encryption standard which is called Rijndael, it is also called Advanced Encryption Standard or AES. Hm, so we have a problem. DES is what we use, DES is not what we should use. But I can not force you to have Blowfish. What can we do? We can negotiate. I can tell you that I understand triple-DES, Blowfish, DES and Rijndael with maximum of 128 bits of key, what do you understand? And you tell me that you understand DES, triple-DES and Rijndael with 128 as well as Rijndael with 256 bits of key. Also you tell me that you will not use DES. Great! Quick negotiation! Let’s use Rijndael with 128 bits of key. So simple, isn’t it? But of course, to agree on that we need a protocol and a standard, so here comes WS Security. I’m not going to even talk about all of the others in detail, but there are all needs for interoperability, which we can not solve today easily just with XML, SOAP and WSDL. We need something more.

Baseline Standards

So, step number one – let’s define the basic profile, so-called WS-basic profile 1.0 introduces the minimum version that you must support for interoperability by agreement of everybody who is anybody in the world of software manufacturing. So XML 1.0 second edition, SOAP 1.1, WSDL 1.1, UDDI which I already discussed and HTTP 1.1 is a minimum set. If you support it?

Main WS-* Specifications

Great! Now, please support thirteen additional specifications and in some cases maybe 47 of them. This is really interesting. What I am showing you on this slide is a set of main interoperability specifications, some of them already standardized, some of them being standardized but all of them agreed by everybody as the way to interoperate. I will discuss almost each of them in some detail.
WS-Routing
Let me begin with WS Routing. WS Routing is not about TCP/IP routing, it’s not about low-level routing. It’s like a secretary in your company or in your office or in your department. A secretary receives a letter. He or she opens it and it says, here is a lot of money, she takes it and puts it in the bank. Then she gets another letter and it says I want to complain about what you did. She passes it to the director. Then she gets another letter, it says, you want ten million dollars or a Caribbean cruise or a bottle of milk, call this number. She puts it in the bin. That is WS Routing. It is routing based on meaning of message. Infoset coming back here. Just to note – recently WS Routing was replaced with WS Addressing in WSE version 2.0. It is WS Routing enhanced successor.

WS-Referral

WS Referral is when someone comes to your office and says: “Here is a request for some computers” and you say: “Go there, they will process your request”. So delegation instead of processing it yourself or instead of taking it and putting it to another department. WS Referral tells the caller go away to someone else.

WS-Transaction

WS Transaction is of course the combination of traditional two-phase commit transactions that you know with those new non-transactional compensating transactions, which are of course the necessity of the semantics of business processes. WS Transaction is a good example how those big three companies cooperated originally having disagreed with each other. BEA Systems, IBM and Microsoft came to this agreement to how to do interoperable transactions only very-very late. By the way this protocol does not tell you how you do the transaction, it merely allows you to negotiate which transaction standard you should using in a way that’s understood by everybody.

WS-Security
And so we come to the biggest specification of them all. WS Security is not one standard, but it is actually an umbrella for very many individual specifications. Each of them is looking after a different aspect of security. What is interesting here is where they came from. Initially Sun Microsystems proposed through OASIS standards organization SAML and disagreed with Microsoft security as much as possible. Actually security seems to be uniform in the world of Java but as you probably know very well if you run a Java application inside IBM’s WebSphere J2EE and you having application running inside NetDynamics on Sun’s implementation, the security doesn’t interoperate even between them. The J2EE specification omits such fields as security so when people say the security in Java interoperate of course they mean yes, but only if you only use IBM’s Java or only Sun’s Java or only some other Java. What about Java to .NET interoperability of security then? Forget it! That was… just wild imaginations. Until WS Security came on stage. It broad together what everybody wanted and created all these standards for doing securely interoperable Web-services.

Web Services Security Roadmap

Let me tell you more about security. It consists of a number of specifications. If you look carefully on my slide you will notice that on the vertical axis there’s a little mark and it says ‘today’. What that is saying is that today we have standardized SecurityPolicy, Trust and SecureConversation but we don’t have yet an agreement on Authorization, Federation and Privacy. Those are standards in development and may I say they are some of the most interesting aspects of WS Security.

Modularity and Composition of Standards

One of the benefits of WS is that it uses the natural modularity of SOAP. Don’t read the detail just notice that there’s a green blub and a blue blub together. Thanks to SOAP relying on XML you can support either WS Security or WS Routing or both or none. Composition here is a very straightforward due to the inherent nature of them being nothing more but extensions to the SOAP envelope of the entire message. I said a few about it on previous lection. Interestingly, you don’t need to use HTTP for transferring this. It is designed for HTTP, true, but you can successfully interoperate using SOAP using SMTP or even FTP as a protocol.

WS-Trust
Let me go back to security. Let me tell you more how security works. So now we are using a magnifying glass and we are looking inside into WS Security specification. First of all WS Trust. WS Trust allows for mutual or one-way (if you prefer) verification that you connected to someone you think you connected to. Good example is of course the many attacks recently on the Barkley Bank, Citibank, Apple, eBay and many other organizations on the net where users think that they connected to Citibank simply because it looks like Citibank’s website. Poor users! In the world of Web-services we fortunate don’t rely on the way of how the things look, we use WS Security, which allows you to use any mechanism you want for trust verification. You want to use Kerberos? OK. You want to use some old Microsoft Lanman technique? OK. You want to use SSL and certificate based authentication? Fine. Use whatever you want but agree on what you will use using WS Trust.

WS-SecureConversation

And then establish a WS SecureConversation. This is like a tunnel, which encrypts of course or otherwise provide confidentiality to the communication between the user and provider of a web-service or as we say in the language of service-oriented architectures, the consumer and the producer of a message that is communicated using a web-service, slightly different syntax but the same semantics. WS SecureConversation again allows you to choose how you do it, it merely allows you to agree on that.

WS-SecurityPolicy
WS Security Policy is one I already discussed with you. I gave you an example of agreeing on the best encryption algorithm, I described negotiation based on WS SecurityPolicy I have and which perhaps you have. In that example you say that you are not going to use DES, you want to use Rjindael, and you encode that in your WS Security Policy.

Federation & Security

Let’s put all of these together. On this diagram you can see how the world of abstraction from architect perspective is implemented in the real world of Web-services interactions. If you look here at the bottom you will see that some requestor is establishing a secure conversation with a resource, which establishes that with yet another resource. However in the real world there will be a network of WS Trusts, which I represented by green arrows, which together will transgress different domains of Trust distinguished by the vertical broken arrows to represent this meaning. How do we describe the semantics of all of those interactions? Through another specification called WS Federation. WS Federation is one of those not yet finished specifications, which allows you to put together a meaningful but semantics representation of security across a very distributed world. The best example is DNS – domain name service. When you send an email, you send it to tercom.ru. But where is tercom.ru hosted? Who cares? It can be hosted with the domain on hosting provider or on a company server, or maybe on Terekhov’s home computer. It doesn’t matter where it is hosted, how it is hosted. You can securely… hm… reasonably securely resolve it wherever you are. That is what we call Federation and that concept and security is paramount to having big systems, which interoperate with each other and transgress through the boundaries of security and trust domains.

Ladies and gentlemen! There’s so much to talk about security.

Process Programming Basics
Let me move however to the final subject that I want to cover today which is about some problems which we have in this wonderful nirvana. Let me talk about process programming. And my apologies if I need to introduce a little bit of business nomenclature, sorry for that.

If you develop a business system or buy a business system or you support a business system you will represent in it three types of processes. You will support supporting or operational processes such as email and database. You will support line-of-business processes like invoicing, payment processing. OK, that’s more interesting but it’s still a bit boring. And you will support a value added processes. A better name for them is unique – processes, which only you support, and nobody else, that’s what make you you, that’s what make your company special. Nop, let me ask you a question. Which of those we have to develop yourselves? And which of those we can buy standardized. It’s clear. It’s the value added processes. We will always big developing inside each company and it is equally clear to me that the Microsoft’s and Oracle’s and the Sun’s of the future and the open systems and the Linux worlds of the future will be developing the first and maybe the second category of processes but they will not developing third.

Future of Process Programming

Why is it important to us? Because I believe that in the future, near future that’s two years maybe three years not like pervasive integration in thirty years. I believe that in the near future those value added processes will be implemented not using C#, not using Java, COBOL, not using real programming languages, but by using Confederation-based programming, by using technologies known as Orchestration, workflows, or known as process composition. I believe that you will become probably the best process encoders of the future and in the language of professor Bertran Mayer I believe that we will be reusing and reusing and reusing… not components, this is why I disagree with professor Mayer,.. but Web-services which actually are components so I agree with professor Mayer too.

In the future you are likely to be composing a process from smaller web-services. For example using a web-service send an invoice then start a timer, tip-top-tip-top, wait one month. If no payment received, send a reminder. Tip-top-tip-top. If in two weeks nothing is received send a nasty letter to the client, which says that you will charge them a lot of interest. Tip-top-tip-top. If nothing is received using a web-service contact the suitable people to ensure the payment takes place. Those implementations are different in different countries of course. This is why we should use interoperable web services. I’m sure you would probably agree with something I said here.

Related Specs on Orchestration

So let me show you that we have a problem here. We have a big problem because we now have several competing incompatible specifications for how we coordinate Web-services together. BEA Systems, IBM and Microsoft were the first ones on the block to propose BPEL for WS which is known as WS BPEL. However there’re others, there’re companies that have their own products that don’t want to agree today and they produced WS Choreography and WS Orchestration. WS Coordination is an early attempt of agreement, I will say a few words about it just on the next slide. But right now I want you to note that there’s a battle out there and the blood is running now. Why? Because Microsoft’s, IBM’s and the Sun’s and commerce ones of the BEAs realize that as long as you specify your business process in a reasonably standard way you will be able to buy a universal process engine server and run your process on it. Hello! That’s Microsoft’s BizTalk server. They don’t call it that of course yet. Hello! That’s IBM’s MQSeries. Hello! That’s like the most expensive software any of those companies sell. So? So we have a fight. We don’t know yet where the solution will be in the future, but today in this wonderful world of standards that is a not a standard.

WS-Coordination

We have a big deeming of a future, WS Coordination is an early attempt of a very low level to simply transmit state between Web-services to join them into so-called joint activities and provide a little bit of semantics for the workflow. But it is a very simple and insufficient specification today. It will be probably another year or two years and probably a lot more blood before an agreement is created. I hope that you will help the world create a good specification that agrees on everything that is important.

How to Comply with WS-*?

(So I have three slides before I close and) I like to give you some guidance on how you could comply with WS specifications if you don’t want to know about it. There’s a lot of people especially in the so-called real world and they don’t want to learn about WS Security, WS Transaction but they want to have interoperability. How do they comply? Today we recommend that they use standard packages that automatically implement WS Specifications for example if you are in the Microsoft world of ASP.NET there’s an add-on called Web-services Enhancements version 1.0 which will automatically make you comply with Security, Routing, Referral and something called DIME. There’s another version of it WSE 2.0 which was released at summer and which supports more. If you are in IBM world – then IBM has IBM’s WebServices Toolkit. And whatever you do – use them or implement all of WS specifications simply as a SOAP envelope extension and then you don’t have reliance on any of those proprietary technologies.

Compliance in OS

But the future is that of course the operating system, that the middleware, the platform will make you comply automatically. And that is very much that Microsoft’s long-term vision is. You already heard about Microsoft’s next operating system called at the moment Longhorn. I don’t work for the Microsoft so I sometimes call it Longwait but when it happens I am quite excited about its ability to improve interoperability. The project that you may have heard, it’s codename Indigo is a project that it is just one job automatically ensure compliance with all WS specifications so that developers don’t have to do it. Actually there’s an interim step that is called a project WhiteHorse. It is add-on to Visual Studio where you can right click on your Web-service and say ‘Yes, I want to comply’. I’ve put a link to MSDN TV to presentation where WhiteHorse is described in some detail.

Summary

Ladies and gentlemen, I hope that in my session I have managed to show you that the future of interoperability is in Web-services and WS specifications. I hope I made it clear that today .NET is part of the road to integration however I hope I also made it clear that the road to integration requires a higher level of abstraction, which is of course, Web-services. Whatever you develop on Microsoft’s .NET with interoperate with anything else the nirvana of interoperability certain possible but not necessarily directly through .NET but I believe strongly through Web Services paradigm. And of course, that means that if you want to be developing any of that yourselves, you need to know about Web Services, about standards and of course loose coupling.

For those who haven’t got something I will openly answer any of your questions on Russian after the lection is over. You can also download the full transcript of this lection from the course home page as well.

