

1

XSLT
Programmer's Reference

Michael Kay

Wrox Press Ltd.

2

XSLT Programmer's Reference

© 2000 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embodied in

critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book
to ensure the accuracy of the information. However, the information contained in
this book is sold without warranty, either express or implied. Neither the authors,

Wrox Press nor its dealers or distributors will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

Published by Wrox Press Ltd
Arden House, 1102 Warwick Road, Acock's Green, Birmingham B27 6BH, UK

Printed in USA
ISBN 1-861003-12-9

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies
and products mentioned in this book by the appropriate use of capitals. However,
Wrox cannot guarantee the accuracy of this information.

Credits

Author Technical Reviewers
Michael Kay David Carlisle
 Robert Chang
Additional Material Michael Corning
Alex Homer Jason Diamond
David Sussman Craig McQueen
 Paul Tchistopolskii
Technical Architect David Thompson
Tony Davis Linda van den Brink
 Dan Wahlin
Technical Editors
Catherine Alexander Design / Layout
Claire Fletcher Tom Bartlett
 Mark Burdett
Development Editor Will Fallon
Peter Morgan Laurent Lafon
 Jon Jones
Managing Editor
Paul Cooper Cover Design
 Chris Morris
Project Manager
Chandima Nethisinghe Index
 Michael Brinkman
 Martin Brooks

4

About the Author
Michael Kay has spent most of his career as a software designer and systems
architect with ICL, the IT services supplier. As an ICL Fellow, he divides his time
between external activities and mainstream projects for clients, mainly in the area
of electronic commerce and publishing. His background is in database technology:
he has worked on the design of network, relational, and object-oriented database
software products as well as a text search engine. In the XML world he is known
as the developer of the open source Saxon product, the first fully-conformant
implementation of the XSLT standard.

Michael lives in Reading, Berkshire with his wife and daughter. His hobbies, as
you might guess from the examples in this book, include genealogy and choral
singing.

Acknowledgements
Firstly, I'd like to acknowledge the work of the W3C XSL Working Group, who
created the XSLT language. Without their efforts there would have been no
language and no book. They've recently asked me to join the group as an Invited
Expert, and I'm looking forward to working with them in future, but I'd like to
say that this book was written entirely from an outsider's perspective.

More specifically, I'm grateful to James Clark, the editor of the XSLT and XPath
specifications, who responded courteously and promptly to a great many
enquiries, ranging from the extremely foolish to the highly challenging.

I've learnt a great deal of what I know about XSLT from the people on the XSL-
List: not only from the experts like David Carlisle who answer so many of the
questions, but also from the many beginners who ask them.

I'd like to thank Alex Homer and David Sussman, for helping to compile the
MSXML appendix.

I owe a debt to ICL, my employers, who took my request to spend time on this
project with great equanimity.

My editors at Wrox Press, and the technical reviewers, made an invaluable
contribution by pointing out the many, many places where more explanations and
examples were needed.

And finally, I couldn't have done this without the support of Penny and Pippa,
who have suffered my non-participation in family life for the last five months
with remarkable patience.

Introduction
It wouldn't be too extravagent to claim that XML is the biggest thing to hit the web
since the whole thing started less than ten years ago. It's also one of the biggest things
to hit the world of information management. Yet on its own, XML doesn't actually do
anything, all it provides is a way of structuring information and sending it from one
piece of software to another. Until now, if you wanted to write applications that took
advantage of XML, you had to write some rather low-level code using interfaces
(such as DOM and SAX) that required a very detailed knowledge of the way the data
is organized.

It reminds me of the way people used to access databases before SQL came along
(you've seen the gray hairs on the cover photo) – and when I first saw the XSL
Transformation language XSLT I realized that this was going to be the SQL of the
web, the high-level data manipulation language that would turn XML from being
merely a storage and transmission format for data into an active information source
that could be queried and manipulated in a flexible, declarative way.

Early in 1998 I was looking at ways of incorporating XML into ICL's content
management toolkit for web-based publishing, and I started developing a Java library
called Saxon to provide higher-level interfaces for manipulating XML. I was very
critical of the first XSL proposals, but as the standardization process gathered pace I
started to see a useful and powerful language emerging, and decided to change
direction with the Saxon software to turn it into an XSLT processor. When the XSLT
version 1.0 Recommendation finally came out on 16th November 1999, I was able to
announce a fully-conformant open source implementation just 17 days later.

But although I could see the power and potential of the XSLT language, I could also
see that it contained some new and difficult concepts which early users were
struggling with. That also reminded me of the early days with SQL – it's hard to
remember it now, but when SQL first emerged people had great difficulty
understanding its radical new concepts such as inner and outer joins and three-
valued logic.

So that's why I wrote the book. XSLT is an exciting and powerful language, but not an
easy one to get to grips with. Until now, there have been very few resources available
to help, apart from the official W3C specification itself, which is about as readable to
most programmers as a piece of tax legislation. So I hope this book will fill the gap,
and help to unleash the tremendous potential of this new language.

Who is this Book for?
I've written this book for practising software developers who have used a variety of

languages in the past and now want to learn how to use XSLT to create new
applications. I'm assuming you will have a basic understanding of XML, though I do
recognize that if you ever knew what an external general parsed entity is, you've
probably forgotten. I'm also assuming a basic understanding of the architecture of the
web and of HTML.

I'm not assuming you are familiar with any particular programming language,
though I have written on the basis that you have programming experience. If all the
programming you've done is to write HTML pages with a little bit of Javascript, you
might find some of the material tough going.

What does the Book Cover?

The book is primarily about XSLT as a language, and not about any particular
product. In Chapter 10 I've given a survey of currently available products that
implement the XSLT language, and in Appendix A I've included some extended
coverage of Microsoft's latest MSXML3 product, which currently implements most of
the standard. But I've kept the product information confined to a small part of the
book, because I expect that over the next year or two there will be many new product
developments and new players in the market, while the language itself will remain
stable, just as XML itself has done.

The book doesn't cover the early dialect of XSL that Microsoft delivered when
Internet Explorer 5 came out in 1998. XSLT has moved on a long way since that early
draft, and I decided it would be just too confusing to describe two very different
versions of a language in one book. In any case, Microsoft have stated (and
demonstrated) their commitment to moving their technology forward to comply with
the XSLT standard as published by W3C, so the IE5 1998 dialect clearly has no long-
term future, even though it has shipped millions of copies.

How is the Book Structured?
The material in this book falls naturally into three parts.

The first part comprises Chapters 1 to 3. The purpose of these chapters is to explain
the concepts of the XSLT language. Chapter 1 is about the role and purpose of the
language, about its history and the factors that motivated its design – I could have
called it Why XSLT? Chapter 2 explains what the concept of transformation means,
and describes the processing model in which an XSLT stylesheet describes the
relationship of an output tree to an input tree. Then Chapter 3 describes the internal
structure of a stylesheet, the way in which stylesheet modules relate to each other,
and the main things that you expect to find within a stylesheet.

The second part, Chapters 4 to 7, contains reference information. These chapters aim
to give a complete description of every language feature, explaining its detailed
syntax rules and its effect, giving usage advice and showing how it works using code
examples. I've ordered the material in these chapters for ease of reference rather than
for sequential reading: XSLT elements in Chapter 4, XPath expressions in Chapter 5,
the syntax of Patterns in Chapter 6, and the standard function library in Chapter 7.
Most of these chapters are arranged alphabetically so you can quickly find the
information on a particular language feature.

The third part of the book, Chapters 8 through 10, is designed to help you exploit the
XSLT language in developing real industrial applications. Chapter 8 explores a
number of design patterns; Chapter 9 contains three in-depth worked examples; and
Chapter 10 is a survey of current XSLT products: I'm not trying here to give you all
the information you need to use each product, but rather to summarize the
characteristics of each product so that you can decide which ones to investigate
further.

Finally, Appendix A gives a much more detailed treatment of the recently-released
Microsoft MSXML3 technology preview. This is of particular interest not just because
it's from Microsoft, but also because it's the first XSLT processor that is integrated
with a web browser, something that adds a whole range of possibilities to the
different ways of exploiting the power of the language. Appendix B gives a useful
glossary of terms.

Other XSLT Resources
If you can't find what you need in this book, there are several good places to find an
answer on the web. Rather than give a long list of XSLT-related sites, I'll just list one
or two sites that maintain good collections of links.

❑ http://www.w3.org/Style/XSL/
This is the official site of the World Wide Web Consortium. It contains all the
published specifications and working drafts, plus a good number of news
items, articles and white papers.

❑ http://www.xslinfo.com/
This is a well-organized site run by James Tauber, consisting almost entirely
of classified lists of XSL software, articles, tutorials, and other resources.

❑ http://www.oasis-open.org/cover/xsl.html
Robin Cover's link pages provide remarkably comprehensive coverage of
everything that's happening or has ever happened in the world of SGML and
XML. The link given is to his XSL section.

❑ http://www.xml.com/
A good site for opinion articles and news round-up covering the XML world

generally.

❑ http://msdn.microsoft.com/xml/
This URL gives a good jumping-off point to Microsoft's view of the XML and
XSL world. Many useful articles and white papers, not always confined to
their own products.

What Software do I need to use this Book?
Reading about a new language won't make you an expert in it; you also need to try it
out and learn from your own experience. There are many examples in this book
which I'd encourage you to run, but more importantly I hope they'll stimulate you to
try out ideas of your own.

You can download all the worked examples from the main support page for this
book, at http://www.wrox.com.

In Chapter 10 I've listed some of the XSLT products available, and the good news is
that there's plenty of choice. Most of them are free, though you should always read
the license conditions. The bad news is that the development tools are rather basic:
don't expect sophisticated visual editing and debugging environments, the
technology hasn't yet reached that level of maturity.

To get started, if you're using a Windows platform, I would suggest:

❑ Instant Saxon, available from
http://users.iclway.co.uk/mhkay/saxon/instant.html

❑ Programmer's File Editor (PFE), available from various archive sites
including:
http://www.simtel.net/pub/simtelnet/win95/editor/pfe101i.zip

The recommendation for Instant Saxon is entirely biased; I wrote it. Its merits are that
it's a complete implementation of the standard, it's free, and it's easy to install and
run. The examples in this book are all tested with Saxon. They should also work with
Xalan and with Oracle XSL, both excellent products that claim 100% conformance to
the standard, but I haven't done extensive testing with them.

Like most of the other processors, Saxon requires you to create and edit your XML
and stylesheet files in a text editor, and to run them from the operating system
command line. If you've grown up entirely with Windows, that probably seems
rather primitive. I recommend PFE because it contains an intuitive text editor that
allows you to have lots of files open at once, and because it gives you access to the
operating system command line in a Windows-friendly way. If you already have a
different favorite, use that instead: I won't be mentioning PFE again.

For non-Windows platforms, several of the products described in Chapter 10 are
written in Java and should run on almost anything. You'll have to install a Java
Virtual Machine for your particular computer, and you'll have to become familiar
with the mechanics of installing and running Java applications in that environment.

I wouldn't recommend using Microsoft's MSXML3 as a learning tool just yet, until the
product matures a little. Its coverage of the XSLT standard is incomplete, its
documentation is sketchy, and its diagnostics when you get things wrong can be very
unhelpful. Use it once you've gained a little bit of experience, to explore the unique
things you can do when running a stylesheet within the web browser. No doubt this
situation is temporary, and I fully expect that in six months or a year Microsoft will
have one of the best XSLT processors on the market. It will be interesting to see
whether they live up to their promises on standards conformance.

Conventions
To help you get the most from the text and keep track of what's happening, a number
of conventions have been used throughout the book.

Worked examples – those which you can download and try out for yourself – are
generally in a box like this:

A specimen example

Source
This section gives the XML source data, the input to the transformation.
<source data="xml"/>

Stylesheet
This section describes the XSLT stylesheet used to achieve the transformation.
<xsl:stylesheet...

Output
This section shows the output when you apply this styesheet to this source data,
either as an XML or HTML listing, or as a screenshot.
<html>...</html>

Any freestanding sections of code are generally shown in a shaded box, like this:

<data>

Some XML data or XSLT code

</data>

As for styles in the text:

❑ Important terms, when first introduced, are highlighted as follows: important
words.

❑ Filenames, and code within the text appear like so: dummy.xml

❑ Text on user interfaces, and URLs, are shown as: File/Save As…

❑ French quotation marks (chevrons or guillemots) are used in order to
separate the code snippet clearly from the surrounding text, like this: «a=3;».
These have been used in preference to the usual English single or double
quotes partly because they stand out better, and partly to avoid any
ambiguity with quotes that are part of the code sample: it means we can write
examples such as «select="'Madrid'"», where the quotation marks («"»
and «'») are part of the code sample, and the chevrons aren't.

❑ XML element names, function names and attribute names are written as:
<xsl:value-of>, concat(), href.

In addition:

These boxes hold important, not-to-be forgotten information, which
is directly relevant to the surrounding text.

While the background style is used for asides to the current discussion.

Syntax rules (which appear mainly in Chapters 5 and 6) stick largely to the
conventions used in the W3C standards, except that, again, chevrons have been used
to surround literal text. The main notations used in these syntax rules are:

Expression Meaning

clause | paragraph A clause or a paragraph. The meaning of clause
and paragraph will be defined in separate rules:
these are non-terminal symbols. The vertical bar «|»
is used to separate alternatives.

«!» | «?» An exclamation mark or a question mark. Words or
symbols enclosed by chevrons must be used as
written: they are terminal symbols.

adjective noun «.» An adjective followed by a noun followed by a full-
stop (period).

adjective? noun Either a noun on its own, or an adjective followed
by a noun. The «?» indicates that the preceding
symbol is optional.

adjective* noun Zero or more adjectives followed by a noun.
adjective+ noun One or more adjectives followed by a noun.
sentence («?» | «!») A sentence followed by either a question mark or an

exclamation mark. The parentheses indicate
grouping.

Customer Support
We have made all the source code for this book available at our web site, at the
following address:

http://www.wrox.com

We've made every effort to make sure that there are no errors in the text or code.
However, to err is human. If you find an error in the book, or have problems getting
an example to work, first check whether it's a problem we already know about, by
looking at the errata pages on the Wrox web site. If not, please let us know, so that we
can help you with the problem and tell other readers about it. You'll find instructions
for notifying errors and raising queries on the web site.

Wrox now has a commitment to supporting you not just while you read the book, but
once you start developing your own applications. We provide you with a forum
where you can put your questions to the authors, reviewers and fellow industry
professionals. Check out the XML-related lists at:

http://p2p.wrox.com

Tell us what you Think
The author and the Wrox team have worked hard to make this book a pleasure to
read as well as being useful and educational, so we'd like to know what you think.
Wrox are always keen to hear what you liked best and what improvements you think
are possible. We appreciate feedback on our efforts and take both criticism and praise
on board in our future editorial efforts. When necessary, we'll forward comments and
queries to the author. If you've anything to say, let us know on:

feedback@wrox.com

Or via the feedback links on:

http://www.wrox.com

1
XSLT in Context

This chapter is designed to put XSLT in context. It's about the purpose of
XSLT and the task it was designed to perform. It's about what kind of
language it is, and how it came to be that way; and it's about how XSLT
fits in with all the other technologies that you are likely to use in a typical
web-based application. I won't be saying much in this chapter about what
an XSLT stylesheet actually looks like or how it works: that will come
later, in Chapters 2 and 3.

I shall begin by describing the task that XSLT is designed to perform –
transformation – and why there is the need to transform XML
documents. I'll then present a trivial example of a transformation in order
to explain what this means in practice.

The chapter then moves on to discuss the relationship of XSLT to other
standards in the growing XML family, to put its function into context and
explain how it complements the other standards.

I'll describe what kind of language XSLT is, and delve a little into the
history of how it came to be like that. If you're impatient you may want to
skip the history and get on with using the language, but sooner or later you
will ask "why on earth did they design it like that?" and at that stage I hope
you will go back and read about the process by which XSLT came into
being.

Finally, I'll have a few things to say about the different ways of using
XSLT within the overall architecture of an application, in which there will
inevitably be many other technologies and components each playing their
own part.

What is XSLT?
XSLT, which stands for eXtensible Stylesheet Language:
Transformations, is a language which, according to the very first
sentence in the specification (found at http://www.w3.org/TR/xslt), is primarily
designed for transforming one XML document into another. However,
XSLT is more than capable of transforming XML to HTML and many
other text-based formats, so a more general definition might be as follows:

XSLT is a language for transforming the structure of an XML
document.

Why should you want to do that? In order to answer this question properly,
we first need to remind ourselves why XML has proved such a success
and generated so much excitement.

Why Transform XML?
XML is a simple, standard way to interchange structured textual data
between computer programs. Part of its success comes because it is also
readable and writable by humans, using nothing more complicated than a
text editor, but this doesn't alter the fact that it is primarily intended for
communication between software systems. As such, XML satisfies two
compelling requirements:

❑ Separating data from presentation. The need to separate information (such as a
weather forecast) from details of the way it is to be presented on a particular
device. This need is becoming ever more urgent as the range of internet-
capable devices grows. Organizations that have invested in creating valuable
information sources need to be able to deliver them not only to the traditional
PC-based web browser (which itself now comes in many flavors), but also to
TV sets and WAP phones, not to mention the continuing need to produce
print-on-paper.

❑ Transmitting data between applications. The need to transmit information (such
as orders and invoices) from one organization to another without investing in
bespoke software integration projects. As electronic commerce gathers pace,
the amount of data exchanged between enterprises increases daily and this
need becomes ever more urgent.

Of course these two ways of using XML are not mutually exclusive. An
invoice can be presented on the screen as well as being input to a financial
application package, and weather forecasts can be summarized, indexed,

and aggregated by the recipient instead of being displayed directly.
Another of the key benefits of XML is that it unifies the worlds of
documents and data, providing a single way of representing structure
regardless of whether the information is intended for human or machine
consumption. The main point is that, whether the XML data is ultimately
used by people or by a software application, it will very rarely be used
directly in the form it arrives: it first has to be transformed into something
else.

In order to communicate with a human reader, this something else might
be a document that can be displayed or printed: for example an HTML
file, a PDF file, or even audible sound. Converting XML to HTML for
display is probably the most common application of XSLT today, and it is
the one I will use in most of the examples in this book. Once you have the
data in HTML format, it can be displayed on any browser.

In order to transfer data between different applications we need to be able
to transform data from the data model used by one application to the
model used in another. To load the data into an application, the required
format might be a comma-separated-values file, a SQL script, an HTTP
message, or a sequence of calls on a particular programming interface.
Alternatively, it might be another XML file using a different vocabulary
from the original. As XML-based electronic commerce becomes
widespread, so the role of XSLT in data conversion between applications
also becomes ever more important. Just because everyone is using XML
does not mean the need for data conversion will disappear. There will
always be multiple standards in use. For example, the newspaper industry
is likely to use different formats for exchanging news articles from the
format used in the TV industry. Equally, there will always be a need to do
things like extracting an address from a purchase order and adding it to an
invoice. So linking up enterprises to do e-Commerce will increasingly
become a case of defining how to extract and combine data from one set of
XML documents to generate another set of XML documents: and XSLT is
the ideal tool for the job.

At the end of this chapter we will come back to specific examples of when
XLST should be used to transform XML. For now, I just wanted to
establish just a general feel for the importance and usefulness of
transforming XML. Before we move on to discuss XSLT in more detail
and have a first look at how it works, let's take a look at an example that

clearly demonstrates the variety of formats to which we can transform
XML, using XSLT.

An Example: Transforming Music
There is an excellent registry of XML vocabularies and schemas at
http://www.xml.org/xmlorg_registry/index.shtml

If you look there, you will find at least three different XML schemas for
describing music; and if you follow the links, you will find several more.
These were all invented with different purposes in mind: a markup
language used by a publisher for printing sheet music has different
requirements from one designed to let you listen to the music from a
browser. MusicML, for example, is oriented to displaying music notation
graphically; ChordML is designed for encoding the harmonic
accompaniment to vocal lyrics, while the much more comprehensive
Music Markup Language (MML) from the University of Pretoria is
designed for serious musicological analysis, embracing Eastern and
African as well as Western musical idioms.

God save
our gracious
Queen

<SONG>
<KEY Sig=“G”/>
<TIME Sig=“3/4”/>
<STAVE>
<BAR Number=“1”/>
<CLEF Name=“G”/>
<CHORD>
<NOTE Pitch=“B”>
…
</SONG>

So you could use XSLT to process marked-up music in many different
ways:

❑ You could use XSLT to convert music from one of these representations to
another, for example from MusicML to MML.

❑ You could use XSLT to convert music from any of these representations into
visual music notation, by generating the XML-based vector graphics format
SVG.

❑ You could use XSLT to play the music on a synthesizer, by generating a MIDI
(Musical Instrument Digital Interface) file.

❑ You could use XSLT to perform a musical transformation, such as transposing
the music into a different key.

❑ You could use XSLT to extract the lyrics, into HTML or into a text-only XML
document.

As you can see, XSLT is not just for converting XML documents to
HTML!

How does XSLT transform XML?
By now you are probably wondering exactly how XSLT goes about
processing an XML document in order to convert it into the required
output. There are usually two aspects to this process:

❑ The first stage is a structural transformation, in which the data is converted
from the structure of the incoming XML document to a structure that reflects
the desired output.

❑ The second stage is formatting, in which the new structure is output in the
required format such as HTML or PDF.

The second stage covers the ground we discussed in the previous section:
the data structure that results from the first stage can be output as HTML,
a text file or as XML. HTML output allows the information to be viewed
directly in a browser by a human user or be input into any modern word
processor. Plain text output allows data to be formatted in the way an
existing application can accept, for example comma-separated values or
one of the many text-based data interchange formats that were developed
before XML arrived on the scene. Finally, XML output allows the data to
be supplied to one of the new breed of applications that accepts XML
directly. Typically this will use a different vocabulary of XML tags from
the original document: for example an XSLT transformation might take

the monthly sales figures as its XML input and produce a histogram as its
XML output, using the XML-based SVG standard for vector graphics. Or
you could use an XSLT transformation to generate VOXML output, for
aural rendition of your data.

A white paper describing Motorola's VOXML Voice Markup Language can
be found at http://www.voxml.com/downloads/VoxMNwp.pdf

Let's now delve into the first stage, transformation - the stage with which
XSLT is primarily concerned and which makes it possible to provide
output in all of these formats. This stage might involve selecting data,
aggregating and grouping it, sorting it, or performing arithmetic
conversions such as changing centimeters to inches.

So how does this come about? Before the advent of XSLT, you could only
process incoming XML documents by writing a custom application. The
application wouldn't actually need to parse the raw XML, but it would
need to invoke an XML parser, via a defined Application Programing
Interface (API), to get information from the document and do something
with it. There are two principal APIs for achieving this: the Simple API for
XML (SAX) and the Document Object Model (DOM).

The SAX API is an event-based interface in which the parser notifies the
application of each piece of information in the document as it is read. If
you use the DOM API, then the parser interrogates the document and
builds a tree-like object structure in memory. You would then write a
custom application (in a procedural language such as C++, Visual Basic,
or Java, for example), which could interrogate this tree structure. It would
do so by defining a specific sequence of steps to be followed in order to
produce the required output. Thus, whatever parser you use, this process
has the same principal drawback: every time you want to handle a new
kind of XML document, you have to write a new custom program,
describing a different sequence of steps, to process the XML.

Both the DOM and the SAX APIs are fully described in the Wrox Press book
Professional XML, ISBN 1-861003-11-0.

So how is using XSLT to perform transformations on XML better than
writing "custom applications"? Well, the design of XSLT is based on a
recognition that these programs are all very similar, and it should therefore

be possible to describe what they do using a high-level declarative
language rather than writing each program from scratch in C++, Visual
Basic, or Java. The required transformation can be expressed as a set of
rules. These rules are based on defining what output should be generated
when particular patterns occur in the input. The language is declarative, in
the sense that you describe the transformation you require, rather than
providing a sequence of procedural instructions to achieve it. XSLT
describes the required transformation and then relies on the XSL processor
to decide the most efficient way to go about it.

XSLT still relies on a parser – be it a DOM parser or a SAX-compliant
one – to convert the XML document in to a "tree structure". It is the
structure of this tree representation of the document that XSLT
manipulates, not the document itself.

If you are familiar with the DOM, then you will be happy with the idea of
treating every item in an XML document (elements, attributes, processing
instructions etc.) as a node. With XSLT we have a high-level language that
can navigate around a node tree, select specific nodes and perform
complex manipulations on these nodes.

The full XSLT processing model is discussed in Chapter 2.

The description of XSLT given thus far (a declarative language that can
navigate to and select specific data and then manipulate that data) may
strike you as being similar to that of the standard database query language:
SQL. Let's take a closer look at this comparison.

XSLT and SQL: an Analogy
I like to think of an analogy with relational databases. In a relational
database, the data consists of a set of tables. By themselves, the tables are
not much use, the data might as well be stored in flat files in comma-
separated values format. The power of a relational database doesn't come
from its data structure; it comes from the language that processes the data,
SQL. In the same way, XML on its own just defines a data structure. It's a
bit richer than the tables of the relational model, but by itself it doesn't
actually do anything very useful. It's when we get a high-level language
expressly designed to manipulate the data structure that we start to find

we've got something interesting on our hands: and for XML data that
language is XSLT.

Superficially, SQL and XSLT are very different languages. But if you look
below the surface, they actually have a lot in common. For starters: in
order to process specific data, be it in a relational database or an XML
document, the processing language must incorporate a declarative query
syntax for selecting the data that needs to be processed. In SQL, that's the
SELECT statement. In XSLT, the equivalent is the XPath expression.

The XPath expression language forms an essential part of XSLT, though it
is actually defined in a separate W3C Recommendation
(http://www.w3.org/TR/xpath) because it can also be used independently of
XSLT (the relationship between XPath and XSLT is discussed further on
page 17).

The XPath query syntax is designed to retrieve nodes from an XML
document, based on a path through the XML document or the context in
which the node appears. It allows access to specific nodes, while
preserving the hierarchy and structure of the document. XSLT is then used
to manipulate the results of these "queries" (rearranging selected nodes,
constructing new nodes etc).

There are further similarities between XSLT and SQL:

❑ Both languages augment the basic query facilities with useful additions for
performing basic arithmetic, string manipulation, and comparison operations.

❑ Both languages supplement the declarative query syntax with semi-procedural
facilities for describing the sequence of processing to be carried out, and they
also provide hooks to escape into conventional programming languages where
the algorithms start to get too complex.

❑ Both languages have an important property called closure, which means that
the output has the same data structure as the input. For SQL this structure is
tables, for XSLT it is trees – the tree representation of XML documents. The
closure property is extremely valuable because it means operations performed
using the language can be combined end-to-end to define bigger more
complex operations: you just take the output of one operation and make it the
input of the next operation. In SQL you can do this by defining views or
subqueries, in XSLT you can do it by passing your data through a series of
stylesheets.

In the real world, of course, XSLT and SQL have to coexist. There are
many possible relationships, but typically data will be stored in relational
databases and transmitted between systems in XML. The two languages
don't fit together as comfortably as one would like, because the data
models are so different. But XSLT transformations can play an important
role in bridging the divide. A number of database vendors are working on
products that integrate XML and SQL, though there are no standards in
this area as yet.

SQL Server 2000 will support XPath queries on its data. Prior to the
release of SQL Server 2000, Microsoft has released the XML SQL
Technology Preview, which allows access to data in a SQL Server 6.5
or 7.0 databases in XML form.

The XML SQL Technology Preview is available from
http://msdn.microsoft.com/workshop/xml/articles/xmlsql/sqlxmlset
up.exe.

Before we move on to look at a simple working example of an XSLT
transformation, we need to briefly discuss a few of the XSLT processors
that are available to effect these transformations.

XSLT Processors
The principle role of an XSLT processor is to apply an XSLT stylesheet to
an XML source document and produce a result document. It is important
to note that each of these is an application of XML and so the underlying
structure of each is a tree. So, in fact, the XSLT processor handles three
trees.

There are several XSLT processors to choose from. Here I'll mention
three: Saxon, xt, and Microsoft MSXML3. All of these can be downloaded
free of charge (but do read the licensing conditions).

These three processors and several others are described in Chapter 10.

Saxon is an open source XSLT processor developed by the author of this
book. It is a Java application, and can be run directly from the command
prompt: no web server or browser is required. The Saxon program will
transform the XML document to, say, a HTML document, which can then

be placed on a web server. In this example, both the browser and web
server only deal with the transformed document.

If you are running Windows (95/98/NT/2000) the simplest way to use it is
to download Instant Saxon, which is packaged as a Windows executable.
You will need to have Java installed, but that will be there already if you
have any recent version of Internet Explorer. On non-Windows platforms
you will need to install the full Saxon product and follow the instructions
that come with it. You can download Instant Saxon for free from
http://users.iclway.co.uk/mhkay/saxon/instant.html. Saxon will run with any XML
parser that implements the SAX interface (in its original Java form).

xt is another open source XSLT processor developed by James Clark, the
editor of the XSLT specification. Like Saxon, this is a Java application
that can be run from the command prompt; it too has a simple packaged
version for the Windows platform and a full version for other
environments. This time the download is from http://www.jclark.com/xml/xt.html.
Like Saxon, xt can operate with any SAX-compliant parser.

Alternatively, you can run XSLT stylesheets actually within Internet
Explorer. You'll need to install Internet Explorer 5 and the latest version of
the Microsoft MSXML processor, which you can find at
http://www.microsoft.com/xml. The information here is correct for the 15 March
2000 technology preview, referred to as MSXML3, but Microsoft has
promised a rapid sequence of new releases, so check the latest position.
MSXML3 comes with a new version of the MSXML parser.

Download and install both the SDK and the run-time package. Installing
the SDK creates a program called xmlinst.exe, typically in the
windows\system directory. Run this program to establish MSXML3 as the
default XML processor to be used by Internet Explorer (if you don't do
this, IE5 will try to use the old 1998 MSXML processor, which
implements an obsolete dialect of XSL that is quite different from the
language described in this book: see Chapter 10 for details). The big
advantage of Microsoft's technology is that the XSLT processing can take
place on the browser.

I've avoided talking about specific products in most of the book, because
the information is likely to change quite rapidly. It's best to get the latest
status from the web. Some good places to start are:

❑ http://www.w3.org/Style/XSL

❑ http://www.xslinfo.com/

❑ http://www.xml.com/

❑ http://www.oasis-open.org/cover

An Example Stylesheet
Now we're ready to take a look at an example of using XSLT to transfrom
a very simple XML document.

Example: A "Hello, world!" XSLT Stylesheet

Kernighan and Ritchie in their classic The C Programming Language
originated the idea of presenting a trivial but complete program right
at the beginning of the book, and ever since then the "Hello world"
program has been an honored tradition. Of course, a complete
description of how this example works is not possible until all the
concepts have been defined: so if you feel I'm not explaining it fully,
don't worry – the explanations will come later.

Input

What kind of transformation would we like to do? Let's try
transforming the following XML document:

<?xml version="1.0" encoding="iso-8859-1"?>

<greeting>Hello, world!</greeting>

A simple node-tree-representation of this document would look as
follows:

There is one root node per document. The root node in the XSLT
model performs the same function as the document node in the DOM
model. The XML declaration is not visible to the parser and,
therefore, is not included in the tree.

Output

Our required output is the following HTML, which will simply

change the browser title to "Today's Greeting" and display whatever
greeting is in the source XML file:

<html>

<head>

 <title>Today's greeting</title>

</head>

<body>

 <p>Hello, world!</p>

</body>

</html>

XSLT StyleSheet

Without any more ado, here's the XSLT stylesheet to effect the
transformation:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <head>

 <title>Today's greeting</title>

 </head>

 <body>

 <p><xsl:value-of select="greeting"/></p>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Running the Stylesheet

You can run this stylesheet using any of the three processors
described in the previous section.
Saxon
With Saxon, the steps are:

❑ Download the processor

❑ Install the executable saxon.exe in a suitable directory, and make this
the current directory

❑ Using Notepad, type the two files above into hello.xml and hello.xsl
respectively, within this directory (or get them from the Wrox web site at
http://www.wrox.com)

❑ Bring up an MSDOS-style console window (Start | Programs | MSDOS
Prompt)

❑ Type the following at the command prompt:
saxon hello.xml hello.xsl

❑ Admire the HTML displayed on the standard output

If you want to view the output using your browser, simply save the
command line output as an HTML file, in the following manner:

Saxon hello.xml hello.xsl > hello.html

Xt
The procedure is very similar if you use xt. This time the command to
use the Windows executable is xt rather than saxon. It should give the
same result.

MSXML3
Finally, you can run the stylesheet actually within Internet Explorer.
You need to modify the XML source file to include a reference to the
stylesheet, so it now reads:

<?xml version="1.0" encoding="iso-8859-1"?>

<?xml-stylesheet type="text/xsl" href="hello.xsl"?>

<greeting>Hello, world!</greeting>

Now you should simply be able to double-click on the hello.xml file,
which will bring up IE5 and load hello.xml into the browser. IE5 reads
the XML file, discovers what stylesheet is needed, loads the
stylesheet, executes it to perform the transformation, and displays the
resulting HTML. If you don't see the text "Hello, world!" on the screen,
but just the XML file, this is because you're using the original XSL
interpreter that Microsoft issued with IE5, not the MSXML3 version.
If you see the stylesheet displayed, this also indicates that you haven't
completed the installation process correctly: remember to run the
xmlinst.exe program.

How it Works

If you've succeeded in running this example, or even if you just want
to get on with reading the book, you'll want to know how it works.
Let's dissect it:

<?xml version="1.0" encoding="iso-8859-1"?>

This is just the standard XML heading. The interesting point is that an
XSLT stylesheet is itself an XML document. I'll have more to say
about this later in the chapter. I've used iso-8859-1 character encoding
(which is the official name for the character set that Microsoft calls
"ANSI") because in Western Europe and North America it's the
character set that most text editors support. If you've got a text editor
that supports UTF-8 or some other character encoding, feel free to use
that instead.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

This is the standard XSLT heading. In XML terms it's an element start
tag, and it identifies the document as a stylesheet. The xmlns:xsl
attribute is an XML Namespace declaration, which indicates that the
prefix xsl is going to be used for elements defined in the W3C XSLT
specification: XSLT makes extensive use of XML namespaces, and
all the element names defined in the standard are prefixed with this
namespace, to avoid any clash with names used in your source
document. The version attribute indicates that the stylesheet is only
using features from version 1.0 of the XSLT standard, which at the
moment is the only version there is.

Let's move on:

<xsl:template match="/">

An <xsl:template> element defines a template rule to be triggered
when a particular part of the source document is being processed. The
attribute match="/" indicates that this particular rule is triggered right at
the start of processing the source document. Here «/» is an XPath
expression which identifies the root node of the document: an XML
document has a hierarchic structure, and in the same way as UNIX
uses the special filename «/» to indicate the root of a hierarchic

filestore, XPath uses «/» to represent the root of the XML content
hierarchy. The DOM model calls this the Document object, but in
XPath it is called the root.

<html>

<head>

 <title>Today's greeting</title>

</head>

<body>

 <p><xsl:value-of select="greeting"/></p>

</body>

</html>

Once this rule is triggered, the body of the template says what output
to generate. Most of the template body here is a sequence of HTML
elements and text to be copied into the output file. There's one
exception: an <xsl:value-of> element, which we recognize as an XSL
instruction because it uses the namespace prefix xsl. This particular
instruction copies the value of a node in the source document to the
output document. . The SELECT attribute of the element specifies the
node for which the value should be evaluated. The XPath expression
«greeting>> means: "find the set of all <greeting> elements that are
children of the node that this template rule is currently processing". In
this case, this means the <greeting> element that's the outermost
element of the source document. The <xsl:value-of> instruction then
extracts the text node of this element, and copies it to the output at the
relevant place, in other words within the generated <p> element.

All that remains is to finish what we started:

</xsl:template>

</xsl:stylesheet>

In fact, for a simple stylesheet like the one shown above, you can cut out
some of the red tape. Since there is only one template rule, the
<xsl:template> element can actually be omitted. The following is a
complete, valid stylesheet equivalent to the preceding one:

<html xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<head>

 <title>Today's greeting</title>

</head>

<body>

 <p><xsl:value-of select="greeting"/></p>

</body>

</html>

This simplified syntax is designed to make XSLT look familiar to people
who have learnt to use proprietary template languages which allow you to
write a skeleton HTML page with special tags (analogous to <xsl:value-
of>) to insert variable data at the appropriate place. But as we'll see, XSLT
is much more powerful than that.

Why would you want to place today's greeting in a separate XML file and
display it using a stylesheet? One reason is that you might want to show
the greeting in different ways depending on the context; for example, it
might be shown differently on a different device. In this case you could
write a different stylesheet to transform the same source document in a
different way. This raises the question of how a stylesheet gets selected at
run-time. There is no single answer to this question. As we saw above,
Saxon and xt have interfaces that allow you to nominate both the
stylesheet and the source document to use. The same thing can also be
achieved with the Microsoft XSLT product, though it requires some
scripting on the HTML page: the <?xml-stylesheet?> processing instruction
which I used in the example above only works if you want to use the same
stylesheet every time.

It's time now to take a closer look at the relationship between XSLT and
XPath and other XML-related technologies.

The Place of XSLT in the XML Family
XSLT is published by the World Wide Web Consortium (W3C) and fits
into the XML family of standards, most of which are also developed by
W3C. In this section I will try to explain the sometimes-confusing
relationship of XSLT to other related standards and specifications.

XSLT and XSL
XSLT started life as part of a bigger language called XSL (eXtensible
Stylesheet Language). As the name implies, XSL was (and is) intended to
define the formatting and presentation of XML documents for display on

screen, on paper, or in the spoken word. As the development of XSL
proceeded, it became clear that this was usually a two-stage process: first a
structural transformation, in which elements are selected, grouped and
reordered, and then a formatting process in which the resulting elements
are rendered as ink on paper, or pixels on the screen. It was recognized
that these two stages were quite independent, so XSL was split into two
parts, XSLT for defining transformations, and "the rest" – which is still
officially called XSL, though some people prefer to call it XSL-FO (XSL
Formatting Objects) – the formatting stage.

XSL Formatting is nothing more than another XML vocabulary, in which
the objects described are areas of the printed page and their properties.
Since this is just another XML vocabulary, XSLT needs no special
capabilities to generate this as its output. XSL Formatting is outside the
scope of this book. It’s a big subject (the draft specification currently
available is far longer than XSLT), the standard is not yet stable, and the
only products that implement it are at a very early stage of development.
What's more, you're far less likely to need it than to need XSLT. XSL
Formatting provides wonderful facilities to achieve high-quality
typographical output of your documents. However, for most people
translating them into HTML for presentation by a standard browser is
quite good enough, and that can be achieved using XSLT alone, or if
necessary by using XSLT in conjunction with Cascading Style Sheets
(CSS or CSS2)which I shall return to shortly.

The XSL Formatting specifications, which at the time of writing are still
evolving, can be found at http://www.w3.org/TR/xsl.

XSLT and XPath
Halfway through the development of XSLT, it was recognized that there
was a significant overlap between the expression syntax in XSLT for
selecting parts of a document, and the XPointer language being developed
for linking from one document to another. To avoid having two separate
but overlapping expression languages, the two committees decided to join
forces and define a single language, XPath, which would serve both
purposes. XPath version 1.0 was published on the same day as XSLT, 16
November 1999.

XPath acts as a sublanguage within an XSLT stylesheet. An XPath
expression may be used for numerical calculations or string manipulations,

or for testing Boolean conditions, but its most characteristic use (and the
one that gives it its name) is to identify parts of the input document to be
processed. For example, the following instruction outputs the average
price of all the books in the input document:

<xsl:value-of select="sum(//book/@price) div count(//book)"/>

Here the <xsl:value-of> element is an instruction defined in the XSLT
standard, which causes a value to be written to the output document. The
select attribute contains an XPath expression, which calculates the value to
be written: specifically, the total of the price attributes on all the <book>
elements, divided by the number of <book> elements.

The separation of XPath from XSLT works reasonably well but there are
places where the split seems awkward, and there are many cases where it's
difficult to know which document to read to find the answer to a particular
question. For example, an XPath expression can contain a reference to a
variable, but creating the variable and giving it an initial value is the job of
XSLT. Another example: XPath expressions can call functions, and there
is a range of standard functions defined. Those whose effect is completely
freestanding, such as string-length(), are defined in the XPath specification,
whereas additional functions whose behavior relies on XSLT definitions,
such as key(), are defined in the XSLT specification.

Because the split is awkward, I've written this book as if XSLT+XPath
were a single language. For example, all the standard functions are
described together in Chapter 7. In the reference sections I've tried to
indicate where each function or other construct is defined in the original
standards, but the working assumption is that you are using both languages
together and you don't need to know where one stops and the other one
takes over. The only downside of this approach is that if you want to use
XPath on its own, for example to define document hyperlinks, then the
book isn't really structured to help you.

XSLT and Internet Explorer 5
Very soon after the first draft proposals for XSL were published, back in
1998, Microsoft shipped a partial implementation as a technology preview
for use with IE4. This was subsequently replaced with a rather different
implementation when IE5 came out. This second implementation, known
as MSXSL, remained in the field essentially unchanged until very

recently, and is what many people mean when they refer to XSL.
Unfortunately, though, Microsoft jumped the gun, and the XSLT standard
changed and grew, so that when the XSLT Recommendation version 1.0
was finally published on 16 November 1999, it bore very little
resemblance to the initial Microsoft product.

A Recommendation is the most definitive of documents produced by
the W3C. It's not technically a standard, because standards can only
be published by government-approved standards organizations. But I
will often refer to it loosely as "the standard" in this book.

Many of the differences, such as changes of keywords, are very superficial
but some run much deeper: for example, changes in the way the equals
operator is defined.

So the Microsoft IE5 dialect of XSL is also outside the scope of this book.
Please don't assume that anything in this book is relevant to the original
Microsoft XSL: even where the syntax appears similar to XSLT, the
meaning of the construct may be completely different.

You can find information about the original IE5 dialect of XSL in the Wrox
book XML IE5 Programmer's Reference, ISBN 1-861001-57-6.

Microsoft has fully backed the development of the new XSLT standard,
and on 26 January 2000 they released their first attempt at implementing
it. It's a partial implementation, packaged as part of a set of XML tools
called MSXML, but enough to run quite a few of the examples in this
book – and the parts they have implemented conform quite closely to the
XSLT specifications. A further update to this product (MSXML3) was
released on 15 March 2000, bringing the language even closer to the
standard. They've announced that they intend to move quickly towards a
full implementation, so by the time you read this, the Microsoft product
may comply fully with the W3C standard: check their web site for the
latest details.

Microsoft has also released a converter to upgrade stylesheets from the old
XSL dialect to the new. However, this isn't the end of the story, because of
course there are millions of copies of IE5 installed that only support the
old version. If you want to develop a web site that delivers XML to the

browser and relies on the browser interpreting its XSLT stylesheet, you've
currently got your work cut out to make sure all your users can handle it.

If you are using Microsoft technology on the server, there is an ISAPI
extension called XSLISAPI that allows you to do the transformation in the
browser where it's supported, and on the server otherwise. Until the
browser situation stabilises, however, server-side transformation of XML
to HTML, driven from ASP pages or from Java servlets, is really the only
practical option for a serious project.

There's more information about products from Microsoft and other
vendors in Chapter 10 – but do be aware that it will become out of date
very rapidly.

XSLT and XML
XSLT is essentially a tool for transforming XML documents. At the start
of this chapter we discussed the reasons why this is important, but now we
need to look a little more precisely at the relationship between the two.
There are two particular aspects of XML that XSLT interacts with very
closely: one is XML Namespaces; the other is the XML Information Set.
These are discussed in the following sections.

XML Namespaces
XSLT is designed on the basis that XML namespaces are an essential part
of the XML standard. So when the XSLT standard refers to an XML
document, it really means an XML document that also conforms to the
XML Namespaces specification, which can be found at
http://www.w3.org/TR/REC-xml-names.

For a full explanation of XML Namespaces, see Chapter 7 of the Wrox Press
book Professional XML.

Namespaces play an important role in XSLT. Their purpose is to allow
you to mix tags from two different vocabularies in the same XML
document. For example, in one vocabulary <table> might mean a two-
dimensional array of data values, while in another vocabulary <table>
refers to a piece of furniture. Here's a quick reminder of how they work:

❑ Namespaces are identified by a Unique Resource Identifier (URI). This can
take a number of forms. One form is the familiar URL, for example

Formatted

http://www.wrox.com/namespace. Another form, not fully standardized but
being used in some XML vocabularies (see for example
http://www.biztalk.org) is a URN, for example urn:java:com.icl.saxon.
The detailed form of the URI doesn't matter, but it is a good idea to choose one
that will be unique. One good way of achieving this is to use the URL of your
own web site. But don't let this confuse you into thinking that there must be
something on the web site for the URL to point to. The namespace URI is
simply a string that you have chosen to be different from other people's
namespace URIs: it doesn't need to point to anything.

❑ Since namespace URIs are often rather long and use special characters such as
«/», they are not used in full as part of the element and attribute names.
Instead, each namespace used in a document can be given a short nickname,
and this nickname is used as a prefix of the element and attribute names. It
doesn't matter what prefix you choose, because the real name of the element or
attribute is determined only by its namespace URI and its local name (the part
of the name after the prefix). For example, all my examples use the prefix xsl to
refer to the namespace URI http://www.w3.org/1999/XSL/Transform, but you
could equally well use the prefix xslt, so long as you use it consistently.

❑ For element names, you can also declare a default namespace URI, which is to
be associated with unprefixed element names. The default namespace URI,
however, does not apply to unprefixed attribute names.

A namespace prefix is declared using a special pseudo-attribute within any
element tag, with the form:

xmlns:prefix = "namespace-URI"

This declares a namespace prefix, which can be used for the name of that
element, for its attributes, and for any element or attribute name contained
in that element. The default namespace, which is used for elements having
no prefix (but not for attributes), is similarly declared using a pseudo-
attribute:

xmlns = "namespace-URI"

XSLT can't be used to process an XML document unless it conforms to
the XML Namespaces recommendation. In practice this isn't a big
problem, because most people are treating XML Namespaces as if it were
an inherent part of the XML standard, rather than a bolt-on optional extra.
It does have certain implications, though. In particular, serious use of
Namespaces is virtually incompatible with serious use of Document Type
Definitions, because DTDs don't recognize the special significance of
prefixes in element names; so a consequence of backing Namespaces is

that XSLT provides very little support for DTDs, choosing instead to wait
until the replacement facility, XML Schemas, eventually emerges.

The XML Information Set
XSLT is designed to work on the information carried by an XML
document, not on the raw document itself. This means that, as an XSLT
programmer, you are given a tree view of the source document in which
some aspects are visible and others are not. For example, you can see the
attribute names and values, but you can't see whether the attribute was
written in single or double quotes, you can't see what order the attributes
were in, and you can't tell whether or not they were written on the same
line.

One messy detail is that there have been many attempts to define exactly
what constitutes the essential information content of a well-formed XML
document, as distinct from its accidental punctuation. All attempts so far
have come up with slightly different answers. The most recent, and the
most definitive, attempt to provide a common vocabulary for the content
of XML documents is the XML Information Set definition, which may
be found at http://www.w3.org/TR/xml-infoset.

Unfortunately this came too late to make all the standards consistent. For
example, some treat comments as significant, others not; some treat the
choice of namespace prefixes as significant, others take them as irrelevant.
I shall describe in Chapter 2 exactly how XSLT (or more accurately,
XPath) defines the Tree Model of XML, and how it differs in finer points
of detail from some of the other definitions such as the Document Object
Model or DOM.

XSL and CSS
Why are there two stylesheet languages, XSL (i.e. XSLT plus XSL
Formatting Objects) as well as Cascading Style Sheets (CSS and CSS2)?

It's only fair to say that in an ideal world there would be a single language
in this role, and that the reason there are two is that no-one has been able
to invent something that achieved the simplicity and economy of CSS for
doing simple things, combined with the power of XSL for doing more
complex things.

CSS (by which I include CSS2, which greatly extends the degree to which
you can control the final appearance of the page) is mainly used for
rendering HTML, but it can also be used for rendering XML directly, by
defining the display characteristics of each XML element. However, it has
serious limitations. It cannot reorder the elements in the source document,
it cannot add text or images, it cannot decide which elements should be
displayed and which omitted, it cannot calculate totals or averages or
sequence numbers. In other words, it can only be used when the structure
of the source document is already very close to the final display form.

Having said this, CSS is simple to write, and it is very economical in
machine resources. It doesn't reorder the document, so it doesn't need to
build a tree representation of the document in memory, and it can start
displaying the document as soon as the first text is received over the
network. Perhaps most important of all, CSS is very simple for HTML
authors to write, without any programming skills. In comparison, XSLT is
far more powerful, but it also consumes a lot more memory and processor
power, as well as training budget.

It's often appropriate to use both tools together. Use XSLT to create a
representation of the document that is close to its final form, in that it
contains the right text in the right order, and then use CSS to add the
finishing touches, by selecting font sizes, colors, and so on. Typically you
would do the XSLT processing on the server, and the CSS processing on
the client (in the browser), so another advantage of this approach is that
you reduce the amount of data sent down the line, which should improve
response time for your users as well as postponing the next expensive
bandwidth increase.

The History of XSL
Like most of the XML family of standards, XSLT was developed by the
World Wide Web Consortium (W3C), a coalition of companies
orchestrated by Tim Berners-Lee, the inventor of the web. There is an
interesting page on the history of XSL, and styling proposals generally, at
http://www.w3.org/Style/History/.

Pre-history
HTML was originally conceived by Berners-Lee as a set of tags to mark
the logical structure of a document: headings, paragraphs, links, quotes,

code sections, and the like. Soon people wanted more control over how the
document looked: they wanted to achieve the same control over the
appearance of the delivered publication as they had with printing and
paper. So HTML acquired more and more tags and attributes to control
presentation: fonts, margins, tables, colors, and all the rest that followed.
As it evolved, the documents being published became more and more
browser-dependent, and it was seen that the original goals of simplicity
and universality were starting to slip away.

The remedy was widely seen as separation of content from presentation.
This was not a new concept; it had been well developed through the 1980s
in the development of Standard Generalized Markup Language
(SGML), whose architecture in turn was influenced by the elaborate (and
never implemented) work done in the ISO Open Document Architecture
(ODA) standards.

Just as XML was derived as a greatly simplified subset of SGML, so
XSLT has its origins in an SGML-based standard called DSSSL
(Document Style Semantics and Specification Language). DSSSL (I
pronounce it Dissel) was developed primarily to fill the need for a standard
device-independent language to define the output rendition of SGML
documents, particularly for high-quality typographical presentation.
SGML was around for a long time before DSSSL appeared in the early
1990s, but until then the output side had been handled using proprietary
and often extremely expensive tools, geared towards driving equally
expensive phototypesetters, so that the technology was only really taken
up by the big publishing houses.

C. M. Sperberg-McQueen and Robert F. Goldstein presented an influential
paper at the WWW '94 conference in Chicago under the title A Manifesto
for Adding SGML Intelligence to the World-Wide Web. You can find it at:

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Autools/sperberg-mcqueen/
 sperberg.html

The authors presented a set of requirements for a stylesheet language,
which is as good a statement as any of the aims that the XSL designers
were trying to meet. As with other proposals from around that time, the
concept of a separate transformation language had not yet appeared, and a
great deal of the paper is devoted to the rendition capabilities of the
language. There are many formative ideas, however, including the concept

of fallback processing to cope with situations where particular features are
not available in the current environment.

It is worth quoting some extracts from the paper here:

Ideally, the style sheet language should be declarative, not procedural, and
should allow style sheets to exploit the structure of SGML documents to the
fullest. Styles must be able to vary with the structural location of the element:
paragraphs within notes may be formatted differently from paragraphs in the
main text. Styles must be able to vary with the attribute values of the element
in question: a quotation of type "display" may need to be formatted differently
from a quotation of type "inline". They may even need to vary with the
attribute values of other elements: items in numbered lists will look different
from items in bulleted lists.

At the same time, the language has to be reasonably easy to interpret in a
procedural way: implementing the style sheet language should not become the
major challenge in implementing a Web client.

The semantics should be additive: It should be possible for users to create new
style sheets by adding new specifications to some existing (possibly standard)
style sheet. This should not require copying the entire base style sheet; instead,
the user should be able to store locally just the user's own changes to the
standard style sheet, and they should be added in at browse time. This is
particularly important to support local modifications of standard DTDs.

Syntactically, the style sheet language must be very simple, preferably trivial
to parse. One obvious possibility: formulate the style sheet language as an
SGML DTD, so that each style sheet will be an SGML document. Since the
browser already knows how to parse SGML, no extra effort will be needed.

We recommend strongly that a subset of DSSSL be used to formulate style
sheets for use on the World Wide Web; with the completion of the standards
work on DSSSL, there is no reason for any community to invent their own
style-sheet language from scratch. The full DSSSL standard may well be too
demanding to implement in its entirety, but even if that proves true, it
provides only an argument for defining a subset of DSSSL that must be
supported, not an argument for rolling our own. Unlike home-brew
specifications, a subset of a standard comes with an automatically predefined
growth path. We expect to work on the formulation of a usable, implementable
subset of DSSSL for use in WWW style sheets, and invite all interested
parties to join in the effort.

In late 1995 a W3C-sponsored workshop on stylesheet languages was held
in Paris. In view of the subsequent role of James Clark as editor of the
XSLT Recommendation, it is interesting to read the notes of his
contribution on the goals of DSSSL, which can be found at
http://www.w3.org/Style/951106_Workshop/report1.html#clark

What follows is a few selected paragraphs from these notes:

DSSSL contains both a transformation language and a formatting
language. Originally the transformation was needed to make
certain kinds of styles possible (such as tables of contents). The
query language now takes care of that, but the transformation
language survives because it is useful in its own right.

Both simple and complex designs should be possible, and the styles
should be suitable for batch formatting as well as interactive
applications. Existing systems should be able to support DSSSL
with only minimal changes (a DSSSL parser is obviously needed.)

The language is strictly declarative, which is achieved by adopting
a functional subset of Scheme. Interactive style sheet editors must
be possible.

A DSSSL style sheet very precisely describes a function from
SGML to a flow object tree. It allows partial style sheets to be
combined ('cascaded' as in CSS): some rule may override some
other rule, based on implicit and explicit priorities, but there is no
blending between conflicting styles.

James Clark closed his talk with the remark:

Creating a good, extensible style language is hard!

One suspects that the effort of editing the XSLT Recommendation didn't
cause him to change his mind.

The First XSL Proposal
Following these early discussions, the W3C set up a formal activity to
create a stylesheet language proposal. The remit for this group specified
that it should be based on DSSSL.

As an output of this activity came the first formal proposal for XSL, dated
21 August 1997. It can be found at http://www.w3.org/TR/NOTE-XSL.html

There are eleven authors listed. They include five from Microsoft, three
from Inso Corporation, plus Paul Grosso of ArborText, James Clark (who
works for himself), and Henry Thompson of the University of Edinburgh.

The section describing the purpose of the language is worth reading:

XSL is a stylesheet language designed for the Web community. It provides
functionality beyond CSS (e.g. element reordering). We expect that CSS will
be used to display simply-structured XML documents and XSL will be used
where more powerful formatting capabilities are required or for formatting
highly structured information such as XML structured data or XML
documents that contain structured data.

Web authors create content at three different levels of sophistication:

❑ markup: relies solely on a declarative syntax

❑ script: additionally uses code “snippets” for more complex behaviors

❑ program: uses a full programming language

XSL is intended to be accessible to the “markup” level user by providing a
declarative solution to most data description and rendering requirements. Less
common tasks are accommodated through a graceful escape to a familiar
scripting environment. This approach is familiar to the Web publishing
community as it is modeled after the HTML/JavaScript environment.

The powerful capabilities provided by XSL allow:

❑ formatting of source elements based on ancestry/descendency, position, and

uniqueness

❑ the creation of formatting constructs including generated text and graphics

❑ the definition of reusable formatting macros

❑ writing-direction independent stylesheets

❑ extensible set of formatting objects

The authors then explained carefully why they had felt it necessary to
diverge from DSSSL, and described why a separate language from CSS
(Cascading Style Sheets) was thought necessary.

They then stated some design principles:

Comment: Can we
between the blocks o

❑ XSL should be straightforwardly usable over the Internet.

❑ XSL should be expressed in XML syntax.

❑ XSL should provide a declarative language to do all common formatting tasks.

❑ XSL should provide an “escape” into a scripting language to accommodate more
sophisticated formatting tasks and to allow for extensibility and completeness.

❑ XSL will be a subset of DSSSL with the proposed amendment. (As XSL was no longer
a subset of DSSSL, they cannily proposed amending DSSSL so it would become a
superset of XSL).

❑ A mechanical mapping of a CSS stylesheet into an XSL stylesheet should be possible.

❑ XSL should be informed by user experience with the FOSI stylesheet language.

❑ The number of optional features in XSL should be kept to a minimum.

❑ XSL stylesheets should be human-legible and reasonably clear.

❑ The XSL design should be prepared quickly.

❑ XSL stylesheets shall be easy to create.

❑ Terseness in XSL markup is of minimal importance.

As a requirements statement, this doesn't rank among the best. It doesn't
read like the kind of list you get when you talk to users and find out what
they need. It's much more the kind of list designers write when they know
what they want to produce, including a few political concessions to the
people who might raise objections. But if you want to understand why
XSLT became the language it did, this list is certainly evidence of the
thinking.

The language described in this first proposal contains many of the key
concepts of XSLT as it finally emerged, but the syntax is virtually
unrecognizable. It was already clear that the language should be based on
templates that handled nodes in the source document matching a defined
pattern, and that the language should be free of side-effects, to allow
"progressive rendering and handling of large documents". I'll explore the
significance of this requirement in more detail on page 31, and discuss its
implications on the way stylesheets are designed in Chapter 8. The basic
idea is that if a stylesheet is expressed as a collection of completely
independent operations, each of which has no external effect other than
generating part of the output from its input (for example, it cannot update
global variables), then it becomes possible to generate any part of the
output independently if that particular part of the input changes. Whether

the XSLT language actually achieves this objective is still an open
question.

Microsoft shipped their first technology preview four months after this
proposal appeared, in January 1998.

To enable W3C to make an assessment of the proposal, Norman Walsh
produced a requirements summary, which was published in May 1998. It
is available at http://www.w3.org/TR/WD-XSLReq.

The bulk of his paper is given over to a long list of the typographical
features that the language should support, following the tradition both
before and since that the formatting side of the language gets a lot more
column inches than the transformation side. But as XSLT fans that need
not worry us: the success of standards has always been inversely
proportional to their length.

What Walsh has to say on the transformation aspects of the language is
particularly terse, and although he clearly had reasons for thinking these
features were necessary, it's a shame that he doesn't tell us why he put
these in and left others, such as sorting, grouping, and totaling, out:

Ancestors, children, siblings, attributes, content, disjunctions, negation,
enumerations, computed select based upon arbitrary query expressions.

Arithmetic Expressions; arithmetic, simple boolean comparisons, boolean
logic, substrings, string concatenation.

Data Types: Scalar types, units of measure, Flow Objects, XML Objects

Side effects: No global side effects.

Standard Procedures: The expression language should have a set of procedures
that are built in to the XSL language. These are still to be identified.

User Defined Functions: For reuse. Parameterized, but not recursive.

Following this activity, the first Working Draft of XSL (not to be confused
with the Proposal) was published on 18 August 1998, and the language

Comment: Can we
here?

started to take shape, gradually converging on the final form it took in the
16 November 1999 Recommendation through a series of Working Drafts,
each of which made radical changes, but kept the original design
principles intact.

So let's look now at what the essential characteristics of XSLT as a
language are.

XSLT as a Language
What are the most significant characteristics of XSLT as a language,
which distinguish it from other languages? In this section I shall pick three
of the most striking features: the fact that it is written in XML syntax, the
fact that it is a language free of side-effects, and the fact that processing is
described as a set of independent pattern-matching rules.

Use of XML Syntax
As we've seen, the use of SGML syntax for stylesheets was proposed as
long ago as 1994, and it seems that this idea gradually became the
accepted wisdom. It's difficult to trace exactly what the overriding
arguments were, and when you find yourself writing something like:

<xsl:variable name="y">

 <xsl:call-template name="f">

 <xsl:with-param name="x"/>

 </xsl:call-template>

</xsl:variable>

to express what in other languages would be written as « y = f(x); », then
you may find yourself wondering how such a decision came to be made.

In fact, it could have been worse: in the very early drafts, the syntax for
writing what are now XPath expressions was also expressed in XML, so
instead of writing select="book/author/first-name" you had to write
something along the lines of:

<select>

 <path>

 <element type="book">

 <element type="author">

 <element type="first-name">

 </path>

</select>

The most obvious arguments for expressing XSLT stylesheets in XML are
perhaps:

❑ There is already an XML parser in the browser so it keeps the footprint small if
this can be re-used.

❑ Everyone had got fed up with the syntactic inconsistencies between
HTML/XML and CSS, and didn't want the same thing to happen again.

❑ The syntax of DSSSL was widely seen as a barrier to its adoption; better to
have a syntax that was already familiar in the target community.

❑ Many existing popular templating languages are expressed as an outline of the
output document with embedded instructions, so this is a familiar concept.

❑ All the lexical apparatus is reusable, for example Unicode support, character
and entity references, whitespace handling, namespaces.

❑ It's occasionally useful to have a stylesheet as the input or output of a
transformation (witness the Microsoft XSL converter as an example), so it's a
benefit if a stylesheet can read and write other stylesheets.

❑ Providing visual development tools easily solves the inconvenience of having
to type lots of angle brackets.

Like it or not, the XML-based syntax is now an intrinsic feature of the
language that has both benefits and drawbacks. It does require a lot of
typing: but in the end, the number of keystrokes has very little bearing on
the ease or difficulty of solving particular transformation problems.

No Side-effects
The idea that XSL should be a declarative language free of side-effects
appears repeatedly in the early statements about the goals and design
principles of the language, but no-one ever seems to explain why: what
would be the user benefit?

A function or procedure in a programming language is said to have side-
effects if it makes changes to its environment, for example if it can update
a global variable that another function or procedure can read, it can write
messages to a log file, or prompt the user. If functions have side-effects, it
becomes important to call them the right number of times and in the
correct order. Functions that have no side-effects (sometimes called pure
functions) can be called any number of times and in any order. It doesn't
matter how many times you evaluate the area of a triangle, you will always
get the same answer; but if the function to calculate the area has a side-

effect such as changing the size of the triangle, or if you don't know
whether it has side-effects or not, then it becomes important to call it once
only.

I expand on this concept in the section on Computational Stylesheets in
Chapter 8, page Error! Cannot open file..

It is possible to find hints at the reason why this was considered desirable
in the statements that the language should be equally suitable for batch or
interactive use, and that it should be capable of progressive rendering.
There is a concern that when you download a large XML document, you
won't be able to see anything on your screen until the last byte has been
received from the server. Equally, if a small change were made to the
XML document, it would be nice to be able to determine the change
needed to the screen display, without recalculating the whole thing from
scratch. If a language has side effects then the order of execution of the
statements in the language has to be defined, or the final result becomes
unpredictable. Without side-effects, the statements can be executed in any
order, which means it is possible, in principle, to process the parts of a
stylesheet selectively and independently.

Whether XSLT has actually achieved these goals is somewhat debatable.
Certainly, determining which parts of the output document are affected by
a small change to one part of the input document is not easy, given the
flexibility of the expressions and patterns that are now permitted in the
language. Equally, all existing XSLT processors require the whole
document to be loaded into memory. However, it would be a mistake to
expect too much too soon. When E. F. Codd published the relational
calculus in 1970, he made the claim that a declarative language was
desirable because it was possible to optimize it, which was not possible
with the navigational data access languages in use at the time. In fact it
took another fifteen years before relational optimization techniques (and,
to be fair, the price of hardware) reached the point where large relational
databases were commercially viable. But in the end he was proved right,
and the hope is that the same principle will also eventually deliver similar
benefits in the area of transformation and styling languages.

What being side-effect free means in practice is that you cannot update the
value of a variable. This restriction is something you may find very
frustrating at first, and a big price to pay for these rather remote benefits.

But as you get the feel of the language and learn to think about using it the
way it was designed to be used, rather than the way you are familiar with
from other languages, you will find you stop thinking about this as a
restriction. In fact, one of the benefits is that it eliminates a whole class of
bugs from your code! I shall come back to this subject in Chapter 8, where
I outline some of the common design patterns for XSLT stylesheets, and in
particular, describe how to use recursive code to handle situations where
in the past you would probably have used updateable variables to keep
track of the current state.

Rule-based
The dominant feature of a typical XSLT stylesheet is that it consists of a
sequence of template rules, each of which describes how a particular
element type or other construct should be processed. The rules are not
arranged in any particular order; they don't have to match the order of the
input or the order of the output, and in fact there are very few clues as to
what ordering or nesting of elements the stylesheet author expects to
encounter in the source document. It is this that makes XSLT a declarative
language: you say what output should be produced when particular
patterns occur in the input, as distinct from a procedural program where
you have to say what tasks to perform in what order.

This rule-based structure is very like CSS, but with the major difference
that both the patterns (the description of which nodes a rule applies to) and
the actions (the description of what happens when the rule is matched) are
much richer in functionality.

Example: Displaying a Poem

Let's see how we can use the rule-based approach to format a poem.
Again, we haven't introduced all the concepts yet, so I won't try to
explain every detail of how this works, but it's useful to see what the
template rules actually look like in practice.

Input

Let's take this XML source as our poem. The source file can be found
on the web site for this book at http://www.wrox.com, under the name
poem.xml, and the stylesheet is there as poem.xsl.

<poem>

 <author>Rupert Brooke</author>

 <date>1912</date>

 <title>Song</title>

 <stanza>

 <line>And suddenly the wind comes soft,</line>

 <line>And Spring is here again;</line>

 <line>And the hawthorn quickens with buds of green</line>

 <line>And my heart with buds of pain.</line>

 </stanza>

 <stanza>

 <line>My heart all Winter lay so numb,</line>

 <line>The earth so dead and frore,</line>

 <line>That I never thought the Spring would come again</line>

 <line>Or my heart wake any more.</line>

 </stanza>

 <stanza>

 <line>But Winter's broken and earth has woken,</line>

 <line>And the small birds cry again;</line>

 <line>And the hawthorn hedge puts forth its buds,</line>

 <line>And my heart puts forth its pain.</line>

 </stanza>

</poem>

Output

We'll write a stylesheet such that this document appears in the
browser as shown below:

Stylesheet

It starts with the standard header:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

Now we'll write one template rule for each element type in the source
document. The rule for the <poem> element creates the skeleton of the
HTML output, defining the ordering of the elements in the output
(which doesn't have to be the same as the input order). The
<xsl:value-of> instruction inserts the value of the selected element at
this point in the output. The <xsl:apply-templates>instructions cause
the selected child elements to be processed, each using its own
template rule.

<xsl:template match="poem">

 <html>

 <head>

 <title><xsl:value-of select="title"/></title>

 </head>

 <body>

 <xsl:apply-templates select="title"/>

 <xsl:apply-templates select="author"/>

 <xsl:apply-templates select="stanza"/>

 <xsl:apply-templates select="date"/>

 </body>

 </html>

</xsl:template>

The template rules for the <title>, <author>, and <date> elements are
very simple: they take the content of the element (denoted by
«select="."»), and surround it within appropriate HTML tags to define
its display style:

<xsl:template match="title">

 <div align="center"><h1><xsl:value-of select="."/></h1></div>

</xsl:template>

<xsl:template match="author">

 <div align="center"><h2>By <xsl:value-of select="."/></h2></div>

</xsl:template>

<xsl:template match="date">

 <p><i><xsl:value-of select="."/></i></p>

</xsl:template>

The template rule for the <stanza> element puts each stanza into an
HTML paragraph, and then invokes processing of the lines within the
stanza, as defined by the template rule for lines:

<xsl:template match="stanza">

 <p><xsl:apply-templates select="line"/></p>

</xsl:template>

The rule for <line> elements is a little more complex: if the position
of the line within the stanza is an even number, it precedes the line
with two non-breaking-space characters (). The <xsl:if>
instruction tests a boolean condition, which in this case calls the
position() function to determine the relative position of the current
line. It then outputs the contents of the line, followed by an empty
HTML
 element to end the line.

<xsl:template match="line">

 <xsl:if test="position() mod 2 = 0"> </xsl:if>

 <xsl:value-of select="."/>

</xsl:template>

And to finish off, we close the <xsl:stylesheet> element:

</xsl:stylesheet>

Although template rules are a characteristic feature of the XSLT language,
we'll see that this is not the only way of writing a stylesheet. In Chapter 8 I
will describe four different design patterns for XSLT stylesheets, only one
of which makes extensive use of template rules. In fact, the Hello World
stylesheet I presented earlier in this chapter doesn't make any real use of
template rules: it fits into the design pattern I call fill-in-the-blanks,
because the stylesheet essentially contains the fixed part of the output with
embedded instructions saying where to get the data to put in the variable
parts.

Where to use XSLT
In this final section of this chapter I shall try and identify what tasks XSLT
is good at, and by implication, tasks for which a different tool would be
more suitable. I shall also look at alternative ways of using XSLT within
the overall architecture of your application.

Broadly speaking, as I discussed at the beginning of the chapter, there are
two main scenarios for using XSLT transformations: data conversion, and
publishing; and we'll consider each of them separately.

Data Conversion Applications
Data conversion is not something that will go away just because XML has
been invented. Even though an increasing number of data transfers
between organizations or between applications within an organization are
likely to be encoded in XML, there will still be different data models,
different ways of representing the same thing, and different subsets of
information that are of interest to different people (recall the example at
the beginning of the chapter, where we were converting music between
different XML representations and different presentation formats). So
however enthusiastic we are about XML, the reality is that there are going

Formatted

to be a lot of comma-separated-values files, EDI messages, and any
number of other formats in use for a long time to come.

When you have the task of converting one XML data set into another
XML data set, then XSLT is an obvious choice.

XML
Schema A

XML
Schema B

It can be used for extracting the data selectively, reordering it, turning
attributes into elements or vice versa, or any number of similar tasks. It
can also be used simply for validating the data. As a language, XSLT is
best at manipulating the structure of the information as distinct from its
content: it's a good language for turning rows into columns, but for string
handling (for example removing any text that appears between square
brackets) it's rather laborious compared with a language like Perl.
However, you can always tackle these problems by invoking procedures
written in other languages, such as Java or Javascript, from within the
stylesheet.

XSLT is also useful for converting XML data into any text-based format,
such as comma-separated values, or various EDI message formats. Text
output is really just like XML output without the tags, so this creates no
particular problems for the language.

XML ANYTHING

Perhaps more surprising is that XSLT can often be useful to convert from
non-XML formats into XML or something else:

ANYTHING XML

In this case you'll need to write some kind of parser that understands the
input format; but you would have had to do that anyway. The benefit is
that once you've written the parser, the rest of the data conversion can be
expressed in a high-level language. This separation also increases the
chances that you'll be able to reuse your parser next time you need to
handle that particular input format. I'll show you an example in Chapter 9,
page Error! Cannot open file., where the input is a rather old-fashioned
and distinctly non-XML format widely used for exchanging data between
genealogy software packages. It turns out that it isn't even necessary to
write the data out as XML before using the XSLT stylesheet to process it:
all you need to do is to make your parser look like an XML parser, by
making it implement one of the standard parser interfaces: SAX or DOM.
Most XSLT processors will accept input from a program that implements
the SAX or DOM interfaces, even if the data never saw the light of day as
XML.

One caveat about data conversion applications: today's XSLT processors
all rely on holding all the data in memory while the transformation is
taking place. The tree structure in memory can be as much as ten times the
original data size, so in practice, the limit on data size for an XSLT
conversion is a few megabytes. Even at this size, a complex conversion
can be quite time-consuming: it depends very much on the processing that
you actually want to do.

One way around this is to split the data into chunks and convert each
chunk separately – assuming, of course, that there is some kind of
correspondence between chunks of input and chunks of output. But when
this starts to get complicated, there comes a point where XSLT is no
longer the best tool for the job. You might be better off, for example,
loading the data into a relational or object database, and using the database
query language to extract it again in a different sequence.

If you need to process large amounts of data serially, for example
extracting selected records from a log of retail transactions, then an
application written using the SAX interface might take a little longer to
write than the equivalent XSLT stylesheet, but it is likely to run many
times faster. Very often the combination of a SAX filter application to do
simple data extraction, followed by an XSLT stylesheet to do more
complex manipulation, can be the best solution in such cases.

Publishing
The difference between data conversion and publishing is that in the
former case, the data is destined for input to another piece of software,
while in the latter case it is destined to be read (you hope) by human
beings. Publishing in this context doesn't just mean lavish text and
multimedia, it also means data: everything from the traditional activity of
producing and distributing reports so that managers know what's going on
in the business, to producing online phone bills and bank statements for
customers, and rail timetables for the general public. XML is ideal for
such data publishing applications, as well as the more traditional text
publishing, which was the original home territory of SGML.

XML was designed to enable information to be held independently of the
way it is presented, which sometimes leads people into the fallacy of
thinking that using XML for presentation details is somehow bad. Far
from it: if you were designing a new format for downloading fonts to a
printer today, you would probably make it XML-based. Presentation
details have just as much right to be encoded in XML as any other kind of
information. So we can see the role of XSLT in the publishing process as
being converting data-without-presentation to data-with-presentation,
where both are, at least in principle, XML formats.

The two important vehicles for publishing information today are print-on-
paper, and the web. The print-on-paper scene is the more difficult one,
because of the high expectations of users for visual quality. XSL
Formatting Objects attempts to define an XML-based model of a print file
for high quality display on paper or on screen. Because of the sheer
number of parameters needed to achieve this, the standard is taking a
while to complete, and will probably take even longer to implement. But
the web is a less demanding environment, where all we need to do is
convert the data to HTML and leave the browser to do the best it can on
the display available. HTML, of course, is not XML, but it is close enough

so that a simple mapping is possible. Converting XML to HTML is the
most common application for XSLT today. It's actually a two-stage
process: first convert to an XML-based model that is structurally
equivalent to the target HTML, and then serialize this in HTML notation
rather than strict XML.

The emergence of XHTML 1.0 of course tidies up this process even
further, because it is a pure XML format, but how quick the take-up of
XHTML will be remains to be seen.

When to do the Conversion?
The process of publishing information to a user is illustrated in the
diagram below:

Data loading
application

Upload Other systems

Display

Data feeds

Download

Readers

Authors Content
Store

There are several points in such a system where XSLT transformations
might be appropriate:

❑ Information entered by authors using their preferred tools, or customized
form-filling interfaces, can be converted to XML and stored in that form in the
content store.

❑ XML information arriving from other systems might be transformed into a
different flavor of XML for storage in the content store. For example, it might
be broken up into page-size chunks.

❑ XML can be translated into HTML on the server, when the users request a
page. This can be controlled using technology such as Java servlets or Java
Server Pages. On a Microsoft server you can use the XSL ISAPI extension
available from http://msdn.microsoft.com/xml, or if you want more application
control, you can invoke the transformation from script on ASP pages.

❑ XML can be sent down to the client system, and translated into HTML within
the browser. This can give a highly interactive presentation of the information,
but it relies on all the users having a browser that can do the job.

❑ XML data can also be converted into its final display form at publishing time,
and stored as HTML within the content store. This minimizes the work that
needs to be done at display time, and is ideal when the same displayed page is
presented to very many users.

There isn't one right answer, and often a combination of techniques may
be appropriate. Conversion in the browser is an attractive option once
XSLT becomes widely available within browsers, but that is still some
way off. Even when this is done, there may still be a need for some server-
side processing to deliver the XML in manageable chunks, and to protect
secure information. Conversion at delivery time on the server is a popular
choice, because it allows personalization, but it can be a heavy overhead
for sites with high traffic. Some busy sites have found that it is more
effective to generate a different set of HTML pages for each section of the
target audience in advance, and at page request time, to do nothing more
than selecting the right pre-constructed HTML page.

Summary
This introductory chapter described the whys and wherefores of XSLT: it
tried to answer questions such as:

❑ What kind of language is it?

❑ Where does it fit into the XML family?

❑ Where does it come from and why was it designed the way it is?

❑ Where should it be used?

You now know that XSLT is a declarative high-level language designed
for transforming the structure of XML documents; that it has two major
applications: data conversion and presentation; and that it can be used at a

number of different points in the overall application architecture, including
at data capture time, at delivery time on the server, and at display time on
the browser. You also have some idea why XSLT has developed in the
way it has.

Now it's time to start taking an in-depth look inside the language to see
how it does this job. In the next chapter we'll look at the way
transformation is carried out by treating the input and output as tree
structures, and using patterns to match particular nodes in the input tree
and define the what nodes should be added to the result tree when the
pattern is matched.

2
The XSLT Processing Model

In this chapter we'll take a bird's eye view of what an XSLT processor does. We'll start
by looking at a system overview: what are the inputs and outputs of the processor.

Then we'll look in some detail at the data model, in particular the structure of the tree
representation of XML documents. An important message here is that XSLT
transformations do not operate on XML documents as text, they operate on the
abstract tree-like information structure represented by the text.

Having established the data model, I'll describe the processing sequence that occurs
when a source document and a stylesheet are brought together. XSLT is not a
conventional procedural language: it consists of a collection of template rules defining
output that is produced when particular patterns are matched in the input. As seen in
Chapter 1, this rule-based processing structure is one of the distinguishing features of
the XSLT language.

Finally, we'll look at the way in which variables and expressions can be used in an
XSLT stylesheet, and also look at the various data types available.

XSLT: A System Overview
This section looks at the structure of the process performed by XSLT.

A Simplified Overview
The core task of an XSLT processor is to apply a stylesheet to a source document and
produce a result document. This is shown in the simplified diagram below:

Source
Document

Result
Documen

Style
sheet

Transformation
Process

As a first approximation we can think of the source document, the stylesheet, and the
result document as each being an XML document. XSLT performs a transformation
process because the output (the result document) is the same kind of object as the input
(the source document). This has immediate benefits: for example, it is possible to do a
complex transformation as a series of simple transformations, and it is possible to do
transformations in either direction using the same technology.

The choice of Rubik's cube to illustrate the transformation process is not
entirely whimsical. The mathematics of Rubik's cube relies on group theory,
which is where the notion of closure comes from: every operation transforms
one instance of a type into another instance of the same type. We're
transforming XML documents rather than cubes, but the principle is the
same.

The name stylesheet has stuck for the document that defines the transformation, even
though purists prefer to call it a transformation sheet. The name reflects the reality that
a very common kind of transformation performed using XSLT is to define a display
style for the information in the source document, so that the result document contains
information from the source document augmented with information controlling the
way it is displayed on some output device.

Trees, not Documents
In practice though, we don't always want the input or output to be XML in its textual
form. If we want to produce HTML output (a very common requirement) we want to
produce it directly, rather than having an XML document as an intermediate form.
Similarly, we might want to take input from a database or (say) an LDAP directory, or
an EDI message, or a data file using comma-separated values syntax. We don't want to
spend a lot of time converting these into XML documents if we can avoid it, nor do we
want another raft of converters to install.

So instead, XSLT defines its operations in terms of a representation of an XML
document called the tree. The tree is an abstract data type. There is no defined API and
no defined data representation, only a conceptual model that defines the objects in the
tree, their properties and their relationships. The tree is similar in concept to the W3C

DOM, except that the DOM does have a defined API. Some implementors do indeed
use the DOM as their internal tree structure. Others use a data structure that
corresponds more closely to the XPath tree model, while some are experimenting with
internal data structures that are only distantly related to this model: it's a conceptual
model we are describing, not something that necessarily exists in an implementation.

Taking the inputs and output of the XSLT processors as trees produces a new diagram,
as shown below:

Source
Document

Result
Document

Transformation
Process

Source
Tree

Result
Tree

Stylesheet
Tree

Style
sheet

The formal conformance rules say that an XSLT processor must be able to read a
stylesheet and use it to transform a source tree into a result tree. This is the part of the
system shown in the oval box. There's no official requirement to handle the parts of the
process shown outside the box, namely the creation of a source tree from a source
XML document, or the creation of a result XML document from the result tree. In
practice, though, most real products are likely to handle this part as well.

Later in this chapter we will examine the data model for the trees in more detail, and
see how it relates to the structure of the XML documents.

Different Output Formats
Although the final process of converting the result tree to an output document is
outside the conformance rules of the XSLT standard, this doesn't mean that XSLT has
nothing to say on the subject. In fact, there is a substantial section of the specification
devoted to the subject, and although everything it says is non-binding, most
implementations have followed it very closely. The main control over this process is

the <xsl:output> element, which is described in detail in Chapter 4, page Error!
Cannot open file..

The <xsl:output> element defines three output formats or methods, namely xml,
html, and text. In each case the result tree is written to a single output file.

❑ With the xml output method, the output file is an XML document. We'll see
later that it need not be a complete XML document; it can also be an XML
fragment. The <xsl:output> element allows the stylesheet writer some
control over the way in which the XML is written, for example the character
encoding used, and the use of CDATA sections.

❑ With the html output method, the output file is an HTML document, typically
HTML 4.0, though products may support other versions if they wish. With
HTML output, the XSLT processor will recognize many of the conventions of
HTML and structure the output accordingly. For example it will recognize
elements such as <hr> that have a start tag and no end tag, as well as the
special rules for escape characters within a <script> element. It may also (if it
chooses) generate references to built-in entities such as «é».

❑ The text output method is designed to allow output in any other text-based
format. For example, the output might be a comma-separated-values file, a
document in Microsoft's Rich Text Format (RTF) or in Adobe's Portable
Document Format (PDF), or it might be an electronic data interchange
message, or a script in SQL or JavaScript. It's entirely up to you.

There is no explicit provision for XHTML output, but since XHTML is pure XML, it
can be written using the XML method in the same way as any other XML document
type.

If the <xsl:output> element is omitted, the processor makes an intelligent guess,
choosing HTML if the output starts with an <html> tag, and XML otherwise.

Implementations may include output methods other than these three, but this is
outside the scope of the standard. One mechanism provided by several products is to
feed the result tree to a user-supplied document handler. This will generally be written
to conform to the DocumentHandler interface defined as part of the SAX API
specification available at http://www.megginson.com/, or in the Wrox publication
Professional XML, ISBN 1-861003-11-0. Some products are starting to support the new
version of this standard, SAX2, which can also be found at this link.

So, while the bulk of the XSLT Recommendation describes the transformation process
from a source tree to a result tree, there is one section (specifically, section 16, Output)
that describes another process, the output process. This is sometimes referred to as
serialization, because it turns a tree structure into a serial file. XSLT processors can
implement this at their discretion, and it fits into our diagram as shown below:

Source
Document XML

Transformation
Process

Source
Tree

Result
Tree

Style
sheet

Text

HTML

Output process

Stylesheet
Tree

Multiple Inputs and Outputs
In real life the processing model is further complicated because there can be multiple
inputs and outputs.

Specifically:

❑ There can be multiple input documents. The stylesheet can use the
document() function (described in Chapter 7, page Error! Cannot open file.)
to load secondary input documents, based on URI references held in the
source document or the stylesheet. Each input document is processed as a tree
in its own right, in exactly the same way as the principal input document.

❑ The stylesheet too can consist of multiple documents. There are two directives
that can be used in the stylesheet, <xsl:include> and <xsl:import>, to load
additional stylesheet modules and use them as extensions of the first. Splitting
a stylesheet in this way allows modularity: in a complex environment different
aspects of processing can be described in component stylesheets that can be
incorporated into several different parent stylesheets. There is a detailed
discussion of how to split a stylesheet into modules in Chapter 3.

❑ Several XSLT implementations also allow a single run of the XSLT processor to
produce multiple output documents. This allows a single source document to
be split into several output files: for example, the input might contain the text
of an entire book, while the output contains one HTML file for each chapter,
all connected using suitable hyperlinks. However, this capability is not present
in the current version of the XSLT standard, and it is provided in different

ways in different products. For details, see Chapter 10.

The Tree Model
Let's now look at the tree model used in XSLT in a little more detail. Actually this
model is described partly in the XPath standard, and partly in XSLT itself: we'll
combine the two to make things simpler.

The XSLT tree model is similar in many ways to the XML Document Object Model
(DOM). However, there are a number of differences of terminology and some subtle
differences of detail. I'll point some of these out as we go along.

XML as a Tree
At a simple level, the equivalence of the textual representation of an XML document
with a tree representation is very straightforward.

Example: An XML Tree

Consider a document like this:

<definition>

 <word>export</word>

 <part-of-speech>vt</part-of-speech>

 <meaning>Send out (goods) to another country.</meaning>

 <etymology>

 <language>Latin</language>

 <parts>

 <part>

 <prefix>ex</prefix>

 <meaning>out</meaning>

 </part>

 <part>

 <word>portare</word>

 <meaning>to carry</meaning>

 </part>

 </parts>

 </etymology>

</definition>

We can consider each piece of text as a leaf node, and each element as a containing
node, and build an equivalent tree structure, which looks like the diagram below. I've
shown the tree after the stripping of all whitespace nodes: for discussion of this process,
see Chapter 3, page Error! Cannot open file.. In this diagram each node is shown with
potentially three pieces of information: in the top cell, the type of node, in the middle
cell, the name of the node, and in the bottom one, its string-value. For the root node and
for elements, I have shown the string-value simply as an asterisk: in fact, the string-
value of these nodes is defined to be the concatenation of the string-values of all the
element and text nodes at the next level of the tree.

root

*

element
meaning

*

element
etymology

*

text

out (of)

element
parts

*

element
definition

*

element
part-of-speech

*

text

vt

element
meaning

*

text

Send out
(goods) to
 another
country

element
language

*

text

Latin

element
part

*

element
part

*

element
prefix

*

text

ex

element
meaning

*

text

to carry

element
word

*

text

portare

element
word

*

text

export

It is easy to see how other aspects of the XML document, for example attributes and
processing instructions, can be similarly represented in this tree view by means of
additional kinds of node.

At the top of every tree there is a root node. This performs the same function as the
Document node in the DOM model: it doesn't correspond to any particular part of the
source document, but you can regard it as representing the document as a whole. The
children of the root node are the top level elements, comments, processing instructions
and so on.

The XSLT tree model can represent every well-formed XML document, but it can also
represent structures that are not well-formed according to the XML definition.
Specifically, in well-formed XML, there must be a single outermost element containing
all the other elements and text nodes; this element (the XML specification calls it the
document element, though XSLT does not use this term) can be preceded and followed
by comments and processing instructions, but cannot be preceded by other elements
or text nodes.

The XSLT tree model does not enforce this constraint: the root can have any children
that an element might have, including multiple elements and text nodes in any order.
The root might also have no children at all. This corresponds to the XML rules for the

content of an external general parsed entity, which is a freestanding fragment of XML
that can be incorporated into a well-formed document by means of an entity reference.
I shall sometimes use the term well-balanced to refer to such an entity: this term is not
used in the XSLT specification, rather I have borrowed it from the XML fragment
interchange proposal (http://www.w3.org/TR/WD-xml-fragment). The essential feature
of a well-balanced XML fragment is that every element start tag is balanced by a
correponding element end tag.

Example: Well-balanced XML Fragment

Here is an example of an XML fragment that is well-balanced but not well-
formed, as there is no enclosing element:

The <noun>cat</noun> <verb>sat</verb> on the <noun>mat</noun>.

And here is the corresponding XPath tree. In this case it is important to retain
whitespace, so spaces are shown using the symbol ♦:

root

*

text

♦

element
noun

*

text

cat

text

The ♦

text

♦ on the ♦

element
verb

*

text

sat

text

.

element
noun

*

text

mat

The string-value of the root node in this example is simply «The cat sat on the
mat.».

Nodes in the Tree Model
An XPath tree is made up of nodes. There are seven types of node. The different types
of node correspond fairly directly to the components of the source XML document:

Node Type Description

Root node The root node is a singular node; there is one for each
document. The root node in the XSLT model performs the
same function as the document node in the DOM model. Do
not confuse the root with the document element, which in a
well-formed document is the outermost element that contains

all others.
Element node An element is the part of a document bounded by start and

end tags, or represented by a single empty-element tag such as
<TAG/>

Text node A text node is a sequence of consecutive characters in a PCDATA
part of an element. Text nodes are always made as big as
possible: there will never be two adjacent text nodes in the
tree, because they will have been merged together. In DOM
terminology, the text nodes are normalized.

Attribute node An attribute node includes the name and value of an attribute
written within an element start tag (or empty element tag). An
attribute that was not present in the tag, but which has a
default value defined in the DTD, is also represented as an
attribute node on each separate element instance. A
namespace declaration (an attribute whose name is xmlns or
whose name begins with xmlns:) is, however, not represented
by an attribute node in the tree.

Comment node A comment node represents a comment written in the XML
source document between the delimiters «<!--» and «-->».

Processing
instruction node

A processing instruction node represents a processing
instruction written in the XML source document between the
delimiters «<?» and «?>». The PITarget from the XML source is
taken as the node's name and the rest of the content as its
value. Note that the XML declaration <?xml
version="1.0"?> is not a processing instruction, even though
it looks like one, and it is not represented by a node in the tree.

Namespace node A namespace node represents a namespace declaration, except
that it is copied to each element that it applies to. So each
element node has one namespace node for every namespace
declaration that is in scope for the element. The namespace
nodes belonging to one element are distinct from those
belonging to another element, even when they are derived
from the same namespace declaration in the source document.

There are several possible ways of classifying these nodes. We could distinguish those
that can have children (elements and the root), those that have a parent (everything
except the root), those that have a name (elements, attributes, namespaces, and
processing instructions) or those that have their own textual content (attributes, text,
comments, processing instructions, and namespace nodes). Since each of these criteria
gives a different possible class hierarchy, the XSLT tree model instead leaves the
hierarchy completely flat, and defines all these characteristics for all nodes, using null
or empty values for nodes where the characteristic isn't applicable. So if we show the
class hierarchy in UML notation (Unified Modeling Language, a set of diagrammatic
conventions for object-oriented analysis and design: see for example
http://www.rational.com/), we get the simple diagram below:

Node

Root Element Attribute

Text Comment
Processing
Instruction

Namespace

This diagram looks superficially similar to the tree we saw earlier, but this time I'm not
showing a specific tree, I'm showing a class hierarchy: the boxes represent classes or
types, and the arrow represents an "is-a-kind-of" relationship: for example a comment
is-a-kind-of node. The earlier diagram was just one example of a particular tree,
whereas now we are considering the structure of all possible trees.

I've already hinted at some of the properties and relationships of these nodes. Let's list
the properties and relationships in more detail, and then add them to the diagram.

Property/Relationship Description

name A node has a name.

For the root node, comments, and text nodes this is the
empty string. (Note that this differs from the DOM,
where names such as «#comment» are used)

For elements and attributes it is the name that appears
in the source XML, expanded using the applicable
namespace declarations.

For a processing instruction it is the PITarget from the
source XML: this is not subject to namespace rules.
The name of a namespace node is, by convention, the
namespace prefix.

A name itself has three parts: the prefix, which is the
part of the name before the «:» as written in the source

XML; the namespace URI, which is the URI associated
with the prefix by means of a namespace declaration;
and the local part, which is the part of the name after
any «:» in the source document. For example, the name
of the <xsl:stylesheet> element has:

prefix: "xsl"
URI: "http://www.w3.org/1999/XSL/Transform"
local part: "stylesheet"

Two names are considered equivalent if they have the
same URI and local part, even if the prefix is different.

string-value A node has a string-value, which is a sequence of
Unicode characters.

For a text node this is the text as it appears in the
source XML document, except that the XML parser will
have replaced every end-of-line sequence by a single
new line (#xA) character.

For a comment, it is the text of the comment, minus the
delimiters.

For a processing instruction, it is the data part of the
source processing instruction, not including the white
space that separates it from the PITarget.

For an attribute, it is the attribute value.

For a root or element node, it is defined as the
concatenation of the string-values of all the element
and text children of this node. Or to look at it another
way: the concatenation of all the PCDATA contained in
the element (or for the root node, the document) after
stripping out all Markup. (This again differs from the
DOM, where the nodeValue property in these cases is
null.)

For a namespace node the string-value is, by
convention, the URI of the namespace being declared.

base-URI11 A node has a base URI. This should not be confused
with its namespace URI. The base URI of a node
depends on the URI of the source XML document it
was loaded from, or more accurately, the URI of the
external entity it was loaded from, since different parts
of the same document might come from different XML
entities. The base URI is used when evaluating a
relative URI that occurs as part of the value of this

node, for example an href attribute: this is always
interpreted relative to the base URI of the node it came
from.

In fact, the base URI is only maintained explicitly for
element nodes and processing instruction nodes. For
attributes, text nodes, comments, and namespace nodes
the base URI is the same as the URI of its parent node.
For the root node, it is the URI of the document entity.
This is a little ad-hoc, since a text node need not come
from the same external entity as its parent element, but
it reflects the decision that text nodes should be joined
up irrespective of entity boundaries.

child A node has a list (an ordered set) of child nodes. This
one-to-many relationship is defined for all nodes, but
the list will be empty for all nodes except the root node
and element nodes. So you can ask for the children of
an attribute, and you will get an empty node-set
returned.

The children of an element are the elements, text nodes,
processing instructions, and comments contained
textually between its start and end tags, provided that
they are not also children of some lower-level element.

The children of the root node are all the elements, text
nodes, comments, and processing instructions that
aren't contained in another element. For a well-formed
document the children of the root node will be the
document element plus any comments or processing
instructions that come before or after the document
element.

The attributes of an element are not regarded as child
nodes of the element; neither are its namespace nodes.

parent Every node, except the root, has a parent. The parent
relationship is not the exact inverse of the child
relationship: specifically, attribute nodes and
namespace nodes have an element node as their parent,
but they are not considered to be children of that
element. In other cases, however, the relationship is
symmetric: elements, text nodes, processing
instructions, and comments are always children of their
parent node, which will always be either an element or
the root.

has-attribute This relationship only exists in a real sense between
element nodes and attribute nodes, and this is how it is
shown on the diagram below. It is a one-to-many
relationship: one element has zero or more attributes.

In fact, the relationship has-attribute is defined for
all nodes, but if you ask for the attributes of any node
other than an element, the result will be an empty
node-set.

has-namespace This relationship only really exists between element
nodes and namespace nodes, and this is how it is
shown on the diagram. It is a one-to-many relationship:
one element has zero or more namespaces. Like the
has-attribute relationship, the relationship has-
namespace is defined for all nodes, so if you ask for the
namespaces of any node other than an element, the
result will be an empty node-set.

Note that each namespace node is owned uniquely by
one element. If a namespace declaration in the source
document has a scope that includes many elements,
then a corresponding namespace node will be
generated for each one. These nodes will all have the
same name and string-value, but they will be distinct
nodes for the purposes of counting and using the union
operator.

It's now possible to draw a more complete picture of the UML class diagram as
follows. In this version:

❑ I have brought out Container as a separate class, to distinguish those nodes
that have children (the root, and elements) from those that do not. This is for
illustration only: the concept of a container node is not explicit in the formal
model.

❑ I have identified the has-parent relationship between any node and its
parent.

❑ I have identified the separate relationships between an element and its
attributes, and between an element and its namespace nodes.

❑ I have identified the additional class UnparsedEntity. This is not itself a node
on the tree. It corresponds to an unparsed entity declaration within the
document's DTD, and the information is accessible only using the unparsed-
entity-uri() function.

❑ I have identified two additional properties on the Element node: BaseURI,
which is the URI of the entity that the element start and end tags were found
in, and ID, which is the ID attribute value for this element if it has one.

Node

 Name : QName
 StringValue : String

Root Element

 BaseURI : URI
 ID : String

Attribute

Text CommentNamespace

Container

0..n

0..1

has-parent

1..1 0..n

has-attributes

1..1

0..n
declares

UnparsedEntity

 Name : Name
 URI : URI

refers-to

Processing
Instruction0..n

1..1

It's worth mentioning that the XSLT tree model never uses null values in the sense that
SQL or Java use null values. If a node has no string-value, then the value returned is
the empty string, a string of length zero. If a node has no children, then the value
returned is the empty node-set, a set containing no members. There's no distinction
made between an empty string and an absent string, or between an empty set and an
absent set. In the specification, the words null and empty are used interchangeably.

Let's look briefly at some of the features of this model.

Names and Namespaces
XSLT and XPath are designed very much with the use of XML Namespaces in mind,
and although many source documents may make little or no use of namespaces, an
understanding of the XML Namespaces recommendation (found in
http://www.w3.org/TR/REC-xml-names) is essential.

Expanding on the description in Chapter 1(page Error! Cannot open file.), here's a
summary of how namespaces work:

❑ A namespace declaration defines a namespace prefix and a namespace URI.

The namespace prefix only needs to be unique within a local scope, but the
namespace URI is supposed to be unique globally. Globally here really does
mean globally: not just unique in the document, but unique across all
documents around the planet. To achieve that, the advice is to use a URI based
on a domain name that you control, for example «http://www.my-
domain.com/namespace/billing». However, as far as XSLT is concerned, it
does not have to conform to any particular syntax. For example, «abc», «42»,
and «?!*» are all acceptable as namespace URIs. It is just a character string,
and two namespace URIs are considered equal if they contain the same
sequence of Unicode characters.

❑ The namespace URI does not have to identify any particular resource, and
although it is recommended to use a URL based on a domain name that you
own, there is no implication that there is anything of interest to be found at
that address. The two strings «c:\this.dtd» and «C:\THIS.DTD» are both
acceptable as namespace URIs, whether or not there is actually a file of this
name; and they represent different namespaces even though when read as
filenames they might identify the same file.

❑ A namespace declaration for a non-null prefix is written as follows. This
associates the namespace prefix my-prefix with the namespace URI
http://my.com/namespace:
<a xmlns:my-prefix="http://my.com/namespace">

❑ A namespace declaration may also be present for the null prefix. This is

known as the default namespace. The following declaration makes
http://your.com/namespace the default namespace URI:

❑ The scope of a namespace declaration is the element on which it appears and

all its children and descendants, excluding any subtree where the same prefix
is associated with a different URI. This scope defines where the prefix is
available for use. Within this scope, any name with the given prefix is
automatically associated with the given namespace URI.

❑ A name has three properties: the prefix, the local part, and the namespace-URI.
If the prefix is not null, the name is written in the source document in the form
prefix:local-part, for example in the name xsl:template, the prefix is xsl
and the local-part is template. The namespace-URI of the name is found from
the innermost element that carries a namespace declaration of the relevant
prefix. (In theory this allows you to use the same prefix with different
meanings in different parts of the document, but such overloading is easily
avoided since you have a completely free choice of prefixes.)

❑ The XML Namespaces recommendation defines two kinds of name that may
be qualified by means of a prefix: element names, and attribute names. The
XSLT recommendation extends this to many other kinds of name which
appear in the values of XML attributes, for example variable names, template
names, names of keys, and so on. All these names can be qualified by a
namespace prefix.

❑ If a name has no prefix, then its namespace URI is considered to be the default

namespace URI in the case of an element name, or a null URI in the case of an
attribute name or any other kind of name (such as XSLT variable names and
template names). However, within an XPath expression, the default
namespace URI is never used for unprefixed names, even if the name is an
element name.

❑ Two names are considered equal if they have the same local part and the same
namespace-URI. The combination of the local-part and the namespace-URI is
called the expanded name. The expanded name is never actually written down,
and there is no defined syntax for it: it is a conceptual value made up of these
two components.

❑ The prefix of a name is arbitrary in that it does not affect comparison of names;
however it is available to applications so it can be used as the default choice of
prefix in the result tree, or in diagnostic output messages.

In the XPath tree model, there are two ways namespace declarations are made visible:

❑ For any node such as an element or attribute, the three components of the
name (the prefix, the local-part, and the namespace URI) are each available,
via the functions name(), local-name(), and namespace-uri(). The
application doesn't need to know, and cannot find out, where the relevant
namespace was declared.

❑ For any element, it is possible to determine all the namespace declarations that
were in force for that element, by retrieving the associated namespace nodes.
These are all made available as if the namespace declarations were repeated on
that specific element. Again the application cannot determine where the
namespace declaration actually occurred in the source document.

Although the namespace declarations are originally written in the source document in
the form of XML attributes, they are not retained as attribute nodes on the tree, and
cannot be processed by looking for all the attribute nodes.

IDs
An ID is a string value that identifies an element node uniquely within a document. If
an element has an ID, it becomes easy and (one hopes) efficient to access that element
if the ID value is known. The ID always appears as the value of an attribute declared in
the DTD as being of type ID. Each element has zero or one ID values and each ID value
(if it is present at all) identifies one element.

For example, in an XML dataset containing details of employees, each <employee>
element might have a unique ssn attribute giving the employee's social security
number. For example:

<personnel>

<employee ssn="123-45-6789">

 <name>John Doe</name>

 ...

</employee>

<employee ssn="123-45-6890">

 <name>Jane Stag</name>

 ...

</employee>

</personnel>

As the ssn attribute is unique, it can be declared in the DTD as an ID attribute using
the following declaration:

<!ATTLIST employee ssn ID #REQUIRED>

Attributes of type ID are often given the name ID as a reminder of their role;
unfortunately this sometimes leads people to believe that the attribute name ID is
somehow special. It isn't; an ID attribute is any attribute defined in the DTD as having
type ID, regardless of the attribute name.

An ID value is constrained to take the form of an XML Name. This means, for example,
that it must start with a letter, and that it may not contain characters such as «/» or
space.

In XML, attributes can also be defined as being of type IDREF or IDREFS if they contain
ID values used to point to other elements in the document (an IDREF attribute contains
one ID value, and IDREFS attribute contains a whitespace-separated list of ID values).
However, XPath does not make any use of this information. XPath provides a function,
id() (see page Error! Cannot open file.), which can be used to locate an element given
its ID value. This function is designed so that an IDREF or IDREFS attribute can be used
as input to the function, but equally, so can any other string that happens to contain an
ID. Therefore, IDREF and IDREFS attributes do not appear explicitly in the tree model.

There is a slight complication with the use of ID values, in that XPath is not
constrained to process only valid XML documents. If an XML document is well-
formed (or merely well-balanced) but not valid, then values which are supposed to be
IDs may be duplicated, and they might not obey the syntactic rules for an XML Name.
The XPath specification says that if an ID value appears more than once, all
occurrences except the first are ignored. It doesn't say what happens if the ID value
contains invalid characters such as spaces: it's quite likely in this case that the id()
function will fail to find the element but will otherwise appear to work correctly. If
you use ID values, it's probably a good idea to use a validating XML parser to prevent
this situation occurring.

XSLT also provides a more flexible approach to finding elements (or other nodes) by
content, namely keys. With keys you can do anything that IDs achieve, other than
enforcing uniqueness. Keys are declared in the stylesheet using the <xsl:key> element
(see Chapter 4, page Error! Cannot open file.), and they can be used to find a node by
means of the key() function (see Chapter 7, page Error! Cannot open file.).

Characters
In the XML Information Set definition (http://www.w3.org/TR/xml-infoset) each
individual character is distinguished as an object (or information item). This is a useful
model conceptually, because it allows one to talk about the properties of a character
and the position of a character relative to other characters, but it would be very

expensive to represent each character as a separate object in a real tree
implementation.

The XPath model has chosen not to represent characters as nodes. It would be nice if it
did, because the XPath syntax could then be extended naturally to do character
manipulation within strings, but instead the designers chose to provide a separate set
of string-manipulation functions. These functions are described in Chapter 7.

The string-value of any node is a sequence of zero or more characters. Each character is
a Char as defined in the XML standard. Loosely, this is a Unicode character. More
precisely, it is one of the following:

❑ One of the four whitespace characters tab #x9, linefeed #xA, carriage return
#xD, or space #x20

❑ An ordinary 16-bit Unicode character in the range #x21 to #xD7FF or #xE000 to
#xFFFD

❑ An extended Unicode character in the range #x10000 to #x10FFFF. Internally
such a character is usually represented as a surrogate pair, using two 16-bit
codes in the range #xD800 to #xDFFF, but as far as XPath is concerned, it is one
character rather than two. This affects functions that count characters in a
string or that make use of the position of a character in a string, specifically the
functions string-length(), substring(), and translate(). Here XPath
differs from Java, which counts a surrogate pair as two characters. (Unicode
surrogate pairs are not at present widely used, but they are starting to be
defined and are likely to be encountered more frequently in the future.)

Note that line endings are normalized to a single newline #xA character, regardless
how they appear in the original XML source file.

It is not possible in a stylesheet to determine how a character was written in the source
file. For example, the following strings are all identical as far as the XPath data model
is concerned:

❑ >

❑ >

❑ >

❑ >

❑ >

❑ <![CDATA[>]]>

The XML parser handles these different character representations. In most
implementations, the XSLT processor will use a standard XML parser underneath, and
the XSLT processor couldn't treat these representations differently even if it wanted to,
because they all look the same once the XML parser has dealt with them.

The only exception to this rule is in the area of whitespace handling. The way in which

whitespace in the source XML document is handled, and the interaction of the XML
parser and the XSLT processor in this respect, are surprisingly complex topics, and I
shall discuss them in some detail in Chapter 3.

What Does the Tree Leave Out?
The debate in defining a tree model is about what to leave out. What information from
the source XML document is significant, and what is an insignificant detail? For
example, is it significant whether the CDATA notation was used for text? Are entity
boundaries significant? What about comments?

Many newcomers to XSLT ask questions like "How can I get the processor to use single
quotes around attribute values rather than double quotes?" or "How can I get it to
output « » instead of « »?" – and the answer is that you can't, because
these distinctions are considered to be things that the recipient of the document
shouldn't care about, and they were therefore left out of the XPath tree model.

Generally the features of an XML document fall into one of three categories: definitely
significant, definitely insignificant, and debatable. For example, the order of elements
is definitely significant; the order of attributes within a start element tag is definitely
insignificant; but the significance of comments is debatable.

The XML standard itself doesn't define these distinctions particularly clearly. It defines
certain things that must be reported to the application, and these are certainly
significant. There are other things that are obviously significant (such as the order of
elements) about which it says nothing. Equally, there are some things that it clearly
states are insignificant, such as the choice of CR-LF or LF for line endings, but many
others about which it stays silent, such as choice of «"» versus «'» to delimit attribute
values.

One result of this is that different standards in the XML family have each made their
own decisions on these matters, and XSLT and XPath are no exception.

The debate arises partly because there are two kinds of application. Applications that
only want to extract the information content of the document are usually interested
only in the core information content. Applications such as XML editing tools tend also
to be interested in details of how the XML was written, because when the user makes
no change to a section of the document, they want the corresponding output document
to be as close to the original as possible.

To resolve these questions and get some commonality across the different standards,
the W3C set up an activity to define a common model of the information in an XML
document: the so-called XML Information Set. Their current conclusions are published
at http://www.w3.org/TR/xml-infoset.

The XML information set they define includes core information items and peripheral
information items, as illustrated in the diagram below. Core information items must be
reported to the application, peripheral information items may optionally be reported.

For the core information items, the Information Set defines both core properties and
peripheral properties: the core properties must be reported, and the peripheral

properties may optionally be reported.

The diagram below illustrates which information items are in the core, which are
peripheral, and which are excluded from the information set entirely. The diagram
does not attempt to show which properties of core items are core, and which are
peripheral.

Core

Peripheral

Document
Elements

Attributes

Namespaces
Processing
Instructions Unparsed

entities

Comments

Document
Type
Declaration

Parsed
Entities

CDATA
sections

Text

Skipped
entities

Excluded

XML
version

Order of
attributes

ELEMENT and
ATTLIST declarations

<a>
versus
<a/>

Whitespace
within tags

Choice of
line terminator

Unnormalized
Attributes

Order of
declarations
in DTD

Conditional
Sections
in DTD

Choice of
quotes for
attributes

Character
references

Character
Encoding

Notations

The dotted line on the diagram surrounds those information items that are present in
the XSLT/XPath tree model, and which therefore are accessible to an XSLT stylesheet.
As you can see, this model follows the Information Set recommendation fairly closely,
but not absolutely precisely.

There are two information items which the Information Set regards as core, but which
are not available to the writer of an XSLT stylesheet, namely notations and references to
skipped entity references.

❑ Since notations are rarely used their omission is unlikely to cause any practical
problems. However, the XML standard does say that notations should be
notified to the application, so the XSLT model is taking liberties here. In the
small print at the back they promise (though not in quite so many words) to
put this right in the next version.

❑ Skipped entity references are entity references that a non-validating parser has
chosen not to expand: see section 4.4.3 of the XML Recommendation for
details. If the parser chooses not to expand an entity, it is supposed to tell the
application that it has skipped it. In practice most parsers do expand all entity
references, and there seems to be an implicit assumption in XSLT that they will
do so, in which case skipped entity references can't exist.

There are some other minor mismatches between the XSLT/XPath tree model and the
core Information Set:

❑ The XSLT model includes comments, which are not core information items in
the Information Set. This can lead to problems when the XSLT processor is
built on top of other software, such as a SAX-compatible XML parser, which
treats comments as irrelevant and doesn't pass them on.

❑ The XSLT model makes available the namespace prefixes in the source tree,
but it does not give the stylesheet author complete control over the namespace
prefixes in the output, on the principle that two XML documents that differ
only in their choice of namespace prefixes are equivalent. In the current draft
of the Information Set, however, namespace prefixes are a core item.

❑ The XSLT model defines for every node in the tree a Base URI, which (at least
in the case of elements and processing instructions) is the URI of the external
entity that the node came from. This property isn't accessible directly; in fact it
is used only when the document() function (described in Chapter 7, page
Error! Cannot open file.) is executed, to provide a URI to use as a baseline for
turning relative URIs into absolute URIs. In the Information Set, this property
is considered peripheral. As with comments, there is therefore a potential
problem that the XSLT processor may have difficulty getting hold of the
information.

❑ Unparsed entities are a core part of the Information Set, but XSLT provides
very limited access to them, and provides no way of generating them in the
result document. An unparsed entity is an entity defined in the DTD using a
declaration of the form:

<!ENTITY weather-map SYSTEM "weather.jpeg" NDATA JPEG>

It's the NDATA (meaning "not XML data") that makes it an unparsed entity; and
because it is an unparsed entity, it can't be referenced using a normal entity
reference of the form «&weather-map;». Instead it must be referenced by
name in an attribute of type ENTITY or ENTITIES, for example «map="weather-
map"».

The XSLT tree model only allows you to do one thing with unparsed entities: if
you know the name of the entity (weather-map), then using the unparsed-
entity-uri() function you can find out its system identifier (weather.jpeg).
This is a lot less than the Information Set implies. The unparsed-entity-
uri() function is described in Chapter 7, page Error! Cannot open file..

What can be Controlled at the Output Stage?
The transformation processor, which generates the result tree, generally gives the user
control only over the core information items and properties (plus comments). The
output processor or serializer gives a little bit of extra control over how the result tree
is converted into a serial XML document. Specifically, it allows control over:

❑ Use of CDATA sections

❑ XML version

❑ Character encoding

❑ Standalone property

❑ DOCTYPE declaration

Some of these things are considered peripheral in the Information Set, and some are
excluded from it entirely. The features that can be controlled during the output stage
do not include all the peripheral properties (for example, it is not possible to generate
entity references), and they certainly do not include all the excluded features. For
example, there is no way of controlling the order in which attributes are written, or the
choice of <a/> versus <a> to represent empty elements, the disposition of
whitespace within a start tag, or the presence of a newline character at the end of the
document.

In short, the set of things that you can control in the output generation stage of
processing bears some resemblance to the classification of features in the Information
Set, but not as much resemblance as one might expect. Perhaps if the Information Set
had been defined earlier, there would be greater consistency between the different
W3C specifications.

To underline all this, let's list some of the things you can't see in the input tree, and
some of the things you can't control in an XML output file.

Invisible Distinctions
In the table below, the constructs in the two columns are considered equivalent, and in
each case you can't tell as a stylesheet writer which one was used in the source
document. If one of them doesn't seem to have the required effect, don't bother trying
the other: it won't make any difference:

Construct Equivalent
<item/> <item></item>

> >

<e>"</e> <e>"</e>

<![CDATA[a < b]]> a < b

<b xmlns="one.uri"/>

<rectangle x="2" y="4"/> <rectangle y='4'
 x='2'
/>

In all these cases, except CDATA, it's equally true that you have no control over the
format of the output: the alternatives are equivalent, so you aren't supposed to care
which is used.

Why make a distinction for CDATA on output? Perhaps because where a passage of text
contains a large number of special characters, for example in a book where you want to
show examples of XML, the use of character references can become very unreadable. It
is after all one of the strengths of XML, and one of the reasons for its success, that XML
documents are easy to read and edit by hand. Also, perhaps, because there is actually
some controversy about the meaning of CDATA: there are disputes, for example, about
whether «<![CDATA[]]>» is allowed in circumstances where XML only permits
white space.

DTD Information
The XPath designers decided not to include all the DTD information in the tree.
Perhaps they were anticipating the introduction of XML Schemas, which are widely
expected to replace DTDs in the future, and which represent schema information in
XML form, which would allow the same tree model to be used.

The XSLT processor (but not the application) needs to know which attributes are of
type ID, so that the relevant elements can be retrieved when the id() function is used.
It is part of the tree model that a particular element has a particular ID value, but apart
from this, there is no information about attribute types explicitly present in the tree
model.

The Transformation Process
I've described how the essential process performed by XSLT is to transform a source
tree to a result tree under the control of a stylesheet, and we've looked at the structure
of these trees. Now it's time to look at how the transformation process actually works,
which means taking a look inside the stylesheet.

Template Rules
As we saw in Chapter 1, most stylesheets will contain a number of template rules.
Each template rule is expressed in the stylesheet as an <xsl:template> element with a
match attribute. The value of the match attribute is a pattern. The pattern determines
which nodes in the source tree the template rule matches.

For example, the pattern «/» matches the root node; the pattern «title» matches a
<title> element, and the pattern «chapter/title» matches a <title> element

whose parent is a <chapter> element.

When you invoke an XSLT processor to apply a particular stylesheet to a particular
source document, the first thing it does is to read and parse these documents and
create internal tree representations of them in memory. Once this preparation is
complete, the transformation process can start.

The first step in the transformation process is to find a template rule that matches the
root node of the source tree. If there are several possible candidates, there is a conflict
resolution policy to choose the best fit (see page 31 for details). If there is no template
rule that matches the root node, a built-in template is used. The XSLT processor then
instantiates the contents of this template rule.

The content of the <xsl:template> element in the stylesheet is a sequence of elements
and text nodes. Comments and processing instructions in the stylesheet are ignored, as
are whitespace text nodes, unless they belong to an <xsl:text> element or to one with
an appropriate xml:space attribute. I refer to this sequence as a template body. The
XSLT specification itself refers to it simply as a template, but this terminology is often
confusing, so I have avoided it.

Elements in the template body are classified as either instructions or data, depending
on their namespace. Text nodes are always classified as data. When the template is
instantiated, the instructions in the template body are executed, and the data nodes are
copied to the result tree. Elements that are classified as data are officially termed literal
result elements.

Contents of a Template Body
Consider the following template rule:

<xsl:template match="/">

 <xsl:message>Started!</xsl:message>

 <xsl:comment>Generated from XSLT</xsl:comment>

 <html>

 . . .

 </html>

 The end

</xsl:template>

The body of this template rule consists of two instructions(<xsl:message> and
<xsl:comment>), a literal result element (the <html> element) and some text («The
end»). When this template is instantiated, the instructions are executed according to
the rules for each individual instruction, and literal result elements and text nodes are
copied (as element nodes and text nodes respectively) to the result tree.

It's simplest to think of this as a sequential process, where instantiating a template
body causes instantiation of each of its components in the order they appear. Actually,
because XSLT is largely side-effect-free, they could be executed in a different order, or
in parallel. The important thing is that after instantiating this template body, the result
tree will contain, below its root node, a comment node (produced by the
<xsl:comment> instruction), an <html> element node (produced by the <html> literal

result element), and the text node «The end».

Actually <xsl:message> is an exception to the rule that XSLT is side-effect-
free. If there are several <xsl:message> instructions in a template body, then
the sequence in which the messages appear is not guaranteed.

If I hadn't included the «…» within the <html> element, this would be the end of the
matter. But when a literal result element such as <html> is instantiated, its content is
treated as a template body in its own right, and this is instantiated in the same way. It
can again contain a mixture of instructions, literal result elements, and text.

Nested Template Bodies
Now suppose the template rule actually looks like this:

<xsl:template match="/">

 <xsl:message>Started!</xsl:message>

 <xsl:comment>Generated from XSLT</xsl:comment>

 <html>

 <head>

 <title>My first generated HTML page</title>

 </head>

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

 The end

</xsl:template>

Here the <html> element contains two child elements, <head> and <body>. These are
both literal result elements, so they are instantiated by copying them from the
stylesheet to the result tree. The <head> element contains a <title> literal result
element, which contains some text, so the whole structure is copied to the result tree.

When the <body> element is instantiated, however, it contains an XSL instruction,
namely <xsl:apply-templates/>. This particular instruction has critical importance:
when written as here, without any attributes, it means "select all the children of the
current node in the source tree, and for each one, find the matching template rule in
the stylesheet, and instantiate it".

What actually happens at this point depends both on what is found in the source
document, and on what other template rules are present in the stylesheet. Typically,
because we are currently processing the root node of the source document tree, it will
have just one child node, namely the document element (the outermost element of the
source XML document). Suppose this is a <doc> element. Then the XSLT processor
will search the stylesheet looking for a template rule that matches the <doc> element.

The simplest situation is where it finds just one rule that matches this element, for
example one declared as:

<xsl:template match="doc">

If it finds more than one matching template rule, it again has to use its conflict
resolution policy to choose the best fit. The other possibility is that there is no
matching template rule: in this case it invokes the built-in template rule for element
nodes, which simply executes <xsl:apply-templates/>: that is, it selects the children
of this element, and tries to find template rules that match these children. There's also
a built-in template rule for text nodes, which copies the text node to the output. If the
element has no children, <xsl:apply-templates/> does nothing.

Simple Recursive-Descent Processing
The simplest way to process a source tree is thus to write a template rule for each kind
of node that can be encountered, and for that template rule to produce any output
required, as well as calling <xsl:apply-templates> to process the children of that
node.

Example: Simple Recursive-Descent Processing

Here's an example stylesheet that does just that. You can find the files on the
web site for this book at http://www.wrox.com. Note, however, that this
stylesheet uses the <xsl:number/> instruction to generate a sequence number.
At the time of writing Microsoft's MSXML3 processor does not support this
instruction.

Input
The source document, books.xml, is a simple book catalog:

<?xml version="1.0"?>

<books>

 <book category="reference">

 <author>Nigel Rees</author>

 <title>Sayings of the Century</title>

 <price>8.95</price>

 </book>

 <book category="fiction">

 <author>Evelyn Waugh</author>

 <title>Sword of Honour</title>

 <price>12.99</price>

 </book>

 <book category="fiction">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <price>8.99</price>

 </book>

 <book category="fiction">

 <author>J. R. R. Tolkien</author>

 <title>The Lord of the Rings</title>

 <price>22.99</price>

 </book>

</books>

Stylesheet
Say you want display this data in the form of a sequentially numbered booklist.
The following stylesheet, books.xsl, will do the trick:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="books">

 <html><body>

 <h1>A list of books</h1>

 <table width="640">

 <xsl:apply-templates/>

 </table>

 </body></html>

</xsl:template>

<xsl:template match="book">

 <tr>

 <td><xsl:number/></td>

 <xsl:apply-templates/>

 </tr>

</xsl:template>

<xsl:template match="author | title | price">

 <td><xsl:value-of select="."/></td>

</xsl:template>

</xsl:stylesheet>

What's happening here? There's no template for the root node, so the built-in
template gets invoked. This processes all the children of the root node.

There's only one child of the root node, the <books> element. So the template for
the <books> element is instantiated. This outputs some standard HTML
elements to the result tree, and eventually calls <xsl:apply-templates/> to
cause its own children to be processed. These children are all <book> elements,
so they are all processed by the template rule whose match pattern is
«match="book"». This template rule outputs an HTML <tr> element, and
within it a <td> element, which it fills by executing the <xsl:number/>
instruction whose effect is to get the sequence number of the current node (the
book element) within its parent element. It then calls <xsl:apply-templates/>
once again to process the children of the <book> element in the source tree.

The children of the <book> element are all <author>, <title>, or <price>
elements, so as it happens they all match the template rule whose match pattern
is «match="author | title | price"» (you can read «|» as "or"). This
template rule outputs an HTML <td> element which it fills by executing an

instruction: <xsl:value-of select="."/>. This instruction evaluates an XPath
expression, and writes its result (a string) as text to the result tree. The
expression is «.» which returns the string-value of the current node, that is the
textual content of the current <author>, <price>, or <title> element.

This template makes no further call on <xsl:apply-templates>, so its own
children are not processed, and control returns all the way up.

Output

<html>

 <body>

 <h1>A list of books</h1>

 <table width="640">

 <tr>

 <td>1</td>

 <td>Nigel Rees</td>

 <td>Sayings of the Century</td>

 <td>8.95</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Evelyn Waugh</td>

 <td>Sword of Honour</td>

 <td>12.99</td>

 </tr>

 etc
 </table>

 </body>

</html>

I call this style of processing recursive-descent because each element is processed by
essentially the same logic: output some data values or markup relevant to the element,
and call <xsl:apply-templates/> to process the child elements. Some people also
refer to it as push processing: it is as if the processor is pushing the nodes out of the
door, saying "is anyone interested in dealing with this one?"

Controlling Which Nodes to Process
Simple recursive-descent processing works very well when the data in the output is to
have the same structure and sequence as the data in the input, and all we want to do is
add a few tags or perform other simple editing of values as we go along.

In the above example, it wouldn't work so well if the properties of each book were less
predictable, for example if some of the books had no price, or if the title and author
could appear in either order. In this case the HTML table that we generated wouldn't
be nicely arranged in columns any more, because generating a new cell for each
property we encounter is not necessarily the right thing to do.

In such circumstances, we've got two choices:

❑ We can be more precise about which nodes to process, rather than just saying
process all children of the current node.

❑ We can be more precise about how to process them, rather than just saying
choose the best-fit template rule.

Let's try the first option.

Example: Controlling the Sequence of Processing

We can gain greater control over which nodes are to be processed by changing
the <book> template in books.xsl, as follows:

<xsl:template match="book">

 <tr>

 <td><xsl:number/></td>

 <xsl:apply-templates select="author"/>

 <xsl:apply-templates select="title"/>

 <xsl:apply-templates select="price"/>

 </tr>

</xsl:template>

Instead of selecting all child elements and finding the appropriate template rule
for each one, this now explicitly selects first the <author> child element, then
the <title> child element, and then the <price> child element.

This will still work, and it's more robust than our previous attempt, but it will
still produce a ragged table if there are any <book> elements without an
<author> (say), or with more than one.

As we want a regular structure in the output and because we know a lot about the
structure of the source document, we'd probably be better off in this situation defining
all the processing in the <book> template rather than relying on templates to match
each of its child elements.

Example: Selecting Nodes Explicitly

We can gain greater control over how nodes are to be processed by writing the
<book> template in the following manner:

<xsl:template match="book">

 <tr>

 <td><xsl:number/></td>

 <td><xsl:value-of select="author"/></td>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="price"/></td>

 </tr>

</xsl:template>

Some people call this pull processing, because instead of the template pushing
nodes out of the door to be picked up by another template, it is pulling the
nodes in and handling them itself.

The pattern-matching, or push, style of processing is the most characteristic feature of
XSLT, and it works very well in applications where it makes sense to describe the
handling of each type of node in the source document independently. However, there
are many other techniques available, all of which are equally valuable. From within a
template rule that is processing one particular node, the main alternatives if you want
access to information in other nodes are:

❑ Call <xsl:apply-templates> to process those nodes using their appropriate
template rules.

❑ Call <xsl:apply-templates> in a particular mode (see below) to process
those nodes using the template rules for the relevant mode.

❑ Call <xsl:value-of> to extract the required information from the nodes
directly.

❑ Call <xsl:for-each> to perform explicit processing of each of the nodes in
turn.

❑ Call <xsl:call-template> to invoke a specific template by name, rather than
relying on pattern matching to decide which template to invoke.

Further discussion of the different approaches to writing a stylesheet is included in
Chapter 8, Design Patterns.

Modes
Sometimes you want to process the same node in the source tree more than once, in
different ways. The classic example is to produce a table of contents. When generating
the table of contents, you want to handle all the section headings in one way, and
when producing the body of the document, you want to handle them in a different
way.

One way around this problem is to use push processing on one of these passes through
the data, and pull processing on all the other occasions. However, this could be very
constraining. Instead, you can define different modes of processing, one for each pass
through the data. You can name the mode of processing when you call <xsl:apply-
templates>, and the only template rules that will be considered are those that specify
the same mode. For example, if you specify:

<xsl:apply-templates select="heading-1" mode="table-of-contents"/>

Then the selected template rule might be one defined as:

<xsl:template match="heading-1" mode="table-of-contents">

. . .

</xsl:template>

Further details of how to use modes are in Chapter 4, page Error! Cannot open file.
and an example of how to use them to generate a table of contents is in Chapter 9, page
Error! Cannot open file..

Built-in Template Rules
What happens when <xsl:apply-templates> is invoked to process a node, and there
is no template rule in the stylesheet that matches that node?

The answer is that a built-in template rule is invoked.

There is a built-in template rule for each type of node. The built-in rules work as
follows:

Node type Built-in template rule

root Call <xsl:apply-templates> to process the children of the
root node, in the same mode as the calling mode

element Call <xsl:apply-templates> to process the children of this
node, in the same mode as the calling mode

attribute Copy the attribute value to the result tree, as text – not as an
attribute node

text Copy the text to the result tree
comment Do nothing
processing-
instruction

Do nothing

namespace Do nothing

The built-in template rules will only be invoked if there is no rule that matches the
node anywhere in the stylesheet.

There is no way to override the built-in template for namespace nodes, because there is
no pattern that will match a namespace node. If you call <xsl:apply-templates> to
process namespace nodes, nothing happens. If you want to process all the namespace
nodes for an element, use:

<xsl:for-each select="namespace::*">

Conflict Resolution Policy
Conversely, what happens when there is more than one template rule whose pattern
matches a particular node? As I mentioned earlier, the conflict resolution policy comes

into play.

This works as follows:

❑ First the import precedence of each rule is considered. As we will see in
Chapter 3, one stylesheet may import another using the <xsl:import>
element, and this part of the policy basically says that when stylesheet A
imports stylesheet B, the rules in A take precedence over the rules in B.

❑ Then the priority of each rule is examined. The priority is a numeric value: the
higher the number, the higher the priority. You can either specify the priority
explicitly in the priority attribute of the <xsl:template> element, or you can
leave the system to allocate a default priority. In this case, the system allocates
a priority that is designed to reflect whether the pattern is very general or very
specific, for example the pattern «subsection/title» (which matches any
<title> element whose parent is a <subsection> element) gets higher
priority than the pattern «*», which matches any element. System-allocated
priorities are always in the range –0.5 to +0.5: user-allocated priorities will
normally be 1 or more, but there are no restrictions. For more details, see the
description of the <xsl:template> element in Chapter 4, page Error! Cannot
open file..

❑ Finally, if there is more than one rule with the same import precedence and
priority, the XSLT processor has a choice: it can either report an error, or it can
choose whichever rule appears last in the stylesheet. Different processors will
behave differently in this situation, which gives you a slight portability
problem to watch out for: it is best to ensure this ambiguity never happens.

Variables, Expressions, and Data Types
The system of data types lies at the core of any language, and the way expressions are
used to compute values and assign these to variables is closely tied up with the type
system. So, we will now examine further these aspects of the language.

Variables
XSLT allows global variables to be defined, which are available throughout the whole
stylesheet, as well as local variables, which are available only within a particular
template body. The name and value of a variable are defined in an <xsl:variable>
element. For example:

<xsl:variable name="width" select="50"/>

This defines a variable whose name is width and whose value is the number 50. The
variable can subsequently be referenced in an XPath expression as $width. If the
<xsl:variable> element appears at the top level of the stylesheet (as a child of the
<xsl:stylesheet> element) then it is a global variable; if it appears within the body of
an <xsl:template> element then it is a local variable.

Similarly, XSLT also allows global and local parameters to be defined, using an
<xsl:param> element. Global parameters are set from outside the stylesheet (for

example, from the command line or from an API – the actual mechanism is
implementor-defined). Local parameters to a template are set using an <xsl:with-
param> element when the template is called.

Variables and parameters are not statically typed: they take whatever type of value is
assigned to them. The five data types defined in XSLT and XPath are:

❑ String (any sequence of Unicode characters permitted in XML)

❑ Number (a double-precision floating point number as defined in IEEE 754)

❑ Boolean (the value true or false)

❑ Node-set (a set of nodes in the source tree)

❑ Tree (a data structure conforming to the tree model described earlier in this
chapter). In the XSLT specification, this is referred to as a Result Tree
Fragment, but apart from being longwinded this is rather misleading: it is a
full tree, not a fragment, and it is not actually part of the result tree, though it
can be copied to the result tree when required.

These data types are described in more detail later in the chapter, starting on page 36.
In addition, most XSLT processors also allow an extra data type for use with external
functions, namely an arbitrary object (for example, a Java object). By allowing XSLT
variables to identify an external object, external functions are able to pass arbitrary
values to each other.

The use of variables is superficially very similar to their use in conventional
programming and scripting languages. They even have similar scoping rules.
However, there is one key difference: once a value has been given to a variable, it
cannot be changed. This difference has a profound impact on the way programs are
written, so it is discussed in detail in the section Programming Without Assignment
Statements in Chapter 8, page Error! Cannot open file..

Expressions
The syntax of expressions is defined in the XPath Recommendation, and is described
in detail in Chapter 5.

XPath expressions are used in a number of contexts in an XSLT stylesheet. They are
used as attribute values for many XSLT elements, for example:

<xsl:value-of select="($x + $y) * 2"/>

In this example $x and $y are references to variables, and the operators «+» and «*»
have their usual meanings of addition and multiplication.

Many XPath expressions, like this one, follow a syntax that is similar to other
programming languages. The one that stands out, however, and the one that gave
XPath its name, is the Path Expression.

A Path Expression defines a navigation path through the document tree. Starting at a

defined origin, usually either the current node or the root, it follows a sequence of
steps in defined directions. At each stage the path can branch, so for example you can
find all the attributes of all the children of the origin node. The result is always a set of
nodes. It might be empty or contain only one node, but it is still treated as a set.

The directions of navigation through the tree are called axes. The various axes are
defined in detail in Chapter 5. They include:

❑ the child axis, which finds all the children of a node.

❑ the attribute axis, which finds all the attributes of a node.

❑ the ancestor axis, which finds all the ancestors of a node.

❑ the following-siblings axis, which finds the nodes that come after this one and
share the same parent.

❑ the preceding-siblings axis, which finds the nodes that come before this one
and share the same parent.

As well as specifying the direction of navigation through the tree, each step in a path
expression can also qualify which nodes are to be selected. This can be done in several
different ways:

❑ by defining the name of the nodes (completely or partially).

❑ by defining the type of nodes (e.g. elements or processing instructions).

❑ by defining a predicate that the nodes must satisfy – an arbitrary boolean
expression.

❑ by defining the relative position of the node along the axis: for example it is
possible to select only the immediately preceding sibling.

The syntax of a path expression uses «/» as an operator to separate the successive
steps. A «/» at the start of a path expression indicates that the origin is the root node;
otherwise it is generally the current node. Within each step, the axis is written first,
separated from the other conditions by the separator «::». However, the child axis is
the default, so it may be omitted; and the attribute axis may be abbreviated to «@».

For example:

child::item/attribute::category

is a path expression of two steps, the first selects all the child <item> elements of the
current node, and the second step selects their category attributes. This can be
abbreviated to:

item/@category

Predicates that the nodes must satisfy are written in square brackets, for example:

item[@code='T']/@category

This selects the category attributes of those child <item> elements that have a code
attribute whose value is 'T'.

There are many ways of abbreviating path expressions to make them easier to write,
but the basic structure remains the same. The full detail appears in Chapter 5.

Context
The way in which expressions are evaluated is to some extent context-dependent. For
example, the value of the expression $x depends on the current value of the variable x,
and the value of the expression «.» depends on which node is currently being
processed in the source document.

There are two aspects to the context: the static context, which depends only on where
the expression appears in the stylesheet, and the dynamic context, which depends on
the state of processing at the time the expression is evaluated.

The static context consists of:

❑ The set of namespace declarations in force at the point where the expression is
written. This determines the validity and meaning of any namespace prefixes
used in the expression.

❑ The set of variable declarations (that is, <xsl:variable> and <xsl:param>
elements) in scope at the point where the expression is written. This
determines the validity of any variable references used in the expression.

The dynamic context consists of:

❑ The current values of all the variables that are in scope for the expression.
These may be different each time the expression is evaluated.

❑ The current location in the source tree. The current location comprises:

❑ The current node: this is the node in the source tree that is currently
being processed: a node becomes the current node when it is
processed using the <xsl:apply-templates> or <xsl:for-each>
instructions. The current node can be referenced using the current()
function.

❑ The context node: this is normally the same as the current node, except
in a predicate used to qualify a step within a path expression, when it
is the node currently being tested by the predicate. The context node
can be referenced using the expression «.», or the longer form
«self::node()». For example, «a[.='Madrid']» selects all the <a>
elements whose string-value is 'Madrid'.

❑ The context position: this is an integer (≥1) that indicates the position
of the context node in the current node list. The context position can
be referenced using the position() function. When <xsl:apply-
templates> or <xsl:for-each> are used to process a list of nodes,
that list becomes the current node list, and the context position

therefore takes the values 1..n as each of the nodes in the list is
processed. When a predicate is used within a path expression, the
context position is the position of the node being tested within the set
of nodes being tested. So, for example, «child::a[position() !=
1]» selects all the child elements named <a>, except the first.

❑ The context size: this is an integer (≥1) that indicates the number of
nodes in the current node list. The context size can be referenced
using the last() function. So, for example, «child::a[position()
!= last()]» selects all the child elements named <a>, except the last.

The XSLT and XPath specifications use different terminology to describe the context.
XSLT uses the concepts of current node and current node list, while XPath uses the
concepts of context node, context position, and context size. When the <xsl:apply-
templates> or <xsl:for-each> instructions are executed, the current node list is set
to the list of nodes being processed, and the current node is set of each of these nodes
in turn. When an XPath expression is evaluated, the context node is set to the current
node; the context position is set to the position of the current node within the current
node list; and the context size is set to the size of the current node list.

Some system functions that can be used in expressions have other dependencies on the
context, for example the document() function depends on the Base URI of the
stylesheet element in which it appears; but the list above covers all the context
information that is directly accessible to user-written expressions.

Data Types36
XSLT is a dynamically typed language, in that types are associated with values rather
than with variables. In this respect it is similar to VBScript or JavaScript.

There are five data types available and conversion between is generally carried out
implicitly when the context requires it. However, the functions boolean(), number(),
and string() are also available to carry out explicit conversions. The table below
summarizes the conversions between the five data types:
36

 To
From

boolean number string node-set tree

boolean not applicable false ⇒ 0
true ⇒ 1

false ⇒ 'false'
true ⇒ 'true'

not
allowed

not
allowed

number 0 ⇒ false
other ⇒ true

not
applicable

convert to
decimal format

not
allowed

not
allowed

string null ⇒ false
other ⇒ true

parse as a
decimal
number

not applicable not
allowed

not
allowed

node-set empty⇒false
other ⇒ true

convert
via string

string-value of
first node in
document
order

not
applicable

not
allowed

tree convert via
string

convert
via string

concatenate all
text nodes in
the fragment

not
allowed
(see note
below)

not
applicable

More detailed information is given in the descriptions of the functions boolean(),
number(), and string() in Chapter 7.

It should be noted that several products provide an extension function to convert a
tree to a node-set: the resulting node-set contains a single node, the root of the tree,
from which the other nodes can be found using path expressions. However, this useful
function is not available in the current XSLT standard. See Chapter 10 for details of
extension functions in particular vendors' products.

Boolean Values
The Boolean data type in XPath contains the two values true and false.

There are no constants to represent true and false, instead the values can be written
using the function calls true() and false().

Boolean values may be obtained by comparing values of other data types using
operators such as «=» and «!=», and they may be combined using the two operators
«and» and «or» and the function not().

XPath differs from SQL in that it does not use three-valued logic. A Boolean value is
always either true or false; it can never be undefined or null. The nearest equivalent to
an SQL null value in XPath is an empty node-set, and when you compare an empty
node-set to a string or number the result is always false, regardless of which
comparison operator you use. For example, if the current element has no name
attribute, then the expressions «@name='Boston'» and, «@name!='Boston'» both
return false. However, the expression «not(@name='Boston')» returns true.

For more information on the sometimes-strange behavior of the equality and
inequality operators when applied to node-sets, see the sections EqualityExpr and
RelationalExpr in Chapter 5.

Number Values37
A number in XPath is always a double-precision (64-bit) floating-point number, and its
behavior is defined to follow the IEEE 754 standard. This standard (IEEE Standard for
Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985) has been widely
implemented by many microprocessors for some years, but it is only through its
adoption in the Java language that it has become familiar to high-level language
programmers. If you understand how floating point behaves in Java, the contents of
this section will be quite familiar; if not, they may be rather strange.

Unlike most other programming languages, XPath does not use scientific notation for
floating-point numbers, either on input or on output. If you want to enter the number
one trillion, you must write 1000000000000, not 1.0E12. The only exception is that
scientific notation is available when you output a number using the format-number()

function, which is described in Chapter 7, page Error! Cannot open file..

IEEE 754 defines the following range of values for a double-precision number:

Value Description

Finite nonzero
values

These are values of the form s × m × 2x, where s (the sign) is +1
or –1, m (the mantissa) is a positive integer less than 253, and x
(the exponent) is an integer between –1075 and 970, inclusive.

Positive zero This is the result of subtracting a number from itself. It can
also result from dividing any positive number by infinity, or
from dividing a very small number by a very large number of
the same sign.

Negative zero This is the result of dividing any negative number by infinity.
It can also result from dividing a positive number by minus
infinity, or from dividing a very small negative number by a
very large positive number, or vice versa.

Positive infinity This is the result of dividing any positive number by zero. It
can also result from multiplying two very large numbers with
the same sign. Note that division by zero is not an error: it has
a well-defined result.

Negative infinity This is the result of dividing any negative number by zero. It
can also result from multiplying two very large numbers with
different sign.

NaN Not a Number. This is the result of attempting to convert a
non-numeric string value to a number. It can also be used to
mean "unknown" or "not applicable", like the SQL null value.

These values cannot all be written directly as XPath constants. However they can be
expressed as the result of expressions, for example:

Value XPath expression

Negative zero –0 (see note)
Positive Infinity 1 div 0
Negative Infinity –1 div 0
NaN number("NaN")

Note: Unlike the Java language specification, the XPath standard is not explicit that
unary minus means negation, in fact it can be read as saying that unary minus means
subtraction from zero, in which case –0 would represent positive zero. James Clark
says that the intended meaning is as shown here, but some processors may implement
it differently.

Except for NaN, number values are ordered. Arranged from smallest to largest, they
are:

❑ negative infinity

❑ negative finite nonzero values

❑ negative zero

❑ positive zero

❑ positive finite nonzero values

❑ positive infinity.

This ordering determines the result of less-than and greater-than comparisons, and
also the result of sorting using <xsl:apply-templates> or <xsl:for-each> with a
sort key specified using <xsl:sort data-type="number">.

NaN is unordered, so the operators «<», «<=», «>», and «>=» return false if either or
both operands are NaN. This means that when <xsl:sort> is used to sort a sequence
of numeric values that includes one or more NaN values, the position of any NaN
values in the final sequence is undefined.

Positive zero and negative zero compare equal. This means that the operators «=»,
«<=», and «>=» return true, while «!=», «<», and «>» return false. However, other
operations can distinguish positive and negative zero; for example, «1.0 div $x» has
the value positive infinity if $x is positive zero, and negative infinity if $x is negative
zero.

The equals operator «=» returns false if either or both operands are NaN, and the not-
equals operator «!=» returns true if either or both operands are NaN. Watch out for
the apparent contradictions this leads to: for example «$x=$x» can be false, and
«$x<$y» doesn't necessarily give the same answer as «$y>$x».

The simplest way to test whether a value $x is NaN is:

<xsl:if test="$x!=$x">

If this seems too obscure for your taste, then provided you know that $x is numeric
you can write:

<xsl:if test="string($x)='NaN'">

If you are familiar with null values in SQL, some of this logic might seem familiar, but
there are some subtle differences. For example, in SQL the condition «null=null» has
the value null, so that «not(null=null)» is also null; while in XPath «NaN=NaN» is
false, so that «not(NaN=NaN)» is true.

XPath provides a number of operators and functions that act on numeric values:

❑ The numerical comparison operators «<», «<=», «>», and «>=».

❑ The numerical equality operators «=» and «!=».

❑ The unary minus operator «–».

❑ The multiplicative operators «*», «div», and «mod».

❑ The additive operators «+» and «–».

❑ The number() function, which can convert from any value to a number.

❑ The string() and format-number() functions, which convert a number to a
string.

❑ The boolean() function, which converts a number to a boolean.

❑ The functions round(), ceil(), and floor(), which convert a number to an
integer.

❑ The function sum(), which totals the numeric values of a set of nodes.

Operators on numbers behave exactly as specified by IEEE 754. XPath is not as strict as
Java in defining exactly what rounding algorithms should be used for inexact results,
and in what sequence operations should be performed. Many implementations,
however, will follow the Java rules.

XPath numeric operators and functions never produce an error. An operation that
overflows produces positive or negative infinity, an operation that underflows
produces positive or negative zero, and an operation that has no other sensible result
produces NaN. All numeric operations and functions with NaN as an operand
produce NaN as a result. For example, if you apply the sum() function to a node-set,
then if the string value of any of the nodes cannot be converted to a number, the result
of the sum() function will be NaN.

String Values
A string value in XPath is any sequence of zero or more characters, where the alphabet
of possible characters is the same as in XML: essentially the characters defined in
Unicode.

String values can be written in XPath expressions in the form of a literal, using either
single quotes or double quotes, for example 'John' or "Mary". In theory the string can
contain the opposite quote character as part of the value, for example "John's". In
practice, however, XPath expressions are written within XML attributes, so the
opposite quote character will generally already be in use for the attribute delimiters.
For more details, see the section Literal in Chapter 5, page Error! Cannot open file..

There is no special null value, as there is in SQL. Where no other value is appropriate,
a zero-length string is used. In fact the terms null string and empty string are used
interchangeably to refer to a zero-length string.

The only ASCII control characters permitted (codes below #x20) are the whitespace
characters #x9, #xA, and #xD (tab, carriage return, and newline).

Strings may be compared using the «=» and «!=» operators. They are compared
character by character (there is no space-padding as in SQL). The implementation is
allowed to normalize the strings before comparing them, to handle different Unicode

representations of the same accented character, but it is not required to do so. There is
no operator or function provided to compare two strings ignoring case: the best you
can achieve (if you know the strings are restricted to a limited alphabet such as ASCII)
is to convert from lowercase to uppercase, or vice versa, using the translate()
function. Otherwise, use an external user-defined function.

When counting characters in a string, for example in the string-length() function, it
is the number of XML characters that is relevant, not the number of 16-bit Unicode
codes. This means that Unicode surrogate pairs are counted as a single character.
Unicode surrogate pairs, which are used to extend Unicode beyond 65,535 characters,
are very rarely encountered in practice, though their use may increase in the future.

Node-set Values
A node-set is a set of nodes in the source document tree. If there are multiple source
document trees, a node-set may contain nodes from more than one tree. The nodes in a
node-set may be any type of node, and different types of node can be mixed in the
same node-set. It is a pure mathematical set: each node can appear at most once, and
there is no intrinsic order.

There is no data type to represent a single node; instead a node-set with a single
member is used. For example, when you use the expression «@name» to find the value
of the name attribute of the current element, the result is a node-set containing a single
attribute node if the element has a name attribute, or an empty set if it does not.

When a node-set value is converted to a boolean, an empty node-set is treated as false
and a node-set containing one or more nodes as true. So you can use the test:

<xsl:if test="@name">

to find out whether the current element has a name attribute.

The nodes in a node-set may have children, but the children are not regarded as
members of the node-set. For example, the expression «/» returns a node-set
containing a single node, the root. The other nodes subordinate to the root can be
reached from this node, but they are not themselves members of the node-set, and the
value of count(/) is therefore always 1.

A node-set is not intrinsically ordered, though in many contexts the nodes are
processed in document order. Where two nodes come from the same document, their
relative position in document order is based on their position in the document tree: for
example an element precedes its children in document order, and sibling nodes are
listed in the same order as they appear in the original source document. Where two
nodes come from different documents, their relative order is undefined. The ordering
of attribute and namespace nodes is defined only partially: an element node is
followed by its namespace nodes, then its attributes, and then its children, but the
ordering of the namespace nodes among themselves, and of the attribute nodes among
themselves, is undefined.

Tree Values
A value of type tree – or result tree fragment, to give it its full XSLT name – always
contains a root node, and the root node may have children. A tree does not necessarily
correspond to a well-formed XML document, for example the root node can own text
nodes directly, and it can have more than one element node among its children.
However, it must conform to the same rules as an XML external parsed entity, for
example all the attributes belonging to an element node must have distinct names.

Example: Tree Values

A tree is constructed by instantiating the body of an <xsl:variable>
declaration, for example:

<xsl:variable name="rtf">

 AAA

 <xsl:element name="x">

 <xsl:attribute name="att">att-value</xsl:attribute>

 BBB

 </xsl:element>

 <xsl:element name="y"/>

 CCC

</xsl:variable>

This creates the tree illustrated in the diagram below. Each box shows a node;
the three layers are respectively the node type, the node name, and the string-
value of the node. Once again, an asterisk indicates that the string-value is the
concatenation of the string-values of the child nodes.

root

*

text

AAA

element
X
*

attribute
att

att-value

text

BBB

element
Y
*

text

CCC

In standard XSLT there are only two things you can do with a tree once it has been
constructed: you can copy it to the current destination tree (which may be the final

result tree or another tree variable) using the <xsl:copy-of> instruction, or you can
convert its value to a string. Converting it to a string gives the concatenation of all the
text nodes in the tree: in the above example this is «AAABBBCCC».

Several products provide an extension function allowing a tree to be converted to a
node-set. This returns a node-set containing a single node, the root node of the tree.
The other nodes can then be found by following paths from the root node. Details are
given in Chapter 10; however, this useful facility is not part of the current XSLT
standard.

Summary
In this chapter we explored the important concepts needed to understand what an
XSLT processor does.

❑ We examined the overall system architecture, in which a stylesheet controls
the transformation of a source tree into a result tree.

❑ We saw in some detail the tree model used in XSLT, and the way it relates to
the XML standards: also some of the ways it differs from the DOM model.

❑ We learned how template rules are used to define the action to be taken by the
XSLT processor when it encounters particular kinds of node in the tree.

❑ And we looked at the way in which expressions, data types, and variables are
used in the XSLT language to calculate values.

In the next chapter we will look at the structure of an XSLT stylesheet in more detail.

3
Stylesheet Structure

This chapter describes the overall structure of a stylesheet. The aim of the
chapter is to explain some of the concepts used in writing stylesheets,
before we get into the main reference section of the book in Chapters 4
through 7. Some of these concepts are tricky: they are areas that often
cause confusion, which is why I have tried to explain them in some detail.
However, it's not necessary to master everything in this chapter before you
can write your first stylesheet – so use it as a reference, coming back to
topics as and when you need to understand them more deeply.

The topics covered in this chapter are:

❑ Stylesheet modules: we will discuss how a stylesheet program can be made up
of one or more stylesheet modules, linked together with <xsl:import> and
<xsl:include> elements.

❑ The <xsl:stylesheet> (or <xsl:transform> element), which is the outermost
element of most stylesheet modules.

❑ The <?xml-stylesheet?> processing instruction which can be used to link a
source document to its associated stylesheet, and which also allows stylesheets
to be embedded directly in the source document whose style they define.

❑ A brief description of the top-level elements found in the stylesheet, that is, the
immediate children of the <xsl:stylesheet> or <xsl:transform> element:
the full specifications are in Chapter 4.

❑ Simplified stylesheets, in which the <xsl:stylesheet> and <xsl:template
match="/"> elements are omitted, to make an XSLT stylesheet look more like
the simple template languages that some users may be familiar with.

❑ The idea of a template body, a sequence of text nodes and literal result elements
to be copied to the result tree, and instructions and extension elements to be
executed.

❑ Attribute value templates, which are used to define variable attributes not only
of literal result elements, but of certain XSL elements as well.

❑ Facilities allowing the specification to be extended, both by vendors and by

W3C itself, without adversely affecting the portability of stylesheets.

❑ Handling of whitespace in the source document, in the stylesheet itself, and in
the result tree.

The Modular Structure of a Stylesheet
In the previous chapter we described the XSLT processing model, in
which a stylesheet defines the rules by which a source tree is transformed
into a result tree.

Stylesheets, like programs in other languages, can become quite long and
complex, and so there is a need to allow them to be divided into separate
modules. This allows modules to be reused, and combined in different
ways for different purposes: for example, we might want to use two
different stylesheets to display press releases on screen and on paper, but
there might be components that both of these stylesheets share in common.
These shared components can go in a separate module that is used in both
cases.

We can regard the complete collection of modules as a stylesheet
program, and refer to its components as stylesheet modules

The XSLT standard does not use this terminology. In fact it uses the term
stylesheet sometimes for the stylesheet program and sometimes for the
stylesheet module as defined here.

One of the stylesheet modules is the principal stylesheet module. This is
in effect the main program, the module which is identified to the stylesheet
processor by the use of an <?xml-stylesheet?> processing instruction in the
source document, or whatever command line parameters or API the vendor
chooses to provide. The principal stylesheet module may fetch other
stylesheet modules using <xsl:include> and <xsl:import> elements: these
may in turn fetch others, and so on.

Example: Using <xsl:include>

Source
The input document, sample.xml, looks like this:

<?xml version="1.0" encoding="iso-8859-1"?>

<document>

 <author>Michael Kay</author>

 <title>XSLT Programmer's Reference</title>

 <copyright/>

 <date/>

 <abstract>A comprehensive guide to the XSLT and XPath recommendations

 published by the World Wide Web Consortium on 16 November 1999</abstract>

</document>

Stylesheets

The stylesheet uses <xsl:include>. The effect of this stylesheet is to copy the
source document unchanged to the result, except that any <date> elements
are set to the current date, and any <copyright> elements are set to a string
identifying the copyright owner.

The three modules of this stylesheet program are as follows: principal.xsl,
date.xsl, and copyright.xsl. The date.xsl module uses an extension
function, it is written to work with xt and Saxon, but will need to be
modified to work with other XSLT processors.

You only need to name the principal stylesheet module as your stylesheet,
the other modules will be fetched automatically. The way this stylesheet is
written, all the modules must be in the same directory.

principal.xsl
The first module, principal.xsl, contains the main logic of the stylesheet:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:include href="date.xsl"/>

<xsl:include href="copyright.xsl"/>

<xsl:output method="xml" encoding="iso-8859-1" indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="date">

 <date><xsl:value-of select="$date"/></date>

</xsl:template>

<xsl:template match="copyright">

 <copyright><xsl:call-template name="copyright"/></copyright>

</xsl:template>

<xsl:template match="*">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

It starts with two <xsl:include> elements to bring in the other modules. The
<xsl:output> element indicates that the output should be in XML format,
using the ISO 8859/1 character set (which makes it easy to view with a text
editor), and with indentation to show the XML structure. The <xsl:strip-
space> element indicates that whitespace nodes in the source document are
to be ignored: I'll have a lot more to say about whitespace handling later in
this chapter. Then there are three template rules, one for <date> elements,
one for <copyright> elements, and one for everything else.

The template rule for <date> elements outputs the value of the variable
named $date. This variable isn't defined in this stylesheet module, but it is
present in the module date.xsl, so it can be accessed from here.

The template rule for <copyright> elements similarly calls the template
named copyright. Again, there is no template of this name in this module,
but there is one in the module copyright.xsl, so it can be called from here.

Finally, the template rule that matches all other elements («match="*"») has
the effect of copying the element unchanged from the source document to
the output. The <xsl:copy> (page Error! Cannot open file.) and <xsl:copy-
of> instructions are explained in Chapter 4 (page Error! Cannot open
file.).

date.xsl

The next module date.xsl declares a global variable containing today's
date. This calls the Java «java.util.Date» class to get the date, referencing it
as an external function. External functions are introduced later in this
chapter.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:variable name="date"

 select="Date:to-string(Date:new())"

 xmlns:Date="http://www.jclark.com/xt/java/java.util.Date"/>

</xsl:stylesheet>

copyright.xsl
Finally, the module copyright.xsl contains a named template that outputs a
copyright statement. This template is called by the <xsl:call-template>
instruction in the principal stylesheet. The template uses a variable $owner to
construct the copyright statement: we'll see later how this is useful.

The rather strange way of writing the <xsl:template> start tag is to avoid
outputting a newline before the copyright text. Later in the chapter I'll
describe other ways of achieving this.

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:variable name="owner">Wrox Press</xsl:variable>

<xsl:template name="copyright"

>Copyright © <xsl:value-of select="$owner"/> 2000</xsl:template>

</xsl:stylesheet>

The reason for separating this stylesheet program into three modules is that
the date.xsl and copyright.xsl modules are reusable in other stylesheets.
Functionally, the stylesheet would have exactly the same effect if the
variable $date and the templated named copyright were defined directly in
the principal stylesheet.

Output
<?xml version="1.0" encoding="iso-8859-1" ?>

<document>

 <author>Michael Kay</author>

 <title>XSLT Programmer's Reference</title>

 <copyright>Copyright © Wrox Press 2000</copyright>

 <date>Sat Mar 18 10:27:44 GMT+00:00 2000</date>

 <abstract>A comprehensive guide to the XSLT and XPath recommendations

 published by the World Wide Web Consortium on 16 November 1999</abstract>

</document>

There is no syntactic difference between a principal module and any other
module; in fact any module can be used as a principal module.

This means that <xsl:include> and <xsl:import> can be used in any module,
not only the principal module. So the stylesheet program is actually a tree
of stylesheet modules, with the principal module at its root.

A stylesheet module is generally one XML document (the exception, an
embedded stylesheet, will be described later on page 14). The document
element (the outermost element of the XML document) is then either an
<xsl:stylesheet> element or an <xsl:transform> element: the two names are
synonymous. The elements immediately subordinate to the
<xsl:stylesheet> or <xsl:transform> element are called top-level elements
(it might have been clearer to call them second-level elements, but top-
level is the term the standard uses). The XSLT-defined top-level elements
are listed on page 17.

The <xsl:include> and <xsl:import> elements are always top-level elements.
They take an href attribute whose value is a URI: most commonly, it will
be a relative URL, defining the location of the included or imported
stylesheet module relative to the parent module. For example, <xsl:include
href="mod1.xsl"/> causes the module named mod1.xsl, located in the same
directory as the parent module, to be fetched.

The difference between <xsl:include> and <xsl:import> is that conflicting
definitions are resolved differently:

❑ <xsl:include> effectively does a textual inclusion of the referenced stylesheet
module, minus its containing <xsl:stylesheet> element, at the point where
the <xsl:include> element is written. The included module is treated exactly

as if its top-level elements, with their contents, appeared in the parent module
in place of the <xsl:include> element itself.

❑ <xsl:import> also incorporates the top-level elements from the referenced
stylesheet module, but in this case the definitions in the imported module have
lower import precedence than the definitions in the parent module. If there are
conflicting definitions, the one with higher import precedence will generally
win. The detailed rules actually depend on the type of definition, and are
given in the specification of <xsl:import> on page Error! Cannot open file.,in
Chapter 4. Importing a module is thus rather like defining a subclass: the
parent module can use some definitions unchanged from the imported
module, and override others with definitions of its own.

The most obvious kind of definition is the definition of a template rule,
using an <xsl:template> element with a match attribute. As we saw in the
previous chapter, if there are several template rules that match a particular
node in the source tree, the first step in deciding which to use is to look at
their import precedence, and discard all those with import precedence less
than the highest. So a template rule defined in a particular stylesheet
module will automatically take precedence over another matching rule in a
module that it imports.

Where one module A imports two others, B and C, as shown in the
diagram on the right, then A takes precedence over both B and C, and C
also takes precedence over B, assuming that the <xsl:import> element that
loads B precedes the <xsl:import> element that loads C.

im p o rt
im p o rt

A

B

C

When a stylesheet incorporates another using <xsl:include>, the definitions
in the included stylesheet have the same import precedence as those in the
parent stylesheet.

Where two definitions have the same import precedence (because they
were in the same stylesheet module, or because one was in a module
incorporated in the other using <xsl:include>), the rules for resolving
conflicts depend on the kind of definition. In some cases, for example
definitions of named templates or variables, duplicate definitions with the
same name are always reported as an error. In some other cases, for
example definitions of template rules, the implementer has the choice of
reporting an error or choosing the definition that occurs later in the
stylesheet. Some implementers may pass this choice on to the user. The
detailed rules are given in Chapter 4 for each kind of top-level element,
and they are summarized in the section for <xsl:import>, page Error!
Cannot open file..

Example: Using <xsl:import>

This extends the previous <xsl:include> example, showing how to use
<xsl:import> to incorporate the definitions in another stylesheet module
while overriding some of them.
Source

The input document for this example is sample.xml.

Stylesheet

Recall that the copyright.xsl module used a variable, $owner, to hold the
name of the copyright owner. Suppose that we want to use the copyright
template, but with a different copyright owner. We can achieve this by
writing a revised principal stylesheet as follows (this is called
principal2.xsl in the downloadable sample files).

This stylesheet uses <xsl:import> instead of <xsl:include> to incorporate the
copyright.xsl module, and it then contains a new declaration of the $owner
variable, which will override the declaration in the imported module. Note
that the <xsl:import> element must come first.

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:import href="copyright.xsl"/>

<xsl:variable name="owner">Wrox Press Ltd</xsl:variable>

<xsl:include href="date.xsl"/>

<xsl:output method="xml" encoding="iso-8859-1" indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="date">

 <date><xsl:value-of select="$date"/></date>

</xsl:template>

<xsl:template match="copyright">

 <copyright><xsl:call-template name="copyright"/></copyright>

</xsl:template>

<xsl:template match="*">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

Output
<?xml version="1.0" encoding="iso-8859-1" ?>

<document>

 <author>Michael Kay</author>

 <title>XSLT Programmer's Reference</title>

 <copyright>Copyright © Wrox Press Ltd 2000</copyright>

 <date>Sat Mar 18 11:11:37 GMT+00:00 2000</date>

 <abstract>A comprehensive guide to the XSLT and XPath recommendations

 published by the World Wide Web Consortium on 16 November 1999</abstract>

</document>

This example wouldn't work if you used <xsl:include> rather than
<xsl:import>. It would complain that the variable $owner was declared twice.
This is because with <xsl:include>, the two declarations have the same
import precedence, so neither can override the other.

It is an error for a stylesheet module to import or include itself, directly or
indirectly. This would define an infinite loop.

It isn't an error, however, for a stylesheet module to be included or
imported at more than one place in the stylesheet program. The following
isn't an error:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:import href="date.xsl"/>

 <xsl:import href="date.xsl"/>

</xsl:stylesheet>

This may seem rather pointless, but in a highly modular structure it can
sometimes happen by accident and be harmless: for example, several of
your stylesheet modules might independently reference a commonly used
module such as date.xsl. The effect is simply to load two copies of all the
definitions in date.xsl, exactly as if two identical files with different names
had been imported.

If the same module is fetched twice using <xsl:include>, the included
definitions will have the same import precedence, which is likely to cause
an error: for example, if the included module defines a global variable or a
named template, duplicate definitions will be reported. In other cases, for
example where the file uses the <xsl:attribute-set> element to define
named attribute sets, the duplicate definitions are harmless (the
<xsl:attribute-set> element is described on page Error! Cannot open
file., in Chapter 4). However, if there is a risk of loading the same module
twice, it makes sense to use <xsl:import> rather than <xsl:include>.

The <xsl:stylesheet> Element
The <xsl:stylesheet> element (or <xsl:transform>, which is a synonym) is
the outermost element of every stylesheet module.

The name <xsl:stylesheet> is a conventional name. The first part, xsl, is a
prefix that identifies the namespace to which the element name belongs.
Any prefix can be used so long as it is mapped, using a namespace
declaration, to the URI http://www.w3.org/1999/XSL/Transform. There is also
a mandatory version attribute. So the start tag of the <xsl:stylesheet>
element will usually look like this:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

If you come across a stylesheet that uses the namespace URI
http://www.w3.org/TR/WD-xsl, then the stylesheet is written in a
Microsoft dialect of XSL based on an early working draft of the standard. This
version was released with Internet Explorer 5. There are many differences

between the IE5 dialect of XSL and the final XSLT specification described in
this book. For details of IE5 XSL, see the Wrox Press book XML IE5
Programmer's Reference, ISBN 1-861001-57-6. Microsoft has since released
an updated version of their XSL processor, which supports most of the XSLT
specification: see Chapter 10, page Error! Cannot open file., for details.

The other attributes that may appear on this element are described under
<xsl:stylesheet> in Chapter 4, page Error! Cannot open file..
Specifically, they are:

❑ id, to identify the stylesheet if it appears as an embedded stylesheet within
another document. Embedded stylesheets are described in the next section.

❑ extension-element-prefixes, a list of namespace prefixes that denote
elements used for vendor-defined or user-defined extensions to the XSLT
language.

❑ exclude-result-prefixes, a list of namespaces used in the stylesheet that
should not be copied to the result tree unless they are actually needed. I'll
explain how this works in the section Literal Result Elements on page 26.

These attributes affect only the stylesheet module in which this
<xsl:stylesheet> element appears; they do not affect what happens in
included or imported stylesheet modules.

The <xsl:stylesheet> element will often contain further namespace
declarations. Indeed, if the extension-element-prefixes or exclude-result-
prefixes attributes are used, then any namespace prefixes they mention
must be declared by means of a namespace declaration on the
<xsl:stylesheet> element. For example, if you want to declare «saxon» as an
extension element prefix, the start tag of the <xsl:stylesheet> element
would look like this:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:saxon="http://icl.com/saxon"

 version="1.0"

 extension-element-prefixes="saxon"

>

Namespace declarations on the <xsl:stylesheet> element, and indeed
anywhere else in the stylesheet, apply only to the stylesheet module in
which they appear. They are not inherited by included or imported
modules.

The <?xml-stylesheet?> Processing Instruction
This processing instruction is not part of the XSLT or XPath standard,
rather it has a short W3C Recommendation all to itself, which you can find
at http://www.w3.org/TR/xml-stylesheet. XSLT mentions it, but only in an
example, so there is no implication that an XSLT processor is required to
support it.

The <?xml-stylesheet?> processing instruction is used within a source XML
document to identify the stylesheet that should be used to process it. There
can be several <?xml-stylesheet?> processing instructions present, defining
different stylesheets to be used under different circumstances.

The processing instruction has an href attribute whose value is the URI of
the stylesheet (that is, the principal stylesheet module), and a type attribute
that indicates the language in which the stylesheet is written. This doesn't
have to be an XSLT stylesheet, it could be CSS. The W3C
Recommendation says that for XSL the media type should be either
text/xml or application/xml; however, with Microsoft's implementation in
Internet Explorer 5 it must be text/xsl.

Technically, XML processing instructions do not contain attributes, they
contain a name (here xml-stylesheet) followed by character data. However,
many people like to structure the character data as a sequence of
name="value" pairs, like the attributes in an element start tag, and the xml-
stylesheet recommendation follows this practice. It refers to the
name="value" pairs as pseudo-attributes.

The full list of pseudo-attributes in the <?xml-stylesheet?> processing
instruction is as follows:

Attribute name Value Meaning
href
mandatory

URI The URI of the stylesheet. This may be a
full URL of the XML document
containing the stylesheet, or it may
contain a fragment identifier (e.g.
#styleB) used to locate the stylesheet
within a larger file: see Embedded
Stylesheets below

type
mandatory

Mime type Identifies the language in which the
stylesheet is written: typically text/xml
or text/xsl (see discussion above).

title
optional

String If there are several <?xml-stylesheet?>
processing instructions, each should be
given a title to distinguish them. The user
can then be allowed to choose which
stylesheet is wanted. For example, there
may be special stylesheets that use large
print or aural rendition.

media
optional

String Description of the output medium, for
example "print", "projection", or "aural".
The list of possible values is defined in
the HTML 4.0 specification. This value
can be used to select from the available
stylesheets.

charset
optional

Character
encoding name,
e.g. iso-8859-1

This attribute is not useful with XSLT
stylesheets, since as XML documents they
define their character encoding
themselves.

alternate
optional

"yes" or "no" If "no" is specified, this is the preferred
stylesheet. If "yes" is specified, it is an
alternative stylesheet.

An <?xml-stylesheet?> processing instruction must appear, if it appears at
all, as part of the document prolog, that is, before the start tag of the
document element. The href attribute identifies the location of the
stylesheet by an absolute or relative URL. For example:

<?xml-stylesheet type="text/xsl" href="../style.xsl"?>

It isn't mandatory to use the <?xml-stylesheet?> processing instruction, and
most products will offer some other way of saying which stylesheet you
want to apply to a particular document. It's mainly useful when you want
to apply a stylesheet to an XML document within the browser: specifying
this processing instruction means that the browser can apply a default
stylesheet to the document without any extra scripting being needed.

Clearly, one of the reasons for separating the stylesheet from the source
XML document is so that the same information can be transformed or
presented in different ways depending on the user, their equipment, or the
particular mode of access. The various attributes of the <?xml-stylesheet?>
processing instruction are designed to define the rules controlling the
selection of an appropriate stylesheet. The mechanism is geared towards
stylesheets that are used to display information to users: it has less
relevance to the more general use of XSLT for performing data
transformations.

Embedded Stylesheets
There is one exception to the rule that the stylesheet module must be an
XML document. The principal stylesheet module can be embedded within
another XML document, typically the document whose style it is defining.

The ability to embed stylesheets within the source document is best
regarded as a carryover from CSS. It can be useful if you have a
freestanding document that you want to distribute as a self-contained unit,
but in most situations it is better to use an external stylesheet that can be
used for many different source documents. Some people like to embed
stylesheets to reduce download time, but this can be counter-productive,
because it means the browser cannot spot that the stylesheet is already
present in its cache.

Not all XSLT processors support embedded stylesheets. Check the
documentation for your particular product before using them.

The outermost element of the stylesheet is still an <xsl:stylesheet> or
<xsl:transform> element, but it will no longer be the outermost element of
the XML document (that is, the document element). The <xsl:stylesheet>
element will generally have an id attribute to identify it, and will be
referenced within its containing document using the <?xml-stylesheet?>
processing instruction, for example:

Example: Embedded Stylesheets
This example shows a stylesheet embedded within an XML source
document containing a list of books.
Source

The data file, embedded.xsl, containing both source document and stylesheet,
is as follows:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xml" href="#style1"?>

<books>

 <book category="reference">

 <author>Nigel Rees</author>

 <title>Sayings of the Century</title>

 <price>8.95</price>

 </book>

 <book category="fiction">

 <author>Evelyn Waugh</author>

 <title>Sword of Honour</title>

 <price>12.99</price>

 </book>

 <book category="fiction">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <price>8.99</price>

 </book>

 <book category="fiction">

 <author>J. R. R. Tolkien</author>

 <title>The Lord of the Rings</title>

 <price>22.99</price>

 </book>

 <xsl:stylesheet id="style1" version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="xsl:stylesheet"/>

 <xsl:template match="books">

 <html><body>

 <h1>A list of books</h1>

 <table>

 <xsl:apply-templates/>

 </table>

 </body></html>

 </xsl:template>

 <xsl:template match="book">

 <tr><xsl:apply-templates/></tr>

 </xsl:template>

 <xsl:template match="author | title | price">

 <td><xsl:value-of select="."/></td>

 </xsl:template>

 </xsl:stylesheet>

</books>

You can run this stylesheet using Saxon with a command of the form:

saxon –a embedded.xsl

The –a option tells Saxon to look for an <?xml-stylesheet?> processing

instruction in the supplied source document, and to process the source
document using that stylesheet. (Saxon will always use the first <?xml-
stylesheet?> processing instruction it finds, ignoring attributes such as media
and alternate).

Output

Note the empty template rule that matches the <xsl:stylesheet> element.
This is needed because without it, the stylesheet will try to process itself
along with the rest of the document. The empty template rule ensures that
when the <xsl:stylesheet> element is matched, no output is generated, and
its child elements are not processed. You may need to take care to avoid
matching other elements in the stylesheet as well. For example, if the
stylesheet looks for book titles using an expression such as «//title», this
could accidentally match a <title> literal result element within the
embedded stylesheet.

An embedded stylesheet module will generally be used as the principal
stylesheet module. The standard doesn't explicitly say whether or not an
embedded stylesheet can be included or imported into another. In practice,
the details of what is supported are likely to vary from one product to
another: few of the current products have much to say about embedded
stylesheets in their documentation.

Top-Level Elements
The term top-level element means an element that is an immediate child
of the <xsl:stylesheet> or <xsl:transform> element. The term second-level

element might have been more accurate, but top-level element is the one
used in the standard.

It is not permitted to have text nodes as immediate children of the
<xsl:stylesheet> or <xsl:transform> element, unless they consist entirely of
whitespace characters. Processing instructions and comments may appear,
and the XSLT processor will ignore them.

Top-level elements can appear in any order in the stylesheet, except that if
there are any <xsl:import> elements, they must come first. In most cases the
order in which the elements appear is of no significance; however, if there
are conflicting definitions, the XSLT processor sometimes has the option
of either reporting an error or taking whichever definition comes last. If
you want your stylesheet to be portable, you cannot rely on this behavior,
and should ensure that conflicting definitions don't arise.

The elements that may appear at the top level fall into three categories:

❑ XSL-defined top-level elements

❑ Implementer-defined top-level elements

❑ User-defined top-level elements.

Let us now examine further these three categories.

XSL-Defined Top-Level Elements
An XSL-defined top-level element must be one of the elements listed
below:

<xsl:attribute-set>
<xsl:decimal-format>
<xsl:import>
<xsl:include>

<xsl:key>
<xsl:namespace-alias>
<xsl:output>
<xsl:param>

<xsl:preserve-space>
<xsl:strip-space>
<xsl:template>
<xsl:variable>

The meaning of these elements is explained in Chapter 4. No other XSL
element (that is, no other element with the namespace URI
http://www.w3.org/1999/XSL/Transform) may be used at the top level.

Implementer-Defined Top-Level Elements
An implementer-defined top-level element must belong to a namespace
with a non-null URI, different from the XSL namespace. This will

generally be a namespace defined by the vendor: for example with the
Saxon product, the relevant namespace URI is http://icl.com/saxon. The
meaning of elements in this category is entirely at the discretion of the
vendor, though the specification states a rule that such elements must not
be used to change the meaning of any standard XSLT constructs. Note that
these top-level elements are not technically extension elements, and their
namespace does not have to be declared in the extension-element-prefixes
attribute for them to be effective.

Several vendors supply top-level elements that allow you to define scripts
or external functions that can be invoked from XPath expressions in the
stylesheet. Others might use such elements to define debugging or tracing
options. Some of these extensions are described in Chapter 10.

User-Defined Top-Level Elements
A user-defined top-level element must also belong to a namespace with a
non-null URI, different from the XSL namespace, and preferably different
from the namespace URI used by any vendor. These elements are ignored
by the XSLT processor. They are useful, however, as a source of lookup
data, error messages, and the like. It is possible to reference these elements
from within the stylesheet by treating the stylesheet as an additional source
document, and loading it using the document() function - which is described
in Chapter 7, page Error! Cannot open file.. If the first argument to this
function is an empty string, it is interpreted as a reference to the stylesheet
module in which the document() function appears.

So for example, if the stylesheet contains a user-defined top-level element
as follows:

<user:data xmlns:user="http://acme.com/">

 <message nr="1">Source document is empty</message>

 <message nr="2">Invalid date</message>

 <message nr="3">Sales value is not numeric</message>

</user:data>

then the same stylesheet can contain a named template to display a
numbered message as follows:

<xsl:template name="display-message">

 <xsl:param name="message-nr"/>

 <xsl:message xmlns:user="http://acme.com/">

 <xsl:value-of

 select="document('')/*/user:data/message[@nr=$message-nr]"/>

 </xsl:message>

</xsl:template>

The <xsl:value-of> element evaluates the XPath expression in its select
attribute as a string, and writes the value to the result tree. In this case the
XPath expression is a path expression starting with «document('')», which
selects the root node of the stylesheet module, followed by «*», which
selects its first child (the <xsl:stylesheet> element), followed by
«user:data», which selects the <user:data> element, followed by
«message[@nr=$message-nr]», which selects the <message> element whose nr
attribute is equal to the value of the $message-nr parameter in the stylesheet.

This named template might be invoked from elsewhere in the stylesheet
using a sequence such as:

<xsl:if test="string(number(@sales))='NaN'">

 <xsl:call-template name="display-message">

 <xsl:with-param name="message-nr" select="3"/>

 </xsl:call-template>

</xsl:if>

The <xsl:if> element tests whether the sales attribute of the current source
element is numeric: if not, the result of converting it to a number and then
to a string will be the value NaN, meaning Not-A-Number. In this case, the
code will call the template we defined earlier to display the message "Sales
value is not numeric". (The destination of messages output using
<xsl:message> is not defined in the standard. It might produce an alert box,
or simply a message in the web server log file.)

The advantage of this technique is that it gathers all the messages together
in one place, for ease of maintenance. The technique can also be readily
extended to use different sets of messages depending on the user's
preferred language.

Simplified Stylesheets
A simplified stylesheet uses an abbreviated syntax in which the
<xsl:stylesheet> element and all the top-level elements are omitted.

The XSLT specification calls this facility Literal Result Element As
Stylesheet19. Its purpose is to allow people with HTML authoring skills

but no programming experience to write simple stylesheets with a
minimum of training. A simplified stylesheet has a skeleton that looks like
the target document (which is usually HTML, though it doesn't have to
be), and uses XSLT instructions to fill in the variable parts.

A stylesheet module is interpreted as a simplified stylesheet if the
outermost element is not <xsl:stylesheet> or <xsl:transform>. The
outermost element can have any name, provided it is not in the XSL
namespace. It must still contain a declaration of the XSL namespace, and
it must have an xsl:version attribute. For this version the value should be
1.0. When the xsl:version attribute is not equal to 1.0, forwards compatible
processing mode is enabled. This is discussed later on page 47.

Example: A Simplified Stylesheet

This example shows a stylesheet that takes the form of an HTML skeleton
page, with XSLT instructions embedded within it to pull data from the
source document. The stylesheet is in the download file obtainable from
http://www.wrox.com. It has the filename simplified.xsl, and can be used
together with the data file books.xml.

The complete stylesheet is as follows:

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

<head><title>A list of books</title></head>

<body>

<h1>A list of books</h1>

 <table border="2">

 <xsl:for-each select="//book">

 <xsl:sort select="author"/>

 <tr>

 <td><xsl:value-of select="author"/></td>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="@category"/></td>

 <td><xsl:value-of select="price"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

When you run this against the file books.xml (which is listed on page Error!

Cannot open file. in Chapter 2), the output is a sorted table showing the
books, as follows:

A simplified stylesheet is equivalent to a stylesheet in which the outermost
element (typically the <html> element) is wrapped first in an <xsl:template>
element with «match="/"», and then in an <xsl:stylesheet> element. The
xsl:version attribute of the outermost element becomes the version attribute
of the <xsl:stylesheet>. So the expanded form of the above example would
be:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/">

<html>

<head><title>A list of books</title></head>

<body>

<h1>A list of books</h1>

 <table border="2">

 <xsl:for-each select="//book">

 <xsl:sort select="author"/>

 <tr>

 <td><xsl:value-of select="author"/></td>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="@category"/></td>

 <td><xsl:value-of select="price"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The significance of «match="/"» is that this identifies the template rule as
the first one to be processed when the stylesheet is activated. As we saw in
Chapter 2, processing always starts at the root node of the source
document tree, and whichever template rule matches the root node is the
first one to be invoked. The match pattern «/» matches the root node. In a
simplified stylesheet, this will generally be the only template to be
invoked.

There are many things a simplified stylesheet cannot do, because it cannot
have any top-level XSL elements. For example, a simplified stylesheet
can't include or import another stylesheet, it can't have global variables or
parameters, and it can't define keys. But when you need these extra
capabilities, you can always "unsimplify" the stylesheet by adding the
surrounding <xsl:stylesheet> and <xsl:template> elements.

It is possible in theory for a stylesheet to include or import a simplified
stylesheet, which would be expanded exactly as described above – but it
would be a rather unusual thing to do.

Template Bodies
The content of an <xsl:template> element, after any parameter definitions
contained in <xsl: param> elements, is a template body. The XSLT
specification calls this simply a template, but since this term is often used
casually to mean an <xsl:template> element, I have avoided this usage.

Many other XSL elements are also defined to have a template body as
their content. This simply refers to the rules for what contents may appear
within the element, it does not mean that there must actually be an
<xsl:template> element present. For example, the contents of an
<xsl:variable> or <xsl:if> element follow exactly the same rules as the
content of an <xsl:template> (ignoring <xsl: param> elements), and these too
are template bodies. It follows that one template body may be contained
within another. For example, consider the following template rule:

<xsl:template match="para">

 <xsl:if test="position()=1">

 <hr/>- o – 0 – o -<hr/>

 </xsl:if>

 <xsl:apply-templates/>

 <xsl:if test="position()=last()">

 <hr/>- o – 0 – o -<hr/>

 </xsl:if>

</xsl:template>

Viewed as a tree, using the notation introduced in Chapter 2, this has the
structure shown in the diagram below. There are three template bodies,
indicated by the dotted lines. Within the template bodies on this tree, there
are three kinds of nodes: text nodes, XSL instructions (such as <xsl:if>),
and literal result elements (such as <hr>) which are elements to be written
to the result tree.

element
xsl:template

*

element
xsl:if

*

element
xsl:apply-templates

text

- o - O - o -

element
hr

element
hr

element
xsl:if

*

text

- o - O - o -

element
hr

element
hr

A template body is the nearest equivalent in XSLT to a block in a block-
structured programming language such as C or Java; and like blocks in C
or Java, it defines the scope of any local variables declared within the
block.

A template body is a sequence of sibling nodes in the stylesheet. Comment
and processing instruction nodes are allowed, but the XSLT processor
ignores them. The nodes of interest are text nodes and element nodes.

Text nodes appearing within a template body are copied to the result tree
when the template body is instantiated. However, text nodes in a template
body that consist entirely of whitespace will be ignored, unless the
xml:space attribute is used on an enclosing element to define them as
significant.

Text nodes containing whitespace only are also significant if they appear as
the content of an <xsl:text> element, but in that case they are not part of a
template body.

Element nodes within a template body are one of three kinds: XSL
instructions, extension elements, and literal result elements. I'll describe
these in the next three sections.

XSL Instructions
An XSL instruction is one of the following elements:

<xsl:apply-imports>
<xsl:apply-templates>
<xsl:attribute>
<xsl:call-template>
<xsl:choose>
<xsl:comment>

<xsl:copy>
<xsl:copy-of>
<xsl:element>
<xsl:fallback>
<xsl:for-each>
<xsl:if>

<xsl:message>
<xsl:number>
<xsl:processing-
instruction>
<xsl:text>
<xsl:value-of>
<xsl:variable>

No other element in the XSL namespace may appear directly in a template
body. Other XSL elements, for example <xsl:with-param>, <xsl:sort>, and
<xsl:otherwise>, are not regarded as instructions, because they cannot
appear directly in a template body – they may only appear in very specific
contexts. The <xsl:param> element is a bit anomalous: it can appear as a
child or an <xsl:template> element, but it is constrained to appear before
other elements, and is therefore not considered to be part of the template
body. So it is not classified as an instruction.

I shall explain the meaning of all these XSL instructions in Chapter 4.

If an unknown element in the XSL namespace is encountered in a template
body, the action taken depends on whether forwards-compatible mode is
enabled. This is discussed later on page 47.

Extension Elements
An extension element is an instruction defined by the vendor or the user,
as distinct from one defined in the XSLT standard. In both cases, they are
recognized as extension elements because they belong to a namespace that
is listed in the extension-element-prefixes attribute of the containing
<xsl:stylesheet> element, or in the xsl:extension-element-prefixes attribute
of the element itself, or of a containing literal result element or extension
element.

In practice, extension elements are more likely to be defined by vendors
than by users. Several vendors have provided extension elements to direct
the stylesheet output to multiple output files. Another example: the Saxon
product provides the <saxon:group> extension element to perform grouping
(like the SQL GROUP BY construct), a capability which is awkward and
inefficient to achieve using standard XSLT facilities.

Not all products allow users to implement their own extension elements,
and with those that do, it may well involve some rather complex system-
level programming. In practice, it is usually simpler to escape to user-
written code by using extension functions, which are much easier to write.

The following example shows an <acme:instruction> element which would
be treated as a literal result element were it not for the xsl:extension-
element-prefixes attribute, which turns it into an extension element:

<acme:instruction

 xmlns:acme="http://acme.co.jp/xslt"

 xsl:extension-element-prefixes="acme"/>

The way in which new extension elements are implemented is not defined
in the XSLT specification, and is likely to vary for each vendor. In fact,
XSLT processors are not required to provide a mechanism for defining
new extension elements. The only requirement is that they should
recognize an extension element when they see one, and distinguish it from
a literal result element.

What happens if a stylesheet that uses an extension element defined in the
Xalan product (say) is processed using a different product (say
Microsoft's)? If the processor encounters an extension element that it
cannot instantiate (typically because it was invented by a different vendor),
the action it must take is clearly defined in the XSLT standard: if the
stylesheet author has defined an <xsl:fallback> action, it must execute that,
otherwise it must report an error. The one thing it must not do is to treat
the extension element as a literal result element and copy it to the result
tree.

The <xsl:fallback> instruction allows you to define how an XSLT
processor should deal with extension elements it does not recognize. It is
described in more detail on page 47, and full specifications are on page Error!
Cannot open file.,in Chapter 4.

Any element found in a template body that is not an XSL instruction or an
extension element is interpreted as a literal result element (for example,
the <hr/> elements in the previous template bodies example above). When
the template body is instantiated, the literal result element will be copied to
the result tree.

So in effect there are two kinds of nodes in a template body: instructions
and data. Instructions are obeyed according to the rules of the particular
instruction, and data nodes (text nodes and literal result elements) are
copied to the result tree.

Literal result elements play an important role in the structure of a
stylesheet, so the next section examines them in more detail.

Literal Result Elements
A literal result element is an element within a template body in the
stylesheet that cannot be interpreted as an instruction, and which is
therefore treated as data to be copied to the current output destination.

We'll describe literal result elements using the same structure as we'll be
using to describe XSL elements in Chapter 4.

Format

Position
A literal result element always appears directly within a template body.

Attributes

Name Value Meaning
xsl:exclude-result-
prefixes
optional

Whitespace-
separated list of
namespace prefixes
(see note below)

Each prefix in the list must
identify a namespace that is in
scope at this point in the
stylesheet module. The
namespace identified is not to
be copied to the result tree.

xsl:
extension-element-
prefixes
optional

Whitespace-
separated list of
namespace prefixes
(see note below)

Each prefix in the list must
identify a namespace that is in
scope at this point in the
stylesheet module. Elements
that are descendants of this
literal result element, and

whose names are in one of
these identified namespaces,
are treated as extension
elements rather than literal
result elements.

xsl:version
optional

Number If the value is «1.0», then any
XSL element that is a
descendant of the literal result
element must be an XSL
element defined in version 1.0
of the Recommendation. If the
value is any other value,
forwards-compatible mode is
enabled: see below.

xsl:use-attribute-sets
optional

Whitespace-
separated list of
QNames identifying
named
<xsl:attribute-
set> elements (see
note below)

The attributes defined in the
named attribute sets are
instantiated and copied as
attributes of this literal result
element in the output
destination.

other attributes (optional) Attribute value
template

Any XPath expressions
occurring between curly braces
in the value are evaluated, and
the resulting string forms the
value of an attribute copied to
the current output destination.
Attribute Value Templates are
described on page 35.

Note
Several of the attributes take the form of whitespace-separated lists. This is
simply a list of names (or prefixes) in which the various names are
separated by any of the XML-defined whitespace characters: tab, carriage
return, newline, or space. For example, you could write:

<TD xsl:use-attribute-sets="blue italic centered"/>

Here the names blue, italic, and centered must match the names of
<xsl:attribute-set> elements elsewhere in the stylesheet.

Content
The content of a literal result element is a template body. It may thus
contain XSL instructions, extension elements, literal result elements,
and/or text nodes.

Usage
The literal result element is copied to the result tree, and its content is
instantiated.

Consider a template body containing a single literal result element:

<TD>Product code</TD>>

In this case a <TD> element will be written to the result tree with a child text
node whose content is «Product code». When the result tree is output to an
XML or HTML file, it will regenerate the text as it appeared in the
stylesheet – or something equivalent. There is no guarantee that it will be
character-for-character identical, for example the processor may add or
remove whitespace within the tags, or it may represent characters using
character or entity references.

If the literal result element has content, then the content must be another
template body, and this template body is itself instantiated; any nodes
generated in the result tree in the course of this process will become
children of the element created from the literal result element.

For example, if the template body is:

<TD><xsl:value-of select="."/></TD>

then when the <TD> element is instantiated, its content will also be
instantiated. The content in this case is a template body consisting of a
single XSL instruction, and the effect is that this instruction is instantiated
to create a text node which will be a child of the <TD> element in the result
tree. The instruction <xsl:value-of select="."> outputs the string-value of
the current node in the source tree. So if this value is «$83.99», the result
would be:

<TD>$83.99</TD>

It is tempting to think of this as a sequence of three steps:

❑ The <TD> start tag causes a <TD> start tag to be written to the output.

❑ The <xsl:value-of> element is evaluated and the result («$83.99») is written
to the output.

❑ The </TD> end tag causes a </TD> end tag to be written to the output.

However, this is not a true picture of what is going on, and it is best not to
think about it this way, because otherwise you will start wondering, for
example, how to delay writing the end tag until some condition is
encountered in the input.

The transformation process writes nodes to the result tree, it does not
write tags to a sequential file. The <TD> node in the stylesheet causes
a <TD> node to be written to the result tree. You cannot write half a
node to the tree – the start and end tags are not written as separate
operations. The <TD> and </TD> tags are generated only when the
result tree is serialized as XML or HTML.

The following diagram might help to illustrate this:

Source
…
<price>
$83.99
</price>
...

Result
...
<TD>
$83.99
</TD>
...

Transformation
Process

Source
Tree

Result
Tree

Stylesheet
Tree

Stylesheet

<TD>
<xsl:value-of select=“.”/>
</TD>

element
TD
*

text

$83.99

text

$83.99

element
TD

element
xsl:value-of

attribute
select

.
element

price
*

If you do find yourself thinking about where you want tags to appear in the
output, it is a good idea to draw a sketch showing the required shape of the
result tree, and then think about how to write the stylesheet to produce the
required nodes on the tree.

Attributes of a Literal Result Element
If the literal result element has attributes, other than the special xsl-
prefixed ones in the list above, then these attributes too will be copied to
the current output destination. So if the template body contains:

<TD></TD>

then the output will contain a copy of this whole structure. The outer <TD>
element is copied to the result tree as before, and this time its content
consists of another literal result element, the element, which is
copied to the result tree as a child of the <TD> element, along with its src
attribute. This time both the stylesheet tree and the result tree take the form
shown below:

element
TD

element
IMG

attribute
src

picture1.gif

If the value of an attribute of a literal result element contains curly braces
(«{» and «}»), then it is treated as an attribute value template (discussed
further in the next section). The text between the curly braces is treated as
an XPath expression, and is evaluated as a string; the attribute written to
the result tree contains this string in place of the expression. For example,
suppose we apply the following template to the books.xml file used earlier:

<xsl:template match="/">

<xsl:""for-each select="//book">

<div id="div{position()}">

<xsl:value-of select="title"/>

</div>

</xsl:for-each>

</xsl:template>

Because the position() function takes the values 1, 2, 3 and 4, as we move
through the set of books, the output will take the form:

<div id="div1">Sayings of the Century</div>

<div id="div2">Sword of Honour</div>

<div id="div3">Moby Dick</div>

<div id="div4">The Lord of the Rings</div>

It is also possible to generate attributes for a literal result element by two
other mechanisms:

❑ The attribute can be generated by an <xsl:attribute> instruction. This
instruction does not need to be textually within the content of the literal result
element in the stylesheet, but it must be instantiated before any child nodes
(elements or children) have been generated.

The reason for this rule is to allow the XSLT processor to avoid building the result tree
in memory. Many processors will write XML syntax direct to an output file as the
nodes are generated, and the rule that attributes must be generated before child
elements or text nodes ensures that this is possible. The rule is phrased as if execution
of the stylesheet has to be sequential, but of course any implementation strategy that
produces the same effect is acceptable.

❑ A collection of attributes can be generated by use of a named attribute set. The
literal result element must contain an xsl:use-attribute-sets attribute that
names the attribute sets to be incorporated: these names must correspond to
<xsl:attribute-set> elements at the top level of the stylesheet. The named
attribute sets each contain a sequence of <xsl:attribute> instructions, and
these cause attributes to be added to the generated element as if they were
present directly in the content of the literal result element. Named attribute
sets are useful to maintain a collection of related attributes such as font name,
color, and size, which together define a style that will be used repeatedly in the
output document; they are a direct parallel to the styles found in simpler
languages such as CSS.

Attributes are added to the generated element node in a defined order: first
attributes incorporated using xsl:use-attribute-sets, then attributes present
on the literal result element itself, and finally attributes added using
<xsl:attribute> instructions. The significance of this sequence is that if two
or more attributes with the same name are added, it is the last one that
counts. It doesn't mean that they will necessarily appear in this order when
the result tree is serialized.

Namespaces for a Literal Result Element
The namespace nodes of a literal result element are also copied to the
current output destination. This is often the source of some confusion. The
literal result element in the stylesheet will have a namespace node for
every namespace declaration that is in scope: that is, every xmlns attribute
or xmlns:* attribute on the literal result element itself, or on any of its
ancestor elements in the stylesheet. The only exception is that the attribute

«xmlns=""» does not act as a namespace declaration, rather it cancels any
earlier declaration for the default namespace.

In the result tree, the element created from the literal result element is
guaranteed to have a namespace node for every namespace node present
on the literal result element in the stylesheet, except the following:

❑ a namespace node for the XSLT namespace URI
http://www.w3.org/1999/XSL/Transform will not be copied.

❑ a namespace node for a namespace declared as an extension element
namespace will not be copied. A namespace is declared as an extension
element namespace by including its prefix in the value of the extension-
element-prefixes attribute of the <xsl:stylesheet> element, or in the value
of the xsl:extension-element-prefixes attribute of this literal result
element or of any ancestor literal result element or extension element.

❑ a namespace node for an excluded namespace will not be copied. A namespace
is declared as an excluded namespace by including its prefix in the value of the
exclude-result-prefixes attribute of the <xsl:stylesheet> element, or in
the value of the xsl:exclude-result-prefixes attribute of this literal result
element or of any ancestor literal result element.

For example, consider the following stylesheet:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:date="http://www.jclark.com/xt/java.util.Date"

>

<xsl:template match="/"

 xmlns = "urn:acme-com:gregorian">

 <date><xsl:value-of select="$today"/></date>

</xsl:template>

<xsl:param name="today" select="date:new()"/>

</xsl:stylesheet>

There are three namespaces in scope for the <date> element, namely the
XSL namespace, the namespace «http://www.jclark.com/xt/java.util.Date,
and the default namespace «urn:acme-com:gregorian». The XSL namespace
is not copied to the result tree, but the other two are. So the <date> element
added to the result tree is guaranteed to have these two namespaces

«http://www.jclark.com/xt/java.util.Date», and «urn:acme-com:gregorian» in
scope.

The stylesheet above uses an extension function «date:new()». As explained
later in the chapter (page 40), the way in which extension functions work
varies from one XSLT processor to another. The above example is written so
that it should work with both Saxon and xt. To run it with a different XSLT
processor, you will need to make minor changes: see chapter 10 for details.

If the $today parameter is supplied as the value «2000-13-18», the output
would be as follows (regardless of the source document):

<date xmlns="urn:acme-com:gregorian"

 xmlns:date="http://www.jclark.com/xt/java.util.Date ">2000-13-18</date>

The first namespace declaration is necessary, because it defines the
namespace for the element name <date>. However, you probably don't
really want the xmlns:date declaration here. It's not doing any harm, but it's
not doing any good either. It's there because the XSLT processor can't tell
that it's unwanted. If you want this declaration to be omitted, use the
xsl:exclude-result-prefixes attribute as follows:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:date="http://www.jclark.com/xt/java.util.Date"

>

<xsl:template match="/"

 xmlns = "urn:acme-com:gregorian">

 <date xsl:exclude-result-prefixes="date">

 <xsl:value-of select="$today"/>

 </date>

</xsl:template>

<xsl:param name="today" select="date:new()"/>

</xsl:stylesheet>

The fact that an element in the result tree has a namespace node does not
necessarily mean that when the result tree is written out as an XML
document, the corresponding element will have a namespace declaration
for that namespace. The XSLT processor is likely to omit the namespace

declaration if it is redundant, in other words, if it duplicates a namespace
declaration on a containing element. It can't be omitted, however, simply
on the basis that it is not used. This is because namespace declarations
might affect the meaning of the data in the output document in a way that
the XSLT processor is unaware of. Applications are perfectly entitled to
use namespace declarations to scope identifiers and names appearing in
attribute values or text.

An element in the result tree generated from a literal result element may
also have additional namespace nodes beyond those described above. For
example, it may well inherit namespace nodes that were generated on a
containing element. In addition, because the XSLT processor is required to
generate output that conforms to the XML namespaces recommendation,
the generated element will also have namespace nodes corresponding to
any namespace prefixes used in the element name or in any attribute name,
even if these have been declared as excluded namespaces. The
specification isn't explicit on this point: an XSLT processor could instead
decide to report an error in this situation.

Namespace Prefixes
The namespaces generated in the result tree when a literal result element is
instantiated will normally have the same prefix and the same URI as the
corresponding namespace in the stylesheet.

There are unusual circumstances when the XSLT processor may need to
change the prefix for a namespace. For example, it is possible to create
two attributes that use the same namespace prefix to refer to different
namespace URIs, as in the following example:

<output>

 <xsl:attribute name="out:file"

 xmlns:out="http://domain-a.com/">a</xsl:attribute>

 <xsl:attribute name="out:dir"

 xmlns:out="http://domain-b.com/">b</xsl:attribute>

</output>

The generated output in this case will look something like this:

<output

 out:file="a"

 ns1:dir="b"

 xmlns:out="http://domain-a.com/"

 xmlns:ns1="http://domain-b.com/"/>

The XSLT processor has no choice but to invent a prefix for one of the
namespaces, because the supplied prefix is already in use with a different
meaning. But because namespace prefixes are essentially arbitrary (it's
only the URI that has any real significance) the meaning of the output file
is not affected.

This rather contradicts what I said a moment ago, that namespace declarations
are copied into the result tree even if they appear to be unused, because you
might be using them in data values where the XSLT processor can't be aware
of them. If you use namespace prefixes in your data, it would be very
damaging if the XSLT processor changed them arbitrarily. Fortunately it is
only in very obscure cases that the system needs to allocate a different prefix,
and the implication in the spec, while not spelt out in so many words, is that
in all other cases the processor is expected to leave them unchanged.

Namespace Aliasing
In some circumstances, instead of changing the namespace prefix when a
literal result element is copied to the result tree, it is necessary to change
the namespace URI.
The most obvious situation where this arises is when the output document
is itself a stylesheet. This isn't as esoteric a requirement as it may appear:
generating a stylesheet can sometimes be a useful technique. For example,
if your company changes its house-style to use different fonts and colors,
you could write an XSLT transformation to convert all your existing
stylesheets to the new standard.

When you generate a stylesheet, you will want to generate XSL elements
such as <xsl:template> in the result tree; but you can't include such
elements as literal result elements in the stylesheet, because they would be
mistaken for instructions. So the answer is to include them in the
stylesheet with a different namespace, and to declare in an <xsl:namespace-
alias> element that the URI should be changed when the literal result
element is copied to the result tree.

For more details, see <xsl:namespace-alias> in Chapter 4, on page Error!
Cannot open file..

Attribute Value Templates

As we've seen, an attribute value template is a special form of
parameterized attribute value. There are two ways they can be used:

❑ On a literal result element, an attribute value template provides a way of
generating an attribute whose value is computed at run-time rather than
always taking the same value: for example <TD WIDTH="{$width}"> You
could achieve the same effect with the <xsl:attribute> instruction, but
attribute value templates are easier to write and easier to understand.

❑ On some XSL elements, certain attributes can be computed at run-time. For
example, when sorting, instead of writing «order="ascending"» or
«order="descending"», you could write «order="{$order}"» so that the
order varies depending on a run-time parameter. Note that there are very few
attributes where this facility is available: they are listed later in this section.

The term template here has nothing to do with XSLT template rules,
template bodies, or <xsl:template> elements: attribute value templates are
simply a notation for embedding variable components into an otherwise
fixed attribute value.

An attribute value template is a string in which XPath expressions may be
embedded within curly braces («{» and «}»). The XPath expression is
evaluated, the result is converted to a string using the conversion rules
described on page Error! Cannot open file. in Chapter 2, and this string
is then substituted into the attribute value in place of the expression.

For example, suppose you have a set of images representing an alphabet
such as the following, and you want to use these to represent the first
character of a paragraph of text.

fancyA.gif fancyB.gif fancyC.gif fancyD.gif fancyE.gif

You could write a template rule to achieve this as follows (ignoring
practical details such as how to deal with paragraphs that don't start with a
capital letter). It uses the substring() function, which is described in
Chapter 7, on page Error! Cannot open file..

<xsl:template match="para">

 <p>

 <xsl:value-of select="substring(.,2)" /></p>

</xsl:template>

A paragraph that starts with the letter A (like this one) will cause the src
attribute of the element to be evaluated as «img src="fancyA.gif"», so
it will be displayed in the browser like this:

If you want to include the characters «{» or «}» in an attribute value with
their ordinary meaning (this is sometimes useful when generating dynamic
HTML), they should be doubled as «{{» or «}}». However, you should only
do this in an attribute that is being interpreted as an attribute value
template. In other attributes, curly braces have no special meaning.

Curly brackets can never be nested. You can only use them to include an
XPath expression in the text of a stylesheet attribute; they cannot be used
within an XPath expression itself. You can always achieve the required
effect some other way; for example, instead of:

 /* WRONG */

write:

The concat() function, described on page Error! Cannot open file.,in
Chapter 7, performs concatenation of strings.

Attribute value templates cannot be used anywhere you like in the
stylesheet. They can only be used for those attributes that are specifically
identified as attribute value templates in the XSLT Recommendation. The
following table gives a complete list of all the places you can use Attribute
Value Templates:

Element Attributes interpreted as attribute value templates

Literal result elements All attributes except those in the XSL namespace
Extension elements As defined by the specification of each extension element
<xsl:attribute> name, namespace
<xsl:element> name, namespace
<xsl:number> format, lang, letter-value, grouping-separator,

grouping-size
<xsl:processing-
instruction>

name

<xsl:sort> lang, data-type, order, case-order

In all other contexts, don't even think of trying to use them: the curly
braces will either be ignored, or will cause an error to be reported. It can
be very tempting: if you want to use <xsl:call-template>, for example, and
the name of the template you want to call is in a variable, you might badly
want to write:

<!–WRONG-->

<xsl:param name="tname"/>

<xsl:call-template name="{$tname}"/>

<!–WRONG-->

However, you can't, because the name attribute (nor any other attribute of
<xsl:call-template> for that matter) of <xsl:call-template> is not in the
above list of places where attribute value templates can be used.

Why are attribute value templates rationed so severely? A few of the
restrictions do appear to be purely arbitrary, but most are there deliberately
to make life easier for the XSLT processor:

❑ Attribute value templates are never allowed for attributes of top-level
elements. This ensures that the values are known before the source document
is read, and are constant for each run of the stylesheet.

❑ Attribute value templates are never allowed for attributes whose value is an
XPath expression or a pattern. This ensures that expressions and patterns can
be compiled when the stylesheet is read, and do not need to be re-parsed each

time they are evaluated.

❑ Attribute value templates are generally not allowed for attributes whose value
is the name of another object in the stylesheet, for example a named template
or a named attribute set. This ensures that references from one stylesheet
object to another can be resolved once and for all when the stylesheet is first
read. They are allowed, however, for names of objects being written to the
result tree.

❑ Attribute value templates are not allowed for attributes interpreted by the
XML parser, specifically xml:space, xml:lang, and namespace declarations
(xmlns and xmlns:prefix). This is because the XML parser reads the value
before the XSLT processor gets a chance to expand it.

The remaining restrictions must be seen as arbitrary. For example it is hard
to see any good reason why the terminate attribute of <xsl:message> can't be
an attribute value template, but the fact is that the spec doesn't allow it.

When an XPath expression within an attribute value template is evaluated,
the context is the same as for any other expression in the stylesheet. The
idea of an expression having a context was introduced in Chapter 2, on
page Error! Cannot open file.: it determines the meaning of constructs
such as «.», which refers to the context node, and «position()», which
refers to the context position. Variables and namespace prefixes may only
be used within the expression if they are in scope at that point in the
stylesheet. The context node, context position, and context size are
determined from the current node and current node list being processed in
the most recent call of <xsl:apply-templates> or <xsl:for-each>; if there is no
such call (which can happen while a global variable is being evaluated, for
example), the current node and current node list contain just the root node.

Extensibility
Bitten by years of experience with proprietary vendor extensions to
HTML, the W3C committee responsible for XSLT took great care to allow
vendor extensions in a tightly controlled way.

The extensibility mechanisms in XSLT are governed by several unstated
design principles:

❑ Namespaces are used to ensure that vendor extensions cannot clash with
facilities in the standard (including facilities introduced in future versions), or
with extensions defined by a different vendor.

❑ It is possible for an XSLT processor to recognize where extensions have been

used, including extensions defined by a different vendor, and to fail cleanly if
it cannot implement those extensions.

❑ It is possible for the writer of a stylesheet to test whether particular extensions
are available, and to define fallback behavior if they are not. For example, the
stylesheet might be able to achieve the same effect in a different way, or it
might make do without some special effect in the output.

The principal extension mechanisms, which I will describe below, are
extension functions and extension elements. However, it is also possible
for vendors to define other kinds of extensions, or to provide mechanisms
for users or third parties to do so. These include the following:

❑ XSLT-defined elements can have additional vendor-defined attributes,
provided they use a non-null namespace URI, and that they do not change the
behavior of standard elements and attributes. For example, a vendor could add
an attribute such as acme:debug to the <xsl:template> element, whose effect
is to pause execution when the template is instantiated. But adding an attribute
acme:repeat="2" whose effect is to execute the template twice would be
against the conformance rules. (Whether vendors will pay any attention to the
conformance rules, of course, is another matter.)

❑ Vendors can define additional top-level elements; again provided that they use
a non-null namespace URI, and that they do not change the behavior of
standard elements and attributes. An example of such an element is
Microsoft's <msxsl:script> element, for defining external functions in
VBScript or JScript. Any processor that doesn't recognize the namespace URI
will ignore such top-level elements.

❑ Certain XSLT-defined attributes have an open-ended set of values, where
vendors have discretion on the range of values to be supported. Examples are
the lang attribute of <xsl:number> and <xsl:sort>, which provides
language-dependent numbering and sorting, the method attribute of
<xsl:output>, which defines how the result tree is output to a file, and the
format attribute of <xsl:number>, which allows the vendor to provide
additional numbering sequences beyond those defined in the standard. The list
of system properties supplied in the first argument of the system-property()
function is similarly open-ended.

Extension Functions
Extension functions provide a mechanism for extending the capabilities of
XSLT by escaping into another language such as Java or JavaScript. The
most usual reasons for doing this are:

❑ To improve performance (for example when doing complex string
manipulations)

❑ To exploit system capabilities and services

❑ To reuse code that already exists in another language

❑ For convenience: complex algorithms and computations can be very verbose
when written in XSLT.

The term extension function is used both for functions supplied by the
vendor beyond the core functions defined in the XSLT and XPath
standards (those described in Chapter 7), and for functions written by users
and third parties.

The XSLT Recommendation does not define how extension functions are
written, or how they are bound to the stylesheet, and it does not define
which languages should be supported. In fact, it does not require that an
XSLT processor should provide a mechanism for writing extension
functions at all, only that it should behave in a particular way when it
encounters extension functions that it cannot invoke: for example it says
how Microsoft's XSLT processor should behave when it encounters an
Oracle extension function.

This means that it is quite difficult to write extension functions that work
with more than one vendor's XSLT processor, even though there are some
conventions that several vendors have adopted, as described in Chapter 10.
Generally speaking, if you want your stylesheet to work with more than
one XSLT processor, you will have to include some conditional logic
when calling extension functions.

A function name in the XPath expression syntax (see Chapter 5) is a QName,
that is, a name with an optional namespace prefix. If there is no prefix, the
name must be one of the core functions defined in the standard: for
example the core function not() can be invoked as:

<xsl:if test="not(@name = 'Mozart')">

If there is a prefix, the function is assumed to be an extension function.
The namespace URI associated with the prefix is used to identify the
function library in which the implementation of the function can be found,
but the way in which this happens is entirely vendor-defined. For example,
the following example invokes an extension function xt:intersection(), but
says nothing about where this function can be loaded from. In this case the
namespace URI is one that the xt product will recognize as referring to its
own built-in extension functions.

<xsl:variable name="x" select="xt:intersection($y, $z)"

xmlns:xt="http://www.jclark.com/xt"/>

Several XSLT processors provide a mechanism (described on page Error!
Cannot open file. in Chapter 10 as Common Java Binding) in which the
namespace URI ends with the fully qualified name of a Java class. When a
function is called, this Java class is loaded and inspected (using Java's
introspection mechanisms) to find a method whose name and parameters
match the name and arguments used in the XSLT call, and the relevant
method is then called. This mechanism means all the information needed
to identify and call the function is contained within the namespace URI
itself.

Again using xt as an example, this allows you to output the current date
and time by using the standard Java class «java.util.Date». The default
constructor for this class creates a Date object whose value is the current
date, and the «toString()» method on this object creates a default string
representation of the date. So you can write in your stylesheet:

<xsl:template name="show-date"

 xmlns:Date="http://www.jclark.com/xt/java/java.util.Date">

 <xsl:variable name="today" select="Date:new()"/>

 <xsl:value-of select="Date:toString($today)"/>

</xsl:template>

In the expression «Date:new()», Date is a namespace prefix referring to a
namespace URI that ends with «java.util.Date», so the processor knows
that it is being asked to create an instance of this Java class. As a result,
the variable «$today» will hold a value which is a Java object of type
«java.util.Date». This is not one of the recognized XSLT data types, but
vendors are allowed to extend the standard set of data types with their
own. This variable is then passed to the «toString()» method on the same
class (because it too has the namespace prefix «Date»). By convention, the
object that is the target of the method is written as its first argument; so
writing «toString($date)» in an XPath expression is the equivalent of
writing «date.toString()» in Java. The effect is that the named template
writes the current date to the result tree.

The details of how Java methods are invoked varies a little from one
processor to another, as does the mapping of XSLT data types (such as
node-set) to Java types. Further details are given for some popular
products in Chapter 10. This is all likely to change in future: a standard

interface for writing extension functions is one of the facilities promised
for a future version of the XSLT standard.

Other XSLT processors, notably Microsoft's, have provided the ability to
write Javascript functions in vendor-defined top-level elements, and to
invoke these as extension functions. Indeed, such a mechanism was
defined in early drafts of the XSLT standard, though it was removed
before the final Recommendation was published, presumably because of
difficulties in defining a rigorous specification.

Here is an example of a simple extension function implemented using this
mechanism with Microsoft's XSLT processor, and an expression that calls
it:

<msxsl:script

 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 language="VBScript"

 implements-prefix="ms"

>

Function ToMillimetres(inches)

 ToMillimetres = inches * 25.4

End Function

</msxsl:script>

<xsl:template match="/" >

 <xsl:variable name="test" select="12"/>

 <size><xsl:value-of select="ms:ToMillimetres($test)"/></size>

</xsl:template>

You can test whether a particular extension function is available by using
the function-available() function. For example:

<xsl:choose xmlns:acme="http://acme.co.jp/xslt">

 <xsl:when test="function-available('acme:moonshine')">

 <xsl:value-of select="acme:moonshine($x)"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>*** Sorry, moonshine is off today ***</xsl:text>

 </xsl:otherwise>

</xsl:choose>

The specification says that an XSLT processor that doesn't recognize the
extension function acme:moonshine() shouldn't fail simply because the

stylesheet references it: it should only fail if it is actually called. In this
situation no failure should occur, because function-available() is used first
to check the availability of the function, and will return false if the
function is not present.

Extension functions, because they are written in general-purpose
programming languages, can have side-effects. For example, they can
write to databases, they can ask the user for input, or they can maintain
counters. The documentation of one product, Xalan, goes to some lengths
to explain how to implement a counter using extension functions,
effectively circumventing the restriction that XSLT variables cannot be
modified in-situ. However, extension functions with side effects should be
used with great care, because the XSLT specification doesn't say what
order things are supposed to happen in. For example, it doesn't say
whether a variable is evaluated when its declaration is first encountered, or
when its value is first used. One product in particular, xt, adopts a lazy
evaluation strategy in which variables are never evaluated until they are
used. If extension functions with side-effects are used to evaluate such
variables, the results can be very surprising, because the order in which the
extension functions are called becomes quite unpredictable. For example,
if one function writes to a log file and another closes this file, you could
find that the log file is closed before it is written to.

Extension Elements
An extension element is an element occurring within a template body, that
belongs to a namespace designated as an extension namespace. A
namespace is designated as an extension namespace by including its
namespace prefix in the extension-element-prefixes attribute of the
<xsl:stylesheet> element, or in the xsl:extension-element-prefixes attribute
of the element itself, or of a containing extension element or literal result
element.

For example, Saxon provides an extension element <saxon:while> to
perform looping while a condition remains true. There is no standard
XSLT construct for this because without side-effects, a condition once true
can never become false. But when used in conjunction with extension
functions, <saxon:while> can be a useful addition.

The following named template takes a string as a parameter and splits it up
into words, outputting each word as a separate element. It uses the

standard Java class java.util.StringTokenizer to provide extension
functions:

<xsl:template name="tokenize" xmlns:Tokenizer="/java.util.StringTokenizer">

 <xsl:param name="sentence"/>

 <xsl:variable name="tok" select="Tokenizer:new($sentence)"/>

 <saxon:while test="Tokenizer:hasMoreTokens($tok)"

 xsl:extension-element-prefixes="saxon"

 xsl:exclude-result-prefixes="Tokenizer"

 xmlns:saxon="http://icl.com/saxon">

 <word>

 <xsl:value-of select="Tokenizer:nextToken($tok)"/>

 </word>

 </saxon:while>

</xsl:template>

Note that for this to work, «saxon» must be declared as an extension
element prefix, otherwise <saxon:while> would be interpreted as a literal
result element and would be copied to the output. The xsl:exclude-result-
prefixes attribute is not strictly necessary, but it prevents the output being
cluttered with unnecessary namespace declarations.

If this template is called with the parameter value "The cat sat on the mat",
as follows:

<xsl:template match="/">

 <xsl:call-template name="tokenize">

 <xsl:with-param name="sentence">The cat sat on the mat</xsl:with-param>

 </xsl:call-template>

</xsl:template>

it will produce the output:

<word>The</word><word>cat</word><word>sat</word><word>on</word>

<word>the</word><word>mat</word>

If you have extra namespaces declared on the <xsl:stylesheet> element, they
will be copied into the <word> elements. To get rid of them, add the
unwanted namespace prefix to the xsl:exclude-result-prefixes attribute.

As with extension functions, the term extension element covers both non-
standard elements provided by the vendor, and non-standard elements
implemented by a user or third party. There is no requirement that an

XSLT implementation must allow users to define new extension elements,
only that it should behave in a particular way when it encounters extension
elements that it cannot process.

Where a product does allow users to implement extension elements (two
products that do so are Saxon and Xalan), the mechanisms and APIs
involved are likely to be rather more complex than those for extension
functions, and the task is not one to be undertaken lightly. However,
extension elements can offer capabilities that would be very hard to
provide with extension functions alone: several vendors, for example, offer
an extension element that switches output to a new file. These extensions
are described in Chapter 10.

If there is an extension element in a stylesheet, then all XSLT processors
will recognize it as such, but in general some will be able to handle it and
others won't (because it is defined by a different vendor). As with
extension functions, the rule is that a processor mustn't fail merely because
an extension element is present, it should fail only if an attempt is made to
instantiate it.

There are two mechanisms to allow stylesheet authors to test whether a
particular extension element is available: the element-available() function,
and the <xsl:fallback> instruction.

The element-available() functionworks in a very similar way to function-
available(). For example:

<xsl:choose xmlns:acme="http://acme.co.jp/xslt">

 <xsl:when test="element-available('acme:moonshine')">

 <acme:moonshine select="$x" xsl:extension-element-prefixes="acme"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>*** Sorry, moonshine is off today ***</xsl:text>

 </xsl:otherwise>

</xsl:choose>

Note that at the time element-available() is called, the prefix for the
extension element (here «acme») must have been declared in a namespace
declaration, but it does not need to have been designated as an extension
element.

The <xsl:fallback> instruction (which is fully described on page Error!
Cannot open file.,in Chapter 4) provides an alternative way of specifying
what should happen when an extension element is not available. The
following example is equivalent to the previous one:

<acme:moonshine select="$x"

 xmlns:acme="http://acme.co.jp/xslt" xsl:extension-element-prefixes="acme">

 <xsl:fallback>

 <xsl:text>*** Sorry, moonshine is off today ***</xsl:text>

 </xsl:fallback>

</acme:moonshine>

When an extension element is instantiated, and the XSLT processor does
not know what to do with it, it should instantiate any child <xsl:fallback>
element. If there are several <xsl:fallback> children, it should instantiate
each of them. Only if there is no <xsl:fallback> element should it report an
error. Conversely, if the XSLT processor can instantiate the element, it
should ignore any child <xsl:fallback> element.

The specification doesn't actually say that an extension element must allow an
<xsl:fallback> child to be present. There are plenty of XSLT instructions
that do not allow <xsl:fallback> as a child, for example <xsl:copy-of>
and <xsl:value-of>. However, an extension element that didn't allow
<xsl:fallback> would certainly be against the spirit of the standard.

Vendor-defined or user-defined elements at the top level of the stylesheet
are not technically extension elements, because they don't appear within a
template body; therefore the namespace they appear in does not need to be
designated as an extension namespace.

Forwards Compatibility
Whereas extensibility, as discussed in the previous section, is about how to
write stylesheets that are resilient to vendor and user extensions to the
XSLT language, forwards compatibility is about how to achieve resilience
to differences between versions of the XSLT standard. The two questions
are, of course, closely related.

So far there has only been one version of the XSLT Recommendation,
version 1.0 (the six earlier working drafts don't count). So compatibility
between versions is not yet an issue. However, the language designers
have had the foresight to anticipate that it will become an issue, and that it

is necessary even in version 1.0 to incorporate provisions that allow for
future change.

Firstly, the stylesheet is required to carry a version number: typically
«version=1.0» as an attribute of the <xsl:stylesheet> element. This declares
that the stylesheet will only be using facilities defined in XSLT version
1.0. If the XSLT processor finds that the stylesheet uses elements,
attributes, or functions with names in the XSLT namespace, but which are
not defined in the version 1.0 Recommendation, then it must reject them
and report an error.

If an XSLT processor that was written to support XSLT version 1.0 reads
a stylesheet and finds that the version attribute of the <xsl:stylesheet> has a
value other than «1.0» (for example if it finds <xsl:stylesheet
version="3.2">), then it must assume that the stylesheet is using XSLT
facilities defined in a version of the standard that has been published since
the software was released. The processor, of course, won't know what to
do with these facilities, but it must assume that the stylesheet author is
using them deliberately. It treats them in much the same way as vendor
extensions that it doesn't understand:

❑ It must report an error for XSLT elements it doesn't understand only if they are
instantiated, and if there is no child <xsl:fallback> instruction.

❑ It must ignore attributes it doesn't recognize, and unrecognized values for
recognized attributes.

❑ It must report an error for functions it doesn't recognize, or that have the
wrong number or arguments, only if the function is actually called. You can
avoid this error condition by using function-available() to test whether the
function exists before calling it.

❑ It must report syntax errors in XPath expressions that use syntax which isn't
allowed in version 1.0 only if the expression is actually evaluated.

This behavior only occurs when forwards-compatible mode is enabled,
which happens only if the <xsl:stylesheet> element specifies a version
other than «1.0». Forwards-compatible mode can also be specified for a
portion of a stylesheet by specifying the xsl:version attribute on any literal
result element, again with a value other than «1.0». If forwards-compatible
mode is not enabled, that is, if the version is specified as «1.0», then any
use of an XSLT element, attribute, or function that isn't in the XSLT
version 1.0 standard, or of XPath syntax that isn't in the XPath 1.0

standard, is an error and must be reported, whether it is actually executed
or not.

It's a matter for speculation how this rule will evolve in future versions of the
standard. If the stylesheet specifies «version="1.2"», for example, will the
processor be expected to reject the use of a facility first introduced in version
1.3? We can only wait and see.

Forwards compatible processing is an issue for implementers today,
because version 1.0 products need to behave sensibly when confronted
with version 2.0 stylesheets. It will only become an issue for stylesheet
authors once there are several versions of the standard around, at which
point you may want to write a stylesheet that exploits facilities in version
2.0 while still behaving sensibly when run with an XSLT processor that
only supports version 1.0. To achieve this, you will be able to use the same
mechanisms as you use for handling vendor extensions: the function-
available() and element-available() functions, and the <xsl:fallback>
element.

There is also one other mechanism you can use: you can use the system-
property() function (described on page Error! Cannot open file.,in
Chapter 7) to discover which version of XSLT the processor implements,
or which processor is being used. For example, you could write code such
as:

<xsl:if test="system-property('xsl:version')=2.0 or

 starts-with(system-property('xsl:vendor', 'xalan'))">

 <xsl:new-facility/>

</xsl:if>

Relying on the version number this returns is a rather crude mechanism:
there are plenty of processors already in the field that return «1.0» as the
value of «system-property('xsl:version')» but which do not implement the
XSLT standard in full, and no doubt this will remain true. But testing
which vendor's processor is in use is handy for portability, especially when
vendors have not kept strictly to the conformance rules.

Whitespace
Whitespace handling can be a considerable source of confusion. When the
output is HTML, you can get away without worrying too much about it,
because except in some very specific contexts HTML generally treats any

sequence of spaces and newlines in the same way as a single space. But
with other output formats, getting spaces and newlines where you want
them, and avoiding them where you don't, can be crucial.

There are two issues:

❑ Controlling which whitespace in the source document is significant, and
therefore visible to the stylesheet.

❑ Controlling which whitespace in the stylesheet is significant, because
significant whitespace in the stylesheet is likely to get copied to the output.

Whitespace is defined as any sequence of the following four characters:

Character Unicode Symbol
tab #x9
newline #xA
Carriage return #xD
space x20

The definition in XSLT is exactly the same as in XML itself. Other
characters such as non-breaking-space (#xA0) , which is familiar to HTML
authors as the entity reference « », may use just as little black ink as
these four, but they are not included in the definition.

There are some additional complications about the definition. Writing a
character reference « » is in many ways exactly the same as hitting
the space bar on the keyboard, but in some circumstances it behaves
differently. The character reference « » will be treated as whitespace
by the XSLT processor, but not by the XML parser, so you need to
understand which rules are applied at which stage of processing.

The XML standard makes some attempt to distinguish between significant
and insignificant whitespace: whitespace in elements with element-only
content is considered insignificant, whereas whitespace in elements that
allow #PCDATA content is significant. However, the distinction depends on
whether a validating parser is used or not, and in any case, the standard
requires both kinds of whitespace to be notified to the application. The
writers of the XSLT specification decided that the handling of whitespace
should not depend on anything in the DTD, and should not depend on
whether a validating or non-validating parser was used. Instead the
handling of whitespace is controlled entirely from the source document

(using the xml:space attribute) or from the stylesheet (using the <xsl:strip-
space> and <xsl:preserve-space> directives), which are fully described in
Chapter 4.

The first stages in whitespace handling are the job of the XML parser, and
are done long before the XSLT processor gets to see the data:

❑ End-of-line appearing in the textual content of an element is always
normalized to a single newline «#xA» character. This eliminates the differences
between line endings on Unix, Windows, and Macintosh systems.

❑ The XML parser will normalize attribute values. A tab or newline will always
be replaced by a single space, unless it is written as a character reference such
as «	» or «&#A;»; for some types of attribute (anything except type CDATA),
the XML parser will also remove leading and trailing whitespace, and
normalize other sequences of whitespace to a single space character.

This attribute normalization can be significant when the attribute in
question is an XPath expression in the stylesheet. For example, suppose
you want to test whether a string value contains a newline character. You
can write this as:

<xsl:if test="contains(address, '
')">

It's important to use the character reference «
» here, rather than a real
newline, because a newline character would be converted to a space by the
XML parser, and the expression would then actually test whether the
supplied string contains a space.

What this means in practice is that if you want to be specific about
whitespace characters, write them as character references; if you just want
to use them as separators and padding, use the whitespace characters
directly.

Once the XML parser has done its work, the XSLT processor then applies
some processing of its own. By this time entity and character references
have been expanded, so there is no difference between a space written as a
space and one written as « ».

❑ Adjacent text nodes are merged into a single text node.

❑ Then, if a text node consists entirely of whitespace, it is removed from the tree
if the containing element is listed in an <xsl:strip-space> definition in the
stylesheet. The detailed rules are more complex than this, and also take into

account the presence of the xml:space attribute in the source document: see
the <xsl:text> element on page Error! Cannot open file., in Chapter 4, for
details.

This process never removes whitespace characters that are adjacent to non-
whitespace characters. For example, consider:

<article>

 <title>Abelard and Heloise</title>

 <subtitle>Some notes towards a family tree</subtitle>

 <author>Brenda M Cook</author>

 <abstract>

 The story of Abelard and Heloise is best recalled

nowadays from the stage drama of 1970 and it is perhaps inevitable that Diana Rigg

stripping off for Keith Mitchell should be the most enduring image of this historic

couple in some people's minds.

 </abstract>

</article>

There are five whitespace-only text nodes in this fragment, one before
each of the child elements <title>, <subtitle>, <author>, and <abstract>, and
another between the end of the <abstract> and the end of the <article>. The
whitespace in these nodes is passed by the XML parser to the XSLT
processor, and it is up to the stylesheet whether to take any notice of it or
not. Typically in this situation this whitespace is of no interest and it can
be stripped from the tree by specifying <xsl:strip-space
elements="article"/>.

The whitespace within the <abstract> cannot be removed by the same
process. The newline characters at the start and end of the abstract, and at
the end of each line, are part of the text passed by the parser to the
application, and it is not possible in the stylesheet to declare them as being
irrelevant. They will always be present in the tree model of the source
document. What you can do is to call the normalize-space() function when
processing these nodes on the source tree: this will remove leading and
trailing whitespace, and replace all other sequences of one or more
whitespace characters by a single space. The normalize-space() function is
described on page Error! Cannot open file. in Chapter 7.

To emphasize this, XSLT makes a very firm distinction between text
nodes that comprise whitespace only, and those that hold something other
than whitespace. A whitespace text node can only exist where there is
nothing between two pieces of markup other than whitespace characters.

To take another example, consider the following document.

<person>

 <name>Michael Kay</name>

 <employer>ICL</employer>

 <place-of-work>

 Lovelace Road

 Bracknell, UK

 RG12 8SN

 </place-of-work>

</person>

Where are the whitespace nodes? Let's look at it again, this time making
the whitespace characters visible:

<person>↵

→<name>Michael Kay</name>↵

→<employer>ICL</employer>↵

→<place-of-work>↵

→♦♦♦Lovelace Road↵

→♦♦♦Bracknell, UK↵

→♦♦♦<zip>RG12 8SN</zip>♦↵

→</place-of-work>↵

</person>

The newline and tab between <person> and <name> are not adjacent to any
non-whitespace characters, so they constitute a whitespace node. So do the
characters between </name> and <employer>, and between </employer> and
<place-of-work>. However, most of the whitespace characters within the
<place-of-work> element are in the same text node as non-whitespace
characters, so they do not constitute a whitespace node. To make it even
clearer, let's show the characters in whitespace nodes in white on a black
background:

<person>↵

→<name>Michael Kay</name>↵

→<employer>ICL</employer>↵

→<place-of-work>↵

→♦♦♦Lovelace Road↵

→♦♦♦Bracknell, UK↵

→♦♦♦<zip>RG12 8SN</zip>♦↵

→</place-of-work>↵

</person>

Why is all this relevant? As we've seen, the <xsl:strip-space> element
allows you to control what happens to whitespace nodes (those shown in
white on black above), but it doesn't let you do anything special with
whitespace characters that appear in ordinary text nodes (those shown in
black on white).

All the whitespace nodes in this example are immediate children of the
<person> element, so they could be stripped by writing:

<xsl:strip-space elements="person"/>

Whitespace nodes are retained on the source tree unless you ask for them
to be stripped.

Whitespace Nodes in the Stylesheet
For the stylesheet itself, whitespace nodes are all stripped, with one
exception, namely whitespace within an <xsl:text> element. So if you
explicitly want to copy a whitespace text node from the stylesheet to the
result tree, write it within an <xsl:text> element, like this:

<xsl:value-of select="address-line[1]"/>

<xsl:text>
</xsl:text>

<xsl:value-of select="address-line[2]"/>

The only reason for using «
» here rather than an actual newline is that
it's more clearly visible to the reader; it's also less likely to be accidentally
turned into a newline followed by tabs or spaces. Writing the whitespace
as a character reference doesn't stop it being treated as whitespace by
XSLT, because the character references will have been expanded by the
XML parser before the XSLT processor gets to see them.

The Effect of Stripping Whitespace Nodes
There are two main effects of stripping whitespace nodes, say on the
<person> element in the example above:

❑ When you use <xsl:apply-templates/> to process all the children of the
<person> element, the whitespace nodes aren't there, so they don't get
selected. If they had been left on the source tree, then by default they would be
copied to the result tree.

❑ When you use <xsl:number> or the position() or count() functions to count
nodes, the whitespace nodes aren't there, so they aren't counted. If you had left
the whitespace nodes on the tree, then the <name>, <employer> and <place-
of-work> elements would be nodes 2, 4, and 6 instead of 1, 2, and 3.

There are cases where it's important to keep the whitespace nodes.
Consider the following:

<para>

Edited by <name>James Clark</name>♦<email>jjc@jclark.com</email>

</para>

The diamond represents a space character that needs to be preserved, but
because it is not adjacent to any other text, it would be eligible for
stripping.

If you want to strip all the whitespace nodes from the source tree, you can
write:

<xsl:strip-space elements="*"/>

If you want to strip all the whitespace nodes except those within certain
named elements, you can write:

<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="para h1 h2 h3 h4"/>

If any elements in the document (either the source document or the
stylesheet) use the XML-defined attribute «xml:space="preserve"», this takes
precedence over these rules: whitespace nodes in that element, and in all
its descendants, will be kept on the tree unless the attribute is cancelled on
a descendant element by specifying «xml:space="default"». This allows you
to control on a per-instance basis whether whitespace is kept, whereas
<xsl:strip-space> controls it at the element-type level.

Solving Whitespace Problems
There are two typical problems with whitespace in the output: too much of
it, or too little.

If you are generating HTML, a bit of extra whitespace usually doesn't
matter, though there are some places where it can slightly distort the layout
of your page. With some text formats, however (a classic example is

comma-separated values) you need to be very careful to output whitespace
in exactly the right places.

Too Much Whitespace
If you are getting too much whitespace, there are three possible places it
can be coming from:

❑ The source document

❑ The stylesheet

❑ Output indentation

First ensure that you set «indent="no"» on the <xsl:output> element, to
eliminate the last of these possibilities.

If the output whitespace is adjacent to text, then it probably comes from
the same place as that text.

❑ If this text comes from the stylesheet, use <xsl:text> to control more
precisely what is output. For example, the following code outputs a comma
between the items in a list, but it also outputs a newline after the comma,
because the newline is part of the same text node as the comma:

<xsl:for-each select="item">

 <xsl:value-of select="."/>,

</xsl:for-each>

If you want the comma but not the newline, change this so that the newline is
in a text node of its own, and is therefore stripped:

<xsl:for-each select="item">

 <xsl:value-of select="."/>,<xsl:text/>

</xsl:for-each>

❑ If the text comes from the source document, use normalize-space() to trim
leading and trailing spaces from the text before outputting it.

If the offending whitespace is between tags in the output, then it probably
comes from whitespace nodes in the source tree that have not been
stripped, and the remedy is to add an <xsl:strip-space> element to the
stylesheet.

Too Little Whitespace
If you want whitespace in the output and aren't getting it, use <xsl:text> to
generate it at the appropriate point. For example, the following code will
output the lines of a poem in HTML, with each line of the poem being
shown on a new line:

<xsl:for-each select="line">

 <xsl:value-of select=".">

</xsl:for-each>

This will display perfectly correctly in the browser, but if you want to
view the HTML in a text editor, it will be difficult because everything
goes on a single line. It would be useful to start a newline after each

element – you can do this as follows:

<xsl:for-each select="line">

 <xsl:value-of select=".">
<xsl:text>
</xsl:text>

</xsl:for-each>

Another trick I have used to achieve this is to exploit the fact that the non-
breaking-space character (#xa0), although invisible, is not classified as
whitespace. So you can achieve the required effect by writing:

<xsl:for-each select="line">

 <xsl:value-of select=".">

</xsl:for-each>

This works because the newline after the « » is now part of a non-
whitespace node.

Summary
The purpose of this chapter was to study the overall structure of a
stylesheet, before going into the detailed specification of each element in
the next chapter.

❑ First I explained how a stylesheet program can be made up of one or more
stylesheet modules, linked together with <xsl:import> and <xsl:include>
elements. I described how the concept of import precedence allows one
stylesheet to override definitions in those it imports.

❑ I introduced the <xsl:stylesheet> (or <xsl:transform> element), which is
the outermost element of most stylesheet modules.

❑ I described the <?xml-stylesheet?> processing instruction which can be used

to link from a source document to its associated stylesheets, and explained
how this can be used to allow a stylesheet to be embedded directly in the
source document whose style it defines.

❑ I then covered the top-level elements found in the stylesheet, that is, the
immediate children of the <xsl:stylesheet> or <xsl:transform> element,
including the ability to have user-defined or vendor-defined elements here.

❑ Very simple stylesheets can be written as a single template, so you saw how
the <xsl:stylesheet> and <xsl:template match="/"> elements can be
omitted, to make an XSLT stylesheet look more like the simple template
languages that some users may be familiar with.

❑ A structure that occurs throughout a stylesheet is the idea of a template body,
a sequence of text nodes and literal result elements to be copied to the result
tree, and instructions and extension elements to be executed. This led naturally
to a discussion of literal result elements, and of attribute value templates
which are used to define variable attributes not only of literal result elements,
but of certain XSL elements as well.

❑ I then explained how the W3C standards committee has tried to ensure that
the specification can be extended, both by vendors and by W3C itself, without
adversely affecting the portability of stylesheets. You saw how to make a
stylesheet work even if it uses proprietary extension functions and extension
elements that may not be available in all implementations.

❑ Finally I discussed, in some detail, how XSLT stylesheets handle whitespace in
the source document, in the stylesheet itself, and in the result tree.

You have now reached the end of the preamble. The next four chapters
contain detailed specifications of the XSL elements you can use in a
stylesheet, the XPath expressions you can use in the attributes of some of
these elements, the node-matching patterns you can use to establish
template rules, and the standard functions that are available for use within
XPath expressions.

4

XSLT Elements
This chapter provides an alphabetical list of reference entries, one for each of the XSLT
elements. Each entry gives:

❑ a short description of the purpose of the element

❑ an indication of where in the XSLT specification the element is described

❑ a proforma summary of the format, defining where the element may appear in
the stylesheet, what its permitted attributes are, and what its content (child
elements) may be

❑ a definition of the formal rules defining how this element behaves

❑ a section giving usage advice on how to exploit this XSLT element

❑ finally, coding examples of the element, showing the context in which it might
be used

The Format section for each element includes a syntax skeleton designed to provide a
quick reminder of the names and types of the attributes and any constraints on the
context. The format of this is designed to be intuitive: it only gives a summary of the
rules, because you will find these in full in the sections Position, Attributes, and Content
which follow.

There are a number of specialized terms used in this chapter, and it is worth becoming
familiar with them before you get in too deeply. There are fuller explanations in
Chapters 2 and 3, and the following descriptions are really intended just as a quick
memory-jogger.

For a more comprehensive glossary of terms, refer to Appendix B.

Term Description

attribute
value

An attribute whose value may contain expressions nested with
curly braces, for example «url="../{$href}"». The term template

template here has nothing to do with any other kind of template in XSLT.
Embedded expressions may only be used in an attribute value (or
are only recognized as such) if the attribute is one that is explicitly
designated as an attribute value template. Attribute value templates
are described in more detail in Chapter 3, pageError! Cannot open
file..

document
order

An ordering of the nodes in the source tree which corresponds to
the order in which the corresponding items appeared in the source
XML document: an element precedes its children, and the children
are ordered as they appeared in the source.

Expression Many XSLT elements have attributes whose value is an
Expression. This always means an XPath expression: a full
definition of XPath Expressions is given in Chapter 5. An
expression returns a value, which may be a string, a number, a
boolean, a node-set, or a result tree fragment. These data types are
described fully in Chapter 2, page Error! Cannot open file.

instantiate Instructions and template bodies can be instantiated. This may
seem a rather grandiose way of saying that the instruction is obeyed
or executed, but there is some logic to it: we you can regard a
template body in the stylesheet as being a proforma for lots of
pieces of the output document, each of which is formed by creating
a new instance of the proforma.

instruction Any element used in a template body that is not a literal result
element: specifically, an XSLT instruction or an extension element.
The <xsl:if> element is an instruction, but <xsl:strip-space>
isn't, because <xsl:if> appears in a template body and
<xsl:strip-space> doesn't. Extension elements are described in
Chapter 3, page Error! Cannot open file..

literal result
element

An element in the stylesheet, used in a template body, which is
copied to the output document: for example (if you are generating
HTML) <p> or <td>. Literal result elements are described in
Chapter 3, pageError! Cannot open file..

Pattern Some XSLT elements have attributes whose value must be a
Pattern: the syntax of Patterns is defined in Chapter 6. A Pattern
is a test that can be applied to nodes to see if they match. For
example, the Pattern «title» matches all <title> elements, and
the Pattern «text()» matches all text nodes.

QName An XML name, optionally qualified by a namespace prefix.
Examples of QNames with no prefix are «color» and «date-due».
Examples of prefixed names are «xsl:choose» and «html:table».
Where the name has a prefix, this must always match a namespace
declaration that is in scope at the place in the stylesheet where the
QName is used. For more information on namespaces, see Chapter 2,
pageError! Cannot open file..

stylesheet In general, references to the stylesheet mean the principal
stylesheet module plus all the stylesheet modules incorporated into
it using <xsl:include> and <xsl:import> elements. When I want
to refer to one of these components individually, I call it a

Formatted

stylesheet module.
template
body

A sequence of instructions and literal result elements contained
within (that is, that are children of) another XSLT element. The
containing element need not be an <xsl:template> element; many
other XSLT elements, such as <xsl:if> and <xsl:variable>, also
have a template body as their content.
The XSLT specification calls this simply a template, but we I have
avoided this because it is easily confused with a template rule (an
<xsl:template> element with a match attribute) and a named
template (an <xsl:template> element with a name attribute).

template
rule

An <xsl:template> element that has a match attribute.

XSLT
element

Any of the standard elements in the XSLT namespace listed in this
chapter, for example <xsl:template> or <xsl:if>

I decided to list the different XSLT elements in alphabetical order for ease of reference,
because I know how difficult it is to find them in the XSLT Recommendation, where
they are organised on functional lines. This is fine when you know what you are
looking for, but if you are using this book as your introduction to XSLT, it does create
the problem that related things won't be found together. And if you try to read
sequentially, you'll start with <xsl:apply-imports>, which on a training course is
something I would probably cover rather quickly on the Friday afternoon.

So here's an attempt at some kind of ordering and grouping, to suggest which entries
you might look at first if you're new to the subject:

Grouping Elements

Elements used to define template rules
and control the way they are invoked

<xsl:template>
<xsl:apply-templates>
<xsl:call-template>

Elements defining the structure of the
stylesheet

<xsl:stylesheet>
<xsl:include>
<xsl:import>

Elements used to generate output <xsl:value-of>
<xsl:element>
<xsl:attribute>
<xsl:comment>
<xsl:processing-instruction>
<xsl:text>

Elements used to define variables and
parameters

<xsl:variable>
<xsl:param>
<xsl:with-param>

Elements used to copy information from
the source document to the result

<xsl:copy>
<xsl:copy-of>

Elements used for conditional processing
and iteration

<xsl:if>
<xsl:choose>
<xsl:when>
<xsl:otherwise>
<xsl:for-each>

Elements to control sorting and <xsl:sort>

numbering <xsl:number>

Elements used to control the final output
format

<xsl:output>

This covers all the most commonly-used elements; the rest can only really be classified
as 'miscellaneous'.

xsl:apply-imports
The <xsl:apply-imports> instruction is used in conjunction with imported
stylesheets. A template rule in one stylesheet module can override a template rule in
an imported stylesheet module. Sometimes, you want to supplement the functionality
of the rule in the imported module, not to replace it entirely. <xsl:apply-imports> is
provided so that the overriding template rule can invoke the overridden template rule
in the imported module.

There is a clear analogy here with object-oriented programming. Writing a stylesheet
module that imports another is like writing a subclass, whose methods override the
methods of the superclass. <xsl:apply-imports> behaves analogously to the super()
function in object-oriented programming languages, allowing the functionality of the
superclass to be incorporated in the functionality of the subclass.

Defined in
XSLT section 5.6

Format
<xsl:apply-imports />

Position
<xsl:apply-imports> is an instruction, and is always used within a template body.

Attributes
None.

Content
None, the element is always empty.

Effect
<xsl:apply-imports> relies on the concept of a current template rule. A template rule
becomes the current template rule when it is invoked using <xsl:apply-templates>.
Using <xsl:call-template> does not change the current template rule. However,
using <xsl:for-each> makes the current template rule null, until such time as the
<xsl:for-each> terminates, at which time the previous value is reinstated. The
current template rule is also null while global variables are being evaluated.

<xsl:apply-imports> searches for a template rule that matches the current node,
using the same search rules as <xsl:apply-templates>, but considering only those
template rules that (a) have the same mode as the current template rule and (b) are
defined in a stylesheet that was imported into the stylesheet containing the current
template rule. For details of import precedence, see <xsl:import> on page 71.

The specification doesn't say exactly what imported into means. A reasonable
interpretation is a stylesheet that is a descendant of this one in the import tree.
A stylesheet S becomes a child of another stylesheet T in the import tree by
being referenced in an <xsl:import> statement within T, or within a
stylesheet that is included in T directly or indirectly by means of
<xsl:include> statements. If stylesheet S is imported into stylesheet T, then
templates defined in S will always have lower import precedence than
templates defined in T.

It is not possible to specify parameters on <xsl:apply-imports>. If the called
template rule declares any parameters, they will all take their default values.

Usage and Examples
The intended usage pattern behind <xsl:apply-imports> is illustrated by the
following example.

One stylesheet, a.xsl, contains general-purpose rules for rendering elements. For
example, it might contain a general-purpose template rule for displaying dates, as
follows:

<xsl:template match="date">

 <xsl:value-of select="day"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="month"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="year"/>

</xsl:template>

A second stylesheet, b.xsl, contains special-purpose rules for rendering elements. For
example, stylesheet b.xsl might want to display dates that occur in a particular
context in the same way, but in bold face. It could write:

<xsl:template match="timeline/date">

 <xsl:value-of select="day"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="month"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="year"/>

</xsl:template>

However, this involves duplicating most of the template body, which is a bad idea
from a maintenance point of view. So, in b.xsl we could import a.xsl, and write
instead:

<xsl:import href="a.xsl"/>

<xsl:template match="timeline/date">

 <xsl:apply-imports/>

</xsl:template>

Note that the facility only allows a template rule to invoke one of lower import
precedence, not one of lower priority. The import precedence depends on how the
stylesheet module was loaded, as explained under <xsl:import> on page 71. The
priority can be specified individually for each template rule, as explained under
<xsl:template> on page 153. The code above will work only if the «timeline/date»
template rule is in a stylesheet that directly or indirectly imports the «date» template
rule. It will not work, for example, if they are in the same stylesheet but defined with
different priority.

In most situations the same effect can be achieved equally well by giving the general-
purpose template rule a name, and invoking it from the special-purpose template rule
by using <xsl:call-template> (see page 29). This technique also works when
overriding a template rule of lower priority (and equal import precedence). The one
time this alternative technique is not possible is when the general-purpose template
rule was written by someone else and cannot be changed. For example this situation
might arise if users of web pages were allowed to create XSLT stylesheets that
modified the behavior of an author-supplied stylesheet.

There is a more complete example of the use of <xsl:apply-imports> in the section
for <xsl:import> on page 71.

See also
<xsl:import> on page 71

xsl:apply-templates
The <xsl:apply-templates> instruction defines a set of nodes to be processed, and
causes the system to process them by selecting an appropriate template rule for each
one.

Defined in
XSLT section 5.4

Format

<xsl:apply-templates select=Expression mode=QName >

 (<xsl:with-param> | <xsl:sort>) *

</xsl:apply-templates>

Position
<xsl:apply-templates> is an instruction, and is always used within a template body.

Attributes
Name Value Meaning

select
optional

Expression The node-set to be processed. If omitted, all
children of the current node are processed.

mode QName The processing mode. Template rules used to
process the selected nodes must have a
matching mode.

The constructs Expression and QName are defined at the beginning of this chapter and
more formally in Chapter 5.

Content
Zero or more <xsl:sort> elements
Zero or more <xsl:with-param> elements

Effect
The <xsl:apply-templates> element selects a set of nodes in the input tree, and
processes each of them individually by finding a matching template rule for that node.
The set of nodes is determined by the select attribute; the order in which they are
processed is determined by the <xsl:sort> elements (if present), and the parameters
passed to the template rules are determined by the <xsl:with-param> elements (if
present). The behavior is explained in detail in the following sections.

The select Attribute
If the select attribute is present, the Expression defines the nodes that will be
processed. This must be an XPath Expression that returns a node-set. (The concept of
a node-set is explained along with other XSLT data types in Chapter 2, pageError!
Cannot open file.). For example <xsl:apply-templates select="*"/> selects the set
of all element nodes that are children of the current node. Writing <xsl:ap0ply-
templates select="@width+3"/> would be an error, because the value of the
expression is a number, not a node-set.

The expression may select nodes relative to the current node (the node currently being
processed), as in the example above. Alternatively it may make an absolute selection
from the root node (for example <xsl:apply-templates select="//item"/>), or it
may simply select the nodes by reference to a variable initialized earlier (for example
<xsl:apply-templates select="$sales-figures"/>. For further details of XPath
expressions, see Chapter 5.

If the select attribute is omitted, the nodes processed will be the children of the
current node: that is, the elements, text nodes, comments, and processing instructions
that occur directly within the current node. Text nodes that consist only of whitespace
will be processed along with the others, unless they have been stripped from the tree:
for details, see <xsl:strip-space> on page 141. In the XPath tree model, described in
Chapter 2, attribute nodes and namespace nodes are not regarded as children of the
containing element, so they are not processed: if you want to process attribute nodes,
you must include an explicit select attribute, for example <xsl:apply-templates
select="@*"/>. However, it is more usual to get the attribute values directly using
the <xsl:value-of> instruction, described on page 168

Omitting the select attribute has exactly the same effect as specifying a node-set
expression of «child::node()». This selects all the nodes (elements, text nodes,
comments, and processing instructions) that are children of the current node. If the
current node is anything other than a root node or an element node, then it has no
children, so <xsl:apply-templates/> does nothing, because there are no nodes to
process.

For each node in the selected node-set, in turn, one template rule is selected and its
template body is instantiated. In general this may be a different template rule for each
selected node. Within this template body, this node becomes the new current node, so
it can be referred to using the XPath expression «.».

The called template can also determine the relative position of this node within the list
of nodes selected for processing: specifically, it can use the position() function to
give the position of that node in the list of nodes being processed (the first node
processed has position()=1, and so on), and the last() function to give the number
of nodes in the list being processed. These two functions are described (with examples)
in Chapter 7, pages Error! Cannot open file. and Error! Cannot open file.respectively.
They enable the called template to output sequence numbers for the nodes as they are
processed, or to take different action for the first and the last nodes, or perhaps to use
different background colors for odd-numbered and even-numbered nodes.

Sorting
If there are no child <xsl:sort> instructions, the selected nodes are processed in
document order. In the normal case where the nodes all come from the same input
document this means they will be processed in the order they are encountered in the
original source document: for example, an element node is processed before its
children. Attribute nodes belonging to the same element, however, may be processed
in any order, because the order of attributes in XML is not considered significant. If
there are nodes from several different documents in the node-set, which can happen
when you use the document() function described in Chapter 7 (page Error! Cannot
open file., the relative order of nodes from different documents is not defined, though
it is consistent if the same node-set is processed more than once.

If there are one or more <xsl:sort> instructions as children of the <xsl:apply-
templates> instruction, the nodes are sorted before processing. Each <xsl:sort>
instruction defines one sort key. For details of how sorting is controlled, see
<xsl:sort> on page 137. If there are several sort keys defined, they apply in major-to-
minor order. For example if the first <xsl:sort> defines sorting by Country and the

Formatted

second by State, then the nodes will be processed in order of State within Country. If
two nodes have equal sort keys, they will be processed in document order.

Note that the ordering of the axis used to select the nodes is irrelevant. (The ordering
of different axes is described in Chapter 5). For example, «select="preceding-
sibling::*"» will process the preceding siblings of the current node in document
order (starting with the first sibling) even though the preceding-sibling axis is in
reverse document order. The axis ordering affects only the meaning of any positional
qualifiers used within the select expression. For example, «preceding-
sibling::*[1]» will select the first preceding sibling element in axis order – that is,
the element immediately before the current node, if there is one.

Choosing a Template Rule
For each node to be processed, a template rule is selected. The choice of a template rule
is made independently for each selected node; they may all be processed by the same
template rule, or a different template rule may be chosen for each one.

The template rule selected for processing a node will always be either an
<xsl:template> with a match attribute, or a built-in template rule provided by the
XSLT processor.

An <xsl:template> element will be used to process a node only if it has a matching
mode: that is, the mode attribute of the <xsl:apply-templates> element must match
the mode attribute of the <xsl:template> element. This means they must both be
absent, or they must both be present. If they are both present, they must be matching
names: if the mode name contains a namespace prefix, it is the namespace URI that
must match, not necessarily the prefix itself.

Note that if the mode attribute is omitted, it makes no difference what mode was
originally used to select the template rule containing the <xsl:apply-templates>
instruction. The mode is not sticky: it reverts to the default mode as soon as
<xsl:apply-templates> is used with no mode attribute.

An <xsl:template> element will be used to process a node only if the node matches
the pattern defined in the match attribute of the <xsl:template> element.

If there is more than one <xsl:template> element that matches a selected node, one of
them is selected based on its import precedence and priority, as detailed under
<xsl:template> on page 153.

If there is no <xsl:template> element that matches a selected node, a built-in
template rule is used. The action of the built-in template rule depends on the type of
node, as follows:

Node Type Action of Built-In Template Rule

root Call apply-templates to process each child of the root node,
using the mode specified on the call to <xsl:apply-
templates>. This is as if the contents of the template were:

<xsl:apply-templates mode="mode"/>

element Call apply-templates to process each child node of the
element, using the mode specified on the call to <xsl:apply-
templates>. This is as if the contents of the template were:

<xsl:apply-templates mode="mode"/>

text Copy the text value of the node to the output. This is as if the
content of the template were:

<xsl:value-of select=".">

attribute Copy the value of the attribute to the output, as text. This is as
if the content of the template were:

<xsl:value-of select=".">

processing
instruction

No action

comment No action
namespace No action

For the root node and for element nodes, the built-in template rule processes the
children of the selected node in document order, matching each one against the
available template rules as if the template body contained an explicit <xsl:apply-
templates> element with no select attribute. Unlike the situation with explicit
template rules, the mode is sticky: it is carried through automatically to the template
rules that are called. So if you execute <xsl:apply-templates mode="m"/> for an
element that has no matching template rule, the built-in template rule will execute
<xsl:apply-templates mode="m"/> for each of its children. This process can of
course recurse to process the grandchildren, and so on.

Parameters
If there are any <xsl:with-param> elements present as children of the <xsl:apply-
templates> element, they define parameters which are made available to the called
template rules. The same parameters are made available to each template rule that is
instantiated, even though different template rules may be invoked to process different
nodes in the list.

Each <xsl:with-param> element is evaluated in the same way as an <xsl:variable>
element. Specifically:

❑ if it has a select attribute, this is evaluated as an XPath expression

❑ if there is no select attribute and the <xsl:with-param> element is empty,
the value is an empty string

❑ otherwise, the value of the parameter is a result tree fragment obtained by
instantiating the template body making up the content of the <xsl:with-
param> element. Result tree fragments are described in Chapter 2, and again
more formally under <xsl:variable> on page 172.

It is not defined whether the parameter is evaluated once only, or whether it is
evaluated repeatedly, once for each node in the node-set. If the value isn't needed (for
example, because the node-set is empty, or because none of the nodes match a

template that uses this parameter) then it isn't defined whether the parameter is
evaluated at all. Usually this doesn't matter, because evaluating the parameter
repeatedly will have exactly the same effect each time. But it's something to watch out
for if the parameter is obtained by calling an external function that has a side-effect,
such as reading the next record from a database.

If the name of a child <xsl:with-param> element matches the name of an
<xsl:param> element in the selected template rule, then the value of the <xsl:with-
param> element is assigned to the relevant <xsl:param> variable name.

If there is a child <xsl:with-param> element that does not match the name of any
<xsl:param> element in the selected template rule, then it is ignored. This is not
treated as an error.

If there is an <xsl:param> element in the selected template rule with no matching
<xsl:with-param> element in the <xsl:apply-templates> element, then the
parameter is given a default value: see <xsl:param> on page 126 for details. Again,
this is not an error.

Result Value
A called template rule does not return a result in the conventional way that functions
in many programming languages (and indeed in XPath) return a result. The only thing
a template rule can do to leave a record of its existence is to write nodes to the current
output destination.

When execution of the stylesheet starts, the current output destination is the final
result tree produced by executing the stylesheet, so any output produced by a
template goes to the final output document.

Within the body of an <xsl:variable>, <xsl:param>, or <xsl:with-param> element,
the current destination is changed to be a new result tree fragment, which when
complete becomes the value of that variable or parameter.

Some other XSLT instructions also change the output destination. Examples are
<xsl:attribute>, <xsl:comment>, and <xsl:processing-instruction>. In these
cases the new output destination is the text value of the node being created, and it is
an error if nodes other than text nodes are written to the destination. Another example
is <xsl:message>, where the new output destination is the text of the message to be
written. In this case it is permitted to write nodes other than text nodes, but it's up to
the implementation to decide what to do with them.

Calling <xsl:apply-templates> does not change the current output destination. So if
<xsl:apply-templates> is called within the body of an <xsl:variable> element, the
output from the called template rules, and from any template rules which they in turn
call, is added to the result tree fragment that becomes the value of this variable.

Usage
The following sections give some hints and tips about using <xsl:apply-templates>.
First I'll discuss when to use <xsl:apply-templates> and when to use <xsl:for-

each>. Then I'll explain how to use modes.

<xsl:apply-templates> Versus <xsl:for-each>
<xsl:apply-templates> is most useful when processing an element that may contain
children of a variety of different types in an unpredictable sequence. This is a rule-based
design pattern: the body of each individual template rule declares which nodes it is
interested in, rather than the template rule for the parent node defining in detail how
each of its children should be processed. The rule-based approach works particularly
well when the document design is likely to evolve over time. As new child elements
are added, template rules to process them can also be added, without changing the
logic for the parent elements in which they might appear.

This style of processing is sometimes called push processing. It will be familiar if you
have used text processing languages such as awk or perl, but it may be unfamiliar if
you are more used to procedural programming in C++ or Visual Basic.

Where the structure is more regular and predictable, it may be simpler to navigate
around the document using <xsl:for-each>, or by accessing the required data
directly using <xsl:value-of>. This is sometimes called pull processing. The <xsl-
value-of> instruction allows you to fetch data from the XML document using an
arbitrarily complex XPath expression. In this sense it is similar to a SELECT statement
in SQL.

A unique strength of XSLT is the ability to mix these two styles of programming. I'll
discuss both approaches, and their relative merits, in more detail in Chapter 8.

Modes
Modes are useful where the same data is to be processed more than once.
A classic example is when building a table of contents. The main body of the output
can be produced by processing the nodes in default mode, while the table of contents
is produced by processing the same nodes with «mode="TOC"».

The following example does something very similar to this: it displays a scene from a
play, adding at the start of the page a list of the characters who appear in this scene:

Example: Using Modes

Source
The source file, scene.xml, contains a scene from a play (specifically, Act I Scene
1 of Shakespeare's Othello — marked up in XML by Jon Bosak).

It starts like this:

<?xml version="1.0"?>

<SCENE><TITLE>SCENE I. Venice. A street.</TITLE>

<STAGEDIR>Enter RODERIGO and IAGO</STAGEDIR>

<SPEECH>

<SPEAKER>RODERIGO</SPEAKER>

<LINE>Tush! never tell me; I take it much unkindly</LINE>

<LINE>That thou, Iago, who hast had my purse</LINE>

<LINE>As if the strings were thine, shouldst know of this.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>IAGO</SPEAKER>

<LINE>'Sblood, but you will not hear me:</LINE>

<LINE>If ever I did dream of such a matter, Abhor me.</LINE>

</SPEECH>

etc

</SCENE>

Stylesheet
The stylesheet scene.xsl is designed to display this scene in HTML. This is how
it starts:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="SCENE">

<html><body>

 <xsl:apply-templates select="TITLE"/>

 <xsl:variable name="speakers"

 select="//SPEAKER[not(.=preceding::SPEAKER)]"/>

 <h2>Cast: <xsl:apply-templates

 select="$speakers" mode="cast-list"/></h2>

 <xsl:apply-templates select="*[not(self::TITLE)]"/>

</body></html>

</xsl:template>

The template rule shown above matches the <SCENE> element. It first displays the
<TITLE> element (if there is one) using the appropriate template rule. Then it sets
up a variable called «speakers» to be a node-set containing all the distinct

<SPEAKER> elements that appear in the document. The rather complex select
attribute uses the expression «//SPEAKER» to select all <SPEAKER> elements that
are descendants of the root (in other words, all of them), and then qualifies this
with a predicate in square brackets that eliminates those speakers that are the
same as a previous speaker. The result is a list of the speakers in which each one
appears once only.

The template rule then calls <xsl:apply-templates> to process this set of
speakers in mode «cast-list» (a nice side-effect is that they will be listed in order
of appearance). Finally it calls <xsl:apply-templates> again, this time in the
default mode, to process all elements («*») that are not <TITLE> elements
(because the title has already been processed).

The stylesheet carries on as follows:

<xsl:template match="SPEAKER" mode="cast-list">

 <xsl:value-of select="."/>

 <xsl:if test="not(position()=last())">, </xsl:if>

</xsl:template>

This template rule defines how the <SPEAKER> element should be processed
when it is being processed in «cast-list» mode. The template body has the
effect of outputting the speaker's name, followed by a comma if it is not the last
speaker in the list.

Finally the remaining template rules define how each element should be output,
when processed in default mode:

<xsl:template match="TITLE">

<h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="STAGEDIR">

<i><xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="SPEECH">

<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="SPEAKER">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="LINE">

<xsl:apply-templates/>

</xsl:template>

</xsl:transform>

Output
The precise layout of the HTML will depend on which XSLT processor you are
using, but apart from layout details, it should start like this:

<html>

 <body>

 <h1>SCENE I. Venice. A street.</h1>

 <h2>Cast: RODERIGO, IAGO, BRABANTIO</h2>

 <i>Enter RODERIGO and IAGO</i>

 <p>

 RODERIGO

 Tush! never tell me; I take it much unkindly

 That thou, Iago, who hast had my purse

 As if the strings were thine, shouldst know of this.

 </p>

 <p>

 IAGO

 'Sblood, but you will not hear me:

 If ever I did dream of such a matter, Abhor me.

 </p>

 </body>

</html>

It is sometimes useful to use named modes, even where they are not strictly necessary,
to document more clearly the relationship between calling templates and called
templates, and to constrain the selection of template rules rather more visibly than can
be achieved by relying on template rule priorities. This might even improve
performance by reducing the number of rules to be considered, though the effect is
likely to be marginal.

For example, suppose that a <poem> consists of a number of <stanza> elements, and
that the first <stanza> is to be output using a different style from the rest. The
orthodox way to achieve this would be as follows:

<xsl:template match="poem">

. . .

 <xsl:apply-templates select="stanza"/>

. . .

</xsl:template>

<xsl:template match="stanza[1]">

. . .

</xsl:template>

<xsl:template match="stanza">

. . .

</xsl:template>

This relies on the default priority rules to ensure that the correct template rule is
applied to each stanza — as explained under <xsl:template> on page 153, the default
priority for the pattern «stanza[1]» is higher than the default priority for «stanza»

Another way of doing it, perhaps less orthodox but equally effective, is as follows:

<xsl:template match="poem">

. . .

 <xsl:apply-templates select="stanza[1]" mode="first"/>

 <xsl:apply-templates select="stanza[position() > 1]" mode="rest"/>

. . .

</xsl:template>

<xsl:template match="stanza" mode="first">

. . .

</xsl:template>

<xsl:template match="stanza" mode="rest">

. . .

</xsl:template>

Another solution, giving even finer control, would be to use <xsl:for-each> and
<xsl:call-template> to control precisely which template rules are applied to which
nodes, avoiding the pattern-matching mechanisms of <xsl:apply-templates>
altogether.

Which you choose is largely a matter of personal style, and it is very hard to argue that
one is better than the other in all cases. However, if you find that the match patterns
used in defining a template rule are becoming extremely complex and context-
dependent, then you probably have both a performance and a maintenance problem
on your hands, and controlling the selection of template rules in the calling code, by
using modes or by calling templates by name, may well be the answer.

Examples
<xsl:apply-templates/> Processes all the children of the

current node
<xsl:apply-templates select="para"/> Process all the <para> elements

that are children of the current
node

<xsl:apply-templates select="//*"
 mode="toc"/>

Processes every element in the
document in mode «toc»

<xsl:apply-templates select="para">
 <xsl:with-param name="indent"
 select="$n+4"/>
</xsl:apply-templates>

Process all the <para> elements
that are children of the current
node, setting the value of the
indent parameter in each called
template to the value of the
variable $n plus 4.

<xsl:apply-templates Process all the <book> elements in

 select="//book ">
 <xsl:sort select="@isbn"/>
</xsl:apply-templates>

the document, sorting them in
ascending order of their isbn
attribute.

See also
<xsl:for-each> on page 64
<xsl:template> on page 153
<xsl:with-param> on page 183

xsl:attribute
The <xsl:attribute> element outputs an attribute name and value to the current
output destination. It is successful only if an element node has been added to this
output tree and if no nodes other than attributes have been added since the element
was added.

Defined in
XSLT section 7.1.3

Format
<xsl:attribute name={QName} namespace={uri}>

 template-body

</xsl:attribute>

Position
<xsl:attribute> may be used either as an instruction within a template-body, or
within an <xsl:attribute-set> element.

Attributes
Name Value Meaning
name
mandatory

Attribute value
template returning a
QName

The name of the attribute to be
generated

namespace
optional

Attribute value
template returning a
URI

The namespace URI of the generated
attribute

Content
A template-body

Effect
An <xsl:attribute> instruction may appear within a template body, or within an

<xsl:attribute-set> element.

Both the name and the namespace attributes may be given as attribute value templates:
that is, they may contain expressions nested within curly braces, for example
<xsl:attribute name="{$chosenName}"/>. Attribute value templates are explained
in detail in Chapter 3, pageError! Cannot open file..

The <xsl:attribute> instruction must be instantiated in the course of instantiating an
instruction to add an element node to the result tree. This might be an <xsl:element>
or <xsl:copy> instruction, or a literal result element. Moreover, the attribute must be
instantiated before any child nodes (text nodes, elements, comments, or processing
instructions) are added to the element node. Very often the <xsl:attribute>
instruction will be contained directly in the instruction that writes the element, for
example:

<table>

 <xsl:attribute border="2"/>

</table>

but this is not essential, for example you could also do:

<table>

 <xsl:call-template name="set-border"/>

</table>

and then create the attribute from within the «set-border» template.

The rule that the attributes of an element must be written to the result tree before any
children are added is there for the convenience of implementors. It means that the
XSLT processor doesn't actually need to build the result tree in memory, instead each
node can be written out to an XML file as soon as it is generated. If it weren't for this
rule, the software wouldn't be able to write the first start tag until right at the end,
because there would always be a chance of an attribute being added to it.

If, at the time <xsl:attribute> is instantiated, there is already an attribute on the
current element node with the same name as this one (that is, another attribute whose
name has the same local part and namespace URI), then the new attribute overwrites
the earlier one. This is not an error: in fact, when named attribute sets are used to add
attributes to an output element, it is an important mechanism. Named attribute sets
are described under <xsl:attribute-set> on page 25.

Attribute Name
The name of the new attribute is obtained by expanding the name attribute. The result
of expanding the attribute value template must be a QName: that is, a valid XML name
with optional namespace prefix. In the most common case, this will be a simple name
with no colon, and the output attribute name is then the same as this QName.

The local part of the name of the output attribute will always be the same as the local
part of the QName supplied as the value of the name attribute. The prefix may be
different, as discussed below.

Attribute Namespace
I introduced XML namespaces in Chapter 2 (pageError! Cannot open file.). The
namespace attribute of the <xsl:attribute> instruction lets you define the namespace
URI of the attribute being generated.

The XSLT specification explicitly states that you cannot use <xsl:attribute> to
generate namespace declarations by giving an attribute name of «xmlns» or
«xmlns:*». Namespace declarations will be added to the output tree automatically
whenever you generate elements or attributes that require them.

If the <xsl:attribute> element has a namespace attribute, then its value (after
expanding the attribute value template) should be a URI identifying a namespace.
However, the system does not check that it conforms to any particular URI syntax, so
in effect any string can be used.

The prefix of the name of the output attribute will normally be the same as the prefix
of the supplied QName, but this is not guaranteed, and there are some circumstances
where the system may need to allocate a different prefix. One such situation is when
two attributes are added to the same element using the same prefix but with different
namespace URIs; another is when the prefix takes the reserved value «xmlns». If this
happens, the system can allocate any namespace prefix it likes. The prefix has to be
consistent, of course, between the attribute name and the corresponding namespace
declaration.

If there is no namespace attribute:

❑ If the supplied QName includes a prefix, the prefix must be a namespace prefix
that is in scope at this point in the stylesheet. The namespace URI in the output
will be that of the namespace associated with this prefix in the stylesheet.

❑ Otherwise, the supplied QName is used directly as the output attribute name.
The default namespace (as declared using «xmlns="uri"») is not used.

If there is a namespace attribute, the name of the output attribute will have the
namespace URI obtained by evaluating the namespace attribute. The namespace URI
associated with any prefix in the QName obtained from the name attribute will then be
ignored (though it must still be valid). The XSLT processor may need to generate a
prefix for the output attribute name if none was supplied. For example, if you write:

<table>

<xsl:attribute name="width" namespace="http://acme.org/">

 <xsl:text>200</xsl:text>

</xsl:attribute>

</table>

then the output might be:

<table ns0001:width="100" xmlns:ns0001="http://acme.org"/>

Attribute Value
The value of the new attribute is the string value obtained by instantiating the
template body. It is an error if instantiating the template body generates any nodes
other than text nodes.

Usage
There are many different ways to generate an attribute in the result tree: this section
compares the different approaches.

Where an output element is generated using a literal result element, the simplest way
to specify attributes is normally to include them as attributes on the literal result
element itself. You can do this even when the value is derived from information in the
source document, because the value can be generated using an attribute value
template, for example:

<body bgcolor="#{@red}{@green}{@blue}">

This concatenates three attributes of the current node in the source tree to create a
single attribute in the result tree. Attribute value templates are described in Chapter 3,
pageError! Cannot open file..

Using <xsl:attribute> gives you more control than writing the attribute directly in
this way. It is useful where one of the following conditions applies:

❑ The parent element is output using <xsl:element> or <xsl:copy> (rather
than a literal result element)

❑ There is conditional logic to decide whether to output the attribute or not

❑ The name of the attribute is computed at run-time

❑ There is complex logic to calculate the value of the attribute

❑ The attribute is one of a set that can conveniently be grouped together using
an <xsl:attribute-set>

❑ The output attribute belongs to a namespace that is not present in the source
document or the stylesheet.

A third way to output attributes is to copy them from the source tree to the result tree
by using <xsl:copy> or <xsl:copy-of>. This works only if the attribute you want to
generate has the same name and same value as an attribute in the source.

<xsl:copy> can be used when the current node in the source document is an attribute
node. It's not necessary that the owning element was output using <xsl:copy>, for
example the following code ensures that the width, height, and depth attributes of the
source <parcel> element are copied to the output <package> element, but its value
and owner attributes are discarded:

<xsl:template match="parcel">

<package>

 <xsl:apply-templates select="@*"/>

</package>

</xsl:template>

<xsl:template match="parcel/@width | parcel/@height | parcel/@depth">

 <xsl:copy/>

</xsl:template>

<xsl:template match=" parcel/@value | parcel/@owner"/>

This example uses <xsl:apply-templates> to process all the attributes of the
<parcel> element. Some of these match one template rule, which copies the attribute
to the output element, while others match an empty template rule that does nothing.

The same effect could be achieved more easily with <xsl:copy-of>, as follows:

<xsl:template match="parcel">

<package>

 <xsl:copy-of select="@width | @ height | @depth"/>

</package>

</xsl:template>

The select expression here selects a node-set that contains all the width, height, and
depth attributes of the current node, and the <xsl:copy-of> instruction copies this
node-set. The «|» operator, described in Chapter 5, page Error! Cannot open
file.,creates the union of two node-sets.

If you want to copy all attributes of the current node to the result tree, the simplest
way to achieve it is <xsl:copy-of select="@*"/>.

Examples
The following example outputs an HTML <OPTION> element, with a SELECTED
attribute included only if the boolean variable $selected is true. (The XML output
would be <OPTION SELECTED="SELECTED">, but the HTML output method will
convert this to <OPTION SELECTED>.)

Example: Generating an Attribute Conditionally

Source
The source file is countries.xml

<?xml version="1.0"?>

<countries>

<country name="France"/>

<country name="Germany"/>

<country name="Israel"/>

<country name="Japan"/>

<country name="Poland"/>

<country name="United States" selected="yes"/>

<country name="Venezuela"/>

</countries>

Stylesheet
The stylesheet file is options.xsl

This is a complete stylesheet using the simplified stylesheet syntax described in
Chapter 3, page Error! Cannot open file.. It outputs an HTML selection box in
which the selected attribute is set for the option marked as «selected="yes"» in
the XML source document.

<html xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<body>

<h1>Please select a country:</h1>

<select id="country">

<xsl:for-each select="//country">

 <option value="{@name}">

 <xsl:if test="@selected='yes'">

 <xsl:attribute name="selected">selected</xsl:attribute>

 </xsl:if>

 <xsl:value-of select="@name"/>

 </option>

</xsl:for-each>

</select>

<hr/>

</body>

</html>

Output
The output (shown with the selection box opened) is as follows:

The following example outputs a <promotion> element with either a code or reason-
code attribute depending on the variable $schema-version. This kind of logic can be
useful in an application that has to handle different versions of the output document
schema.

Example: Deciding the Attribute Name at Run-Time

Source
This example works with any source file.

Stylesheet
The stylesheet can be found in file conditional.xsl

The stylesheet declares a global parameter «schema-version» which controls the
name of the attribute used in the output file.

<xsl:stylesheet xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="schema-version" select="4.0"/>

<xsl:template match="/">

<promotion>

 <xsl:variable name="attname">

 <xsl:choose>

 <xsl:when test="$schema-version < 3.0">code</xsl:when>

 <xsl:otherwise>reason-code</xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:attribute name="{$attname}">17</xsl:attribute>

</promotion>

</xsl:template>

</xsl:stylesheet>

Output
With the default value of the parameter «schema-version», the output is:

<promotion reason-code="17"/>

When run with the parameter «schema-version» set to 2.0, the output is:

<promotion code="17"/>

In the above example it would be equally valid, of course, to use <xsl:attribute>
with a fixed attribute name in both arms of the <xsl:choose> element; the advantage
of doing the way we have shown would start to become apparent if the template body
of the <xsl:attribute> instruction were more complicated than the simple constant
«17».

This leads naturally to the next example, where <xsl:attribute> is used because the
value requires a calculation. In this example, the value of the output attribute is a

whitespace-separated list of the id attributes of the child <item> elements of the
current node:

<basket>

 <xsl:attribute name="value">

 <xsl:for-each select="item">

 <xsl:value-of select="@id"/>

 <xsl:if test="not(position()=last())">

 <xsl:text> </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:attribute>

</basket>

See also
<xsl:element> on page 55
<xsl:copy> on page 42

xsl:attribute-set
The <xsl:attribute-set> element is a top-level XSLT element used to define a
named set of attribute names and values. The resulting attribute set can be applied as a
whole to any output element, providing a way of defining commonly-used sets of
attributes in a single place.

Named attribute sets provide a capability similar to named styles in CSS.

Defined in
XSLT section 7.1.4

Format
<xsl:attribute-set name=QName

 use-attribute-sets=list-of-QNames >

 <xsl:attribute> *

</xsl:attribute-set>

Position
<xsl:attribute-set> is a top-level element, so it must always occur as an child of the
<xsl:stylesheet> element.

Attributes
Name Value Meaning
name
mandatory

QName The name of the attribute set

use-attribute-sets
optional

Whitespace-separated
list of QName

The names of other attribute sets
to be incorporated into this
attribute set

Content
Zero or more <xsl:attribute> elements.

Effect
The name attribute is mandatory, and defines the name of the attribute set. It must be a
QName: a name with or without a namespace prefix. If the name uses a prefix, it must
refer to a namespace declaration that is in scope at this point in the stylesheet, and as
usual it is the namespace URI rather than the prefix that is used when matching
names.

The use-attribute-sets attribute is optional. It is used to build up one attribute set
from a number of others. If present, its value must be a whitespace-separated list of
tokens each of which is a valid QName that refers to another named attribute set in the
stylesheet. For example:

<xsl:attribute-set name="table-cell"

 use-attribute-sets="small-font gray-background centered"/>

<xsl:attribute-set name="small-font">

 <xsl:attribute name="font-name">Verdana</xsl:attribute>

 <xsl:attribute name="font-size">6pt</xsl:attribute>

</xsl:attribute-set>

<xsl:attribute-set name="grey-background">

 <xsl:attribute name="bgcolor">#xBBBBBB</xsl:attribute>

</xsl:attribute-set>

<xsl:attribute-set name="centered">

 <xsl:attribute name="align">center</xsl:attribute>

</xsl:attribute-set>

The references must not be circular: if A refers to B, then B must not refer directly or
indirectly to A. The order is significant: specifying a list of named attribute sets is
equivalent to copying the <xsl:attribute> elements that they contain, in order, to the
beginning of the list of <xsl:attribute> elements contained in this
<xsl:attribute-set> element.

It is not an error for two attributes in the same attribute set to have the same name: all
but the last will be ignored. This means that an attribute defined directly within the
<xsl:attribute-set> element takes precedence over one that was obtained from
another attribute set referenced in the use-attribute-sets attribute.

If several attribute sets in the same stylesheet have the same name, they are merged. If
this merging finds two attributes with the same name, then the one in the attribute set
with higher import precedence will take precedence. Import precedence is discussed
under <xsl:import> on page 71. If they both have the same precedence, the XSLT
processor has the option of using the one that came later in the stylesheet, or reporting

an error.

The XSLT specification doesn't say explicitly how the use-attribute-sets attribute is
handled during this merging process, in particular, it doesn't say whether the
referenced attribute sets are incorporated before or after the merging. This is therefore
an area where implementations might differ from each other.

Usage
The most common use of attribute sets is to define packages of attributes that
constitute a display style, for example a collection of attributes for a font or for a table.

A named attribute set is used by referring to it in the use-attribute-sets attribute of
the <xsl:element> or <xsl:copy> elements, or in the xsl:use-attribute-sets
attribute of a literal result element, or, of course, in the use-attribute-sets attribute
of another <xsl:attribute-set> The first three cases all write an element node to the
current output destination, and have the effect of adding the attributes in the named
attribute set to that element node. Any attributes added implicitly from a named
attribute set can be overridden by attribute nodes added explicitly by the invoking
code.

An attribute set is not simply a textual macro. The attributes contained in the attribute
set each have a template body to define the value, and although this will often be a
simple text node, it may also, for example, declare variables or invoke other XSLT
instructions such as <xsl:call-template> and <xsl:apply-templates>.

The rules for the scope of variables, described under <xsl:variable> on page 172, are
the same as anywhere else, and are defined by the position of the definitions in the
source stylesheet document. This means that the only way to parameterize the values
of attributes in a named attribute set is by reference to global variables and
parameters: there is no other way of passing parameters to an attribute set. However,
the value of the generated attributes may depend on the context in the source
document. The context is not changed when the attribute-set is used, so the current
node («.») and current node list are exactly the same as in the calling template.

This is shown in the following example:

Example: Using an Attribute Set for Numbering
Let's suppose we want to copy an XML file containing a poem, but with the
<line> elements in the poem output in the form <line number="3" of="18">
within the stanza.

Source
The source file poem.xml has the following structure (I'm only showing the first
stanza):

<?xml version="1.0"?>

<poem>

<author>Rupert Brooke</author>

<date>1912</date>

<title>Song</title>

<stanza>

<line>And suddenly the wind comes soft,</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

</poem>

Stylesheet
The stylesheet number-lines.xsl copies everything unchanged except the
<line> elements, which are copied with a named attribute set:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:strip-space elements="*"/>

<xsl:output method="xml" indent="yes"/>

<xsl:template match="*">

 <xsl:copy>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

<xsl:template match="line">

 <xsl:copy use-attribute-sets="sequence">

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

<xsl:attribute-set name="sequence">

 <xsl:attribute name="number"><xsl:value-of

 select="position()"/></xsl:attribute>

 <xsl:attribute name="of"><xsl:value-of

 select="last()"/></xsl:attribute>

</xsl:attribute-set>

</xsl:transform>

Output
The output (again showing only the first stanza) looks like this:

<poem>

 <author>Rupert Brooke</author>

 <date>1912</date>

 <title>Song</title>

 <stanza>

 <line number="1" of="4">And suddenly the wind comes soft,</line>

 <line number="2" of="4">And Spring is here again;</line>

 <line number="3" of="4">And the hawthorn quickens with

 buds of green</line>

 <line number="4" of="4">And my heart with buds of pain.</line>

 </stanza>

</poem>

Examples
The following example defines an attribute set designed for generated HTML <table>
elements:

<xsl:attribute-set name="full-width-table">

 <xsl:attribute name="border">1</xsl:attribute>

 <xsl:attribute name="cellpadding">3</xsl:attribute>

 <xsl:attribute name="cellspacing">0</xsl:attribute>

 <xsl:attribute name="width">100%</xsl:attribute>

</xsl:attribute-set>

This attribute set can be used when generating an output element, as follows:

<table xsl:use-attribute-set="full-width-table">

<tr></tr>

</table>

This produces the following output:

<table border="1" cellpadding="3" cellspacing="0" width="100%">

<tr></tr>

</table>

Alternatively it is possible to use the attribute set while overriding some of its
definitions and adding others, for example:

<table border="2" rules="cols" xsl:use-attribute-set="full-width-table">

<tr></tr>

</table>

The output now becomes:

<table border="2" rules="cols" cellpadding="3"

 cellspacing="0" width="100%">

<tr></tr>

</table>

If this combination of attributes is also used repeatedly, it could be defined as an
attribute in its own right, as:

<xsl:attribute-set name="ruled-table" use-attribute-set="full-width-table">

 <xsl:attribute name="border">2</xsl:attribute>

 <xsl:attribute name="rules">cols</xsl:attribute>

</xsl:attribute-set>

Then this new attribute set could also be invoked by name from a literal result
element, an <xsl:element> instruction, or an <xsl:copy> instruction.

See also
<xsl:element> on page 55
<xsl:copy> on page 42
Literal Result Elements in Chapter 3, page Error! Cannot open file.

xsl:call-template
The <xsl:call-template> instruction is used to invoke a named template. Its effect is
analogous to a procedure call or subroutine call in other programming languages.

Defined in
XSLT section 6

Format
<xsl:call-template name=QName>

 <xsl:with-param> *

</xsl:call-template>

Position
<xsl:call-template> is an instruction; it is always used within a template body.

Attributes
Name Value Meaning
name
mandatory

QName The name of the template to be called

Content
Zero or more <xsl:with-param> elements.

Effect
The sections below describe the rules for the template name, the rules for supplying
parameters to the called template, and the way the context is affected.

The Template Name
The mandatory name attribute must be a QName, and it must match the name attribute of
an <xsl:template> element in the stylesheet. If the name has a namespace prefix, the

names are compared using the corresponding namespace URI in the usual way. If
there is no prefix, the namespace URI is null (the default namespace is not used). It is
an error if there is no <xsl:template> element with a matching name.

If there is more than one <xsl:template> in the stylesheet with a matching name, they
must have different import precedence, and the one with highest import precedence is
used. For information about import precedence, see <xsl:import> on page 71.

The name of the template to be called must be written explicitly in the name attribute.
There is no way of writing this name as a variable or expression to be evaluated at run-
time. If you want to make a run-time decision which of several named templates to
call, the only way to achieve this is to write an <xsl:choose> instruction.

Parameters
If the name of a child <xsl:with-param> matches the name of an <xsl:param>
element in the called <xsl:template>, then the <xsl:with-param> element is
evaluated (in the same way as an <xsl:variable> element) and the value is assigned
to the relevant <xsl:param> variable name within that named template.

If there is a child <xsl:with-param> that does not match the name of any
<xsl:param> element in the selected <xsl:template>, then it is ignored. This is not
treated as an error.

If there is an <xsl:param> element in the selected <xsl:template> with no matching
<xsl:with-param> element in the <xsl:call-template> element, then the
<xsl:param> variable is given a default value: see <xsl:param> on page 126 for
details. Again, this is not an error.

Context
The selected <xsl:template> is executed with no change to the context: it uses the
same current node and current node list, and the same output destination, as the
calling template. There is also no change to the current template rule (a concept that is
used only by <xsl:apply-imports>, described on page 1).

Usage and Examples
The <xsl:call-template> element is similar to a subroutine call in conventional
programming languages, and the parameters behave in the same way as conventional
call-by-value parameters. It is useful wherever there is common logic to be called from
different places in the stylesheet.

Returning a Result
There is no direct way of returning a result from <xsl:call-template>. However, if
<xsl:call-template> is called from within an <xsl:variable> element, that variable
becomes the current output destination, so any data written by the called template (for
example, using <xsl:value-of>) will be accessible as part of the value of this variable.
The variable will always be a result tree fragment, but in practice it will usually be
used as a string.

For example, the following template outputs the supplied string enclosed in
parentheses:

<xsl:template name="parenthesize">

 <xsl:param name="string"/>

 <xsl:value-of select="concat('(',$string,')')"/>

</xsl:template>

This may be called as follows:

<xsl:variable name="credit-in-paren">

 <xsl:call-template name="parenthesize"/>

 <xsl:with-param name="string" select="@credit"/>

 </xsl:call-template>

</xsl:variable>

If the value of the credit attribute is «120.00», the resulting value of the variable
«$credit-in-paren» will be «(120.00)»

Changing the Current Node
If you want to use <xsl:call-template> to process a node that is not the current
node, the easiest way to achieve this is to nest the <xsl:call-template> inside an
<xsl:for-each> element. An alternative, however, is to give the target template a
distinctive mode name, and call it using <xsl:apply-templates> with the specified
mode.

For example, suppose you have written a template that outputs the depth of the
current node (the number of ancestors it has). The template has been given a unique
name and an identical mode name.

<xsl:template name="depth-of-node" mode="depth-of-node" match="node()">

 <xsl:value-of select="count(ancestor::node())"/>

</xsl:template>

Now suppose you want to obtain the depth of a node other than the current node –
let's say the depth of the next node in document order, which might be above, below,
or on the same level as the current node. You can call this template in either of two
ways.

Using <xsl:call-template>:

<xsl:variable name="next-depth">

 <xsl:for-each select="following::node()[1]">

 <xsl:call-template name="depth-of-node"/>

 </xsl:for-each>

</xsl:variable>

or using <xsl:apply-templates> with a special mode:

<xsl:variable name="next-depth">

 <xsl:apply-templates select="following::node()[1]" mode="depth-of-node"/>

</xsl:variable>

In both cases the variable $next-depth will, on return, hold a value which is the depth
in the tree of the node following the current node. Technically the value will be a result
tree fragment, but because a result tree fragment can be freely converted to a string or
a number where the context requires it, it can be used without formality in contexts
such as arithmetic expressions. For example, you could write a test such as <xsl:if
test="$next-depth > 4">.

Recursion: Processing a List of Values
Named templates are sometimes used to process a list of values. As XSLT has no
updateable variables like a conventional programming language, it also has no
conventional for or while loop, because these constructs can only terminate if there is a
control variable whose value is changing. Instead, to process a list of items in XSLT
you need to use recursion.

The typical logic used is illustrated by the following pseudo-code:

function process-list(list L) {

 if (not-empty(L)) {

 process(first(L));

 process-list(remainder(L));

 }

}

That is, the function does nothing if the list is empty; otherwise it processes the first
item in the list, and then calls itself to process the list containing all items except the
first. The net effect is that each item in the list will be processed and the function will
then exit.

There are two main kinds of list that this logic is applied to: node-sets, and strings
containing separator characters. I will show one example of each kind; there are
further, more complex examples in Chapters 8 and 9.

Example: Using Recursion to Process a Node-Set
Here's an example for processing a node-set. XPath provides built-in functions
for counting nodes and for totaling their values, but it doesn't provide a max() or
min() function, so to do this we have to walk through the set of nodes comparing
the value with the previous highest or lowest. Of course we can't use a variable to
record the highest or lowest so far, so we need to turn to recursion for the
solution. (There's another solution, which involves sorting the node-set, but that
is best avoided on performance grounds.)

Conceptually it's trivial: the maximum value of a set of numbers is either the first
number or the maximum of the set of the numbers after the first, whichever is
larger. We use XPath predicates for manipulating the node-sets: in particular,
«[1]» to find the first node in the set, and «[position()!=1]» to find the
remainder.

Let's use this approach to find the longest speech in a scene of a play.

Source
The source file scene.xml is the scene of a play. It starts like this:

<?xml version="1.0"?>

<SCENE><TITLE>SCENE I. Venice. A street.</TITLE>

<STAGEDIR>Enter RODERIGO and IAGO</STAGEDIR>

<SPEECH>

<SPEAKER>RODERIGO</SPEAKER>

<LINE>Tush! never tell me; I take it much unkindly</LINE>

<LINE>That thou, Iago, who hast had my purse</LINE>

<LINE>As if the strings were thine, shouldst know of this.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>IAGO</SPEAKER>

<LINE>'Sblood, but you will not hear me:</LINE>

<LINE>If ever I did dream of such a matter, Abhor me.</LINE>

</SPEECH>

etc.

</SCENE>

Stylesheet
The stylesheet longest-speech.xsl is shown below. It starts by defining a
named template «max». This template takes a node-set called «list» as its
parameter.

The first thing it does is to test whether this node-set is empty (<xsl:when
test="$list">). If it is, is gets the number of <LINE> element children of the first
node in the list into a variable «$first». Then the template calls itself
recursively, passing all nodes except the first as the parameter, to determine the
maximum value for the rest of the list. It then returns either the first value, or the
maxumum for the rest of the list, whichever is greater. Finally, if the supplied list
was empty, it returns zero.

The template rule for the root node of the source document simply calls the
«max» template, passing the list of all <SPEECH> elements as a parameter.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template name="max">

<xsl:param name="list"/>

<xsl:choose>

<xsl:when test="$list">

 <xsl:variable name="first" select="count($list[1]/LINE)"/>

 <xsl:variable name="max-of-rest">

 <xsl:call-template name="max">

 <xsl:with-param name="list" select="$list[position()!=1]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:choose>

 <xsl:when test="$first > $max-of-rest">

 <xsl:value-of select="$first"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$max-of-rest"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:when>

<xsl:otherwise>0</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match="/">

Longest speech is <xsl:text/>

 <xsl:call-template name="max">

 <xsl:with-param name="list" select="//SPEECH"/>

 </xsl:call-template>

<xsl:text/> lines.

</xsl:template>

</xsl:transform>

Output
The output is simply a message giving the length of the longest speech in this
scene:

<?xml version="1.0" encoding="utf-8" ?>

Longest speech is 26 lines.

Similar logic is often used to process a list presented in the form of a string containing
a list of tokens. The easiest form to process is a whitespace-separated list, because the
normalize-space() function is available to ensure that each item in the list is
separated by exactly one space character.

Example: Using Recursion to Process a Separated String
In this example we will print out all lines in scene.xml where the line contains
the name of a person appearing in that scene. An example of such a line is:

<LINE>That thou, Iago, who hast had my purse</LINE>

To do this we will first need to normalize the line to convert punctuation into
spaces and to convert lower-case into uppercase. Then we will need to process

the line word by word. The only way to do this is by recursion: test whether the
first word in the line is the name of a speaker, then apply the same logic to the
rest of the line after the first word.

Source
The source file scene.xml is the same as in the previous example.

Stylesheet
The stylesheet naming-lines.xsl starts by declaring a global variable whose
value is the set of <SPEAKER> elements anywhere in the document:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:variable name="speakers" select="//SPEAKER"/>

Now comes the recursive named template. It takes a parameter called «line». The
first thing it does is to massage this line, first by converting lower case to upper
case and punctuation to spaces using the translate() function, and then by
replacing multiple spaces by a single space, and adding a another single space at
the end, using the normalize-space() and concat() functions. (These
functions are all described in Chapter 7).

Then the template extracts the first word in the line by using substring-
before(). If this word is present in the global node-set «$speakers» it returns
the value «true». Otherwise it applies the same test to the rest of the line
(obtained using substring-after()) by calling itself recursively.

If the end of the line is reached, the template returns the value «false».

<xsl:template name="contains-name">

 <xsl:param name="line"/>

 <xsl:variable name="line1"

 select="translate($line,

 'abcdefghijklmnopqrstuvwxyz.,:?!;',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ')"/>

 <xsl:variable name="line2"

 select="concat(normalize-space($line1), ' ')"/>

 <xsl:variable name="first" select="substring-before($line2,' ')"/>

 <xsl:choose>

 <xsl:when test="$first">

 <xsl:choose>

 <xsl:when test="$speakers[.=$first]">true</xsl:when>

 <xsl:otherwise>

 <xsl:variable name="rest" select="substring-after($line2,' ')"/>

 <xsl:call-template name="contains-name">

 <xsl:with-param name="line" select="$rest"/>

 </xsl:call-template>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>false</xsl:otherwise>

 </xsl:choose>

</xsl:template>

Then comes the "main program", the template rule that matches the root node.
This simply calls the named template for each <LINE> element in the document,
copying the element to the output if the named template returns the value
«true»:

<xsl:template match="/">

<xsl:for-each select="//LINE">

 <xsl:variable name="contains-name">

 <xsl:call-template name="contains-name">

 <xsl:with-param name="line" select="."/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:if test="$contains-name='true'">

 <xsl:copy-of select="."/>;

 </xsl:if>

</xsl:for-each>

</xsl:template>

</xsl:transform>

Output
The output lists all the <LINE> elements containing the name of a <SPEAKER> in
the scene:

<?xml version="1.0" encoding="utf-8" ?>

 <LINE>That thou, Iago, who hast had my purse</LINE>;

 <LINE>It is as sure as you are Roderigo,</LINE>;

 <LINE>Were I the Moor, I would not be Iago:</LINE>;

 <LINE>What, ho, Brabantio! Signior Brabantio, ho!</LINE>;

 <LINE>Awake! what, ho, Brabantio! thieves! thieves! thieves!</LINE>;

 <LINE>My name is Roderigo.</LINE>;

 <LINE>Most grave Brabantio,</LINE>;

 <LINE>This thou shalt answer; I know thee, Roderigo.</LINE>;

 <LINE>Is nought but bitterness. Now, Roderigo,</LINE>;

 <LINE>May be abused? Have you not read, Roderigo,</LINE>;

 <LINE>On, good Roderigo: I'll deserve your pains.</LINE>;

When processing strings in this way, the only thing you need to be specially careful
about is ensuring that there is a single space between each pair of words and another
one at the end (because otherwise the substring-before() call would fail when there
is one word left in the list). This is achieved using the normalize-space() and
concat() functions. The way these are used here is rather inefficient, because the line

only needs to be normalized once, not on each recursive call, but I have left that
inefficiency in to keep the example code simpler.

One other case where recursion is needed is the simple matter of doing something a
fixed number of times. For example, suppose you need to create four empty cells in a
table. The following code achieves this, by producing one cell, and then calling itself to
produce the rest, stopping only when the number requested reaches zero.

<xsl:template name="produce-empty-cells">

 <xsl:param name="count"/>

 <xsl:if test="$count != 0">

 <td> </td>

 <xsl:call-template name="produce-empty-cells">

 <xsl:with-param name="count" select="$count – 1"/>

 </xsl:call-template>

 </xsl:if>

</xsl:template>

To produce four empty cells, call this with the «count» parameter set to four, thus:

 <xsl:call-template name="produce-empty-cells">

 <xsl:with-param name="count" select="4"/>

 </xsl:call-template>

See also
<xsl:apply-templates> on page 6
<xsl:param> on page 126
<xsl:with-param> on page 183

xsl:choose
The <xsl:choose> instruction defines a choice between a number of alternatives.

If there are two alternatives it performs the equivalent of if-then-else in other
languages; if there are more than two, it performs the equivalent of a switch or select
statement.

Defined in
XSLT section 9.2

Format
<xsl:choose>

 <xsl:when> +

 <xsl:otherwise> ?

</xsl:choose>

Position
<xsl:choose> is an instruction: it is always used within a template body.

Attributes
None.

Content
One or more <xsl:when> elements.
Optionally, an <xsl:otherwise> element, which must come last if it is present at all.

Effect
The <xsl:choose> element is instantiated as follows:

❑ The first <xsl:when> element whose test expression is true is selected.
Subsequent <xsl:when> elements are ignored whether or not their test
expression is true.

❑ If none of the <xsl:when> elements has a test expression that is true, the
<xsl:otherwise> element is selected. If there is no <xsl:otherwise> element,
no element is selected, and the <xsl:choose> element therefore has no effect.

❑ The selected child element (if any) is executed by instantiating its template
body in the current context. So the effect is as if the relevant template body
appeared in place of the <xsl:choose> instruction.

It is not defined whether the test expression in a <xsl:when> element after the selected
one is evaluated or not, so if it calls extension functions that have side-effects, or if it
contains errors, the result is undefined.

Usage
The <xsl:choose> instruction is useful where there is a choice of two or more
alternative courses of action. It thus performs the functions of both the if-then-else
and switch or Select Case constructs found in other programming languages.

Using <xsl:choose> with a single <xsl:when> instruction and no <xsl:otherwise> is
permitted, and means exactly the same as <xsl:if>. Some people suggest writing
every <xsl:if> instruction this way, to save rewriting it later when you discover that
you want an else branch after all.

When <xsl:choose> is used within the body of an <xsl:variable> (or <xsl:param>
or <xsl:with-param>) element, the effect is a conditional assignment: the relevant
variable is assigned a different value depending on the conditions. Note however that
the value of the variable in such cases will always be a result tree fragment.

Examples
The following example outputs the name of a State in the USA based on a two-letter

abbreviation for the State. If the abbreviation is not that of a recognized State, it
outputs the abbreviation itself.

<xsl:choose>

 <xsl:when test="state='AZ'">Arizona</xsl:when>

 <xsl:when test="state='CA'">California</xsl:when>

 <xsl:when test="state='DC'">Washington DC</xsl:when>

......

 <xsl:otherwise><xsl:value-of select="state"/></xsl:otherwise>

</xsl:choose>

The following example declares a variable called width and initializes its value to the
width attribute of the current node, if there is one, or to 100 otherwise.

<xsl:variable name="width">

 <xsl:choose>

 <xsl:when test="@width">

 <xsl:value-of select="@width"/>

 </xsl:when>

 <xsl:otherwise>100</xsl:otherwise>

 </xsl:choose>

</xsl:variable>

Note: you might be tempted to write this as follows:

<!--WRONG-->

<xsl:choose>

 <xsl:when test="@width">

 <xsl:variable name="width">

 <xsl:value-of select="@width"/>

 </xsl:variable>

 </xsl:when>

 <xsl:otherwise>

 <xsl:variable name="width" select="100"/>

 </xsl:otherwise>

</xsl:choose>

<!--WRONG-->

This is legal XSLT, but it does not achieve the required effect. This is because both the
variables called «width» have a scope which is bounded by the containing element, so
they are inaccessible outside the <xsl:choose> instruction.

See also
<xsl:when> on page 182
<xsl:otherwise> on page 114
<xsl:if> on page 68

xsl:comment

The <xsl:comment> instruction is used to write a comment to the current output
destination.

Defined in
XSLT section 7.4

Format
<xsl:comment>

 template-body

</xsl:comment>

Position
<xsl:comment> is an instruction: it is always used within a template body.

Attributes
None.

Content
A template-body.

Effect
The template-body contained in the <xsl:comment> instruction may only generate
text nodes, it is an error if it generates other nodes such as elements, attributes, or
nested comments.

The comment should not include the sequence «--», and it should not end in «–»,
because these sequences are not allowed in XML comments. The XSLT processor may
recover from these errors by adding extra spaces to the comment or it may report an
error. If you want your stylesheet to be portable, you must therefore avoid generating
these sequences.

In XML or HTML output, the comment will appear as:

<!-- comment text -->

Usage
In theory, a comment has no meaning to the software that processes the output
document, it is intended only for human readers. Comments are therefore useful to
record when and how the document was generated, or perhaps to explain the meaning
of the tags.

Comments can be particularly useful for debugging the stylesheet: if each
<xsl:template> in the stylesheet starts with an <xsl:comment> instruction, you will
find it much easier to trace back from the output to your stylesheet.

Comments in HTML output are used for some special markup conventions, for
example surrounding Dynamic HTML scripts. The purpose of the comment here is to
ensure that browsers that don't understand the script will skip over it rather than
displaying it as text. An example is shown below.

Examples
The following example uses an extension function, if it is available, to output a
comment containing the date at which the stylesheet was generated. Extension
functions are described in Chapter 3, page Error! Cannot open file..

<xsl:if test="function-available(Date:toString)"

 xmlns:Date="/java.util.Date">

 <xsl:comment>Generated at:

 <xsl:value-of select="Date:toString()"/>

 </xsl:comment>

</xsl:if>

Typical output might be:

<!--Generated at Tue Dec 07 23:38:08 GMT 1999-->

The following example outputs a piece of client-side JavaScript to an HTML output
file:

<script language="JavaScript">

 <xsl:comment>

 function bk(n) {

 parent.frames['content'].location="chap" + n + ".1.html";

 }

 //</xsl:comment>

</script>

The output will look like this:

<script language="JavaScript">

 <!--

 function bk(n) {

 parent.frames['content'].location="chap" + n + ".1.html";

 }

 //-->

</script>

The comment cannot be written as a comment in the stylesheet, of course, because then
the XSLT processor would ignore it entirely. Comments in the stylesheet are not
copied to the output destination.

See also

function-available() in Chapter 7, page Error! Cannot open file. .

xsl:copy
The <xsl:copy> instruction copies the current node in the source document to the
current output destination. This is a shallow copy: it does not copy the children,
descendants, or attributes of the current node, only the current node and (if it is an
element) its namespaces.

Defined in
XSLT section 7.5

Format
<xsl:copy use-attribute-sets=list-of-QNames >

 template-body

</xsl:copy>

Position
<xsl:copy> is an instruction. It is always used within a template body.

Attributes
Name Value Meaning
use-attribute-sets
optional

Whitespace-
separated list of
QNames

The names of attribute sets to be
applied to the generated node, if
it is an element

Content
An optional template-body: used only if the current node is a root node or an element.

Effect
The action depends on the node type of the current node, as follows:

Type of current node in
source document

Action

root Nothing is written to the output destination (it is
never necessary to write a root node to the output
destination, because it is created implicitly). The
use-attribute-sets attribute is ignored. The
only effect of calling <xsl:copy> is that the
template body is instantiated.

element An element node is added to the current output
destination, as if by a call on <xsl:element>. This

will have the same name as the current element
node in the source document. The namespace
nodes associated with the current element node
are also copied. The use-attribute-sets
attribute is expanded: it must be a whitespace-
separated list of QNames that identify named
attribute-sets in the stylesheet. The attributes
within these named attribute sets are evaluated in
the order they appear, and added to the output
destination. The template body is then
instantiated.

text A new text node is written to the output
destination, with the same value as the current text
node in the source document. The use-
attribute-sets attribute and the template body
are ignored.

attribute An attribute node is added to the current output
destination, as if by a call on <xsl:attribute>.
This will have the same name and value as the
current attribute node in the source document. If
the output destination does not currently have an
open element node to hold this attribute, an error
is reported. If the open element node already
holds an attribute with the same name, the new
attribute overwrites the old. The use-attribute-
sets attribute and the template-body are ignored.
The XSLT specification does not explicitly say that
any necessary namespace nodes are copied,
though this is implicit in the requirement to
generate output that conforms to the XML
Namespaces specification.

processing instruction A processing instruction node is added to the
current output destination, with the same name
and value (target and data in XML terminology) as
the current processing instruction node in the
source document. The use-attribute-sets
attribute and the template body are ignored.

comment A comment node is added to the current output
destination, with the same content as the current
comment node in the source document. The use-
attribute-sets attribute and the template-body
are ignored.

namespace The XSLT specification does not define the effect
of copying a namespace node. It should never be
necessary, and it is best not attempted.

Usage
The main use of <xsl:copy> is when doing an XML-to-XML transformation in which

parts of the document are to remain unchanged. It is also useful when the source XML
document contains XHTML fragments within it, for example if the simple HTML
formatting elements such as <i> and are used within textual data in the source,
and are to be copied unchanged to an HTML output document.

Although <xsl:copy> does a shallow copy, it is easy to construct a deep copy by
applying it recursively. The typical manner of use is to write a template rule that
effectively calls itself:

<xsl:template match="@*|node()" mode="copy">

 <xsl:copy>

 <xsl:apply-templates select="@*" mode="copy"/>

 <xsl:apply-templates mode="copy"/>

 </xsl:copy>

</xsl:template>

This template rule matches any node except a namespace or root node. This is because
«@*» matches any attribute node, and «node()», which is short for «child::node()»,
matches any node that is the child of something. Once this template rule is applied to a
node, it copies that node, and if it is an element node, it applies the same template rule
first to its attributes and then to its child nodes — I am assuming there is no other
template rule with mode="copy" that has a higher priority.

An easier way of doing a deep copy is to use <xsl:copy-of>. However, the recursive
use of <xsl:copy> allows control over exactly which nodes are to be included in the
output.

Examples
The following template rule is useful if the source document contains HTML-like
tables that are to be copied directly to the output, without change to the structure.

<xsl:template match=" table | tbody | tr | th | td ">

 <xsl:copy>

 <xsl:for-each select="@*">

 <xsl:copy/>

 </xsl:for-each>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

The effect is that any of these elements are copied to the output destination, along with
their attributes, but their child elements are processed using whatever template rule is
appropriate, which might be this one in the case of a child element that is part of the
table model, or it might be a different template for some other element. This template
rule could be simplified by copying the attributes using <xsl:copy-of>, thus:

<xsl:template match=" table | tbody | tr | th | td ">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

The following template rule matches any elements in the source document that are in
the SVG namespace, and copies them unchanged to the output, along with their
attributes. The SVG namespace node itself will also be included automatically in the
output tree. (SVG stands for Scalable Vector Graphics, it is an XML-based standard
currently under development designed to fill the long-standing need for including
vector graphics in web pages. The SVG namespace may change when the final
standard is published)

<xsl:template match="svg:*"

 xmlns:svg=”http://www.w3.org/Graphics/SVG/SVG-19991203.dtd >

 <xsl:copy>

 <xsl:copy-of select="@*">

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

See also
<xsl:copy-of> on page 46.

xsl:copy-of
The main purpose of the <xsl:copy-of> instruction is to copy a result tree fragment
or a node-set to the current output destination. This is a deep copy – when a node is
copied, its descendants are also copied.

Defined in
XSLT section 11.3

Format
<xsl:copy-of select=Expression />Position

Position
<xsl:copy-of> is an instruction. It is always used within a template-body.

Attributes
Name Value Meaning
select
mandatory

Expression The result tree fragment, node-set, or other value
to be copied to the output destination

Content
None; the element is always empty.

Effect
If the result of evaluating the select expression is a result tree fragment (this will only
happen if the expression is a VariableReference), the result tree fragment is copied to
the current output destination. The root node of the result tree fragment is not copied
(because a tree can only have one root) but all the nodes that are children of this root
are copied, in the order they appear, together with their namespaces, their attributes,
and their children, recursively.

If the result of evaluating the select expression is a node-set, each of the nodes in the
node-set is copied, in document order, to the current output destination. This is a deep
copy: copying a node copies its namespaces, its attributes, and its children, recursively.

If the result is any other type, <xsl:copy-of> has the same effect as <xsl:value-of>.
The value is converted to a string using the rules of the string() function, and the
string is written to the current output destination as a text node.

Usage and Examples
There are two principal uses for <xsl:copy-of>: it can be used when the same data is
needed in more than one place in the output document, and it can be used for copying
a subtree unchanged from the input document to the output.

Repeated Output Fragments
The use of <xsl:copy-of> in conjunction with result tree fragments arises primarily
when you want to write the same collection of nodes to the output in more than one
place. This might arise, for example, with page headers and footers. The construct
allows you to assemble the required output fragment as the value of a variable, and
then copy it to the final output destination as often as required.

Example: Using <xsl:copy-of> for Repeated Output

Source
The source file soccer.xml holds details of a number of soccer matches played
during the World Cup finals in 1998.

<?xml version="1.0"?>

<results group="A">

<match>

<date>10-Jun-98</date>

<team score="2">Brazil</team>

<team score="1">Scotland</team>

</match>

<match>

<date>10-Jun-98</date>

<team score="2">Morocco</team>

<team score="2">Norway</team>

</match>

<match>

<date>16-Jun-98</date>

<team score="1">Scotland</team>

<team score="1">Norway</team>

</match>

<match>

<date>16-Jun-98</date>

<team score="3">Brazil</team>

<team score="0">Morocco</team>

</match>

<match>

<date>23-Jun-98</date>

<team score="1">Brazil</team>

<team score="2">Norway</team>

</match>

<match>

<date>23-Jun-98</date>

<team score="0">Scotland</team>

<team score="3">Morocco</team>

</match>

</results>

Stylesheet
The stylesheet is in file soccer.xsl

It constructs an HTML table heading as a global tree-valued variable, and then
uses <xsl:copy-of> every time it wants to output this heading. In this particular
case the heading is fixed, but it could contain data from the source document, so
long as the heading is the same each time it is output. If it contained calculated
values, there would be a possible performance benefit it coding it this way rather
than regenerating the heading each time.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:variable name="table-heading">

 <tr>

 <td>Date</td>

 <td>Home Team</td>

 <td>Away Team</td>

 <td>Result</td>

 </tr>

</xsl:variable>

<xsl:template match="/">

<html><body>

 <h1>Matches in Group <xsl:value-of select="/*/@group"/></h1>

 <xsl:for-each select="//match">

 <h2><xsl:value-of select="concat(team[1], ' versus ', team[2])"/></h2>

 <table bgcolor="#cccccc" border="1" cellpadding="5">

 <xsl:copy-of select="$table-heading"/>

 <tr>

 <td><xsl:value-of select="date"/> </td>

 <td><xsl:value-of select="team[1]"/> </td>

 <td><xsl:value-of select="team[2]"/> </td>

 <td><xsl:value-of

 select="concat(team[1]/@score, '-', team[2]/@score)"/> </td>

 </tr>

 </table>

 </xsl:for-each>

</body></html>

</xsl:template>

</xsl:stylesheet>

Output
(Apologies to soccer fans who know full well that all these matches were played
in France, on neither team's home territory. It's only an example!)

There are only really two things you can do with a result tree fragment: you can copy
it to another tree using <xsl:copy-of>, and you can convert it to a string. Several
XSLT implementations also provide a function to convert a result tree fragment to a
node-set, which greatly expands the usefulness of result tree fragments because they
can then be used as working data structures. Unfortunately this feature is not yet in
the standard, but because it has been prototyped in several products it is a strong
candidate for inclusion in a future version.

Deep Copy
The other use for <xsl:copy-of>, which is easily overlooked because of the way the
XSLT specification describes its use, is that it provides a simple way of copying an
entire sub-tree of the input document directly to the output. As <xsl:copy-of> does a
deep copy, this is simpler than using <xsl:copy>, though it can only be used when the
whole subtree is to be copied without change. For example, an XML document
defining a product description might have an element called <overview> whose
content is pure XHTML. You could copy this to the output HTML document with a
template rule such as:

<xsl:template match="overview">

 <div>

 <xsl:copy-of select="node()">

 </div>

</xsl:template>

Unlike the examples using <xsl:copy>, there is no recursive application of template
rules here: each child node of the <overview> element is copied to the output
destination in a single operation, along with all its children.

See also
<xsl:copy> on page 42
<xsl:variable> on page 172

xsl:decimal-format51
The <xsl:decimal-format> element is used to define the characters and symbols
used when converting numbers into strings using the format-number() function.

Note that <xsl:decimal-format> only affects the format-number() function. It has
no effect on the way <xsl:number> formats numbers for display, nor on the default
number-to-string conversion used by the string() function, nor on the format used
when <xsl:value-of> is used to output a number as a string.

Defined in
XSLT section 12.3

Format
<xsl:decimal-format

 name=QName

 decimal-separator=character

 grouping-separator=character

 infinity=string

 minus-sign=character

 NaN=string

 percent=character

 per-mille=character

 zero-digit=character

 digit=character

 pattern-separator=character />

Position
<xsl:decimal-format> is a top-level element. It may appear any number of times in
a stylesheet, but only as an immediate child of the <xsl:stylesheet> element.

Attributes
Name Value Meaning

name
optional

QName The name of this decimal format. If omitted, the
attributes apply to the default decimal format.

decimal-
separator
optional

character Character to be used to separate the integer and
the fraction part of a number. Default is «.»

grouping-
separator
optional

character Character used to separate groups of digits.
Default is «,»

infinity
optional

string String used to represent the numeric value
infinity. Default value is «Infinity»

minus-sign
optional

character Character used as the default minus sign. Default
is «–».

NaN
optional

string String used to represent the numeric value NaN
(not a number). Default value is «NaN»

percent
optional

character Character used to represent a percentage sign.
Default value is «%»

per-mille
optional

character Character used to represent a per-mille (i.e. per-
thousand) sign. Default value is «‰»

zero-digit
optional

character Character used in a format pattern to indicate a
place where a leading zero digit is required.
Default value is «0»

digit
optional

character Character used in a format pattern to indicate a
place where a digit is required. Default value is
«#»

pattern-
separator
optional

character Character used in a format pattern to separate the
subpattern for positive numbers from the
subpattern for negative numbers. Default value is
«;»

Content
None; the element is always empty.

Effect
If a name attribute is supplied, the <xsl:decimal-format> element defines a named
decimal format; otherwise it defines attributes of the default decimal format. A named
decimal format is used by the format-number() function when it is called with three
arguments (the third argument is the name of a decimal format); the default decimal
format is used when the format-number() function is called without a third
argument.

It is an error to have more than one <xsl:decimal-format> element for the default
decimal format, or more than one for a decimal format with a given name, unless all
non-default attribute values are identical. This is true even if the different
<xsl:decimal-format> elements have different import precedence.

The <xsl:decimal-format> element does not directly define the display format of a
number. Rather it defines the characters and strings used to represent different logical

symbols. Some of these logical symbols occur in the format pattern used as an argument
to the format-number() function, some of them occur in the final output number
itself, and some are used in both. The actual display format of a number depends both
on the format pattern and on the choice of decimal format symbols.

For example, if there is a <xsl:decimal-format> element as follows:

<xsl:decimal-format name="european"

 decimal-separator=","

 grouping-separator="." >

then the function call:

format-number(1234.5, '#.##0,00', 'european')

will produce the output:

1.234,50

The use of the «.» and «,» characters in both the format pattern and the output
display is determined by the named <xsl:decimal-format> element, but the number
of digits displayed, and the use of leading and trailing zeroes is determined solely by
the format pattern.

The structure of a format pattern is defined in the description of the format-number()
function in Chapter 7, page Error! Cannot open file. . The syntax of the format pattern
uses a number of special symbols: the actual characters used for these symbols are
defined in the relevant <xsl:decimal-format> element. These symbols are:

decimal-separator
grouping-separator
percent
per-mille
zero-digit
digit
pattern-separator

The <xsl:decimal-format> element also defines characters and strings which are
used, when required, in the actual output value. Some of these are the same as
characters used in the format pattern, others are different. These characters and strings
are:

decimal-separator
grouping-separator
infinity
minus-sign
NaN
percent
per-mille
zero-digit

For example, if the <xsl:decimal-format> element defines the infinity string as
«***», then the output of «format-number(1 div 0, $format)» will be «***»,

regardless of the format pattern.

Usage
The <xsl:decimal-format> element is used in conjunction with the format-number()
function to output numeric information. It is designed primarily to provide
localization of the format for display to human readers, but it can also be useful when
you need to produce an output data file using, for example, a fixed number of leading
zeroes. It is typically used for numbers in the source data or computed from the source
data, whereas the <xsl:number> element, which has its own formatting capabilities, is
generally used for sequence numbers.

Each <xsl:decimal-format> element defines a style of localized numbering, catering
for the variations that occur in different countries and languages, and for other local
preferences such as the convention in the accountancy profession whereby parentheses
are used to indicate negative numbers.

Examples
The following tables illustrate some of the effects achievable using the <xsl:decimal-
format> element in conjunction with different format patterns.

Example 1
This decimal format is used in many Western European countries: it uses a comma as a
decimal point and a period (full stop) as a thousands separator, the reverse of the
custom in Britain and North America.

The left hand column shows the number as it would be written in XSLT. The middle
column shows the format pattern supplied as the second argument to the format-
number() function. The right-hand column shows the string value returned by the
format-number() function.

The patterns used in this example use the following symbols:

❑ «.» which I have defined as my thousands separator

❑ «,» which I have defined as my decimal point

❑ «#» which is a position where a digit can occur, but where the digit is omitted
if it is an insignificant zero

❑ «0» which is a position where a digit will always occur, even if it is an
insignificant zero

❑ «%» which indicates that the number should be expressed as a percentage

❑ «;» which separates the pattern used for positive numbers from the pattern
used for negative numbers

<xsl:decimal-format decimal-separator="," grouping-separator="."/>

Number Format Pattern Result
1234.5 #.##0,00 1.234,50
123.456 #.##0,00 123,46
100000 #.##0,00 1.000.000,00
–59 #.##0,00 –59,00
1 div 0 #.##0,00 Infinity
1234 ###0,0### 1234,0
1234.5 ###0,0### 1234,5
.00035 ###0,0### 0,0004
0.25 #00% 25%
0.736 #00% 74%
1 #00% 100%
–42 #00% –4200%
–3.12 #,00;(#,00) (3,12)
–3.12 #,00;#,00CR 3,12CR

Example 2
This example shows how digits other than the Western digits 0–9 can be used. Since
such digits will be unfamiliar to most readers, I'll illustrate the effect using letters
instead. This works perfectly well, though it isn't very useful:

<xsl:decimal-format zero-digit="a" minus-sign="~"/>

Number Format Pattern Result
10 aa ba
12.34 ##.## bc.de
–9999999 #,###,### ~j,jjj,jjj

Example 3
This example shows how the exceptional numeric values NaN and Infinity can be
shown, for example in a statistical table.

<xsl:decimal-format NaN="Not Applicable" infinity="Out of Range"/>

Number Format Pattern Result
'a' any Not Applicable
1 div 0 any Out of Range
–1 div 0 any –Out of Range

See also
format-number() function in Chapter 7, pageError! Cannot open file.
<xsl:number> on page 101.

xsl:element
The <xsl:element> instruction is used to output an element node to the current
output destination.

It provides an alternative to using a literal result element, and is useful especially
when the element name or namespace are to be calculated at run-time.

Defined in
XSLT section 7.1.2

Format
<xsl:element name={QName} namespace={uri}

 use-attribute-sets=list-of-QNames >

 template-body

</xsl:element>

Position
<xsl:element> is used as an instruction within a template-body.

Attributes
Name Value Meaning
name
mandatory

Attribute value
template returning a
QName

The name of the element to be
generated

namespace
optional

Attribute value
template returning a
URI

The namespace URI of the
generated element

use-attribute-
sets
optional

Whitespace-separated
list of QNames

List of named attribute sets
containing attributes to be added
to this output element

Content
A template-body

Effect
The name of the generated element node is determined using the name and namespace
attributes.

Attributes may be added to the element node either by using the use-attribute-sets
attribute, or by writing attribute nodes to the output destination using
<xsl:attribute> or <xsl:copy> or <xsl:copy-of>: this must be done before
anything else is written to the output destination. Any attributes written using

<xsl:attribute> or <xsl:copy> or <xsl:copy-of> will overwrite attributes of the
same name written using the use-attribute-sets attribute.

The child nodes of the element are produced by instantiating the contained template-
body.

The XSLT specification is written in terms of writing nodes to a result tree. Sometimes
it is convenient to think in terms of the start tag of the <xsl:element> element
producing a start tag in the output XML file and the end tag of the <xsl:element>
element producing the corresponding end tag, with the intervening template-body
producing the contents of the output element. However, it is dangerous to extend this
analogy too far, because writing the start tag and end tag are not separate operations
that can be individually controlled, they are simply two things that happen together as
a consequence of the <xsl:element> instruction being instantiated. This is explained
in more detail in the section on Literal Result Elements in Chapter 3, page Error! Cannot
open file..

Both the name and the namespace attributes may be given as attribute value templates:
that is, they may contain expressions nested within curly braces.

Element Name
The name of the new element is obtained by expanding the name attribute. The result
of expanding the attribute value template must be a QName: that is, a valid XML name
with an optional namespace prefix. For example, «table» or «fo:block». If there is a
prefix, it must correspond to a namespace declaration that is in scope at this point in
the stylesheet, unless there is also a namespace attribute, in which case it is taken as
referring to that namespace.

If the name is not a valid QName, the XSLT processor is required either to report the
error, or to leave this element node out of the generated tree, while still including its
children. Different processors may thus handle this error differently.

The local part of the name of the output element will always be the same as the local
part of the QName supplied as the value of the name attribute.

Element Namespace
As explained in Chapter 2, the result tree will always conform to the XML Namespaces
specification. You can choose, of course, to generate all the output elements in the
default namespace, but as namespaces become more widely used you may need to
define the namespace URI of the generated element name.

If the <xsl:element> instruction has a namespace attribute, then its value (after
expanding the attribute value template) should be a URI identifying a namespace. This
namespace does not need to be in scope at this point in the stylesheet, in fact it usually
won't be. The system does not check that the value conforms to any particular URI
syntax, so in effect any string can be used.

If the value is empty, the element will have a null namespace URI. Otherwise, the
XSLT processor will output any necessary namespace declarations to ensure that the

element name is associated with this namespace URI in the result tree.

The prefix of the name of the output element will normally be the same as the prefix of
the supplied QName, but the XSLT processor is allowed to allocate a different prefix if it
chooses, so long as it is associated with the correct URI. This might happen, for
example, if there are several different prefixes associated with the same namespace
URI.

If there is no namespace attribute:

❑ If the supplied QName includes a prefix, the prefix must be a namespace prefix
that is in scope at this point in the stylesheet: in other words, there must be an
xmlns:prefix attribute either on the <xsl:element> instruction itself or on
some containing element The namespace URI in the output will be that of the
namespace associated with this prefix in the stylesheet.

❑ Otherwise, the default namespace is used. This is the namespace declared, in
some containing element in the stylesheet, with an «xmlns="uri"» declaration.
Note that this is one of the few places in XSLT where the default namespace is
used to expand a QName having no prefix: in nearly all other cases, a null
namespace URI is used. The reason is to ensure that the behavior is consistent
with that for an element name used in the start tag of a literal result element.

The generated element node will automatically contain all the namespace declarations
it needs to define the prefixes used on its own name and on the names of all its
attributes.

Generating Attributes
If the use-attribute-sets attribute is present it must be a whitespace-separated list
of QNames that identify named <xsl:attribute-set> elements in the stylesheet. The
attributes within these named attribute sets are instantiated in the order they appear,
and are added to the new element node. If two attributes with the same name are
added during this process, the last one added overwrites any earlier ones.

Subsequently, further attribute nodes may be added to the element using
<xsl:attribute>. The <xsl:attribute> instruction will often be a child of the
<xsl:element> instruction, but it does not need to be; it could be invoked, for
example, by using <xsl:call-template>. Once a node other than an attribute node is
added to the element (typically a text node or a child element node), no further
attributes can be added.

The reason for this rule is to allow the implementation the flexibility to
generate the output as an XML file, without having to build the result tree in
memory first. If attributes could be added at any time, the whole result tree
would need to be kept in memory.

Again, if any attribute is added with the same name as an attribute already present on
the element node, the new value takes precedence.

Element Content
The contents of the new element, that is, its child and descendant nodes, are the nodes
produced by instantiating the template-body contained in the <xsl:element>
instruction.

Usage
In most cases, output elements can be generated either using literal result elements in
the stylesheet, or by copying a node from the source document using <xsl:copy>.

The only situations where <xsl:element> is absolutely needed are therefore where the
element type in the output file is not fixed, and is not the same as the element type in
the source document.

Using <xsl:element> rather than a literal result element can also be useful where
different namespaces are in use. It allows the namespace URI of the generated element
to be specified explicitly, rather than being referenced via a prefix. This means the
namespace does not have to be present in the stylesheet itself, thus giving greater
control over exactly which elements the namespace declarations are attached to.

Example: Converting Attributes to Child Elements

Source
The source document book.xml contains a single <book> element with several
attributes:

<?xml version="1.0"?>

<book title="Object-oriented Languages"

 author="Michel Beaudouin-Lafon"

 translator="Jack Howlett"

 publisher="Chapman & Hall"

 isbn="0 412 55800 9"

 date="1994"/>

Stylesheet
The stylesheet atts-to-elements.xsl handles the book element by processing
each of the attributes in turn (the expression «@*» selects all the attribute nodes):
for each one, it outputs an element whose name is the same as the attribute name
and whose content is the same as the attribute value.

The stylesheet is as follows:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:output indent="yes"/>

<xsl:template match="book">

 <book>

 <xsl:for-each select="@*">

 <xsl:element name="{name()}">

 <xsl:value-of select="."/>

 </xsl:element>

 </xsl:for-each>

 </book>

</xsl:template>

</xsl:transform>

This selects all the attribute of the <book> element (using the expression «@*»),
and for each one, it generates an element whose name is the same as the name of
that attribute, and whose content is the value of that attribute.

Output
The XML output (from Saxon) as shown below.Actually, this stylesheet isn't
guaranteed to produce exactly this output. This is because the order of attributes
is undefined. This means that the <xsl:for-each> loop might process the
attributes in any order, so the order of child elements in the output is also
unpredictable.

<book>

 <author>Michel Beaudouin-Lafon</author>

 <date>1994</date>

 <isbn>0 412 55800 9</isbn>

 <publisher>Chapman & Hall</publisher>

 <title>Object-oriented Languages</title>

 <translator>Jack Howlett</translator>

</book>

See also
<xsl:attribute> on page 17
<xsl:copy> on page 42
Literal Result Elements in Chapter 3, page Error! Cannot open file.

xsl:fallback
The <xsl:fallback> instruction is used to define processing that should occur if no
implementation of its parent instruction is available.

Defined in
XSLT section 15

Format
<xsl:fallback>

 template-body

</xsl:fallback>

Position
<xsl:fallback> is an instruction. It is always used within a template-body.

Attributes
None.

Content
A template-body.

Effect
There are two circumstances where <xsl:fallback> can be useful:

❑ In a stylesheet that uses XSLT features defined in a version later than 1.0, to
indicate what should happen if the stylesheet is used with an XSLT processor
that implements an earlier version of the standard (for example, version 1.0).

This facility will not be useful until a later version of XSLT is defined, but it
has been specified now to ensure that XSLT version 1.0 implementations
support this mechanism.

❑ In a stylesheet that uses extension elements provided by a vendor, by the user,
or by a third party, to indicate what should happen if the stylesheet is used
with an XSLT processor that does not support these extensions.

If the <xsl:fallback> instruction is encountered in a template body that the processor
can instantiate normally, it is ignored, along with its contents.

An XSLT processor recognizes an element as an instruction if it occurs in a template
body and it is:

❑ either in the XSLT namespace,

❑ or in a namespace designated as an extension namespace by its inclusion in:

❑ the extension-element-prefixes attribute of the <xsl:stylesheet>
element

❑ or the xsl:extension-element-prefixes attribute of the element
itself, or of a containing literal result element or extension element.

If an element recognized as an instruction is known to the XSLT processor, it is
instantiated. Exactly what "known to the XSLT processor" means is implementation-
dependent. Typically it means that either the instruction is a vendor-specific extension
implemented by that vendor, or it is a user-defined extension that has been installed or
configured according to the instructions given by the vendor.

If an element is recognized as an instruction but is not known to the XSLT processor,
the action taken is as follows:

❑ For an element in the XSLT namespace, if the effective version is «1.0», an
error is reported. If the effective version is anything other than «1.0», fallback
processing is invoked.

❑ For an extension element, fallback processing is invoked.

The effective version is the value of the xsl:version attribute on the nearest enclosing
literal result element that has such an attribute, or the version attribute on the
<xsl:stylesheet> element otherwise. It isn't made clear whether the comparison is a
string comparison or a numeric one, so it's safest to write the version number strictly
as «1.0», and not for example «1» or «1.00». The idea is that a stylesheet, or a portion
of a stylesheet, that uses facilities defined in some future XSLT version, 2.1 (say),
should be given an effective version of «2.1».

Fallback processing means that if the unknown instruction has an <xsl:fallback>
child element, the <xsl:fallback> instruction is instantiated; otherwise, an error is
reported.

<xsl:fallback> is concerned only with fallback behavior for instructions within
templates. Top level elements that the implementation doesn't recognize are simply
ignored. An unrecognized element in another context (for example, an unrecognized
child of an <xsl:choose> or <xsl:call-template> instruction) is an error.

Note that both the version (or xsl:version) attribute and the extension-element-
prefixes (or xsl:extension-element-prefixes) attribute apply only within the
stylesheet module in which they occur: they do not apply to stylesheet modules
incorporated using <xsl:include> or <xsl:import>.

Usage
When a future version of XSLT appears, the <xsl:fallback> mechanism will allow a
stylesheet to be written that behaves sensibly in different environments. This is
motivated very much by the experience of web developers with HTML, and especially
by the difficulty of writing web pages that work correctly on different browsers. Once
XSLT support becomes widespread within browsers, you will need to think about how
to ensure that your stylesheet runs correctly in any browser.

Similarly, it is very likely that each vendor of an XSLT processor (or each browser
vendor) will add some bells and whistles of their own – indeed, this is already
happening. For server-side stylesheet processing you might be prepared to use such
proprietary extensions and thus lock yourself into the products of one vendor; but
more likely, you want to keep your stylesheets portable. The <xsl:fallback>
mechanism allows you to do this, by defining within any proprietary extension
element what the XSLT processor should do if it doesn't understand it. This might be,
for example:

❑ do nothing, if the behavior is inessential, such as keeping statistics

❑ invoke an alternative implementation that achieves the same effect

❑ output fallback text to the user explaining that a particular facility cannot be
offered and suggesting how they should upgrade.

An alternative way of defining fallback behavior when facilities are not available is to
use the element-available() function, and to avoid executing the relevant parts of a
stylesheet. This function is described in Chapter 7, page Error! Cannot open file.. The
two mechanisms are overlapping: use whichever you find most convenient.

Examples

Example 1: XSLT Forwards Compatibility
The following example shows a stylesheet written to exploit a hypothetical new XSLT
feature in version 6.1 of the standard that inserts a document identified by URI straight
into the result tree (this is one of the features that appears in the list of possible
enhancements published as an appendix to the standard). The stylesheet is written so
that if this feature is not available, the same effect is achieved using existing facilities.

<xsl:template match="boilerplate"/>

 <div id="boilerplate" xsl:version="6.1">

 <xsl:copy-to-output href="boilerplate.xhtml">

 <xsl:fallback>

 <xsl:copy-of select="document('boilerplate.xhtml')"/>

 </xsl:fallback>

 </xsl:copy-to-output>

 </div>

</xsl:template>

Example 2: Vendor Portability
Writing a stylesheet that uses vendor extensions but is still portable is not particularly
easy, but the mechanisms are there to achieve it, especially in the case where several
vendors provide similar extensions but in slightly different ways.

For example, several products (certainly xt, Saxon, and Xalan) provide a feature to
generate multiple output files from a single stylesheet. This facility isn't in the XSLT
standard, so unsurprisingly, each product has invented its own syntax. If you want to
write a stylesheet that works with all three products you could do it like this:

<xsl:template match="preface">

<a href="preface.html"

 xmlns:saxon="http://icl.com/saxon"

 xmlns:xt="http://www.jclark.com/xt"

 xmlns:xalan="com.lotus.xsl.extensions.Redirect"

 xsl:extension-element-prefixes="saxon xt xalan">

 <saxon:output file="preface.html">

 <xsl:call-template name="write-preface"/>

 <xsl:fallback/>

 </saxon:output>

 <xt:document href="preface.html">

 <xsl:call-template name="write-preface"/>

 <xsl:fallback/>

 </xt:document>

 <xalan:write file="preface.html">

 <xsl:call-template name="write-preface"/>

 <xsl:fallback/>

 </xalan:write>

Preface

</xsl:template>

Hopefully with the next version of the XSLT Recommendation this little nightmare
will disappear: support for multiple output files is high on the shopping list of new
facilities. However, by then the vendors, no doubt, will have thought of other good
ideas to include as non-standard extensions.

See also
Extensibility in Chapter 3, page Error! Cannot open file.
Literal result elements in Chapter 3, page Error! Cannot open file.
element-available() function in Chapter 7, page Error! Cannot open file.

xsl:for-each
The <xsl:for-each> instruction selects a set of nodes using an XPath expression, and
performs the same processing for each node in the set.

Defined in
XSLT section 8

Format
<xsl:for-each select=Expression>

 <xsl:sort> *

 template-body

</xsl:for-each>

Position
<xsl:for-each> is an instruction, it is always used within a template body.

Attributes
Name Value Meaning
select
mandatory

Expression returning a
node-set

The set of nodes to be processed

Content
Zero or more <xsl:sort> elements, followed by a template body.

Effect
The effect of the <xsl:for-each> instruction is to instantiate the template body that it
contains once for each node in the selected node-set. The following sections describe
how this is done.

The select Attribute
The select attribute is mandatory. The Expression defines the nodes that will be
processed. This may be any XPath expression, as defined in Chapter 5, so long as it
returns a node-set. The expression may select nodes relative to the current node (the
node currently being processed) or it may make an absolute selection from the root
node, or it may simply select the nodes by reference to a variable initialized earlier. By
using the document() function (described in Chapter 7, page Error! Cannot open
file.) it may also select the root node of another XML document.

The template body contained within the <xsl:for-each> element is instantiated once
for each node selected. Within this template body, the current node is the node being
processed (one of the selected nodes); the position() function gives the position of
that node in order of processing (the first node processed has position()=1, and so

on), and the last() function gives the number of nodes being processed.

Sorting
If there are no child <xsl:sort> elements, the selected nodes are processed in
document order. In the normal case where the nodes all come from the same input
document this means they will be processed in the order they are encountered in the
original source document: for example, an element node is processed before its
children. Attribute nodes belonging to the same element, however, may be processed
in any order. If there are nodes from several different documents in the list, the
relative order of nodes from different documents is not defined (and may therefore
differ from one product to another).

If there are one or more <xsl:sort> elements as children of the <xsl:apply-
templates> instruction, the nodes are sorted before processing. Each <xsl:sort>
element defines one sort key. For details of how sorting is controlled, see <xsl:sort>
on page 137. If there are several sort keys defined, they apply in major-to-minor order.
For example if the first <xsl:sort> defines sorting by Country and the second by
State, then the nodes will be processed in order of State within Country. If two
selected nodes have equal sort keys, they will be processed in document order.

Note that the ordering of the axis used to select the nodes is irrelevant (The various
axes, and the way they are ordered, are described in Chapter 5.) For example,
«select="preceding-sibling::*"» will process the preceding siblings of the
current node in document order (starting with the first sibling) even though the
preceding-sibling axis is in reverse document order. The axis ordering affects only the
meaning of any positional qualifiers used within the select expression. For example,
«preceding-sibling::*[1]» will select the first preceding sibling element in axis
order – that is, the element immediately before the current node, if there is one. If you
want to process the nodes in reverse document order, specify:

<xsl:sort select="position()" order="descending">

Usage and Examples
The main purpose of <xsl:for-each> is to iterate over a set of nodes. It can also be
used, however, simply to change the current node. These two styles of use are
illustrated in the following sections.

Iterating Over a Set of Nodes
The principal use of <xsl:for-each> is to iterate over a set of nodes. As such it
provides an alternative to <xsl:apply-templates>. Which you use is largely a matter
of personal style: arguably <xsl:apply-templates> (push processing) ties the
stylesheet less strongly to the detailed structure of the source document and makes it
easier to write a stylesheet that can accommodate some flexibility in the structures that
will be encountered, while <xsl:for-each> (pull processing) makes the logic clearer to
the reader. It may even improve performance because it bypasses the need to identify
template rules by pattern matching, though the effect is likely to be very small.

The following example processes all the attributes of the current element node, writing

them out as elements to the result tree. This example is presented in greater detail
under <xsl:element> on page 55.

<xsl:template match="book">

 <book>

 <xsl:for-each select="@*">

 <xsl:element name="{name()}">

 <xsl:value-of select="."/>

 </xsl:element>

 </xsl:for-each>

 </book>

</xsl:template>

The next example is a general one that can be applied to any XML document.

Example: Showing the Ancestors of a Node
The following example stylesheet can be applied to any XML document. For each
element it processes all its ancestor elements, in reverse document order (that is,
starting with the parent node and ending with the document element), and
outputs their names to a comment that shows the position of the current node.

Source
This stylesheet can be applied to any source document.

Stylesheet
This stylesheet is in file nesting.xsl.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="*">

 <xsl:comment>

 <xsl:value-of select="name()"/>

 <xsl:for-each select="ancestor::*">

 <xsl:sort select="position()" order="descending"/>

 <xsl:text> within </xsl:text>

 <xsl:value-of select="name()"/>

 </xsl:for-each>

 </xsl:comment>

 <xsl:apply-templates/>

</xsl:template>

</xsl:transform>

Output
An example of the output this might produce is:

<!--BOOKS within BOOKLIST-->

 <!--ITEM within BOOKS within BOOKLIST-->

 <!--TITLE within ITEM within BOOKS within BOOKLIST-->Number, the

 Language of Science

 <!--AUTHOR within ITEM within BOOKS within BOOKLIST-->Danzig

 <!--PRICE within ITEM within BOOKS within BOOKLIST-->5.95

 <!--QUANTITY within ITEM within BOOKS within BOOKLIST-->3

Changing the Current Node
Another use of <xsl:for-each> is simply to change the current node. For example, if
you want to use the key() function (described in Chapter 7, page Error! Cannot open
file.) to locate nodes in some ancillary document, you must first establish some node
in that document (typically the root) as the current node, because the key() function
will only find nodes in the same document as the current node.

For example, you might write:

<xsl:variable name="county">

 <xsl:for-each select="document('county-code.xml')">

 <xsl:value-of select="key('county-code', $code)/@name"/>

 </xsl:for-each>

</xsl:variable>

The effect is to assign to the variable the value of the name attribute of the first element
whose county-code key matches the value of the $code variable.

The <xsl:for-each> statement here selects a single node, because the document()
function when used like this will return at most one node. We don't even use the node
that it returns; the only effect is to make this the current node, which affects the result
of the key() function.

See also
<xsl:apply-templates> on page 6.
<xsl:sort> on page 137.
document() function in Chapter 7, page Error! Cannot open file..
key() function in Chapter 7, page Error! Cannot open file..

xsl:if
The <xsl:if> instruction encloses a template body that will be instantiated only if a
specified condition is true.

<xsl:if> is analagous to the if statement found in many programming languages.
There is no else branch: if you need one, use the <xsl:choose> instruction described
on page 38.

Defined in
XSLT section 9.1

Format
<xsl:if test=Expression >

 template-body

</xsl:if>

Position
<xsl:if> is an instruction. It is always used within a template body.

Attributes
Name Value Meaning
test
mandatory

Expression The Boolean condition to be
tested

Content
A template-body.

Effect
The test expression is evaluated and the result is converted if necessary to a boolean
using the rules defined for the boolean() function. If the result is true, the contained
template-body is instantiated; otherwise, no action is taken.

Any XPath value may be converted to a Boolean. In brief, the rules are:

❑ if the expression is a node-set, it is treated as true if the node-set contains at
least one node.

❑ if the expression is a string or a result tree fragment, it is treated as true if the
string is not empty.

❑ if the expression is a number, it is treated as true if the number is non-zero.

Usage
The <xsl:if> instruction is useful where an action is to be performed conditionally. It
performs the functions of the if-then construct found in other programming
languages. If there are two or more alternative actions (the equivalent of an if-then-
else or switch or Select Case in other languages), use <xsl:choose> instead.

One common use of <xsl:if> is to test for error conditions. In this case it is often used
with <xsl:message>.

Examples
The following example outputs an <hr> element after processing the last of a sequence
of <para> elements:

<xsl:template match="para">

 <p><xsl:apply-templates/></p>

 <xsl:if test="position()=last()">

 <hr/>

 </xsl:if>

</xsl:template>

The following example reports an error if the percent attribute of the current element
is not a number between 0 and 100. The expression returns true if:

❑ that the percent attribute does not exist, or

❑ the value cannot be interpreted as a number (so that «number(@percent)» is
NaN), or

❑ the numeric value is less than zero, or

❑ the numeric value is greater than 100

<xsl:if test="not(@percent) or

 (string(number(@percent))='NaN') or

 (number(@percent) < 0) or

 (number(@percent) > 100)">

 <xsl:message>

 percent attribute must be a number between 0 and 100

 </xsl:message>

</xsl:if>

The following example formats a list of names, using <xsl:if> to produce
punctuation that depends on the position of each name in the list.

Example: Formatting a List of Names

Source
The source file authors.xml contains a single <book> element with a list of
authors.

<?xml version="1.0"?>

<book>

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

Stylesheet
The stylesheet authors.xsl processes the list of authors, adding punctuation
depending on the position of each author in the list.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="book">

 <xsl:value-of select="title"/>

 by <xsl:for-each select="author">

 <xsl:value-of select="."/>

 <xsl:if test="position()!=last()">, </xsl:if>

 <xsl:if test="position()=last()-1">and </xsl:if>

</xsl:for-each>

</xsl:template>

</xsl:transform>

Output
Design Patterns

by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

See also
<xsl:choose> on page 38

xsl:import
<xsl:import> is a top-level element used to import the contents of one stylesheet
module into another. The definitions in the importing stylesheet module have a higher
import precedence than those in the imported module, which usually means that they

will be used in preference; but the detailed rules vary for each top-level element type.

Defined in
XSLT section 2.6.2

Format
<xsl:import href=uri />

Position
<xsl:import> is a top-level element, which means that it must appear as a child of the
<xsl:stylesheet> element. Within an <xsl:stylesheet> element, the <xsl:import>
child elements must come before any other children.

Attributes
Name Value Meaning
href
mandatory

URI The URI of the stylesheet to be
imported

Content
None; the element is always empty.

Effect
The URI contained in the href attribute may be an absolute URI or a relative URI. If
relative, it is interpreted relative to the the base URI of the XML document or external
entity containing the <xsl:import> element. For example, if a file main.xsl contains
the element <xsl:import href="date.xsl"/> then the system will look for date.xsl
in the same directory as main.xsl.

The URI must identify an XML document that is a valid XSLT stylesheet. The top level
elements of this stylesheet are logically inserted into the including stylesheet at the
point where the <xsl:import> element appears. However:

❑ Imported top-level elements have a lower import precedence than the top-level
elements defined directly in the importing stylesheet, or incorporated into it
using <xsl:include>. This is explained in more detail below.

❑ Imported elements retain their base URI, so anything that involves referencing
a relative URI is done relative to the original URI of the imported stylesheet.
This includes, for example, expansion of further <xsl:import> elements, or
use of URIs as arguments to the document() function.

❑ When a namespace prefix is used (typically within a QName, but it also applies
to freestanding prefixes such as those in the xsl:exclude-result-prefixes
attribute of a literal result element) is it is interpreted using only the
namespace declarations in the original stylesheet module in which the QName

occurred. An imported stylesheet module does not inherit namespace
declarations from the module that imports it. This includes QNames constructed
at execution time as the result of evaluating an expression, for example an
expression used within an attribute value template for the name or namespace
attribute of <xsl:element>.

❑ The values of the version, extension-element-prefixes, and exclude-
result-prefixes attributes that apply to an element in the included
stylesheet, as well as xml:lang and xml:space, are those that were defined in
the <xsl:stylesheet> element of their own stylesheet module, not those on
the <xsl:stylesheet> element of the importing module.

The imported stylesheet module may use the literal-result-element-as-stylesheet syntax
described in Chapter 3. This allows an entire module to be defined as the content of an
element such as <HTML>. It is then treated as if it were a stylesheet module containing a
single template, whose match pattern is «/» and whose content is the literal result
element.

The imported stylesheet module may contain <xsl:include> statements to include
further stylesheet modules, or <xsl:import> statements to import them. A stylesheet
module must not directly or indirectly import itself.

It is not an error to import the same stylesheet module more than once, either directly
or indirectly, but it is not usually a useful thing to do. The effect is that the same
definitions or templates will be present with several different import precedences. The
situation is exactly the same as if two stylesheet modules with different names but
identical contents had been imported.

Import Precedence
Each stylesheet module that is imported has an import precedence. The rules are:

❑ The precedence of a module that is imported is always lower than the
precedence of the module importing it

❑ If one module imports several others, then the one it imports first has lower
precedence than the next, and so on.

This means that in the structure shown below, the highest precedence module is A;
after that C, then F, then B, then E and finally D.

import

import

import

import

import

A

B

D

E

FC

If one stylesheet module incorporates another using <xsl:include> rather than
<xsl:import>, then it has the same import precedence as the module that includes it.
This is shown in the next diagram.

import

import

import

include

import

A

D

F

G

H
E

include

import

B

C

J

include

Here J is included in E, so it has the same import precedence as E, and similarly E has
the same import precedence as C. If we attach numeric values to the import

precedence to indicate the ordering (the absolute values don't matter, the only
significance is that a higher number indicates higher precedence) we could do so as
follows:

A B C D E F G H J

6 3 5 2 5 1 2 4 5

The import precedence of a stylesheet module applies to all the top-level elements in
that module, so for example the <xsl:template> elements in module E have a higher
import precedence than those in G.

As <xsl:import> statements must occur before any other top-level elements in a
stylesheet module, the effect of these rules is that if each <xsl:import> statement were
to be replaced by the content of the module it imports, the top-level elements in the
resulting combined stylesheet would be in increasing order of import precedence. This
makes life rather easier for implementors. However, it does not mean that
<xsl:import> is a straightforward textual substitution process, because there is still a
need to distinguish cases where two objects (for example template rules) have the
same import precedence because they came originally from the same stylesheet or
from stylesheets that were included rather than imported.

Effect of Import Precedence
The import precedence of a top-level element affects its standing relative to other top-
level elements of the same type, and may be used to resolve conflicts. The effect is as
shown in the table below for each kind of top-level element.

Element type Rules
<xsl:attribute-set> If there are two attribute sets with the same

expanded name, they are merged. If there is an
attribute that is present in both, then the one from
the attribute set with higher import precedence
wins. It is an error if there is no clear winner from
this process (that is, if there are two or more values
for the attribute that have the same precedence, and
this is the highest precedence). The XSLT processor
has the choice of reporting the error or choosing the
one that was specified last.

The attribute-sets named in the use-attribute-
sets attributes of the two merged attribute sets are
also merged, but the specification does not give
precise details of how this should be done

<xsl:decimal-format> The import precedence of an <xsl:decimal-
format> element is of no significance. It is an error
to include more than one <xsl:decimal-format>
element with the same name (or, presumably, with

no name) unless the definitions are equivalent. On
this occasion the XSLT processor is required to
report the error.

<xsl:import> and
<xsl:include>

No conflicts arise; the import precedence of these
elements is immaterial, except in determining the
import precedence of the referenced stylesheet
module.

<xsl:key> All the key definitions are used, regardless of their
import precedence. See <xsl:key> on page 87 for
details.

<xsl:namespace-alias> If several aliases for the same stylesheet prefix are
defined, the one with the highest import precedence
is used. It is an error if there is no clear winner. The
XSLT processor has the choice of reporting the error
or choosing the one that was specified last.

<xsl:output> All the <xsl:output> elements in the stylesheet are
effectively merged. In the case of the cdata-
section-elements attribute, an element is output in
CDATA format if it is declared as such on any of the
<xsl:output> elements. For all the other attributes,
if the value is explicitly present on more than one
<xsl:output> element then the one with highest
import precedence wins. It is an error if there is no
clear winner. The XSLT processor has the choice of
reporting the error or choosing the one that was
specified last.

<xsl:strip-space> and
<xsl:preserve-space>

If there is more than one <xsl:strip-space> or
<xsl:preserve-space> element that matches a
particular element name in the source document,
then the one with highest import precedence is
used. If this still leaves several that match, each one
is assigned a priority, using the same rules as for the
match pattern in <xsl:template>. Specifically, an
explicit QName has higher priority than the form
«prefix:*», which in turn has higher priority than
«*». The one with highest priority is then used.

It is an error if this leaves more than one match. The
XSLT processor has the choice of reporting the error
or choosing the one that was specified last. (The
specification says that this rule is used to resolve
conflicts. It could be argued that specifying the same
element name in two different <xsl:strip-space>
elements, or in two different <xsl:preserve-
space> elements, is not a conflict: but don't rely on
it.)

If there are no matches for an element, whitespace

nodes are preserved.
<xsl:template> When selecting a template rule for use with

<xsl:apply-templates>, firstly all the template
rules with a matching mode are taken. Of these, all
those with a match pattern that matches the selected
node are considered. If this leaves more than one,
only those with the highest import precedence are
considered. If this still leaves more than one, the one
with highest priority is chosen: the rules for
deciding the priority are given under
<xsl:template> on page 153. It is an error if this
still doesn't identify a clear winner. The XSLT
processor has the choice of reporting the error or
choosing the template rule that was specified last.

When selecting a template for use with <xsl:call-
template>, all the named templates with a matching
name are considered. If there are several, the one
with highest import precedence is used. It is an error
to have several named templates with the same
name and the same import precedence: the XSLT
processor is required to report this error, even if the
templates are never referenced.

<xsl:variable> and
<xsl:param>

In resolving a VariableReference in an expression
or pattern, the XSLT processor first tries to find a
matching local variable or parameter definition, that
is, one defined in a template. If it can't find one that
is in scope, it looks for a global variable or
parameter – that is, a top-level <xsl:variable> or
<xsl:param> element with the same expanded
name as the VariableReference. This may occur
anywhere in the stylesheet, either in the same
module or in a different module, and there is no
restriction on forward references. If there is more
than one global variable or parameter that matches,
the one with highest import precedence is used.
(The specification doesn't actually say this explicitly,
but the implication is clear enough.)

It is an error to have more than one global variable
or parameter in the stylesheet with the same
expanded name and the same import precedence.
This is true even if the variable is never referenced,
or if it is masked by another variable of the same
name with higher import precedence. The XSLT
processor must report this error.

Usage

The rules for <xsl:import> are so pervasive that one would imagine the facility is
central to the use of XSLT, rather in the way inheritance is central to writing in Java. In
practice, however, many stylesheets never need to use <xsl:import>, and most of
those that do are likely to use it in a very simple way. It is an advanced feature needed
only in the more demanding of applications.

Like inheritance in object-oriented languages, <xsl:import> is designed to allow the
creation of a library or reusable components, only in this case, the components are
fragments of stylesheets. And the mechanism works in a very similar way to
inheritance. For example, you might have a stylesheet that simply defines your
corporate color scheme, as a set of global variables defining color names. Another
stylesheet might be defined to produce the basic framesets for your site, referring to
these color names to supply the background detail. Now if you want to use this
general structure but to vary some detail, for example to modify one of the colors
because it clashes with an image you are displaying on a particular page, you can
define a stylesheet for this particular page that does nothing apart from redefining that
one color. This is illustrated in the diagram below.

Corporate
color

definitions

General
Purpose

Stylesheet
A

General
Purpose

Stylesheet
B

General
Purpose

Stylesheet
C

Special
Purpose

Stylesheet
Z

Suppose the stylesheet module for corporate color definitions looks like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:color="http://acme.co.nz/colors"

 version="1.0">
<xsl:variable name="color:blue" select="'#0088ff'"/>

<xsl:variable name="color:pink" select="'#ff0088'"/>

<xsl:variable name="color:lilac" select="'#ff00ff'"/>

</xsl:stylesheet>

Now all the general-purpose stylesheets could <xsl:include> these definitions (no
need to <xsl:import> them unless they are being modified). This makes it easier to
maintain the corporate brand image, because things are defined in one place only.

However, there are cases where we want to depart from the general rule, and we can
do so quite easily. If a particular document wants to use stylesheet C, but needs to
vary the colors used, we can define stylesheet Z for it, as follows:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:color="http://acme.co.nz/colors"

 version="1.0">

<xsl:import href="general-stylesheet-C.xsl"/>

<xsl:variable name="color:lilac" select="'#cc00cc'"/>

</xsl:stylesheet>

In fact, this might be the entire stylesheet (apart from the <xsl:stylesheet> element,
of course). In common English, style Z is the same as style C but with a different shade
of lilac. Note that all the references to variable «color:lilac» are interpreted as
references to the definition in Z, even if the references occur in the same stylesheet
module as a different definition of «color:lilac».

As a general principle, to incorporate standard content into a stylesheet without
change, use <xsl:include>. If there are definitions you want to override, use
<xsl:import>.

Examples
The first example is designed to show the effect of <xsl:import> on variables.

Example 1: Precedence of Variables
This example demonstrates the precedence of global variables when the principal
stylesheet module and an imported module declared variables with the same
name.

Source
This example can be run with any source XML file.

Stylesheet
The principal stylesheet module is variables.xsl

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:acme="http://acme.com/xslt"

 exclude-result-prefixes="acme">

<xsl:import href="boilerplate.xsl"/>

<xsl:output encoding="iso-8859-1" indent="yes"/>

<xsl:variable name="acme:company-name" select="'Acme Widgets Limited'"/>

<xsl:template match="/">

<c><xsl:value-of select="$acme:copyright"/></c>

</xsl:template>

</xsl:stylesheet>

The imported stylesheet module is boilerplate.xsl:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:co="http://acme.com/xslt">

<xsl:variable name="co:company-name" select="'Acme Widgets Incorporated'"/>

<xsl:variable name="co:copyright"

 select="concat('Copyright © ', $co:company-name)"/>

</xsl:stylesheet>

Output
The output of this stylesheet will be:

<?xml version="1.0" encoding="iso-8859-1" ?>

<c>Copyright © Acme Widgets Limited</c>

This is because in the variable declaration of «$co:copyright», the reference to
variable «$co:company-name» matches the declaration of this variable in the
principal stylesheet, because that has higher import precedence than the
declaration in boilerplate.xsl.

The fact that different namespace prefixes are used in the two stylesheets is, of
course, irrelevant: the prefix «acme» in the principal stylesheet maps to the same
namespace URI as the prefix «co» in boilerplate.xsl, so the names are
considered equivalent.

This example explicitly specifies encoding="iso-8859-1" for both the stylesheet
modules and the output. Most of my examples only use ASCII characters, and
since the default character encoding UTF-8 is a superset of ASCII, that works
fine. This time, though, I've used the symbol «©», which is not an ASCII
character, so it's important to specify the character encoding that my text editor
uses, which is iso-8859-1 (actually it's the Microsoft variant of it known as
Windows ANSI, but that's close enough not to make a difference).

The second example shows the effect of <xsl:import> on template rules.

Example 2: Precedence of Template Rules

In this example I shall define a complete stylesheet standard-style.xsl to
display poems in HTML, and then override one of its rules in an importing
stylesheet. The files required are all in the subdirectory import in the download
file for this chapter.

Source
This example works with the poem that we used in Chapter 1. In the download
file it's available as poem.xml. It starts like this:

<?xml version="1.0"?>

<poem>

<author>Rupert Brooke</author>

<date>1912</date>

<title>Song</title>

<stanza>

<line>And suddenly the wind comes soft,</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

etc.

</poem>

Stylesheet A
Here is standard-style.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <head>

 <title><xsl:value-of select="//title"/></title>

 </head>

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

</xsl:template>

<xsl:template match="title">

 <h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="author">

 <div align="right"><i>by </i>

 <xsl:apply-templates/>

 </div>

</xsl:template>

<xsl:template match="stanza">

 <p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="line">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="date"/>

</xsl:stylesheet>

Output A
When you run this stylesheet, the output starts like this (the actual layout may
vary, of course, depending on which XSLT processor you use).

<html>

 <head>

 <title>Song</title>

 </head>

 <body>

 <div align="right"><i>by </i>Rupert Brooke</div>

 <h1>Song</h1>

 <p>

 And suddenly the wind comes soft,

 And Spring is here again;

 And the hawthorn quickens with buds of green

 And my heart with buds of pain.

 </p>

Stylesheet B
Now we want to create a variant of this in which the lines of the poem are
numbered. This will act as the principal style sheet when we want this form of
output. Here it is in numbered-style.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="standard-style.xsl"/>

<xsl:template match="line">

 <xsl:number level="any" format="001"/>

 <xsl:apply-imports/>

</xsl:template>

</xsl:stylesheet>

Note the use of the character reference « » to output a non-breaking space.
In HTML this is normally done by writing « ». You can use this entity
reference in the stylesheet if you like (it's simply a symbolic name for the
Unicode character #xa0), but only if you declare it as an entity in the DTD. It's
usually simpler just to use the numeric character reference.

Output B
This time the output starts like this. Again, the precise format depends on the
processor (for example, some processors may output « »; or « »
instead of « ») but it should look the same when displayed in the browser.

<html>

 <head>

 <title>Song</title>

 </head>

 <body>

 <div align="right"><i>by </i>Rupert Brooke</div>

 <h1>Song</h1>

 <p>

 001

 And suddenly the wind comes soft,

 002

 And Spring is here again;

 003

 And the hawthorn quickens with buds of green

 004

 And my heart with buds of pain.

 </p>

All the template rules defined in standard-style.xsl are used as normal,
except where the current node matches the pattern «line». In this situation there
are two possible templates that match the node, so the one with higher import
precedence is chosen. This is the one in the importing stylesheet module, namely
numbered-style.xsl. As a result, the lines of the poem are output with a
preceding line number, calculated using the <xsl:number/> instruction, which is
described on page 101. The use of <xsl:apply-imports> (described on page 1)
means that once the line number has been output, the line is then displayed in
the normal way, using the template rule from the standard-style.xsl
stylesheet.

See also
<xsl:include> on page 83
<xsl:apply-imports> on page 1

xsl:include

<xsl:include> is a top-level element used to include the contents of one stylesheet
module within another. The definitions in the included stylesheet modulehave the
same import precedence as those in the including module, so the effect is exactly as if
these definitions were textually included at the point in the including module where
the <xsl:include> element appears.

Defined in
XSLT section 2.6.1

Format
<xsl:include href=uri />

Position
<xsl:include> is a top-level element, which means that it must appear as a child of
the <xsl:stylesheet> element. There are no constraints on its ordering relative to
other top-level elements in the stylesheet.

Attributes
Name Value Meaning
href
mandatory

URI The URI of the stylesheet to be
included

Content
None; the element is always empty.

Effect
The URI contained in the href attribute may be an absolute URI or a relative URI. If
relative, it is interpreted relative to the the base URI of the XML document or external
entity containing the <xsl:include> element. For example, if a file main.xsl contains
the element <xsl:include href="date.xsl"/> then the system will look for
date.xsl in the same directory as main.xsl.

The URI must identify an XML document that is a valid XSLT stylesheet. The top level
elements of this stylesheet are logically inserted into the including stylesheet module
at the point where the <xsl:include> element appears. However:

❑ These elements retain their base URI, so anything that involves referencing a
relative URI is done relative to the original URI of the included stylesheet. This
rule applies, for example, when expanding further <xsl:include> and
<xsl:import> elements, or when using relative URIs as arguments to the
document() function.

❑ When a namespace prefix is used (typically within a QName, but it also applies
to freestanding prefixes such as those in the xsl:exclude-result-prefixes

attribute of a literal result element) is it is interpreted using only the
namespace declarations in the original stylesheet module in which the QName
occurred. An included stylesheet module does not inherit namespace
declarations from the module that includes it. This even applies to QNames
constructed at execution time as the result of evaluating an expression, for
example an expression used within an attribute value template for the name or
namespace attribute of <xsl:element>.

❑ The values of the version, extension-element-prefixes, and exclude-
result-prefixes attributes that apply to an element in the included
stylesheet module, as well as xml:lang and xml:space, are those that were
defined on its own <xsl:stylesheet> element, not those on the
<xsl:stylesheet> element of the including stylesheet module.

❑ An exception is made for <xsl:import> elements in the included stylesheet
module. <xsl:import> elements must come before any other top-level
elements, so instead of placing them in their natural sequence in the including
module, they are promoted so they appear after any <xsl:import> elements,
but before any other top-level elements, in the including stylesheet module.
This is relevant to situations where there are duplicate definitions and the
XSLT processor is allowed to choose the one that comes last.

The included stylesheet module may use the literal-result-element-as-stylesheet syntax,
described in Chapter 3. This allows an entire stylesheet module to be defined as the
content of an element such as <HTML>. It is then treated as if it were a module
containing a single template, whose match pattern is «/» and whose content is the
literal result element.

The included stylesheet module may contain <xsl:include> statements to include
further stylesheets, or <xsl:import> statements to import them. A stylesheet must not
directly or indirectly include itself.

It is not an error to include the same stylesheet module more than once, either directly
or indirectly, but it is not a useful thing to do. It may well cause errors due to the
presence of duplicate declarations, in fact if the stylesheet contains definitions of
global variables or named templates, and is included more than once at the same
import precedence, such errors are inevitable. In some other situations it is
implementation-defined whether an XSLT processor will report duplicate declarations
as an error, so the behavior may vary from one product to another.

Usage
<xsl:include> provides a simple textual inclusion facility analagous to the #include
directive in C: it is purely a way of writing a stylesheet in a modular way so that
commonly used definitions can be held in a library and used wherever they are
needed.

If you are handling a wide range of different document types, the chances are they will
have some elements in common, which are to be processed in the same way regardless
where they occur. For example, these might include standard definitions of toolbars,
backgrounds, and navigation buttons to go on your web pages, as well as standard

styles applied to data elements such as product names, email contact addresses, or
dates.

To incorporate such standard content into a stylesheet without change, use
<xsl:include>. If there are definitions you want to override, use <xsl:import>.

It can make a difference where in your stylesheet the <xsl:include> statement is
placed. There are some kinds of objects – notably template rules – where if there is no
other way of deciding which one to use, the XSLT processor has the option of giving
priority to the one that occurs last in the stylesheet. This isn't something you can easily
take advantage of, because in all these cases the processor also has the option of
reporting an error. As a general principle, it's probably best to place <xsl:include>
statements near the beginning of the file, because then if there are any accidental
overlaps in the definitions, the ones in your principal stylesheet will either override
those included from elsewhere, or be reported as errors.

Examples
Example: Using <xsl:include> with Named Attribute Sets

Source
This example can be used with any source document.

Stylesheet
Consider a principal stylesheet picture.xsl that includes a stylesheet
attributes.xsl, as follows:

Module picture.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:include href="attributes.xsl"/>

<xsl:template match="/">

 <picture xsl:use-attribute-sets="picture-attributes">

 <xsl:attribute name="color">red</xsl:attribute>

 </picture>

</xsl:template>

</xsl:stylesheet>

Module attributes.xsl:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:attribute-set name="picture-attributes">

 <xsl:attribute name="color">blue</xsl:attribute>

 <xsl:attribute name="transparency">100</xsl:attribute>

</xsl:attribute-set>

</xsl:stylesheet>

The named attribute set in the included stylesheet is used exactly as if it were
defined in the principal stylesheet, at the point where the <xsl:include>
statement appears.

Output
The resulting output is:

<picture transparency="100" color="red"/>

This is because attributes generated using <xsl:attribute> override those
generated by using a named attribute set; it has nothing to do with the fact that
the attribute-set came from an included stylesheet.

See also
<xsl:import> on page 71.

xsl:key87
The <xsl:key> element is a top-level element used to declare a named key, for use
with the key() function in expressions and patterns.

Defined in
XSLT section 12.2

Format
<xsl:key name=QName match=Pattern use=Expression />

Position
<xsl:key> is a top-level element, which means that it must be a child of the
<xsl:stylesheet> element. It may appear any number of times in a stylesheet.

Attributes
Name Value Meaning
name
mandatory

QName The name of the key

match
mandatory

Pattern Defines the nodes to which this
key is applicable

use
mandatory

Expression The expression used to
determine the value of the key
for each of these nodes

The constructs QName and Expression are defined in Chapter 5, and Pattern is
defined in Chapter 6.

Neither the Pattern in the match attribute, nor the Expression in the use attribute,
may contain a VariableReference. This is to prevent circular definitions. Key
definitions are effectively processed before global variable definitions: this means you
can use keys when defining the value of a global variable, but you cannot use global
variables when defining a key.

Content
None, the element is always empty.

Effect
The name attribute specifies the name of the key. It must be a valid QName; if it contains
a namespace prefix, the prefix must identify a namespace declaration that is in scope
on the <xsl:key> element. The effective name of the key is the expanded name,
consisting of the namespace URI and the local part of the name. Namespaces are
described in Chapter 2, page Error! Cannot open file..

The match attribute specifies the nodes to which the key applies. The value is a
Pattern, as described in Chapter 6. If a node doesn't match the pattern, then it has no
values for the named key. If a node does match the pattern, then the node has zero or
more values for the named key, as determined by the use attribute.

The simplest case is where the key values are unique. For example, consider the
following source document:

<vehicles>

<vehicle reg="P427AGH" owner="Joe Karloff"/>

<vehicle reg="T788PHT" owner="Prunella Higgs"/>

<vehicle reg="V932TXQ" owner="William D. Abikombo"/>

</vehicles>

In the stylesheet you can define a key for the registration number of these vehicles, as
follows:

<xsl:key name="vehicle-registration" match="vehicle" use="@reg"/>

The use attribute specifies an expression used to determine the value or values of the
key. This expression doesn't have to be an attribute, like «@reg» in the example above:
it could, for example, be a child element. If this is a repeating child element, you can
create an index entry for each instance. The formal rules are as follows: for each node

that matches the pattern, the expression is evaluated with that node as the current
node, and with the current node list containing that node only.

❑ If the result is a node-set, each node in the result contributes one value for the
key. The value of the key is the string-value of that node.

❑ Otherwise, the result is converted to a string, and this string acts as the value
of the key.

There is no rule that stops two nodes having the same key value, for example,
declaring a key for vehicle registration numbers in the example above does not mean
that each registration number must be different. So a node can have more than one
key, and a key can refer to more than one node.

More formally, each named key can be considered as a set of node-value pairs. A node
can be associated with multiple values and a value can be associated with multiple
nodes. The value is always a string. A node-value pair (N, V) is added to the set if
node N matches the pattern specified in the match attribute, and if the expression in
the use attribute, when applied to node N, produces either a node-set containing a
node whose string-value is V, or a value that is not a node-set and which, on
conversion to a string, is equal to V.To complicate things a bit further, there can be
more than one key definition in the stylesheet with the same name. The set of node-
value pairs for the key is then the union of the sets produced by each key definition
independently. The import precedence of the key definitions makes no difference.

A key can be used to select nodes in any document, not just the principal source
document. The key() function always returns nodes that are in the same document as
the context node at the time it is called. It is therefore best to think of there being one
set of node-value pairs for each named key for each document.

The effect of calling key(K, V), where K is a key name and V is a string value, is to
locate the set of node-value pairs for the key named K and the context document, and
to return a node-set containing the node from each pair where the value is V.

If you like to think in SQL terms, imagine a table KEY-VALUES with four columns, KEY-
NAME, DOCUMENT, NODE, and VALUE. Then calling key('K', 'V') is equivalent to the
SQL statement:

SELECT DISTINCT NODE FROM KEY-VALUES WHERE

 KEY-NAME='K' AND

 VALUE='V' AND

 DOCUMENT=current-document;

Usage and Examples
Declaring a key has two effects: it simplifies the code you need to write to find the
nodes with given values, and it is likely to make access faster.

The performance effect, of course, depends entirely on the implementation. It would
be quite legitimate for an implementation to conduct a full search of the document
each time the key() function was called. In practice, however, most implementations

are likely to build an index, so there will be a one-time cost in building the index (for
each document), but after that, access to nodes whose key value is known should be
very fast.

The <xsl:key> element is usually used to index elements, but in principle it can be
used to index any kind of node except namespace nodes.

Using a Simple Key
The detailed rules for keys seem complicated, but most practical applications of keys
are very simple. Consider the following key definition:

<xsl:key name="product-code" match="product" use="@code"/>

This defines a key whose name is «product-code», and which can be used to find
<product> elements given the value of their code attribute. If a product has no code
attribute, it won't be possible to find it using this key.

To find the product with code value «ABC-456», we can write, for example

<xsl:apply-templates select="key('product-code', 'ABC-456')"/>

Note that we could just as well choose to index the attribute nodes:

<xsl:key name="product-code" match="product/@code" use="."/>

To find the relevant product we would then write:

<xsl:apply-templates select="key('product-code', 'ABC-456')/.."/>

I've used <xsl:apply-templates> here as an example: this will select all the
<product> elements in the current document that have code «ABC-456» (we never said
it had to be a unique identifier) and apply the matching template to each one in turn,
processing them in document order, as usual. I could equally have used any other
instruction that uses an XPath expression, for example I could have assigned the node-
set to a variable, or used it in an <xsl:value-of> element.

The second argument to the key function is normally a string. It won't usually be a
literal, as in my example, but is more likely to be a string obtained from somewhere
else in the source document, or perhaps supplied as a parameter to the stylesheet. It
may well have been passed as one of the parameters in the URL used to select this
stylesheet in the first place: for example a web page might display a list of available
products such as:

Select from the following list of products:
Baked Beans
Tomato Ketchup
Fish Fingers
Cornflakes

Behind each of these hyperlinks shown to the user might be a URL such as:

http://www.cheap-food.com/servlet/product?code=ABC-456

You then write a servlet (or an ASP page if you prefer) on your web server that
extracts the query parameter code, and fires off your favorite XSLT processor
specifying products.xml as the source document, show-product.xsl as the
stylesheet, and «ABC-456» as the value to be supplied for the global stylesheet
parameter called prod-code. Your stylesheet then would look like this:

<xsl:param name="prod-code"/>

<xsl:key name="product-code" match="product" use="@code"/>

<xsl:template match="/">

 <html>

 <body>

 <xsl:variable name="product"

 select="key('product-code', $product-code)"/>

 <xsl:if test="not($product)">

 <p>There is no product with this code</p>

 </xsl:if>

 <xsl:apply-templates select="$product"/>

 </body>

 </html>

</xsl:template>

Multi-valued Keys
A key can be multi-valued, in that a single node can have several values each of which
can be used to find the node independently. For example, a book may have several
authors, and each author's name can be used as a key value. This could be defined as
follows:

<xsl:key name="book-author" match="book" use="author/name"

The use expression, «author/name», is a node-set expression, so the string value of
each of its nodes (that is, the name of each author of the book) is used as one of the
values in the set of node-value pairs that makes up the key.

In this particular example, as well as one book having several authors, each author
may have written several books, so when we use an XPath expression such as:

<xsl:for-each select="key('book-author', 'Agatha Christie')">

We will be selecting all the books in which Agatha Christie was one of the authors.
There's no direct way of using the key to find books written by two known authors, we
just have to use one of them as the key value and then filter out the books that don't
meet the other criteria.

At least two products, Saxon and xt, support an extension function
intersection(), allowing you to write
 «intersection(key(A, value1), key(A, value2))».

However, this isn't in the standard.

We can supply a node-set as the second argument to the key function. For example, we
might write:

<xsl:variable name="ac" select="key('book-author', 'Agatha Christie')">

<xsl:for-each select="key('book-author', $ac/author/name)">

The result of the select expression in the <xsl:for-each> instruction is the set of all
books in which one of the authors is either Agatha Christie or a co-author of Agatha
Christie. This is because $ac is the set of all books of which Agatha Christie is an
author, so «$ac/author/name» is the set of all authors of these books, and using this
set of named authors as the value of the key produces the set of books in which any of
them is an author. As we have already mentioned, there is no direct way of finding
books in which they are all named as authors.

Example: Multi-valued Non-unique keys
This example shows how a node can have several values for one key, and a given
key value can identify more than one node. It uses author name as a key to locate
<book> elements.

Source
The source file is booklist.xml:

<booklist>

<book>

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

<book>

 <title>Pattern Hatching</title>

 <author>John Vlissides</author>

</book>

<book>

 <title>Building Applications Frameworks</title>

 <author>Mohamed Fayad</author>

 <author>Douglas C. Schmidt</author>

 <author>Ralph Johnson</author>

</book>

<book>

 <title>Implementing Applications Frameworks</title>

 <author>Mohamed Fayad</author>

 <author>Douglas C. Schmidt</author>

 <author>Ralph Johnson</author>

</book>

</booklist>

Stylesheet
The stylesheet is author-key.xsl.

It declares the key and then simply copies the <book> elements that match the
author name supplied as a parameter. As it can be difficult to supply parameters
containing spaces, the stylesheet is written so that an underscore in the supplied
parameter is translated to a space. So you can call this stylesheet with a call such
as:

saxon booklist.xml author-key.xsl author=Ralph_Johnson

For convenience in trying out this stylesheet, a default value has been supplied
for the parameter.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:key name="author-name" match="book" use="author"/>

<xsl:param name="author" select="'John Vlissides'"/>

<xsl:template match="/">

<xsl:copy-of select="key('author-name', translate($author, '_', ' '))"/>

</xsl:template>

</xsl:transform>

Output
With the parameter set to its default value «John Vlissides», the output is as
follows:

<?xml version="1.0" encoding="utf-8" ?>

<book>

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

<book>

 <title>Pattern Hatching</title>

 <author>John Vlissides</author>

</book>

Multiple Named Keys

There is nothing to stop us defining several keys for the same nodes. For example:

<xsl:key name="book-isbn" match="book" use="isbn"/>

<xsl:key name="book-author" match="book" use="author/surname"/>

This allows you to find a book if either the author or the ISBN is known.

It's worth thinking twice before doing this, however. Assuming the XSLT processor
implements the key by building an index, rather than by searching the whole
document each time, you have to weigh the cost of building the index against the cost
of finding the information by a search. If you only need to find a single book using its
ISBN number, it might be simpler and faster to write:

<xsl:for-each select="//book[isbn='0-13-082676-6']"/>

and not use a key at all.

Multiple Definitions for the Same Key
It's also possible to have several key definitions with the same name. For example:

<xsl:key name="artist-key" match="book" use="author/name"/>

<xsl:key name="artist-key" match="CD" use="composer"/>

<xsl:key name="artist-key" match="CD" use="performer"/>

Now we can use the key() function in an expression such as:

<xsl:apply-templates select="key('artist-key', 'Ringo Starr')"/>

The set of nodes this returns will be either <book> elements or <CD> elements or a
mixture of the two; the only thing we know for certain is that each one will either be a
book with Ringo Starr as one of the authors, or a CD with Ringo Starr listed either as
the composer or as a performer.

If the use expression were the same in each case, we could simplify this. For example
to find books and CDs with a particular publisher, we could write:

<xsl:key name="publisher-key" match="book | CD" use="publisher"/>

This example uses the UnionPattern «book | CD» which matches all <book> elements
and all <CD> elements. Like other patterns, the UnionPattern is described on page
Error! Cannot open file. in Chapter 6.

The different definitions do not all need to be in the same stylesheet module; all the
key definitions in included and imported stylesheets are merged together regardless of
their import precedence.

See also
key() function in Chapter 7. page Error! Cannot open file..

xsl:message
The <xsl:message> instruction outputs a message, and optionally terminates
execution of the stylesheet.

Defined in
XSLT section 13

Format
<xsl:message terminate="yes" | "no" >

 template-body

</xsl:message>

Position
<xsl:message> is an instruction. It is always used as part of a template body.

Attributes
Name Value Meaning
terminate
optional

«yes» | «no» The value «yes» indicates that
processing is terminated after
the message is output. The
default is «no».

Content
A template body. There is no requirement that this should only generate text nodes; it
can produce any XML fragment. What happens to any markup, however, is not
defined in the standard.

Effect
If the terminate attribute is omitted, the value «no» is assumed.

The value obtained by expanding the template is output where the user can be
expected to see it. The XSLT specification does not actually say where it goes: this is
implementation-dependent, and it might be determined by configuration options. The
specification suggests an alert box on the screen and a log file as two possible
destinations.

If the terminate attribute has the value «yes», execution of the stylesheet is
abandoned immediately, and any output generated so far is discarded.

Usage
The <xsl:message> instruction is generally used to report error conditions detected by
the stylesheet logic. An example might be where an element such as <sales> is

expected to have a numeric value, but is found to have a non-numeric value.

❑ With «terminate="no"» (the default), the stylesheet can report the error and
continue processing.

❑ With «terminate="yes"», the stylesheet can report the error and quit.

Before using <xsl:message> in a production environment, check what happens to the
messages and whether they can be redirected. You need to be particularly clear about
whether your messages are intended to be read by the source document author, the
stylesheet author, or the end user: this will affect the way in which you write the text
of the message.

The output produced by <xsl:message> can be unpredictable, because the sequence
of execution of a stylesheet is not defined in the standard. For example, some products
(notably xt) defer evaluation of a variable until the variable is first used, which means
that the order in which different variables are evaluated is difficult to predict. If
evaluation of a variable triggers execution of <xsl:message>, the order of the
messages may be surprising. Certainly, it can vary from one XSLT processor to
another.

A common use of <xsl:message> is to generate diagnostic output so you can work out
why your stylesheet isn't behaving as expected. This works well with products like
Saxon and Xalan that have a fairly predictable sequence of execution, but it can be
rather bewildering with xt, which often does things in a different order from the one
you would expect. Placing diagnostics as comments into the result tree (using
<xsl:comment>) is probably a more flexible solution. Some products, of course, have
vendor-defined debugging aids built-in.

Examples
The following example issues a message and quits if the value of the <sales> element
is non-numeric:

<xsl:if test="string(number(sales))='NaN'">

 <xsl:message terminate="yes">

 <xsl:text>Sales value is not numeric</xsl:text>

 </xsl:message>

</xsl:if>

Unfortunately there is no mechanism defined in the XSLT standard that allows the
location of the error in the source document to be included in the message.

The following example extends this by allowing several such errors to be reported in a
single run, terminating the run only after all errors have been reported. It works by
assigning a global variable to the set of nodes in error.

<xsl:variable name="bad-sales"

 select="//sales[string(number(current()))='NaN']"/>

<xsl:template match="/">

 <xsl:for-each select="$bad-sales">

 <xsl:message>Sales value <xsl:value-of select="."/>

 is not numeric

 </xsl:message>

 </xsl:for-each>

...

 <xsl:if test="$bad-sales">

 <xsl:message terminate="yes">

 <xsl:text>Processing abandoned</xsl:text>

 </xsl:message>

 </xsl:if>

</xsl:template>

Localized Messages
XSLT is designed very much with internationalization in mind, and no doubt the
requirement to localize message text was discussed by the working group. They
clearly decided that no special facilities were needed, and instead included a detailed
example in the XSLT specification showing how the message text can be localized
(output in the user's native language). The example is worth repeating because it
shows a general technique.

Messages for a particular language are stored in a file whose name identifies the
language, for example German messages might be in messages/de.xml. The message
file might have the structure:

<messages>

 <message name="started">Angefangen</message>

 <message name="please-wait"/>Bitte warten!</message>

 <message name="finished"/>Fertig</message>

</messages>

A stylesheet that wishes to produce messages in the appropriate local language will
need a parameter to identify that language (it might also be obtainable via the system-
property() function described in Chapter 7, on page Error! Cannot open file., but not
in a portable way). It can then get access to the messages file for the appropriate
language, and read the messages from there:

<xsl:param name="language" select="'en'"/>

<xsl:template name="output-message">

 <xsl:param name="name"/>

 <xsl:variable name="message-file"

 select="concat('messages/', $language, '.xml')"/>

 <xsl:variable name="message-text"

 select="document($message-file)/messages"/>

 <xsl:message>

 <xsl:value-of select="$message-text/message[@name=$name]"/>

 </xsl:message>

</xsl:template>

The same technique can of course be used for producing localized text to include in the
output file from the stylesheet.

The example in the XSLT Recommendation starts

 <xsl:param name="lang" select="en"/>

This is a classic mistake. This will default the lang parameter to the
string-value of the child <en> element if there is one. It is clearly
intended that the default should be the literal value «en», which
requires the two pairs of quotes.

xsl:namespace-alias
The <xsl:namespace-alias> element allows a namespace used in the stylesheet to be
mapped to a different namespace used in the output.

Defined in
XSLT section 7.1.1

Format
<xsl:namespace-alias

 stylesheet-prefix=NCName

 result-prefix=NCName />

Position
<xsl:namespace-alias> is a top-level element, which means it must be a child of the
<xsl:stylesheet> element. It may be repeated any number of times in a stylesheet.

Attributes
Name Value Meaning
stylesheet-
prefix
mandatory

NCName |
 «#default»

A namespace prefix used in the
stylesheet

result-prefix
mandatory

NCName |
 «#default»

The prefix of the corresponding
namespace to be used in the
output

Content
None. The <xsl:namespace-alias> element is always empty.

Effect
The <xsl:namespace-alias> element affects the treatment of namespaces on literal
result elements.

If there are several <xsl:namespace-alias> elements that specify the same
stylesheet-prefix, the one with highest import precedence is used; if there is more
than one with this import precedence, the implementation can either report an error or
choose the one that comes last in the stylesheet.

Normally, when an element node is output by processing a literal result element, the
output element name will have the same local part, the same prefix, and the same
namespace URI as the literal result element itself. It isn't required that it should have
the same prefix, but it usually will. The same applies to the attributes of the literal
result element, and less obviously, to its namespace nodes. (The XSLT specification
states that when processing a literal result element, all the namespaces that are in
scope for the element in the stylesheet, with certain defined exceptions, will also be
present in the output, even if they aren't used. Redundant namespace nodes can be
suppressed by using the xsl:exclude-result-prefixes attribute. For more details
on this, see the section Literal Result Elements, on page Error! Cannot open file., in
Chapter 3.)

Suppose you want the output document to be an XSLT stylesheet. Then you need to
create elements such as <xsl:template> that are in the XSLT namespace. However,
you can't use <xsl:template> as a literal result element, because by definition, if an
element uses the XSLT namespace, it is treated as an XSLT element.

The answer is to use a different namespace on the literal result element in the
stylesheet, and include an <xsl:namespace-alias> declaration to cause this to be
mapped to the XSLT namespace when the literal result element is output. So your
literal result element might be <out:template>, and you could use an
<xsl:namespace-alias> element to indicate that the stylesheet prefix «out» should be
mapped to the result prefix «xsl».

The <xsl:namespace-alias> element declares that one namespace URI, the stylesheet
URI, should be replaced by a different URI, the result URI, when literal result elements
are output. The namespace URIs are not given directly, but are referred to by using
prefixes that are bound to these namespace URIs as a result of namespace declarations
that are currently in force. Either one of the namespace URIs may be the default
namespace URI, which is referred to using the pseudo-prefix «#default».

So although the <xsl:namespace-alias> element describes the mapping in terms of
prefixes, it is not the prefix that is changed, but the URI. The prefix may be changed as
well, but that is implementation-defined: the specification makes no guarantee about
what prefix will be used in the output document.

Note
The XSLT specification does not say whether namespace aliasing should take place at
the time a literal result element is written to a result tree fragment, or at the time the
result tree fragment is copied to the final output destination. Since there is no standard
way of examining the nodes in a result tree fragment, the question may seem
academic. However, several XSLT implementations provide extension functions that
allow conversion of a result tree fragment to a node-set for further processing, and the
interaction of this facility with namespace aliasing could cause some surprises.

Usage and Examples
The main justification for this facility is to enable stylesheets to be written that
generate stylesheets as output. This is not as improbable a scenario as it sounds: there
are many possible reasons for using this technique, including the following:

❑ There are many proprietary templating languages currently in use. Translating
these templates into XSLT stylesheets creates an attractive migration route,
and there is no reason why these translators should not be written in XSLT.

❑ There may be a continuing need for a templating language that is less complex
and powerful than XSLT, for use by non-programmers. Again, these simple
templates can easily be translated into XSLT stylesheets.

❑ There are some parts of an XSLT stylesheet that cannot easily be
parameterized. For example, it is not possible to construct an XPath expression
programmatically and then execute it (XSLT is not a reflexive language). The
requirement to do this arises when visual tools are developed to define queries
and reports interactively. One way of implementing such tools is to construct a
customized stylesheet from a generic stylesheet, and again this is a
transformation that can be assisted by using XSLT.

❑ You might have developed a large number of stylesheets that all have some
common characteristic, for example they might all generate HTML that uses
the <CENTER> tag. As the <CENTER> tag is deprecated, you now want to modify
these stylesheets to use
<DIV ALIGN="CENTER">. Why not write an XSLT transformation to convert
them?

❑ When XML schema languages become more advanced, there is every prospect
that it will be possible to generate default stylesheets from a schema. Since
both the schema and the stylesheet are XML documents, this is an XML to
XML transformation, so it should be possible to write it in XSLT.

In fact, having gone to all the trouble of defining XSLT stylesheets as well-formed
XML documents, it would be very surprising if it then proved impossible to
manipulate them using XSLT itself.

There may be other situations where <xsl:namespace-alias> is useful. The XSLT
specification mentions one, the need to avoid using namespace URIs that have
recognized security implications in the area of digital signatures. Another might arise
if stylesheets and other documents are held in a configuration management system:
there might be a need to ensure that namespaces recognized by the configuration
management system, for example to describe the authorship and change history of a
document, were not used directly in the stylesheet.

Example of <xsl:namespace-alias>

The following example generates an XSLT stylesheet consisting only of a single
global variable declaration, whose name and default value are supplied as
parameters. Although this is a trivial stylesheet, it could be useful when

incorporated into another more useful stylesheet using <xsl:include> or
<xsl:import>.

This example is available for download as alias.xsl

Source
This stylesheet can be used with any source XML document. The source
document is not used (though it must exist).

Stylesheet
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:out="output.xsl">

<xsl:param name="variable-name">v</xsl:param>

<xsl:param name="default-value"/>

<xsl:output indent="yes"/>

<xsl:namespace-alias

 stylesheet-prefix="out"

 result-prefix="xsl"/>

<xsl:template match="/">

 <out:stylesheet version="1.0">

 <out:variable name="{$variable-name}">

 <xsl:value-of select="$default-value"/>

 </out:variable>

 </out:stylesheet>

</xsl:template>

</xsl:stylesheet>

Output
If you default the values of the parameters «variable-name» and «default-
value», the output should be as follows:

<?xml version="1.0" encoding="utf-8" ?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:variable name="v"/>

</xsl:stylesheet>

See also
Literal result elements in Chapter 3, on page Error! Cannot open file..

xsl:number101

The <xsl:number> element performs two functions. It can be used to allocate a
sequential number to the current node, and it can be used to format a number for
output. These functions are often performed together, but they can also be done
separately.

Note that the facilities for number formatting in the <xsl:number> element are quite
separate from those offered by the format-number() function and the <xsl:decimal-
format> element.

Defined in
XSLT section 7.7

Format
<xsl:number

 level="single" | "multiple" | "any"

 count=Pattern

 from=Pattern

 value=Expression

 format={format-string}

 lang={language-code)

 letter-value={ "alphabetic" | "traditional" }

 grouping-separator={character}

 grouping-size={number} />

Position
<xsl:number> is an instruction. It is always used within a template body.

Attributes
Name Values Meaning
level
optional

«single» |
«multiple» |
«any»

Controls the way in which a
sequence number is allocated
based on the position of the node
in the tree

count
optional

Pattern Determines which nodes are
counted to determine a sequence
number

from
optional

Pattern Determines a cut-off point, a
point in the document from
which sequence numbering
starts afresh

value
optional

Expression A user-supplied number to be
formatted (instead of using a
node sequence number)

format
optional

Attribute value
template, returning a

Determines the output format of

format string, as
defined below

the number

lang
optional

Attribute value
template, returning a
language code, as
defined in XML for the
xml:lang attribute

Indicates a language whose
conventions for number
formatting should be used

letter-value
optional

Attribute value
template, returning
«alphabetic» |
«traditional»

Distinguishes between different
numbering schemes used with
the same language

grouping-
separator
optional

Attribute value
template, returning a
single character

A character to be used to
separate groups of digits (for
example, a comma as a
thousands separator)

grouping-size
optional

Attribute value
template, returning a
number

The number of digits in each
group, indicating where the
grouping-separator should be
inserted

For the syntax of an Expression, see Chapter 5.
For the syntax of a Pattern, see Chapter 6.

Content
None, the element is always empty.

Effect
The <xsl:number> instruction performs four tasks:

❑ Determine a sequence number

❑ Analyze the format string into a sequence of format tokens

❑ Format each part of the sequence number using the appropriate format token

❑ Write the resulting string to the current output destination as a text node.

These steps are considered individually in the following sections.

Determining a Sequence Number
If the value attribute is specified, the sequence number is obtained by evaluating the
expression in the value attribute, converting the result if necessary to a number using
the rules for the number() function (page Error! Cannot open file.), and then rounding
it to an integer using the rules for the round() function (page Error! Cannot open file.)
. In this case, the level, count, and from attributes are ignored. The XSLT specification
doesn't say what happens if the number is negative: <xsl:number> is primarily
designed to handle positive integers.

If no value attribute is specified, <xsl:number> determines a sequence number based
on the position of the current node in the source document.

The rules for determining a sequence number depend on the value of the level,
count, and from attributes. If any of these attributes is omitted, the default is as
follows:

Attribute Default value
level «single»

count A pattern that matches nodes of the same node type as the
current node; and if the current node has a name, that
matches nodes with the same name. As always, names with
namespace prefixes are matched using the relevant
namespace URI rather than the prefix.

from A pattern that matches no nodes, for example «*[false()]»

The sequence number is in general a list of positive integers. If the level attribute is
«single» or «any» the sequence number will normally contain a single integer, if it is
«multiple» then it may contain several (for example «3.6.1»). It is also possible for
the list to be empty, and in the case of «any» it is possible for the sequence number to
be zero.

The sequence number is determined as follows:

level Rules

single This is designed for numbering of peer nodes at the same
level in the structure, for example the items in a list.
If the current node matches the count pattern, the target
node is the current node.
Otherwise, the processor searches for an ancestor of the
current node that matches the count pattern, and makes that
the target node. It stops the search when an ancestor is found
that matches the from pattern, if there is one.
If a target node is found, the sequence number is determined
by counting how many preceding siblings of the target node
match the count pattern, and adding one for the target node
itself. For example, if the target node has six preceding
siblings that match the count pattern then the sequence
number is 7.
If no target node is found, the sequence number will be an
empty list.

any This is designed for numbering nodes that can appear at any
level of the structure, for example the footnotes or equations
in a chapter of a book.
Starting at the current node, the processor walks backwards
through the document in reverse document order, counting
the number of nodes that match the count pattern, and

stopping when a node is found that matches the from
pattern, if there is one. The sequence number is the number
of nodes counted. If the current node does not match the
count pattern, the result can be zero.
Attribute and namespace nodes are never counted.

multiple This is designed to produce a composite sequence number
that reflects the hierarchic position of a node, for example
«2.17.1».
The processor makes a list of all the ancestors of the current
node, plus the current node itself, but stopping when an
ancestor is reached that matches the from pattern, if there is
one. The node that matches the from pattern is not included
in the list. It puts this list into document order, that is, with
the outermost ancestor first.
For each node in this list that matches the count pattern, the
processor counts how many preceding siblings it has that
also match the count pattern, and adds one for the node
itself. The resulting list of numbers makes up the composite
sequence number.

These rules appear complex but in practice most common cases are quite
straightforward: see the examples below.

Analysing the Format String
Once the sequence number has been determined, the next stage is to format it into a
string.

Recall that the sequence number is in general a list of zero or more integers. When
these are obtained by counting nodes they will generally be positive integers, though
with «level="any"», the value zero can also arise. When a sequence number is
supplied using the value attribute, there is nothing to stop the number being negative,
or for that matter infinity or NaN (not a number). The XSLT specification doesn't
define how negative integers or these other special values should be formatted, so the
results are implementation-dependent. The <xsl:number> element is designed for
handling the natural numbers that arise from counting nodes: if you want to handle
other cases, it's better to use the format-number() function described in Chapter 7, on
page Error! Cannot open file..

The formatting is controlled primarily using the format string supplied in the format
attribute. If this is omitted, the default value is «1».

The format string consists of a sequence of alternating formatting tokens and
punctuation tokens. Any sequence of consecutive alphanumeric characters is taken as
a formatting token, any other sequence is taken as a punctuation token. For example, if
the format attribute is «1((a))», this is broken up into a formatting token «1», a
punctuation token «((», a formatting token «a», and a punctuation token «))». The
term alphanumeric is based on Unicode character categories, and is defined to include
letters and digits from any language.

In the most common case the sequence number is a single number. In this situation,
the output string consists of the initial punctuation token if there is one, followed by
the result of formatting the number using the first format token, followed by the final
punctuation token if there is one. So if the sequence number is «42» and the format
attribute is «[1]», then the final output is «[42]».

Where the sequence number is a list of numbers, the rules are a little more complex but
still have intuitive results, for example if the list of numbers is «3, 1, 6» and the
format attribute is «1.1(a)» then the final output is «3.1(f)» (because «f» is the sixth
letter in the alphabet). The detailed rules are as follows:

❑ The nth formatting token is used to format the nth number in the list where
possible, using the rules in the following section

❑ If there are more numbers in the list than formatting tokens, then the excess
numbers are formatted using the last formatting token. For example, if the list
is «3,1,2,5» and the format attribute is «A.1», then the output will be
«C.1.2.5»

❑ If there are no formatting tokens, then a formatting token of «1» is used

❑ If there are more formatting tokens than numbers in the list, the excess
formatting tokens are ignored

❑ Each number is preceded in the output by the punctuation token that precedes
the formatting token used to format that number, if there is one. If there is no
preceding punctuation token, and the number is not the first in the list, it is
preceded by «.»

❑ If the formatting string ends with a punctuation token, this is added to the end
of the output string.

Note that if the list of numbers is empty, the result will consist of the initial and final
punctuation tokens. For example if the format string is «[1]», an empty list will be
formatted as «[]». The most likely reason for an empty list is that
«level="multiple"» was specified, and no ancestor nodes matched the count
pattern.

Formatting the Parts of the Sequence Number
This section describes how a single number is formatted using a single formatting
token to construct a string that will form part of the final output string.

The XSLT specification defines this process only partially. There are some definitive
rules, some guidance for the implementor, and many other cases that are left
unspecified.

The definitive cases are listed in the table below:

Formatting token Output sequence

1 1, 2, 3, 4…

01 01, 02, 03, … 10, 11, 12.
More generally, if the format token is a «1» preceded by n
zeros, the output numbers will be in decimal notation with a
minimum of n+1 digits

other Unicode
digits

The above two rules also apply to any other Unicode digits
equivalent to zero and one, for example Thai or Tamil digits.
The number is output using the same family of digits as are
used in the formatting token

a a, b, c, d, … x, y, z, aa, ab, ac …
A A, B, C, D, … X, Y, Z, AA, AB, AC …
i i, ii, iii, iv, … x, xi, xii, xii, xii, xiv, …
I I, II, III, IV, … X, XI, XII, XIII, XIV, …

The attributes grouping-separator and grouping-size can be used to control the
separation of groups of digits. For example, setting «grouping-separator=" "» (a
single space) and «grouping-size="2"» would cause the number 12345 to be output
as «1 23 45». The groups will always be formed by counting digits from the right-
hand side.

For other formatting tokens, the XSLT specification is not prescriptive. It indicates that
any formatting token may be used to indicate a sequence starting with that token,
provided the implementation supports such a sequence; if the implementation does
not support such a sequence, it may format the number using the format token «1». So,
for example, if an implementation supports the numbering sequence «eins, zwei,
drei, vier», then you can invoke this sequence using a format token of «eins»; if it
supports the numbering sequence «α, β, γ, δ», then you can invoke this sequence
with a format token of «α».

In case the format token does not identify a numbering sequence unambiguously, two
attributes are provided to give greater control.

❑ The lang attribute is intended to indicate the target language: for example the
sequence starting «a» might be different for English («lang="en"») and for
Swedish («lang="se"»). The language code is intended to take the same form
as the xml:lang attribute defined in the XML specification.

❑ The letter-value attribute is intended for languages such as Hebrew that
have several possible sequences starting with the same token. The two
permitted values are «alphabetic» and «traditional».

The detailed effect of these attributes is left entirely to the implementor, so you can't
expect different products necessarily to behave in the same way.

All the attributes controlling formatting are attribute value templates, so they can be
parameterized using expressions enclosed in curly braces. This is mainly useful if you
want to select the values from a localization file based on the preferred language of the
current user. To achieve this, you can use the same techniques as are described for
localizing messages: see <xsl:message> on page 95.

Outputting the Number
The final action of <xsl:number> is to write the generated string to the current output
destination, as a text node.

If you want to do something else with the number (perhaps to write it as an attribute
or to copy it to every page heading), you can save it as the value of a variable, as
follows:

<xsl:variable name="section-number"><xsl:number/></xsl:variable>

Writing the value to a variable also allows you to perform further manipulation. For
example, if you want to use the traditional numbering sequence for footnotes (*, †, ‡,
§, ¶) you cannot do this directly in <xsl:number> because these characters are
punctuation symbols rather than alphanumerics. What you can do, however, is to use
conventional decimal numbering and then convert, for example:

<xsl:template match="footnote"/>

<xsl:variable name="footnote-number">

 <xsl:number level="any" from="section"/>

</xsl:variable>

<xsl:value-of select="translate($footnote-number, '12345', '*†‡§¶')"/>

In practice it might be safer to use character references for these special characters to
avoid them being mangled by a text editor that doesn't understand Unicode. The
translate() function replaces characters in its second argument by the
corresponding character in the third argument: it is described on page Error! Cannot
open file., in Chapter 7.

I have dodged a tricky question here, which is that if you want footnote numbers to
start at one on each page, you can't allocate them until you have paginated the
document. Some kinds of numbering are really the domain of XSL Formatting rather
than XSL Transformations.

Usage and Examples
Although the rules for <xsl:number> are very general and sometimes complex, most
common cases are quite straightforward.

The general rules allow for numbering any kind of node, but in practice the
<xsl:number> instruction is almost invariably used for numbering elements. So in this
section, I'll assume that the current node is an element.

level="single"
This option (the default) is used to number sibling elements.

The simplest way of using <xsl:number> is without any attributes: just

<xsl:number/>

If the current element is the eighth <item> element owned by its parent element, say,
then this will write the text value «8» to the current output destination. Technically,
the processor is counting all the elements that match the pattern in the count attribute,
and the default for the count attribute in this case is a pattern that matches <item>
elements.

For this simple kind of numbering, it is often better to use the position() function,
particularly if there are many nodes to be numbered. This is because with a typical
implementation, each node that is numbered using <xsl:number> will result in the
preceding siblings being counted, which will take an increasingly long time as the
number of siblings increases. With the position() function, it is much more likely
that the system already knows the position and doesn't have to do any special walking
around the tree and pattern matching. Of course this is only possible where
«position()» and <xsl:number/> produce the same answer, which will happen
when the current node list being processed consists of all the sibling elements of a
particular element type.

The count attribute can be used in two ways.

Firstly, it is useful if there are several different kinds of sibling elements that we want
to count. For example, we might have a an element containing a mixture of <item>
and <special-item> children, as follows:

<shopping-list>

 <item>bananas</item>

 <item>apples</item>

 <special-item>flowers for Grandma</special-item>

 <item>grapes</item>

 <special-item>chocolate for Aunt Maud</special-item>

 <item>cherries</item>

</shopping-list>

If we want to number these in a single sequence, we can write:

<xsl:template match="item | special-item">

 <xsl:number count="item | special-item"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="."/>

</xsl:template>

which, when we process the <shopping-list> element, will result in the output:

1 bananas

2 apples

3 flowers for Grandma

4 grapes

5 chocolate for Aunt Maud

6 cherries

In this case we could also use «count="*"» to achieve this effect. If we omitted the

count attribute, the output would be:

1 bananas

2 apples

1 flowers for Grandma

3 grapes

2 chocolate for Aunt Maud

4 cherries

because each element is numbered taking into account only other elements with the
same name.

Another use for the count attribute is to specify that it is not the current node that
should be counted, but an ancestor node. For example, the template rule for a <title>
element can use <xsl:number> to determine the number of the section that the title
belongs to by writing

<xsl:template match="title">

 <xsl:number count="section"/>

. . .

</xsl:template>

This usage is less common: it would be just as easy in most cases to output the section
number from the template that handles the <section> element itself.

The from attribute is rarely needed with «level="single"». In fact it is difficult to
construct an example that isn't completely artificial.

If you want numbering to start at a value other than one, or perhaps to proceed in
increments other than one, you can capture the result of <xsl:number> in a variable
and manipulate it using XPath expressions. For example, the following template rule
numbers the items in a list starting at an offset passed in as a parameter:

<xsl:template match="item">

 <xsl:param name="first-number" select="1"/>

 <xsl:variable name="number"><xsl:number/></xsl:variable>

 <xsl:value-of select="$first-number + $number – 1"/>

. . .

</xsl:template>

level="any"
This option is useful when numbering objects within a document that have a
numbering sequence of their own, independent of their position within the hierarchic
structure. Examples are figures and illustrations, tables, equations, footnotes, actions
from a meeting.

The count attribute can usually be defaulted. For example to number quotations
within a document, write a template rule such as

<xsl:template match="quotation">

<table><tr>

<td width="90%" valign="top">

 <i><xsl:value-of select="."/></i></td>

<td><xsl:number level="any"/></td>

</tr></table>

</xsl:template>

Again, the count attribute is useful when several different element types are included
in the same numbering sequence, for example there might be a single sequence that
includes both diagrams and photographs.

Note that each evaluation of <xsl:number> is quite independent of any previous
evaluations. The result depends only on the relative position of the current element in
the source document, and not on how many times the <xsl:number> element has been
evaluated. So there is no guarantee that the numbers in the output document will be
consecutive. In fact, if the output order is different from the input order then the
numbers definitely won't be consecutive. If you want to number things based on their
position in the output document, the only real way to achieve this is by using the
position() function: if this isn't adequate, you may need to perform a second pass on
the output document, using another stylesheet, to add the sequence numbers.

The from attribute is useful to indicate where numbering should restart:

<xsl:template match="footnote">

 <xsl:number level="any" from="chapter"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="."/>

</xsl:template>

The above code would number footnotes consecutively within a chapter, starting again
at 1 for each chapter.

Example: Numbering the Lines of a Poem
The following example numbers the lines of a poem, showing the number to the
right of every third line. We assume the input structure contains a <poem>
element, a <stanza> element, and a <line> element: the lines are to be numbered
within the poem as a whole, not within each stanza.

Source
This stylesheet can be used with the source file poem.xml used in Chapter 1.

Stylesheet
This stylesheet is poem.xsl. It uses <xsl:number> to get the number of every
line, but displays it only every third line, using the «mod» operator to get the
remainder when the line number is divided by three.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><body>

<p><xsl:apply-templates select="/poem/stanza"/></p>

</body></html>

</xsl:template>

<xsl:template match="stanza">

<p><table><xsl:apply-templates/></table></p>

</xsl:template>

<xsl:template match="line">

<tr>

<td width="350"><xsl:value-of select="."/></td>

<td width="50">

 <xsl:variable name="line-nr">

 <xsl:number level="any" from="poem"/>

 </xsl:variable>

 <xsl:if test="$line-nr mod 3 = 0">

 <xsl:value-of select="$line-nr"/>

 </xsl:if>

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

Output

level="multiple"
This option is typically used to produce the hierarchic sequence numbers often found
in technical or legal documents, for example 1.12.3, or A2(iii).

Note that an alternative way to produce such numbers is to use several calls on
<xsl:number> with «level="single"» and different count attributes, for example:

<xsl:number count="chapter"/>.<xsl:number count="section"/>

 (<xsl:number count="clause"/>)

Another technique, which might be marginally faster, is to evaluate the chapter
number once and pass it as a parameter to the template handling the section; and then
pass both the chapter number and section number (or their concatenation) as
parameters to the template handling each clause.

However, using «level="multiple"» is convenient, and in some cases (particularly
with recursive structures, where <section> elements are contained within <section>
elements) may be the only way of achieving the required effect.

The count attribute defines which ancestor elements should be included. Usually this
is expressed as a union pattern, as in the example below:

<xsl:template match="clause">

 <xsl:number

 format="1.1.1. "

 level="multiple"

 count="chapter | section | clause"/>

 <xsl:apply-templates/>

</xsl:template>

The effect of the rules is that a composite sequence number will be formed containing
one component number for each ancestor (or the element itself) that is a <chapter>,
<section>, or <clause>. If the structure is regular, so that chapters, sections and
clauses are neatly nested, then each clause will be output preceded by a number such
as 1.13.5, where 1 is the chapter number, 13 is the number of the section within the
chapter, and 5 is the number of the clause within the section.

If the structure isn't regular, for example if there are sections that don't belong to a
chapter, or if there are clauses that have sections as siblings at the same level, or if
there are sections nested within other sections, then the effects can be surprising, but a
careful reading of the rules should explain what's going on.

A problem that sometimes occurs is that the numbering is context-sensitive. For
example, within a regular chapter, clauses are numbered 1.2.3, but in an appendix,
they are numbered A.2.3. It's possible to achieve this effect by exploiting the fact that
the format pattern is an attribute value template; for example you could write:

<xsl:template match="clause">

 <xsl:variable name="format">

 <xsl:choose>

 <xsl:when test="ancestor::chapter">1.1.1. </xsl:when>

 <xsl:otherwise>A.1.1 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:number

 format="{$format}"

 level="multiple"

 count="appendix | chapter | section | clause"/>

 <xsl:apply-templates/>

</xsl:template>

See also
position() function in Chapter 7, on page Error! Cannot open file..
format-number() function, on page Error! Cannot open file.. in Chapter 7
<xsl:decimal-format> on page 51

xsl:otherwise
The <xsl:otherwise> element is used within an <xsl:choose> instruction to indicate
the action that should be taken when none of the <xsl:when> conditions is satisfied.

Defined in
XSLT section 9.2

Format
<xsl:otherwise>

 template-body

</xsl:otherwise>

Position
<xsl:otherwise> can only appear as a child of an <xsl:choose> element. If it is
present at all, it must be the last child of the <xsl:choose> element, and it may not
appear more than once.

Attributes
None.

Content
A template body.

Effect
The template body of the <xsl:otherwise> element is instantiated if (and only if)
none of the <xsl:when> elements in the containing <xsl:choose> element evaluates to
true.

Usage and Examples
See <xsl:choose> on page 38.

See also
<xsl:choose> on page 38.
<xsl:when> on page 182.

xsl:output
The <xsl:output> element is a top-level element used to control the format of the
stylesheet output. An XSLT stylesheet is processed conceptually in two stages: the first
stage is to build a result tree, and the second is to write out the result tree to a serial
output file. The <xsl:output> element controls this second stage.

This second stage of processing, to serialize the tree as an output document, is not a
mandatory requirement for an XSLT processor; the standard allows the processor to
make the tree available in some other way, for example via the DOM API. A processor
that does not write the tree to an output file is allowed to ignore this element.

Defined in
XSLT section 16

Format
<xsl:output

 method="xml" | "html" | "text" | QName

 version=NMtoken

 encoding=string

 omit-xml-declaration="yes" | "no"

 standalone="yes" | "no"

 doctype-public=string

 doctype-system=string

 cdata-section-elements=list-of-QNames

 indent="yes" | "no"

 media-type=string />

Position
<xsl:output> is a top-level element, which means it must be a child of the
<xsl:stylesheet> element. It may appear any number of times in a stylesheet.

Attributes
Name Value Meaning
method
optional

«xml» |
«html» |
«text» |
QName

Defines the required output
format

version
optional

NMtoken Defines the version of the output
format

encoding
optional

string Defines the character encoding

omit-xml-
declaration
optional

«yes» | «no» Indicates whether an XML
declaration is to be included in
the output

standalone
optional

«yes» | «no» Indicates that a standalone
declaration is to be included in
the output, and gives its value

doctype-public
optional

string Indicates the public identifier to
be used in the DOCTYPE
declaration in the output file

doctype-system
optional

string Indicates the system identifier to
be used in the DOCTYPE
declaration in the output file

cdata-section-
elements
optional

Whitespace separated
list of QNames

Names those elements whose
text content is to be output in the
form of CDATA sections

indent
optional

«yes» | «no» Indicates whether the output
should be indented to indicate
its hierarchic structure

media-type
optional

string Indicates the media-type (often
called MIME type) to be
associated with the output file

Content
None, the element is always empty.

Effect
There may be more than one <xsl:output> element in the stylesheet. If there are
several, the attributes they define are in effect combined into a single conceptual
<xsl:output> element as follows:

❑ For the cdata-section-elements attribute, the lists of QNames supplied on the
separate <xsl:output> elements are merged – if an element name is present in
any of the lists, it will be treated as a CDATA section element.

❑ For all other attributes, an <xsl:output> element that specifies a value for the

attribute take precedence over one that leaves it defaulted. If several
<xsl:output> elements specify a value for the attribute, the one with highest
import precedence is used. If this leaves more than one value, the XSLT
processor may either report an error, or use the one that occurs last in the
stylesheet. (The specification leaves it unclear whether "more than one value"
includes the case where the value is specified several times but is the same
each time.)

The method attribute controls the format of the output, and this in turn affects the
detailed meaning and the default values of the other attributes.

Three output formats are defined in the specification: «xml», «html», and «text».
Alternatively, the output format may be given as a QName, which must include a non-
null prefix that identifies a namespace that is currently in scope. This option is
provided for vendor extensions, and the meaning is not defined in the standard. A
vendor-defined format can attach its own interpretations to the meanings of the other
attributes on the <xsl:output> element, and it can also define additional attributes on
the <xsl:output> element, provided they are not in the default namespace.

If the method attribute is omitted, the output will be in XML format, unless the result
tree is recognizably HTML. The result tree is recognized as HTML if:

❑ The root node has at least one element child, and

❑ The first element child of the root node is named <html>, in any combination
of upper and lower case, and has a null namespace URI, and

❑ There are no text nodes before the <html> element, other than, optionally, a
text node containing whitespace only.

Rules for XML output
When the output method is «xml», the output file will usually be a well-formed XML
document, but the actual requirement is only that it should be a well-formed XML
external general parsed entity: in other words, something that could be incorporated
into an XML document by using an entity reference such as «&doc;». The following
example shows a well-formed external general parsed entity that is not a well-formed
document:

A bold and <emph>emphatic</emph> statement

The specification is a little bit ambiguous in this area. Although it appears to state that
the output will always be a well-formed external general parsed entity, the context
makes it clear that it can also include things such as a standalone document
declaration and a document type declaration which according to XML syntax can only
appear in a document entity, and not in an external general parsed entity.

An example of a well-formed document that is not a well-formed external general
parsed entity is:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<p>A bold and <emph>emphatic</emph> statement</p>

The rules for document entities and external general parsed entities overlap, as shown
in the following diagram:

XML
document

entity

External
general
parsed
entity

Essentially, an XSLT stylesheet can output anything that fits in the shaded area:
anything that is a well-formed XML document entity, a well-formed external general
parsed entity, or both.

Well, almost anything:

❑ it must also conform to the namespaces recommendation

❑ there is no explicit provision for generating an internal DTD subset, though it
can be achieved with difficulty by generating text and disabling output
escaping.

❑ similarly, there is no explicit provision for generating entity references, though
this can also be achieved in the same way.

In the XML standard, the rules for an external general parsed entity are given as

extParsedEnt ⇒ TextDecl ? content

while the rule for the document entity is effectively:

document ⇒ XMLDecl ? Misc * doctypedecl ? Misc * element Misc *

where Misc permits whitespace, comments, and processing instructions.

So the principal differences between the two cases are:

❑ A TextDecl (text declaration) is not quite the same thing as an XMLDecl (XML
declaration)

❑ A document may contain a doctypedecl (document type declaration), but an
external general parsed entity may not. A document type declaration is the
<!DOCTYPE ... > header identifying the DTD and possibly including an
internal DTD subset.

❑ The body of a document is an element, while the body of an external parsed
entity is content. Here content is effectively the contents of an element but
without the start and end tags.

The TextDecl (text declaration) looks at first sight very like an XML declaration: for
example <?xml version="1.0" encoding="utf-8"?> could be used either as an XML
declaration or as a text declaration. There are differences, however:

❑ In an XML declaration, the version attribute is mandatory, but in a text
declaration it is optional

❑ In an XML declaration, the encoding attribute is optional, but in a text
declaration it is mandatory

❑ An XML declaration may include a standalone attribute, but a text
declaration may not.

The content part is a sequence of components including child elements, character
data, entity references, CDATA sections, processing instructions, and comments, each
of which may appear any number of times and in any order.

So the following are all examples of well-formed external general parsed entities:

<quote>Hello!</quote>

<quote>Hello!</quote><quote>Goodbye!</quote>

Hello!

<?xml version="1.0" encoding="utf-8"?>Hello!

The following is a well-formed XML document, but it is not a well-formed external
general parsed entity, both because of the standalone attribute, and because of the
document type declaration. However, even though the XSLT specification states that
the output is always a well-formed external general parsed entity, the context makes it
clear that this is also legitimate output:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE quote SYSTEM "hello.dtd">

<quote>Hello!</quote>

The following is neither a well-formed XML document nor a well-formed external
general parsed entity.

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE quote SYSTEM "hello.dtd">

<quote>Hello!</quote>

<quote>Goodbye!</quote>

It cannot be an XML document because it has more than one top-level element, and it

cannot be an external general parsed entity because it has a <!DOCTYPE> declaration.
The XSLT standard isn't very explicit about what happens in this situation – it's
certainly possible to request such output using XSLT – but the processor probably
ought to treat it as an error.

The XSLT specification also places two other constraints on the form of the output,
although these are rules for the implementor to follow rather than rules that directly
affect the stylesheet author. These rules are:

❑ The output must conform to the rules of the XML Namespaces
recommendation. If it is an XML document, the meaning of this is clear
enough, but if it is merely an external entity, some further explanation is
needed. The standard provides this by saying that when the entity is pulled
into a document by adding an element tag around its content, the resulting
document must conform with the XML Namespaces rules.

❑ The output file must faithfully reflect the result tree. This requirement is easy
to state informally, but the specification includes a more formal statement of
the requirement, which is surprisingly complex.

Although the output is required to be well-formed XML, there is no rule that says it
has to be valid XML (recall that a valid XML document is, roughly speaking, an XML
document that conforms to the rules in its own DTD). If you generate a document type
declaration that refers to a specific DTD, don't expect the XSLT processor to check that
the output document actually conforms to that DTD: that's entirely your responsibility
as the stylesheet author.

With the «xml» output method, the other attributes of <xsl:output> are interpreted as
follows:

version The version of XML used in the output document. Currently

the only version of XML that exists is version 1.0, but this
anticipates the possibility that there will be other versions in
the future. The default value, and the only value you should
consider using at present, is «1.0»

encoding This specifies the preferred character encoding for the output
document. All XSLT processors are required to support the
values «UTF-8» and «UTF-16» (which are also the only values
that XML parsers are required to support). This encoding
name will be used in the encoding attribute of the XML or
Text declaration at the start of the output file, and all
characters in the file will be encoded using these conventions.
The standard encoding names are not case-sensitive.
If the encoding is one that does not allow all XML characters
to be represented directly, for example «iso-8859-1», then
characters outside this subset will be represented where
possible using XML character references (such as
«₤»). It is an error if such characters appear in
contexts where character references are not recognized (for
example within a processing instruction or comment, or in an

element or attribute name).
indent If this attribute has the value «yes», the idea is that the XML

output should be indented to show its hierarchic structure.
The XSLT processor is not obliged to respect this request, and
if it does so, the precise form of the output is not defined.
There are some constraints on how indentation should be
achieved: in effect, it can only be done by adding whitespace-
only text nodes to the tree, and these cannot be added
adjacent to an existing text node. Whitespace that is already
in the result tree cannot be removed, so if the output already
contains multi-line text nodes, the scope to produce
aesthetically-pleasing output is limited.
Note that even with these restrictions, adding whitespace
nodes to the output may affect the way the recipient
interprets it: this is particularly true with mixed content
models where an element can have both elements and text
nodes as its children.

cdata-section-
elements

This is a list of element names, each expressed as a QName,
separated by whitespace. Any prefix in a QName is treated as a
reference to the corresponding namespace URI in the normal
way, using the namespace declarations in effect on the actual
<xsl:output> element where the cdata-section-elements
attribute appears; because these are element names, the
default namespace is assumed where the name has no prefix.
When a text node is output, if the parent element of the text
node is identified by a name in this list, then the text node is
output as a CDATA section. For example, the text value
«James» is output as «<![CDATA[James]]>», and the text
value «AT&T» is output as «<![CDATA[AT&T]]>».
Otherwise, this value would probably be output as
«AT&T». The XSLT processor is free to choose other
equivalent representations if it wishes, for example a
character reference, but the standard says that it should not
use CDATA unless it is explicitly requested. (However, note
the word should: this means the rule is advisory, not a
conformance requirement.)
The CDATA section will be split into parts if necessary,
perhaps because the terminator sequence «]]>» appears in
the data, or because there is a character that can only be
output using a character reference because it is not supported
directly in the chosen encoding.

omit-xml-
declaration

If this attribute has the value «yes», the XSLT processor
should not output an XML declaration (or, by implication, a
text declaration: recall that XML declarations are used at the
start of the document entity, text declarations at the start of
an external general parsed entity).
If the attribute is omitted, or has the value «no», then a
declaration should be output. The declaration should include
both the version and encoding attributes (to ensure that it is

valid both as an XML declaration and as a text declaration). It
should include a standalone attribute only if a standalone
attribute is specified in the <xsl:output> element.

standalone If this attribute is set to «yes», then the XML declaration will
specify «standalone="yes"».
If this attribute is set to «no», then the XML declaration will
specify «standalone="no"».
If the attribute is omitted, then the XML declaration will not
include a standalone attribute. This will make it a valid text
declaration, enabling its use in an external general parsed
entity.
This attribute should not be used unless the output is a well-
formed XML document.

doctype-system If this attribute is specified, the output file should include a
document type declaration after the XML declaration and
before the first element start tag. The name of the document
type will be the same as the name of the first element. The
value of this attribute will be used as the system identifier in
the document type declaration.
This attribute should not be used unless the output is a well-
formed XML document.

doctype-public This attribute is ignored unless the doctype-system attribute
is also specified. It defines the value of the public identifier to
go in the document type declaration. If no public identifier is
specified, none is included in the document type declaration.

media-type This attribute defines the media type of the output file (often
referred to as its MIME type). The default value is
«text/xml». The specification doesn't say what use is made
of this information: it doesn't affect the contents of the output
file, but it may affect the way it is named, stored, or
transmitted, depending on the environment. For example,
the information might find its way into an HTTP protocol
header.

Rules for HTML output
When the method attribute is set to «html», or when it is defaulted and the result tree
is recognized as representing HTML, the output will be an HTML file. By default it
will conform to HTML 4.0.

The XSLT specification doesn't mention the possibility of producing XHTML output,
which is not really surprising as it was published before the XHTML specification.
XHTML is pure XML, so if you want to generate XHTML, use the XML output
method.

HTML is output in the same way as XML, except where specific differences are noted.
These differences are:

❑ Certain elements are recognized as empty elements. They are recognized in

any combination of upper and lower case. These elements are output with a
start tag and no end tag. For HTML 4.0 these elements are:

<area>
<base>
<basefont>

<col>

<frame>
<hr>

<input>

<isindex>
<link>
<meta>
<param>

❑ The <script> and <style> elements (again in any combination of upper and
lower case) do not require escaping of special characters. In the text content of
these elements, a «<» character will be output as «<», not as «<».

❑ HTML attributes whose value is a URI (for example, the href attribute of the
<a> element, or the src attribute of the element) are recognized, and
special characters within the URI are escaped as defined in the HTML
specification. For example, non-ASCII characters in the URI should be
represented by converting each byte of the UTF-8 representation of the
character to «%HH» where HH represents the byte value in hexadecimal; spaces
will be represented as «%20»

❑ Special characters may be output using character entity references such as
«é» where these are defined in the relevant version of HTML. This is
at the discretion of the XSLT processor, it doesn't have to use these entity
names.

❑ Processing instructions are terminated with «>» rather than «?>». Processing
instructions are not often used in HTML, but the HTML 4.0 standard
recommends that any vendor extensions should be implemented this way,
rather than by adding element tags to the language. So it is possible they will
be seen more frequently in the future.

❑ Attributes that are conventionally written with a keyword only, and no value,
will be recognized and output in this form. Common examples are <TEXTAREA
READONLY> and <OPTION SELECTED>. This is shorthand, permitted in SGML
but not in XML, for an attribute that has only one permitted value, which is the
same as the attribute name. In XML, these tags must be written as <TABLE
BORDER="BORDER"> and <OPTION SELECTED="SELECTED">. The HTML output
method will normally use the abbreviated form, as this is the only form that
older HTML browsers will recognize.

❑ The special use of the ampersand character in dynamic HTML attributes is
recognized. For example, the tag <TD WIDTH="&{width};"> is correct HTML,
though it would not be correct in XML, because of the ampersand character.
To produce this output from a literal result element, the tag in the stylesheet
would need to be written as <TD WIDTH="&{{width}};">: note the double
curly braces, to prevent them being interpreted with their special meaning in
attribute value templates.

The attributes on the <xsl:output> element are interpreted as follows when HTML
output is selected.

version The version of HTML used in the output document. It is up
to the implementation which versions of HTML should be
supported, though all implementations can be expected to
support the default version, namely version 4.0

encoding This specifies the preferred character encoding for the output
document. This will be used to generate a charset attribute
of a <META> element inserted immediately after the start tag
of the <HEAD> element, if there is one.
If the encoding is one that does not allow all XML characters
to be represented directly, for example «iso-8859-1», then
characters outside this subset will be represented where
possible using either character entity references or numeric
character references. It is an error if such characters appear in
contexts where character references are not recognized (for
example within a script element, within a comment, or in an
element or attribute name).

indent If this attribute has the value «yes», the idea is that the
HTML output should be indented to show its hierarchic
structure. The XSLT processor is not obliged to respect this
request, and if it does so, the precise form of the output is not
defined.
When producing indented output, the processor has much
more freedom to add or remove whitespace than in the XML
case, because of the way whitespace is handled in HTML: the
processor can add or remove whitespace anywhere it likes so
long as it doesn't change the way a browser would display
the HTML.

cdata-section-
elements

This attribute is not applicable to HTML output.

omit-xml-
declaration

This attribute is not applicable to HTML output.

standalone This attribute is not applicable to HTML output.
doctype-system If this attribute is specified, the output file will include a

document type declaration immediately before the first
element start tag. The name of the document type will be
«HTML» or «html». The value of the attribute will be used as
the system identifier in the document type declaration.

doctype-public If this attribute is specified, the output file will include a
document type declaration immediately before the first
element start tag. The name of the document type will be
«HTML» or «html». The value of the attribute will be used as
the public identifier in the document type declaration.

media-type This attribute defines the media type of the output file (often
referred to as its MIME type). The default value is
«text/html». The specification doesn't say what use is made
of this information: it doesn't affect the contents of the output
file, but it may affect the way it is named, stored, or
transmitted, depending on the environment. For example,

the information might find its way into an HTTP protocol
header.

Rules for Text Output
When «method="text"», the result tree is output as a plain text file. The values of the
text nodes of the tree are copied to the output, and all other nodes are ignored. Within
text nodes, all character values are output using the relevant encoding as determined
by the encoding attribute: there are no special characters such as «&» to be escaped.

The way in which line endings are output (for example LF or CRLF) is not defined: the
implementation might choose to use the default line-ending conventions of the
platform on which it is running.

The attributes that are relevant to text output are listed below. All other attributes are
ignored.

encoding This specifies the preferred character encoding for the output

document. The default value is implementation-defined, and
may depend on the platform on which it is running.
If the encoding is one that does not allow all XML characters
to be represented directly, for example «iso-8859-1», then
any character outside this subset will be reported as an error.

media-type This attribute defines the media type of the output file (often
referred to as its MIME type). The default value is
«text/plain». The specification doesn't say what use is
made of this information: it doesn't affect the contents of the
output file, but it may affect the way it is named, stored, or
transmitted, depending on the environment. For example,
the information might find its way into an HTTP protocol
header.

Usage
The defaulting mechanisms ensure that it is usually not necessary to include an
<xsl:output> element in the stylesheet. By default, the XML output method is used
unless the first thing output is an <HTML> element, in which case the HTML output
method is assumed. (This means that if you want to generate XHTML, it might be a
good idea to specify <xsl:output method="xml"/> explicitly).

The <xsl:output> element is concerned with how your result tree is turned into an
output file. If the XSLT processor allows you to do something else with the result tree,
for example passing it to the application as a DOM Document, then the <xsl:output>
element is irrelevant.

The encoding attribute can be very useful to ensure that the output file can be easily
viewed and edited. Unfortunately, though, the set of possible values varies from one
XSLT implementation to another, and may also depend on the environment. For
example, many XSLT processors are written in Java and use the Java facilities for
encoding the output stream, but the set of encodings supported by each Java VM is

different. However, support for iso-8859-1 encoding is fairly universal, so if you have
trouble viewing the output file because it contains UTF-8 Unicode characters, setting
the encoding to iso-9959-1 is often a good remedy.

Examples
The following example requests XML output using ISO 8859/1 encoding. The output
will be indented for readability, and the contents of the <script> element, because it is
expected to contain many special characters, will be output as a CDATA section. The
output file will reference the DTD booklist.dtd: note that it is entirely the user's
responsibility to ensure that the output of the stylesheet actually conforms to this DTD,
and, indeed, that it is a well-formed XML document.

<xsl:output

 method="xml"

 indent="yes"

 encoding="iso-8859-1"

 cdata-section-elements="script"

 doctype-system="booklist.dtd" />

The following example might be used if the output of the stylesheet is a comma-
separated-values file using US ASCII characters only.

<xsl:output

 method="text"

 encoding="us-ascii" />

xsl:param
The <xsl:param> element is used either at the top level, to describe a global
parameter, or immediately within an <xsl:template> element, to describe a local
parameter to a template. It specifies a name for the parameter and a default value,
which is used if the caller supplies no value for the parameter.

Defined in
XSLT section 11

Format
<xsl:param name=QName select=Expression >

 template-body

</xsl:param>

Position
<xsl:param> may appear as a top-level element (a child of the <xsl:stylesheet>
element), or as an immediate child element of <xsl:template>. In the latter case,
<xsl:param> elements must come before any other child elements.

Attributes
Name Value Meaning
name
mandatory

QName The name of the parameter

select
optional

Expression The default value of the
parameter if no explicit value is
supplied by the caller

The constructs QName (on page Error! Cannot open file.) and Expression (on page
Error! Cannot open file.) are defined in Chapter 5.

Content
An optional template body. If a select attribute is present, the element should be
empty.

Effect
An <xsl:param> element at the top level of the stylesheet declares a global parameter;
an <xsl:param> element appearing as a child of an <xsl:template> element declares
a local parameter for that template.

The <xsl:param> element defines the name of the parameter, and a default value. The
default value is used only if no other value is explicitly supplied by the caller.

An explicit value can be supplied for a local parameter by using the <xsl:with-
param> element when the template is invoked using <xsl:apply-templates> or
<xsl:call-template>.

The way in which explicit values are supplied for global parameters is implementor
defined (for example, they may be defined on the command line or through
environment variables, or they may be supplied via a vendor-defined API).

There is no way of supplying an explicit value for a local parameter when the template
rule is invoked using <xsl:apply-imports>.

The Value of the Parameter
The default value of the parameter may be given either by the Expression in the
select attribute, or by the contents of the contained template-body. If there is a select
attribute, the <xsl:param> element should be empty. If there is no select attribute
and the template body is empty, the default value of the parameter is an empty string.

If the value is given by an Expression, the data type of the value will be boolean,
number, string, or node-set, depending on the expression. If the value is given by a
non-empty template body, the data type will always be a result tree fragment. This is
all exactly the same as with the <xsl:variable> element, described on page 172.

The Name of the Parameter
The name of the parameter is defined by QName. Normally this will be a simple name
(such as «num» or «list-of-names»), but it may be a name qualified with a prefix, for
example «my:value». If it has a prefix, the prefix must correspond to a namespace that
is in scope at that point in the stylesheet. The true name of the parameter, for the
purpose of testing whether two names are the same, is determined not by the prefix
but by the namespace URI corresponding to the prefix: so two variables «my:value»
and «your:value» have the same name if the prefixes «my» and «your» refer to the
same namespace URI. If the name has no prefix, it is treated like an attribute name:
that is, it has a null namespace URI – it does not use the default namespace URI.

Parameter names are referenced in exactly the same way as variables, by prefixing the
name with a dollar sign (for example «$num») and all the rules for uniqueness and
scope of names are exactly as if the <xsl:param> element was replaced by an
<xsl:variable> element. The only difference between parameters and variables is the
way they acquire an initial value.

Usage
Global parameters are particularly useful to select which part of the source document
to process. A common scenario is that the XSLT processor will be running within a
web server. The user request will be accepted by a Java Server Page or by a Java
servlet, or indeed by an ASP page, the request parameters will be accepted, and the
stylesheet processing will be kicked off using an API defined by each vendor.
Generally this API will provide some way of passing the parameters that came from
the HTTP request into the stylesheet as the initial values of global <xsl:param>
elements.

Local parameters are used more often with <xsl:call-template> than with
<xsl:apply-templates>, though they are available to both. The actual value of the
parameter is set by the caller using an <xsl:with-param> element. Parameters are
often needed by the recursive algorithms used in XSLT to handle lists of items: there
are examples of such algorithms under <xsl:call-template> on page 29.

Examples

Example: Using <xsl:param> with a Default Value

Source
This stylesheet works with any XML source file.

Stylesheet
The stylesheet is call.xsl.

It contains a named template that outputs the depth of a node (defined as the
number of ancestors). The node may be supplied as a parameter; if it is not
supplied, the parameter defaults to the current node.

The stylesheet includes a template rule for the root node that invokes this named
template, defaulting the parameter, to display the name and depth of every
element in the source document.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:for-each select="//*">

 <xsl:value-of select="concat(name(), ' -- ')"/>

 <xsl:call-template name="depth"/>;

</xsl:for-each>

</xsl:template>

<xsl:template name="depth">

 <xsl:param name="node" select="."/>

 <xsl:value-of select="count($node/ancestor::node())"/>

</xsl:template>

</xsl:transform>

Output
If the stylesheet is run against the file poem.xml, the output is as follows:

poem -- 1;

author -- 2;

date -- 2;

title -- 2;

stanza -- 2;

line -- 3;

line -- 3;

line -- 3;

line -- 3;

stanza -- 2;

line -- 3;

line -- 3;

line -- 3;

line -- 3;

stanza -- 2;

line -- 3;

line -- 3;

line -- 3;

line -- 3;

See also
<xsl:apply-templates> on page 6.
<xsl:call-template> on page 29.
<xsl:variable> on page 172.
<xsl:with-param> on page 183.

xsl:preserve-space
The <xsl:preserve-space> element, along with <xsl:strip-space>, is used to
control the way in which whitespace nodes in the source document are handled.

Defined in
XSLT section 3.4

Format
<xsl:preserve-space elements=list-of-NameTests />

Position
<xsl:preserve-space> is a top-level element, meaning that it must be a child of the
<xsl:stylesheet> element. There are no constraints on its ordering relative to other
top-level elements.

Attributes
Name Value Meaning
elements
mandatory

Whitespace-separated
list of NameTests

Defines the elements in the
source document whose
whitespace-only text nodes are
to be preserved

The NameTest construct is defined on page Error! Cannot open file., in Chapter 5. It
may be an actual element name, the symbol «*» meaning all elements, or the construct
«prefix:*» meaning all elements in a particular namespace.

Content
None, the element is always empty

Effect
This element, together with <xsl:strip-space> defines the way that whitespace-only
text nodes in the source document are handled. Unless contradicted by an
<xsl:strip-space> element, <xsl:preserve-space> indicates that whitespace-only
text nodes occurring as children of a specified element are to be retained in the source
tree.

Preserving whitespace-only text nodes is the default action, so this element only needs
to be used where it is necessary to contradict an <xsl:strip-space> element. The
interaction of the two is explained below.

The concept of whitespace-only text nodes is explained at some length, starting on
page Error! Cannot open file., in Chapter 3.

This element also affects the handling of whitespace-only text nodes in any document
loaded using the document() function. It does not affect the handling of whitespace-
only text nodes in the stylesheet when used in its role as a stylesheet, but it does affect
the stylesheet in the same way as any other document if a copy of the stylesheet is
loaded using the document() function.

A whitespace-only text node is a text node whose text consists entirely of a sequence
of whitespace characters, these being space, tab, carriage return, and linefeed (#x20,
#x9, #xD, and #xA). The <xsl:preserve-space> element has no effect on whitespace
contained in text nodes that also contain non-whitespace characters: such whitespace
is always preserved and is part of the value of the text node.

Before a node is classified as a whitespace-only text node, the tree is normalized by
concatenating all adjacent text nodes. This includes the merging of text that originated
in different XML entities.

A whitespace-only text node may either be stripped or preserved. If it is stripped, it is
removed from the tree. This means it will never be matched, it will never be copied to
the output, and it will never be counted when nodes are numbered. If it is preserved, it
is retained on the tree in its original form, subject only to the end-of-line normalization
performed by the XML parser.

If a whitespace-only text node has an ancestor with an xml:space attribute and the
nearest ancestor with such an attribute has the value «xml:space= "preserve"», then
the text node is preserved regardless of the <xsl:preserve-space> and <xsl:strip-
space> elements in the stylesheet.

The elements attribute of <xsl:preserve-space> must contain a whitespace-
separated list of NameTests. The form of a NameTest is defined in the XPath expression
language: see Chapter 5, page Error! Cannot open file.. Each form of NameTest has an
associated priority. The different forms of NameTest and their meanings are:

Syntax Examples Meaning Priority
QName title

svg:width
Matches the full element
name, including its
namespace URI

0

NCName «:*» svg:* Matches all elements in the
namespace whose URI
corresponds to the given
prefix

–0.25

«*» * Matches all elements –0.5

The priority is used when conflicts arise. For example, if the stylesheet specifies:

<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="para clause"/>

then whitespace-only text nodes appearing within a <para> or <clause> will be
preserved. Even though these elements match both the <xsl:strip-space> and the
<xsl:preserve-space>, the NameTest in the latter has higher priority (0 as compared
to –0.5).

An <xsl:strip-space> or <xsl:preserve-space> element containing several
NameTests is equivalent to writing a separate <xsl:strip-space> or <xsl:preserve-
space> element for each NameTest individually.

A whitespace-only text node is preserved if there is no <xsl:strip-space> element in
the stylesheet that matches its parent element.

A whitespace-only text node is removed from the tree if there is an <xsl:strip-
space> element that matches the parent element, and no <xsl:preserve-space>
element that matches.

If there is both an <xsl:strip-space> element that matches the parent element, and
an <xsl:preserve-space> element that matches, then the decision depends on the
import precedence and priority of the respective rules. Taking into consideration all
the <xsl:strip-space> and <xsl:preserve-space> elements that match the parent
element of the whitespace-only text node, take the one with highest import precedence
(as defined in the rules for <xsl:import> on page 71). If there is more than one with
this import precedence, take the one with highest priority, as defined in the table
above. If there is still more than one, the XSLT processor may either report an error, or
choose the one that occurs last in the stylesheet. If the chosen element is
<xsl:preserve-space>, the whitespace-only text node is preserved on the tree, if it is
<xsl:strip-space>, it is removed from the tree.

In deciding whether to strip or preserve a whitespace-only text node, only its
immediate parent element is considered in the above rules. The rules for its other
ancestors make no difference. The element itself, of course, is never removed from the
tree: the stripping process will only ever remove text nodes.

If an individual element has the XML-defined attribute «xml:space="preserve"» or

«xml:space="default"» this overrides anything defined in the stylesheet. These
values, unlike <xsl:preserve-space> and <xsl:strip-space>, do affect descendant
elements as well as the element on which the attribute appears. If an <xsl:strip-
space> doesn't seem to be having any effect, one possible reason is that the element
type in question is declared in the DTD to have an xml:space attribute with a default
value of «preserve». There is no way of overriding this in the stylesheet.

Usage
For many categories of source document, especially those used to represent data
structures, whitespace-only text nodes are never significant, so it is useful to specify:

<xsl:strip-space elements="*"/>

which will remove them all from the tree. There are two main advantages in stripping
these unwanted nodes:

❑ when <xsl:apply-templates> is used with a default select attribute, all
child nodes will be processed. If whitespace-only text nodes are not stripped,
they too will be processed, probably leading to the whitespace being copied to
the output destination.

❑ when the position() function is used to determine the position of an element
relative to its siblings, the whitespace-only text nodes are included in the
count. This often leads to the significant nodes being numbered 2, 4, 6, 8 …

Generally speaking, it is a good idea to strip whitespace-only text nodes belonging to
elements that have element content, that is, elements declared in the DTD as
containing child elements but no #PCDATA.

It also usually does no harm to strip whitespace-only text nodes from elements
declared as having #PCDATA content, that is, elements whose only children are text
nodes. In most cases, an element containing whitespace text is equivalent to an empty
element, so stylesheet logic can be simplified if elements containing whitespace only
are normalized to be empty by removing the text node.

By contrast, stripping whitespace-only text nodes from elements with MIXED content,
that is, elements declared in the DTD to contain both child elements and #PCDATA, is
often a bad idea. For example, consider the element below:

<quote>He went to <edu>Balliol College</edu> <city>Oxford</city> to read

<subject>Greats</subject></quote>

The space between the <edu> element and the <city> element is a whitespace-only
text node, and it should be preserved, because otherwise when the tags are removed
by an application that's only interested in the text, the words «College» and «Oxford»
will run together.

Examples
To strip whitespace nodes from all elements of the source tree:

<xsl:strip-space elements="*"/>

To strip whitespace nodes from selected elements:

<xsl:strip-space elements="book author title price"/>

To strip whitespace nodes from all elements except the <description> element:

<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="description"/>

To strip whitespace nodes from all elements except those in the namespace with URI
http://mednet.org/text:

<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="mednet:*"

 xmlns:mednet="http://mednet.org/text" />

See also
<xsl:strip-space> on page 141

xsl:processing-instruction
The <xsl:processing-instruction> instruction is used to write a processing
instruction node to the current output destination.

Defined in
XSLT section 7.3

Format
<xsl:processing-instruction name=QName >

 template-body

</xsl:processing-instruction>

Position
<xsl:processing-instruction> is an instruction. It is always used as part of a
template-body.

Attributes
Name Value Meaning
name
mandatory

Attribute value
template returning an
NCName

The name (target) of the
generated processing
instruction.

Content
A template-body.

Effect
The name of the generated processing-instruction (in XML terms, the PITarget), is
determined by the name attribute. This may be expressed as an attribute value
template. The name must be valid as a PITarget as defined in the XML specification,
and XSLT imposes the additional rule that it must be a valid NCName, as defined in the
XML Namespaces recommendation. This means it must be an XML Name that doesn't
contain a colon (to make it an NCName) and that isn't the name «xml» in any mixture of
upper and lower case (to make it a PITarget).

The specification is quite explicit that <xsl:processing-instruction> cannot be used
to generate an XML declaration at the start of the output file. The XML declaration
looks like a processing instruction, but technically it isn't one; and the ban on using the
name «xml» makes this quite explicit. The XML declaration in the output file is
generated automatically by the XSLT processor, and can be controlled to a limited
extent using the <xsl:output> element.

The data part of the processing instruction is generated from the contained template-
body. The space that separates the PITarget from the data is output automatically. The
output generated by the template body must contain text nodes only, and it must not
contain the string «?>» which terminates a processing instruction. Implementations are
allowed to trap the «?>» and replace it by «? >» (with an embedded space);
unfortunately they are also allowed to report this as an error, so if you want your
stylesheet to be portable, you need to make sure this condition can't happen.

The data part of a processing instruction cannot contain character references such as
«₤», so it is an error to output any characters that can't be represented directly
in the chosen character encoding of the output file. Some processing instructions may
accept data that contains a character reference, but that's an application-level
convention, not something defined in the XML standard, so the XSLT processor will
never generate such a reference automatically.

Usage
Use this instruction when you want to output a processing instruction.

Processing instructions are not widely used in most XML applications, so you will
probably not need to use this instruction very often. They are used even less in HTML,
though HTML 4.0 does recommend that any vendor-specific extensions should be
implemented this way. In HTML the terminator for a processing instruction is «>»
rather than «?>», and this difference is handled automatically by the html output
method: see <xsl:output> on page 115.

Note that you cannot generate a processing instruction in the output by writing a
processing instruction in the stylesheet. Processing instructions in the stylesheet are
ignored completely. You can, however, use <xsl:copy> or <xsl:copy-of> to copy

processing instructions from the source tree to the result tree.

Examples
The following example outputs an <?xml-stylesheet?> processing instruction at the
start of the output file.

<xsl:processing-instruction name="xml-stylesheet">

<xsl:text>href="housestyle.css" type="text/css"</xsl:text>

</xsl:processing-instruction>

The generated output is:

<?xml-stylesheet href="housestyle.css" type="text/css"?>

Writing an XSLT stylesheet that produces an XML document which itself refers to a
CSS stylesheet isn't such a crazy thing to do as it might seem. It often makes sense to
do the first stage of processing of an XML file on the server, and the second stage on
the client (in other words, in the browser). The first stage will extract the data that the
user wants to see – and, most importantly, remove any information they are not
allowed to see. The second stage applies the detailed rules for output formatting. The
second stage can often be done just as easily with CSS as with XSL, because anything
CSS can't cope with, such as adding or reordering textual content, can be done in the
first stage with XSLT.

One point to watch out for in generating an <?xml-stylesheet?> processing
instruction, and which might well apply to other processing instructions, is the use of
pseudo attributes and pseudo character and entity references. The text
«href="housestyle.css"» in the above example is designed to look like an XML
attribute, but it is not actually an XML attribute, it is purely part of the processing
instruction data. It is parsed by the application, not by the XML parser. As it is not a
true XML attribute, you cannot generate it as an attribute node using the
<xsl:attribute> instruction; rather, it is generated as text.

The rules for the <?xml-stylesheet?> processing instruction are defined in a short
W3C Recommendation called Associating Style Sheets with XML documents, available at
http://www.w3.org/TR/xml-stylesheet. As well as defining the data part of this
processing instruction in the form of pseudo-attributes, the rules also allow the use of
numeric character references such as «₤» and predefined entity references
such as «>» and «&». Again, these are not true character references and entity
references that the XML parser will recognize, and as a result they will not be
generated by the XSLT processor either. If you want to include «₤» as part of
the data of the processing instruction, write, for example,

<xsl:processing-instruction name="xml-stylesheet">

<xsl:text>href="housestyle.css" type="text/css" </xsl:text>

<xsl:text>title="A title containing &#x20A4;" </xsl:text>

</xsl:processing-instruction>

xsl:sort
The <xsl:sort> element is used to define a sort key, to specify the order in which
nodes selected by <xsl:apply-templates> or <xsl:for-each> are processed.

Defined in
XSLT section 10

Format
<xsl:sort

 select=Expression

 order={"ascending" | "descending"}

 case-order={"upper-first" | "lower-first"}

 lang={language-code}

 data-type={"text" | "number" | QName }/>

Position
<xsl:sort> is always a child of <xsl:apply-templates> or <xsl:for-each>. Any
number of sort keys may be specified, in major-to-minor order. When used in
<xsl:for-each>, any <xsl:sort> elements must appear before the template-body of
the <xsl:for-each> statement. When used in <xsl:apply-templates>, the
<xsl:sort> elements can come before or after any <xsl:with-param> elements.

Attributes
Name Value Meaning
select
optional

Expression Defines the sort key. The default
is the string value of the node
(the expression «string(.)»)

order
optional

Attribute value
template returning:
«ascending» |
«descending»

Defines whether the nodes are
processed in ascending or
descending order of this key.
The default is «ascending»

case-order
optional

Attribute value
template returning:
«upper-first» |
«lower-first»

Defines whether upper-case
letters are to be collated before
or after lower-case letters. The
default is language-dependent.

lang
optional

Attribute value
template returning a
language code

Defines the language whose
collating conventions are to be
used. The default depends on
the processing environment.

data-type
optional

Attribute value
template returning:
«text» |
«number» |

Defines whether the values are
to be collated alphabetically or
numerically, or using a user-
defined data type. The default is

QName «text»

Content
None, the element is always empty.

Effect
The list of <xsl:sort> elements within an <xsl:apply-templates> or <xsl:for-
each> element determines the order in which the selected nodes are processed. The
nodes are sorted first by the first sort key; any group of nodes that have duplicate
values for the first sort key are then sorted by the second sort key, and so on. If a
group of nodes have duplicate values for all the sort keys, this group is sorted in
document order. Similarly, when no sort keys are specified at all, the nodes are
processed in document order.

The value of the sort key for each node in the node-set is established by evaluating the
expression given in the select attribute. This is evaluated with that node as the
current node, and with the current node list being the complete node-set, in document
order.

The XSLT specification actually says "in unsorted order", but it's reasonable to
interpret this here as meaning document order

This means that if you want to process the nodes in reverse document order, you can
specify a sort key as:

<xsl:sort select="position()"

 data-type="number"

 order="descending" />

The result of the expression is always converted to a string, and if the data-type is
«number» this string will then be converted to a number.

The way in which sort keys are compared is determined by the other attributes of the
<xsl:sort> element. Some of these rules are defined precisely in the XSLT
specification, some are given merely as guidance for the implementor, and some are
left entirely implementation-defined. The specification explicitly warns that different
implementations may produce different results.

The data-type may be either «text» or «number». With «text» order, you would
expect to see «10» appear before «5», while with «number» order, you would expect
«5» to come before «10».

❑ Ordering of numbers is well defined in most cases. The specification says that
they are sorted according to the numeric value: but it doesn't define what
happens to NaN (not a number) values. The implementation can put them first
or last, or (as some products currently do) leave them scattered around the list
more or less at random. As the sort key is converted first to a string, and then
back to a number, any keys whose numeric value is Infinity or minus Infinity

will also be converted to NaN values by this process.

❑ Ordering of text strings is very loosely defined. The concept of alphabetic
order is language-dependent, so the intention is that it should be controlled by
the lang attribute. For example, in modern German «ä» is collated
immediately after «a» (in older works, it is collated as if it were the pair of
letters «ae»), while in Swedish, «ä» is a separate letter that appears at the end
of the alphabet after «z». The XSLT specification refers implementers for
guidance to a Unicode white paper on international sorting: Unicode Technical
Report #10, Unicode Collation Algorithm. (See
http://www.unicode.org/unicode/reports/tr10/index.html). However, it doesn't
make any of the rules mandatory.

Knowing the language doesn't help you decide whether upper-case or lower-case
letters should come first (every dictionary in the world has its own rules on this), so
XSLT makes this a separate attribute, case-order. Generally case-order will be used
only to decide the ordering of two words that compare equal if case is ignored. For
example, in German, where an initial upper-case letter can change the meaning of a
word, some dictionaries list the adjective drall (meaning plump or buxom) before the
unrelated noun Drall (a swerve, twist, or bias), while others reverse the order.
Specifying «case-order="lower-first"» would place drall immediately before Drall,
while «case-order="upper-first"» would have Drall immediately followed by drall.

The specification isn't absolutely explicit about how case-order and order interact:
does «upper-first» mean first in the collating sequence, or first in the output?. The
intention is probably that «case-order="upper-first"» with «order="descending"»
means that in the final output order, Drall comes after drall.

The order attribute specifies whether the order is ascending or descending.
Descending order will generally produce the opposite result of ascending order –
though even that isn't strictly guaranteed, for example the implementation could
choose to put numbers whose value is NaN (not a number) at the start of the list in
both cases.

The option to set «data-type="QName"» was a last-minute addition to the language
before version 1.0 was frozen, and its behavior is not precisely defined. It's really a
hook to allow vendor extensions, or perhaps to allow extensions in a subsequent
addendum to the standard: there is a recognized requirement to enable sorting of data
types such as dates and times that are likely to be defined in the forthcoming XML
Schema recommendation.

The final sorted order of the nodes determines the sequence in which they are
processed by the containing <xsl:apply-templates> or <xsl:for-each> statement,
and also the value of the position() function when each node comes to be processed.
The value of position() will reflect its position in the sorted list.

Usage
XSLT is designed to be capable of handling serious professional publishing
applications, and clearly this requires some fairly powerful sorting capabilities. In
practice, however, the most demanding applications almost invariably have domain-

specific collating rules: the rules for sorting personal names in a telephone directory
are unlikely to work well for geographical names in a gazetteer. For these applications,
vendors are already providing hooks to allow user-defined collating algorithms.

Examples
I'll start with a couple of simple examples, and then show a full working example
which you can download and try yourself.

Example 1: To process all the <book> children of the current node, sorting them by the
value of the isbn attribute:

<xsl:apply-templates select="book">

 <xsl:sort select="@isbn"/>

</xsl:apply-templates>

Example 2: To output the contents of all the <city> elements in the document, in
alphabetical order, including each distinct city once only:

<xsl:for-each select="//city[not(.=preceding::city)]">

 <xsl:sort select="."/>

 <xsl:value-of select="."/>

</xsl:for-each>

If «select="."» was omitted from the <xsl:sort> element, the effect would be the
same, because this is the default; however, I prefer to include it for clarity.

Example: Sorting on the Result of a Calculation
This example outputs a list of products, sorted by the total sales of each product,
in descending order.

Source
This is the file products.xml.

<products>

<product name="strawberry jam">

 <region name="south" sales="20.00"/>

 <region name="north" sales="50.00"/>

</product>

<product name="raspberry jam">

 <region name="south" sales="205.16"/>

 <region name="north" sales="10.50"/>

</product>

<product name="plum jam">

 <region name="east" sales="320.20"/>

 <region name="north" sales="39.50"/>

</product>

</products>

Stylesheet
products.xsl is a complete stylesheet written using the simplified stylesheet
syntax, in which the entire stylesheet module is written as a single literal result
element. Simplified stylesheets are described in Chapter 3, on page Error! Cannot
open file..

The <xsl:sort> element sorts the selected node-set (containing all the
<product> elements) in descending order of the numerical total of the the sales
attribute over all their <region> child elements. The total is calculated using the
sum() function (discussed on page Error! Cannot open file.), and displayed
using the format-number() function (shown on page Error! Cannot open file.).

<products xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:for-each select="products/product">

 <xsl:sort select="sum(region/@sales)"

 data-type="number"

 order="descending"/>

 <product name="{@name}"

 sales="{format-number(sum(region/@sales), '$####0.00')}"/>

</xsl:for-each>

</products>

Output
I have added line breaks for readability:

<products>

<product name="plum jam" sales="$359.70"/>

<product name="raspberry jam" sales="$215.66"/>

<product name="strawberry jam" sales="$70.00"/>

</products>

See also
<xsl:apply-templates> on page 6.
<xsl:for-each> on page 64.

xsl:strip-space
The <xsl:strip-space> element, along with <xsl:preserve-space>, is used to
control the way in which whitespace nodes in the source document are handled. The
<xsl:strip-space> element identifies elements in which whitespace-only text nodes
are considered insignificant, so they can be removed from the source tree.

Defined in
XSLT section 3.4

Format
<xsl:strip-space elements=list-of-NameTests />

Position
<xsl:strip-space> is a top-level element, which means it is always a child of the
<xsl:stylesheet> element. There are no constraints on where it appears relative to
other top-level elements.

Attributes
Name Value Meaning
elements
mandatory

Whitespace-separated
list of NameTests

Defines elements in the source
document whose whitespace-
only text nodes are to be
removed

The construct NameTest is defined in Chapter 5, on page Error! Cannot open file..

Content
None, the element is always empty

Effect, Usage, and Examples
See <xsl:preserve-space> on page 130. The two elements <xsl:strip-space> and
<xsl:preserve-space> are closely related, so we have presented the rules and usage
guidance in one place.

See also
<xsl:preserve-space> on page 130.
<xsl:text> on page 163.

xsl:stylesheet
The <xsl:stylesheet> element is the outermost element of a stylesheet. The synonym
<xsl:transform> can be used as an alternative.

Defined in
XSLT section 2.2

Format
<xsl:stylesheet

 id=identifier

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 extension-element-prefixes=list-of-prefixes

 exclude-result-prefixes=list-of-prefixes >

 top-level-element *

</xsl:stylesheet>

Position
<xsl:stylesheet> appears as the outermost element of every stylesheet module,
except one that uses the literal-result-element-as-stylesheet syntax described on page
Error! Cannot open file., in Chapter 3. It is used both on a principal stylesheet and on
one that is imported or included into another stylesheet.

As well as being the outermost element of the stylesheet module, the
<xsl:stylesheet> element is usually the document element of an XML document —
but not always: as described in Chapter 3, a stylesheet can also be embedded in
another XML document.

Namespace Declarations
There will always be at least one namespace declaration on the <xsl:stylesheet>
element, typically:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

This is necessary to identify the document as an XSLT stylesheet. The URI part must be
written exactly as shown. The prefix «xsl» is conventional, and is used in all XSLT
documentation including this book and the standard itself, but you could choose a
different prefix if you wanted, for example «XSLT». You would then have to name the
element <XSLT:stylesheet> instead of <xsl:stylesheet>.

You can also make this the default namespace by using the following declaration:

xmlns="http://www.w3.org/1999/XSL/Transform"

In this case the element name will simply be <stylesheet>, and other XSLT elements
will similarly be unprefixed, for example <template> rather than <xsl:template>.
Although this works, it is not generally recommended, because the default namespace
is then not available for literal result elements. The technique that works best is to
reserve the default namespace for literal result elements that you want to go in the
default namespace of the output document.

If you come across a stylesheet that uses the namespace declaration:

xmlns:xsl="http://www.w3.org/TR/WD-xsl"

then it is probably not an XSLT stylesheet at all, but one written in the early dialect of
XSL that Microsoft shipped when Internet Explorer was shipped in 1998. See Chapter
10 for details of Microsoft XSL products.

Attributes
Name Value Meaning
id
optional

XML Name An identifier used to identify the
<xsl:stylesheet> element
when it is embedded in another
XML document.

version
mandatory

Number Defines the version of XSLT
required by this stylesheet. Until
future versions of the XSLT
specification are published, this
should be set to «1.0»

extension-
element-
prefixes
optional

Whitespace-separated
list of NCNames

Defines the namespaces used in
this stylesheet to identify
extension elements

exclude-result-
prefixes
optional

Whitespace-separated
list of NCNames

Defines the namespaces used in
this stylesheet that should not be
copied to the output destination,
unless they are actually used in
the result document

Content
The <xsl:stylesheet> element may contain XSLT elements referred to as top-level
elements. These elements are:

<xsl:attribute-set>
<xsl:decimal-
format>
<xsl:import>
<xsl:include>

<xsl:key>
<xsl:namespace-
alias>
<xsl:output>
<xsl:param>

<xsl:preserve-
space>
<xsl:strip-space>
<xsl:template>
<xsl:variable>

If there are any <xsl:import> elements, they must come before other top-level
elements.

The <xsl:stylesheet> element may also contain other elements provided they use a
non-null namespace URI which is different from the XSLT namespace URI. If the
namespace URI is recognized by the XSLT processor, it may interpret such elements in
any way the vendor chooses, provided that the correct functioning of the stylesheet is
not affected. If it does not recognize these elements, it should ignore them.

Effect
The rules are described below for each of the attributes.

The id Attribute
This attribute is there to allow an <xsl:stylesheet> element to be referenced when it
is contained within another XML document.

The precise usage is not defined in the standard, but the expectation is that this id
attribute will allow an embedded stylesheet to be referenced in an
<?xml-stylesheet?> processing instruction. An example is given in Chapter 3.

The version Attribute
The version attribute defines the version of the XSLT specification that the stylesheet
is relying on. At present there is only one version of the XSLT standard, namely
version 1.0, so this attribute should always take this value.

Implementations of XSLT, even if they only implement version 1.0 of the standard, are
required to behave in a particular way if the version specified is anything other than
1.0.

❑ If the version attribute is «1.0», the implementation must report any elements
in the XSLT namespace that it doesn't recognize as errors. For example, if it
encounters the element <xsl:apply_template> it will flag this as an error
(because the correct spelling is <xsl:apply-templates>).

❑ If the version attribute is any other value(including, oddly, a lower value than
1.0), the implementation must assume that the stylesheet is trying to use
features defined in some version of XSLT that the software is unaware of. So if
the version attribute is «1.1», and the element <xsl:apply_template>
appears, the software has to assume that this is a new element defined in
version 1.1 of the standard. The XSLT specification calls this forwards compatible
processing mode. In this mode, the <xsl:apply_template> element will be
rejected only if (a) an attempt is made to instantiate it, and (b) it has no
<xsl:fallback> child element. If it does have an <xsl:fallback> child
element, this will be instantiated in place of the unrecognized parent element.
This is described in greater detail under <xsl:fallback> on page 61.

Forwards compatible mode also affects the handling of other apparent errors. For
example if the version attribute is «1.0», then any unrecognized attributes or values
of attributes on an XSLT element are reported as errors, but in forwards compatible
mode, such attributes are ignored.

The version attribute applies to the entire stylesheet, except any parts contained
within a literal result element that has an xsl:version attribute. Its scope is the
stylesheet module, not the full stylesheet tree constructed by applying <xsl:include>
and <xsl:import> elements.

The extension-element-prefixes Attribute
This attribute identifies a set of namespaces used for extension elements. Extension
elements may be defined by an implementor, by a user, or by a third party. They can
be used anywhere an instruction can be used, that is, within a template-body. If an
element is found in a template body that is not in the XSLT namespace, then it must
either be an extension element or a literal result element. If its namespace is the same
as a namespace identified in the extension-element-prefixes attribute of the
containing <xsl:stylesheet> element, then it will be treated as an extension element,

otherwise it will be treated as a literal result element.

The value of the attribute is a whitespace-separated list of prefixes; each of these
prefixes must identify a namespace declaration present on the <xsl:stylesheet>
element. The default namespace (the namespace declared using the xmlns attribute)
may be designated as an extension element namespace by including the pseudo-prefix
«#default».

The list of namespaces used for extension elements may be augmented for a section of
the stylesheet by using the xsl:extension-element-prefixes attribute of a literal
result element or an extension element. This does not override the declarations at the
stylesheet level, it supplements them.

The scope of the extension-element-prefixes attribute is the stylesheet module, not
the full stylesheet tree constructed by applying <xsl:include> and <xsl:import>
elements.

If a namespace is designated as an extension element namespace, then every XSLT
processor will recognize that these elements are extension elements. However, some
XSLT processors may be unable to instantiate them. For example, if the namespace
http://www.jclark.com/xt/extensions is designated as an extension namespace,
then both xt and Xalan will recognize that these elements are extensions, but the
likelihood is that xt will know how to handle them and Xalan won't. If the processor
knows how to instantiate the element, it does so; otherwise, it looks to see if the
element contains an <xsl:fallback> instruction. If it does, the <xsl:fallback>
instruction is instantiated, otherwise, an error is reported.

It is only necessary to designate a namespace as an extension element namespace to
distinguish extension elements from literal result elements. At the top level of the
stylesheet, there is no risk of confusion. Any implementation can define its own top-
level elements, using its own namespace, and other implementations will simply
ignore these elements, treating them as data. So the extension-element-prefixes
attribute is not needed to identify top-level elements used as vendor or user
extensions.

The exclude-result-prefixes Attribute
This attribute defines a set of namespaces which are not to be copied into the result
tree.

The XSLT processor is required to produce a correct tree that conforms with the data
model (as described on page Error! Cannot open file., in Chapter 2) and with the XML
Namespaces rules, so you will never find yourself with an output file using namespace
prefixes that have not been declared. However, you can easily find yourself with a file
containing unnecessary and unwanted namespace declarations, for example,
declarations of namespaces that occur on nodes in your source document but which
are not used in the output document, or namespaces that are used only in the
stylesheet. These extra namespace declarations usually don't matter, because they
don't affect the meaning of the output file, but they can clutter it up. They can also
affect validation if you are trying to create a result document that conforms to a
particular DTD. So this attribute is provided to help you get rid of them.

More specifically, the XSLT specification requires that when a literal result element in
the stylesheet is instantiated, the element is copied into the result tree along with all its
namespace nodes, except for the XSLT namespace and any namespace that defines
extension elements. An element has a namespace node for every namespace that is in
scope, including namespaces defined on ancestor elements as well as on the element
itself, so the namespaces copied over include not only the namespaces defined on the
literal result element, and those that are actually used on the literal result element, but
even those that are merely available for use.

Very often, of course, one literal result element will be a child or descendant of
another, and the namespace nodes on the child element will include copies of all the
namespace nodes on the parent element. For example, consider the stylesheet below:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

/>

<xsl:template match="/">

 <acme:document xmlns:acme="http://acme.com/xslt">

 <acme:chapter>

 Once upon a time ...

 </acme:chapter>

 </acme:document>

</xsl:template>

</xsl:stylesheet>

This can be represented by the tree shown in the diagram below, using the same
notation as previously seen in Chapters 2 and 3.Although there are only two
namespace declarations, these are propagated to all the descendant elements, so for
example the <acme:chapter> element has two namespace nodes even though there
are no namespace declarations on the element.

element
xsl:stylesheet

*

text

Once upon ...

namespace
xsl

http://…/Transform

element
xsl:template

*

element
acme:document

*

element
acme:chapter

*

namespace
acme

http://acme.com/xslt

namespace
xsl

http://…/Transform

namespace
xsl

http://…/Transform

namespace
acme

http://acme.com/xslt

namespace
xsl

http://…/Transform

root

*

***Insert diagram 3129_04_08.cdr

The specification says that each literal result element is copied with all its namespace
nodes (but excluding the XSLT namespace), so the result tree will look like this:

text

Once upon ...

element
acme:document

*

element
acme:chapter

*

namespace
acme

http://acme.com/xslt

namespace
acme

http://acme.com/xslt

root

*

Both elements, <acme:document> and <acme:chapter>, have a namespace node for
the «acme» namespace. However, this doesn't mean that the namespace declaration

will be repeated unnecessarily in the output file: we're talking here about the abstract
tree that is created, not the final serialized XML file. Avoiding duplicate namespace
declarations is entirely the job of the XSLT processor, and most processors will
produce the following output, shown indented for clarity:

<acme:document xmlns:acme="http://acme.com/xslt">

 <acme:chapter>

 Once upon a time ...

 </acme:chapter>

</acme:document>

The exclude-result-prefixes attribute isn't there to get rid of duplicate
declarations, it's there to get rid of declarations that aren't wanted at all, which is a
different matter entirely. For example suppose the stylesheet was like this:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:var="http://another.org/xslt"

/>

<xsl:variable name="var:x" select="17"/>

<xsl:template match="/">

 <acme:document xmlns:acme="http://acme.com/xslt">

 <acme:chapter>

 Once upon a time ...

 </acme:chapter>

 </acme:document>

</xsl:template>

</xsl:stylesheet>

Then although the template body has not changed, the <acme:document> and
<acme:chapter> elements each now have an extra namespace node, and this will be
copied to the output file even though it is unused, resulting in the output:

<acme:document xmlns:acme="http://acme.com/xslt"

 xmlns:var="http://another.org/xslt">

 <acme:chapter>

 Once upon a time ...

 </acme:chapter>

</acme:document>

Why can't the XSLT processor simply include all the namespaces that are actually used
in element and attribute names, and omit the rest? The thinking is that many XML
applications, like XSLT itself, will use the namespace mechanism to create unique
values within their own data. For example, namespace prefixes might be used in
attribute values as well as attribute names. The XSLT processor can't distinguish these
from ordinary values, so it has to play safe.

So if there are namespaces you don't want in the output tree, you can specify them in
the exclude-result-prefixes attribute of the <xsl:stylesheet> element. The
attribute is a list of namespace prefixes, separated by whitespace, and with the option
to include the default namespace under the pseudo-prefix «#default».

The prefix, as always, is simply a way of referring to the associated namespace URI: it
is the namespace URI that is really being excluded, not the prefix itself. So if the same
namespace URI is declared again with a different prefix, it is still an excluded
namespace.

The exclude-result-prefixes attribute on the <xsl:stylesheet> element provides
a way of controlling namespace exclusion for the entire stylesheet. Additional prefixes
to be excluded may be specified in the xsl:exclude-result-prefixes attribute of the
literal result element itself: these only affect that element and its descendants.

The xsl:exclude-result-prefixes and exclude-result-prefixes attributes apply
only to namespace nodes copied from the stylesheet using literal result elements. They
do not affect namespace nodes copied from the source document using <xsl:copy> or
<xsl:copy-of>: there is no way of suppressing these.

Like the other attributes on the <xsl:stylesheet> element, the exclude-result-
prefixes attribute applies only to elements within the physical stylesheet, not to those
brought in using <xsl:include> or <xsl:import>.

The XSLT specification doesn't say what happens if you try to exclude a namespace
that is actually needed because it is used in the result tree. The XSLT processor is
obliged to generate output that conforms to the Namespaces recommendation, so it
should either report an error, or ignore the request to exclude this namespace.

Usage and Examples
The <xsl:stylesheet> element is always the outermost element of the stylesheet
(though the stylesheet may be embedded in another document). It will always include:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

The various possible attributes are considered in the sections that follow.

The id Attribute
If the XSLT processor you are using supports embedding of stylesheets within the
source document that they are to transform, then the typical layout will be like this:

<?xml version="1.0"?>

<?xml-stylesheet href="#style" type="text/xsl"?>

<data>

...

...

 <xsl:stylesheet id="style" version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 >

 <xsl:include href="module1.xsl"/>

 <xsl:include href="module2.xsl"/>

 <xsl:template match="xsl:*"/>

 </xsl:stylesheet>

</data>

Note that when this structure is used, the stylesheet will be presented with the entire
source document, including a copy of itself. The stylesheet therefore needs to be
written to handle its own elements in an appropriate way: hence the null template that
matches all elements in the XSLT namespace.

The version Attribute
So long as XSLT 1.0 remains the latest version of the standard, always specify
«version="1.0"» on the <xsl:stylesheet> element.

When a later version of the specification is released, use the new version number only
if you actually change the stylesheet to use the new features. And if you still want your
stylesheet to run with products that don't support the new features yet, it might be
best to leave the <xsl:stylesheet> element saying «version="1.0"», and put the
new version number only on a literal result element around the parts of the stylesheet
that use the new features, in an xsl:version attribute.

The extension-element-prefixes Attribute
This attribute should be set to a list of all the prefixes you are using for extension
elements in your stylesheet. The most common cases are either to omit it entirely, or to
include a single prefix for the namespace used by the vendor for their own proprietary
extensions. There will always be a namespace declaration for that namespace on the
<xsl:stylesheet> element as well.

For example, if you are using Saxon:

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:saxon="http://icl.com/saxon"

 extension-element-prefixes="saxon"

 >

Don't include the vendor's prefix unless you are actually using their proprietary
extensions in the stylesheet. You don't need to include this attribute to use proprietary
top-level elements, only if you want to use proprietary features as instructions within a
template body, where they would otherwise be assumed to be literal result elements.

If your usage of vendor extensions is highly localized within the stylesheet, it is better
to identify them using the xsl:extension-element-prefixes attribute of the
extension element itself, or of a literal result element that surrounds the template body

where the extensions are actually used. This aids portability and makes it easier to see
which parts of the stylesheet are standard and which parts use proprietary extensions.

If you want to use extensions supplied by several different vendors, you can list them
all in this attribute. A XSLT processor from one vendor won't object to finding another
vendor's namespace in the list, it will only object if it is actually asked to instantiate a
proprietary instruction that it doesn't understand: and even then, if there is an
<xsl:fallback> child element that defines the fallback behavior it will carry on
calmly executing that in place of the unrecognized instruction.

Although extension elements supplied by XSLT product vendors are likely to be the
most common case, it's also possible in principle to install third-party extensions or
write your own (the APIs for doing so will be different for each vendor, however). So
everything we've said about the vendor's extensions applies equally to your own
extensions or those acquired from a third party.

For more information about the extensions provided by various vendors in their
products, see Chapter 10.

The exclude-result-prefixes Attribute
The simplest way to decide which namespace prefixes to list here is by trial and error:
run the stylesheet, and if the output document contains namespace declarations that
clearly serve no useful purpose, add them to the exclude-result-prefixes attribute
and run the stylesheet again.

Namespaces that are used only within the stylesheet will normally be excluded
automatically: these include the XSLT namespace itself, and namespaces used for
extension elements. It may not apply, however, to namespaces used for your own top-
level elements in the stylesheet.

The most common cause of unwanted namespace declarations finding their way into
the result document is where your stylesheet needs to refer to namespaces used in the
source document, for example in a template match pattern, but where none of these
elements is copied into the destination document.

For example:

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:po="http://accounting.org/xslt"

 exclude-result-prefixes="po"

>

<xsl:template match="po:purchase-order"/>

 <order-details>

 ...

 </order-details>

</xsl:template>

</xsl:stylesheet>

Here the «po» namespace would be copied into the result document if it weren't for
the exclude-result-prefixes attribute, because it is in scope when the literal result
element <order-details> is instantiated.

As with the other <xsl:stylesheet> attributes, you don't have to apply the exclusion
to the whole stylesheet if you don't want to, you can also apply it to any part of the
stylesheet by using the xsl:exclude-result-prefixes attribute on any literal result
element. It's probably a good idea in practice to keep the declaration of a namespace
and the directive that excludes it from the result document together in one place.

See also
<xsl:transform> on page 168.

xsl:template153
The <xsl:template> element defines a template for producing output. It may be
invoked either by matching nodes against a pattern, or explicitly by name.

Defined in
XSLT section 5.3

Format
<xsl:template

name=QName

match=Pattern

mode=QName

priority=Number >

 <xsl:param> *

 template-body

</xsl:template>

Position
<xsl:template> is a top-level element, which means that it always appears as a child
of the <xsl:stylesheet> element.

Attributes
Name Value Meaning
match
optional

Pattern A pattern that determines which
nodes are eligible to be
processed by this template. If
this attribute is absent, there
must be a name attribute.

name
optional

QName The name of the template. If this
attribute is absent, there must be

a match attribute.
priority
optional

Number A number (positive or negative,
integer or real) that denotes the
priority of this template, used
when several templates match
the same node

mode
optional

QName The mode. When <xsl:apply-
templates> is used to process a
set of nodes, the only templates
considered are those with a
matching mode.

The constructs QName (page Error! Cannot open file.) and Number (page Error! Cannot
open file.) are defined in Chapter 5. The construct Pattern is defined in Chapter 6.

Content
Zero or more <xsl:param> elements, followed by a template-body.

Effect
There must be either a match attribute, or a name attribute, or both.

❑ If there is a match attribute, the <xsl:template> element defines a template
rule that can be invoked using the <xsl:apply-templates> instruction.

❑ If there is a name attribute, the <xsl:template> element defines a named
template that can be invoked using the <xsl:call-template> instruction.

❑ If both attributes are present, the template can be invoked in either of these
ways.

The match Attribute
The match attribute is a Pattern, as defined in Chapter 6. The pattern is used to define
which nodes this template rule applies to.

The pattern must not contain a VariableReference, that is, a reference to a variable
such as «$var» This is to prevent circular definitions: the template body of a global
variable is allowed to include an <xsl:apply-templates> instruction, so it must be
possible to evaluate the pattern before the values of global variables are known.

To see what might happen if variables were allowed in the match attribute, consider
the following:

<xsl:variable name="x">

 <xsl:apply-templates select="//item"/>

</xsl:variable>

<!-- WRONG -->

<xsl:template match="item[$x]">

 <xsl:value-of select="3"/>

</xsl:template>

<!-- WRONG -->

When <xsl:apply-templates> is used to process a selected set of nodes, each node is
processed using the best-fit template rule for that node, as described under
<xsl:apply-templates> on page 6.

A template is only considered as a candidate if the node matches the pattern supplied
in the match attribute and if the value of the mode attribute is the same name as the
mode attribute of the <xsl:apply-templates> instruction.

If more than one template rule meets these criteria, they are first considered in order of
import precedence (as described under <xsl:import> on page 71), and only those
templates with the highest import precedence are considered further.

If there is still more than one template rule (in other words, if two template rules that
both match the node have the same import precedence) they are next considered in
order of priority. The priority is given either by the value of the priority attribute,
described below, or is a default priority that depends on the match pattern.

If this leaves one pattern with a numerically higher priority than all the others, that
one is chosen. If there are several with the same priority, which is higher than all the
others, the XSLT processor has the choice of reporting an error, or choosing from the
remaining templates the one that appears last in the stylesheet.

The name Attribute
The name attribute is a QName: that is, a name optionally qualified with a namespace
prefix. If there is a prefix, it must correspond to a namespace declaration that is in
scope on this element (which means it must be defined either on this element itself, or
on the <xsl:stylesheet> element). If there is no prefix, the namespace URI is null: the
default namespace is not used.

This name is used when the template is invoked using <xsl:call-template>. The
name attribute of the <xsl:call-template> element must match the name attribute of
the <xsl:template> element. Two names match if they have the same local part and
the same namespace URI: the prefix can be different.

If there is more than one named template in the stylesheet with the same name, the
one with higher import precedence is used; for details, see <xsl:import> on page 71.
It is an error to have two templates in the stylesheet with the same name and the same
import precedence, even if the template is never called.

The priority Attribute
The priority attribute is a number, for example «17», «0.5», or «–3»: more
specifically, a Number as defined on page Error! Cannot open file. in the XPath
expression syntax given in Chapter 5, with an optional leading minus sign.

The priority attribute is used to decide which template to invoke when <xsl:apply-
templates> is called and there are several possible candidates. For each selected node,

a template is chosen using the following procedure:

❑ First select all the templates that have a match attribute.

❑ From these, select all the templates that have the same mode as is used on the
call of <xsl:apply-templates>. If the <xsl:apply-templates> element has
no mode attribute, the selected templates must have no mode attribute.

❑ From these, select all those whose pattern matches the selected node

❑ If there is more than one, select those that have the highest import precedence.

❑ If there is still more than one, select those that have the numerically highest
priority.

If there are several matching templates left, and they all have the same import
precedence and priority, the XSLT processor can either choose the one that occurs last
in the stylesheet, or report an error.

If there are no templates that match the selected node, the built-in template for the
relevant node type is used. Built-in templates are described under <xsl:apply-
templates> on page 9.

The default priority depends on the pattern, and is decided according to the following
rules. A numerically higher value indicates a higher priority.

Pattern syntax Default priority
Pattern1 «|» Pattern2 Treat it as if there were two

completely separate template rules
specified, one for Pattern1 and
one for Pattern2, and calculate
the default priority of Pattern1
and Pattern2 independently.

QName
«@» QName
«child::» QName
«attribute::» QName
«processing-instruction» «(» Literal
«)»

0.0

NCName «:*»
«@» NCName «:*»
«child::» NCName «:*»
«attribute::» NCName «:*»

–0.25

NodeTest
«@» NodeTest
«child::» NodeTest
«attribute::» NodeTest

–0.5

otherwise 0.5

These default priorities are carefully chosen. They reflect the selectivity of the pattern:

❑ The patterns «node()» and «text()» and «*» are not very selective at all, they
match any node of the right node type, so they have a low priority of –0.5.

❑ Patterns of the form «abc:*» or «@xyz.*» are more selective, they will only
match element or attribute nodes belonging to a particular namespace, so they
have a higher priority than the previous category.

❑ Patterns such as «title» or «@isbn» are the ones most commonly
encountered; their default priority of 0.0 reflects the fact that in terms of
selectivity, they are typical.

❑ Patterns that are more specific than this, for example «book[@isbn]» or
«chapter/title» or «para[1]» have a higher priority, so they will be chosen
in preference to templates whose patterns are respectively «book», «title»,
or «para». Note however that this category can also include patterns that turn
out not to be very selective at all, for example «//node()».

All these values are chosen to leave you free to allocate your own priorities as natural
numbers, for example «1», «2», «3», and such templates will always be chosen ahead
of those with a system-allocated default priority.

You may find that stylesheets are easier to understand and less error-prone if you
avoid relying on default priorities, and use explicit priorities whenever you have more
than one template that can match the same node.

The mode Attribute
If present, the mode attribute must be a QName, that is, a name with an optional
namespace prefix. When <xsl:apply-templates> is used with a specific mode, only
templates with that same mode will be considered, and when <xsl:apply-
templates> is used with no mode attribute, only templates with no mode attribute will
be considered.

The modes are compared using the usual rules for QNames: both names are expanded
using the namespace declarations in effect on their respective stylesheet elements (not
including any default namespace declaration), and they match if the local name and
namespace URI both match.

The mode specified on the <xsl:template> template is not propagated to any
<xsl:apply-templates> elements within its body. Although it is common practice to
process an entire subtree in a single mode, and therefore for a template to continue
using the mode it was called in, this is not the default behavior except in the case of
built-in templates.

If you have a mode attribute on a template but no match attribute, this is not an error,
but it is redundant because the mode will never be used.

If you have a mode attribute on a template and there is no <xsl:apply-templates>
element with the same mode anywhere in the stylesheet, this again is not an error,
though it means the template will never be selected by any <xsl:apply-templates>
call. This can be a handy way of commenting out a template.

Instantiating a Template
Once an <xsl:template> element is selected for processing the following occurs:

❑ If called using <xsl:apply-templates>, the current node and current node

list are set up as required.

❑ A new stack frame is allocated, to hold a new instance of each local variable
defined within the template.

❑ All parameters listed in <xsl:param> elements contained within the
<xsl:template> element are evaluated. These <xsl:param> elements must
come before any instructions in the template body. For each parameter, if a
value was supplied by the caller (using an <xsl:with-param> element with
matching name), that value is assigned to the parameter, otherwise the
<xsl:param> element is evaluated directly: see <xsl:param> on page 126 for
details.

❑ The template body is instantiated. This means that the child nodes of the
<xsl:template> element are instantiated in turn. XSLT instructions and
extension elements are processed using their individual rules; literal result
elements and text nodes are written to the current output destination.

When processing of the template body is complete, the stack frame containing its local
variables is deleted, control returns to the calling template, and the current node and
current node list revert to their previous values.

The implementation, of course, is free to do things in a different order if it has
the same effect. Some products use lazy evaluation, where the parameters are
only evaluated when they are first used. This will only show up if you use
extension functions that have side-effects, or if you use <xsl:message> to
trace the sequence of execution.

Usage and Examples
We'll look first at using template rules, then give some advice on the use of modes, and
finally discuss named templates.

Using Template Rules
A template rule is an <xsl:template> element with a match attribute, that can therefore
be invoked using the <xsl:apply-templates> instruction.

This rule-based approach to processing is the characteristic way of writing XSLT
stylesheets, though it is by no means the only way. Its biggest advantage is that the
output for each element type can be defined independently of the context that the
element appears in, which makes it very easy to reuse element types in different
contexts, or to add new element types to an existing document definition without
rewriting the stylesheet templates for all the possible containing elements. A classic
example of this approach to processing arises when converting semantic markup in a
document to rendition markup, as the following example demonstrates.

Example: Template Rules

Source
The source file is soloist.xml

In a text featuring the work of a singer, the name of a composer might be tagged
<composer>, the title of a musical work might be tagged <work>, and the name of
a publication might be tagged <publication>. So a fragment of marked up text
might read:

<cv>

<para>

<publication>Early Music Review</publication> said of his debut Wigmore

concert with <group>Ensemble Sonnerie</group> in 1998: <quote>One of the

finest concerts I have ever heard ... a singer to watch out for</quote>.

Other highlights include a televised production of

<composer>Bach</composer>'s <work>St. Matthew Passion</work> conducted by

<artist>Jonathan Miller</artist>, in which he played <role>Judas</role>.

</para>

</cv>

Stylesheet
The stylesheet file is soloist.xsl

In presenting this text to a human reader, the main task is to select typographical
conventions to be used for each piece of semantic markup. The designer might
choose, for example, to display the titles of works in italics, titles of publications
in a sans serif font, and composers' names in the ordinary paragraph font. This
could be achieved by the following stylesheet definitions (assuming the output is
HTML):

<xsl:stylesheet version="1.0"

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><body>

<xsl:apply-templates/>

</body></html>

</xsl:template>

<xsl:template match="para">

 <p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="publication">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="quote">

 <xsl:text/>"<xsl:apply-templates/>"<xsl:text/>

</xsl:template>

<xsl:template match="work">

 <I><xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="role">

 <u><xsl:apply-templates/></u>

</xsl:template>

</xsl:stylesheet>

Note that some of the markup is ignored, for example <artist>. The
default template for elements simply discards the tags and outputs the text,
which is exactly what we want here.

Output
If the generated HTML is copied into a word processor, it will look like this.

Early Music Review said of his debut Wigmore concert with Ensemble
Sonnerie in 1998: "One of the finest concerts I have ever heard ... a singer
to watch out for". Other highlights include a televised production of
Bach's St. Matthew Passion conducted by Jonathan Miller, in which he
played Judas...................

(Incidentally, this way of getting printed output from an XSLT stylesheet is often
overlooked. It won't give nearly as much control as the advanced features of the
XSL Formatting proposals, but while you're waiting for that standard to be
finished and for products to appear, using HTML as an intermediate format is
not a bad compromise.)

The great advantage of this approach is that the rules are written making no
assumptions about the way the markup tags are nested in the source document. It is
very easy to add new rules for new tags, and to reuse rules if an existing tag is used in
a new context.

With document structures where the nesting of elements is more rigid, for example in
some data interchange files, this very flexible rule-based (or 'push') style of processing
may have fewer benefits, and a 'pull' programming style using conventional flow-of-
control constructs such as <xsl:for-each>, <xsl:if>, and <xsl:call-template>
may be preferable. For more discussion of the different design approaches, see
Chapter 8.

Using Modes
The classic reason for using modes is to enable the same content to be processed more
than once in different ways: for example, the first pass through the document might

generate the table of contents, the second pass the actual text, and the third pass an
index.

Example: Using modes

The source document is a biography of a singer, in the same format as the
previous example. This time, however, we want to produce at the end of the
biography a list of works mentioned in the text.

Source
The source file is soloist.xml. See previous example.

Stylesheet
The stylesheet file is soloist+index.xml

This stylesheet extends the previous one using <xsl:import>. After outputting
the text as before, it now creates a table listing the singer's performances,
completing what information is known about the composer, the work, the date of
the performance, and the venue.

The « » characters (better known to HTML authors as a non-breaking
space, « »), are used to ensure that there is something in each table cell:
this gives a cleaner appearance in the browser. It would be quite possible to use
the entity reference « » in the stylesheet so long as it was properly declared
as an XML entity in a <!DOCTYPE> declaration at the start of the file.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="soloist.xsl"/>

<xsl:template match="/">

<html><body>

 <xsl:apply-templates/>

 <table bgcolor="#cccccc" border="1" cellpadding="5">

 <tr>

 <td>Date</td>

 <td>Venue</td>

 <td>Composer</td>

 <td>Work</td>

 <td>Role</td>

 </tr>

 <xsl:apply-templates mode="index"/>

 </table>

</body></html>

</xsl:template>

<xsl:template match="performance" mode="index">

 <tr>

 <td><xsl:value-of select="date"/> </td>

 <td><xsl:value-of select="venue"/> </td>

 <td><xsl:value-of select="composer"/> </td>

 <td><xsl:value-of select="work"/> </td>

 <td><xsl:value-of select="role"/> </td>

 </tr>

</xsl:template>

</xsl:stylesheet>

Output

This time we are generating a hyperlink for each person and place mentioned (an <a>
element with an href attribute). We are again using generate-id(), to ensure that
each entry in the index links to the relevant place in the text. The actual index entry is
the value of the name attribute.

Then we can generate the index, using logic such as:

<xsl:apply-templates select="//person | //place" mode="index">

 <xsl:sort select="@name"/>

</xsl:apply-templates>

This will generate an index containing all the tagged persons and places in the
document, each with a hyperlink to the place they appear in the text.

(It will not combine multiple references to the same person or place into a single entry,
and it will not include details such as a page number. That requires more advanced
techniques, and probably a processing sequence involving multiple stylesheets and
intermediate documents.)

Using Named Templates
Named templates provide the equivalent of a subroutine mechanism in XSLT. If a
template has a name attribute, it can be invoked using the <xsl:call-template>
instruction.

For examples of the use of named templates, see <xsl:call-template> on page 29.

See also
<xsl:apply-templates> on page 6
<xsl:apply-imports> on page 1
<xsl:call-template> on page 29
generate-id() function in Chapter 7, on page Error! Cannot open file..

xsl:text
The <xsl:text> instruction is used within a template body to output literal text to the
current output destination.

Defined in
XSLT section 7.2

Format
<xsl:text disable-output-escaping="yes" | "no">

 text ?

</xsl:text>

Position
<xsl:text> is an instruction. It is always used as part of a template body.

Attributes
Name Value Meaning
disable-output-
escaping
optional

«yes» | «no» The value «yes» indicates that
special characters in the output
(such as «<») should be output
as is, rather than using an XML
escape form such as «<».
Default is «no».

Content
A text node. The element may also be empty. It may not contain other elements such
as <xsl:value-of>.

Effect
Text appearing within a template in the stylesheet is copied to the current output
destination whether it is enclosed by <xsl:text> or not. The only direct effect of
enclosing text in an <xsl:text> element is that the handling of whitespace is different.
A whitespace node appearing in the stylesheet (that is, a text node which consists only
of whitespace) is copied to the output tree only if

❑ it appears within an <xsl:text> element, or

❑ an enclosing element has the attribute «xml:space="preserve"», and this is
not overridden by an inner enclosing element specifying
«xml:space="default"».

The disable-output-escaping attribute controls whether special characters such as
«<» should be escaped (that is, converted to a character reference or entity reference
such as «<») if they appear in the text. The default value is «yes». The value «no»
may be ignored in some circumstances, for example if the current output destination is
a result tree fragment.

Usage
There are two main reasons for using <xsl:text>: to control the output of whitespace,
and to disable escaping of special characters. These are discussed in the next two
sections.

Whitespace Control
The most obvious case where <xsl:text> is useful is to force output of whitespace An
example is given in the XSLT specification. If you write:

<xsl:value-of select="first-name"/> <xsl:value-of select="last-name"/>

the space between the first name and last name will be lost, because it is part of a node
that contains whitespace only (a single space character). To force a space to appear
between the first name and last name, write:

<xsl:value-of select="first-name"/>

<xsl:text> </xsl:text>

<xsl:value-of select="last-name"/>

The arrangement on three lines here is purely for readability, but it does not affect the
output, because the newline characters are now in whitespace-only nodes that will not
be output.

If you find this long-winded, another way of achieving the same effect is to write:

<xsl:value-of select="concat(first-name, ' ', last-name)"/>

The concat() function forms a string by concatenating its arguments: it is described
on page Error! Cannot open file. in Chapter 7.

The other side of the problem is to prevent the output of unwanted whitespace.
Fortunately in HTML output extra whitespace doesn't matter, because the browser
will ignore it. For XML or text output, however, avoiding unwanted white space can
be important.

If you are suffering from excess whitespace in your output, the first thing to establish
is whether it comes from the source document or from the stylesheet. If the whitespace
is adjacent to text copied from the source document, then it probably comes from
there; if it is adjacent to text that appears in the stylesheet, then that is the most likely
source.

The <xsl:text> element can be used to suppress unwanted whitespace that originates
in the stylesheet. For example, consider the following template:

<xsl:template match="stage-direction">

 [<xsl:value-of select="."/>]

</xsl:template>

The intention here is to output a stage direction enclosed in square brackets. But the
text nodes containing the opening and closing square brackets also contain a newline
character and several spaces, which will be written to the output destination along
with the brackets themselves. To prevent this behavior, the simplest way is to use
empty <xsl:text> elements before and after, thus:

<xsl:template match="stage-direction">

 <xsl:text/>[<xsl:value-of select="."/>]<xsl:text/>

</xsl:template>

The effect of this is that the extra newlines and spaces now belong to whitespace-only
nodes, which are stripped from the stylesheet and ignored.

Note that it is incorrect to use an <xsl:text> element around the <xsl:value-of>
element, as <xsl:text> elements must contain text data only. So the following is
wrong:

<!—- WRONG -->

 <xsl:text>[<xsl:value-of select="."/>]</xsl:text>

<!—- WRONG -->

Controlling Output Escaping
Normally, when you try to output a special character such as «<» or «&» in a text node,
the special character will be escaped in the output file using the normal XML escaping
mechanisms. The XSLT processor is free to choose whichever mechanism it wants, for
example it can write «<» as «<» or «<» or «<!CDATA[[<]]>», because these are

all equivalent according to the XML standard. The one thing it will not write is «<». So,
it doesn't matter how you write the «<» in your input: the XSLT processor sees a «<»
and escapes it in the output.

There are several valid reasons why you might not want this behavior. For example:

❑ The output is not XML or HTML at all; it is (say) a data file in comma-
separated-values format.

❑ The output is HTML and you want to exploit one of the many HTML quirks
where special characters are needed without escaping, for example a «<» sign
in a piece of client-side JavaScript on your HTML page.

❑ The output is XML and you want to achieve some special effect that the XSLT
processor won't let you do, for example to output an entity reference such as
«¤t-date;» or a document type declaration containing an entity
declaration.

❑ The output is some format that uses angle-bracket syntax but is not pure XML
or HTML: for example, ASP pages or Java Server Pages, which both use «<%»
and «%>» as delimiters. (If you are generating Java Server Pages, note that
these have an alternative syntax that is pure XML.)

If the output is not XML or HTML at all, then rather than using disable-output-
escaping it is better to set «method="text"» on the <xsl:output> element.

Now here's an example of a bad reason for disabling output escaping. You want to get
markup tags into the output document that you can't see how to achieve with the
regular facilities of <xsl:element> or literal result elements. For example, you might
want to do something like:

<!-- WRONG -->

<xsl:template match="bullet"/>

 <xsl:if test='not(preceding::*[self::list-item])'>

 </xsl:if>

 <xsl:value-of select="."/>

 <xsl:if test='not(following::*[self::list-item])'>

 </xsl:if>

</xsl:template>

<!-- WRONG -->

The intended effect here is to output a tag if the preceding element is not a list-
item, and to output a tag when the following element is not a list-item. Of
course it doesn't work, because the and tags are not properly nested: this
template will be thrown out by the XML parser before the XSLT processor even gets to
look at it.

So your next thought might be to write the tags as text, as follows:

<xsl:template match="bullet"/>

 <xsl:if test='not(preceding::*[self::list-item])'>

 <xsl:text disable-output-escaping="yes"></xsl:text>

 </xsl:if>

 <xsl:value-of select="."/>

 <xsl:if test='not(following::*[self::list-item])'>

 <xsl:text disable-output-escaping="yes">/</xsl:text>

 </xsl:if>

</xsl:template>

You now have something which is legal XML and indeed legal XSLT, but it's not
guaranteed to work in all circumstances. In particular, it may fail if there is something
downstream that cares about the structure of the output XML. So it's a trick that may
or may not work.

With a bit of thought you can usually find a way to achieve the output you want
without resorting to such devices.

The first thing is to think in terms of outputting a result tree containing nodes, not a
text file containing tags. Don't try to generate the start tag and the end tag
as two separate actions; try to generate a element node as a single action, and
then generate its children.

The aim is to produce a element for every <bullet> in the source that is not
preceded by another bullet, so we can start by writing:

<xsl:template match="bullet[not(preceding-sibling::*[1][self::bullet])]>

 . . .

</xsl:template>

This template rule matches every <bullet> element that either has no preceding
sibling, or whose immediately preceding sibling is not a <bullet> element.

For each such bullet, we want to process the list of following siblings until the next
non-bullet is reached. To do this we need a recursive template:

<xsl:template match="bullet[not(preceding-sibling::bullet)]>

 <xsl:call-template name="bullet-list">

</xsl:template>

<xsl:template name="bullet-list">

 <xsl:value-of select="."/>

 <xsl:variable name="next" select="following-sibling::*[1]"/>

 <xsl:for-each select="$next[self::bullet]">

 <xsl:call-template name="bullet-list"/>

 </xsl:for-each>

</xsl:template>

Rather than processing the following bullets in a loop, we process them by recursion:
the bullet-list template outputs the current <bullet> element, and if the next element
is also a <bullet>, it calls itself to process that one. Note that the <xsl:for-each>
element here is not looping, it is processing a node-set which will contain one element
if the next element is a <bullet>, and zero elements otherwise.

Examples
1) Output first-name and last-name, separated by a space:

<xsl:value-of select="first-name"/>

<xsl:text> </xsl:text>

<xsl:value-of select-"last-name"/>

Another way to achieve the same effect is to use the concat() function:

<xsl:value-of select="concat(first-name, ' ', last-name)"/>

2) Output a comma-separated list of values:

<xsl:output method="text"/>

<xsl:template match="book">

 <xsl:value-of select="title"/>,<xsl:text/>

 <xsl:value-of select="author"/>,<xsl:text/>

 <xsl:value-of select="price"/>,<xsl:text/>

 <xsl:value-of select="isbn"/><xsl:text>

</xsl:text>

</xsl:template>

The purpose of the empty <xsl:text/> elements is to split the comma and the
following newline character into separate text nodes; this ensures that the newline
character becomes part of a whitespace-only node, and is therefore not copied to the
output. The final <xsl:text> element ensures that a newline is written at the end of
each record.

3) Output an « » entity reference:

<xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>

Note that outputting a #xa0 (or #160) character will generally have exactly the same
effect, to do this you can simply write:

<xsl:text> </xsl:text>

See also
<xsl:value-of> on page 168.

xsl:transform
This is a synonym of <xsl:stylesheet>, described on page 142. The two element
names may be used interchangeably.

Why is it useful to have two names for the same thing? Probably because it's the
easiest way for a standards committee to keep all its members happy. More seriously,
the existence of these two names is indicative of the fact that some people see XSLT as
being primarily a language for transforming trees, while others see its main role as
defining presentation styles. Take your pick.

Format
<xsl:transform

 id=identifier

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 extension-element-prefixes=list-of-prefixes

 exclude-result-prefixes=list-of-prefixes >

 top-level-element *

</xsl:transform>

Defined in
XSLT section 2.2

See also
<xsl:stylesheet> on page 142.

xsl:value-of
The <xsl:value-of> instruction writes the string value of an expression to the result
tree.

Defined in
XSLT section 7.6.1

Format
<xsl:value-of select=Expression

disable-output-escaping="yes" | "no"/>

Position
<xsl:value-of> is an instruction. It is always used as part of a template-body.

Attributes
Name Value Meaning
select
mandatory

Expression The value to be output.

disable-output-
escaping
optional

«yes» | «no» The value «yes» indicates that
special characters in the output
(such as «<») should be output
as is, rather than using an XML
escape form such as «<».
Default is «no».

Content
None, the element is always empty.

Effect
The expression is evaluated as a string; if necessary it is first converted to a string, as
follows:

❑ If the value is a Boolean, the output will be one of the strings «true» or
«false».

❑ If the value is a number, it is converted to a string representation of the
number in decimal notation, for example «93.7». (If you want to control the
formatting of the number, use the <xsl:number> element or the format-
number() function instead).

❑ If the value is a node-set, all nodes other than the first (in document order) are
ignored. If the node-set is empty, nothing is output. Otherwise, the string
value of the first node is output. The string value of a node depends on the
type of node: for a text node, it is the textual content; for an attribute node, it is
the attribute value; for a comment, it is the text of the comment; for a
processing instruction, it is the data part of the processing instruction
(excluding the target). For an element node, it is the concatenation of the values
of all the descendant nodes: in other words, the text contained in the element,
without any markup or attributes. Similarly for the root, the string-value is all
the text in the document, with markup removed.

Note the very different behavior between a node-set that contains many
elements and a node-set that contains a single element which itself has many
children. The expression «//para» returns a node-set containing all the
<para> elements in the document. The string value of this is the string-value of
the first <para> element, so <xsl:value-of select="//para"> will only
display one paragraph. By contrast, the expression «/» represents a node-set
containing one node only, namely the root. The string-value of this is all the
text in the document, so <xsl:value-of select="/"/> will output all this
text.

❑ If the value is a result tree fragment, it is converted to a string as if it were a
node-set containing a single node, the single node acting as a root for the

result-tree-fragment. In effect this means that the result is the concatenation of
all the text nodes within the result tree fragment. If you want to copy the
nodes in the result tree fragment to the output destination, rather than just
their string value, use <xsl:copy-of> described on page 46.

The disable-output-escaping attribute has the same effect as with <xsl:text>.
Special characters such as «<» in the string value of the select expression will be
escaped just as if they occurred in literal text, and the disable-output-escaping
attribute can be used to suppress this in the same way. For details, see <xsl:text> on
page 163.

Usage
The <xsl:value-of> element is the most common way of writing text to the result tree
(or to the current output destination, if that is different).

The other ways of writing text nodes to the result are to include text literally in the
stylesheet (perhaps within an <xsl:text> instruction) or to use <xsl:copy> or
<xsl:copy-of>. Surprisingly, you could make do without using <xsl:value-of> at
all, because <xsl:value-of select="X"/> can always be rewritten as <xsl:copy-of
select="string(X)"/>.

Another alternative is to use <xsl:apply-templates> on a text node and rely on the
built-in template for text nodes, which is equivalent to <xsl:value-of select="."/>

The <xsl:value-of> instruction is often an effective alternative to navigating the
source tree recursively using <xsl:apply-templates>. For example:

<xsl:template match="book">

 <book>

 <publisher><xsl:value-of select="../@name"/></publisher>

 <title><xsl:value-of select="@title"/></title>

 <author><xsl:value-of select="@author"/></author>

 <isbn><xsl:value-of select="@isbn"/></isbn>

 </book>

</xsl:template>

As <xsl:value-of> writes to the current output destination, not necessarily the final
result tree, it is used to return a result from a called template. For example we can
write a named template that replaces characters in a filename as follows:

<xsl:template name="change-filename">

 <xsl:param name="filename"/>

 <xsl:value-of select="translate($filename, '\', '/')"/>

</xsl:template>

This template can then be called as follows, to get the result into the variable $new-
filename:

<xsl:variable name="new-filename">

 <xsl:call-template name="change-filename">

 <xsl:with-param name="$old-filename"/>

 </xsl:call-template>

</xsl:variable>

Technically the variable $new-filename is a result tree fragment, but for all practical
purposes it can be treated as a string.

Examples
<xsl:value-of select="."/> Output the string-value of the current

node
<xsl:value-of select="title"/> Output the string-value of the first child

<title> element of the current node
<xsl:value-of select="sum(@*)"/> Output the sum of the values of the

attributes of the current node,
converted to a string. If there is any
non-numeric attribute, the result will be
"NaN".

<xsl:value-of select="$x"/> Output the value of variable $x, after
converting it to a string

See also
<xsl:copy-of> on page 46
<xsl:text> on page 163

xsl:variable
The <xsl:variable> element is used to declare a local or global variable in a
stylesheet, and to give it a value.

Defined in
XSLT section 11

Format
<xsl:variable name=QName select=Expression >

 template-body

</xsl:variable>

Position
The <xsl:variable> element may appear either as a top-level element (that is, as a
child of the <xsl:stylesheet> element), or as an instruction within a template-body.

Attributes
Name Value Meaning
name
mandatory

QName The name of the variable

select
optional

Expression An expression that is evaluated
to give the value of the variable.
If omitted, the value is
determined from the contents of
the <xsl:variable> element

The constructs QName (page Error! Cannot open file.) and Expression (page Error!
Cannot open file.) are defined in Chapter 5.

Content
An optional template body. If a select attribute is present, the <xsl:variable> element
should be empty.

Effect
An <xsl:variable> element may appear either at the top level of the stylesheet (in
which case it declares a global variable) or as an instruction within a template-body (in
which case it declares a local variable).

The Value of the Variable
The value of the variable may be given either by the Expression in the select
attribute, or by the contents of the contained template-body. If there is a select
attribute, the <xsl:variable> element should be empty. If there is no select attribute
and the template body is empty, the value of the variable is an empty string.

If the value is given by an Expression, the data type of the value will be Boolean,
number, string, or node-set, depending on the expression. If the value is given by a
non-empty template body, the data type will always be a result tree fragment.

Note that if an expression is used to assign a literal string value to a variable, the String
literal must be enclosed in quotes, and these quotes are additional to the quotes used
around the XML attribute. So to assign the value «London» to the variable named
«city», you can write either of the following:

<xsl:variable name="city" select="'London'"/>

<xsl:variable name="city" select='"London"'/>

We can also write:

<xsl:variable name="city">London</xsl:variable>

Technically the value is then a result tree fragment rather than a string, but it can be
used exactly as if it were a string, so there is no difference in practice.

A common mistake is to write:
<xsl:variable name="city" select="London"/> <!-- WRONG -->

This sets the value of «$city» to a node-set containing all the element
children of the current node that have element name <London>. This will
probably be an empty set, so if you use the variable as a string, its value will
be the empty string. You won't get any error message if you make this
mistake, because it's a perfectly valid thing to write, it will just cause your
stylesheet to produce the wrong output.

You won't be alone if you make this mistake, there's an example of it in the
XSLT specification itself (in section 13, if you want to find it).

The Name of the Variable
The name of the variable is defined by a QName. Normally this will be a simple name
such as «city» or «total-sales», but it may be a name qualified with a prefix, for
example «my:value». If it has a prefix, the prefix must correspond to a namespace that
is in scope at that point in the stylesheet. The true name of the variable, for the purpose
of testing whether two names are the same, is determined not by the prefix but by the
namespace URI corresponding to the prefix: so two variables «my:value» and
«your:value» have the same name if the prefixes «my» and «your» refer to the same
namespace URI. If the name has no prefix, it has a null namespace URI – it does not
use the default namespace URI.

The scope of a global variable is the entire stylesheet, including any stylesheets that are
included or imported. A global variable may even be referenced before it is declared.
The only constraint is that circular definitions are not allowed: if variable x is defined
in terms of y, then y may not be defined directly or indirectly in terms of x.

The scope of a local variable is block-structured: it may be referenced in any following
sibling element or in a descendant of a following sibling. This is illustrated in the
diagram below.

X

The diagram shows for a variable X, the elements that may contain a reference to X:
the shaded elements may refer to X, the unshaded elements may not. Specifically, a

local variable may be referenced in any following sibling element, or in a descendant
of a following sibling. It cannot be referenced within its own descendants, and it goes
out of scope when the end tag for its parent element is encountered. Unlike global
variables, a forwards reference to a local variable is not allowed.

Two global variables may have the same name only if they have different import
precedence: that is, if one of them was in an imported stylesheet (for further details, see
<xsl:import> on page 71). In this case, the definition with higher import precedence
wins (the spec doesn't actually say this, but it's clearly what's intended). Note that the
higher-precedence definition applies everywhere, even within the imported stylesheet
that contains the lower-precedence definition. This means it is not a good idea to rely
on precedence to resolve accidental name clashes: better to use namespaces.

Two local variables may have the same name only if neither variable is defined within
the scope of the other. However, a local variable may have the same name as a global
variable, in which case the global variable is inaccessible within the scope of the local
variable.

These rules on uniqueness and scope of names apply equally to parameters declared
using <xsl:param>; the <xsl:param> instruction is effectively just another way of
declaring a variable.

Usage
Variables are useful, as in any programming language, to avoid calculating the same
result more than once.

Global variables are useful for defining constants, such as a color value, that will be
used in many places throughout the stylesheet.

Unlike variables in many programming languages, XSLT variables cannot be updated.
Once they are given an initial value, they retain that value until they go out of scope.
This feature has a profound effect on the programming style used when a stylesheet
needs to do calculations. The subject of programming without variables is discussed in
detail in Chapter 8.

Examples
Most XSLT variables fall into one of three categories:

❑ Variables used to avoid repeating a common expression in more than one
place. This might be simply to make the code more readable, or to ensure that
you only have to make a change in one place if the value changes, or perhaps
because it gives a performance benefit.

❑ Variables used to capture context-sensitive information, allowing the variable
to be used after the context has changed

❑ Variables holding a tree value (a result tree fragment in the language of the
spec).

In each case the variable might be local or global. I'll show some examples of each

kind.

Convenience Variables
Consider this example, which calculates the number of goals scored by, and against, a
soccer team.

<xsl:variable name="for"

 select="sum($matches/team[.=$this]/@score)"/>

<xsl:variable name="against"

 select="sum($matches[team=$this]/team/@score) - $for"/>

. . .

<td><xsl:value-of select="$for"/></td>

<td><xsl:value-of select="$against"/></td>

This uses two rather complex expressions to construct the variables «for» and
«against», which calculate the number of goals scored by, and against, the team
identified by the variable «$team». If you want to understand the logic in more detail,
it is given as a fully worked example under the description of the sum() function in
Chapter 7, on page Error! Cannot open file..

It would be quite possible in this case to avoid using the variable «against». The
expression that calculates its value could equally be written at the point where the
variable is used, in the second <xsl:value-of> instruction. The same is true of the
«for» variable, though this time the expression would need to be written twice, in
both places where the variable is used, and this might give a performance penalty.
However, the fact is, these variables are really being used only for clarity; it would be
quite possible to write the stylesheet without them.

This is true because nothing can change between the variables being defined and being
used. The source document can't change, and the values of the variables $team and
$matches can't change. The context (for example the current position in the source
document) can change, but in this example (a) it doesn't, and (b) the expressions don't
depend on the context anyway.

I call these convenience variables because you could get by without them if you had to
(though there might be a performance hit). They can be used either as global variables
or as local variables. Creating global convenience variables that refer to node-sets in
the source document is often a useful programming technique, for example:

<xsl:variable name="group-A-matches" select="//match[@group='A']"/>

These act rather like views in an SQL database.

Variables to capture context-sensitive Values
These variables are most often useful in conjunction with <xsl:for-each>, which
changes the current node. Consider the following example:

Example: Using a Variable for Context-sensitive Values

Source
The source file is opera.xml. It contains a list of operas and details of their
composers.

<?xml version="1.0"?>

<programme>

 <opera>

 <title>The Magic Flute</title>

 <composer>Mozart</composer>

 <date>1791</date>

 </opera>

 <opera>

 <title>Don Giovanni</title>

 <composer>Mozart</composer>

 <date>1787</date>

 </opera>

 <opera>

 <title>Ernani</title>

 <composer>Verdi</composer>

 <date>1843</date>

 </opera>

 <opera>

 <title>Rigoletto</title>

 <composer>Verdi</composer>

 <date>1850</date>

 </opera>

 <opera>

 <title>Tosca</title>

 <composer>Puccini</composer>

 <date>1897</date>

 </opera>

 <composer name="Mozart">

 <fullname>Wolfgang Amadeus Mozart</fullname>

 <born>1756</born>

 <died>1791</died>

 </composer>

 <composer name="Verdi">

 <fullname>Guiseppe Verdi</fullname>

 <born>1813</born>

 <died>1901</died>

 </composer>

 <composer name="Puccini">

 <fullname>Giacomo Puccini</fullname>

 <born>1858</born>

 <died>1924</died>

 </composer>

</programme>

Stylesheet
The stylesheet is file opera.xsl. This is a complete stylesheet: it uses the
simplified stylesheet syntax describedon page Error! Cannot open file., in
Chapter 3.

The stylesheet contains two nested <xsl:for-each> loops. In the outer loop, it
sets a variable «c» to the context node (the current composer). In the expression
controlling the inner loop, this variable is used. It would not be correct to use «.»
in place of «$c», because the <composer> element is no longer the context node.
In this example it would be possible to use the current() function here (this
function is described on page Error! Cannot open file., in Chapter 7), but there
are other cases where a variable is necessary.

<html

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

<body><center>

 <h1>Programme</h1>

 <xsl:for-each select="/programme/composer">

 <h2><xsl:value-of

 select="concat(fullname, ' (', born, '-', died, ')')"/></h2>

 <xsl:variable name="c" select="."/>

 <xsl:for-each select="/programme/opera[composer=$c/@name]">

 <p><xsl:value-of select="title"/></p>

 </xsl:for-each>

 </xsl:for-each>

</center></body>

</html>

Output

One case where context variables are very useful is when handling multiple source
documents.

In any stylesheet that handles multiple source documents, it is useful to include a
global variable that refers to the root node of the principal source document, thus:

<xsl:variable name="root" select="/"/>

This means it is always possible to refer to the source document by using this
variable. Without this, when the context node is in a secondary document, there is no
way of accessing data from the principal document.

For example, the expression «//item» refers to all <item> elements in the same
document as the context node. If you actually want all <item> elements in the
principal source document, then (provided you have included the global variable
declaration above) you can use the expression «$root//item».

If there is a document referenced from the stylesheet, for example to hold lookup data
such as messages or tax rates, it is also useful to define this in a global variable, for
example:

<xsl:variable name="tax-rates" select="document('tax-rates.xml')"/>

Tree-valued Variables
The value of a variable is a tree (or result tree fragment) if it is defined using the
content of the <xsl:variable> element rather than the select attribute. In many
cases the tree will only contain a single text node, in which case it behaves exactly like

a string variable.

A local variable can often be useful for expanding the default value of an attribute.
For example:

<xsl:variable name="width">

 <xsl:choose>

 <xsl:when test="@width">

 <xsl:value-of select="@width"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:variable>

Subsequently the variable $width can be used in calculations in place of the attribute
@width, without worrying about the case where the attribute was omitted. The fact
that the variable is technically a tree rather than a string does not affect the way it can
be used.

Beginners often try to write this as:

 <xsl:choose>
 <xsl:when test="@width">
 <xsl:variable name="width" select="@width"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="width" select="0"/>
 </xsl:otherwise>
 </xsl:choose>

This won't work, because when you get to the end tag of the <xsl:choose>
element, both variable declarations will have gone out of scope!

Tree-valued variables are also needed whenever you want to use <xsl:call-
template> to calculate a value which you then want to manipulate further, as shown
in the next example.

Example: Getting the Result of <xsl:call-template> in a Variable

Source
The source file is the list of operas and composers used in the previous example,
operas.xml.

Stylesheet
The stylesheet is the file composers.xsl.

This stylesheet uses a general-purpose named template («make-list») to output
a list of names in the form «A, B, C, and D». It passes this template a node-set
containing the names of all the composers in the source document. On return
from the «make-list» template, it extracts the result of this template into a
variable (which will be a tree containing a single text node), and passes this
variable into the translate() function (described in Chapter 7) to convert the
commas to semicolons. The translate() function converts its first argument to a
string, which in this case extracts the value of the text node from the tree.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

<xsl:template match="/">

 <xsl:variable name="list">

 <xsl:call-template name="make-list">

 <xsl:with-param name="names"

 select="/programme/composer/fullname"/>

 </xsl:call-template>

 </xsl:variable>

 This week's composers are:

 <xsl:value-of select="translate($list, ',', ';')"/>

</xsl:template>

<xsl:template name="make-list">

 <xsl:param name="names"/>

 <xsl:for-each select="$names">

 <xsl:value-of select="."/>

 <xsl:if test="position()!=last()">, </xsl:if>

 <xsl:if test="position()=last()-1">and </xsl:if>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Output
This week's composers are:

Wolfgang Amadeus Mozart; Guiseppe Verdi; and Giacomo Puccini

See also
<xsl:param> on page 126

xsl:when
The <xsl:when> element always appears as a child of <xsl:choose>. It defines a
condition to be tested and the action to be performed if the condition is true.

Defined in
XSLT section 9.2

Format
<xsl:when test=Expression>

 template-body

</xsl:when>

Position
<xsl:when> is always a child element of <xsl:choose>. There must be at least one
<xsl:when> element within an <xsl:choose> element.

Attributes
Name Value Meaning
test
mandatory

Expression The Boolean condition to be
tested

Content
A template body.

Effect
The <xsl:choose> element is instantiated as follows:

❑ The first <xsl:when> element whose test Expression is true is selected;
subsequent <xsl:when> elements are ignored whether or not their Expression is
true.

❑ If none of the <xsl:when> elements has a test Expression that is true, the
<xsl:otherwise> element is selected. If there is no <xsl:otherwise>
instruction, no element is selected.

❑ The selected child element (if any) is executed by instantiating its template
body in the current context: that is, the effect is as if the relevant template body
appeared in place of the <xsl:choose> instruction.

It is not defined whether the test Expression in a <xsl:when> element after the
selected one is evaluated or not, so if it calls functions that have side-effects, or if it
contains errors, the result is undefined.

Any XPath value may be converted to a boolean. In brief, the rules are:

❑ if the expression is a node-set, it is treated as true if the node-set is not empty

❑ if the expression is a string or a result tree fragment, it is treated as true if the
string value is not empty

❑ if the expression is a number, it is treated as true if the number is non-zero

Usage and Examples
See <xsl:choose> on page 38

See also
<xsl:choose> on page 38
<xsl:otherwise> on page 114
<xsl:if> on page 68

xsl:with-param
The <xsl:with-param> element is used to set the values of parameters when calling a
template, either when using <xsl:call-template>, or when using <xsl:apply-
templates>.

Defined in
XSLT section 11.6

Format
<xsl:with-param name=QName select=Expression >

 template-body

</xsl:with-param>

Position
<xsl:with-param> is always a child of either <xsl:apply-templates> or <xsl:call-
template>

Attributes
Name Value Meaning
name
mandatory

QName The name of the parameter

select Expression The value of the parameter to be

optional supplied to the called template

The constructs QName (page Error! Cannot open file.) and Expression (page Error!
Cannot open file.) are defined in Chapter 5.

Content
An optional template-body. If a select attribute is present, the <xsl:with-param>
element should be empty.

Effect
An <xsl:with-param> element can appear only as the immediate child of an
<xsl:call-template> or <xsl:apply-templates> instruction.

The <xsl:with-param> element assigns a value to a parameter. The value of the
parameter can be used within the called template.

The value of the parameter is established in exactly the same way as for the
<xsl:variable> element. That is, the value is taken from the select expression if
present, or by instantiating the template body if not.

If the called template has an <xsl:param> element whose name matches that of the
<xsl:with-param> element, then the value assigned to the <xsl:with-param>
element is available within the template. If the called template has no such parameter,
the value is ignored: this is not an error. In the case of <xsl:apply-templates>, the
parameter value is available in each of the templates that is called (one per selected
node). The parameter is effectively evaluated once only — it will have the same value
for each of these templates.

The name of the parameter is defined by a QName. Normally this will be a simple name
such as «city» or «total-sales», but it may be a name qualified with a prefix, for
example «my:value». If it has a prefix, the prefix must correspond to a namespace that
is in scope at that point in the stylesheet. The true name of the parameter, for the
purpose of matching it with an <xsl:param> element in the called template, is
determined not by the prefix but by the namespace URI corresponding to the prefix: so
the name «my:value» will match a parameter declared as «your:value» if the prefixes
«my» and «your» refer to the same namespace URI. If the name has no prefix, it has a
null namespace URI – it does not use the default namespace URI.

The <xsl:with-param> element does not actually declare a variable, so there is no
problem if the name is the same as that of a variable that is currently in scope. In fact it
is quite normal to pass a parameter in the form:

<xsl:with-param name="current-user" select="$current-user"/>

This is used to ensure that the variable «$current-user» in the called template has the
same value as the variable «$current-user» in the calling template.

It is not possible to use <xsl:with-param> in conjunction with <xsl:apply-imports>.

Usage and Examples
Parameters to templates take on considerable significance in XSLT because variables
cannot be updated. This means that many tasks which in conventional programming
languages are done by updating variables in a loop are done instead in XSLT using
recursive calls and parameters. The consequences of this are explained in Chapter 8,
and there are some detailed examples of the technique in Chapter 9.

Examples of recursive calls are also included in this chapter under <xsl:call-
template> on page 29.

See also:
<xsl:apply-templates> on page 6
<xsl:call-template> on page 29
<xsl:param> on page 126

Summary
Phew! This has been a long chapter, but I'm sure you'll agree that every page was
worth it! We have examined in detail every element that you will ever need to know,
and provided working examples to bolster your understanding of them. We will now
move on to look at Expressions in the same way.

5
Expressions

This chapter defines the syntax and meaning of XPath expressions. XPath expressions
are used in many places within an XSLT stylesheet to select data from the source
document and to manipulate it to generate data to go in the result document. XPath is
defined by W3C as a free-standing language, so it can also be used in other contexts,
for example in defining links from one XML document to another (see the W3C XLink
and XPointer specifications); however, all our examples will concentrate on the way it
is used in XSLT.

As with other programming languages, the syntax is defined in a set of production
rules. Each rule defines the structure of a particular construct as a set of choices,
sequences, or repetitions. There is one section in this chapter for each production rule.

I have taken the formal production rules directly from the XPath specification
document, http://www.w3.org/TR/xpath. I have reordered the rules into alphabetical
order for ease of reference, and I have made minor changes to the typography for ease
of reading. I have also pulled in those rules from the XML and XML Namespaces
standards that the XPath syntax references. I've also included a reference to allow you
to find the relevant rule in the original specification if you need to. However, I have
tried to include all the information you need from the XPath specification, so this
should only be necessary if you need to see the precise wording of the standard.

Most of the information you need to write XPath expressions is in this chapter. The key
concepts were explained in Chapter 2, in particular the tree model (page Error! Cannot
open file. and the idea of the context of an expression (page Error! Cannot open file. –
both concepts are essential to a full understanding of this chapter. The system of data
types was also explained in Chapter 2 (page Error! Cannot open file.. XPath
expressions can include function calls: the standard functions defined within the XPath
and XSLT Recommendations are described in Chapter 7 of this book.

Notation
As in the rest of the book, I have used French quotation marks «thus» (also known as
chevrons or guillemots) to surround pieces of XPath text that you write: I chose this

convention partly because these marks stand out more clearly, but more importantly to
distinguish these quotation marks unambiguously from quotation marks that are
actually part of the expression. So if we write, for example, that literals can be enclosed
either in «"» or «'» marks, then it's clear that you don't actually write the chevrons.
XPath syntax doesn't use chevrons with any special meaning (though like any other
Unicode character, you can use them in literals), so you can be sure that any chevron
you see is not to be included in the expression.

The production rules in XPath implicitly define the precedence of the different
operators: for example the rule for OrExpr defines it as a sequence of AndExpr
operands separated by «or» operators. This is a convenient way of defining that the
«and» operator binds more tightly than «or».

One consequence of this style of definition is that the simplest OrExpr consists of a
single AndExpr with no «or» operator present at all. This gives us a problem, because
when we want to talk about an expression that uses an «or» operator, we can't call it
an OrExpr. So we'll refer to an OrExpr with no «or» operator as a trivial OrExpr, and to
a real one (with one or more «or» operators) as a non-trivial OrExpr. In the section of
text that describes the effect of an OrExpr, we'll always concentrate on the non-trivial
case. The same situation arises for many other constructs.

Although the production rules in XPath define the operator precedence, they do not
impose any type checking. This would be hard to achieve, because variables are
untyped, and because in most contexts a value of one type can be implicitly converted
to a value of the required type, so for example «3 or 'bread'» is a perfectly legal
expression (and evaluates to true). There are contexts that require a value that is a
node-set, and values of other types cannot be converted to node-sets; however, the
designers of the language chose not to build this in to any of the production rules. This
means that the expression «3|'bread'» (where «|» is the set union operator) is also
syntactically valid according to the production rules, though it is clearly an error
because it violates the rule that the operands of «|» must be node-sets. Think of an
analogy with English – there are sentences that are perfectly grammatically correct, but
still nonsense: "An easy apple only trumpets yesterday."

Where to Start
Some people prefer to present the syntax of a language bottom-up, starting with the
simplest constructs such as numbers and names, while others prefer to start at the top,
with a construct like Program or Expression. As no single order of presentation suits
everyone, and because you're likely to have to follow cross-references from one section
to another anyway, we've chosen to list the production rules in alphabetical order. If
you're the sort of person who likes the serendipity of browsing at random through an
encyclopedia, you might enjoy reading the sections sequentially; or you could just as
sensibly start at the end and work backwards. For a top-down approach, start with
Expr on page 29: this is the top-level production rule for an XPath expression. For a
bottom-up approach, look at the syntax tree shown on the following page and select
the terms that are furthest from the root. Or if you want to start in the middle, take a
look at Step, which is one of the key concepts that gives XPath its power.

Many languages distinguish the lexical rules, which define the format of basic tokens
such as names, numbers, and operators, from the syntactic rules, which define how

these tokens are combined to form expressions and other higher-level constructs.
The XPath specification includes both syntactic and lexical production rules, but they
are not quite as clearly separated as in some languages. As some constructs appear in
both, I've kept them bundled together, showing the lexical rules in the same
alphabetical sequence as the syntax rules, but distinguishing them in the text. The
main distinction between the two kinds of rule is that whitespace can be freely used
between lexical tokens but not within a lexical token. The top-level lexical rule is
ExprToken.

A Syntax Tree
To help you find your way around the syntax, I have compiled the charts below, which
show all the syntax rules (but not the purely lexical rules) arranged in a hierarchy. The
children of each syntactic construct are the other constructs it references in its syntax
rule.
The first chart contains all the expressions down to PathExpr: This part of the
hierarchy is very straightforward: apart from MultiplyOperator, each construct
defines a type of expression constructed using operands and operators, and the
hierarchy reflects the precedence of the operators. For example, the chart shows that an
AndExpr can contain an EqualityExpr, which implies that an operator used in an
EqualityExpr (such as «=») has higher precedence and therefore binds more tightly
than the «and» operator used in an AndExpr.

Expr
 OrExpr
 AndExpr
 EqualityExpr
 RelationalExpr
 AdditiveExpr
 MultiplicativeExpr
 MultiplyOperator
 UnaryExpr
 UnionExpr
 PathExpr

The next chart expands PathExpr. Where a name is followed by an asterisk, its
expansion is to be found elsewhere in the hierarchy.

PathExpr
 LocationPath
 RelativeLocationPath *
 AbsoluteLocationPath
 RelativeLocationPath *
 AbbreviatedAbsoluteLocationPath
 RelativeLocationPath *
 FilterExpr
 PrimaryExpr
 VariableReference
 Expr *
 Literal
 Number
 Digits
 FunctionCall
 FunctionName
 QName
 Argument
 Expr *
 Predicate

 PredicateExpr
 Expr *
 RelativeLocationPath
 Step
 AxisSpecifier
 AxisName
 AbbreviatedAxisSpecifier
 NodeTest
 NameTest
 NCName
 QName
 NodeType
 Literal *
 Predicate *
 AbbreviatedStep
 AbbreviatedRelativeLocationPath
 RelativeLocationPath *

Notice how once you hit PathExpr, the syntax gets much more complicated. Perhaps
this isn't surprising in a language called XPath, because the main purpose of the
language is to define paths through an XML document, and this is specifically what a
PathExpr does. The reason the syntax gets messy below this level is that it's full of
shortcuts, which make it much easier to write commonly-used path expressions, but
which are difficult to define formally. For more details see the section PathExpr on
page 57.

The following sections describe the syntactic constructs in alphabetical order.

AbbreviatedAbsoluteLocationPath
An AbbreviatedAbsoluteLocationPath is an expression used to select all nodes in
the document that satisfy some condition.

Expression Syntax
AbbreviatedAbsoluteLocationPath «//» RelativeLocationPath

Defined in
XPath section 2.5, rule 10.

Used in
AbsoluteLocationPath

Usage
The initial «//» indicates that the selection path starts at the document root; the
relative location path indicates how it then proceeds.

This form of expression can be expensive to evaluate, because the XSLT processor will
generally have to search the whole document to find the selected nodes. If you can
specify a more restricted search it is generally a good idea to do so – for example, if
you know that all the <book> elements are children of the document element, then

specifying «/*/book» will generally be more efficient than writing «//book». Of
course, actual performance characteristics of different products may vary.

Examples
Expression Description
//figure Selects all <figure> elements in the document.
//book[@category
='fiction']

Selects all <book> elements in the document that
have a category attribute with the value «fiction».

//*/* Selects all element nodes that have an element as a
parent, in other words all elements except those that
are immediate children of the root node. Here «*» is
a NameTest that matches any element.

//book/title Selects all <title> elements that have a <book>
element as their parent.

Technically «//X» is an abbreviation for «/descendant-or-self::node()/X». So
«//figure[1]» means «/descendant-or-self::node()/figure[1]»; that is, any
<figure> element in the document that is the first <figure> child of its parent
element. If you want to select the first figure element in the document, write
«/descendant::figure[1]», or «(//figure)[1]».

AbbreviatedAxisSpecifier
An AbbreviatedAxisSpecifier indicates that the axis for selecting nodes in a path
expression is either the child axis, or the attribute axis.

Expression Syntax
AbbreviatedAxisSpecifier «@» ?

Note the question mark: this means the «@» is optional. In other words, an
AbbreviatedAxisSpecifier may be a completely empty string.

Defined in
XPath section 2.5, rule 13.

Used in
AxisSpecifier

Usage
An abbreviated axis specifier may be either «@», to indicate the attribute axis, or
nothing, to indicate the child axis. The abbreviated axis specifier «@» is an abbreviation
for «attribute::», while the empty abbreviated axis specifier «» is an abbreviation
for «child::». Looking at the syntax for AxisSpecifier on page 20, we see that an

AxisSpecifier itself can be empty, which means (looking now at Step on page 71)
that a Step can consist of a NodeTest on its own, or followed by one or more
Predicates.

What this means in practice is that in a path expression «A/@B», B is referring to an
attribute of A, while in the path expression «A/B», B is referring to a child element of
A.

Examples in Context
Expression Description
@category This is a RelativeLocationPath consisting of a single Step,

which itself consists of an AbbreviatedAxisSpecifier «@»
followed by a NodeTest that is a NameTest, or more
specifically a QName. The effect of the expression is to select
any attribute node of the context node that is named
«category». The full form of the expression would be
«./attribute::category».

title This is a RelativeLocationPath consisting of a single Step,
which itself consists of an empty AbbreviatedAxisSpecifier
followed by a NodeTest that is a NameTest, or more
specifically a QName. The effect of the expression is to select
any child element of the context node that is named «title».
The full form of the expression would be «./child::title».

AbbreviatedRelativeLocationPath
An AbbreviatedRelativeLocationPath is a relative location path that uses the «//»
operator, which is a shorthand way of requesting all the descendants of a node rather
than just the immediate children.

Expression Syntax
AbbreviatedRelativeLocationPath RelativeLocationPath «//» Step

Defined in
XPath section 2.5, rule 11.

Used in
RelativeLocationPath

Usage
An abbreviated relative location path is a shorthand notation for selecting the
descendants of a given node.

As with «//» used at the beginning of a path, this construct may be expensive, because

the XSLT processor has to search all the descendants of the given node. If you can
restrict the search it is a good idea to do so, for example if you know that the required
nodes are all grandchildren of the starting node it is better to write «$A/*/B» rather
than «$A//B». Of course, the actual performance may vary between different products.

Technically an expression such as «$chapters//diagram» is an abbreviation for
«$chapters/descendant-or-self::node()/diagram»: which means: for each
element in the node-set «$chapters», find all the descendant nodes of that element,
and for each of these descendant nodes, find any children that are <diagram>
elements. At first sight this seems to be the same as
«$chapters/descendant::diagram», but there is a subtle difference when positional
predicates are used, as seen in the example below:

Example: Comparing the // Operator with /descendant::

Consider the two expressions «$chapters//diagram[1]» and
«$chapters/descendant::diagram[1]»:

❑ «$chapters//diagram[1]» means «$chapters/descendant-or-
self::node()/diagram[1]», that is, every <diagram> element that is
the first <diagram> child of its parent element and that is a descendant
of a node in $chapters.

❑ «$chapters/descendant::diagram[1]» means the first <diagram>
element (taking them in document order) that is a descendant of a node
in $chapters. Another way of writing this is
«($chapters//diagram)[1]».

To see the difference, consider the following source document:

<chapter>

 <section>

 <diagram nr="12"/>

 <diagram nr="13"/>

 </section>

 <diagram nr="14"/>

 <section>

 <diagram nr="15"/>

 <diagram nr="16"/>

 </section>

</chapter>

With this document, if the node-set $chapters contains only the outer
<chapter> element, «$chapters//diagram[1]» will select diagrams 12, 14, and
15, while both «$chapters/descendant::diagram[1]» and
«($chapters//diagram)[1]» will select diagram 12 only.

Examples
Expression Description
chapter//footnote Selects all <footnote> elements that are

descendants of a <chapter> element that itself is a
child of the context node. The context node is
explained in the entry for Expr on page 29.

.//footnote Selects all <footnote> elements that are
descendants of the context node.

document('lookup.xml')
//entry

Selects all <entry> elements within the document
identified by the relative URL lookup.xml. The
document() function is described in Chapter 7,
page Error! Cannot open file.

$winners//*/@name Selects the name attribute of all elements that are
descendants of a node that belongs to the node-set
identified by the variable $winners.

.//.. This strange but perfectly legal expression
combines «//» which finds the descendants of a
node, and «..» which finds its parent. The effect
is to find all nodes that are the parent of a
descendant of the context node, plus the parent of
the context node itself.

AbbreviatedStep8
An AbbreviatedStep is a shorthand way to select the context node or the parent of the
context node.

Expression Syntax
AbbreviatedStep «.» | «..»

Defined in
XPath section 2.5, rule 12.

Used in
Step

Usage
The production rule AbbreviatedStep defines the two common symbols «.» which
refers to the context node, and «..» which refers to the parent of the context node. (For
a discussion of the meaning of context node, see Expr on page 29.) These symbols are
abbreviations for «self::node()» and «parent::node()» respectively.

Although «.» is technically a Step, and can thus be used on the right-hand side of the

path operator «/», it rarely makes sense to do so, since it is in effect a null step, a step
that goes nowhere. The two places where «.» is commonly used are:

❑ with the operator «//» in a relative path expression such as «.//A», which
(loosely speaking) selects all the descendant <A> elements of the context node.
The «.» is necessary here because if the expression started with «//» it would
select all descendants of the root node.

❑ On its own, to mean a node-set containing the context node only. This usually
arises in expressions such as «.=3» or «string-length(.)» where we want to
test the value of the context node, or in the XSLT instruction <xsl:value-of
select="."/>, which outputs the string-value of the context node to the result
tree.

Some people also like to use the «.» operator for clarity at the start of a relative path
expression such as «./TITLE», but in fact this is precisely equivalent to «TITLE» on its
own.

The «..» notation to refer to the parent is also found most commonly at the start of a
relative path expression, for example «../@name» selects the name attribute of the
parent of the context node. It is possible to use «..» anywhere in a path expression,
though the need rarely arises. For example, «//@width/..» selects all elements in the
document that have a width attribute. The same result could be achieved, perhaps
more naturally, by writing «//*[@width]».

Note that every node except the root node has a parent (so «/..» is always an empty
node-set; and «not(..)» is a simple way of testing whether the context node is the
root). As explained in Chapter 2, the element containing an attribute is considered to
be the parent of the attribute, even though the attribute is not a child of the element. So
you can select all elements containing an attribute named ID with an expression such
as «//@ID/..» (though «//*[@ID]» achieves the same thing and might be more
efficient). Unlike biological relationships, in XSL the "parent" and "child" relationships
are not the inverse of each other. The same applies to namespace nodes.

Examples in Context
XSLT Instruction Description

<xsl:value-of
select="."/>

Outputs the string-value of the context node.

<xsl:value-of
select="../@name"/>

Outputs the value of the name attribute of the
parent of the context node.

AbsoluteLocationPath
An AbsoluteLocationPath represents a location path starting at the root node.

Expression Syntax

AbsoluteLocationPath «/» RelativeLocationPath ? |
AbbreviatedAbsoluteLocationPath

Defined in
XPath section 2, rule 2.

Used in
LocationPath

Usage
The simplest AbsoluteLocationPath is «/», which selects the root node. More
specifically, when there are multiple input documents, it selects the root node of the
document that contains the context node. (So the term absolute is something of a
misnomer).

This syntax is familiar to anyone who has used UNIX filenames, though it is not
actually very logical. The symbol «/» is used both as an expression to refer to the root
node, and as an operator to separate the parts of a path. I find it helpful to think of an
AbsoluteLocationPath «/X» as an abbreviation for an imaginary expression «/X»,
and «/» as an abbreviation for «», where «» represents the document root node.

The AbbreviatedAbsoluteLocationPath, which takes the form «//X», is discussed in
its own section on page 4.

If you are writing a stylesheet that loads several source documents using the
document() function, there is no direct way of selecting the root of the principal source
document when the context node is in a different one. To solve this problem it is useful
to include in your stylesheet a global variable declaration of the form <xsl:variable
name="root" select="/"/>. You can then refer to the root of the principal document
at any time as «$root».

Examples
Expression Description

/ Selects the root node of the document containing the
context node.

/price-list Selects the document element, provided its name is
<price-list>.

/* Selects the document element, whatever its type.

/child::node() Selects all nodes that are immediate children of the
document root, that is the document element plus any
comments or processing instructions that come before or
after the document element. (However, note that the <?xml
version="1.0"?> at the start of a document is not a
processing instruction: in fact it is not a node at all, and is

not accessible using XPath.)

/*/xsl:* Selects all element nodes with names in the namespace
associated with the «xsl:» namespace prefix that are
immediate children of the document element. (If applied to
an XSLT stylesheet, this would select all the top-level XSL
elements).

//figure This AbbreviatedAbsoluteLocationPath selects all the
<figure> elements in the document.

AdditiveExpr
A non-trivial AdditiveExpr is used to add or subtract numeric values.

Expression Syntax
AdditiveExpr MultiplicativeExpr |

AdditiveExpr «+» MultiplicativeExpr |
AdditiveExpr «–» MultiplicativeExpr

Defined in
XPath section 3.5, rule 25.

Used in
RelationalExpr

Usage
A non-trivial AdditiveExpr consists of two or more MultiplicativeExpr operands
separated by the plus «+» or minus «–» operators. A trivial AdditiveExpr consists of a
single MultiplicativeExpr with no plus or minus operator.

When using the minus operator, take care that it does not get confused with a hyphen
within a name. If it immediately follows a name, use a space to separate it. Note that
«price–discount» (without spaces) is a single hyphenated name, whereas «price –
discount» (with spaces) performs a subtraction.

Numbers in XSLT are always double-length floating point, so the calculation is carried
out using floating point arithmetic, according to the rules of IEEE 754. See the
description of the number data type in Chapter 2, page Error! Cannot open file.

If an operand of the AdditiveExpr is not already a number, it is converted to a number
as if the number() function was used. If the value cannot be converted to an ordinary
number, it is converted to the special value NaN (Not-a-Number), and in this case the
result of the addition or subtraction will also be NaN.

Examples in Context

Expression Description

$X + 1 The result of adding 1 to the value of the variable $X.

last()–1 One less than the position of the last node in the context list.

@price –
@discount

The value of the price attribute of the context node,
converted to a number, minus the value of the discount
attribute of the context node, converted to a number.

count($list)
mod 5 + 1

The number of nodes in the node-set $list modulo 5, plus
one. The result will be a number in the range 1 to 5.
(For more on modulo, see page 45.)

42 The number 42 is a trivial AdditiveExpr, so it can be used
anywhere that an AdditiveExpr is allowed.

AndExpr
A non-trivial AndExpr is used to test whether two or more Boolean conditions are all
true.

Expression Syntax
AndExpr EqualityExpr |

AndExpr «and» EqualityExpr

Defined in
XPath section 3.4, rule 22.

Used in
OrExpr

Usage
A non-trivial AndExpr consists of one or more EqualityExpr operands separated by
the «and» operator. A trivial AndExpr consists of a single EqualityExpr with no «and»
operator.

An AndExpr is evaluated by evaluating each EqualityExpr in turn, from left to right,
and converting it to a Boolean value, until one is found that is false. As soon as one is
found that is false, evaluation stops and the expression returns false. If each
EqualityExpr is true, the final result is true.

The XPath specification is quite explicit about the order of evaluation;
however, since XPath expressions are free of side effects, it normally makes no
difference. The only case where it might affect the outcome is if an operand
invokes user-defined extension functions that have side-effects. However, since
the order of evaluation of a stylesheet is generally undefined anyway, writing
extension functions with side-effects is not good practice.

The rules for converting the value to a Boolean are the same as for the boolean()
function, described in Chapter 7, page Error! Cannot open file.. For example, a string
is false if it is zero-length, and a node-set is false if it is empty.

Examples
Expression Description
$x > 3 and $x < 8 True if the value of variable $x is greater than 3 and

less than 8.
@name and @address True if the context node has both a name and an

address attribute. (Both the operands are node-sets,
which are converted to the Boolean true if they
contain a node, and to false if they are empty).

string(@name) and
string(@address)

True if the context node has both a name and an
address attribute and if neither is a zero length
string. (Both the operands are strings, which are
converted to the Boolean true if their length is zero.
If an attribute is absent, the node-set will be empty,
and its string value will therefore be the empty
string.)

true() A trivial AndExpr consisting of a single function
call.

Argument
An Argument is used to represent the value supplied as input to a FunctionCall.

Expression Syntax
Argument Expr

Defined in
XPath section 3.2, rule 17.

Used in
FunctionCall

Usage
Any expression can be used as an argument to a function. The only reason for defining
a separate production rule for Argument is to make the rules easier to read.

Note that some expressions when used as arguments might look rather strange if you
are thinking in terms of conventional languages. For example «string-length(..)»
returns the length of the string-value of the parent of the context node, and

«document(@*,/)» returns a node-set containing the root nodes of the documents
whose relative URIs are contained in attributes of the context node, using the system
identifier of the root of the source document as the base URI for resolving these
relative URIs.

The XPath specification uses the term Arguments for the input to an XPath
FunctionCall, The term parameters has a different meaning – it is used in XSLT for
the values supplied to a template.

Examples in Context
Any expression can be used as an argument to a function call. Here are some examples
of function calls that exploit this flexibility:

Expression Description

count(@*) Returns the number of attributes on the context node.

id(string(@idref)) Returns a node-set containing the element (if there is
one) whose ID is equal to the value of the idref
attribute of the context node.

not(isbn) Returns true if the context node has no child element
node named <isbn>. The argument here is a
RelativeLocationPath and is equivalent to
«./child::isbn».

generate-id(/) Returns a string that uniquely identifies the root node
of the document containing the context node.

AxisName
An AxisName is used within a Step to identify a path to be followed from a given node
to other related nodes.

Expression Syntax
AxisName «ancestor» |

«ancestor-or-self» |
«attribute» |
«child» |
«descendant» |
«descendant-or-self» |
«following» |
«following-sibling» |
«namespace» |
«parent» |
«preceding» |
«preceding-sibling» |
«self»

Defined in
XPath section 2.2, rule 6.

Used in
AxisSpecifier

Usage
An axis is a path through the document tree, starting at a particular node (which I'll
call the origin) and following a particular relationship between nodes.

The various axis names have the following meaning:

Axis Description

ancestor Selects all the nodes that are ancestors of the starting node,
in reverse document order. The first node on the axis is the
parent of the origin node, the second is its grandparent, and
so on; the last node on the axis is the document root.

ancestor-or-
self

Selects the same nodes as the ancestor axis, but starting with
the origin node rather than with its parent.

attribute If the origin node is an element, this axis selects all its
attribute nodes, in some arbitrary order. Otherwise, it selects
nothing.

child Selects all the children of the origin node, in document
order. For any node except a root node or element node, this
selects nothing. Note that the children of an element node do
not include its attributes or namespace nodes, only the text
nodes, element nodes, processing instructions and
comments that make up its content.

descendant Selects all the children of the origin node, and their children,
and so on recursively. The resulting nodes are in document
order. If the origin is an element, this effectively means that
the descendant axis contains all the text nodes, element
nodes, comments and processing instructions that appear in
the original source document between that element's start
and end tags, in their original sequence.

descendant-or-
self

This is the same as the descendant axis, except that the first
node selected is the origin node itself.

following This selects all the nodes that appear after the origin node in
document order, excluding the descendants of the origin
node. If the origin is an element node, for example, this
effectively means that it contains all the text nodes, element
nodes, comments and processing instructions in the
document that start after the end tag of the origin element.
The following axis will never contain attribute or

namespace nodes.

following-
sibling

This selects all the nodes that follow the origin node in
document order, and that are children of the same parent
node. If the origin is a root node, an attribute node, or a
namespace node, then the following-sibling axis will always
be empty.

namespace If the origin node is an element, this axis selects all the
namespace nodes that are in scope for that element;
otherwise it is empty. The order of the namespace nodes is
undefined. The namespace nodes correspond to namespace
declarations (xmlns="x" or xmlns:y="z") on the element
itself or on one of its ancestor elements, but excluding any
namespace declaration that cannot be used on this element
because it is masked by another declaration of the same
namespace prefix.

parent This axis selects a single node, the parent of the origin node.
If the origin node is a root node, the parent axis is empty.

preceding This selects all the nodes that appear before the origin node,
excluding the ancestors of the origin node, in reverse
document order. If the origin is an element node, this
effectively means that it contains all the text nodes, element
nodes, comments and processing instructions in the
document that finish before the start tag of the origin
element. The preceding axis will never contain attribute or
namespace nodes.

preceding-
sibling

This selects all the nodes that precede the origin node, and
that are children of the same parent node, in reverse
document order. If the origin is a root node, an attribute
node, or a namespace node, then the preceding-sibling axis
will always be empty.

self This selects a single node, the origin node itself. This axis
will never be empty.

The various axes can also be shown diagrammatically. In each case in the table below
the diagram shows the origin node in dark shading, while the nodes on the axis are
numbered in the sequence they appear on the axis. The diagram does not show
attribute and namespace nodes, and the attribute and namespace axes are therefore
excluded from the table.

Axis Diagram

ancestor 2

1

ancestor-or-
self 3

2

1

child

1 2

descendant

1 3

4 5 62

descendant-
or-self

1

2 4

5 6 73

following

1 4

2 3

following-
sibling

1 2

parent 1

preceding

3

12

preceding-
sibling

1

self

1

For details of how axes are used in a location path, and examples, see Step on page 71.

Examples in Context
An Axis is always used as part of a Step within a location path. Here are some
examples.

Expression Description
ancestor::* Selects the ancestor elements of the context node.
child::node() Selects the children of the context node. This is

usually written in its abbreviated form, «node()».
attribute::color Selects the color attribute of the context node. This is

usually written in its abbreviated form, «@color». If
the context node is not an element, the result will be
empty.

namespace::* Selects all the namespace nodes that are in scope for
the context node. If the context node is not an

element, the result will be empty.

AxisSpecifier
An AxisSpecifier is either an axis name, or a shorthand abbreviation for an axis
name.

Expression Syntax
AxisSpecifier AxisName «::» |

AbbreviatedAxisSpecifier

Defined in
XPath section 2.1, rule 5.

Used in
Step

Usage
An AxisSpecifier is either an axis name followed by a double colon, or an
AbbreviatedAxisSpecifier. Since an AbbreviatedAxisSpecifier is either «@» or
nothing, this means that an AxisSpecifier can itself be empty, reflecting the fact that
in this context «X» is an abbreviation for «child::X».

An AxisSpecifier defines a direction of navigation through the document. Given a
start node in the document, an AxisSpecifier defines an ordered list of nodes that
can be visited in turn. Details of each axis are given in the section AxisName on page 14.

Examples
Expression Description
ancestor:: Specifies the ancestor axis.
preceding-sibling:: Specifies the preceding-sibling axis.
@ Specifies the attribute axis.
 Specifies the child axis. (Yes, the entry on the left is

blank!).

Digits
Digits is a sequence of decimal digits in the range 0 through 9. The sequence is used
as part of a number: either the whole number, or the part before the decimal point, or
the part after the decimal point.

Expression Syntax
Digits [0–9]+

This production rule is written as a regular expression and means that Digits is a
sequence of one or more characters, each in the range zero to nine. The square brackets
do not mean that the construct is optional, as in some other syntax notations: rather
they indicate a range of characters.

Defined in
XPath section 3.7(Lexical Structure), rule 31

Used in
Number

Usage
An instance of Digits is simply a sequence of one or more of the decimal digits zero
through nine.

As Number is a lexical token, it cannot contain embedded whitespace; therefore Digits
cannot contain whitespace either.

Examples in Context
Expression Description

89 This Number consists of a single sequence of digits, that is, one
instance of Digits.

3.14159 This Number contains two sequences of digits, that is two
instances of Digits. The first instance of Digits is «3», the second
instance of Digits is «14159».

EqualityExpr
A non-trivial EqualityExpr is used to determine whether two values are equal, or not
equal.

Note: for the other comparison operators «<», «<=», «>», and «>=», see
RelationalExpr on page 67.

Expression Syntax
EqualityExpr RelationalExpr |

EqualityExpr «=» RelationalExpr |
EqualityExpr «!=» RelationalExpr

Defined in

XPath section 3.4, rule 23.

Used in
AndExpr

Usage
A non-trivial EqualityExpr consists of one or more RelationalExpr operands
separated by «=» (equals) or «!=» (not equals) operators. A trivial EqualityExpr
consists of a single RelationalExpr without any «=» or «!=» operator.

The result of an equals (or not-equals) test is always a Boolean value true or false.
However, there are many situations where the result of the expression is not obvious,
so I'll explain the different cases in some detail.

The harmless looking «=» operator holds many surprises in XPath, so it is well worth
studying the rules carefully, even if they seem complicated. Just to warn you of the
dangers that lie in wait for the unwary, here are some particular elephant traps:

❑ You can't assume that «$X=$X» is true. It usually will be, but if «$X» is an
empty node-set, it will be false

❑ You can't assume that «$X!=3» means the same as «not($X=3)». When «$X» is
a node-set, the first expression is true if any node in the node-set is not equal to
3, while the second is true if no node in the node-set is equal to 3.

❑ You can't assume that if «$X=$Y and $Y=$Z», then «$X=$Z». Again, node-sets
are the culprit. Two node-sets are considered equal if there is a value that both
have in common, so {2, 3} = {3, 4} is true, and {3, 4} = {4, 5} is true, but {2, 3} =
{4, 5} is false.

In this strange Orwellian world where some values seem to be more equal than others,
the one consolation is that you can assume that «$X=$Y» always means the same as
«$Y=$X».

The left-hand operand of an EqualityExpr may be another EqualityExpr. This means
that the expression «$A = $B = $C» is legal. However, it isn't particularly useful, and
probably doesn't have the expected effect. It means the same as «($A=$B)=$C», and
tests whether the value of $C, when converted to a Boolean, is the same as the result of
comparing $A and $B. This means, for example, that «2=1=0» is true, because «2=1» is
false, and 0 when converted to a Boolean is false, and «2=1» therefore equals
«boolean(0)».

Comparing Simple Values
First, consider the case where both operands are simple values: Booleans, numbers, or
strings. If the two values are of different type, then:

❑ if one is a Boolean, the other is converted to a Boolean, and they are compared
as Booleans

❑ otherwise, if one is a number, the other is converted to a number, and they are
compared as numbers

❑ otherwise, they are compared as strings.

The effect of these rules is summarized in the following table:

«=» Boolean Number String

Boolean True if both
operands are
true or if both
are false.
False if one
operand is
true and the
other is false.

True if the
Boolean is true
and the
number is not
zero and not
NaN; or if the
Boolean is
false and the
number is zero
or NaN

True if the
Boolean is true
and the string is
not empty, or if
the Boolean is
false and the
string is empty.

Number True if the
Boolean is
true and the
number is
not zero and
not NaN; or
if the Boolean
is false and
the number is
zero or NaN.

True only if
the two
operands are
numerically
equal as
defined in
IEEE 754.

True only if the
string, when
converted to a
number using the
rules for the
number()
function, is
numerically
equal to the
number as
defined in IEEE
754.

String True if the
Boolean is
true and the
string is not
empty, or if
the Boolean
is false and
the string is
empty.

True only if
the string,
when
converted to a
number using
the rules for
the number()
function, is
numerically
equal to the
number as
defined in
IEEE 754.

True only if the
two operands
contain the same
sequence of
Unicode
characters.

See Chapter 2, page Error! Cannot open file. for details of how IEEE 754 defines
numerical equality. For example, positive zero and negative zero are considered equal,
but NaN and NaN are considered unequal.

For simple values (including special numeric values such as NaN), the result of
applying the «!=» (not equals) operator is always the opposite of applying the «=»
operator: if the result of an «=» test is true, the result of «!=» will be false, and vice
versa.

Comparisons Involving Node-sets
Now consider the case where at least one operand is a node-set. (And remember that
an expression as innocent as «TITLE» or «@HREF» is actually a node-set, even if it only
contains a single node.) The result of an «=» or «!=» test is now as shown in the table
below. Given that one operand is a node-set (it doesn't matter which), choose the row
according to the data type of the other operand.

Data Type of Other
Operand

= (equals) != (not equals)

Boolean True if the Boolean is
true and the node-set
contains at least one
node; or if the
Boolean is false and
the node-set is empty.

True if the Boolean is
true and the node-set
is empty; or if the
Boolean is false and
the node-set contains
at least one node.

Number True if the node-set
contains a node
whose string-value,
after converting to a
number using the
number() function, is
numerically equal to
the number operand
as defined in IEEE
754.

True if the node-set
contains a node
whose string-value,
after converting to a
number using the
number() function, is
numerically not equal
to the number
operand as defined in
IEEE 754.

string True if the node-set
contains a node
whose string-value is
equal to the string
operand.

True if the node-set
contains a node
whose string-value is
not equal to the string
operand.

Node-set True if there is a pair
of nodes, one from
each node-set, that
have the same string-
value.

Note that this means
that if either or both
node-sets are empty,
the result is always

True if there is a pair
of nodes, one from
each node-set, that
have different string-
values.

Note that this means
that if either or both
node-sets are empty,
the result is always

false.

If there is a node that
is present in both
node-sets, the result
will always be true.

false.

It also means that if
either node-set
contains more than
one node, then unless
the nodes all have the
same string-value the
result will always be
true.

So where a node-set «$N» is compared with a string «'mary'», the test «$N='mary'» is
effectively a shorthand for "if there is a node n in $N such that string-value(n) =
'mary'". Similarly, the test «$N!='mary'» is effectively a shorthand for "if there is a
node n in $N such that string-value(n) != 'mary'". If $N contains two nodes, whose
string-values are "mary" and "john", then «$N='mary'» and «$N!='mary'» will both be
true, because there is a node that is equal to 'mary' and another that is not. If $N is an
empty node-set, then «$N='mary'» and «$N!='mary'» will both be false, because there
is no node that is equal to 'mary', but there is also no node that is not equal to 'mary'.

Note that when we talk about the nodes in a node-set, we are only concerned with the
nodes that are members of the node-set in their own right. The children of these nodes
are not members of the node-set.

Example: Node-set Comparisons

For example, consider the following piece of XML:

<booklist>

 <book><author>Adam</author><title>Penguins</title></book>

 <book><author>Betty</author><title>Giraffes</title></book>

</booklist>

Suppose we create a variable whose value is the node-set containing all <book>
elements, as follows:

<xsl:variable name="all-books" select="//book"/>

And now suppose we do the following test:

<xsl:if test="$all-books = 'Adam'"/>

The result is false, because the node-set $all-books contains two <book> nodes,
and neither has a string-value of "Adam". The first <book> element has the string-
value "AdamPenguins", and the second has the string-value "BettyGiraffes".
The fact that one of them has a child whose string-value is "Adam" is of no
consequence: the child is not a member of the node-set.

The string-value of a node depends on the type of node. For a text node, it is
the actual characters in the value. For an element node, it is the concatenation
of the text in all text nodes that are descendants of the element. For an
attribute node, it is the value of the attribute. See Chapter 2 for the detailed
rules.

An interesting consequence of the rules for comparing node-sets is that if $N is an
empty node-set, the result of the test «$N=$N» is false, because there is no node in the
first node-set whose string-value is equal to that of a node in the second node-set.

It is very easy to trip up on these rules, by assuming for example that <xsl:if
test="@name != 'James'"> means the same as <xsl:if test="not(@name =
'James')">. It doesn't: if there is no name attribute, the first test is false, while the
second is true.

Generally speaking, it is best to steer clear of the «!=» operator unless you know
exactly what you are doing. Use «not(x=y)» instead: it is more likely to match the
intuitive meaning.

One situation where «!=» can be useful with node-sets, however, is to test whether all
values in a node-set have the same value. For example, writing <xsl:if
test="not($documents//version!=1.0)"> tests whether there is any node in the
node-set «$documents//version» whose numeric value is not 1.0.

It is important to remember that an equality test compares the string values of the
nodes, not their identity. For example, «..=/» might seem to be a natural way of
testing whether the parent of the context node is the root. In fact this test will also
return true if the parent node is the document element, because in a well-formed tree
the string-value of the document element is the same as the string-value of the root. So,
not only is the test wrong, it could also be very expensive: the string-value of the root
contains all the text in the document, so you might be constructing two strings each a
million characters long and then comparing them.

A better way to test if the parent node is the root is to write «..[not(..)]»: this is true
only for a node that has a parent and no grandparent. Another possibility, which can
be used to compare any single-member node-sets, is «generate-id(..)=generate-
id(/)». This relies on the generate-id() function, described in Chapter 7, page Error!
Cannot open file., which returns a string that uniquely identifies a node.

Comparisons Involving Result Tree Fragments
Result tree fragments are not technically part of the XPath specification; rather, they
are an extension to XPath defined in XSLT itself. However, it is convenient to treat
them here as an intrinsic part of the language.

A result tree fragment is a tree, just like the source document tree: it always has a root,
and may have any of the other kinds of nodes that are found on the source document
tree. The structure follows the XPath tree model described in Chapter 2. A result tree
fragment always arises as a result of an <xsl:variable> or <xsl:param> element with

no select attribute. One difference from the source document tree is that the source
tree usually represents a well-formed XML document, whose root node has a single
element child and no text node children, whereas a result tree fragment only has to be
well-balanced: the root may have any number of element nodes and text nodes as its
children.

Example: A Result Tree Fragment

The <xsl:variable> element below creates a result tree fragment:

<xsl:variable name="rtf">A <emph>very</emph> important person</xsl:variable>

A result tree fragment has an equivalent node-set, which always consists of a
single root node. The node-set in this example is a root node with three child
nodes: a text node for "A♦" (where ♦ represents a space character), an <emph>
element node, and a text node for "♦important♦person". These three child
nodes are children of the root node, but they are not themselves members of the
equivalent node-set: the equivalent node-set contains only one node, namely the
root. The equivalent node-set will always contain a single node. It can never be
empty, because the value of an <xsl:variable> element that is empty is not a
result tree fragment; it is a zero-length string. It can, however, consist of a root
node with no children; and as we can see in this example, it does not have to be
a well-formed XML document.

The string value of the root node is the concatenation of all the text nodes in the
result tree fragment; and the string-value of the tree is the same as the string-
value of its root node. So the string-value of this example result tree fragment is
"A♦very♦important♦person".

Where one of the operands of the «=» or «!=» comparison is a result tree fragment, it is
treated as if the comparison was done with the equivalent node-set. So the result of the
comparison will be as follows:

 = (equals) != (not equals)

Boolean True if the Boolean is
true, false if it is false;
the value of the result
tree fragment is
immaterial, because it
always contains a node.

True if the Boolean is
false, false if it is true;
the value of the result
tree fragment is
immaterial, because it
always contains a
node.

Number True if the string-value
of the result tree
fragment, after
converting to a number

True if the string-
value of the result
tree fragment, after
converting to a

using the number()
function, is numerically
equal to the number
operand as defined in
IEEE 754.

number using the
number() function, is
numerically not equal
to the number
operand as defined in
IEEE 754.

String True if the string-value
of the result tree
fragment is equal to the
string operand.

True if the string-
value of the result
tree fragment is not
equal to the string
operand.

Node-set True if the node-set
contains a node whose
string-value is equal to
the string-value of the
result tree fragment.

True if the node-set
contains a node
whose string-value is
not equal to the
string-value of the
result tree fragment.

These rules actually mean that for all practical purposes, a result tree fragment variable
defined as:

<xsl:variable name="city">Johannesburg</xsl:variable>

behaves in exactly the same way as the string variable:

<xsl:variable name="city" select="'Johannesburg'"/>

Examples
Expression Description
@width = 3 Tests whether the width attribute of the context node, after

converting to a number, has the numeric value 3. The result
will be true if the width attribute is say «3» or «3.00». It will
be false if there is no width attribute.

@width = @height Tests whether the width attribute and the height attribute of
the context node have the same string value. If width is «3»
and height is «3.00», the result will be false. It will also be
false if either or both attributes are absent. If you want a
numeric comparison, use the number() function (described
in Chapter 7, page Error! Cannot open file.) to force a
conversion.

@width != $x If the variable $x holds a numeric value, a numeric
comparison is performed; if it holds a string value or a result
tree fragment, a string comparison is performed. The result
will be true if the values are different. It will be false if there
is no width attribute.

If $x holds a node-set, the result will be true if there is any
node in the node-set whose string-value is equal to the
width attribute, using string comparison; it will be false if
the node-set is empty or of there is no width attribute.

Expr
Expr is the top-level production rule, representing an XPath expression.

Expression Syntax
Expr OrExpr

Defined in
XPath section 3.1, rule 14.

Used in
Expr is the top-level rule for the syntax of an XPath expression.

A nested Expr is also used in the production rules for Argument, PrimaryExpr, and
PredicateExpr.

Within an XSLT stylesheet, XPath expressions are used in the following contexts:

Context Result data type

Attribute value templates. The expression is
written between curly braces «{» and «}» in
any attribute where attribute value templates
are permitted. A list of these attributes is
included in Chapter 3, page Error! Cannot
open file..

string

<xsl:apply-templates select=""> node-set
<xsl:copy-of select=""> node-set
<xsl:for-each select=""> node-set
<xsl:if test=""> Boolean
<xsl:key use=""> node-set or string
<xsl:number value=""> number
<xsl:param select=""> Any
<xsl:sort select=""> string
<xsl:value-of select=""> string
<xsl:variable select=""> Any
<xsl:when test=""> Boolean

<xsl:with-param select=""> Any

Usage
Expr (short for Expression) is the top-level construct in the production rules defined in
this chapter. What the syntax rule says is that every Expr is an OrExpr (and vice versa,
every OrExpr is an Expr). So it merely delegates the rules to OrExpr. The construct
OrExpr is described on page 56.

The designers of XPath chose to specify the syntax of the language in such a way that
the precedence of the various operators is inherent in the production rules. So this rule
also tells us that «or» is the lowest-precedence operator. The production rule for
OrExpr defines it in terms of AndExpr, which tells us that «and» is a higher precedence
operator than «or», and so on: A consequence of this style of definition is that an
OrExpr does not necessarily contain an «or» operator; it is merely an expression that
occurs in a context where an «or» operator would be recognized.

In XSLT, expressions (that is, sentences conforming to the production rule for Expr)
occur within stylesheets, and the stylesheet context imposes rules on the Expr that are
not inherent in the XPath syntax. These include data type rules (for example, certain
stylesheet contexts require a node-set, as described in the table above), «»and also
rules about the scope of variables and the assignment of namespace prefixes. For
example, «2+2» is a perfectly valid XPath expression, but if you try to write <xsl:for-
each select="2+2"/> the XSLT processor will report an error, telling you that a node-
set is required in this context.

The stylesheet context imposes constraints on the syntactic validity of the expression,
and also provides a run-time context when the time comes to evaluate the expression.
So we can consider the context of the expression in two parts, a static part and a
dynamic part.

The static context of the expression, which can be determined merely by examining the
stylesheet, includes:

❑ The list of variable names that are in scope at the point where the expression
appears.

❑ The list of namespace prefixes that are in scope at the point where the
expression appears, and the corresponding namespace URI for each one. This
affects the validity of any QName (loosely, a namespace-qualified name)
occurring in the expression, as described in the section QName on page 65.

❑ The required data type (for example <xsl:if> requires a Boolean, <xsl:for-
each> requires a node-set, and an expression contained within an attribute
value template evaluates to a string).

❑ The set of extension functions (user- or vendor-defined external functions) that
is available in the current stylesheet context.

❑ The URI of the stylesheet containing the expression: or more specifically, the
URI of the actual XML entity containing the element in which the expression
appears (the stylesheet may consist of several separate entities, linked either

using <xsl:include> and <xsl:import>, or using XML external general entity
references). This URI is in fact needed for one purpose only, to provide a base
URI for resolving a relative URI used in the document() function, which is
described in Chapter 7.

The dynamic context of the expression, which can only be established while the
stylesheet is being used to process a specific source document, includes:

❑ The current values of all variables that are referenced in the expression.

❑ The context node, context position, and context size, which together identify
the set of nodes in the source document that the stylesheet is currently
processing. These important concepts were explained in Chapter 2.

The XSLT processor may also need information about the static context at run-time.
For example, certain functions (such as system-property() and key()) can generate a
QName (a name potentially in the form «prefix:localname») as a result of an
expression, and just like a QName written directly in the expression, any namespace
prefixes this uses must be in scope.

As explained in Chapter 1, page Error! Cannot open file., it's a general principle of
XPath that expression evaluation is free of side effects: evaluating an expression isn't
going to change the values of any variables, write information to log files, or prompt
the user for their credit card number. Therefore evaluating the same expression more
than once, in the same context, shouldn't make any difference to the answer or to the
final output, and equally it shouldn't make any difference in which order expressions
are evaluated. As a result, the XSLT and XPath specifications generally say nothing
about order of evaluation. The only exceptions are OrExpr and AndExpr, where left-to-
right evaluation is explicitly mandated.

The only way side-effects can occur from evaluating an expression is if the expression
calls user-written (or vendor-written) extension functions, because the XPath
specification doesn't constrain what an extension function can do.

Examples
Examples of expressions occur throughout this chapter. Here is a selection, brought
together to indicate the variety of constructs that fall under this heading:

Expression Description
$x + ($y * 2) Returns the result of multiplying $y by two

and adding the value of $x.
//book | //magazine Returns a node-set containing all the <book>

and <magazine> elements in the same
document as the context node.

substring-before(author, ' ') Finds the string-value of the first <author>
child of the context node, and returns that
part of the string-value that precedes the
first space character.

chapter and verse Returns the Boolean value true if the context
node has a child <chapter> element and
also a child <verse> element.

93.7 Returns the numeric value 93.7.

ExprToken
An ExprToken is a lexical unit of the XPath expression language. ExprToken defines
the lexical rules for separating tokens using whitespace; it is not itself a syntactic unit
used in any other production rule.

Expression Syntax
ExprToken «(» | «)» | «[» | «]» |

«.» | «..» | «@» |
«,» | «::» |
NameTest |
NodeType |
Operator |
FunctionName |
AxisName |
Literal |
Number |
VariableReference

Defined in
XPath section 3.7 (Lexical Structure), rule 28.

Used in
The production rule is the top-level lexical rule, it is not referenced from anywhere
else.

Usage
The production rule defines those constructs in the language that are regarded as
lexical tokens. If a construct is a lexical token, it is indivisible: its components must be
contiguous and cannot be separated by whitespace. Higher-level constructs consist of a
sequence of lexical tokens and are allowed to contain whitespace to separate the
tokens. So for example, the expression «child::xsl:*» contains three tokens,
«child», «::», and «xsl:*». Spaces and newlines can be used between these tokens,
but not within them. This means the expression can contain optional whitespace at all
the points marked here with a diamond: «♦child♦::♦xsl:*♦».

The spec doesn't explicitly say so, but by implication, whitespace cannot be
freely used in the middle of an ExprToken: except, of course, within a
Literal. This means, for example, that there can be no space between the two
colons in «child::node()», because «::» is a single token.

Whitespace itself is defined by the ExprWhitespace rule.

Examples
Here are some examples of ExprTokens. No whitespace is permitted within the token,
except in the case of a Literal.

Token Description
[A punctuation symbol used as part of a Predicate.
item An NCName.
my-namespace:*

A NameTest. No spaces are permitted before or after
the colon.

$weekly-sales-total A VariableReference. No spaces are permitted after
the «$» sign.

93.7 A Number.
"a pinch of salt" A Literal. Any whitespace occurring within the

Literal is significant, it is part of the string value.

ExprWhitespace
The ExprWhitespace rule defines precisely what constitutes whitespace within an
XPath expression.

Expression Syntax
ExprWhitespace S

S (#x20 | #x9 | #xD | #xA)+

Defined in
XPath section 3.7, rule 39.
The rule for S is from the XML Recommendation.

Used in
This production rule is not actually referenced from any other. It is used only in the
narrative text of the XPath specification.

Usage
The definition of whitespace is taken directly from the XML standard: whitespace is
any sequence of space, tab, carriage return, and linefeed characters.

XPath allows whitespace to be used before or after any ExprToken: see the section
ExprToken above for a list of constructs that are considered to be lexical tokens and
that may therefore not contain any embedded whitespace. It is not intuitively obvious

which composite symbols in XPath are tokens and which are not; for example
«self::x» consists of three tokens (so spaces can appear before or after the double
colon, but not between the two colons), while «xsl:*» is a single token, with no
embedded whitespace allowed anywhere. This is because «xsl:*» is a NameTest, and
NameTest is one of the constructs listed in the production rule for ExprToken.

The lexical rules for XPath say that any token swallows as many characters as it can: if
a character can be treated as part of the previous token, then it is treated as such, even
if this causes a syntax error later on. This means it is necessary in some circumstances
to insert whitespace to separate tokens; the most common example being the need to
use a space before a minus sign to distinguish an arithmetic expression such as «price
– discount» from the hyphenated name «price-discount». Whitespace is also
required, of course, to separate names from the operators «or», «and», «div», and
«mod».

Although it is common practice to write XPath expressions on a single line, because
this is how XML attributes are normally written, there is nothing to stop whitespace
characters such as tab and newline being used as an alternative to spaces.

Examples
Expression Description

 The box on the left shows what whitespace usually looks like.

 If you really want to see your whitespace characters, you can write
them like this.

FilterExpr
A FilterExpr is used to apply one or more Predicates to a node-set, selecting a
subset of those nodes that satisfy some condition.

Expression Syntax
FilterExpr PrimaryExpr |

FilterExpr Predicate

Defined in
XPath section 3.3, rule 20.

Used in
PathExpr

Usage
A non-trivial FilterExpr consists of a PrimaryExpr whose value is a node-set,
followed by one or more Predicates that select a subset of the nodes in the node-set.
Each predicate consists of an expression enclosed in square brackets, for example

«[@name='London']» or «[position()=1]»

The way the syntax is defined, every PrimaryExpr is also a trivial FilterExpr,
including simple expressions such as «23», «'Washington'», and «true()».

If there are any Predicates, the value of the PrimaryExpr must be a node-set. Each of
the predicates is applied to the node-set in turn; only those nodes in the node-set for
which the predicate is true pass through to the next stage. The final result consists of
those nodes in the original node-set that satisfy each of the predicates.

A predicate may be either a numeric predicate (for example «[1]» or «[last()–1]»),
or a Boolean predicate (for example «[count(*) > 5]» or «[@name and
@address]»). If the value of the expression is a number, it is treated as a numeric
predicate; otherwise it is converted if necessary to a Boolean (using the boolean()
function), and is treated as a Boolean predicate. A numeric predicate whose value is N
is equivalent to the Boolean predicate «[position()=N]». So, for example, the numeric
predicate «[1]» means «[position()=1]», and the numeric predicate «[last()]»
means «[position()=last()]».

It's important to remember that this implicit testing of position() happens only when
the predicate expression actually evaluates to a number. For example, «$paras[1 or
last()]» does not mean «$paras[position()=1 or position()=last()]», because
the result of evaluating «1 or last()» is a Boolean, not a number (and as it happens,
it will always be true). Similarly, «book[../@book-nr]» does not mean
«book[position()=../@book-nr]», because the result of «../@book-nr» is a node-
set, not a number.

As discussed in Chapter 2, every XPath expression is evaluated in some context. For an
expression used as a predicate, the context is different from the context of the
containing expression. While evaluating each predicate, the context is established as
follows:

❑ The context node (the node referenced as «.») is the node being tested.

❑ The context position (the value of the position() function) is the position of
that node within the set of nodes surviving from the previous stage, taken in
document order.

❑ The context size is the number of nodes surviving from the previous stage.

To see how this works, consider the FilterExpr «$headings [self::h1] [last()]
». This starts with the node-set that is the value of the variable «$headings» (it is an
error if this value is not a node-set). The first predicate is «[self::h1]». This is
applied to each node in «$headings» in turn. While it is being applied, the context
node is that particular node. The expression «self::h1» is a RelativeLocationPath
consisting of a single Step: it selects a node-set. If the context node is an <h1> element
this node-set will contain a single node – the context node. Otherwise, the node-set will
be empty. When this node-set is converted to a Boolean, it will be true if it contains a
node, and false if it is empty. So the first predicate is actually filtering through those
nodes in «$headings» that are <h1> elements.

The second predicate is now applied to each node in this set of <h1> elements. In each
case the predicate «[last()]» returns the same value: a number indicating how many
<h1> elements there are in the set. As this is a numeric predicate, a node passes the test
when «[position()=last()]», that is, when the position of the node in the set (taken
in document order) is equal to the number of nodes in the set. So the meaning of
«$headings [self::h1] [last()] » is "the last <h1> element in the node-set
$headings, taking the nodes in document order".

Note that this isn't the same as «$headings [last()] [self::h1] », which means
"the node-set containing the last node in $headings, provided it is an <h1> element".

The operation of a Predicate in a FilterExpr is very similar to the application of a
Predicate to a Step in a LocationPath, and although they are not directly related in
the XPath grammar rules, you can often use Predicates without being fully aware
that you are using a FilterExpr or a LocationPath. For example, «$para[1]» is a
FilterExpr, while «para[1]» is a RelativeLocationPath consisting of a single Step.
The main differences to watch out for are firstly, that in a LocationPath the predicates
apply only to the most recent Step (for example in «book/author[1]» the «[1]»
means the first author within each book) and secondly, that in a FilterExpr the nodes
are always considered in document order (whereas in a Step they can be in forwards
or reverse document order depending on the direction of the axis).

Examples
Expression Description
$paragraphs This FilterExpr comprises a single

VariableReference. It is not necessarily a
node-set.

$paragraphs[23] This FilterExpr consists of a
VariableReference filtered by a Predicate. It
selects the 23rd node in the node-set that is the
value of variable $paragraphs, taking them in
document order.

document('lookup.xml') This FilterExpr comprises a single
FunctionCall. It selects the root node of the
document identified by the URI lookup.xml.

key('empname', 'John
Smith')[@loc='Sydney']

This FilterExpr comprises a FunctionCall
filtered by a Predicate. Assuming that the key
«empname» has been defined in the obvious way,
it selects all employees named John Smith who
are located in Sydney.

(//section|//subsection)
[title='Introduction']

This FilterExpr consists of a parenthesized
UnionExpr filtered by a Predicate. It selects all
<section> and <subsection> elements that
have a child <title> element with the content
«Introduction».

document(//@href)
[pricelist][1]

This FilterExpr first selects all documents
referenced by URLs contained in href attributes

anywhere in the source document; from this set
of documents it selects those whose outermost
element is named <pricelist>, and from these
it selects the first. The order of nodes that are in
different documents is not defined, so if there
are several price lists referenced, it is
unpredictable which will be selected.

FunctionCall
A FunctionCall invokes either a system-defined function or a vendor- or user-
supplied extension function.

Expression Syntax
FunctionCall FunctionName «(»

 (Argument («,» Argument)*)?
«)»

Defined in
XPath section 3.2, rule 16.

Used in
PrimaryExpr

Usage
There are two kinds of function call: calls on the standard functions listed in Chapter 7,
which will be present in every conforming XSLT product, and calls on extension
functions which may be supplied either by the product vendor or by the user. The two
kinds can be readily distinguished, because in a call on a standard function, the
function name will always be a simple name with no colon, while the name of an
extension function will always be in some non-default namespace and will therefore be
recognizable by having a name of the form «prefix:localname». The prefix must
refer to a namespace declaration that is in scope for the expression containing this
function call.

Technically there are two kinds of standard function, core functions which are defined
in the XPath specification itself, and additional functions which are defined in the
XSLT specification. If you are only using XPath in the context of XSLT stylesheets,
however, the difference is of no importance.

A FunctionCall with no arguments takes the form FunctionName «(» «)», while in a
call with arguments, the arguments are separated by commas in the usual way. The
arguments themselves can be any XPath expression, subject to any type-checking rules
or other constraints defined for the particular function in question. This includes
expressions such as «/», «.» or «@*», which are not found in conventional
programming languages.

A FunctionCall has very similar syntax to a NodeTest such as «node()» or
«comment()», but is distinguished simply by use of a set of reserved names for the
different node types.

The XSLT standard does not define how extension functions are implemented, and in
general this will be different for each vendor's product. If you write an extension
function that works with xt, for example, the chances are it will not work with Saxon,
and vice-versa. The way that extension functions are written for some popular XSLT
implementations is described in Chapter 10.

A FunctionCall always returns a result. This may be a value of any of the five data
types: Boolean, number, string, node-set, or result tree fragment (though none of the
system-defined functions actually does return a result tree fragment).

There is nothing to say that the same function will always return the same type of
result: for example the system-property() function sometimes returns a string and
sometimes a number. The specification also states that vendors may allow extension
functions to return values of additional data types beyond the standard five, though in
this case the only thing the stylesheet can do with the result is to assign the result to a
variable or pass it as an argument to another extension function. Several vendors allow
extension functions to return an arbitrary Java object, which is a useful way of
allowing one extension function to pass data to another.

Many of the standard functions take a fixed number of arguments. In some, an
argument is optional (usually defaulting to a node-set containing the context node).
The concat() function, which concatenates strings, is exceptional in that the number
of arguments is open-ended.

In the case of standard functions, the supplied values will always be converted to the
required types if conversion is necessary. The XPath standard also implies that such
conversion will happen for extension functions, but it would be unwise to rely on this,
particularly if extension functions are defined in a typeless language such as
JavaScript.

None of the standard functions have side-effects: they don't change the values of
variables, they don't produce any output, and they don't change any settings in the
browser or the operating system. There is nothing to stop an extension function from
having side-effects; for example, an extension function could print a message or
increment a counter, or even do something more radical such as modify the source
document or the stylesheet itself. However, extension functions with side-effects are
likely to be rather unpredictable, since there is nothing to say in which order things
happen. For example, you can't assume that global variables are evaluated in any
particular order or that they are evaluated only once; and a global variable that is
never accessed might never be evaluated at all.

Calling a function that is not available is an error. However, it is not necessarily an
error for a stylesheet to contain an expression that references a function that is not
available. You can test whether a particular function is available using the system
function function-available(), and use the result to avoid calling functions that are
not provided. The function-available() mechanism works both for extension

functions and for system functions: this will be useful as the standard matures, because
if new functions are added in version 1.1 of XSLT, you may want to write stylesheets
that still work with products that only implement version 1.0.

Examples
Expression Description
true() A call on a standard function that always

returns the Boolean value true.
string-length($x) A call on a standard function that converts the

argument to a string, and returns the number of
characters it contains.

count(*) A call on a standard function that evaluates the
node-set «*» (the set of all element children of
the context node) and returns a number
indicating how many nodes there are in this
node-set.

xt:intersection($x, $y) A call on an extension function. It is identified
as an extension function by the presence of a
prefix «xt:» which must correspond to a
namespace declaration that is in scope. The
rules for locating an implementation of this
extension function are implementer-defined.

function-available
'xt:intersection')

A call on the standard function named
function-available, which tests whether the
extension function named «xt:intersection»
is available for use. Note that a positive
response doesn't mean that a call on this
function will necessarily succeed: for example
there is no way of asking how many arguments
are expected.

FunctionName
A FunctionName can be any valid name other than a name reserved for a node type.

Expression Syntax
FunctionName QName – NodeType

The "–" sign in this production rule means "but not a": in other words, a FunctionName
may be any name other than one used for a NodeType. In practice the choice is a lot
more limited than this, since names in the default namespace (names with no colon)
can be used only for standard functions, of which there is a fixed list defined in the
XPath and XSLT specifications.

Defined in

XPath section 3.7 (Lexical Structure), rule 35.

Used in
PrimaryExpr

Usage
Syntactically, a function name can be any name other than one of the four NodeType
names «comment», «text», «processing-instruction», or «node». A function name
is recognised in the syntax as a name that is followed by a left parenthesis.

The only function names with no namespace prefix are the system-defined functions
listed in Chapter 7. User-defined (or vendor-defined) extension functions will always
include a namespace prefix. The prefix is interpreted using the namespace definitions
in scope for the stylesheet element containing the expression in which the function
name appears.

Examples
Expression Definition
concat
string-length
namespace-uri

These are system function names.

sxf:intersection
xt:node-set
irs:get-tax-rate

These are extension function names.

Literal
A Literal represents a constant string.

Defined in
XPath section 3.7 (Lexical Structure), rule 29.

Syntax
Expression Syntax
Literal «"» [^"]* «"» |

«'» [^']* «'»

Unless you are familiar with regular expressions you may find this production rule
difficult to read, but what it is saying is actually quite simple: a Literal is either a
sequence of any characters other than double-quotes, enclosed between double-quotes,
or a sequence of any characters other than single-quotes, enclosed between single-
quotes.

A Literal is a lexical token. Whitespace within a Literal is allowed, and is

significant (whitespace characters are part of the value). Some care is needed when
using tab, carriage-return, and newline characters within a literal, because the XML
parser is required to replace these by space characters before the XPath expression
parser ever gets to see them. Use character references such as «	», «
», and
«» to prevent this.

Used in
PrimaryExpr
NodeTest

The appearance of Literal within the syntax rules for NodeTest is for testing the
name of a processing instruction: for details of this anomaly, see NodeTest.

Usage
A literal represents a constant string value (note that unlike some other languages,
numeric constants are not regarded as literals). It is written enclosed in either single
quotes or double quotes; if single quotes are used, there must be no single-quote
within the string, while if double-quotes are used, there must be no double-quotes
within the string.

It is not possible for a literal to contain both single quotes and double quotes; if such a
string is required, use the system function concat(), described in Chapter 7, page
Error! Cannot open file.. Using character entities or entity references doesn't solve the
problem, because these are expanded by the XML parser before the XPath parser gets
to see them.

In practice the ability to use single and double quotes is further constrained by the fact
that in an XSLT context, XPath expressions are always written within XML attributes
in the stylesheet. If the XML attribute is written with single quotes, the XPath literal
must be in double quotes, and it cannot contain a single quote because that would
terminate the attribute value; equally, if the XML attribute is in double quotes, the
XPath literal must be in single quotes, and it cannot contain a double quote for the
same reasons.

The best way round this problem is to avoid it by using variables defined as result tree
fragments in place of the literal. For example, rather than trying to write the expression
«message[text="I won't"]», declare a variable as follows:

<xsl:variable name="msg-text">I won't</xsl:variable>

and write the expression as «message[text=$msg-text]»

Where a literal is used as the entire value of an XPath expression, two pairs of quotes
are needed, for example:

<xsl:variable name="html-dialect" select="'netscape'"/>

If the extra quotes are omitted, «netscape» is assumed to be a node-set expression that
finds all <netscape> element children of the context node. This means you won't get a

sensible error message when you make this mistake, instead it will probably just lead
to your stylesheet producing incorrect results. It's probably clearer to write:

<xsl:variable name="html-dialect">netscape</xsl:variable>

Although technically this isn't quite the same thing (because the value is now a result
tree fragment rather than a string), in practice the result tree fragment can be used
anywhere the string could be used, with the same meaning. (The only possible
exception is user-defined extension functions, which are free to treat them differently if
they choose).

Examples
The following are examples of literals allowed in XPath:

'London'
"Los Angeles"
"O'Reilly"
'Never say "never"'

Note that the last two examples are fine as far as XPath is concerned, but to write them
in an XSLT stylesheet it will be necessary to use XML character or entity references for
either the single quotes or the double quotes: whichever kind is used for delimiting the
surrounding XML attribute. For example:

<xsl:value-of select='"O'Reilly"'/>

<xsl:value-of select="'Never say "never"'"/>

You cannot use character or entity references to represent the quotation mark that
delimits the literal itself, for example:

<xsl:value-of select='"Never say "never""'/> <!--WRONG -->

because once the XML parser has expanded the entity references, the XPath expression
seen by the XSLT processor will look like this:

"Never say "never""

which is clearly wrong. Using variables and the concat() function, as suggested
above, is usually simpler.

LocationPath
A LocationPath is a PathExpr that selects nodes by following a path starting either at
the root node (an AbsoluteLocationPath) or at the context node (a
RelativeLocationPath).

Defined in
XPath section 2, rule 1.

Syntax
Expression Syntax
LocationPath RelativeLocationPath |

AbsoluteLocationPath

Used in
PathExpr

Usage
A RelativeLocationPath, when used as a LocationPath, is used to select a set of
nodes based on their position relative to the context node.

An AbsoluteLocationPath is used to select a set of nodes based on their position in
the source document relative to the root node. (If there are several source documents,
this will always be the root node of the document that contains the context node, so
"absolute" is rather a misnomer).

Examples
Expression Description
/contract/
clause[3]/
subclause[2]

This AbsoluteLocationPath selects the second
<subclause> of the third <clause> of the <contract> that
is the document element. If the document element is not a
<contract>, or if any of the other components are missing,
it produces an empty node-set.

//figure The AbsoluteLocationPath selects all the <figure>
elements in the document. (See the section
AbsoluteLocationPath for advice about the possible poor
performance of this construct.)

@title This RelativeLocationPath selects all the title
attributes of the context node. The result will either be
empty or contain a single attribute node.

book/author/
first-name

This RelativeLocationPath selects the <first-name>
elements that are children of the <author> elements that
are children of the <book> elements that are children of the
context node.

city[not(@name=
preceding-sibling
::city/@name)]

This RelativeLocationPath selects all the child <city>
elements of the context node that do not have a name
attribute that is the same as the name attribute of a
preceding <city> element with the same parent. It thus
selects a set of child <city> elements with unique names.
This is the nearest equivalent in XPath to the SELECT
DISTINCT clause in SQL.

MultiplicativeExpr
A non-trivial MultiplicativeExpr performs a multiplication, division, or remainder
operation on two numeric operands.

Defined in
XPath section 3.5, rule 26.

Syntax
Expression Syntax
MultiplicativeExpr UnaryExpr |

MultiplicativeExpr MultiplyOperator UnaryExpr |
MultiplicativeExpr «div» UnaryExpr |
MultiplicativeExpr «mod» UnaryExpr

Used in
AdditiveExpr

Usage
A non-trivial MultiplicativeExpr consists of two or more UnaryExpr operands
separated by the multiply «*» , divide «div», or modulo «mod» operators, whose
detailed effect is explained below. A trivial MultiplicativeExpr consists of a single
UnaryExpr with no operators.

The reason the MultiplyOperator, alone among all the XPath operators, is singled out
to have a syntax rule in its own right, is because the meaning of the asterisk character
in XPath is very context-dependant: as well as being used as a multiplication operator,
it is also used as a wild-card in a NameTest.

The «/» character is not used for division because it is already used for the path
operator and as an expression representing the root node.

Although XPath is not intended primarily for doing computations, simple arithmetic
functions can be very useful, for example to enable positioning of objects on the output
medium.

If either operand of the MultiplicativeExpr is not numeric, it is converted to a
number as if the number() function was used. If the value cannot be converted to an
ordinary number, it is converted to the special value NaN (not a number), and in this
case the result of the calculation will also be NaN.

Numbers in XSLT are always double-length floating point, so the calculation is carried
out using floating point arithmetic. The multiplication and division operations are
defined to follow the rules of IEEE 754, which are summarized in Chapter 2. The
modulo operation returns the remainder from a division. More technically, it is
defined to return "the remainder from a truncating division", which is a division that

doesn't use decimals: since this is difficult to understand exactly what this means in all
cases, it helpfully explains it by example as follows:

Expression Result

5 mod 2 1

5 mod –2 1

–5 mod 2 –1

–5 mod –2 –1

To perform an integer division, use «floor($X div $Y)»

Arithmetic in XPath never produces an error condition. For example division by zero
is not an error, it produces the special number infinity (or minus infinity) as a result.

Examples
Expression Description
ceil(count(item) div 3) One-third of the number of child <item>

elements of the context node, rounded upwards.
(Useful if you are arranging the items in three
columns.)

@margin*2 Twice the value of the margin attribute of the
context node.

item[position() mod 2 = 0] Selects the even-numbered child <item>
elements of the context node.

MultiplyOperator
A MultiplyOperator is the symbol used to represent a multiplication sign: an asterisk.

Defined in
XPath section 3.7 (Lexical Structure), rule 34.

Syntax
Expression Syntax
MultiplyOperator «*»

The reason the MultiplyOperator, alone among all the XPath operators, is singled out
to have a production rule in its own right, is because the meaning of the asterisk
character in XPath is context-dependant: as well as being used as a multiplication
operator, it is also used as a wild-card in a NameTest.

Used in
MultiplicativeExpr

Usage
See MultiplicativeExpr.

The lexical rules for XPath state that «*» is recognized as a MultiplyOperator if there
is a preceding token and the preceding token is not one of «@», «::», «(», «««[», or an
Operator. Otherwise, it is assumed to be part of a NameTest.

Examples
Expression Description
item[$x * 2] Selects the <item> element whose position is $x multiplied by 2.
*** Converts the string-value of the current node to a number, and

multiplies it by itself. (Only the second of the three asterisks is
recognized as a multiplication operator, by virtue of the rules
above. The other two are examples of a NameTest.)

NameTest
A NameTest is either a name, or a generic name specified using wildcards.

Defined in
XPath section 3.7 (Lexical Rules), rule 37.

Syntax
Expression Syntax
NameTest «*» |

NCName «:» «*» |
QName

Note that a NameTest is a token, which means it cannot contain embedded whitespace.
This means the second option in the production rule might have been more naturally
written as NCName «:*».

Used in
NodeTest

A NameTest, as well as being used in XPath Expressions, is also used in some other
XSLT contexts: for example the <xsl:preserve-space> and <xsl:strip-space>
elements have an attribute whose value is a whitespace-separated list of NameTests.

Usage
In general a NameTest will match some names and will not match others.

The NameTest «*» matches any name. (But when used as an expression on its own, «*»
is short for «child::*», which selects all child elements of the context node. The fact
that the result is restricted to element nodes only is because «*», when used in a Step,
selects only nodes of the principal node type for the axis: and for all axes except the
attribute and namespace axes, the principal node type is element nodes.)

The NameTest «xyz:*» matches any name whose namespace is the one currently
bound to the namespace prefix «xyz». It is not necessary that the name being tested
should use the same prefix, only that the prefix should refer to the same namespace
URI.

The NameTest «xyz:item» matches any name whose namespace is the one currently
bound to the namespace prefix «xyz», and whose local part is «item» It is not
necessary that the name being tested should use the same prefix, only that the prefix
should refer to the same namespace URI.

The NameTest «item» (with no namespace prefix) matches any name whose local part
is «item» and whose namespace URI is null. The default namespace is not used.

Examples
Expression Description
* Matches any name. If «*» is used on its own, it represents the

RelativeLocationPath «child::*», which selects all child
elements of the context node, regardless of their name.

xt:* Matches any name in the namespace bound to the prefix «xt». If
«xt:*» is used on its own, it represents the RelativeLocationPath
«child::xt:*», which selects all child elements of the context node
that are in the namespace bound to the prefix «xt».

title Matches a node whose local name is name «title» and whose
namespace URI is null.

wrox:title Matches the name that has local part «title» and whose
namespace is the namespace currently bound to the prefix «wrox».

NCName and NCNameChar
An NCName is a name, or part of a name, that contains no colon. XPath adopts the
definition from the XML Namespaces Recommendation.

There is no official explanation of the abbreviation NCName but "no-colon-name" is a
plausible expansion.

An NCNameChar is a character that may appear in an NCName.

Defined in
XML Namespaces Recommendation.

Syntax
Expression Syntax
NCName (Letter | «_») (NCNameChar) *
NCNameChar Letter | Digit | «.» | «–» | «_» |

CombiningChar | Extender

The rules for Letter, Digit, CombiningChar, and Extender are given in the XML
specification. The definitions are in the form of long lists of Unicode characters, and
little would be gained by repeating them here. The basic principle is that if a name is
valid in XML, then it is also valid in XPath.

Informally, an NCName starts with a letter or underscore, and continues with zero or
more NCNameChars, which may be letters, digits, or the three punctuation characters
dot, hyphen, and underscore. The «Letter» and «Digit» categories include a wide
variety of characters and ideographs in non-Latin scripts as well as accented Latin
letters, while the «CombiningChar» and «Extender» categories cover accents and
diacritics in many different languages.

Used in
QName
NameTest

Usage
An NCName is used in two places in the XPath syntax: as part of a QName, discussed in
detail on page 65, and as part of a NameTest, described on page 47.

In both contexts the name is used to match names that appear in the source XML
document, which is why the syntax has to match the XML syntax for names.

As well as the XML-defined rules for names, XPath incorporates the additional rules
defined in XML Namespaces. The designers of the XPath language made the decision
that it would not be possible to use XPath to manipulate an XML document unless the
XML document also conformed to the rules defined in XML Namespaces, for example
the fact that a name may contain only a single colon.

As in XML, names are case-sensitive, and names are only considered to match when
they consist of exactly the same sequence of characters. This is true even when the
Unicode standards describe characters as equivalent, for example different ways of
writing accented letters.

Examples
The following are examples of valid NCNames:

A
a

π
ℵ
_system-id
iso-8859-1
billing.address
Straßenüberführung

ΕΛΛΑΣ
...---_..._

NodeTest
A NodeTest tests whether a node satisfies specified constraints on the type of node or
the name of the node.

Defined in
XPath section 2.3, rule 7.

Syntax
Expression Syntax
NodeTest NameTest |

NodeType «(» «)» |
«processing-instruction» «(» Literal «)»

Note that the second option permits «processing-instruction()»; the third option is
needed only when it is necessary to give the name of the processing instruction.

The third form is unusual in that it is the only place in XPath where the name of a node
in the source document is written in quotes. It is hard to see a reason for this: an
NCName would have been more natural, since the XML Namespaces specification
requires the name of a processing instruction to be an NCName.

Used in
Step

Usage
A NodeTest is used in a Step to specify the type and/or the name of the nodes to be
selected by the Step.

In general you specify either the name of the nodes, or their type. If you specify a
NameTest, this implicitly selects nodes of the principal node type for the axis used in
the Step. For the attribute axis, this selects attribute nodes; for the namespace axis, it
selects namespace nodes, and for all other axes, it selects element nodes.

Specifying «node()» as the NodeType selects all nodes on the axis. You must specify
«node()» if you want the Step to select nodes of more than one type.

Specifying «processing-instruction()» or «comment()» or «text()» as the
NodeType selects nodes of the specified type. It doesn't make sense to specify any of
these on the attribute or namespace axes, because they can't occur there. These nodes
are unnamed, except for processing instructions, which is why there is an option in
this single case to specify both the node type and the node name required.

There is no node test for the root node. If an axis (for example the ancestor or parent
axis) includes the root node, it will be selected if and only if the NodeTest is «node()».
If you're looking specifically for the root node, you don't need an axis to find it,
because the special LocationPath «/» is available.

Examples
Expression Description
TITLE This NameTest selects all <TITLE> elements, unless it is

used with the attribute axis (in the form
«attribute::TITLE» or «@TITLE», when it selects the
TITLE attribute, or with the namespace axis (as
«namespace::TITLE»), when it selects the namespace
node whose prefix is TITLE.

news:article This NameTest selects all nodes with local name
«article» within the «news» namespace. These may
be attribute nodes or element nodes, depending on the
axis. There must be an enclosing element in the
stylesheet that declares the «news» prefix, by having an
attribute of the form «xmlns:news="uri"». The node in
the source document must have a name that uses this
namespace URI, but it does not need to use the same
prefix.

MathML:* This NameTest selects all nodes whose names are in the
MathML namespace. These may be attribute nodes or
element nodes, depending on the axis. There must be
an enclosing element in the stylesheet that declares this
prefix, by having an attribute of the form
«xmlns:MathML="uri"».

* This NameTest selects all elements, unless it is used
with the attribute axis (in the form «attribute::*» or
«@*», when it selects all attributes, or with the
namespace axis (as «namespace::*»), when it selects
all namespaces.

text() This NodeTest selects all text nodes on the relevant
axis.

processing-
instruction()

This NodeTest selects all processing instructions on the
relevant axis. Note that the XML declaration at the start

of the document is not a processing instruction, even
though it looks like one.

processing-
instruction('ckpt')

This NodeTest selects all processing instructions that
have the name (or PITarget as the XML specification
calls it) «ckpt»: for example the processing instruction
<?ckpt frequency=daily?>.

node() This NodeTest selects all nodes on the relevant axis.

NodeType
A NodeType represents a constraint on the type of a node.

Defined in
XPath section 3.7 (Lexical Rules), rule 38.

Syntax
Expression Syntax
NodeType «comment» |

«text» |
«processing-instruction» |
«node»

A NodeType is a token, so it can contain whitespace before and after the name, but not
within it.

Note that the four NodeType names cannot be used as function names, but apart from
this, they are not reserved words. It is quite possible to have elements or attributes
called «text» or «node» in your source XML document, and therefore you can use
«text» or «node» as ordinary names in XPath. This is why the names are flagged in a
NodeTest by the following parentheses, for example «text()».

Used in
NodeTest

Usage
A NodeType can be used within a NodeTest (which in turn is used within a Step) to
restrict a Step to return nodes of a particular type. The keywords «comment», «text»,
and «processing-instruction» are self-explanatory: they restrict the selection to
nodes of that particular type. The keyword «node» selects nodes of any type, and is
useful because a Step has to include some kind of NodeTest, so if you want all the
nodes on the axis, you can specify «node()». For example, if you want all child nodes,
specify «child::node()».

Note that there is no way of referring to the other four node types, namely root,

element, attribute, and namespace. In the case of the root node, this is because if you
only want the root node, you don't need to find it using an axis: just use the special
expression «/». In the case of the attribute and namespace nodes, it is because these
types of node are exclusive to the attribute and namespace axes: you can only find
these nodes by using the axis of the same name, and all the nodes on that axis will be
nodes of the appropriate type. In the case of element nodes, all the axes that can
contain elements have element as their principal node type, and you can select the
nodes of the principal node type using the special NameTest «*».

Examples in Context
Expression Description
parent::node() Selects the parent of the context node, whether this is an

element node or the root node. This differs from
«parent::*», which selects the parent node only if it is an
element. The expression «parent::node()» is usually
abbreviated to «..».

//comment() Selects all comment nodes in the document.
child::text() Selects all text node children of the context node. This is

usually abbreviated to «text()».
@comment() A strange but legal way of getting an empty node-set: it

looks for all comment nodes on the attribute axis, and of
course finds none.

Number
A Number represents a constant numeric (floating-point) value.

Defined in
XPath section 3.7 (Lexical Rules), rule 30.

Syntax
Expression Syntax
Number Digits («.» Digits?)? |

«.» Digits

Used in
PrimaryExpr

Usage and Examples
A Number is a constant numeric value, and is expressed in decimal notation. The
production rule is a rather complicated way of saying that there are four ways of
writing a number:

Format Example

Digits 839

Digits «.» 10.

Digits «.» Digits 3.14159

«.» Digits .001

Note that all numeric values in XPath are treated as double-length floating point
values. A more precise definition of the range of possible values is given in Chapter 2,
page Error! Cannot open file.. Functions such as round(), ceiling(), and floor()
are available to convert these to integers when required: these are described in Chapter
7.

A Number as such may not have a leading minus sign. However, in any context where a
number may sensibly be used, it is also possible to use a UnaryExpr, which can consist
of a minus sign followed by a number.

Unlike many programming languages, XPath does not allow a number to be expressed
in scientific notation: you must write one million as «1000000», not as «1.0e6».

Operator
An Operator is a symbol or name used to denote a processing operation.

Defined in
XPath section 3.7 (Lexical Rules), rule 32.

Syntax
Expression Syntax
Operator OperatorName |

MultiplyOperator |
«/» | «//» | «|» | «+» | «–» |
«=» | «!=» | «<» | «<=» | «>» | «>=»

Used in
Each of the operators appears in a different production rule, for example «=» appears
in EqualityExpr.

Usage
The production rule for Operator is part of the lexical rules for XPath; an operator is
one example of an ExprToken, that is, a lexical token. As operators are tokens, they

may always be preceded and followed by whitespace, and must not include any
embedded whitespace.

In some cases it is necessary to precede an operator by whitespace to ensure it is
recognised. This applies not only to the named operators (such as «and» and «or»), but
also to the minus sign «–» which could be mistaken for a hyphen if written with no
preceding space.

The numeric comparison operators are written here as XPath sees them; when they
appear in an XSLT stylesheet the special characters «<» and «>» can be written «<»
and «>» respectively.

The «/» and «//» symbols are regarded as operators, though they have an unusual
feature: the right-hand operand is not an expression, but a Step.

Examples
and or div
* / = != <

OperatorName
An Operator that is written as a name.

Defined in
XPath section 3.7 (Lexical Rules), rule 33.

Syntax
Expression Syntax
OperatorName «and» | «or» | «mod» | «div»

Used in
ExprToken

Usage
The production rule for OperatorName is part of the lexical rules for XPath; an
OperatorName is one example of an ExprToken, that is, a lexical token. As operator
names are tokens, they may always be preceded and followed by whitespace. In
practice the whitespace may be necessary to separate the OperatorName from the
adjacent token if that is also made up of letters and digits.

The four operator names are not reserved words. It is perfectly legitimate to have an
element in the source XML document named <div> (indeed XHTML defines such an
element), and it is possible to refer to that element in the normal way using a path
expression such as «ancestor::div» or simply «div». The decision as to whether

«div» (or indeed «and», «or», or «mod») is an NCName or an OperatorName is therefore
based on context: the rule is that it is recognized as an NCName if it is the first token in
the expression, or if the preceding token is «@», «::», «(», «[», or an Operator.

Examples in Context
Expression Description
$x = 5 or $x = 10 True if the variable $x, after converting to a

number, has the value 5 or 10.
position() mod 2 Zero if the context position is an even number, one

if it is odd.
floor(
string-length(@name) div
2)

Half the length of the value of the name attribute,
rounded down.

@name and @id True if the context node has both a name attribute
and an id attribute.

OrExpr
A non-trivial OrExpr represents a Boolean expression, which is true if either of its
operands is true.

Defined in
XPath section 3.4, rule 21.

Syntax
Expression Syntax
OrExpr AndExpr |

OrExpr «or» AndExpr

Used in
Expr

Usage
A non-trivial OrExpr consists of two or more AndExpr operands separated by the
operator «or». A trivial OrExpr consists of a single AndExpr without any «or»
operator.

The «or» operator has its usual meaning in Boolean logic: if either or both of the
operands are true, the result is true. The operands are first converted to Booleans if
necessary by an implicit call of the boolean() function.

The language specification explicitly states that the right-hand operand of an «or»
operator is not evaluated if the left-hand operand evaluates to true. (This is one of very

few places where the order of evaluation is specified.)

Note that there are no null values in XPath, as there are for example in SQL, and there
is therefore no need for three-valued logic to handle unknown or absent data. Instead,
you may need to test explicitly for absent values, as shown in some of the examples
below.

Examples
Expression Description
$x = 5 or $x = 10 True if the variable $x, after converting to a

number, has the value 5 or 10.
@name or @id True if the context node has a name attribute, an id

attribute, or both.
not(@id) or @id="" True if the context node has no id attribute or if it

has an id attribute and the value is an empty string.
//para[position()=1 or
position()=last()]

Selects the <para> elements that are either the first
or the last (or the only) <para> children of their
parent node.

PathExpr
A PathExpr is an expression for selecting a set of nodes by following a path (a
sequence of one or more steps) from a given starting point. The starting point may be
the context node, the root node, or an arbitrary node-set given, say, by the value of a
variable or the result of a function-call.

Defined in
XPath section 3.3, rule 19.

Syntax
Expression Syntax
PathExpr LocationPath |

FilterExpr |
FilterExpr «/» RelativeLocationPath |
FilterExpr «//» RelativeLocationPath

Used in
UnionExpr

Usage
A non-trivial PathExpr identifies a node-set. However, because a trivial FilterExpr
may consist simply of a Number or Literal, a trivial PathExpr may identify a value of

any type.

In a non-trivial PathExpr, there are several different ways the node-set can be
identified:

❑ By a LocationPath, representing a set of nodes selected by following a
sequence of steps starting either at the document root or at the context node.

❑ By a FilterExpr, which might be a variable reference that identifies a node-
set, a function call that evaluates to a node-set, a bracketed expression such as
«($a | $b)», or any of these followed by one or more predicates

❑ By a FilterExpr followed by the path operator «/» followed by a
RelativeLocationPath; the RelativeLocationPath identifies a sequence of
steps in the same way as the LocationPath, but starts with the set of nodes
identified by the FilterExpr, instead of starting at the document root or at the
context node

❑ By a FilterExpr followed by the shorthand path operator «//» followed by a
RelativeLocationPath: as in other contexts, «//» is an abbreviation for
«/descendant-or-self::node()/»

Examples
Expression Description
para This PathExpr is a LocationPath, and selects all

the <para> element children of the context node.
para[@id] This PathExpr is a LocationPath, and selects all

the <para> element children of the context node
that have an id attribute.

para/@id This PathExpr is a LocationPath, and selects
the id attributes of all the <para> element
children of the context node. This differs from
the previous example in that the result is a set of
attribute nodes rather than a set of element
nodes.

/*/para This PathExpr is a LocationPath, and selects all
the <para> element children of the document
element (the outermost element of the
document).

$paragraphs This PathExpr consists of a FilterExpr
comprising a single VariableReference. It is
not necessarily a node-set.

$paragraphs[23] This PathExpr consists of a FilterExpr
comprising a VariableReference filtered by a
Predicate. It selects the 23rd node in the node-
set that is the value of variable $paragraphs.

document('lookup.xml') This PathExpr consists of a FilterExpr
comprising a single FunctionCall. It selects the

root node of the XML document identified by
the URI lookup.xml.

key('empname',
 'John Smith')
[@location='Sydney']

This PathExpr consists of a FilterExpr
comprising a FunctionCall filtered by a
Predicate. Assuming that the key empname
has been defined in the obvious way, it selects
all employees named John Smith who are
located in Sydney.

(//section | //subsection)
[title='Introduction']

This PathExpr consists of a FilterExpr
comprising a parenthesized UnionExpr filtered
by a Predicate. It selects all <section> and
<subsection> elements that have a child
<title> element with the content
«Introduction».

$sections/body This PathExpr selects all <body> element
children of nodes in the node-set identified by
the variable $sections.

$sections[3]/body This PathExpr selects all <body> element
children of the third node in the node-set
identified by the variable $sections.

(//section|//subsection)
//para

This PathExpr selects all <para> descendants of
<section> and <subsection> elements.

((//section|//subsection)//
para)[last()]

This PathExpr selects the last <para> element
(in document order) that is a descendant of a
<section> or <subsection> element.

As is evident from the chart at the beginning of this chapter, it's the PathExpr
construct that accounts for most of the syntactic complexity in the XPath language. The
actual production rules are quite complicated and hard to follow, but they are there to
make path expressions easy to write, especially if you are familiar with UNIX-style
path names for directories and files.

If we forget for a moment the «//» abbreviation, and if we imagine a function call
root() that finds the root node, then it would become possible to write every path
expression in the form FilterExpr («/» Step)* , which would greatly simplify the
production rules. The other options are there to allow the root node to be written as
«/», to allow absolute path expressions to be written starting with a «/», and to allow
relative path expressions to omit the initial «./».

Predicate
A predicate is a qualifying expression used to select a subset of the nodes in a node-set
or a Step.

Defined in
XPath section 2.4, rule 8.

Syntax
Expression Syntax
Predicate «[» PredicateExpr «]»

Used in
Step
FilterExpr

Usage
There are two places in the syntax where a predicate can appear: as part of a Step in a
PathExpr, or as part of a FilterExpr. The meaning of the two cases is very similar,
and it's easy to use them without always being aware of the difference.

For example:

Expression Description
para[3] Here the predicate «[3]» is being applied to the Step «para»,

which is short for «./child::para». It selects the third child
<para> element of the context node.

$para[3] Here the predicate «[3]» is being applied to the variable-reference
«$para». Assuming this variable refers to a node-set, the expression
selects the third node in the node-set, in document order.

In both cases the effect of a predicate is to select a subset of the nodes in a node-set.
The difference comes when a predicate is used with a path expression of more than
one step. For example:

Expression Description
chapter/para[1] Here the predicate «[1]» is being applied to the Step

«para», which is short for «./child::para». It selects the
first child <para> element of each child <chapter> element
of the context node.

(chapter/para)[1] This is a FilterExpr where the predicate «[1]» is being
applied to the node-set selected by the path expression
«chapter/para» The expression selects a single <para>
element, the first child <para> of a <chapter> that is a
child of the context node.

In effect, the predicate operator «[]» has higher precedence (it binds more tightly)
than the path operator «/».

Another distinction between the two cases is that in the case of a FilterExpr, the
nodes are always considered in document order when evaluating the predicate. In the
case of a Step, the nodes are considered in the order of the relevant axis. This is

explained in more detail below.

A predicate may be either a Boolean expression or a numeric expression. These are not
distinguishable syntactically, because XPath is not a strongly typed language; for
example the predicate «[$p]» could be either. The distinction is only made at run-
time. If the value of the predicate is a number, it is treated as a numeric predicate; if it
is of any other type, it is converted to a Boolean using the boolean() function and is
treated as a Boolean predicate. So for example the predicate «[@sequence-number]» is
true if the context node has a sequence number attribute, and is false otherwise. The
actual numeric value of the attribute sequence-number is immaterial: the value of
«@sequence-number» is a node-set, so it is treated as «[boolean(@sequence-
number)]». If you want to use the sequence number attribute as a numeric predicate,
write «[number(@sequence-number)]».

A numeric predicate «[P]» is simply a shorthand for the Boolean predicate
«[position()=P]», so you could also achieve the required effect by writing
«[position()=@sequence-number]».

As explained in Chapter 2, every expression is evaluated in a particular context. The
context in which the predicate is evaluated is not the same as the context for the
expression that it forms part of.

The predicate is applied to each node within a node-set separately. Each time it is
evaluated:

❑ The context node (the node selected by «.») is the node to which the predicate
is being applied.

❑ The context position (the result of the position() function) is the position of
that node within the node-set, relative to some axis.

❑ The context size (the result of the last() function) is the number of nodes in
the node-set.

The significance of the phrase relative to some axis is that the position of a node in a
Step depends on the direction of the axis used in that step. Some axes (child,
descendant, descendant-or-self, following, following-sibling) are forwards axes, so the
position() function numbers the nodes in document order. Other axes (ancestor,
ancestor-or-self, preceding, preceding-sibling) are reverse axes, so position()
numbers them in reverse document order. The self and parent axes return a single
node, so the order is irrelevant. The order of the attribute and namespace axes is
undefined.

Where a predicate is used as part of a FilterExpr (as distinct from a Step), the
specification states that the context position is the position relative to the child axis.
This is a rather obscure way of saying that for the purpose of evaluating the
position() function within the predicate, the nodes are considered in document
order, regardless of the order in which they were retrieved. It doesn't mean that the
nodes have to be children of some common parent, or indeed children of anything at
all. It's quite legitimate to write:

(document('a.xml') | document('b.xml'))[1]

Here we are forming a node-set consisting of two root nodes in different documents,
and we are then filtering this node-set to take the one that comes first "in document
order". Where nodes in a node-set come from different documents, document order is
undefined, so you can't predict which of the two root nodes will be chosen.

In both contexts where predicates can be used, there can be a sequence of zero or more
predicates. Curiously, the syntax is defined in different ways in the two cases: in the
production rule for Step it is defined by iteration (Step ⇒ AxisSpecifier
NodeTest Predicate*), while in the rule for FilterExpr it is defined by recursion (
FilterExpr ⇒ FilterExpr Predicate). However, the effect is identical: there can
be a sequence of zero or more predicates.

Specifying two separate predicates is not the same thing as combining the two
predicates into one with an «and» operator. The reason is that the context for the
second predicate is different from the context for the first. Specifically, in the second
predicate, the context position (the value of the position() function) and the context
size (the value of the last() function) consider only those nodes that successfully
passed through the previous predicate. What this means in practice is shown in the
examples below:

Expression Description

book[author="P. D.
James"][1]

The first book that was written by P. D. James.

book[1][author="P.
D. James"]

The first book, provided it was written by P. D. James.

book[position()=1
and author="P. D.
James"]

The first book, provided that it was written by P. D.
James. This is the same as the previous example,
because in that example the second predicate is not
dependant on the context position.

Examples in Context
Expression Description
para[1] The first <para> child element of the context node.
para[last()] The last <para> child element of the context node.
para[position()!=1] All <para> child elements of the context node, other

than the first.
para[@title] All <para> child elements of the context node that have

a title attribute.
para[string(@title}] All <para> child elements of the context node that have

a title attribute whose value is not the empty string.
para[* or text()] All <para> child elements of the context node that have

a child element or text node.

PredicateExpr
A PredicateExpr is an expression used within a Predicate.

Defined in
XPath section 2.4, rule 9.

Syntax
Expression Syntax
PredicateExpr Expr

Used in
Predicate

Usage
A PredicateExpr is syntactically just an Expr: in other words, any XPath expression
can be used in a Predicate.

If the result of evaluating the PredicateExpr is a number, it is treated as a numeric
predicate, which is true if the value is the same as the context position, and false
otherwise.

In all other cases the PredicateExpr is treated as a Boolean value, converting it to a
Boolean if necessary using the boolean() function.

Note that the rules for recognising a predicate as a number are very strict. For example,
the XSLT variable declared in the examples below is not a number, it is a result tree
fragment (see the <xsl:variable> topic in Chapter 4, page Error! Cannot open file.,
for further explanation):

<xsl:variable name="index">3</xsl:variable>

If you want to use this value as a predicate, either write it so the value of the variable is
a number:

<xsl:variable name="index" select="3"/>

or force it to a number in the predicate:

<xsl:value-of select="item[number($index)]"/>

or write the Boolean predicate in full:

<xsl:value-of select="item[position()=$index]"/>

Examples in Context
Any expression can be used as a predicate. Here are some examples: the
PredicateExpr is the section between the square brackets.

Expression Description
section[title] «title» is a PathExpr; the PredicateExpr is true if

the relevant section has at least one child <title>
element.

section[
@title='Introduction']

Here the predicate is a more conventional Boolean
expression.

title[
substring-before(.,':')]

The PredicateExpr evaluates to true if the string-
value of the title has one or more characters before
its first colon: that is, if the substring-before()
function returns a non-empty string.

book[not(author=
preceding-sibling
::author)]

The PredicateExpr here is true if the author of the
book is not the same as the author of some
preceding book within the same parent element.
The effect of this expression is to select the first
book by each author.

PrimaryExpr
A PrimaryExpr is essentially an expression that contains no operators. It may also be a
parenthesized sub-expression.

Defined in
XPath section 3.1, rule 15.

Syntax
Expression Syntax
PrimaryExpr VariableReference |

«(» Expr «)» |
Literal |
Number |
FunctionCall

Used in
FilterExpr

Usage
The production rule for PrimaryExpr covers an assortment of different kinds of
expressions, which can be used as the basic building blocks of a more complex

expression.

The only real thing that these different kinds of PrimaryExpr have in common is the
context in which they can be used.

According to the syntax rules, any PrimaryExpr can be followed by a Predicate to form
a FilterExpr, so for example «17[1]» and «'Berlin'[3]» are both syntactically legal.
The semantic rules, however, say that a predicate can only be applied to a value that is
a node-set, so the only primaries that can sensibly be used with a predicate in a
FilterExpr are a variable reference, a parenthesised expression, or a function call.

The notable omission from this production rule is PathExpr: a PathExpr is not a
PrimaryExpr. This ensures that an expression such as «para[1]» is unambiguously a
PathExpr, with the Predicate «[1]» taken as part of the Step, rather than being a
FilterExpr consisting of a PrimaryExpr «para» followed by a Predicate «[1]». It is
possible to turn a PathExpr into a PrimaryExpr by putting it in parentheses, so
«(para)[1]» is a FilterExpr. In this case the meaning is the same, but this will not
always be the case.

For example:

Expression Description
ancestor::*[1] returns the first ancestor of the context node relative

to the ancestor axis, in other words the parent of the
context node.

(ancestor::*)[1] returns the first node in the node-set formed by
«ancestor::*», taking the nodes in document order:
that is, it returns the document element.

//section/para[1] returns all <para> elements that are the first <para>
child of a <section> parent.

(//section/para)[1] returns the first element in the document that is a
<para> child of a <section> parent.

Examples
Expression Description
23.5 A Number is a PrimaryExpr
'Columbus' A Literal is a PrimaryExpr
$var A VariableReference is a PrimaryExpr
contains(@name, '#') A FunctionCall is a PrimaryExpr
(position() + 1) A parenthesized expression is a PrimaryExpr

QName
A QName (qualified name) is a name optionally qualified by a namespace prefix.

Defined in
XML Namespaces Recommendation

Syntax
Expression Syntax
QName (Prefix «:»)? LocalPart
Prefix NCName

LocalPart NCName

Used in
NameTest

QNames are also used in XSLT stylesheets in a number of other contexts, outside the
scope of XPath expressions. They are used both to refer to elements in the source
document (for example in <xsl:preserve-space> and <xsl:strip-space>, and to
name and refer to objects within the stylesheet itself, including variables, templates,
modes, and attribute sets.

There are also some situations where QNames can be constructed dynamically as a
result of evaluating an expression. They are used, for example, in <xsl:element> and
<xsl:attribute> to generate names in the result document, and in the key() and
format-number() functions to refer to objects (keys and decimal-formats respectively)
defined in the stylesheet. QNames constructed at run-time are never used to match
names in the source document, and they are never used to match template names,
variable names, mode names, or attribute set names in the stylesheet: these references
must all be fixed names.

Usage
A QName is used in XPath for matching the names of nodes in the source document.

If the name has a prefix, the prefix must be declared by a namespace declaration on
some surrounding element in the stylesheet.

For example:

<xsl:apply-templates select="math:formula" xmlns:math="http://math.org/"/>

Here the namespace is declared on the actual element that uses the prefix, but it could
equally be any ancestor element.

The actual element in the source document does not need to have the tag
«math:formula», it can use any prefix it likes (or even the default namespace)
provided that in the source document the element name is in the namespace URI
«http://math.org/».

If the QName does not have a prefix, then the name it matches must use the null URI.
This necessarily means the element in the source document will not have a prefix,
since the XML Namespaces specification doesn't allow a non-null prefix to be paired
with a null URI. However, the converse is not true: a name in the source document
with no prefix may be in the default namespace, with a non-null URI, and in this case
it will be necessary to use a prefix in the stylesheet to match this element.

A QName with no prefix appearing in an XPath expression uses the null URI, not the
default URI.

Examples
Expression Description

TABLE Matches a node in the source document whose local name is
TABLE and which is in the default namespace, provided the
default namespace uses a null URI.

HTML:TABLE Matches a node in the source document whose local name is
TABLE and which is in a namespace whose URI matches the URI
currently assigned to the prefix HTML in the stylesheet.

RelationalExpr
A non-trivial RelationalExpr compares the magnitude of two numbers. It provides
the usual four operators: less-than, greater-than, less-than-or-equal to, and greater-
than-or-equal to. When an operand is a node-set, the comparison applies to the
numeric value of the individual nodes in the node-set.

Defined in
XPath section 3.4, rule 24.

Syntax
Expression Syntax
RelationalExpr AdditiveExpr |

RelationalExpr «<» AdditiveExpr |
RelationalExpr «>» AdditiveExpr |
RelationalExpr «<=» AdditiveExpr |
RelationalExpr «<=» AdditiveExpr

Used in
EqualityExpr

Usage
A non-trivial RelationalExpr in XPath consists of two or more AdditiveExpr
operands separated by one of the operators «<» (less than), «>» (greater than), «<=»

(less-than-or-equal to), or «>=» (greater-than-or-equal to).

A trivial RelationalExpr is one that consists of a single AdditiveExpr with no
operator.

XPath defines an expression language that can be used in a number of environments.
The only environment we are interested in is XSLT stylesheets, where the expression
will always appear within an attribute of an XML element. An attribute value can't
contain a «<» character, so it must be written either as a numeric character reference or
as the entity reference «<». In practice most people choose to represent «>» as
«>» as well, though it isn't strictly necessary.

These operators always perform a numeric comparison. There is no mechanism in
XPath to compare string values according to their alphabetic sequence.

An expression such as «10 < $x < 30» is a syntactically valid RelationalExpr, but it
probably does not have the expected meaning. The actual meaning is to evaluate «(10
< $x)», convert the Boolean result to a number, and then test whether this number is
less than 30.

If neither of the operands is a node-set, both operands are converted to numbers by
applying the number() function, and they are then compared numerically using the
rules given in IEEE 754. For ordinary numbers, this gives the answer you would
naturally expect, for example «1.0 < 3.5» is true, and «1.0 > 3.5» is false. If either
of the numbers is plus or minus infinity, or negative zero, the result is still what you
would expect intuitively, for example «1.0 < 2.0 div 0.0» is true, because the result
of «2.0 div 0.0» is positive infinity. If either or both of the numbers is NaN (not a
number), however, the result is always false. For example «'zero' <= 'one'» is false,
because both operands when converted to numbers give NaN, and NaN <= NaN is
false.

If one of the operands is a node-set, the result depends on the type of the other
operand, as shown in the following table. In the text, I'll use the word "compares-
correctly-with" to mean either "is less than", "is less than or equal to", "is greater than",
or "is greater than or equal to", depending on which of the four operators <, <=, >, or >=
was actually used. We'll assume first that the node-set is the first operand.

Data type of second
operand

Result

Boolean Testing whether a node-set is less than a Boolean is a
singularly odd thing to do, but if you really want to
know, the rules are as follows. Let P be the result of
converting the node-set to a Boolean, and then to a
number: the result is 0 if the node-set is empty, or 1 if it
contains one or more nodes. Let Q be the result of
converting the Boolean operand to a number: 0 if the
Boolean is false, or 1 if it is true. The final result is true if
P compares-correctly-with Q.

number The result is true if there is a node in the node-set whose

string-value, when converted to a number, compares-
correctly-with the number operand. For example,
«//price < 5.00» is true if there is a <price>
element in the document whose string-value, when
converted to a number, is less than 5.

string The result is true if there is a node in the node-set whose
string-value, when converted to a number, compares-
correctly-with the result of comparing the string operand
to a number. For example, «//price < '5.00' » is
true if there is a <price> element in the document whose
string-value, when converted to a number, is less than 5.
If the string cannot be converted to a number, the result
will always be false.

Result tree fragment The result tree fragment is converted to a string, and the
comparison then proceeds as if it were a string, using the
rules above.

If the node-set is the second operand, apply the rules in the table after inverting the
expression, so for example «$p < $q» is rewritten as «$q > $p».
Finally, consider the situation if both operands are node-sets. In this case the result is
true only if there is a node P in the first node-set and a node Q in the second node-set
such that «number(P) compares-correctly-with number(Q)». Another way of defining
this is according to the following table, where max() and min() represent the
minimum and maximum numeric values of nodes in the node-set.

Expression Result

M < N True when min(M) < max(N).

M <= N True when min(M) <= max(N).

M > N True when max(M) > min(N).

M >= N True when max(M) >= min(N).

In practice these comparisons defined on node-sets are most commonly used when the
node-set consists of a single node. For example, the expression «@price > 5.00» is
true if there is a price attribute, and its value is numeric, and its numeric value is
greater than 5.00; it is false if there is no price attribute, or if the value of the attribute
is not numeric, or if its value is 5.00 or less.

Examples
Expression Description
count(*) >
10

True if the context node has more than ten element children.

sum(SALES) <
10000

True if the sum of the numeric values of the <SALES> children
of the context node is less than ten thousand.

position() <
last() div 2

True if the context position is less than half the context size,
that is, if the position of this node is less than half way down
the list of nodes being processed.

not(//@temp
<= 0.0)

True if all values of the temp attribute in the document are
numeric, and greater than zero.

RelativeLocationPath
When used on its own as an expression, a RelativeLocationPath is a LocationPath
that selects nodes by taking one or more steps starting at the context node.

A RelativeLocationPath can also be used within other constructs to represent a
sequence of steps starting from some other baseline.

Defined in
XPath section 2, rule 3.

Syntax
Expression Syntax
RelativeLocationPath Step |

RelativeLocationPath «/» Step |
AbbreviatedRelativeLocationPath

Used in
LocationPath
AbsoluteLocationPath
AbbreviatedAbsoluteLocationPath
PathExpr
AbbreviatedRelativeLocationPath

Usage
A RelativeLocationPath, when used as an expression in its own right, represents a
sequence of steps starting from the context node. When used as part of a PathExpr it
represents a sequence of steps starting from the nodes in a given node-set, and when
used as part of an AbsoluteLocationPath it represents a sequence of steps starting at
the root node.

A RelativeLocationPath consists of one or more steps separated by the path operator
«/» or the shorthand path operator «//». The production rule uses recursion to specify
this: it could equally well have been written as:

RelativeLocationPath ⇒ Step ((«/» | «//») Step)*

The «//» can be thought of informally as selecting the descendants of a node. It is
handled in a separate syntax rule, AbbreviatedRelativeLocationPath, because it is
actually just shorthand. Specifically, if in a RelativeLocationPath one of the steps

other than the first or last is «descendant-or-self::node()», then it may be omitted,
so that «A/descendant-or-self::node()/B» may be replaced by «A//B». See
AbbreviatedRelativeLocationPath on page 6 for more details and examples.

For a description of how the path operator «/» works, see Step on page 71.

Examples
Expression Description

ancestor::CHAPTER This is a RelativeLocationPath consisting of a
single Step. It selects the ancestors of the context
node that are elements with the name <CHAPTER>.

TITLE This is a RelativeLocationPath consisting of a
single Step: this time the Step is an
AbbreviatedStep. It selects the children of the
context node that are elements with the name
<TITLE>.

descendant::PARA/@style This is a RelativeLocationPath consisting of
two Steps. The first Step selects the descendants
of the context node that are <PARA> elements; the
second Step is an AbbreviatedStep that selects
the style attributes of these elements.

section[1]/clause[3] This is a RelativeLocationPath consisting of
two Steps, each of which includes a positional
predicate. The first Step selects the first
<section> element that is a child of the context
node, the second Step selects the third <clause>
element that is a child of the selected <section>.

chapter/section/para/
sentence

This RelativeLocationPath selects every
<sentence> element that is a child of a <para>
element that is a child of a <section> element
that is a child of a <chapter> element that is a
child of the context node.

.//sentence This AbbreviatedRelativeLocationPath selects
every <sentence> element that is a descendant of
the context node.

Step
A Step selects the set of nodes in the document which are related in a particular way
to a supplied baseline; for example given a node-set A, a Step can find the nodes that
are the children of the nodes in A, or the ancestors of the nodes in A, and so on.

Defined in
XPath section 2.1, rule 4.

Syntax
Expression Syntax
Step AxisSpecifier NodeTest Predicate* |

AbbreviatedStep

Used in
RelativeLocationPath
LocationPath

Usage
There are two ways of defining a step: a long form and a short form. The short form,
an AbbreviatedStep, can be used only to find the child elements or attributes of the
current node. The full form can be used to follow any axis and to find any kind of
node.

A step is logically always the right-hand side of the «/» path operator. The left hand
side of the path operator evaluates to a node-set; the step defines for each of these
nodes a set of related nodes found by navigating from that node in a given direction;
and the result of the final expression is the result of applying the step to each node in
the left-hand node-set. The left-hand side of the path operator is not always explicit;
for example the step «TITLE» is a shorthand for the path
«self::node()/child::TITLE», and the path expression «/descendant::FIGURE»
can be regarded as shorthand for an imaginary expression
«root()/descendant::FIGURE» where «root()» denotes the root node.

Although XPath defines the step operation in rather informal English, some readers
may find a more mathematical definition helpful. A step S can be defined as a function
S(X) ⇒ N that given a node X returns a set of nodes N in the same document. The path
operator «/» can be defined as a function map(A, F) ⇒ U that takes a node-set A and a
step function F as its inputs, and returns the node-set U that is the union of the result of
applying the step function F to each of the nodes in its input node-set N.

For example, the step «ancestor::node()», given any node, finds all the ancestors of
that node. When the step is used in a path expression such as
«$n/ancestor::node()», it returns a node-set containing all the ancestors of all the
nodes in $n.

The step itself is defined in terms of a simpler concept, the axis. Each axis returns a set
of nodes relative to a specific origin node: for example, its previous siblings or its
ancestors. The step returns a subset of the nodes on this axis, selected by node type,
node name, and by the predicate expressions. The NodeTest supplies any restrictions
on the node type and name of the selected nodes, and the predicate expressions
provide arbitrary Boolean conditions that the nodes must satisfy, or positional filters
that constrain their relative position.

Note that the step function is defined in terms of sets (which are unordered) and there
is no concept of the result being ordered. To understand the meaning of positional

predicates in the step it is often useful to think of the step as retrieving nodes in a
particular order, but the formal definition doesn't require this. Instead these predicates
are defined in terms of the proximity of the node to the origin of the axis. An axis does
have direction: every axis that can be used in a step is either a forwards axis or a
reverse axis, and the effect of positional predicates (such as «booklist/book[3]») is
defined by considering the nodes in the node-set in either document order or reverse
document order. If the axis is a forwards axis, the positional predicate «[3]» will
return the third node in document order; if it is a reverse axis, the same predicate will
return the third node in reverse document order.

So the evaluation of the step function, for a given context node, proceeds as follows:

1. All the nodes on the selected axis are found, starting at the context node.

2. Those that satisfy the node test (that is, those of the required node type and
name) are selected.

3. The remaining nodes are numbered from 1 to n in document order if the axis is
a forward axis, or in reverse document order if it is a reverse axis.

4. The first (leftmost) predicate is applied to each node in turn: when evaluating
the predicate, the context node (that is, the result of the «.» expression) is that
node, the context position (the result of the position() function) is the number
assigned to the node in stage 3, and the context size (the result of the last()
function) is the largest number allocated in stage 3. A numeric predicate such
as «[2]» or «[last()–1]» is interpreted as a shorthand for «[position()=2]» or
«[position()=last()–1]» respectively.

5. Stages 3 and 4 are repeated for any further predicates.

Examples
Expression Description
child::title Selects child elements of the context node named

<title>.
title Short form of «child::title».
attribute::title Selects attributes of the context node named title.
@title Short form of «attribute::title».
ancestor::xyz:* Selects ancestor elements of the context node whose

names are in the namespace with prefix «xyz».
*[@width] Selects all child elements of the context node that

have a width attribute.
text()
[starts-with(.,'The')]

Selects all text nodes that are children of the context
node and whose text content starts with the
characters «The».

*[@code][position() <
10]

Selects the first nine child elements of the context
node that have a code attribute.

*[position() <
10][@code]

Selects from the first nine child elements of the
context node those that have a code attribute.

self::*[not(@code =
preceding-
sibling::*/@code)]

Selects the current element node provided that it
does not have a code attribute with the same value
as the code attribute of any preceding sibling
element.

comment() Selects all comment nodes that are children of the
context node.

@comment() Short for «attribute::comment()», this selects all
comment nodes on the attribute axis. The attribute
axis can only contain attribute nodes, so this will
always return an empty node-set; nevertheless it is
a legal Step.

UnaryExpr
A non-trivial UnaryExpr is used to change the sign of a number.

Defined in
XPath section 3.5, rule 27.

Syntax
Expression Syntax
UnaryExpr UnionExpr |

«–» UnaryExpr

Used in
MultiplicativeExpr

Usage
A UnaryExpr consists of a UnionExpr preceded by an optional minus sign. In fact, for
generality, the UnionExpr may be preceded by any number (zero or more) minus
signs; each one changes the sign of the number.

Actually, the XPath specification isn't precise about what a unary minus sign
does, so there has been some debate about whether «-0» is negative zero (as in
Java and JavaScript) or positive zero (as in most other languages). Since the
difference is hardly noticeable the point is a little academic: but the word from
the Editor, James Clark, is that negative zero is the intended meaning.

Intrinsically it may seem strange to be applying a numeric operator (unary minus) to a
union, which is a node-set. However, this is simply an accident of the way operator
priorities are defined. A UnionExpr does not actually need to contain a union operator,

it merely has the potential to do so, and equally a UnaryExpr is not required to contain
a minus sign.

In fact it is legal, if not very useful, to write an expression such as «–$a|$b». This
forms the node-set that is the union of $a and $b, converts the result to a number, and
then negates this number. A node-set is converted to a number by taking the string
value of the first node in the node-set (in document order), and parsing that as a
number.

Examples
Expression Description
–2 The numeric value minus two. The minus sign is not part of the

number, it is a separate token (and may therefore be separated
from the number by whitespace).

– @credit The negated numeric value of the credit attribute of the context
element node. If the context node has no credit attribute, or if
its value is not numeric, the result of the expression is NaN (not-
a-number).

1 – – – 1 A not very useful but perfectly legal way of writing the value
zero. The first minus sign is a binary subtraction operator; the
next two are unary minus signs.

UnionExpr
A non-trivial UnionExpr forms the union between two node-sets: that is, the result
includes every node that is in either of the input node-sets.

Defined in
XPath section 3.3, rule 18.

Syntax
Expression Syntax
UnionExpr PathExpr |

UnionExpr «|» PathExpr

Used in
UnaryExpr

Usage
A non-trivial UnionExpr consists of two or more PathExpr expressions separated by
the union operator, «|». This operator forms the union of two or more node-sets: the
resulting node-set contains all the nodes that are in any one of the node-sets,
eliminating any duplicates.

A trivial UnionExpr consists of a single PathExpr, in which case its value is the value
of the PathExpr.

Both operands to the union operator must be node-sets. The syntax doesn't enforce
this: it not only allows expressions such as «$a | $b » where the variables might turn
out at run-time to have the wrong type, but it also allows clearly nonsensical
expressions such as « 2.0 | "London" ». This is considered to be a semantic rather
than a syntactic error.

Examples
Expression Description
*/figure | */table Returns a node-set containing all the

grandchildren of the context node that are
<figure> or <table> elements.

book[not(@publisher)] |
book[@publisher='Wrox']

Returns all the <book> children of the context
node that either have no publisher attribute, or
that have a publisher attribute equal to "Wrox".
Note that the same result could be achieved,
perhaps more efficiently, by using the «or»
operator in the predicate.

(.|..)/title Returns all the <title> elements that are
immediate children of either the context node or
the parent of the context node.

sum(
 (book|magazine)/@sales)

Returns the total of the sales attribute values for
all the <book> and <magazine> children of the
context node.

(//* | //@*)
[.='nimbus2000']

Returns a node-set containing all the element and
attribute nodes in the document whose string
value is "nimbus2000".

There are no equivalent operators in XPath to do other set operations such as
intersection and difference, in fact there is no way at all of constructing the intersection
or difference of two arbitrary node-sets, other than by using extension functions. Some
products supply extension functions to fill the gap: see Chapter 10 for details.

VariableReference
A VariableReference is a reference to an XSLT variable or parameter.

Defined in
XPath section 3.7 (Lexical Rules), rule 36.

Syntax

Expression Syntax
VariableReference «$» QName

Used in
PrimaryExpr

Usage
The QName must match the name of a variable or parameter that is in scope at the
point in the stylesheet where the expression containing the variable name appears.
Normally this means the name will be exactly the same as the name attribute of the
relevant <xsl:variable> or <xsl:param> element; however, if the name contains a
namespace prefix, it is the namespace URI that must match, not necessarily the prefix.

A VariableReference is a lexical token, which means it may not contain whitespace
between the $ sign and the QName.

The value of the variable reference is whatever value has been assigned to it by the
matching <xsl:variable> or <xsl:param> declaration (in the case of <xsl:param>,
this value may actually be derived from an <xsl:with-param> element in the calling
template). The value may be of any type: a Boolean, a number, a string, a node-set, or a
result tree fragment. If necessary, the value is converted to the data type required by
the context: for example, if a variable holding a node-set is used in a context where a
Boolean is required (such as the test attribute of <xsl:if>), it is converted to a
Boolean – which means that it is treated as true if the node-set has one or more nodes
in it, false if it is empty. In some cases, however, conversion is not possible, and in this
case a run-time error will be reported. For example, it is not possible to use a Boolean
value where a node-set is required, such as in the select attribute of <xsl:apply-
templates> or <xsl:for-each>.

A variable reference can be used virtually anywhere in an XPath expression where a
value is required: that is, an instance of one of the five data types Boolean, number,
string, node-set, or result tree fragment. It cannot be used to represent concepts of the
language other than values, for example a name, a node type, or an axis.

Examples
$x
$lowest-common-denominator
$ALPHA
$my-ns-prefix:param1

$π

Summary
XPath expressions used in XSLT to select data from the source document and to
manipulate it to generate data to place in the result document. Expressions are the
SELECT statement for structured documents – they allow us to select specific parts of

the document for transformation, so that we can achieve the required output.
However, their use is not restricted to XSLT stylesheets – they can also be used with
XPointers to define hyperlinks betweeen documents.

This chapter serves as a comprehensive reference guide for writing these expressions.

The expression language is a superset of the pattern matching syntax used to match
specific nodes. Understanding patterns is the next step in understanding how XSLT
works and Chapter 6 will examine them in detail.

6
Patterns

This chapter defines the syntax and meaning of XSLT patterns.

Patterns are used in just four places in an XSLT stylesheet:

❑ In the match attribute of <xsl:template>, to define to which nodes in the
source document a template applies.

❑ In the match attribute of <xsl:key>, to define to which nodes in the
source document a key definition applies.

❑ In the count and from attributes of <xsl:number>, to define which nodes
are counted when generating numbers.

In each case the purpose of a pattern is to define a condition that a node must
satisfy in order to be selected. The most common use of patterns is in the match
attribute of <xsl:template>, where the pattern says which nodes the template
rule applies to: so, for example, <xsl:template match="abstract"> introduces
a template rule that matches every <abstract> element.

Most of the patterns found in stylesheets are simple and intuitive, for example:

Pattern Meaning
title Matches any <title> element
chapter/title Matches any <title> element whose parent is a

<chapter> element
speech[speaker="Hamlet"] Matches any <speech> element that has a child

<speaker> element whose string-value is
«Hamlet».

section/para[1] Matches any <para> element that is the first
<para> child of a <section> element.

The precise rules for the more complex patterns, however, are quite technical, so
I'm afraid some of the explanations in this chapter are not going to be easy
reading.

Patterns are defined in terms of the name, type, and string-value of a node, and
its position relative to other nodes in the tree. To understand how patterns work
you therefore need to understand the tree model, which I described in Chapter 2,
and the different kinds of node.

Patterns look very similar to XPath expressions, which were described in the
previous chapter, and it turns out that they are closely related; however, patterns
and expressions are not quite the same thing. In terms of its syntax, every pattern
is a valid XPath expression, but not every XPath expression is a valid pattern. It
wouldn't make any sense to use the expression «2+2» as a pattern, for example –
which nodes would it match?

I described the rules for expressions in the previous chapter. Expressions are
defined in the XPath 1.0 Recommendation, which allows them to be used in
contexts other than XSLT stylesheets. For example, XPath expressions are used in
the XPointer specification to defined hyperlinks between documents, and they
are used in some DOM implementations as a way for applications to navigate
around the DOM data structure. Patterns, however, are local to the XSLT 1.0
Recommendation (the rules are defined in section 5.2 of the specification), and
they are found only in stylesheets.

It would have been quite possible for XSLT to define both the syntax and the
meaning of patterns quite independently of the XPath rules for expressions, but
this would have created a risk of unnecessary inconsistency. What the XSLT
language designers chose to do instead is to define the syntax of patterns in such
a way that every pattern was sure to be a valid expression, and then to define the
formal meaning of the pattern in terms of the meaning of the expression.

Look at the simplest pattern in the examples above, «title». If «title» is used
as an expression, we saw in the previous chapter that it's an abbreviation for
«./child::title», and it means "select all the <title> children of the current
node". How do we get from that to a definition of the pattern «title» as
something that matches all <title> elements?

In the next section, I'll explain how the formal definition of patterns in terms of
expressions works. However, in practice it's easier to think of most patterns as
following their own rules, rather like the intuitive examples listed above, and
referring only to the formal definition in terms of expressions to resolve difficult
cases. So I'll follow the formal explanation with an informal one.

The Formal Definition
The formal definition of how patterns are evaluated is expressed in terms of the
XPath expression that is equivalent to the pattern. We've already seen that every
pattern is a valid XPath expression. In fact, the rules are written so that the only
XPath expressions that can be used as patterns are those that return a node-set,
and the idea is that you should be able to decide whether a node matches a
pattern by seeing whether the node is in the node-set returned by the

corresponding expression.

This then raises the question of context. The result of the XPath expression
«title» is all the <title> children of the context node. Does that include the
particular <title> element we are trying to match, or not? It obviously depends
on the context. Since we want the pattern «title» to match every <title>
element, we could express the rule by saying that the node we are testing (let's
call it N) matches the pattern «title» if we can find a node (A, say) anywhere in
the document, which has the property that when we take A as the context node
and evaluate the node-set expression «title», the node N will be selected as part
of the result. In this example we don't have to look very far to find node A: in fact
only as far as the parent node of N.

So the reason that a <title> element matches the pattern «title» is that it has a
parent node, which when used as the context node for the expression
«./child::title», returns a node-set that includes that <title> element. The
pattern might be intuitive, but as you can see, the formal explanation is starting
to get quite complex.

In an early draft of the XSLT specification, the rules allowed almost any node-set
expression to be used as a pattern. For example, you could define a pattern
«ancestor::*[3]», which would match any node that was the great-grand-
parent of some other node in the document. It turned out that this level of
generality was neither needed nor possible to implement efficiently, and so a
further restriction was imposed, that the only axes you could use in a pattern
were the child and attribute axes (the various axes are explained on page Error!
Cannot open file. in Chapter 5). A consequence of this is that the only place
where the XSLT processor has to look for node A, (the one to use as a context
node for evaluating the expression) is among the ancestors of the node being
matched (N), including N itself.

This brings us to the formal definition of the meaning of a pattern (read this
slowly):

The node N matches a pattern P if and only if
 there is a node A that is an ancestor-or-self of N,
 such that evaluating P as an expression
 with A as the context node
 returns a node-set that contains N.

In this rule, by saying that A must be an ancestor-or-self of N, I mean that A must
either be N itself, or an ancestor of N.

The rule says that the expression is evaluated with A as the context node. It
doesn't say what the context size and context position should be, because it
makes no difference. Patterns cannot use the position() and last() function
except within a predicate, so the question doesn't arise.

This means there is a theoretical algorithm for testing whether a given node N
matches a pattern P as follows: for each node starting from N and working

through its ancestors up to the root node, evaluate P as an XPath expression with
that node as the context node. If the result is a node-set containing N, the pattern
matches; otherwise keep trying until you get to the root.

For example:

❑ A <title> element matches the pattern «title» because when the
context node is the parent of the <title> element, the expression
«title» (which is short for «./child::title») returns a node-set that
includes that <title> element.

❑ The node with ID value 'n123' matches the pattern «id('n123')»
because the expression «id('n123')» includes that node, regardless of
what the context node is at the time.

❑ The pattern «chapter//figure» matches every <figure> element that is
a descendant of a <chapter> element because, when the expression
«chapter//figure» is evaluated with the parent node of a <chapter>
element as the context node, every descendant <figure> of the
<chapter> will be returned.

❑ The root node matches the pattern «/» because when the expression «/»
is evaluated with the root node as context node, the root is included in
the resulting node-set.

❑ An attribute width with value 100 matches the pattern «@width[.=100]»
because when its parent element is taken as the context node, the
expression «@width[.=100]» includes that attribute.

In practice XSLT processors won't usually use this algorithm: it's only there as a
way of stating the formal rules. The processor will usually be able to find a faster
way of doing the test – which is just as well, since pattern matching would
otherwise be prohibitively expensive.

Although the formal rules usually give the answer you would expect intuitively,
there can be surprises. For example, you might expect the pattern «node()» to
match any node; but it doesn't. As an expression, «node()» is short for
«./child::node()», and the only nodes that this can select are nodes that are
children of something. Since root nodes, attribute nodes, and namespace nodes
are never children of another node (see the description of the tree model on page
Error! Cannot open file., in Chapter 2), they will never be matched by the pattern
«node()».

Patterns Containing Predicates
The formal equivalence of patterns and expressions becomes especially important
when considering the meaning of predicates (conditions in square brackets),
especially predicates that explicitly or implicitly use the position() and last()
functions.

For example, the pattern «para[1]» corresponds to the expression

«./para[position()=1]». This expression takes all the <para> children of the
context node, and then filters this set to remove all but the first (in document
order). So the pattern «para[1]» matches any <para> element that is the first
<para> child of its parent. Similarly the pattern «*[1][self::para]» matches
any element that is the first child of its parent and that is also a <para> element,
while «para[last()!=1]» matches any <para> element that is a child of an
element with two or more <para> children.

An Informal Definition
The formal rules for a pattern such as «book//para», because they are written in
terms of expressions, encourage you to think of the pattern as being evaluated
from left to right, which means finding a <book> element and searching for all its
<para> descendants to see if one of them is the one you are looking for.

An alternative way of looking at the meaning of this expression, and the way in
which most XSLT processors are likely to implement the pattern matching
algorithm, is to start from the right. The actual logic for testing a node against the
pattern «book//para» is likely to be along the lines:

❑ Test whether this is a <para> element. If not, then it doesn't match.

❑ Test whether there is a <book> ancestor. If not, then it doesn't match.

❑ Otherwise, it matches.

If there are predicates, these can be tested en-route, for example to evaluate the
pattern «speech[speaker='Hamlet']», the logic is likely to be:

❑ Test whether this is a <speech> element. If not, then it doesn't match.

❑ Test whether this element has a <speaker> child whose string-value is
«Hamlet». If not, then it doesn't match.

❑ Otherwise, it matches.

Most patterns can thus be tested by looking only at the node itself and possibly
its ancestors, its attributes, and its children. The patterns that are likely to be the
most expensive to test are those that involve looking further afield.

For example, consider the pattern «para[last() - 1]», which matches any
<para> element that is the last but one <para> child of its parent. Most XSLT
processors, unless they have an exceptionally good optimizer, are going to test
whether a particular <para> element matches this pattern by counting how many
children the parent element has, counting how many preceding <para> siblings
the test <para> has, and comparing the two numbers. Doing this for every
<para> element that is processed could get a little expensive, especially if there
are hundreds of them with the same parent. With the pattern «para[1]» or
«para[last()]» you've a slightly better chance that the processor will figure out
a quicker way of doing the test, but I wouldn't rely on it.

If you write a stylesheet with a lot of template rules, then the time taken to find
the particular rule to apply to a given node can make a significant difference. The
exact way in which different XSLT processors do the matching may vary, but one
thing you can be sure of is that patterns containing complex predicates will add
to the cost.

Conflict Resolution
When a pattern is used in the definition a template rule, it is possible that several
patterns may match the same node. When this happens, there are rules for
resolving this conflict. One of the factors these rules take into account is the
default priority of the pattern, which is determined from the way it is written.

The conflict resolution rules, and the way in which the default priority of a
pattern is determined, are described under <xsl:template> on page Error!
Cannot open file. in Chapter 4.

How to Read this Chapter
The overall structure of the rules is shown by the hierarchy below. Constructs
marked with an asterisk are defined in Chapter 5, Expressions.

Pattern

 LocationPathPattern

 RelativePathPattern

 StepPattern

 ChildOrAttributeAxisSpecifier

 AbbreviatedAxisSpecifier *

 NodeTest *

 Predicate *

 IdKeyPattern

 Literal *

As this structure is relatively simple and regular, I decided that, unlike Chapter 5,
I would present the rules in top-down order, starting with the Pattern construct
itself. So you can find the rules on the following pages:

Construct Page number
Pattern page 7
LocationPathPattern page 7
RelativePathPattern page 10
StepPattern page 11
ChildOrAttributeAxisSpecifier page 16
IdKeyPattern page 17

The production rules use the same syntax notation as in Chapter 5.

Pattern
This is the top-level construct for the XSLT Pattern syntax. A pattern defines a
condition that is either true or false for any given node in the source document.
The syntax for a Pattern is a subset of the syntax for a UnionExpr (and therefore
for an Expr) in the Expression syntax.

Syntax
Expression Syntax
Pattern LocationPathPattern |

Pattern «|» LocationPathPattern

A Pattern is either a LocationPathPattern or a sequence of
LocationPathPatterns separated by the «|» (union) operator

The syntax of a LocationPathPattern is given on page 7.

Used in
match attribute of <xsl:template> (page Error! Cannot open file.)
match attribute of <xsl:key> (page Error! Cannot open file.)
from and count attributes of <xsl:number> (page Error! Cannot open file.)

Usage
Although «|» is technically a union operator, it is simpler to read it as "or": a
node matches the pattern «A | B» if it matches either A or B or both.

For the meaning of LocationPathPattern, see page 7.

Examples
TITLE «TITLE» is a LocationPathPattern, so it

is also a Pattern
preface | chapter | appendix A node matches this pattern if it is a

<preface> element, a <chapter>
element, or an <appendix> element

/ | * A node matches this pattern if it is either
the root node or an element node

LocationPathPattern
A LocationPathPattern states conditions that a node must satisfy based on its
name, its node type, its position relative to other nodes, and/or its ID and key

values.

This construct is a subset of the PathExpr construct in the Expression language
(and not, as you might expect, of LocationPath).

Syntax
Expression Syntax
LocationPathPattern «/» RelativePathPattern ? |

IdKeyPattern
 ((«/»|«//») RelativePathPattern) ? |
«//» ? RelativePathPattern

The above production rule is the way the syntax is defined in the XSLT
specification. However, the equivalent production rule below may be easier to
understand, and corresponds with the description in the Usage section below.

Expression Syntax
LocationPathPattern «/» |

RelativePathPattern |
«/» RelativePathPattern |
«//» RelativePathPattern |
IdKeyPattern |
IdKeyPattern «/» RelativePathPattern |
IdKeyPattern «//» RelativePathPattern

The syntax of a RelativePathPattern is described on page 10, and the syntax of
an IdKeyPattern on page 17.

Used in
Pattern (see page 7).

Usage
The syntax rule reproduced above from the XSLT specification can be better
understood by listing the seven different kinds of LocationPathPattern, as
follows:

«/» Matches the root node.
RelativePathPattern Matches a pattern that can appear anywhere in

the document.
«/» RelativePathPattern Matches a pattern defined relative to the

immediate children of the root node.
«//» RelativePathPattern Matches a pattern that can appear anywhere in

the document. The inclusion of the leading «//»
has no effect on the meaning of the pattern,

though it does affect its default priority. The
default priority of a pattern comes into play
when two template rules match the same node:
for details, see the description of
<xsl:template> in Chapter 4, page Error!
Cannot open file..

IdKeyPattern Matches a node with a given ID attribute or key
value.

IdKeyPattern «/»
RelativePathPattern

Matches a pattern defined relative to the
children of a node with a given ID attribute or
key value.

IdKeyPattern «//»
RelativePathPattern

Matches a pattern defined relative to the
descendants of a node with a given ID attribute
or key value.

The pattern «/» matches the root node of any tree. In fact, it is the only pattern
that will match a root node. This means that if you have several trees (which will
be the case in a stylesheet that uses the document() function described on page
Error! Cannot open file.,in Chapter 7), the pattern «/» will match the root nodes
of each one. This means that you can't write different template rules to match the
root nodes of different trees. The usual way around this is either to use different
modes to process each tree (see the description of <xsl:apply-templates> on
page Error! Cannot open file. in Chapter 4), or to start processing of secondary
documents at the nodes immediately below the root.

A pattern such as «/item» will match an item element that is an immediate child
of the root node. This kind of pattern is often useful when your stylesheet is
dealing with multiple source documents, because it allows you to distinguish
them by the name of the document element.

The pattern «/@width» is legal but meaningless: it would match a width attribute
of the root node, but as the root node cannot have attributes, there is no such
node.

For the other kinds of LocationPathPattern, see RelativePathPattern on page
10, and IdKeyPattern on page 17.

Examples
/ Matches the root node.
/* Matches the outermost element node (the

document element). In the case of a tree
that is not well-formed (see page Error!
Cannot open file. Chapter 2), it matches
any element whose parent is the root node.

/booklist Matches a <booklist> element whose
parent is the root node.

//book Matches a <book> element that has the root
node as an ancestor: in other words, any
<book> element.

book Matches any <book> element.
id('figure-1') Matches an element with an ID attribute

having the value 'figure-1'.
id('figure-1')//* Matches any descendant element of an

element with an ID attribute having the
value 'figure-1'.

key('empnr', '624381')/@dob Matches the dob attribute of an element
having a value '624381' for the key
named empnr.

RelativePathPattern
A RelativePathPattern consists of a StepPattern defining conditions a node
must satisfy, optionally preceded by a RelativePathPattern that a parent or
ancestor node must satisfy. The syntax for a RelativePathPattern is a subset of
the syntax for a RelativeLocationPath in the XPath Expression language.

Syntax
Expression Syntax
RelativePathPattern StepPattern |

RelativePathPattern «/» StepPattern |
RelativePathPattern «//» StepPattern

A RelativePathPattern is thus a sequence of one or more StepPatterns
separated by either of the operators «/» (is-parent-of) or «//» (is-ancestor-of).

The syntax of a StepPattern is described on page 11.

Used in
LocationPathPattern

Usage
With the first form, StepPattern, a node matches the pattern if it satisfies the
conditions (node name, node type, and predicates) defined in the StepPattern.
The simplest and most common form of StepPattern is simply an element name,
for example «title».

With the second form, RelativePathPattern «/» StepPattern, a node matches
the pattern if it satisfies the conditions (node name, node type, and predicates)
defined in the StepPattern, and if its parent node matches the
RelativePathPattern. This RelativePathPattern may in turn include

conditions that the parent node's parent or ancestor nodes must satisfy.

With the third form, RelativePathPattern «//» StepPattern, a node matches
the pattern if it satisfies the conditions (node name, node type, and predicates)
defined in the StepPattern, and if it has an ancestor that matches the
RelativePathPattern. This RelativePathPattern may in turn include
conditions that the ancestor node's parent or ancestor nodes must satisfy.

Notice that although there is an equivalence between RelativePathPattern in
the pattern language and RelativeLocationPath in the expression language, the
meaning of a RelativePathPattern is most easily explained by examining the
StepPatterns from right to left, starting at the node being tested and working up
through its ancestors, if necessary; this is despite the fact that the meaning of a
RelativeLocationPath is explained by considering the Steps from left to right,
starting at the context node. It's likely that most implementations will adopt a
strategy similar to the algorithm as I've explained it here.

In theory everything you can do in a RelativePathPattern could be done in a
single StepPattern, since the pattern «A/B» means exactly the same as
«B[parent::A]», and the pattern «A//B» means exactly the same as
«B[ancestor::A]». However, where several steps are present, the form using
«/» and «//» operators is a lot easier to read.

Examples
title This is a StepPattern, and therefore the

simplest form of RelativePathPattern. It
selects any <title> element.

section/title This is a RelativePathPattern consisting of
two StepPatterns joined by the «/» (is-
parent-of) operator. It matches a <title>
element whose parent is a <section> element.

chapter//footnote This is a RelativePathPattern consisting of
two StepPatterns joined by the «//» (is-
ancestor-of) operator. It matches a <footnote>
element that is a descendant of a <chapter>
element.

chapter/section//footnote A more complex RelativePathPattern that
matches any <footnote> element that is a
descendant of a <section> element that is a
child of a <chapter> element.

StepPattern
A StepPattern defines conditions that an individual node must satisfy: typically
the node name, node type, and optionally a set of Boolean predicates. The syntax
for a StepPattern is a subset of the syntax for a Step in the XPath expression
language.

Syntax
Expression Syntax
StepPattern ChildOrAttributeAxisSpecifier

 NodeTest Predicate *

The syntax of ChildOrAttributeAxisSpecifier is given on page 16. The
constructs NodeTest (page Error! Cannot open file.) and Predicate (page Error!
Cannot open file.) are constructs described in the XPath expression language in
Chapter 5.

The ChildOrAttributeAxisSpecifier is mandatory, but if you look at its syntax
on page 16 you will see that it may be empty – and in practice it usually is. So
unless you choose the long form of the syntax for an axis specifier, a
StepPattern consists of an optional «@» sign to indicate the attribute axis, then a
NodeTest which is generally either a node name or a node type such as «text()»
or «comment()», followed by zero or more Predicates: Boolean expressions
enclosed in square brackets.

Used in
RelativePathPattern

Usage
We'll look at the usage of each part of the StepPattern in turn.

The AxisSpecifier
The ChildOrAttributeAxisSpecifier may take the form «attribute::»
(abbreviated «@») or «child::» (abbreviated to nothing: «»).

In the formal rules for evaluating a pattern, the steps in a RelativePathPattern
are evaluated from left to right, and the choice of axis determines whether this
step looks at the children or the attributes of the nodes found in the previous
step.

Looking at it informally, it simplest to think of the axis specifier as simply a way
of saying what node type is required:

❑ If the child axis is used and the NodeTest is a NameTest (for example
«title», «*», or «svg:*»), or the NodeType «node()», then we are
looking for an element node.

❑ If the attribute axis is used and the NodeTest is a NameTest (for example
«@title», «@*», or «@svg:*»), or the NodeType «@node()», and the child
axis is used we are looking for an attribute node.

❑ If the NodeTest is anything else (for example «comment()» or «text()»),
then it only makes sense to use the child axis, because these nodes will

never be found on the attribute axis. Writing «@comment()» or «@text()»
is not illegal, just pointless: they are valid patterns that will never match
anything.

The Node Test
The form of a NodeTest is defined in the XPath expression language; specifically
it may be:

❑ a NameTest such as «title», «*», or «prefix:*». (The last form
matches any element or attribute whose name is in a particular
namespace).

❑ a NodeType, one of «comment()», «text()», «processing-
instruction()», or «node()».

❑ a named processing instruction, for example
«processing-instruction('pi-target')».

The Predicates
The form of a Predicate is defined in the XPath expression language (see
Chapter 5, page Error! Cannot open file.): it is any expression enclosed in square
brackets. For example «[speaker='Hamlet']», or «[@width > 100]», or
«[*]», or «[1]».

If the predicate is numeric, it is interpreted as a test on the position of the node
relative to its siblings. In all other cases, the expression is converted to a Boolean,
and if the value is false then the pattern doesn't match.

There are two restrictions on predicates used in patterns:

❑ When a pattern is used in the match attribute of <xsl:template> or
<xsl:key>, the predicate must not contain any references to variables.
This is to prevent circular definitions: global variables can invoke keys
and templates, so if keys and templates were allowed to be defined in
terms of global variables, infinite recursion could happen. This restriction
doesn't apply to patterns used in <xsl:number>.

❑ Patterns must not use the current() function (described on page Error!
Cannot open file., in Chapter 7) within a predicate. This is to ensure that
the decision as to whether a particular node matches a pattern is
predictable and does not depend on the current state of processing. For
example, considering the match attribute of the <xsl:key> element, this
means that a node is either included in a key or excluded, it can't be
included at some times and excluded at other times.

Predicates can be classified into two groups: those that depend on the node's
position relative to its siblings, and those that don't. A positional predicate is one
whose value is a number, or one that uses the functions position() or last();
all others are non-positional. For example the predicates «[1]»,

«[position()!=1]», and «[last()-1]» are all positional predicates, whereas
«[@name='Tokyo']» and «[*]» are non-positional.

For a non-positional predicate, its meaning is that the StepPattern fails to match
a node if the predicate fails to match the node. For example, the predicate
«[@security='secret']» is true when the node has a security attribute whose
value is 'secret', so any StepPattern that uses this predicate will fail if the
node has no security attribute or if the security attribute has any value other
than 'secret'.

For a positional predicate, the meaning of the predicate can be deduced from the
formal rules given at the start of this chapter. However, it is easier to understand
their meaning by using informal rules. A numeric predicate such as «[1]» or
«[last()-1]» is equivalent to the Boolean predicate «[position()=1]» or
«[position()=last()-1]». So to evaluate a positional predicate, we need to
know what position() and last() are.

The use of positional predicates with the attribute axis doesn't make much sense,
because the order of attributes is undefined. So in the following description, I'll
assume that you're using the child axis.

If there is only one predicate in the StepPattern, or if this predicate is the first,
then:

❑ last() is the number of siblings of the node being tested that satisfy the
NodeTest (including the node itself). For example, if we are testing a
<para> element against the pattern «para[last()=1]», then last() is
the number of <para> elements that are children of the parent of the
<para> element being tested. This pattern will match any <para> element
that is the only <para> child of its parent.

❑ position() is the position of the node being tested among these siblings,
taking them in document order and counting from one. So «para[1]»,
which means «para[position()=1]», will match any <para> element
that is the first <para> child of its parent element, in document order.

Note that it is the position of the node relative to its siblings that counts, not the
position in the sequence you are processing the nodes. For example suppose you
want to process all the <glossary-entry> elements in a document, in
alphabetical order. You can write:

<xsl:apply-templates select="//glossary-entry">

 <xsl:sort/>

<xsl:apply-templates>

Then suppose you have the following two template rules:

<xsl:template match="glossary-entry[1]">

. . .

</xsl:template>

<xsl:template match="glossary-entry">

. . .

</xsl:template>

The first template rule will be used for any <glossary-entry> that is the first
<glossary-entry> child of its parent. Not, as you might expect, the first
<glossary-entry> in alphabetical order, nor even the first <glossary-entry>
element in the document. If you want to apply different processing to the
<glossary-entry> that is first in alphabetical order, the way to do it is:

<xsl:template match="glossary-entry">

<xsl:choose>

<xsl:when test="position()=1">

 . . .

</xsl:when>

<xsl:otherwise>

 . . .

</xsl:otherwise>

</xsl:template>

This is because the context position within the body of the template rule is the
position of the node in the list of nodes being processed, whereas the result for
deciding whether a node matches a pattern is the same regardless of the
processing context.

If there are several predicates in the StepPattern, then position() and last()
in predicates after the first apply to the nodes that survived the previous
predicates. So «speech[speaker='Hamlet'][1]» matches a <speech> element
that is the first <speech> element among its siblings in which one of the
<speaker>s is Hamlet.

The position() and last() functions relate to children of the same parent even
when the «//» operator is used. For example, «chapter//footnote[1]» matches
any <footnote> element that is a descendant of a <chapter> element and that is
the first <footnote> child of its parent. There is no simple way to write a pattern
that matches the first <footnote> element in a <chapter>, because the relevant
expression «(chapter//footnote)[1]» is not a valid pattern. (Why not? No
good reason, it's just that the spec doesn't allow it.)

Positional predicates in patterns need to be used with some attention to
performance. Writing a template with the match pattern «para[last()-1]», for
example, seems a sensible way to define the processing for the penultimate
paragraph of a section. However, a simplistic XSLT processor will expand this
predicate to «para[position()=last()-1]», and evaluate it by first determining
the position of the current paragraph in its section, then finding the total number
of paragraphs in the section, and comparing the two. If the number of paragraphs
in a section is large, this could be a very expensive operation. An optimized XSLT
processor will find a better strategy, but if performance is critical it would be
worth doing some measurements.

Examples
child::title Matches elements named <title>
title Short form of «child::title»
attribute::title Matches attributes named <title>
@title Short form of «attribute::title»
*[@width] Matches an element node that has an

attribute named width
text()[starts-with(.,'The')] Matches a text node whose text content

starts with the characters «The»
p[@code][position() < 10] Matches a <p> element that is among the

first nine <p> elements of its parent that
have a code attribute.

p[position() < 10][@code] Matches a <p> element that is among the
first nine <p> elements of its parent and
that has a code attribute.

*[not(@code =
 preceding-sibling::*/@code)]

Matches an element node provided that it
does not have a code attribute with the
same value as the code attribute of any
preceding sibling element

comment() Matches any comment node
@comment() This matches comment nodes that are

found on the attribute axis of their parent
node. Since the attribute axis can only
contain attribute nodes, this condition can
never be satisfied; nevertheless, it is a legal
StepPattern.

ChildOrAttributeAxisSpecifier
This construct is a subset of AxisSpecifier in the Expression syntax. The only
two axes used directly in a pattern are the child axis and the attribute axis. Either
can be written in its expanded form or its abbreviated form.

Syntax
Expression Syntax
ChildOrAttributeAxisSpecifier AbbreviatedAxisSpecifier |

(«child» | «attribute») «::»

The construct AbbreviatedAxisSpecifier is part of the Expression syntax
defined on page Error! Cannot open file. in Chapter 5, and is either «@»,
denoting the attribute axis, or nothing, denoting the child axis.

As an AbbreviatedAxisSpecifier can be empty, so can a

ChildOrAttributeAxisSpecifier. What this means in practice is that a
NodeTest with no explicit axis specifier (for example an element name or a node
type such as «text()») implicitly uses the child axis.

A surprising consequence of this is that the pattern «node()» will only match a
node that is the child of something, thus it will never match a root node, an
attribute node, or a namespace node.

Used in
StepPattern

Usage
See StepPattern on page 11.

Unlike expressions, the only two axes that are available directly in a pattern are
the child and attribute axes. However, testing for the presence of related nodes
on a different axis can be done in the predicate of the StepPattern. Any
expression can be used in the predicate, so all axes are available. For example:

caption[preceding-sibling::*[1][self::figure]]

matches a <caption> element whose immediately preceding sibling element is a
<figure> element.

Examples
child:: Denotes the child axis
 (The box on the left is blank) Denotes the child axis:

«child::» is the default axis specifier
attribute:: Denotes the attribute axis
@ Equivalent to «attribute::»

For examples showing a ChildOrAttributeSpecifier in context, see
StepPattern on page 11.

IdKeyPattern
This construct allows a pattern to be matched only if the node being tested (or
one of its ancestors) has a specified ID attribute or key value.

This construct is a subset of the FunctionCall construct in an Expression,
described in Chapter 5, page Error! Cannot open file.. The only function calls
that can be used in a pattern (except within predicates) are the id() and key()
functions, and these can only be used with arguments that are literals.

The id() (page Error! Cannot open file.) and key() (page Error! Cannot open

file.) functions are described in Chapter 7.

Syntax
Expression Syntax
IdKeyPattern «id» «(» Literal «)» |

«key» «(» Literal «,» Literal «)»

Used in
LocationPathPattern

Usage
This facility provides an equivalent to the ability in CSS to define a style for a
specific node in the source document.

There are a number of ways the facility can be used:

❑ If for a particular source document you want to use a general-purpose
stylesheet, but want to override its behavior for certain selected nodes,
you can write a stylesheet that imports the general-purpose one, and then
write the overriding rules in the form of templates that match specific
identified elements in the source document.

❑ Sometimes the source document is generated dynamically from a
database. Perhaps there is something in the source document you want to
highlight, say the search term that was used to locate this record. You
could flag this item while generating the source document by giving it a
special ID attribute value known to the stylesheet.

In all cases the id() and key() function could be spelled out in terms of a
predicate on the ID attributes or the key value expression, so the facility can be
seen simply as a shorthand. For example, if <book> elements are keyed on their
ISBN property, and implemented as a child element, then the following
declarations are equivalent:

(1) using a direct pattern match

<xsl:template match="book[isbn='1-861002-68-8']">

(2) using a key definition

<xsl:key name="isbn-key" match="book" use="isbn"/>

<xsl:template match="key('isbn-key', '1-861002-68-8')>

Of course there may be a performance difference between the two, but this
depends on how the XSLT processor is implemented.

Examples
id('figure1') Matches a node with an ID attribute equal to the

string 'figure1'. An attribute is an ID attribute
if it is defined in the DTD as having type ID (the
name of the attribute is irrelevant).

key('empnr', '517541') Matches a node having a value of '517541' for
the key named «empnr»

The following example shows how this feature can be used in a stylesheet:

Example: Using the key() Pattern to Format a Specific Node

In this example I will show how to use the key() pattern to format one selected
node differently from the others.

Source
The source document, itinerary.xml, is a tour itinerary:

<itinerary>

<day number="1">Arrive in Cairo</day>

<day number="2">Visit the Pyramids at Gaza</day>

<day number="3">Archaelogical Museum at Cairo</day>

<day number="4">Flight to Luxor; coach to Aswan</day>

<day number="5">Visit Temple at Philae and Aswan High Dam</day>

<day number="6">Cruise to Edfu</day>

<day number="7">Cruise to Luxor; visit Temple at Karnak</day>

<day number="8">Valley of the Kings</day>

<day number="9">Return flight from Luxor</day>

</itinerary>

Stylesheet
We'll start with a straightforward stylesheet, itinerary.xsl, to display this
itinerary:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html><head>

 <title>Itinerary</title>

 </head>

 <body><center>

 <xsl:apply-templates select="//day"/>

 </center></body></html>

</xsl:template>

<xsl:template match="day">

 <h3>Day <xsl:value-of select="@number"/></h3>

 <p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

Now we'll specialize this by importing it into another stylesheet, today.xsl,
which displays the activities for day 5 in red:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="itinerary.xsl"/>

<xsl:key name="day-number" match="day" use="@number"/>

<xsl:template match="key('day-number','5')//text()">

 <xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

Output
The resulting output is as follows:

<html>

 <head>

 <META http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>Itinerary</title>

 </head>

 <body>

 <center>

 <h3>Day 1</h3>

 <p>Arrive in Cairo</p>

 <h3>Day 2</h3>

 <p>Visit the Pyramids at Gaza</p>

 <h3>Day 3</h3>

 <p>Archaelogical Museum at Cairo</p>

 <h3>Day 4</h3>

 <p>Flight to Luxor; coach to Aswan</p>

 <h3>Day 5</h3>

 <p><font

 color="red">Visit Temple at Philae and Aswan High Dam</p>

 <h3>Day 6</h3>

 <p>Cruise to Edfu</p>

 <h3>Day 7</h3>

 <p>Cruise to Luxor; visit Temple at Karnak</p>

 <h3>Day 8</h3>

 <p>Valley of the Kings</p>

 <h3>Day 9</h3>

 <p>Return flight from Luxor</p>

 </center>

 </body>

</html>

While this example shows one way of using this feature, I have to admit that it's
not very convincing. You could achieve the same effect by writing the relevant
pattern as «day[@number=5]», without the need to introduce a key at all. And in
any practical situation I would want to decide which day's activities to display in
red by means of a parameter to the stylesheet: unfortunately there is no way of
writing a pattern whose result depends on the value of a parameter, so the logic
would have to be coded using <xsl:choose> instead.

Summary
In this chapter I described the syntax and meanings of patterns, whose main use
in an XSLT stylesheet is to define which template rules apply to which nodes in
the source document, but which are also used in the <xsl:key> and
<xsl:number> elements.

Patterns, although their syntax is a subset of that for XPath expressions which we
saw described in Chapter 5, are evaluated in a different way to expressions,
though we saw that the formal rules express the meaning of a pattern in terms of
the corresponding expression.

The next chapter describes the library of standard functions which can be used
within XPath expressions in a stylesheet.

7
Functions

This chapter describes all the standard functions included in the XPath and XSLT
specifications for use in expressions.

For each function, I give: its name, a brief description of its purpose, a reference to
where in the XSLT or XPath specifications it is defined, a list of the arguments it
expects and the value it returns, the formal rules defining what the function does, and
finally usage advice and examples.

Some of these functions are defined in the XPath recommendation, some in XSLT. If
you are using them in an XSLT stylesheet, it doesn't matter where they were defined;
but if you are using XPath in a context other than XSLT, you should be aware that only
the XPath-defined functions (known as core functions) are guaranteed to be available.
These are shown by a in the table below.

The syntax of a function call is described as part of the XPath expression syntax in
Chapter 5. This describes where a function call can be used in an expression, and
where it can't: the only significant restriction is that you can't use a function call on the
right hand side of the path operator «/».Within a function call, the values supplied as
arguments can be any XPath expression, subject only to the rules on data types (for
example, some functions require an argument that is a node-set). So a function call
such as «count(..)», though it looks strange, is perfectly legal: «..» is a valid XPath
expression that returns the parent of the context node.

I've arranged the functions in alphabetical order so you can find them quickly if you
know what you're looking for. However, in case you only know the general area you
are interested in, you may find the following classification useful. In the table the core
XPath functions are marked , while the additional functions defined in XSLT are
marked . The difference is only important when you use XPath expressions in a
context other than XSLT stylesheets.

Category Function

Functions that convert values from
one data type to another

 boolean()
 format-number()
 number()
 string()

Arithmetic functions ceiling()

 floor()
 round()

String manipulation concat()
 contains()
 normalize-space()
 starts-with()
 string-length()
 substring()
 substring-before()
 substring-after()
 translate()

Aggregation count()
 sum()

Getting node names and identifiers generate-id()
 lang()
 local-name()
 name()
 namespace-uri()
 unparsed-entity-uri()

Boolean functions false()
 true()
 not()

Functions that return information
about the context

 current()
 last()
 position()

Functions that find nodes document()
 key()
 id()

Functions that provide information
about the processor

 element-available()
 function-available()
 system-property()

All these functions are in the default namespace: their names do not need to be
prefixed. In fact, they are the only functions in the default namespace – extension
functions provided by vendors, users, or third parties should always be in a different
namespace and will need to have a namespace prefix when called.

boolean
The boolean() function converts its argument to a Boolean value.

For example, the expression «boolean(1)» returns true.

Defined in
XPath section 4.3

Format
boolean(value) ⇒ boolean

Arguments
 Data

type
Meaning

value

any The value that is to be converted to a
Boolean.

Result
A Boolean value: the result of converting the first argument

Rules
Any value may be converted to a Boolean. The rules for conversion are as follows:

Supplied data type Conversion rules

Number The number zero converts to false; anything
else converts to true

String A zero-length string converts to false;
anything else converts to true

Boolean The value is unchanged
Node-set An empty node-set converts to false;

anything else converts to true
Result Tree Fragment The result tree fragment is first converted to

a string, and the string is then converted to a
Boolean. The resulting Boolean is true if the
result tree fragment contains any non-empty
text nodes, and is false otherwise.

Usage
In most cases conversion to a Boolean occurs automatically when the context requires
it; it is only necessary to call the boolean() function explicitly in order to force a
conversion.

Examples
The following example prints a message if the source document contains a <header>
element and no <footer>, or if if contains a <footer> and no <header>.

<xsl:if test="boolean(//header) != boolean(//footer)">

 <xsl:message>Document must contain headers and footers,

 or neither</xsl:message>

</xsl:if>

The conversion of the two node-sets «//header» (true if there are any <header>
elements in the document) and «//footer» (true if there are any <footer> elements)

needs to be explicit here, because we want to do a Boolean comparison, not a node-set
comparison.

The following example sets a variable to the Boolean value true or false depending
on whether the document contains footnotes. In this case the explicit conversion is
probably not necessary, since it could be done later when the variable is used, but it is
probably more efficient to retain only a Boolean value in the variable rather than
retaining the full set of footnote nodes. Some products may even recognize that the
expression «//footnote» occurs in a context where a Boolean is required, and scan the
document only until the first footnote is found, rather than retrieving all of them.

<xsl:variable name="uses-footnotes" select="boolean(//footnote)"/>

See also
true() on page 103
false() on page 28

ceiling
The ceiling() function returns the smallest integer that is greater than or equal to the
numeric value of the argument.

For example, the expression «ceiling(33.9)» returns 34.

Defined in
XPath section 4.4

Format
ceiling(value) ⇒ number

Arguments
 Data

type
Meaning

value number The input value. If it is not of type
number, it is first converted to a number
using the rules for the number() function.

Result
An integer value: the result of converting the first argument to a number and then
rounding up, if necessary, to the next highest integer.

Rules
If the value is not numeric, if is first converted to a number. For the detailed rules, see

the description of the number() function on page 73. If the value is a node-set, these
rules mean that the function applies to the value of the first node in the node-set, in
document order.

If the number is an integer, it is returned unchanged. Otherwise, it is rounded up to
the next highest integer.

The number data type in XPath supports special values such as infinity, negative zero
and NaN (not a number), which are described on page Error! Cannot open file. in
Chapter 2.

If the argument is NaN (not a number), which will happen if a string is supplied that
cannot be converted to a number, the result is not defined in the XPath specification,
but most implementations are likely to return NaN. Similarly the effect when the
argument is positive or negative infinity is not explicit in the standard, but the most
likely result is that the argument is unchanged.

It is undefined whether an argument value that is greater than –1.0 but less than zero
will be rounded up to negative zero or to positive zero.

Usage and Examples
The result of this function is illustrated by the following examples:

ceiling(1.0) = 1.0
ceiling(1.6) = 2.0
ceiling(17 div 3) = 6.0
ceiling(–3.0) = –3.0
ceiling(–8.2) = –8.0

One situation where this function is useful is when calculating the size of a table. If
you have a node-set $ns and you want to arrange the values in three columns, then the
number of rows needed is: ceiling(count($ns) div 3).

See also
floor() on page 29
round() on page 79

concat
The concat() function takes two or more arguments. Each of the arguments is
converted to a string, and the resulting strings are joined together end-to-end.

For example, the expression «concat('Jane', ' ', 'Brown')» returns the string
«Jane Brown».

Defined in
XPath section 4.2

Format
concat(value1, value2, value3, …) ⇒ string

Arguments
This function is unique in that it can take any number of arguments (two or more).

 Data
type

Meaning

value 1 …
value n

string An input value. If it is not of type string,
it is first converted to a string using the
rules for the string() function.

Result
A string value: the result of converting each of the arguments in turn to a string and
concatenating the results.

Rules
Each of the arguments is converted to a string using the rules of the string() function,
and each of the resulting strings is appended to the result string, in the order they
appear.

Usage and Examples
The concat() function is often a convenient alternative to using multiple <xsl:value-
of> elements to construct an output string. For example:

<xsl:value-of select="concat(first-name, ' ', last-name)"/>

is equivalent to

<xsl:value-of select="first-name"/>

<xsl:text> </xsl:text>

<xsl:value-of select="last-name"/>

Another situation where concat() is useful is in defining a key (see <xsl:key> on
page Error! Cannot open file. in Chapter 4, and the description of the key() function
on page 44). XSLT keys cannot be multi-part values, but you can get round this
restriction by concatenating the parts of the key with an appropriate separator. For
example:

<xsl:key name="full-name" match="person"

 use="concat(first-name, ' ', last-name)"/>

This key can then be used to retrieve the person (or persons) with a given name using
an expression such as:

<xsl:for-each select="key('full-name', 'Peter Jones')"/>

A more advanced usage of concat() is to build up a whitespace-separated list of
names. As XSLT provides no complex data types for temporary results, a whitespace-
separated list is often the best option available for maintaining what in other languages
would be an array. You can use other separators, of course, but whitespace is generally
the most convenient because it's then easy to separate the components using the
functions normalize-space(), substring-before(), and substring-after().

Example: Creating a Comma-separated List
The following example shows a template, which, when supplied with a node-set
containing <city> elements with a country attribute, builds a list of cities in the
form city, country.

Source
The source file is cities.xml:

<cities>

 <city name="Paris" country="France"/>

 <city name="Roma" country="Italia"/>

 <city name="Nice" country="France"/>

 <city name="Madrid" country="Espana"/>

 <city name="Milano" country="Italia"/>

 <city name="Firenze" country="Italia"/>

 <city name="Napoli" country="Italia"/>

 <city name="Lyon" country="France"/>

 <city name="Barcelona" country="Espana"/>

</cities>

Stylesheet
The stylesheet list-cities.xsl iterates over all the <city> elements using the
concat() function to output each one in the format city, country.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:output indent="yes"/>

<xsl:template match="/">

 <out>

 <xsl:for-each select="//city">

 <city><xsl:value-of select="concat(@name, ', ', @country)"/></city>

 </xsl:for-each>

 </out>

</xsl:template>

</xsl:transform>

Output
<?xml version="1.0" encoding="utf-8" ?>

<out>

 <city>Paris, France</city>

 <city>Roma, Italia</city>

 <city>Nice, France</city>

 <city>Madrid, Espana</city>

 <city>Milano, Italia</city>

 <city>Firenze, Italia</city>

 <city>Napoli, Italia</city>

 <city>Lyon, France</city>

 <city>Barcelona, Espana</city>

</out>

See also
contains() on page 8
substring() on page 87

contains
The contains() function tests whether one string value contains another as a
substring.

For example, the expression «contains('Santorini', 'ant')» returns true.

Defined in
XPath section 4.2

Format
contains(value, substring) ⇒ boolean

Arguments
 Data

type
Meaning

value string The containing string. If it is not of type
string, it is first converted to a string
using the rules for the string() function.

substring string The test string. If it is not of type string, it
is first converted to a string using the
rules for the string() function.

Result
A Boolean value: true if the containing string has a substring that is equal to the test
string, false otherwise.

Rules
The result is true if the first string contains a consecutive sequence of characters where
each character has the same Unicode value as the corresponding character of the
second string.

If the second string is empty, the result is always true.
If the first string is empty, the result is false except when the second string is also
empty.

The XPath specification does not define the handling of empty strings very
precisely, but it is reasonable to assume that implementations will interpret
the specification in this way.

Usage and Examples
The contains() function is often useful where a string has some internal syntax. For
example the test:

<xsl:if test="contains($name, 'Michael') and contains($name, 'Kay')"/>

will succeed if the variable «$name» is the string value «Michael Kay» or «Kay,
Michael» or «Michael H. Kay» or «Michaelmas Kayaks Inc.»

Take care if you are using accented or other composite letter forms, as there may be
more than one way of representing these in Unicode, and if the representations in the
two strings are different, you may not get a match.

See also
substring() on page 87
substring-after() on page 90
substring-before() on page 92

count
The count() function takes a node-set as its parameter, and returns the number of
nodes present in the node-set.

For example, the expression «count(.)» always returns 1.

Defined in
XPath section 4.1

Format
count(nodes) ⇒ number

Arguments
 Data type Meaning

nodes node-set The input node-set. An error is reported if
the argument is not a node-set.

Result
A number giving the number of distinct nodes in the input node-set.

Rules
The count() function takes a node-set as its parameter, and returns the number of
nodes present in the node-set.

Only the nodes that are members of the node-set in their own right are counted. Nodes
that are children or descendants of these nodes are not included in the count.

Usage
A node-set is a mathematical set, so all the nodes it contains are distinct (which means
they are different nodes – it doesn't mean, of course, that they must have different
string-values). If you form a node-set using the union operator «|», any nodes that are
in both operands will only be included in the result once. This means, for example, that
the result of «count(. | /)» will be 1 if and only if the context node is the root.

Since XPath provides no other way of comparing whether two node-sets contain the
same node, this can be a useful programming trick. For example, to test whether the
context node is one of the nodes in the node-set in variable «$special», write:

<xsl:if test="count($special | .) = count($special)"> . . . </xsl:if>

Avoid using count() to test whether a node-set is empty, for example by writing:

<xsl:if test="count(book[author='Hemingway'])!=0"> . . . </xsl:if>

This can be better expressed as:

<xsl:if test="book[author='Hemingway']"> . . . </xsl:if>

Both examples test whether the current node has any child <book> elements that have
a child <author> element whose value is «Hemingway». However, the second example,
as well as being more concise, is easier for the XSLT processor to optimize. Many
implementations will be able to stop the scan of books as soon as a matching one is
found.

Avoid using count() where last() would do the job just as well. This situation arises
when you are processing a set of nodes using <xsl:apply-templates> or <xsl:for-
each>: the number of nodes in that set is then available from the last() function. For
example, it is probably inefficient to write:

<xsl:for-each select="book[author='Hemingway']">

 <h2>Book <xsl:value-of select="position()"/> of

 <xsl:value-of select="count(../book[author='Hemingway'])">

 </h2>

 . . .

</xsl:for-each>

because – unless the XSLT processor is rather clever – it will have to re-evaluate the
expression «../book[author='Hemingway']» each time round the loop.

Instead, write:

<xsl:for-each select="book[author='Hemingway']">

 <h2>Book <xsl:value-of select="position()"/> of

 <xsl:value-of select="last()"/>

 </h2>

 . . .

</xsl:for-each>

An alternative is to assign the node-set to a variable, so it is only evaluated once.

Examples
The following example outputs the number of <footnote> elements in the source
document:

<xsl:value-of select="count(//footnote)"/>

The following example assigns to a variable the number of attributes of the current
node:

<xsl:variable name="num-atts" select="count(@*)"/>

Example: Counting Distinct Values

This example counts how many distinct values of the country attribute there are
in a list of <city> elements.

Source
The source document is cities.xml:

<cities>

 <city name="Paris" country="France"/>

 <city name="Roma" country="Italia"/>

 <city name="Nice" country="France"/>

 <city name="Madrid" country="Espana"/>

 <city name="Milano" country="Italia"/>

 <city name="Firenze" country="Italia"/>

 <city name="Napoli" country="Italia"/>

 <city name="Lyon" country="France"/>

 <city name="Barcelona" country="Espana"/>

</cities>

Stylesheet
The stylesheet is count-countries.xsl. It is a complete stylesheet, written using
the Simplified Stylesheet syntax described on page Error! Cannot open file., in
Chapter 3. It builds a node-set containing those <city> elements that have a
different country attribute from any preceding <city>, and then counts the
nodes in this node-set.

<count xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:value-of

 select="count(//city[not(@country=preceding::city/@country)])"/>

</count>

Output
<count>3</count>

current
The current() function returns a node-set containing a single node, the current node.

Defined in
XSLT section 12.4

Format
current() ⇒ node-set

Arguments
None

Result
A node-set containing a single node, the current node

Rules
It is important to understand the difference between the current node and the context
node.

The current node is established as follows:

❑ When evaluating a global variable, the current node is the root node of the

source document

❑ When <xsl:apply-templates> is used to process a selected set of nodes, each
selected node in turn becomes the current node. So when a template is
invoked, the current node is always the node that caused that template to be
selected. On return from <xsl:apply-templates>, the current node reverts to
its previous value.

❑ Similarly, when the system implicitly invokes a template to process the root
node of the source document, the current node is the root node.

❑ When <xsl:for-each> is used to process a selected set of nodes, each selected
node in turn becomes the current node. When the <xsl:for-each> loop
completes, the current node reverts to its previous value.

❑ <xsl:call-template> and <xsl:apply-imports> leave the current node
unchanged.

❑ The current node (unlike the context node) does not change when evaluating a
predicate within a path expression.

The context node is the node returned by the XPath expression «.». When used as a
freestanding XPath expression, «current()» and «.» return the same result. When
used in a predicate, however, the values will generally be different.

The current() function cannot be used in a pattern. This is to ensure that the decision
as to whether a node matches a pattern is context-free: it doesn't depend on the
circumstances in which the pattern is evaluated.

Usage and Examples
The reason the current() function is provided is to allow you to determine the
current node when it is different from the context node – specifically, inside a
predicate. The context node can always be determined using the path expression «.»
(or its longer form, «self::node()»).

The most common situation where current() is useful is when you want to follow a
cross-reference from the current node to some other node. For example, suppose in a
book catalogue the <book> elements have an attribute category, whose value is a code
such as "CL" or "SF", and that elsewhere there is a lookup table that gives the expansion
of these codes, for example CL might be classical literature and SF might be science
fiction.

Example: current()

This example lists the books in a catalog; in the description of each book, it also
lists other books in the same category.

Source
The source document is booklist.xml:

<booklist>

<book category="S">

 <title>Number, the Language of Science</title>

 <author>Danzig</author>

</book>

<book category="FC">

 <title>The Young Visiters</title>

 <author>Daisy Ashford</author>

</book>

<book category="FC">

 <title>When We Were Very Young</title>

 <author>A. A. Milne</author>

</book>

<book category="CS">

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

</booklist>

Stylesheet
The stylesheet is list-books.xsl. It processes all the books in an
<xsl:for-each> loop, and for each one it displays the title and the first author.
Then it looks for other books in the same category. Here it uses the predicate
«[./@category = current()/@category]» which is true if the category
attribute of the context element is the same as the category attribute of the
current element. The context element is the one being tested, the current element
is the one whose entry is being displayed. It also tests that these two elements
have different identifiers produced by generate-id(), which is one way of
testing that they are not the same element. Another way of doing this test would
be to write «count(.|current())=2», since the union of the context node and
the current node will contain one element if they are the same, and two if they
are different. In this case you could also get away with writing «.!=current()»,
which tests whether the two nodes have a different string-value, but it can be a
more expensive test, and it doesn't mean quite the same thing.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="/">

 <html><body>

 <xsl:variable name="all-books" select="//book"/>

 <xsl:for-each select="$all-books">

 <h1><xsl:value-of select="title"/></h1>

 <p><i>by </i><xsl:value-of select="author"/>

 <xsl:if test="count(author)!=1"> and others</xsl:if>

 </p>

 <xsl:variable name="others"

 select="$all-books[./@category=current()/@category and

 generate-id(.)!=generate-id(current())]"/>

 <xsl:if test="$others">

 <p>Other books in this category:</p>

 <xsl:for-each select="$others">

 <xsl:value-of select="title"/>

 </xsl:for-each>

 </xsl:if>

 </xsl:for-each>

 </body></html>

</xsl:template>

</xsl:transform>

Output
<html>

 <body>

 <h1>Number, the Language of Science</h1>

 <p><i>by </i>Danzig

 </p>

 <h1>The Young Visiters</h1>

 <p><i>by </i>Daisy Ashford

 </p>

 <p>Other books in this category:</p>

 When We Were Very Young

 <h1>When We Were Very Young</h1>

 <p><i>by </i>A. A. Milne

 </p>

 <p>Other books in this category:</p>

 The Young Visiters

 <h1>Design Patterns</h1>

 <p><i>by </i>Erich Gamma and others

 </p>

 </body>

</html>

See also
AbbreviatedStep on page Error! Cannot open file., in Chapter 5.

document

The document() function finds an external XML document by resolving a URI
reference, parses the XML into a tree structure, and returns its root node. It may also
be used to find a set of external documents, and it may be used to find a node other
than the root by using a fragment identifier in the URI.

For example, the expression «document('data.xml')» looks for the file data.xml in
the same directory as the stylesheet, parses it, and returns the root node of the
resulting tree.

Defined in
XSLT section 12.1

Format
document(uri) ⇒ number

document(uri, base-uri) ⇒ number

Arguments
 Data

type
Meaning

uri any Either:
(a) a node-set identifying a set of nodes in
the source document whose string-values
are URI references, or
(b) a value, which, when converted to a
string, can be treated as a URI reference

base-uri
(optional)

node-set If the argument is present, it must be a
node-set. The base URI of the first node in
this node-set is used for resolving any
relative URI found in the first argument

Result
The result is always a node-set.

Effect
I'll describe the rules, usage advice, and examples separately for each combination of
supplied arguments.

However, first a word about URIs and URLs, which are terms I use rather freely
throughout this section.

The XSLT specification always uses the term URI: Uniform Resource Identifier. The
concept of a URI is a generalisation of the URLs (Uniform Resource Locators) that are
widely used on the web today, and which are nowadays displayed on every cornflakes
packet. The idea of a URI is to extend the URL mechanism, which is based on the

established Domain Name System (with its hierarchic names such as www.ibm.com
and www.cam.ac.uk), to allow other global naming and numbering schemes, including
established ones such as ISBN book numbers and international telephone numbers.
However, although URIs are a nice idea, the only ones that really work today are the
familiar URLs. This is why the terms URI and URL seem to be used rather
interchangeably in this section and indeed throughout the book. If you read carefully
though, you'll see that I've tried to use both terms correctly.

The XSLT specification leaves it up to the implementation to decide which URI
schemes it will support. In the short term, it is likely that most implementations will
support conventional URLs only.

A URI used as input to the document() function must identify an XML document. If
the URI is invalid, or if it doesn't identify any resource, or if that resource is not an
XML document, the specification leaves it up to the implementation what to do: it can
either report the error, or return an empty node-set.

The specification doesn't say whether the XML document must be valid: most
implementations will provide some way for the user to control whether a validating
parser is used.

A URI can be relative rather than absolute. A typical example of a relative URI is
data.xml. Such a URI is resolved (that is, converted to an absolute, globally unique
URI) by interpreting it as relative to some base URI. By default, a relative URI that
appears in the text of an XML document is interpreted relative to the URI of the
document (or the external XML entity) that contains it, which in the case of the
document() function is usually either the source document or the stylesheet. So if the
relative URI data.xml appears in the source document, the system will try to find the
file in the same directory as the source document, while if it appears in the stylesheet,
the system will look in the directory containing the stylesheet. However, the
document() function provides a second argument so that the base URI can be specified
explicitly if required.

The expansion of relative URIs exploits the fact that in the XSLT tree model, which I
described on page Error! Cannot open file. in Chapter 2, every node has a Base URI.
(Don't confuse this with the namespace URI, which is quite unrelated.) The Base URI
of a node will normally be the URI of the XML document or entity from which the
node was constructed. In some cases, for example when the input comes from a DOM
document, it may be difficult for the processor to determine the Base URI (the concept
does not exist in the DOM standard). What happens in this situation is implementor-
defined.

The resulting XML document is parsed and a tree is constructed. Whitespace-only
nodes are stripped following the same rules as for the source document, based on the
<xsl:strip-space> and <xsl:preserve-space> declarations in force. This is true
even if the document happens to be a stylesheet.

If the same URI is used twice (after expansion of a relative URI into an absolute URI),
then the same root node is returned each time. You can tell that it's the same root node
because the generate-id() function will return the same result, and because the
count() function will treat the two nodes as duplicates. For example,

«count(document("a.xml") | document("a.xml"))» should be 1.

A fragment identifier identifies a part of a resource: for example in the URL
http://www.wrox.com/booklist#april2000, the fragment identifier is «april2000». In
principle, a fragment identifier allows the URI to reference a node or set of nodes other
than the root node of the target document.The interpretation of a fragment identifier
depends on the media-type (often called MIME type) of the returned document.
Implementations are not required to support any particular media types (which means
they are not required to support fragment identifiers): and until the standards are
better defined, it is likely that few will do so.

The following section describe the behavior of the document() function for each
possible combination of arguments.

document(node-set)
Note that this includes the common case where the argument is an attribute reference,
for example «document(@href)».

Rules
For a simple case such as «document(@href)» the result is a node-set containing one
node, namely the root node of the document referenced by the href attribute.

More formally, the result is defined to be the union, for each node N in the supplied
node-set, of the result of calling the document() function with two arguments: the first
argument being the string-value of node N, and the second argument being a node-set
with N as its only member. This is a recursive definition: to see what it means
precisely, you'll have to read the section document(string, node-set) below.

What it actually means, however, is that each of the nodes in the supplied node-set
should contain a URI as its string-value. If this is a relative URI, it will be resolved
relative to the base URI of that node. The base URI of a node (as described on page
Error! Cannot open file. in Chapter 2) is in layman's language the name of the XML
file where the node came from. Normally this will be the URI of the source document
itself, but where the node was found in an external entity, or in a document that was
itself loaded using the document() function, the base URI may be different. In fact,
each node in the supplied node-set could potentially have a different base URI.

This all sounds terribly complicated, but all it really means is that if the source
document contains the link «data.xml», then the system will look for the file
data.xml in the same directory as the source document.

In the most common case, with a call such as «document(@href)», the supplied node-
set contains only a single node, so the result is a node-set containing a single node,
namely the root node of the document whose URI is contained in the href attribute of
the context node, resolved if this is a relative URI by using the URI of the current node.

Usage
The most common usage of the document() function is to access a document
referenced from the source document, typically in an attribute such as href. For

example, a book catalogue might include links to reviews of each book, in a format
such as:

<book>

 <review date="1999-12-28" publication="New York Times"

 text="reviews/NYT/19991228/rev3.xml"/>

 <review date="2000-01-06" publication="Washington Post"

 text="reviews/WPost/20000106/rev12.xml"/>

</book>

If we want to incorporate the text of these reviews in your output document, you can
achieve this using the document() function. For example:

<xsl:template match="book">

 <xsl:for-each select="review">

 <h2>Review in <xsl:value-of select="@publication"/></h2>

 <xsl:apply-templates select="document(@text)"/>

 </xsl:for-each>

</xsl:template>

As the argument @text is a node-set, the result will be the root node of the document
whose URI is the value of the text attribute, interpreted relative to the base URI of the
<review> element, which (unless it comes from an external XML entity) will be the
same as the URI of the source document itself.

Note that in processing the review document, exactly the same template rules are used
as we used for the source document itself. There is no concept of particular template
rules being tied to particular document types. If the review document uses the same
element tags as the book catalogue, but with different meanings, this can potentially
create problems. There are two possible ways round this:

❑ Namespaces: use a different namespace for the book catalogue and for the
review documents.

❑ Modes: use a different mode to process nodes in the review document: so the
<xsl:apply-templates> instruction above would become:

<xsl:apply-templates select="document(@text)" mode="review"/>

You might find that even if the element names are distinct, the use of modes is a good
discipline for maintaining readability of your stylesheet. For more detail on modes, see
<xsl:apply-templates> (on page Error! Cannot open file.) and <xsl:template> (on
page Error! Cannot open file.) in Chapter 4.

Another useful approach, which helps to keep your stylesheet modular, is to include
the templates for processing the review document in a separate stylesheet incorporated
using <xsl:include>.

Example: Using the document() Function to Analyze a Stylesheet

A stylesheet is an XML document, so it can be used as the input to another
stylesheet. This makes it very easy to write little tools that manipulate stylesheets.
This example shows such a tool, designed to report on the hierarchic structure of the
modules that make up a stylesheet.

This example uses the document() function to examine a stylesheet and see which
stylesheet modules it incorporates using <xsl:include> or <xsl:import>. The
modules referenced by <xsl:include> or <xsl:import> are fetched and processed
recursively.

Source
Any stylesheet, preferably one that uses <xsl:include> or <xsl:import>. A file
dummy.xsl is provided for you to use as a sample.

Stylesheet
The stylesheet list-includes.xsl uses the document() function to access the
document referenced in the href attribute of <xsl:include> or <xsl:import>. It
then applies the same template rules to this document, recursively. Note that the
root template is applied only to the initial source document, to create the HTML
skeleton page.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="/">

 <html><body>

 <h1>Stylesheet Module Structure</h1>

 <xsl:apply-templates select="*/xsl:include | */xsl:import"/>

 </body></html>

</xsl:template>

<xsl:template match="xsl:include | xsl:import">

 <xsl:value-of select="concat(local-name(),'s ',@href)"/>

 <xsl:variable name="module" select="document(@href)"/>

 <xsl:apply-templates

 select="$module/*/xsl:include | $module/*/xsl:import"/>

</xsl:template>

</xsl:transform>

Output
The output for the dummy.xsl stylesheet is as shown below:

document(node-set-1, node-set-2)
This is the same as the previous case, except that instead of using the node itself as the
base for resolving a relative URI, the base URI of the first node in node-set-2 is used. In
other words, if a node in node-set-1 contains a relative URL such as «data.xml», the
system will look for the file data.xml in the directory containing the XML document
from which node-set-2 was derived.

Rules
Most commonly, node-set-2 will contain a single node. For example, the call
«document(@href, /)» will use the root node of the source document as the base URI,
even if the element containing the href attribute was found in an external entity with a
different URI.

More formally, the result is defined to be the union, for each node N in the supplied
node-set-1, of the result of calling the document() function with two arguments: the
first argument being the string-value of node N, and the second argument being node-
set-2. This of course is a recursive definition – to find out what it means, you have to
read the section document(string, node-set) below.

It is not defined what happens if node-set-2 is empty.

Usage
This option is not one you will need to use very often, but it is there for completeness.

If you want to interpret a URI relative to the stylesheet, you can write, for example:

document(@href, document(''))

This works because the second argument returns the root node of the stylesheet, which
is then used as the base URI for the relative URI contained in the href attribute.

document(string)
This format is used when there is a single argument and it is not a node-set. The most
common case is a URL hard-coded in the stylesheet, for example «document('tax-
rates.xml')».

A common special case is «document('')», which refers to the stylesheet itself. Or to
be pedantic, it refers to the stylesheet module, or the XML external entity, containing
the element that is the parent of the attribute containing the XPath expression in which
«document('')» is used.

Rules
If the argument is not a string, it is converted to a string using the rules of the
string() function – but the only data type this really applies to is a result tree
fragment, since converting a Boolean or number is unlikely to yield a useful URL, and
if it's a node-set, the rules are covered in the previous section.

The string is treated as a URI reference. If it is a relative URI, it is treated as being
relative to the base URI of the stylesheet element that contains the expression in which
the function call was encountered. This will normally be the URI of the principal
stylesheet document , but it may be different if <xsl:include> or <xsl:import> was
used, or if pieces of the stylesheet are contained in external XML entities.

Again, all this really means is that relative URLs are handled just like relative URL's in
HTML: if you write «document('tax-rates.xml')» in a particular stylesheet
module, then the system looks for the file tax-rates.xml in the same directory as that
stylesheet module.

If the string is an empty string, then the document referenced by the base URI is used.
The XSLT specification states that «document('')» will return the root node of the
stylesheet. If the call is contained in a stylesheet brought in using <xsl:include> or
<xsl:import>, it returns the root node of the included or imported stylesheet, not that
of the principal stylesheet document.

Usage
This form of the document() function is very useful for handling data used by the
stylesheet for reference information: for example, lookup tables to expand
abbreviations, message files in different languages, or the text of the message of the
day, to be displayed on users on the login screen. Such data can either be in the
stylesheeet itself (referenced as «document('')»), or in a separate file held in the same
directory as the stylesheet (referenced as «document('messages.xml')») or a related
directory (for example «document('../data/messages.xml')».

A very convenient use of the document() function is to access the stylesheet itself.
XSLT allows data such as look-up tables to appear within any top-level stylesheet
element, provided it belongs to a non-default namespace.

Example: a Lookup Table in the Stylesheet

Source
This is the booklist.xml file we saw earlier.

<booklist>

<book category="S">

 <title>Number, the Language of Science</title>

 <author>Danzig</author>

</book>

<book category="FC">

 <title>The Young Visiters</title>

 <author>Daisy Ashford</author>

</book>

<book category="FC">

 <title>When We Were Very Young</title>

 <author>A. A. Milne</author>

</book>

<book category="CS">

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

</booklist>

Stylesheet
The stylesheet is list-categories.xsl. It processes each of the <book> elements
in the source file, and for each one, finds the <book:category> element in the
stylesheet whose code attribute matches the category attribute of the <book>.
Note the use of current() to refer to the current book: it would be wrong to use
«.» here, because «.» refers to the context node, which is the <book:category>
element being tested.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:book="books.uri"

 exclude-result-prefixes="book"

>

<xsl:template match="/">

 <html><body>

 <xsl:for-each select="//book">

 <h1><xsl:value-of select="title"/></h1>

 <p>Category: <xsl:value-of

 select="document('')/*/book:category

 [@code=current()/@category]/@desc"/>

 </p>

 </xsl:for-each>

 </body></html>

</xsl:template>

<book:category code="S" desc="Science"/>

<book:category code="CS" desc="Computing"/>

<book:category code="FC" desc="Children's Fiction"/>

</xsl:transform>

Output
<html>

 <body>

 <h1>Number, the Language of Science</h1>

 <p>Category: Science</p>

 <h1>The Young Visiters</h1>

 <p>Category: Children's Fiction</p>

 <h1>When We Were Very Young</h1>

 <p>Category: Children's Fiction</p>

 <h1>Design Patterns</h1>

 <p>Category: Computing</p>

 </body>

</html>

document(string, node-set-2)
This format is used when there are two arguments and the first argument is not a
node-set.

Rules
If the first argument is not a string (the only plausible alternative is a result tree
fragment), it is converted to a string using the rules of the string() function.

The second argument will normally be a node-set containing a single node: if it
contains more than one node, only the first node (in document order) is taken into
account. It is not defined what happens if the node-set is empty.

The string is treated as a URI. If it is a relative URI, it is treated as being relative to the
base URI of the first node in node-set-2.

Usage
You won't need to use this format very often, but it is there for completeness.

Note: Using keys and ids in Another Document
The functions key() and id() always return nodes in the same document as the
context node. It is not possible to retrieve nodes in another document by using an
expression such as

<!–WRONG-->

<xsl:value-of select="document('a.xml')/key('k1', 'val1')"/>

<!–WRONG-->

Instead, the most convenient way to achieve the required effect is to change the context
node using <xsl:for-each>, like this:

<xsl:for-each select="document('a.xml')">

 <xsl:value-of select="key('k1', 'val1')"/>

</xsl:for-each>

See also
id() on page 41
key() on page 44

element-available
This function is used to test whether a particular XSLT instruction or extension
element is available for use.

For example, the expression «element-available('xsl:text')» returns true.

Defined in
XSLT section 15

Format
element-available(name) ⇒ boolean

Arguments
 Data

type
Meaning

name string The name of the element being tested. If
the value is not a string, it will be
converted to a string using the rules for
the string() function. The resulting
string must take the form of a QName

Result
A Boolean value: true if the named element is available for use as an instruction in a
template, false otherwise.

Rules

The first argument must take the form of a QName: that is, an XML name with an
optional namespace prefix that corresponds to a namespace declaration that is in scope
at the point in the stylesheet where the element-available() function is called.

If this namespace declaration identifies the XSLT namespace
http://www.w3.org/1999/XSL/Transform, then the function returns true if the name is
the name of an XSLT-defined instruction, and false otherwise. The instructions
defined in XSLT version 1.0 are as follows:

<xsl:apply-imports>
<xsl:apply-templates>
<xsl:attribute>
<xsl:call-template>
<xsl:choose>
<xsl:comment>
<xsl:copy>
<xsl:copy-of>
<xsl:element>

<xsl:fallback>
<xsl:for-each>
<xsl:if>
<xsl:message>
<xsl:number>
<xsl:processing-instruction>
<xsl:text>
<xsl:value-of>
<xsl:variable>

Instructions are XSLT elements that can appear directly within a template body. Top-
level XSLT elements such as <xsl:template> and <xsl:key> are not instructions, so
they should return false. The same applies to elements such as <xsl:param>,
<xsl:with-param>, <xsl:sort>, <xsl:when>, and <xsl:otherwise>, that can only
appear in specific contexts and not anywhere in a template body.

If the prefix of the QName identifies any other namespace, then the function returns
true if and only if the XSLT processor has an implementation available for the named
instruction: that is, if this element can be used as an instruction in a template, rather
than being treated simply as a literal result element.

Note that the result of the element-available() function does not depend on
whether the namespace has been designated an extension namespace by using the
[xsl:]extension-element-prefixes attribute. If the XSLT processor has an
implementation of the instruction available, the function should return true whether or
not it is currently in a designated extension namespace.

If the QName has no prefix, it's undefined whether the default namespace is used.
Generally, for QNames identifying elements, the default namespace is used, but in this
case the specification makes no explicit statement either way.

What the spec does say clearly is that if the QName expands to a name with a null
namespace URI, the result of the function will always be false. This is because both
XSLT instructions and extension elements will always have a non-null namespace URI.

Usage
There are two ways of using this function: it can be used to test for XSLT elements
introduced in a later version of XSLT, and it can be used to test for the presence of
vendor or third party extensions.

Testing for Features Available in Later XSLT Versions
The ability to test whether a particular XSLT instruction is available is not especially
useful with version 1.0 of the specification. It is intended to come into its own when
later versions of the specification appear. If you want to use an instruction that only
became available in version 1.1 of XSLT, then you can test to see whether it is available
with a particular XSLT processor before using it. If it is not available, you can either
use <xsl:if> to avoid executing it, or use the <xsl:fallback> mechanism to cope
with its absence.

So why specify it as part of version 1.0? The answer is obvious when you think about
it: you want to write a stylesheet that uses version 1.1 features, so you call element-
available() in order to fail gracefully if you're running with an XSLT processor that
only supports version 1.0 features. However, this will only work if the version 1.0
XSLT processor supports the element-available() function, which is why it has been
specified now. This is an unusually thoughtful piece of forward planning: the XSLT
designers didn't want to get into the same kind of forwards-compatibility problems
that have bedeviled HTML. Of course it still means that if you want your stylesheet to
run with XSLT processors that support different levels of the language you will have to
write and test conditional code in your stylesheet: but at least the capability is there.

In principle you can test whether a version 1.0 instruction is available, on the basis that
there may be subset implementations around: unfortunately this will only work if the
subset implementation includes the element-available() function, which is not
guaranteed.

Note that if you write a stylesheet that uses features in XSLT version 1.1, say, then you
must specify «version="1.1"» on the <xsl:stylesheet> element, or
«xsl:version="1.1"» on some literal result element, even if you write an <xsl:if>
test using element-available() to avoid executing the relevant code. If you specify
«version="1.0"», then any use of extension elements is considered an error even if
the code is never executed.

Testing for Vendor Extensions
The second way of using the function is to test for vendor or third-party extensions. If
you know that a particular extension element is present in some implementations and
not others, you can use the element-available() test to see whether it is present at
run-time, and again use either <xsl:if> or <xsl:fallback> to handle the situation
when it isn't.

For example, the Saxon product provides an extension element to output an entity
reference. If you're not using Saxon, you can achieve the same effect by using disable-
output-escaping. So to output «$nbsp;» you could write:

<xsl:choose xmlns:saxon="http://icl.com/saxon">

<xsl:when test="element-available('saxon:entity-ref')">

 <saxon:entity-ref name="nbsp"

 xsl:extension-element-prefixes="saxon"/>

</xsl:when>

<xsl:otherwise>

 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>

</xsl:otherwise>

</xsl:choose>

An alternative to using the element-available() function is to use the
<xsl:fallback> mechanism described in Chapter 4, page Error! Cannot open file.: an
<xsl:fallback> element allows you to define what processing should occur if its
containing instruction isn't available. The two mechanisms are essentially equivalent,
though a possible limitation of <xsl:fallback> is that it can only be used within an
element that permits element children: it could not be used, for example, within
<xsl:apply-imports> as currently defined.

Examples
The following code defines a template that can be called to set a debugging breakpoint.
It relies on a hypothetical <xsl:breakpoint> instruction introduced in XSLT version
37.1. If the stylesheet is executed with an XSLT processor that does not support this
feature, it will ignore the request and continue.

<xsl:stylesheet

 xmlns="http://www.w3.org/1999/XSL/Transform"

 version="38.0">

<xsl:template name="set-breakpoint">

 <xsl:if test="element-available('xsl:breakpoint')">

 <xsl:breakpoint/>

 </xsl:if>

</xsl:template>

</xsl:stylesheet>

Note that if the version attribute on the <xsl:stylesheet> element were set to "1.0",
this stylesheet would be rejected. With version set to any value other than "1.0",
forwards-compatible-mode is enabled, and the implementation is not allowed to signal
<xsl:breakpoint> as an error unless the instruction is actually instantiated. Forwards
compatible mode is described in Chapter 3, on page Error! Cannot open file..

See also
function-available() on page 34
<xsl:fallback> in Chapter 4, page Error! Cannot open file.

false
This function returns the Boolean value false.

Defined in
XPath section 4.3

Format
false() ⇒ boolean

Arguments
None

Result
The Booleanboolean value false

Usage
There are no Boolean constants available in XPath expressions, so the functions true()
and false() can be used where a constant Boolean value is required.

In practice, constant Boolean values are not often required: perhaps the most common
usage is when passing a parameter to a template.

Writing «<xsl:if test="false()">» can be useful as a temporary expedient to
comment out a section of code in a stylesheet. XML comments are not ideal for this
purpose because they cannot be nested.

Example
The following code calls a named template, setting the parameter «verbose» to false:

<xsl:call-template name="do-the-work">

 <xsl:with-param name="verbose" select="false()"/>

</xsl:call-template>

See also
true() on page 103

floor
The floor() function returns the largest integer that is less than or equal to the
numeric value of the argument.

For example, the expression «floor(11.3)» returns 11.

Defined in
XPath section 4.4

Format
floor(value) ⇒ number

Arguments
 Data type Meaning

value number The input value. If it is not of type
number, it is first converted to a number
using the rules for the number() function.

Result
An integer value: the result of converting the first argument to a number and then
rounding down, if necessary, to the integer below.

Rules
If the value is not numeric, if is first converted to a number. For the detailed rules, see
the description of the number() function on page 73. If the value is a node-set, these
rules mean that the function applies to the value of the first node in the node-set, in
document order.

If the number is an integer, it is returned unchanged. Otherwise, it is rounded down to
the integer below.

If the argument is NaN (not a number), which will happen if a string is supplied that
cannot be converted to a number, the result is not defined in the XPath specification;
however, most implementations are likely to return NaN. Similarly the effect when the
argument is positive or negative infinity is not explicit in the standard, but the most
likely result is that the value of the argument is returned unchanged. Details of these
special numeric values are given on page Error! Cannot open file., in Chapter 2.

Usage and Examples
The result of this function is illustrated by the following examples:

floor(1.0) = 1.0
floor(1.6) = 1.0
floor(17 div 3) = 5.0
floor(–3.0) = –3.0
floor(–8.2) = –9.0

See also
ceiling() on page 4
round() on page 79

format-number
The format-number() function is used to convert numbers into strings for display to a
human user. The format of the result is controlled using the <xsl:decimal-format>
element.

For example, the expression «format-number(12.5, '$#.00')» returns the string
«$12.50».

Defined in

XSLT section 12.3.

The effect of the function is defined by reference to the Java JDK 1.1 specifications; we
have extracted the relevant information for ease of reference.

Format
format-number(value, format) ⇒ string

format-number(value, format, name) ⇒ number

Arguments
 Data

type
Meaning

value number The input value. If it is not of type
number, it is first converted to a number
using the rules for the number() function.

format string A format pattern. If it is not of type string,
it is first converted to a string using the
rules for the string() function.

name
(optional)

string The name (a QName) of a decimal format,
established using the <xsl:decimal-
format> element. If the argument is
omitted, the default decimal format is
used.

Result
A string value: the result of formatting the first argument using the format pattern
supplied in the second argument, applying the rules defined in the decimal format
named in the third argument if there is one, or the default decimal format otherwise.

Rules

The decimal-format Name
The third argument, if it is present, must take the form of a QName: that is, an XML
name optionally prefixed with a namespace prefix that corresponds to a namespace
declaration that is in scope at the point in the stylesheet where the format-number()
function is called. There must be an <xsl:decimal-format> element in the stylesheet
with the same expanded name, using the namespace URIs rather than prefixes in the
comparison.

If the third argument is omitted, the default decimal format is used. A default decimal
format can be established for a stylesheet by including an <xsl:decimal-format>
element with no name. It is probably intended, though the XSLT specification doesn't
say so explicitly, that an implementation should provide a default decimal format if
there is none in the stylesheet, and that this should be the same as specifying an

<xsl:decimal-format> with no attributes.

The Format Pattern
The rules for the format pattern string are defined in XSLT by reference to the Java JDK
1.1 specification.

The structure of the format pattern is as follows, using the same syntax conventions as
in Chapter 5, Expressions:

pattern subpattern (pattern-separator
 subpattern)?

subpattern prefix? integer
 (decimal-point fraction)?
suffix?

prefix [#x0 – #xFFFD] – specialCharacters

suffix [#x0 – #xFFFD] – specialCharacters

integer digit* zero-digit* zero-digit
(but also allowing a grouping-separator
to appear)

fraction zero-digit* digit*

pattern-separator «;» (by default)
decimal-point «.» (by default)
grouping-separator «,» (by default)
digit «#» (by default)
zero-digit «0» (by default)
specialCharacters see table below

In these syntax rules, the characters shown as «;», «.», «,», «#», and «0» are the
default representations of pattern-separator, decimal-point, grouping-separator,
digit, and zero-digit. If the relevant <xsl:decimal-format> element nominates
different characters in these roles, the nominated character is used in its place in the
format pattern.

The first subpattern is for positive numbers. The second (optional) subpattern is for
negative numbers.

The special characters used are as follows:

Special character Meaning

zero-digit (default «0») A digit will always appear at this point in
the result string

digit (default «#») A digit will appear at this point in the
result string unless it is a redundant
leading or trailing zero

decimal-point (default «.») Separates the integer and the fraction part
of the number

grouping-separator (default
«,»)

Separates groups of digits

«E» Separates mantissa and exponent for
exponential formats

pattern-separator (default «;») Separates the positive and negative
format sub-patterns

minus-sign (default «–») Minus sign
percent-sign (default «%») Multiply the number by 100 and show it

as a percentage
per-mille (default «‰») Multiply by 1000 and show as per-mille
apostrophe («'») Quotes any special characters used in the

pattern to give them their ordinary
meaning. For example, if you want to
output «9» as «#9», set the format pattern
to «'#'0».

«¤» Currency sign (#xA4): this character may
not appear in a pattern, except within
single quotes. (This is because different
versions of Java handle this character
differently).

If there is no explicit negative subpattern, «–» is prefixed to the positive form. That is,
«0.00» alone is equivalent to «0.00;-0.00». If there is an explicit negative subpattern,
it serves only to specify the negative prefix and suffix; the number of digits, minimal
digits, and other characteristics are all the same as the positive pattern. That means
that «#,##0.0#;(#)» has precisely the same result as «#,##0.0#;(#,##0.0#)».

The exponent character must be immediately followed by one or more digit characters.
Example: «0.###E0». The number of digit characters after the exponent character gives
the minimum exponent digit count; there is no maximum. Negative exponents are
denoted using the same prefix and/or suffix specified for the number itself. The
minimum number of integer digits is achieved by adjusting the exponent. The
maximum number of integer digits, if any, specifies the exponent grouping. For
example, 12345 is formatted using «##0.###E0» as «12.345E3».

The grouping separator is commonly used for thousands, but in some countries for
ten-thousands. The number of digits per group in the output string will be equal to the
number of digits in the pattern between the last grouping separator and the end of the
integer: any other grouping separators in the format pattern are ignored. For example,
if you write «#,##,###,####» there will be a grouping separator every four digits.

It is not defined what happens if the format pattern is invalid. This means the
implementation is free either to report an error or to display the number in some
fallback representation.

Usage
Note that this facility for formatting numbers is completely separate from the facilities

available through the <xsl:number> element. There is some overlapping functionality,
but the syntax of the format patterns is quite unrelated. The format-number() function
formats a single number, which need not be an integer. <xsl:number> is primarily
designed to format a list of positive integers. For formatting a single positive integer,
either facility can be used.

Examples
The following example shows the result of format-number() using the default
decimal-format. Examples with non-default decimal formats are shown under the
<xsl:decimal-format> element in Chapter 4, page Error! Cannot open file..

number format pattern result
1234.5 #,##0.00 1,234.50

123.456 #,##0.00 123.46

100000 #,##0.00 1,000,000.00

–59 #,##0.00 –59.00

1 div 0 #,##0.00 Infinity

1234 ###0.0### 1234.0

1234.5 ###0.0### 1234.5

.00035 ###0.0### 0.0004

0.25 #00% 25%

0.736 #00% 74%

1 #00% 100%

–42 #00% –4200%

–3.12 #.00;(#.00) (3.12)

–3.12 #.00;#.00CR 3.12CR

See also
<xsl:decimal-format> on page Error! Cannot open file. in Chapter 4

function-available
This function is used to test whether a particular function is available for use. It can be
used to test the availability both of standard system functions and of extension
functions.

For example, the expression «function-available('concat')» returns true.

Defined in
XSLT section 15.

Format
function-available(name) ⇒ boolean

Arguments
 Data type Meaning

name string The name of the function being tested. If
the value is not a string, it will be
converted to a string using the rules for
the string() function. The resulting
string must take the form of a QName

Result
A Boolean value: true if the named function is available to be called, false otherwise.

Rules
The argument must take the form of a QName: that is, an XML name, with an optional
namespace prefix that corresponds to a namespace declaration that is in scope at the
point in the stylesheet where the element-available() function is called.

If there is no prefix, or if the namespace URI is null, the call tests whether there is a
system function with the specified name. The system functions are those defined in the
XPath and XSLT recommendations (and thus in this chapter); vendors are not allowed
to supply additional functions in this default namespace, nor are they allowed to omit
any. So an XSLT processor that conforms to XSLT version 1.0 will return true if the
name is one of the following, and false otherwise.

boolean
ceiling
concat
contains
count
current
document
element-available
false
floor
format-number
function-available

generate-id
id
key
lang
last
local-name
name
namespace-uri
normalize-space
not
number
position

round
starts-with
string
string-length
substring
substring-after
substring-before
sum
system-property
translate
true
unparsed-entity-uri

If the QName includes a non-null namespace, the XSLT processor returns true if there is
an extension function available with the given name. Since the way that XSLT
processors use the extension function namespace to locate an extension function is
implementation-defined, the exact way in which this works is likely to vary from one
implementation to another. In general, if function-available() returns false then
you are safe in assuming that a call on the function would fail, and if it returns true,
then there will be some way of calling the function successfully. There is, however, no
way of finding out at run-time how many arguments the function expects, or what
their data types should be: it still relies on you calling the function with the right
arguments.

Usage

There are two ways of using function-available(): it can be used to achieve
backwards compatibility when using standard functions defined after version 1.0 of
the specification, and it can be used to test for the presence of vendor or third-party
extensions.

Testing for the Existence of System-defined Functions
The ability to test whether a particular system-defined function is available is not
especially useful with version 1.0 of the specification. It is intended to come into its
own when later versions of the specification appear. If you want to use a function that
was newly defined in version 1.1 of XSLT, then you can test to see whether it is
available with a particular XSLT processor before using it. If it is not available, you can
use <xsl:if> to avoid executing it. Provided that you enable forwards-compatible-mode
by setting the version attribute on the <xsl:stylesheet> element to a value other than
"1.0", the XSLT processor will not object to the presence of an expression in your
stylesheet that calls an unknown function, unless the expression is actually executed.

For example, suppose (as we might hope) that a function node-set() becomes
available at version 2.0 of the XSLT specification, with the same functionality as the
node-set() extension function currently abailable in Saxon and xt. Then you could
test for its existence by writing:

<xsl:if test="function-available('node-set')>

For a fuller example, see the end of this section.

You can't always tell when an expression is going to be executed, for example
if it is used as a predicate in a pattern or as the use expression in a key
definition. You can, however, make sure that it won't be executed, by
enclosing it inside an <xsl:if> statement that calls function-
available().

Note that it is the XSLT version that is relevant, not the XPath version. It is safe to
assume that when a new version of XPath is published, the XSLT specification will be
updated to reference it, though this does not necessarily mean that the version
numbers will always be synchronized.

In principle you can use function-available() to test whether a version 1.0
instruction is available, on the basis that there may be subset implementations around:
unfortunately this only works if the vendor has chosen to implement the function-
available() function.

Testing for Vendor or Third-party Extensions
The second way of using function-available() is to test for vendor or third-party
extensions. If you know that a particular extension function is present in some
implementations and not others, you can use the function-available() test to see
whether it is present, and use <xsl:if> to handle the situation when it isn't.

Examples

At least two XSLT implementations, SAXON and xt, provide a node-set() function
that converts a result tree fragment to a node-set. The following example shows a
named template that invokes this function if the stylesheet is run with one of these
implementations, and that fails with an error message otherwise. It is also written in
the optimistic hope that XSLT 2.0 will provide this function as standard, so the
stylesheet will use the function if it's there. (The use of the keyword <xsl:when> seems
particularly appropriate here!)

The template is written in such a way that it calls <xsl:apply-templates> in a
specified mode to process the node-set derived from the result tree fragment. (It would
be nice to supply the mode as a parameter, unfortunately XSLT doesn't allow this.)

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="2.0">

<xsl:template name="process-tree-fragment"

 xmlns:xt="http://www.jclark.com/xt"

 xmlns:sx=" http://icl.com/saxon">

 <xsl:param name="fragment"/>

 <xsl:choose>

 <xsl:when test="function-available('node-set')">

 <xsl:apply-templates mode="process-fragment"

 select="node-set($fragment)"/>

 </xsl:when> <xsl:when test="function-available('xt:node-set')">

 <xsl:apply-templates mode="process-fragment"

 select="xt:node-set($fragment)"/>

 </xsl:when>

 <xsl:when test="function-available('sx:node-set')">

 <xsl:apply-templates mode="process-fragment"

 select="sx:node-set($fragment)"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:message terminate="yes">

 Cannot convert result tree fragment to node-set

 </xsl:message>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

</xsl:stylesheet>

This named template can be called as follows, to process all the nodes in the result tree
fragment

<xsl:variable name="the-node-set">

 <xsl:call-template name="process-tree-fragment">

 <xsl:with-param name="fragment" select="$supplied-fragment"/>

 </xsl:call-template>

</xsl:variable>

See also
element-available() on page 25

generate-id
The generate-id() function generates a string, in the form of an XML Name, that
uniquely identifies a node. The only guarantee about the result is that it is different for
every node.

For example, the expression «generate-id(..)» might return the string «N015732»
when using one XSLT processor, and «b23a1c79» when using another.

Defined in
XSLT section 12.4

Format
generate-id() ⇒ string

generate-id(node) ⇒ string

Arguments
 Data type Meaning

node
(optional)

node-set The input node-set (only the first node is
considered).
If the argument is omitted, a node-set
containing only the context node is used.

Result
A string value that uniquely identifies the node. This will consist only of ASCII
alphanumeric characters, and the first character will be alphabetic. This makes the
identifier suitable for use in many contexts, for example as an XML Name.

Rules
If the argument is an empty node-set, the function returns an empty string.

If the input node-set contains more than one node, the target node is the one that is
first in document order.

If the argument is omitted, the target node is the context node.

The function returns an arbitrary string: the only constraints are that it will always
return the same string for the same node, and that it will always return different
strings for different nodes. This includes the case where the nodes are in different
documents.

The generated identifiers are unique within a single execution of the stylesheet. If the
same stylesheet is used several times, with the same or different source documents, it
may generate the same identifiers in each run but is under no obligation to do so.

Usage and Examples
The main intended purpose of the generate-id() function is to create links in the
output document. For example, it can be used to generate ID and IDREF attributes in
an output XML document, or and pairs in an output
HTML document.

Example: Using generate-id() to Create Links
This example takes as input a file resorts.xml containing details of a collection
of holiday resorts, each of which includes a list of hotels.

Source
<resorts>

 <resort>

 <name>Amsterdam</name>

 <details>A wordy description of Amsterdam</details>

 <hotel>

 <name>Grand Hotel</name>

 <stars>5</stars>

 <address> . . . </address>

 </hotel>

 <hotel>

 <name>Less Grand Hotel</name>

 <stars>2</stars>

 <address> . . . </address>

 </hotel>

 </resort>

 <resort>

 <name>Bruges</name>

 <details>An eloquent description of Bruges</details>

 <hotel>

 <name>Central Hotel</name>

 <stars>5</stars>

 <address> . . . </address>

 </hotel>

 <hotel>

 <name>Peripheral Hotel</name>

 <stars>2</stars>

 <address> . . . </address>

 </hotel>

 </resort>

</resorts>

Stylesheet

The stylesheet resorts.xsl constructs an output HTML page in which the
hotels are listed first, followed by information about the resorts. Each hotel entry
contains a hyperlink to the relevant resort details. The links for the resorts are
generated using generate-id() applied to the <resort> element.

This is a complete stylesheet that uses the Simplified Stylesheet syntax introduced
on page Error! Cannot open file.,in Chapter 3.

<html

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0"

>

<body>

 <h1>Hotels</h1>

 <xsl:for-each select="//hotel">

 <xsl:sort select="stars" order="descending" data-type="number"/>

 <h2><xsl:value-of select="name"/></h2>

 <p>Address: <xsl:value-of select="address"/></p>

 <p>Stars: <xsl:value-of select="stars"/></p>

 <p>Resort:

 <xsl:value-of select="parent::resort/name"/></p>

 </xsl:for-each>

 <h1>Resorts</h1>

 <xsl:for-each select="//resort">

 <h2>

 <xsl:value-of select="name"/>

 </h2>

 <p><xsl:value-of select="details"/></p>

 </xsl:for-each>

</body>

</html>

Notice how generate-id() is used twice, once to generate the identifier of the
resort, the other to generate a link from the hotel.

Output
The output below was obtained using Saxon. I have added some extra
indentation to show the structure. A different product will generate different
identifiers in the <a> elements, but the links will work just as well.

<html>

 <body>

 <h1>Hotels</h1>

 <h2>Grand Hotel</h2>

 <p>Address: . . . </p>

 <p>Stars: 5</p>

 <p>Resort: Amsterdam</p>

 <h2>Central Hotel</h2>

 <p>Address: . . . </p>

 <p>Stars: 5</p>

 <p>Resort: Bruges</p>

 <h2>Less Grand Hotel</h2>

 <p>Address: . . . </p>

 <p>Stars: 2</p>

 <p>Resort: Amsterdam</p>

 <h2>Peripheral Hotel</h2>

 <p>Address: . . . </p>

 <p>Stars: 2</p>

 <p>Resort: Bruges</p>

 <h1>Resorts</h1>

 <h2>Amsterdam</h2>

 <p>A wordy description of Amsterdam</p>

 <h2>Bruges</h2>

 <p>An eloquent description of Bruges</p>

 </body>

</html>

There is no inverse function to generate-id(): specifically, there is no way to find a
node if its generated id is known, other than the very inefficient

//node()[generate-id()=$X]

It is important to appreciate that the generated ids bear no resemblance to any ID
attribute values in the source document, so the nodes cannot be found using the id()
function.

See also
id() on page 41
key() on page 44

id
The id() function returns a node-set containing the node or nodes with a given ID
attribute.

For example, if the code attribute is defined as an ID attribute, then the expression
«id('A321-780')» might return a node-set containing the single element <product
code="A321-780">.

Defined in
XPath section 4.1

Format

id(value) ⇒ node-set

Arguments
 Data

type
Meaning

value any Specifies the required ID values, in a
way that depends on the data type: see
below for details

Result
A node-set containing the nodes with the required ID values.

Rules
If the argument is not a node-set, the argument is converted, if necessary, to a string
using the rules for the string() function, and the resulting string is treated as a
whitespace-separated list of tokens. Each token is used as a candidate ID value: if there
is a node in the same document as the context node that has an ID attribute equal to
this candidate ID value, this node is included in the result node-set.

If the argument is a node-set, this process is applied to each node in the node-set in
turn: the node is converted to a string by taking its string-value, this string is treated as
a whitespace-separated list of tokens, and each of these tokens is used as a candidate
ID value. Note that this is different from simply converting the node-set to a string
using the string() function, because it uses all the nodes in the node-set, not only the
first.

An ID attribute in this context is any attribute declared in the DTD as having type ID.

It is not necessary for the nodes in the argument node-set to be attributes declared as
type IDREF or IDREFS, though the function is designed to produce the expected result
when they are: that is, it finds the nodes referenced by the IDREF or IDREFS values in
the argument node-set.

It is not an error if there is no node with an ID equal to one of the candidate ID values.
In this situation, there will simply be no node in the resulting node-set corresponding
to this value. In the simplest case, where there is only one candidate ID value supplied,
the resulting node-set will be empty if the ID is not present.

Notes
ID values only really work properly if the source document is valid (in the XML sense:
meaning, loosely, that it obeys the rules in its own DTD). However, XSLT and XPath
are designed to allow invalid documents as well as valid ones to be processed. One
possible kind of validity error is that ID values are not unique within the document.
This is explicitly covered in the specification – the first node with that ID value is
located. Other validity errors are not discussed in the specification, for example what

happens if an ID attribute contains embedded spaces. It is best to regard the behavior
in such cases as undefined.

A non-validating XML parser isn't required to read attribute definitions from an
external DTD. In this situation the XSLT processor will assume there are no ID
attributes present, and the id() function will always return an empty result. If this
appears to be happening, try a different XML parser. Most good parsers will report the
attribute type, even though it isn't absolutely required by the standard.

Usage and Examples
The id() function provides an efficient means of locating nodes given the value of an
ID attribute.

In a sense it is a convenience function, because if the attribute named idis always an ID
attribute, then the expression

id('B1234')

is equivalent to the path expression

//*[@id='B1234']

However, the chances are that in most implementations, the id() function will be
much more efficient than the straightforward path expression with a predicate,
because the processor is likely to build an index rather than doing a sequential search.

It is also possible to use key() in place of id(). The main advantage of the id()
function over using key() is that it handles a whitespace-separated list of IDs in one
go. The key() function cannot do this, because there is nothing to stop a key value
containing a space.

Note that the id() function always locates elements in the same document as the
context node. To locate elements in a different document, use <xsl:for-each> to
change the context node, for example:

<xsl:for-each select="document('a.xml')">

 <xsl:copy-of select="id('B1234')"/>

</xsl:for-each>

Where the source document includes an IDREFS attribute, it is possible to locate all the
referenced elements at once. For example, if the <book> element has an attribute
authors which is an IDREFS attribute containing a whitespace-separated list of author
ids, the relevant <author> elements can be retrieved and processed using a construct
such as:

<xsl:template match="book">

 . . .

by <xsl:for-each select="id(@authors)">

 <xsl:value-of select="surname"/>

 <xsl:if test="position()!=last()">, </xsl:if>

 <xsl:if test="position()=last()-1">and </xsl:if>

</xsl:for-each>

</xsl:template>

See also
key() on page 44

key44
The key() function is used to find the nodes with a given value for a named key. It is
used in conjunction with the <xsl:key> element described in Chapter 4, on page Error!
Cannot open file..

For example, if there is a key definition

<xsl:key name="vreg" match="vehicle" use="@reg"/>

then the expression «key('vreg', 'N498PAA')» might return a node-set containing
the single element <vehicle reg="N498PAA">.

Defined in
XSLT section 12.2

Format
key(name, value) ⇒ node-set

Arguments
 Data type Meaning

name string Specifies the name of the key. If the
argument is not a string, it is converted to
a string using the rules of the string()
function. The value of the string must be
a QName that identifies a key declared
using <xsl:key>

value any Specifies the required value of the key, in
a way that depends on the data type: see
below.

Result
A node-set containing the nodes with the required key values.

Rules
The first argument must take the form of a QName: that is, an XML name optionally

prefixed with a namespace prefix that corresponds to a namespace declaration that is
in scope at the point in the stylesheet where the key() function is called. If there is no
namespace prefix, the relevant namespace URI is null: the default namespace is not
used. There must be an <xsl:key> element in the stylesheet with the same expanded
name, using the namespace URIs rather than prefixes in the comparison. If there is
more than one <xsl:key> element with this name, they are all used: a node is
considered to match the key if it matches any of the key definitions with this name.

If the second argument is not a node-set, its value is converted if necessary to a string,
using the rules of the string() function. All the nodes in the same document as the
context node that have a value for the named key equal to this string are included in
the result node-set. Note that one node may have several values for the same key, and
there may also be many nodes with the same value for the key.

If the second argument is a node-set, this same process is applied to each node in the
node-set. For each node N in this node-set, all the nodes in the same document as the
context node that have a value for the named key equal to the string-value of N are
added to the result node-set. This isn't the same as simply converting the node-set
argument to a string using the string() function, because that would only use the
string-value of the first node in the node-set.

Note that with multiple source documents, the resulting nodes will all be in the same
document as the context node: but they will not necessarily be in the same document
as the nodes from which the key values were obtained.

Usage and Examples
The key() function is provided to make associative access to nodes (finding the nodes
given their content) more convenient and more efficient. Efficiency of course depends
entirely on the implementation, but it is likely that most implementations will use
some kind of index data structure to make the key() function faster than the
equivalent location path expression.

For example, to locate the <book> elements having J. B. Priestley as the content of one
of their <author> child elements, you could write:

<xsl:for-each select="//book[author='J. B. Priestley']">

However, it is probably more efficient, if this is done frequently in the stylesheet, to
define the author name as a key:

<xsl:key name="book-author" match="book" use="author"/>

. . .

<xsl:for-each select="key('book-author', 'J. B. Priestley')"/>

The key() function always locates elements in the same document as the context node.
To locate elements in a different document, use <xsl:for-each> to change the context
node, for example:

<xsl:for-each select="document('a.xml')">

 <xsl:copy-of select="key('book-author', 'J. B. Priestley')"/>

</xsl:for-each>

The key value supplied can be either a string, or a node-set. In the former case, the key
value can be calculated before use: for example it might be the concatenation of several
values obtained from different places. In the second case, the key value must always be
held as-is within the source document; but the advantage of this usage is that several
key values can be supplied in the same call of the key function.

Example: Using keys

This example uses two source files: the principal source document is a file
containing a list of books, and the secondary one (accessed using the document()
function) contains biographies of authors. The author name held in the first file is
used to retrieve the author's biography from the second file, rather like a join in
SQL.

Source
The principal source document is an abbreviated version of the booklist.xml
file:

<booklist>

<book category="FC">

 <title>The Young Visiters</title>

 <author>Daisy Ashford</author>

</book>

<book category="FC">

 <title>When We Were Very Young</title>

 <author>A. A. Milne</author>

</book>

</booklist>

The secondary source document, authors.xml, reads like this. I've only included
two authors to keep it short, but the key() function would really come into its
own if there were hundreds of entries.

<authors>

<author name="A. A. Milne">

<born>1852</born>

<died>1956</died>

<biog>Alan Alexander Milne, educated at Westminster School and Trinity

College Cambridge, became a prolific author of plays, novels, poetry, short

stories, and essays, all of which have been overshadowed by his children's

books. </biog>

</author>

<author name="Daisy Ashford">

<born>1881</born>

<died>1972</died>

<biog>Daisy Ashford (Mrs George Norman) wrote <i>The Young Visiters</i>, a

small comic masterpiece, while still a young child in Lewes. It was found in a

drawer in 1919 and sent to Chatto and Windus, who published it in the same

year with an introduction by J. M. Barrie, who had first insisted on meeting

the author in order to check that she was genuine.</biog>

</author>

</authors>

Stylesheet
The stylesheet is in the file author-biogs.xsl. It declares a key to match
<author> elements by their name attribute. This is intended for use with the
authors.xml file, though there is nothing in the key definition to say so.

Note the use of a global variable to reference the secondary source file. It would
be possible to use the document() function each time the file is accessed, and any
XSLT processor worthy of the name would only actually read and parse the file
once, but using a variable in my view makes it easier to see what is going on.

The innermost <xsl:for-each> doesn't do any iteration, it is there merely to
switch the context to the second document, because the key() function only
looks in the document containing the context node. Switching the context means
it is no longer possible to refer directly to nodes in the principal document, which
is why the author's name is first extracted into a variable.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:key name="biog" match="author" use="@name"/>

<xsl:variable name="biogs" select="document('authors.xml')"/>

<xsl:template match="/">

 <html><body>

 <xsl:variable name="all-books" select="//book"/>

 <xsl:for-each select="$all-books">

 <!-- for each book in the booklist file -->

 <h1><xsl:value-of select="title"/></h1>

 <h2>Author<xsl:if test="count(author)!=1">s</xsl:if></h2>

 <xsl:for-each select="author">

 <!-- for each author of this book -->

 <xsl:variable name="name" select="."/>

 <h3><xsl:value-of select="$name"/></h3>

 <xsl:for-each select="$biogs">

 <!-- change the current node to be the authors file -->

 <!-- then retrieve the entry for this author -->

 <xsl:variable name="auth" select="key('biog', $name)"/>

 <p><xsl:value-of

 select="concat($auth/born, ' - ', $auth/died)"/></p>

 <p><xsl:value-of select="$auth/biog"/></p>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </body></html>

</xsl:template>

</xsl:transform>

Output
The output obtained if you run this stylesheet with the subset of the
booklist.xml file shown above is as follows:

<html>

 <body>

 <h1>The Young Visiters</h1>

 <h2>Author</h2>

 <h3>Daisy Ashford</h3>

 <p>1881 - 1972</p>

 <p>Daisy Ashford (Mrs George Norman) wrote The Young Visiters, a

small comic masterpiece, while still a young child in Lewes. It was found in a

drawer in 1919 and sent to Chatto and Windus, who published it in the same

year with an introduction by J. M. Barrie, who had first insisted on meeting

the author in order to check that she was genuine.</p>

 <h1>When We Were Very Young</h1>

 <h2>Author</h2>

 <h3>A. A. Milne</h3>

 <p>1852 - 1956</p>

 <p>Alan Alexander Milne, educated at Westminster School and Trinity

College Cambridge, became a prolific author of plays, novels, poetry, short

stories, and essays, all of which have been overshadowed by his children's

books.</p>

</body>

</html>

See also
<xsl:key> on page Error! Cannot open file. in Chapter 4
id() on page 41

lang
The lang() function tests whether the language of the context node, as defined by the
xml:lang attribute, corresponds to the language supplied as an argument.

For example, if the context node is the element <para lang="fr-CA"> (indicating
Canadian French), then the expression «lang('fr')» would return true.

Defined in
XPath section 4.3

Format
lang(language) ⇒ boolean

Arguments
 Data type Meaning

language string The language being tested. If the
argument is not a string, it is converted to
a string using the rules of the string()
function.

Result
A Boolean: true if the language of the context node is the same as, or a sublanguage of,
the language being tested.

Rules
The language of the context node is determined by the value of its xml:lang attribute,
or if it has no such attribute, by the value of the xml:lang attribute on its nearest
ancestor node that does have such an attribute. If there is no xml:lang attribute on any
of these nodes, the lang() function returns false.

The xml:lang attribute is one of the small number of attributes that are given a
predefined meaning in the XML specification (in fact, you could argue that it the only
thing in the XML specification that has anything to say about what the contents of the
document might mean to its readers). The value of the attribute can take one of the
following four forms:

❑ A two-letter language code defined in the international standard ISO 639. For
example English is "en" and French is "fr". This can be given in either upper-
case or lower-case, though lower-case is usual.

❑ A two letter language code as above, followed by one or more subcodes: each
subcode is preceded by a hyphen «-». For example, US English is "en-US",
Canadian French is "fr-CA". The first subcode, if present, must be either a two-
letter country code from the international standard ISO 3166, or a subcode for
the language registered with IANA. The ISO 3166 country codes are generally
the same as Internet top-level domains, for example "DE" for Germany, "CZ"
for the Czech Republic, but with the notable exception of the United Kingdom,
whose ISO 3166 code (for some reason) is "GB" rather than "UK". These codes
are generally written in upper case. The meaning of any subcodes after the first
is not defined, but they must contain ASCII letters (a-z, A-Z) only.

❑ A language code registered with the Internet Assigned Numbers Authority
(see www.iana.org), prefixed "i-", for example "i-Navajo".

❑ A user-defined language code, prefixed "x-", for example "x-Java" if the
element contains a Java program.

The xml:lang attribute defines the language of all text contained within the element it
appears on, unless it is overridden by another xml:lang attribute in an inner element.
So if a document is written in English but contains quotations in German, the xml:lang
language code on the document element might say «xml:lang="en"», while an
element containing a quotation specifies «xml:lang="de"».

The lang() function in XSLT allows you to test whether the language for the context
node is the one you are expecting. For example «lang('en')» returns true if the
language is English, while «lang('jp')» returns true if it is Japanese.

Specifically, the rules are as follows:

❑ If the value of xml:lang for the context node is equal to the string supplied in

the argument, ignoring differences of case, the function returns true.

❑ If the value of xml:lang for the context node, ignoring any suffix starting with
a hyphen «-», is equal to the string supplied in the argument, again ignoring
differences of case, the function returns true.

❑ Otherwise, the function returns false.

Usage and Examples
This function provides a convenient way of testing the language used in the source
document. Assuming that the source document has been properly marked up using
the xml:lang attribute as defined in the XML specification, the lang() function allows
you to do language-dependent processing of the data.

The example below shows another way of using lang(): to select language-dependent
data from a lookup table held in the stylesheet.

Example: Using lang() for Localizing Dates

Source
The source file issue-dates.xml contains dates in ISO format (yyyymmdd). The
dates below happen to be the dates of the various working drafts of the XSLT
specification.

<issues>

<iso-date>19991116</iso-date>

<iso-date>19991008</iso-date>

<iso-date>19990813</iso-date>

<iso-date>19990709</iso-date>

<iso-date>19990421</iso-date>

<iso-date>19981216</iso-date>

<iso-date>19980818</iso-date>

</issues>

Stylesheet
The stylesheet format-dates.xsl contains data and logic to output these dates
using English, French, or German month names.

The stylesheet takes a global parameter which is the name of the required
language for the output. The way you supply the parameter varies according to
which product you are using. For Saxon, use the command line:

saxon issue-dates.xml format-dates.xsl language=fr

For xt, use:

xt issue-dates.xml format-dates.xsl language=fr

The language code should be «en», «de», or «fr».

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:output encoding="iso-8859-1"/>

<data xmlns="data.uri">

<months xml:lang="en">

 <m>January</m><m>February</m><m>March</m><m>April</m>

 <m>May</m><m>June</m><m>July</m><m>August</m>

 <m>September</m><m>October</m><m>November</m><m>December</m>

</months>

<months xml:lang="fr">

 <m>Janvier</m><m>Février</m><m>Mars</m><m>Avril</m>

 <m>Mai</m><m>Juin</m><m>Juillet</m><m>Août</m>

 <m>Septembre</m><m>Octobre</m><m>Novembre</m><m>Décembre</m>

</months>

<months xml:lang="de">

 <m>Januar</m><m>Februar</m><m>März</m><m>April</m>

 <m>Mai</m><m>Juni</m><m>Juli</m><m>August</m>

 <m>September</m><m>Oktober</m><m>November</m><m>Dezember</m>

</months>

</data>

<xsl:param name="language" select="'en'"/>

<xsl:template match="iso-date">

<date xmlns:data="data.uri" xsl:exclude-result-prefixes="data">

 <xsl:value-of select="substring(., 7, 2)"/>

 <xsl:text> </xsl:text>

 <xsl:variable name="month" select="number(substring(.,5,2))"/>

 <xsl:value-of select="document('')/*/

 data:data/data:months[lang($language)]/data:m[$month]"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="substring(., 1, 4)"/>

</date>

</xsl:template>

</xsl:transform>

The crux of this is the lengthy path expression (starting with «document('')»)
that obtains the month name. This expression first locates the stylesheet
document («document('')»), then its document element («*», giving the
<xsl:stylesheet> or <xsl:transform> element), then the top-level <data>
element (the actual element uses «data.uri» as a default namespace, but in the XPath
expression it needs to be given an explicit namespace prefix), then the <months> element
that matches the required language, and finally the <m> element for the required month.
The «[lang($language)]» predicate will be true only for a <months> element whose
language code matches the required language.

See the description of the document() function on page 15 for more details on
how to use this function to get access to data held in the stylesheet.

I used iso-8859-1 encoding (the character set that Microsoft call Windows ANSI)
for this example because that's what my text editor uses. If I had used the default
encoding, UTF-8, my text editor wouldn't be able to cope with the accented
letters, so it would be harder to see what's going on, though it would still work
correctly.

Output
If you selected English, the output is:

<?xml version="1.0" encoding="iso-8859-1" ?>

<date>16 November 1999</date>

<date>08 October 1999</date>

<date>13 August 1999</date>

<date>09 July 1999</date>

<date>21 April 1999</date>

<date>16 December 1998</date>

<date>18 August 1998</date>

If you selected French, the output is:

<?xml version="1.0" encoding="iso-8859-1" ?>

<date>16 Novembre 1999</date>

<date>08 Octobre 1999</date>

<date>13 Août 1999</date>

<date>09 Juillet 1999</date>

<date>21 Avril 1999</date>

<date>16 Décembre 1998</date>

<date>18 Août 1998</date>

If you selected German, the output is:

<?xml version="1.0" encoding="iso-8859-1" ?>

<date>16 November 1999</date>

<date>08 Oktober 1999</date>

<date>13 August 1999</date>

<date>09 Juli 1999</date>

<date>21 April 1999</date>

<date>16 Dezember 1998</date>

<date>18 August 1998</date>

The lang() function only allows you to test whether the language is one of the
languages you are expecting; if you want to find out the actual language, you will need
to read the xml:lang attribute directly. You can find the relevant attribute using the
expression «ancestor-or-self::*[@xml:lang][1]/@xml:lang»

last
The last() function returns the value of the context size. When processing a list of
nodes, if the nodes are numbered from one, last() gives the number assigned to the
last node in the list.

For example, if you are processing a set of nodes using <xsl:for-each>, then you can
output a comma before each node other than the last one by writing:

<xsl:if test="position()!=last()">, </xsl:if>

Defined in
XPath section 4.1

Format
last() ⇒ number

Arguments
None

Result
A number, the value of the context size. As the name implies, this is context dependant.

Rules
The XPath specification defines the value of the last() function in terms of the context
size. The XSLT specification uses different terminology: it talks about the size of the
current node list.

When a top-level expression is evaluated (that is, an XPath expression that is not part
of another expression), the context size is set to the number of nodes in the current
node list. This has three possible settings:

❑ When a global variable is being evaluated, or in certain other contexts such as
evaluating the use expression in <xsl:key>, or evaluating the initial template
that matches the root node, it is set to 1 (one).

❑ When <xsl:apply-templates> is called to process a set of nodes, the current
node list is the list of nodes being processed, and the context size is therefore
the number of nodes selected in the call of <xsl:apply-templates>.

❑ When <xsl:for-each> is called to process a set of nodes, the current node list
is the list of nodes being processed, and the context size is therefore the
number of nodes selected in the call of <xsl:for-each>.

When a predicate is evaluated, either in an expression or in a pattern, the context size
is the number of nodes being tested in that step of the expression or pattern evaluation.
For more details, see Chapter 5 Expressions, and Chapter 6 Patterns.

Usage and Examples
To understand the effect of calling last(), you need to know what the current node
list is.

When last() is used as a top-level expression within an <xsl:template> (and not
within <xsl:for-each>), it returns the number of nodes selected by the relevant
<xsl:apply-templates> select expression. This is because <xsl:apply-templates>
sets the current node list to be the set of nodes selected by the select expression, after
sorting them into the order in which they are processed.

For example, the following code can be used to number all the figures in a document.
The last() function prints the number of figure elements in the document.

<xsl:apply-templates select="//figure"/>

. . .

<xsl:template match="figure">

 <div align="center"/>

 <p>Figure <xsl:value-of select="position()"/>

 <xsl:text/> of <xsl:value-of select="last()"/></p>

 </div>

</xsl:template>

Similarly, when last() is used as a top-level expression within <xsl:for-each>, it
returns the number of nodes selected by the relevant <xsl:for-each> select
expression. Again, this is because <xsl:for-each> sets the current node list to be the
set of nodes selected by the select expression, after sorting into the correct order.

The last() function is often used to test whether the current node being processed is the
last one in the list. this is illustrated in the following example.

Example: Formatting a List Using position() and last()
This example formats a list of names in the style «Adam, Betsie, Charlie and
Diana»

Source
The source file is booklist.xml. A relevant subset is shown below:

<booklist>

<book category="CS">

 <title>Design Patterns</title>

 <author>Erich Gamma</author>

 <author>Richard Helm</author>

 <author>Ralph Johnson</author>

 <author>John Vlissides</author>

</book>

</booklist>

Stylesheet
The stylesheet format-names.xsl processes a book by formatting the list of
authors into a single element:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="book">

<auth>

 <xsl:for-each select="author">

 <xsl:value-of select="."/>

 <xsl:choose>

 <xsl:when test="position() = last()"/> <!-- do nothing -->

 <xsl:when test="position() = last()-1"> and </xsl:when>

 <xsl:otherwise>, </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

</auth>

</xsl:template>

</xsl:transform>

Output
For the data shown above, the output is:

<auth>Danzig</auth>

<auth>Daisy Ashford</auth>

<auth>A. A. Milne</auth>

<auth>Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides</auth>

<xsl:call-template> does not change the context node list, so last() will return the
same value in the called template as in the calling template.

If the last() function is used within the select expression of an <xsl:sort> element,
then it refers to the number of nodes being sorted. For example, specifying the
following sort key:

<xsl:sort select="position() mod (ceiling(last() div 3))"/>

will sort the nodes A, B, C, D, E, F, G, H into the sequence A, D, G, B, E, H, C, F, which
might be useful if you want to arrange them in a table with three columns.

When last() is used within an expression used as a predicate applied to a node-set
expression, the context size is the number of nodes selected by the current step of the
expression, after applying any previous filters. For example, suppose the source
document is as follows:

<countries>

<country name="France" capital="Paris" continent="Europe"/>

<country name="Germany" capital="Berlin" continent="Europe"/>

<country name="Spain" capital="Madrid" continent="Europe"/>

<country name="Italy" capital="Rome" continent="Europe"/>

<country name="Poland" capital="Warsaw" continent="Europe"/>

<country name="Egypt" capital="Cairo" continent="Africa"/>

<country name="Libya" capital="Tripoli" continent="Africa"/>

<country name="Nigeria" capital="Lagos" continent="Africa"/>

</countries>

Then:

❑ The expression «countries/country[last()]» returns the country element

for Nigeria.

❑ The expression «countries/country[@continent='Europe'][last()]»
returns the country element for Poland.

❑ The expression «countries/country[@continent='Europe'][last()-1]»
returns the country element for Italy.

❑ The expression «countries/country[@continent='Africa'] [position()
!= last()]» returns the country elements for Egypt and Libya.

The last() function can be used as a qualifier in a pattern when the last child of a
given element is to be treated differently from the others. For example

<xsl:template name="normal-p" match="p">

 <xsl:copy>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

<xsl:template match="p[last()]">

 <xsl:call-template name="normal-p"/>

 <hr/>

</xsl:template>

However, this may not perform well, because each <p> element needs to be tested to
see if it is the last one, which will probably involve looking at all the children of the
parent of the <p> element. Using <xsl:if> will often achieve the same effect more
economically:

<xsl:template match="p">

 <xsl:copy>

 <xsl:apply-templates/>

 </xsl:copy>

 <xsl:if test="position()=last()">

 <hr/>

 </xsl:if>

</xsl:template>

However, note that these two examples are not strictly equivalent. If the <p> elements
are processed by a call on <xsl:apply-templates> with no <xsl:sort> specification,
they will have the same effect; but if a sort key is specified, then the second template
will output an <hr/> element after the last <p> element in the order of the output,
whereas the first will output the <hr/> after the last <p> element in document order.

An easy mistake is to think that last() returns a Boolean value. You
can use last() in a predicate to match the last node, for example:

<xsl:value-of select="para[last()]"/>

This is a shorthand for the predicate «[position()=last()]», because

in a predicate, a numeric value X is equivalent to a test for the
condition «position()=X». However, this doesn't extend to other
contexts, for example if you write:

<xsl:if test="last()"/>

then the numeric value of the last() function is simply converted to a
Boolean as if the boolean() function were used. The result will
always be true, because last() can never be zero.

See also
position() on page 75
<xsl:number> in Chapter 4, on page Error! Cannot open file.

local-name
The local-name() function returns the local part of the name of a node, that is, the
part of the name after the colon if there is one, or the full name otherwise.

For example, if the context node is an element named <title> the expression «local-
name()» returns «title»; for an element named <ms:schema> it returns «schema».

Defined in
XPath section 4.1

Format
local-name() ⇒ string

local-name(node) ⇒ string

Arguments
 Data type Meaning

node
(optional)

node-set Identifies the node whose local name is
required. If the node-set contains more
than one node, the target node is the one
that comes first in document order. If the
node-set is empty, the function returns an
empty string.
If the argument is omitted, the target
node is the context node.
It is an error if the argument supplied is
not a node-set.

Result
A string value: the local part of the name of the target node.

Rules
The local name of a node depends on the node type, as follows:

Node type Local name

root None, an empty string is returned
element The element name, after any colon
attribute The attribute name, after any colon
text None, an empty string is returned
processing instruction The target used in the processing instruction to

identify the application for which it is intended
comment None, an empty string is returned
namespace The namespace prefix; or the empty string if this

is the default namespace

Usage
This function can be useful if you need to test the local name without also testing the
namespace URI. For example if you want to select both <title> and <html:title>
elements, you could do this by writing:

<xsl:apply-templates select="*[local-name()='title']"/>

Or you could define a template rule that matches both:

<xsl:template match="*[local-name()='title']">

In some ways this can be seen as a misuse of the XML Namespaces facility. The names
in one namespace are supposed to bear no relation to the names in another, so any
similarity between the names <title> and <html:title> is a pure coincidence.

In practice, this isn't always true. What often happens is that one namespace is adapted
from another. For example the US Post Office might devise a schema (and associated
namespace) for representing US names and addresses, and the Canadian Post Office
might then create a variant of this, with a different namespace URI, for Canadian
names and addresses. The two schemas will have many elements in common, and it's
quite reasonable to try to write a stylesheet that can handle either. If you want to write
template rules that match on both a <us:address> and a <canada:address>, there are
two ways of doing it:

Either list both possibilities:

<xsl:template match="us:address | canada:address">

or match on the local name only:

<xsl:template match="*[local-name()='address']">

Examples
The following stylesheet fragment outputs an HTML table listing the attributes of the
current element, sorted first by namespace and then by local name.

<xsl:template match="*" mode="tabulate">

 <table>

 <xsl:for-each select="attribute::node()">

 <xsl:sort select="namespace-uri()"/>

 <xsl:sort select="local-name()"/>

 <tr>

 <td><xsl:value-of select="namespace-uri()"/></td>

 <td><xsl:value-of select="local-name()"/></td>

 <td><xsl:value-of select="."/></td>

 </tr>

 </xsl:for-each>

 </table>

</xsl:template>

See also
name() on page 60
namespace-uri() on page 65

name
The name() function returns a QName that represents the name of a node. Typically this
will be the name of the node as written in the original XML source document.

For example, if the context node is an element named <ms:schema>, then the
expression «name()» will normally return the string «ms:schema»

Defined in
XPath section 4.1

Format
name() ⇒ string

name(node) ⇒ string

Arguments
 Data

type
Meaning

node
(optional)

node-set Identifies the node whose name is
required. If the node-set contains more
than one node, the target node is the one
that comes first in document order. If the

node-set is empty, the function returns an
empty string.
If the argument is omitted, the target
node is the context node.
It is an error if the argument supplied is
not a node-set.

Result
A string value: a QName representing the name of the target node.

Rules
The QName returned will normally use the same prefix as that which appeared in the
original XML source. However, this is not guaranteed: the only guarantee is that it will
use a prefix that maps to the same namespace URI. If the source document contains
multiple prefixes that map to the same namespace URI the implementation can choose
to normalize them, and in theory it is even free to discard the user-selected prefixes
entirely and replace them with prefixes of its own choosing.

The name of a node depends on the node type, as follows:

Node type Name

root None, an empty string is returned
element The element name (a QName), normally as it

appears in the source XML, though a different
prefix that maps to the same namespace URI may
be substituted.

attribute The attribute name (a QName), normally as it
appears in the source XML, though a different
prefix that maps to the same namespace URI may
be substituted.

text None, an empty string is returned
processing instruction The target used in the processing instruction to

identify the application for which it is intended
comment None, an empty string is returned
namespace The namespace prefix; or the empty string if this

is the default namespace. (This is not prefixed
with «xmlns:»)

Except for element and attribute nodes, name() returns the same value as local-
name().

Usage
The name() function is useful when you want to display the element name, perhaps in
an error message, because the form it takes is the same as the way in which users will

generally write the element name.

So, for example, if your stylesheet requires every <book> to have an ISBN attribute,
you might write:

<xsl:if test="not(@ISBN)">

<xsl:message>The <xsl:value-of select="name()"/> element

 has no ISBN attribute</xsl:message>

</xsl:if>

You can also use the name() function to test the name of a node against a string, for
example «doc:title[name(..)='doc:section']». However, it's best to avoid this if
you can:

❑ Firstly, this fails if the document uses a different prefix to refer to the
namespace. There's nothing here to tell the system to treat «doc:section» as a
QName, so if the writer of a particular document chose to use the prefix «DOC»
instead of «doc» for this namespace, the test would fail, even though the
names are equivalent.

❑ Secondly, there is usually a better way of doing it: this particular example can
be written as «doc:title[parent::doc:section]». In fact, in most cases
where you want to test whether a node has a particular name, you can do it
using a predicate of this form. The «self» axis is particularly useful: for
example, to test whether the current node is a <figure> element, write
<xsl:if test="self::figure">.

There are some occasions when this won't work. For example, suppose your names are
structured and you want to do a more complex test on the name; for example
«*[starts-with(name(),'private.')]» to select elements whose name starts with
the string «private.». This is poor document design: XML names are not intended to
carry hidden meaning by means of an internal syntax; if some elements have access
restrictions, then rather than giving them names beginning with «private.», it would
be better to indicate the restrictions using an attribute such as «private="yes"»
However, you may sometimes have to deal with badly-designed documents, so the
name() function provides a suitable mechanism. Take care, however, over the
handling of namespace prefixes: unless you are certain that prefixes will be used
consistently, it is better to test the local-name and the namespace URI rather than the
value returned by name(). So the above example would be better written:

*[namespace-uri()='' and starts-with(local-name(),'private.')]

Another case where you need to use name() to test the name of a node is when you're
comparing it against a variable or a parameter to the stylesheet. A common example is
if you want to write a stylesheet to produce a sorted list of records, and you want the
user to supply the sort key as a parameter. One user might want to sort books by
author, another by publisher, and another by price. As the select expression in the
<xsl:sort> element must be hard-coded in the stylesheet, the only way to achieve this
is by writing:

<xsl:sort select="*[name()=$sort-key]"/>

where «$sort-key» is the stylesheet parameter containing the name of the field that
the user wants to sort by.

Avoid using name() to generate a name in the result document, for example by writing
«<xsl:element name="{name()}">». The problem is that any prefix in name() is
interpreted in the light of namespace declarations appearing in the stylesheet, not
namespace declarations in the original source document. The correct tool for this job is
<xsl:copy>. There are cases where <xsl:copy> won't do the job: for example you may
want to use the name of an attribute in the input document to generate the name of an
element in the output document. In this case use local-name() and namespace-uri()
separately, for example:

<xsl:element name="{local-name()}" namespace="{namespace-uri()}">

Examples
The following stylesheet outputs an HTML table listing the elements that appear in the
source document.

Example: Listing the Element Names that Appear in a Document

Source
This stylesheet can be applied to any source document. The output is more
interesting if the source document uses namespaces. For example, try applying
the stylesheet to itself as its own source document.

Stylesheet
The stylesheet list-elements.xsl is shown below. It processes all the element
nodes in the document, sorted by namespace URI and then local name, and for
each one it outputs the name, the prefix, the local name, and the namespace URI.
There is no attempt to remove duplicate entries.

The only way to determine the namespace prefix is to call name() and extract the
part of the string before the colon, if any.

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="/">

<html><body>

<h1>Table of elements</h1>

<table border="1" cellpadding="5">

<tr><td>Element</td><td>Prefix</td>

 <td>Local name</td><td>Namespace URI</td></tr>

 <xsl:apply-templates select="//*">

 <xsl:sort select="namespace-uri()"/>

 <xsl:sort select="local-name()"/>

 </xsl:apply-templates>

</table></body></html>

</xsl:template>

<xsl:template match="*">

 <xsl:variable name="prefix">

 <xsl:choose>

 <xsl:when test="contains(name(), ':')">

 <xsl:value-of select="substring-before(name(),':')"/>

 </xsl:when>

 <xsl:otherwise/>

 </xsl:choose>

 </xsl:variable>

 <tr>

 <td><xsl:value-of select="name()"/></td>

 <td><xsl:value-of select="$prefix"/></td>

 <td><xsl:value-of select="local-name()"/></td>

 <td><xsl:value-of select="namespace-uri()"/></td>

 </tr>

</xsl:template>

</xsl:transform>

Output
The illustration below shows the output when the stylesheet list-cities.xsl is
used as the source document:

See also
local-name() on page 58
namespace-uri() on page 65

namespace-uri
The namespace-uri() function returns a string that represents the URI of the
namespace in the expanded name of a node. Typically this will be a URI used in a
namespace declaration, that is, the value of an xmlns or xmlns:* attribute.

For example, if you apply this function to the root node of the stylesheet by writing the
expression «namespace-uri(document(''))», the result will be the string
«http://www.w3.org/1999/XSL/Transform».

Defined in

XPath section 4.1

Format
namespace-uri() ⇒ string

namespace-uri(node) ⇒ string

Arguments
 Data

type
Meaning

node
(optional)

node-set Identifies the node whose namespace URI
is required. If the node-set contains more
than one node, the target node is the one
that comes first in document order. If the
node-set is empty, the function returns an
empty string.
If the argument is omitted, the target
node is the context node.
It is an error if the argument supplied is
not a node-set.

Result
A string value: the namespace URI of the expanded name of the target node.

Rules
The namespace URI of a node depends on the node type, as follows:

Node type Namespace URI

root None, an empty string is returned
element If the element name as given in the source XML

contained a colon, the value will be the URI from
the namespace declaration corresponding to the
element's prefix. Otherwise, the value will be the
URI of the default namespace. If this is null, the
result will be an empty string.

attribute If the attribute name as given in the source XML
contained a colon, the value will be the URI from
the namespace declaration corresponding to the
attribute's prefix. Otherwise, the namespace URI
will be an empty string.

text None, an empty string is returned
processing instruction None, an empty string is returned
comment None, an empty string is returned

namespace None, an empty string is returned

Except for element and attribute nodes, namespace-uri() returns an empty string.

Usage
Let's start with some situations where you don't need this function.

If you want to test whether the current node belongs to a particular namespace, the
best way to achieve this is using a NameTest of the form «prefix:*». For example, to
test whether the current element belongs to the «http://ibm.com/ebiz» namespace,
write:

<xsl:if test="self::ebiz:*" xmlns:ebiz="http://ibm.com/ebiz">

If you want to find the namespace URI corresponding to a given prefix the best
solution is to use namespace nodes. You might need to do this if namespace prefixes
are used in attribute values: the XSLT standard itself uses this technique in attributes
such as extension-element-prefixes, and there is no reason why other XML document
types should not do the same. If you have an attribute «@value» which you know
takes the form of a namespace-qualified name, you can get the associated namespace
URI by writing:

<xsl:variable name="prefix" select="substring-before(@value, ':')"/>

<xsl:variable name="ns-uri" select="string(namespace::*[name()=$prefix])"/>

The namespace-uri() function, by contrast, is useful in display contexts, where you
just want to display the namespace URI of the current node, and also if you want to do
more elaborate tests. For example you may know that there is a whole family of
namespaces whose URIs all begin with urn:schemas.biztalk, and you may want to
test whether the current node is in any one of these. You can achieve this by writing:

<xsl:if test="starts-with(namespace-uri(), 'urn:schemas.biztalk')>

Examples
The following stylesheet fragment determines the namespace URI of the current
element, and then establishes the outermost ancestor on which that namespace is
declared.

<xsl:template match="*">

 <xsl:variable name="uri" select="namespace-uri()"/>

 Namespace URI is <xsl:value-of select="$uri"/>

 Declared on element <xsl:value-of

 select="name(ancestor-or-self::*[namespace::*=$uri][last()])"/>

</xsl:template>

See also
local-name() on page 58

name() on page 60

normalize-space
The normalize-space() function removes leading and trailing whitespace from a
string, and replaces internal sequences of whitespace with a single space character.

For example, the expression «normalize-space(' x	 y ')» returns the string «x
y»

Defined in
XPath section 4.2

Format
normalize-space() ⇒ string

normalize-space(value) ⇒ string

Arguments
 Data

type
Meaning

value
(optional)

string The input string. If the argument is not a
string, it is converted to a string using the
rules of the string() function.
If the argument is omitted, it defaults to
the string-value of the context node.

Result
A string obtained by removing leading and trailing whitespace from the input string,
and replacing internal sequences of whitespace by a single space character.

Rules
Whitespace is defined as in the XML specification, as a sequence of space, tab, newline,
and carriage return characters (#x9, #xA, #xD, and #x20).

Usage
It is often a good idea to apply the normalize-space function to any string read from
the source document before testing its contents, as many users will assume that
leading and trailing whitespace has no significance and that within the string, multiple
spaces or tabs are equivalent to a single space.

Don't imagine that <xsl:strip-space> does this for you. The only thing it does is to
remove text nodes that contain whitespace only.

One situation where it isn't safe to use normalize-space() is where you are
processing mixed element content containing character-level formatting attributes. For
example, if you process the nodes that result from the element:

<p>Some <i>very</i> traditional HTML</p>

then the spaces after «Some» and before «traditional» are significant, even though
they appear respectively at the end and the beginning of a text node.

Examples
The following key declaration indexes the titles of books with whitespace normalized:

<xsl:key name="book-title" match="book" use="normalize-space(title)"/>

This may then be used to locate books by title as follows:

<xsl:for-each select="key('book-title', normalize-space($title))">

The effect is that it will be possible, without knowing how many spaces and newlines
there are, to retrieve a book appearing in the source document as:

<book>

 <title>Object Oriented Languages –

 Basic Principles and Programming Techniques</title>

</book>

The normalize-space function can be particularly useful when processing a whitespace
separated list of values. Such lists are used in some document designs, and they may
also be constructed at run-time because there is no other way in XSLT of representing
an array of computed values in a variable. Once the string has whitespace normalized,
it is possible to use substring-before() to get the next token. To make this easier
still, I usually add a space at the end of the string after normalization, so that every
token is followed by a single space.

The following example shows how to use normalize-space to obtain a count of the
number of words in a string.

Example: Using normalize-space() to get a Word Count
This stylesheet contains a general-purpose template for counting the words in a
string. It demonstrates this template by counting the words in the string-value of
each element in the document in turn.

Source
This stylesheet can be used with any XML source document. For example, try it
with the file authors.xml listed in the example on page 46.

Stylesheet
The stylesheet, called normal.xsl, contains a named template «word-count»
which counts the number of words in the parameter named «text». It does this

by using normalize-space() to replace all whitespace sequences with a single
space. If the string is now empty, it returns zero, otherwise it calls itself to
process the string after the first dpace character and adds one to the result.

The template rule for the root node is simply a demonstration script that shows
how to use the «word-count» template to count the words in every element in
the document.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template name="word-count">

 <xsl:param name="text"/>

 <xsl:variable name="ntext" select="normalize-space($text)"/>

 <xsl:choose>

 <xsl:when test="$ntext">

 <xsl:variable name="remainder">

 <xsl:call-template name="word-count">

 <xsl:with-param name="text"

 select="substring-after($ntext, ' ')"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:value-of select="$remainder + 1"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="/">

 <xsl:for-each select="//*">

 <xsl:variable name="length">

 <xsl:call-template name="word-count">

 <xsl:with-param name="text" select="."/>

 </xsl:call-template>

 </xsl:variable>

 <element name="{name()}" words="{$length}"/>;

 </xsl:for-each>

</xsl:template>

</xsl:transform>

Output
If you apply this stylesheet to the file authors.xml as suggested, the output is:

<element name="authors" words="101"/>;

<element name="author" words="35"/>;

<element name="born" words="1"/>;

<element name="died" words="1"/>;

<element name="biog" words="33"/>;

<element name="author" words="66"/>;

<element name="born" words="1"/>;

<element name="died" words="1"/>;

<element name="biog" words="64"/>;

<element name="i" words="3"/>;

See also
concat() on page 5
substring-after() on page 90
substring-before() on page 92

not
The not() function returns the Boolean negation of its argument: if the argument is
true, it returns false, and vice versa.

For example, the expression «not(true())» returns false.

Defined in
XPath section 4.3

Format
not(condition) ⇒ boolean

Arguments
 Data

type
Meaning

condition Boolean The input condition. If the argument is
not a Boolean, it is converted to a Boolean
using the rules of the boolean() function.

Result
The Boolean negation of the argument value: true if the argument is false, false if the
argument is true.

Rules
If the argument is not a Boolean, it is converted to a Boolean using the rules of the
boolean() function.

If the value (after any conversion) is true, not() returns false; if it is false, not()
returns true.

Usage
Note that writing «not($A=2)» is not the same thing as writing «$A!=2». The
difference arises when $A is a node-set: «not($A=2)» will be true if $A does not
contain a node that is equal to 2, while «$A!=2» is true if A does contain a node that is
not equal to 2. For example. if $A is an empty node-set, «not($A=2)» will be true,
while «$A!=2» will be false.

It is easy to forget this when testing attribute values: for example the following two
examples behave the same way if the attribute go is present (they output «go» if the
value is anything other than «no»), but they behave differently if the attribute is
absent: the second one outputs «go», but the first one outputs nothing.

1: <xsl:if test="@go!='no'">go</xsl:if>

2: <xsl:if test="not(@go='no')">go</xsl:if>

When used with node-sets, the relational operators such as «=» and «!=» are subject to
an implicit "if there exists" qualifier: «$X=$Y» means "if there exists a node x in $X and a
node y in $Y such that x and y have the same string-value". If you want to achieve an
"if all" qualifier, for example "if all nodes in the node-set have a size attribute equal to
0", then you can achieve this by negating both the condition and the expression as a
whole: «not(@size!=0)».

Examples
The following test succeeds if the current node has no children:

<xsl:if test="not(node())">

The following test succeeds if the current node has no parent (that is, if it is a root
node):

<xsl:if test="not(parent::*)">

The following <xsl:for-each> statement processes all the child elements of the
current node except the <notes> elements:

<xsl:for-each select="*[not(self::notes)">

The following test succeeds if the string-value of the current node is zero-length:

<xsl:if test="not(.)">

The following test succeeds if the name attribute of the current node is absent or is a
zero-length string:

<xsl:if test="not(string(@name))">

The following test succeeds if the name attribute of the first node in node-set $ns is
different from the name attribute of each subsequent node in the node-set (we assume
that this attribute is present on all nodes in the node-set):

<xsl:if test="not($ns[1]/@name = $ns[position()!=1]/@name)">

See also
boolean() on page 2
false() on page 28
true() on page 103

number
The number() function converts its argument to a number.

For example, the expression «number(' -17.3')» returns the number –17.3

Defined in
XPath section 4.4

Format
number() ⇒ number

number(value) ⇒ number

Arguments
 Data

type
Meaning

value
(optional)

any The value to be converted.
If the argument is omitted, the string-
value of the context node is used.

Result
A number: the value of the argument after conversion to a number

Rules
The conversion rules depend on the data type of the value supplied, as defined in the
following table.

Supplied data type Conversion rules

Boolean false becomes zero; true becomes one
number the value is unchanged
string leading and trailing whitespace is removed; if

the resulting string comprises an optional
minus sign followed by an XPath Number it is

evaluated as if it were an XPath expression;
otherwise the result value is NaN (not a
number)

node-set the node-set is converted to a string using the
rules for the string() function, and the
resulting string is then converted to a number
in the same way as a string argument is
converted

result tree fragment the result tree fragment is converted to a string
using the rules for the string() function, and
the resulting string is then converted to a
number in the same way as a string argument
is converted

Usage
In most circumstances, conversion to a number is implicit so it is not necessary to use
the number() function explicitly.

There is one important situation where conversion needs to be explicit: this is in a
Predicate. The meaning of a predicate depends on the data type of the value, in
particular, a numeric predicate is interpreted as a comparison with the context
position. If the value is not numeric, it is converted to a boolean.

So for example if a value is held in an attribute or in a result tree fragment is to be used
as a numeric predicate, you should convert it explicitly to a number, thus:

<xsl:apply-templates select="$sales-figures[number(@month)]"/>

To test whether a value (for example, in an attribute) is numeric, use number() to
convert it to a number and test the result against NaN (Not a Number). The most
direct way to do this is:

<xsl:if test="string(number(@value))='NaN'"/>

Examples
Expression Result

number(12.3) 12.3
number("12.3") 12.3
number(true()) 1.0
number("xyz") NaN
number("") NaN

See also
boolean() on page 2

format-number() on page 30string() on page 83
<xsl:number> on page Error! Cannot open file.,in Chapter 4

position
The position() function returns the value of the context position. When processing a
list of nodes, position() gives the number assigned to the current node in the list,
with the first node being numbered as 1.

Defined in
XPath section 4.1

Format

position() ⇒ numberArguments
None

Result
A number, the value of the context position. As the name implies, this is context
dependant.

Rules
XPath specification defines the value of the position() function in terms of the
context position. The XSLT specification uses different terminology: it talks about the
current node and the current node list.

When a top-level expression is evaluated (that is, an expression that is not part of
another expression), the context position is set to the position of the current node in the
current node list. The nodes are numbered starting at 1. There are several possible
settings:

❑ When a global variable is being evaluated, or in certain other contexts such as
evaluating the use expression in <xsl:key>, the current node list contains a
single node (the root), so the context position is always 1. This is also the case
when the first template rule is invoked to process the root node.

❑ When <xsl:apply-templates> is called to process a set of nodes, the current
node list is the list of nodes being processed, in the order in which they are
processed, and the context position is therefore set successively to 1, 2, … n as
the nodes are processed. The position reflects the output order of the nodes, in
other words the order after sorting, not necessarily the order in the source
document.

❑ When <xsl:for-each> is called to process a set of nodes, the current node list
is the list of nodes being processed, in the order in which they are processed,
and the context position is therefore set successively to 1, 2, … n as the nodes
are processed. The position reflects the output order of the nodes, in other

words the order after sorting, not necessarily the order in the source
document.

❑ If the position() function is used within the select expression of an
<xsl:sort> key, it refers to the position of the node before sorting. So, for
example, if you want to sort nodes into reverse document order, you can do
this by writing:

<xsl:sort select="position()" data-type="number" order="descending">

A more complex example, where the nodes are sorted into columns for display
in a table, is given in the entry for the last() function on page 53.

When a predicate is evaluated, either in an expression or in a pattern, the context
position is the relative position of the node currently being tested in that step of the
expression or pattern evaluation, counting the nodes in document order if it is a
forwards axis or in reverse document order if it is a reverse axis. For more details, see
Chapter 5 Expressions, and Chapter 6 Patterns.

Usage and Examples
The two main uses of the position() function are to display the current position, and
to test the current position.

Displaying the Current Position
In this role the position() function is an alternative to the <xsl:number> instruction,
and can be used for simple numbering of paragraphs, sections, or figures.

There is much less flexibility to control how the numbering is done than when using
<xsl:number>, but the position() function has two important advantages:

❑ It is generally faster

❑ It numbers items in the order they are output, whereas <xsl:number> can only
allocate a number based on the position of a node in the source document. This
means <xsl:number> is of little use when a list has been sorted using
<xsl:sort>.

If you use position(), you can still exploit the formatting capabilities of
<xsl:number> by writing for example:

<xsl:number value="position()" format="(a)"/>

This determines the position of the node and formats the result according to the given
format pattern: the resulting sequence will be «(a)», «(b)», «(c)», and so on.

Testing the Current Position
It is possible to test the position of the current item either in a Boolean expression in an
<xsl:if> or <xsl:when> element, or in a predicate within a node-set expression or

pattern.

A common requirement is to treat the first or last item in a list differently from the rest.
For example, to insert a horizontal rule after every item except the last, the following
logic might be used:

<xsl:for-each select="item">

<xsl:sort select="@name"/>

 <p><xsl:value-of select="@name"/>:

 <xsl:value-of select="description"/></p>

 <xsl:if test="position() != last()">

 <hr/>

 </xsl:if>

</xsl:for-each>

Within a predicate in an expression or pattern, a numeric value represents an implicit
test against the result of position(), for example «item[1]» is equivalent to
«item[position()=1]», and «item[last()]» is equivalent to
«item[position()=last()]».

You can only use this shorthand in a predicate, that is within square
brackets. If you use a numeric value in other contexts where a Boolean
is expected, the number is converted to a Boolean on the basis that 0 is
false, everything else is true. So <xsl:if test="1"> does not mean
<xsl:if test="position()=1">; it means the same as <xsl:if
test="true()">.

A common requirement when doing more complex processing is to separate the first
node in a node-set from the set of nodes after the first.

Example: Using position() to Process a Node-set Recursively

Source
The source file shapes.xml represents a collection of shapes:

<shapes>

<rectangle width="10" height="30"/>

<square side="15"/>

<rectangle width="3" height="80"/>

<circle radius="10"/>

</shapes>

Stylesheet
The stylesheet area.xsl calculates the total area of these shapes. There is a
separate rule for calculating the area of each kind of shape. The recursive
template named «total-area» gets the area of the first shape by calling
<xsl:apply-templates>, and adds the total area of the remaining shapes by
calling itself with a list of shapes containing all the shapes except the first. When
the set of shapes is empty, it returns zero.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="rectangle" mode="area">

 <xsl:value-of select="@width * @height"/>

</xsl:template>

<xsl:template match="square" mode="area">

 <xsl:value-of select="@side * @side"/>

</xsl:template>

<xsl:template match="circle" mode="area">

 <xsl:value-of select="3.14159 * @radius * @radius"/>

</xsl:template>

<xsl:template name="total-area">

 <xsl:param name="set-of-shapes"/>

 <xsl:choose>

 <xsl:when test="$set-of-shapes">

 <xsl:variable name="first">

 <xsl:apply-templates select="$set-of-shapes[1]" mode="area"/>

 </xsl:variable>

 <xsl:variable name="rest">

 <xsl:call-template name="total-area">

 <xsl:with-param name="set-of-shapes"

 select="$set-of-shapes[position()!=1]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:value-of select="$first + $rest"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="shapes">

 <xsl:call-template name="total-area">

 <xsl:with-param name="set-of-shapes" select="*"/>

 </xsl:call-template>

</xsl:template>

</xsl:transform>

Output
Using Saxon, the output is:

1079.15900000000010550138540565967559814453125

If you wanted to display this rounded to five places after the decimal point, you
could use format-number() with a format pattern of «0.0####».

See also
last() on page 53
<xsl:number> in Chapter 4, on page Error! Cannot open file..

round
The round() function returns the closest integer to the numeric value of the argument.

For example, the expression «round(4.6)» returns 5.

Defined in
XPath section 4.4

Format
round(value) ⇒ number

Arguments
 Data

type
Meaning

value number The input value. If it is not of type
number, it is first converted to a number

using the rules for the number() function.

Result
An integer value: the result of rounding the first argument to the nearest integer

Rules
If the value is not numeric, if is first converted to a number. For the detailed rules, see
the description of the number() function on page 73. If the value is a node-set, these
rules mean that the function applies to the value of the first node in the node-set, in
document order.

Unlike some of the other numeric functions, the XPath specification is very precise
about the results of round(). The rules are given in the table below. The concepts of
positive and negative zero, and positive and negative infinity, are explained in
Chapter 2, starting on page Error! Cannot open file..

If the argument is… Then the result is…

An integer N N
Between N and N + 0.5 N
Exactly N + 0.5 N + 1
Between N + 0.5 and N + 1 N + 1
Between –0.5 and zero Negative zero
Positive zero Positive zero
Negative zero Negative zero
Positive infinity Positive infinity
Negative infinity Negative infinity
NaN (not a number) NaN

Usage
The round() function is useful when you want the nearest integer, for example when
calculating an average, or when deciding the geometric coordinates for an object to be
displayed.

Examples
Example: Using round() to Arrange Data in a Table

The following example constructs an HTML table in which the number of
columns is supplied as a parameter, with the first column taking half the
available width, and the remaining columns being of equal width to each other.

Source
The source file is sales.xml:

<sales>

 <product>Windows 98

 <period name="Q1">82</period>

 <period name="Q2">64</period>

 <period name="Q3">58</period>

 </product>

 <product>Windows NT

 <period name="Q1">17</period>

 <period name="Q2">44</period>

 <period name="Q3">82</period>

 </product>

</sales>

Stylesheet
The stylesheet sales-table.xsl is shown below. It calculates the width of the
rows in the table based on the number of columns needed:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:template match="sales">

<html><body>

 <h1>Product sales by period</h1>

 <xsl:variable name="cols" select="count(product[1]/period)"/>

 <table border="1" cellpadding="5" width="100%">

 <tr>

 <th width="50%">Product</th>

 <xsl:for-each select="product[1]/period">

 <th width="{round(50 div $cols)}%">

 <xsl:value-of select="@name"/>

 </th>

 </xsl:for-each>

 </tr>

 <xsl:for-each select="product">

 <tr>

 <td><xsl:value-of select="text()"/></td>

 <xsl:for-each select="period">

 <td>

 <xsl:value-of select="."/>

 </td>

 </xsl:for-each>

 </tr>

 </xsl:for-each>

 </table>

</body></html>

</xsl:template>

</xsl:transform>

Output

See also
ceiling() on page 4
floor() on page 29

starts-with
The starts-with() function tests whether one string starts with another string.

For example, the expression «starts-with('$17.30', '$')» returns true.

Defined in
XPath section 4.2

Format

starts-with(value, substring) ⇒ booleanArguments
 Data

type
Meaning

value string The containing string. If the value is not a
string, it is converted to a string using the
rules of the string() function.

substring string The contained string. If the value is not a
string, it is converted to a string using the
rules of the string() function.

Result
A Boolean value: true if the first string starts with the second string, otherwise false.

Rules
The strings are compared, character by character, from the beginning. If the second
string is exhausted before a pair of non-matching characters is found, the result is
true; otherwise it is false. Characters match if they have the same Unicode value.

If the second string is empty, the result is always true. If the first string is empty, the
result is true only if the second string is also empty. If the second string is longer than
the first, the result is always false.

Usage and Examples
The starts-with() function is useful when the content of text values, or attributes,
has some internal structure. For example, the following template rule matches all
<link> elements that have an href attribute whose value starts with the character «#»:

<xsl:template match="link[starts-with(@href, '#')]">

. . .

</xsl:template>

Note
There is no ends-with() function. To test whether a string $A ends with a string $B,
the simplest test is:

substring($A, string-length($A) – string-length($B) + 1) = $B

See also
contains() on page 8
string-length() on page 85

string
The string() function converts its argument to a string value.

For example, the expression «string(4.00)» returns the string «4».

Defined in
XPath section 4.2

Format
string() ⇒ string

string(value) ⇒ string

Arguments
 Data

type
Meaning

value
(optional)

any The value to be converted.
If the argument is omitted, it defaults to a
node-set containing only the context
node.

Result
A string value: the result of converting the argument to a string.

Rules
Values of any data type can be converted to a string. The rules are as follows.

Data type Conversion rules

Boolean The Boolean value false is converted to the string
«false». The value true is converted to the string
«true».

number NaN is represented as «NaN»
Positive and negative zero are both represented as
«0»
Positive infinity is represented as «Infinity»
Negative infinity is represented as «–Infinity»
An integer is represented in decimal form with no
decimal point and no leading zeros, preceded by a
minus sign if it is negative. The result will be a
valid XPath Number.
Any other number is represented in decimal form
with at least one digit before the decimal point and
at least one digit after the decimal point, preceded
by a minus sign if it is negative; there must be no
leading zeros except immediately before the
decimal point; after the decimal point there should
be as many digits as are necessary to distinguish
the number from other IEEE 754 numeric values.
The result will be a valid XPath Number.

string The value is unchanged.
node-set If the node-set is empty, it is represented as the

empty string. Otherwise, it is represented by the
string-value of the node that is first in document
order.
The string value of a text node is the text content.
The string value of a comment is the comment.
The string value of a processing instruction is the

data part
The string value of a namespace node is the
namespace URI.
The string value of an attribute node is the
attribute value.
The string value of a root node or element node is
the concatenation of the values of all its
descendant text nodes, taken in document order.

result tree fragment The string value of a result tree fragment is the
concatenation of the values of all its descendant
text nodes, in document order.
The most common case is the trivial one:

<xsl:variable name="v">New York</xsl:variable>

Here, although the variable is technically a result
tree fragment, it can be used to all intents and
purposes as if it were a string with the value «New
York».

Usage and Examples
It is not usually necessary to call the string() function explicitly, since it will
normally be invoked automatically when a string is required and the supplied value is
a different type.

An example of a situation where an explicit conversion is appropriate is when you
want to force a string comparison of two values rather than a node-set comparison. For
example, the following test succeeds if any <author> child of the current node has the
value «J. B. Priestley».

<xsl:if test="author='J. B. Priestley'">

while the following succeeds only if the first <author> child, in document order, has
this value:

<xsl:if test="string(author)='J. B. Priestley'">

However, it would be clearer in this case to write:

<xsl:if test="author[1]='J. B. Priestley'">

See also
boolean() on page 2
number() on page 73

string-length

The string-length() function returns the number of characters in a string value.

For example, the expression «string-length('Beethoven')» returns 9.

Defined in
XPath section 4.2

Format

string-length() ⇒ number

string-length(value) ⇒ number

Arguments
 Data

type
Meaning

value
(optional)

string The string whose length is required. If the
value is not a string, it is converted to a
string using the rules of the string()
function.
If the argument is omitted, the string-
value of the context node is used.

Result
A number: the number of characters in the value of the argument.

Rules
Characters are counted as instances of the XML Char production. This means that a
Unicode surrogate pair (a pair of 16-bit values used to represent a Unicode character in
the range #x10000 to #x10FFFF) is treated as a single character.

It is the number of characters in the string that matters, not the way they are written in
the source document. A character written using a character reference such as «ÿ»
or an entity reference such as «&» is still one character.

Unicode combining and non-spacing characters are counted individually, unless the
implementation has normalized them. The implementation is allowed to turn strings
into canonical form, but is not required to do so. In canonical form accents and
diactriticals will typically be merged with the letter that they modify into a single
character. This means that in such cases, the result of the string-length() function is
not precisely defined.

Usage
The string-length() function can be useful when deciding how to allocate space on

the output medium. For example, if a list is displayed in multiple columns then the
number of columns may be determined by some algorithm based on the maximum
length of the strings to be displayed.

It is not necessary to call string-length() to determine whether a string is empty
(null), because converting the string to a Boolean, either explicitly using the boolean()
function, or implicitly by using it in a Boolean context, returns true only if the string
has a length of one or more. For the same reason, it is not usually necessary to call
string-length() when processing the characters in a string using a recursive
iteration, since the terminating condition when the string is empty can be tested by
converting it to a Boolean.

Examples
The following table shows the result of the string-length() function for some
example inputs:

Expression Result
string-length('abc') 3

string-length('') 0

string-length('<>') 2

string-length('�') 1

string-length('𠀀') 1

See also
substring() on page 87

substring
The substring() function returns part of a string value, determined by character
positions within the string. Character positions are counted from one.

For example, the expression «substring('Goldfarb', 5, 3)» returns the string
«far».

Defined in
XPath section 4.2

Format
substring(value, start) ⇒ string

substring(value, start, length) ⇒ string

Arguments
 Data type Meaning

value string The containing string. If the value is not a
string, it is converted to a string using the
rules of the string() function.

start number The position in the containing string of
the first character to be included in the
result string. If the value is not a number,
it is converted to a number using the
rules of the number() function.

length
(optional)

number The number of characters to be included
in the result string. If the value is not a
number, it is converted to a number using
the rules of the number() function.
If the argument is omitted, characters are
taken from the start position up to the
end of the containing string.

Result
A string: the required substring of the containing string.

Rules
Informally, the function returns a string consisting of the characters in the value string
starting at position start; if a length is given, the returned string contains this many
characters, otherwise it contains all characters up to the end of the value.

Characters within a string are numbered 1, 2, 3 … n. This will be familiar to Visual
Basic programmers but not to those accustomed to C or Java, where numbering starts
at zero.

Characters are counted as instances of the XML Char production. This means that a
Unicode surrogate pair (a pair of 16-bit values used to represent a Unicode character in
the range #x10000 to #x10FFFF) is treated as a single character.

Combining and non-spacing characters are counted individually, unless the
implementation has normalized them. The implementation is allowed to turn strings
into canonical form, but is not required to do so. In canonical form accents and
diactriticals will typically be merged with the letter that they modify into a single
character.

The formal rules are surprisingly complex, because they need to take into account
conditions such as the start or length being negative, NaN, fractional, or infinite (for a
description of the number data type, see Chapter 2, page Error! Cannot open file.). The
rules are as follows:

Let start be the numeric value of the second argument.
Let length be the numeric value of the third argument, if specified.

If length was specified, the returned string contains those characters

for which the position p of the character in the containing string
satisfies: p >= round(start) and p < round(start) + round(length)

If length was omitted, the returned string contains those characters for
which the position p of the character in the containing string satisfies:
p >= round(start)

Rounding is done using the round() function. The comparisons and arithmetic are
done using IEEE 754 arithmetic, which has some interesting (but not particularly
useful) consequences if values such as infinity and NaN, or indeed any non-integer
values are used: the rules for IEEE 754 arithmetic are summarized in Chapter 2.

More usefully, the formal rule tells us that if the start argument is less than one, the
result always starts at the first character of the supplied string, while if it is greater
than the length of the string, the result will always be an empty string. If the length
argument is less than zero, it is treated as zero, and again an empty string is returned.
If the length argument is greater than the number of available characters, then
characters will be returned up to the end of the containing string.

Usage and Examples
The substring() function is useful when processing a string character-by-character.
One common usage is to determine the first character of a string:

<xsl:variable name="drive-letter">

 <xsl:if test="substring($filename,2,1)=':')">

 <xsl:value-of select="substring($filename,1,1)"/>

 </xsl:if>

</xsl:variable>

Or when manipulating personal names in the conventional American format of first
name, middle initial, last name:

<xsl:variable name="display-name">

 <xsl:value-of select="first-name"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="substring(middle-name, 1, 1)"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="last-name"/>

</xsl:variable>

You can use the substring() function in conjunction with string-length() to test
whether a string ends with a particular suffix. Remember that character positions are
numbered from one:

<xsl:variable name="linked-document">

 <xsl:if test="substring(@href, string-length(@href)-3) = '.xml'">

 <xsl:value-of select="document(@href)"/>

 </xsl:if>

</xsl:variable>

The following example tests whether a supplied string contains the sequence «#x#»
where «x» is any single character:

<xsl:if test="contains($s, '#') and

 substring(substring-after($s, '#'), 2, 1)='#'">

See also
substring-after() on page 90
substring-before() on page 92
string-length() on page 85
contains() on page 8

substring-after
The substring-after() function returns that part of a string value that occurs after
the first occurrence of some specified substring.

For example, the expression «substring-after('print=yes', '=')» returns «yes».

Defined in
XPath section 4.2

Format
substring-after(value, substring) ⇒ string

Arguments
 Data

type
Meaning

value string The containing string. If the argument is
not a string, it is converted to a string
using the rules of the string() function.

substring string The test string. If the argument is not a
string, it is converted to a string using the
rules of the string() function.

Result
A string containing those characters that follow the first occurrence of the test
substring within the containing string.

Rules
If the containing string does not contain the test substring, the function returns an
empty string. Note that this could also mean that the containing string ends with the

test substring; the two cases can be distinguished by calling the contains() function.

If the containing string does contain the test substring, the function returns a string
made up of all the characters that appear in the containing string after the first
occurrence of the test substring.

If the test substring is empty, the function returns the containing string.

If the containing string is empty, the function returns an empty string.

Usage and Examples
The substring-after() function is useful when splitting a string that contains
delimiter characters. For example, when the string is a whitespace-separated list of
tokens, the first token can be obtained using

substring-before($s, ' ')

and the rest of the string using

substring-after($s, ' ')

It is a good idea to use normalize-space() to make sure that each separator is a single
space character, and it is also useful to use concat() to add an extra space character at
the end so that these functions work properly when the list contains a single token.

The following example takes a whitespace-separated list and outputs each token
separated by an empty
 element.

<xsl:template name="output-tokens">

 <xsl:param name="list"/>

 <xsl:variable name="nlist"

 select="concat(normalize-space($list),' ')"/>

 <xsl:variable name="first" select="substring-before($nlist, ' ')"/>

 <xsl:variable name="rest" select="substring-after($nlist, ' ')"/>

 <xsl:value-of select="$first"/>

 <xsl:if select="$rest">

 <xsl:call-template name="output-tokens">

 <xsl:with-param name="list" select="$rest"/>

 </xsl:call-template>

 </xsl:if>

</xsl:template>

See also
contains() on page 8
substring() on page 87
substring-before() on page 92

substring-before
The substring-before() function returns that part of a string value that occurs before
the first occurrence of some specified substring.

For example, the value of «substring-before('print=yes', '=')» is the string
«print».

Defined in
XPath section 4.2

Format
substring-before(value, substring) ⇒ string

Arguments
 Data

type
Meaning

value string The containing string. If the argument is
not a string, it is converted to a string
using the rules of the string() function.

substring string The test substring. If the argument is not
a string, it is converted to a string using
the rules of the string() function.

Result
A string containing those characters that precede the first occurrence of the test
substring within the containing string

Rules
If the containing string does not contain the test substring, the function returns an
empty string. Note that this could also mean that the containing string starts with the
test string; the two cases can be distinguished by calling the starts-with() function.

If the containing string does contain the test substring, the function returns a string
made up of all the characters that appear in the containing string before the first
occurrence of the test substring.

If either the test substring or the containing string is empty, the function returns an
empty string.

Usage and Examples
An example of the use of substring-after() and substring-before() to process a
whitespace-separated list of tokens is given under substring-after() on page 90.

If the only reason for using substring-before() is to test whether the string has a
given prefix, use starts-with() instead. You could write:

<xsl:if test="substring-before($url, ':')='https'">

but the following is simpler:

<xsl:if test="starts-with($url, 'https:')">

The substring-before() and substring-after() functions can be useful to replace a
portion of a string. The translate() function cannot be used to substitute one word
for another. For such processing, it is necessary to use a combination of contains(),
substring-before(), substring-after(), and possibly concat(). This is illustrated
in the example below.

Example: Replacing All Occurrences of a String

This stylesheet replaces all occurrences of a given string by another string, within
any text node of the source document. The replaced string is given by the global
parameter «replace», the replacement string by the parameter «by».

Source
The stylesheet works with any source document. For example, try it with the file
authors.xml, with parameters replace=author by=writer.

Stylesheet
The stylesheet replace.xsl copies all elements and attributes unchanged, but
processes text nodes using the named template «do-replace» which replaces all
occurrences of the «replace» string with the «by» string. It does the first
replacement directly, then calls itself recursively to do the remainder.

To process this stylesheet you need to supply global parameters. The way you do
this depends on the product: for example, with Saxon use the command line:

saxon source.xml replace.xsl replace=xxx by=yyy

With xt, write:

xt source.xml replace.xsl replace=xxx by=yyy

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:param name="replace"/>

<xsl:param name="by"/>

<xsl:template name="do-replace">

 <xsl:param name="text"/>

 <xsl:choose>

 <xsl:when test="contains($text, $replace)">

 <xsl:value-of select="substring-before($text, $replace)"/>

 <xsl:value-of select="$by"/>

 <xsl:call-template name="do-replace">

 <xsl:with-param name="text"

 select="substring-after($text, $replace)"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$text"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="*">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

<xsl:template match="text()">

 <xsl:call-template name="do-replace">

 <xsl:with-param name="text" select="."/>

 </xsl:call-template>

</xsl:template>

</xsl:transform>

Output
The result of processing the file authors.xml with «replace=author by=***» is
shown below:

<authors>

<author name="A. A. Milne">

<born>1852</born>

<died>1956</died>

<biog>Alan Alexander Milne, educated at Westminster School and Trinity

College Cambridge, became a prolific *** of plays, novels, poetry, short

stories, and essays, all of which have been overshadowed by his children's

books.</biog>

</author>

<author name="Daisy Ashford">

<born>1881</born>

<died>1972</died>

<biog>Daisy Ashford (Mrs George Norman) wrote <i>The Young Visiters</i>, a

small comic masterpiece, while still a young child in Lewes. It was found in a

drawer in 1919 and sent to Chatto and Windus, who published it in the same

year with an introduction by J. M. Barrie, who had first insisted on meeting

the *** in order to check that she was genuine.</biog>

</author>

</authors>

See also
contains() on page 8
starts-with() on page 82
substring() on page 87
substring-after() on page 90

sum
The sum() function calculates the total of a set of numeric values contained in a node-
set.

For example, if the context node is the element <rect x="20" y="30"/>, then the
expression «sum(@*)» returns 50. (The expression «@*» is a node-set containing all the
attributes of the context node).

Defined in
XPath section 4.4

Formatsum(nodes) ⇒ number

Arguments
 Data

type
Meaning

nodes node-set The set of nodes to be totaled. It is an
error if the argument is not a node-set.

Result
A number: the result of taking the string-value of each node in the node-set, converting
it to a number, and totaling these numeric values.

Rules
The conversion of the string-value of each node to a number follows the rules of the
number() function.

The totaling of the numeric values follows the arithmetic rules defined in IEEE 754.

A consequence of these rules is that if there is any node in the node-set whose string-
value cannot be converted to a number, the result of the sum() function will be NaN
(not a number).

If the node-set is empty, the result is zero.

Usage
The sum() function can be used to create totals and subtotals in a report. It is also
useful for calculating geometric dimensions on the output page.

A problem that sometimes arises is how to get a total over a set of values that aren't
present directly in the source file, but are calculated from it. For example, if the source
document contains <book> elements with attributes price and sales, how would you
calculate the total sales revenue, which is obtained by multiplying price by sales for
each book, and totaling the result over all books? Or how would you total a set of
numbers if each one has a leading «$» sign which you need to strip off first? The short
answer is that you can't use the sum() function to do this.

In fact there are two limitations on the use of sum():

❑ All the values to be totaled must be explicitly present as nodes in the source
document, it is not possible to perform any preprocessing of the values, for
example customized string-to-number conversion, before the calculation is
done.

❑ If any value is non-numeric (this includes an absent value), the result will be
NaN.

If the data doesn't satisfy these constraints, it will be necessary to process the node-set
explicitly using a recursive template. There is an example that does this, calculating the
total area of a set of shapes, on page 78.

Examples
Example: A League Table

This example uses the count() and sum() functions to perform various
calculations on the results of a set of soccer matches (the Group A matches from
the 1998 World Cup Finals)

Source
The source file is soccer.xml:

<results group="A">

<match>

<date>10-Jun-98</date>

 <team score="2">Brazil</team>

 <team score="1">Scotland</team>

</match>

<match>

 <date>10-Jun-98</date>

 <team score="2">Morocco</team>

 <team score="2">Norway</team>

</match>

<match>

 <date>16-Jun-98</date>

 <team score="1">Scotland</team>

 <team score="1">Norway</team>

</match>

<match>

 <date>16-Jun-98</date>

 <team score="3">Brazil</team>

 <team score="0">Morocco</team>

</match>

<match>

 <date>23-Jun-98</date>

 <team score="1">Brazil</team>

 <team score="2">Norway</team>

</match>

<match>

<date>23-Jun-98</date>

 <team score="0">Scotland</team>

 <team score="3">Morocco</team>

</match>

</results>

Stylesheet
The stylesheet is in file league.xsl.

The stylesheet creates two global variables: «teams», which is the set of distinct
<team> elements in the document (any <team> element that has the same string-
value as a preceding <team> element is not included), and «matches» which is
the set of all <match> elements.

For each team, the stylesheet calculates the number of matches played, won,
drawn, lost, the total number of goals scored by that team, and the total number
of goals scored by opposing teams.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:variable name="teams" select="//team[not(.=preceding::team)]"/>

<xsl:variable name="matches" select="//match"/>

<xsl:template match="results">

<html><body>

 <h1>Results of Group <xsl:value-of select="@group"/></h1>

 <table cellpadding="5">

 <tr>

 <td>Team</td>

 <td>Played</td>

 <td>Won</td>

 <td>Drawn</td>

 <td>Lost</td>

 <td>For</td>

 <td>Against</td>

 </tr>

 <xsl:for-each select="$teams">

 <xsl:variable name="this" select="."/>

 <xsl:variable name="played" select="count($matches[team=$this])"/>

 <xsl:variable name="won"

select="count($matches[team[.=$this]/@score >

 team[.!=$this]@score])"/>

 <xsl:variable name="lost"

select="count($matches[team[.=$this]/@score < team[.!=$this]/@score])"/>

 <xsl:variable name="drawn"

select="count($matches[team[.=$this]/@score = team[.!=$this]/@score])"/>

 <xsl:variable name="for"

select="sum($matches/team[.=current()]/@score)"/>

 <xsl:variable name="against"

select="sum($matches[team=current()]/team/@score) - $for"/>

 <tr>

 <td><xsl:value-of select="."/></td>

 <td><xsl:value-of select="$played"/></td>

 <td><xsl:value-of select="$won"/></td>

 <td><xsl:value-of select="$drawn"/></td>

 <td><xsl:value-of select="$lost"/></td>

 <td><xsl:value-of select="$for"/></td>

 <td><xsl:value-of select="$against"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body></html>

</xsl:template>

</xsl:transform>

Output

See also
count() on page 9

system-property
The system-property() function returns information about the processing
environment.

For example, until such time as a new version of XSLT is published, the expression
«system-property('xsl:version')» always returns 1.0

Defined in
XSLT section 12.4

Format
system-property(name) ⇒ any

Arguments
 Data

type
Meaning

name string Specifies the name of the system property
required. If the argument is not a string, it

is converted to a string using the rules of
the string() function. The value of the
string should be a QName that identifies a
system property. If there is no system
property with this name, the function
returns an empty string.

Result
The data type of the result, as well as its value, depends on the system property
requested.

Rules
The supplied argument is converted into an expanded name using the namespace
declarations in scope for the stylesheet element that contains the call on system-
property().

There are three system properties that every implementation must support: these are
all in the XSLT namespace.

System Property
Name

Value

xsl:version A number giving the version of XSLT
implemented by the processor. For the current
XSLT specification, this is required to be 1.0.
Note that this is a number not a string, so if
you display it using <xsl:value-of> it will be
shown as «1».

xsl:vendor A string identifying the vendor of the XSLT
processor. In practice it will probably also
identify the product name, but the actual value
is implementer-defined.

xsl:vendor-url A string: the URL of the vendor's web site

Any additional system properties returned by this function are implementor-defined.
There is no explicit rule against these using the default namespace or even the XSLT
namespace, but an implementor sticking to the spirit of the standard would normally
provide any additional properties in a vendor-specific namespace.

An earlier draft of the XSLT specification stated that this function should give access to
operating system environment variables. It would not be surprising to find
implementations that provide this capability, but it is not mandatory.

Usage
The system-property() function can be used to determine details about the processor
running the stylesheet, either for display purposes (for example, to produce a
comment in the generated output), or to apply conditional logic.

Generally it is best to avoid using this function to test whether particular features are
available. The functions function-available() and element-available() and the
<xsl:fallback> instruction serve this need better, and the forwards compatibility
features described on page Error! Cannot open file.,in Chapter 3 can be used to ensure
that a stylesheet can work with processors that implement an older dialect of XSLT.

Examples
The following code outputs a documentary comment into the generated HTML:

<HTML>

 <xsl:comment>Generated using XSLT stylesheet abc.xsl

 using <xsl:value-of select="system-roperty('xsl:vendor')"/>

 at XSLT version

 <xsl:value-of select="system-property('xsl:version')"/>

 </xsl:comment>

. . .

See also
element-available() on page 25
function-available() on page 34
<xsl:fallback> on page Error! Cannot open file., in Chapter 4

translate101
The translate() function substitutes characters in a supplied string with nominated
replacement characters. It can also be used to remove nominated characters from a
string.

For example, the result of «translate('ABC-123', '-', '/')» is the string
«ABC/123».

Defined in
XPath section 4.2

Format
translate(value, from, to) ⇒ string

Arguments
 Data

type
Meaning

value string The supplied string. If the argument is
not a string, it is converted to a string
using the rules of the string() function.

from string The list of characters to be replaced. If the
argument is not a string, it is converted to
a string using the rules of the string()
function.

to string The list of replacement characters. If the
argument is not a string, it is converted to
a string using the rules of the string()
function.

Result
A string derived from the supplied string, but with those characters that appear in the
second argument replaced by the corresponding characters from the third argument,
or removed if there is no corresponding character.

Rules
For each character in the supplied string, one of three possible actions is taken:

❑ If the character is not present in the list of characters to be replaced, the
character is copied to the result string unchanged.

❑ If the character is present at position P in the list of characters to be replaced,
and the list of replacement characters is of length P or greater, then the
character at position P in the list of replacement characters is copied to the
result string

❑ If the character is present at position P in the list of characters to be replaced,
and the list of replacement characters is shorter than P, then no character is
copied to the result string

Note that the third argument must be present, but it can be an empty string. In this
case any character present in the second argument is removed from the supplied
string.

If a character appears more than once in the list of characters to be replaced, the second
and subsequent occurrences are ignored, as are the characters in the corresponding
position in the third argument.

If the third argument is longer than the second, excess characters are ignored.

In these rules a character means an XML character, not a 16-bit Unicode code. This
means that a Unicode surrogate pair (a pair of 16-bit values used to represent a
Unicode character in the range #x10000 to #x10FFFF) is treated as a single character,
whichever of the three strings it appears in.

Usage and Examples
The translate() function can be used to perform simple case conversion where the
alphabet is known and of modest size. For example, if the data uses only unaccented
Latin letters, conversion to uppercase can be achieved by writing:

translate($X,

 'abcdefghijklmnopqrstuvwxyz',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')

The translate() function is useful to remove extraneous punctuation or whitespace:
for example to remove all whitespace, hyphens, and parentheses from a telephone
number, write:

translate($X, ' 	
()-', '')

Another use for translate() is to test for the presence of a particular character or
range of characters. For example, to test whether a string contains a sequence of three
or more ASCII digits, write:

contains(translate($X, '0123456789', '9999999999'), '999')

Similarly, translate can be used to normalize delimiters before using substring-
after() or substring-before() to extract part of the string. If a filename consists of a
sequence of names separated by «/» or «\» characters, then the following expression
will extract the part of the filename before the first separator:

substring-before(translate($X, '\', '/'), '/')

See also
contains() on page 8
substring() on page 87
substring-after() on page 90
substring-before() on page 92

true
This function returns the Boolean value true.

Defined in
XPath section 4.3

Format
true() ⇒ boolean

Arguments
None

Result
The Boolean value true

Rules
There are no Boolean constants available in XPath expressions, so the functions true()
and false() can be used where a constant Boolean value is required.

Usage
There are few occasions where constant boolean values are required; the most common
situation is in <xsl:with-param> when supplying a parameter to a template. See the
example below.

Writing <xsl:when test="true()"> can be useful as a temporary expedient to force
execution down a particular path, perhaps because other paths are still under
development.

Example
The following code calls a named template, setting the parameter «verbose» to true:

<xsl:call-template name="do-the-work">

 <xsl:with-param name="verbose" select="true()"/>

</xsl:call-template>

See also
false() on page 28

unparsed-entity-uri
The unparsed-entity-uri() function gives access to declarations of unparsed entities
in the DTD of the source document.

For example, if the DTD contains the declaration:

<!ENTITY weather-map SYSTEM "weather.jpeg" NDATA JPEG>

then the expression «unparsed-entity-uri('weather-map')» returns either the
string «weather.jpeg», or an equivalent absolute URL.

Defined in
XSLT section 12.4

Format
unparsed-entity-uri(name) ⇒ string

Arguments
 Data

type
Meaning

name string Specifies the name of the unparsed entity
required. If the argument is not a string, it
is converted to a string using the rules of
the string() function. The value of the
string should be an XML Name.

Result
A string containing the URI (the system identifier) of the unparsed entity with the
given name, if there is one. Otherwise, an empty string.

Rules
If the document containing the context node includes an unparsed entity whose name
is equal to the supplied string, a URI identifying that unparsed entity is returned. If
there is no entity with this name, it returns an empty string.

If the system identifier is a relative URI, it is not specified whether the XSLT processor
will expand it into an absolute URI before returning it. Generally the XSLT processor
will pass on whatever it obtained from the XML parser, and the behavior of different
XML parsers varies in this regard. The SAX interface, which many XSLT processors
use to receive information from the XML parser, does not say whether the URI should
be expanded.

Usage
An unparsed entity is an entity defined in the DTD using a declaration of the form:

<!ENTITY weather-map SYSTEM "weather.jpeg" NDATA JPEG>

It's the NDATA (meaning "not XML data") that makes it an unparsed entity; and
because it is an unparsed entity, it can't be referenced using a normal entity reference
of the form «&weather-map;» but must instead be referenced by name in an attribute
of type ENTITY or ENTITIES, for example <forecastmap="weather-map">.

As the author of the stylesheet, you are expected to know that the map attribute is of
type ENTITY (there's no way within XSLT of finding out), and to pick up the attribute
value in a call such as «unparsed-entity-uri(@map)». This call returns the URI of the
actual resource, that is the string «weather.jpeg», or, if the parser decides to expand
it, something like «file:\c:\documents\forecasts\weather.jpeg». You might use
this, for example, to generate an HTML element in the output file.

XSLT provides no way of finding out the notation name («JPEG» in our example) or
the URI for the notation, nor can you determine the public identifier of the entity if
there was one.

This is not exactly in the spirit of section 4.4.6 of the XML specification,
which states: "When the name of an unparsed entity appears as a token in an
attribute of declared type ENTITY or ENTITIES, a validating processor must
inform the application of the system and public (if any) identifiers for both the
entity and its associated notation". However, unparsed entities are hardly
XML's most widely used feature, so it is unsurprising that XSLT support for
them should be minimal.

The rules in the XSLT specification don't explicitly permit this, but in practice, if you
use a non-validating XML parser to process the source document, the parser isn't
obliged to pass information about unparsed entities to the XSLT processor, and the
unparsed-entity-uri() function is therefore likely to return an empty string. If this
happens, try using a validating XML parser – assuming of course that the source
document is valid.

Examples
Given the entity definition

<!ENTITY weather-map SYSTEM "weather.jpeg" NDATA JPEG>

and the entity reference

<FORECAST MAP="weather-map"/>

the following code will insert an element into the HTML output:

<xsl:template match="FORECAST">

</xsl:template>

8
Stylesheet Design Patterns

In this chapter we'll look at four common design patterns for XSLT stylesheets.

The concept of design patterns was introduced by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides in their classic book Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley Professional Computing) ISBN: 0201633612.
Their idea was that there was a repertoire of techniques which were useful again and
again. They presented 23 different design patterns for object oriented programming,
claiming not that this was in some sense a complete list, but that the vast majority of
programs written by experienced designers fell into one or more of these patterns.

For XSLT stylesheets, the vast majority of stylesheets I have seen fall into one of four
design patterns. These are:

❑ Fill-in-the-blanks stylesheets

❑ Navigational stylesheets

❑ Rule-based stylesheets

❑ Computational stylesheets

Again, this doesn't mean that these are the only ways you can write stylesheets, nor
does it mean that any stylesheet you write must follow one of these four patterns to
the exclusion of the other three. It just means that a great many stylesheets actually
written by experienced people follow one of these four patterns, and if you become
familiar with these patterns, you will have a good repertoire of techniques that you can
apply to solving any given problem.

I will describe the first three design patterns rather briefly, because they are not really
very difficult. The fourth, the computational design pattern, is explored in much
greater depth – not because it is encountered more often, but because it requires a
different way of thinking about algorithms than you use with conventional procedural
programming languages.

Fill-in-the-Blanks Stylesheets
Many proprietary templating languages have been built up around HTML. The
template looks largely like a standard HTML file, but with the addition of extra tags
used to retrieve variable data and insert it at a particular point in the HTML data page.
The designers of XSLT took care to ensure that in spite of the power of XSLT as a full
transformation language, it would still be possible to use it in this simple way,
bringing it within the reach of non-programmers with HTML authoring skills.

Here's an example of such a stylesheet. It uses the simplified stylesheet syntax (or literal
result element as stylesheet syntax as it is clumsily-named in the standard), so the
<xsl:stylesheet> element and the <xsl:template match="/"> element are implicit.

Example: A "Fill-in-the-Blanks" Stylesheet

Input
This XML document, orgchart.xml, represents an organization chart showing
the senior management of a certain company at a particular date. It is organized
as a recursive structure that directly reflects the management hierarchy:

<orgchart date="28 March 2000">

<person>

<name>Keith Todd</name>

<title>Chief Executive Officer</title>

<reports>

 <person>

 <name>Andrew Boswell</name>

 <title>Technical Director</title>

 <reports>

 <person>

 <name>Dave McVitie</name>

 <title>Chief Engineer</title>

 </person>

 <person>

 <name>John Elmore</name>

 <title>Director of Research</title>

 </person>

 </reports>

 </person>

 <person>

 <name>Alan Gibson</name>

 <title>Operations and Finance</title>

 </person>

 <person>

 <name>Fiona Colquhoun</name>

 <title>Human Resources</title>

 </person>

 <person>

 <name>John Davison</name>

 <title>Marketing</title>

 </person>

 <person>

 <name>Marie-Anne van Ingen</name>

 <title>International</title>

 </person>

</reports>

</person>

</orgchart>

Stylesheet
There are many creative ways you could display this data: using SVG graphics,

explorer-style trees implemented in client-side JavaScript, or just indented lists.
I’m not trying to teach you any clever HTML tricks, so in this stylesheet
(orgchart.xsl) I’ll show the data instead as a rather boring table, with one row
per person, and three columns for the person’s name, their title, and the name of
their boss:

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

<head>

 <title>Management Structure</title>

</head>

<body>

 <h1>Management Structure</h1>

 <p>The following responsibilies were announced on

 <xsl:value-of select="/orgchart/@date"/>:</p>

 <table border="2" cellpadding="5">

 <tr>

 <th>Name</th><th>Role</th><th>Reporting to</th>

 </tr>

 <xsl:for-each select="//person">

 <tr>

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="ancestor::person[1]/name"/></td>

 </tr>

 </xsl:for-each>

 </table>

 <hr/>

</body>

</html>

The key to this design pattern is that the stylesheet has the same structure as the
desired output. Fixed content is included directly in the stylesheet as text or as
literal result elements, while variable content is included by means of
<xsl:value-of> instructions that extract the relevant data from the source
document. Repeated sections of output, typically rows in a table or items in a list,
can be enclosed by <xsl:for-each>, and conditional sections by <xsl:if> or
<xsl:choose>.

Output

This kind of stylesheet makes very limited use of XSLT's power, but it is very similar
to a wide variety of proprietary templating languages currently in use, and experience
has shown that these are easy for experienced HTML authors to learn, even if they
have no programming training. This is an important consideration, because on many
larger web sites there is a constant need to introduce new page templates at very short
notice, and this becomes much easier to achieve if content authors and editors can do
the work themselves.

One restriction, of course, is that the input has to come from an XML document. This
contrasts with most of the proprietary languages, where the input often comes directly
from a relational database. The most elegant way around this restriction is to provide a
way of extracting the required data into the tree format used by your chosen XSLT
processor, without the need for an actual XML document as an intermediary format.
Many XSLT processors accept input in the form of either a DOM tree, or a stream of
SAX events, so you could write an interface module that does the database query and
delivers the data in this form for use by the stylesheet authors. Another approach is to
use the document() function (described in Chapter 7, page Error! Cannot open file.)
with a URI that addresses a servlet with parameters to retrieve the required data. As
you might expect, Oracle with their XSQL pages and XSQL servlet technology have
probably gone further than most vendors in the direction of XML/XSLT/SQL
integration: follow the links given in Chapter 10, page Error! Cannot open file..

Navigational Stylesheets
Navigational stylesheets are a natural progression from simple fill-in-the-blanks
stylesheets.

Like fill-in-the-blanks stylesheets, a navigational stylesheet is still essentially output-
oriented. However, it is now likely to use named templates as subroutines to perform
commonly-needed tasks, it is likely to use variables to calculate values needed in more
than one place, and it may use constructs such as keys, parameters, and sorting.

Whereas a fill-in-the-blanks stylesheet looks like HTML sprinkled with a few extra
control statements, a navigational stylesheet (once you look beyond the angle-bracket
syntax) looks very like a conventional procedural program with variables, conditional
statements, for loops, and subroutine calls.

Navigational stylesheets are often used to produce reports on data-oriented XML
documents, where the structure of the source document is regular and predictable.

Example: A Navigational Stylesheet

Input
Suppose the source document, booklist.xml, looks like this:

<booklist>

 <book>

 <title>Angela's Ashes</title>

 <author>Frank McCourt</author>

 <publisher>HarperCollins</publisher>

 <isbn>0 00 649840 X</isbn>

 <price>6.99</price>

 <sales>235</sales>

 </book>

 <book>

 <title>Sword of Honour</title>

 <author>Evelyn Waugh</author>

 <publisher>Penguin Books</publisher>

 <isbn>0 14 018967 X</isbn>

 <price>12.99</price>

 <sales>12</sales>

 </book>

</booklist>

Stylesheet
The following navigational stylesheet (booksales.xsl) produces a report on the
total number of sales for each publisher.

Note the global variable «$publishers». This is a node-set containing one
<publisher> element for each distinct publisher found in the source file. The
way it works is that it selects only those publishers that are not the same as any
previous publisher, in other words, it filters out the duplicates.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:key name="pub" match="book" use="publisher"/>

<xsl:variable name="publishers"

 select="//publisher[not(.=preceding::publisher)]"/>

<xsl:template match="/">

<html>

<head>

 <title>Sales volume by publisher</title>

</head>

<body>

 <h1>Sales volume by publisher</h1>

 <table>

 <tr>

 <th>Publisher</th><th>Total Sales Value</th>

 </tr>

 <xsl:for-each select="$publishers">

 <tr>

 <td><xsl:value-of select="."/></td>

 <td><xsl:call-template name="total-sales"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

<!-- calculate total book sales for the current publisher -->

<xsl:template name="total-sales">

 <xsl:value-of select="sum(key('pub',string(.))/sales)"/>

</xsl:template>

</xsl:stylesheet>

This stylesheet is not very far removed from the fill-in-the-blanks example earlier
in the chapter. But because it uses some top-level elements such as <xsl:key>
and a named template, it now needs to use the full syntax with an
<xsl:stylesheet> element.

Output
<html>

 <head>

 <META http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>Sales volume by publisher</title>

 </head>

 <body>

 <h1>Sales volume by publisher</h1>

 <table>

 <tr>

 <th>Publisher</th>

 <th>Total Sales Value</th>

 </tr>

 <tr>

 <td>HarperCollins</td>

 <td>235</td>

 </tr>

 <tr>

 <td>Penguin Books</td>

 <td>12</td>

 </tr>

 </table>

 </body>

</html>

The obvious difference between a fill-in-the-blanks stylesheet and this navigational
stylesheet is that the <xsl:stylesheet> and <xsl:template> elements are now
explicit, which makes it possible to introduce other top-level elements such as
<xsl:key> and a global <xsl:variable>. More subtly, the range of XSLT features
used means that this stylesheet has crossed the boundary from being an HTML
document with added control instructions, to being a real program. The boundary,
though, is a rather fuzzy one, with no visa required to cross it, so many people who
have learnt to write simple fill-in-the-blanks stylesheets should be able, as they expand
their knowledge, to progress to writing navigational stylesheets of this kind.

Although the use of flow-of-control instructions like <xsl:if>, <xsl:call-template>
and <xsl:for-each> gives such a stylesheet a procedural feel, in fact it does not
violate the original concept that XSLT should be a declarative language. This is
because the instructions do not have to be executed in the order they are written —
variables can’t be updated, so the result of one instruction can’t affect the next one. For
example, it's easy to think of the <xsl:for-each> instruction in this example
processing the selected nodes in document order and adding them one-by-one to the
result tree; but it would be equally valid for an XSLT processor to process them in
reverse order, or in parallel, so long as the nodes are added to the result tree in the
right place. That's why I was careful to call this design pattern navigational rather than
procedural. It’s navigational in that you say exactly where to find the nodes in the
source tree that you want to visit, but it’s not procedural, because you don’t define the
order in which you will visit them.

Rule-Based Stylesheets
A rule-based stylesheet is one that consists primarily of rules describing how different
features of the source document should be processed: rules such as: "if you find a
<species> element, display it in italics".

Some would say that this rule-based approach is the essence of the XSLT language, the
principal way that it is intended to be used. I would say that it's one way of writing
stylesheets: often the best way, but not the only way, and not necessarily the best
answer in every situation.

Unlike navigational stylesheets, a rule-based stylesheet is not structured according to
the desired output layout. In fact, it makes minimal assumptions about the structure of
either the source document or the result document. Rather, the structure reads like an
inventory of components that might be encountered in the source document, arranged
in arbitrary order.

Rule-based stylesheets are therefore at their most useful when processing source
documents whose structure is flexible or unpredictable, or which may change a lot in
the future. It is very useful when the same repertoire of elements can appear in many
different document structures, so a rule like "display dates in the format 23 March
2000" can be reused in many different contexts.

Rule-based stylesheets are a natural evolution of CSS and CSS2 stylesheets. In CSS,
you can define rules of the form "for this set of elements, use this display rendition". In
XSLT, the rules become much more flexible, in two directions: the pattern language for
defining which elements you are talking about is much richer, and the actions you can
define when the rule is fired are vastly more wide-ranging.

A simple rule-based stylesheet will consist of one rule for each element type. The
typical rule matches a particular element type, outputs an HTML tag to define the
rendition of that element, and calls <xsl:apply-templates> to process the child
nodes of the template. This causes text nodes within the element to be copied to the
output, and nested child elements to be processed each according to its own template
rule.

Example: A Rule-Based Stylesheet

Input
The input scene2.xml is a scene from a play: Act I Scene 2 of Shakespeare’s
Othello. It starts like this:

<?xml version="1.0" encoding="iso-8859-1" ?>

<SCENE>

 <TITLE>SCENE II. Another street.</TITLE>

 <STAGEDIR>Enter OTHELLO, IAGO, and Attendants with

 torches</STAGEDIR>

 <SPEECH>

 <SPEAKER>IAGO</SPEAKER>

 <LINE>Though in the trade of war I have slain men,</LINE>

 <LINE>Yet do I hold it very stuff o' the conscience</LINE>

 <LINE>To do no contrived murder: I lack iniquity</LINE>

 <LINE>Sometimes to do me service: nine or ten times</LINE>

 <LINE>I had thought to have yerk'd him here under the

 ribs.</LINE>

 </SPEECH>

 <SPEECH>

 <SPEAKER>OTHELLO</SPEAKER>

 <LINE>'Tis better as it is.</LINE>

 </SPEECH>

</SCENE>

There are some complications that aren’t shown in this sample, but which the
stylesheet needs to take account of:

❑ The top-level element is not always a <SCENE>; it might also be a
<PROLOGUE> or <EPILOGUE>

❑ The <STAGEDIR> element can appear at any level of nesting, for example
a stage directive can appear between two speeches, between two lines of
a speech, or in the middle of a line.

❑ Several people can speak at the same time. In this case a single <SPEECH>
element will have more than one <SPEAKER>. In general a <SPEECH>
consists of one or more <SPEAKER> elements followed by any number of
<LINE> and <STAGEDIR> elements in any order.

Stylesheet
The stylesheet scene.xsl consists of a number of template rules. It starts by
declaring a global variable (used simply as a constant) and a rule for the
document element:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:variable name="backcolor" select="'#FFFFCC'" />

<xsl:template match="SCENE|PROLOGUE|EPILOGUE">

 <HTML>

 <HEAD>

 <TITLE><xsl:value-of select="TITLE"/></TITLE>

 </HEAD>

 <BODY BGCOLOR='{$backcolor}'>

 <xsl:apply-templates/>

 </BODY>

 </HTML>

</xsl:template>

The appearance of <xsl:value-of> is a rare departure from the purely rule-
based pattern, just to prove that none of the patterns have to be used to the
exclusion of the others.

The template rule for the <SPEECH> element outputs a table containing one row
and two columns: it puts the names of the speakers in the first column, and the
lines of the speech, plus any stage directives, in the second, as follows:

<xsl:template match="SPEECH">

 <TABLE><TR>

 <TD WIDTH="160" VALIGN="TOP">

 <xsl:apply-templates select="SPEAKER"/>

 </TD>

 <TD VALIGN="TOP">

 <xsl:apply-templates select="STAGEDIR|LINE"/>

 </TD>

 </TR></TABLE>

</xsl:template>

The remaining template rules are straightforward. Each of them simply outputs
the text of the element using an appropriate HTML rendition. The only
complication is that for some elements (<STAGEDIR> and <SUBHEAD>, which
doesn’t actually occur in this particular scene) the HTML rendition is different
depending on the element’s context, so there is more than one rule defined.

<xsl:template match="TITLE">

 <H1><CENTER>

 <xsl:apply-templates/>

 </CENTER></H1><HR/>

</xsl:template>

<xsl:template match="SPEAKER">

 <xsl:apply-templates/>

 <xsl:if test="not(position()=last())">
</xsl:if>

</xsl:template>

<xsl:template match="SCENE/STAGEDIR">

 <CENTER><H3>

 <xsl:apply-templates/>

 </H3></CENTER>

</xsl:template>

<xsl:template match="SPEECH/STAGEDIR">

 <P><I>

 <xsl:apply-templates/>

 </I></P>

</xsl:template>

<xsl:template match="LINE/STAGEDIR">

 [<I>

 <xsl:apply-templates/>

 </I>]

</xsl:template>

<xsl:template match="SCENE/SUBHEAD">

 <CENTER><H3>

 <xsl:apply-templates/>

 </H3></CENTER>

</xsl:template>

<xsl:template match="SPEECH/SUBHEAD">

 <P>

 <xsl:apply-templates/>

 </P>

</xsl:template>

<xsl:template match="LINE">

 <xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Output

Most of the time a rule-based stylesheet creates a result tree that has quite a similar
structure to the source tree, with most of the source text appearing in the same order in
the result document, but often with different tags. The closer this describes the
transformation you want to do, the closer your stylesheet will be to the example
shown above. However, this doesn't mean that the processing has to be purely
sequential. You can process chunks of the tree more than once using modes, you can
reorder the nodes of the tree, and you can grab data from ancestor nodes, all without
deviating from the rule-based design pattern.

The characteristic feature of a rule-based stylesheet is that there is generally one
template rule for each type of object found in the source document. Of course it's
possible to mix design patterns, particularly if your source document contains a
mixture of “data-oriented” and “text-oriented” structures (an example might be a job
application form). Then it’s quite appropriate to use a navigational pattern for the
regular structures and a rule-based pattern for the less regular. The larger and more
complex your stylesheet, the more likely it is to contain examples of each of the design
patterns.

Computational Stylesheets
Computational stylesheets are the most complex of the four design patterns. They arise
when there is a need to generate nodes in the result tree that do not correspond
directly to nodes in the source tree. This happens most commonly when there is
structure in the source document that is not explicit in its markup. For example:

❑ A text field in the source might consist of a comma-separated list of items that
are to be displayed as a bulleted list in the output.

❑ There might be a need to generate <section> elements in the output where a
section is not explicit in the source, but is defined as comprising an <h1>
element and all its following sibling elements up to the next <h1> element.

Other examples arise where you want to organize data into rows and columns when
the input doesn't fall naturally into that structure, or if you need to do complex
aggregation of the data, such as constructing a football league table when the source
data contains the results of individual matches.

When you write computational stylesheets you will invariably run up against the fact
that XSLT does not have an assignment statement, and that it is therefore not possible
to write loops in the way you are probably used to in other languages. So you will
need to understand some of the concepts of functional programming, which the
following section tries to explain.

Programming without Assignment Statements
Back in 1968 the renowned computer scientist Edsger Dijkstra published a paper
under the title GoTo Statement Considered Harmful. His thesis, that programs should be
written without goto statements, shattered the world as most programmers saw it.
Until then they had been familiar with early dialects of Fortran and Cobol in which the
vast majority of decisions in a program were implemented by using a construct that
mapped directly to the conditional jump instruction in the hardware: «if condition
goto label». Even the design notation of the day, the ubiquitous flowchart drawn in
pencil using a plastic template, represented control flow in this way.

Dijkstra argued that structured programs, written using if-then-else and while-do
constructs instead of goto statements, were far less likely to contain bugs and were far
more readable and therefore maintainable. The ideas were fiercely controversial at the
time, especially among practicing programmers, and for years afterwards the
opponents of the idea would challenge the structured programming enthusiasts with
arguments of the form, "OK, so how do you do this without a goto statement?".

Today, however, the battle is won, and the goto statement has been consigned to
history. Modern languages like Java don’t provide a goto statement, and we no longer
miss it.

But, for just as long there has been another group of enthusiasts telling us that
assignment statements are considered harmful. Unlike Dijkstra, these evangelists have
yet to convince a skeptical world that they are right, though there has always been a
significant band of disciples who have seen the benefits of the approach.

This style of coding, without assignment statements, is called Functional Programming.
The earliest and most famous functional programming language was Lisp (sometimes
ridiculed as Lots of Irritating Superfluous Parentheses), while more modern examples
include ML and Scheme. (See, for example, Simply Scheme: Introducing Computer Science
by Brian Harvey and Matthew Wright, MIT Press, 1999)

XSLT is a language without assignment statements, and although its syntax is very
different from these languages, its philosophy is based on the concepts of functional
programming. It is not in fact a fully-fledged functional programming language,
because you cannot manipulate functions in the same way as data; but in most other
respects, it fits into this category of language. If you want to do anything at all
complicated with it, you’ll have to get used to programming without assignment
statements. At first it probably won’t be easy, because just as those early Fortran and
Cobol programmers would instinctively reach for the goto statement as the solution to
every problem, if your background is in languages like C or Visual Basic or even Java
you will just as naturally cherish the assignment statement as your favorite all-purpose
tool.

So what’s wrong with assignment statements, and why aren’t they available in XSLT?

The crux of the argument is that it’s the assignment statements that impose a particular
order of execution on a program. Without assignment statements, we can do things in
any order, because the result of one statement can no longer depend on what state the
system was left in by the previous statement. Just as the goto statement mirrors the
"jump" instruction in the hardware, so the assignment statement mirrors the "store"
instruction, and the reason we have assignment statements in our programming
languages today is that they were designed to take advantage of sequential von
Neumann computers with jump and store instructions. If we want to free ourselves
from sequential thinking modeled on sequential hardware architecture, we should
find a way of describing what effect we want to achieve, rather than saying what
sequence of steps the machine should take in order to achieve it.

The idea of a functional program is to describe the output as a function of the input.
XSLT is a transformation language; it is designed to transform an input document into
an output document. So, we can regard a stylesheet as a function that defines this
transformation: a stylesheet is a function O=S(I) where I is the input document, S is the
stylesheet, and O is the output document. Recall the statement made by James Clark at
the 1995 Paris workshop, which I quoted in Chapter 1, page Error! Cannot open file.:

A DSSSL style sheet very precisely describes a function from SGML to a flow
object tree.

This concept clearly remained a key part of the XSLT vision throughout the
development of the language.

We’re using the word function here in something close to its mathematical sense.
Languages like Fortran and Visual Basic have borrowed the word to mean a
subroutine that returns a result, but the mathematical concept of a function is not that
of an algorithm or sequence of steps to be performed, rather it is a statement of a

relationship. The square root function defines a relationship between 3 and 9, namely
3=sqrt(9). The essence of a function is that it is a fixed, constant, reliable relationship,
and evaluating it doesn’t change the world. When you ask me "what’s the square root
of 9 if you work it out?" I can honestly reply "exactly the same as if I don't". I can say
this because square root is a pure function: it gives the same answer whoever calls it
and however often they call it, and calling it once doesn’t change the answer it gives
next time; in fact, it doesn’t change anything.

The nice property of pure functions is that they can be called any number of times, in
any order, and produce the same result every time. If I want to calculate the square
root of every integer between zero and a thousand, it doesn’t matter whether I start at
zero and work up, or start at a thousand and work down, or whether I buy a thousand
and one computers and do them all at the same time, I know I will get the same
answer. Pure functions have no side-effects.

An assignment statement isn’t like that. The effect of an assignment statement “if you
work it out" is not the same as if you don’t. When you write «x = x+1;», the effect
depends very much on how often the statement is executed; and when you write
several assignment statements, for example

temp = x;

x = y;

y = temp;

then the effect depends on executing them in the right order.

This means, of course, that a pure function can’t update external variables. As soon as
we allow assignment, we become dependent on doing things in sequence, one step at a
time in the right order.

Don’t object-oriented languages achieve the same thing, by preventing one object
updating data held in another? No, because although they prevent direct writing to
private data, they allow the same effect to be achieved by get() and set() methods.
An update to a variable achieved indirectly through a defined interface creates exactly
the same dependence on sequence of execution as an update done directly with an
assignment statement. A pure function must have no side-effects: its only output is the
result it returns.

The main reason that functional languages are considered ideal for a stylesheet
language (or a tree transformation language if you prefer) is not so much the ability to
do things in parallel or in any order, but rather the ability to do them incrementally.
We want to get away from static pages: if you’re showing a map of the traffic
congestion hotspots in your area, then when the data for a particular road junction
changes, you want the map updated in real time, and it should be possible to do this
without recalculating and redrawing the whole map. This is only possible if there’s a
direct relationship – a function – between what’s shown at a particular place on the
map display and a particular data item in the underlying database. So if we can
decompose our top-level stylesheet function, O=S(I), into a set of smaller, independent
functions, each relating one piece of the output to one piece of the input, then we have
the potential to do this on-the-fly updating.

Another benefit of this incremental approach is that when a large page of XML is
downloaded from the network, the browser can start displaying parts of the output as
soon as the relevant parts of the input are available. That’s the theory, at any rate.
There aren’t any XSLT processors that can do this yet, because it requires some quite
complex analysis of the stylesheet to work out when and to what extent it’s possible in
any given case – but if the stylesheet were a conventional program with side-effects, it
wouldn’t ever be possible, because the last bit of input to arrive could change
everything.

This is where XSLT template rules come in: they act as the small, independent
functions relating one piece of the output to one piece of the input. A template rule has
no side-effects, its output is a pure function of its inputs. The inputs are (idealizing
slightly) the current position in the input document plus any supplied parameters. It
doesn’t matter in what order the template rules are executed, so long as we assemble
their individual outputs together in the right way to form the result tree. If part of the
input changes, then we only need to re-evaluate those template rules that depend on
that part of the input, slotting their outputs into the appropriate place in the output
tree. In practice, of course, it's not as easy as that, and no-one has yet implemented an
incremental stylesheet processor that works like this. However, it will almost certainly
come, and the reason assignment statements were left out of the language was to make
it possible.

Meanwhile, while the researchers and product developers work out how to implement
an incremental stylesheet processor, you as a user are left with a different problem:
learning how to program without assignment statements. After this rather lengthy
digression into Computer Science theory, in the next section I shall get my feet back on
the ground and show you some examples of how to do this.

However, first let’s try and separate this from another programming challenge that
arises with XSLT, which is the limited number of data types available. In terms of
language design principles, the lack of assignment statements and the absence of a rich
type system are quite separate matters. In practical terms, however, you often hit the
two issues together:

❑ The only effect a template can have is via the output it produces (because of
the ban on side-effects).

❑ And the only output it can produce, if you want to process it further, is a
character string (because of the limited range of data types available).

The practical programming challenge is to work round both these restrictions at the
same time. If you need convincing that it’s possible, take a look at the Knight’s Tour
example in Chapter 9, page Error! Cannot open file.

So why are they called Variables?
XSLT, as we have seen, does have variables that can hold values. You can initialize a
variable to a value, but what you can’t do is change the value of an existing variable
once it has been initialized.

So some people have asked, why call it a variable if you can’t vary it? The answer lies

in the traditional mathematical use of the word variable: a variable is a symbol that can
be used to denote different values on different occasions. When I say "area = length ×
breadth", then area, length, and breadth are names or symbols used to denote values:
here they denote properties of a rectangle. They are variables because these values are
different every time I apply the formula, not because a given rectangle is changing size
as I watch.

Cheating
Just occasionally, you may feel that programming without assignment statements is
too mind-boggling, or too slow. In these cases you may be tempted to cheat.

Most XSLT processors actually allow user-written extension functions to have side
effects, and some (notably Xalan) go to considerable lengths in their documentation to
describe how to exploit this feature to implement a substitute for updateable variables.

The Saxon product goes one step further, and provides an extension element
<saxon:assign> that allows you to update a variable directly.

Since I've just spent several pages explaining why side-effect-free languages are
a "Good Thing", you might find it surprising that I should put a feature in my
own product that destroys the principle at a stroke. I have several excuses:

(a) At the time I did it, XSLT was far less advanced as a functional
programming language than it finally became.

(b) I thought that although side-effect-free programming is a good thing in
theory, many users wouldn't be ready for it.

(c) I wanted to experiment to see whether the costs (in performance and
usability) of the pure functional approach exceeded the benefits, and the best way
to do this was to launch a genetically modified variant of the language into the
wild and see whether the mutation thrived.

These features are a last resort. Most XSLT processors actually do their processing in a
predictable way, so you can usually get away with such cheating. If you use a
processor that does more optimization, however (as xt does today, and other products
may do in the future), then using such extensions might have different side-effects
from the ones you wanted: you can find yourself, for example, closing a file before
you’ve written to it, because the order of execution of different instructions is not
predictable. These facilities are like the PEEK and POKE of early Basic dialects, a messy
escape into a lower level of programming, that you should use only if you are
desperate. Having said that, there are situations where they can give a dramatic boost
to the speed of a stylesheet with performance problems.

Avoiding Assignment Statements
In the following sections I'll look at some of the common situations where assignment
statements appear to be needed, and show how to achieve the required effect without
them.

Conditional Initialization
This problem has an easy solution, so I shall get it out of the way quickly.

In conventional languages you might want to initialize a variable to zero in some
circumstances and to a value of one in others. You might write:

int x;

if (zeroBased) {

 x=0;

} else {

 x=1;

}

How can you do the equivalent in XSLT without an assignment statement?

The answer is simple: think of the equivalent:

int x = (zeroBased ? 0 : 1);

which has its parallel in XSLT as:

<xsl:variable name="x">

 <xsl:choose>

 <xsl:when test="$zeroBased">0</xsl:when>

 <xsl:otherwise>1</xsl:otherwise>

 </xsl:choose>

</xsl:variable>

There’s only one slight hitch: when you use the content of <xsl:variable> to set its
value, rather than the select attribute, the value of the variable will always be a tree.
This doesn’t matter if, as here, you want a string or number, because a tree can easily
be converted to a string or number, but it’s a problem when what you want is a node-
set.

Suppose you want the variable $transactions to be all the credits or all the debits
depending on the value of the boolean variable $getCredits. Here’s one way to
achieve the desired result:

<xsl:variable name="transactions"

 select="//credits[$getCredits] | //debits[not($getCredits)]"/>

What this does is to form the union of two node-sets, one of which is always empty.
Notice the union operator, «|». If $getCredits is true, the first predicate
«[$getCredits]» is always true and the second predicate «[not($getCredits)]» is
always false, so the expression is equivalent to «//credits»; while if $getCredits is
false, the situation is reversed, and the expression is equivalent to «//debits».

Don’t Iterate, Recurse
One of the most common uses of variables in conventional programming is to keep

track of where you are in a loop. Whether this is done using an integer counter in a for
loop, or using an Iterator or Enumerator object to process a list, the principle is the
same: we have a variable that represents how far we have got and that tells us when
we are finished.

In a functional program you can’t do this, because you can’t update variables. So
instead of writing a loop, you need to write a recursive function.

In a conventional program a common way to process a list of items is as follows:

iterator = list.getIterator();

while (iterator.hasMoreItems()) {

 item = iterator.getNextItem();

 item.doSomething();

}

The killer assignment statement is «item = iterator.getNextItem()». This assigns a
different value to the item each time, and what's more, it relies on the iterator
containing some sort of updateable variable that keeps track of how far it's got.

In a functional program we handle this by recursion rather than iteration. The pseudo-
code becomes:

function process(list) {

 if (!isEmpty(list)) {

 doSomething(getFirst(list));

 process(getRemainder(list));

 }

}

This function is called to process a list of objects. It does whatever is necessary with the
first object in the list, and then calls itself to handle the rest of the list. (I'm assuming
that getFirst() gets the first item in the list and getRemainder() gets a list
containing all items except the first.) The list gets smaller each time the function is
called, and when it finally becomes empty, the function exits, and unwinds through all
the recursive calls.

It’s important to make sure there is a terminating condition such as the list
becoming empty. Otherwise the function will keep calling itself forever—the
recursive equivalent of an infinite loop.

So the first lesson in programming without variables is to use recursion rather than
iteration to process a list. With XSLT this isn’t necessary to handle every kind of loop,
because XSLT provides built-in facilities such as <xsl:apply-templates> and
<xsl:for-each> that process all the members of a node-set without requiring an
explicit control variable, as well as functions like sum() and count() to do some
common operations on node-sets; but whenever you need to process a set of things
that can’t be handled with these constructs, you need to use recursion.

Is recursion expensive? The answer is, not necessarily. It’s quite possible for a

reasonably smart compiler to generate exactly the same code for a recursive procedure
as for an iterative one. For example a common compiler technique with functional
programming languages is that of tail recursion, which recognizes that when a function
calls itself as the last thing it does, there’s no need to allocate a new stack frame or new
variables, you can just loop back to the beginning.

The following example uses a recursive template to process a whitespace-separated list
of numbers which, for some reason, have not been marked up as separate elements.

Example: Totaling a List of Numbers

Input
Suppose you have a string that holds a whitespace-separated list of numbers, for
example "12 34.5 18.2 –35" and you want to find the total. (Don’t ask why: when
someone else designs your XML documents for you, these things happen).

For the sake of an example, this is the entire content of the document, number-
list.xml:

<numbers>12 34.5 18.2 –35</numbers>

Stylesheet
We need to use some of the string-handling functions provided in the XPath
expression language. These are described in Chapter 7; the ones we will use are:

❑ normalize-space(), which removes leading and trailing spaces and
replaces internal whitespace with a single space character (see page
Error! Cannot open file.).

❑ concat(), which concatenates two strings. I shall use this to add a space
at the end of the string, so that it works correctly even when there is only
one number in the string (see page Error! Cannot open file.)

❑ substring-before(), which I will use to find the part of a string that
comes before the first space (see page Error! Cannot open file.).

❑ substring-after(), which I will use to find the part of a string that
comes after the first space (see page Error! Cannot open file.).

❑ number(), which converts a string to a number. Actually this would
happen automatically, but I will do it explicitly for clarity (see page
Error! Cannot open file.).

Here’s the recursive template (in file number-total.xsl):

<xsl:template name="total-numbers">

 <xsl:param name="list"/>

 <xsl:variable name="wlist"

 select="concat(normalize-space($list), ' ')"/>

 <xsl:choose>

 <xsl:when test="$wlist!=' '">

 <xsl:variable name="first"

 select="substring-before($wlist, ' ')"/>

 <xsl:variable name="rest"

 select="substring-after($wlist, ' ')"/>

 <xsl:variable name="total">

 <xsl:call-template name="total-numbers">

 <xsl:with-param name="list" select="$rest"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:value-of select="number($first) + number($total)"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:template>

Notice how closely this mirrors the pseudo-code structure given earlier.

❑ First, to make tests on the whitespace-separated list easier, it normalizes
the supplied list. It uses the normalize-space() function to remove
leading and trailing spaces and replace all intermediate whitespace with
a single space character; then it uses concat() to add an extra space at
the end, so that the first number in the list will always have a space after
it even if it is the only number in the list. (It’s actually unnecessary to do
this when the template calls itself recursively, because the list will
already be in the right format. If you want to write a bit more code to
make it go a little faster, there’s room for optimization here.)

❑ If the supplied list is empty, the template returns the value zero. The test
in the <xsl:when> instruction returns false (after normalization, a string
containing no numbers will have turned into a single space). So the
<xsl:otherwise> branch is taken and the template returns, thus
terminating the recursion.

❑ Otherwise it extracts the first number from the list into the variable
$first by calling substring-before(), and extracts the remainder of
the list into the variable $rest by calling substring-after(). The
template then calls itself recursively to process the remainder of the list,
and adds the value of the first number to the total obtained from the
other numbers. The <xsl:with-param> element sets the parameter for
the called template, so that next time around the list it is processing will
be the “rest” of the list — the remainder after removing the first element.
The <xsl:value-of> element writes the result to the current output tree,
which may be a variable or the final result tree.

To test this, add the template rule below, and run the stylesheet against the above
source document:

<xsl:template match="/">

 <xsl:call-template name="total-numbers">

 <xsl:with-param name="list" select="."/>

 </xsl:call-template>

</xsl:template>

Output
29.7

(When I ran this, there were rounding errors, so the result was 29.69999999… If
you want to eliminate these, use the format-number() function, see page Error!

Cannot open file.)to control the number of decimal places in the output.)

Another example similar to this one was given under <xsl:call-template> in
Chapter 4, page Error! Cannot open file.

Here’s another example, this time processing a node-set. XPath provides built-in
functions for counting nodes and for totaling their values, but they aren’t always
flexible enough: sometimes you need to walk round the nodes yourself.

Example: Finding the Total Sales Value

The requirement is to find the total sales value of a list of books, using the book
list example on page 7. To find the total sales value, you need to multiply the
number of sales of each book by its price, which you cannot do using the sum()
function provided in XSLT.

Input
This example uses the booklist.xml file introduced earlier in this chapter. It
records sales figures for a number of books, as follows:

<booklist>

 <book>

 <title>Angela's Ashes</title>

 <author>Frank McCourt</author>

 <publisher>HarperCollins</publisher>

 <isbn>0 00 649840 X</isbn>

 <price>6.99</price>

 <sales>235</sales>

 </book>

 <book>

 <title>Sword of Honour</title>

 <author>Evelyn Waugh</author>

 <publisher>Penguin Books</publisher>

 <isbn>0 14 018967 X</isbn>

 <price>12.99</price>

 <sales>12</sales>

 </book>

</booklist>

Stylesheet
The stylesheet total-sales.xsl is as follows. Once again it defines a recursive
template, named «total-sales-value». This is called to process a set of <book>
elements passed in the parameter «list». The recursion terminates, returning
zero, when the list is empty.

When the list isn’t empty, the template multiplies the number of sales times the

price for the first book in the list, and adds the total sales value of all the books
after the first, which it obtains by calling itself with this shorter list as a
parameter. As we’re dealing with node-sets this time rather than strings, we use
the XPath syntax for manipulating node-sets: in particular, the predicate «[1]» to
find the first node in the set, and «[position()!=1]» to find the remainder.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:template name="total-sales-value">

 <xsl:param name="list"/>

 <xsl:choose>

 <xsl:when test="$list">

 <xsl:variable name="first" select="$list[1]"/>

 <xsl:variable name="total-of-rest">

 <xsl:call-template name="total-sales-value">

 <xsl:with-param name="list" select="$list[position()!=1]"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:value-of select="$first/sales * $first/price + $total-of-

rest"/>

 </xsl:when>

 <xsl:otherwise>0</xsl:otherwise>

 </xsl:choose>

</xsl:template>

The root template simply calls the recursive template to process the set of all
books in the input file, and displays the result in a suitable format by calling the
format-number() function, which was described in Chapter 7, page Error!
Cannot open file..

<xsl:template match="/">

 <xsl:variable name="total">

 <xsl:call-template name="total-sales-value">

 <xsl:with-param name="list" select="//book"/>

 </xsl:call-template>

 </xsl:variable>

Total sales value is: <xsl:value-of select="format-number($total,

 '$#.00')"/>

</xsl:template>

</xsl:stylesheet>

Output
Total sales value is: $1798.53

Summary
By now the principle should be clear. Whenever you need to find something out by
processing a list of items, write a recursive template that is given the entire list as a
parameter. If the list isn't empty, deal with the first item, and make a recursive call to
deal with the rest of the list after the first item.

As I mentioned, there’s another problem that you’ll encounter when doing this, which
is nothing to do with the lack of an assignment statement, but is to do with the limited
range of data types available. The result of a template is always a tree, (or as the
standard calls it, a result tree fragment) and there are only two things you can do with
a tree: you can copy it to the final result tree, or you can convert it to a string. What
this means is that if you want to do any more processing on the result of your
recursive function, you have to find some way of expressing the result as a string.

This can always be achieved (in one of the worked examples in Chapter 9, on page
Error! Cannot open file., I show how to encode the state of a chessboard as a string)
but it can require a great deal of mental agility. There are several XSLT processors
available that get round this by allowing you to convert a tree to a node-set, making it
much easier to create complex data structures that can be input to further processing:
however, you probably want to avoid using proprietary extensions like this, so I will
stick here to the facilities defined in the standard.

Avoid Doing Two Things at Once
Another common requirement for variables arises when you are trying to do two
things at once. For example, you are trying to copy text to the output destination, and
at the same time to keep a note of how much text you have copied. You might feel that
the natural way of doing this is to keep the running total in a variable, and update it as
a side-effect of the template that does the copying.

Or perhaps you want to scan a set of numbers calculating both the minimum and the
maximum value; or while outputting a list of employees, to set a flag for later use if
any salary greater than $100,000 was found.

The best answer to this problem is to split the task into two separate templates, and
call them separately. Write one function to produce the output, and another to
calculate the total. Write one template to find the minimum, and another to find the
maximum.

This might mean writing a little more code, and it might take a little longer, because
work is being repeated, but it is usually the right approach. The problem of repeated
processing can often be solved by using variables for the node-sets used in both
calculations: if you need to use a particular node-set as input to more than one process,
save that node-set in a variable which can then be supplied as a parameter to the two
separate templates.

An alternative is to write a template that returns a composite result; however, as we
have seen, XSLT isn’t strong on structured data types, so composite values aren’t easy
to manipulate. If you do need a composite value, the best option is usually a
whitespace-separated string.

One situation where it is difficult to save intermediate results and use them as input to
more than one process is where the intermediate results are sorted. If you’ve got a
large set of nodes to sort, the last thing you want to do is to sort it more than once.
Unfortunately, though, there’s no way in standard XSLT of sorting a set of nodes, and
then using the sorted result as input to further processing. There are two possible
answers, neither of which can be done by pure standard XSLT:

❑ Create a result tree fragment in which the nodes appear in sorted order. Use
the proprietary node-set() function (as often as you like) to process the nodes
on this tree in their sorted order.

❑ Use a sequence (or chain) of stylesheets: the first stylesheet creates a document
in which the nodes are sorted in the right order, and subsequent stylesheets
take this document as their input.

Note that neither of these techniques violates the XSLT design principle of "no side
effects". The node-set() function, which converts a result tree fragment to a node-set,
has proved sufficiently popular with both implementers and users that it seems a very
strong candidate for inclusion in the next version of the standard.

Grouping
Another common processing task that appears at first sight to need variables is the
splitting of data into groups.

Suppose that your souce logged cities and their respective countries in the following
format:

<cities>

 <city name="CityName" country="CountryName"/>

…etc…

</cities>

However, you want to list together all cities found in a particular country:

<countries>

 <country name=" CountryName ">

 <city> CityName1</city>

 <city> CityName2</city>
</country

…etc…

</countries>

In other languages we’ve probably all written code that achieved similar effects using
pseudo-code such as this:

sortedCities = cities.sortBy("country");

previousCountry = null;

write("<country>")

for each city in sortedCities {

 thisCountry = city.getAttribute("country");

 if (thisCountry != previousCountry) {

 write("</country>\n<country>");

 }

 write("<city>" + city.getAttribute("city") + "</city>");

 previousCountry = thisCountry;

}

write("</country>")

In XSLT, of course, this is a non-starter, for two reasons. Firstly, you need to output a
tree, not a text file containing markup tags: this means you can't write the end tag for
an element as a separate operation from writing the start tag. Secondly, you can’t use
assignment statements to spot the change of country as you go through the data.

The best way to tackle this problem in XSLT is to first build a list of unique countries,
and then process each one in turn. Let's have a look at an example.

Example: Splitting Data into Groups

Input
This example uses the cities.xml file. It logs cities and their respective countries
as follows:

<cities>

 <city name="Paris" country="France"/>

 <city name="Roma" country="Italia"/>

 <city name="Nice" country="France"/>

 <city name="Madrid" country="Espana"/>

 <city name="Milano" country="Italia"/>

 <city name="Firenze" country="Italia"/>

 <city name="Napoli" country="Italia"/>

 <city name="Lyon" country="France"/>

 <city name="Barcelona" country="Espana"/>

</cities>

Stylesheet
You can get a list of unique countries (as a node-set containing the relevant
attribute nodes) as follows:

<xsl:template match="/">

<xsl:variable name="unique-countries"

 select="/cities

 /city[not(@country=preceding-sibling::city/@country)]

 /@country"

/>

The predicate on the <city> element rejects any <city> whose country attribute
is the same as the country attribute of a preceding sibling, if there is one. In other
words, it includes every city that is the first one in its country. Variations on this
predicate are possible:

❑ If you know that the cities are sorted by country, you can replace the
predicate preceding-sibling::city by preceding-sibling::city[1].
This means the country would only be compared with that of the
immediately preceding city. This might improve performance.

❑ If the <city> elements were not all siblings of each other, you could use
the preceding axis instead of preceding-sibling. This, however, would
lengthen the search.

Having built a list of unique countries, you can then generate the <city>
elements for each one. Here goes:

<xsl:template match="/">

<xsl:variable name="unique-countries"

 select="/cities

 /city[not(@country=preceding-sibling::city/@country)]

 /@country"

/>

<countries>

 <xsl:for-each select="$unique-countries">

 <country name="{.}">

 <xsl:for-each select="//city[@country=current()]">

 <city><xsl:value-of select="@name"/></city>

 </xsl:for-each>

 </country>

 </xsl:for-each>

</countries>

</xsl:template

Output
<countries>

 <country name="France">

 <city>Paris</city>

 <city>Nice</city>

 <city>Lyon</city>

 </country>

 <country name="Italia">

 <city>Roma</city>

 <city>Milano</city>

 <city>Firenze</city>

 <city>Napoli</city>

 </country>

 <country name="Espana">

 <city>Madrid</city>

 <city>Barcelona</city>

 </country>

</countries>

The main problem with such algorithms is that if there are N nodes to be grouped,
then each one may need to be compared with all the previous ones, which gives a total
of N × (N – 1) / 2 comparisons in total. Double the number of nodes, and it will take
about four times as long. The result may be acceptable if there are ten cities, but you
will have to be very patient if there are several thousand. Of course a clever XSLT
processor might optimize the query and find a more efficient way of doing it, but you
can't rely on this. The technology of XSLT processors is still young, and techniques for
query optimization have a long way to go.

One answer to this is to sort the nodes first, and then group them; during the grouping
stage, each node needs to be compared only to its immediate predecessor, as shown in
our example. This requires processing a sorted list, which can only be achieved by
using the proprietary node-set() extension function discussed earlier, or by writing
one stylesheet to do the sorting and chaining the result into a second stylesheet that
does the grouping.

However, comparing each node only with its immediate predecessor may not solve
the problem. The crucial expression is:

preceding-sibling::city[1]

which is shorthand for:

preceding-sibling::city[position()=1]

This is a lot easier to optimize than the full predicate we had earlier, but it's still likely
that some XSLT processors will evaluate it the naïve way, by forming a list of all the
preceding siblings, and then looking at the position() of each one to see if it is equal
to 1. If the processor works this way, the time taken will still be proportional to the
square of the number of cities to be grouped.

Since we're now getting outside the scope of what you can do within standard XSLT,
another alternative is to use the <saxon:group> extension element provided by the
Saxon product. This is an experimental extension of the XSLT language. The stylesheet
to group our list of cities by country would then look like this:

<countries>

<saxon:group select="//city" group-by="@country">

 <xsl:sort select="@country"/>

 <country name="{@country}">

 <saxon:item>

 <city><xsl:value-of select="@name"/></city>

 </saxon:item>

 </country>

</saxon:group>

</countries>

For more details of this feature, see page of Chapter 10, page Error! Cannot open file..
A standard way of doing grouping is on the shopping list for the next version of the
XSLT standard; but whether it looks anything like the Saxon extension remains to be
seen.

Summary
This chapter described four design patterns for writing XSLT stylesheets:

❑ Fill-in-the-blanks

❑ Navigational

❑ Data-driven

❑ Computational

In the last category I described how we need to approach many problems in a way that
might seem unfamiliar, because XSLT is a pure functional programming language,

with no assignment statements or other side-effects that constrain the order of
execution. The result of this is that many of the more complex algorithms need to be
written using recursive named templates.

9
Worked Examples

This chapter aims to show how all the facilities of the XSLT language can work
together to solve some real XML processing problems of significant complexity. I have
chosen three example applications, and give complete stylesheets for handling them.
The code is presented incrementally in this chapter, but the complete stylesheets, and
specimen data files, can be downloaded from the Wrox web site at
http://www.wrox.com/.

As I described in the previous chapter, XSLT has a broad range of application, and in
this chapter I have tried to cover a representative selection of problems. The three
examples presented in this chapter are as follows:

❑ The first example is a stylesheet for rendering sequential documents:
specifically, the stylesheet used for rendering W3C specifications such as the
XML and XSLT Recommendations. This is a classic example of the rule-based
design pattern described on page Error! Cannot open file. in Chapter 8.

❑ The second example is concerned with presenting structured data. I have
chosen a complex data structure with many cross-references to illustrate how a
navigational stylesheet can find its way around the source tree: the chosen
example is a data file containing the family tree of the Kennedys.

❑ The final example stylesheet is quite unrealistic, but fun. It shows how XSLT
can be used to calculate a knight's tour of the chessboard, in which the knight
visits every square without ever landing on the same square twice. This is not
the sort of problem XSLT was designed to solve, but by showing that it can be
done I hope it will convince you that XSLT has the computational power and
flexibility to deal with the many more modest algorithmic challenges that arise
in routine day-to-day formatting applications.

Formatting the XML Specification
In this worked example we'll study the stylesheet used for formatting the XML
specifications themselves. You may have noticed that on the W3C web site, you can get

the specifications for standards such as XML, XSLT, and XPath either in XML format
or in HTML. We'll look at a stylesheet for converting the XML recommendation from
its XML form to its HTML form, shown below:

The stylesheets used for the XSLT and XPath specifications are adapted from the
version used for the XML specification, and we'll take a quick look at the adaptations
too.

This stylesheet was originally written by Eduardo Gutentag and subsequently
modified by James Clark. I am grateful to James Clark for placing it in the public
domain. I have made changes to the layout and ordering of the rules for the sake of
clarity, but I haven't altered the logic. The download file for this chapter on
http://www.wrox.com/ contains the original stylesheet from James Clark.

This stylesheet is a classic example of the rule-based design pattern, which was
introduced on page Error! Cannot open file. in Chapter 8. It makes minimal
assumptions about where all the different elements in the XML source document
appear relative to each other, and it allows new rules to be added freely as the
document structure evolves.

You'll probably find it helpful while reading this stylesheet to have the XML source

document readily accessible. The official version is on the web at
http://www.w3.org/TR/1998/REC-xml-19980210.xml, but you may have problems with
that version. You might expect that the XML specification was written by XML experts
and that it would therefore be a perfect example of how to write good XML.
Unfortunately this isn't the case, and it uses constructs which some parsers aren't
happy with. Specifically:

❑ It contains the entity declaration <!ENTITY lt "<"> which violates the rule that
the replacement text of a parsed entity must be well-formed. This declaration
causes IE5 to throw up its hands in horror and refuse to display the document.
The declaration is in any case quite unnecessary except for compatibility with
SGML.

❑ More subtly, the DTD (called spec.dtd) contains references to parameter
entities that don't exist, or whose declaration comes after the reference. It
happens that these references are all contained within comments in the DTD,
but if you read the XML specification very carefully, it says that a parameter
entity reference may occur anywhere in the DTD except in an EntityValue or
AttValue. Although this is an acknowledged error in the specification, at least
one XML parser (Ælfred) has taken that statement literally, and validates
parameter entity references even if they appear within the text of a comment.

So to make your life easier, I've created a modified version of the source document and
DTD that avoids these problems, and included them in the download for this book.
The source file is called REC-xml-19980210.xml and the DTD is called spec.dtd. You
can view the source either in a text editor, or using the default XML viewer in IE5.

The XML versions of the XSLT and XPath specifications don't suffer from the same
problems, and you can view these directly on the W3C web site using the IE5 browser,
although copies are included on the Wrox web site for convenience. They don't contain
references to a stylesheet, so IE5 will use its default stylesheet, which displays the XML
as a collapsible tree. Then you can use View Source to display the source XML, and
save it locally on your hard disk if you wish.

Now let's look at the stylesheet, xmlspec.xsl.

Preface
Let's start at the beginning:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- 1999/01/11 SMI; Style Sheet for the XML and XSL

 Recommendations and Working Drafts;

 written by Eduardo Gutentag -->

<!-- v 1.28 1999/11/15 12:58:16 by James Clark -->

<!DOCTYPE xsl:stylesheet [

<!ENTITY copy "©">

<!ENTITY nbsp " ">

]>

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"

 doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN"/>

<xsl:param name="w3">http://www.w3.org/</xsl:param>

The stylesheet is an XML document, so it starts with an XML declaration; the chosen
encoding is ISO-8859-1 because with most editing tools that's easier to edit than UTF–
8. Actually though, all the characters are ASCII, so specifying UTF-8 would work just
as well.

There's then a couple of comments indicating the change history and authorship.

The <!DOCTYPE> declaration doesn't reference an external DTD; this is normal practice
for stylesheets because a DTD would restrict your ability to include any element you
like in a template and have it treated as a literal result element. What the <!DOCTYPE>
does do is to declare a couple of entities for special characters. These allow us to write
the copyright symbol as «©» and the non-breaking-space character as « » –
if we hadn't declared these entities, we would have to write them each time they
appear as «©» and « » respectively.

The fact that we've used entity references rather than numeric character
references for these characters in the stylesheet doesn't mean that this is how
they will appear in the HTML output. The way the XSLT processor represents
these characters in the output is entirely up to the implementer; but whatever
representation it chooses, they will display correctly in the browser.

The <xsl:stylesheet> element should be familiar by now. The <xsl:output>
element defines the output method as html, and indicates the public identifier of the
version of HTML that is being generated, which will be copied into the generated
output file. This is good practice. It isn't essential, but of course the W3C want to
produce HTML that conforms to their own recommended practice.

The <xsl:param> statement declares a global parameter named w3, and gives it a
default value which is the URL for the W3C web site. Making this a global parameter
rather than a global variable allows a different value to be supplied during testing,
perhaps the URL of a staging server.

Creating the HTML Outline
Now we start with the main template rules for the document. The order is arbitrary,
and I've changed the order used by the original authors to present similar rules
together.

<xsl:template match="spec">

 <html>

 <head>

 <title>

 <xsl:value-of select="header/title"/>

 </title>

 <link rel="stylesheet" type="text/css"

 href="{$w3}StyleSheets/TR/W3C-{

 substring-before(header/w3c-designation,'-')}"/>

 <!-- This stops Netscape 4.5 from messing up. -->

 <style type="text/css">

 <xsl:apply-templates select="." mode="css"/>

 </style>

 </head>

 <body>

 <xsl:apply-templates/>

 </body>

 </html>

</xsl:template>

This is the top-level template rule that generates the HTML outline. There isn't a rule
that matches the root node, so the built-in root template kicks in and finds a rule that
matches the outermost element, which happens to be <spec>.

Apart from producing the HTML outline, this template does three things: it extracts
the document title, it outputs a reference to the CSS stylesheet to be used (in two
different formats so it works with different browsers), and within the HTML <body>
element it calls <xsl:apply-templates> to process the child elements of the <spec> in
the source document.

The call on <xsl:apply-templates mode="css”/> invokes the following little
template rule which just outputs some standard content for the <style> element. Note
that this could equally well have been done using <xsl:call-template>, or written
inline. I don't know why the authors chose to do it this way instead – one possibility is
that they wanted to override this rule in another stylesheet module that imports this
one. It's also likely that at the time this stylesheet was first written, some XSLT features
such as named templates were not yet available in products.

<xsl:template match="spec" mode="css">

 <xsl:text>code { font-family: monospace }</xsl:text>

</xsl:template>

Formatting the Document Header
We generated the title of the HTML document by accessing the title element within the
header element of the source XML file. To understand such queries, you need to take a
look at the structure of the <header> element in the source document. In abbreviated
form, the structure of the XML specification starts like this:

<spec>

 <header>

 <title>Extensible Markup Language (XML) 1.0</title>

 <version></version>

 <w3c-designation>REC-xml-&iso6.doc.date;</w3c-designation>

 <w3c-doctype>W3C Recommendation</w3c-doctype>

 <pubdate>

 <day>&draft.day;</day>

 <month>&draft.month;</month>

 <year>&draft.year;</year>

 </pubdate>

 <publoc>

 <loc href="url">url</loc>

 <loc href="url">url</loc>

 </publoc>

 <latestloc>

 <loc href="url">url</loc>

 </latestloc>

 <prevlocs>

 <loc href="url">url</loc>

 </prevlocs>

 <authlist>

 <author>

 <name>Tim Bray</name>

 <affiliation>Textuality and Netscape</affiliation>

 <email href="mailto:tbray@textuality.com">

 tbray@textuality.com</email>

 </author>

 more authors

 </authlist>

 <abstract>

 <p>The Extensible Markup Language (XML) is a subset of SGML that

 is completely described in this document... </p>

 </abstract>

 <status>

 <p>This document has been reviewed by W3C Members and

 other interested parties ...</p>

 <p>This document specifies a syntax… It is a product of the W3C

 XML Activity, details of which can be found at <loc

 href='url'>url</loc>. A list of current W3C

 Recommendations … can be found at <loc

 href='url'>url</loc>.</p>

 <p>This specification uses the term URI, which is defined by

 <bibref ref="Berners-Lee"/>, a work in progress expected to update

 <bibref ref="RFC1738"/> and <bibref ref="RFC1808"/>. </p>

 </status>

 </header>

 <body>

 main section of document

 </body>

 <back>

 appendices

 </back>

</spec>

Note that some of the tags are structural elements with predictable nesting, while
others such as <loc> can appear in all sorts of places, including inline within the text.

The next few template rules are all concerned with processing this header:

<xsl:template match="header">

 <div class="head">

 <!-- output clickable W3C logo -->

 <img src="{$w3}Icons/WWW/w3c_home"

 alt="W3C" height="48" width="72"/>

 <!-- output title and version of document -->

 <h1><xsl:value-of select="title"/>

 <xsl:value-of select="version"/>

 </h1>

 <!-- output publication type and date -->

 <h2>

 <xsl:value-of select="w3c-doctype"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="pubdate/day"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="pubdate/month"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="pubdate/year"/>

 </h2>

 <!-- output URLs of successive versions, and authors -->

 <dl>

 <xsl:apply-templates select="publoc"/>

 <xsl:apply-templates select="latestloc"/>

 <xsl:apply-templates select="prevlocs"/>

 <xsl:apply-templates select="authlist"/>

 </dl>

 <!-- output standard copyright statement -->

 <xsl:call-template name="copyright"/>

 <hr title="Separator for header"/>

 </div>

 <!-- output abstract and status sections -->

 <xsl:apply-templates select="abstract"/>

 <xsl:apply-templates select="status"/>

</xsl:template>

<!-- template rules for document locations -->

<xsl:template match="publoc">

 <dt>This version:</dt>

 <dd><xsl:apply-templates/></dd>

</xsl:template>

<xsl:template match="latestloc">

 <dt>Latest version:</dt>

 <dd><xsl:apply-templates/></dd>

</xsl:template>

<xsl:template match="prevlocs">

 <dt>

 <xsl:text>Previous version</xsl:text>

 <xsl:if test="count(loc)>1">s</xsl:if>

 <xsl:text>:</xsl:text>

 </dt>

 <dd><xsl:apply-templates/></dd>

</xsl:template>

<xsl:template match="publoc/loc | latestloc/loc | prevlocs/loc">

 <xsl:apply-templates/>

</xsl:template>

<!-- template rules for authors and affiliations -->

<xsl:template match="authlist">

 <dt>

 <xsl:text>Editor</xsl:text>

 <xsl:if test="count(author)>1">s</xsl:if>

 <xsl:text>:</xsl:text>

 </dt>

 <dd><xsl:apply-templates/></dd>

</xsl:template>

<xsl:template match="author">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="author/name">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="author/affiliation">

 <xsl:text> (</xsl:text>

 <xsl:apply-templates/>

 <xsl:text>) </xsl:text>

</xsl:template>

<xsl:template match="author/email">

 <xsl:text><</xsl:text>

 <xsl:apply-templates/>

 <xsl:text>></xsl:text>

</xsl:template>

<!-- templates to display abstract and status paragraphs -->

<xsl:template match="abstract">

 <h2>Abstract</h2>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="status">

 <h2>Status of this document</h2>

 <xsl:apply-templates/>

</xsl:template>

So much for the header: nothing very complicated here, though the techniques used to
produce a plural label for "previous versions" and "editors" are worth noting, as is the
use of <xsl:text> to avoid copying white space to the output where it isn't wanted.

The Table of Contents
The next part of the stylesheet deals with the body of the document, and at the same
time with the "back" of the document, which has a similar structure. The <back>
element contains appendices, bibliography, and so on.

<xsl:template match="body">

 <h2>Table of contents</h2>

 <xsl:call-template name="toc"/>

 <hr/>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="back">

 <hr title="Separator from footer"/>

 <xsl:apply-templates/>

</xsl:template>

The <body> template rule follows a common pattern: it first calls a template to generate
the table of contents, then it uses <xsl:apply-templates> to process its own children.

Let's see how the table of contents is produced. The structure of the <body> element,
and also of <back>, consists of a sequence of <div1> elements representing top-level
sections, like this:

<div1>

 <head>First-level heading</head>

 <p>Some text</p>

 <div2>

 <head>Second-level heading</head>

 <p>Some more text</p>

 <div3>

 <head>Third-level heading</head>

 <p>Lots more text</p>

 </div3>

 </div2>

</div1>

Each <div1> element contains a <head> element giving its heading, paragraphs of
immediate content, and zero or more <div2> elements containing level-2 subsections.
The <div2> elements similarly contain a <head> and zero or more <div3> elements for
level-3 subsections, and so on.

In the <back> section, a non-normative appendix is represented by an <inform-div1>
element instead of the usual <div1>, but otherwise the structure is the same.

Non-normative is jargon meaning "for information only, not part of the
specification".

So the named template to generate the table of contents looks like this. It first works its
way through the nested sections in the <body>, and then does the same again for the
sections in the <back>. The work of actually producing the cross-reference is delegated
to another named template, «makeref»:

<xsl:template name="toc">

 <xsl:for-each select="/spec/body/div1">

 <xsl:call-template name="makeref"/>

 <xsl:for-each select="div2">

 <xsl:text> </xsl:text>

 <xsl:call-template name="makeref"/>

 <xsl:for-each select="div3">

 <xsl:text> </xsl:text>

 <xsl:text> </xsl:text>

 <xsl:call-template name="makeref"/>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 <h3>Appendices</h3>

 <xsl:for-each select="/spec/back/div1 | /spec/back/inform-div1">

 <xsl:call-template name="makeref"/>

 <xsl:for-each select="div2">

 <xsl:text> </xsl:text>

 <xsl:call-template name="makeref"/>

 <xsl:for-each select="div3">

 <xsl:text> </xsl:text>

 <xsl:text> </xsl:text>

 <xsl:call-template name="makeref"/>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

</xsl:template>

<xsl:template name="makeref">

 <xsl:apply-templates select="." mode="number"/>

 <xsl:choose>

 <xsl:when test="@id">

 <xsl:value-of select="head"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="head"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:for-each select="head">

 <xsl:call-template name="inform"/>

 </xsl:for-each>

</xsl:template>

<xsl:template name="inform">

 <xsl:if test="parent::inform-div1">

 <xsl:text> (Non-Normative)</xsl:text>

 </xsl:if>

</xsl:template>

The «makeref» template first generates a sequence number for the section, then creates
a hyperlink to it, using the section's id attribute if it has one, or a name derived from
its heading otherwise (spaces are replaced by hyphens). This isn't a particularly

brilliant idea, it means that any non-unique headings like "Example" have to be
allocated an id manually: presumably the authors would have used the generate-
id() function if it had been around at the time. Then if the section is a non-normative
one (an <inform-div1> element) it outputs the string "(Non-Normative)".

The way in which this is done is not particularly elegant, though it works. I
suspect the template named «inform» was written initially to display the
actual section heading in situ, and then reused for the table of contents. A
more natural approach would be to include an <xsl:if self::inform-
div1> test in the «makeref» template.

The «makeref» template delegates the work of generating a sequence number to a
template rule associated with the section being numbered. This uses a special mode, to
avoid conflict with the template rule for expanding the content of this section. There
are two versions of the rule, one for sections in the body of the document, and one for
appendices. There is no need to have different rules for different section levels,
because the way the number formatting works is sufficiently flexible to give the right
answer at each level.

<xsl:template mode="number" match="*">

 <xsl:number level="multiple"

 count="inform-div1 | div1 | div2 | div3 | div4"

 format="1.1 "/>

</xsl:template>

<xsl:template mode="number" match="back//*">

 <xsl:number level="multiple"

 count="inform-div1 | div1 | div2 | div3 | div4"

 format="A.1 "/>

</xsl:template>

This use of a list of alternatives in the count attribute is a common way of doing multi-
level numbering. It means, in effect, outputting a sequence number for each ancestor
element that is either an <inform-div1>, or a <div1>, or a <div2>, etc. Like most
template rules in a rule-based stylesheet, it doesn't attempt to do any validation: if the
input structure is wrong, it will produce some sort of output regardless, and it's up to
the document author to work out what the problem is. This raises an interesting
question that you need to consider when designing your own stylesheets: is it the job
of the stylesheet to detect and report on errors in the source document?

Creating Section Headers
The next section of the stylesheet is concerned with formatting the section headers.
These all have some common logic, concerned with generating the section number and
creating a text anchor (...) as the target for hyperlinks, so they
all call a common named template to do this work. If the section has an id attribute,
this is used as the anchor; otherwise an anchor is generated from the section's title.
This logic must match the logic used earlier when creating hyperlinks in the table of
contents.

Numbers are generated by reusing the template rule we saw while producing the table
of contents.

<xsl:template match="div1/head | inform-div1/head">

 <h2><xsl:call-template name="head"/></h2>

</xsl:template>

<xsl:template match="div2/head">

 <h3><xsl:call-template name="head"/></h3>

</xsl:template>

<xsl:template match="div3/head">

 <h4><xsl:call-template name="head"/></h4>

</xsl:template>

<xsl:template match="div4/head">

 <h5><xsl:call-template name="head"/></h5>

</xsl:template>

<xsl:template name="head">

 <xsl:for-each select="..">

 <xsl:call-template name="insertID"/>

 <xsl:apply-templates select="." mode="number"/>

 </xsl:for-each>

 <xsl:apply-templates/>

 <xsl:call-template name="inform"/>

</xsl:template>

<xsl:template name="insertID">

 <xsl:choose>

 <xsl:when test="@id">

 </xsl:when>

 <xsl:otherwise>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Note the use of <xsl:for-each select="..">. This doesn't do an iteration (a node
only has one parent), rather it is there to change the current node from the <head>
element to its parent <divX> element, because that is where the insertID template
expects to be positioned.

Within the «head» template, the call on the «inform» template simply produces the
phrase "(Non-normative)" on appropriate appendices, as before.

Formatting the Text
We now find a number of template rules to process simple textual markup within the

body of the document. These are very straightforward, though if you want to
understand exactly why they take the form they do, it is worth looking at the source
document to understand its structure. In fact, not all the elements mentioned here are
used in the XML specification: it's likely that these were present in earlier drafts.

<xsl:template match="item/p" priority="1">

 <p><xsl:apply-templates/></p>

</xsl:template>

 <!-- this template appears to be redundant,

 it was probably at some time different

 from the following template -->

<xsl:template match="p">

 <p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="term">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="code">

 <code><xsl:apply-templates/></code>

</xsl:template>

<xsl:template match="emph">

 <i><xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="blist">

 <dl><xsl:apply-templates/></dl>

</xsl:template>

<xsl:template match="slist">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="sitem">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="olist">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="ulist">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="glist">

 <dl><xsl:apply-templates/></dl>

</xsl:template>

<xsl:template match="olist">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="item">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="label">

 <dt><xsl:apply-templates/></dt>

</xsl:template>

<xsl:template match="def">

 <dd><xsl:apply-templates/></dd>

</xsl:template>

<xsl:template match="quote">

 <xsl:text>"</xsl:text>

 <xsl:apply-templates/>

 <xsl:text>"</xsl:text>

</xsl:template>

<!-- examples -->

<xsl:template match="eg">

 <pre>

 <xsl:if test="@role='error'">

 <xsl:attribute name="style">color: red</xsl:attribute>

 </xsl:if>

 <xsl:apply-templates/>

 </pre>

</xsl:template>

<!-- general-purpose tables -->

<xsl:template match="htable">

 <table border="{@border}"

 cellpadding="{@cellpadding}"

 align="{@align}">

 <xsl:apply-templates/>

 </table>

</xsl:template>

An observation here is that «border="{@border}"» will generate the output
«border=""» if the element in the source document has no border attribute. It might
have been better to write:

<table>

 <xsl:copy-of select="@align | @border | @cellpadding"/>

 <xsl:apply-templates/>

</table>

The stylesheet continues:

<xsl:template match="htbody">

 <tbody><xsl:apply-templates/></tbody>

</xsl:template>

<xsl:template match="tr">

 <tr align="{@align}" valign="{@valign}">

 <xsl:apply-templates/>

 </tr>

</xsl:template>

<xsl:template match="td">

 <td bgcolor="{@bgcolor}"

 rowspan="{@rowspan}" colspan="{@colspan}"

 align="{@align}" valign="{@valign}">

 <xsl:apply-templates/>

 </td>

</xsl:template>

<!-- notes -->

<xsl:template match="ednote">

 <blockquote>

 <p>Ed. Note: <xsl:apply-templates/></p>

 </blockquote>

</xsl:template>

<xsl:template match="edtext">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="issue">

 <xsl:call-template name="insertID"/>

 <blockquote>

 <p>Issue (<xsl:text/>

 <xsl:value-of select="substring-after(@id,'-')"/>

 <xsl:text/>):

 <xsl:apply-templates/>

 </p>

 </blockquote>

</xsl:template>

<xsl:template match="note">

 <blockquote>

 NOTE: <xsl:apply-templates/>

 </blockquote>

</xsl:template>

<xsl:template match="issue/p | note/p">

 <xsl:apply-templates/>

</xsl:template>

Setting Out the Production Rules
Now we get to a more interesting area. The XML recommendation contains syntax
production rules, and these are marked up in some detail. A sequence of production
rules is contained within a <scrap> element, and each rule is a <prod> element. Here is
an example of a scrap that contains a single production rule:

<scrap lang='ebnf' id='document'>

 <head>Document</head>

 <prod id='NT-document'>

 <lhs>document</lhs>

 <rhs>

 <nt def='NT-prolog'>prolog</nt>

 <nt def='NT-element'>element</nt>

 <nt def='NT-Misc'>Misc</nt>*

 </rhs>

 </prod>

</scrap>

This is of course the XML production rule, which appears in the spec as:

Document

[1] document ::= prolog element Misc*

In some cases the production rules within a <scrap> are grouped into <prodgroup>
elements, but this grouping is ignored in the output.

Here are the top-level template rules:

<xsl:template match="scrap">

 <xsl:if test="string(head)">

 <h5><xsl:value-of select="head"/></h5>

 </xsl:if>

 <table class="scrap">

 <tbody>

 <xsl:apply-templates select="prodgroup | prod"/>

 </tbody>

 </table>

</xsl:template>

<xsl:template match="prodgroup">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="prod">

 <!-- select elements that start a row -->

 <xsl:apply-templates

 select="*[self::lhs

 or (self::rhs

 and not(preceding-sibling::*[1][self::lhs]))

 or ((self::vc or self::wfc or self::com)

 and not(preceding-sibling::*[1][self::rhs]))]

 "/>

</xsl:template>

What is this horrendous select expression doing? A production rule (<prod>) has one
left hand side (<lhs>), one or more right-hand-sides (<rhs>), and one or more
annotations (<vc>, <wfc>, or <com>). A <vc> element is used to refer to a validation
constraint, a <wfc> element to refer to a well-formedness constraint, and a <com>
element to refer to a comment. A rule with one <lhs> element, two <rhs> elements,
and three <wfc> annotations would be laid out in an HTML table like this:

[17] lhs1 ::= rhs1

 rhs2 wfc1

 wfc2

 wfc3

As the comment says, the select expression is processing the children of the <prod>
element that start a new row: here lhs1, rhs2, wfc2, and wfc3. More precisely, the
selected elements include any <lhs> element, any <rhs> element that is not
immediately preceded by an <lhs> element, and any <vc>, <wfc> or <com> element
that is not immediately preceded by an <rhs> element. So, this template selects the
elements that will start a new row, and calls <xsl:apply-templates> to process them.

We'll now look at the template rules that will match these elements. First the <lhs>:

<xsl:template match="lhs">

 <tr valign="baseline">

 <td>

 <xsl:number from="body" level="any"

 format="[1] "/>

 </td>

 <td><xsl:apply-templates/></td>

 <td>

 <xsl:text> ::= </xsl:text>

 </td>

 <xsl:for-each select="following-sibling::*[1]">

 <td><xsl:apply-templates mode="cell" select="."/></td>

 <td><xsl:apply-templates mode="cell"

 select="following-sibling::*[1]

 [self::vc or self::wfc or self::com]"/>

 </td>

 </xsl:for-each>

 </tr>

</xsl:template>

The call on <xsl:number> here is a good example of how to generate a sequence of
numbers that runs through the document. It creates a sequential number for each
<lhs> element, that is, for each production rule.

The template then calls <xsl:apply-templates/> to process the contents of the <lhs>
element, which will generally just be the name of the syntactic term being defined, and
outputs the « ::= » that separates the term from its definition.

The <xsl:for-each> that follows does not do any iteration, it merely moves the
current position along to the next sibling. This is because the select expression, with
its «[1]» predicate, can only ever select a single node. This node will be the first <rhs>
element. It calls <xsl:apply-templates> to process this first <rhs> element with
«mode="cell"»; and then, if the element after this is a <vc>, <wfc> or <com> element, it
processes that one with «mode="cell"» too. This logic must match the logic used
earlier for deciding which elements should start a new row: we must only process
those that go on the same row as the <lhs> element at this stage.

The next two template rules are used respectively for <rhs> elements that start a new
row, and for <vc>, <wfc>, and <com> elements that start a new row: that is, rhs2, wfc2,
and wfc3 in our example. In each case the template has to generate a number of empty
table cells to get the horizontal alignment right.

<xsl:template match="rhs">

 <tr valign="baseline">

 <td></td>

 <td></td>

 <td></td>

 <td><xsl:apply-templates mode="cell" select="."/></td>

 <td><xsl:apply-templates mode="cell"

 select="following-sibling::*[1]

 [self::vc or self::wfc or self::com]"/>

 </td>

 </tr>

</xsl:template>

<xsl:template match="vc | wfc | com">

 <tr valign="baseline">

 <td></td>

 <td></td>

 <td></td>

 <td></td>

 <td><xsl:apply-templates mode="cell" select="."/></td>

 </tr>

</xsl:template>

Some people prefer to avoid empty table cells by writing
«<td> </td>», but that's only really necessary if the table has borders
or a background color.

The <rhs> rule uses the same kind of logic as the <lhs> rule to process any following
<vc>, <wfc>, and <com> elements that belong in the same row.

Now we need to write template rules for elements that go in the same row as a
previous element, like rhs1 and wfc1 in the example. These will always be invoked
with «mode="cell"». The first two are very simple, because the surrounding <td>
elements have already been generated.

<xsl:template match="rhs" mode="cell">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="com" mode="cell">

 <xsl:text>/*</xsl:text>

 <xsl:apply-templates/>

 <xsl:text>*/</xsl:text>

</xsl:template>

For <vc> and <wfc> elements, we need some logic to generate a hyperlink to the
paragraph that describes the validation constraint or well-formedness constraint. The
link is represented in the XML by a def attribute, and this is used directly to construct
the HTML internal hyperlink. The displayed text of the link is formed by retrieving the
element whose ID is equal to this def attribute, and displaying its text.

For example, if the <vc> element has the form <vc def="vc-roottype"/>, this points
to the following element in the source file:

<vcnote id="vc-roottype">

 <head>Root Element Type</head>

 <p>The Name in the document type declaration must match the element type

 of the root element.</p>

</vcnote>

so the generated HTML is:

Root Element Type

Back to the stylesheet:

<xsl:template match="vc" mode="cell">

 <xsl:text>[VC: </xsl:text>

 <xsl:value-of select="id(@def)/head"/>

 <xsl:text>]</xsl:text>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="wfc" mode="cell">

 <xsl:text>[WFC: </xsl:text>

 <xsl:value-of select="id(@def)/head"/>

 <xsl:text>]</xsl:text>

 <xsl:apply-templates/>

</xsl:template>

So much for formatting the production rules! This was by far the most complicated
part of this stylesheet, the rest should be plain sailing.

Making Cross-references
The next section of the stylesheet is concerned with formatting cross-references. First
we'll show the template rules for creating anchors that we can link to – these all
generate an element of the form They are used for
bibliography items, definitions of terms, and descriptions of validity and well-
formedness constraints.

<xsl:template match="blist/bibl">

 <dt>

 <xsl:value-of select="@key"/>

 </dt>

 <dd>

 <xsl:apply-templates/>

 </dd>

</xsl:template>

<xsl:template match="termdef">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="vcnote">

 <p>Validity Constraint: <xsl:text/>

 <xsl:value-of select="head"/></p>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="wfcnote">

 <p>Well Formedness Constraint: <xsl:text/>

 <xsl:value-of select="head"/></p>

 <xsl:apply-templates/>

</xsl:template>

And now the template rules that generate the hyperlinks. These all generate an
element of the form ... for an external reference or ... for an internal one.

<!-- external references -->

<xsl:template match="p/loc" priority="1">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="loc">

 <xsl:apply-templates/>

</xsl:template>

The priority attribute on the first template rule is not really necessary; the default
priorities would automatically give it higher priority than the rule that follows. In fact
it's doubly unnecessary here because the two rules are identical! However, some
people prefer to make priorities explicit in such cases, for documentation if nothing
else.

<xsl:template match="xspecref | xtermref">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="xnt">

 <xsl:apply-templates/>

</xsl:template>

<!-- internal cross-references -->

<xsl:template match="titleref">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="nt">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="termref">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="bibref">

 <xsl:text>[</xsl:text>

 <xsl:value-of select="id(@ref)/@key"/>

 <xsl:apply-templates/>

 <xsl:text>]</xsl:text>

</xsl:template>

<xsl:template match="specref">

 <xsl:text>[</xsl:text>

 <!-- Add the section number and heading of the target -->

 <xsl:for-each select="id(@ref)/head">

 <xsl:apply-templates select=".." mode="number"/>

 <xsl:apply-templates/>

 </xsl:for-each>

 <xsl:apply-templates/>

 <xsl:text>]</xsl:text>

</xsl:template>

Nothing very complicated here. The last template rule is a bit more complicated than
the others: it's creating a reference to a section that incorporates its section number,
which it obtains by calling <xsl:apply-templates> to process the referenced element
with «mode="number"».

Filtering Out What We Don't Want
We now have some template rules for elements in the XML source document that we
don't want to include in the HTML output at all. An empty <xsl:template> element is
a "no-op", it says that when this pattern is matched, no output should be produced. If
these template rules weren't included, the built-in template rule would kick in for
these elements, which would output the text of the element without any markup.

<xsl:template match="w3c-designation"/>

<xsl:template match="w3c-doctype"/>

<xsl:template match="header/pubdate"/>

<xsl:template match="spec/header/title"/>

<xsl:template match="revisiondesc"/>

<xsl:template match="pubstmt"/>

<xsl:template match="sourcedesc"/>

<xsl:template match="langusage"/>

<xsl:template match="version"/>

These elements are mainly metadata, of interest to the authors but not to the readers.
(Actually, the revision history is fascinating if you are interested in that sort of thing. It
acts as a reminder that filtering out confidential information in a stylesheet is not the
world's most effective security technique).

Boilerplate Text
There is now a template that generates fixed boilerplate text:

<xsl:template name="copyright">

 <xsl:variable name="legal"

 select="'http://www.w3.org/Consortium/Legal/'"/>

 <p class="copyright">

 Copyright

 © 1999

 W3C

 (MIT,

 INRIA,

 Keio),

 All Rights Reserved. W3C

 <a href="{$legal}ipr-notice.html#Legal_Disclaimer"

 >liability,

 <a href="{$legal}ipr-notice.html#W3C_Trademarks"

 >trademark,

 document use

 and

 <a href="{$legal}copyright-software.html"

 >software licensing rules apply.

 </p>

</xsl:template>

List of Contributors
The last four template rules format the list of contributors at the end of the document.
There are two rules that match «orglist/member», the effect is that a semicolon is
placed before the name of every member except the first. The priority attribute is
necessary this time, because the default priority for both rules would be the same.

<xsl:template match="orglist">

 <xsl:apply-templates select="*"/>

</xsl:template>

<xsl:template match="orglist/member[1]" priority="2">

 <xsl:apply-templates select="*"/>

</xsl:template>

<xsl:template match="orglist/member">

 <xsl:text>; </xsl:text>

 <xsl:apply-templates select="*"/>

</xsl:template>

<xsl:template match="orglist/member/affiliation">

 <xsl:text>, </xsl:text>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="orglist/member/role">

 <xsl:text> (</xsl:text>

 <xsl:apply-templates/>

 <xsl:text>)</xsl:text>

</xsl:template>

And that brings us to the end:

</xsl:stylesheet>

Variant Stylesheets for the XSLT and XPath Specs
The stylesheet just presented is the one used for the XML specification. The stylesheets
used for the XPath and XSLT specifications are slightly different, because these
documents use additional element types beyond those used in the XML specification.
In each case the XML source document has an internal DTD subset which supplements
the base DTD with some additional element types. For example, the XPath document
uses special tags to mark up function templates, and the XSLT document has special
tags to mark up the proformas used to summarize the syntax of each XSL element.

The stylesheets used for XPath and XSLT therefore consist of a small module that uses
<xsl:import> to import the baseline XML stylesheet, and which then defines the extra
rules needed for these additional constructs. All three stylesheets are included in the
download files for this chapter.

Summary
The example presented here was a real stylesheet, used for a real application, and not
just for teaching purposes. It's perhaps slightly atypical in that much of it was written
before the XSLT specifications stabilised, so it sometimes does things in a roundabout
way. However, it's probably not that dissimilar from many other stylesheets used in
document formatting applications.

The phrase "document formatting" is key. The main tasks performed in this stylesheet
were applying HTML display styles to different elements, generating hyperlinks, and
formatting tables. These are all tasks that lend themselves to using the rule-based design
pattern which I described in Chapter 8, page Error! Cannot open file.

The next example will be a very different kind of application — one that uses highly-
structured data, and displays it in a very different form from the way it arrives in the
source document.

A Family Tree
XML is often used for representing information that is a mixture of structured data and
text. Rather than taking a simple example of structured data (like the book catalog
found in so many XML examples) we will take a look at how to process something
rather more complex – a family tree.

I could have used an example with invoices and requisitions and purchase orders. I
believe that the techniques used in this worked example are equally applicable to
many practical commercial problems, but that you will find a little excursion into the
world of genealogy a pleasant relief from the day job.

One caveat, though. Throughout this book I have been talking about tree models of
XML, and I have been using words like parent and child, ancestor and descendant, in

Comment: NOTE
chance this headin
new page?

the context of these data trees. Don't imagine, though, that we can use this tree
structure to represent a family tree directly. In fact, a family tree is not really a tree at
all, because everyone has two parents: in XML trees, one parent is considered
sufficient.

The structure of the family tree is actually quite different from the document tree used
to represent it. And in this section, words like parent and child have their everyday
meaning!

The Data Model and its XML Representation
The established standard for representing genealogical data is known as GEDCOM,
and data in this format is routinely exchanged between software packages and posted
on the Internet. The main objects found in a GEDCOM file are records representing
individuals (called INDI records), and records representing couples (called FAM
records).

An INDI record looks like this:

0 @I1@ INDI

1 NAME John Fitzgerald/Kennedy/

1 SEX M

1 BIRT

2 DATE 29 MAY 1917

2 PLAC Brookline, MA, USA

1 DEAT

2 DATE 22 NOV 1963

2 PLAC Dallas, TX, USA

2 NOTE Assassinated by Lee Harvey Oswald.

1 NOTE Educated at Harvard University.

2 CONT Elected Congressman in 1945

2 CONT aged 29; served three terms in the House of Representatives.

2 CONT Elected Senator in 1952. Elected President in 1960, the

2 CONT youngest ever President of the United States.

1 FAMS @F1@

1 FAMC @F2@

This is not XML, of course, but we can mechanically convert it to XML, so that it looks
like this:

<INDI ID="I1">

 <NAME>John Fitzgerald<S>Kennedy</S></NAME>

 <SEX>M</SEX>

 <BIRT>

 <DATE>29 MAY 1917</DATE>

 <PLAC>Brookline, MA, USA</PLAC>

 </BIRT>

 <DEAT>

 <DATE>22 NOV 1963</DATE>

 <PLAC>Dallas, TX, USA</PLAC>

 <NOTE>Assassinated by Lee Harvey Oswald.
</NOTE>

 </DEAT>

 <NOTE>Educated at Harvard University.

Elected Congressman in 1945

aged 29; served three terms in the House of Representatives.

Elected Senator in 1952. Elected President in 1960, the

youngest ever President of the United States.

 </NOTE>

 <FAMS REF="F1"/>

 <FAMC REF="F2"/>

</INDI>

I'll come back later on (page 46) to show how we actually do the conversion into XML.

Each record in a GEDCOM file has a unique identifier (in this case I1 – that's letter I,
digit one), which is used to construct cross-references between records. Most of the
information in this record is self-explanatory, except the <FAMS> and <FAMC> fields:
<FAMS> is a reference to a <FAM> record representing a family in which this person is a
parent, and <FAMC> is a reference to a family in which this person is a child.

Note how the fields may be nested to indicate the structure. The GEDCOM
specification (which is developed by the Church of Jesus Christ of Latter Day Saints)
defines a strict schema saying how the tags can be nested, very much like an XML
DTD.

An HTML version of the GEDCOM specification can be found at
http://www.tiac.net/users/pmcbride/gedcom/55gctoc.htm.

However, although the schema is strict, it still allows very varied information to be
entered. For example, any number of events or attributes relating to an individual,
with full or partial dates, textual notes at any level, and references to sources of
information. Examples of events might be birth, death, adoption, or retirement;
examples of attributes might be occupation, religion, or health: but the list is open-
ended.

The <INDI> record contains information about the events and attributes for a person,
while the <FAM> record defines events for a couple and their family (a "couple" here
represents two people who either were married, or had children, or both: either
partner may be unknown or unrecorded). A <FAM> record, like an <INDI> record, has
an arbitrary unique identifier. After conversion to XML, it might look like this:

<FAM ID="F1">

 <HUSB REF="I1"/>

 <WIFE REF="I2"/>

 <CHIL REF="I5"/>

 <CHIL REF="I6"/>

 <CHIL REF="I7"/>

 <MARR>

 <DATE>12 SEP 1953</DATE>

 <PLAC>Newport, RI, USA</PLAC>

 </MARR>

</FAM>

The <FAM> element contains links to all the individuals making up the family. These
are technically redundant in the sense that they could be deduced by finding l links in
the opposite direction; but redundancy is not always a bad thing. The element also
contains information about events affecting both partners, the most common being
their marriage.

To make this clearer, here is a diagram showing how the family relationships are
represented.

INDI ID=I1
JOHN F. KENNEDY

FAM ID=F1
HUSB REF=I1
WIFE REF=I2

CHIL
CHIL
CHIL

MARR DATE & PLACE

FAMC
FAMS REF=F1

BIRTH DATE & PLACE
DEATH DATE & PLACE

INDI ID=I2
JAQUELINE L. BOUVIER

FAMC
FAMS REF=F1

BIRTH DATE & PLACE
DEATH DATE & PLACE

FAM record for parents of JFK FAM record for parents of JLB

INDI records for children of JFK and JLB

I'm not going to spend time discussing whether this is a good way of representing
genealogical information or not. Many people have criticized the data model, either on
technical grounds or from the point of view of political correctness, but like the
QWERTY keyboard, GEDCOM persists despite its faults simply because so many
people are using it.

In GEDCOM, there is no formal way of linking one file to another. XML, of course,
creates wonderful opportunities to define how your family tree links to someone else's.
But the linking isn't as easy as it sounds (nothing is, in genealogy) because of the
problems of maintaining version integrity between two datasets that are changing
independently. So I'll avoid getting into that area, and stick to the model that the
whole family tree is in one XML document.

Displaying the Family Tree Data

What we want to do is to write a stylesheet that displays the data in a GEDCOM file in
HTML format. We'll assume for the moment that the conversion to XML syntax has
already been done (I'll discuss how it's done later in the chapter, on page 46). We want
the display to look something like the screenshot below:

This shows all the details of one individual, with links to related individuals so that
you can browse around the family tree. Of course one could attempt many more
ambitious ways of displaying this data, and I would encourage you to do so: you can
start with the small Kennedy data set included in download for this book, and then
continue with any other GEDCOM data set, perhaps one of your own family tree.

Since we will have one HTML page for each individual in the file, we have to think
about how to create multiple HTML pages from a single XML input document. There
are at least three ways of doing this:

❑ A bulk publishing process, in which you convert the XML input document
into a set of HTML pages, and then publish these as static pages on the web
server. This has the benefit that you only incur the cost of transformation once.
It minimizes your dependence on the facilities available from your Internet
Service Provider, and it will work with any browser.

❑ Generating HTML pages on demand in the server, using Java servlets or ASP
pages. Again this will work with any browser, but this time you need to find

an Internet Service Provider who allows you to run servlets or ASP pages.

❑ Downloading the entire XML file to the client, and generating the display
there. This has the advantage that the data is only downloaded once, and the
user can then browse it at leisure, with no further interaction with the server.
However, this will only work if the user has an XML-capable browser, which
today means Internet Explorer 5.

The Netscape 6 / Mozilla browser will support XML and CSS but plans for XSLT
support are less clear, though there is a good chance that someone will produce a plug-
in. Watch out for news on http://www.mozilla.org.

Another disadvantage is security: you have no way of filtering the data, for
example to remove details of living persons, and you have no way to stop your
entire XML file being copied by the user (for example, the user can do View
Source, or can poke around in the browser cache).

The only real difference between the three cases, as far as the stylesheet is concerned, is
that the hyperlinks will be generated differently.

There are other differences for the client-side stylesheet, mainly caused by
products that don't yet support all features of the standard – but those are
hopefully temporary.

We'll handle the differences by writing a generic stylesheet module containing all the
common code for the three cases, and then importing this into stylesheets that handle
the variations.

The Stylesheet
We're ready to write a stylesheet that generates an HTML page showing the
information relevant to a particular individual. This stylesheet will need to accept the
ID of the required individual as a global parameter. If no value is supplied, we'll
choose the first <INDI> record in the file. Here's the top-level structure:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0" >

<xsl:param name="id" select="/*/INDI[1]/@ID"/>

<!-- define keys to allow records to be found by their id -->

<xsl:key name="indi" match="INDI" use="@ID"/>

<xsl:key name="fam" match="FAM" use="@ID"/>

<xsl:template match="/">

 <xsl:variable name="person" select="key('indi', $id)"/>

 <xsl:apply-templates select="$person"/>

</xsl:template>

. . .

</xsl:transform>

I've decided to define two keys to give immediate access to <INDI> and <FAM>
elements if their ID attributes are known. I could have relied on the id() function, but
that would only work if the ID attribute is defined in the DTD as being an attribute of
type ID. This makes the stylesheet dependent on having a DTD, so on balance I
decided that using the key() function is safer.

The initial template (the one that matches the root node) then calls <xsl:apply-
templates> to process the <INDI> element representing the selected person.

The template rule for an <INDI> element creates the shell of the HTML page:

<xsl:template match="INDI">

 <html>

 <head>

 <xsl:call-template name="css-style"/>

 <xsl:variable name="name">

 <xsl:apply-templates select="NAME"/>

 </xsl:variable>

 <title><xsl:value-of select="$name"/></title>

 </head>

 <!-- choose background color based on gender -->

 <xsl:variable name="color">

 <xsl:choose>

 <xsl:when test="SEX='M'">cyan</xsl:when>

 <xsl:otherwise>pink</xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <body bgcolor="{$color}">

 <!-- Show name and parentage -->

 <h1><xsl:apply-templates select="NAME"/></h1>

 <xsl:call-template name="show-parents"/>

 <hr/>

 <table>

 <tr>

 <!-- Show events and attributes -->

 <td width="50%" valign="top">

 <xsl:call-template name="show-events"/>

 </td>

 <td width="20%"/>

 <!-- Show partners, marriages, and children -->

 <td width="30%" valign="top">

 <xsl:call-template name="show-partners"/>

 </td>

 </tr>

 </table>

 <hr/>

 <!-- Show notes -->

 <xsl:for-each select="NOTE">

 <p class="text"><xsl:apply-templates/></p>

 <xsl:if test="position()=last()"><hr/></xsl:if>

 </xsl:for-each>

 </body>

 </html>

</xsl:template>

This template rule works through the process of generating the output page. Some
observations:

❑ The title in the HTML header is generated by first creating a variable, and then
copying the value of the variable to the <title> element. This is deliberate: it
takes advantage of the standard template rules for generating a personal name,
but the <xsl:value-of> instruction then removes the tags such as that
appear in the generated name, because these clutter the displayed title in some
browsers.

❑ The background color of the page depends on the value of the person's SEX
attribute. You might consider this to be rather childish, in which case you are
welcome to change it, but I left it in because it illustrates another XSLT
technique.

❑ The main task of generating the content of the page is split up and delegated to
separate named templates, simply for reasons of modularity.

❑ There is no attempt to display all the data that GEDCOM allows to be included
in, or referenced from, an <INDI> record, for example citations of sources,
multimedia objects such as photographs, etc. Any such data will simply be
skipped.

I've chosen to use an internal CSS stylesheet to define font sizes and the like, and the
task of generating this is delegated to the template named css-style. This generates
fixed output, as follows:

<xsl:template name="css-style">

 <style type="text/css">

 H1 {

 font-family: Verdana, Helvetica, sans-serif;

 font-size: 18pt;

 font-weight: bold;

 color: "#FF0080"

 }

 H2 {

 font-family: Verdana, Helvetica, sans-serif;

 font-size: 14pt;

 font-weight: bold;

 color: black;

 }

 H3 {

 font-family: Lucida Sans, Helvetica, sans-serif;

 font-size: 11pt;

 font-weight: bold;

 color: black;

 }

 SPAN.label {

 font-family: Lucida Sans, Helvetica, sans-serif;

 font-size: 10pt;

 font-weight: normal;

 font-style: italic;

 color: black;

 }

 P,LI,TD {

 font-family: Lucida Sans, Helvetica, sans-serif;

 font-size: 10pt;

 font-weight: normal;

 color: black;

 }

 P.text {

 font-family: Comic Sans MS, Helvetica, sans-serif;

 font-size: 10pt;

 font-weight: normal;

 color: black;

 }

 </style>

</xsl:template>

It would have been quite possible, of course, to attach these attributes to the various
HTML elements individually, or to incorporate them using XSLT attribute sets, but

this way seems cleaner, and shows how XSLT and CSS can complement each other. In
fact, it might have been even better to use an external CSS stylesheet, since a user
displaying many of these HTML pages would then get more benefit from caching.

The next template displays the parents of the current individual, as hyperlinks. Here it
is:

<xsl:template name="show-parents">

 <xsl:variable name="parents" select="key('fam', FAMC/@REF)"/>

 <xsl:variable name="father" select="key('indi', $parents/HUSB/@REF)"/>

 <xsl:variable name="mother" select="key('indi', $parents/WIFE/@REF)"/>

 <p>

 <xsl:if test="$father">

 Father:

 <xsl:apply-templates select="$father/NAME" mode="link"/>

 </xsl:if>

 <xsl:if test="$mother">

 Mother:

 <xsl:apply-templates select="$mother/NAME" mode="link"/>

 </xsl:if>

 </p>

</xsl:template>

The template starts by locating the <FAM> record referenced by the <FAMC> field of the
current <INDI> record. It does this using the «fam» key defined earlier. Then it selects
the <INDI> records for the father and mother, these being the records pointed to by the
<HUSB> and <WIFE> fields of the <FAM> record: this time the «indi» key is used.

If the data is not all present, for example if there is no <FAMC> field, or if the <FAM> has
no <HUSB> or <WIFE> (no ancestry goes back to infinity), then the «$father» and or
«$mother» variables will simply identify an empty node-set. The subsequent <xsl:if>
instructions ensure that when this happens, the relevant label is omitted from the
output.

The actual hyperlinks are generated by using <xsl:apply-templates> with
«mode="link"»: this gets reused for all the other links on the page, and we'll see later
how it works. The « » character reference outputs a non-breaking space. It's
actually simpler to do this than to output an ordinary space, which would require an
<xsl:text> element. If you don't like numeric character references you can define an
entity called «nbsp» in the <!DOCTYPE> declaration and then use « » in place of
« ».

The next named template is used to display the list of events for an individual, such as
birth and death. We will also use it later to display all the events for a couple (such as
marriage and divorce).

<xsl:template name="show-events">

 <xsl:for-each select="*">

 <xsl:sort select="substring(DATE, string-length(DATE) - 3)"/>

 <xsl:variable name="event-name">

 <xsl:apply-templates select="." mode="expand"/>

 </xsl:variable>

 <xsl:if test="$event-name">

 <h3><xsl:value-of select="$event-name"/></h3>

 <p>

 <xsl:if test="DATE">

 Date:

 <xsl:value-of select="DATE"/>

 </xsl:if>

 <xsl:if test="PLAC">

 Place:

 <xsl:value-of select="PLAC"/>

 </xsl:if>

 </p>

 <xsl:for-each select="NOTE">

 <p class="text"><xsl:apply-templates/></p>

 </xsl:for-each>

 </xsl:if>

 </xsl:for-each>

</xsl:template>

The events are presented in an attempt at date order. The logic in <xsl:sort> to
extract the last four characters of the <DATE> field is pragmatic, but in the vast majority
of cases it gives the year of the event. Simple dates in GEDCOM are in the format «21
APR 1862». The pragmatic approach works even where the date has a form such as
«BETWEEN 1865 AND 1868». It fails with a date of «55 BC», but fortunately the
Kennedy data doesn't go that far back. A nice enhancement to the stylesheet would be
to take the month and day into account when sorting (it is common for two events to
occur in the same year, for example death and burial). The best way to achieve this
would probably be to use an extension function which converts the GEDCOM date
into an ISO date in the form YYYYMMDD.

It's not immediately obvious which elements in the source data relate to events. The
GEDCOM standard lists dozens of possible events, and we don't really want to use a
union expression of the form select="BIRT | DEAT | BAPM | BURI" that lists them
all. Also, we need some kind of translation from the abbreviated tag name (such as
BURI) to a more meaningful name or description of the event, such as "Burial". We can
kill two birds with one stone by applying another template to the element, in mode
«expand»: where the element is recognized as an event, this will return the meaningful
name of the event, and where it isn't, it will return an empty string. So we only process
those where the returned $event-name is non-empty.

So there should now be a long list of templates to expand the tags of individual event
types. I won't list them all, just those used most commonly:

<xsl:template match="BIRT" mode="expand">Birth</xsl:template>

<xsl:template match="DEAT" mode="expand">Death</xsl:template>

<xsl:template match="BURI" mode="expand">Burial</xsl:template>

<xsl:template match="BAPM" mode="expand">Baptism</xsl:template>

<xsl:template match="MARR" mode="expand">Marriage</xsl:template>

<xsl:template match="EVEN" mode="expand">

 <xsl:value-of select="TYPE"/>

</xsl:template>

<xsl:template match="*" mode="expand"/>

The template rule for <EVEN> catches GEDCOM's all-purpose event, which has a
<TYPE> child element to give a description of the event. This is used for non-standard
events such as "won the jackpot in the National Lottery" that have no explicit tag
allocated in the GEDCOM standard. And the final rule ensures that non-event
elements return an empty string, and are thus recognized as non-events.

The only part of the HTML display that remains is the right hand panel, where we
show information about a person's partner(s) and marriage(s). If multiple partners or
marriages are recorded for an individual, there will be multiple <FAMS> fields within
the <INDI> element. If there are several, we use headings such as "Partner 1", "Partner
2"; if there is only one, we omit the number.

So the first thing we do is to find all the <FAM> records in which the individual is a
spouse: we assign this node-set to the variable $partnerships.

For a woman, to find the name of her partner we need to follow the <HUSB> link, while
for a man we need to follow the <WIFE> link. Since the sex may not be recorded, the
safest strategy is to look at both partners and list whichever is different from the
starting individual. That is also tolerant to situations such as same-sex marriages:
when handling genealogical data it's best to be flexible, not only because such things
may actually happen whether you approve of it or not, but more importantly, because
errors in historical source data are part of life.

The template looks like this:

<xsl:template name="show-partners">

 <xsl:variable name="subject" select="."/>

 <xsl:variable name="partnerships"

 select="key('fam', FAMS/@REF)"/>

 <xsl:for-each select="$partnerships">

 <xsl:sort select="substring(MARR/DATE,

 string-length(MARR/DATE) - 3)"/>

 <xsl:variable name="partner"

 select="key('indi',

 (HUSB/@REF | WIFE/@REF)[.!=$subject/@ID])"/>

 <xsl:variable name="partner-seq">

 <xsl:choose>

 <xsl:when test="count($subject/FAMS)=1"></xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="position()"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:if test="$partner">

 <h2>Partner <xsl:value-of select="$partner-seq"/></h2>

 <p>

 <xsl:apply-templates select="$partner/NAME" mode="link"/>

 </p>

 </xsl:if>

 <xsl:call-template name="show-events"/>

 <xsl:variable name="children" select="key('indi', CHIL/@REF)"/>

 <xsl:if test="$children">

 <p>Children:

 <xsl:for-each select="$children">

 <xsl:sort select="substring(BIRT/DATE,

 string-length(BIRT/DATE) - 3)"/>

 <xsl:value-of select="substring(BIRT/DATE,

 string-length(BIRT/DATE) - 3)"/>

 <xsl:text> </xsl:text>

 <xsl:apply-templates select="NAME" mode="link"/>

 </xsl:for-each>

 </p>

 </xsl:if>

 </xsl:for-each>

</xsl:template>

As before, we try to list the partners in chronological order, based on the year of
marriage: if this isn't known, there's not much we can do about it. For each
partnership, we list the partner's name, as a hyperlink, then the events associated with
the partnership (typically just the marriage), and finally the children's names, again as
hyperlinks. The children are found from the <CHIL> fields of the <FAM> record, and are
listed in order of year of birth where this is known.

The next group of template rules is used to create the HTML hyperlinks:

<xsl:template match="NAME" mode="link">

 <a>

 <xsl:attribute name="href">

 <xsl:call-template name="make-href"/>

 </xsl:attribute>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="S">

 <xsl:text> </xsl:text>

 <u><xsl:apply-templates/></u>

 <xsl:text> </xsl:text>

</xsl:template>

<xsl:template name="make-href">

 <xsl:value-of select="concat(../@ID, '.html')"/>

</xsl:template>

The «make-href» template is the only place where the form of a link is defined: in this
case it consists of a relative URL reference to another HTML file, with a filename based
on the individual's ID attribute, for example I27.html.

The stylesheet ends with a trivial rule for
 elements, which are used to separate
lines of text:

<xsl:template match="BR">
</xsl:template>

</xsl:transform>

Putting it Together
We've now got a stylesheet that can generate an HTML page for a single chosen
individual. We don't yet have a working web site!

As I suggested earlier, there are three ways you can work. You can do a batch
conversion of the entire data file into a collection of linked static HTML pages held on
the web server, you can generate each page on demand from the server, or you can
generate pages dynamically at the client. I'll show how to do all three: but
unfortunately, they all require the use of facilities that go beyond the XSLT standard,
and exploit interfaces provided by specific vendor's products.

Publishing Static HTML
To generate HTML files for all the individuals in the data file, we need some kind of
script that processes each individual in turn and produces a separate output file for
each one. Fortunately many of the XSLT products available include the capability to
produce multiple output files from one input file; but unfortunately each product uses
different syntax.

In this example I'll use the syntax offered by the Saxon product (Saxon was developed
by the author of this book, so it's a natural choice); the equivalent facilities in other
products are described in Chapter 10.

We'll need a new template for processing the root element, and because this must
override the template defined in person.xsl, we'll need to use <xsl:import> to give
the new template higher precedence.

Here is the complete stylesheet, publish.xsl, to do the bulk conversion. As well as
generating an HTML page for each individual, it also creates an index page listing all
the individuals sorted first by surname, then by the rest of the name.

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:saxon="http://icl.com/saxon"

 extension-element-prefixes="saxon"

 version="1.0" >

<xsl:import href="person.xsl"/>

<xsl:param name="dir" select="'.'"/>

<xsl:template match="/">

 <xsl:for-each select="*/INDI">

 <saxon:output file="{$dir}/{@ID}.html">

 <xsl:apply-templates select="."/>

 </saxon:output>

 </xsl:for-each>

 <saxon:output file="{$dir}/index.html">

 <xsl:call-template name="make-index"/>

 </saxon:output>

</xsl:template>

<xsl:template name="make-index">

 <html>

 <head>

 <title>Index of names</title>

 </head>

 <body>

 <h1>Index of names</h1>

 <p>

 <xsl:for-each select="/*/INDI/NAME">

 <xsl:sort select="S"/>

 <xsl:sort select="text()"/>

 <a>

 <xsl:attribute name="href">

 <xsl:call-template name="make-href"/>

 </xsl:attribute>

 <xsl:value-of select="S"/>,

 <xsl:for-each select="text()">

 <xsl:value-of select="concat(' ', ., ' ')"/>

 </xsl:for-each>

 </xsl:for-each>

 </p>

 </body>

 </html>

</xsl:template>

</xsl:transform>

To run this stylesheet, you will first need to install the Saxon product, which can be
found at http://users.iclway.co.uk/mhkay/saxon/. If you are using a Windows platform,

it is simplest to install Instant Saxon, which is at
http://users.iclway.co.uk/mhkay/saxon/instant.html.

You will also need to download the example files from the Wrox website. Create a new
directory, copy the stylesheets and the XML data file into it, make this the current
directory, and then run the command:

saxon kennedy.xml publish.xsl

This assumes that you've added saxon.exe to your PATH; if not, change the command
to (say) c:\saxondir\saxon if you installed the product into c:\saxondir

If you want to generate the HTML files in a different directory, you can specify this on
the command line, for example:

saxon kennedy.xml publish.xsl dir=d:\jfk

The new directory should fill with HTML files: double click on the index.html file,
and you should see an index of names. Click on any of the names to see the screen
shown on page 29, in glorious color. Then browse the data by following the
relationships.

Generating HTML Pages from a Servlet
An alternative to bulk-converting the XML data into static HTML pages is to generate
each HTML page on request. This requires execution of a stylesheet on the server,
which in principle can be controlled using ASP pages, Java servlets, or even raw CGI
programs. However, as many of the available XSLT processors are written in Java, it
turns out to be most convenient to use servlets.

If you aren't familiar with servlet programming, it's probably best to skip this section,
because there isn't space here to start from first principles. If you're keen, check out
Professional Java Server Programming (1-861002-77-7), also published by Wrox Press.

Each XSLT processor currently has a different Java API, so the way you invoke the
processor from a servlet will be different in each case. Many of them have some kind of
packaged servlet interface, though it's often best to customize it to suit the particular
requirements of the application. As there are a lot of variations depending on the
environment you are working in, I won't try to give a complete working solution for
this situation, but will just sketch out the design.

A particular feature of this application is that there are lots of requests to get data from
the same source document, using the same stylesheet, but with different parameters.
So ideally we want to hold both the source document and the stylesheet in memory on
the server: we don't want to incur the overhead of parsing the full XML document to
display each individual.

We would like to accept incoming requests from the browser in the form:

http://www.myserver.com/servlets/GedServlet?tree=kennedy&id=I1

The parameters included in the URL are firstly, the name of the dataset to use (we'd
like the server to be able to handle several concurrently), and secondly, the identifier of
the individual to display.

So the first thing that we need to do is to generate hyperlinks in this format. We can do
this by writing a new stylesheet module that imports person.xsl and overrides the
template that generated the hyperlinks. We'll call this ged-servlet.xsl.

The ged-servlet.xsl stylesheet module looks like this. It has an extra parameter,
which is the name of the tree we are interested in, because the same servlet ought to be
able to handle requests for data from different family trees. And it overrides the
«make-href» template with one that generates hyperlinks in the required format:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0" >

<xsl:import href="person.xsl"/>

<xsl:param name="tree"/>

<xsl:template name="make-href">

 <xsl:value-of select="concat('/servlet/GedServlet?tree=',

 $tree, '&id=', ../@ID)"/>

</xsl:template>

</xsl:transform>

The stylesheet and the servlet interface could also be extended to generate an index of
names, as in the previous example, but as that's a simple task I'll leave you to work
that out for yourself.

More tricky is writing the servlet. The details of this will vary according to which
product you are using, though the general structure is likely to be similar. For Saxon,
the following code (in GedServlet.java) will do the job:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import com.icl.saxon.*;

import com.icl.saxon.output.*;

import com.icl.saxon.expr.*;

import org.xml.sax.*;

public class GedServlet extends HttpServlet {

 /**

 * Respond to an HTTP request

 */

 public void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 ServletOutputStream out = res.getOutputStream();

 try {

 String clear = req.getParameter("clear");

 if (clear!=null && clear.equals("yes")) {

 resetData();

 }

 String tree = req.getParameter("tree");

 String id = req.getParameter("id");

 PreparedStyleSheet style = getStyleSheet();

 DocumentInfo doc = getSourceDocument(tree);

 ParameterSet params = new ParameterSet();

 params.put("id", new StringValue(id));

 params.put("tree", new StringValue(tree));

 StyleSheetInstance transform = style.makeStyleSheetInstance();

 OutputDetails details = new OutputDetails();

 details.setOutputStream (out);

 transform.setOutputDetails(details);

 transform.setParams(params);

 transform.renderDocument(doc, true);

 } catch (SAXException err) {

 out.println("Error applying stylesheet: " + err.getMessage());

 }

 res.setContentType("text/html");

 }

 /**

 * Get the prepared stylesheet from memory; prepare it if necessary

 */

 private synchronized PreparedStyleSheet getStyleSheet()

 throws SAXException {

 if (stylesheet == null) {

 stylesheet = new PreparedStyleSheet();

 File sheet = new File(

 getServletContext().getRealPath("/ged-servlet.xsl"));

 stylesheet.prepare(new ExtendedInputSource(sheet));

 }

 return stylesheet;

 }

 /**

 * Load the source document

 */

 private synchronized DocumentInfo getSourceDocument(String tree)

 throws SAXException {

 DocumentInfo doc = (DocumentInfo)trees.get(tree);

 if (doc==null) {

 File source = new File(

 getServletContext().getRealPath("/" + tree + ".xml"));

 doc = (new Builder()).build(new ExtendedInputSource(source));

 }

 return doc;

 }

 /**

 * Reset data held in memory

 */

 private synchronized void resetData() {

 trees = new Hashtable();

 stylesheet = null;

 }

 private Hashtable trees = new Hashtable();

 private PreparedStyleSheet stylesheet = null;

}

The general logic of this will be similar for other products, although the actual classes
and methods will vary.

The XML file holding the family tree data must be in a file tree.xml where tree
identifies the specific family tree, in our case kennedy.xml. This must be in the home
directory for the web application containing the servlet, as defined by the
configuration parameters for your web server. The two stylesheet modules
person.xsl and ged-servlet.xsl must also be in this directory.

The servlet keeps in memory a copy of the compiled stylesheet: it makes this copy the
first time it is needed. For Saxon this is a PreparedStyleSheet object. It also keeps in
memory a data structure representing each XML source document, that is, each family
tree. For Saxon this data structure is a DocumentInfo object, for other products it may
be a DOM or some other class. The various documents are indexed using a hash table.
Note that all accesses to these variables must be in synchronized methods to avoid
concurrency conflicts, because in a servlet several threads can be running the same
code at once.

The servlet then allocates a new instance or activation of the stylesheet, which is not
shared with any other thread, and which is used only once. In Saxon this class is called
StyleSheetInstance. The servlet passes this object details of the parameters
(extracted from the URL) and the required output destination, before calling on it to

process the source document by calling its renderDocument() method.

Generating HTML in the Browser
The third way to display the family tree is to download the whole XML file to the
browser as a single chunk, and then use client-side scripts to invoke stylesheet
processing whenever the user clicks on a hyperlink. This particular example runs only
in Internet Explorer 5, and only with the March 2000 version of Microsoft's XML parser
installed (hopefully it will also work with later versions). Information about installing
this product is included in Chapter 10, with further details in Appendix B.

I had to make a few changes to the stylesheet to make it run in this environment, partly
because of the current restrictions in Microsoft's XSLT implementation, and partly
because of the different requirements in this environment.

The application runs within an HTML page famtree.html that reads as follows. The
<script> elements contain client-side Javascript code.

<html>

<head>

 <title>Family Tree</title>

 <style type="text/css">

 ... as before ...

 </style>

 <script>

 var source = null;

 var style = null;

 var transformer = null;

 function init() {

 source =

 new ActiveXObject("MSXML2.FreeThreadedDOMDocument");

 source.async = false;

 source.load('kennedy.xml');

 style =

 new ActiveXObject("MSXML2.FreeThreadedDOMDocument");

 style.async = false;

 style.load('ms-person.xsl');

 transformer = new ActiveXObject("MSXML2.XSLTemplate");

 transformer.stylesheet = style.documentElement;

 refresh("I1");

 }

 function refresh(indi) {

 var xslproc = transformer.createProcessor();

 xslproc.input = source;

 xslproc.addParameter("id", indi, "");

 xslproc.transform();

 displayarea.innerHTML = xslproc.output;

 }

 </script>

 <script for="window" event="onload">

 init();

 </script>

</head>

<body>

 <div id="displayarea"></div>

</body>

</html>

The CSS style definitions have moved from the XSLT stylesheet to the HTML page, but
they are otherwise unchanged.

The init() function on this page is called when the page is loaded. It creates two
DOM objects, one for the source XML and one for the stylesheet, and loads these using
the relative URLs kennedy.xml and ms-person.xsl. It then compiles the stylesheet
into an object which is rather confusingly called an XSLTemplate: this corresponds
directly with Saxon's PreparedStyleSheet object. Finally it calls the refresh()
function to display the individual with identifier I1.

I've taken a bit of a short cut here. There's no guarantee that a GEDCOM file
will contain an individual with this identifier. A more carefully constructed
application would display the first individual in the file, or an index of people

The refresh() function creates an executable instance of the stylesheet by calling the
createProcessor() method on the XSLTemplate object. It then sets the value of the
global id parameter in the stylesheet, and applies the stylesheet to the source
document by calling the transform() method. The HTML constructed by processing
the stylesheet is then written to the contents of the <div id="displayarea"> element
in the body of the HTML page.

The stylesheet is written so that a hyperlink to another individual, I2 say, takes the
form:

Jaqueline Lee Bouvier

When the user clicks on this hyperlink, the refresh() function is executed, which
causes a new execution of the compiled stylesheet, against the same source document,
but with a different value for the id parameter. The effect is that the contents of the
page switches to display a different individual.

The content of the ms-person.xsl stylesheet is very similar to the person.xsl
stylesheet presented earlier, so I will not give it in full here. Again, it is available on the
web site. I made the following changes. Some of these were to circumvent restrictions
and bugs that will presumably be fixed in later Microsoft releases: this is after all billed
as a technology preview.

❑ The stylesheet no longer generates the <html> and <body> elements of the
HTML page because these are already present.

❑ The form of the generated hyperlinks is different.

❑ Microsoft's processor does not support <xsl:import> so I copied all the
relevant template rules into a single stylesheet module.

❑ The processor does not support <xsl:key> and the key() function, so
wherever keys were used in the original stylesheet, I substituted a predicate:
for example key('indi', $x) might be replaced by ../INDI[@id=$x]

❑ I removed the test <xsl:if test="position()=last()"> because the
processor rejected it with a spurious error message. (It says that the last()
function must have a node-set to operate on).

❑ I changed the code <xsl:if test="$event-name">, which tests for an empty
string, to <xsl:if test="$event-name!=''">, because it otherwise gave the
wrong answer.

❑ I removed the code to set the background color based on the person's sex:
partly because I suspect the idea is uncool, and partly because the way of
achieving it in this environment would need to be rather different. Similarly
with setting the HTML page title.

Converting GEDCOM Files to XML
At the start of this exercise I explained that the GEDCOM format widely used by
genealogical software packages is not an XML format, but it can easily be translated
into XML. Having got these examples working, you may well want to use them to
display your own family tree. There's a wide range of genealogy packages on the
market, and any respectable one can do GEDCOM export. For a list of packages, go to
http://www.cyndislist.com/software.htm. A good one to start with, which also happens
to be free, is Personal Ancestral File or PAF.

The obvious way to translate GEDCOM to XML is to write a program that takes a
GEDCOM file as input and produces an XML file as output. However, there's a
smarter way: why not write a GEDCOM parser which looks just like a SAX-compliant
XML parser, so that any program that can handle SAX input can read GEDCOM
directly, just by switching parsers? In particular, many XSLT processors can take input
from a SAX-compliant parser, so this enables you to feed GEDCOM straight into a
stylesheet.

Equally, many XSLT processors can send the result tree to a user-specified
DocumentHandler in the form of a stream of SAX events, so if we write a SAX-
compatible DocumentHandler, our XSLT processor can also output GEDCOM files.
This suddenly means we can write stylesheets to transform one GEDCOM file into
another, without the hassle of creating an XML file as an intermediate form. As an
example, I've included on the web site a stylesheet called nonliving.xsl which
removes all living individuals from the data set: a sensible courtesy to your relatives if
you are publishing your data on the web, quite apart from being a legal requirement in
some countries.

A SAX parser for GEDCOM is supplied with the sample files for this chapter on the
Wrox web site; it is named GedcomParser. GEDCOM uses an archaic character set

called ANSEL, so along with GedcomParser is another class,
AnselInputStreamReader to translate the ANSEL characters into Unicode.

Similarly, on the output side, there is a SAX DocumentHandler called
GedcomOutputter, which in turn translates Unicode to ANSEL using an
AnselOutputStreamWriter.

This structure is shown in the diagram below:

Transformation
Process

Result
Tree

Stylesheet
Tree

Style
sheet

XML

GED
COM

Output process
GED
COM

XML

Source
Tree

Parser process

If you do want to see the XML, you can always feed the GEDCOM into a stylesheet
that does an identity transformation, the simplest being:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0" >

<xsl:template match="/">

 <xsl:copy-of select="."/>

</xsl:template>

</xsl:transform>

In fact, to create the kennedy.xml data file which I used as the input to these example
stylesheets, I used a slightly more elaborate stylesheet than this to post-process the
output of the GEDCOM parser. This is called normalize.xsl, and it turns various
structures found in GEDCOM into a more natural XML representation. Specifically:

❑ A name is represented in GEDCOM in the form «Michael /Kay/», but in XML
it is easier to handle it if the surname is tagged as «Michael <S>Kay</S>».

❑ GEDCOM uses the tags CONT and CONC to represent continuation lines: with
CONT the continuation is assumed to represent a new line, with CONC it
represents a concatenation of the previous line. The normalize.xsl stylesheet
removes the CONC tag, and precedes a CONT line with an empty
 tag as in
HTML.

So, for example, if you want to convert your GEDCOM file mytree.ged into XML, you
can do it using Saxon by entering the command

saxon –x GedcomParser mytree.ged normalize.xsl >mytree.xml

Summary

I hope this little excursion into the strange world of genealogical data models has
given you some flavor of the power of XSLT as a manipulation and reporting tool for
complex structured data.

We've covered a lot of ground:

❑ How to navigate your way around complex linked data within an XML
document.

❑ Three different ways of generating an interactive view of a large XML dataset:

❑ Generating lots of static HTML pages in one go at publication time.

❑ Generating HTML pages dynamically using a servlet.

❑ Generating HTML incrementally within the browser.

❑ Using XSLT to transform structured data that wasn't originally in XML format.

The next worked example will venture into even stranger territory, using XSLT to
solve a chess problem.

Knight's Tour Stylesheet
This example stylesheet is rather far-fetched, but it does illustrate some advanced use
of XSLT features, which you are likely to encounter if you want to do any complex
data manipulation.

The purpose of the stylesheet is to produce a knight's tour of the chessboard, in which
each square is visited exactly once, as shown in the illustration below. A knight can
move to any square that is at the opposite corner of a 3×2 rectangle.

Comment: Note to Pr
chance of starting this o

The only input to the stylesheet is an indication of the starting square: in modern chess
notation, the columns are denoted by the letters a–h starting from the left, and the
rows by the numbers 1–8, starting at the bottom. We'll supply the starting square as a
parameter to the stylesheet. The stylesheet doesn't need to get anything from the
source document. To meet the requirements of the language, there must be a source
document present, but there is nothing that says the stylesheet has to read it.

We'll build up the stylesheet piece-by-piece: you can find the complete stylesheet,
tour.xsl, on the Wrox web site.

The inspiration for this stylesheet came from Oren Ben-Kiki, who published a
stylesheet for solving the eight-queens problem. The concept here is very
similar, though the details are quite different.

The Algorithm

The strategy for getting the knight round the board is based on the observation that if a
square hasn't been visited yet, it had better have at least two unvisited squares that are
a knight's move away from it, because there needs to be a way of getting in and
another way of getting out. That means that if we can get to a square that's only got
one exit left, we'd better go there now or we never will.

This suggests an approach where at each move, we look at all the squares we can jump
to next, and choose the one that has fewest possible exits. It turns out that this strategy
works, and always gets the knight round the board. I don't know a way of proving it,
and if any reader does, please let me know: I just know that it seems to work.

The place I usually start design is with the data structures. Here the main data
structure we need is the board itself. We need to know which squares the knight has
visited, and so that we can print out the board at the end, we need to know the
sequence in which they were visited. We don’t have a great deal of choice in XSLT
about how to represent data structures, so the only practical option is a string. We'll
use a string containing 64 values, each representing on square of the board; the value
will be an integer between «01» and «64» if the square has been visited (with the
number indicating when it was visited), and will be set to the value «--» if not. It's
not essential to the logic, but I actually separate the values with a colon so it's easier to
debug. So the string consists of 64 groups of 3 characters.

In a conventional program this data structure would probably be held in a global
variable and updated every time the knight moves. We can't do this in XSLT, because
variables can't be updated. Instead, every time a template is called, it passes the
current state of the board as a parameter, and when the knight moves, a new copy of
the board is created, that differs from the previous one only in the details of one
square.

It doesn't really matter which way the squares are numbered, but for the sake of
convention we'll number them as shown below:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

So if we number the rows 0 – 7, and the columns 0 – 7, the square number is given as
«row * 8 + column».

Having decided on the principal data structure we can decide the broad structure of
the program. There are three stages:

❑ Prepare the initial data structures (the empty board with a knight placed on it,
somewhere).

❑ Calculate the tour.

❑ Display the final state of the board.

Calculating the tour involves 63 steps, each one taking the form:

❑ Find all the unvisited squares that the knight can move to from the current
position.

❑ For each one of these, count the number of exits (that is, the number of
unvisited squares that can be reached from there)

❑ Choose the square with the fewest exits, and move the knight there.

We're ready to start coding. The tricky bit, as you've probably already guessed, is that
all the loops have to be coded using recursion. That takes a bit of getting used to at
first, but it quickly becomes a habit.

The Root Template
Let's start with the framework of top-level elements:

<xsl:transform

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

>

<xsl:param name="start" select="'a1'"/>

<!-- start-column is an integer in the range 0-7 -->

<xsl:variable name="start-column"

 select="number(translate(substring($start, 1, 1),

 'abcdefgh', '01234567'))"/>

<!-- start-row is an integer in the range 0-7, with zero at the top -->

<xsl:variable name="start-row"

 select="8 - number(substring($start, 2, 1))"/>

. . .

</xsl:transform>

All I'm doing here is declaring the global parameter, start, which defines the starting
square, and deriving from it two global variables: a row number and column number.

Some observations:

❑ The parameter start has the default value a1. As this is a string value, it needs
to be in quotes; these quotes are additional to the quotes that surround the
XML attribute. If I had written «select="a1"», the default value would be the
string value of the <a1> element child of the document root.

❑ The simplest way of converting the alphabetic column identifier (a-h) into a
number (0–7) is to use the translate() function.

❑ The row number is subtracted from 8 so that the lowest-numbered row is at
the top, and so that row numbers start from zero. Numbering from zero makes
it easier to convert between row and column numbers and a number for each
square on the board in the range 0–63.

❑ I haven't yet checked that the supplied start square is valid. I'll do that in the
root template.

Now we can move on to the root template. This is invoked when the root node of the
source document is matched, but it doesn't actually do anything with the source
document.

The root template defines the stages of processing, as follows:

❑ Validate the supplied parameter

❑ Set up the empty board and place the knight on it at the specified starting
square

❑ Compute the knight's tour

❑ Print out the tour in HTML format

These tasks are all delegated to other templates, so the root template itself is quite
simple:

<xsl:template match="/">

 <!-- Validate the input parameter -->

 <xsl:if test="not(string-length($start)=2) or

 not(translate(substring($start,1,1), 'abcdefgh', 'aaaaaaaa')='a') or

 not(translate(substring($start,2,1), '12345678', '11111111')='1')">

 <xsl:message terminate="yes"

 >Invalid start parameter: try (say) 'a1' or 'f6'</xsl:message>

 </xsl:if>

 <!-- Set up the empty board -->

 <xsl:variable name="empty-board">

 <xsl:call-template name="make-board"/>

 </xsl:variable>

 <!-- Place the knight on the board at the chosen starting position -->

 <xsl:variable name="initial-board">

 <xsl:call-template name="place-knight">

 <xsl:with-param name="move" select="1"/>

 <xsl:with-param name="board" select="$empty-board"/>

 <xsl:with-param name="square"

 select="$start-row * 8 + $start-column"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- Evaluate the knight's tour -->

 <xsl:variable name="final-board">

 <xsl:call-template name="make-moves">

 <xsl:with-param name="move" select="2"/>

 <xsl:with-param name="board" select="$initial-board"/>

 <xsl:with-param name="square"

 select="$start-row * 8 + $start-column"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- produce the HTML output -->

 <xsl:call-template name="print-board">

 <xsl:with-param name="board" select="$final-board"/>

 </xsl:call-template>

</xsl:template>

Notice how most of the calls to <xsl:call-template> are nested within an
<xsl:variable>. This is the only way of returning a result from a called template. The
<xsl:variable> creates a new tree (technically, a result tree fragment), and any
output produced by the called template is directed to that tree. In practice, none of
these trees contain anything but a single text node, so they are treated exactly like
strings.

The code for validating the start parameter is worth examining. It performs three
tests: that the length of the supplied string is two characters, that the first character is
one of the letters a–h, and that the second is one of the digits 1–8. The simplest way to
perform these checks is to use the translate() function in the way shown. If any of
the tests fail, the stylesheet outputs a message using <xsl:message>, and terminates.

Several of the variables (empty-board, initial-board, and final-board) represent a
chessboard containing all or part of a knight's tour. These variables are trees, but we
will treat them as strings. The board is represented by 64 groups of three characters,
each group representing one square. If the square has been visited, it contains a two-
digit sequence number representing the order of visiting (01 for the start square, 02 for
the next square visited, and so on), followed by a colon. If the square has not been

visited, it contains two hyphens followed by a colon. The colons are not really
necessary or relevant, but they are helpful if you need to print out a chessboard for
debugging purposes.

Squares on the board are represented by an integer in the range 0–63, which is
calculated as $row * 8 + $column.

Setting Up the Board
It's time to look at how the called templates work. I'll start with make-board, whose
task is to initialize an empty board. I could have written this out as a string of 192
characters in the stylesheet, but I was too lazy, so I computed it instead:

<xsl:template name="make-board">

 <xsl:param name="size" select="64"/>

 <xsl:if test="$size!=0">

 <xsl:text>--:</xsl:text>

 <xsl:call-template name="make-board">

 <xsl:with-param name="size" select="$size - 1"/>

 </xsl:call-template>

 </xsl:if>

</xsl:template>

When this template is called from the root template, the parameter $size takes its
default value of 64. The template creates one unvisited square (denoted by «--:») and
then calls itself to create the other 63. After 64 recursive calls are complete, the $size
parameter reaches zero: at this stage 64 unvisited squares will have been written, and
the empty board is complete.

The next step is to place the knight in its initial position using the «place-knight»
template. Here it is:

<xsl:template name="place-knight">

 <xsl:param name="move"/>

 <xsl:param name="board"/>

 <xsl:param name="square"/>

 <xsl:value-of select="substring($board, 1, $square*3)"/>

 <xsl:value-of select="format-number($move, '00:')"/>

 <xsl:value-of select="substring($board, ($square+1)*3 + 1)"/>

</xsl:template>

This template takes three parameters: the number of this move, the current state of the
chessboard, and the square on which the knight is to be placed. When I call it from the
root template, the move number is always one, and the board is always empty, but I
will use the same template again later with different parameters.

What the template does is to copy the whole supplied chessboard before and after the
square where the knight is to be placed. The number of the required square has to be
multiplied by three because my representation of the chessboard uses three characters
for each square. This square itself is replaced by three characters representing the

move number with a following colon. For example, the fifth move is written as «05:».
The move number is converted into this format using the format-number() function
(see page Error! Cannot open file.: the pattern «00:» indicates that the output must be
a two-digit number followed by the colon as a punctuation character.

I can't, of course, modify the supplied chessboard in situ. All variables in XSLT are
immutable. Instead I create a new board as a modified copy of the original. The result
of the template (the value written to its current output destination) is the new state of
the chessboard after placing the knight.

Displaying the Final Board
I'll skip the template that computes the knight's tour for the moment, and describe the
relatively easy task of outputting the final result as HTML. This actually requires three
named templates. The first produces the HTML outline and calls «print-rows» to
print the rows:

<xsl:template name="print-board">

 <xsl:param name="board"/>

 <html>

 <head>

 <title>Knight's tour</title>

 </head>

 <body>

 <div align="center">

 <h1>Knight's tour starting at <xsl:value-of select="$start"/></h1>

 <table border="1" cellpadding="4">

 <xsl:call-template name="print-rows">

 <xsl:with-param name="board" select="$board"/>

 </xsl:call-template>

 </table>

 </div>

 </body>

 </html>

</xsl:template>

The second template prints the rows. Actually it just prints the first row (by calling the
«print-columns» template), and then calls itself recursively to print the remaining
rows, stopping when it has printed all eight:

<xsl:template name="print-rows">

 <xsl:param name="board"/>

 <xsl:param name="row" select="0"/>

 <xsl:if test="$row < 8">

 <tr>

 <xsl:call-template name="print-columns">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="row" select="$row"/>

 </xsl:call-template>

 </tr>

 <xsl:call-template name="print-rows">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="row" select="$row + 1"/>

 </xsl:call-template>

 </xsl:if>

</xsl:template>

The «print-columns» template is very similar. It prints the first column, and calls
itself to print the remaining columns.

<xsl:template name="print-columns">

 <xsl:param name="board"/>

 <xsl:param name="row"/>

 <xsl:param name="column" select="0"/>

 <xsl:if test="$column < 8">

 <xsl:variable name="color">

 <xsl:choose>

 <xsl:when test="($row + $column) mod 2">xffff44</xsl:when>

 <xsl:otherwise>white</xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <td align="center" bgcolor="{$color}">

 <xsl:value-of

 select="substring($board, ($row*8 + $column)*3 + 1, 2)"/>

 </td>

 <xsl:call-template name="print-columns">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="row" select="$row"/>

 <xsl:with-param name="column" select="$column + 1"/>

 </xsl:call-template>

 </xsl:if>

</xsl:template>

The template contains a little bit of logic to achieve the traditional checkerboard
coloring of the squares, using the «mod» operator to test whether the sum of the row
number and the column number is a multiple of 2, and handling the two cases with an
<xsl:choose> instruction.

The actual content of each square is the move number, extracted from the relevant
place in the data structure representing the board. In the data structure representing
the board, there are three characters representing each square, but only the first two
are displayed, because the final colon is just a separator.

Finding the Route
So much for the input and output of the stylesheet, now for the substance: the
algorithm to calculate the knight's tour.

The basic algorithm we use is that at each move, we consider all the squares we could
go to, and choose the one with the fewest exits. For example, if we are on c2 then we

could move to a1, e1, a3, e3, b4, or d4, assuming they are all unvisited. Of these, the
corner square a1 has only one exit, namely b3, and if we don't visit the corner square
now, then we'll never get another chance later. It turns out that this strategy of always
visiting the square with least exits always succeeds in generating a complete knight's
tour though just in case it doesn't, the algorithm is actually resilient enough to
backtrack and try a different route if the first one fails.

The root template makes a call on the template named «make-moves». This template,
starting from any given start position, works out all the moves needed to complete the
knight's tour. Of course, it does this by recursion: but unlike previous templates which
called themselves directly, this one does so indirectly, via another template named
«try-possible-moves».

The first thing the «make-moves» template
does is to call the template «list-possible-
moves» to construct a list of moves that are
legal in the current situation. The result of
this template, a list of moves, uses a very
similar data structure to that of the
chessboard itself. Each move is represented
by an integer (the number of the square to
which the knight travels), and in the list of
moves, a colon follows each integer.

Having established the list of possible moves, the template then calls «try-possible-
moves» to select one of these moves and execute it.

Here is the template. Its parameters are the number of this move (starting at move 2,
because the knight's initial position is numbered 1), the state of the board before this
move, and the number of the square on which the knight is currently sitting.

<xsl:template name="make-moves">

 <xsl:param name="move"/>

 <xsl:param name="board"/>

 <xsl:param name="square"/>

 <!-- determine the possible moves that the knight can make -->

 <xsl:variable name="possible-moves">

 <xsl:call-template name="list-possible-moves">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="square" select="$square"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- try these moves in turn until one is found that works -->

 <xsl:call-template name="try-possible-moves">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="square" select="$square"/>

 <xsl:with-param name="move" select="$move"/>

 <xsl:with-param name="possible-moves" select="$possible-moves"/>

 </xsl:call-template>

</xsl:template>

The next template to examine is «list-possible-moves». This takes as input the
current state of the board and the position of the knight, and it produces a colon-
separated list of squares that the knight can move to. For a knight in the center of the
board there are eight possible squares it can move to, being those squares that are
either two columns and one row, or two rows and one column, removed from the
current row. However, we have to consider the case where some of these squares are
unavailable because they are off the edge of the board, and we also have to eliminate
any squares that have already been visited. The logic I have used is simple, if verbose;
it simply examines each of the eight candidate squares in turn:

<xsl:template name="list-possible-moves">

 <xsl:param name="board"/>

 <xsl:param name="square"/>

 <xsl:variable name="row" select="$square div 8"/>

 <xsl:variable name="column" select="$square mod 8"/>

 <xsl:if test="$row > 1 and $column > 0

 and substring($board, ($square - 17)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square - 17, '00:')"/>

 </xsl:if>

 <xsl:if test="$row > 1 and $column < 7

 and substring($board, ($square - 15)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square - 15, '00:')"/>

 </xsl:if>

 <xsl:if test="$row > 0 and $column > 1

 and substring($board, ($square - 10)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square - 10, '00:')"/>

 </xsl:if>

 <xsl:if test="$row > 0 and $column < 6

 and substring($board, ($square - 6)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square - 6, '00:')"/>

 </xsl:if>

 <xsl:if test="$row < 6 and $column > 0

 and substring($board, ($square + 15)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square + 15, '00:')"/>

 </xsl:if>

 <xsl:if test="$row < 6 and $column < 7

 and substring($board, ($square + 17)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square + 17, '00:')"/>

 </xsl:if>

 <xsl:if test="$row < 7 and $column > 1

 and substring($board, ($square + 6)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square + 6, '00:')"/>

 </xsl:if>

 <xsl:if test="$row < 7 and $column < 6

 and substring($board, ($square + 10)*3 + 1, 2)='--'">

 <xsl:value-of select="format-number($square + 10, '00:')"/>

 </xsl:if>

</xsl:template>

So having found the possible moves we can make, we need to select one of them and
make it. This is the job of the try-possible-moves template.

This template is quite complex. It's worth looking at it carefully.

First, it checks whether the list of possible moves is empty. If it is, it takes the
<xsl:otherwise> route at the end of the template body, which returns the special
value «##» indicating that this attempt to find a route through the chessboard failed.
As I've mentioned, my "least number of exits" algorithm in fact never does fail, but it's
as well to be sure.

In the normal case, there are one or more possible moves, and we call the template
find-best-move to find the best one (that is, the one with fewest exits). Just in case we
need to backtrack, we also form a list of other possible moves, containing all the moves
except the chosen one, so that we can use these later if we need to.

Now we execute the chosen move, which is simply a case of calling the place-knight
template, which I described earlier, to place the knight on the chosen square and
generate a new board.

And now we can repeat the process: except that as usual in XSLT, when we want to
repeat, we recurse. If the board still has unvisited squares (recognized by a value of «-
-»), we call the «make-moves» template, described above, to calculate the rest of the
tour. If not, we output the value of the final board. This output value is passed right
down through all 64 levels of recursion to the «$final-board» variable in the root
template, which is then passed to the «print-board» template to create the final
display.

<xsl:template name="try-possible-moves">

 <xsl:param name="move"/>

 <xsl:param name="board"/>

 <xsl:param name="square"/>

 <xsl:param name="possible-moves"/>

 <xsl:choose>

 <xsl:when test="$possible-moves">

 <!-- if at least one move is possible, find the best one -->

 <xsl:variable name="best-move">

 <xsl:call-template name="find-best-move">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="possible-moves"

 select="$possible-moves"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- find the list of possible moves excluding the best one -->

 <xsl:variable name="other-possible-moves"

 select="concat(

 substring-before($possible-moves, concat($best-move,':')),

 substring-after($possible-moves, concat($best-move,':')))"/>

 <!-- update the board to make the move chosen as the best one -->

 <xsl:variable name="next-board">

 <xsl:call-template name="place-knight">

 <xsl:with-param name="move" select="$move"/>

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="square" select="$best-move"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- now make further moves, until the board is complete -->

 <xsl:variable name="final-board">

 <xsl:choose>

 <xsl:when test="contains($next-board, '--:')">

 <xsl:call-template name="make-moves">

 <xsl:with-param name="move" select="$move + 1"/>

 <xsl:with-param name="board" select="$next-board"/>

 <xsl:with-param name="square" select="$best-move"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$next-board"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <!-- if the final board has the special value '##', we got stuck,

 and have to choose the next best of the possible moves.

 This is done by a recursive call. In practice,

 we never do get stuck, so this path is not taken. -->

 <xsl:choose>

 <xsl:when test="$final-board='##'">

 <xsl:call-template name="try-possible-moves">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="square" select="$square"/>

 <xsl:with-param name="move" select="$move"/>

 <xsl:with-param name="possible-moves"

 select="$other-possible-moves"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$final-board"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <!-- if there is no possible move, we return the special value '##'

 as the final state of the board, to indicate that we got stuck -->

 <xsl:value-of select="'##'"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

The one thing remaining is to look at the template «find-best-move», which from a
set of possible moves chooses the best one, namely the move to the square with fewest
exits.

As always, the logic is recursive. We keep track of the best move so far, and the
number of exits that the best move so far possesses. If the first move in the list (the trial
move) is better than the best move so far, it replace the previous best, and we then call
the template to process the other moves in the list. The final output is the best move
after examining the whole list.

To find the number of exits for a given move, we create a trial board, and make that
move by calling the «place-knight» template described earlier. Using this board, we
then call the «list-possible-moves» template, also described earlier, to see what
moves would be available after the trial move. We aren't interested in the details of
these moves, only in how many there are, which we can find out simply by examining
the length of the list.

We can now calculate two variables: the best move so far, and the least number of
exits, based on whether the trial move is better than the previous best. If the move is
the best one so far, it is output. Finally, the «find-best-move» template calls itself
recursively to process the remaining moves in the list. On completion, the value
returned by the template is the best move, that is, the square to which the knight
should move next.

<xsl:template name="find-best-move">

 <xsl:param name="board"/>

 <xsl:param name="possible-moves"/>

 <xsl:param name="fewest-exits" select="9"/>

 <xsl:param name="best-so-far" select="'XX'"/>

 <xsl:variable name="trial-move"

 select="substring-before($possible-moves, ':')"/>

 <xsl:variable name="other-possible-moves"

 select="substring-after($possible-moves, ':')"/>

 <!-- try making the first move -->

 <xsl:variable name="trial-board">

 <xsl:call-template name="place-knight">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="move" select="99"/>

 <xsl:with-param name="square" select="$trial-move"/>

 </xsl:call-template>

 </xsl:variable>

 <!-- see how many moves would be possible the next time -->

 <xsl:variable name="trial-move-exits">

 <xsl:call-template name="list-possible-moves">

 <xsl:with-param name="board" select="$trial-board"/>

 <xsl:with-param name="square" select="$trial-move"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:variable name="number-of-exits"

 select="string-length($trial-move-exits) div 3"/>

 <!-- determine whether this trial move is the best so far -->

 <xsl:variable name="minimum-exits">

 <xsl:choose>

 <xsl:when test="$number-of-exits < $fewest-exits">

 <xsl:value-of select="$number-of-exits"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$fewest-exits"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <!-- determine the best move (the one with fewest exits) so far -->

 <xsl:variable name="new-best-so-far">

 <xsl:choose>

 <xsl:when test="$number-of-exits < $fewest-exits">

 <xsl:value-of select="$trial-move"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$best-so-far"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <!-- if there are other possible moves, consider them too, using a recursive

 call. Otherwise return the best move found. -->

 <xsl:choose>

 <xsl:when test="$other-possible-moves">

 <xsl:call-template name="find-best-move">

 <xsl:with-param name="board" select="$board"/>

 <xsl:with-param name="possible-moves"

 select="$other-possible-moves"/>

 <xsl:with-param name="fewest-exits" select="$minimum-exits"/>

 <xsl:with-param name="best-so-far" select="$new-best-so-far"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$new-best-so-far"/>

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

And that's it.

Running the Stylesheet
To run the stylesheet, download it from the Wrox web site, and execute it against an
arbitrary source document (for example, against itself). With Saxon, for example, try:

saxon tour.xsl tour.xsl start=b6 >tour.html

and then display tour.html in your browser. The details of how to supply a global
parameter vary for each XSLT implementation: if you don't supply one, the tour will
start at the a1 square.

Because of various restrictions in the Microsoft's March 2000 XSLT Technology
Preview, this stylesheet does not work within the Internet Explorer 5 browser at the
time of writing. Microsoft are committed to implementing the full XSLT standard,
however, so it should work eventually.

Observations
The knight's tour not a very typical stylesheet, but it's one that illustrates the
computational power of the XSLT language, and in particular the essential part that
recursion plays in any stylesheet that needs to do any non-trivial calculation or handle
non-trivial data structures. And although you will never need to use XSLT to solve
chess problems, you may just find yourself doing complex calculations to work out
where best to place a set of images on a page, or how many columns to use to display a
list of telephone numbers, or which of today's news stories should be featured most
prominently given your knowledge of the user's preferences.

So if you're wondering why I selected this example, there are two answers: firstly, I
enjoyed writing it, and secondly, I hope it will have persuaded you that there are no

algorithms too complex to be written in XSLT.

Summary
In this chapter I've presented three complete stylesheets, all similar in complexity to
many of those you will have to write for real applications. I tried to choose three that
were very different in character, reflecting three of the design patterns introduced in
the previous chapter, namely:

❑ a rule-based stylesheet for converting a document containing semantic markup
into HTML. In this stylesheet, most of the logic was concerned with generating
the right HTML display style for each XML element, and with establishing
tables of contents, section numbering, and internal hyperlinks, with some
interesting logic for laying data out in a table.

❑ a navigational stylesheet for presenting selected information from a
hierarchical data structure. This stylesheet was primarily concerned with
following links with the XML data structure, and it was able to use the full
power of XPath expression to achieve this. This stylesheet also gave us the
opportunity to explore some of the systems issues surrounding XSLT: when
and where to do the XML-to-HTML conversion, and how to handle data in
non-XML legacy formats.

❑ a computational stylesheet for calculating the result of a moderately complex
algorithm. This stylesheet demonstrated that even quite complex algorithms
are quite possible to code in XSLT once you have mastered recursion. The only
thing that makes it tricky is the limited range of data types available, but with
a little imagination, there is usually a solution available.

To get the second stylesheet to work, I had to use some non-standard interfaces
provided by the various XSLT implementations. In the final chapter of the book we'll
take a more detailed look at some of the more widely-used XSLT processors available.

10
XSLT Products

A language is not much use unless you can get hold of software that implements it.
Fortunately in the case of XSLT there is a wide range of product implementations
available, with a good level of conformance to the standard, and although there are
differences in the precise licensing conditions, they are all effectively free, at least for
evaluation.

In this section I shall give a quick survey of the most popular XSLT processors. The
purpose is not to give you all the information you need to use these products, but to
give you an idea of what each one does, and to provide pointers to the vendor's own
information.

At the time of writing there are four reasonably complete XSLT processors available
which I'll describe in some detail. I shall treat them in alphabetical order: Oracle XSL,
Saxon, Xalan, and xt. All four were initially released in Java versions, but Oracle and
Xalan now exist also in C++ form.

IBM's LotusXSL product isn't in this list because it is essentially the same thing as
Xalan. IBM handed over the LotusXSL code to the Apache Software Foundation, who
repackaged it under the Xalan name, and IBM now distribute LotusXSL essentially as
a wrapper around Xalan, with some extra APIs and different licensing conditions.

Microsoft's current MSXML3 product isn't yet as complete as these four, but the
company is committed to achieving full conformance; and being Microsoft, their
product will be of considerable importance anyway. So I'll give them a detailed write-
up too. You will find more detailed specifications for this product in Appendix A.

Finally I'll look briefly at some other products which we currently rate only as
promising contenders: specifically iXSLT from Infoteria, 4XSLT from FourThought,
EZ/X from Activated Intelligence, and Stylus from Excelon. By the time you read this
book some of them might have fulfilled their promise and be worthy of a place at the
top table, but I had to draw the line somewhere.

Do be aware that everything in this chapter is likely to become out of date quite

quickly, certainly far more quickly than the rest of the book. For an update on the
current position, there are various useful web sites, for example:

❑ http://www.xmlsoftware.com/xslt/

❑ http://www.xslinfo.com/

❑ http://www.oasis-open.org/cover

If you really want to keep your eye on the ball, subscribe to the XSL mailing list (but be
prepared for heavy traffic):

❑ http://www.mulberrytech.com/xsl/xsl-list

In my description of the products, I shall concentrate on describing the extent to which
they conform to the XSLT and XPath recommendations, the extensibility mechanisms
they offer, and any vendor-supplied extensions. What I won't be doing, in any detail,
is to describe the APIs they offer. For that information, you'll have to go to the
vendor's own documentation.

There's no independent conformance test for XSLT processors yet, so conformance
claims by vendors have to be taken on trust: it all depends on how thoroughly they
have read the spec, how thorough their testing has been, and how honest their
marketing people are. As an implementer myself, I know how easy it is to miss some
of the more subtle requirements in the standard quite unintentionally; and there are a
few obscure places where the requirements can be read in different ways, though you
have to look hard to find them.

However, before I start with the individual products, I want to describe several
features that are similar between several processors, specifically:

❑ the common mechanism that all four Java products have adopted for binding
external Java-written functions.

❑ the extension elements available in Saxon, Xalan, and xt to create multiple
output files.

❑ the node-set() extension function for converting a result tree fragment to a
node-set, which is available in both Saxon and xt, and in modified form in
Microsoft MSXML3.

The Common Java Binding Mechanism
All four Java products (Oracle, Saxon, Xalan, and xt) have adopted very similar
mechanisms for binding to external functions written in Java, so I will describe this in
one place rather than repeat the information for each product. I will call this scheme
the Common Java Binding Mechanism. It is not defined in the XSLT or XPath
specifications, but is simply a good idea that the vendors have copied from each other
in the interests of compatibility. The XSLT recommendation states that a standard
binding to external functions is on the wish list for version 2.0, so it seems quite likely
that a similar mechanism to the one described here will be standardized in the future.

Although the vendors have adopted a common approach, there are still differences of
detail (for example in the namespaces used) which mean that:

❑ it is difficult to implement an extension function that will work with all four
products (in general you will have to write separate glue to do the interfacing
in each case).

❑ it is difficult to write a stylesheet that is portable across products if it uses
extension functions, even where the same extension function is available from
several vendors.

The information here applies to Oracle, Saxon, and xt, and with slight
variations also to Xalan.

A call to an extension function must always use a namespace prefix, for example
ext:function(). The namespace prefix, ext, must be associated with a namespace
URI in the normal way, by a declaration such as xmlns:ext="uri".

The Common Java Binding uses this namespace URI to identify the Java class in which
the function will be found. The namespace URI must take the form URI–stem/class-
name, where URI-stem is a string defined by the product vendor, and class–name is
the fully-qualified name of the Java class; for example java.util.Date or
com.megacorp.xsllib.WonderClass. This class must be on the Java class path so that
the Java Virtual Machine can find it: for details, see the Java documentation for your
particular platform.

The Xalan product differs slightly: here the class name is written as part of the name of
the function being called, not as part of the namespace URI.

In the following table let's assume that you want to invoke methods in the class whose
full name is com.x.Ext. The table shows how to invoke the static method m1() with a
single parameter set to 99, how to construct an instance of the class using the default
constructor, and how to call an instance-level (i.e., non-static) method m2() on that
class instance, again with a single parameter set to 99.

Oracle Namespace declaration:
xmlns:j="http://www.oracle.com/XSL/Transform/java/com.x.Ext"

Static method:
<xsl:variable name="result" select="j:m1(99)"/>

Constructor:
<xsl:variable name="instance" select="j:new()"/>

Instance-level method:
<xsl:variable name="result" select="j:m2($instance, 99)"/>

Saxon Namespace declaration:
xmlns:j="anything/com.x.Ext"

Static method:
<xsl:variable name="result" select="j:m1(99)"/>

Constructor:
<xsl:variable name="instance" select="j:new()"/>

Instance-level method:
<xsl:variable name="result" select="j:m2($instance, 99)"/>

Xalan Namespace declaration:
xmlns:j="http://xml.apache.org/xslt"

Static method:
<xsl:variable name="result" select="j:com.x.Ext.m1(99)"/>

Constructor:
<xsl:variable name="instance" select="j:com.x.Ext.new()"/>

Instance-level method:
<xsl:variable name="result" select="j:m2($instance, 99)"/>

xt Namespace declaration:
xmlns:j="http://www.jclark.com/xt/com.x.Ext"

Static method:
<xsl:variable name="result" select="j:m1(99)"/>

Constructor:
<xsl:variable name="instance" select="j:new()"/>

Instance-level method:
<xsl:variable name="result" select="j:m2($instance, 99)"/>

For this mechanism to work, the XSLT processor has to examine the named class and
look for methods that match the function being called (m1() and m2() in our example):
Java provides a mechanism called introspection to make this possible (as do other
modern object technologies such as COM). Each product applies slightly different
rules to this process, particularly if there are several methods in the class with the
same name but different numbers or types of arguments, or if the XPath function name
uses characters such as hyphens and dots that are not permitted in Java names.

All four products allow a Java method to return an arbitrary object, and allow this
object to be held in an XPath variable so it can be passed to other extension functions.

Where the XPath function call has arguments, these will be passed to the Java method.
This requires a mapping from XPath data types to Java data types. All the products
support the obvious mappings for strings, numbers, and booleans, but for node-sets
and result tree fragments the XPath data types are mapped to Java classes defined by
each vendor, as follows:

Product Java class names

Oracle node-set:
oracle.xml.parser.v2.XMLNodeList

result tree fragment:
oracle.xml.parser.v2.XMLDocumentFragment

Saxon node-set:

com.icl.saxon.expr.NodeSetValue

result tree fragment:
com.icl.saxon.expr.FragmentValue

Xalan node-set:

org.w3c.dom.NodeList

result tree fragment:
org.w3c.dom.DocumentFragment

xt node-set:

com.jclark.xsl.om.NodeIterator

result tree fragment:
com.jclark.xsl.sax.ResultTreeFragment

Even though the mechanisms used by all four products are very similar, it is therefore
not usually possible to write extension functions in a way that is portable. It can be
done in a few cases: for example portability between xt and Saxon is possible for
certain methods provided they only take String, double, or Boolean arguments. In
general, though, different versions of both the Java method, and the calling code, will
be needed for each product.

Example: Using Java Extension Functions

This example shows the use of Java extension functions in Oracle XSL, Saxon,
Xalan, and xt.

Rather than write my own extension function, I'll show how to call a method that
already exists in the standard Java class library. Specifically, I'll use the class
java.util.Date, which performs date and time manipulation. The constructor
Date.new() creates a new Date object and initializes it to the current date and
time; the method toString() creates a printable representation of this date and
time.

Source
Any XML document; there must be a source document, but its contents are not

used. You can use dummy.xml if you like.

Stylesheet
The stylesheet xt-date.xsl, derived from one supplied with the xt product, will
work with both xt and Saxon. Its effect is to output the current date. It works
with both products because the argument data types are simple, and because
Saxon doesn't care what the namespace URI is, so long as it ends with the class
name.

Note the use of xsl:exclude-result-prefixes to prevent the «date»
namespace being included in the result document. This feature isn't implemented
in the current version of xt, which ignores this attribute.

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:date="http://www.jclark.com/xt/java/java.util.Date">

<xsl:template match="/">

 <html xsl:exclude-result-prefixes="date">

 <body>

 <p><xsl:value-of select="date:toString(date:new())"/></p>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

The same example will work with Oracle simply by changing the namespace
declaration as shown below. The result can be found in oracle-date.xsl

xmlns:date="http://www.oracle.com/XSL/Transform/java/java.util.Date"

The equivalent for Xalan is xalan-date.xsl:

<xsl:stylesheet

 version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:date="http://xsl.lotus.com/java">

<xsl:template match="/">

 <html xsl:exclude-result-prefixes="date">

 <body>

 <p><xsl:value-of select="date:toString(date:java.util.Date.new())"/></p>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

Output
The output in each case shows the current date and time, for example:

<html>

 <body>

 <p>Tue Apr 04 22:09:39 GMT 2000</p>

 </body>

</html>

Writing Multiple Output Files
Another feature which is present in several products (specifically Saxon, Xalan, and xt)
is the ability to produce multiple output files. The syntax in each case is slightly
different, but the functionality is almost identical.

This feature is something I pioneered in Saxon and which users have adopted with
enthusiasm. It's listed in the wish list of enhancements at the back of the XSLT 1.0
Recommendation, so it's very likely to find its way into a future version of the
standard. Meanwhile the functionality is there, but not in a portable way.

Generating multiple output files is something I have often found useful when doing
transformations. A typical scenario is that a weighty publication, such as a dictionary,
is managed as a single XML file, which would be far too big to download to a user
who only wants to see a few entries. So the first stage in preparing it for human
consumption is to split it up into bite-sized chunks, perhaps one document per letter of
the alphabet or even one per dictionary headword. You can make these chunks
individual HTML pages, but I usually find it's better to do the transformation in two
stages: first split the big XML document into lots of small XML documents, then
convert each of these into HTML independently.

The usual model is to generate one principal output file and a whole family of
secondary output files. The principal output file can then serve as an index. Often
you'll need to keep links between the files so that you can easily assemble them again
(using the document() function described on page 16 in Chapter 7), or so that you can
generate hyperlinks for the user to follow.

It's best illustrated by an example.

Example: Creating Multiple Output Files

This example takes a poem as input, and outputs each stanza to a separate file. A
more realistic example would be to split a book into its chapters, but I wanted to
keep the files small.

Source
The source file is poem.xml. It starts:

<poem>

<author>Rupert Brooke</author>

<date>1912</date>

<title>Song</title>

<stanza>

<line>And suddenly the wind comes soft,</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

<stanza>

<line>My heart all Winter lay so numb,</line>

<line>The earth so dead and frore,</line>

. . .

Saxon Stylesheet
The stylesheet for use with Saxon is saxon-split.xsl

Note that «saxon» is defined as an extension element prefix, so the
<saxon:output> element is recognised as an instruction. Its effect is to switch all
output produced by its template body to a different output file. In fact, it's very
similar to the effect of an <xsl:variable> element that creates a tree, except that
the tree, instead of becoming a fragment of the principal result tree, is serialized
directly to an output file of its own.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:saxon="http://icl.com/saxon"

 extension-element-prefixes="saxon"

 version="1.0">

<xsl:template match="poem">

 <poem>

 <xsl:copy-of select="title"/>

 <xsl:copy-of select="author"/>

 <xsl:copy-of select="date"/>

 <xsl:apply-templates select="stanza"/>

 </poem>

</xsl:template>

<xsl:template match="stanza">

 <xsl:variable name="file" select="concat('verse', position(), '.xml')"/>

 <verse number="{position()}" href="{$file}"/>

 <saxon:output file="{$file}">

 <xsl:copy-of select="."/>

 </saxon:output>

</xsl:template>

</xsl:stylesheet>

Output
The principal output file contains the skeletal poem below (newlines added for
legibility):

<?xml version="1.0" encoding="utf-8" ?>

<poem>

<title>Song</title>

<author>Rupert Brooke</author>

<date>1912</date>

<verse number="1" href="verse1.xml"/>

<verse number="2" href="verse2.xml"/>

<verse number="3" href="verse3.xml"/>

</poem>

Three further output files verse1.xml, verse2.xml, and verse3.xml are created
in the current directory. Here is verse1.xml:

<?xml version="1.0" encoding="utf-8" ?>

<stanza>

<line>And suddenly the wind comes soft,</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

Xalan Stylesheet
The stylesheet for use with Xalan is xalan-split.xsl. It is very similar. In fact
the only differences are the namespace declaration:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xalan="org.apache.xalan.xslt.extensions.Redirect"

 extension-element-prefixes="xalan" version="1.0">

and the name of the extension element:

 <xalan:write select="$file">

 <xsl:copy-of select="."/>

 </xalan:write>

xt Stylesheet
The stylesheet for use with xt is ch10\xt-split.xsl

Again it is very similar; once again the only differences are the namespace
declaration:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xt="http://www.jclark.com/xt"

 extension-element-prefixes="xt"

 version="1.0">

and the name of the extension element:

 <xt:document href="{$file}">

 <xsl:copy-of select="."/>

 </xt:document>

The output is the same in all three cases.

It would be nice to write a single stylesheet that works with any of the three
processors. Unfortunately, though, xt doesn't yet implement the element-
available() function or the <xsl:fallback> instruction, so this is a bit difficult:
the only way to do it would be to test which processor is in use using the
system-property() function. Another option is to define the common
processing in one stylesheet module, and the processor-specific templates in
another module which imports this one; there would be one version of this for
each processor.

Further details on the exact syntax of the extension elements is provided in the
description of each product later in this chapter.

The node-set() extension function
This extension function is provided by two products, Saxon and xt, but I feel it is
worth a section of its own because it has a significant effect on the power of the XSLT
language. Microsoft's MSXML3 also has a similar capability, though it is provided by
an implicit extension to the semantics of the language rather than an explicit extension
in its own namespace. Since Microsoft's way of doing it is against the conformance
rules of the standard as currently written, they may change it before their final release,
unless they can persuade W3C to adopt the way they've done it.

The node-set() function (xt:node-set() in xt, saxon:node-set() in Saxon) allows
you to convert a tree to a node-set. The resulting node-set always contains a single
node, the root node of the tree, and from this you can navigate to the other nodes
using all the XSLT and XPath facilities that you use with the principal source
document: for example <xsl:for-each>, <xsl:value-of>, <xsl:apply-templates>,
and even the key() function (but only for Saxon – xt and MSXML3 don't yet support
keys).

What this means is that you can process the data in more than one pass. For example,
your first pass can sort the nodes, and the second pass can number them using
<xsl:number>. Without this capability, <xsl:number> is only capable of numbering
nodes based on their position in the original source tree. You can sometimes get round
this restriction by generating sequence numbers using the position() function, but
that gives far less flexibility than <xsl:number>.

I mentioned right back in Chapter 1 (page Error! Bookmark not defined.) that one
thing XSLT had in common with SQL was the property of closure: the output is the
same kind of animal as the input, so you can apply a whole series of transformations

in a kind of pipeline. So complex transformations can be split up into simpler
transformations, each of which does just one thing. This is an immensely powerful
technique, but it only really becomes possible once the node-set() extension is
available, because most of XSLT is designed to process node-sets, and there are no
other functions in the language that create new node-sets.

Example: Numbering After Sorting, Using node-set()

Source
The source file, products.xml, lists sales of various products in each region:

<products>

<product name="strawberry jam">

 <region name="south" sales="20.00"/>

 <region name="north" sales="50.00"/>

</product>

<product name="raspberry jam">

 <region name="south" sales="205.16"/>

 <region name="north" sales="10.50"/>

</product>

<product name="plum jam">

 <region name="east" sales="320.20"/>

 <region name="north" sales="39.50"/>

</product>

</products>

Stylesheet
The stylesheet, nodeset.xsl, first rearranges this into a tree that organizes the
data by product within region, then it uses <xsl:apply-templates> to process
this tree, numbering the nodes as it goes.

As written, it uses Saxon: to run it with xt, simply change the relevant namespace
URI.

The variable $regions is a set of <region> elements with distinct names, formed
by filtering out those <region> elements that have the same name attribute as a
preceding <region>.

The variable $tree is the result tree fragment. The root node of this tree will have
several <region> elements as its children (trees don't have to be well-formed,
only well-balanced), and each <region> element will have several <product>
children.

The template rule for the root element then processes this tree by converting it to
a node-set and using <xsl:apply-templates> to process the children of the root
node. Don't try processing the root node of the tree directly, unless you use a
different mode, because then the template rule for «/» will fire again, giving you
an infinite recursion.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:saxon="http://icl.com/saxon"

 extension-element-prefixes="saxon"

 version="1.0">

<xsl:variable name="regions"

 select="//region[not(@name=preceding::region/@name)]"/>

<xsl:variable name="tree">

 <xsl:for-each select="$regions">

 <xsl:sort select="@name"/>

 <region name="{@name}">

 <xsl:for-each select="//region[@name=current()/@name]">

 <product name="{../@name}" sales="{@sales}"/>

 </xsl:for-each>

 </region>

 </xsl:for-each>

</xsl:variable>

<xsl:template match="/">

<html><body>

 <h1>Sales of Jam by Region</h1>

 <xsl:apply-templates select="saxon:node-set($tree)/region"/>

</body></html>

</xsl:template>

<xsl:template match="region">

 <h1>Region <xsl:number format="A"/>: <xsl:value-of

 select="@name"/></h1>

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="product">

 <h2>Product <xsl:number level="multiple"

 count="product | region" format="A.i"/></h2>

 <p><xsl:value-of select="@name"/></p>

 <p>Total sales: <xsl:value-of

 select="format-number(@sales, '$###0.00')"/></p>

</xsl:template>

</xsl:stylesheet>

Output
I have added extra indentation for readability:

<html>

 <body>

 <h1>Sales of Jam by Region</h1>

 <h1>Region A: east</h1>

 <h2>Product A.i</h2>

 <p>plum jam</p>

 <p>Total sales: $320.20</p>

 <h1>Region B: north</h1>

 <h2>Product B.i</h2>

 <p>strawberry jam</p>

 <p>Total sales: $50.00</p>

 <h2>Product B.ii</h2>

 <p>raspberry jam</p>

 <p>Total sales: $10.50</p>

 <h2>Product B.iii</h2>

 <p>plum jam</p>

 <p>Total sales: $39.50</p>

 <h1>Region C: south</h1>

 <h2>Product C.i</h2>

 <p>strawberry jam</p>

 <p>Total sales: $20.00</p>

 <h2>Product C.ii</h2>

 <p>raspberry jam</p>

 <p>Total sales: $205.16</p>

 </body>

</html>

The Microsoft MSXML3 product appears (though it is not a documented feature) to
allow a result tree fragment to be used in exactly the same way as a node-set: this
offers the same functionality as the node-set() extension function in the Saxon and xt
products, but without the need for an explicit conversion. Although this is a useful
feature, it seems unfortunately to have been provided in a way that conflicts with the
standard. For example, the following test currently outputs «BUG» with MSXML3
whereas according to the standard it should output nothing, because the string-value
of «$tree» is zero-length:

<xsl:variable name="tree"><xsl:text/></xsl:variable>

<xsl:if test="$tree">BUG</xsl:if>

To circumvent this problem, write:

<xsl:if test="string($tree)">

Two questions are often asked about the node-set() function:

❑ Does it violate the "no side-effects" design principle in XSLT?
The answer to this is no: the node-set() function is a pure function, just like
the other conversion functions such as string() and number().

❑ So why wasn't it included in the standard?
I simply don't know. There is certainly no good technical objection to it. If
there were, you can be sure James Clark wouldn't have implemented it in xt.

That ends our survey of extension features common to several products. It's time now
to look at the products individually.

Oracle XSL
Oracle's XSLT processor is bundled with their XML parser software. It is available

from http://technet.oracle.com/tech/xml/. The Java processor is part of the XML: Parser
for Java v2 product. The software is free, though you have to go through a rather
lengthy registration process before you can download it. It is described as an early
adopter software. The free license is for internal data processing operations only but
permits distribution to third parties under specified conditions. Source code is not
provided, and there is no formal support available.

As well as an XSLT processor, Oracle's software includes an XML parser supporting
DOM and SAX interfaces, with support for the XML Namespaces recommendation.
The parser operates in both validating and non-validating modes.

As one might expect, the Oracle XML development kit includes a number of tools
designed to enable XML to be incorporated into a relational database. These tools are
designed to work at any of the levels of Oracle's three-tier architecture: client,
application server, or database server. The toolkit also includes a Java class generator
designed to translate a DTD into a set of Java class definitions reflecting the structure
of the DTD. These tools, however, are outside the scope of this book.

Oracle also advertise versions of their parser for C++ and C, these are available for
Windows, Linux, Solaris, and HP-UX platforms..

Oracle tell me that the current version of their XSLT implementation (2.0.2.7) is fully
conformant with the final (November 1999) XSLT 1.0 and XPath 1.0 recommendations,
though their public claims, suprisingly, are more modest: at the time of writing, their
web site claims conformance only with the August 1999 draft. They don't say very
much about their coverage of features that the standard leaves optional or
implementation-defined, so in these areas you may need to do some trial and error. No
doubt the documentation will improve as the technology reaches product status.

The Oracle XSLT processor may be invoked either as a Java class, or through a simple
command line interface. Once you have installed the Java Virtual Machine and the
Oracle software, and set up the PATH and CLASSPATH environment variables, you can
run the processor from the command line as follows:

java oracle.xml.parser.v2.oraxsl source.xml stylesheet.xsl result.xml

The java command invokes Sun's Java Virtual Machine. If you prefer to use
Microsoft's Java VM (which will already be installed on your machine if you are
running a recent version of Internet Explorer), use the command jview instead.

Stylesheet parameters can be specified using the –p option. I couldn't find any
documentation saying how to use this, but discovered by trial and error that the
following works (for running the knight's tour stylesheet in Chapter 9, with the knight
starting on square d3):

java oracle.xml.parser.v2.oraxsl –p start='d3' dummy.xml tour.xsl out.html

As with the other products, the command-line interface is really only intended as a
development tool. For serious production use, you should write an application that
invokes the Java API directly. The detail of the API is well documented, though it
could do with a general overview, and there are several sample applications to get you

started. The two key classes are XSLStylesheet, which represents a pre-processed (or
compiled) stylesheet which you can use as often as you like, and XSLProcessor, which
you use to apply a stylesheet to a source document.

Extensions
Oracle XSL supports user-defined extension functions using the Common Java
Binding mechanism defined on page 2.

There is no mechanism for creating user-defined extension elements, though they are
apparently thinking about this for a future release – so check the latest information.

There are no vendor-supplied extension functions or extension elements. In particular,
Oracle does not yet have a facility to produce multiple output files. Again, they have
said this is on the agenda for a future release.

Saxon
Saxon is an open source implementation of XSLT produced by the author of this book,
Michael Kay. Although the development was sponsored by ICL, the IT services
company, it is essentially a one-man effort rather than a corporate product.

Saxon is available at http://users.iclway.co.uk/mhkay/saxon/.

The product is available under the Mozilla Public Licence, which essentially allows
you to use it free, for any purpose. The source code is available, and can be modified
and enhanced subject to the terms of the license. There is no formal warranty or
support. The product is written in Java and runs on any Java 1.1 or Java 2 platform.

The current release, version 5.2, is a complete implementation of the final W3C XSLT
1.0 and XPath 1.0 recommendations, including most of the features that are optional or
implementer-defined (the XSLT specification is very open-ended in aspects such as
which character encodings and collating sequences should be supported). The
documentation available with the product is considerably more detailed than that
available for most of the other products described in this chapter.

Invoking the Saxon Processor
Saxon can be invoked as a Java class, or from the command line; there is also a servlet
wrapper allowing a stylesheet to be invoked directly from a URL entered at a browser.

If you just want to run the product on a Windows platform, and don't need access to
API specifications, source code, or sample applications, it is simplest to download
Instant Saxon, which is a packaged version designed to run as an executable under
Microsoft's Java VM. You can then run a stylesheet using the command:

saxon source.xml style.xsl >output.html

If the directory containing the saxon.exe file isn't the current directory, and
isn't on your PATH, then you'll need to use the full name of the file, for

example C:\saxon-dir\saxon.

Other options on the command line allow you to select the stylesheet named in the
<?xml-stylesheet?> processing instruction, to specify URLs rather than filenames,
and to nominate the SAX-compliant XML parser to be used for the source document
and for the stylesheet (they can be different; for example one might be a validating
parser and one non-validating).

You can specify values for global parameters defined in the stylesheet using a
keyword=value notation; for example:

saxon source.xml style.xsl param1=value1 param2=value2

The parameter values are interpreted as strings.

If you download the full Saxon product, you can run it on any platform with a Java
VM, and the equivalent command line is then:

java com.icl.saxon.StyleSheet source.xml style.xsl param1=value1 param2=value2

Saxon can also be invoked from a Java application using a defined API. This allows
you to compile a stylesheet into a PreparedStyleSheet object, which can then be used
repeatedly (in series or in multiple threads) to process different source documents
through the same stylesheet. This can greatly improve throughput on a web server. A
sample application to achieve this, in the form of a Java servlet, is provided with the
product.

Extensibility
Saxon supports a range of extensibility mechanisms, described below.

Writing Extension Functions
Extension functions may be written in Java, using the Common Java Binding described
on page 2.

Saxon allows an external Java method to have an extra first argument of class
com.icl.saxon.Context. This argument, if it is present, is not supplied by the calling
XSL code, but by Saxon itself. The Context object allows the method to access
contextual information such as the current node and current node list; it can also
expand namespace prefixes and even read the values of variables. This allows the
implementation of powerful functions such as the evaluate() function, described on
page 20.

Writing Extension Elements
Saxon implements the XSLT element extensibility feature. This feature allows you to
define your own instruction types for use in the stylesheet.

If a namespace prefix is to be used to denote extension elements, it must be declared in
the extension-element-prefixes attribute on the <xsl:stylesheet> element, or the

xsl:extension-element-prefixes attribute on any enclosing literal result element.

Implementing extension elements is rather more complex than implementing simple
extension functions. You need to be a fairly dedicated systems programmer to attempt
it, especially as the documentation in this area is limited. Saxon supplies a sample set
of extension elements that allow the stylesheet to write data to a relational database,
and recommends that you use these as an example for writing your own extension
elements.

Writing Input Filters
Saxon takes its input as a stream of SAX events. Normally these will come directly
from a SAX-compliant XML Parser. Instead, however, you can generate these events
from an application.

There are two ways you can exploit this capability (which is also present in several
other XSLT processors, though you might have to look carefully to find it):

❑ You can write an application that acts as a filter between the XML parser and
the stylesheet, performing functions such as normalizing data values and
supplying defaulted attributes. It could also split an incoming document into
multiple input documents to be processed separately, reducing the size of the
tree to be held in memory. For information on writing SAX filters, see the
Wrox book Professional XML, ISBN 1-861003-11-0.

❑ Your application could also supply data from a source that is not originally
XML at all: I showed an example of that in Chapter 9, where the Kennedy
family tree came from a non-XML data source in GEDCOM format. The
application could also be fetching the data from a relational database. In effect,
your application is pretending to be an XML parser, so the stylesheet thinks it
is getting input from an XML parser when it is actually coming from
somewhere else.

Writing Output Filters
The output of a Saxon stylesheet can be directed to a user-defined class, instead of
going to an XML or HTML file. This class can be a standard SAX DocumentHandler, or
an implementation of the Saxon class com.icl.saxon.output.Emitter, which is
similar to DocumentHandler but allows more information to be passed across the
interface.

The DocumentHandler or Emitter to be used is named in the method attribute of the
<xsl:output> or <saxon:output> element.

One way of using this is to pass the output of the transformation to the Apache FOP
processor, which is a partial implementation of the XSL Formatting Objects
specification. This only works if the stylesheet generates XML elements and attributes
that conform to this specification.

As an alternative to writing an output filter in Java, Saxon also allows you to process
the output through another XSL stylesheet. To do this, simply name the next stylesheet

in the next-in-chain attribute of <saxon:output>. This can be useful if you want to
do things such as numbering the elements in the result tree: the <xsl:number>
instruction always generates numbers that relate to the position of a node in the source
tree, which is not very useful if your stylesheet is sorting the data. So you can do
sorting with one stylesheet, and then put the data through another stylesheet to add
section numbers and a table of contents.

Implementing Collating and Numbering Sequences
Saxon allows you to implement a collating sequence for use by <xsl:sort>. This is
controlled through the lang attribute of the <xsl:sort> element. The feature is
primarily intended to provide language-dependent collating, but in fact it can be used
to provide arbitrary collating sequences: for example if you want to sort the names of
the months January, February, March, etc, in the conventional sequence you could do
this by writing and providing a collating sequence for language «x-months».

Similarly, you can define a numbering sequence for use by <xsl:number>. For
example, if you have a sequence of items which you want to label as "January",
"February", "March" etc, you could implement a special numbering class, and invoke it
by specifying <xsl:number format="January" lang="x-months"/>.

Built-in Extensions
As well as supporting user-defined extensions through the above extensibility
mechanisms, Saxon also comes with a number of built-in extensions, described in the
following sections.

Extension Functions
There are several extension functions (that is, functions not defined in the XSLT
standard) supplied with Saxon, listed in the table below. These must be used with a
prefix that maps to the namespace URI http://icl.com/saxon

difference
(ns1, ns2) This returns a node-set that is the difference of the two

supplied node-sets; that is, it contains all the nodes that are in
ns1 that are not also in ns2.

distinct(ns1) This returns a node-set containing all the nodes in ns1 that
have distinct string-values. Nodes with duplicate string-
values are discarded. For example:

<xsl:variable name="cities"

select="distinct(//city)"/>

creates a node-set containing one element for each uniquely
named <city> in the source document. If there were several
<city> elements with the same name, you can't be sure
which of them will be retained, but it generally doesn't
matter, because the next step will be to process them all as a
group:

<xsl:for-each select="$cities">

 <h2>City name is: <xsl:value-of select="."/></h2>

 <xsl:for-each select="//city[.=current()]">

 . . .

evaluate
(expression) This function allows an XPath expression to be constructed at

run-time, as a string, and evaluated. This is useful if a query
is not known in advance, but must be constructed based on
information supplied by the user in parameters, or read from
the source document. For example the following code
constructs a node-set consisting of all <book> elements that
satisfy a predicate passed to the stylesheet as a parameter:

<xsl:param name="predicate"/>

<xsl:variable name="selectedBooks" select=

 "saxon:evaluate(concat('//book[', $predicate,

']')"/>

has-same-nodes
(ns1, ns2) This returns a Boolean that is true if and only if ns1 and ns2

contain exactly the same set of nodes. Note this is quite
different from the «=» operator, which tests whether there is
a pair of nodes with the same string-value.

The equivalent test in standard XSLT is:

<xsl:if test="count(ns1)=count(ns2) and count(ns1) =

count(ns1|ns2)">

if(condition,
 v1, v2) The first argument is evaluated as a Boolean; if it is true, the

function returns the value v1, if it is false, it returns v2. The
value may be of any type.

intersection
(ns1,ns2) This returns a node-set that is the intersection of the two

supplied node-sets; that is, it contains all the nodes that are in
both ns1 and ns2.

This function can be useful in conjunction with keys, for
example to list all programmers based in Denver, write:

<xsl:for-each select="saxon:intersection(

 key('job', 'Programmer'), key('location',

'Denver'))">

line-number() This returns the line number of the current node in the source
document within the entity that contains it. There are no
arguments. This is useful for constructing error messages and
for debugging.

node-set (frag) This takes a single argument that is a result tree fragment. Its
function is to convert the result tree fragment to a node-set.
The resulting node-set contains a single node, which is a root
node; below this are the actual nodes added to the result tree
fragment, which may be element nodes, text nodes, or

anything else.

The node-set returned by this function can be processed in
much the same way as a document loaded using the
document() function.

range(n1, n2) This constructs a new node-set whose nodes have numeric
values in the range n1 to n2. It is designed to provide an
equivalent to a conventional for-loop. The following example
will create five table cells containing the numbers 1 to 5:

<xsl:for-each select="saxon:range(1,5)">

 <td><xsl:value-of select="."/></td>

</xsl:for-each>

system-id() This returns the system identifier of the entity containing the
current node in the source document (in other words, its Base
URI). There are no arguments. This is useful for constructing
error messages.

tokenize
(string,
delimiter?)

This function constructs a new node-set whose nodes result
from splitting the supplied string into tokens, separated
either the supplied delimiter, or by whitespace. It is designed
for operations such as replacing newline characters in the
source by
 elements in the output, or searching for a
particular word in the text content of an element.

Extension Elements
SAXON-supplied extension elements are available only if (a) they are used with a
namespace prefix that identifies the namespace http://icl.com/saxon, and (b) a
prefix for that namespace is listed in the extension-element-prefixes attribute of
the enclosing <xsl:stylesheet> element, or in the xsl:extension-element-
prefixes attribute of an enclosing literal result element. The prefix saxon is used here
as a conventional namespace prefix only: as with the xsl prefix, you can use any prefix
you like so long as it maps to the proper namespace URI.

The SAXON extension elements are:

<saxon:assign>

This element is used to change the value of a local or global
variable that has previously been declared using
<xsl:variable> (or <xsl:param>). For example:

<saxon:assign name="n" select="$n+1"/>

Providing an explicit assignment statement like this blows a
gaping hole in the design principle that XSLT is a language
where side effects are not allowed. In Chapter 8, I call this
"cheating". Use it when only all other options have been
exhausted.

<saxon:entity-ref>

This element is useful to generate entities such as « »
in HTML output. For example:

<saxon:entity-ref name="nbsp"/>

You can achieve the same effect within the standard by
writing:

<xsl:text disable-output-

escaping="yes">&nbsp;</xsl:text>

<saxon:group> and
<saxon:item> These elements together provide grouping of items that share

a common value. The <saxon:group> element operates like
<xsl:for-each>, but with an additional attribute group-by
which defines the grouping key.

The <saxon:group> element must contain somewhere within
it an <saxon:item> element. The XSL instructions outside the
<saxon:item> element are executed only once for each group
of consecutive elements with the same value for the grouping
key; the instructions within the <saxon:item> are executed
once for each individual item in the <saxon:group> selection.

For example, to list a collection of books sorted and grouped
by author, write:

<saxon:group select="book" group-by="author">

 <xsl:sort select="author">

 Books by <xsl:value-of select="author"/>:

 <saxon:item>

 <xsl:value-of select="title"/>

 </saxon:item>

</saxon:group>

<saxon:output>

The <saxon:output> instruction is used to define a new
output destination. It takes an attribute file which names
the output file; all content that results from instantiating the
template body of the <saxon:output> element is sent to that
file instead of the parent file.

The effect is that using <saxon:output>, a stylesheet can be
used to split one large input document into many smaller
output documents.

All the attributes available on <xsl:output> to control the
format of the output file are also available on
<saxon:output>.

As an alternative to sending the output to a file, it can also be
directed to be processed by another named stylesheet. This
allows an XML transformation to be set up as a chain of

simpler transformations.

An example stylesheet using <saxon:output> is shown on
page 7.

<saxon:preview> This is an experimental feature for processing very large
input documents. Normally XSLT processing requires that
the entire source document be constructed as a tree in
memory. With very large documents, this may be infeasible.
The <saxon:preview> extension allows an element to be
nominated that acts as a document in its own right; as soon
as such an element has been read, it is processed by the
stylesheet and is then discarded from the tree, together with
all its descendants.

<saxon:
set-attribute> This element allows data values to be written to the source

tree in the course of processing. The following example sets
the width attribute of an element to 100 if it has no width
attribute:

<xsl:if test="not(@width)">

 <saxon:set-attribute name="width" select="100"/>

</xsl:if>

Like <saxon:assign>, this instruction has side effects, so it is
best avoided if you can. Its original purpose was to provide a
way of passing data into Java extension functions.

<saxon:while> This element is used to iterate while some condition is true.
The condition is given as a Boolean expression in the
mandatory test attribute. It is generally used with
<saxon:assign>. For example:

<xsl:variable name="n" select="10"/>

<saxon:while test="$n != 0">

 <xsl:value-of select="$n"/>

 <saxon:assign name="n" select="$n – 1"/>

</saxon:while>

Xalan
The Xalan product is available from http://xml.apache.org/xalan/overview.html.

Most of the technology in Xalan derived from an earlier product called LotusXSL
which was developed by a team under Scott Boag of IBM's Lotus subsidiary before
being handed over to the Apache Software Foundation. LotusXSL as currently
available from the IBM site (http://www.alphaworks.ibm.com/) is merely a wrapper
around the Xalan product.

Xalan is available both in Java and C++ versions. The Java product has received a good
level of exposure, enough to justify the developers giving it a version number of 1.0.0.

The C++ version, by contrast, is currently at its first release and still has some loose
ends to be tidied up, not the least of which is the documentation.

The software is free, and is distributed under the Apache Software License, which
essentially allows any kind of use, redistribution, or modification, but disclaims any
liability. There is no formal warranty or support. Source code is available.

Xalan uses the Apache XML parser, Xerces. It will also work with any other parser that
conforms to the SAX or DOM interfaces, but you have to write the relevant Java glue
code (called a ParserLiaison) yourself. Xalan will output to a SAX DocumentHandler or
to a DOM tree as well as supporting the standard output methods of XML, HTML, and
text.

Xalan claims complete support for mandatory XSLT 1.0 and XPath 1.0 features. There
is no detailed conformance statement, so it is unclear whether all the optional or
implementer-defined features of the standard are provided.

The Xalan processor has introduced a novel way of storing the document internally.
One of the limitations of XSLT is that the whole source document must be held in
memory. The obvious way of implementing a tree structure in Java is to create one
object for each node, containing object references to related nodes such as its parent,
siblings, and children. This is very hungry in the memory it uses, and it also means
that building the tree can account for a significant proportion of the total execution
time. Xalan has opted for a different approach, called the Document Table Model, in
which the tree is represented internally using arrays. This avoids many of the Java
overheads and gives a substantial performance boost, especially for large documents.

Invoking the Xalan Processor
The Xalan XSLT processor may be run from the command line, or by calling its Java
API. There are also wrappers provided to allow it to be run within an applet or within
a servlet.

A typical call from the command line is:

java org.apache.xalan.xslt.Process -in a.xml -xsl b.xsl -out c.html

The java command invokes Sun's Java Virtual Machine. If you prefer to use
Microsoft's Java VM (which will already be on your machine if you are running a
recent version of Internet Explorer), use the command jview instead.

Values of global parameters may be specified on the command line in the form:

-PARAM name expression

The value can be set to any XPath expression, so if it is a string, it needs to be enclosed
in quotes. The expression will be evaluated with the root as the current node.

For example, to run the knight's tour stylesheet described in Chapter 9, the command
would be (all on one line):

java org.apache.xalan.xslt.Process –PARAM start 'e5' -in dummy.xml

 -xsl tour.xsl -out tour.html

This assumes you have changed directory to the directory containing the tour.xsl
stylesheet. This particular stylesheet works with any source document so the only
requirements on dummy.xml are that is exists and is XML.

Additional options on the command line are available to provide control over the
output format (overriding or supplementing the attributes of any <xsl:output>
element in the stylesheet), to control tracing and debugging, and to indicate whether
warnings are required in the event of conflicts between template rules. Xalan also
allows the compiled stylesheet to be saved to disk: but the size is quite large, so by the
time you have read it back from filestore it might have been almost as fast to recompile
the original.

Xalan also has a Java API, allowing it to be invoked from an application, an applet, or
a servlet. The basic classes are:

❑ XSLTProcessor, which allows you to compile a stylesheet

❑ StyleSheetRoot, which represents a compiled stylesheet, and which has a
process() method to run the stylesheet against a particular source document.

Extensibility
Xalan allows you to define both extension functions and extension elements.

In Xalan's extensibility model, a collection of extension elements and functions is
bundled together into a component, and each component is identified by a namespace
URI. The elements and functions available in this component are defined by a
<xalan:component> element at the top level of the stylesheet.

The Common Java Binding, described earlier in this chapter, is provided as a special
variant of this model, in which the <xalan:component> element is implicit. Note,
however, that if you implement an extension function using this simplified model then
testing function-available() will always return false.

Extensions may be implemented in Java or JavaScript, or in other languages supported
by the Bean Scripting Framework, such as Perl and Python.

JavaScript extensions can be embedded directly within the stylesheet itself, in a
<xalan:script> element within the <xalan:component> element. This is illustrated in
the example below.

Example: Using JavaScript Extension Functions with Xalan

Source
This stylesheet can be run with any source document.

Stylesheet
This stylesheet is xalan-script.xsl

The stylesheet creates a Xalan component which is identified by the namespace
URI associated with the prefix «user». This component defines an extension
element <user:trace> and an extension function user:datePlus().

The template rule for the root node shows how this extension element and
extension function can be invoked.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:xalan="http://xml.apache.org/xslt"

 xmlns:user="http://any.user.com/xslt/extension1"

 extension-element-prefixes="user">

<xalan:component prefix="user" elements="trace" functions="datePlus">

 <xalan:script lang="javascript">

 function trace (xslProcessorContext, extensionElement) {

 return "trace called, message=" +

 extensionElement.getAttribute("message");

 }

 function datePlus (days) {

 var d = new Date();

 d.setDate(d.getDate() + parseInt(days));

 return d.toLocaleString();

 }

 </xalan:script>

</xalan:component>

<xsl:template match="/">

 <html><body>

 <p><user:trace message="starting"/></p>

 <p>In 5 days time it will be <xsl:value-of

select="user:datePlus(5)"/></p>

 <p><user:trace message="finished"/></p>

 </body></html>

</xsl:template>

</xsl:stylesheet>

Output
<html>

<body>

<p>trace called, message=starting</p>

<p>In 5 days time it will be 10 April 2000 17:02:26 BST</p>

<p>trace called, message=finished</p>

</body>

</html>

Getting scripted extension functions to work properly requires some careful assembly
of all the right software. There are five software products that need to be correctly
installed and configured to get this example to run:

❑ the Java Virtual Machine

❑ the Xerces XML Parser

❑ the Xalan XSLT Processor

❑ the Bean Scripting Framework

❑ the Rhino JavaScript interpreter

Xerces and Xalan are separate downloads from http://www.apache.org. The Bean
Scripting Framework is bundled with Xalan. Rhino Javascript is a separate download
from http://www.mozilla.org/rhino/. I found that it had to be version 1.4 release 3, as
advised in the Xalan documentation: version 1.5 didn't work. To get all this to run, I
used the command:

java -cp XXX org.apache.xalan.xslt.Process -in dummy.xml -xsl xalan-script.xsl

where XXX is the Java classpath, as follows, all on one line, with no spaces. The actual
filenames will depend, of course, on where you installed the software.

D:\JavaLib\xerces\xerces-1_0_3\xerces.jar;

D:\JavaLib\xalan\xalan_1_0_0\xalan.jar;

D:\JavaLib\rhino\js.jar;

D:\JavaLib\xalan\xalan_1_0_0\bsf.jar;

D:\JavaLib\xalan\xalan_1_0_0\bsfengines.jar

Implementing extension elements more complicated than this trivial example is
trickier than implementing extension functions, and the documentation available is
rather sparse. The xslProcessorContext argument gives full access to the source
document, the stylesheet, the current node and current node list, and other internal
information. The extensionElement argument is the node in the stylesheet tree
corresponding to the extension element. Xalan uses the DOM to represent its trees
internally, so standard DOM interfaces can be used to find related nodes in the tree.
The result of the function, if any, is written to the result tree.

Java extensions are defined by reference to the external Java class, which must be
present on the classpath. A component written in Java might be represented by a
<xalan:script> element as follows:

<xalan:script lang="javaclass" src="com.user.class.Extension1"/>

The fully-qualified Java class name should be preceded by «class:» if all the methods
called are static, that is, if the class does not need to be instantiated. For example:

<xalan:script lang="javaclass" src="class:com.user.class.Extension1"/>

Multiple Output Files
The only extension currently supplied in Xalan is a facility to produce multiple output
files, using an element called <xalan:redirect>. An example of the use of this
extension element was given on page 7.

This extension element allows an XSLT transformation to redirect its output to
multiple output destinations. You must declare a namespace for the extension prefix
(say xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect") and you
must declare the extension namespace as an extension (extension-element-
prefixes="redirect").

You can either just use <redirect:write>, as in my example, in which case the file
will be opened and immediately closed after the write, or you can bracket the write
calls by <redirect:open> and <redirect:close>, in which case the file will be kept
open for multiple writes until the close call is encountered. Calls can be nested. Calls
can take a file attribute and/or a select attribute in order to get the filename. If a
select attribute is encountered, it will evaluate that expression for a string that
indicates the filename. If the string evaluates to empty, it will attempt to use the file
attribute as a default. The element can also have a mkdirs attribute, which, if set to
true, will cause any non-existent directories to be created.

xt
The xt product is an open-source implementation of XSLT produced by the editor of
the specification, James Clark. It was the first implementation available, and is still the
fastest; recently, however, other products have overtaken xt in functionality and have
been catching up in performance. Like Saxon, it is a one-man effort rather than a
corporate product. It is available under a very flexible license that essentially allows
you to do anything you like with the software, but protects the author from any
claims. There is no warranty or support. The product is written in Java., and source
code is provided.

xt is available at http://www.jclark.com/xml/xt.html.

The current version, referenced as version 19991105, is described as a beta release. It
has a few limitations, for example the following features of the XSLT 1.0 and XPath 1.0
Recommendations are not yet implemented:

❑ the element extension mechanism (the extension-element-prefixes and
xsl:extension-element-prefixes attributes, the <xsl:fallback> element,
and the element-available() function)

❑ keys (the <xsl:key> element, and the key() function)

❑ the <xsl:decimal-format> element and the optional third argument on the

Deleted: .

format-number() function, which references an <xsl:decimal-format>
element

❑ the namespace axis

❑ forwards-compatible processing

❑ the xsl:exclude-result-prefixes attribute on literal result elements (the
exclude-result-prefixes attribute on <xsl:stylesheet> is implemented,
however)

Another restriction is that errors are not always reported when they should be, which
means that an incorrect stylesheet may sometimes appear to work on xt when a strictly
conforming XSLT processor would reject it. For example, xt allows a local variable to
be declared when another variable of the same name is in scope.

Invoking the xt Processor
The xt processor may be run from the command line, via a Java API, or as a servlet.

With the full product, the typical command line is

java com.jclark.xsl.sax.Driver source.xml style.xsl out.html

param1=value1...

The product also comes packaged as a Windows executable, in which case you can
type:

xt source.xml style.xsl out.html param1=value1...

If you are running on Windows, this version is simplicity itself to install and get
working.

As the name of the Java class suggests, xt is structured as a SAX filter, taking a stream
of SAX events from the XML parser as input, and delivering the result tree to the final
formatting process as another stream of SAX events.

xt works with any SAX-compliant XML parser, and the selected parser can be specified
by means of a system property. However, the recommended parser is James Clark's
xp, which has a specially-extended SAX interface allowing comments to be passed to
the application.

The param1=value1 parameters supply values for any global parameters in the
stylesheet; the values must be strings.

The xt product also has a Java API, which can be used to run it in a servlet
environment. Unfortunately the speed of James Clark's code is matched only by the
brevity of his documentation, so if you want to use this API, be prepared to explore
the product structure in some depth. There are, however, some example source files
(in xt.jar, which you can open using WinZip or any other ZIP file extractor) showing
how to use the SAX and DOM interfaces provided by xt, and how to run the processor
from a servlet.

Extensibility
The xt product allows user-defined extension functions to be created using the
Common Java Binding described on page 2.

xt does not currently support element extensibility, though it implements a subset of
the syntax for use with its own extension elements, described below.

Extensions
xt supports several extensions, including multiple output documents, non-XML
output, user-defined output handlers, and a number of extension functions. These are
described in the following sections.

Multiple Output Documents
XT supports an extension element <xt:document> that allows the stylesheet to create
multiple output documents. The prefix xt (or whatever other prefix you choose to use)
must be bound to the namespace URI http://www.jclark.com/xt. An example of
this feature was given on page 7.

The <xt:document> element has a required href attribute, which must be a relative
URL. The value of the href attribute is interpreted as an attribute value template. The
content of the <xt:document> element is a template body for the result tree to be
stored in the location specified by the href attribute. The base URL for resolving the
href relative URL is the URL of the parent output document: either the URL of the
main output document or the URL in which the parent <xt:document> element was
stored. Thus, the same relative URL specified by the href attribute can be used in the
parent document to reference the document created by the <xt:document> element.

The <xt:document> element can also have all the same attributes as the <xsl:output>
element. These attributes are merged with attributes specified on top-level
<xsl:output> elements to determine the output method for this document. The
attributes on the <xt:document> element take precedence over the attributes specified
on top-level <xsl:output> elements.

Non-XML output
It is possible to produce text output using <xsl:output method="text">; however
this has limitations, for example it is not possible to output control characters outside
the XML character set.

xt therefore provides an alternative method for text output using an output method of
«xt:nxml» where the prefix xt is bound to the namespace URI
http://www.jclark.com/xt. This produces an XML tree in which certain elements
have special meanings:

❑ The <char> element allows the output of a character that is not allowed by
XML, for example most of the ASCII control characters below #x20.

❑ The <data> element contains data. Within a <data> element special characters
get escaped.

❑ The <escape> element defines a special character and says how it should be
escaped.

❑ The <control> element contains characters to be output directly without
escaping.

Example: Producing Text Output with xt

Source
This stylesheet can be run with any source document.

Stylesheet
This stylesheet is xt-text.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xt:nxml" xmlns:xt="http://www.jclark.com/xt"/>

<xsl:template match="/">

 <nxml>

 <escape char="\">\\</escape>

 <data>&<>\</data>

 <control>&<>\</control>

 </nxml>

</xsl:template>

</xsl:stylesheet>

Output
&<>\\&<>\

User-defined Output Handlers
The method attribute of <xsl:output> or <xt:document> can take the form
«java:package.name.class» where the prefix «java» is bound to the namespace
URI http://www.jclark.com/xt/java and «package.name.class» is the full name
of a Java class that implements the com.jclark.xsl.sax.OutputDocumentHandler
interface (which extends the SAX interface org.xml.sax.DocumentHandler).

This will cause the nodes of the result tree to be streamed to the user-specified
document handler.

Extension Functions
xt provides the following extension functions. The namespace URI for these is
http://www.jclark.com/xt.

xt:node-set (frag)

Converts a result tree fragment to the equivalent node-set.
The argument must be a node-set or a result tree fragment;
the result will be a node-set.

xt:intersection Returns the intersection of two node-sets (the nodes that

(ns1, ns2) are present in both the supplied node-sets)
xt:difference
(ns1, ns2)

Returns the difference of two node-sets (the nodes in the
first node-set that are not in the second node-set).

Microsoft Products
Microsoft were one of the earliest vendors to deliver an implementation of XSL, back
in 1998 when the first XSL proposals were being made to W3C. Their first
implementation was issued as a freestanding component, and this was quickly
followed with a second version that was included in Internet Explorer 5.

Unfortunately the XSLT standard moved on considerably after IE5 was shipped, so in
the end Microsoft's early product implemented a language that bore rather little
resemblance to the one described in this book. This initial 1998 Microsoft XSL release is
described in XML IE5 Programmer's Reference by Alex Homer, Wrox Press, ISBN 1-
861001-57-6.

However, Microsoft endorsed the W3C Recommendation and made it clear they
intended to conform with the final W3C standard when it appeared. And on 26
January 2000, Microsoft shipped a technology preview of version 2 of their XSLT
processor, which moved them a long way towards this goal. This was followed
quickly by version 3 on 15 March 2000, and Microsoft have warned the world to expect
a new version every couple of months until full conformance is achieved. The XSLT
processor comes together with a new version of the MSXML parser, and a set of COM
interfaces allowing it to be invoked programmatically, including from client-side
JScript: the full package is referred to as MSXML3.

The most exciting aspect of Microsoft's technology is that XSLT processing is
integrated into the browser. This gives performance benefits (doing XSLT processing
on the server can impose a heavy load if site traffic is high) and it also allows the
presentation to become much more interactive: for example, it becomes possible to
apply XSLT processing in response to user input, without going back to the server, as
illustrated in the Kennedy family tree example in Chapter 9. Of course the product can
be used on the server as well, always assuming that the server is running under
Windows, but in that space there are currently plenty of other products that
implement the standard much more fully.

The simplest way to use the Microsoft processor is to put an <?xml-stylesheet?>
processing instruction in your source XML document. This should come before the
document element, for example:

<?xml version="1.0" encoding="utf-8" ?>

<?xml-stylesheet type="text/xsl" href="/styles/doc.xsl"?>

<doc>

. . .

</doc>

Note that MSXML3 currently requires the type to be «text/xsl» even though this is
not an officially recognized MIME type.

Once you have installed the processor (instructions are given in Appendix A), all you
need to do is double-click on the XML document, or type its URL into the browser,
and Internet Explorer will display the result of transforming the XML document
through its chosen stylesheet.

If life is more complicated, and you want to use different stylesheets to display the
same document at different times (depending perhaps on user preferences), then you'll
have to do a bit more work and script the stylesheet execution in a web page.
Although the technology has moved on a little, the Wrox book XML IE5 Programmer's
Reference still gives masses of relevant advice on how to do this.

Microsoft's XSLT processor is implemented, as one would expect, in the form of a
COM object. This means it can be invoked from any language with COM support, on
any Windows platform, client-side or server-side. The product allows XSLT stylesheets
to include scripts written in Microsoft scripting languages such as VBScript and
JScript, and as usual these can make calls to COM objects in any language.

The March 2000 version of Microsoft's XSLT processor still has some way to go before
it implements the full W3C Recommendation. Unlike some vendors, however, they
provide fairly detailed information about what's implemented and what isn't (though
I've had to supplement this by some trial-and-error investigation of my own). The
following table summarizes the situation:

Elements fully
implemented

Elements partially
implemented

Elements not
implemented

<xsl:apply-templates>

<xsl:attribute>

<xsl:call-template>

<xsl:choose>

<xsl:comment>

<xsl:copy-of>

<xsl:for-each>

<xsl:if>

<xsl:include>

<xsl:otherwise>

<xsl:output>

<xsl:param>

<xsl:processing-
instruction>

<xsl:copy> omits
use-attribute-sets

<xsl:element> omits
use-attribute-sets

<xsl:output>
implements only the
method,
version,
and encoding
attributes.

<xsl:sort> omits the
lang and case-order
attributes.

<xsl:apply-
imports>

<xsl:attribute-
set>

<xsl:decimal-
format>

<xsl:fallback>

<xsl:import>

<xsl:key>

<xsl:namespace-
alias>

<xsl:number>

<xsl:preserve-
space>

<xsl:strip-space>

<xsl:transform>
(Microsoft say this is
not supported, but I

<xsl:stylesheet>

<xsl:template>

<xsl:text>

<xsl:value-of>

<xsl:variable>

<xsl:when>

<xsl:with-param>

tried it and it seems to
work)

As far as XPath expressions are concerned, Microsoft claims to implement the full
XPath 1.0 specification, with the following exceptions:

❑ Some axes are not implemented: following, preceding, following-sibling,
and preceding-sibling.

❑ Some functions are not implemented: document(), key(), and unparsed-
entity-uri().

❑ In the format pattern supplied as the second argument of the
format-number() function, the only characters that may be used are «.», «,»,
«#», and «0». The third argument, which names a decimal format, cannot be
used because the <xsl:decimal-format> element is not supported.

Microsoft's parser also allows XPath expressions to be used independently of XSLT
stylesheets, as a way of navigating around the DOM.

Extensions
There is no support for extension elements.

Extension functions can be implemented by coding VBScript or JScript modules inside
a top-level <msxsl:script> element.

Here is an example stylesheet that uses such an extension:

Example: Using JScript in an MSXML3 Stylesheet

This example shows a stylesheet that converts dimensions in inches to the
equivalent in millimeters.

Source
The source file is inches.xml. Enter the full filename into the Address field of
IE5 to invoke the stylesheet.

<?xml version="1.0" encoding="iso-8859-1"?>

<?xml-stylesheet type="text/xsl" href="to-mm.xsl"?>

<dimensions>

The size of the picture is <inches>5</inches> by

<inches>12</inches>.

</dimensions>

Stylesheet
The stylesheet is to-mm.xsl

It contains a simple JavaScript function within an <msxsl:script> element, and
invokes this as an extension function from the template rule for the <inches>
element.

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"

 xmlns:ms="urn:anything"

>

<msxsl:script xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 language="VBScript"

 implements-prefix="ms"

>

Function ToMillimetres(inches)

 ToMillimetres = inches * 25.4

End Function

</msxsl:script>

<xsl:output method="html"/>

<xsl:template match="/" >

<html><body><p>

 <xsl:apply-templates/>

</p></body></html>

</xsl:template>

<xsl:template match="inches">

 <xsl:text> </xsl:text>

 <xsl:value-of select="ms:ToMillimetres(number(.))"/>

 <xsl:text>mm </xsl:text>

</xsl:template>

</xsl:stylesheet>

Output
The following text is displayed in the browser:

The size of the picture is 127mm by 304.8mm .

These scripts can call COM objects named in the system registry in the usual way.
However, if the stylesheet is running in the browser, the user's security settings may
prevent your script from instantiating a client-side object.

System Properties
The system-property() function currently returns the following values:

System property name Value
xsl:version 1

xsl:vendor Microsoft

xsl:vendor-url http://www.microsoft.com

msxsl:version 2.6 (but documented as 3.0)

Other Vendors
A number of other vendors have announced XSLT processors, which though I haven't
included them in the "big four" earlier in this chapter, are serious contenders if the
vendors deliver what they have promised.

Some of the products we include in this category are:

iXSLT from Infoteria
The iXSLT product is available from the Japanese company Infoteria
(http://www.infoteria.com).

At the time of writing, this product implemented a rather restricted subset of the XSLT
specification. In the press release accompanying the XSLT announcement on 16
November 1999 the company announced they would have a conformant product with
60 days, but as we go to press it has yet to appear.

4XSLT from FourThought
This is an open source implementation of XSLT written in the Python language. The
vendor is the FourThought company, details on
http://opentechnology.org/4Suite/4XSLT/.

Currently, 4XSLT implements an extensive subset of the XSLT recommendation, with
a few omissions such as <xsl:attribute-set>, <xsl:decimal-format>, and
<xsl:fallback>

EZ/X From Activated Intelligence
This product is available at http://www.activated.com/products/products.html.

The suppliers made some aggressive performance claims when the product was
launched, which were hotly contested by the vendors they made comparisons with,
and the claims no longer appear on the product web site.

There is no detailed statement available of which features are implemented, though
reports from some users suggest the coverage is rather incomplete.

Stylus from Excelon
For details see http://www.excelon.com/.

The main interest in this product is that it is one of the first products that goes beyond
being a simple batch-mode XSLT interpreter to provide something akin to a visual
development environment. The tool divides the screen into three panes, containing the
input, output, and stylesheet documents respectively; for each of the documents a
number of different views are available:

❑ The XML source document can be viewed either as XML or as a tree

❑ HTML output can be viewed either as HTML, or as rendered by Internet
Explorer

❑ The stylesheet display allows browsing through the templates according to
their match patterns.

When a node is selected in the source XML display, the relevant template in the
stylesheet is automatically displayed, or it can be created if there is no matching
template.

At any stage pressing Refresh causes the output document to be regenerated so the
effect of any change to the stylesheet can be seen instantly. When a template in the
stylesheet is selected, the text in the output document produced by that template is
highlighted, making it even easier to see the effects of changes.

Stylus includes an XSLT processor which has recently been re-released at version 2.1.

Early versions caused a certain amount of frustration, because although users liked the
visual interface, the supplier failed to provide any information about the restrictions in
the XSLT facilities available. The latest version corrects this deficiency, and claims to
implement everything except the following:

❑ Namespaces

❑ <xsl:apply-imports>
❑ <xsl:decimal-format>
❑ <xsl:namespace-alias>
❑ <xsl:number> localization features

❑ <xsl:output> attributes except for method and indent. All other attributes are
not supported

❑ <xsl:preserve-space> and <xsl:strip-space>. I quote: Stylus preserves all
white space from the source document. All text nodes that contain only white space are
stripped.

❑ Simplified stylesheet syntax

❑ <xsl:sort> attributes lang and case-order

❑ unparsed-entity-uri() function

❑ Second argument to the document() function

❑ Extension element mechanism

An evaluation copy of the software can be downloaded for free, but the full product
has to be purchased.

Summary
In this chapter I described four products which I consider to be the current leaders in
terms of their coverage of the standard, the quality of the implementation, and market
share, if that term is meaningful in a world where they are all available for free. These
are Oracle's XSL, my own Saxon product, Xalan from Apache, and James Clark's xt. As
it happens, they are all written in Java, though Oracle and Xalan now also have C++
versions available.

Then I described the Microsoft technology. Although this is currently behind the
others in terms of XSLT support, I expect this situation to change quite rapidly, and
Microsoft's unique position in the browser and desktop market means they have the
capability to integrate the technology far more effectively into the rest of the client
environment, so their processor will undoubtedly become a major player in the
market.

Finally, I described some other contenders to keep an eye on. At the beginning of the
chapter I listed some useful web sites where you can track developments.

All these products are very new and there is plenty of time for new players to emerge,
for existing leaders to become displaced, and generally for things to change in the way
it always does on the Web. So treat anything in this chapter as a snapshot of the state
of play in the Spring of 2000: and if you're reading this more than a year after that, it
might be wise to treat it as history.

A
Microsoft MSXML3

This appendix contains information about using Microsoft’s MSXML3 technology,
which implements a subset of the W3C XSLT recommendation.

MSXML3 is the latest version of Microsoft's XML and XSL technology. It contains an
XML parser supporting a DOM interface that is an extended version of the W3C DOM
Recommendation, an XSLT processor which currently implements a subset of the W3C
XSLT 1.0 Recommendation, an XPath processor which can be used either in
conjunction with XSLT stylesheets or directly against the DOM document, and a
schema processor which implements Microsoft's own version of XML schemas (which
is likely to be significantly different from W3C's definition of an XML schema when
that finally appears).

Microsoft produced new technology previews of the MSXML product
in January 2000 and again in March 2000, and they’ve promised a
steady stream of new releases to follow these, so any information here
is a snapshot of the current position: you need to check anything I say
here with the latest Microsoft documentation.

This appendix is not designed to cover the original 1998 versions of MSXML, which
shipped with IE4 and later with IE5. These implemented a version of XSL based on the
draft specifications as they existed at the time, with many Microsoft extensions. This
1998 dialect of XSLT is recognizably similar to XSLT 1.0 as described in this book, but
there are so many differences of detail that it is best regarded as a separate language. I
shall refer to it as IE5 1998 XSL.

A word of warning, though: unless specified otherwise, the documentation on
Microsoft’s web site refers to their released products, not to the XSLT technology
preview. This can be very confusing. For example there are documents on the web site
that refer to the "December working draft of the W3C XSL standard” when they mean
the December 1998 draft, a very early one. Even some of the documentation included
with the technology preview refers to the earlier product rather than the recent ones:
you’re wandering around a building site here, so wear your hard hat. One useful thing
to remember, though, is that when Microsoft refer to "XSL" they usually mean their
own 1998 dialect, and when they refer to "XSLT" they mean the W3C XSLT 1.0
Recommendation.

I described the extent to which the latest version of MSXML conforms to XSLT 1.0 and
XPath 1.0 in Chapter 10. This Appendix concentrates not on the language level, but on
the interfaces for using the MSXML product and integrating it into your applications.
With luck, as Microsoft extend the product to give complete coverage of the XSLT
language standard, they will not need to make too many changes to the APIs
described in this Appendix.

MSXML Versions
At the time of writing, Microsoft has released several versions of the MSXML product.
The original beta version 1.0 was quickly superseded by version 2.0, which is supplied
with the final release of Internet Explorer 5 and Windows 2000. There is also a full
SDK for it, supplied as part of the Internet Explorer and Windows 2000 SDKs. MSXML
as a software package includes both an XML parser and an XSLT processor, and
although our interest in this book is in the XSLT processor, the product is frequently
referred to simply as "the MSXML parser". The version 2.0 product, as we've seen,
implemented something close to the December 1998 XSL working draft from the W3C,
together with some Microsoft extensions designed to simplify common operations and
handle non-W3C-specified activities like loading and saving XML documents.

To confuse the issue, the January 2000 technology preview version of the product –
called MSXML2 – is actually version 2.6. The main feature added in version 3,
MSXML3, released in March 2000, was support for named templates and the
<xsl:call-template> instruction. Bear in mind, however, that both the version 2.6
and version 3 products are only technology previews at the time of writing, and
Microsoft does not recommend their use in production applications. With good
reason: not only are there quite a few bugs around in the code, but the documentation
is still very patchy.

MSXML3 continues to support IE5 1998 XSL syntax as well as XSLT syntax. However,
you must use one or the other, you can't mix them. They are distinguished by the
namespace URI of the <xsl:stylesheet> element:

❑ IE5 1998 XSL stylesheets use the namespace URI http://www.w3.org/TR/WD-
xsl

❑ XSLT stylesheets use the namespace URI
http://www.w3.org/1999/XSL/Transform

Installing the MSXML Product
The current release of the MSXML product is available from the XML download page
at Microsoft's Web site. To download it, go to :

http://msdn.microsoft.com/downloads/webtechnology/xml/msxml.asp.

After the file msxmlwr.exe has been downloaded to your machine, simply double-click
on it to install the software.

You will probably want to install the SDK (software development kit) as well, if only
to get the documentation: this is available from the same web page. It comes in the
form of an executable msxmlsdk.exe, which again you can install simply by
downloading it to your machine and then double-clicking on it. The documentation is
in the form of a compiled Windows Help file xmlsdk.chm which the default
installation places in c:\Program Files\msxml – open it by double-clicking on it in
Explorer.

Also on the web site is a page full of useful information about Microsoft's XML
initiative and strategy at http://msdn.microsoft.com/xml/default.asp. This includes
samples, demos, and articles about XML and related technologies.

The download page also provides links to several tools that you may find useful:

❑ Tools for Validating XML and Viewing XSLT Output. These provide a 'shell'
where you can view XML files and see the processed XSL output. The shell
also validates XML against any embedded schema.

❑ Microsoft XSL ISAPI Extension. This Web server-based extension makes it
easier to perform server-side XML/XSL transformations. It can automatically
execute an XSL style sheet on the server, allowing you to choose alternate style
sheets based on browser type. It manages style-sheet caching for improved
server performance, has the capability to specify the output encoding, and
provides customizable error messages.

❑ XSL Stylesheet for XML Schemas. This stylesheet (which uses IE5 1998 XSL)
can be used to generate documentation for XML schemas based on the syntax.
I haven't discussed XML schemas much in this book. The XSLT specification
doesn't use them yet, because the standard isn't finished. But Microsoft
implemented their own version of XML schemas, and MSXML takes
advantage of these as an alternative to using DTDs.

❑ XSL to XSLT Converter. This stylesheet updates IE5 1998 XSL stylesheets to
the XSLT-compliant syntax, making them suitable for use with the MSXML2
and MSXML3 products and others. It doesn't do a 100% job of the conversion,
but it looks after all of the most common differences.

Note that you must install Internet Explorer (version 4.01 with service
pack 1, or IE5) in order for MSXML to be fully functional. This is true
even if you only want to use MSXML on a server.

MSXML ProgID and ClassID Information
Rather than use the same file name, ProgID and ClassID for the three versions,
Microsoft has given each one different values so that they can be installed and run in
parallel:

Parser Version DLL Name ProgID and ClassID

MSXML 2.0 msxml.dll ProgID:
Microsoft.XMLDOM or

MSXML.DOMDocument

ClassID:

{2933bf90-7b36-11d2-b20e-
00c04f983e60}

MSXML 2.6 msxml2.dll ProgID:
MSXML2.DOMDocument

ClassID:

{f6d90f11-9c73-11d3-b32e-
00c04f990bb4}

MSXML 3.0 msxml3.dll ProgID:
MSXML2.DOMDocument.3.0

ClassID:

{f5078f32-c551-11d3-89b9-
0000f81fe221}

The terminology here may be confusing. These objects use the name "DOMDocument"
because when you create an instance, it will hold an in-memory representation of an
XML document, conforming to Microsoft's version of the W3C Document Object
Model (DOM). The Document object has a method load which allows this in-memory
document to be built from a source XML file. To do this, of course, the XML has to be
parsed. There is no separate Parser object, rather the XML parser is part of the
functionality of the Document object. Microsoft has followed the policy of naming
objects according to what they are (nouns), not according to what they do (verbs).

The above table shows the ProgID and ClassID for running the parser in normal
apartment-threaded mode. You can also run the parser in free-threaded mode by using
an alternative ProgID or ClassID when you instantiate the component (note that the
ClassIDs vary only on the eighth character):

Parser Version Free-threaded ProgID and ClassID

MSXML 2.0 ProgID:
Microsoft.FreeThreadedXMLDOM or
MSXML.FreeThreadedDOMDocument

ClassID:

{2933bf91-7b36-11d2-b20e-00c04f983e60}
MSXML 2.6 ProgID:

MSXML2.FreeThreadedDOMDocument

ClassID:

{f6d90f12-9c73-11d3-b32e-00c04f990bb4}
MSXML 3.0 ProgID:

MSXML2.FreeThreadedDOMDocument.3.0

ClassID:
{f5078f33-c551-11d3-89b9-0000f81fe221}

See the topic "GUID and ProgID Information" in the MSXML3 SDK help file (you can
reach it via XML Developer's Guide, then XML DOM User Guide) for a full list of the
ProgIDs and ClassIDs for the other objects that are implemented by the product –
such as the XMLHTTP object, the XSLTemplate object, and the XMLDSO data-binding
control.

Running MSXML in Replace Mode
When the version 3 MSXML parser in installed, it also installs a program named
xmlinst.exe in your Windows\System or Winnt\System32 folder. This program can be
used to change the settings in the system registry to specify how the parser versions
are used. Running this program with no parameters (just double-click on it) changes
the Registry entries on that machine so that the default ProgID «MSXML.DOMDocument»
will actually instantiate the latest version of the parser, rather than the version 2.0
parser. This can be useful if your applications have this original ProgID string hard-
coded in. See the topic Running MSXML3 in Replace Mode in the help file (you can
reach it via XML Developer's Guide, then XML DOM User Guide) for a list of the
command-line arguments that can be used with xmlinst.exe to make other changes
to the Registry settings.

Viewing XML Documents in IE5 with the
Default Stylesheet

Internet Explorer 5 can display an XML document directly, as a collapsible tree
structure. This makes it easy to examine the document and see the element structure:

It does this by applying a default stylesheet to the document when it is loaded, and
what you see is the result of the transformation specified by this stylesheet. This
stylesheet is only used if you don't specify any other. In the next section, I'll show how
to specify your own XSLT stylesheet to be used for the transformation.

If you load a document that is not well-formed, or which is invalid against a specified
DTD or Schema, an error message is displayed instead:

If you want to see the contents of the default stylesheet, type the URL
res://msxml.dll/DEFAULTSS.XSL into your browser's address bar (the same
stylesheet is produced by the URL res://msxml3.dll/DEFAULTSS.XSL from the

MSXML3 parser).

This default stylesheet is currently written in the IE5 1998 XSL dialect: you can spot
this because it uses the old namespace URI «http://www.w3.org/TR/WD-xsl», and
because it uses obsolete XSL elements such as <xsl:entity-ref> and <xsl:node-
name>.

Viewing XML Documents in IE5 with an
XSLT Stylesheet

The easiest way to display the result of an XSL transformation is to attach the specific
stylesheet to the XML document using an XML processing instruction. The simplest
syntax is:

<?xml-stylesheet type="text/xsl" href="url_of_stylesheet"?>

For example, if you have a suitable stylesheet named tablecatalog.xsl in the same
folder as the XML document, you can write:

<?xml-stylesheet type="text/xsl" href="tablecatalog.xsl"?>

This should be written after the <?xml version="1.0"?> XML declaration and any
<!DOCTYPE> declaration, but before the start tag of the document element. For
example:

<?xml version="1.0" ?>

<!DOCTYPE tables SYSTEM "tables.dtd">

<?xml-stylesheet type="text/xsl" href="tablecatalog.xsl"?>

<tables>

. . .

</tables>

The result could look like this:

MSXML allows only one <?xml-stylesheet?> processing instruction in an XML
document that specifies an XSL stylesheet (i.e. has «type="text/xsl"»). However, it is
possible to display XML documents using Cascading Stylesheets (CSS), and there can
be any number of <?xml-stylesheet?> processing instructions in an XML document
that specify CSS stylesheets (i.e. have «type="text/css"»). Internet Explorer will
choose the XSL stylesheet if it is present, otherwise it will will merge the CSS
stylesheets together in the same way as it would with multiple HTML <LINK>
elements that specify CSS stylesheets.

The full list of attributes that can be used in the <?xml-stylesheet?> processing
instruction is as follows (technically these are pseudo-attributes since XML processing
instructions contain unstructured text):

Attribut
e name

Description

alternate Optional. Values «yes» or «no» (default is «no»). Indicates
whether this stylesheet is designed to provide an alternative
appearance for the page.

charset Optional. Specifies the character set or character encoding used
in the stylesheet. Examples are «Latin-1» (the same as «ISO-

8859-1» and the default if omitted), «ISO-8859-5» (Cyrillic),
«EUC-JP» (Japanese) and «UTF-8» (Unicode encoded using a
variable number of bytes per character). A full list of the
character encodings can be obtained from
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

href Required. The URL or relative path to the stylesheet.
media Optional. Specifies the intended destination medium for the

style information, and may be a single media descriptor or a
comma-separated list. The default value is «screen».

title Optional. Can be used by the application as a name for the
stylesheet, or to tell users about the nature of the stylesheet.

type Required. Specifies the type of the stylesheet, either
«text/xsl» (XSL) or «text/css» (CSS). (Technically the value
«text/xsl» is not a valid MIME type, but that's what
Microsoft decided to use.)

Further information about the <?xsl-stylesheet?> processing instruction is in
Chapter 3.

Controlling XSLT Processing with Client-
side Script

Using the <?xml-stylesheet?> processing instruction is just one of the ways that an
XSL stylesheet can be applied to an XML document. An alternative approach is to
write script code in an HTML page which explicitly loads the XML document and the
stylesheets, and invokes the transformation. This is where the ProgID and ClassID
strings for the objects that I showed earlier come into play.

Creating an Instance of an MSXML Document
To create an instance of a DOM Document that will use the version 3.0 MSXML parser,
you can use several approaches.

In VBScript:

Dim doc

Set doc = CreateObject("MSXML2.DOMDocument.3.0")

In JScript:

var doc = new ActiveXObject('MSXML2.DOMDocument.3.0');

In Visual Basic, you will first need to add a reference to the component DLL using the
Project | References dialog. You can see the three versions of the parser listed in the
screenshot here:

Then you can use the CreateObject method:

Dim doc

Set doc = CreateObject("MSXML2.DOMDocument.3.0")

However, the more usual technique is to use the New keyword, which then allows the
development environment to display pop-up syntax help and member-lists:

Dim doc As New DOMDocument30

Loading XML and XSL Documents
Once you've created an instance of a Document object, you can use the Microsoft-
specific methods to load the content. To load an XML file, use the load method:

'in VBScript or Visual Basic

doc.Load "c:\temp\myfile.xml"

//in JScript

doc.load('c:\temp\myfile.xml');

If the XML is held in a string rather than in a file (which can arise, for example,
because you have read the XML out of a relational database using SQL or ADO) you
can use the loadXML method:

'in VBScript or Visual Basic:

Dim strXML

strXML = "<?xml version='1.0'?><test><testitem/></test>"

doc.LoadXML strXML

//in JScript

var strXML = '<?xml version="1.0"?><test><testitem/></test>';

doc.loadXML(strXML);

You can then set any other properties you need for the MSXML parser, for example
you can set the async property to True so that parsing of the document is done in the
background while processing continues. However, when working with script code
that manipulates the documents, it's usually best to leave this at the default value of
False.

You can also turn on validation in the parser. By default, the parser only checks that
the XML is well-formed as it loads and parses documents. By setting the
validateOnParse property to True, you can force the parser to validate the structure
of the document against any DTD or Schema that it specifies:

'in VBScript or Visual Basic

doc.ValidateOnParse = True

//in JScript

doc.validateOnParse = true;

Checking for Load Errors, Well-Formedness and
Validity

After the parser has attempted to load a document, you can check if there was an error
by examining the properties of the parseError object that the Document object
exposes. The parseError object provides seven properties that reflect the most recent
load error:

Property Description

errorCode The standard error number of the error that
occurred.

filepos The character position within the entire file where
the error was discovered.

line The number of the line where the error was
discovered.

linepos The character position within this line where the
error was discovered.

reason A text description of the error.
srcText The source code (text) of the line where the error

was discovered.
url The URL or path of the file that was loaded.

By checking the errorCode property, you can tell if an error occurred. The value will
be non-zero if the parser has detected an error. The following code samples show how
the error details can be retrieved and displayed:

In VBScript or Visual Basic:

...

'check if there was an error while loading

If doc.parseError.errorCode <> 0 Then

 'create the error message

 Dim strError

 strError = "Invalid XML file !" & vbCrlf _

 & "File URL: " & doc.parseError.url & vbCrlf _

 & "Line No.: " & doc.parseError.line & vbCrlf _

 & "Character: " & doc.parseError.linepos & vbCrlf _

 & "File Position: " & doc.parseError.filepos & vbCrlf _

 & "Source Text: " & doc.parseError.srcText & vbCrlf _

 & "Error Code: " & doc.parseError.errorCode & vbCrlf _

 & "Description: " & doc.parseError.reason

 MsgBox strError 'display error message

Else

 'loaded OK so continue processing

 ...

End If

In JScript:

...

// check if there was an error while loading

if (doc.parseError.errorCode != 0) {

 // create the error message

 var strError = new String;

 strError = 'Invalid XML file !\n'

 + 'File URL: ' + doc.parseError.url + '\n '

 + 'Line No.: ' + doc.parseError.line + '\n '

 + 'Character: ' + doc.parseError.linepos + '\n '

 + 'File Position: ' + doc.parseError.filepos + '\n '

 + 'Source Text: ' + doc.parseError.srcText + '\n '

 + 'Error Code: ' + doc.parseError.errorCode + '\n '

 + 'Description: ' + doc.parseError.reason;

 alert(strError); // display error message

 }

else {

 // loaded OK so continue processing

 ...

}

Both produce a similar result, here showing the effect when a document that is not
well-formed is loaded:

If you have set the validateOnParse property to True, and load an XML document
that is invalid against its DTD or Schema, the error message shows the details of where
the file is invalid. This screenshot shows the VBScript MsgBox dialog version:

However, not all the properties will always have a value. For example, if you attempt
to load an XML document that doesn’t exist, you can't expect to get values for the error
position or the source text:

Transforming XML Documents with XSL Using Script
You can load any well-formed XML document using the MSXML parser. This includes

XSLT stylesheets and XML schemas, both of which are documents in XML format. If
you create two instances of the Document object, and load an XML source document
into one and an XSL stylesheet into the other, you can then perform a transformation
by calling either of the methods transformNode() or transformNodeToObject(),
described below.

This provides an alternative technique to specifying the stylesheet for an XML
document by using the <?xml-stylesheet?> processing instruction, and has the
advantage that different stylesheets can be used to process the same source document
at different times.

The MSXML parser provides two methods that can be used to apply a transformation
to an XML document:

The transformNode Method
This method is probably the most useful, as it returns a String value containing the
result of the transformation.

strResult = objXMLNode.transformNode(objStylesheet)

The objXMLNode parameter will usually be a DOM Document object, but it can be a
Node within a DOM Document, in which case this node and its descendants are
treated as a single standalone XML document.

The objStylesheet parameter must also be a DOM object, either a Document instance
containing a valid XSL stylesheet or a Node within a document that represents an
embedded XSL stylesheet (embedded stylesheets were described in Chapter 3).

The return value is a string that represents the result of the transformation. Usually it
will contain a chunk of HTML which you can then insert into the HTML page to
display it. Typically your HTML page will contain a body like this:

<body>

<div id="divResults"></div>

</body>

and your script will place the transformation results in this place:

var objResults = document.all['divResults'];

objResults.innerHTML = objXML.transformNode(objXSL);

An example that does this is shown with the Kennedy family tree stylesheet in
Chapter 9; another example can be found on the web site for this book in the file
appA\msxml_transform\default.htm.

The transformNodeToObject Method
This method is useful when you want to send the result to another object, such as
another DOM Document or a Stream object:

objXMLNode.transformNodeToObject(objStylesheet, objOutput)

The objXMLNode parameter must be a DOM object, either a Document object itself or a
node within an XML document (in which case this node and its descendants are
treated as a single standalone XML document).

The objStylesheet parameter must also be a DOM object, either a Document object
containing a valid XSL stylesheet or a Node within a Document representing an
embedded XSL stylesheet.

The objOutput object will usually be another DOM Document, which will then hold
the result of the transformation. For this to work, the transformation must produce a
well-formed XML-format document. You can of course use this Document as the input
to another transformation.

Example: Using Client-side JScript to Transform a Document
This example demonstrates the way that you can load, parse and transform an
XML document using client-side JScript in Internet Explorer 5 or higher. The files
are in a folder named appA\msxml_transform with the other samples for this
book.

The example shows an HTML page with two buttons on it. The user can click on
either of the buttons to select how the data should be displayed. The effect of
clicking either button is to apply the corresponding stylesheet to the source XML
document.

XML Source
The XML source file for this example is tables_data.xml. It defines several
tables (real tables, the kind you sit at to eat your dinner), each looking like this:

<tables>

<table>

 <table-name>Conference</table-name>

 <number-of-legs>4</number-of-legs>

 <table-top-material type="laminate">Ash</table-top-material>

 <table-shape>Oblong</table-shape>

 <retail-price currency="USD">1485</retail-price>

</table>

...

</tables>

Stylesheet
There are two stylesheets, tables_list.xsl and tables_catalog.xsl. You can
find these with the other files for this chapter; since this example is designed to
show the JScript used to control the transformation rather than the XSLT
transformation code itself, I won't list them here.

HTML page
The page default.htm contains some simple styling information for the HTML

page, then the JScript code that loads the XML and XSL documents, checks for
errors, and performs the transformation. Notice that the transformFiles
function takes the name of a stylesheet as a parameter, which allows you to
specify the stylesheet you want to use at runtime:

<html>

<head>

<style type="text/css">

 body {font-family:Tahoma,Verdana,Arial,sans-serif; font-size:14px}

 .head {font-family:Tahoma,Verdana,Arial,sans-serif;

 font-size:18px; font-weight:bold}

</style>

<script language="JScript">

<!--

function transformFiles(strStylesheetName) {

 // get a reference to the results DIV element

 var objResults = document.all['divResults'];

 // create two new document instances

 var objXML = new ActiveXObject('MSXML2.DOMDocument.3.0');

 var objXSL = new ActiveXObject('MSXML2.DOMDocument.3.0');

 // set the parser properties

 objXML.validateOnParse = true;

 objXSL.validateOnParse = true;

 // load the XML document and check for errors

 objXML.load('tables_data.xml');

 if (objXML.parseError.errorCode != 0) {

 // error found so show error message and stop

 objResults.innerHTML = showError(objXML)

 return false;

 }

 // load the XSL stylesheet and check for errors

 objXSL.load(strStylesheetName);

 if (objXSL.parseError.errorCode != 0) {

 // error found so show error message and stop

 objResults.innerHTML = showError(objXSL)

 return false;

 }

 // all must be OK, so perform transformation

 strResult = objXML.transformNode(objXSL);

 // and display the results in the DIV element

 objResults.innerHTML = strResult;

 return true;

}

...

Providing that there are no errors, the function performs the transformation
using the XML file tables_data.xml and the stylesheet whose name is specified
as the strStylesheetName parameter when the function is called. The result of
the transformation is inserted into the <div> element that has the id attribute
value «divResults». You'll see where this is defined in the HTML later on.

If either of the load calls fails, perhaps due to a badly-formed document, a
function named showError is called. This function takes a reference to the
document where the error was found, and returns a string describing the nature
of the error. This error message is then displayed in the page instead of the result
of the transformation:

...

function showError(objDocument) {

 // create the error message

 var strError = new String;

 strError = 'Invalid XML file !
'

 + 'File URL: ' + objDocument.parseError.url + '
'

 + 'Line No.: ' + objDocument.parseError.line + '
'

 + 'Character: ' + objDocument.parseError.linepos + '
'

 + 'File Position: ' + objDocument.parseError.filepos + '
'

 + 'Source Text: ' + objDocument.parseError.srcText + '
'

 + 'Error Code: ' + objDocument.parseError.errorCode + '
'

 + 'Description: ' + objDocument.parseError.reason

 return strError;

}

//-->

</script>

...

The remainder of the page is the HTML that creates the visible section. The
opening <body> element specifies an onload attribute that causes the
transformFiles() function in our script section to run once the page has
finished loading:

...

</head>

<body onload="transformFiles('tables_list.xsl')">

<p>Transforming an XML Document using

 the client-side code</p>

...

Because it uses the value «tables_list.xsl» for the parameter to the function,
this stylesheet is used for the initial display. This shows the data in tabular form.

The next thing in the page is the code that creates the two HTML <button>
elements, marked Catalog and Simple List. The onclick attributes of each one
simply execute the transformFiles() function again, each time specifying the
appropriate stylesheet name:

...

View the tables as a

<button onclick="transformFiles('tables_catalog.xsl')">Catalog</button>

 or as a

<button onclick="transformFiles('tables_list.xsl')">Simple List</button>

<hr />

Finally, at the end of the code, you can see the definition of the <div> element
into which the function inserts the results of the transformation.

<!-- to insert the results of parsing the object model -->

<div id="divResults"></div>

</body>

</html>

Output
When the page is first displayed, it looks like this:

Click on the Catalog button, and you will see an alternative graphical
presentation of the same data, achieved by applying the other stylesheet.

Using the XSLTemplate object
In the example above, I created one Document object for the source XML file, and
another for the stylesheet, and used the transformNode method on the source
Document to apply the stylesheet and create the resulting HTML.

If you need to use the same stylesheet repeatedly this can be inefficient, because all the
work of analysing and validating the stylesheet has to be repeated each time it is used.
You can avoid this overhead by compiling the stylesheet into another object, which is
rather confusingly called an XSLTemplate. The XSLTemplate object can then be used
repeatedly to do many transformations. I showed an example of this with the Kennedy
family tree in Chapter 9, where each transformation was applied to the same source
document, but using different parameter settings to control which part of the XML
data would be displayed.

To compile a stylesheet, you create the XSLTemplate object and set its stylesheet
property to the DOM Node (typically the Document itself) containing the
<xsl:stylesheet> element:

objStyle = new ActiveXObject("MSXML2.FreeThreadedDOMDocument");

objStyle.async = false;

objStyle.load('stylesheet.xsl');

objTransformer = new ActiveXObject("MSXML2.XSLTemplate");

objTransformer.stylesheet = objStyle.documentElement;

The XSLTemplate object can be used as often as you like to perform transformations.
To perform a transformation, you first need to create an XSLProcessor object, which
you can regard as holding the information to control one particular transformation.
You'll normally create a new one of these each time you want to apply the stylesheet to
another source document. You don't need to create the XSLProcessor object yourself,
the XSLTemplate object will do it for you:

var objProcessor = objTransformer.createProcessor();

You can then perform a transformation by telling the XSLProcessor what source
document to use, supplying any parameters (these set the values of global
<xsl:param> elements in the stylesheet), and invoking the transform() method. The
result of the transformation can then be retrieved from the XSLProcessor's output
property:

objProcessor.input = source;

objProcessor.addParameter("name1", "value1", "");

objProcessor.addParameter("name2", "value2", "");

objProcessor.transform();

objResults.innerHTML = objProcessor.output;

The third argument to addParameter() is the namespace URI of the parameter's name,
which will usually be an empty string.

Using <object>s and XML Data Islands
Instead of creating an instance of the MSXML Document object using script, you can
use an <object> element in the HTML page. You can also create a data island within
an HTML page using the <xml> element. Both <object> and <xml> are HTML
elements, not XML.

Creating Document Instances with an <object> Element
You can create instances of the MSXML Document object using an HTML <object>
element, specifying the appropriate ClassID depending on which version of the parser
you want to use. In the following code, I'm creating documents that use the version 3.0
MSXML parser, and setting the async and validateOnParse properties to false:

<object id="XMLDocument" width="0" height="0"

 classid="clsid:f5078f32-c551-11d3-89b9-0000f81fe221">

 <param name="async" value="false">

 <param name="validateOnParse" value="false">

</object>

<object id="XSLDocument" width="0" height="0"

 classid="clsid:f5078f32-c551-11d3-89b9-0000f81fe221">

 <param name="async" value="false">

 <param name="validateOnParse" value="false">

</object>

The only change required to the code that I used earlier is to get a reference to the two
Document objects, rather than creating them directly with script code:

 ...

 // get a reference to the XML document parser

 var objXML = document.all['XMLDocument'];

 // get a reference to the XSL stylesheet parser

 var objXSL = document.all['XSLDocument'];

 // load the XML document and check for errors

 objXML.load('tables_data.xml');

 if (objXML.parseError.errorCode != 0) {

 // error found so show error message and stop

 objResults.innerHTML = showError(objXML)

 return false;

 }

 // load the XSL stylesheet and check for errors

 objXSL.load(strStylesheetName);

 if (objXSL.parseError.errorCode != 0) {

 // error found so show error message and stop

 objResults.innerHTML = showError(objXSL)

 return false;

 }

 // all must be OK, so perform transformation

 strResult = objXML.transformNode(objXSL);

 ...

Using XML Data Islands
Internet Explorer 5 introduces a new HTML element named <xml>, which
automatically creates an XML document within an HTML page, as a data island. These
documents will use the default version of the MSXML parser. Note that the <xml>
element is part of the HTML syntax – it is not an XML element. The following HTML
creates two data islands, one containing the source XML document and one containing
the XSL stylesheet:

<xml id="Source" src="tables_data.xml"></xml>

<xml id="Stylesheet" src="tables_list.xsl"></xml>

You can then perform a transformation using similar script code to that shown earlier:

function transformFiles() {

 // get a reference to the results DIV element

 var objResults = document.all['divResults'];

 // get a reference to the XML document

 var objXML = document.all['Source'].XMLDocument;

 // get a reference to the XSL stylesheet

 var objXSL = document.all['Stylesheet'].XMLDocument;

 // perform transformation

 strResult = objXML.transformNode(objXSL);

 // and display the results in the DIV element

 objResults.innerHTML = strResult;

}

However, notice that you have to specify that you want the XMLDocument property of
the data islands. Unlike the Document objects created directly with script code or an
<object> element, the data-island created by the <xml> element is itself just a wrapper
for the XML Document. It is an HTML object, and so the XML it contains must be
accessed through the XMLDocument property of the <xml> element object.

Using an <xml> data island is simpler than creating Document objects in other ways,
but is less flexible as you usually specify the source document in the <xml> element
through the src attribute. However, you can set the src attribute value dynamically
instead if you wish:

 ...

 // get a reference to the XSL stylesheet parser

 var objDI = document.all['XSLParser'];

 objDI.src = 'tables_list.xsl';

 var objXSL = objDI.XMLDocument;

 ...

This gives the same flexibility as using any of the methods described previously.

Finally, as if you weren't spoilt for choice already, you can also create an identical
XML data island using the <script> element rather than the <xml> element:

<script language="XML" src="tables_data.xml"></script>

Modifying XML Documents Dynamically
As well as providing the ability to transform XML documents using XSLT, the
MSXML parser also implements full support for the W3C Document Object Model
(DOM), with many Microsoft extensions. This includes a whole range of properties
and methods that can be used to access and manipulate an XML document when it is
loaded into memory.

For example, you can load an XML document, modify particular values, and then
apply a stylesheet to perform a transformation. Or you may wish to use the DOM
methods to extract certain sections of an XML document into another document and
then apply a transformation to that new document. You might even consider loading
an XML document and an XSL stylesheet, then modifying values in both to meet some
specific criteria before performing the transformation to obtain the result.

An alternative approach might be to simply create an empty Document instance for
either the XML document or the XSL stylesheet, and then populate it directly using the
DOM methods. This is obviously more long-winded than just loading a previously
created XML file or document string. But it may prove a useful technique in some
cases – especially for small documents where the actual transformation operations
required vary widely, and are easier built from scratch than as a series of different XSL
files on disk.

Modifying an XSLT Stylesheet Dynamically
In many cases you can vary the behavior of an XSLT stylesheet by supplying
parameters, in the way I described earlier. There are some things in a stylesheet,
however, that have to be hard-coded, and one example is the expression used in the
<xsl:sort> element to define the sort order. If you're feeling adventurous, however,
you can get round this limitation by modifying the stylesheet in memory after it's been
loaded.

One way to do this modification, of course, is by applying a stylesheet! But if you just
want to make a small change, it's probably more efficient to use the DOM interfaces
directly, and make the change in situ.

To give you an idea of what's possible, the next example loads an XML document and
an XSLT stylesheet and displays the transformation in the HTML page. However, it

also provides a set of buttons that can be used to sort the results into different orders.

Example: Varying the Sort Order

The files for this example can be found in the folder appA\msxml_dynamic.

XML Source
The XML source file for this example is tables.data.xml. It defines several
<table> elements representing pieces of furniture, each looking like this:

<tables>

<table>

 <table-name>Conference</table-name>

 <number-of-legs>4</number-of-legs>

 <table-top-material type="laminate">Ash</table-top-material>

 <table-shape>Oblong</table-shape>

 <retail-price currency="USD">1485</retail-price>

</table>

...

</tables>

Stylesheet
The stylesheet is tables_list.xsl You can find it in the folder mentioned
above; since this example is designed to show the JScript used to control the
transformation rather than the XSLT transformation code itself, I won't list it in
full here.

The important part of the stylesheet for this example is the <xsl:apply-
templates> instruction that controls sorting. Which looks like this:

<xsl:template match="/">

 <html>

 . . .

 <xsl:apply-templates select="/tables/table">

 <xsl:sort select="table-name" order="ascending"/>

 </xsl:apply-templates>

 . . .

 </html>

 </xsl:template>

The script in the HTML page will modify the attributes of the <xsl:sort>
element to vary the field on which the data is sorted, and the direction of sorting.

HTML page
The HTML code to create the visible part of the page is shown below. It's in file
default.htm.

The <body> element's onload attribute has the value «if (preparePage())
sort('table-name', 'ascending')». This executes a function named
preparePage() as soon as the HTML page has loaded. If the result of this
function is true (i.e. the process succeeds), it then calls the sort() function to
display the data sorted in ascending order of the «table-name» field.

. . .

<body onload="if (preparePage()) sort('table-name', 'ascending')">

<p>Modifying an XSLT Stylesheet

 using client-side code</p>

The HTML code then displays a set of buttons allowing the user to change the
sort order. Notice that each of the <button> elements executes the sort function
when clicked, but with different values for the parameters. These values will be
used to modify the select and order attributes of the <xsl:sort> element in the
stylesheet.

Sort by:

<button onclick="sort('table-name', 'ascending')">Name</button>

<button onclick="sort('table-shape', 'ascending')">Shape</button>

<button onclick="sort('number-of-legs', 'ascending')">Nr of Legs</button>

<button onclick="sort('table-top-material/@type',

 'ascending')">Material</button>

<button onclick="sort('table-top-material', 'ascending')">Finish</button>

<button onclick="sort('retail-price', 'ascending')">Price +</button>

<button onclick="sort('retail-price', 'descending')">Price -</button>

<hr/>

The HTML page then defines the objects to hold the source document, stylesheet
document, and the output HTML:

<object id="XMLDocument" width="0" height="0"

 classid="clsid:f5078f32-c551-11d3-89b9-0000f81fe221">

 <param name="async" value="false">

 <param name="validateOnParse" value="false">

</object>

<object id="XSLDocument" width="0" height="0"

 classid="clsid:f5078f32-c551-11d3-89b9-0000f81fe221">

 <param name="async" value="false">

 <param name="validateOnParse" value="false">

</object>

<!-- to insert the results of parsing the object model -->

<div id="divResults"></div>

</body>

</html>

The JScript code that implements the functions is shown next. First the
preparePage() function, which creates some global variables to reference the
output <div> element and the two Document objects, and then loads the XML
and XSL files into these documents:

// global variables to hold references to objects

var gobjResults;

var gobjXML;

var gobjXSL;

function preparePage() {

 // get the reference to the results DIV element

 gobjResults = document.all['divResults'];

 // get the reference to the XML document parser

 gobjXML = document.all['XMLDocument'];

 // get the reference to the XSL stylesheet parser

 gobjXSL = document.all['XSLDocument'];

 // load the XML document and check for errors

 gobjXML.load('tables_data.xml');

 if (gobjXML.parseError.errorCode != 0) {

 // error found so show error message and stop

 gobjResults.innerHTML = showError(gobjXML)

 return false;

 }

 // load the XSL stylesheet and check for errors

 gobjXSL.load('tables_list.xsl');

 if (gobjXSL.parseError.errorCode != 0) {

 // error found so show error message and stop

 gobjResults.innerHTML = showError(gobjXSL)

 return false;

 }

 // all OK, so return true

 return true;

}

If either of the load() calls should fail, the function showError() (the same as
the one I used in the earlier examples) is used to display the error, and the
function returns false. If all is well, it returns true and the sort() function can
then be executed.

We're now ready to write the sort() function which changes the value of the
select and order attributes of the <xsl:sort> element. Because the stylesheet is
loaded as a DOM Document in memory, we can do this by using the DOM
interfaces. It's particularly convenient to use an XPath expression to locate the

two attributes directly.

The Microsoft-specific selectSingleNode() method takes an XPath expression,
and returns the first selected node from the document. Conveniently, our
stylesheet contains only one <xsl:sort> element.

So we can write the sort() function as follows:

function sort(strSortBy, strOrder) {

 // get a reference to the 'select' and 'order' attributes from

 // the 'xsl:sort element' in the root template

 var objSelect = gobjXSL.selectSingleNode("//xsl:sort/@select");

 var objOrder = gobjXSL.selectSingleNode("//xsl:sort/@order");

 // change the attribute value to the specified XPath value

 objSelect.nodeValue = strSortBy;

 objOrder.nodeValue = strOrder;

 // perform the transformation

 strResult = gobjXML.transformNode(gobjXSL);

 // and update the contents of the DIV element

 gobjResults.innerHTML = strResult;

}

Output
There is a button for each column in the results table. There are two buttons for
the Price column, allowing it to be sorted in ascending or descending order.

Clicking any of the buttons changes the display without reloading the page,

sorting the results into the appropriate order as seen in the next screenshot:

Using XPath Expressions with the DOM
In the previous example I used the method selectSingleNode() to select a node from
the DOM document by supplying an XPath expression. This works because MSXML
allows you to use XPath expressions independently of an XSLT stylesheet.

The following function creates DOM document and populates it by loading an XML
file into it. It then calls the XPath expression «//table/table-name» in the XML
DOM's selectNodes function, which returns a NodeList object containing all the
<table-name> elements from the document:

function getTableNames() {

 // get the reference to the results DIV element

 var objResults = document.all['divResults'];

 // create an XML document instance

 var objXML = new ActiveXObject('MSXML2.DOMDocument.3.0');

 // load the XML document and check for errors

 objXML.load('tables_data.xml');

 if (objXML.parseError.errorCode != 0) {

 // error found so show error message and stop

 objResults.innerHTML = showError(objXML)

 return false;

 }

 var strResult = new String; // to hold the result

 strResult = 'The table names are: ';

 // get a NodeList containing all the <table> elements

 var objTableNodeList = objXML.selectNodes('//table/table-name');

 ...

Having got a list of the <table-name> elements, it's a simple task to iterate through
them extracting the value (from the child text node of each one) and adding it to a
string that is then placed into the <div> element elsewhere on the page:

 ...

 // iterate through all the <table-name> nodes

 for (var i = 0; i < objTableNodeList.length; i++) {

 // get the value of this node from the child text node

 strName = objTableNodeList(i).childNodes(0).nodeValue;

 strResult += '"' + strName + '" ';

 }

 // and update the contents of the DIV element

 objResults.innerHTML = strResult;

}

Here's the result using the XML document we've seen earlier:

Using the MSXML Parser on the Server
So far in thie Appendix we've been using MSXML to perform XSLT transformations on
the client. This is great, but it will obviously only work where the client supports the
use of the MSXML parser. Even if other browsers offered XSLT support, the scripts
we've been writing in our HTML pages will only work with Microsoft's proprietary
APIs.

If you have to develop a web site to serve users with a wide variety of browsers
installed, then you will need some solution for those who aren't using the latest
version of Internet Explorer (not to mention technology previews of XSLT technology
that are changing every couple of months). In this situation your only real option is to
perform the XML-to-HTML transformation on the server, and then send the resulting
HTML to the client. In Chapter 10 I described a number of XSLT processors that can be
used on the server, but so long as it's a Windows server, the MSXML3 product can also
be used in this role.

The MSXML parser is a standard COM object, so you can instantiate and use it from
any COM-enabled language. This includes VBScript and JScript running in an Active
Server Pages file on the server, as well as server-based applications built using Visual
Basic, C++, Java, Delphi, and so on.

Using MSXML with Active Server Pages
To create an instance of the parser on the server in ASP, we use almost the same
techniques as we did on the client. However, to instantiate it in the correct context of
the ASP page, we must use the ASP integral Server object's CreateObject method:

In VBScript:

Dim objDocument

Set objDocument = Server.CreateObject("MSXML2.DOMDocument.3.0")

In JScript:

var objDocument = Server.CreateObject('MSXML2.DOMDocument.3.0');

Of course, you can also use the <object> element to create the document instance, as
we did earlier on the client. This has the advantage that the instance is not actually
created until first referenced, whereas the Server.CreateObject method will create
the instance immediately. Of course, any advantage depends on how you structure
your code (that is, on when you execute the Server.CreateObject method).

If you create an instance of the document in ASP within your
global.asa file, so that it is available for the entire user's session or
for the life of the application, be sure to specify the Free-Threaded
version of the parser.

Once the document has been created, the techniques for using it are almost identical.
Of course, you can’t use message boxes or alert dialogs, and you have to write the
output to the client using the Response.Write method instead of inserting it onto an
element on the page dynamically as we did in our earlier examples. This is shown in
the following example.

Example: A Server-Side XSLT Transformation

This ASP page, together with the support files it requires, is provided in a folder

named appA\msxml_asp with the rest of the samples for this book. It
demonstrates a simple server-side XSLT transformation that sends the result to
the client as an HTML page.

Source XML
The source XML file is the same furniture catalog as we used in previous
examples in this chapter, which starts:

<tables>

<table>

 <table-name>Conference</table-name>

 <number-of-legs>4</number-of-legs>

 <table-top-material type="Veneer">Ash</table-top-material>

 <table-shape>Oblong</table-shape>

 <retail-price currency="USD">1485</retail-price>

</table>

 ...

Stylesheet
The stylesheet is file tables_style.xsl in the same folder. We're not really
concerned with the contents of the stylesheet here; it's much the same as in
previous examples. The only important thing is that it generates HTML output.

ASP Page
The ASP page reads as follows:

<%@LANGUAGE="VBScript"%>

<%

' tell client that we're sending an HTML page

Response.ContentType = "text/html"

' error handling subroutine

Sub ShowError(objDoc)

 'create and display error message

 Dim strError

 strError = "Invalid XML file !
" _

 & "File URL: " & objDoc.parseError.url & "
" _

 & "Line No.: " & objDoc.parseError.line & "
" _

 & "Character: " & objDoc.parseError.linepos & "
" _

 & "File Position: " & objDoc.parseError.filepos & "
" _

 & "Source Text: " & objDoc.parseError.srcText & "
" _

 & "Error Code: " & objDoc.parseError.errorCode & "
" _

 & "Description: " & objDoc.parseError.reason

 Response.Write strError

End Sub

Dim objXML

Dim objXSL

' create two document instances

Set objXML = Server.CreateObject("MSXML2.DOMDocument.3.0")

Set objXSL = Server.CreateObject("MSXML2.DOMDocument.3.0")

' set the parser properties

objXML.ValidateOnParse = True

objXSL.ValidateOnParse = True

' load the source XML document and check for errors

objXML.load Server.MapPath("tables_data.xml")

If objXML.parseError.errorCode <> 0 Then

 'error found so show error message and stop

 ShowError objXML

 Response.End

End If

Notice that we have to use the Server.MapPath method to convert the XML and
XSL document names to a full valid physical path when running under ASP. If
not, the load method will fail to find the file and report an error.

' load the XSL stylesheet and check for errors

objXSL.load Server.MapPath("tables_style.xsl")

If objXSL.parseError.errorCode <> 0 Then

 'error found so show error message and stop

 ShowError objXSL

 Response.End

End If

' all must be OK, so perform transformation

strResult = objXML.transformNode(objXSL)

' and insert the results into the page

Response.Write strResult

%>

Output

We could, of course, select the XML document and the XSL stylesheet dynamically
when the page is executed, rather than hard-coding the names into the script. For
example, a <FORM> section on another page could reference this page and provide a
value for the stylesheet name in an HTML control – perhaps named "stylesheet_name".
The ASP code then just needs to use this value in the load method:

objXSL.load Server.MapPath(Request.Form("stylesheet_name"))

Setting the Approriate Content Type Header
Notice that the previous example uses the ASP statement

Response.ContentType = "text/html"

to set the HTTP content type header so that the client knows that the data is to be
treated as an HTML page. This is because we are creating HTML as the result of our
server-side transformation. In this case, if we omitted to include this statement, the
page would still work because a Web browser will default to «text/html» if no other
content type is specified.

The content type is specified as one of the standard MIME types, and you should
always specify this using the Response.ContentType statement. It is particularly
important if your are creating something other than an HTML page. For example, if
your XSL transformation or other ASP code creates XML-format output, you should
use:

Response.ContentType = "text/xml"

If you are creating an XSL stylesheet to send to the client, use «text/xml». Internet
Explorer will also accept «text/xsl», but other browsers might not, because it is not a
standard MIME type. For a pure text file, use «text/text». Remember, however, that
it is the client itself (or rather the operating system environment in which it is running)
that actually decides what to do with the output you send, based on the content type
you specify. You can only tell the client what type of output you are creating, and it

will decide how to handle it when it arrives.

Conditional XSLT Transformations
Given that some browsers support client-side XSLT transformation and others don't, a
natural thing to do is to perform the transformation on the client if it is supported
there, or on the server if not. This is easy to do, and simply requires an ASP script that
detects the browser version and sends back the appropriate content.

To detect the browser version, you could use a tool like the Microsoft
BrowserCapabilities component or CyScape's BrowserHawk component. However,
it's easy enough with some simple script code – this example sets a Boolean variable
named blnIsIE5 to True if the browser is Internet Explorer 5 or better:

...

blnIsIE5 = False

strUA = Request.ServerVariables("HTTP_USER_AGENT")

If InStr(strUA, "MSIE") Then

 intVersion = CInt(Mid(strUA, InStr(strUA, "MSIE") + 5, 1))

 If intVersion > 4 Then blnIsIE5 = True 'this is IE5 or better

End If

Once you know whether you are dealing with a browser that can do the XSL
transformation itself, you can send back the correct content. If blnIsIE5 is False, you
can use code like that shown earlier to perform the transformation on the server and
send back pure HTML.

However, if blnIsIE5 is True you can get the browser to do the transformation. You
could create and send back to the client an HTML page that loads the correct source
XML file and matching XSL stylesheet, and performs the transformation client-side.
This technique has been demonstrated earlier in the example Using Client-side JScript to
Transform a Document on page 15.

Alternatively, you can send back the pure XML source document. However, to get the
client to perform the transformation you need to insert into it a processing instruction
that links the correct XSL stylesheet to the XML document. This is easy enough to do
by parsing the document on the server before sending it. The following code shows the
overall structure of such a page:

<%@LANGUAGE="VBScript"%>

<%

'detect browser version and set variable blnIsIE5

If blnIsIE5 Then

 '***************************************

 'tell client that we're sending pure XML

 Response.ContentType = "text/xml"

 'add xsl-stylesheet instruction to XML

 'source document and send it to the client

 '***************************************

Else

 '***************************************

 'tell client that we're sending an HTML page

 Response.ContentType = "text/html"

 'use simple server-based transformation

 'as demonstrated earlier to create the

 'resulting HTML and send it to the client

 '***************************************

End If

%>

This page, together with the support files it requires, is provided in a folder named
msxml_asp with the rest of the samples for this book.

We've already seen how to perform the server-based transformation. What remains is
the code (omitted from the above outline) that adds the appropriate
<?xsl-stylesheet?> processing instruction to the XML document, before sending it
to the client. Here is that code in full:

If blnIsIE5 Then

 '***************************************

 'tell client that we're sending pure XML

 Response.ContentType = "text/xml"

 'create a parser instance

 Set objXML = Server.CreateObject("MSXML2.DOMDocument.3.0")

 'load the XML document

 objXML.load Server.MapPath("tables_data.xml")

 If objXML.parseError.errorCode = 0 Then

 'get a reference to the outermost <tables> element

 Set objOutermost = objXML.documentElement

 'create the processing instruction attributes

 QUOT = Chr(34) 'double-quote character

 strAttributes = "type=" & QUOT & "text/xsl" & QUOT _

 & " href=" & QUOT & "tables_style.xsl" & QUOT

 'create the new xsl-stylesheet processing instruction

 Set objNewPI = objXML.createProcessingInstruction(_

 "xml-stylesheet", strAttributes)

 'insert it into the XML document after the xml version element

 objXML.insertBefore objNewPI, objOutermost

 'and insert the results into the page

 Response.Write objXML.xml

 Else

 Response.Write "Error loading XML document."

 End If

 '***************************************

You can see in this code that we're loading the XML source document and getting a
reference to the <tables> element. We then create a new processing instruction using
the createProcessingInstruction() method of the XML Document object. Then we
can insert our new processing instruction into the XML document before the <tables>
element (and after the opening xml-declaration) using the insertBefore() method of
the Document object.

The result is that Internet Explorer 5 and higher will receive the XML source document
containing the xsl-stylesheet instruction, and retrieve this stylesheet for use in a client-
side XSL transformation. However, other browsers will receive just the HTML result of
performing the transformation on the server:

Of course, we could have simplified the operation by just adding the
<?xsl-stylesheet?> instruction to the XML source document. When loaded into a

parser instance with script code, using the load method, any stylesheet instructions are
ignored and so the server-side process would still have worked OK. It would also have
meant that we didn’t need to insert the stylesheet instruction for IE5 browsers using
ASP code, which could significantly reduce the processing load on the server.
However, the technique we used allows the stylesheet to be chosen dynamically at
runtime, perhaps (as shown earlier) in response to a value sent from a <FORM> on
another page,

Tools for Performing XSL Transformations
While you can easily use and adapt the generic code shown earlier to suit your own
applications, it is often useful to take advantage of tools that can make the job easier.
One of the tools available from the Microsoft XML download page is an ISAPI
extension called xslisapi.dll. This can be used to perform the translation on your
server with minimal coding required.

You can download the code for this tool from the Microsoft XML Web page at
http://msdn.microsoft.com/downloads/webtechnology/xml/xslisapi.asp. The
page includes installation and setup instructions, and full documentation.

In its simplest form, the ISAPI extension examines all requests for files with the «.xml»
extension, and checks to see if they contain an <?xml-stylesheet?> processing
instruction. If not, they are passed back to the client with no action taken by the DLL.
However, if it finds an <?xml-stylesheet?> processing instruction, it checks to see if
the browser is IE5 or higher. If it is, it simply passes the XML file on to the client
unchanged. But, if the client is not IE5 or higher, the DLL automatically performs the
transformation specified by the XSLT stylesheet and sends the client the results.

You can also specify different stylesheets for the client-side and server-side processing,
and even create configuration file entries to provide even more control over the
operation. This tool effectively accomplishes what we've been doing in our earlier
server-side examples automatically. However, knowing how to perform these tasks
yourself is useful and allows you to tailor applications that use them to exactly meet
your requirements.

Performing Bulk Transformations
If you use server-based transformations to create output for clients, you do place an
extra load on your server. Web servers are optimized to serve pages from disk to the
client on demand, rather than carrying out intermediate processing each time. One
way to minimize the load is to perform the transformations at specific intervals (based
on the frequency with which the source XML or XSLT changes), and write the results
to the server's disk as a series of files. The client can then access and download the
appropriate file, rather than having the translation performed in real time.

You can easily write the results of a transformation to the server's disk using the
FileSystemObject:

...

'all must be OK, so perform transformation

strResult = objXML.transformNode(objXSL)

'and write the results to the server's disk

Set objFSO = Server.CreateObject("Scripting.FileSystemObject")

Set objFile = objFSO.CreateTextFile("resultpage.htm", True)

 'overwrite any existing file

objFile.Write strResult

objFile.Close

Alternatively, you might like to look at the XSLTransform component that uses a batch
file to automatically perform multiple transformations to disk files. See
http://www.stonebroom.com for more details.

MSXML3 Quick Reference

The objects, methods, properties and events available with the MSXML3 parser are
listed in the Help file that comes with the SDK. Instructions for downloading this
appear at the start of this appendix.

The documentation that accompanies the SDK is described by Microsoft as
preliminary, and with good reason: in many cases, there are few clues as to how a
particular method or property is intended to be used. However, you can get by with
quite a small subset of the interface, and I have tried to summarize that subset in this
quick reference section.

I have only included here the parts of the interface that are relevant to XSLT and XPath
processing. I have included only the basic interfaces, and have omitted some that look
interesting but which are documented so sketchily (at the time of writing) that a fair
bit of trial and error would be needed to get them to work. A full description of the
Microsoft DOM interface (the stable parts, not the new additions in the current
technology preview) can be found in the Wrox book Professional XML.

Objects
The objects of particular interest to XSLT and XPath processing are listed below.

Object Description

IXMLDOMDocument The root of an XML document.
IXMLDOMNode Any node in the DOM
IXMLDOMNodeList A collection of Node objects
IXMLDOMParseError Details of the last parse error that occurred
IXSLProcessor An execution of an XSL stylesheet
IXSLTemplate A compiled XSL stylesheet in memory

These objects are described in the sections that follow.

IXMLDOMDocument

The IXMLDOMDocument class inherits all the properties and methods of IXMLDOMNode.
This section lists the additional methods and properties of relevance to XSLT and
XPath processing, in other words, all the methods and properties that are not also
present on IXMLDOMNode, which is described on page 40.

Additional methods
The methods particularly relevent to XPath and XSLT processing are described in
detail below.

The validate() method actually belongs to the IXMLDOMDocument2 interface, which is
an extension to IXMLDOMDocument introduced with the MSXML2 product.

Name Returns Description

abort (Nothing) Abort download
load Boolean Loads document from the

specified XML source
loadXML Boolean Loads the document from a

string
save (Nothing) Saves the document to a

specified destination
validate (Nothing) Validate the document, using the

current DTD or schema

abort() ⇒ Nothing

When a document is being loaded asynchronously, abort() can be called at any time
to abandon the process.

load(url) ⇒ Boolean

The argument is normally a string containing a URL; this URL should identify an XML
document. The effect of this method is to clear out any existing content of the
Document object, and replace it with the result of parsing the XML source from the
specified URL. The method returns true if successful, false otherwise.

loadXML(string) ⇒ Boolean

The string contains the text of an XML document. The effect of this method is to clear
out any existing content of the Document object, and replace it with the result of
parsing the XML string. The method returns true if successful, false otherwise.

save(destination) ⇒ Nothing

The destination is usually a filename, given as a string. The effect is to save the
Document in XML format as a file. It is also possible to specify various other objects as
a destination, for example it can be another Document object, in which case the
document is duplicated.

validate() ⇒ Nothing

This method checks that the document is valid, that is, that it conforms to its DTD or
schema. If it is valid, the call returns normally, otherwise it raises an error condition.

This is an alternative to validating while the document is being parsed. It can be
useful, for example, to ensure that the document created as the output of an XSLT
transformation is valid.

A typical call sequence in JScript is:

try {

 xmldoc.validate();

} catch(e) {

 alert("Validation error: " + e.description);

}

Additional properties
Name Returns Description

async Boolean True if loaded asynchronously
parseError IXMLDOMParseError The last parser error
readyState Long Current state of readiness for use
validateOnParse Boolean Requests validation

async

If this property is set to true, processing can continue while the document is being
parsed and loaded. When using stylesheets, async is normally set to false so that as
soon as control returns from the load() method, transformation can proceed.

parseError

This property returns an IXMLDOMParseError object. To determine if a parsing error
occurred, test whether the errorCode of the returned object is non-zero.

readyState

When loading a document asynchronously, this property takes one of the four values:

1 LOADING
2 LOADED
3 INTERACTIVE
4 COMPLETED

You can nominate a function to be called when the state changes, using the
onReadyStateChange event.

valildateOnParse

If this property is set to true, the document will be validated (against its DTD or
schema) as it is loaded.

IXMLDOMNode
This object represents a node in the document tree. Note that the tree conforms to the
DOM model, which is not always the same as the XPath model described in Chapter 2:
for example, the way namespaces are modeled is different, and text nodes are not
necessarily normalized.

There are subclasses of IXMLDOMNode for all the different kinds of node found in the
tree. I have not included descriptions of all these, since they are not directly relevant to
XSLT and XPath processing. The only one I have included is IXMLDOMDocument, which
can be regarded as representing either the whole document or its root node,
depending on your point of view.

Methods

The methods available on IXMLDOMNode that are relevant to XSLT and XPath
processing are listed below. Most often, these methods will be applied to the root node
(the DOM Document object) but they can be applied to any node.

Name Returns Description

selectNodes IXMLDOMNodeList Executes an XPath expression
and returns a list of matching
nodes

selectSingleNode IXMLDOMNode Executes an XPath expression
and returns the first matching
node

transformNode String Applies a stylesheet to the
subtree rooted at this node,
returning the result as a string

transformNode
ToObject

(Nothing) Applies the stylesheet to the
subtree, placing the result into
a supplied document or
stream.

selectNodes(String expression) ⇒ IXMLDOMNodeList

This method takes an XPath expression as its argument, and returns the list of nodes
selected by that expression.

Microsoft's documentation on this method is very limited. It seems that the XPath
expression must be one that returns a node-set, and that the node to which the
expression is applied is used as the context node; also that any namespace prefixes in

the expression are interpreted using the namespace declarations in scope for this node.

If no nodes are selected, the method returns an empty list.

The documentation makes no guarantee that the nodes are returned in any particular
order.

If the target document supports the IXMLDOMDocument2 interface, which is an
extension of the basic IXMLDOMDocument interface, then the IXMLDOMNodeList returned
will also implement the IXMLDOMSelection interface.

selectSingleNode(String expression) ⇒ IXMLDOMNode

This method is the same as selectNodes() above, except that it only returns the first
selected node in document order.

If no nodes are selected, the method returns null.

transformNode(IXMLDOMNode stylesheet) ⇒ String

This method applies a stylesheet to the document containing this node. The target
node is used as the initial context for the stylesheet, but the stylesheet has access to the
entire document.

The argument identifies the XSLT stylesheet. This will usually be a Document, but it
may be Node representing an embedded stylesheet within a Document.

The result of the transformation is serialized and returned as a string.

transformNodeToObject(IXMLDOMNode stylesheet, Variant result) ⇒ Nothing

This method applies a stylesheet to the document containing this node. The target
node is used as the initial context for the stylesheet, but the stylesheet has access to the
entire document.

The argument identifies the XSLT stylesheet. This will usually be a Document, but it
may be Node representing an embedded stylesheet within a Document.

The result of the transformation is written to the object identified in the second
argument. This will usually be a Document. It may also be a Stream.

Properties
The most useful properties are listed below. Properties whose main purpose is to
navigate through the document are not listed here, because navigation can be achieved
more easily using XPath expressions.

Name Returns Description

baseName String The local name of the node, excluding
any namespace prefix

namespaceURI String The namespace URI
nodeName String The name of the node, including its

namespace prefix if any. Note that
unlike the XPath model, unnamed
nodes are given conventional names
such as "#document", "#text", and
"#comment".

nodeTypeString String Returns the type of node in string form.
For example, "element", "attribute", or
"comment".

nodeValue Variant The value stored in the node. This is not
the same as the XPath string-value: for
elements, it is always null.

prefix String The prefix for the namespace applying
to the node

text String Text contained by this node (like the
XPath string-value)

xml String XML representation of the node and its
descendants

IXMLDOMNodeList
This object represents a list of nodes. For our present purposes, we are interested in
this object because it is the result of the selectNodes() method.

An IXMLDOMNodeList is returned as a result of the selectNodes() method: it contains
the list of nodes selected by the supplied XPath expression. You can process all the
nodes in the list either by using the nextNode() method or by direct indexing using
the item property. There is nothing in the documentation that says the nodes will be
returned in any particular order.

If the document from which the nodes were selected implements the
IXMLDOMDocument2 interface introduced in MSXML2, then the node list returned by
selectNodes() will also implement the IXMLDOMSelection interface. This offers some
additional capabilities, however the preliminary Microsoft documentation is far from
clear as to how these are intended to be used. For details, see the Help file provided
with the MSXML3 SDK.

Methods
Name Returns Description

nextNode IXMLDOMNode Get the next node
reset (Nothing) Reset the current position

nextNode() ⇒ IXMLDOMNode

Returns the next node, or null when all the nodes have been processed.

reset() ⇒ Nothing

Resets the node list so that the next node returned by nextNode() will be the first one.

Properties
Name Returns Description

item IXMLDOMNode The default collection of nodes.
A particular node can be
referenced as nodeList.item(i).

length Long Identifies the number of nodes in
the collection

IXMLDOMParseError
This object is accessible through the parseError property of the IXMLDOMDocument
interface. Examples of how to use this object to generate diagnostics are given earlier
in this appendix.

Properties

Name Returns Description

errorCode Long The error code
filepos Long The character position of the

error within the XML document
line Long The line number of the error
linepos Long The character position in the line

containing the error
reason String Explanation of the error
srcText String The XML text in error
url String The URL of the offending

document

IXSLProcessor
An IXSLProcessor object represents a single execution of a stylesheet to transform a
source document.

The object is normally created by calling the createProcessor() method of an
IXSLTemplate object.

The transformation is achieved by calling the transform() method.

Methods
Name Returns Description

addParameter (Nothing) Set <xsl:param> value
reset (Nothing) Reset state of processor and

abort current transform
setStartMode (Nothing) Set XSL mode and its namespace
transform Boolean Start or resume the XSL

transformation process

addParameter(String localName, Variant value, String namespaceURI) ⇒ Nothing

This method supplies a value for a global parameter declared within the stylesheet
using a top-level <xsl:param> element. The localName identifies the local name of the
parameter, and the namespaceURI its namespace. In the common case that the
parameter name has a null namespace URI, the third argument should be an empty
string.

The value of the parameter is passed in the second argument. It can be a boolean, a
number, or a string; or a Node or NodeList. The last two cases will both be treated
within the stylesheet as a node-set value.

reset() ⇒ Nothing

If a transformation is in progress, this aborts the transformation and resets the
processor so it can be used again. It does not clear any parameters that have been
added, or the startMode.

setStartMode(String mode, String namespaceURI) ⇒ Nothing

Normally when a stylesheet is used, processing starts by looking for a template rule
that matches the root node and that is defined with no mode attribute. Sometimes it is
useful to be able to use the same stylesheet in different ways on different occasions, so
MSXML3 allows processing to start in a different mode from the default. Modes are
described in Chapter 4: see the descriptions of the <xsl:apply-templates> and
<xsl:template> elements.

Modes are identified by a QName (a namespace-qualified name), so this method allows
both the local name and the namespace URI to be specified. Most commonly the
second parameter will be an empty string.

transform() ⇒ Boolean

This method applies the stylesheet (from which this XSLProcessor was derived) to the

source document identified in the input property. The result of the transformation is
accessible through the output property.

If the transformation is completed, the return value is true. If the source document is
being loaded asynchronously, it is possible for the transform() method to return
false, meaning that it needs to wait until more input is available. In this case it is
possible to resume the transformation by calling transform() again later. The current
state of the transformation can be determined from the readyState property.

Properties
Name Returns Description

input Variant XML source document to transform.
This is normally supplied as a DOM
Document, but it may also be a
Node. The input can also be
supplied as an IStream.

output Variant Output of the transformation. If you
don't supply an output object, the
processor will create a String to hold
the output, which you can read
using this property. If you prefer,
you can supply an object such as a
DOM Document, a DOM Node, or
an IStream to receive the output.

ownerTemplate IXSLTemplate The XSLTemplate object used to
create this processor object.

readyState Long The current state of the
transformation. This will be
READYSTATE_COMPLETE (3) when the
transformation is finished.

startMode String Name of starting XSLT mode. See
setStartMode() method above.

startModeURI String Namespace of starting XSLT mode.
See setStartMode() method above.

stylesheet IXMLDOMNode The current stylesheet being used.

IXSLTemplate
An IXSLTemplate object represents a compiled stylesheet in memory. If you want to
use the same stylesheet more than once, then creating an IXSLTemplate and using it
repeatedly is more efficient than using the raw stylesheet repeatedly using
transformNode().

Methods
Name Returns Description

createProcessor IXSLProcessor Create an IXSLProcessor object

createProcessor() ⇒ IXSLProcessor

This method should only be called after the stylesheet property has been set to
associate the IXSLTemplate object with a stylesheet.

It creates an IXSLProcessor object which can then be used to initiate a transformation
of a given source document.

Properties
Name Returns Description

stylesheet IXMLDOMNode Identifies the stylesheet from which
this IXSLTemplate is derived

Setting this property causes the specified stylesheet to be compiled; this IXSLTemplate
object is then reusable representation of the compiled stylesheet.

The DOM Node representing the stylesheet will normally be a DOM Document object,
but it may be an Element representing an embedded stylesheet. (Embedded
stylesheets are described in Chapter 3).

The document identified by the stylesheet property must be a free-threaded document
object.

Summary
This appendix summarized the techniques and application programming interfaces
available for using Microsoft's MSXML3 product, with a particular focus on its XSLT
transformation capabilities.

We saw how to view XML directly in the IE5 browser, either with the default
stylesheet or with one identified through the <?xml-stylesheet?> processing
instruction. Then we saw how to use client-side scripting to control the transformation
process, even seeing how it is possible to modify the stylesheet each time it is used.

Finally we looked at the use of MSXML3 as a server-side technology, performing
transformations controlled from an ASP page, or doing transformations eitehr on the
server or on the client depending on the capabilities of the user's browser.

Do remember that this is a technology preview. The software is likely to change a lot
over the coming months, it is likely to become more reliable, and the documentation
will (hopefully) improve a lot. Check Microsoft's web site and news groups to keep up

to date with the current position.

B
Glossary

This glossary gathers together some of the more common technical terms
used in this book. These terms are not all defined in the XSLT or XPath
specifications, some of them are borrowed from XML or other standards
in the XML family, and others have been invented for the purposes of this
book. So for each definition, I also tell you where the term comes from.

The definitions, however, are my own: in some cases the original
specifications have a much more formal definition, but in other cases they
are surprisingly vague.

Ancestor Axis

Origin
XPath

Explanation
The ancestor axis selects the parent of the context node, its parent, and so
on up to and including the root node. The axis is in reverse document
order.

Ancestor-or-Self Axis

Origin
XPath

Explanation
The ancestor-or-self axis selects the context node followed by all the
nodes on the ancestor axis. The axis is in reverse document order.

Attribute Axis

Origin
XPath

Explanation
The attribute axis selects all the attributes of the context node. If the
context node is not an element, the axis will be empty.

Attribute Node

Origin
XPath

Explanation
A node in a tree that represents an attribute in an XML document. There
will be an attribute node attached to an element node for each attribute
defined in the start tag of the corresponding element in the original XML
document, other than an attribute acting as a namespace declaration. There
will also be attribute nodes for attributes given a default value in the
Document Type Definition. The string value of the node is the value of the
attribute.

Attribute Set

Origin
XSLT

Explanation
A named collection of <xsl:attribute> instructions, which when invoked
using the use-attribute-sets attribute of <xsl:element> or <xsl:copy>, or the
xsl:use-attribute-sets attribute of a literal result element, generates a set of
attribute nodes to be added to the current output element.

Attribute Value Template

Origin
XSLT

Explanation
An attribute value template is an attribute in the stylesheet that can contain
both fixed and variable parts. The fixed parts are written as ordinary
characters, while the variable parts are written between curly braces: for
example «file="{$dir}/{$fname}.html"» would evaluate to «file="out/page.html"
if the variables $dir and $fname have the values «out» and «page»
respectively. Attribute value templates can be used for any attribute of a
literal result element, but on XSLT elements they can be used only for
those attributes that explicitly allow them.

Attribute

Origin
XML

Explanation
A name=value pair appearing in an element's start tag, for example
«category="grocery"».

Axis

Origin
XPath

Explanation
An axis is a direction of travel through the tree. Starting from a particular
context node, an axis defines a list of nodes reached from that origin. For

example the ancestor axis returns the parent, grandparent, and so on up to
the root of the tree, while the following-sibling axis returns all the nodes
that appear after the context node and share the same parent.

Base URI

Origin
XSLT

Explanation
Every node has an associated Base URI. For an element, this is the
absolute URI of the XML external entity containing the element's start and
end tags (most often, of course, this will be the document entity). For other
node types, it is defined by reference to an associated element node,
typically its parent. The Base URI of a node is used when expanding a
relative URI defined in that node, for example a relative URI in an href
attribute is considered to be relative to the Base URI of the parent element.

Boolean

Origin
XPath

Explanation
One of the allowed data types for the value of an XPath expression. It
takes the value true or false.

Built-in Template Rule

Origin
XSLT

Explanation
A template rule that is not explicitly defined in the stylesheet, but which is
implicitly available to process a node if there is no explicit template rule
that matches it.

CDATA Section

Origin
XML

Explanation
A sequence of characters in an XML document enclosed between the
delimiters «<![CDATA[» and «]]>»; within a CDATA section all characters
represent text content rather than markup, except for the sequence «]]>».

Character Reference

Origin
XML

Explanation
A representation of a character using its decimal or hexadecimal Unicode
value, for example «
» or «↤». Normally used for characters
that are difficult or impossible to enter directly at the keyboard.

Child Axis

Origin
XPath

Explanation
The child axis selects all the immediate children of the context node.
These can include elements, text nodes, comments, and processing
instructions, but not attributes or namespace nodes.

Comment Node

Origin
XPath

Explanation
A node in a tree representing an XML comment. The string-value of the
node is the text of the comment.

Comment

Origin
XML

Explanation
An item in an XML document that is conventionally used to carry
extraneous information that is not part of the document proper. Written
between the delimiters «<!--» and «-->».

Context Node

Origin
XPath

Explanation
For an XPath expression contained directly in the stylesheet (for example,
an expression in the select attribute of <xsl:value-of>, or between curly
braces in an attribute value template), the context node is the same as the
current node. For an XPath expression used as a predicate within a path
expression, the context node is the node for which the predicate is being
tested. The context node can be retrieved using the expression «.».

Context Position

Origin
XPath

Explanation
For an XPath expression contained directly in the stylesheet, the context
position is the position of the current node in the current node list, all
positions being numbered from one. For an XPath expression used as a
predicate in a step, the context position is the position of the context node
among all the nodes selected by that step of the path expression, in the
order of that step's axis. The context position determines the value of the
position() function, and is also used in evaluating a numeric predicate such
as «[1]».

Context Size

Origin
XPath

Explanation
For an XPath expression contained directly in the stylesheet, the context
size is the number of nodes in the current node list. For an XPath
expression used as a predicate in a step, the context size is the number of
nodes selected by that step of the path expression. The context size
determines the value of the last() function.

Current Node List

Origin
XSLT

Explanation
The current node list is a list (an ordered set) of nodes in the source
document tree. A new current node list is established by the select
expression of <xsl:apply-templates> or <xsl:for-each>. By default the
current node list is in document order, but it may be in a different order if
an <xsl:sort> element is present. When an XPath expression in the
stylesheet is evaluated, the position of the current node in the current node
list determines the context position (the value of the position() function),
and the size of the current node list determines the context size (the value
of the last() function).

Current Node

Origin
XSLT

Explanation
A node in a source tree becomes the current node when it is processed
using <xsl:apply-templates> or <xsl:for-each>. The current node is accessed
directly by using the current() function. Except within a predicate of a

path expression, the current node is the same as the context node, so it can
also be accessed using the expression «.».

Current output destination

Origin
This book

Explanation
The XSLT specification speaks of instructions such as <xsl:value-of> and
<xsl:element> writing nodes to the result tree. But while an <xsl:variable>
element is being instantiated, any output is actually redirected to the result
tree fragment that will form the value of this variable. In this book we
have therefore chosen to refer to whichever tree is currently being written
to as the current output destination. Many products also allow multiple
output trees.

Current Template Rule

Origin
XSLT

Explanation
When <xsl:apply-templates> selects a template rule to process a particular
node, that template rule becomes the current template rule. It remains the
current template rule through calls of <xsl:call-template>, but not though
calls of <xsl:for-each>. The current template rule is used only in deciding
which template to invoke when <xsl:apply-imports> is called.

Default Namespace Declaration

Origin
XML Namespaces

Explanation
Takes the form of an XML attribute xmlns="uri". Declares that within its
scope, an element name with no explicit prefix will be associated with a
particular namespace URI. The default namespace is used only for element

names; other objects with no prefix (for example, attributes) have a null
namespace URI.

Descendant Axis

Origin
XPath

Explanation
The descendant axis selects all the children of the context node, their
children, and so on, in document order.

Descendant-or-Self Axis

Origin
XPath

Explanation
The descendant-or-self axis selects the context node followed by all the
nodes on the descendant axis.

Document Element

Origin
XML

Explanation
The outermost element of a document, the one that contains all other
elements. The XML standard also refers to this as the root element, but it
must not be confused with the root node in the XPath tree model: the root
node is the parent of the document element, and represents the document
itself.

Document Order

Origin
XPath

Explanation
The nodes in a node-set can always be sorted into document order. For
elements from the same document, document order is the same as the
order of the start tags in the original source. In terms of the tree structure, a
node is ordered after its preceding siblings, and these are ordered after
their parent node. The ordering of attribute and namespace nodes, and of
nodes from different source documents, is not fully defined.

Document Type Definition (DTD)

Origin
XML

Explanation
The definition of the structure of an XML document, or a collection of
XML documents. May be split into an external subset, held in a separate
file, and an internal subset, embedded within the document itself.

Document

Origin
XML

Explanation
A parsed entity that conforms to the XML syntax for a Document is said to
be a well-formed document; a document that also obeys the rules in its
Document Type Definition is said to be valid.

Element Node

Origin
XPath

Explanation
A node in a tree that represents an element in an XML document. The
parent of the element node is either the containing element or the root of
the tree; its children are the element nodes, text nodes, comment nodes,

and processing instruction nodes derived from the immediate content of
the XML element.

Element

Origin
XML

Explanation
A logical unit within an XML document, delimited by start and end tags,
for example <publisher>Wrox Press</publisher>; an empty element may also be
written in abbreviated form, for example <publisher name="Wrox"/>.

Embedded Stylesheet

Origin
XSLT

Explanation
A physical stylesheet that does not constitute an entire XML document in
its own right, but which is embedded as an <xsl:stylesheet> element within
some larger XML (or perhaps non-XML) document.

Entity Reference

Origin
XML

Explanation
A reference to an internal or external entity, generally in the form
«&name;».

Entity

Origin
XML

Explanation
A physical unit of information that may be referenced within an XML
document. Internal entities are embedded within the document in its
Document Type Definition; external entities are generally held as a
separate file. A parsed entity contains text with XML markup; an unparsed
entity contains binary data. A general entity contains material for inclusion
in the document; a parameter entity contains material for inclusion in the
Document Type Definition.

Expanded Name

Origin
XML Namespaces

Explanation
An identifier obtained from a QName by replacing the namespace prefix with
the full namespace URI of the namespace to which it refers. An expanded
name has two components, the namespace URI and the local name. There
is no defined convention for displaying an expanded name, though some
products show it as the namespace URI, then a circumflex, then the local
name: for example «http://icl.com/saxon^output».

Expression

Origin
XPath

Explanation
An XPath construct that can be evaluated to yield a string, a number, a
boolean, a node-set, or a result tree fragment. Used in many contexts such
as the select attribute of <xsl:for-each>, <xsl:value-of>, and <xsl:variable>,
and the test attribute of <xsl:if> and <xsl:when>. Expressions are also used
between curly braces in attribute value templates.

Extension Element

Origin
XSLT

Explanation
An element within a template body that is defined by a product vendor, a
user, or a third party, but which otherwise behaves like an XSLT
instruction. The XSLT Recommendation defines how extension elements
are instantiated but not how they are implemented.

Extension Function

Origin
XSLT

Explanation
A function defined by a product vendor, a user, or a third party, which can
be called from within an XPath expression. The XSLT Recommendation
defines how extension functions are called but not how they are
implemented.

Following Axis

Origin
XPath

Explanation
The following axis selects all the nodes that follow the context node with
the exception of attribute and namespace nodes, and the node's own
descendants. The axis is in document order.

Following Sibling Axis

Origin
XPath

Explanation
The following-sibling axis selects all the nodes that follow the context
node and that share the same parent node, in document order.

Function

Origin
XPath

Explanation
A procedure that can be called from within an XPath expression; it takes
arguments and returns a result. Functions cannot be defined using XPath,
only invoked from XPath. A function is either a core function defined in
the XPath or XSLT recommendations, or an extension function provided
by the vendor or the user.

Global Variable

Origin
XSLT

Explanation
A variable defined in a top-level <xsl:variable> element. Global variables
are available anywhere in the logical stylesheet, unless masked by a local
variable of the same name, or a global variable of the same name and
higher import precedence.

ID

Origin
XML

Explanation
An attribute of type ID has a value which is unique within the document
(that is, different from any other ID attribute). It is an ID by virtue of being
declared as such in the DTD. It is only guaranteed unique if the document
is valid (XSLT is not constrained to operate only on valid documents).
Elements can be accessed using their ID by means of the id() function.
Attributes of type IDREF have no special significance in XSLT.

Import Precedence

Origin
XSLT

Explanation
A stylesheet that is loaded using <xsl:import> has lower import precedence
than the stylesheet doing the importing. The import precedence affects all
the top-level elements in that stylesheet, and is used when deciding which
top-level elements to use. For example, if two global variables have the
same name, the one with higher import precedence is used.

Instantiate

Origin
XSLT

Explanation
Instructions and template bodies in XSLT are not executed, obeyed, or
activated: they are said to be instantiated. This term is chosen to avoid any
connotation that execution must be sequential.

Instruction

Origin
XSLT

Explanation
One of a number of XSLT elements that is permitted to appear directly
within a template body, for example <xsl:variable>, <xsl:choose>, and
<xsl:message>. Not all XSLT elements are instructions, for example
<xsl:param> and <xsl:when> are not: this is because these can only appear in
a defined context.

Literal Result Element

Origin
XSLT

Explanation
A literal result element is an element appearing within a template body in
a stylesheet that is not an XSLT instruction or an extension element. When
the template body is instantiated, a literal result element is copied to the

current output destination and its content (which is also a template body)
is instantiated in turn.

Local Variable

Origin
XSLT

Explanation
A variable defined within a template body. A local variable is accessible
only from the following siblings of the <xsl:variable> element that defines
the variable, and from their descendants. This is analogous to the normal
rule in block-structured programming languages.

Mode

Origin
XSLT

Explanation
Modes partition the set of template rules in a stylesheet, so that the same
nodes can be processed more than once using different rules each time.
The mode named on the call of <xsl:apply-templates> must match the mode
named on the <xsl:template> element that is invoked.

Named Template

Origin
XSLT

Explanation
An <xsl:template> element in the stylesheet with a name attribute. A named
template may be invoked using an <xsl:call-template> instruction.

Namespace

Origin
XML Namespaces

Explanation
A named collection of names. The namespace is named using a URI,
which is intended to be formed in such a way as to ensure global
uniqueness, but which, in practice, may be any string. Within a particular
region of a document, a namespace is also identified by a local name
called a prefix; different prefixes can be used to refer to the same
namespace in different documents or even within the same document. A
name (of an element or attribute in XML; and of a variable, template,
mode etc in XSLT) belongs to a specific namespace, and two names can
be considered equivalent only if they belong to the same namespace.

Namespace Axis

Origin
XPath

Explanation
The namespace axis selects all the namespace nodes belonging to the
context node. If the context node is not an element, the axis will be empty.
For elements, there is one namespace node for every namespace that is in
scope for the element, whether it relates to a namespace declaration that
was defined on this element or on a containing element.

Namespace Declaration

Origin
XML Namespaces

Explanation
A construct in an XML document which declares that within a particular
region of the document, a given namespace prefix will be used to refer to
the namespace with a particular URI. There are two forms of namespace
declaration: xmlns="uri" to declare the default namespace (the one with a
null prefix), and xmlns:prefix="uri" to declare a namespace with a non-null

prefix. Both are written in the form of XML attributes and apply to the
element they are on and all descendant elements, unless overridden.

Namespace Node

Origin
XPath

Explanation
A node in a tree that represents the binding of a namespace prefix to a
namespace URI. A namespace node belongs to an element called its
parent: it applies only to that element and not to any descendant elements.

Namespace Prefix

Origin
XML Namespaces

Explanation
A short name used to identify a namespace within a particular region of a
stylesheet, so called because it is most often used as the prefix of a QName
(the part before the colon). Different prefixes can be used to identify the
same namespace, and in different contexts the same prefix can be used to
identify different namespaces.

Namespace URI

Origin
XML Namespaces

Explanation
A URI used to identify a namespace. Namespace URIs are unusual in that
there is no actual resource that can be obtained using the URI; the URI is
simply a unique identifier. In practice, any string can be used as a
namespace URI, though «http://» URLs are often used to give some
prospect of uniqueness.

NaN

Origin
XPath

Explanation
Not-a-number. This is one of the possible values of a variable whose data
type is Number. It results from an operation whose result is not numeric,
for example «number('apple')».

Node

Origin
XPath

Explanation
An object on a tree. There are seven types of node: attribute nodes,
comment nodes, element nodes, namespace nodes, processing instruction
nodes, root nodes, and text nodes.

Node-set

Origin
XPath

Explanation
A node-set is an unordered collection of distinct nodes from one or more
trees. It may be empty, and it may be heterogeneous in the sense that it
contains a mixture of nodes of different types.

Number

Origin
XPath

Explanation
One of the allowed data types for the value of an XPath expression. It is a
floating point number as defined by IEEE 754.

Output Method

Origin
XSLT

Explanation
XSLT defines three output methods, xml, html, and text. The output
method controls the way in which the result tree is output (or serialized) as
a stream of characters or bytes.

Parameter

Origin
XSLT

Explanation
A variable whose value is supplied by the caller. A global parameter is a
global variable whose value can be set (in a vendor-defined way) when the
stylesheet is executed. A local parameter is defined within an
<xsl:template> element, and its value can be set when the template is
invoked using <xsl:apply-templates> or <xsl:call-template>.

Path Expression

Origin
XPath

Explanation
A path expression is an expression that selects a set of nodes in the source
tree. It defines an initial node-set, from which selection starts, and a
sequence of steps which define navigation paths from the initial nodes to
further nodes. The final result is the set of nodes reached by following
each of the steps in turn. For example, the path from the initial nodes to
further nodes. The final result is the set of nodes reached by following
each of the steps in turn. For example, the path expression «./parent::*» has
an initial node-set containing the context node «.», and a single step which
navigates to the parent element of that node.

Pattern

Origin
XSLT

Explanation
A construct that defines a condition which every node either satisfies or
does not satisfy. The syntax for a Pattern is a subset of the syntax for an
XPath expression. Patterns are used in only three XSLT elements:
<xsl:template>, <xsl:key>, and <xsl:number>.

Precedence

Origin
XSLT

Explanation
see Import Precedence

Preceding Axis

Origin
XPath

Explanation
The preceding axis selects all the nodes that precede the context node, in
reverse document order, with the exception of attribute and namespace
nodes, and the node's own ancestors.

Preceding-Sibling Axis

Origin
XPath

Explanation
The preceding-sibling axis selects all the nodes that precede the context
node and that share the same parent node, in reverse document order.

Predicate

Origin
XPath

Explanation
An expression used to filter which nodes are selected by a particular step
in a path expression, or to select a subset of the nodes in a node-set. A
Boolean expression selects the nodes for which the predicate is true; a
numeric expression selects the node at the position given by the value of
the expression, for example «[1]» selects the first node.

Prefix

Origin
XML Namespaces

Explanation
see Namespace Prefix

Principal Node Type

Origin
XPath

Explanation
Every axis has a principal node type. For most axes, the principal nodes
are Elements. For the attribute axis, the principal node type is Attribute,
and for the namespace axis, it is Namespace. The principal node type
determines the type of nodes selected by the node test «*»: for example,
«following-siblings::*» selects elements, while «namespace::*» selects
namespace nodes.

Priority

Origin
XSLT

Explanation
Every template rule has a priority. The priority is expressed as a floating-
point number. The priority may be specified explicitly, using the priority
attribute of the <xsl:template> element; if it is omitted a default priority is
allocated based on the pattern. The priority is used to decide which
template to instantiate when several template rules match the same node: a
rule with numerically higher priority is used in preference to one with
lower priority.

Processing Instruction Node

Origin
XPath

Explanation
A node in a tree representing an XML processing instruction.

Processing Instruction

Origin
XML

Explanation
An item in an XML document that is conventionally used to carry
instructions to the software that receives the document and processes it.
Written between the delimiters «<?» and «?>». Note that the XML
declaration at the start of a document, and the text declaration at the start
of an external parsed entity, are not processing instructions even though
they use the same delimiters.

QName

Origin
XML Namespaces

Explanation
A qualified name. It is either a simple name (an NCName) or a name
preceded by a namespace prefix and a colon.

Result Tree

Origin
XSLT

Explanation
The output of a stylesheet. A stylesheet defines a transformation from a
source tree to a result tree. Several products have extensions that allow
multiple result trees to be created. The final stage of processing is
normally to serialize the result tree as a stream of characters or bytes: this
is controlled by the selected output method.

Result Tree Fragment

Origin
XSLT

Explanation
This term is misleading: it would be better named a "temporary tree". A
result tree fragment is a tree, and it forms the value of a variable. It may be
constructed by instantiating an <xsl:variable> element with no select
attribute and non-empty content. It may be used in two ways: by copying it
to the result tree or by converting it to a string. Several products also
provide an extension function to allow a result tree fragment to be
converted to a node-set.

Root Node

Origin
XPath

Explanation
The top-most node in a tree. If the tree represents a well-formed XML
document the root node will have exactly one element node as a child,
representing the document element, and no text nodes as children. In other
cases (for example result tree fragments) it may have zero or more element
node children, and zero or more text node children: I refer to such a

document as being well-balanced. In both cases the root node may also
have comment nodes and processing instruction nodes as children.

Simplified Stylesheet

Origin
This book

Explanation
Referred to in XSLT as the Literal Result Element as Stylesheet Facility, a
simplified stylesheet is a stylesheet consisting solely of a literal result
element which is instantiated using the root of the source document as the
current node.

Source Document

Origin
XPath

Explanation
The principal source document is the XML document to which the
stylesheet is being applied. Secondary source documents can be loaded
using the document() function.

Step

Origin
XPath

Explanation
A step is used within a path expression to navigate from one node to a
particular set of nodes. The step is defined by an axis, giving the direction
of navigation, a node test, which defines constraints on the type of and
names of the target nodes, and zero or more predicates, which define
arbitrary constraints that the target nodes must satisfy.

String

Origin
XPath

Explanation
One of the allowed data types for the value of an XPath expression. It is a
sequence of zero or more Unicode characters (the same character set as is
used in XML).

String-value

Origin
XPath

Explanation
Every node has a string-value. For a text node the string-value is the
textual content; for an element it is the concatenation of the string-values
of its descendant text nodes (that is, the textual content of the element after
stripping all markup). The string-value of a node is output by the
instruction <xsl:value-of select=".">.

Stylesheet

Origin
XSLT

Explanation
This term is used to refer either to a single <xsl:stylesheet> element and its
contents (called in this book a stylesheet module), or to a stylesheet with
all the stylesheets that it loads using <xsl:include> and <xsl:import>
elements (called a stylesheet program).

Template Body

Origin
This book

Explanation
A sequence of XSLT instructions, extension elements, literal result
elements, and text nodes, forming the content of an <xsl:template> element
or of various other elements in the stylesheet. When the template body is
instantiated, any instructions and extension elements are instantiated
according to the rules for each one, while any literal result elements and
text nodes are copied to the current output destination. In the XSLT
Recommendation the term used is simply Template; I have used Template
Body to avoid confusion with <xsl:template> elements.

Template Rule

Origin
XSLT

Explanation
An <xsl:template> element in the stylesheet with a match attribute. A
template rule may be invoked using the <xsl:apply-templates> instruction;
for each selected node, the appropriate template rule is determined based
on a number of criteria including the match pattern and the template rule's
import precedence and priority.

Text Node

Origin
XPath

Explanation
A node in a tree representing character data (called PCDATA in XML)
within an XML document. Adjacent text nodes will always be merged into
a single node. Character references and entity references occurring within
the original text will have been replaced by their expansions.

Top-level element

Origin
XSLT

Explanation
An element in a stylesheet that is an immediate child of the
<xsl:stylesheet> element.

Tree

Origin
XPath

Explanation
An abstract data structure representing the information content of an XML
document. The tree always has a single root node (which contrary to the
botanical analogy, is always depicted at the top). The structure of nodes in
the tree need not follow the rules for a well-formed document in XML, for
example, there may be several element nodes as children of the root.

Unparsed Entity

Origin
XML

Explanation
An unparsed entity is an entity declared in the Document Type Definition
with an associated notation. Such entities are unparsed because they
generally contain binary data such as images, rather than XML. A
function, unparsed-entity-uri(), is available in XSLT to access the
unparsed entities associated with a source document.

URI

Origin
Internet standards

Explanation
Uniform Resource Identifier: a generalization of the URLs (Uniform
Resource Locators) used to uniquely address resources such as web pages
on the Internet.

Variable Binding

Origin
XPath

Explanation
The declaration of a variable, in an <xsl:variable> or <xsl:param> element,
in conjunction with the current value of that variable.

Variable Reference

Origin
XPath

Explanation
A reference to a variable within an expression, in the form $name.

Well-balanced

Origin
XML Fragment Interchange

Explanation
An XML fragment is well balanced if there is an end tag that matches
every start tag. This is a less strict constraint than being well-formed: a
well-balanced fragment does not have to have a single element that
encloses all the others. XSLT and XPath are defined so they will work on
any trees representing a well-balanced XML fragment. The XML and
XSLT standards don't use this terminology; instead they refer to the rules
for an external general parsed entity.

Well-formed

Origin
XML

Explanation
A document is well-formed if it follows the syntax rules in the XML
specification. These include the rule that there must be a single outermost
element that encloses all others. The XML output of an XSLT stylesheet is
not required to be well-formed, only to be well-balanced.

Whitespace

Origin
XML

Explanation
Whitespace is any contiguous sequence of tab, carriage return, newline,
and space characters. A whitespace node is a text node whose string-value
consists solely of whitespace.

